
Ryuhei Uehara
Seok-Hee Hong
Subhas C. Nandy (Eds.)

LN
CS

 1
26

35

WALCOM: Algorithms
and Computation
15th International Conference and Workshops, WALCOM 2021
Yangon, Myanmar, February 28 – March 2, 2021
Proceedings

Lecture Notes in Computer Science 12635

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ryuhei Uehara • Seok-Hee Hong •

Subhas C. Nandy (Eds.)

WALCOM: Algorithms
and Computation
15th International Conference and Workshops, WALCOM 2021
Yangon, Myanmar, February 28 – March 2, 2021
Proceedings

123

Editors
Ryuhei Uehara
Japan Advanced Institute of Science
and Technology
Ishikawa, Japan

Seok-Hee Hong
University of Sydney
Sydney, NSW, Australia

Subhas C. Nandy
Indian Statistical Institute
Kolkata, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-68210-1 ISBN 978-3-030-68211-8 (eBook)
https://doi.org/10.1007/978-3-030-68211-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0895-3765
https://doi.org/10.1007/978-3-030-68211-8

Preface

The 15th International Conference and Workshop on Algorithms and Computation
(WALCOM 2021) was held at University of Information Technology, Yangon,
Myanmar during February 28 – March 2, 2021. The conference covered diverse areas
of algorithms and computation, that is, approximation algorithms, algorithmic graph
theory and combinatorics, combinatorial algorithms, combinatorial optimization,
computational biology, computational complexity, computational geometry, discrete
geometry, data structures, experimental algorithm methodologies, graph algorithms,
graph drawing, parallel and distributed algorithms, parameterized algorithms, param-
eterized complexity, network optimization, online algorithms, randomized algorithms,
and string algorithms. The conference was organized in cooperation between
University of Information Technology and Japan Advanced Institute of Science and
Technology. Due to COVID-19, it was held online.

This volume of Lecture Notes in Computer Science contains 24 contributed papers
that were presented at WALCOM 2021. There were 60 submissions from 21 countries.
Each submission was reviewed by at least three Program Committee members with the
assistance of external referees. Among them, the following paper was selected as the
best paper: “On Compatible Matchings” by Oswin Aichholzer, Alan Arroyo, Zuzana
Masárová, Irene Parada, Daniel Perz, Alexander Pilz, Josef Tkadlec, and Birgit
Vogtenhuber. The volume also includes the abstract and the extended abstracts of three
invited talks presented by Mohammad Kaykobad, Tetsuo Asano, and Erik D. Demaine.
Two special issues, one of Theoretical Computer Science and one of the Journal of
Graph Algorithms and Applications contained some selected papers among those
presented at WALCOM 2021.

We wish to thank all who made this meeting possible: the authors for submitting
papers, the Program Committee members and external referees (listed in the pro-
ceedings) for their excellent work, and our three invited speakers. We acknowledge the
Steering Committee members for their continuous encouragement and suggestions. We
also wish to express our sincere appreciation to the sponsors, local organizers,
Proceedings Committee, and the editors of the Lecture Notes in Computer Science
series and Springer for their help in publishing this volume. We especially thank Saw
Sanda Aye, Wint Thida Zaw, Tin Htar Nwe, and their team at University of Infor-
mation Technology for their tireless efforts in organizing this conference. Finally, we
thank the EasyChair conference management system, which was very effective in
handling the entire reviewing process.

March 2021 Seok-Hee Hong
Subhas C. Nandy

Ryuhei Uehara

Organization

Steering Committee

Tamal Dey The Ohio State University, USA
Seok-Hee Hong University of Sydney, Australia
Costas S. Iliopoulos King’s College London, UK
Giuseppe Liotta University of Perugia, Italy
Petra Mutzel University of Bonn, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas C. Nandy Indian Statistical Institute, India
Md. Saidur Rahman Bangladesh University of Engineering and Technology,

Bangladesh
Ryuhei Uehara Japan Advanced Institute of Science and Technology,

Japan

Program Committee

Hee-Kap Ahn Pohang University of Science and Technology,
South Korea

Shamsuzzoha Bayzid Bangladesh University of Engineering and Technology,
Bangladesh

Guillaume Blin University of Bordeaux, France
Hans Bodlaender Utrecht University, The Netherlands
Gautam Das Indian Institute of Technology Guwahati, India
Jesper Jansson Hong Kong Polytechnic University, Hong Kong
Wing-Kai Hon National Tsing Hua University, Taiwan R. O. C.
Seok-Hee Hong (Co-chair) University of Sydney, Australia
Ralf Klasing University of Bordeaux, France
Inbok Lee Korea Aerospace University, South Korea
Giuseppe Liotta University of Perugia, Italy
Takaaki Mizuki Tohoku University, Japan
Debajyoti Mondal University of Saskatchewan, Canada
Krishnendu

Mukhopadhyaya
Indian Statistical Institute, India

Shin-ichi Nakano Gunma University, Japan
Subhas C. Nandy (Co-chair) Indian Statistical Institute, India
Solon Pissis Centrum Wiskunde & Informatica, The Netherlands
Simon Puglisi University of Helsinki, Finland
Tomasz Radzik King’s College London, UK
Atif Rahman Bangladesh University of Engineering and Technology,

Bangladesh

Mohammad Sohel Rahman Bangladesh University of Engineering and Technology,
Bangladesh

Kunihiko Sadakane University of Tokyo, Japan
Slamin University of Jember, Indonesia
William F. Smyth McMaster University, Canada
Paul Spirakis University of Liverpool, UK
Wing-Kin Sung National University of Singapore, Singapore
Ryuhei Uehara (Co-chair) Japan Advanced Institute of Science and Technology,

Japan
Bruce Watson Stellenbosch University, South Africa
Hsu-Chun Yen National Taiwan University, Taiwan R. O. C.

Organizing Committee

Saw Sanda Aye University of Information Technology, Myanmar
Ryuhei Uehara Japan Advanced Institute of Science and Technology,

Japan
Wint Thida Zaw University of Information Technology, Myanmar
Myat Thida Mon University of Information Technology, Myanmar
Swe Zin Hlaing University of Information Technology, Myanmar
Ei Chaw Htoon University of Information Technology, Myanmar
Swe Swe Kyaw University of Information Technology, Myanmar
Aye Theingi University of Information Technology, Myanmar
Win Win Myo University of Information Technology, Myanmar

Additional Reviewers

Abu Reyan Ahmed
Hugo Akitaya
Eleni C. Akrida
Yuichi Asahiro
Evangelos Bampas
Giulia Bernardini
Stéphane Bessy
Anup Bhattacharya
Sujoy Bhore
Mohammad Tawhidul Hasan Bhuiyan
Arijit Bishnu
Hans-Joachim Böckenhauer
Sourav Chakraborty
Pratibha Choudhary
Minati De
Argyrios Deligkas
Arthur van Goethem
Barun Gorain

Arobinda Gupta
Mursalin Habib
Duc A. Hoang
Ramesh Jallu
Arindam Karmakar
Masashi Kiyomi
Grigorios Loukides
George Manoussakis
Themistoklis Melissourgos
George Mertzios
Othon Michail
Gopinath Mishra
Pawan Mishra
Daiki Miyahara
Dmitry Mokeev
Anisur Rahaman Molla
Hendrik Molter
Fabrizio Montecchiani

viii Organization

Jesper Nederlof
Yota Otachi
Dominik Pająk
Supantha Pandit
Vicky Papadopoulou
Vinod Reddy
Sasanka Roy
Anik Sarker
Buddhadeb Sau
Saket Saurabh

Md. Salman Shamil
Swakkhar Shatabda
Éric Sopena
Susmita Sur-Kolay
Michelle Sweering
Alessandra Tappini
Michail Theofilatos
Walter Unger
Mingyu Xiao
Tom van der Zanden

Sponsoring Institutions

University of Information Technology, Myanmar
Japan Advanced Institute of Science and Technology, Japan
Information Processing Society of Japan (IPSJ), Japan
The Institute of Electronics, Information and Communication Engineers (IEICE), Japan
Japan Chapter of European Association of Theoretical Computer Science (EATCS

Japan), Japan

Organization ix

Understanding the Complexity of Motion
Planning (Abstract of Invited Talk)

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

edemaine@mit.edu

Abstract. Motion planning of simple agents (robots, humans, cars, drones, etc.)
is a major source of interesting algorithmic and geometric problems. We’ll
describe results for a variety of models ranging in number of agents and amount
of available control, focusing on recent results. A single agent represents many
single-player video games, as well as your daily life. With multiple agents, the
amount of control can vary from moving one agent at a time (as in, e.g.,
Checkers or Chess, recently proved NP-hard even for a single move) to global
control of all agents (as in the puzzle board game Tilt, recently proved
PSPACE-complete) to simultaneous parallel control of all agents (recently
proved to have a constant-factor approximation algorithm). Along the way,
we’ll describe a growing theory of “gadgets” aiming to characterize the com-
plexity of motion planning problems.

Keywords: Gadgets � Motion planning � Computational complexity

Contents

Invited Talks

Majority Spanning Trees, Cotrees and Their Applications 3
Mohammad Kaykobad and F. J. M. Salzborn

A New Transportation Problem on a Graph with Sending
and Bringing-Back Operations . 13

Tetsuo Asano

Long Papers

Algorithms for Diameters of Unicycle Graphs and Diameter-Optimally
Augmenting Trees. 27

Haitao Wang and Yiming Zhao

On Short Fastest Paths in Temporal Graphs . 40
Umesh Sandeep Danda, G. Ramakrishna, Jens M. Schmidt,
and M. Srikanth

Minmax Regret 1-Sink Location Problems on Dynamic Flow Path
Networks with Parametric Weights . 52

Tetsuya Fujie, Yuya Higashikawa, Naoki Katoh, Junichi Teruyama,
and Yuki Tokuni

The Bike Sharing Problem . 65
Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick,
Evangelos Kranakis, Danny Krizanc, Lata Narayanan,
Jaroslav Opatrny, and Denis Pankratov

Efficient Generation of a Card-Based Uniformly Distributed
Random Derangement . 78

Soma Murata, Daiki Miyahara, Takaaki Mizuki, and Hideaki Sone

Compact Data Structures for Dedekind Groups and Finite Rings 90
Bireswar Das and Shivdutt Sharma

Competitive Location Problems: Balanced Facility Location
and the One-Round Manhattan Voronoi Game . 103

Thomas Byrne, Sándor P. Fekete, Jörg Kalcsics, and Linda Kleist

Faster Multi-sided One-Bend Boundary Labelling . 116
Prosenjit Bose, Saeed Mehrabi, and Debajyoti Mondal

On the Geometric Red-Blue Set Cover Problem . 129
Raghunath Reddy Madireddy, Subhas C. Nandy, and Supantha Pandit

Fixed-Treewidth-Efficient Algorithms for Edge-Deletion to Interval Graph
Classes . 142

Toshiki Saitoh, Ryo Yoshinaka, and Hans L. Bodlaender

r-Gathering Problems on Spiders: Hardness, FPT Algorithms,
and PTASes . 154

Soh Kumabe and Takanori Maehara

An Improvement of Reed’s Treewidth Approximation 166
Mahdi Belbasi and Martin Fürer

Homomorphisms to Digraphs with Large Girth and Oriented Colorings
of Minimal Series-Parallel Digraphs . 182

Frank Gurski, Dominique Komander, and Marvin Lindemann

Overall and Delay Complexity of the CLIQUES and Bron-Kerbosch
Algorithms . 195

Alessio Conte and Etsuji Tomita

Computing L(p, 1)-Labeling with Combined Parameters. 208
Tesshu Hanaka, Kazuma Kawai, and Hirotaka Ono

On Compatible Matchings . 221
Oswin Aichholzer, Alan Arroyo, Zuzana Masárová, Irene Parada,
Daniel Perz, Alexander Pilz, Josef Tkadlec, and Birgit Vogtenhuber

Upward Point Set Embeddings of Paths and Trees 234
Elena Arseneva, Pilar Cano, Linda Kleist, Tamara Mchedlidze,
Saeed Mehrabi, Irene Parada, and Pavel Valtr

2-Colored Point-Set Embeddings of Partial 2-Trees 247
Emilio Di Giacomo, Jaroslav Hančl Jr., and Giuseppe Liotta

Better Approximation Algorithms for Maximum Weight Internal Spanning
Trees in Cubic Graphs and Claw-Free Graphs . 260

Ahmad Biniaz

APX-Hardness and Approximation for the k-Burning Number Problem 272
Debajyoti Mondal, N. Parthiban, V. Kavitha, and Indra Rajasingh

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs
and Ptolemaic Graphs . 284

Kazuaki Yamazaki, Mengze Qian, and Ryuhei Uehara

Physical Zero-Knowledge Proof for Ripple Effect . 296
Suthee Ruangwises and Toshiya Itoh

xiv Contents

Cyclic Shift Problems on Graphs . 308
Kwon Kham Sai, Ryuhei Uehara, and Giovanni Viglietta

Mathematical Characterizations and Computational Complexity
of Anti-slide Puzzles . 321

Ko Minamisawa, Ryuhei Uehara, and Masao Hara

Author Index . 333

Contents xv

Invited Talks

Majority Spanning Trees, Cotrees
and Their Applications

Mohammad Kaykobad1(B) and F. J. M. Salzborn2

1 Department of Computer Science and Engineering,
BRAC University, Dhaka, Bangladesh

kaykobad@bracu.ac.bd
2 Department of Applied Mathematics, University of Adelaide, Adelaide, Australia

fsalzbor@hotmail.com

Abstract. We show that in any digraph on an underlying connected
graph with non-negative weights on its edges, there is a Majority Span-
ning Tree for which sum of weights of edges of a fundamental cutset,
running along each edge of the spanning tree determining the cutset, is
not less than sum of those running in opposite direction. Similarly, there
is a Majority Cotree, each fundamental cycle of which has non-negative
weight. We further prove simultaneous existence of majority spanning
trees and majority cotrees in any non-negative weighted digraph. We
have shown how these structures can be used to solved scheduling trans-
ports by minimizing sum of weighted connection times, ranking round-
robin tournaments by minimizing number of upsets, in settling multiple
debts and in construction of transport networks with unbalanced road
capacity.

Keywords: Graph theory · Spanning tree · Cutset · Majority
spanning tree · Cotree

1 Preliminaries

In this paper we consider weighted simple directed graphs G = (V,E) whose
underlying graph is connected. Let the weights wij ≥ 0 for all (i, j) ∈ E. Fur-
thermore, whenever we use the terms spanning tree and cotree we mean the
corresponding structures in the underlying graph of G. We denote any arbitrary
spanning tree of such underlying graphs by T and cotree by T . Spanning trees
have become a very important structure in solving problems of various fields
like communication, optimization, networks and clustering. Minimum spanning
trees are useful in designing telephone, electrical, hydraulic, TV cable, computer,
road networks etc (see [1,3,9]). There are many algorithms like [6,8] and [10] for
constructing minimum spanning trees of a graph.

Consider the example in Fig. 1. Let T1 = (V,E′) be a spanning tree of
the underlying graph of digraph G, with E′ = {AB,BE,DA,FD,CF,CG} (in

Supported by The Flinders University of South Australia.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 3–12, 2021.
https://doi.org/10.1007/978-3-030-68211-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_1

4 M. Kaykobad and F. J. M. Salzborn

Fig. 1. A digraph with a majority spanning tree on bold edges.

bold) and ak = (i, j) be a directed edge in E. For ensuring disambiguity of
related concepts, if (i, j) ∈ E we refer the edge in T connecting vertices i and j
as (i, j) and not (j, i). Notice that T1\{ak} partitions V into two disjoint subsets
Vi and Vj—each consisting of vertices of a connected component of T1 − {ak}
such that the vertices i and j belong to the subsets Vi and Vj respectively. Note
that Vi ∪ Vj = V and Vi ∩ Vj = ∅. Let

W (Vi, Vj) =
∑

(l,m)∈K+
k |l∈Vi,m∈Vj

wlm

and
W (Vj , Vi) =

∑

(l,m)∈K−
k |l∈Vj ,m∈Vi

wlm

where, ak = (i, j) ∈ T , K+
k and K−

k are respectively the sets of edges in the
positive and negative orientations of the cutset Kk determined by the spanning
tree edge ak. Let

W [Vi, Vj] = W (Vi, Vj) − W (Vj , Vi)

Note that [Vi, Vj] is said to be a fundamental cutset determined by the
edge ak ∈ T1. In the same way an edge ak ∈ T1 together with T1 contains a
unique cycle called fundamental cycle. In Fig. 1 if (i, j) = (A,B) then VA =
{A,C,D, F,G}, VB = {B,E},W (VA, VB) = wAB + wGE = 7 + 11 = 18, whereas
W (VB , VA) = wED = 5. So W [VA, VB] = W (VA, VB)−W (VB , VA) = 18−5 = 13.

Definition 1. A spanning tree T of G is said to be a majority spanning tree
(MST) if

W [Vi, Vj] ≥ 0,∀(i, j) ∈ T

While every connected graph has a spanning tree, it is not clear whether
every digraph has a majority spanning tree since it must satisfy some additional
conditions. However, the spanning tree shown in Fig. 1 is indeed a majority
spanning tree since the weights of each fundamental cutset is non-negative. For
example, W (CF) = wCF + wGE − wAC = 9 + 11 − 8 = 12 ≥ 0. Note that a
fundamental cutset need not have nonnegative weight. For example in Fig. 1,
for the spanning tree T ′ = T1 \ {CG} ∪ {GE}, the weight of the fundamental

Majority Spanning Trees, Cotrees and Their Applications 5

cutset corresponding to edge GE is W [VG, VE] = 11 − 13 < 0. However, it can
be easily seen that for the spanning tree T1 in Fig. 1, weight of every cutset is
non-negative. Hence T1 is indeed a majority spanning tree of G.

We note here that for a spanning tree T of the underlying graph of a simple
digraph G, T = G \ T is called a cotree. Each edge ak = (i, j) ∈ T together with
edges of T defines a unique cycle Ck or Cij . While Ck is not necessarily directed,
its positive orientation is assumed to be along the edge ak in cycle Ck. Let us
define the weight of a cycle as follows:

W (Ck) =
∑

(l,m)∈C+
k

wlm −
∑

(l,m)∈C−
k

wlm

where C+
k are the edges in Ck that are in the same orientation as ak = (i, j) ∈

T , and C−
k are the set of edges in the reverse orientation.

Fig. 2. A digraph with an MCT on thin edges.

Now we refer to Fig. 2, and find weight of a fundamental cycle. Here cotree
T2 = {ED,AB,AC}, thus for the fundamental cycle defined by ED, C+

ED =
{ED,CG,GE}, C−

ED = {FD,CF}, W [CED] = (5 + 13 + 11) − (4 + 9) = 16.

Fig. 3. A digraph with an MST whose complement is an MCT

Similar to majority spanning tree, we now introduce majority cotrees (MCT)
as follows.

6 M. Kaykobad and F. J. M. Salzborn

Definition 2. A cotree T of G = (V,E) is said to be a majority cotree if

W (Ck) ≥ 0,∀ak ∈ T

It is not very clear that every directed graph with non-negative weights on
its edges must have a majority spanning tree or a majority cotree. Note that
the cotree drawn using thin arrows in Fig. 2 is indeed a majority cotree since
W [CED] = 16 ≥ 0 as shown earlier, and W [CAC] = 8 + 9 + 4 + 3 = 24 ≥ 0,
W [CAB] = 7 + 9 + 3 + 4 + 9 − 13 − 11 = 8 ≥ 0.

Moreover, consider Fig. 3. In this figure T3 = {ED,DA,AC} is a majority
cotree since W [CED] = (5+13+11)−(4+9) = 16, W [CAC] = 8+13+11−9−7 =
16 ≥ 0, W [CDA] = (3 + 7 + 9 + 9 + 4) − (13 + 11) = 8 ≥ 0. Not only that,
T3 = {AB,BE,GE,CG,CF, FD} is indeed a majority spanning tree since all
fundamental cutsets have non-negative values!

In the next section, we shall show that for all general digraphs with arbitrary
non-negative weights on their edges there exist majority spanning trees, majority
cotrees, and there is a majority spanning tree T whose complement T = G \ T
is also a majority cotree.

2 Main Results

We start with the following important observations. Detailed proofs of the fol-
lowing results can be found in Kaykobad [5]. We note here that by cutsets and
cycles we mean a set of edges not necessarily constituting a directed cutset or a
directed cycle.

Observation 1. Two edges that are in the same orientation in a cutset are in
different orientations in any cycle containing them and vice versa.

Again we refer to Fig. 1. Edges AB and GE are in the same orientation in
the cutset {ED,AB,GE}, whereas they are in different orientations in cycle
(A,B,E,G,C, F,D) or in any other cycle containing them. Edges ED and DA
are in the same orientation in cycle (E,D,A,B) but in different orientation in
cutset {ED,DA,AC,CG} or any other cutsets containing them. This is true for
any cycle and cutset these edges belong to.

Observation 2. Let C and Q represent sets of edges respectively in a cycle and
a cutset. Then there are even number of edges in their intersection.

If a cycle contains an edge of a cutset that runs from one partition to the
other, for cycle to complete we must also have another edge of the cutset to
return to the same partition.

Observation 3. If we subtract the weight of the minimum edge from all edges
of a cutset in that orientation, and add the same value to weights of edges in
the opposite orientation, then weights of the cycles do not change. Similarly,
if a minimum positive weight is subtracted from weights of edges in a cycle in
one orientation and the same weight is added to edges of the cycle in opposite
orientation then the weights of cutsets will remain unchanged.

Majority Spanning Trees, Cotrees and Their Applications 7

For brevity for an edge AB of a digraph G, we write AB = 7 instead of
wAB = 7 so long as it does not create any confusion. In Fig 1, if we reduce
weights along the cycle (A,B,D,E) by the minimum 3 then weights become
DA = 0, AB = 4, BE = 6, ED = 2. Notice that in the process, weights of all
cutsets remain unaffected. For example, consider the weight of the cutset defined
by edge AB of spanning tree T1. Its weight was −5 + 7 + 11 = 13. And now
its weight is −2 + 4 + 11 = 13. On the other hand, if weights of edges in the
cutset determined by the edge AB is reduced along the orientation of AB by the
minimum edge weight 7 and increase weights of edges in the opposite orientation
by 7 then the new changed weights are ED = 12, AB = 0, GE = 4. One of the
affected cycles is (A,B,E,D). Its earlier weight was 7 + 9 + 5 + 3 = 24, and the
changed weight also remains 0 + 9 + 12 + 3 = 24.

The above two results allow us to manipulate edge weights by changing
weights of edges of a cycle while keeping weights of all cutsets fixed, or chang-
ing weights of edges of a cutset while keeping weights of all cycles fixed. In the
following we shall use this technique to construct majority spanning trees and
majority cotrees.

We first prove the following theorem by construction.

Theorem 1. Every digraph G = (V,E) with non-negative weights on its edges
must have a majority spanning tree.

Proof. So long as there is a cycle with positive weights on all its edges, sub-
tract the weight of the minimum edge of the cycle from all edges in the same
orientation in the cycle, and add the same weight to all edges in the opposite
orientation of the cycle. Then at least one edge will be of weight 0. We carry out
this process so long as there are cycles with all its weights positive. Ultimately
positive weighted edges along with some 0-weight edges will constitute a span-
ning tree T that must be a majority spanning tree. Note that in this case, weight
of the fundamental cutset defined by a spanning tree edge equals to the weight
of that spanning tree edge — weights of edges of cotree being 0. In this process,
no cutset weight has been changed. Now in each fundamental cutset, only weight
of the edge of spanning tree determining the fundamental cutset is non-negative
(other weights being 0). Hence weight of the corresponding fundamental cutset
is at least non-negative. �	

The following theorem asserts the existence of a majority cotree in any
digraph.

Theorem 2. Every digraph G = (V,E) with non-negative weights on its edges
must have a majority cotree.

Proof. The proof is similar to the proof of Theorem 1, but the edge weights
now must be manipulated around cutsets, keeping weights of cycles unaffected.
Then edges of positive weights possibly together with some edges of 0 weights
constitute a cotree T—which is a majority cotree. Furthermore, weight of each
fundamental cycle equals the weight of the edge of the cotree determining the
fundamental cotree. �	

8 M. Kaykobad and F. J. M. Salzborn

Before we formulate the important result of simultaneous existence of major-
ity spanning trees and majority cotrees, let us define the following structures.

Let rT be a vector whose kth component equals weight of the fundamental
cutset determined by the edge ak = (i, j) ∈ T , that is,

rk =
∑

{(l,m)|l∈Vi,m∈Vj}
wlm −

∑

{(l,m)|l∈Vj ,m∈Vi}
wlm, ∀ak ∈ T (1)

Let Q be the signed fundamental cutset-edge incidence matrix. Row Qk of
Q is determined by edge ak ∈ T . Then

qkj =

⎧
⎪⎨

⎪⎩

1, if aj has the same orientation as ak in the cutset
−1, if aj has orientation opposite to ak in the cutset
0, otherwise

(2)

Let sT be the vector whose pth component is the weight of the fundamental
cycle determined by ap ∈ T . Then it can be calculated as

∑

(l,m)∈C+
p

wlm −
∑

(l,m)∈C−
p

wlm = sp, ∀ap ∈ T (3)

Let L be the signed fundamental cycle-edge incidence matrix. Then pth com-
ponent of L is determined by the edge ap ∈ T . Then

lpj =

⎧
⎪⎨

⎪⎩

1, if aj has the same orientation as ap in the cycle
−1, if aj has orientation opposite to ap in the cycle
0, otherwise

(4)

From Observation 1, we know that if a cotree edge aj is in the same orienta-
tion as that of the spanning tree edge ak determining the cutset then qkj = 1,
whereas since in that case in the cycle determined by edge aj , ak is in the oppo-
site orientation causing ljk = −1. This relation holds true also in case cotree
edge is in the opposite orientation. then made above we can see that lpj = −qjp.
That is Lt = −Q. Moreover, removing identity matrices we get Lt

T = −QT

As shown in Fig 3, both the spanning tree T3 and the cotree T3 are both
majority spanning tree and majority cotree respectively. The following result
confirms simultaneous coexistence of majority spanning tree and majority cotree
in any digraph with non-negative weights on edges.

Theorem 3. Every digraph G = (V,E) with non-negative weights on its edges
has a majority spanning tree T such that T is a majority cotree, and vice versa.

Proof. In order to prove the above theorem, we first formulate the following lin-
ear programming problem. Each equation corresponds to a signed fundamental
cycle-edge incidence vector. Here right hand side equals to the weight of its cor-
responding cycle. Remember, variables corresponding to edges of the cotree form
a basic solution since they do not appear in other equations/fundamental cycles.

Majority Spanning Trees, Cotrees and Their Applications 9

In objective function, each variable corresponding to edge ak ∈ T appears with
coefficients equal to weight of the fundamental cutset determined by the edge
ak.

The resulting linear programming problem is given below.

max − st
T
xT (5)

QTxT ≤ rT

xT ≥ 0

Its dual will be

min rtT yT (6)
Qt

T
yT ≥ −sT

yT ≥ 0

Equivalently,

min rtT yT (7)
LT yT ≤ sT
yT ≥ 0

While any feasible solution to (5) is a majority spanning tree, any feasible
solution to (7) is a majority cotree. Right hand sides of both sets of inequalities
are satisfied by equating the variables to weights of the corresponding edges,
that is xlm = wlm or ylm = wlm, where edge (l,m) = ak. So both of them are
feasible, and hence they have an optimal solution that corresponds to a majority
spanning tree for (5) and majority cotree for (7).

This proves the theorem on simultaneous existence of majority spanning trees
and majority cotrees in any digraph with non-negative weights on its edges. �	

In the following section we present some of the applications of these concepts.

3 Applications

The structure of majority spanning tree has been used in Kaykobad [5] for
scheduling trains by minimizing weighted sum of connection time over a rail-
way network. Datta, Hossain and Kaykobad [4] and Kaykobad et al. [2] used
the concepts for ranking players of a round-robin tournament. The concept of
majority spanning trees has also been used in rank aggregation of meta-search
engines [7].

3.1 Minimum Connection Time Problem

We address transportation systems where each trip is generated periodically like
railway networks. Since most often each pair of destinations is not served by a

10 M. Kaykobad and F. J. M. Salzborn

single transport, there may be waiting time in connections between trips. We
denote the trips of the network by vertices and the connections by edges. For the
trip i, let xi be its start time and ti be its duration. The number of passengers
taking the connection from trip i to trip j be pij . By wij we denote the waiting
time for connection to trip j from trip i. Then the mathematical model for the
problem is as follows:

∑

(i,j)∈E

pijwij → minimize (8)

xj − xi − ti = wij mod τ, ∀(i, j) ∈ E

0 ≤ wij < τ, ∀(i, j) ∈ E

where τ is the period of occurrence of a trip. It can be shown that optimal
scheduling will have 0 waiting times in connections that constitute a majority
spanning tree of the digraph. However, it may be noted here that while majority
spanning tree is a necessary condition for optimality, it is not sufficient. In fact,
the problem has been shown to be NP-hard for general digraphs by Kaykobad [5].

3.2 Round-Robin Tournament Ranking

Consider the problem of ranking players of a round-robin tournament by mini-
mizing the number of upsets, that is number of matches in which lowly ranked
players have defeated highly ranked players. The results of such a tournament
can be expressed in a digraph known as tournament digraph. In a tournament
digraph, players correspond to vertices and each edge corresponds to the result
of a match oriented from the winner to the defeated. Let R be a ranking of
players, VR = V and ER = {(i, i + 1), 1 ≤ i ≤ n − 1} such that the rank of
player corresponding to vertex i + 1 is immediately below that of the player
corresponding to vertex i. It is obvious that GR = (VR, ER) is a spanning tree
of G. More accurately, GR = (VR, ER) is a Hamiltonian semipath.

Theorem 4. Let R be any optimal ranking of a tournament represented by G =
(V,E). Then GR = (VR, ER) is a majority spanning tree of G.

Let, Gij(R) be the subgraph of G induced by the set of vertices corresponding
to players ranked from i to j as per rank R. Furthermore, let GR

ij be the subgraph
of Gij(R) having the same set of vertices, and only those edges that connect
adjacently ranked players. Then,

Theorem 5. For any optimal ranking R and 1 ≤ i ≤ j ≤ n,GR
ij must be a

majority spanning tree of Gij(R).

Let P1 and P2 be two disjoint set of players, ranked consecutively as shown in
Fig. 4. if players in P1 lose more games to players in P2, then the cutset (denoted
by dashed line) has negative value, and does not correspond to an MST. Thus
players in P2 deserve a better ranking, and hence swapping P1 and P2 results in
a lesser number of upsets. MST algorithm continues to look for such violating
cutsets and then swap the sets of players to reduce the number of upsets.

Majority Spanning Trees, Cotrees and Their Applications 11

Fig. 4. MST algorithmic concept for round-robin tournament ranking.

3.3 Balancing One Way Roads

Imagine that due to the setting up of a number of important industries at various
locations of a country, there has been a revised load on different sectors of the
road network. As a result, the current road capacity can no longer satisfy trans-
portation demand. Now we need to upgrade the capacity of certain segments of
the road network to satisfy the new demand. Naturally we want to minimize the
cost of reconstruction of the road network while satisfying the present demand
of transportation. We can reconstruct a digraph with new demands of loads on
different segments of the road network as weights of corresponding edges. Then
for the optimal solution, the subgraph of the road network denoting the recon-
structed road segments with updated capacity will be included in a majority
spanning tree.

3.4 Settling Multiple Debts

Let us consider a set of borrowers and loan givers. Now we want to settle debts in
a minimum amount of total transactions, or by minimizing total transaction cost.
Transaction costs can be thought of being proportional to transaction amounts,
with unit cost differing for different borrowers and loan giver pairs. This prob-
lem was first addressed in [11], and was modeled in a digraph with weights on
directed edges from borrowers to loan givers equalling to the debt amounts.
Edges corresponding to transactions in the optimal solution will be contained in
a spanning tree of the underlying graph. Moreover, optimal set of transactions
will correspond to a subset of edges of a majority spanning tree of the digraph
where objective function will be to minimize total weighted transacted amount.

4 Conclusion

We have discovered a structure called majority spanning trees in general digraphs
with non-negative weights on its edges. We have also proved the existence of
majority cotree and the simultaneous existence of majority spanning trees and

12 M. Kaykobad and F. J. M. Salzborn

majority cotrees using duality theory of linear programming. The structure
of majority spanning trees has been found useful both in modeling and solu-
tion of several seemingly unrelated problems. Further investigation may lead to
enhanced properties and applications of the structures introduced in this paper.

Acknowledgment. The first author is thankful to the second author for proposing
to study the problem during the doctoral program under his supervision.

References

1. Contreras, I., Fernández, E.: General network design: a unified view of combined
location and network design problems. Eur. J. Oper. Res. 219, 680–697 (2012)

2. Datta, A., Hossain, M., Kaykobad, M.: An improved MST algorithm for ranking
players of a round robin tournament. Int. J. Comput. Math. 85, 1–7 (2007)

3. Fortzab, B., Gouveiac, L., Joyce-Monizab, M.: Optimal design of switched ethernet
networks implementing the multiple spanning tree protocol. Discrete Appl. Math.
234, 114–130 (2018)

4. Kaykobad, M., Ahmed, Q.N.U., Khalid, A.S., Bakhtiar, R.: A new algorithm for
ranking players of a round-robin tournament. Int. J. Comput. Oper. Res. 22, 221–
226 (1995)

5. Kaykobad, M.: Minimum connection time and some related complexity problems.
Ph.D. thesis, The Flinders University of South Australia (1986)

6. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem 7, 48–50 (1956)

7. Lam, K.W., Leung, C.H.: Rank aggregation for meta-search engines. In: 2004 Pro-
ceedings of the 13th International World Wide Web Conference on Alternate Track
Papers & Posters, pp. 384–385. ACM, New York (2004)

8. Nešetřil, J., Milková, E.N.H.: Otakar Bor̊uvka on minimum spanning tree problem:
translation of both the 1926 papers, comments, history. Discrete Math. 233, 3–36
(2001)

9. Nguyen Gia, N., Le, D.N.: A novel ant colony optimization-based algorithm for
the optimal communication spanning tree problem. Int. J. Comput. Theory Eng.
5, 509–513 (2012)

10. Prim, R.: Shortest connection networks and some generalizations. Bell Syst. Tech.
J. 36, 1389–1401 (1957)

11. Verhoeff, T.: Settling multiple debts efficiently - an invitation to computing science.
Inform. Educ. 3, 105–126 (2004)

A New Transportation Problem
on a Graph with Sending

and Bringing-Back Operations

Tetsuo Asano1,2(B)

1 Kanazawa University, Kanazawa, Japan
asano@staff.kanazawa-u.ac.jp

2 Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. This paper considers a transportation problem which is dif-
ferent from the conventional model. Suppose we are given many stor-
ages (nodes) to store multiple kinds of commodities together with roads
(edges) interconnecting them, which are specified as a weighted graph.
Some storages have surplus and others have shortages. Problem is to
determine whether there are transportations to eliminate all of short-
ages. For transportation we can use a vehicle with the loading capacity
at each node. Each vehicle visits one of its neighbors with some commodi-
ties which are unloaded at the neighbor. Then, we load some other com-
modities there, and then bring them back to the original node. How to
design such send-and-bring-back transportations to eliminate all short-
ages is the problem. When we define a single round of transportations to
be a set of those transportations at all nodes, whether there is a single
round of valid transportations that eliminate all of shortages is our con-
cern. After proving NP-completeness of the problem we present a linear
time algorithm for a special case where an input graph is a forest.

Keywords: Forest · Linear program · Multi-commodity
transportation problem · NP-completeness · Sending and bringing-back

1 Introduction

In this paper we consider a new type of a transportation problem which is
different from the conventional ones but based on a very natural model. A typical
transportation problem in operations research is to find the minimum cost of
transporting a single commodity from m sources to n destinations along edges in
a given network. This type of problems can be solved using linear programming.
Many variations have been considered [2].

The transportation problem to be considered in this paper is defined very
naturally. We are given a weighted graph G = (V,E,w), where V is a set of
places (nodes) to store many different commodities and E is a set of roads (edges)
interconnecting nodes. At each node we can store multiple kinds of commodities.
Some storages have surplus and others have shortages. Formally, we specify
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 13–24, 2021.
https://doi.org/10.1007/978-3-030-68211-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_2

14 T. Asano

quantities of commodities associated with a node u by (w1(u), w2(u), . . . , wh(u)),
where wk(u) represents a quantity of the k-th commodity. If wk(u) > 0 then
wk(u) units of the k-th commodity are stored at node u. On the other hand,
wk(u) < 0 means that |wk(u)| units of the k-th commodity are needed at u.

A vehicle is available at each node for transportation. A transportation
between two adjacent nodes u and v using a vehicle at u is done as fol-
lows. We load some amounts of commodities at node u, which are specified by
(s1(u), s2(u), . . . , sh(u)). After visiting a target node v and unloading them at
node v, we load commodities at v, which are specified by (b1(u), b2(u), . . . , bh(u)),
and bring them back to the node u. All of vehicles start their nodes simultane-
ously. The first round of transportations finishes when the transportations are
completed at all nodes.

One of our goals is to find a single round of transportations that eliminate all
shortages. Of course, it is not realistic to transport a negative quantity of com-
modity and also to load more than there exists at a node. We also assume that
each vehicle has some loading capacity, C. All the vehicles leave their nodes at
the same time. Each transportation must be independent of their order. In other
words, transportations between adjacent nodes are not synchronous and quanti-
ties of commodities are determined before the start time of all transportations.
Without such constraint, it would be possible to send commodities no matter
how far away it is (by sending some load from node u1 to u2 and then we send
the load from u2 to u3 and so on). This assumption is referred to as the order
independence assumption, which is a rigid principle in this paper. When we
consider a single round of transportations, a transportation from non-negative to
non-negative weight or from non-positive to non-positive weight is not effective
and thus excluded.

The problem of measuring the Earth Mover’s distance is related to this prob-
lem, which is a problem of finding the most economic way of transporting soil
placed in many different places to holes to fill in. Earth movers are used for
transporting the soil. It is possible to use whatever number of earth movers.
Problem is to minimize the total cost of transportations. This problem looks
hard, but a polynomial-time algorithm using network flow algorithm is known.
It is similar to the problem in this paper, but it is different in the following
senses: (1) we transport not only one kind of commodity but many kinds, (2)
in our case transportations are restricted only between adjacent nodes, (3) we
can send commodities from a node u to its adjacent node v and also bring com-
modities at v back to u, and (4) we discard transportation distances and weight
of commodities to carry. Refer to the paper [4] for more detail about the earth
mover’s distance.

Our first question is, given a weighted graph G = (V,E,w), whether there
is a single round of transportations that eliminate all of shortages. Our second
question is to find the minimum number of rounds that eliminate all of shortages.
The second question looks much harder than the first one. In this paper we first
consider the problem in one dimension and show that the first problem can be
solved in linear time. The problem in two dimensions is much harder. After

New Transportation Problem on Graphs 15

proving NP-completeness of the first problem above we present a linear-time
algorithm for a special case where an input graph is a forest.

2 Problem Definition

Consider a weighted graph G = (V,E,w), where V is a set of places (nodes) to
store commodities and E a set of roads (edges) interconnecting those nodes. At
each node we store different kinds of commodities. Some nodes have surplus and
others have shortages. Formally, We specify quantities of commodities associated
with a node u by (w1(u), w2(u), . . . , wh(u)), where wk(u) represents a quantity
of the k-th commodity. If wk(u) > 0 then wk(u) units of commodity are stored
at node u. On the other hand, wk(u) < 0 means that |wk(u)| units of the k-th
commodity are needed at u. A vehicle for transportation is available at each
node.

