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Abstract. Ripple Effect is a logic puzzle with an objective to fill num-
bers into a rectangular grid divided into rooms. Each room must contain
consecutive integers starting from 1 to its size. Also, if two cells in the
same row or column have the same number x, the space separating the
two cells must be at least x cells. In this paper, we propose a physical
protocol of zero-knowledge proof for Ripple Effect puzzle using a deck
of cards, which allows a prover to physically show that he/she knows a
solution without revealing it. In particular, we develop a physical proto-
col that, given a secret number x and a list of numbers, verifies that x
does not appear among the first x numbers in the list without revealing
x or any number in the list.

Keywords: Zero-knowledge proof · Card-based cryptography · Ripple
effect · Puzzle

1 Introduction

Ripple Effect is a logic puzzle introduced by Nikoli, a Japanese company that
developed many famous logic puzzles such as Sudoku, Numberlink, and Kakuro.
A Ripple Effect puzzle consists of a rectangular grid of size m × n divided into
polyominoes called rooms, with some cells already containing a number (we call
these cells fixed cells and the other cells empty cells). The objective of this puzzle
is to fill a number into each empty cell according to the following rules [13].

1. Room condition: Each room must contain consecutive integers starting from
1 to its size (the number of cells in the room).

2. Distance condition: If two cells in the same row or column have the same
number x, the space separating the two cells must be at least x cells. See
Fig. 1.

Suppose that Patricia, a Ripple Effect expert, created a difficult Ripple Effect
puzzle and challenged her friend Victor to solve it. After a while, Victor could
not solve her puzzle and began to doubt that the puzzle may have no solution.
Patricia needs to convince him that her puzzle actually has a solution without
showing it (which would make the challenge pointless). In this situation, Patricia
needs a protocol of zero-knowledge proof.
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Fig. 1. An example of a Ripple Effect puzzle (left) and its solution (right)

1.1 Zero-Knowledge Proof

A zero-knowledge proof is a protocol of interactive proof between a prover P
and a verifier V . Both P and V are given a computational problem x, but only
P knows a solution w of x. A protocol of zero-knowledge proof enables P to
convince V that he/she knows w without revealing any information of it. The
protocol must satisfy the following properties.

1. Completeness: If P knows w, then P can convince V with high probability.
(In this paper, we consider only the perfect completeness property where the
probability to convince V is one.)

2. Soundness: If P does not know w, then P cannot convince V , except with
a small probability called soundness error. (In this paper, we consider only
the perfect soundness property where the soundness error is zero.)

3. Zero-knowledge: V learns nothing about w, i.e. there exists a probabilistic
polynomial time algorithm S (called a simulator), not knowing w but having
a black-box access to V , such that the outputs of S and the outputs of the
real protocol follow the same probability distribution.

The concept of a zero-knowledge proof was introduced by Goldwasser et al. [6]
in 1989. Goldreich et al. [5] later showed that a zero-knowledge proof exists for
every NP problem. As Ripple Effect has been proved to be NP-complete [17],
one can construct a computational zero-knowledge proof for it. However, such
construction is not intuitive or practical as it requires cryptographic primitives.

Instead, we aim to develop a physical protocol of zero-knowledge proof with
a deck of playing cards. Card-based protocols have benefit that they do not
require computers and use only a small, portable deck of cards that can be
found in everyday life. These protocols are also suitable for teaching purpose
since they are easy to understand and verify the correctness and security, even
for non-experts in cryptography.
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1.2 Related Work

Development of card-based protocols of zero-knowledge proof for logic puzzles
began with a protocol for Sudoku developed by Gradwohl et al. [7]. However,
each of several variants of this protocol either uses scratch-off cards or has a
nonzero soundness error. Later, Sasaki et al. [15] improved the protocol for
Sudoku to achieve perfect soundness property without using special cards. Apart
from Sudoku, protocols of zero-knowledge proof for other puzzles have been
developed as well, including Nonogram [3], Akari [1], Takuzu [1], Kakuro [1,12],
KenKen [1], Makaro [2], Norinori [4], Slitherlink [11], and Numberlink [14].

Many of these protocols employ methods to physically verify or compute
specific number-related functions, as shown in the following examples.

– A subprotocol in [7] verifies that a list is a permutation of all given numbers
in some order without revealing their order.

– A subprotocol in [2] verifies that two given numbers are different without
revealing their values.

– Another subprotocol in [2] verifies that a number in a list is the largest one
in that list without revealing any value in the list.

– A subprotocol in [14] counts the number of elements in a list that are equal
to a given secret value without revealing that value, the positions of elements
in the list that are equal to it, or the value of any other element in the list.