We specify a transportation using a vehicle at node u by a tuple
(u, τ(u), (s1(u), s2(u), . . . , sh(u)), (b1(u), b2(u), . . . , bh(u))), where τ(u) is a tar-
get node and the amounts of commodities to be sent from u to τ(u) and
those brought back from τ(u) to u are specified by (s1(u), s2(u), . . . , sh(u)) and
(b1(u), b2(u), . . . , bh(u)), respectively. Since each vehicle has the loading capacity
C, the sum of load must always be within C, that is, for each transportation we
must have

∑h
i=1 si(u) ≤ C and

∑h
i=1 bi(u) ≤ C.

All of vehicles leave their nodes at the same time. Due to the
order independence assumption, when we send some commodities from
u to τ(u), the amounts of commodities sent from u must be within
(max(0, w1(u)),max(0, w2(u)), . . . ,max(0, wh(u))) and also those of com-
modities brought back from τ(u) must be within (max(0, w1(τ(u))),
max(0, w2(τ(u))), . . . ,max(0, wh(τ(u)))).

More formally, for each node u we must have

sk(u) +
∑

vs.t.τ(v)=u
bk(v) ≤ max(0, wk(u)) for each k = 1, 2, . . . , h, and

max(
∑h

k=1
sk(u),

∑h

k=1
bk(u)) ≤ C.

Fig. 1. An example of send-and-bring-back transportations. We send 100 units of wheat
at node u, visit v, and bring-back 400 units of bean on the way back from v.

Figure 1 shows an example of transportations. Figure 2 gives another exam-
ple. In the example, the transportation from node b to node a is characterized

16 T. Asano

by Tb = (b, a, (0, 30), (60, 0)) which means we send 0 units of the first commodity
and 30 units of the second commodity from the current node b to node a, and
then bring-back 60 units of the first one and 0 units of the second one from a to
b. Using these transportations we can eliminate all of shortages as shown in (b)
in the figure.

Fig. 2. Transportations necessary to eliminate all the shortages. (a) a single round of
transportations (dotted lines are unused edges), and (b) the result after the transporta-
tions.

Under the definitions above, we consider the following two problems.

Problem 1: Given a weighted graph, determine whether there is a single
round of transportations that eliminate all of shortages. Also, output such
a set of transportations if any.

Problem 2: Given a weighted graph, find a single round of feasible
transportations that minimize the largest shortage. Also, output such a
set of transportations.

2.1 Formal Definitions and Basic Properties

An input instance to our problem is given by a graph G = (V,E,w) in which each
node u has h weights w1(u), w2(u), . . . , wh(u). A transportation using a vehicle at
node u is specified by a tuple (u, τ(u), (s1(u), s2(u), . . . , sh(u)), (b1(u), b2(u), . . . ,
bh(u))) which means that we load si(u) units of the i-th commodity at node u
for each i ∈ [1, h] to send them to the target node τ(u), unload them at τ(u),
and load bi(u) units of commodity at τ(u) for each i ∈ [1, h] to bring them back
to u. A single round of transportations is given by a set of transportations at all
nodes.

Definition: (Basic Property) A single round of transportations for a graph
G = (V,E,w) given by T = {(u, τ(u), (s1(u), s2(u), . . . , sh(u)), (b1(u), b2(u), . . . ,
bh(u)))|u ∈ V } is feasible if

(0) si(u) ≥ 0 and bi(u) ≥ 0 for each u ∈ V and i ∈ [1, h],
(1) the node τ(u) is adjacent to node u,

New Transportation Problem on Graphs 17

(2) max(
∑h

i=1 si(u),
∑h

i=1 bi(u)) ≤ C for each u ∈ V , where C is the loading
capacity,

(3) there is at least one i ∈ [1, h] such that wi(u) · wi(τ(u)) < 0,
(4) for each u ∈ V , if wi(u) > 0 and wi(τ(u)) < 0 then si(u) ≥ 0 and bi(u) = 0

for each i ∈ [1, h],
(5) for each u ∈ V , if wi(u) < 0 and wi(τ(u)) > 0 then si(u) = 0 and bi(u) ≥ 0

for each i ∈ [1, h], and
(6) for each u ∈ V such that wi(u) > 0, si(u) +

∑
vs.t.τ(v)=u bi(v) ≤ wi(u) for

each i ∈ [1, h].

The condition (1) above states that a target node must be selected among
those adjacent to node u. The condition (2) states that the sum of load sent from
u to τ(u) and the sum of load brought back from τ(u) to u must be bounded
by the loading capacity. Whenever we transport some units of commodity, we
must leave a node having surplus commodity and visit another node of shortage,
which is stated in (3). The conditions (4) and (5) state that either si(u) or bi(u)
must be 0 for each i ∈ [1, h]. The last condition states that the sum of load of
the i−th commodity carried out of a node u cannot exceed the original amount
wi(u) of the commodity at u.

Lemma 1. A feasible single round of transportations T = {(u, τ(u), (s1(u),
s2(u), . . . , sh(u)), (b1(u), b2(u), . . . , bh(u)))|u ∈ V } eliminate all of shortages
if wi(u) + bi(u) +

∑
vs.t.τ(v)=u si(v) ≥ 0 for each i ∈ [1, h] and u ∈ V such that

wi(u) < 0.

Given a single round of transportations T = {(u, τ(u), (s1(u), s2(u), . . . ,
sh(u)), (b1(u), b2(u), . . . , bh(u)))|u ∈ V } for a graph G = (V,E,w), we can define
a directed graph Gd = (V,Ed, w) where Ed contains a directed edge (u, τ(u))
for each u ∈ V .

Lemma 2. A single round of transportations T for a weighted graph G =
(V,E,w) is feasible only if the corresponding graph Gd has no two cycles
(including oppositely directed edges between two nodes, called double edges) are
contained in one connected component in its underlying undirected graph.

3 One-Dimensional Transportation Problem

3.1 One-Commodity Problem Without Capacity Constraint

Generally each node stores many different kinds of commodities. First of all,
consider only one kind of commodity in each node. Also we assume that a graph
is a path, i.e., a linearly ordered array. Suppose n nodes on the horizontal line
are numbered like 1, 2, . . . , n from left to right. As input, we assume the quantity
of the commodity at node i is given as w(i), where w(i) < 0 means a shortage.

Consider a simple case where no loading capacity is assumed. Suppose we
are given a sequence (w(1), w(2), . . . , w(n)) of quantities of commodity. There

18 T. Asano

are four cases to consider on the first two nodes. If w(1) ≥ 0 and w(2) ≥ 0
then we just discard node 1 since any transportation from node 1 to 2 has no
effect. If w(1) > 0 and w(2) < 0 then we send w(1) units of commodity using
the vehicle at node 1 to reduce the shortage at node 2. If w(1) + w(2) > 0 then
we have to reduce the amount of transportation to prevent the resulting surplus
from sending to the right. If w(1) < 0 and w(2) > 0 then we use the vehicle at
node 1 to bring back min(|w(1)|, w(2)) units of commodity from node 2 to 1. If
it results in non-negative quantity at node 1, then we proceed to the next step.
Otherwise, the sequence is not feasible, i.e., there is no transportation schedule
to eliminate the shortage at node 1. If w(1) < 0 and w(2) < 0 then there is
no way to eliminate the shortage at node 1, and hence we just report that the
sequence is not feasible and stop.

Lemma 3. For any instance of a one-dimensional one-commodity transporta-
tion problem without constraint on loading capacity we can decide in linear time
whether there is a single round of transportations that eliminate all of shortages.

3.2 One-Commodity Transportation Problem with Loading
Capacity

Next consider some loading capacity C on the total weight to carry by a vehicle.
Input is specified by a sequence (w(1), w(2), . . . , w(n)) of n values representing
the quantities of commodities. If it contains 0 somewhere, say w(i) = 0, then
to decide the feasibility we can separate the sequence into two subsequences
(1, . . . , i − 1) and (i + 1, . . . , n) since there is no effective transportation from/to
the node i of weight 0. If two consecutive values w(i) and w(i + 1) are of the
same sign, then we can separate the sequence into (1, . . . , i) and (i + 1, . . . , n)
since effective transportation occurs only between two nodes of different signs.

We assume that a sequence starts from a non-negative weight and ends also
at a non-negative weight. If not, we add weight 0 at head and/or tail. We also
assume that no two consecutive weights have the same sign.

Starting from the initial subsequence (w(1), w(2), w(3)), we find optimal solu-
tions that can send the largest amount to the right in two settings. If it is not
feasible then there is no feasible solution to the whole sequence. One solution is
a feasible solution without constraint and the other with constraint in its last
part. Recall that any solution can be represented by a graph on nodes {1, 2, 3}
with directed edges. We are interested in whether the last part, more exactly,
the connected component of the last node 3 in this case in the underlying undi-
rected graph contains double edges. If the last part contains double edges, then
this causes some constraint to solutions of further right.

It is easy to compute the best solutions with/without using double edges
in the last part. Let them be ωu(3) and ωc(3), where “u” and “c” represent
“unconstrained” and “constrained”, respectively. We extend the subsequence by
two nodes. Suppose we have computed ωu(k) and ωc(k). To compute the best
solution ωu(k + 2) there are two ways. One is to use ωu(k) and to specify edges
among k, k +1, and k +2 so that double edges are not included there. The other

New Transportation Problem on Graphs 19

is to use ωu(k) and to specify edges within [k, k + 2] so that double edges are
not included there and also a cut is included between k and k + 1 or between
k + 1 and k + 2. The better value among them gives the value of ωu(k + 2).

Compute of ωc(k+2) is symmetric. We compute one solution by using ωu(k)
and including double edges somewhere among k, k+1, and k+2. We compute the
other one by using ωc(k) and including double edges somewhere among k, k +1,
and k + 2. The better value among them gives the value of ωc(k + 2).

Finally, if none of ωu(k + 2) and ωc(k + 2) is defined then we have a conclu-
sion that there is no feasible solution. Otherwise, we obtain an optimal feasible
solution by taking better one among ωu(n) and ωc(n).

A formal description of the algorithm is as follows.

Algorithm for determining the feasibility of a given sequence.
instance: (w(1), w(2), . . . , w(n)).

If the first and/or last elements are negative we insert 0 as the first and/or
last elements, respectively.

output: True, if there is a single round of transportations to eliminate all of
shortages, and False otherwise.

algorithm:
// Idea is to keep two solutions for each subsequence (1, 2, . . . , k), one
without constraint and the other with constraint in its last part.
For the subsequence (1, 2, 3) compute the best solutions, ωu(3) in one case
of no constraint and ωc(3) in the other case of constraint, in their last part.
for k = 3 to n step 2 do{

if ωu(k) is defined then{
ωuu(k + 2) = extend(ωu(k), unconstrained).
ωuc(k + 2) = extend(ωu(k), constrained).

} else if ωc(k) is defined then{
ωcu(k + 2) = extend(ωc(k), unconstrained).
ωcc(k + 2) = extend(ωc(k), constrained).

}
Choose the better one among ωuu(k + 2) and ωcu(k + 2) as ωu(k + 2).
Choose the better one among ωuc(k + 2) and ωcc(k + 2) as ωc(k + 2).

}
if at least one of ωu(n) and ωc(n) is defined and non-negative
then return True. else return False.

function extend(ω(k), cons){
if cons = unconstrained then{

extend the solution ω(k) by two nodes so that the extended solution is
not constrained in its last part.
if it is possible then return the extended solution.
else return False.

} else { // cons = constrained
extend the solution ω(k) by two nodes so that the extended solution is
constrained in its last part.
if it is possible then return the extended solution.

20 T. Asano

else return False.
}

}

See Fig. 3 as an example. In this example, we have only the unconstrained
solution ωu(3). Extending it by two nodes, we have only constrained solution
ωc(5). Using it, we have constrained and unconstrained solutions, ωu(7) and
ωc(7). Finally, we have only constrained solution ωc(9).

Fig. 3. A behavior of the algorithm. (a) only ωu(3) exists, (b) only ωc(5) exists, (c)
unconstrained solution ωu(7), (d) constrained solution ωc(7), (e) only constrained solu-
tion ωc(9) exists, which is a solution.

Lemma 4. For any instance of a transportation problem with finite loading
capacity C we can decide in linear time whether there is a single round of trans-
portations that eliminate all of shortages.

3.3 Optimization Problem

Now, consider the optimization problem to find the minimum shortage we can
achieve for a given instance of one-commodity transportation problem. We do not
know whether there is a polynomial-time algorithm, but we can design a pseudo-
polynomial-time algorithm as follows. Given an instance of one-commodity trans-
portation problem, let −M be the largest shortage. Let 0 < t < M be arbitrary
number between 0 and M . If we add t to every shortage at each node, we have
a modified problem P(t). More exactly, for each negative weight w(u) < 0 we
set w(u) = min(0, w(u)+ t) so that no new positive weight is generated. We can
decide the feasibility of the problem P(t) in linear time. If it is feasible then the
minimum shortage is at most t. Otherwise, we can conclude that it is beyond
t. Using the observation we can find the minimum shortage at any precision by
using binary search. The number of iterations is O(log M).

Lemma 5. Given a one-dimensional instance of a one-commodity transporta-
tion problem, we can determine the minimum shortage in linear time at any
precision.

New Transportation Problem on Graphs 21

3.4 Multi-commodity Transportation Problem

In a multi-commodity transportation problem each node u is characterized by an
h-tuple of values (w1(i), w2(i), . . . , wh(i)). If no constraint on loading capacity is
assumed, we can implement a transportation for each commodity independently.
Therefore, we could apply the algorithm for one-commodity problems to solve a
multi-commodity problem.

With constraint on loading capacity, however, we have a trouble. Recall that
the algorithm for one-commodity case is based on the fact that a solution for
the whole array contains at most two different solutions for the first three nodes.
We have found two solutions, one unconstrained and the other constrained. But
this is not true anymore for multi-commodity case. For we can design a simple
example consisting of four nodes such that any feasible solution for the first three
nodes fails to be feasible due to the fourth node.

4 Two-Dimensional Transportation Problem

4.1 NP-completeness

In this subsection we prove NP-completeness of the problem of deciding whether
an instance of a general two-dimensional transportation problem is feasible or
not, that is, whether there is a single round of transportations that eliminate all
of shortages in the instance.

Lemma 6. The problem of deciding whether, given a weighted graph, there is
a single round of transportations with loading capacity C that eliminate all of
shortages using sending and bringing-back operations is NP-complete.

Proof Our proof is based on a reduction from integer partition problem, one of
NP-complete problems [1].

Suppose the set {a1, a2, . . . , a2n}, ai > 0, i = 1, . . . , 2n is an instance of inte-
ger partition, where

∑2n
i=1 ai = 2A. Then, let U be a collection {u1, u2, . . . , u2n,

u2n+1, u2n+2} with w(ui) = A + ai, i = 1, . . . , 2n and w(u2n+1) = w(u2n+2) =
2n2A, and let V be the pair {v1, v2} with w(v1) = w(v2) = −(2n2 + n + 1)A.
Consider a bipartite graph G = (U, V,E) where E consists of all edges between
U and V . Assume that the loading capacity C is n2A.

Consider a single round of transportations on the graph G, expressed as a
graph Gd. First observation is that each of v1 and v2 is incident to exactly one of
u2n+1 and u2n+2 in Gd. If v1 is incident to none of them, then it is impossible to
eliminate the shortage −(2n2+n+1)A at v1 even if we send storages of all other
nodes to v1 since w(v1)+

∑2n
i=1 ai = −(2n2+n+1)A+2nA+2A < 0. So, we can

assume without loss of generality that v1 is connected to u2n+1 and v2 to u2n+2

in Gd. Moreover, the connection between them must be bi-directional, that is,
we have to send n2A units of commodity from u2n+1 to v1 using the vehicle at
u2n+1 and also to bring the same amount back to u2n+1 since otherwise there
is no way to eliminate the large shortage at v1. So, we can assume that we have

22 T. Asano

bidirectional transportations (double edges in Gd) between u2n+1 and v1 and
also ones between u2n+2 and v2. To have a feasible set of transportations we
have to send commodities from nodes u1, u2, . . . , u2n to either v1 or v2 using
“send” operations using vehicles at those nodes.

Let U1 and U2 be the sets of nodes connected to v1 and v2, respectively. Sup-
pose

∑
u∈U1

w(u) <
∑

u∈U2
w(u). Since the total sum is given by

∑2n+2
i=1 w(ui) =

2n2A + 2nA + 2A = 2(n2 + n + 1)A,
∑

u∈U1
w(u) ≤ (n2 + n + 1)A. To eliminate

the shortage at v1 we must have w(v1) +
∑

u∈U1
w(u) = −(n2 + n + 1)A + (n2 +

n + 1)A = 0. This implies that
∑

u∈U1
w(u) =

∑
u∈U2

w(u) = (n2 + n + 1)A.
The above argument implies that if there is a single round of transportations

that eliminate all of shortages then there is an integer partition for the set
{a1, a2, . . . , a2n}. �

4.2 One-Commodity Transportation Problem on a Forest

Consider a special case where we have a single kind of commodity and a graph
G is a (undirected) forest composed of trees. We assume that end nodes of each
edge have weights of different signs since an edge between two nodes of weights
of the same sign has no meaning for transportation as far as we are interested
in a single round of transportations.

Consider a simple case first where there is no constraint on the loading capac-
ity. We can deal with each tree in a forest independently. Each tree has at least
two leaf nodes (of degree 1). Starting from a leaf node u, we traverse a tree until
we encounter a branching node v of degree ≥ 3. If there is no such branching
node, it is just a path, for which we already had an algorithm in Sect. 3.

Such a path from a leaf node u to branching node v is called a leaf path. If
a leaf node is adjacent to a leaf branching node, the leaf node is considered as a
degenerated leaf path. A leaf branching node is a node v of degree ≥ 3 which
is incident to at least deg(v) − 1 leaf paths, where deg(v) is the degree of v. We
create a one-dimensional instance by replacing v in P with an imaginary node
v(P) whose weight is 0 if w(uk) > 0 and +∞ otherwise. We can solve the one-
dimensional problem using the algorithm in Sect. 3 which gives us an optimal
value x in linear time. If it is infeasible then we have a conclusion that we have
no feasible solution. Otherwise, we replace the path with a single node having
weight determined by the value of x, that is, x if w(uk) > 0 and −x otherwise.

If we have a leaf branching node whose adjacent set consists of at most one
internal node (of degree ≥ 2) and leaf nodes, then we just combine those leaf
nodes with the branching node into a single node after a maximal transportation
from every such leaf node to the branching node. We repeat the process while
each leaf path is feasible. If a single node of weight ≥ 0 is left, then we have a
feasible realization. Otherwise, the given tree is not feasible.

A formal description of the algorithm is given below.

Algorithm for determining the feasibility of a given sequence.
instance: (w(1), w(2), . . . , w(n)).

If the first and/or last elements are negative we insert 0 as the first and/or
last elements, respectively.

New Transportation Problem on Graphs 23

output: True, if there is a single round of transportations to eliminate all of
shortages, and False otherwise.

algorithm:
// Idea is to keep two solutions for each subsequence (1, 2, . . . , k), one
without constraint and the other with constraint in its last part.
For the subsequence (1, 2, 3) compute the best solutions, ωu(3) in one case
of no constraint and ωc(3) in the other case of constraint, in their last part.
for k = 3 to n step 2 do{

if ωu(k) is defined then{
ωuu(k + 2) = extend(ωu(k), unconstrained).
ωuc(k + 2) = extend(ωu(k), constrained).

} else if ωc(k) is defined then{
ωcu(k + 2) = extend(ωc(k), unconstrained).
ωcc(k + 2) = extend(ωc(k), constrained).

}
Choose the better one among ωuu(k + 2) and ωcu(k + 2) as ωu(k + 2).
Choose the better one among ωuc(k + 2) and ωcc(k + 2) as ωc(k + 2).

}
if at least one of ωu(n) and ωc(n) is defined and non-negative
then return True. else return False.

function extend(ω(k), cons){
if cons = unconstrained then{

extend the solution ω(k) by two nodes so that the extended solution is
not constrained in its last part.
if it is possible then return the extended solution.
else return False.

} else { // cons = constrained
extend the solution ω(k) by two nodes so that the extended solution is
constrained in its last part.
if it is possible then return the extended solution.
else return False.

}
}

Lemma 7. Assume no constraint on the loading capacity. Given a weighted
forest, it is possible in linear time to determine whether there is a single round
of transportations that eliminate all of shortages.

Next, we consider the constraint on the loading capacity. In the case where
no loading capacity is assumed, when we shorten a leaf path to a single node,
it induces no constraints to the process of the remaining part. However, in this
general case, we have to consider such a constraint. So, we modify the algorithm
for a leaf path. We take a leaf path and shorten it to a single node, which
becomes a child of a leaf branching node v. When we combine the node v with
its children into a single node v′, we traverse the tree again from the node v′

until we encounter a branching node, which makes a leaf path again. The leaf

24 T. Asano

path may have a constraint in its first part if one of its children is produced with
constraint (double edges).

Taking the situations above into account, we consider for a leaf path four
different cases depending on whether it has a constraint in its first part and also
in its last part. Formally, for a leaf path Pi, we compute four different solutions
ωuu(Pi), ωuc(Pi), ωcu(Pi), and ωcc(Pi), where ωuc(Pi), for example, is the value
of an optimal solution in the case where Pi is unconstrained in its first part
but constrained in its last part. It is not so difficult to modify the algorithm
for one-dimensional array so that it can compute the four values. The modified
algorithm also runs in linear time. Although we omit the detail, we have the
following lemma.

Lemma 8. Given a forest weighted arbitrarily, it is possible in linear time to
determine whether there is a single round of transportations that eliminate all
of shortages.

5 Concluding Remarks

We have many open questions. (1) Extension to a multi-commodity problem
is not known even for one-dimensional problems. Is there any polynomial-time
algorithm? (2) We had an efficient algorithm for minimizing the largest shortage
in any precision, which runs in O(n log M) time where n and M are the size of
the array and the largest shortage, respectively. It is efficient in practice, but it
also depends on log M . Is there any polynomial-time algorithm which does not
depend on M? (3) A more general problem is to determine how many rounds
of transportations are needed to eliminate all of shortages. It is more difficult
since transportation from a node of positive weight to one of positive weight is
effective in two rounds. (4) We assumed that only one vehicle is available, but
what happens if two or more vehicles are available at some busy nodes? (5) If
vehicles at some nodes are not available, how can we compensate them?

Many other open questions exist although we have no space to list them.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
JP20K11673. The author would like to thank David Kirkpatrick and Ryuhei Uehara
for giving a version of the NP-completeness proof of the transportation problem in two
dimensions.

References

1. Andrews, G.E., Eriksson, K.: Integer Partitions. Cambridge University Press,
Cambridge (2004)

2. Appa, G.M.: The Transportation problem and its variants. Oper. Res. Q. 24, 79–99
(1973)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (2001)

4. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution:
space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell. 11, 739–742 (1989)

Long Papers

Algorithms for Diameters of Unicycle
Graphs and Diameter-Optimally

Augmenting Trees

Haitao Wang and Yiming Zhao(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
{haitao.wang,yiming.zhao}@usu.edu

Abstract. We consider the problem of computing the diameter of a
unicycle graph (i.e., a graph with a unique cycle). We present an O(n)
time algorithm for the problem, where n is the number of vertices of
the graph. This improves the previous best O(n logn) time solution [Oh
and Ahn, ISAAC 2016]. Using this algorithm as a subroutine, we solve
the problem of adding a shortcut to a tree so that the diameter of the
new graph (which is a unicycle graph) is minimized; our algorithm takes
O(n2 log n) time and O(n) space. The previous best algorithms solve
the problem in O(n2 log3 n) time and O(n) space [Oh and Ahn, ISAAC
2016], or in O(n2) time and O(n2) space [Bilò, ISAAC 2018].

Keywords: Diameter · Unicycle graphs · Augmenting trees ·
Shortcuts

1 Introduction

Let G be a graph of n vertices with a positive length on each edge. A shortest
path connecting two vertices s and t in G is a path of minimum total edge length;
the length of the shortest path is also called the distance between s and t. The
diameter of G is the maximum distance between all pairs of vertices of G. G is
a unicycle graph if it has only one cycle, i.e., G is a tree plus an additional edge.

We consider the problem of computing the diameter of a unicycle graph G.
Previously, Oh and Ahn [10] solved the problem in O(n log n) time, where n is
the number of vertices of G. We present an improved algorithm of O(n) time.
Using our new algorithm, we also solve the diameter-optimally augmenting tree
(DOAT for short) problem, defined as follows.

Let T be a tree of n vertices such that each edge has a positive length. We
want to add a new edge (called shortcut) to T such that the new graph (which is
a unicycle graph) has the minimum diameter. We assume that there is an oracle
that returns the length of any given shortcut in O(1) time. Previously, Oh and
Ahn [10] solved the problem in O(n2 log3 n) time and O(n) space, and Bilò [1]

This research was supported in part by NSF under Grant CCF-2005323.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 27–39, 2021.
https://doi.org/10.1007/978-3-030-68211-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_3

28 H. Wang and Y. Zhao

reduced the time to O(n2) but the space increases to O(n2). The problem has
an Ω(n2) lower bound on the running time as all Θ(n2) possible shortcuts have
to be checked in order to find an optimal shortcut [10]. Hence, Bilò’s algorithm
is time-optimal. In this paper, we propose an algorithm with a better time and
space trade-off, and our algorithm uses O(n2 log n) time and O(n) space.

1.1 Related Work

The diameter is an important measure of graphs and computing it is one of
the most fundamental algorithmic graph problems. For general graphs or even
planar graphs, the only known way to compute the diameter is to first solve the
all-pair-shortest-path problem (i.e., compute the distances of all pairs of vertices
of the graph), which inherently takes Ω(n2) time, e.g., [5,15]. Better algorithms
exist for special graphs. For example, the diameter of a tree can be computed in
linear time, e.g., by first computing its center [9]. If G is an outerplanar graph
and all edges have the same length, its diameter can be computed in linear
time [4]. The diameter of interval graphs (with equal edge lengths) can also be
computed in linear time [11]. Our result adds the unicycle graph (with different
edge lengths) to the linear-time solvable graph category.

The DOAT problem and many of its variations enjoy an increasing interest
in the research community. If the tree T is embedded in a metric space (so that
the triangle inequality holds for edge lengths), Große et al. [7] first solved the
problem in O(n2 log n) time. Bilò [1] later gave an O(n log n) time and O(n)
space algorithm, and another (1 + ε)-approximation algorithm of O(n + 1

ε log 1
ε)

time and O(n+ 1
ε) space for any ε > 0. A special case where T is a path embedded

in a metric space was first studied by Große et al. [6], who gave an O(n log3 n)
time algorithm, and the algorithm was later improved to O(n log n) time by
Wang [12]. Hence, Bilò’s work [1] generalizes Wang’s result [12] to trees.

A variant of the DOAT problem which aims to minimize the continuous
diameter, i.e., the diameter of T is measured with respect to all the points of the
tree (including the points in the interior of the edges), has also been studied. If
T is a path embedded in the Euclidean plane, De Carufel et al. [2] solved the
problem in O(n) time. If T is a tree embedded in a metric space, De Carufel et
al. [3] gave an O(n log n) time algorithm. If T is a general tree, Oh and Ahn [10]
solved the problem in O(n2 log3 n) time and O(n) space.

The DOAT problem is to minimize the diameter. The problem of minimizing
the radius was also considered. For the case where T is a path embedded in a
metric space, Johnson and Wang [8] presented a linear time algorithm which
adds a shortcut to T so that the radius of the resulting graph is minimized. The
radius considered in [8] is defined with respect to all points of T , not just the
vertices. Wang and Zhao [14] studied the same problem with radius defined with
respect to only the vertices, and they gave a linear time algorithm.

Diameters of Unicycle Graphs and DOAT for Trees 29

1.2 Our Approach

To compute the diameter of a unicycle graph G, Oh and Ahn [10] reduces the
problem to a geometric problem and then uses a one-dimensional range tree to
solve the problem. We take a completely different approach. Let C be the unique
cycle of G. We define certain “domination” relations on the vertices of C so that
if a vertex v is dominated by another vertex then v is not important to the
diameter. We then present a pruning algorithm to find all undominated vertices
(and thus those dominated vertices are “pruned”); it turns out that finding the
diameter among the undominated vertices is fairly easy. In this way, we compute
the diameter of G in linear time.

For the DOAT problem on a tree T , Oh and Ahn [10] considered all possible
shortcuts of T by following an Euler tour of T ; they used the aforementioned 1D
range tree to update the diameter for the next shortcut. Bilò’s method [1] is to
transform the problem to adding a shortcut to a path whose edge lengths satisfy
a property analogous to the triangle inequality (called graph-triangle inequality)
and then the problem on P can be solved by applying the O(n log n) time algo-
rithm for trees in metric space [1]. Unfortunately, the problem transformation
algorithm needs Θ(n2) space to store the lengths of all possible Θ(n2) shortcuts
of T . The algorithm has to consider all these Θ(n2) shortcut lengths in a global
manner and thus it inherently uses Ω(n2) space. Note that Bilò’s method [1]
does not need an algorithm for computing the diameter of a unicycle graph.

We propose a novel approach. We first compute a diametral path P of T .
Then we reduce the DOAT problem on T to finding a shortcut for P . To this
end, we consider vertices of P individually. For each vertex vi of P , we want to
find an optimal shortcut with the restriction that it must connect vi, dubbed a
vi-shortcut. For this, we define a “domination” relation on all vi-shortcuts and
we show that those shortcuts dominated by others are not important. We then
design a pruning algorithm to find all shortcuts that are not dominated by oth-
ers; most importantly, these undominated shortcuts have certain monotonicity
properties that allow us to perform binary search to find an optimal vi-shortcut
by using our diameter algorithm for unicycle graphs as a subroutine. With these
effort, we find an optimal vi-shortcut in O(n log n) time and O(n) space. The
space can be reused for computing optimal vi-shortcuts of other vertices of P .
In this way, the total time of the algorithm is O(n2 log n) and the space is O(n).

Outline. In the following, we present our algorithm for computing the diameter
of a unicycle graph in Sect. 2. Section 3 solves the DOAT problem. Due to the
space limit, many proofs are omitted but can be found in our full paper [13].

2 Computing the Diameter of Unicycle Graphs

In this section, we present our linear time algorithm for computing the diameter
of unicycle graphs.

For a subgraph G′ of a graph G and two vertices u and v from G′, we use
πG′(u, v) to denote a shortest path from u to v in G′ and use dG′(u, v) to denote

30 H. Wang and Y. Zhao

the length of the path. We use Δ(G) to denote the diameter of G. A pair of
vertices (u, v) is called a diametral pair and πG(u, v) is called a diametral path if
dG(u, v) = Δ(G).

In the following, let G be a unicycle graph of n vertices. Our goal is to
compute the diameter Δ(G) (along with a diametral pair). Let C denote the
unique cycle of G.

2.1 Observations

Removing all edges of C (while keeping its vertices) from G results in several
connected components of G. Each component is a tree that contains a vertex v
of C; we use T (v) to denote the tree. Let v1, v2, . . . , vm be the vertices ordered
clockwise on C. Let T (G) = {T (vi) | 1 ≤ i ≤ m}. Note that the sets of vertices
of all trees of T (G) form a partition of the vertex set of G.

Consider a diametral pair (u∗, v∗) of G. There are two cases: (1) both u∗ and
v∗ are in the same tree of T (G); (2) u∗ and v∗ are in two different trees of T (G).
To handle the first case, we compute the diameter of each tree of T (G), which
can be done in linear time. Computing the diameters for all trees takes O(n)
time. The longest diameter of these trees is the diameter of G. In the following,
we focus on the second case.

Suppose T (vi) contains u∗ and T (vj) contains v∗ for i �= j. Observe that
the diametral path πG(u∗, v∗) is the concatenation of the following three paths:
πT (vi)(u

∗, vi), πC(vi, vj), and πT (vj)(vj , v
∗). Further, u∗ is the farthest vertex in

T (vi) from vi; the same holds for v∗ and T (vj). On the basis of these observations,
we introduce some concepts as follows.

For each vertex vi ∈ C, we define a weight w(vi) as the length of the path
from vi to its farthest vertex in T (vi). The weights for all vertices on C can
be computed in total O(n) time. With this definition in hand, we have Δ(G) =
max1≤i<j≤m(w(vi)+dC(vi, vj)+w(vj)). We say that (vi, vj) is a vertex-weighted
diametral pair of C if T (vi) contains u∗ and T (vj) contains v∗ for a diametral pair
(u∗, v∗) of G. To compute Δ(G), it suffices to find a vertex-weighted diameter
pair of C. We introduce a domination relation for vertices on C.

Definition 1. For two vertices vi, vj ∈ C, we say that vi dominates vj if
w(vi) > w(vj) + dC(vi, vj).

The following lemma shows that if a vertex is dominated by another vertex,
then it is not “important”.

Lemma 1. For two vertices vi and vj of C, if vi dominates vj, then vj cannot
be in any vertex-weighted diametral pair of C unless (vi, vj) is such a pair.

2.2 A Pruning Algorithm

We describe a linear time pruning algorithm to find all vertices of C dominated
by other vertices (and thus those dominated vertices are “pruned”). As will be
seen later, the diameter can be easily found after these vertices are pruned.

Diameters of Unicycle Graphs and DOAT for Trees 31

vi

Cccw(vi)

Ccw(vi)
vj

p

C

Fig. 1. Illustrating the definitions of Cccw(vi) (the disks except vi) and Ccw(vi) (the
squares). We assume that p is a point on C that together with vi partitions C into two
half-cycles of equal length.

Let |C| denote the sum of the lengths of all edges of C. For any vertex vi of
C, define Cccw(vi) as the set of vertices vj of C such that the path from vi to
vj counterclockwise along C has length at most |C|/2 (Fig. 1); define Ccw(vi) as
the set of vertices of C not in Cccw(vi). We assume that vi is in neither subset.

Lemma 2. With O(n) time preprocessing, given any two vertices vi and vj of
C, we can do the following in O(1) time: (1) compute dC(vi, vj); (2) determine
whether vj is in Cccw(vi); (3) determine whether vi and vj dominate each other.

Proof. We first compute the weight w(vi) for all vertices vi ∈ C. This can be
done in O(n) time. Then, we compute the length |C|. Next, by scanning the
vertices v1, v2, . . . , vm on C, we compute an array A[1, . . . , m] with A[i] equal to
the length of the path from v1 to vi clockwise along C. Hence, for any 1 ≤ i <
j ≤ m, A[j] − A[i] is the length of the path from vi to vj clockwise along C and
|C|− (A[j]−A[i])) is the length of the path from vi to vj counterclockwise along
C. Note that dC(vi, vj) = min{A[j] − A[i], |C| − (A[j] − A[i])}.

Consider any two vertices vi and vj of C. Without loss of generality, we
assume i < j. By comparing A[j] − A[i] with |C|/2, we can determine whether
vj is in Cccw(vi) in O(1) time. As w(vi) and w(vj) are both available, whether
vi and vj dominate each other can be determined in O(1) time. ��

With Lemma 2 in hand, starting from v1, our pruning algorithm processes the
vertices of C from v1 to vm in order (see our full paper [13] for the pseudocode).
The algorithm maintains a stack S, which is ∅ initially. Consider a vertex vi. If
S = ∅, then we push vi into S. Otherwise, let v be the vertex at the top of S. If
v is not in Cccw(vi), then we also push vi into S. Otherwise, we check whether v
and vi dominate each other. If they do not dominate each other, then we push
vi into S. Otherwise, if vi dominates v, we pop v out of S, and then we continue
to pop the new top element v of S out as long as the following three conditions
are all satisfied: (1) S �= ∅; (2) v ∈ Cccw(vi); (3) vi dominates v. Once one of the
three conditions is not satisfied, we push vi into S.

After vm is processed, the first stage of the pruning algorithm is over. In
the second stage, we process the vertices in the stack S in a bottom-up manner
until a vertex not in Ccw(v1); the processing of a vertex is done in the same way

32 H. Wang and Y. Zhao

as above (the vertex should be removed from S first). Specifically, let vi be the
vertex at the bottom of S. If vi is not in Ccw(v1), then we stop the algorithm
and return the vertices in the current stack S. Otherwise, we remove vi from S
and then apply the same processing algorithm as above in the first stage (i.e.,
begin with checking whether S is empty).

Intuitively, the first stage of the algorithm does a “full-cycle” scan on C while
the second stage does a “half-cycle” scan (i.e., the half-cycle clockwise from v1).
With Lemma 2, the algorithm can be implemented in O(n) time. The following
lemma establishes the correctness of the algorithm.

Lemma 3. Let S be the stack after the algorithm is over.

1. Each vertex of C that is not in S is dominated by a vertex in S.
2. No two vertices of S dominate each other.

2.3 Computing the Diameter

In the following, we use S to refer to the stack after the pruning algorithm. Note
that S cannot be empty. The following lemma shows how S can help to find a
vertex-weighted diametral pair of C.

Lemma 4. If |S| = 1, then any vertex-weighted diametral pair of C must con-
tain the only vertex in S. Otherwise, for any vertex v of C that is not in S, v
cannot be in any vertex-weighted diametral pair of C.

If |S| = 1, we compute the diameter Δ(G) as follows. Let v be the only vertex
in S. We find the vertex u ∈ C \ {v} that maximizes the value w(u)+dC(u, v)+
w(v), which can be done in O(n) time with Lemma 2. By Lemma 4, (u, v) is a
vertex-weighted diametral pair and Δ(G) = w(u) + dC(u, v) + w(v).

If |S| > 1, by Lemma 4, Δ(G) = maxu,v∈S(w(u)+dC(u, v)+w(v)). Lemma 5
finds a vertex-weighted diametral pair and thus computes Δ(G) in linear time.

Lemma 5. A pair (u, v) of vertices in S that maximizes the value w(u) +
dC(u, v) + w(v) can be found in O(n) time.

We thus obtain the following theorem, whose proof summarizes the entire
algorithm and is in our full paper [13].

Theorem 1. The diameter (along with a diametral pair) of a unicycle graph
can be computed in linear time.

3 The Diameter-Optimally Augmenting Trees (DOAT)

In this section, we solve the DOAT problem in O(n2 log n) time and O(n) space.
The algorithm of Theorem 1 will be used as a subroutine.

Diameters of Unicycle Graphs and DOAT for Trees 33

3.1 Observations

We follow the same notation as in Sect. 2 such as πG′(s, t), dG′(s, t), Δ(G).
Let T be a tree of n vertices such that each edge of T has a positive length. For

any two vertices u and v of T , we use e(u, v) to refer to the shortcut connecting
u and v; note that even if T already has an edge connecting them, we can
always assume that there is an alternative shortcut (or we could also consider
the shortcut as the edge itself with the same length). Let |e(u, v)| denote the
length of e(u, v). Again, there is an oracle that can return the value |e(u, v)| in
O(1) time for any shortcut e(u, v). Denote by T + e(u, v) the graph after adding
e(u, v) to T . The goal of the DOAT problem is to find a shortcut e(u, v) so that
the diameter of the new graph Δ(T + e(u, v)) is minimized. Let Δ∗(T) be the
diameter of an optimal solution. In the following we assume that Δ∗(T) < Δ(T),
since otherwise any shortcut would be sufficient.

For any shortcut e(u, v), T has a unique path πT (u, v) between u and v.
We make an assumption that |e(u, v)| < dT (u, v) since otherwise e(u, v) can
never be used (indeed, whenever e(u, v) was used in a shortest path, we could
always replace it with πT (u, v) to get a shorter path). This assumption is only
for the argument of the correctness of our algorithm; the algorithm itself still
uses the true value of |e(u, v)| (this does not affect the correctness, because
if |e(u, v)| ≥ dT (u, v), then e(u, v) cannot be an optimal shortcut). For the
reference purpose, we refer to this assumption as the shortcut length assumption.

At the outset, we compute a diametral path P of T in O(n) time. Let
v1, v2, . . . , vm be the vertices of P ordered along it. Removing the edges of P
from T results in m connected components of T , each of which is a tree con-
taining a vertex of P ; we let T (vi) denote the tree containing vi. For each vi, we
define a weight w(vi) as the distance from vi to its farthest vertex in T (vi). Let
T = {T (vi) | 1 ≤ i ≤ m}.

For any pair (i, j) of indices with 1 ≤ i < j ≤ m, we define a critical pair
of vertices (x, y) with x ∈ T (vi) and y ∈ T (vj) such that they minimize the
value dT (vi)(vi, x

′)+ |e(x′, y′)|+dT (vj)(y
′, vj) among all vertex pairs (x′, y′) with

x′ ∈ T (vi) and y′ ∈ T (vj).
The following lemma will be used later.

Lemma 6. For any vertex v in any tree T (vk) ∈ T , it holds that dT (vk)(v, vk) ≤
min{dT (v1, vk), dT (vk, vm)}. Also, dT (v1, vk) = dP (v1, vk) and dT (vk, vm) =
dP (vk, vm).

Lemma 7 shows why critical pairs are “critical”.

Lemma 7. Suppose e(u∗, v∗) is an optimal shortcut with u∗ ∈ T (vi) and v∗ ∈
T (vj). Then, i �= j and any critical pair of (i, j) also defines an optimal shortcut.

3.2 Reducing DOAT to Finding a Shortcut for P

In light of Lemma 7, we reduce our DOAT problem on T to finding a shortcut
for the vertex-weighted path P as follows.

34 H. Wang and Y. Zhao

For an index pair (i, j) with 1 ≤ i < j ≤ m, we define a shortcut e(vi, vj) con-
necting vi and vj with length |e(vi, vj)| = dT (vi)(vi, x) + |e(x, y)| + dT (vj)(vj , y),
where (x, y) is a critical pair of (i, j). The diameter Δ(P +e(vi, vj)) is defined as
max1≤k<h≤m{w(vk)+dP+e(vi,vj)(vk, vh)+w(vh)}. The diameter-optimally aug-
menting path (DOAP) problem on P is to find a shortcut e(vi, vj) so that the
diameter Δ(P + e(vi, vj)) is minimized; we use Δ∗(P) to denote the minimized
diameter.

With the help of Lemma 7, the following lemma shows that the DOAT prob-
lem on T can be reduced to the DOAP problem on P . Similar problem reductions
were also used in [1,6].

Lemma 8. 1. For any index pair (i, j) with 1 ≤ i < j ≤ m, it holds that
Δ(P + e(vi, vj)) = Δ(T + e(x, y)), where (x, y) is a critical pair of (i, j).

2. If e(vi, vj) is an optimal shortcut for the DOAP problem on P , then e(x, y)
is an optimal shortcut for the DOAT problem on T , where (x, y) is a critical
pair of (i, j).

3. Δ∗(T) = Δ∗(P).

By Lemma 8, we will focus on solving the DOAP problem on the vertex-weighted
path P . Notice that the lengths of the shortcuts of P have not been computed.

3.3 Computing an Optimal Shortcut for P

To find an optimal shortcut for P , for each i ∈ [1,m − 1], we will compute
an index j(i) that minimizes the diameter Δ(P + e(vi, vj)) among all indices
j ∈ [i+1,m], i.e., j(i) = arg mini+1≤j≤m Δ(P +e(vi, vj)), as well as the diameter
Δ(P +e(vi, vj(i))). After that, the optimal shortcut of P is the one that minimizes
Δ(P + e(vi, vj(i))) among the shortcuts e(i, j(i)) for all i ∈ [1,m − 1]. We refer
to the shortcuts for e(vi, vj) for all j ∈ [i + 1,m] as vi-shortcuts. Therefore, our
goal is to find an optimal vi-shortcut e(i, j(i)) for each i ∈ [1,m − 1].

Let ni denote the number of vertices in T (vi), for each 1 ≤ i ≤ m. Note that
n =

∑m
i=1 ni. Fix an index i with 1 ≤ i ≤ m−1. In the following, we will present

an algorithm that computes an optimal vi-shortcut e(vi, vj(i)) and the diameter
Δ(P +e(vi, vj(i))) in O(n ·ni +n log n) time and O(n) space. In this way, solving
the DOAP problem on P takes O(n2 log n) time and O(n) space in total.

vi vjv1 vm

P

vk

Fig. 2. e(vi, vj) dominates e(vi, vk) if |e(vi, vj)|+dP (vj , vk) ≤ |e(vi, vk)|, i.e., the length
of the red path is less than or equal to the length of the blue path.

We introduce a domination relationship among vi-shortcuts.

Definition 2. For any two index j and k with i < j < k ≤ m, we say that
e(vi, vj) dominates e(vi, vk) if |e(vi, vj)|+dP (vj , vk) ≤ |e(vi, vk)|; e.g., see Fig. 2.

Diameters of Unicycle Graphs and DOAT for Trees 35

The following lemma implies that if e(vi, vj) dominates e(vi, vk), then short-
cut e(vi, vk) can be ignored or “pruned”.

Lemma 9. If e(vi, vj) dominates e(vi, vk), then Δ(P + e(vi, vj)) ≤ Δ(P +
e(vi, vk)).

Let Si be the set of all vi-shortcuts, i.e., Si = {e(vi, vj)‖ i + 1 ≤ j ≤ m}. In
the following, we describe a pruning algorithm that computes a subset S of Si

such that no two shortcuts of S dominate each other and S contains at least one
optimal vi-shortcut. As will be seen later, these properties of S allow an efficient
algorithm to find an optimal vi-shortcut.

Before running the pruning algorithm, we compute the lengths of shortcuts
of Si by brute force, as follows. First, with O(n) time preprocessing, given any
two vertices u and v with u ∈ T (vi) and v ∈ T (vj) for j �= i, we can compute
dT (u, v) in constant time. Consider a tree T (vj) with j ≥ i + 1. Computing
the length of e(vi, vj) reduces to finding a critical pair of (i, j). To this end, we
compute dT (vi)(vi, u) + |e(u, v)| + dT (vj)(v, vj) for all vertices u ∈ T (vi) and all
vertices v ∈ T (vj), which can be done in O(ni · nj) time (and O(n) space). As
such, computing the lengths of all shortcuts of Si takes O(ni · n) time.

Our pruning algorithm processes the shortcuts e(vi, vj) for all j = i+1, . . . ,m
one by one. A stack S is maintained and S = ∅ initially. Consider any j ∈
[i + 1,m]. If S = ∅, we push e(vi, vj) into S. Otherwise, let e be the shortcut at
the top of S. If e and e(vi, vj) do not dominate each other, we push e(vi, vj) into
S. Otherwise, if e dominates e(vi, vj), then we proceed on j + 1, i.e., e(vi, vj) is
pruned. If e(vi, vj) dominates e, then we pop e out of S (i.e., e is pruned). Next,
we keep popping the top element out of S until either S becomes ∅ or e(vi, vj)
does not dominate it; in either case we push e(vi, vj) into S.

As the lengths of the shortcuts of Si are available, the algorithm runs in O(n)
time. The following lemma establishes the correctness of the algorithm.

Lemma 10. After the algorithm, no two shortcuts of S dominate each other
and S contains at least one optimal vi-shortcut.

Using the algorithm for Theorem 1 as a subroutine, Lemma 11 below provides
a binary search algorithm that finds an optimal vi-shortcut from S in O(n log n)
time and O(n) space.

Lemma 11. An optimal vi-shortcut in S can be found in O(n log n) time and
O(n) space.

Proof. We first prove some properties that our algorithm relies on.
Consider the graph P +e(vi, vj) for an index j with i < j ≤ m. Let Δ(i, j) =

Δ(P + e(vi, vj)). Suppose (va, vb) is a diametral pair of P + e(vi, vj) with a < b.
Then, Δ(i, j) = w(va) + dP+e(vi,vj)(va, vb) + w(vb).

We claim that if a ∈ (1, i], then (v1, vb) is also a diametral pair. Indeed, since
a �= 1, by Lemma 6 and the definition of w(va), we have w(va) ≤ dP (v1, va).

36 H. Wang and Y. Zhao

Hence, we can derive

w(va) + dP+e(vi,vj)(va, vb) + w(vb) ≤ dP (v1, va) + dP+e(vi,vj)(va, vb) + w(vb)

= dP+e(vi,vj)(v1, vb) + w(vb) ≤ w(v1) + dP+e(vi,vj)(v1, vb) + w(vb).

Hence, (v1, vb) is also a diametral pair.
Similarly, we claim that if b ∈ [j,m), then (va, vm) is also a diametral pair.

The claim can be proved by a similar argument as above.
Note that since a < b, a �= m and b �= 1. Due to the above two claims, we

assume that a ∈ {1} ∪ (i,m) and b ∈ (1, j) ∪ {m}. Based on the values of a and
b, we define the following five functions (illustrations can be found in our full
paper [13]).

1. For the case a = 1 and b = m, we define

α(i, j) = w(v1) + dP (v1, vi) + |e(vi, vj)| + dP (vj , vm) + w(vm).

Hence, if a = 1 and b = m, we have Δ(i, j) = α(i, j).
2. For the case a = 1 and b ∈ (i, j), we define β(i, j) = w(v1) +

maxi<b′<j

{

min{dP (v1, vb′), dP (v1, vi) + |e(vi, vj)| + dP (vj , vb′) + w(vb′)}
}

.

Hence, if a = 1 and b ∈ (i, j), we have Δ(i, j) = β(i, j).
3. For the case a ∈ (i,m) and b = m, we define

γ(i, j) = max
i<a′<m

{

w(va′) + dP+e(vi,vj)(va′ , vm)
}

+ w(vm).

Note that dP+e(vi,vj)(va′ , vm) is equal to min{dP (va′ , vm), dP (va′ , vi) +
|e(vi, vj)| + dP (vj , vm)} if a′ ∈ (i, j), and dP (va′ , vm) otherwise.
Hence, if a ∈ (i,m) and b = m, we have Δ(i, j) = γ(i, j).

4. For the case i < a < b < j, we define δ(i, j) = maxi<a′<b′<j

{

w(va′) +

min{dP (va′ , vb′), dP (va′ , vi)+|e(vi, vj)|+dP (vj , vb′)}+w(vb′)
}

. Hence, if a, b ∈
(i, j), we have Δ(i, j) = δ(i, j).

5. For the case a = 1 and b ∈ (1, i], we define

λ(i, j) = max
1<b′≤i

{

w(v1) + dP (v1, vb′) + w(vb′)
}

.

Hence, if a = 1 and b ∈ (1, i], we have Δ(i, j) = λ(i, j).

With these definitions, we have Δ(i, j) = max{α(i, j), β(i, j), γ(i, j), δ(i, j),
λ(i, j)}. Hence, if j changes in [i+1,m], the graph of Δ(i, j) is the upper envelope
of the graphs of the five functions.

Recall that our goal is to find an optimal vi-shortcut in S. Let I denote the
set of the indices j of all shortcuts e(vi, vj) of S. We consider these indices of I

Diameters of Unicycle Graphs and DOAT for Trees 37

in order. We intend to show that Δ(i, j) is a unimodal function (first decreases
and then increases) as j changes in I. To this end, we prove that each of the
above five functions is a monotonically increasing or decreasing function as j
changes in I. Note that each index of I is in [i + 1,m]. To simplify the notation,
we simply let I = {i + 1, i + 2, . . . , m}, or equivalently, one may consider that
our pruning algorithm does not prune any shortcut from Si and thus S = Si.

As no two shortcuts of S dominate each other, e(vi, vj) and e(vi, vj+1) do
not dominate each other for any j ∈ (i,m), i.e., |e(vi, vj)| + dP (vj , vj+1) >
|e(vi, vj+1)| and |e(vi, vj+1)|+dP (vj , vj+1) > |e(vi, vj)|. Relying on this property,
we can prove the following monotonicity properties of the five functions.

Monotonicity Properties: Let j be any index in (i,m). The following hold:

1. α(i, j) > α(i, j + 1). Hence, α(i, j) is a decreasing function for j ∈ (i,m).
2. β(i, j) ≤ β(i, j + 1). Hence, β(i, j) is an increasing function for j ∈ (i,m).
3. γ(i, j) ≥ γ(i, j + 1). Hence, γ(i, j) is a decreasing function for j ∈ (i,m).
4. δ(i, j) ≤ δ(i, j + 1). Hence, β(i, j) is an increasing function for j ∈ (i,m).
5. λ(i, j) = λ(i, j + 1). Hence, λ(i, j) is a constant function for j ∈ (i,m).

On the basis of the above monotonicity properties, we present a binary search
algorithm that finds an optimal vi-shortcut in O(n log n) time and O(n) space.

Our algorithm performs binary search on the indices [l, r], with l = i + 1
and r = m initially. In each step, we decide whether we will proceed on [l, k]
or on [k, r], where k = � l+r

2 �. To this end, we compute Δ(i, k) and Δ(i, k + 1).
By Lemma 8, Δ(i, k) = Δ(T + e(x, y)) where (x, y) is a critical pair of (i, k).
Since T + e(x, y) is a unicycle graph, we compute Δ(T + e(x, y)) in O(n) time
by Theorem 1. Therefore, Δ(i, k) can be computed in O(n) time. Note that the
algorithm of Theorem 1 also returns a diametral pair for T + e(x, y), and we can
decide which of the five cases for the functions α, β, γ, δ, and λ the diametral
pair belong to. We do the same for Δ(i, k + 1). Assume that Δ(i, k) = f(i, k)
and Δ(i, k + 1) = g(i, k + 1), for two functions f and g in {α, β, γ, δ, λ}. Then
we have the following cases

1. f = g. We have the following subcases.
– f = g ∈ {β, δ}. In this case, our algorithm proceeds on the interval [l, k].

To see this, since both β and δ are monotonically increasing functions,
we have Δ(i, j) ≥ f(i, j) ≥ f(i, k) = Δ(i, k), for any j ∈ (k, r]. As such,
the diameter Δ(i, j) would increase if we proceed on j ∈ (k, r].

– f = g ∈ {α, γ}. In this case, we proceed on the interval [k, r] because
both functions are monotonically decreasing.

– f = g = λ. In this case, we stop the algorithm and return e(i, k) as an
optimal vi-shortcut. To see this, Δ(i, j) ≥ λ(i, j) = λ(i, k) = Δ(i, k) for
any j ∈ [l, r]. Hence, Δ(i, j) achieves the minimum at j = k among all
j ∈ [l, r].

2. f �= g. We have the following subcases.
– One of f and g is λ. In this case, by a similar argument as before, we

return e(vi, vk) as an optimal vi-shortcut if f = λ, and return e(vi, vk+1)
as an optimal vi-shortcut if g = λ.

38 H. Wang and Y. Zhao

– {f, g} = {β, δ}. In this case, since both β and δ are increasing functions,
by a similar argument as before, we proceed on the interval [l, k].

– {f, g} = {α, γ}. In this case, since both α and γ are decreasing functions,
by a similar argument as before, we proceed on the interval [k, r].

– One of f and g is in {β, δ} and the other is in {α, γ}. In this case,
one of e(vi, vk) and e(vi, vk+1) is an optimal vi-shortcut, which can be
determined by comparing Δ(i, k) with Δ(i, k + 1). To see this, with-
out loss of generality, we assume that f ∈ {β, δ} and g ∈ {α, γ}.
Hence, Δ(i, j) ≥ f(i, j) ≥ f(i, k) = Δ(i, k) for any j ∈ [k + 1, r], and
Δ(i, j) ≥ g(i, j) ≥ g(i, k + 1) = Δ(i, k + 1) for any j ∈ [l, k]. As such,
min{Δ(i, k),Δ(i, k + 1)} ≤ Δ(i, j) for all j ∈ [l, r].

The algorithm will find an optimal vi-shortcut in O(log n) iterations. As each
iteration takes O(n) time, the total time is O(n log n). The space is O(n). ��

Based on Lemma 11, we have the following result.

Theorem 2. The DOAT problem on the tree T can be solved in O(n2 log n)
time and O(n) space.

References

1. Bilò, D.: Almost optimal algorithms for diameter-optimally augmenting trees. In:
Proceedings of the 29th International Symposium on Algorithms and Computation
(ISAAC), pp. 40:1–40:13 (2018)

2. Carufel, J.-L.D., Grimm, C., Maheshwari, A., Smid, M.: Minimizing the continuous
diameter when augmenting paths and cycles with shortcuts. In: Proceedings of the
15th Scandinavian Workshop on Algorithm Theory, pp. 27:1–27:14 (2016)

3. Carufel, J.-L.D., Grimm, C., Schirra, S., Smid, M.: Minimizing the continuous
diameter when augmenting a tree with a shortcut. In: Proceedings of the 15th
Algorithms and Data Structures Symposium (WADS), pp. 301–312 (2017)

4. Farley, A., Proskurowski, A.: Computation of the center and diameter of outerpla-
nar graphs. Discrete Appl. Math. 2, 185–191 (1980)

5. Federickson, G.: Fast algorithms for shortest paths in planar graphs, with applica-
tions. SIAM J. Comput. 16, 1004–1022 (1987)

6. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms for
diameter-optimally augmenting paths. In: Proceedings of the 42nd International
Colloquium on Automata, Languages and Programming, pp. 678–688 (2015)

7. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms for
diameter-optimally augmenting paths and trees. arXiv:1607.05547 (2016)

8. Johnson, C., Wang, H.: A linear-time algorithm for radius-optimally augmenting
paths in a metric space. In: Proceedings of the 16th Algorithms and Data Structures
Symposium (WADS), pp. 466–480 (2019)

9. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM J. Comput. 12(4), 759–776 (1983)

10. Oh, E., Ahn, H.-K.: A near-optimal algorithm for finding an optimal shortcut of
a tree. In: Proceedings of the 27th International Symposium on Algorithms and
Computation (ISAAC), pp. 59:1–59:12 (2016)

http://arxiv.org/abs/1607.05547

Diameters of Unicycle Graphs and DOAT for Trees 39

11. Olariu, S.: A simple linear-time algorithm for computing the center of an interval
graph. Int. J. Comput. Math. 34, 121–128 (1990)

12. Wang, H.: An improved algorithm for diameter-optimally augmenting paths in a
metric space. Comput. Geom.: Theory Appl. 75, 11–21 (2018)

13. Wang, H., Zhao, Y.: Algorithms for diameters of unicycle graphs and diameter-
optimally augmenting trees. arXiv:2011.09591 (2020)

14. Wang, H., Zhao, Y.: A linear-time algorithm for discrete radius optimally aug-
menting paths in a metric space. In: Proceedings of the 32nd Canadian Conference
on Computational Geometry (CCCG), pp. 174–180 (2020)

15. Williams, R.: Faster all-pairs shortest paths via circuit complexity. SIAM J. Com-
put. 47, 1965–1985 (2018)

http://arxiv.org/abs/2011.09591

On Short Fastest Paths in Temporal
Graphs

Umesh Sandeep Danda3, G. Ramakrishna1(B), Jens M. Schmidt2(B),
and M. Srikanth1

1 Indian Institute of Technology Tirupati, Tirupati, India
{rama,cs18d501}@iittp.ac.in

2 Institute for Algorithms and Complexity, TU Hamburg, Hamburg, Germany
jens.m.schmidt@tuhh.de

3 Hyderabad, India

Abstract. Temporal graphs equip their directed edges with a departure
time and a duration, which allows to model a surprisingly high number
of real-world problems. Recently, Wu et al. have shown that a fastest
path in a temporal graph G from a given vertex s to a vertex z can be
computed in near-linear time, where a fastest path is one that minimizes
the arrival time at z minus the departure time at s.

Here, we consider the natural problem of computing a fastest path
from s to z that is in addition short, i.e. minimizes the sum of dura-
tions of its edges; this maximizes the total amount of spare time at stops
during the journey. Using a new dominance relation on paths in combi-
nation with lexicographic orders on the departure and arrival times of
these paths, we derive a near-linear time algorithm for this problem with
running time O(n + m log p(G)), where n := |V (G)|, m := |E(G)| and
p(G) is upper bounded by both the maximum in-degree and the maxi-
mum edge duration of G.

The dominance relation is interesting in its own right, and may be of
use for several related problems like fastest paths with minimum fare,
fastest paths with minimum number of stops, and other pareto-optimal
path problems in temporal graphs.

1 Introduction

Temporal graphs capture various problems such as message dissemination in
online social networks, epidemics spreading in complex networks and routing
in scheduled public transportation networks [10]. This generality comes with a
price: many standard graph parameters (such as the number of strongly con-
nected components) are not known to admit polynomial-time algorithms in
temporal graphs, and not even standard results in combinatorics like Menger’s
theorem hold without adapting them adequately [6,8].

On the other hand, a growing number of positive results has been developed
in recent years for various problems in temporal graphs [1,4,6,7,9,12].

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 40–51, 2021.
https://doi.org/10.1007/978-3-030-68211-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_4

On Short Fastest Paths in Temporal Graphs 41

In this paper, we focus on path problems in temporal graphs, for which,
in contrast to static graphs, various notions of optimality exist [3,5,11]. For
example, one may not only want to find the fastest paths mentioned above, but
also shortest paths, which minimize the sum of durations of their edges (we give
precise definitions in Sect. 1.2).

It was recently shown in [11] that, given a temporal graph G and two of its
vertices s and z, both fastest and shortest paths from s to z can be computed
efficiently in running times O(n + m log cmin) and O(n + m log cin(G)), respec-
tively, where cin(G) is the maximum number of ingoing edges over all vertices
of G, S is the number of outgoing edges of s with distinct departure times, and
cmin = min{|S|, cin(G)}.

A natural strengthening that we investigate here is to compute a fastest path
from s to z that has minimal duration. To our surprise, no efficient algorithm
seems to be known for this problem.

1.1 Temporal Graphs

A temporal graph G is a pair (V,E), where V is a finite set and E := (e1, e2, . . . ,
em) is a finite sequence such that ei := (vi, wi, ti, di) ∈ V × V × N × N

>0 and
vi �= wi for every 1 ≤ i ≤ m. For every 1 ≤ i ≤ m, we call ei an edge of G, vi and
wi the source and target vertex of ei, ti the departure time of ei and di the duration
of ei. Hence, in the terminology of usual graphs, every edge ei of G is directed (as ei
is ordered), not a self-loop (parallel edges may occur), and has positive duration.
Every edge ei is equipped with a departure time ti and a duration di, where ti is
the point in time at which one may depart from vi in order to arrive at wi at time
ti + di; we call arr(ei) := ti + di the arrival time of ei.

This model generalizes the models of temporal graphs that were used in [3].
In the above definition, the edges (ei)i are used in a stream representation: for
temporal graphs, it is usually assumed that the edges in this stream (ei)i are
ordered with respect to some natural and easy-to-pick ordering such as their
creation, collection or deletion [11, Section 4.1]. Here, we assume that the edges
are ordered monotonically increasing according to their arrival times, so that we
have i < j if and only if arr(ei) ≤ arr(ej). If for some reason such an ordering
cannot be expected in a particular use case, a sorting routine with additional
running time O(m log m) has to be invoked in advance.

We inherit standard graph-theoretic notions like paths and cycles (both are
always given as edge sequences) for temporal graphs G. A path from a vertex
s to a vertex z (s = z is possible) is called an s-z-path. For any G = (V,E),
we define V (G) := V , E(G) := E and n := |V (G)| (note that m := |E(G)| by
definition of E).

1.2 Our Result

A path P := (ej1 , . . . , ejk) of a temporal graph G is temporal if tji + dji ≤ tji+1

for every 1 ≤ i < k. We call dep(P) := tj1 the departure time of P and arr(P) :=
tjk +djk the arrival time of P if k > 0. The journey time of such a temporal path

42 U. S. Danda et al.

P is journey(P) := arr(P)−dep(P), and the duration of P is dur(P) :=
∑k

i=1 dji
(see Fig. 1).

x1

x2

x3

x4

x5

(3, 4
)

(4, 3)

(3, 5)

(5, 1)(10, 3)

(9, 3)

(9, 2
)

Fig. 1. A temporal graph G in which the departure time ti and the duration di of
every edge ei is shown. The path P := (x1x3, x3x5) is a fastest path that has journey
time 8 = 9 + 3 − 4, and Q := (x1x4, x4x5) is another fastest path from x1 to x5

that has journey time 8 = 9 + 2 − 3. However, only P is a short fastest path, as
dur(P) = 6 = 3 + 3 < dur(Q) = 7 = 5 + 2.

Definition 1. A temporal s-z-path P of a temporal graph G is called

(i) fastest if every temporal s-z-path Q of G satisfies journey(P) ≤ journey(Q),
(ii) shortest if every temporal s-z-path Q of G satisfies dur(P) ≤ dur(Q), and
(iii) short fastest if P is fastest and every fastest temporal s-z-path Q of G

satisfies dur(P) ≤ dur(Q).

In other words, P is short fastest if P is fastest and has minimum duration
among all fastest s-z-path of G. Note that all three notions fix the start- and
end-vertex of the paths in question, while allowing an arbitrary departure time
at vertex s. Short fastest paths arise naturally when we want to travel from s to
z in the fastest journey time possible such that the total amount of time spent
traveling is minimized (this maximizes the total amount of spare time at stops
during the journey).

For an edge ei, let p(ei) := |{arr(ej) : wj = vi and ti ≤ arr(ej) ≤ arr(ei)}|
be the number of integers in [ti, arr(ei)] that are arrival times for at least one
incoming edge to vi. In particular, we have p(ei) ≤ di and p(ei) is at most the
in-degree of vi. Let p(G) := max{p(ei) : 1 ≤ i ≤ m} and let δ−(G) be the
maximum in-degree of G. Given two vertices s and z of a temporal graph G, the
problem ShortFastestPath(s, z,G) asks for a short fastest temporal s-z-path
of G. We solve this problem as follows.

Theorem 1. Given a source vertex s of a temporal graph G on n vertices and
m edges, short fastest paths from s to every vertex z �= s can be computed in total
time O(n + m log p(G)), where p(G) ≤ min{δ−(G),max{di : 1 ≤ i ≤ m}}.

As the duration in public-transport networks is often bounded by a constant,
the factor log p(G) in our running time is typically insignificant for applications.

On Short Fastest Paths in Temporal Graphs 43

The algorithm of Theorem 1 may easily be adapted to compute short fastest
paths in given time intervals, and to allow rational departure and duration times
(e.g. by multiplying with the greatest common divisor in advance). Further, the
algorithm may also be customized to solve related problems such as computing
a fastest path with minimum waiting time, computing a fastest path with min-
imum fare, and computing a fastest path with minimum number of transfers at
intermediate stations.

While our algorithm is inspired by the algorithm in [11] for fastest paths,
it deviates from this algorithm by using a new dominance relation on paths
and lexicographic orderings on the departure and arrival times of these paths.
These two ideas allow us to perform various operations on dominating paths
such as searching, insertion, and deletion efficiently. Another difference is that
our algorithm processes the edges of G by increasing arrival time.

2 Dominating Paths

From now on, let a temporal graph G and a source vertex s of G for the problem
ShortFastestPath be given. We first provide structural properties of temporal
paths that are useful to reduce the search space.

Definition 2. For temporal x-y-paths P and Q of G, P dominates Q if either

(i) dep(P) > dep(Q) and arr(P) ≤ arr(Q),
(ii) dep(P) = dep(Q), arr(P) < arr(Q) and dur(P) ≤ dur(Q), or
(iii) dep(P) = dep(Q), arr(P) = arr(Q) and dur(P) < dur(Q).

dep(Q) arr(Q)

dep(P) arr(P)

(a) dep(P) > dep(Q) and arr(P) ≤ arr(Q)

dep(Q)

dep(P)

arr(Q)

arr(P)

(b) dep(P) = dep(Q), arr(P) < arr(Q) and dur(P) ≤ dur(Q)

dep(P)

dep(Q) arr(Q)

arr(P)

(c) dep(P) = dep(Q), arr(P) = arr(Q) and dur(P) < dur(Q)

Fig. 2. Three instances of a path P that dominates Q. Solid and dotted lines depict
the duration of edges and the waiting times for the next departure, respectively.

44 U. S. Danda et al.

The three cases of Definition 2 are depicted in Fig. 2. A temporal x-y-path
is dominating if it is not dominated by any other temporal x-y-path, and non-
dominating otherwise. In order to motivate these definitions, observe that every
short fastest path is dominating (Definition 2(i) and (ii) strictly decrease the
journey time, while Definition 2(iii) strictly decreases the duration). We therefore
are interested in computing all dominating paths. Definition 2 and the resulting
properties of the dominance relation on paths will be crucial for establishing the
structural properties that allow the algorithm to be efficient in the remainder of
the paper.

For a path, a prefix subpath of this path is a subpath of this path that starts at
the same start vertex. The correctness of shortest path algorithms in traditional
graphs such as Dijkstra’s algorithm rely heavily on the fact that subpaths of
shortest paths are again shortest. For temporal graphs however, such properties
are bound to fail (in fact, they fail for fastest as well as for shortest paths). For
example, any prefix subpath of a fastest path in which the departure time of the
last edge is sufficiently far away from the arrival time of the second last edge
may not be fastest (as the second last vertex may be reached by much faster
paths). The next lemma shows that paths that are dominating (as defined in the
last paragraph) obey this property.

Lemma 1. Every prefix subpath of every dominating path is dominating.

Proof. Assume to the contrary that Q′ is a (temporal) non-dominating prefix
x-y-path of a dominating path Q. Then Q′ �= Q, since Q is dominating, and
there is a temporal x-y-path P ′ that dominates Q′. Let P be the path obtained
from Q by replacing the subpath Q′ with P ′; in particular, arr(P) = arr(Q).

Since P ′ dominates Q′, Q′ satisfies exactly one of the Conditions 2(i)–(iii).
The first is not satisfied, as dep(P ′) > dep(Q′) implies dep(P) > dep(Q), which
contradicts that Q is dominating due to arr(P) = arr(Q). Condition 2(ii) is
not satisfied, as arr(P ′) < arr(Q′) and dur(P ′) ≤ dur(Q′) imply dur(P) <
dur(Q) due to dep(P ′) = dep(Q′), which contradicts that Q is dominating.
Condition 2(iii) is not satisfied, as dur(P ′) < dur(Q′) implies dur(P) < dur(Q),
which contradicts that Q is dominating. This gives the claim. ��

3 An Algorithm for Short Fastest Paths

Given any vertex s of a temporal graph G, we describe an efficient one-pass algo-
rithm by dynamic programming that computes the journey time and duration
of a short fastest path from s to any other vertex z �= s in G.

For every temporal x-y-path P , we call (dep(P), arr(P),dur(P)) a temporal
triple from x to y. This allows to inherit the dominance relation of temporal
paths to temporal triples as follows: a triple (t, a, d) from x to y dominates a
triple (t′, a′, d′) from x to y if there is a temporal x-y-path P with temporal triple
(t, a, d) that dominates a temporal x-y-path Q with temporal triple (t′, a′, d′).
The dominating triples from x to y �= x are then defined analogously to paths
that are dominating; in addition, for every 1 ≤ i ≤ m such that vi = s, let

On Short Fastest Paths in Temporal Graphs 45

(ti, ti, 0) be an artificial dominating triple from s to s. These artificial dominating
triples will later allow the algorithm to start at s using any outgoing edge ej of
s at its departure time tj .

We will compute dominating triples of G by starting with an edge-less sub-
graph of G and updating these triples each time after the next edge of E(G) in
the given ordering of E(G) is added. We therefore define a sequence of temporal
graphs that adheres to this ordering (i.e. adds the edges of E(G) one by one).
For every 0 ≤ i ≤ m, let Gi be the temporal graph (V (G), {e1, . . . , ei}). Hence,
G0 has no edges at all and, for every 1 ≤ i ≤ m, V (Gi) = V (G) and ei is the
only edge of Gi that is not in Gi−1.

In every graph, we aim to maintain for every y �= s the list Ly of all dom-
inating triples from s to y. The lists Ly are initially empty. We will store the
final journey time and duration of a short fastest s-y-path for every y �= s in
journey(y) and dur(y), respectively.

Algorithm 1: Short Fastest Path
Input: A vertex s of a temporal graph G = (V,E), where the sequence E

is ordered increasingly according to arrival time.
Output: For every vertex z �= s in G, the journey time and duration of a

short fastest path from s to z.
1 Initialize Ly := ∅ and journey(y) := dur(y) := ∞ for every vertex y �= s;
2 for i = 1 to m do
3 if wi = s then continue;
4 if vi = s then Append artificial dominating triple (ti, ti, 0) to Lvi

;
5 if Lvi

contains a predecessor triple of ei then
6 Choose a predecessor triple (t, a, d) of ei in Lvi

;
7 T := (t, arr(ei), d + di);
8 if T /∈ Lwi

then
9 Append T to Lwi

;
10 Delete all elements of Lwi

that are dominated by an element of
Lwi

;
11 if arr(ei) − t < journey(wi) or (arr(ei) − t = journey(wi) and

d + di < dur(wi)) then
12 journey(wi) := arr(ei) − t;
13 dur(wi) := d + di;

14 return journey(z) and dur(z) for every z �= s;

Now we add the edges of E(G) one by one, which effectively iterates through
the sequence G0, . . . , Gm (see Algorithm 1). After the edge ei has been processed,
we ensure that Ly stores the set of all dominating triples from s to y �= s in Gi.
For an edge ei ∈ E(G), we say that (t, a, d) is a predecessor triple of ei if

– (t, a, d) is a dominating triple from s to vi,

46 U. S. Danda et al.

– a ≤ ti, and
– a is maximal among all such triples.

A predecessor triple (t, a, d) thus allows to traverse ei after taking its cor-
responding dominating s-vi-path. Note that not every edge has a predecessor
triple, and that the artificial dominating triples correspond to temporal paths
having no edge (and thus duration 0) that allow to traverse any outgoing edge
of s).

Without loss of generality, we may ignore all edges ei whose target vertex is
s, as s is the start vertex. In order to update Ly during the processing phase
of ei if wi �= s, we choose a predecessor triple of ei in Lvi

(if exists) in Line 6
of Algorithm 1 and create from it a new triple T in Line 7. The newly created
triple T is then appended to Lwi

in Line 9, followed by removing all triples of Lwi

that are dominated by an element of Lwi
. Finally, the journey time journey(wi)

and duration dur(wi) that are attained by T are updated if they improve the
solution.

4 Correctness

In order to show the correctness of Algorithm 1, we rely on the next three basic
lemmas, which collect helpful properties of dominating paths with respect to the
sequence G0, . . . , Gm.

Lemma 2. For every 1 ≤ i ≤ m, every temporal path of Gi that contains ei has
ei as its last edge.

Proof. Assume to the contrary that Gi has a temporal path P that contains ei
such that the last edge of P is ej �= ei. Then j < i by definition of Gi, which
implies arr(ej) ≤ arr(ei) by the ordering assumed for E. This contradicts that
P is temporal. ��

The next two lemmas explore whether dominating and non-dominating paths
are preserved when going from Gi−1 to Gi.

Lemma 3. For every 1 ≤ i ≤ m, every non-dominating path P of Gi−1 is
non-dominating in Gi.

Proof. Since P is non-dominating, Gi−1 contains a temporal path Q that dom-
inates P . Since neither Q nor P contains ei, Q dominates P also in Gi. Hence,
P is non-dominating in Gi. ��

In contrast to Lemma 3, a dominating path of Gi−1 may in general become
non-dominating in Gi, for example by Definition 2(iii) if ei and the path have
the same source and target vertex and the duration of ei is very small. The next
lemma states a condition under which dominating paths stay dominating paths.

Lemma 4. For every 1 ≤ i ≤ m, every dominating x-y-path P of Gi−1 that
satisfies y �= wi is dominating in Gi.

On Short Fastest Paths in Temporal Graphs 47

Proof. Assume to the contrary that P is non-dominating in Gi. Then an x-y-
path Q dominates P in Gi; in particular, Q is temporal. Since y �= wi, ei is not
the last edge of Q. By Lemma 2, ei is not contained in Q at all, so that Q is a
path of Gi−1. Since Q dominates P in Gi, Q does so in Gi−1, which contradicts
that P is dominating in Gi−1. ��

Let Ly(i) be the list Ly in Algorithm 1 after the edge ei has been processed.
The correctness of Algorithm 1 is based on the invariant revealed in the next
lemma.

Lemma 5. For every 0 ≤ i ≤ m and every vertex y �= s of Gi, (t, a, d) is a
dominating triple from s to y in Gi if and only if (t, a, d) ∈ Ly(i).

Proof. Due to space constraints, we defer this to the full version of this paper. ��
For i = m, we conclude the following corollary.

Corollary 1. At the end of Algorithm 1, Ly contains exactly the dominating
triples from s to y in G for every y �= s.

Theorem 2. Algorithm 1 computes the journey-time and duration of a short
fastest path from s to every vertex z �= s in G.

Proof. Every short fastest path of G from s to z is dominating. By Corollary 1,
Lz therefore contains every short fastest path of G from s to z at the end of
Algorithm 1. By comparing the journey-time and duration of every path that
is added to Lz (this may be a superset of the short fastest paths), Algorithm 1
computes the journey-time and duration of a short fastest path from s to z in
G. ��

Now the correctness of Theorem 1 follows from Theorem 2 by tracing back
the path from z to s. This may be done by storing an additional pointer to
the last edge of the current short fastest path found for every vertex z. Since
following this pointer is only a constant-time operation, we may trace back the
short fastest path from z to s in time proportional to its length.

5 Running Time

We investigate the running time of Algorithm 1. If the edge ei satisfies vi = s,
the artificial predecessor triple (ti, ti, 0) of Line 4 will reside at the end of the
ordered list Lv(i), and therefore can be appended to and retrieved from Lv(i)
in constant time. It suffices to clarify how we implement Lines 5–6 and Line 10,
since every other step is computable in constant time. In particular, we have to
maintain dominating triples in Ly and be able to compute a predecessor triple
of ei in Ly efficiently.

For every Ly, we enforce a lexicographic order <lex on the first two elements
of all dominating triples stored. The first two elements suffice, as two distinct
dominating triples (we do not store duplicates) differ always in their first two
elements by Definition 2(iii). The following basic lemma will be useful.

48 U. S. Danda et al.

Lemma 6. Let T = (t, a, d) and T ′ = (t′, a′, d′) be two distinct dominating
triples from x to y such that T <lex T ′. Then a < a′ and either t < t′ or (t = t′

and d > d′).

Proof. First, assume t < t′. Then a < a′, as otherwise T ′ dominates T by
Definition 2(ii), which contradicts that T is dominating. In the remaining case,
we have t = t′ and a < a′ by the lexicographic order on the first two elements.
Then d > d′, as otherwise T dominates T ′ by Definition 2(ii). ��

Let T1 <lex T2 <lex · · · <lex Tr be the dominating triples of Lwi
in Line 10

and let Tj = (tj , aj , dj) for every 1 ≤ j ≤ r. By Lemma 6, a1 < a2 < · · · < ar.
Let T = (t, arr(ei), d + di) be the new dominating triple in Gi that is created
in Line 7. Since ei is the currently processed edge of Algorithm 1 and E(G) is
ordered by increasing arrival times, we have ar ≤ arr(ei). Thus, appending T to
Lwi

in Line 9 preserves the lexicographic ordering of Lwi
. The next two lemmas

determine which elements of Lwi
are dominated by an element of Lwi

.