Observe that these four functions do not use the mathematical meaning of
numbers. In these functions, numbers are treated only as symbols distinguished
from one another in the sense that we can replace every number x with f(x) for
any function f : Z+ → Z

+ and the output will remain the same (for the third
example, f has to be an increasing function).1

1.3 Our Contribution

In this paper, we propose a physical protocol of zero-knowledge proof with perfect
completeness and perfect soundness properties for Ripple Effect puzzle using a
deck of cards. More importantly, we extend the set of functions that are known
to be physically verifiable. In particular, we develop a protocol that, given a
secret number x and a list of numbers, verifies that x does not appear among
the first x numbers in the list without revealing x or any number in the list.

Unlike the functions verified by many protocols in previous work, the function
our protocol has to verify uses the mathematical meaning of the numbers in the
sense of cardinality; it uses the value of x to determine how many elements in the
list the condition is imposed on. Therefore, this function is significantly harder
to verify without revealing x, and thus we consider this result to be an important
step in developing protocols of zero-knowledge proof.
1 Actually, some protocols from previous work can verify a function that uses the

mathematical meaning of numbers, but still not in the sense of cardinality. For
example, a subprotocol in [12] verifies that the sum of all numbers in a list is equal
to a given number; for this function, we can still replace every number x with f(x)
for any linear function f : Z+ → Z

+.
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2 Preliminaries

2.1 Cards

Every card used in our protocol has either ♣ or ♥ on the front side, and has an
identical back side.

For 1 ≤ x ≤ y, define Ey(x) to be a sequence of consecutive y cards arranged
horizontally, with all of them being ♣ except the x-th card from the left being
♥ , e.g. E3(3) is ♣ ♣ ♥ and E4(2) is ♣ ♥ ♣ ♣ . We use Ey(x) to encode a
number x in a situation where the maximum possible number is at most y. This
encoding rule was first considered by Shinagawa et al. [16] in the context of using
a regular y-gon card to encode each integer in Z/yZ. Additionally, we encode 0
by Ey(0), defined to be a sequence of consecutive y cards, all of them being ♣ .

Normally, the cards in Ey(x) are arranged horizontally as defined above
unless stated otherwise. However, in some situations we may arrange the cards
vertically, where the leftmost card will become the topmost card and the right-
most card will become the bottommost card (hence the only ♥ will become the
x-th topmost card for x ≥ 1).

2.2 Matrix

We construct an a × b matrix of face-down cards. Let Row i denote the i-th
topmost row, and Column j denote the j-th leftmost column. Let M(i, j) denote
the card at Row i and Column j of a matrix M . See Fig. 2.

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

Row

1 2 3 4 5 6

Column

Fig. 2. An example of a 5 × 6 matrix

2.3 Pile-Shifting Shuffle

A pile-shifting shuffle was introduced by Shinagawa et al. [16]. In the pile-shifting
shuffle, we rearrange the columns of the matrix by a random cyclic permutation,
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Fig. 3. An example of a pile-shifting shuffle on a 5 × 6 matrix with r = 2

i.e. move every Column � to Column � + r for a uniformly random r ∈ {0, 1, ...,
b − 1} (where Column �′ means Column �′ − b for �′ > b). See Fig. 3.

One can perform the pile-shifting shuffle in real world by putting the cards
in each column into an envelope and then applying a Hindu cut, which is a
basic shuffling operation commonly used in card games [18], to the sequence of
envelopes.

2.4 Rearrangement Protocol

The sole purpose of a rearrangement protocol is to revert columns of a matrix
(after we perform pile-shifting shuffles) back to their original positions so that
we can reuse all cards in the matrix without revealing them. Slightly different
variants of this protocol were used in some previous work on card-based proto-
cols [2,8,9,14,15]. Note that throughout our main protocol, we always put Eb(1)
in Row 1 when constructing a new matrix, hence we want to ensure that a ♥
in Row 1 moves back to Column 1.

We can apply the rearrangement protocol on an a × b matrix by publicly
performing the following steps.

1. Apply the pile-shifting shuffle to the matrix.
2. Turn over all cards in Row 1. Locate the position of a ♥ . Suppose it is at

Column j. Turn over all face-up cards.
3. Shift the columns of the matrix to the left by j − 1 columns, i.e. move every

Column � to Column � − (j − 1) (where Column �′ means Column �′ + b for
�′ < 1).