Lemma 7. (i) T does not dominate any element of {T1, T2, . . . , Tr−1}.
(ii) If an element of {T1, T2, . . . , Tr−1} dominates T , then Tr dominates T .

Proof. By Lemma 6 and since E(G) is ordered by increasing arrival times, a1 <
a2 < · · · < ar ≤ arr(ei). Then aj < arr(ei) for every 1 ≤ j < r, so that T does
not dominate Tj by Definition 2. This gives the first claim.

For the second claim, let Tj dominate T for some 1 ≤ j < r. Then either Def-
inition 2(i), (ii) or (iii) holds. In Case (i), we have tj > t and aj ≤ arr(ei), which
implies t < tr by the lexicographic ordering. Since ar ≤ arr(ei), Tr dominates
T . In both Cases (ii) and (iii), we have tj = t, aj ≤ arr(ei) and dj ≤ d + di. By
Lemma 6, either tj < tr or tj = tr. If tj < tr, we have t < tr and ar ≤ arr(ei),
so that Tr dominates T . If otherwise tj = tr, we have dj > dr by Lemma 6.
Then, since dj ≤ d + di, we have tr = t, ar ≤ arr(ei) and d + di > dr, so that Tr

dominates T . ��
Lemma 8. There is no element of {T1, . . . , Tr} that dominates another element
of {T1, . . . , Tr}. After Line 10, Lwi

consists of

(i) (T1, . . . , Tr−1, T) if T dominates Tr (then Line 10 deletes only Tr from
Lwi

),
(ii) (T1, . . . , Tr−1, Tr, T) if no element of {Tr, T} dominates the other element

of {Tr, T} (then Line 10 deletes nothing from Lwi
), and

(iii) (T1, . . . , Tr−1, Tr) if Tr dominates T (then Line 10 deletes only T from
Lwi

).

Proof. Since T is the only triple that was added to Lwi
, every element of

{T1, . . . , Tr} was dominating in Gi−1. Thus, no element of {T1, . . . , Tr} dom-
inates another element of this set in Gi. By Lemma 7(i), T does not dominate
any element of {T1, T2, . . . , Tr−1}.

Consider Claim (i). Since T dominates Tr, Tr does not dominate T . Then the
contrapositive of Lemma 7(ii) implies that no element of {T1, . . . , Tr} dominates
T . Together with the first claim, this gives Lwi

= (T1, . . . , Tr−1, T).

On Short Fastest Paths in Temporal Graphs 49

Consider Claim (ii). Since Tr does not dominate T , the same argument as
before implies that no element of {T1, . . . , Tr} dominates T . Since T does not
dominate Tr, the first claim of this lemma implies Lwi

= (T1, . . . , Tr−1, Tr, T).
Claim (iii) follows directly from the first claim and the fact that Tr dominates
T . ��

Algorithm 2: Deleting Dominating Triples (Line 10 of Algorithm 1)
Input: A list Lwi

of dominating triples ordered by <lex, and the new
triple T of Gi from Line 7.

1 Retrieve the last element Tr of Lwi
if Lwi

�= ∅;
2 if Lwi

= ∅ or T �= Tr then append T to Lwi
;

3 if |Lwi
| ≥ 2 then

4 if T dominates Tr then delete Tr from Lwi
;

5 if Tr dominates T then delete T from Lwi
;

Lemma 8 allows us to implement Line 10 of Algorithm 1 very efficiently by
comparing just the last element Tr of Lwi

with T . This can be done in constant
time by Algorithm 2.

ti arr(ei)

t1

t2

t5

t10

a1

a2

a4

a5

a10

T4

t3 a3

t6

t7

t8

t9

a6

a7

a8

a9

t4

T7

T3

T10

T9

Fig. 3. A list Lvi = (T1, . . . , T10) containing dominating triples from s to vi, ordered
by <lex from top to bottom, and the departure and arrival times of ei. The only
predecessor triple of ei is T4 = (t4, a4, d4). In order to compute T4, Algorithm 3 tests
the arrival times of T10, T9 and T7 until it stops at T3 (because a3 ≤ ti) and computes
T4 ∈ {T3, . . . , T6} by binary search.

It remains to show how a predecessor triple (t, a, d) of ei in Lvi
in Lines 5+6 of

Algorithm 1 can be computed efficiently. By Lemma 6 and its preceding remark,

50 U. S. Danda et al.

the arrival times of all triples in Lvi
are for every i distinct. Hence, for every i,

the number of elements in Lvi
is at most the maximum in-degree δ−(G) of G.

Since the triples in Lvi
are ordered by <lex, the last triple in Lvi

(if exists)
whose arrival time is at most ti is a predecessor triple of ei, so that we only have to
compute this unique predecessor triple for every i. In order to do this, we might
use binary search on the arrival times of triples of Lvi

. We achieve however
the slightly better running time O(log p(G)) when first using an exponential
search [2] that starts with the triple having highest arrival time (which is at
most arr(ei) due to the edge-ordering) until some triple with arrival time at
most ti is found (see Figure 3 for an example).

If such a triple exists, there is also a predecessor triple of ei, which we
then compute by binary search in the resulting range; see Algorithm 3 for a
detailed description. This takes only time O(log p(G)), which is upper bounded
by O(min{δ−(G),max{di : 1 ≤ i ≤ m}}). If no such triple exists, there is no
predecessor triple of ei, and this information is given as output.

Algorithm 3: Computing a Predecessor Triple (Lines 5+6 of Algorithm 1)
Input: A list Lvi

= (T1, T2, . . . , Tr) of dominating triples in Gi−1 ordered
by <lex such that Tj = (tj , aj , dj) for every 1 ≤ j ≤ r, and an edge
ei of G.

Output: A predecessor triple of ei if exists, and otherwise the output
“not existent”

1 j := 1;
2 while j ≤ r and ar+1−j > ti do j := 2j;
3 if j ≤ r then
4 Compute the maximal r + 1 − j ≤ l < r + 1 −
j/2� such that al ≤ ti

by performing binary search (then al is maximal by Lemma 6);
5 return Tl;

6 else
7 output “not existent”;

Lemma 9. The running time of Algorithm 1 for a temporal graph G on n ver-
tices and m edges is O(n + m log p(G)).

Proof. Apart from Lines 5+6 and 10, every of the m edges can be processed in
constant time. By Algorithms 2 and 3, the running times for Lines 5+6 and 10
amount to O(log p(G)) and O(1) time for every edge, which gives the claim. ��

This concludes the proof of Theorem 1.

On Short Fastest Paths in Temporal Graphs 51

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-
varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp.
29–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 3

2. Bentley, J.L., Yao, A.C.-C.: An almost optimal algorithm for unbounded searching.
Inf. Process. Lett. 5(3), 82–87 (1976)

3. Bui Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

4. de Bernardo, G., Brisaboa, N.R., Caro, D., Rodŕıguez, M.A.: Compact data struc-
tures for temporal graphs. In: Data Compression Conference (DCC 2013), p. 477.
IEEE (2013)

5. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly simple and fast transit
routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38527-8 6

6. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

7. Liang, Q., Modiano, E.: Survivability in time-varying networks. IEEE Trans. Mob.
Comput. 16(9), 2668–2681 (2017)

8. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject
to connectivity constraints. Algorithmica 81(4), 1416–1449 (2019)

9. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. The-
oret. Comput. Sci. 634, 1–23 (2016)

10. Tang, J.K., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal dis-
tance and reachability in mobile and online social networks. Comput. Commun.
Rev. 40(1), 118–124 (2010)

11. Huanhuan, W., Cheng, J., Ke, Y., Huang, S., Huang, Y., Hejun, W.: Efficient
algorithms for temporal path computation. IEEE Trans. Knowl. Data Eng. 28(11),
2927–2942 (2016)

12. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

https://doi.org/10.1007/978-3-319-12340-0_3
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1007/978-3-642-38527-8_6

Minmax Regret 1-Sink Location
Problems on Dynamic Flow Path
Networks with Parametric Weights

Tetsuya Fujie1, Yuya Higashikawa1(B), Naoki Katoh1, Junichi Teruyama1,
and Yuki Tokuni2

1 University of Hyogo, Kobe, Japan
{fujie,higashikawa,naoki.katoh,junichi.teruyama}@sis.u-hyogo.ac.jp

2 Kwansei Gakuin University, Sanda, Japan
enj32048@kwansei.ac.jp

Abstract. This paper addresses the minmax regret 1-sink location
problem on dynamic flow path networks with parametric weights. We
are given a dynamic flow network consisting of an undirected path with
positive edge lengths, positive edge capacities, and nonnegative vertex
weights. A path can be considered as a road, an edge length as the dis-
tance along the road and a vertex weight as the number of people at the
site. An edge capacity limits the number of people that can enter the
edge per unit time. We consider the problem of locating a sink in the
network, to which all the people evacuate from the vertices as quickly as
possible. In our model, each weight is represented by a linear function
in a common parameter t, and the decision maker who determines the
location of a sink does not know the value of t. We formulate the sink
location problem under such uncertainty as the minmax regret problem.
Given t and a sink location x, the cost of x under t is the sum of arrival
times at x for all the people determined by t. The regret for x under t
is the gap between the cost of x under t and the optimal cost under t.
The task of the problem is formulated as the one to find a sink location
that minimizes the maximum regret over all t. For the problem, we pro-
pose an O(n42α(n)α(n) logn) time algorithm where n is the number of
vertices in the network and α(·) is the inverse Ackermann function. Also
for the special case in which every edge has the same capacity, we show
that the complexity can be reduced to O(n32α(n)α(n) logn).

1 Introduction

Recently, many disasters, such as earthquakes, nuclear plant accidents, volcanic
eruptions and flooding, have struck in many parts of the world, and it has been

A full version of the paper is available at [13]; https://arxiv.org/abs/2011.13569.
This work is supported by JSPS KAKENHI Grant-in-Aid for Early-Career Scien-
tists (18K18003, 20K19746), JSPS KAKENHI Grant-in-Aid for Scientific Research (B)
(19H04068), and JST CREST (JPMJCR1402).

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 52–64, 2021.
https://doi.org/10.1007/978-3-030-68211-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_5&domain=pdf
https://arxiv.org/abs/2011.13569
https://doi.org/10.1007/978-3-030-68211-8_5

Minmax Regret 1-Sink Location on Paths with Parametric Weights 53

recognized that orderly evacuation planning is urgently needed. A powerful tool
for evacuation planning is the dynamic flow model introduced by Ford and Fulk-
erson [12], which represents movement of commodities over time in a network.
In this model, we are given a graph with source vertices and sink vertices. Each
source vertex is associated with a positive weight, called a supply, each sink
vertex is associated with a positive weight, called a demand, and each edge is
associated with positive length and capacity. An edge capacity limits the amount
of supply that can enter the edge per unit time. One variant of the dynamic flow
problem is the quickest transshipment problem, of which the objective is to send
exactly the right amount of supply out of sources into sinks with satisfying the
demand constraints in the minimum overall time. Hoppe and Tardos [22] pro-
vided a polynomial time algorithm for this problem in the case where the transit
times are integral. However, the complexity of their algorithm is very high. Find-
ing a practical polynomial time solution to this problem is still open. A reader
is referred to a recent survey by Skutella [27] on dynamic flows.

This paper discusses a related problem, called the sink location problem [5–
7,10,11,20,21,26], of which the objective is to find a location of sinks in a given
dynamic flow network so that all the supply is sent to the sinks as quickly as
possible. For the optimality of location, the following two criteria can be natu-
rally considered: the minimization of evacuation completion time and aggregate
evacuation time (i.e., sum of evacuation times). We call the sink location prob-
lem that requires finding a location of sinks on a dynamic flow network that
minimizes the evacuation completion time (resp. the aggregate evacuation time)
the CTSL problem (resp. the ATSL problem). Several papers have studied the
CTSL problems [7,10,11,20,21,26]. On the other hand, for the ATSL problems,
we have a few results only for path networks [5,6,21].

In order to model the evacuation behavior of people, it might be natural to
treat each supply as a discrete quantity as in [22,26]. Nevertheless, almost all the
previous papers on sink location problems [7,10,11,20,21] treat each supply as a
continuous quantity since it is easier for mathematically handling the problems
and the effect of such treatment is small enough to ignore when the number
of people is large. Throughout the paper, we adopt the model with continuous
supplies.

Although the above two criteria are reasonable, they may not be practical
since the population distribution is assumed to be fixed. In a real situation, the
number of people in an area may vary depending on the time, e.g., in an office
area in a big city, there are many people during the daytime on weekdays while
there are much less people on weekends or during the night time. In order to take
such the uncertainty into account, Kouvelis and Yu [23] introduced the minmax
regret model. In the minmax regret sink location problems, we are given a finite
or infinite set S of scenarios, where each scenario gives a particular assignment
of weights on all the vertices. Here, for a sink location x and a scenario s ∈ S, we
denote the evacuation completion time or aggregate evacuation time by F (x, s).
Then, the problem can be understood as a 2-person Stackelberg game as follows.
The first player picks a sink location x and the second player chooses a scenario

54 T. Fujie et al.

s ∈ S that maximizes the regret defined as R(x, s) := F (x, s)−minx F (x, s). The
objective of the first player is to choose x that minimizes the maximum regret.
Throughout the paper, we call the minmax regret sink location problem, where
the regret is defined with the evacuation completion time (resp. the aggregate
evacuation time), the MMR-CTSL problem (resp. the MMR-ATSL problem). The
MMR-CTSL problems have been studied so far [3,9,14,18,20,24,25]. On the other
hand, for the MMR-ATSL problems, we have few results [8,19] although the
problems are also important theoretically and practically.

As for how to define a set of scenarios, all of the previous studies on the
minmax regret sink location problems adopt the model with interval weights, in
which each vertex is given the weight as a real interval, and a scenario is defined
by choosing an element of the Cartesian product of all the weight intervals over
the vertices. One drawback of the minmax regret model with interval weights is
that each weight can take an independent value, thus we consider some extreme
scenarios which may not happen in real situations, e.g, a scenario where all
the vertices have maximum weights or minimum weights. To incorporate the
dependency among weights of all the vertices into account, we adopt the model
with parametric weights (first introduced by Vairaktarakis and Kouvelis [28] for
the minmax regret median problem), in which each vertex is given the weight as
a linear function in a common parameter t on a real interval, and a scenario is
just determined by choosing t. Note that considering a real situation, each weight
function should be more complex, however, such a function can be approximated
by a piecewise linear function. Thus superimposing all such piecewise linear
functions, it turns out that for a sufficiently small subinterval of t, every weight
function can be regarded as linear, and by solving multiple subproblems with
linear weight functions, we can obtain the solution.

In this paper, we study the MMR-ATSL problem on dynamic flow path net-
works with parametric weights. Our main theorem is below.

Theorem 1 (Main Results). Suppose that we are given a dynamic flow path
network of n vertices with parametric weights.

(i) The MMR-ATSL problem can be solved in time O(n42α(n)α(n) log n), where
α(·) is the inverse Ackermann function.

(ii) When all the edge capacities are uniform, the MMR-ATSL problem can be
solved in time O(n32α(n)α(n) log n).

Note that the MMR-ATSL problem with interval weights is studied by [8,19],
and only for the case with the uniform edge capacity, Higashikawa et al. [19] pro-
vide an O(n3) time algorithm, which is improved to one running in O(n2 log2 n)
time by [8]. However, for the case with general edge capacities, no algorithm
has been known so far. Therefore, our result implies that the problem becomes
solvable in polynomial time by introducing parametric weights.

The rest of the paper is organized as follows. In Sect. 2, we give the notations
and the fundamental properties that are used throughout the paper. In Sect. 3,
we give the key lemmas and the algorithms that solves the problems, which
concludes the paper.

Minmax Regret 1-Sink Location on Paths with Parametric Weights 55

2 Preliminaries

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, (a, b) = {t ∈
R | a < t < b}, and (a, b] = {t ∈ R | a < t ≤ b}.

In our problem, we are given a real interval T = [t−, t+] ⊂ R and a dynamic
flow path network P = (P,w(t), c, l, τ), which consists of five elements: P =
(V,E) is a path with vertex set V = {vi | 1 ≤ i ≤ n} and edge set E = {ei =
(vi, vi+1) | 1 ≤ i ≤ n−1}, w(t) is a vector 〈w1(t), . . . , wn(t)〉 of which component
wi(t) is a weight function wi : T → R≥0 which is linear in a parameter t and
nonnegative for any t ∈ T , a vector c = 〈c1, . . . , cn−1〉 consists of the capacity ci

of edge ei, a vector l = 〈�1, . . . , �n−1〉 consists of the length �i of edge ei, and τ
is the time which the supply takes to move a unit distance on any edge. Let us
explain how edge capacities and lengths affect the evacuation time. Consider an
evacuation under fixed t ∈ T . Suppose that at time 0, the amount w of supply
is at vertex vi+1 and going through edge ei towards vertex vi. The first fraction
of supply from vi+1 can arrive at vi at time τ�i. The edge capacity ci represents
the maximum amount of supply which can enter ei in a unit time interval, so all
the supply w can complete leaving vi+1 at time w/ci. Therefore, all the supply
w can complete arriving at vi at time τ�i + w/ci.

For any integers i, j with 1 ≤ i ≤ j ≤ n, we denote the sum of weights from
vi to vj by Wi,j(t) =

∑j
h=i wh(t). For the notation, we define Wi,j(t) = 0 for i, j

with i > j. For a vertex vi ∈ V , we abuse vi to denote the distance between v1
and vi, i.e., vi =

∑i−1
j=1 �j . For an edge ei ∈ E, we abuse ei to denote a real open

interval (vi, vi+1). We also abuse P to denote a real closed interval [0, vn]. If a
real value x satisfies x ∈ (vi, vi+1), x is said to be a point on edge ei to which
the distance from vi is value x − vi. Let Ci,j be the minimum capacity for all
the edges from ei to ej , i.e., Ci,j = min{ch | i ≤ h ≤ j}.

Note that we precompute values vi and W1,i(t) for all i in O(n) time, and
then, Wi,j(t) for any i, j can be obtained in O(1) time as Wi,j(t) = W1,j(t) −
W1,i−1(t). In addition, Ci,j for any i, j can be obtained in O(1) time with O(n)
preprocessing time, which is known as the range minimum query [2,4].

2.1 Evacuation Completion Time on a Dynamic Flow Path Network

In this section, we see the details of evacuation phenomenon using a simple
example, and eventually show the general formula of evacuation completion time
on a path, first provided by Higashikawa [17]. W.l.o.g., an evacuation to a sink
x follows the first-come first-served manner at each vertex, i.e., when a small
fraction of supply arrives at a vertex v on its way to x, it has to wait for the
departure if there already remains some supply waiting for leaving v.

Let us consider an example with |V | = 3 where V = {v1, v2, v3}, E = {e1 =
(v1, v2), e2 = (v2, v3)}. Assume that the sink x is located at v1, and under a fixed
parameter t ∈ T , the amount of supply at vi is wi for i = 2, 3.

All the supply w1 at v1 immediately completes its evacuation at time 0 and
we send all the supply w2 and w3 to v1 as quickly as possible. Let us focus on
how the supply of v3 moves to v1. First, the foremost fraction of supply from

56 T. Fujie et al.

v3 arrives at v2 at time τ�2, and all the supply w3 completes leaving v3 at time
w3/c2, i.e., it completes arriving at v2 at time τ�2 +w3/c2. Suppose that at time
τ�2 + w3/c2, the amount w′(≥ 0) of supply remains at v2. From then on, the
time required to send all the supply w′ to v1 is τ�1+w′/c2. Thus, the evacuation
completion time is expressed as

τ(�1 + �2) +
w3

c2
+

w′

c1
. (1)

We observe what value w′ takes in the following cases.

Case 1: It Holds c1 ≥ c2. In this case, the amount of supply at v2 should be
non-increasing, because the amount c1 of supply leaves v2 and the amount at
most c2 of supply arrives at v2 per unit time. Let us consider the following two
situations at time τ�2 + w3/c2: When all the supply w3 completes arriving at
v2, there remains no supply at v2, that is, w′ = 0 holds or not. If w′ = 0 holds,
then substituting it into (1), the evacuation completion time is expressed as

τ(�1 + �2) +
w3

c2
. (2)

Otherwise, that is w′ > 0 holds, there remains a certain amount of supply at
v2 even at time τ�2 since the amount of supply at v2 is non-increasing. Thus at
time τ�2, the amount w2 − c1τ�2 of supply remains at v2. From time τ�2 to time
τ�2 + w3/c2, the amount of supply waiting at v2 decreases by c1 − c2 per unit
time. Then, we have

w′ = w2 − c1(τ�2) − (c1 − c2) · w3

c2
= w2 + w3 − c1τ�2 − c1w3

c2
.

Thus, the evacuation completion time is expressed as

τ(�1 + �2) +
w3

c2
+

w2 + w3 − c1τ�2 − c1w3/c2
c1

= τ�1 +
w2 + w3

c1
. (3)

Case 2: It Holds c1 < c2. In this case, the amount of supply waiting at v2
increases by c2 − c1 per unit time from time τ�2 (when the foremost supply from
v3 arrives at v2) to time τ�2 + w3/c2 (when the supply from v3 completes to
arrive at v2). Let us consider the following two situations at time τ�2. When the
foremost supply from v3 arrives at v2, there remains no supply at v2 or not.

If there remains no supply at v2 at time τ�2, then it holds w′ = (c2 −
c1)(w3/c2) = w3 − c1w3/c2 in (1). Thus, the evacuation completion time is
expressed as

τ(�1 + �2) +
w3

c2
+

w3 − c1w3/c2
c1

= τ(�1 + �2) +
w3

c1
. (4)

Otherwise, the situation is similar to the latter case of Case 1. The difference is
that the amount of supply waiting at v2 increases by c2−c1 per unit time during

Minmax Regret 1-Sink Location on Paths with Parametric Weights 57

from time τ�2 to time τ�2 + w3/c2, while in Case 1, it decreases by c1 − c2 per
unit time. For this case, the evacuation completion time is given by formula (3).

In summary of formulae (2)–(4), the evacuation completion time for a
dynamic flow path network with three vertices is given by the following formula:

max
{

τ�1 +
w2 + w3

c1
, τ(�1 + �2) +

w3

min{c1, c2}
}

. (5)

Let us turn to the case with n vertices, that is, V = {vi | 1 ≤ i ≤ n}.
When the sink is located at v1 and a parameter t ∈ T is fixed, generalizing
formula (5), the evacuation completion time is given by the following formula,
which is provided by Higashikawa [17]:

max
2≤i≤n

⎧
⎨

⎩
τ

i−1∑

j=1

�j +

∑n
j=i wj(t)

min1≤j≤i−1 cj

⎫
⎬

⎭
= max

2≤i≤n

{

τvi +
Wi,n(t)

C1,i

}

. (6)

An interesting observation is that each τvi + Wi,n(t)/C1,i in (6) is equivalent
to the evacuation completion time for the transformed input so that only vi is
given supply Wi,n(t) and all the others are given zero supply.

Let us give explicit formula of the evacuation completion time for fixed x ∈ P
and parameter t ∈ T . Suppose that a sink x is on edge ei = (vi, vi+1). In this
case, all the supply on the right side (i.e., at vi+1, . . . , vn) will flow left to sink
x and all the supply on the left side (i.e., at v1, . . . , vi) will flow right to sink x.
First, we consider the evacuation for the supply on the right side of x. Supply on
the path is viewed as a continuous value, and we regard that all the supply on the
right side of x is mapped to the interval (0,Wi+1,n(t)]. The value z satisfying z ∈
(Wi+1,j−1(t),Wi+1,j(t)] with i + 1 ≤ j ≤ n represents all the supply at vertices
vi+1, vi+2, . . . , vj−1 plus partial supply of z − Wi+1,j−1(t) at vj . Let θei

R (x, t, z)
denote the time at which the first z amount of supply on the right side of x (i.e.,
vi+1, vi+2, . . . , vn) completes its evacuation to sink x. Modifying formula (6),
θei

R (x, t, z) is given by the following formula: For z ∈ (Wi+1,j−1(t),Wi+1,j(t)]
with i + 1 ≤ j ≤ n,

θei

R (x, t, z) = max
i+1≤h≤j

{

τ(vh − x) +
z − Wi+1,h−1(t)

Ci,h

}

. (7)

In a symmetric manner, we consider the evacuation for the supply on the left
side of x (i.e., v1, . . . , vi). The value z satisfying z ∈ (Wj+1,i(t),Wj,i(t)] with
1 ≤ j ≤ i represents all the supply at vertices vi, vi−1, . . . , vj+1 plus partial
supply of z −Wj+1,i(t) at vj . Let θei

L (x, t, z) denote the time at which the first z
amount of supply on the left side of x completes its evacuation to sink x, which
is given by the following formula: For z ∈ (Wj+1,i(t),Wj,i(t)] with 1 ≤ j ≤ i,

θei

L (x, t, z) = max
j≤h≤i

{

τ(x − vh) +
z − Wh+1,i(t)

Ch,i

}

. (8)

Let us turn to the case that sink x is at a vertex vi ∈ V . We confirm that the
evacuation times when the amount z of supply originating from the right side

58 T. Fujie et al.

of and the left side of vi to sink vi are given by θei

R (vi, t, z) and θ
ei−1
L (vi, t, z),

respectively.

2.2 Aggregate Evacuation Time

Let Φ(x, t) be the aggregate evacuation time (i.e., sum of evacuation time) when
a sink is at a point x ∈ P and the weight functions are fixed by a parameter t ∈ T .
For a point x on edge ei and a parameter t ∈ T , the aggregate evacuation time
Φ(x, t) is defined by the integrals of the evacuation completion times θei

L (x, t, z)
over z ∈ [0,W1,i(t)] and θei

R (x, t, z) over z ∈ [0,Wi+1,n(t)], i.e.,

Φ(x, t) =
∫ W1,i(t)

0

θei

L (x, t, z)dz +
∫ Wi+1,n(t)

0

θei

R (x, t, z)dz. (9)

In a similar way, if a sink x is at vertex vi, then Φ(vi, t) is given by

Φ(vi, t) =
∫ W1,i−1(t)

0

θ
ei−1
L (vi, t, z)dz +

∫ Wi+1,n(t)

0

θei

R (vi, t, z)dz. (10)

2.3 Minmax Regret Formulation

We denote by Opt(t) the minimum aggregate evacuation time with respect to a
parameter t ∈ T . Higashikawa et al. [21] and Benkoczi et al. [6] showed that for
the minsum k-sink location problems, there exists an optimal k-sink such that
all the k sinks are at vertices. This implies that we have

Opt(t) = min
x∈V

Φ(x, t) (11)

for any t ∈ T . For a point x ∈ P and a value t ∈ T , a regret R(x, t) with regard
to x and t is a gap between Φ(x, t) and Opt(t) that is defined as

R(x, t) = Φ(x, t) − Opt(t). (12)

The maximum regret for a sink x ∈ P , denoted by MR(x), is the maximum
value of R(x, t) with respect to t ∈ T . Thus, MR(x) is defined as

MR(x) = max
t∈T

R(x, t). (13)

Given a dynamic flow path network P and a real interval T , the problem MMR-
ATSL is defined as follows:

minimize MR(x) subject to x ∈ P (14)

Let x∗ denote an optimal solution of (14).

Minmax Regret 1-Sink Location on Paths with Parametric Weights 59

2.4 Piecewise Functions and Upper/Lower Envelopes

A function f : X(⊂ R) → R is called a piecewise polynomial function if and only
if real interval X can be partitioned into subintervals X1,X2, . . . , Xm so that f
forms as a polynomial fi on each Xi. We denote such a piecewise polynomial
function f by f = 〈(f1,X1), . . . , (fm,Xm)〉, or simply f = 〈(fi,Xi)〉. We assume
that such a partition into subintervals are maximal in the sense that fi 	= fi+1

for any i. We call each pair (fi,Xi) a piece of f , and an endpoint of the closure
of Xi a breakpoint of f . A piecewise polynomial function f = 〈(fi,Xi)〉 is called
a piecewise polynomial function of degree at most two if and only if each fi is
quadratic or linear. We confirm the following property about the sum of piecewise
polynomial functions.

Proposition 1. Let m and m′ be positive integers, and f, g : X(⊂ R) → R

be piecewise polynomial functions of degree at most two with m and m′ pieces,
respectively. Then, a function h = f + g is a piecewise polynomial function of
degree at most two with at most m + m′ pieces. Moreover, given f = 〈(fi,Xi)〉
and g = 〈(gj ,X

′
j)〉, we can obtain h = f + g = 〈(hj ,X

′′
j)〉 in O(m + m′) time.

Let F = {f1(y), . . . , fm(y)} be a family of m polynomial functions where
fi : Yi(⊂ R) → R and Y denote the union of Yi, that is, Y = ∪m

i=1Yi. An upper
envelope UF (y) and a lower envelope LF (y) of F are functions from Y to R

defined as follows:

UF (y) = max
i=1,...,m

fi(y), LF (y) = min
i=1,...,m

fi(y), (15)

where the maximum and the minimum are taken over those functions that
are defined at y, respectively. For an upper envelope UF (y) of F , there exist
an integer sequence UF = 〈u1, . . . , uk〉 and subintervals I1, . . . , Ik of Y such
that UF (y) = 〈(fu1(y), I1), . . . , (fuk

(y), Ik)〉 holds. That is, an upper envelope
UF (y) can be represented as a piecewise polynomial function. We call the above
sequence UF the upper-envelope sequence of UF (y).

In our algorithm, we compute the upper/lower envelopes of partially defined,
univariate polynomial functions. The following result is useful for this operation.

Theorem 2 ([1,15,16]). Let F be a family of n partially defined, polynomial
functions of degree at most two. Then, UF and LF consist of O(n2α(n)) pieces
and one can obtain them in time O(nα(n) log n), where α(n) is the inverse Ack-
ermann function. Moreover, if F a family of n line segments, then UF and LF
consist of O(n) pieces and one can obtain them in time O(n log n).

Note that the number of pieces and the computation time for the upper/lower
envelopes are involved with the maximum length of Davenport–Schinzel
sequences. See [15] for the details. For a family F of functions, if we say that we
obtain envelopes UF (y) or LF (y), then we obtain the information of all pieces
(fui

(y), Ii).

60 T. Fujie et al.

3 Algorithms

The main task of the algorithm is to compute the following O(n) values, MR(v)
for all v ∈ V and min{MR(x) | x ∈ e} for all e ∈ E. Once we compute these
values, we immediately obtain the solution of the problem by choosing the min-
imum one among them in O(n) time.

Let us focus on computing min{MR(x) | x ∈ e} for each e ∈ E. (Note that
we can compute MR(v) for v ∈ V in a similar manner.) Recall the definition of
the maximum regret for x, MR(x) = max{R(x, t) | t ∈ T}. A main difficulty
lies in evaluating R(x, t) over t ∈ T even for a fixed x since interval T is infinite.
Furthermore, we are also required to find an optimal location among an infinite
set e. To tackle with this issue, our key idea is to partition the problem into
a polynomial number of subproblems as follows: We partition interval T into a
polynomial number of subintervals T1, . . . , Tm so that R(x, t) is represented as
a (single) polynomial function in x and t on {x ∈ e} × Tj for each j = 1, . . . , m.
For each Tj , we compute the maximum regret for x ∈ e over Tj denoted by
Gj(x) = max{R(x, t) | t ∈ Tj}. An explicit form of Gj(x) is given in the full
paper [13]. We then obtain MR(x) for x ∈ e as the upper envelope of functions
G1(x), . . . , Gm(x) and find the minimum value of MR(x) for x ∈ e by elementary
calculation.

In the rest of the paper, we mainly show that for each e or v, there exists
a partition of T with a polynomial number of subintervals such that the regret
R(x, t) is a polynomial function of degree at most two on each subinterval.

3.1 Key Lemmas

To understand R(x, t), we observe function Φ(x, t). We give some other nota-
tions. Let fei,j

R (t, z) and fei,j
L (t, z) denote functions obtained by removing terms

containing x from formulae (7) and (8). Formally, for 1 ≤ i < j ≤ n, let function
fei,j
R (t, z) be defined on t ∈ T and z ∈ (Wi+1,j−1(t),Wi+1,n(t)] as

fei,j
R (t, z) = τvj +

z − Wi+1,j−1(t)
Ci,j

, (16)

and for 1 ≤ j < i ≤ n, let function fei,j
L (t, z) be defined on t ∈ T and z ∈

(Wj+1,i(t),W1,i(t)] as

fei,j
L (t, z) = −τvj +

z − Wj+1,i(t)
Cj,i

. (17)

In addition, let F ei

L (t) and F ei

R (t) denote univariate functions defined as

F ei

L (t) =
∫ W1,i(t)

0

fei

L (t, z)dz, F ei

R (t) =
∫ Wi+1,n(t)

0

fei

R (t, z)dz, (18)

where fei

L (t, z) and fei

R (t, z) denote functions defined as

fei

L (t, z) = max
1≤j≤i

{
fei,j
L (t, z)

}
, fei

R (t, z) = max
i+1≤j≤n

{
fei,j
R (t, z)

}
.

Minmax Regret 1-Sink Location on Paths with Parametric Weights 61

Recall the definition of the aggregate evacuation time Φ(x, t) shown in (9). We
observe that for x ∈ ei, Φ(x, t) can be represented as

Φ(x, t) =
(
W1,i(t) − Wi+1,n(t)

)
τx +

∫ W1,i(t)

0

fei

L (t, z)dz +
∫ Wi+1,n(t)

0

fei

R (t, z)dz

=
(
W1,i(t) − Wi+1,n(t)

)
τx + F ei

L (t) + F ei

R (t). (19)

In a similar manner, by the definition of (10) and formula (18), we have

Φ(vi, t) =
(
W1,i−1(t) − Wi+1,n(t)

)
τvi + F

ei−1
L (t) + F ei

R (t). (20)

Let us focus on function F e
R(t). As t increases, while the upper-envelope

sequence of fe
R(t, z) w.r.t. z remains the same, function F e

R(t) is represented as
the same polynomial, whose degree is at most two by formulae (16), (17) and
(18). In other words, a breakpoint of F e

R(t) corresponds to the value t such that
the upper-envelope sequence of fe

R(t, z) w.r.t. z changes. We notice that such
a change happens only when three functions fe,h

R (t, z), fe,i
R (t, z) and fe,j

R (t, z)
intersect each other, which can happen at most once. This implies that F e

R(t)
consists of O(n3) breakpoints, that is, it is a piecewise polynomial function of
degree at most two with O(n3) pieces. The following lemma shows that the
number of pieces is actually O(n2). See [13] for details of the proof.

Lemma 1. For each e ∈ E, F e
L(t) and F e

R(t) are piecewise polynomial functions
of degree at most two with O(n2) pieces, and can be computed in O(n3 log n)
time. Especially, when all the edge capacities are uniform, the numbers of pieces
of them are O(n), and can be computed in O(n2 log n) time.

Let NF denote the maximum number of pieces of F e
L(t) and F e

R(t) over e ∈ E.
Then we have NF = O(n2), and for the case with uniform edge capacity, NF =
O(n). Next, we consider Opt(t) = min{Φ(x, t) | x ∈ V }, which is the lower
envelope of a family of n functions Φ(vi, t) in t. Theorem 2 and Lemma 1 imply
the following lemma. See [13] for the proof.

Lemma 2. Opt(t) is a piecewise polynomial function of degree at most two with
O(nNF 2α(n)) pieces, and can be obtained in O(nNF α(n) log n) time if functions
F e
L(t) and F e

R(t) for all e ∈ E are available.

Let NOpt denote the number of pieces of Opt(t). Then we have NOpt =
O(nNF 2α(n)).

Let us consider R(x, t) in the case that sink x is on an edge ei ∈ E. Substi-
tuting formula (19) for (12), we have

R(x, t) = Φ(x, t) − Opt(t) =
(
W1,i(t) − Wi+1,n(t)

)
τx + F ei

L (t) + F ei

R (t) − Opt(t).

By Proposition 1, F ei

L (t) + F ei

R (t) − Opt(t) is a piecewise polynomial function of
degree at most two with at most 2NF + NOpt = O(NOpt) pieces. Let Nei

be the
number of pieces of F ei

L (t) + F ei

R (t) − Opt(t) and T ei
j be the interval of the j-th

piece (from the left) of F ei

L (t) + F ei

R (t) − Opt(t). Thus, R(x, t) is represented as

62 T. Fujie et al.

a (single) polynomial function in x and t on {x ∈ e} × Tj for each Tj . For each
integer j with 1 ≤ j ≤ Nei

, let Gei
j (x) be a function defined as

Gei
j (x) = max{R(x, t) | t ∈ T ei

j }. (21)

We then have the following lemma. See [13] for the proof.

Lemma 3. For each ei ∈ E and j with 1 ≤ j ≤ Nei
, Gei

j (x) is a piecewise
polynomial function of degree at most two with at most three pieces, and can be
obtained in constant time if functions F ei

L (t), F ei

R (t) and Opt(t) are available.

Recalling the definition of MR(x), it holds that for x ∈ e,

MR(x) = max{R(x, t) | t ∈ T} = max{Ge
j(x) | 1 ≤ j ≤ Ne},

that is, MR(x) is the upper envelope of functions Ge
1(x), . . . , Ge

Ne
(x). Applying

Theorem 2, we have the following lemma. See [13] for the proof.

Lemma 4. For each e ∈ E, there exists an algorithm that finds a location that
minimizes MR(x) under the restriction with x ∈ e in O(NOptα(n) log n) time if
functions F e

L(t), F e
R(t) and Opt(t) are available.

3.2 Algorithms and Time Analyses

Let us give an algorithm that finds a sink location that minimizes the maximal
regret and the analysis of the running time of each step.

First, we obtain F e
L(t) and F e

R(t) for all e ∈ E, and function Opt(t) as a
preprocess. Applying Lemmas 1 and 2, we take O(n2NF log n) time for these
operations. Next, we compute x∗,e = arg min{MR(x) | x ∈ e} for all e ∈ E in
O(nNOptα(n) log n) time by applying Lemma4. Note that the small modification
for the algorithm of Lemma4 leads that we can also compute MR(v) for all
v ∈ V in O(nNOpt) time. (See Lemma 5 in [13].) Finally, we find an optimal
sink location x∗ in O(n) time by evaluating the values MR(x) for x ∈ {x∗,e}∪V .

Since we have NOpt = O(nNF 2α(n)), the bottleneck of our algorithm is
to compute x∗,e for all e ∈ E. Thus, we see that the algorithm runs in
O(n2NF 2α(n)α(n) log n) time, which completes the proof of our main theorem
because NF = O(n2), and for the case with uniform edge capacity, NF = O(n).

References

1. Agarwal, P.K., Sharir, M., Shor, P.: Sharp upper and lower bounds on the length
of general Davenport-Schinzel sequences. J. Comb. Theory Ser. A 52(2), 228–274
(1989)

2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a
survey and a new distributed algorithm. In: Proceedings of the 14th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA 2002), pp. 258–264
(2002)

Minmax Regret 1-Sink Location on Paths with Parametric Weights 63

3. Arumugam, G.P., Augustine, J., Golin, M.J., Srikanthan, P.: Minmax regret k-sink
location on a dynamic path network with uniform capacities. Algorithmica 81(9),
3534–3585 (2019)

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

5. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k -sink problem on dynamic flow path networks. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 78–89. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 7

6. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum
k-sink problem on path networks. Theor. Comput. Sci. 806, 388–401 (2020)

7. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved
algorithms for computing k -sink on dynamic flow path networks. In: Ellen, F.,
Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 133–144.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2 12

8. Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: An O(n2 log2 n) time
algorithm for minmax regret minsum sink on path networks. In: Proceedings of
the 29th International Symposium on Algorithms and Computation 2018 (2018)

9. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret
sinks on dynamic path and tree networks. Theor. Comput. Sci. 607, 411–425 (2015)

10. Chen, D., Golin, M.J.: Sink evacuation on trees with dynamic confluent flows. In:
27th International Symposium on Algorithms and Computation (2016)

11. Chen, D., Golin, M.J.: Minmax centered k-partitioning of trees and applications
to sink evacuation with dynamic confluent flows. CoRR abs/1803.09289 (2018)

12. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6(3), 419–433 (1958)

13. Fujie, T., Higashikawa, Y., Katoh, N., Teruyama, J., Tokuni, Y.: Minmax regret
1-sink location problems on dynamic flow path networks with parametric weights.
CoRR abs/2011.13569 (2020)

14. Golin, M.J., Sandeep, S.: Minmax-regret k-sink location on a dynamic tree network
with uniform capacities. CoRR abs/1806.03814 (2018)

15. Hart, S., Sharir, M.: Nonlinearity of Davenport-Schinzel sequences and of general-
ized path compression schemes. Combinatorica 6(2), 151–177 (1986)

16. Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time.
Inf. Process. Lett. 33(4), 169–174 (1989)

17. Higashikawa, Y.: Studies on the space exploration and the sink location under
incomplete information towards applications to evacuation planning. Ph.D. thesis,
Kyoto University, Japan (2014)

18. Higashikawa, Y., et al.: Minimax regret 1-sink location problem in dynamic path
networks. Theor. Comput. Sci. 588, 24–36 (2015)

19. Higashikawa, Y., Cheng, S.W., Kameda, T., Katoh, N., Saburi, S.: Minimax regret
1-median problem in dynamic path networks. Theory Comput. Syst. 62(6), 1392–
1408 (2018)

20. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in
dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4),
539–555 (2014)

21. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in
dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)

22. Hoppe, B., Tardos, E.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36–62 (2000)

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-94667-2_7
https://doi.org/10.1007/978-3-319-62127-2_12

64 T. Fujie et al.

23. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, London (1997)

24. Li, H., Xu, Y.: Minimax regret 1-sink location problem with accessibility in
dynamic general networks. Eur. J. Oper. Res. 250(2), 360–366 (2016)

25. Li, H., Xu, Y., Ni, G.: Minimax regret vertex 2-sink location problem in dynamic
path networks. J. Comb. Optim. 31(1), 79–94 (2014). https://doi.org/10.1007/
s10878-014-9716-2

26. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for a sink
location problem in dynamic tree networks. Discret. Appl. Math. 154, 2387–2401
(2006)

27. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

28. Vairaktarakis, G.L., Kouvelis, P.: Incorporation dynamic aspects and uncertainty
in 1-median location problems. Nav. Res. Logist. (NRL) 46(2), 147–168 (1999)

https://doi.org/10.1007/s10878-014-9716-2
https://doi.org/10.1007/s10878-014-9716-2
https://doi.org/10.1007/978-3-540-76796-1_21

The Bike Sharing Problem

Jurek Czyzowicz1, Konstantinos Georgiou2, Ryan Killick3,
Evangelos Kranakis3(B), Danny Krizanc4, Lata Narayanan5,

Jaroslav Opatrny5, and Denis Pankratov5

1 Dép. d’informatique, Université du Québec en Outaouais, Gatineau, Canada
2 Department of Mathematics, Ryerson University, Toronto, Canada
3 School of Computer Science, Carleton University, Ottawa, Canada

kranakis@scs.carleton.ca
4 Department of Mathematics and Computer Science,

Wesleyan University, Middletown, USA
5 Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada

Abstract. Assume that m ≥ 1 autonomous mobile agents and 0 ≤ b ≤
m single-agent transportation devices (called bikes) are initially placed
at the left endpoint 0 of the unit interval [0, 1]. The agents are identical
in capability and can move at speed one. The bikes cannot move on their
own, but any agent riding bike i can move at speed vi > 1. An agent may
ride at most one bike at a time. The agents can cooperate by sharing
the bikes; an agent can ride a bike for a time, then drop it to be used by
another agent, and possibly switch to a different bike.

We study two problems. In the Bike Sharing problem, we require all
agents and bikes starting at the left endpoint of the interval to reach
the end of the interval as soon as possible. In the Relaxed Bike Sharing
problem, we aim to minimize the arrival time of the agents; the bikes can
be used to increase the average speed of the agents, but are not required
to reach the end of the interval.

Our main result is the construction of a polynomial time algorithm for
the Bike Sharing problem that creates an arrival-time optimal schedule
for travellers and bikes to travel across the interval. For the Relaxed Bike
Sharing problem, we give an algorithm that gives an optimal solution for
the case when at most one of the bikes can be abandoned.

Keywords: Transportation · Scheduling · Cooperation · Multi agent
systems · Arrival time · Optimal schedules · Robots · Resource sharing

1 Introduction

Autonomous mobile robots are increasingly used in many manufacturing, ware-
housing, and logistics applications. A recent development is the increased interest
in deployment of so-called cobots - collaborative robots - that are intended to

Research supported by Natural Sciences and Engineering Research Council of Canada.
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 65–77, 2021.
https://doi.org/10.1007/978-3-030-68211-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_6

66 J. Czyzowicz et al.

work collaboratively and in close proximity with humans [1,2,13]. Such cobots
are controlled by humans, but are intended to augment and enhance the capa-
bilities of the humans with whom they work.

In this paper we study applications of cobots to transportation problems.
We propose a new paradigm of cooperative transportation in which cooperat-
ing autonomous mobile agents (humans or robots) are aided by transportation
cobots (called bikes) that increase the speed of the agents when they are used.
The agents are autonomous, identical in capability, and can walk at maximum
speed 1. The bikes are not autonomous and cannot move by themselves, but
agents can move bikes by riding them. At any time, an agent can ride at most
one bike, and a bike can be ridden by at most one agent. An agent riding bike
i can move at speed vi > 1; note that the bikes may have different speeds. The
bikes play a dual role: on the one hand, they are resources that can be exploited
by the agents to increase their own speed, but on the other hand, they are also
goods that need to be transported. We assume that initially all agents and bikes
are located at the start of the unit interval [0, 1]. The goal of the agents is to
traverse the interval in such a way as to minimize the latest arrival time of agents
and bikes at the endpoint 1.

If the number of the bikes is smaller than the number of agents, or if the
speeds of the bikes are different, it is clear that agents can collectively benefit
by sharing the bikes. This can be shown by a simple example of two agents with
speed 1 and a bike with spedd v, where v > 1; It is easy to derive the optimal
arrival time of 1+v

2v for the two agents and a bike.
From the above example, we can see that a solution to the cooperative trans-

port problem described here consists of a schedule: a partition of the unit interval
into sub-intervals, as well as a specification of the bike to be used by each agent
in each sub-interval. It is easy to see that it is never helpful for agents to turn
back and ride in the opposite direction. In [4] we show that it is also not helpful
for agents to wait to switch bikes, or to ride/walk at less than the maximum
speed possible. Thus we only consider feasible schedules wherein the bike to be
used by an agent in a sub-interval is always available when the agent reaches
the sub-interval. This will be defined formally in Sect. 2; for now it suffices to
define the Bike Sharing problem (BS for short) informally. Given m agents and
the speeds of b bikes v1 ≥ v2 ≥ · · · ≥ vb > 1, find a feasible schedule specifying
how the agents can travel and transport bikes from initial location 0 to location
1 so that the latest arrival time of agents and bikes is minimized.

We also consider a variation of the problem when there is no requirement
for the bikes to be transported; bikes are simply resources used by the agents in
order to minimize the agents’ arrival time, and can be abandoned enroute if they
are not useful towards achieving this objective. Thus the Relaxed Bike Sharing
(RBS for short) problem is as follows. Given m agents and b bikes with speeds
v1 ≥ v2 ≥ · · · ≥ vb > 1, find a feasible schedule specifying how m agents can
travel from initial location 0 to location 1 so that the latest arrival time of the
agents is minimized. We also consider a version of the problem when the input
also specifies an upper bound � on the number of bikes that can be abandoned.

The Bike Sharing Problem 67

Notice that for the same input, the optimal arrival time for the RBS problem
can be less than that for the BS problem. For example, suppose we have two
agents and 2 bikes with speeds v1, v2 with v1 > v2 > 1. For the BS problem the
best arrival time achievable is 1/v2, as both bikes have to make it to the end. But
for the RBS problem, a better arrival time for the agents can be achieved by the
following strategy (see Fig. 1): one agent rides the faster bike up to some point z
and then walks the remaining distance taking time z/v1+1−z. The other agent
rides the slower bike up to point z, abandons it, switches to the faster bike, and
rides it to the end. This takes time z/v2 + (1 − z)/v1. By equating these two
times, we get an overall arrival time of v2

1−v2

v2v2
1+v2

1−2v1v2
≤ 1

v2
.

Fig. 1. Strategy for RBS for 2 agents and 2 bikes. The two rows correspond to the
behaviour of two agents. Each line segment is labelled with a bike speed that corre-
sponds to the agent travelling on that bike for the distance of the line segment. If an
agent walks then the line segment is labelled with 1.

1.1 Related Work

The bike sharing problem involves a sort of cooperation between agents and
bikes in order to optimize the arrival time. In this context, related studies concern
cooperation between mobile agents and wireless sensors. For example, [5] and [12]
use information obtained from wireless sensors for the problem of localization of
a mobile robot while in [8], mobile robots and stationary sensors cooperate in a
target tracking problem whereby stationary sensors track moving sensors in their
sensor range and mobile agents explore regions not covered by the fixed sensors.
There are also evaluation platforms for mixed-mode environments incorporating
both mobile robots and wireless sensor networks, see e.g., [9].

Bike sharing systems have been installed in many cities as a low-cost and
environmentally friendly transportation alternative; researchers have considered
optimization problems such as placement of bike stations or rebalancing of inven-
tory - see for example [3,11]. But this line of work is not concerned with the
optimal usage of bikes by a particular set of users to travel between two points.
The authors of [10] consider trip planning for a set of users in a bike sharing
system, but the problem is quite different from ours: bikes are available at a pre-
defined set of locations, each user has a different start and end location, and can
use at most one bike in their trip, and the problem is concerned with optimizing
the number of served users and minimizing their trip time. The authors show
NP-hardness of their trip planning problem, and give approximation algorithms.

Our problem has similarities to job shop scheduling problems [6,7], where
several jobs of the same processing time are to be scheduled on a collection of

68 J. Czyzowicz et al.

machines/servers with different processing power, and the objective is to min-
imize the makespan, the time when all jobs have finished. Indeed our agents
can be seen as akin to jobs, we can assume that there is an unlimited number
of basic servers of low processing power available (akin to agents walking), and
bikes are similar to the fast servers. However, the constraints imposed by bikes
being available only at the points they are dropped off do not seem to trans-
late to any natural precedence constraints in the context of multiprocessor or
job shop scheduling. To the best of our knowledge, a scheduling analog of our
problem has not been studied.

1.2 Outline and Results of the Paper

We introduce and study variations of the Bike Sharing problem – a novel
paradigm of mobile agent optimization problems that includes both active ele-
ments (agents) and passive elements (bikes). For ease of exposition, we assume
that all agents always move at the maximum speed possible (walking or biking),
and never wait. In [4] we show that this assumption does not lose any generality.
For the BS problem, all bikes are required to make it to the end and so the
speed of the slowest bike imposes a lower bound on the arrival time. We prove
another lower bound on the arrival time based on the “average” completion time
of the agents. We design an algorithm that produces a schedule with completion
time matching the maximum of the two lower bounds. Our main result is the
following (see Theorems 7 and 8).

Theorem 1. There is a polynomial time algorithm that constructs an optimal
schedule for the BS problem.

For the variation of the RBS problem, in which � bikes are allowed to be aban-
doned, we demonstrate the following (see [4]).

Theorem 2. There is a polynomial time algorithm that constructs an optimal
schedule for the RBS problem when at most one bike can be abandoned.

Finally, we show that the RBS problem can be solved efficiently and optimally
for some special cases of bike speeds; we state the result informally here; see
Sect. 4 for details.

Theorem 3 (informal). There is a polynomial time algorithm that constructs
an optimal schedule for the RBS problem when at most one bike is “slow”.

The outline of the paper is as follows. In Sect. 2 we introduce an intuitive
matrix representation of bike sharing schedules and formally define the problems
we are studying. In Sects. 3 and 4 we give our algorithms for the BS and RBS
problems respectively. Finally, we conclude the paper in Sect. 5 with a discussion
of open problems. Details of all missing proofs can be found in [4].

The Bike Sharing Problem 69

2 Definitions and Preliminary Observations

We assume there are m agents and b bikes with speeds >1 on a line. The bikes
and agents are initially located at the origin 0. All agents have the same walking
speed of 1 and will travel at speed vi > 1 when using the bike i. An agent can
ride at most one bike at a time, and a bike can be ridden by at most one agent
at a time. An agent can use a bike for a portion of the trip and at any time drop
the bike. If an agent comes across bike i while walking or riding a different bike
j, it may choose to pick up bike i (and drop bike j), and continue the trip on
bike i. We assume that pickups and dropoffs happen instantaneously, and that
any number of agents and bikes can be present at the same point simultaneously.
Thus, bikes can be dropped without blocking other bikes or agents, and agents
and bikes can pass each other at will. We will assume that agents always move
at the maximum speed allowed by walking/biking, and never stop and wait.

When necessary we use vi to represent the speed of the ith bike, however,
it is much more useful to work with the inverse speeds of the bikes – which we
represent by ui ≡ 1/vi. Thus, we will assume that the (multi)set U lists the
inverse speeds of the bikes, i.e. U = {u1, u2, . . . , ub}. An input to both BS and
RBS problems is then represented by a pair (m,U) where m is the number of
agents and the number of bikes is b = |U |. We assume without loss of generality
that the bikes are labelled in increasing order of their inverse speeds. Thus, bike
1 is the fastest bike and bike b is the slowest bike. We reserve label 0 to denote
absence of a bike, i.e., walking. The inverse speed associated with this label is 1.

We say that bike i is dropped at location y ∈ [0, 1] if an agent leaves the bike
at location y and it is picked up by another agent at a later time. We say that
bike i is abandoned at location y if an agent leaves the bike at location y and
it is never picked up by another agent. Note that bikes cannot be abandoned in
the BS problem but may be abandoned in solutions to the RBS problem.

A solution to either problem is a schedule that should specify for each agent i
a partition of the entire interval [0, 1] and for each block of the partition whether
the agent walks or uses a particular bike. By taking a common refinement of all
these partitions we may assume that all partitions are exactly the same. The
information about which bike gets used during which block of the partition
and by which agent is collected in a single matrix. Thus, we define a schedule
as a pair (X,M) where: X = (x1, x2, . . . , xn) is a partition vector satisfying
∀j ∈ [n] xj ≥ 0 and

∑n
j=1 xj = 1; M is a schedule matrix of size m × n such

that entry M(i, j) indicates the label of the bike used by agent i during the
interval xj or 0 if agent i walked during the interval xj . By a slight abuse of
notation, we use xj to refer to both the jth interval of the partition as well as
its length.

We define the size of a schedule as n – the number of columns in the schedule
matrix M (also the number of entries in the partition vector). While the number
of rows m will be the same for any schedule, a priori it is not even clear that
there has to be an optimal schedule with a finite number of columns. Clearly, it
is desirable to minimize the size of a schedule.

70 J. Czyzowicz et al.

The matrix M gives rise to an induced matrix of inverse speeds M̃ . More
specifically, for i ∈ [m] and j ∈ [n] the entry M(i, j) = k implies M̃(i, j) = uk

when k ∈ [b], and M(i, j) = 0 implies M̃(i, j) = 1. It will be convenient for us
to treat these representations as interchangeable, which is easy to implement.

The main utility of the above definitions is that they allow one to easily
compute the completion times of the agents. Indeed, the time at which agent
i reaches the end of interval xj – referred to as the jth completion time of
agent i – is computed as follows: ti,j(X,M) =

∑j
k=1 M̃(i, k)xk.Note that ti,n

is the time at which agent i reaches the end of the entire interval. The overall
completion time will be represented by τ and equals the maximum of the ti,n,
i.e. τ(X,M) ≡ maxi ti,n. We may omit (X,M) when it is clear from the context
and simply write ti,j , and τ . We shall sometimes refer to the completion time as
arrival time.

Not every schedule (X,M) is feasible. In particular, feasibility requires that
(1) a bike cannot move on its own, (2) a bike is used by at most one agent during
a particular interval of the partition, and (3) a bike is available when an agent is
supposed to use that bike. In light of the introduced notation and terminology
we can formalize the above three conditions as follows:

Definition 1. (X,M) represents a feasible schedule if:

1. M(i, j) �= 0 implies that ∃ i′ M(i′, j − 1) = M(i, j),
2. M(i, j) �= 0 implies that ∀ i′ �= i M(i′, j) �= M(i, j),
3. M(i, j) = M(i′, j − 1) �= 0 implies that ti′,j−1 ≤ ti,j−1.

In a feasible schedule (X,M) we say that bike k makes it to the end if this
bike is used during the last interval, i.e., ∃i such that M(i, n) = k. We are now
ready to state the BS and RBS problems formally:

The Bike Sharing Problem
Input: m ≥ 1 – number of agents; b ≥ 0 – number of bikes; 0 < u1 ≤ u2 ≤
· · · ≤ ub < 1 – inverse speeds of bikes.
Output: A feasible schedule (X,M) such that all bikes reach the end.
Objective: Minimize τ(X,M).

The Relaxed Bike Sharing Problem
Input: m ≥ 1 – number of agents; b ≥ 0 – number of bikes; 0 < u1 ≤ u2 ≤
· · · ≤ ub < 1 – inverse speeds of bikes.
Output: A feasible schedule (X,M) such that all agents reach the end.
Objective: Minimize τ(X,M).

Notice that a solution to the BS problem has two components: the continu-
ous component represented by the partition vector, and the discrete component
represented by the schedule matrix. Intuitively, the core difficulty of the problem
is in figuring out an optimal schedule matrix. Once we have a “good” schedule
matrix, we can find an optimal partition that goes along with it via linear pro-
gramming.

The Bike Sharing Problem 71

Lemma 1. For any schedule matrix M satisfying parts 1 and 2 of Definition 1,
we can in polynomial time find a partition vector X that makes schedule (X,M)
feasible and achieves the smallest completion time among all schedules with the
same schedule matrix M .

We refer to the partition X guaranteed by the above lemma as the induced
partition vector of M and denote it by XM .

3 Optimal and Efficient Algorithm for the BS Problem

In this section we present a polynomial time algorithm that solves the BS prob-
lem optimally, i.e., our algorithm produces a feasible schedule that minimizes
the latest arrival time.

High-level overview of the algorithm. The structure of our algorithm is quite
involved and it relies on several subroutines, so we do not present the entire
algorithm all at once. We build up towards the complete algorithm in stages:

1. First we derive a lower bound T on the minimum completion time of any
feasible schedule and show that the relationship between ub and T controls
the structure of an optimal schedule matrix for the BS problem.

2. We then tackle the case when ub ≤ T and describe a subroutine AllMakeIt
that calls itself recursively to build up an optimal schedule matrix. We prove
the optimality of this subroutine and compute the size of its output schedule.

3. Unfortunately, the AllMakeIt subroutine creates a schedule of size that
is exponential in the number of bikes. We describe two more subroutines –
Standardize and Reduce that allow transforming any schedule of poten-
tially large size n into an equally or more efficient schedule of size n′ ≤ m.

4. We finish the case ub ≤ T by describing two modifications to AllMakeIt
resulting in a polynomial time algorithm. First, we use the Reduce subrou-
tine to prevent the size of the schedule from growing exponentially. Second,
we observe that recursive calls have overlapping substructures allowing us to
rewrite the algorithm with the help of a dynamic programming table.

5. Finally, we tackle the case of ub > T by showing that it can be reduced, in a
certain sense, to the case of ub ≤ T .

3.1 Lower Bound on the Arrival Time for the Bike Sharing Problem

Define T (m,U) as follows: T (m,U) := 1− 1
m

∑b
j=1(1−uj). The following lemma

shows that T (m,U) is a lower bound on the optimum for the BS problem.
For ease of reference, we also record another trivial lower bound in the state-
ment of the lemma, observe a sufficient condition for the schedule to satisfy
τ(X,M) = T (m,U), and give two useful properties that result from the defini-
tion of T (m,U).

Lemma 2. Let (X,M) be an arbitrary feasible schedule for the BS problem with
inputs m, b, and U . Then we have

72 J. Czyzowicz et al.

1. τ(X,M) ≥ ub,
2. τ(X,M) ≥ T (m,U),
3. τ(X,M) = T (m,U) if and only if all agents have the same arrival time in

(X,M).
4. u1 ≤ T (m,U).
5. T (m,U) ≤ T (m − 1, U \ {uk}) iff uk ≤ T (m,U) with equality only when

uk = T (m,U).

In spite of the simplicity of the above lower bounds, they turn out extremely
important: in the following sections we show that if ub ≤ T (m,U) then there
is a feasible schedule (X,M) with completion time τ(X,M) = T (m,U), and
otherwise there is a feasible schedule (X,M) with completion time τ(X,M) = ub.
Putting it together the BS problem has an optimal schedule that has completion
time max(ub, T (m,U)).

3.2 Finding an Optimal Schedule for the Case ub ≤ T (m,U)

The goal of this section is to present and analyze the algorithm AllMakeIt that
on input (m,U) satisfying ub ≤ T (m,U) produces a feasible schedule (X,M)
with τ(X,M) = T (m,U).

In anticipation of the recursive nature of this algorithm, we introduce the
following notation: for k ∈ {0, 1, 2, . . . , b} we define mk := m − b+ k, and Uk :=
{u1, . . . , uk}.Note that we have U0 = ∅ and Ub = U .

We say that a group of agents is synchronized at a particular time if they are
found to be at the same location at that time. We say that agent i is a walker
at time t in a given schedule if the agent does not use a bike at time t (see [4]).

At a high level, AllMakeIt has two phases. The goal of the first phase is
to get a group of m− b synchronized walkers ahead of all the bikes. At that time
the bikes will be in use by the remaining b agents. Moreover, the tardiness of
agents on bikes has a particular order: if we make no changes to the schedule
after the first phase and let the walkers walk and biking agents bike, then the
agent on bike 1 will catch up to the walkers first, followed by the agent on
bike 2, and so on. This goal can be achieved by sharing bikes among m bikers
as follows. At first, agents 1, . . . , b use bikes while others walk. After travelling
a certain distance, each agent on a bike drops their bike to be picked up by
an agent immediately behind them. This way the set of agents that use bikes
during consecutive intervals propagate from 1, . . . , b to 2, . . . , b+1 to 3, . . . , b+2,
and so on until all the bikes accumulate among the last b agents numbered
m − b + 1, . . . ,m. The intervals of the partition vector during this phase can be
arranged so that walkers 1, 2, . . . , m − b are synchronized at the end of the first
phase.

In the second phase, the agent using bike 1 is the first agent on a bike
to catch up with the group of walkers. Rather than overtaking the group of
walkers, the new agent and the bike “get absorbed” by the group. Intuitively, it
means that now we have a group of m − b + 1 agents with 1 bike that can be
shared in the entire group to increase the average speed with which this group

The Bike Sharing Problem 73

can travel. It turns out that the best possible average speed of this group is
exactly 1/T (m1, U1). Moreover, we can design a schedule which says how this
1 bike is shared with the group during any interval of length x by taking a
schedule produced (recursively) by AllMakeIt on input (m1, U1) and scaling
this schedule by x. This has the added benefit that if the group was synchronized
at the beginning of the interval (which it was) the group remains synchronized
at the end of the interval. The distance x is chosen so the agent using bike 2
catches up to the new group precisely after travelling distance x. When the agent
using bike 2 catches up to the group, the new agent and the new bike again get
absorbed by the group, further increasing the average speed. An optimal schedule
for the new group is given by a scaled version of AllMakeIt on input (m2, U2).
This process continues for bikes 3, 4, . . . , b− 1. Since recursive calls have to have
smaller inputs, we have to stop this process before bike b gets absorbed. What
do we do with bike b then? The answer is simple: we arrange the entire schedule
in a such a way that bike b catches up with the big group precisely at the end
of the entire interval [0, 1].

The main result of this section is that the expanded schedule produced by
AllMakeIt is optimal under the condition ub ≤ T (m,U).

Theorem 4. Consider input (m,U = {u1 ≤ u2 ≤ · · · ≤ ub}) to the BS problem
s.t. ub ≤ T (m,U). Let (X,M) be the schedule produced by AllMakeIt(m,U).
The schedule (X,M) is feasible and has completion time τ(X,M) = T (m,U).

The (rather technical) proof proceeds along the following lines: (1) we make
sure that the recursive calls made in the AllMakeIt procedure satisfy the
precondition ub ≤ T (m,U), (2) we prove that there is a partition that makes
schedule feasible and results in completion time T (m,U). Thus, by Lemma 1
such a partition can be found by solving a related LP. The proof of step (2) is
by induction on the number of bikes b and the difficulty is that we don’t have a
closed-form expression of the partition so we cannot easily verify property 3 of
Definition 1. We sidestep this difficulty by working with so-called “unexpanded”
schedule (unexpanded partition and matrix) that precisely captures the recursive
structure of the solution (see [4]). We show how an unexpanded schedule can be
transformed into a complete feasible schedule.

Unfortunately, the size of the schedule produced by AllMakeIt is exponen-
tial in the number of bikes.

Theorem 5. AllMakeIt(m,U) has size (m − 1)2b−1 + 1 for 0 < b < m.

The detailed proofs of the above theorems are given in [4].

3.3 Standardize and Reduce Procedures

In this section, we present two procedures called Standardize and Reduce
that would allow us to overcome the main drawback of AllMakeIt algorithm
– the exponential size of a schedule it outputs. We begin with the Standardize
procedure.

74 J. Czyzowicz et al.

Consider a feasible schedule (X,M) of size n. If there exists an entry xj = 0 in
X then this entry and the jth column of M do not contain any useful information.
The zero columns only serve to increase the size of (X,M) and can be removed
from the algorithm by deleting xj and the corresponding column of M . Similarly,
whenever we have two consecutive columns j − 1 and j of M that are identical
(i.e. none of the agents switch bikes between the intervals xj−1 and xj) then the
jth column is a redundant column and can be removed from the algorithm by
deleting the jth column of M and merging the intervals xj−1 and xj in X.

In addition to removing these useless columns, we can also remove from the
algorithm any useless switches that might occur. To be specific, if ever it happens
during (X,M) that an agent i performs a pickup-switch with an agent i′ at the
same position and time, then this bike switch can be avoided. Indeed, assume
that M instructs the agents i and i′ to switch bikes at the end of some interval xk

and assume that this switch happens at the same time. Then we can remove this
switch by swapping the schedules of agents i and i′ in every interval succeeding
the interval xk. In other words, we need to swap M(i, j) and M(i′, j) for each
j = k + 1, k + 2, . . . , n. We will call these types of switches swap-switches. Note
that a swap-switch is also a pickup-switch. Clearly, the removal of swap-switches
will not affect the feasibility nor the overall completion time of an algorithm.

We say that a schedule (X,M) is expressed in standard form if (X,M) does
not contain any zero columns, redundant columns, or swap-switches.

In [4] we present and analyze the procedure Standardize(X,M) that takes
as input a feasible schedule (X,M) and outputs a feasible schedule (X ′,M ′) in
standard form.

Lemma 3. A feasible schedule (X,M) of size n can be converted to standard
form in O(m2n) computational time using O(mn) space.

Next, we describe the Reduce procedure that demonstrates that a feasible
schedule is never required to have size larger than m. This procedure is presented
in [4]. The idea is simple: we start with a feasible schedule (XM ,M) (XM is the
induced partition vector of M), apply the standardization procedure to get a new
schedule (X ′,M ′) of reduced size, and then iterate on the schedule (XM ′ ,M ′)
(XM ′ is the induced partition vector of M ′). The iteration stops once we reach
a schedule (XM ′′ ,M ′′) that is already in standard form. The key thing is to
demonstrate that the iteration always stops at a schedule with size n ≤ m
(without increasing the completion time of the schedule). This is the subject of
Theorem 6 (details of the proof can be found in [4]).

Theorem 6. Consider a feasible schedule (XM ,M) of size n > m that com-
pletes in time τ . Then Reduce(M) produces a feasible schedule (XM ′ ,M ′) with
size n′ ≤ m that completes in time τ ′ ≤ τ . The computational complexity of
Reduce(U,M) is O(poly(m,n)) time and space.

The Bike Sharing Problem 75

3.4 AllMakeIt∗: Computationally Efficient Version
of AllMakeIt

There are two obstacles we need to overcome in order to make AllMakeIt
algorithm run in polynomial time. The first obstacle is information-theoretic:
the size of the schedule produced by AllMakeIt algorithm is exponential in
the number of bikes. The second obstacle is computational: the sheer number
of recursive calls made by AllMakeIt algorithm is exponential in the num-
ber of bikes, so even if sizes of all matrices were 1 it still would not run in
polynomial time. The Reduce procedure allows us to overcome the first obsta-
cle. We overcome the second obstacle by observing that the number of distinct
sub-problems in AllMakeIt algorithm and all of its recursive calls is at most
b. Thus, we can replace recursion with dynamic programming (DP) to turn
AllMakeIt into a polynomial time algorithm AllMakeIt∗. A more thorough
explanation/analysis of AllMakeIt∗ algorithm is provided in [4].

Theorem 7. Let (m,U) be the input to the BS problem such that ub ≤ T (m,U).
The algorithm AllMakeIt∗ runs in polynomial time on input (m,U) and
returns an optimal schedule (X,M) with τ(X,M) = T (m,U).

3.5 Finding an Optimal Schedule for the Case ub > T (m,U)

In this section we solve the BS problem efficiently and optimally for the case
when the slowest bike is the bottleneck. The idea is to reduce it to the case of
Subsect. 3.2. We make the following observation which will allow us to prove the
main result of this section.

Lemma 4. Let (m,U = {u1 ≤ . . . ≤ ub}) be input to the BS problem. If ub >
T (m,U) then there exists k ∈ {1, 2, . . . , b − 1} such that uk ≤ T (mk, Uk) ≤ ub.

Theorem 8. Let (m,U) be the input to the BS problem such that ub > T (m,U).
There exists a polynomial time algorithm that constructs an optimal schedule
(X,M) with τ(X,M) = ub.

4 The RBS Problem

In Sect. 3 we presented an optimal algorithm for the BS problem. Recall that in
the case ub > T (m,U) the minimum arrival time is ub. Thus, the arrival time in
that case is controlled by how much time it takes the slowest bike to travel from
0 to 1. This suggests that if we relax the requirement of all bikes making it to
the end and allow agents to abandon the slowest bike, for example, the overall
completion time for the agents and the remaining bikes might be improved. This
naturally leads to the RBS problem. We begin by developing a polynomial time
algorithm that solves the RBS problem optimally when the abandonment limit
� is 1, that is we allow at most one bike to be abandoned.

High-level overview of the algorithm. Our approach to the RBS problem with
the abandonment limit � = 1 mimics to some extent our approach to the BS

76 J. Czyzowicz et al.

problem. The structure of the optimal schedule depends on the relationships
between speeds of two slowest bikes and certain expressions lower bounding
the optimal completion time. More specifically, in [4] we design an algorithm
AllButOne that solves the RBS problem with the abandonment limit � = 1
optimally in polynomial time. We follow the next steps:

1. We begin by generalizing the lower bound of Lemma 2 to the situation where
multiple bikes may be abandoned.

2. Analyzing the lower bound from the first step we can immediately conclude
that AllMakeIt∗ algorithm provides an optimal solution to the RBS prob-
lem (in fact for any value of �) under the condition ub ≤ T (m,U).

3. By the previous step, it remains to handle the case ub > T (m,U). We split
this case into two sub-cases depending on the relationship between the inverse
speed of the second slowest bike ub−1 and T1, which is the lower bound from
Step 1 specialized to the case � = 1 (the subscript in T1 indicates the aban-
donment limit). We handle the case of ub−1 ≤ T1(m,U) first.

4. Lastly, we show how to handle the remaining sub-case of ub > T (m,U),
namely, when ub−1 > T1(m,U).

Carrying out the above steps results in the following two theorems that jointly
provide a solution to the RBS problem with the abandonment limit � = 1.

Theorem 9. Let (m,U = {u1 ≤ u2 ≤ · · · ≤ ub}) be such that ub > T (m,U)
and ub−1 ≤ T1(m,U). The schedule (X,M) output by AllButOne(m,U) is
feasible and has completion time τ(X,M) = T1(m,U). In particular, (X,M) is
an optimal solution to the RBS problem with abandonment limit 1.

Theorem 10. Let (m,U = {u1 ≤ u2 ≤ · · · ≤ ub}) be s.t. ub > T (m,U)
and ub−1 > T1(m,U). There is a polynomial time computable feasible schedule
(X,M) s.t. at most one bike is abandoned and τ(X,M) = ub−1. In particular,
(X,M) is an optimal solution to the RBS problem with abandonment limit 1.

A closer look at our results for the BS and RBS problems, indicates that
we can solve the RBS problem optimally under some conditions. In particular,
when all bikes are “fast enough”, that is, when ub ≤ T (m,U), we have:

Theorem 11. AllMakeIt∗ solves the RBS problem optimally when ub ≤
T (m,U).

In fact, even if all but the slowest bike are fast enough, we can solve the RBS
problem optimally. In particular, if ub > T (m,U) and ub−1 ≤ T1(m,U) then
AllButOne produces a schedule where only a single bike is abandoned. This
schedule is also a possible solution for the RBS problem for any � ≥ 1. In the
following theorem we demonstrate that there is no better schedule.

Theorem 12. AllButOne solves the RBS problem optimally when ub >
T (m,U) and ub−1 ≤ T1(m,U).

The Bike Sharing Problem 77

5 Conclusion

There are many open questions that remain. First, the development of algorithms
for the RBS problem when more than one bike can be abandoned is required.
The techniques introduced in this paper can be extended further to cover the
case that at most 2 bikes can be abandoned, however, this results in a messy case
analysis that does not lend any intuition as to how the problem can be elegantly
solved. Additionally, one can study more general versions of the problem where
agents/bikes do not all begin at the same location, or even where the speed of a
bike depends both on the bike and on the ID of the agent that is riding it.

References

1. Cobot. https://en.wikipedia.org/wiki/Cobot. Accessed 05 Feb 2020
2. Boy, E.S., Burdet, E., Teo, C.L., Colgate, J.E.: Investigation of motion guidance

with scooter cobot and collaborative learning. IEEE Trans. Rob. 23(2), 245–255
(2007)

3. Chen, L., et al.: Bike sharing station placement leveraging heterogeneous urban
open data. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 571–575 (2015)

4. Czyzowicz, J., et al.: The bike sharing problem. arXiv preprint arXiv:2006.13241
(2020)

5. Djugash, J., Singh, S., Kantor, G., Zhang, W.: Range-only SLAM for robots oper-
ating cooperatively with sensor networks. In: Proceedings of IEEE International
Conference on Robotics and Automation, pp. 2078–2084, May 2006

6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

7. Gonzalez, T., Sahni, S.: Preemptive scheduling of uniform processor systems. J.
ACM (JACM) 25(1), 92–101 (1978)

8. Jung, B., Sukhatme, G.: Cooperative tracking using mobile robots and
environment-embedded networked sensors. In: International Symposium on Com-
putational Intelligence in Robotics and Automation, pp. 206–211 (2001)

9. Kropff, M., et al.: MM-ulator: towards a common evaluation platform for mixed
mode environments. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk,
O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 41–52. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89076-8_8

10. Li, Z., Zhang, J., Gan, J., Lu, P., Gao, Z., Kong, W.: Large-scale trip planning for
bike-sharing systems. Pervasive Mob. Comput. 54, 16–28 (2019)

11. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory rebalancing and vehicle
routing in bike sharing systems. Eur. J. Oper. Res. 257, 992–1004 (2017)

12. Seow, C.K., Seah, W.K.G., Liu, Z.: Hybrid mobile wireless sensor network cooper-
ative localization. In: Proceedings IEEE 22nd International Symposium on Intelli-
gent Control, pp. 29–34 (2007)

13. Veloso, M., et al.: Cobots: collaborative robots servicing multi-floor buildings. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5446–5447. IEEE (2012)

https://en.wikipedia.org/wiki/Cobot
http://arxiv.org/abs/2006.13241
https://doi.org/10.1007/978-3-540-89076-8_8

Efficient Generation of a Card-Based
Uniformly Distributed Random

Derangement

Soma Murata1 , Daiki Miyahara1,3(B) , Takaaki Mizuki2 ,
and Hideaki Sone2

1 Graduate School of Information Sciences, Tohoku University,
6–3–09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980–8578, Japan

soma.murata.p5@dc.tohoku.ac.jp, daiki.miyahara.q4@dc.tohoku.ac.jp
2 Cyberscience Center, Tohoku University,

6–3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980–8578, Japan
mizuki+lncs@tohoku.ac.jp

3 National Institute of Advanced Industrial Science and Technology,

2–3–26, Aomi, Koto-ku, Tokyo 135-0064, Japan

Abstract. Consider a situation, known as Secret Santa, where n play-
ers wish to exchange gifts such that each player receives exactly one gift
and no one receives a gift from oneself. Each player only wants to know
in advance for whom he/she should purchase a gift. That is, the players
want to generate a hidden uniformly distributed random derangement.
(Note that a permutation without any fixed points is called a derange-
ment.) To solve this problem, in 2015, Ishikawa et al. proposed a simple
protocol with a deck of physical cards. In their protocol, players first
prepare n piles of cards, each of which corresponds to a player, and shuf-
fle the piles. Subsequently, the players verify whether the resulting piles
have fixed points somehow: If there is no fixed point, the piles serve as
a hidden random derangement; otherwise, the players restart the shuffle
process. Such a restart occurs with a probability of approximately 0.6.
In this study, we consider how to decrease the probability of the need to
restart the shuffle based on the aforementioned protocol. Specifically, we
prepare more piles of cards than the number n of players. This poten-
tially helps us avoid repeating the shuffle, because we can remove fixed
points even if they arise (as long as the number of remaining piles is at
least n). Accordingly, we propose an efficient protocol that generates a
uniformly distributed random derangement. The probability of the need
to restart the shuffle can be reduced to approximately 0.1.

Keywords: Card-based cryptography · Derangement (Permutation
without fixed points) · Exchange of gifts · Secret Santa

1 Introduction

Let n (≥ 3) be a natural number, and consider a situation, known as Secret
Santa, where n players P1, P2, . . . , Pn wish to exchange gifts such that each
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 78–89, 2021.
https://doi.org/10.1007/978-3-030-68211-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_7&domain=pdf
http://orcid.org/0000-0001-6623-4000
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-8698-1043
http://orcid.org/0000-0002-9395-9987
https://doi.org/10.1007/978-3-030-68211-8_7

Efficient Generation of a Card-Based Random Derangement 79

player receives exactly one gift and no one receives a gift from oneself. Every
player wants to know in advance for whom he/she should purchase a gift. Math-
ematically, an assignment of a gift exchange can be regarded as a permutation,
i.e., an element in Sn, which is the symmetric group of degree n; in this context,
a permutation π ∈ Sn indicates that a player Pi for every i, 1 ≤ i ≤ n, will pur-
chase a gift for Pπ(i). Such a permutation π ∈ Sn must not have any fixed points,
i.e., π(i) �= i for every i, 1 ≤ i ≤ n, to prevent each player from receiving a gift
from himself/herself. Note that a permutation is called a derangement if it has
no fixed point. Therefore, the players want to generate a uniformly distributed
random derangement. Furthermore, to make the exchange fun, it is necessary
for each player Pi to know only the value of π(i). Thus, we aim to generate a
“hidden” uniformly distributed random derangement.