2.5 Uniqueness Verification Protocol

Suppose we have sequences S0, S1, ..., Sa, each consisting of b cards. S0 encodes a
positive number, while S1, S2, ..., Sa encode nonnegative numbers. Our objective
is to verify that none of the sequences S1, S2, ..., Sa encodes the same number as
S0 without revealing any number. This protocol is a special case of the protocol
developed by Ruangwises and Itoh [14] to count the number of indices i such
that Si encodes the same number as S0. We can do so by publicly performing
the following steps.
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1. Construct an (a + 2) × b matrix with Row 1 consisting of a sequence Eb(1)
and each Row i + 2 (i = 0, 1, ..., a) consisting of the sequence Si.

2. Apply the pile-shifting shuffle to the matrix.
3. Turn over all cards in Row 2. Locate the position of a ♥ . Suppose it is at

Column j.
4. Turn over all cards in Column j from Row 3 to Row a + 2. If there is no

♥ among them, then the protocol continues. Otherwise, V rejects and the
protocol terminates.

5. Turn over all face-up cards.

2.6 Pile-Scramble Shuffle

A pile-scramble shuffle was introduced by Ishikawa et al. [10]. In the pile-
scramble shuffle, we rearrange the columns of the matrix by a random permuta-
tion, i.e. move every Column j to Column pj for a uniformly random permutation
p = (p1, p2, ..., pb) of (1, 2, ..., b). See Fig. 4.
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Fig. 4. An example of a pile-scramble shuffle on a 5 × 6 matrix

One can perform the pile-scramble shuffle in real world by putting the cards
in each column into an envelope and then scrambling the envelopes together
completely randomly.

3 Main Protocol

Let k be the size of the biggest room in the Ripple Effect grid. For each fixed
cell with a number x, the prover P publicly puts a sequence of face-down cards
Ek(x) on it. Then, for each empty cell with a number x in P ’s solution, P secretly
puts a sequence of face-down cards Ek(x) on it. P will first verify the distance
condition, and then the room condition.
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3.1 Verification Phase for Distance Condition

The most challenging part of our protocol is to verify the distance condition,
which is equivalent to the following statement: for each cell c with a number x,
the first x cells to the right and to the bottom of c cannot have a number x.

First, we will show a protocol to verify that there is no number x among the
first x cells to the right of c. Then, we apply the same protocol analogously in
the direction to the bottom of c as well.

Suppose that cell c has a number x. Let A0 be the sequence of cards on c.
For each i = 1, 2, ..., k, let Ai be the sequence of cards on the i-th cell to the
right of c, i.e. A1 is on a cell right next to the right of c, A2 is on a second cell
to the right of c, and so on (if there are only � < k cells to the right of c, we
publicly put Ek(0) in place of Ai for every i > �).

The intuition of this protocol is that, we will create sequences
B1, B2, ..., Bk−1, all being Ek(0), and insert them between Ax and Ax+1 (with-
out revealing x). Then, we will pick k sequences A1, A2, ..., Ax, B1, B2, ..., Bk−x

and use the uniqueness verification protocol introduced in Sect. 2.5 to verify that
none of them encodes the same number as A0.

P publicly performs the following steps.

1. Construct a (k + 4) × k matrix M by the following procedures. See Fig. 5.
– In Row 1, place a sequence Ek(1).
– In Row 2, place the sequence A0 (which is Ek(x)).
– In Row 3, place a sequence Ek(1).
– In Row 4, place a sequence Ek(0).
– In each Column j (j = 1, 2, ..., k), place the sequence Aj arranged verti-

cally from Row 5 to Row k + 4.
2. Apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2 of M . Locate the position of a ♥ . Suppose it

is at Column j1. Turn over all face-up cards.
4. Shift the columns of M to the right by k − j1 columns, i.e. move every

Column � to Column � + k − j1 (where Column �′ means Column �′ − k for
�′ > k). Observe that after this step, Ax will locate at the rightmost column.

5. Divide M into a 2 × k matrix M1 and a (k + 2) × k matrix M2. M1 consists
of the topmost two rows of M , while M2 consists of everything below M1.
Each cell M(i + 2, j) (i, j ≥ 1) of M will become a cell M2(i, j) of a new
matrix M2.

6. Apply the rearrangement protocol to M1. Observe that we now have Ek(1)
in Row 1 and A0 in Row 2 of M1. From now on, we will perform operations
only on M2 while M1 will be left unchanged.