Physical cryptographic protocols are suitable for resolving this type of problem
because they can be easily executed by using familiar physical tools without
relying on complicated programs or computers.

1.1 Background

The problem of generating a hidden derangement was first studied by Crépeau
and Kilian [2] in 1993. Since then, several solutions with physical tools have been
proposed. (Refer to [17] for the non-physical solutions.) As practical protocols,
Heather et al. [6] proposed a protocol with envelopes and fill-in-the-blank cards
in 2014; Ibaraki et al. [7] proposed a protocol with two sequences of cards repre-
senting player IDs and gift IDs in 2016. The common feature of these two prac-
tical protocols is that the generated derangement is not uniformly distributed;
it always includes a cycle of a specific length.

Let us focus on generating a uniformly distributed random derangement.
A protocol that generates a uniformly distributed random derangement was
proposed by Crépeau and Kilian [2] with a four-colored deck of 4n2 cards.
Ishikawa, Chida, and Mizuki [8] subsequently improved the aforementioned pro-
tocol by introducing a pile-scramble shuffle that “scrambles” piles of cards. Their
improved protocol, which we refer to as the ICM protocol hereinafter, uses a two-
colored deck of n2 cards. It is described briefly as follows. (Further details will
be presented in Sect. 2.5).

1. Prepare n piles of cards, each of which corresponds to a player.
2. Apply a pile-scramble shuffle to the n piles to permute them randomly.
3. Check whether there are fixed points in the n piles somehow.

– If there is at least one fixed point, restart the shuffle process, i.e., go back
to Step 2.

– If there is no fixed point, the piles serve as a hidden random derangement.

Thus, the ICM protocol is not guaranteed to terminate within a finite runtime,
because it restarts the shuffle process whenever a fixed point arises. The prob-
ability that at least one fixed point appears in Step 3 is 1 − ∑n

k=0 (−1)k/k! ≈
1 − 1/e ≈ 0.63 (where e is the base of the natural logarithm), which will be
described later in Sect. 2.5.

80 S. Murata et al.

In 2018, Hashimoto et al. [4] proposed the first finite-runtime protocol for
generating a uniformly distributed random derangement by using the properties
of the types of permutations. While their proposed protocol is innovative, its
feasibility to be performed by humans has not been studied, as it requires a
shuffle operation with a nonuniform probability distribution.

1.2 Contributions

In this study, we also deal with generating a uniformly distributed random
derangement and propose a new card-based protocol by improving the ICM
protocol. Specifically, we devise a method to reduce the probability of the need
to restart in the ICM protocol. Recall that, after one shuffle is applied in Step 2,
the ICM protocol returns to Step 2 with a probability of approximately 0.6.
In card-based protocols, it is preferable to avoid repeating shuffle operations
because players manipulate the deck of physical cards by hand. Here, we pre-
pare more piles of cards than the number n of players, i.e., we prepare n + t
piles for some t ≥ 1. This potentially helps us remove fixed points (if they arise);
hence, we can reduce the probability of the need to restart the shuffle. In the
same manner as the ICM protocol, the proposed protocol generates a hidden uni-
formly distributed random derangement. The probability of the need to restart
the shuffle is reduced by increasing the number t of additional piles. Specifically,
the probability of the need for such a restart can be reduced to approximately
0.1 by setting t = 3.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the notions of card-based cryptography, the properties of permutations, and the
ICM protocol. In Sect. 3, we present our protocol. In Sect. 4, we demonstrate the
relationship between the number t of additional piles and the probability of the
need to restart the shuffle; we illustrate how the probability can be reduced by
increasing the number t.

1.3 Related Works

Card-based cryptography involves performing cryptographic tasks, such as secure
multi-party computations, using a deck of physical cards; since den Boer [1]
first proposed a protocol for a secure computation of the AND function with
five cards, many elementary computations have been devised (e.g., [11,14]). For
more complex tasks, millionaire protocols [9,12,13] that securely compare the
properties of two players, a secure grouping protocol [5] that securely divides
players into groups, and zero-knowledge proof protocols for pencil puzzles [3,10,
15,16,18] were also proposed.

2 Preliminaries

In this section, we introduce the notions of cards and the pile-scramble shuffle
used in this study, and the properties of permutations. Furthermore, we introduce
the ICM protocol proposed by Ishikawa et al. [8].

Efficient Generation of a Card-Based Random Derangement 81

2.1 Cards

In this study, we use a two-colored (black ♣ and red ♥) deck of cards. The
rear sides of the cards have the same pattern ? . The cards of the same color
are indistinguishable. Using n cards consisting of n − 1 black cards and one red
card, we represent a natural number i, 1 ≤ i ≤ n, using a sequence such that
the i-th card is red and the remaining cards are black:

1

♣
2

♣ · · ·
i

♥ · · ·
n−1

♣
n

♣ .

If a sequence of face-down cards represents a natural number i according to the
above encoding rule, we refer to it as a commitment to i and express it as follows:

1

?
2

? · · ·
n

?
︸ ︷︷ ︸

i

.

2.2 Pile-scramble Shuffle

A pile-scramble shuffle is a shuffle operation proposed by Ishikawa et al. [8].
Let (pile1, pile2, . . . , pilen) be a sequence of n piles, each consisting of the same
number of cards. By applying a pile-scramble shuffle to the sequence, we obtain a
sequence of piles (pileπ−1(1), pileπ−1(2), . . . , pileπ−1(n)) where π ∈ Sn is a uniformly
distributed random permutation. Humans can easily implement a pile-scramble
shuffle by using rubber bands or envelopes.

2.3 Properties of Permutations

An arbitrary permutation can be expressed as a product of disjoint cyclic per-
mutations. For example, the permutation

τ =
(

1 2 3 4 5 6 7
3 5 6 4 2 7 1

)

can be expressed as the product of three disjoint cyclic permutations τ1 =
(4), τ2 = (25), τ3 = (1367): τ = τ1τ2τ3 = (4)(25)(1367). The lengths of the
cyclic permutations τ1, τ2, and τ3 are 1, 2, and 4, respectively. A cycle of length
one is a fixed point.

Let dn denote the number of all derangements in Sn; then, dn can be
expressed as follows:

dn = n!
n∑

k=0

(−1)k

k!

for n ≥ 2, and d1 = 0. The number of permutations (in Sn) having exactly f
fixed points is nCf · dn−f , where we define d0 = 1.

82 S. Murata et al.

2.4 Expression of Permutation Using Cards

Hereinafter, we use the expression [1 : m] to represent the set {1, 2, . . . ,m} for a
positive integer m. Remember that a commitment to i ∈ [1 : n] consists of one
red card at the i-th position and n − 1 black cards at the remaining positions.
In this paper, we represent a hidden permutation π ∈ Sn using a sequence of n
distinct commitments (X1, . . . , Xn) such that

X1 : ? ? · · · ?
︸ ︷︷ ︸

π(1)

...

Xn : ? ? · · · ?
︸ ︷︷ ︸

π(n)

. (1)

Given a hidden permutation π ∈ Sn in the above form (1), to check
whether an element i ∈ π is a fixed point, it suffices to reveal the
i-th card of the i-th commitment: if the revealed card is red, the element is
a fixed point, i.e., π(i) = i.

2.5 The Existing Protocol

We introduce the ICM protocol [8], which generates a uniformly distributed
random derangement using n2 cards with the pile-scramble shuffle, as follows.
1. Arrange n distinct commitments corresponding to the identity permutation

(in Sn) according to the form (1). That is, all the cards on the diagonal are
red ♥ and the remaining cards are black ♣.

2. Apply a pile-scramble shuffle to the sequence of n commitments. Note that
the resulting n commitments correspond to a certain permutation π ∈ Sn;
moreover, π is uniformly randomly distributed.

3. Turn over the n cards on the diagonal to check whether there are fixed points
in the permutation π.

– If at least one red card appears, return to Step 2.
– If all the revealed cards are black, π has no fixed point; hence, π is a

uniformly distributed random derangement.
After n players P1, P2, . . . , Pn obtain a hidden derangement (consisting of n
commitments) through this protocol, Secret Santa can be implemented by Pi

receiving the i-th commitment; he/she reveals the commitment privately to con-
firm the value of π(i), and then purchases a gift for Pπ(i).

Whenever a generated permutation π is not a derangement, the protocol
returns to Step 2. The probability that a generated permutation uniformly
randomly chosen from Sn is a derangement is dn/n! =

∑n
k=0 (−1)k/k!. As

limn→∞
∑n

k=0 (−1)k/k! = 1/e, the probability of the need to restart the shuffle
in the ICM protocol is approximately 1 − 1/e ≈ 0.63.

Note that Ishikawa et.al. [8] also showed that the number of required cards
can be reduced from n2 to 2n	log2 n
 + 6 by arranging each pile of cards corre-
sponding to a player based on a binary number.

Efficient Generation of a Card-Based Random Derangement 83

3 Proposed Protocol for Generating a Derangement

In this section, we improve the ICM protocol [8] described in Sect. 2.5 so that
the probability of the need to restart the shuffle is decreased. Here, we prepare
more piles of cards than the number n of players.

3.1 Overview of the Proposed Protocol

Let us provide an overview of the proposed protocol.
We first prepare n + t commitments instead of n commitments, and apply a

pile-scramble shuffle to them. These t additional commitments provide a buffer
that absorbs any fixed points that may arise. By revealing the cards on the
diagonal, we determine all the fixed points; let f be their number. If the fixed
points are too many to be absorbed, i.e., f > t, restart the shuffle. If f ≤ t,
we apply the “fixed-point removal” operation (described in Sect. 3.2), resulting
in n + t − f commitments. Subsequently, we apply the “reduction” operation
(described in Sect. 3.2) to eliminate the t − f extra commitments.

We explain both the fixed-point removal and reduction operations in the
following subsection.

3.2 Definitions of the Two Operations

Suppose that we execute Steps 1 and 2 in the ICM protocol (shown in Sect. 2.5),
starting with the identity permutation of degree n + t (instead of degree n).
Then, we obtain a sequence of n + t commitments corresponding to a uniformly
distributed random permutation in Sn+t: we refer to such a sequence of com-
mitments as a committed permutation on [1 : n + t].

Fixed-point Removal Operation. For the above committed permutation on
[1 : n + t], let us reveal all the n + t cards on the diagonal as in Step 3
of the ICM protocol. Subsequently, we determine all the fixed points in the
permutation. Let IFP be the set of indices of these fixed points. Ignoring the
commitments corresponding to the fixed points, namely, the commitments
whose positions are in IFP, the sequence of the remaining commitments cor-
responds to a derangement uniformly distributed on [1 : n + t]\IFP: we refer
to this sequence as a committed derangement on [1 : n + t]\IFP.

Through the fixed-point removal operation, a committed permutation of degree
n + t is transformed into a committed derangement on [1 : n + t]\IFP of degree
n + t − |IFP|.

Consider the case of (n, t) = (4, 3) as an example. Let us transform a commit-
ted permutation shown in Fig. 1a. Then, after the fixed-point removal operation
is applied to the committed permutation of degree seven, all the seven cards on
the diagonal are revealed as shown in Fig. 1b. In this example, the commitment
X2 is a fixed point; hence, we have IFP = {2} and the sequence of the remain-
ing six commitments (X1,X3,X4,X5,X6,X7) is a committed derangement on
[1 : 7]\{2} = {1, 3, 4, 5, 6, 7} of degree six.

84 S. Murata et al.

Fig. 1. Example of execution of the proposed protocol

As n = 4, the current committed derangement (depicted in Fig. 1b) has two
“extra” commitments, i.e., we aim to reduce the degree by two. To this end,
we turn over the last commitment, i.e., the seventh commitment X7. Assume
that the revealed value of X7 is 4 as illustrated in Fig. 1c, indicating a mapping
7 �→ 4, which we refer to as a bypass. That is, let us ignore the seventh revealed
commitment and regard mapping to 7 as virtually mapping to 4 (via the bypass
7 �→ 4). Consequently, we obtain a committed permutation on {1, 3, 4, 5, 6} of
degree five, which has been reduced by one.

We now have the committed permutation of degree five (as in Fig. 1c). It
may not be a derangement because if 4 �→ 7, it (virtually) has a fixed point (due
to the cycle 7 �→ 4 �→ 7). Therefore, we turn over the seventh card of the fourth
commitment X4 to check whether it is a fixed point.

– If a red card appears as shown in Fig. 1d, we have the cycle 7 �→ 4 �→ 7, indi-
cating a fixed point. Let Icycle denote the set of all the indices of the cycle, i.e.,
Icycle = {4, 7}. Ignoring this cycle, namely, the commitments X4 and X7, the
sequence of the remaining commitments (X1,X3,X5,X6) becomes a commit-
ted derangement uniformly distributed on [1 : 7]\(IFP ∪ Icycle) = {1, 3, 5, 6}.

Efficient Generation of a Card-Based Random Derangement 85

Thus, we obtain a committed derangement of degree four, as desired. Note
that, in this case, the degree decreases by two.

– If a black card appears as shown in Fig. 1e, there is no fixed point; hence,
this committed permutation (X1,X3,X4,X5,X6) is a uniformly distributed
derangement of degree five under the bypass 7 �→ 4. In this case, the degree
decreases by one.

In the above example, if a black card appears, we obtain a derangement
of degree five; hence, we need to reduce the degree further (because n = 4).
Therefore, we are expected to reveal another commitment (in this case, we reveal
the fourth commitment X4 because of the bypass 7 �→ 4, as illustrated in Fig. 1f;
we will revisit it later).

In general, we define the reduction operation for a committed derangement
on [1 : n + t]\(IFP ∪ Icycle ∪ IBP) as follows, where IFP is the set of fixed points,
Icycle is the set of indices in cycles, there is a bypass i1 �→ i2 �→ · · · �→ i�−1 �→ i�,
and IBP = {i1, i2, . . . , i�−1}.

Reduction Operation. If IBP �= φ, turn over the i�-th commitment Xi�
(which

is the end of the bypass). If IBP = φ, turn over the last of the remaining com-
mitments, i.e., the (max([1 : n + t]\(IFP ∪ Icycle)))-th commitment; in this
case, we set i� = i1 = max([1 : n + t]\(IFP ∪ Icycle)) for the sake of conve-
nience. In either case, let i�+1 be the value of the turned over commitment.
Then, turn over the i1-th card of the i�+1-th commitment Xi�+1 .

– If a red card appears, this committed permutation has the cycle i1 �→
· · · �→ i�+1 �→ i1. The indices i1, . . . , i�+1 of this cycle, namely, all the
elements in set IBP∪{i�, i�+1}, are added to the set Icycle, and the bypass
disappears; hence, we set IBP = φ. Ignoring all the commitments whose
positions are in IFP ∪ Icycle, the sequence of the remaining commitments
becomes a committed derangement on [1 : n + t]\(IFP ∪ Icycle). Note
that the degree of the committed derangement has been reduced by two
(because of ignoring Xi�

and Xi�+1).
– If a black card appears, the sequence of the remaining commitments is

a committed derangement uniformly distributed on [1 : n + t]\(IFP ∪
Icycle ∪ IBP) under the bypass i1 �→ · · · �→ i� �→ i�+1 (where IBP =
{i1, i2, . . . , i�}). In this case, the degree of the committed derangement
has been reduced by one.

3.3 Description of the Proposed Protocol

We describe the proposed protocol using the two aforementioned operations.
This protocol uses n + t piles (whereas the ICM protocol [8] uses n piles), as
follows.

1. Arrange n+t distinct commitments corresponding to the identity permutation
(in Sn+t) according to the form (1). That is, all the n+t cards on the diagonal
are red ♥ and the remaining cards are black ♣.

86 S. Murata et al.

2. Apply a pile-scramble shuffle to the sequence of n + t commitments, and the
resulting n + t commitments become a committed permutation on [1 : n + t].

3. Apply the fixed-point removal operation described in Sect. 3.2 to the commit-
ted permutation obtained in Step 2. Let IFP be the set of fixed points and
f = |IFP|. We obtain a committed derangement on [1 : n + t]\IFP of degree
n + t − f .

– In the case of f > t, the committed derangement is insufficient because its
degree is less than the number n of players. Therefore, turn all the cards
face-down, and return to Step 2.

– In the case of f = t, the degree of the committed derangement is n, as
desired. Therefore, proceed to Step 5.

– In the case of f < t, proceed to Step 4.
4. Repeatedly apply the reduction operation described in Sect. 3.2 to the com-

mitted derangement on [1 : n + t]\IFP obtained in Step 3, until its degree
becomes n or less. Recall that each application of the reduction operation
reduces the degree by one or two.

– If a committed derangement of degree n−1 is obtained, turn all the cards
face-down, and return to Step 2.

– If a committed derangement of degree n is obtained, proceed to Step 5.
5. We have a committed derangement of degree n on [1 : n + t]\(IFP ∪ Icycle ∪

IBP), as desired.

After we obtain a committed derangement in Step 5, we renumber the players
based on the remaining n commitments. If there is a bypass i1 �→ i2 �→ · · · �→ i�,
a player who turns over the commitment to i1 should purchase a gift for the
player corresponding to i�. For example, consider the committed derangement
illustrated in Fig. 1f, which is obtained from Fig. 1e by revealing X4 and the
seventh card of X5. We renumber the four players such that P1 = P ′

1, P2 = P ′
3,

P3 = P ′
5, and P4 = P ′

6, and make P ′
1, P ′

3, P ′
5, and P ′

6 receive commitments
X1, X3, X5, and X6, respectively. Each player secretly turns over the assigned
commitment to know for whom he/she should purchase a gift. Because of the
bypass 7 �→ 4 �→ 5, the player who reveals the commitment to 7 should purchase
a gift for P ′

5.
Thus, the proposed protocol generates a committed derangement. As there

is a trade-off between the number t of additional piles and the probability of
returning to Step 2, we comprehensively analyze the probability of the need to
restart the shuffle in the following section.

4 Probability of the Need to Restart the Shuffle

In the proposed protocol presented in the previous section, the probability of
the need to restart the shuffle depends on the number t (≥ 1) of additional piles.
In this section, we analyze this probability. Recall that the restart occurs when
either more than t fixed points appear in Step 3 or a derangement of degree n−1
is obtained in Step 4.

Efficient Generation of a Card-Based Random Derangement 87

Let f be the number of fixed points determined in Step 2. A restart
from Step 3 occurs if t + 1 ≤ f ≤ n + t. As the probability that a uni-
formly distributed random permutation in Sn+t has exactly f fixed points is
n+tCf · dn+t−f/(n + t)!, the following equation holds:

Pr[Restart from Step 3] =
n+t∑

f=t+1

n+tCf · dn+t−f

(n + t)!
. (2)

Next, we consider a restart from Step 4. Suppose that we have a commit-
ted derangement of degree n + x for a non-negative integer x. Let ε(n, x) be
the probability that repeated applications of the reduction operation result in a
committed derangement of degree n − 1 and we return to Step 2. Each applica-
tion of the reduction operation to the committed derangement of degree n + x
produces a committed derangement of degree either n + x − 2 or n + x − 1.
The former occurs when the commitment to be revealed is included in a cycle of
length two; therefore, its occurrence probability is (n + x − 1)dn+x−2/dn+x. The
latter occurs with a probability of 1−(n + x − 1)dn+x−2/dn+x. Thus, ε(n, x) can
be expressed recursively as follows:

ε(n, x) =
(

1 − (n + x − 1)dn+x−2

dn+x

)

· ε(n, x − 1)

+
(n + x − 1)dn+x−2

dn+x
· ε(n, x − 2),

where ε(n, 0) = 0 and ε(n, 1) = n · dn−1/dn+1. As Step 4 occurs when f lies
between 0 and t − 1 with a probability of n+tCf · dn+t−f/(n + t)!, the following
equation holds:

Pr[Restart from Step 4] =
t−1∑

f=0

n+tCf · dn+t−f

(n + t)!
· ε(n, t − f). (3)

The probability of the need to return to Step 2 for the entire proposed pro-
tocol, denoted by Pr[Restart(n,t)], is the sum of Eqs. (2) and (3). Figure 2 shows
the relationship between t (≤ 10) and the probability Pr[Restart(n,t)] for the
number of players from n = 3 to n = 20. Pr[Restart(n,0)] is the same as the
probability for the ICM protocol. The proposed protocol improves significantly
as t increases. If we prepare t additional piles, the number of required cards
increases by t(t + 2n); considering an unnecessarily large t is not realistic. Even
if we set t to a small value such as 2 or 3, the probability can be reduced to
approximately 0.1 compared with that of the ICM protocol (approximately 0.6).

88 S. Murata et al.

⋮

Fig. 2. Relationship between the number t of additional piles and the probability of
the need to restart Pr[Restart(n,t)]

5 Conclusion

In this paper, we proposed a new efficient protocol that generates a uniformly
distributed random derangement. We prepared more piles of cards than the
number n of players to suppress the need to restart the shuffle process. There is
a trade-off between the number t of additional piles and the probability of the
need to restart the shuffle. When executing the proposed protocol, it is better
to set t = 2 or t = 3, as shown in Fig. 2.

The proposed technique can also be applied to the existing protocol based
on the binary expression of the indices of players [8].

Acknowledgement. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported in part by JSPS
KAKENHI Grant Number JP19J21153.

References

1. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

3. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009)

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27

Efficient Generation of a Card-Based Random Derangement 89

4. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating a hidden random permutation
without fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E101.A, 1503–1511 (2018)

5. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol.
10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72089-0 8

6. Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday
objects. Formal Aspects Comput. 26, 37–62 (2014)

7. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: 2016 Third International Conference
on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 252–257,
August 2016

8. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

9. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

10. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-
Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. Leibniz Interna-
tional Proceedings in Informatics, LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum fur
Informatik GmbH, Dagstuhl Publishing, September 2020

11. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

12. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 30

13. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the million-
aires’ problem using private input operations. In: 2018 13th Asia Joint Conference
on Information Security (AsiaJCIS), pp. 23–28, August 2018

14. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Gener. Comput. (2020, in press). https://doi.org/10.1007/s00354-
020-00113-z

15. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 19

16. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. (2020, in press). https://
doi.org/10.1007/s00354-020-00114-y

17. Ryan, P.Y.A.: Crypto Santa. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J.
(eds.) The New Codebreakers. LNCS, vol. 9100, pp. 543–549. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49301-4 33

18. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/978-3-662-49301-4_33

Compact Data Structures for Dedekind
Groups and Finite Rings

Bireswar Das and Shivdutt Sharma(B)

IIT Gandhinagar, Gandhinagar, India
{bireswar,shiv.sharma}@iitgn.ac.in

Abstract. A group with n elements can be stored using O(n2) space via
its Cayley table which can answer a group multiplication query in O(1)
time. Information theoretically it needs Ω(n log n) bits or Ω(n) words
in word-RAM model just to store a group (Farzan and Munro, ISSAC
2006).

For functions s, t : N −→ R≥0, we say that a data structure is an
(O(s), O(t))-data structure if it uses O(s) space and answers a query in
O(t) time. Except for cyclic groups it was not known if we can design
(O(n), O(1))-data structure for interesting classes of groups.

In this paper, we show that there exist (O(n), O(1))-data structures
for several classes of groups and for any ring and thus achieve information
theoretic lower bound asymptotically. More precisely, we show that there
exist (O(n), O(1))-data structures for the following algebraic structures
with n elements:

– Dedekind groups: This class contains abelian groups, Hamiltonian
groups.

– Groups whose indecomposable factors admit (O(n), O(1))-data
structures.

– Groups whose indecomposable factors are strongly indecomposable.
– Groups defined as a semidirect product of groups that admit

(O(n), O(1))-data structures.
– Finite rings.

Keywords: Theoretical computer science · Abelian groups · Dedekind
groups · Finite rings · Linear space representations · Compact data
structures · Strongly indecomposable groups

1 Introduction

A group can be represented as the input to an algorithm in various formats. Some
of these representations include the Cayley table representation, the permutation
group representation, the polycyclic representation and the generator-relator
representation.

Several computational group theoretic problems such as various property
testing problems, group factoring problem, minimum generating set problem,
computing basis for an abelian group etc., where the input groups are represented
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 90–102, 2021.
https://doi.org/10.1007/978-3-030-68211-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_8

Compact Data Structures for Dedekind Groups and Finite Rings 91

by their Cayley tables (or the multiplication tables), have been studied in the
past [2,4,11,13,16,21]. Perhaps the most important problem when the input is
represented by Cayley tables is the group isomorphism problem (GrISO). This
problem has been studied extensively in the field of computational complexity
theory and algorithms because of its unresolved complexity status.

The Cayley table for a group with elements {1, 2, . . . , n} is a two dimensional
table indexed by a pair of group elements (i, j). The (i, j)-th entry of the table
is the product of i and j. A multiplication query where the user asks “what
is the product of element i and j?” can thus be answered in constant time.
However, it needs O(n2 log n) bits or O(n2) words in the word-RAM model
to store a Cayley table for a group of size n. Cayley tables can also be used
to store quasigroups (latin squares) and semigroups. However the number of
quasigroups or semigroups of size n are so large (see [15,18]) that the information
theoretic lower bound to store quasigroups or semigroups is Ω(n2 log n) bits or
Ω(n2) words. In this sense, the Cayley group representations for quasigroups or
semigroup is optimal.

It is natural to ask if a group can be represented using subquadratic space
while still being able to answer a multiplication query in constant time. Farzan
and Munro [9] gave an information theoretic lower bound of n log n bits to store
a group of size1 n. This lower bound implies an Ω(n) lower bound on the number
of words required to store a group in word-RAM model. A data structure that
achieves the optimum information theoretic lower bound asymptotically is known
as a compact data structure.

A recent result [7] shows that a finite group G with n elements can be stored
in a data structure that uses O(n1+δ/δ) space and answers a multiplication
query in time O(1/δ) for any δ such that 1/ log n ≤ δ ≤ 1. This result shows, for
example, that a finite group can be stored in a data structure that uses O(n1.01)
words and answers a query in constant time. However, it is not clear if this data
structure is compact as the lower bound given by Farzan and Munro may not
be the optimal lower bound for the class of all groups. For general group class
it is not clear if we can design a data structure that uses O(n logO(1) n) space
and answers a query in O(1) time. Or if we are willing to spend more time,
say O(log n), to answer a query can we design a data structure that takes O(n)
space? Of course the best scenario would be to obtain a data structure for groups
that uses O(n) space and answers queries in O(1) time.

Except for cyclic groups, it was unknown if we could design compact data
structures for other classes of groups while still retaining the capability to answer
queries in constant time. As an application of this result we show that groups

1 Without loss of generality, the group elements are assumed to be {1, . . . , n}, and
the task is to store the information about the multiplication of any two elements.
Here the user knows the labels or the names of each element and has a direct and
explicit access to each element. We can compare the situation with permutation
group representation where a group is represented as a subgroup of a symmetric
group. The group is given by a set of generators. Here the user does not have an
explicit representation for each group element.

92 B. Das and S. Sharma

whose indecomposable direct factors are strongly indecomposable have compact
data structure with constant query time. We also show that if a group can be
written as the semidirect product of two groups which admit linear space data
structures with constant query time then the original group also admits a linear
space data structure with constant query time.

A common theme in most of our results is to judiciously use the structure
of the group to obtain a constant number of instances of the problem where
the group sizes are small, and the data structures used in [7] can be used. We
also use simple data structures to ‘combine’ the data structures for the smaller
instances to get a data structure for the original group.

One natural way to decompose a group into smaller groups is to use the
Remak-Krull-Schmidt theorem. The Remak-Krull-Schmidt theorem says that
any finite group can be factored as a direct product of indecomposable groups.
We prove that if the indecomposable direct factors of a group have a linear space
data structure with constant query time then the group also has a linear space
data structure with constant query time. As an application of this result we show
that groups whose indecomposable direct factors are strongly indecomposable
have compact data structure with constant query time. We also show that if
a group can be written as the semidirect product of two groups which admit
linear space data structures with constant query time then the original group
also admits linear space data structure with constant query time.

We also study space efficient representations of finite rings. A simple idea
to store a finite ring is to store its addition and multiplication tables using
quadratic space. These two tables can answer an addition or a multiplication
query in constant time. Kayal and Saxena [14] used a representation for finite
rings which takes polylogarithmic time in the size of the given ring to answer an
addition or a multiplication query. However, this representation do not label or
name each element and the user needs to specify an element as a Z-linear sum
of the basis element of the additive structure for the group. We show that for
any finite ring there is a data structure that uses linear space and answers an
addition query or a multiplication query in constant time.

Related Work: Farzan and Munro [9] studied space efficient representations of
finite abelian groups in a specific model of computation that has a query process-
ing unit that performs the group operation. The query processing unit accepts
the elements associated with a query in a certain format and the user is responsi-
ble to supply the elements in that specific format. The query processing unit also
supports some extra operations such as bit reversals. They show that the query
processing unit needs to store just a constant number of words and can answer
a query in constant time. The result of Farzan and Munro has been extended
[7] to some non-abelian group classes such as Dedekind groups. We note that
in this paper we do not assume that the user converts the group elements into
any specific format. The user’s query will involve the elements in their original
format only.

Compact Data Structures for Dedekind Groups and Finite Rings 93

2 Preliminaries

In this paper all groups considered are finite. Let G be a group and S be a
subset of group G then 〈S〉 denotes the subgroup generated S. The order of a
G, denoted by |G|, is the cardinality of G. The order of an element x ∈ G is
denoted by ordG(x) and it is the minimum positive integer m such that xm is
identity.

A group is said to be indecomposable if cannot be decomposed as a direct
product of nontrival subgroups. The Remak-Krull-Schmidt theorem says that
any finite group can be decomposed “uniquely” as the direct product of inde-
composable subgroups.

Theorem 1 (Remak-Krull-Schmidt, see e.g., [10]). Let G be a group. Let
G = G1 × G2 × . . . × Gt where Gi for i ∈ [t] is indecomposable. If G = H1 ×
H2 × . . . × Hs such that Hi for all i ∈ [s] is indecomposable then s = t and after
reindexing Gi

∼= Hi for every i, and for any r < t, G = G1 × . . . × Gr × Hr+1 ×
. . . × Ht.

The structure theorem for finite abelian groups states that any finite abelian
group G can be decomposed as G = 〈g1〉 × 〈g2〉 × . . . × 〈gt〉, where each 〈gi〉,
i ∈ [t] is a cyclic group of prime power order generated by the element gi. The
set B = {g1, g2, . . . , gt} is called as a basis of the abelian group G.

Let A and B are two groups, let ϕ : B −→ Aut(A) be a homomorphism. The
semidirect product of A and B with respect to ϕ, denoted A �ϕ B, is the group
with elements A × B along with the following binary operation: The product of
two elements (a1, b1) and (a2, b2) is the element (a1(ϕ(b1))(a2), b1b2).

The generalized quaternion group (see [5]) is defined as follows. For n ≥ 3,
set Q2n = (Z2n−1 � Z4)/〈(2n−2, 2)〉 where, semidirect product obeys the follow-
ing product rule (a, b)(c, d) = (a + (−1)bc, b + d). The group Q2n is called the
generalized quaternion group. For n = 3, Q8 is called as quaternion group.

A ring is a set R with two binary operations + and × (generally called as
addition and multiplication, respectively) satisfying the following conditions: 1)
(R,+) is an abelian group, 2) For all r, s, t ∈ R, r × (s + t) = (r × s) + (r × t)
and (s+ t)× r = (s × r) + (t × r), 3) For all r, s, t ∈ R, r × (s × t) = (r × s)× t.

For integers a and b > 0, a%b denotes the positive remainder when a is
divided by b.

Model of Computation: In this paper we use word-RAM (Random Access
Machine) as the model of computation. A RAM is an abstract machine in the
general class of register machines. In this model each register and memory unit
can store O(log n) bits where n is the input size. The unit of storage is called a
word. In a word-RAM machine, word operations can be performed in constant
time. In this paper, n denotes the order of the input group or ring. All arithmetic,
logical, and comparison operations on words take constant time. Each memory
access also takes constant time. Unless stated otherwise we assume without loss
of generality that elements of the input group are encoded as 1, 2, . . . , n.

There will be two phases: preprocessing phase and multiplication query phase
or simply query phase. In the preprocessing phase, if we are given a group G

94 B. Das and S. Sharma

by its Cayley table, then at the end of the preprocessing phase, we output a
few data structures needed for multiplication query. In the multiplication query
phase, we are given two group elements, g1 and g2 of the group G, and we want
to know the result of the g1g2. A multiplication query is answered using the
data structures computed in the preprocessing phase. The situations is similar
for rings except for the fact that there are two types of queries instead of one:
an addition query or a multiplication query. The time and space used in the
preprocessing phase are not counted towards time and space complexity. The
space complexity refers only to the space used by the data structure in terms of
number of words.

Suppose that B is the information theoretical optimal number of bits needed
to store some data. A representation of this data is called compact if it uses
O(B) bits of space.

Definition 1. Let s : N −→ R≥0 and t : N −→ R≥0 be two functions. We say
that a group G has an (s, t)-data structure if we can construct a data structure
for representing the group that uses at most s(n) space to store G and can answer
a multiplication query in time at most t(n) where n is the size of the group G.

Definition 2. Let G be a class of groups and let s : N −→ R≥0 and t : N −→
R≥0 be two functions. We say that G has an (O(s(n)),O(t(n)))-data structure
if for every G ∈ G with |G| = n we can construct a data structure that uses
O(s(n)) space to store G and answers a multiplication query in time O(t(n)).

We would say, with slight abuse of notation, that a group G has an
(O(s(n)),O(t(n)))-data structure when the group class G containing G is clear
from the context and G has an (O(s(n)),O(t(n)))-data structure. Note that the
Cayley table representation is an (O(n2),O(1))-data structure for the class of
all groups.

Our Results: There is an (O(n),O(1))-data structure for algebraic structures
Abelian (Ab) (Theorem 4), Dedekind (Ddk) (Theorem 7), groups whose inde-
composable factors are strongly indecomposable (Gstrong) (Theorem 10), semidi-
rect product groups whose factors have linear space constant query data struc-
tures (Theorem 8) and rings (Ring) (Theorem 11).

3 Meta Theorems

In this section we present some results that will be used in the later section to
give succinct representations of abelian, Hamiltonian, Dedekind groups etc. One
of the ingredients for proving these results is the following theorem.

Theorem 2 ([7]). Let G be a group of order n. Then for any δ such that
1

log n ≤ δ ≤ 1, there is a data structure D that uses O(n1+δ

δ) space and answers
multiplication queries in O(1δ) time.

Compact Data Structures for Dedekind Groups and Finite Rings 95

The proof of the above result, which could be found in [7], uses cube gen-
erating sequences of size O(log n), where n is the size of the group. Erdös and
Renyi [8] proved that such sequences always exist. We note that the data struc-
ture D mentioned in the above theorem can actually be computed efficiently in
polynomial time [7].

By setting, for example δ = 1
20 in the above theorem, the class of all groups

has an (O(n1.05),O(1))-data structure.

Lemma 1. Let δ > 0 be a fixed constant. Let Gδ be the class of groups G such
that G factors as G1 × G2 with |G1|, |G2| ≤ n

1
1+δ where n = |G|. Then Gδ has

an (O(n),O(1/δ))-data structure.

Proof. Let G = G1 × G2 such that |G1|, |G2| ≤ n1/(1+δ). We use data structures
D1 and D2 from Theorem 2 to store G1 and G2 in O(n) space that can support
multiplication queries in O(1/δ) time. Let g be an element of G suh that g =
(g1, g2) where g1 ∈ G1 and g2 ∈ G2. We use a forward-map array F indexed by
the group elements of G such that F [g] = (g1, g2) and a backward-map array B
such that B[g1][g2] = g. In the query processing phase, given two elements g and
h in G, access forward map array F at index g and h to obtain the decompositions
g = (g1, g2) and h = (h1, h2). Using the data structures D1 and D2 compute
g1h1 and g2h2 in time O(1/δ). Finally we use B[g1h1][g2h2] to obtain the final
result g1h1g2h2. �

The next lemma states that if we have compact representations for the inde-
composable factors then we can design compact representations of any group.

Lemma 2. Let G be a group class. Let

Fact(G) = {H|H is an indecomposable factor of G ∈ G}.

Then if Fact(G) has an (O(n),O(1))-data structure then G also has an
(O(n),O(1))-data structure.

Proof. Let G ∈ G and n = |G|. If G has an indecomposable factor G1 such that
|G1| ≥ n1/3 then the other factor G2 (may not be indecomposable) has size at
most n2/3. Thus G2 has a data structure D2 that uses O(n) space and answers
a multiplication query in time O(1) (we use δ = 1/2 in Theorem 2). Since G1

is indecomposable it has a data structure D1 that uses at most O(|G1|) space
and answer queries in time O(1). We can use techniques similar to the proof of
Lemma 1 to obtain the desired result.

On the other hand if all the indecomposable factors of G are of size at most
n1/3 then it is easy to see that G could be factored as H1×H2 where |H1|, |H2| ≤
n2/3. We are back again to a situation where we can use ideas similar to the proof
of Lemma 1. �

Remark 1. The preprocesing time in Lemma 1 and Lemma 2 depends on how
efficiently we can factor groups given by their Cayley tables. Kayal and Nezh-

96 B. Das and S. Sharma

metdinov [13] showed that, factoring a group and more generally computing a
Remak-Krull-Schmidt decomposition2 is polynomial-time.

4 Compact Data Structures for Special Group Classes

In this section we show that several group classes such as Dedekind groups and
some groups which can be written as a semidirect product have compact data
structures which can answer multiplication queries in constant time.

Abelian Groups: In the following part we show that abelian groups have
(O(n),O(1))-data structure. First we state the following well known lemma.

Lemma 3. The indecomposable factors Fact(Ab) of the class of finite abelian
groups Ab are cyclic of prime power order. In other words

Fact(Ab) = {Zpr |p is prime}.

Theorem 3. Let Cyc be the class of finite cyclic groups. Then Cyc has an
(O(n),O(1))-data structure. Moreover the data structure can be computed in
time linear in the size of the group.

Proof. Let C be a cyclic group of order n. By repeated powering of all the
elements in C we can find a generator g of C in time O(n2). However if we use
the results by Kavitha [12] we can find a generator of C in O(n) time.

For the data structure we use a forward-map array F indexed by the group
elements. For an element gi we set F [gi] = i. We use a backward-map array B
indexed by {0, 1, · · · , |C| − 1}. We set B[i] = gi. Given two elements a, b ∈ C we
can compute ab by finding k = (F [a] + F [b])%|C| and then finding B[k]. �

As a consequence of Theorem 3 and Lemma 2 we can conclude that the class of
abelian groups Ab has an (O(n),O(1))-data structure. Lemma 2 uses Theorem 2
and algorithms to factor groups. Group factoring is linear time for abelian groups
[4]. The preprocessing used in Theorem 2 involves computing a cube generating
sequence of logarithmic length which can be done in linear time. Moreover, if we
have the cube generating sequence, the rest of the preprocessing can be done in
linear time [7].

Theorem 4. The class of abelian groups Ab has an (O(n),O(1))-data struc-
ture. Moreover, the data structures supporting the representation can be computed
in time linear in the size of the input group.

2 A decomposition of group G is said to be Remak-Krull-Schmidt if all the factors in
the decomposition are indecomposable.