7. Append k − 1 columns to the right of the matrix M2 by the following pro-
cedures, making M2 become a (k + 2) × (2k − 1) matrix.
– In Row 1, place a sequence Ek−1(0) from Column k+1 to Column 2k−1.
– In Row 2, place a sequence Ek−1(1) from Column k+1 to Column 2k−1.
– In each Column k+j (j = 1, 2, ..., k−1), place a sequence Ek(0) arranged

vertically from Row 3 to Row k + 2. We call this sequence Bj .
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8. Apply the pile-shifting shuffle to M2.
9. Turn over all cards in Row 1 of M2. Locate the position of a ♥ . Suppose it

is at Column j2. Turn over all face-up cards.
10. For each i = 1, 2, ..., k, let Si denote a sequence of card arranged vertically

at Column j2 + i − 1 (where Column �′ means Column �′ − (2k − 1) for
�′ > 2k − 1) from Row 3 to Row k + 2 of M2. Observe that (S1, S2, ..., Sk) =
(A1, A2, ..., Ax, B1, B2, ..., Bk−x). Then, construct a (k + 2) × k matrix N
with Row 1 consisting of a sequence Ek(1) taken from Row 1 of M1, Row 2
consisting of the sequence A0 taken from Row 2 of M1, and each Row i + 2
(i = 1, 2, ..., k) consisting of the sequence Si taken from M2.

11. Apply the uniqueness verification protocol on N . The intuition of this step is
to verify that none of the sequences A1, A2, ..., Ax encodes the same number
as A0 (while B1, B2, ..., Bk−x are all Ek(0)).

12. Apply the rearrangement protocol on N , put A0 back onto c, and put
S1, S2, ..., Sk back to their corresponding columns in M2.

13. Apply the pile-shifting shuffle to M2.
14. Turn over all cards in Row 2 of M2. Locate the position of a ♥ . Suppose it

is at Column j3. Turn over all face-up cards.
15. Shift the columns of M2 to the right by k + 1 − j3 columns, i.e. move every

Column � to Column �+k+1−j3 (where Column �′ means Column �′−(2k−1)
for �′ > 2k−1). Then, remove Columns k+1, k+2, ..., 2k−1 from M2, making
M2 become a (k + 2) × k matrix again. Observe that the columns we just
removed are exactly the same k − 1 columns we previously appended to M2.

16. Apply the rearrangement protocol on M2 and put the sequences
A1, A2, ..., Ak back onto their corresponding cells on the Ripple Effect grid.

P performs these steps analogously in the direction to the right and bottom
of every cell in the grid. If every cell passes the verification, P continues to the
verification phase for room condition.

3.2 Verification Phase for Room Condition

The room condition of Ripple Effect is exactly the same as that of Makaro, and
hence can be verified by a subprotocol in [2]. Since this is the final step of our
protocol, after we finish verifying each room, we do not have to rearrange cards
back to their original positions or put them back onto their cells.

P will verify each room separately. For a room R with size s, let A1, A2, ..., As

be the sequences of cards on the cells in R in any order. To verify room R, P
publicly performs the following steps.

1. Construct a k × s matrix M by the following procedures: in each Column j
(j = 1, 2, ..., s), place the sequence Aj arranged vertically from Row 1 to Row
k.

2. Apply the pile-scramble shuffle to M .
3. Turn over all cards in M . If all columns of M are a permutation of Ek(1),

Ek(2), ..., Ek(s) arranged vertically, then the protocol continues. Otherwise,
V rejects and the protocol terminates.
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Fig. 5. A (k + 4) × k matrix M constructed in Step 1

P performs these steps for every room. If every room passes the verification,
then V accepts.

In total, our protocol uses kmn + 2k2 + 4k − 2 = Θ(kmn) cards.

4 Proof of Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol. We omit the proofs of the verification phase for room
condition as they have been shown in [2].

Lemma 1 (Perfect Completeness). If P knows a solution of the Ripple
Effect puzzle, then V always accepts.

Proof. First, we will show that the uniqueness verification protocol will pass if
none of S1, S2, ..., Sa encodes the same number as S0. Suppose that S0 encodes a
number z > 0. A ♥ in Row 2 will locate at Column z. Since none of S1, S2, ..., Sa

encodes the number z, all cards below Row 2 in the same column as that ♥ will
be all ♣ s. This remains true after we rearrange the columns in Step 2. Therefore,
the verification in Step 4 will pass.

Now consider the main protocol. Suppose that P knows a solution of the
puzzle. The verification phase for room condition will pass [2].

Consider the verification phase for distance condition. In Step 1, a ♥ in
Row 2 is at the same column as Ax, and will always be. Therefore, in Step 4,
the column containing Ax will move to the rightmost column.
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In Step 7, the order of the sequences (which are arranged vertically from
Row 3 to Row k + 2) from the leftmost column to the rightmost column is
Ax+1, Ax+2, ..., Ak, A1, A2, ..., Ax, B1, B2, ..., Bk−1. Also, a ♥ in Row 1 is at the
same column as A1, and a ♥ in Row 3 is at the same column as B1, and they
will always be.