Compact Data Structures for Dedekind Groups and Finite Rings 97

Dedekind Groups: A group G is called a Dedekind group if every subgroup
of G is normal. The nonabelian Dedekind groups are called Hamiltonian groups.
Since we already know how to succinctly represent abelian groups in this section
we focus mainly on Hamiltonian groups. The Hamiltonian groups are character-
ized by the following interesting theorem.

Theorem 5 ([3]). A nonabelian group G is Hamiltonian if and only if G is the
direct product of Q8 and B and A, where A is an abelian group of odd order and
B is an elementary abelian 2-group3.

Theorem 6. Let Ham be the class of Hamiltonian groups. Then, Ham has an
(O(n),O(1))-data structure. The data structures supporting the representations
can be computed in time O(n) where n is the size of the group to be succinctly
represented.

Proof Idea. Let G be a Hamiltonian group and G = Q8 × A × B. Let g be an
element of G such that g = (q, a, b) where q ∈ Q8, a ∈ A, b ∈ B. We use a
forward-map array F such that F [g] = (q, a, b) and a backward-map array B
such that B[q][a][b] = g. The indecomposable factors of Hamiltonian groups are
Q8 and cyclic groups. So as a consequence of Theorem 3 and Lemma 2 we can
conclude that the class of Hamiltonian groups Ham has an (O(n),O(1))-data
structure. The preprocessing step involves decomposition of the Hamiltonian
group G as Q8 × A × B which can be performed in O(n) time by a recent result
of Das and Sharma [6].

Remark 2. We note that a group class in which every group can be factored
as the direct product of a nonabelian group of bounded size and an abelian
group, has an (O(n),O(1))-data structure. The preprocessing can be done in
time n(log n)O(1) using a factoring algorithm for such groups described in [6].

Theorem 7. Let Ddk be the class of Dedekind groups. The group class Ddk
has an (O(n),O(1))-data structure.

Semidirect Product Classes: There many groups which can be constructed
as a semidirect product of two groups. One important example is the class of
Z-groups. These are groups that can be written as the semidirect product of two
of its cyclic subgroups. Our result for semidirect product classes is as follows.

Theorem 8. Let c be a constant. Let Gc be the class of groups that can be written
as a semidirect product A�ϕ B for some ϕ : B −→ Aut(A) where A and B have
(cn, c)-data structures. Then Gc has an (O(n),O(1))-data structure.

Proof Idea. Let G = A�ϕ B. Let g be an element of G such that g = (a, b) where
a ∈ A and b ∈ B. We use a forward-map array F such that F [g] = (a, b) and a
backward-map array B such that B[a][b] = g. Both A and B have data structures
3 An elementary abelian 2-group is an abelian group in which every nontrivial element

has order 2. The groups A and B in the theorem can be the trivial group.

98 B. Das and S. Sharma

that use linear space to answer a multiplication query in constant time. We use
an array M of size |A||B| to store ϕ(b) ∈ Aut(A) for each b ∈ B. In the query
phase given two elements g and h of the group G, access F at index g and h.
Let F [g] = (a1, b1) where a1 ∈ A and b1 ∈ B and F [h] = (a2, b2) where a2 ∈ A
and b2 ∈ B. The result of the multiplication of g and h is (a1(ϕ(b1)(a2)), b1b2)
which can be performed in constant time by using the data structures.

We can apply Theorem 8 in conjunction with Theorem 7 to obtain the result
that if a group can be written as the semidirect product of two Dedekind groups
then it has (O(n),O(1))-data structure. The class of groups that can be written
as the semidirect product of Dedekind groups is fairly large class of groups as it
contains the Z-groups, and some generalization of Dedekind groups [17].

Strongly Indecomposable Groups: Remak-Krull-Schmidt states that any
group G can be decomposed as a direct product of indecomposable groups. If
each indecomposable factor has a linear space constant query data structure
then by Lemma 2, G has an (O(n),O(1))-data structure. We do not know how
to design constant query compact data structures for indecomposable groups
but for a class of indecomposable groups known as strongly indecomposable
we have designed such data structures. An indecomposable group G is strongly
indecomposable if each subgroups H of G is also indecomposable. We denote the
class of strongly indecomposable groups by Str. Our results in this part are
based on the characterization of strongly indecomposable groups given below.

Theorem 9 ([19]). A group G is a strongly indecomposable group if and only
if G is one of following types: 1) G is isomorphic to Zpn where p is some prime,
2) G is generalized quaternion, isomorphic to Q2n for n ≥ 3, 3) G = Zpα � Zpβ

with p and q are different primes, p is odd such that qβ divides p − 1 and the
image of Zqβ in Z

×
pα has order qβ.

Lemma 4. The class of finite strongly indecomposable groups Str has an
(O(n),O(1))-data structure.

Proof. If the structure of the input groups is as described in the case 1 or case 3
of above theorem, then Theorem 3 or Theorem8 (respectively) proves the result.
Now let G be a generalized quaternion group. By the structure of generalized
quaternion groups (see Sect. 2) it will be isomorphic to (Z2m−1 �Z4)/〈(2m−2, 2)〉.
Let N = 〈(2m−2, 2)〉4. Notice that |N | = 2. Thus for any g1 ∈ Z2m−1 � Z4 there
is exactly one element g2 in Z2m−1 � Z4 such that g1N = g2N and g1 	= g2. In
other words, exactly two elements of Z2m−1 � Z4 corresponds to an element of
G. This correspondence can be stored in an array of size 2|G|. To multiply two
elements of x, y ∈ G we can view these elements as gN and g′N and perform the
multiplication of g and g′ using Theorem 8. The final result can then be obtained
using the 2|G| sized array. �

4 This isomorphism can be computed in the preprocessing phase.

Compact Data Structures for Dedekind Groups and Finite Rings 99

Theorem 10. Let GStrong be a class of groups whose indecomposable factors
are strongly indecomposable. The group class GStrong has an (O(n),O(1))-data
structure.

Proof. This follows as an easy consequence of Lemma 4 and Lemma 2. �

5 Linear Space Representation of Finite Rings

A table representation (see e.g., [1,14,20]) of rings requires two tables; one stores
the result of the multiplication operation and the second stores the result of the
addition operation. There are two types of queries: given two elements x, y ∈ R
an addition query return x+ y whereas a multiplication query returns x × y. In
table representation these queries can be answered in constant time by accessing
the addition table and the multiplication table5. In this section we show that
rings has an (O(n),O(1))-data structure6. Since (R,+) is an abelian group,
Theorem 4 implies that there is an (O(n),O(1))-data structure for (R,+). The
table which stores the multiplication of the elements of the ring R does not follow
the group axioms. Thus the techniques used for groups can not be applied to
the multiplicative structure.

Theorem 11. Let Ring be a class of finite rings. Then Ring has an
(O(n),O(1))-data structure.

Proof. Let (R,+,×) be a ring of size n. The additive structure (R,+) is an
abelian group. Let R = R1 ⊕R2 ⊕ . . .⊕Rk be a decomposition of R by using the
structure theorem of abelian groups. The proof of the theorem is divided into
two cases on the basis of the size of the factors Ri, i ∈ [k].

Case 1: There exists an indecomposable factor R1 of order nα1 where α1 ≥ 1
2

for any i ∈ [k]. In this case the ring R can be decomposed as a direct sum of
two factors R1 and R2 i.e. R = R1 ⊕ R2 where the sizes of R1 and R2 are nα1

and nα2 for some α1 ≥ 1
2 and α2 ≤ 1

2 . It is important to note that R1 = 〈g〉
is a cyclic group generated by an element g (see Lemma 3). Also note that any
element r of R1 can be written as a nr × g where nr is a non-negative integer
less than the additive order ord(g) of g.

Data Structures: We store a forward-map array F indexed by the elements of
R. A table Tcross of size O(|R1||R2|) which stores the multiplication of R1 and
R2. We store a table T2 for additive group R2 which stores the multiplication
of the elements of R2 with itself. Note that R1 = 〈g〉. Let C = 〈g〉. We store
a forward-map array F1 indexed by the elements of R1 such that F1[r1] = nr1

where for nr1 is the unique integer satisfying the conditions r1 = nr1g and
0 ≤ nr1 < ord(g). Finally we need an array A indexed by integers {0, . . . , m−1}
such that A[i] = ig2 for 0 ≤ i ≤ m − 1.
5 The class of finite rings Ring has (O(n2), O(1))-data structures.
6 The notion of (s, t)-data structure can be easily generalized for any finite algebraic

structure.

100 B. Das and S. Sharma

Query Processing: Let r and s are two elements of ring R. Using the forward-map
array F at index r and s we obtain F [r] = (r1, r2) and F [s] = (s1, s2) where
r1, s1 ∈ R1 and r2, s2 ∈ R2. This gives us sums r = r1 + r2 and s = s1 + s2
according to the decomposition R = R1 ⊕ R2. The result of the multiplication
of the r and s is (r1 + r2)× (s1 + s2) = r1 × s1 + r1 × s2 + r2 × s1 + r2 × s2. To
multiply r1 and s1, access array F1 at index r1 and at index s1. Let F1[r1] = nr1

and F1[s1] = ns1 . The result of r1 × s1 is (nr1g) × (ns1g) = nr1ns1g
2. The

multiplication nr1ns1 is a simple integer multiplication. Let n3 = nr1ns1 . We
compute n4 = n3%m and access array A at index n4 to obtain the result of
n4g

2. Access Tcross[r2][s1] and Tcross[r1][s2] to obtain the result of r2 × s1 and
r1 × s2 respectively. To obtain the result of r2 × s2 access T2[r2][s2]. Once we
have the result of all four multiplications, additions operations can be done in
O(1) time using Theorem 4.

Space Complexity: The forward-map arrays F and F1 takes O(n) space. The
space used by the tables Tcross, T2 and A is easily seen to be O(n). Thus overall
space complexity is O(n).

Case 2: Each indecomposable factor R′ of R has size nα where α < 1
2 . Such a

ring R can be decomposed as a direct sum of three factors7, R = R1 ⊕ R2 ⊕ R3

such that size of each factor Ri is nαi where each αi < 1
2 . To see this, we imagine

three buckets B1, B2, B3 each of capacity n1/2 and we try to pack these buckets
with the indecomposable factors as tightly as possible starting with bucket B1.
Once we cannot accommodate any more indecomposable factor in the bucket
B1 we go to bucket B2 and so on. Note that if i1, i2, . . . , ir are the sizes of the
indecomposable factors in a bucket, then these factors occupy i1i2 . . . ir space
out of the total capacity of the bucket. Let Ri be the direct sum of all the
indecomposable factors in the bucket Bi, i ∈ {1, 2, 3}. Since each bucket has
capacity n1/2, |Ri| ≤ n1/2. Recalling the fact that each indecomposable factor
is of size at most n1/2 we can see that |R1 ⊕ R2| ≥ n1/2. Thus, the direct sum
R1 ⊕ R2 ⊕ R3 covers each indecomposable factor. We note that R3 = {0} is a
valid possibility but this case can be handled easily.

Data Structures: Let F be a forward-map array indexed by the ring elements r
of R such that F(r) = (r1, r2, r3) where r = r1 + r2 + r3 is a decomposition of
r as described in Case 2, where ri ∈ Ri for i ∈ [3]. We store the data structure
T = {T(i,j) | T(i,j)[r][s] = r × s,∀r ∈ Ri,∀s ∈ Rj and ∀i, j ∈ [3]}. The data
structure T is a collection of 9 tables which stores the result of the multiplication
of the elements of Ri with Rj for all i, j ∈ [3].

Query Processing: Given two elements r and s of a ring R. First we access
the forward-map array F at index r and s. Let F [r] = (r1, r2, r3) and F [s] =
(s1, s2, s3), where ri, si ∈ Ri for all i ∈ [3]. The multiplication of r and s is
(r1 + r2 + r3)× (s1 + s2 + s3) which can be written as

∑
i,j∈[3] ri × sj . We need

to perform 9 multiplication operations of the form ri × sj where ri ∈ Ri and
sj ∈ Rj and i, j ∈ [3], which can be performed by accessing data structure T
7 These factors may or may not be indecomposable.

Compact Data Structures for Dedekind Groups and Finite Rings 101

followed by 8 addition operations which can be performed by maintaining the
data structures discussed in the Theorem 4 for the additive structure. Thus the
overall time to process a multiplication query is O(1).

Space Complexity: The forward-map array F takes O(n) space. The data struc-
ture T is a collection of 9 tables each of them takes O(n) space as each Ri has
size at most n1/2. Thus, the space required by T is O(n). Thus the overall space
required is O(n).

This completes the proof that Ring has an (O(n),O(1))-data structure. �

References

1. Agrawal, M., Saxena, N.: Automorphisms of finite rings and applications to com-
plexity of problems. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol.
3404, pp. 1–17. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31856-9_1

2. Arvind, V., Torán, J.: The complexity of quasigroup isomorphism and the minimum
generating set problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 233–
242. Springer, Heidelberg (2006). https://doi.org/10.1007/11940128_25

3. Carmichael, R.D.: Introduction to the Theory of Groups of Finite Order. GINN
and Company (1937)

4. Chen, L., Fu, B.: Linear and sublinear time algorithms for the basis of abelian
groups. Theor. Comput. Sci. 412, 4110–4122 (2011)

5. Conrad, K.: Generalized quaternions (2013). https://kconrad.math.uconn.edu/
blurbs/grouptheory/genquat.pdf

6. Das, B., Sharma, S.: Nearly linear time isomorphism algorithms for some non-
abelian group classes. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS,
vol. 11532, pp. 80–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19955-5_8

7. Das, B., Sharma, S., Vaidyanathan, P.: Space efficient representations of finite
groups. In: Journal of Computer and System Sciences (Special Issue on Funda-
mentals of Computation Theory FCT 2019), pp. 137–146 (2020)

8. Erdös, P., Rényi, A.: Probabilistic methods in group theory. J. d’Analyse Mathé-
matique 14(1), 127–138 (1965). https://doi.org/10.1007/BF02806383

9. Farzan, A., Munro, J.I.: Succinct representation of finite abelian groups. In: Pro-
ceedings of the 2006 International Symposium on Symbolic and Algebraic Compu-
tation, pp. 87–92. ACM (2006)

10. Hungerford, T.W.: Abstract Algebra: An Introduction. Cengage Learning (2012)
11. Karagiorgos, G., Poulakis, D.: Efficient algorithms for the basis of finite abelian

groups. Discret. Math. Algorithms Appl. 3(4), 537–552 (2011)
12. Kavitha, T.: Linear time algorithms for abelian group isomorphism and related

problems. J. Comput. Syst. Sci. 73, 986–996 (2007)
13. Kayal, N., Nezhmetdinov, T.: Factoring groups efficiently. In: Albers, S., Marchetti-

Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 585–596. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1_49

14. Kayal, N., Saxena, N.: Complexity of ring morphism problems. Comput. Complex.
15(4), 342–390 (2006)

https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/11940128_25
https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/genquat.pdf
https://doi.org/10.1007/978-3-030-19955-5_8
https://doi.org/10.1007/978-3-030-19955-5_8
https://doi.org/10.1007/BF02806383
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.1007/978-3-642-02927-1_49

102 B. Das and S. Sharma

15. Kleitman, D.J., Rothschild, B.R., Spencer, J.H.: The number of semigroups of
order n. Proc. Am. Math. Soc. 55(1), 227–232 (1976)

16. Kumar, S.R., Rubinfeld, R.: Property testing of abelian group operations (1998)
17. Li, S., Liu, J.: On hall subnormally embedded and generalized nilpotent groups. J.

Algebra 388, 1–9 (2013)
18. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University

Press (1992)
19. Marin, I.: Strongly indecomposable finite groups. Expositiones Mathematicae

26(3), 261–267 (2008)
20. Saxena, N.: Morphisms of Rings and Applications to Complexity. Indian Institute

of Technology Kanpur (2006)
21. Wilson, J.B.: Existence, algorithms, and asymptotics of direct product decompo-

sitions, I. Groups Complex. Cryptol. 4, 33–72 (2012)

Competitive Location Problems: Balanced
Facility Location and the One-Round

Manhattan Voronoi Game

Thomas Byrne1 , Sándor P. Fekete2 , Jörg Kalcsics1 ,
and Linda Kleist2(B)

1 School of Mathematics,
University of Edinburgh, Edinburgh, UK
{tbyrne,joerg.kalcsics}@ed.ac.uk
2 Department of Computer Science,

TU Braunschweig, Braunschweig, Germany
{s.fekete,l.kleist}@tu-bs.de

Abstract. We study competitive location problems in a continuous set-
ting, in which facilities have to be placed in a rectangular domain R of nor-
malized dimensions of 1 and ρ ≥ 1, and distances are measured according
to the Manhattan metric. We show that the family of balanced configura-
tions (in which the Voronoi cells of individual facilities are equalized with
respect to geometric properties) is richer in this metric than for Euclidean
distances. Our main result considers the One-Round Voronoi Game with
Manhattan distances, in which first player White and then player Black
each place n points in R; each player scores the area for which one of its
facilities is closer than the facilities of the opponent. We give a tight char-
acterization: White has a winning strategy if and only if ρ ≥ n; for all
other cases, we present a winning strategy for Black.

Keywords: Facility location · Competitive location · Manhattan
distances · Voronoi game · Geometric optimization

1 Introduction

Problems of optimal location are arguably among the most important in a wide
range of areas, such as economics, engineering, and biology, as well as in math-
ematics and computer science. In recent years, they have gained importance
through clustering problems in artificial intelligence. In all scenarios, the task
is to choose a set of positions from a given domain, such that some optimal-
ity criteria for the resulting distances to a set of demand points are satisfied;
in a geometric setting, Euclidean or Manhattan distances are natural choices.
Another challenge is that facility location problems often happen in a com-
petitive setting, in which two or more players contend for the best locations.

A full version can be found at arXiv:2011.13275 [6].
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 103–115, 2021.
https://doi.org/10.1007/978-3-030-68211-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_9&domain=pdf
http://orcid.org/0000-0003-0548-4086
http://orcid.org/0000-0002-9062-4241
http://orcid.org/0000-0002-5013-3448
http://orcid.org/0000-0002-3786-916X
http://arxiv.org/abs/2011.13275
https://doi.org/10.1007/978-3-030-68211-8_9

104 T. Byrne et al.

Fig. 1. Example of a one-round Manhattan Voronoi game: (Left) White places 3
points; (Middle) Black places 3 points; (Right) the dominated areas.

This change to competitive, multi-player versions can have a serious impact on
the algorithmic difficulty of optimization problems: e.g., the classic Travelling
Salesman Problem is NP-hard, while the competitive two-player variant is even
PSPACE-complete [10].

In this paper, we consider problems of facility location under Manhattan
distances; while frequently studied in location theory and applications (e.g., see
[15,16,19]), they have received limited attention in a setting in which facilities
compete for customers. We study a natural scenario in which facilities have to be
chosen in a rectangle R of normalized dimensions with height 1 and width ρ ≥ 1.
A facility dominates the set of points for which it is strictly closer than any other
facility, i.e., the respective (open) Voronoi cell, subject to the applicable metric.
While for Euclidean distances a bisector (the set of points that are of equal
distance from two facilities) is the boundary of the open Voronoi cells, so its
area is zero, Manhattan bisectors may have positive area, as shown in Fig. 2. As
we show below, accounting for fairness and local optimality, we consider balanced
configurations for which the respective Voronoi cells are equalized.

Exploiting the geometric nature of Voronoi cells, we completely resolve a
classic problem of competitive location theory for the previously open case of
Manhattan distances. In the One-Round Voronoi Game, first player White and
then player Black each place n points in R. Each player scores the area consisting
of the points that are closer to one of their facilities than to any one of the
opponent’s; see Fig. 1 for an example. The goal for each player is to obtain
the higher score. Owing to the different nature of the Manhattan metric, both
players may dominate strictly less than ρ/2, the remaining area belonging to
neutral zones.

1.1 Related Work

Problems of location are crucial in economics, optimization, and geometry; see
the classic book of Drezner [8] with over 1200 citations, or the more recent book
by Laporte et al. [17]. Many applications arise from multi-dimensional data sets
with heterogeneous dimensions, so the Manhattan metric (which compares coor-
dinate distances separately) is a compelling choice. The ensuing problems have
also received algorithmic attention. Fekete et al. [12] provide several algorithmic
results, including an NP-hardness proof for the k-median problem of minimiz-
ing the average distance. Based on finding an optimal location for an additional

Competitive Location Problems 105

facility in a convex region with n existing facilities, Averbakh et al. [3] derive
exact algorithms for a variety of conditional facility location problems.

An important scenario for competitive facility location is the Voronoi game,
first introduced by Ahn et al. [1], in which two players take turns placing one
facility a time. In the end, each player scores the total area of all of their Voronoi
regions. As Teramoto et al. [18] showed, the problem is PSPACE-complete, even
in a discrete graph setting.

Special attention has been paid to the One-Round Voronoi Game, in which
each player places their n facilities at once. Cheong et al. [7] showed that for
Euclidean distances in the plane, White can always win for a one-dimensional
region, while Black has a winning strategy if the region is a square and n is
sufficiently large. Fekete and Meijer [11] refined this by showing that in a rect-
angle of dimensions 1 × ρ with ρ ≥ 1, Black has a winning strategy for n ≥ 3
and ρ < n/

√
2, and for n = 2 and ρ < 2/

√
3; White wins in all other cases. In

this paper, we give a complementary characterization for the case of Manhat-
tan distances; because of the different geometry, this requires several additional
tools.

There is a considerable amount of other work on variants of the Voronoi
game. Bandyapadhyay et al. [4] consider the one-round game in trees, providing
a polynomial-time algorithm for the second player. As Fekete and Meijer [11]
have shown, the problem is NP-hard for polygons with holes, corresponding
to a planar graph with cycles. For a spectrum of other variants and results, see
[5,9,13,14]. For an overview of work on Voronoi diagrams, we refer to the surveys
by Aurenhammer and Klein [2].

1.2 Main Results

Our main results are twofold. Firstly, we show that for location problems with
Manhattan distances in the plane, the properties of fairness and local optimality
lead to a geometric condition called balancedness. While the analogue concept
for Euclidean distances in a rectangle implies grid configurations [11], we demon-
strate that there are balanced configurations of much greater variety.

Secondly, we give a full characterization of the One-Round Manhattan
Voronoi Game in a rectangle R with aspect ratio ρ ≥ 1. We show that White has
a winning strategy if and only if ρ ≥ n; for all other cases, Black has a winning
strategy.

2 Preliminaries

Let P denote a finite set of points in a rectangle R. For two points p1 = (x1, y1)
and p2 = (x2, y2), we define Δx(p1, p2) := |x1 − x2| and Δy(p1, p2) := |y1 − y2|.
Then their Manhattan distance is given by dM (p1, p2) := Δx(p1, p2)+Δy(p1, p2).
Defining D(p1, p2) := {p ∈ R | dM (p, p1) < dM (p, p2)} as a set of points that are
closer to p1 than to p2, the Voronoi cell of p in P is V P (p) :=

⋂
q∈P\{p} D(p, q).

The Manhattan Voronoi diagram V(P) is the complement of the union of all

106 T. Byrne et al.

Fig. 2. Illustration of the three types of bisectors.

Voronoi cells of P . The bisector of p1 and p2 is the set of all points that are of
equal distance to p1 and p2, i.e., B(p1, p2) := {q ∈ R | dM (q, p1) = dM (q, p2)}.
There are three types of bisectors, as shown in Fig. 2. Typically, a bisector con-
sists of three one-dimensional parts, namely two (vertical or horizontal) segments
that are connected by a segment of slope ±1. If Δx(p1, p2) = 0 or Δy(p1, p2) = 0,
then the diagonal segment shrinks to a point and the bisector consists of a (ver-
tical or horizontal) segment. However, when Δx(p1, p2) = Δy(p1, p2), then the
bisector B(p1, p2) contains two regions and is called degenerate. Further, a non-
degenerate bisector is vertical (horizontal) if it contains vertical (horizontal)
segments.

For p = (xp, yp) ∈ P , both the vertical line �v(p) and the horizontal line
�h(p) through p split the Voronoi cell V P (p) into two pieces, which we call half
cells. We denote the set of all half cells of P obtained by vertical lines by H| and
those obtained by horizontal lines by H−. Furthermore, we define H := H| ∪H−

as the set of all half cells of P . Applying both �v(p) and �h(p) to p yields a
subdivision into four quadrants, which we denote by Qi(p), i ∈ {1, . . . , 4}; see
Fig. 3(a). Moreover, Ci(p) := V P (p) ∩ Qi(p) is called the ith quarter cell of p.
We also consider the eight regions of every p ∈ P obtained by cutting R along
the lines �v(p), �h(p), and the two diagonal lines of slope ±1 through p. We refer
to each such (open) region as an octant of p denoted by Oi(p) for i ∈ {1, . . . , 8}
as illustrated in Fig. 3(b); a closed octant is denoted by Oi(p). The area of a
subset S of R is denoted by A(S).

For a point p ∈ P , we call the four horizontal and vertical rays rooted at p,
contained with V P (p), the four arms of V P (p) (or of p). Two arms are neighbour-
ing if they appear consecutively in the cyclic order; otherwise they are opposite.
Moreover, we say an arm is a boundary arm if its end point touches the boundary
of R; otherwise it is inner. For later reference, we note the following.

Observation 1. The following properties hold:

(i) If the bisector B(p, q) is non-degenerate and vertical (horizontal), then it
does not intersect both the left and right (top and bottom) half cells of p.

(ii) For every i and every q1, q2 ∈ Oi(p), the bisectors B(p, q1) and B(p, q2)
have the same type (vertical/horizontal).

(iii) A Voronoi cell is contained in the axis-aligned rectangle spanned by its
arms.

Competitive Location Problems 107

Fig. 3. Illustration of crucial definitions.

3 Balanced Point Sets

In a competitive setting for facility location, it is a natural fairness property to
allocate the same amount of influence to each facility. A second local optimality
property arises from choosing an efficient location for a facility within its individ-
ual Voronoi cell. Combining both properties, we say a point set P in a rectangle
R is balanced if the following two conditions are satisfied:

– Fairness: for all p1, p2 ∈ P , V P (p1) and V P (p2) have the same area.
– Local optimality: for all p ∈ P , p minimizes the average distance to the

points in V P (p).

For Manhattan distances, there is a simple geometric characterization for the
local optimality depending on the area of the half and quarter cells; see Fig. 3(a).

Lemma 2. A point p minimizes the average Manhattan distance to the points
in V P (p) if and only if either of the following properties holds:

(i) p is a Manhattan median of V P (p): all four half cells of V P (p) have the
same area.

(ii) p satisfies the quarter-cell property: diagonally opposite quarter cells of
V P (p) have the same area.

The proof uses straightforward local optimality considerations; see full ver-
sion for details. Lemma 2 immediately implies the following characterization.

Corollary 3. A point set P in a rectangle R is balanced if and only if all half
cells of P have the same area.

A simple family of balanced sets arise from regular, a × b grids; see Fig. 3(c).
In contrast to the Euclidean case, there exist a large variety of other balanced
sets: Fig. 4 depicts balanced point sets for which no cell is a rectangle.

108 T. Byrne et al.

3
4

1
4

1
2 ρ − 1

2

1

ρ

1
3

5
6

1

49
72

21
72

49
36

77
72

1

1

1
6

1
2

5
6

1
6

1
2

5
6

1

3
14

1
2

11
14

12
49

30
49

60
49

48
49

1

11
2+

√
2

1√
2

1
2+

√
2

1√
2

R2,ρ for ρ ∈ (1, 3/2] R3R2,1

R4 R5

Fig. 4. Non-grid examples of balanced point sets of cardinality 2, 3, 4, and 5.

Lemma 4. The configurations R2,ρ,R3,R4,R5, depicted in Fig. 4, are bal-
anced. Moreover, R2,ρ, ρ ∈ [1, 3/2], and R3 are the only balanced non-grid point
sets with two and three points, respectively.

Simple calculations show that the configurations are balanced. In order to
prove the uniqueness, we make use of Lemma 2. While the analysis for n = 2
can be easily conducted manually, for n = 3, the relative point positions lead to
about 20 cases of structurally different Voronoi diagrams, which were checked
using MATLAB R©; for more details see full version [6].

Observe that R2,ρ,R3,R4, and R5 are atomic, i.e., they cannot be decom-
posed into subconfigurations whose union of Voronoi cells is a rectangle. We
show how they serve as building blocks to induce large families of balanced
configurations.

Theorem 5. For every n, n �= 7, there exists a rectangle R and a set P of n
points such that P is balanced and no Voronoi cell is a rectangle.

Proof. For every n = 3k+5� with k, � ∈ {0, 1, . . .}, we construct a configuration
by combining k blocks of R3 and � blocks of R5, as shown in Fig. 5. This yields
configurations with n = 3k for k ≥ 1, n = 3k + 2 = 3(k − 1) + 5 for k ≥ 1, or
n = 3k+1 = 3(k−3)+10 for k ≥ 3, so we obtain configurations for all n ≥ 8 and
n = 3, 5, 6. Configurations with n = 2k (k ∈ N) points are obtained by combining
k blocks of R2 as shown in Fig. 5; alternatively, recall the configurations in Fig. 4.

While none of the configurations in Theorem 5 contains a rectangular Voronoi
cell, they contain many immediate repetitions of the same atomic components. In
fact, there are arbitrarily large non-repetitiveăbalanced configurations without
directly adjacent congruent atomic subconfigurations.

Competitive Location Problems 109

Fig. 5. Illustration of the proof of Theorem 5. (Left) Combining k blocks of R3 and
l blocks of R5 for a configuration with n = 3k + 5l points in a rectangle R with
ρ(R) = 1/49(36k + 60l). (Right) Combining k blocks of R2 for n = 2k points.

Theorem 6. There is a injection between the family of 0–1 strings and a family
of non-repetitive balanced configurations without any rectangular Voronoi cells.

Proof. For a given 0–1 string S of length s, we use s pairs of blocks R3 and its
reflected version R′

3 to build a sequence of 2s blocks. We insert a block R5 after
the ith pair if S has a 1 in position i; otherwise the block sequence remains.

4 The Manhattan Voronoi Game

An instance of the One-Round Manhattan Voronoi Game consists of a rectangle
R and the number n of points to be played by each player. Without loss of
generality, R has height 1 and width ρ ≥ 1. Player White chooses a set W of
n white points in R, followed by the player Black selecting a set B of n black
points, with W ∩B = ∅. Each player scores the area consisting of the points that
are closer to one of their facilities than to any one of the opponent’s. Hence, if
two points of one player share a degenerate bisector, the possible neutral regions
are assigned to this player. Therefore, by replacing each degenerate bisector
between points of one player by a (w.l.o.g. horizontal) non-degenerate bisector,
each player scores the area of its (horizontally enlarged) Manhattan Voronoi cells.
With slight abuse of notation, we denote the resulting (horizontally enlarged)
Voronoi cells of colored point sets by V W∪B(p) similar as before. The player
with the higher score wins, or the game ends in a tie.

For an instance (R,n) and a set W of white points, a set B of n black points
is a winning set for Black if Black wins the game by playing B; likewise, B is
a tie set if the game ends in a ti.e. A black point b is a winning point if its cell
area A(V W∪B(b)) exceeds 1/2n · A(R). A white point set W is unbeatable if it
does not admit a winning set for Black, and W is a winning set if there exists
neither a tie nor a winning set for Black. If Black or White can always identify
a winning set, we say they have a winning strategy.

Despite the possible existence of degenerate bisectors for Manhattan dis-
tances, we show that Black has a winning strategy if and only if Black has
a winning point. We make use of the following two lemmas, proved in full
version [6].

Lemma 7. Consider a rectangle R with a set W of white points. Then for every
ε > 0 and every half cell H of W , Black can place a point b such that the area
of V W∪{b}(b) ∩ H is at least (A(H) − ε).

110 T. Byrne et al.

In fact, White must play a balanced set; otherwise Black can win.

Lemma 8. Let W be a set of n white points in a rectangle R. If any half cell of
W has an area different from 1/2n · A(R), then Black has a winning strategy.

These insights enable us to prove the main result of this section.

Theorem 9. Black has a winning strategy for a set W of n white points in a
rectangle R if and only if Black has a winning point.

Proof. If Black wins and their score exceeds 1/2 · A(R) then, by the pigeonhole
principle, a black cell area exceeds 1/2n·A(R), confirming a winning point. Other-
wise, Black wins by forcing neutral zones. By allowing a net loss of an arbitrarily
small ε > 0, Black can slightly perturb their point set to obtain a winning set
without neutral zones; for details consider full version [6].

Now suppose that there exists a winning point b, i.e., A(V W∪{b}(b)) = 1/2n ·
A(R) + δ for some δ > 0. If n = 1, Black clearly wins with b. If n ≥ 2, Black
places n−1 further black points: consider wi ∈ W . By Lemma8, we may assume
that each half cell of W has area 1/2n · A(R). By Observation 1(i), wi has a half
cell Hi that is disjoint from V W∪{b}(b). By Lemma7, Black can place a point bi

to capture the area of Hi up to every ε > 0. Choosing ε < δ/n−1 and placing one
black point for n− 1 distinct white points with Lemma 7, Black achieves a score
of

∑
p∈B A(V W∪B(p)) = (1/2n · A(R) + δ)+ (n− 1) (1/2n · A(R) − ε) > 1/2A(R).

5 Properties of Unbeatable Winning Sets

In this section, we identify necessary properties of unbeatable white sets, for
which the game ends in a tie or White wins. We call a cell a bridge if it has two
opposite boundary arms.

Theorem 10. If W is an unbeatable white point set in a rectangle R, then it
fulfills the following properties:

(P1) The area of every half cell of W is 1/2n · A(R).
(P2) The arms of a non-bridge cell are equally long; the opposite boundary arms

of a bridge cell are of equal length and, if |W | > 1, they are shortest among
all arms.

Proof. Because W is unbeatable, property (P1) follows immediately from
Lemma 8. Moreover, in case |W | = 1, (P1) implies that opposite arms of the
unique (bridge) cell have equal length, i.e., (P2) holds for |W | = 1.

It remains to prove property (P2) for |W | ≥ 2. By Theorem9, it suffices to
identify a black winning point if (P2) is violated. We start with an observation.

Claim 11. Let P be a point set containing p = (0, 0) and let P ′ be obtained from
P by adding p′ = (δ, δ) where δ > 0 such that p′ lies within V P (p). Restricted
to Q := Q1(p′), the cell V P ′

(p′) contains all points that are obtained when the
boundary of V P (p)∩Q is shifted upwards (rightwards) by δ (if it does not intersect
the boundary of R).

Competitive Location Problems 111

To prove this claim, it suffices to consider the individual bisectors of p′ and
any other point q ∈ P ′. Note that all points shaping the first quarter cell of
p′ are contained in an octant Oi(p′) with i ∈ {1, 2, 3, 8}. Observe that vertical
bisectors move rightwards and horizontal bisectors move upwards by δ; see also
Fig. 6.

Fig. 6. Illustration of Claim 11. If q = (x, y) lies in O2(p
′) ∪ O3(p

′), the part of the
bisector B(q, p′) within the first quadrant Q of p′ coincides with B(q, p) ∩ Q shifted
upwards by δ.

We use our insight of Claim 11 to show property (P2) in two steps.

Claim 12. Let w ∈ W be a point such that an arm A1 of V W (w) is shorter than
a neighbouring arm A2 and the arm A3 opposite to A1 is inner. Then Black has
a winning point.

Fig. 7. Illustration of Claim 12 and Claim 13: the gain and loss of V (b) compared to
H. (Left) The right half cell H. (Middle) Case: The bottom arm A1 is shorter than
the right arm A2 and the top arm A3 is inner. (Right) Case: The bottom arm A1 is
shorter than the top arm A3 and the right arm A2 is inner.

Proof. Without loss of generality, we consider the case that A1 is the bottom
arm of V W (w), A2 its right arm, and w = (0, 0); see Fig. 7 (Middle). We denote
the length of Ai by |Ai|. Now we consider Black placing a point b within V W (w)
at (δ, δ) for some δ > 0. To ensure that the cell of b contains almost all of the
right half cell of V W (w), we infinitesimally perturb b rightwards; for ease of
notation in the following analysis, we omit the corresponding infinitesimal terms
and assume that the bisector of b and w is vertical. We compare the area of
V (b) := V W+b(b) with the right half cell H of w. In particular, we show that

112 T. Byrne et al.

there exists δ > 0 such that the area of V (b) exceeds the area of H. Because
A(H) = 1/2n · A(R) by (P1), b is a winning point.

Clearly, all points in H to the right of the (vertical) bisector of b and w
are closer to b. Consequently, when compared to H, the loss of V (b) is upper
bounded by δ|A1|+ 1/2δ2; see also Fig. 7 (middle). By Claim11 and the fact that
A3 is inner, V (b)∩Q1(p) gains at least δ(|A2|− δ) when compared to H ∩Q1(p).
When additionally guaranteeing δ < 2/3(|A2| − |A1|), the gain exceeds the loss
and thus b is a winning point.

For a cell with two neighbouring inner arms, Claim12 implies that all its arms
have equal length. Consequently, it only remains to prove (P2) for bridges. With
arguments similar to those proving Claim12, we obtain the following result. For
an illustration, see Fig. 7 (right). A proof is presented in full version [6].

Claim 13. If there exists a point w ∈ W such that two opposite arms of V W (w)
have different lengths and a third arm is inner, then Black has a winning point.

If |W | > 1, every cell has at least one inner arm. Therefore Claim 13 yields
that opposite boundary arms of a bridge cell have equal length. Moreover,
Claim 12 implies that the remaining arms are not shorter. This proves (P2)
for bridges.

We now show that unbeatable white sets are grids; in some cases they are
even square grids, i.e., every cell is a square.

Lemma 14. Let P be a set of n points in a (1 × ρ) rectangle R with ρ ≥ 1
fulfilling properties (P1) and (P2). Then P is a grid. More precisely, if ρ ≥ n,
then P is a 1 × n grid; otherwise, P is a square grid.

Proof. We distinguish two cases.
Case: ρ ≥ n. By (P1), every half cell has area 1

2nA(R) = 1
2nρ ≥ 1

2 . Since the
height of every half cell is bounded by 1, every left and right arm has a length
of at least 1/2. Then, property (P2) implies that each top and bottom arm has
length 1/2, i.e., every p ∈ P is placed on the horizontal centre line of R. Finally,
again by (P1), the points must be evenly spread. Hence, P is a 1 × n grid.

Case: ρ < n. We consider the point p whose cell V P (p) contains the top left
corner of R and denote its quarter cells by Ci. Then, C2 is a rectangle. Moreover,
V P (p) is not a bridge; otherwise its left half cell has area ≥ 1

2 > 1
2nρ = 1

2nA(R).
Therefore, by (P2), all arms of V P (p) have the same length; we denote this
length by d. Together with the fact that C2 and C4 have the same area by (P1)
and Lemma 2, it follows that C2 and C4 are squares of side length d.

We consider the right boundary of C4. Since the right arm of V P (p) has length
d (and the boundary continues vertically below), some point q has distance 2d to
p and lies in Q1(p). The set of all these possible point locations forms a segment,
which is highlighted in red in Fig. 8(a). Consequently, the left arm of q has length
d. By (P2), the top arm of q must also have length d. Hence, q lies at the grid
location illustrated in Fig. 8(b). Moreover, it follows that q is the unique point
whose cell shares part of the boundary with C1; otherwise the top arm of q does
not have length d.

Competitive Location Problems 113

By symmetry, a point q′ lies at a distance 2d below p and distance d to the
boundary. Thus, every quarter cell of V P (p) is a square of size d; thus, the arms
of all cells have length at least d. Moreover, the top left quarter cells of V P (q)
and V P (q′) are squares, so their bottom right quadrants must be as well. Using
this argument iteratively along the boundary implies that boundary cells are
squares. Applying it to the remaining rectangular hole shows that P is a square
grid.