In Step 10, since A1 locates at Column j, the sequences S1, S2, ..., Sk will
be exactly A1, A2, ..., Ax, B1, B2, ..., Bk−x in this order. Therefore, in Step 11,
the uniqueness verification protocol will pass because none of the sequences
A1, A2, ..., Ax encodes the number x, and B1, B2, ..., Bk−x all encode 0.

Since this is true for every cell and every direction (to the right, left, top,
and bottom), the verification phase for distance condition will pass, hence V will
always accept. �	
Lemma 2 (Perfect Soundness). If P does not know a solution of the Ripple
Effect puzzle, then V always rejects.

Proof. First, we will show that the uniqueness verification protocol will fail if at
least one of S1, S2, ..., Sa encodes the same number as S0. Suppose that S0 and
Sd (d > 0) both encode a number z > 0. A ♥ in Row 2 will locate at Column
z. Since Sd also encodes the number z, a card in Row d in the same column as
that ♥ will be a ♥ . This remains true after we rearrange the columns in Step
2. Therefore, the verification in Step 4 will fail.

Now consider the main protocol. Suppose that P does not know a solution of
the puzzle. The numbers P puts into the grid must violate either the room condi-
tion or the distance condition. If they violate the room condition, the verification
phase for room condition will fail [2].

Suppose that the numbers in the grid violate the distance condition. There
must be two cells c and c′ in the same row or column having the same number
x, where c′ locates on the right or the bottom of c with � < x cells of space
between them.

Consider when P performs the verification phase for distance condition for c
in the direction towards c′. The sequence on the cell c′ will be A�+1

By the same reason as in the proof of Lemma 1, in Step 10, the sequences
S1, S2, ..., Sk will be exactly A1, A2, ..., Ax, B1, B2, ..., Bk−x in this order and thus
include A�+1. Therefore, in Step 11, the uniqueness verification protocol will fail
because A� encodes the number x, hence V will always reject. �	
Lemma 3 (Zero-Knowledge). During the verification phase, V learns noth-
ing about P ’s solution of the Ripple Effect puzzle.

Proof. To prove the zero-knowledge property, it is sufficient to prove that all
distributions of the values that appear when P turns over cards can be simulated
by a simulator S without knowing P ’s solution.

– In the rearrangement protocol:
• Consider Step 2 where we turn over all cards in Row 1. This occurs
right after we applied the pile-shifting shuffle to the matrix. Therefore,
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a ♥ has an equal probability to appear at each of the b columns, hence
this step can be simulated by S without knowing P ’s solution.

– In the uniqueness verification protocol:
• Consider Step 3 where we turn over all cards in Row 2. This occurs
right after we applied the pile-shifting shuffle to the matrix. Therefore,
a ♥ has an equal probability to appear at each of the b columns, hence
this step can be simulated by S without knowing P ’s solution.
• Consider Step 4 where we turn over all cards in Column j from Row 3
to Row a+2. If the verification passes, the cards we turn over must be all
♣ s, hence this step can be simulated by S without knowing P ’s solution.

– In the verification phase for room condition:
• Consider Step 3 where we turn over all cards in Row 2 of M . This occurs
right after we applied the pile-shifting shuffle to M . Therefore, a ♥ has
an equal probability to appear at each of the k columns, hence this step
can be simulated by S without knowing P ’s solution.
• Consider Step 9 where we turn over all cards in Row 1 of M2. This
occurs right after we applied the pile-shifting shuffle to M2. Therefore,
a ♥ has an equal probability to appear at each of the 2k − 1 columns,
hence this step can be simulated by S without knowing P ’s solution.
• Consider Step 14 where we turn over all cards in Row 2 of M2. This
occurs right after we applied the pile-shifting shuffle to M2. Therefore,
a ♥ has an equal probability to appear at each of the 2k − 1 columns,
hence this step can be simulated by S without knowing P ’s solution.

Therefore, we can conclude that V learns nothing about P ’s solution. �	

5 Future Work

We developed a physical protocol of zero-knowledge proof for Ripple Effect puz-
zle using Θ(kmn) cards. A possible future work is to develop a protocol for this
puzzle that requires asymptotically fewer number of cards, or for other popular
logic puzzles.

Another challenging future work is to explore methods to physically verify
other types of more complicated number-related functions.
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