Fig. 8. Illustration of the proof of Lemma14. (Color figure online)

We now come to our main result.

Theorem 15. White has a winning strategy for placing n points in a (1 × ρ)
rectangle with ρ ≥ 1 if and only if ρ ≥ n; otherwise Black has a winning strategy.
Moreover, if ρ ≥ n, the unique winning strategy for White is to place a 1 × n
grid.

Proof. First we show that Black has a winning strategy if ρ < n. Suppose that
Black cannot win. Note that ρ < n implies n ≥ 2. Consequently, by Theorem 10
and Lemma 14, the white point set W is a square a × b grid with a, b ≥ 2, and
thus the four cells in the top left corner induce a 2 × 2 grid. By Theorem9, it
suffices to identify a winning point for Black. Thus, we show that Black has a
winning point in a square 2 × 2 grid: suppose the arms of all cells have length
d. Then a black point p is a winning point if its cell has an area exceeding 2d2.
With p placed at a distance 3d/2 from the top and left boundary as depicted in
Fig. 9, the cell of p has an area of 2d2 + d2

/4.

Fig. 9. Illustration of the proof of Theorem 15. (Left) A black winning point in a 2×2
grid. (Right) Every black cell has an area ≤ 1/2n ·A(R). Moreover, only n− 1 locations
result in cells of that size.

Secondly, we consider the case ρ ≥ n and show that White has a winning
strategy. Theorem10 and Theorem 14 imply that White must place its points in

114 T. Byrne et al.

a 1×n grid; otherwise Black can win. We show that Black has no option to beat
this placement; i.e., if ρ ≥ n, then Black has no winning point and cannot force
a tie in a 1 × n grid.

By symmetry, there essentially exist two different placements of a black point
b with respect to a closest white point wb. Without loss of generality, we assume
that wb is to the left and not below b. Let x and y denote the horizontal and
vertical distance of b to wb, respectively. For a unified presentation, we add half
of potential neutral zones in case x = y to the area of the black cell. As a
consequence, Black loses if its cells have an area of less than 1/2 · A(R).

If x > y, the cell of b evaluates to an area of (at most) 1/2n · A(R) − y2. In
particular, it is maximized for y = 0, i.e., when b is placed on the horizontal
centre line of R and if there exist white points to the left and right of b. In this
case the cell area is exactly 1/2n · A(R).

If x ≤ y, the cell area of b has an area of (at most) 1/2n · A(R)− y(w′ − h′)−
1/4(3y2 + x2), where w′ := w/2n and h′ := h/2 denote the dimensions of the grid
cells. Note that w′ ≥ h′ because ρ ≥ n. Consequently, the cell area is maximized
for x = 0, y = 0. However, this placement coincides with the location of a white
point and is thus forbidden. Therefore every valid placement results in a cell
area strictly smaller than 1/2n ·A(R). Consequently, Black has no winning point.

Note that the cell area is indeed strictly smaller than the abovementioned
maximum values if the black point does not have white points on both sides.
Therefore the (unique) best placement of a black point is on the centre line
between two white points, as illustrated by the rightmost black point in Fig. 9.
However, there exist only n−1 distinct positions of this type; all other placements
result in strictly smaller cells. Consequently, Black cannot force a tie and so loses.
This completes the proof.

6 Open Problems

There exist many directions for future work. Are there further atomic configu-
rations? Is it possible to combine them into intricate two-dimensional patterns?
The biggest challenge is a full characterization of balanced configurations, with
further generalizations to other metrics and dimensions. Moreover, the multi-
round variant of the Voronoi game is wide open, as are higher-dimensional vari-
ants.

References

1. Ahn, H.K., Cheng, S.W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theoret. Comput. Sci. 310, 357–372 (2004)

2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Handbook of Computational
Geometry, vol. 5, no. 10, pp. 201–290 (2000)

3. Averbakh, I., Berman, O., Kalcsics, J., Krass, D.: Structural properties of Voronoi
diagrams in facility location problems with continuous demand. Oper. Res. 62(2),
394–411 (2015)

Competitive Location Problems 115

4. Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H.: Voronoi game on graphs. Theor.
Comput. Sci. 562, 270–282 (2015)

5. Banik, A., Bhattacharya, B.B., Das, S., Mukherjee, S.: One-round discrete Voronoi
game in R

2 in presence of existing facilities. In: CCCG (2013)
6. Byrne, T., Fekete, S.P., Kalcsics, J., Kleist, L.: Competitive facility loca-

tion: balanced facility location and the one-round Manhattan Voronoi game.
arXiv:2011.13275 (2020)

7. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game.
Discrete Comput. Geom. 31(1), 125–138 (2004). https://doi.org/10.1007/s00454-
003-2951-4

8. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer
Series in Operations Research. Springer, New York (1995)

9. Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_4

10. Fekete, S.P., Fleischer, R., Fraenkel, A.S., Schmitt, M.: Traveling salesmen in the
presence of competition. Theoret. Comput. Sci. 313(3), 377–392 (2004)

11. Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Comput. Geom.
Theory Appl. 30(2), 81–94 (2005)

12. Fekete, S.P., Mitchell, J.S.B., Beurer, K.: On the continuous Fermat-Weber prob-
lems. Oper. Res. 53, 61–76 (2005)

13. Gerbner, D., Mészáros, V., Pálvölgyi, D., Pokrovskiy, A., Rote, G.: Advantage in
the discrete Voronoi game. arXiv preprint:1303.0523 (2013)

14. Kiyomi, M., Saitoh, T., Uehara, R.: Voronoi game on a path. IEICE Trans. Inf.
Syst. 94(6), 1185–1189 (2011)

15. Kolen, A.: Equivalence between the direct search approach and the cut approach
to the rectilinear distance location problem. Oper. Res. 29(3), 616–620 (1981)

16. Kusakari, Y., Nishizeki, T.: An algorithm for finding a region with the minimum
total L1 from prescribed terminals. In: Leong, H.W., Imai, H., Jain, S. (eds.) ISAAC
1997. LNCS, vol. 1350, pp. 324–333. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63890-3_35

17. Laporte, G., Nickel, S., Saldanha-da-Gama, F.: Introduction to location science.
In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science, pp.
1–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32177-2_1

18. Teramoto, S., Demaine, E.D., Uehara, R.: Voronoi game on graphs and its com-
plexity. In: CIG, pp. 265–271 (2006)

19. Wesolowsky, G.O., Love, R.F.: Location of facilities with rectangular distances
among point and area destinations. Nav. Res. Log. Q. 18, 83–90 (1971)

http://arxiv.org/abs/2011.13275
https://doi.org/10.1007/s00454-003-2951-4
https://doi.org/10.1007/s00454-003-2951-4
https://doi.org/10.1007/978-3-540-75520-3_4
https://doi.org/10.1007/3-540-63890-3_35
https://doi.org/10.1007/3-540-63890-3_35
https://doi.org/10.1007/978-3-030-32177-2_1

Faster Multi-sided One-Bend Boundary
Labelling

Prosenjit Bose1, Saeed Mehrabi2(B), and Debajyoti Mondal3

1 School of Computer Science,
Carleton University, Ottawa, Canada

jit@scs.carleton.ca
2 Computer Science Department,

Memorial University, St. John’s, Canada
smehrabi@mun.ca

3 Department of Computer Science,
University of Saskatchewan, Saskatoon, Canada

d.mondal@usask.ca

Abstract. A 1-bend boundary labelling problem consists of an axis-
aligned rectangle B, n points (called sites) in the interior, and n points
(called ports) on the labels along the boundary of B. The goal is to find a
set of n axis-aligned curves (called leaders), each having at most one bend
and connecting one site to one port, such that the leaders are pairwise
disjoint. A 1-bend boundary labelling problem is k-sided (1 ≤ k ≤ 4) if
the ports appear on k different sides of B. Kindermann et al. [Algorith-
mica, 76(1): 225–258, 2016] showed that the 1-bend 4-sided and 3-sided
boundary labelling problems can be solved in O(n9) and O(n4) time,
respectively. Bose et al. [SWAT, 12:1–12:14, 2018] improved the former
running time to O(n6) by reducing the problem to computing maximum
independent set in an outerstring graph. In this paper, we improve both
previous results by giving new algorithms with running times O(n5) and
O(n3 log n) to solve the 1-bend 4-sided and 3-sided boundary labelling
problems, respectively.

1 Introduction

Map labelling is a well-known problem in cartography with applications in edu-
cational diagrams, system manuals and scientific visualization. Traditional map
labelling that places the labels on the map such that each label is incident to its
corresponding feature, creates overlap between labels if the features are densely
located on the map. This motivated the use of leaders [8,11]: line segments that
connect features to their labels. As a formal investigation of this approach, Bekos
et al. [3] introduced boundary labelling : all the labels are required to be placed
on the boundary of the map and to be connected to their features using leaders.

The work is partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 116–128, 2021.
https://doi.org/10.1007/978-3-030-68211-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_10

Faster Multi-sided One-Bend Boundary Labelling 117

c1

c2c3

c4
t1 t2 t3 t4

r1

r2

r3

b1

�1

�2

c1

c2

c4

C1

C2

C3

C4

c1

c2c3

c4 c1

c2c3

c4
t1 t2 t3 t4

r1

r3

c1

c2c3

c4
t1 t2 t3 t4

r1

r2

r3

b1

�1

�2

c1

c2c3

c4

C1

C2

C3

C4

c1

c2c3

c4

r2

R1

R2

R3

(a) (b) (d)(c)

q
Cu

Cb

Fig. 1. (a) A 1-bend 4-sided boundary labelling problem with w = 4, x = 3, y = 1
and z = 2, (b) an instance of the 1-bend 2-sided boundary labelling problem with no
planar solution with 1-bend leaders, and (c) a partitioned solution. (d) The curves Cu

and Cb as well as the sequence of empty rectangles.

The point where a leader touches the label is called a port . Their work initi-
ated a line of research in developing labelling algorithms with different labelling
aesthetics, such as minimizing leader crossings, number of bends per leader and
sum of leader lengths [1,2,4,6].

In this paper, we study the 1-bend k-sided boundary labelling problem. The
input is an axis-aligned rectangle B and a set of n points (called sites) in the
interior of B. In addition, the input contains a set of n points on the boundary
of B representing the ports on k consecutive sides of B for some 1 ≤ k ≤
4. The objective is to decide whether each site can be connected to a unique
port using an axis-aligned leader with at most 1 bend such that the leaders are
disjoint and each leader lies entirely in the interior of B, except the endpoint
that is attached to a port. Figure 1(a) illustrates a labelling for a 1-bend k-sided
boundary labelling instance. If such a solution exists, then we call it a feasible
solution and say that the problem is solvable. Notice that not every instance of
the boundary labelling problem is solvable; see Fig. 1(b).

Related work. The boundary labelling problem was first formulated by Bekos
et al. (Graph Drawing 2004, see also [3]), who solved the 1-bend 1-sided and 1-
bend 2-sided models (when the ports lie on two opposite sides of R) in O(n log n)
time. They also gave an O(n log n)-time algorithm for the 2-bend 4-sided bound-
ary labelling problem (i.e., when each leader can have at most 2 bends).

Kindermann et al. [10] examined k-sided boundary labelling, where the ports
appear on adjacent sides. For the 1-bend 2-sided boundary labelling problem,
they gave an O(n2)-time algorithm. For 1-bend 3- and 4-sided models of the
problem, they gave O(n4)- and O(n9)-time algorithms, respectively.

If a boundary labelling instance admits an affirmative solution, then it is
desirable to seek for a labelling that optimizes a labelling aesthetic, such as
minimizing the sum of the leader lengths or minimizing the number of bends
per leader. For minimizing the sum of leader lengths, Bekos et al. [3] gave an
exact O(n2)-time algorithm for the 1-bend 1-sided and 1-bend (opposite) 2-

118 P. Bose et al.

sided models; their algorithm for 1-bend 1-sided model was later improved to an
O(n log n)-time algorithm by Benkert et al. [4].

Kindermann et al. [10] gave an O(n8 log n)-time dynamic programming algo-
rithm for the 1-bend (adjacent) 2-sided model. Bose et al. [6] improved this
result by giving an O(n3 log n)-time dynamic programming algorithm. They also
showed that the 1-bend 3- and 4-sided problems (for the sum of the leader length
minimization) can be reduced to the maximum independent set problem on out-
erstring graphs. Keil et al. [9] used the idea of outerstring graphs to obtain an
O(n6)-time algorithm for the 3- and 4-sided boundary labelling problem. How-
ever, it is not obvious whether this approach can be used to obtain a faster
algorithm for the decision version, where we do not require leader length min-
imization. Throughout the paper, we consider 1-bend leaders, which are also
known as po-leaders [3]. Moreover, unless otherwise specified, by 2-sided we
mean two adjacent sides.

Our Results. In this paper, we give algorithms with running times O(n3 log n)
and O(n5) for the 1-bend 3-sided and 4-sided boundary labelling problems, which
improve the previously best-known algorithms.

The fastest known algorithm for the 3-sided model was Kindermann et al.’s
[10] O(n4)-time algorithm that reduced the problem into O(n2) 2-sided boundary
labelling problems. While we also use their partitioning technique, our improve-
ment comes from a dynamic programming approach that carefully decomposes
3-sided problems into various simple shapes that are not necessarily rectangular.
We prove that such a decomposition can be computed fast using suitable data
structures.

For the 4-sided model, the fastest known algorithm was the O(n6)-time algo-
rithm of Bose et al. [6] that reduced the problem into the maximum independent
set problem in an outerstring graph. We show that Kindermann et al.’s [10] obser-
vation on partitioning 2-sided boundary labelling problems using a xy-monotone
curve can be used to find a fast solution for the 4-sided model. Such an approach
was previously taken by Bose et al. [6], but it already took O(n3 log n) time for
the 2-sided model, and they eventually settled with an O(n6)-time algorithm
for the 4-sided model. With the four sides involved, designing a decomposition
with a few different types of shapes of low complexity becomes challenging. Our
improvement results from a systematic decomposition that generates a small
number of subproblems at the expense of using a larger size dynamic program-
ming table, resulting in an O(n5)-time algorithm.

2 Preliminaries

In this section, we give some notation and preliminaries that will be used in the
rest of the paper. For a point p in the plane, we denote the x- and y-coordinates of
p by x(p) and y(p), respectively. Consider the input rectangle B and let c1, . . . , c4
denote the corners of B that are named in clockwise order such that c1 is the
top-right corner of B. Let Btop, Bbottom, Bleft and Bright denote the top, bottom,
left and right sides of B, respectively. We refer to a port as a top port (resp.,

Faster Multi-sided One-Bend Boundary Labelling 119

bottom, left and right port), if it lies on Btop (resp., Bbottom, Bleft and Bright).
Similarly, we call a leader a top leader (resp., bottom, left and right leader), if it
is connected to a top port (resp., bottom, left and right port).

Let w, x, y, z be the number of ports on the top, right, bottom and left side
of B; notice that w + x + y + z = n. We denote these ports as t1, . . . , tw,
r1, . . . , rx, b1, . . . , by and �1, . . . , �z in clockwise order. See Fig. 1(a) for an exam-
ple. We assume that the sites are in general position; i.e., the number of sites
and ports on every horizontal (similarly, vertical) line that properly intersects B
is at most one. For the rest of the paper, whenever we say a rectangle, we mean
an axis-aligned rectangle.

For a point q inside B, consider the rectangle Bi(q) that is spanned by q and
ci, where 1 ≤ i ≤ 4. Each rectangle Bi(q) contains only two types of ports; e.g.,
B1(q) contains only top and right ports. A feasible solution for a solvable instance
of a boundary labelling problem is called partitioned, if there exists a point q
such that for each rectangle Bi(q), there exists an axis-aligned xy-monotone
polygonal curve Ci from q to ci that separates the two types of leaders in Bi(q).
That is, every pair of sites in Bi(q) that lie on different sides of Ci are connected
to ports that lie on different (but adjacent) sides of B. See Fig. 1(c). We refer to
the polygonal curve as the xy-separating curve. Kindermann et al. [10] observed
that if an instance of a boundary labelling problem admits a feasible solution,
then it must admit a partitioned solution.

Lemma 1 (Kindermann et al. [10]). If there exists a feasible solution for
the 1-bend 4-sided boundary labelling problem, then there also exists a partitioned
solution for the problem.

Consider a 2-sided problem, where the ports are on Btop and Bright, and
assume that the problem has a feasible solution. Here, an xy-separating curve C
is the one that connects c3 to c1. Then (for such an xy-separating curve C), let
above(C) (resp., below(C)) be the polygonal regions above C (resp., below C)
that is bounded by Btop and Bleft (resp., by Bright and Bbottom). Now, let Cu

(resp., Cb) be the xy-separating curve for which the area of above(Cu) (resp.,
the area of below(Cb)) is minimized. Given Cu and Cb, we construct a sequence
of rectangles as follows (see Fig. 1(d)).

– Each rectangle is a maximal rectangle between Cu and Cb.
– The bottom-left corner of R1 is c3. Since R1 is maximal, it is uniquely deter-

mined.
– Let i > 1. We know that the top and right sides of Ri−1 are determined by

a pair of leaders Lt and Lr, respectively. Let a ∈ Lt be the rightmost point
on the top side of Ri−1, and let b ∈ Lr be the topmost point on the right
side of Ri−1. Then the rectangle Ri is the maximal empty rectangle whose
bottom-left corner is (x(a), y(b)) and that is bounded by Cu and Cb.

We say that a subproblem is balanced if it contains the same number of sites
and ports.

120 P. Bose et al.

b
s

(a)

a ctj

d

ti

b
s

a ctj

d

ti

(b) (c)

b

a c

ds

R

tjti

b

a c

ds

R

tjti

(d)

b

a c

d

tjti

b

a c

d

R

tjti

s s

b

a c

d

s

tjti

R

b

a c

d

s

tjti

R

(e) (f) (g) (h)

Fig. 2. An illustration for Lemma 2.

Lemma 2. Let P be a 1-bend 1-sided boundary labelling problem with a con-
straint that the leftmost and rightmost ports a and c on Btop must be connected
to a pair of points b and d, respectively. Let s be the rightmost or bottommost site
of the problem excluding b and d. If P has a feasible solution satisfying the given
constraint, then it also has a solution that connects s to the port tj such that
(i) connecting s to tj decomposes the problem into two balanced subproblems,
and (ii) tj is the first port (while walking from c to a along the boundary) that
provides such a decomposition.

Proof. First, assume that s is the bottommost point (see Fig. 2(a)–(b)). Assume
for a contradiction that connecting s to tj would not give a feasible solution,
whereas there is another port ti such that connecting s to ti would yield a
feasible solution. Note that ti lies to the left of tj . Let L be the leader of ti. We
swap the leaders of ti and tj : we connect s to tj and the site one connected to tj
to ti. Such a swap may introduce crossings in R: the rectangular region to the
right side of L. However, after the swap both sides of the leader of tj in R are
balanced 1-sided problems (see Fig. 2(c)). Such a solution with crossings to a 1-
sided boundary labelling problem can always be made planar by local swaps [4].
The proof for the case when s is the rightmost point is the same. Figure 2(e)–(h)
illustrate such a scenario. ��

3 Three-Sided Boundary Labelling

In this section, we give an O(n3 log n)-time algorithm for the 3-sided boundary
labelling problem. We assume that the ports are located on Bleft, Btop and
Bright. Kindermann et al. [10] gave an O(n4)-time algorithm for this problem
as follows. Consider the grid induced by a horizontal and a vertical line through
every port and site. For each node of this grid, they partition the 3-sided problem

Faster Multi-sided One-Bend Boundary Labelling 121

x

t0

x

q

�0

�i

tk

x

x

c4 c4

(c) (d)(b)(a)
T ({x, tk}, top)

c1

c2c3 c2c3

c1

L-shaped

Γ-shaped

x′ x′

Γ-shaped

L-shaped

x′ x′

T ({x, �i}, left)

q

Fig. 3. (a)–(b) An L- and a Γ -shaped problem. (c)–(d) Encoding of the L-shaped
problems. The site q that determines the boundary of the L-shape can be recovered
from the encoding.

into an L-shaped 2-sided and a Γ -shaped 2-sided problem (Fig. 3(a)–(b)). They
showed that the 3-sided problem is solvable if and only if there exists a grid node
whose two 2-sided problems both are solvable.

Algorithm Overview. We also start by considering every grid node x, but we
employ a dynamic programming approach that expresses the resulting 2-sided
subproblems by x and a port. We show that the 2-sided subproblems can have
O(1) different types. This gives us O(1) different tables, each of size O(n3). We
show that the running time to fill all the entries is O(n3 log n). For a grid node
x, let x′ be the projection of x onto Btop. The point x′ splits the ports on B into
two sets: those to the left of x′ and those to the right of it. This means that the
line segment xx′ can be extended to an axis-aligned curve with two bends that
splits the problem into two balanced L- and Γ -shaped 2-sided subproblems; see
Fig. 3. Kindermann et al. [10] observed that such a balanced partition is unique.
Hence if there exists a balanced partition by extending xx′ to a 2-bend curve,
then there must be a unique position where the number of sites to the left of the
curve matches the number of ports to the left of x′.

In the following, we describe the details of solving the L- and Γ -shaped
2-sided problems. W.l.o.g., we assume that the 2-sided problem contains the
top-left corner c4 of B. While decomposing an L-shaped problem, we will reduce
it either into a smaller L-shaped problem or a rectangular 2-sided problem.
Decomposition of a Γ -shaped problem is more involved.

3.1 Solving an L-Shaped Problem

We denote an L-shaped subproblem with a grid node x and a port b, where
b lies either on Btop or Bleft. If b is a port on Bleft (i.e., b = �i for some i),
then we denote the subproblem by T ({x, �i}, left) in which the bottom side
is determined by a horizontal line through �i (e.g., see Fig. 3(c)). Here, the last
parameter denotes whether the port belongs to Bleft or Btop. Initially, we assume
a dummy port �0 located at c3 and so our goal is to compute T ({x, �0}, left).
On the other hand, if b = tk for some k (i.e., it is a port on Btop), then we define

122 P. Bose et al.

the problem as T ({x, tk}, top) (see Fig. 3(d))). Here, the goal is to compute
T ({x, t0}, top), where t0 is a dummy port at c4.

To decompose T ({x, �i}, left), we find the rightmost site p of the subproblem
in O(log n) time (Fig. 4(a)). We first do some preprocessing, and then consider
two cases depending on whether p lies to the left or right side of the vertical line
through x. For the preprocessing, we keep the sites and ports in a range count-
ing data structure that supports O(log n) counting query [5]. Second, for each
horizontal slab determined by a pair of horizontal grid lines h and h′ (passing
through sites and ports), we keep the points inside the slab in a sorted array
M(h, h′), which takes O(n3 log n) time. We now use these data structures to
find p. We first compute the sites and ports in the rectangle determined by the
diagonal c4x, and then find the number of points needed (for having a balanced
subproblem) in O(log n) time. Finally, we find a site r (that balances the number
of sites and points) in O(log n) time by a binary search in the array M for the
slab determined by the horizontal grid lines through �i and x. If r lies to the
right of the vertical line through x, then r is the desired point p. Otherwise, p
lies to the left of the vertical line through x, and we can find p by searching in
the array M for the slab determined by the horizontal grid lines through �i and
t0. We will frequently search for such a unique site throughout the paper and so
we will use a similar preprocessing.

Case 1 (p Lies to the Right Side of the Vertical Line Through x). We connect p
to the “correct” port: after connecting, the resulting subproblems are balanced;
i.e., the number of sites in each resulting subproblem is the same as the number
of ports of that subproblem. There might be several ports that are right in
this sense, but one can apply Lemma 2 (assuming dummy leaders as boundary
constraints) to show that the subproblem has a feasible solution if and only
if there exists a feasible solution connecting p either to the bottommost or to
the rightmost port that satisfies the balanced condition. Once we find p and
the appropriate port c for p, there are three possible scenarios as illustrated in
Fig. 4. We can decompose the subproblem using the following recursive formula
(depending on whether p is connected to Bleft or Btop):

T ({x, �i}, left) =

{
T ({x, �j}, left) ∧ T ′ e.g., see Fig. 4(a)–4(b), or

T ({x, tj}, top) ∧ T ({y, �i}, left) e.g., see Fig. 4(c)

Here, T ({x, tj}, top) is an L-shaped 1-sided problem and T ′ is a rectangular
1-sided problem. There always exists a solution for the balanced rectangular 1-
sided problem [4], and thus T ′ can be considered as true. Since T ({x, tj}, top)
is balanced, we can show that there always exists a solution for T ({x, tj}, top),
as follows. First assume that the vertical line through x does not pass through a
port (see Fig. 5(a)). Let t be the rightmost port in T ({x, tj}, top), and let Q be
the set of points inside the rectangle Rx determined by diagonal xq. Scale down
the rectangle Rx horizontally and translate the rectangle inside the vertical slab
determined by the vertical lines through t and x. There always exists a solution
for the balanced rectangular 1-sided problem [4], and we can translate the points
back to their original position extending the leaders as required. The case when

Faster Multi-sided One-Bend Boundary Labelling 123

Fig. 4. The decomposition of an L-shaped problem when b = �i.

Fig. 5. (a) Reducing T ({x, tj}, top) to a rectangular 1-sided problem, and (b) finding
the port c for p when c = tj for some j. (c) Precomputation of the 2-sided problems.

the vertical line through x passes through a port tx can be processed in the same
way, by first connecting tx to the topmost point of Rx, and then choosing the
port immediately to the left of tx as t. The recurrence formula is as follows.

T ({x, �i}, left) =

{
T ({x, �j}, left) if �j exists, e.g., see Fig. 4(a)–4(b), or
T ({y, �i}, left) if tj exists, e.g., see Fig. 4(c)

We now show how to find the point p and then decompose T ({x, �i}, left). The
table T ({x, �i}, left) is of size O(n3). We will show that each subproblem can
be solved by a constant number of table look-ups, and these entries can be found
in O(log n) time. Hence, the overall computation takes O(n3 log n) time.

We now show how to find the “right” port c for p. First, assume that c is a port
�j on Bleft (see Fig. 4(a)–(b)). We need another O(n3 log n)-time preprocessing
as follows. Define a table M ′(s, �i), where s is a site, and �i is a port on Bleft.
At the entry M ′(s, �i), we store the port �j such that j > i is the smallest index
for which the rectangle defined by Bleft, the horizontal lines through �i, �j and
the vertical line through s contains exactly (j − i − 1) sites. We set j to 0 when
no such port �j exists. The table M has size O(n2) and we can fill each entry of
the table in O(n log n) time; hence, we can fill out the entire M ′ in O(n3 log n)
time. Observe that the port c for p is stored in M ′(p, �i).

124 P. Bose et al.

Consider now the case when c is a port tj on Btop (see Fig. 4(c)). We again
rely on an O(n3 log n)-time preprocessing. For every site s and a vertical grid
line � (passing through a port or a site) to the left of s, we keep a sorted array
M ′′(s, �) of size O(n). Each element of the array corresponds to a rectangle
bounded by the horizontal line through s, Btop, �, and another vertical grid line
�′ through a port to the left of �. The rectangles are sorted based on the difference
between the sites and ports and then by the x-coordinate of �′. Consequently, to
find c(= tj), we can look for the number of sites in the rectangle determined by
the diagonal px (see Fig. 5(b)), and then binary search for that number in the
precomputed array for M ′′(p, x).

Case 2 (p Lies to the Left Side of the Vertical Line Through x). Let o be the
intersection of the vertical line through x and the leader connecting �i and q
(see Fig. 5(c)). Since p is the rightmost point, it suffices to solve the rectangular
2-sided problem P determined by the rectangle with diagonal oc4 (shown in
falling pattern). We will determine whether a solution exists in O(1) time based
on some precomputed information, as follows.

For each vertical grid line, we will precompute the topmost horizontal grid
line g such that the 2-sided problem (shown in orange) determined by these lines,
Btop and Bleft has a feasible solution. If g lies above �i, then the 2-sided problem
is solvable (as the remaining region determines a balanced 1-sided problem);
otherwise, it is not solvable. We will use the known O(n2)-time algorithm [10] to
check the feasibility of a 2-sided problem, which looks for a ‘partitioned’ solution.
However, we do not necessarily require our 2-sided problem to be partitioned.

We now show that the precomputation takes O(n3 log n) time. For every
vertical grid line v, we first compute a sorted array Av of horizontal grid lines such
that the 2-sided problem determined by v and each element of Av is balanced.
This takes O(n log n) time for v and O(n2 log n) time for all vertical grid lines.
For each v, we then do a binary search on Av to find the topmost grid line g such
that the corresponding 2-sided problem has a feasible solution. Since computing
a solution to the 2-sided problem takes O(n2) time [10], g can be found in
O(n2 log n) time for v, and in O(n3 log n) time for all vertical grid lines.

Avoiding Γ -Shaped Problem While Decomposing L-Shaped Problems. While
decomposing L-shapes, we always find the rightmost point p. If the x-coordinate
of p is larger than that of x, then the subproblems T ({x, �j}, left) and
T ({y, �i}, left) are also L-shaped. Otherwise, the problem reduces to a rect-
angular 1-sided or 2-sided problem. Hence a Γ -shape problem does not appear
during the decomposition of L-shaped problems.

3.2 Solving a Γ -Shaped Problem

Consider the Γ -shaped problem containing the top-left corner c4; see e.g.
Fig. 6(a). Let o be the projection of x onto Bbottom, and let y be the other bend
of the Γ shape. In the following, we refer to the rectangle with diagonal oy as
the forbidden region.

Faster Multi-sided One-Bend Boundary Labelling 125

Fig. 6. (a) A Γ -shaped problem. (b)–(c) Three possibilities for the empty rectangle
R1, and a sequence of maximal rectangles corresponding to the separating curve. (d)
Rectangle R1 decomposes the problem into two 1-sided subproblems and a smaller
2-sided subproblem. (e)–(j) All possible cases for the two leaders determining the top
and left sides of R1.

Kindermann et al. [10, Lemma 8] observed that there must exist an axis-
aligned xy-monotone curve C that connects c4 to x such that the sites above
C are connected to top ports and the sites below C are connected to left ports.
We extend C to o along the vertical line xo (e.g., see Fig. 6(b)). Since no leader
can enter the forbidden region, we can now consider C as a separating curve
for a 2-sided problem determined by the rectangle with diagonal c4o. For any
partitioned solution, we can compute a sequence of maximal empty rectangles,
as we discussed in Sect. 2, such that the lower-right corner of R1 coincides with o.
To decompose the problem, consider the first rectangle R1 in this sequence. The
rectangle R1 can either cover the forbidden region entirely or partially in three
different ways; see Fig. 6(b). Since the separating curve through the grid point
x (Fig. 6(a)) determines a partition, the leaders of the Γ -shape must not enter
into the forbidden region. Therefore, it suffices to consider an empty rectangle
R1 that entirely covers the forbidden region.

Since R1 is maximal, the top or left side of R1 must contain a site (e.g., see
Fig. 6(c)); because otherwise, the leaders that determine the top and left side
of R1 will cross. Assume w.l.o.g. that the top side of R1 contains a site p that
is connected to a port b(= tk). Notice that b cannot be a left port because it
contradicts the existence of the curve C. Moreover, the left side of R1 either
contains a site or it is aligned with a leader that connects a port �j to a site q.
The bottom row in Fig. 6 shows all possible scenarios; notice that q cannot be
connected to a top port, again because of having C. This decomposes the problem
into three subproblems (see Fig. 6(d)). Two 1-sided subproblems Q1 and Q2, and
a smaller 2-sided subproblem. Q1 is bounded by the leader connecting �j to q,

126 P. Bose et al.

the left side of R1, Bbottom and Bleft. Q2 is bounded by the leader connecting p
to tk, Btop, the curve determined by x, and the top side of R1.

The smaller 2-sided subproblem is bounded by Bleft, Btop, the leaders inci-
dent to tk and �j , and the boundary of R1. We solve such 2-sided problems
by finding a sequence of maximal empty rectangles as described in Sect. 2. The
idea is inspired by Bose et al.’s [6] approach to solve a 2-sided problem using
a compact encoding for the table. Since we do not optimize the sum of leader
lengths, our approach is much simpler. The details of the processing of 2-sided
subproblems is included in the full version of the paper [7]. The following theorem
summarizes the result of this section.

Theorem 1. Given a 1-bend 3-sided boundary labelling problem with n sites and
n ports, one can find a feasible labelling (if it exists) in O(n3 log n) time.

4 Four-Sided Boundary Labelling

In this section, we give an O(n5)-time dynamic programming algorithm for the
4-sided boundary labelling. Our dynamic programming solution will search for a
set of maximal empty rectangles R1, . . . , Rk corresponding to the xy-separating
curve, as described in Sect. 2. The intuition is to represent a problem using at
most two given leaders. For example, in Fig. 7(a) the first empty rectangle is R1,
with the top and right sides of R1 determined by the leaders of �2 and b2, respec-
tively. The problem will have a feasible solution with these given leaders if and
only if the subproblems P1 and P2 (shown in falling and rising patterns, respec-
tively) have feasible solutions. Since the subproblems must be balanced, given
the two leaders adjacent to P2 (see Fig. 7(a)), we can determine the boundary
of the problem. We will use this idea to encode the subproblems.

It may initially appear that to precisely describe a subproblem, one would
need some additional information along with the two given leaders. For example,
the dashed boundary in Fig. 7(b). However, such information can be derived from
the given leaders. Here, the top-right corner of R1 (hence, the dashed line) can
be recovered using the y-coordinate of the bottommost point of the leader of
�2, and the x-coordinate of the leftmost point of the leader of b2. We will try
all possible choices for the first empty rectangle R1. In a general step, we will
continue searching for the subsequent empty rectangle. For example, consider the
subproblem in Fig. 7(b). For a subsequent empty rectangle, we will decompose
the problem into at most three new subproblems (Fig. 7(c)). Each of these new
subproblems can be represented using at most two leaders.

In the full version of the paper [7], we show how to decompose the subprob-
lems of each type while keeping the total running time bounded by O(n5). The
following theorem summarizes the result of this section.

Theorem 2. Given a 1-bend 4-sided boundary labelling problem with n sites and
n ports, one can find a feasible labelling (if it exists) in O(n5) time.

Faster Multi-sided One-Bend Boundary Labelling 127

Fig. 7. The idea of decomposing a problem into subproblems.

5 Directions for Future Research

The main direction for future work is to improve the running time of our algo-
rithms. Another direction is to study the fine-grained complexity of the problem;
e.g., can we find a non-trivial lower bound on the running time? Even a quadratic
lower bound is not known. Note that Bose et al.’s algorithm [6] minimizes the
sum of leader lengths, but ours does not. It would also be interesting to seek
faster algorithms that minimize the sum of leader lengths.

References

1. Bekos, M.A., et al.: Many-to-one boundary labeling with backbones. J. Graph
Algorithms Appl. 19(3), 779–816 (2015)

2. Bekos, M.A., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling
with octilinear leaders. Algorithmica 57(3), 436–461 (2010). https://doi.org/10.
1007/s00453-009-9283-6

3. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: mod-
els and efficient algorithms for rectangular maps. Comput. Geom. 36(3), 215–236
(2007)

4. Benkert, M., Haverkort, H.J., Kroll, M., Nöllenburg, M.: Algorithms for multi-
criteria boundary labeling. J. Graph Algorithms Appl. 13(3), 289–317 (2009)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-77974-2

6. Bose, P., Carmi, P., Keil, J.M., Mehrabi, S., Mondal, D.: Boundary labeling for rect-
angular diagrams. In: 16th Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT 2018, 18–20 June 2018, Malmö, Sweden, pp. 12:1–12:14 (2018)

7. Bose, P., Mehrabi, S., Mondal, D.: (Faster) multi-sided boundary labelling. CoRR
abs/2002.09740 (2020)

8. Freeman, H., Hitesh Chitalia, S.M.: Automated labeling of soil survey maps. In:
ASPRS-ACSM Annual Convention, Baltimore, vol. 1. pp. 51–59 (1996)

9. Keil, J.M., Mitchell, J.S.B., Pradhan, D., Vatshelle, M.: An algorithm for the max-
imum weight independent set problem on outerstring graphs. Comput. Geom. 60,
19–25 (2017)

https://doi.org/10.1007/s00453-009-9283-6
https://doi.org/10.1007/s00453-009-9283-6
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

128 P. Bose et al.

10. Kindermann, P., Niedermann, B., Rutter, I., Schaefer, M., Schulz, A., Wolff, A.:
Multi-sided boundary labeling. Algorithmica 76(1), 225–258 (2016). https://doi.
org/10.1007/s00453-015-0028-4

11. Zoraster, S.: Practical results using simulated annealing for point feature label
placement. Cartogr. GIS 24(4), 228–238 (1997)

https://doi.org/10.1007/s00453-015-0028-4
https://doi.org/10.1007/s00453-015-0028-4

On the Geometric Red-Blue Set Cover
Problem

Raghunath Reddy Madireddy1, Subhas C. Nandy2, and Supantha Pandit3(B)

1 BITS Pilani, Hyderabad Campus,
Hyderabad, Telangana, India

raghunath@hyderabad.bits-pilani.ac.in
2 Indian Statistical Institute, Kolkata, India

nandysc@isical.ac.in
3 Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar, Gujarat, India
pantha.pandit@gmail.com

Abstract. We study the variations of the geometric Red-Blue Set Cover
(RBSC) problem in the plane using various geometric objects. We show
that the RBSC problem with intervals on the real line is polynomial-time
solvable. The problem is NP-hard for rectangles anchored on two parallel
lines and rectangles intersecting a horizontal line. The problem admits a
polynomial-time algorithm for axis-parallel lines. However, if the objects
are horizontal lines and vertical segments, the problem becomes NP-hard.
Further, the problem is NP-hard for axis-parallel unit segments.

We introduce a variation of the Red-Blue Set Cover problem with the
set system, the Special-Red-Blue Set Cover problem, and show that the
problem is APX-hard. We then show that several geometric variations
of the problem with: (i) axis-parallel rectangles containing the origin in
the plane, (ii) axis-parallel strips, (iii) axis-parallel rectangles that are
intersecting exactly zero or four times, (iv) axis-parallel line segments,
and (v) downward shadows of line segments, are APX-hard by providing
encodings of these problems as the Special-Red-Blue Set Cover problem.
This is on the same line of the work by Chan and Grant [6], who provided
the APX-hardness results of the geometric set cover problem for the above
classes of objects.

Keywords: Red-Blue Set Cover · Special Red-Blue Set Cover ·
Anchored rectangles · Segments · Polynomial time algorithms ·
APX-hard · NP-hard

1 Introduction

Set Cover is a fundamental and well-studied optimization problem in computer
science. In this problem, we are given a set system (U, S) where U is a set of
elements and S is a collection of subsets of U . The objective is to find a minimum
sub-collection S′ ⊆ S that covers all the elements of U . The problem is in the
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 129–141, 2021.
https://doi.org/10.1007/978-3-030-68211-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_11

130 R. R. Madireddy et al.

list of Karp’s 21 NP-hard optimization problems [13]. Several researchers have
studied numerous variations of this problem, and one of the well-know variations
is the Red-Blue Set Cover Problem, which was introduced by Carr et al. [5]. In
this paper, we consider the geometric version of the red-blue set cover problem.
The formal definition of the problem is given below:

Geometric Red-Blue Set Cover (RBSC). Given three sets R, B, and
O where R (resp. B) is the set of red (resp. blue) points and O is the set of
geometric objects in the plane, the goal is to find a subset O′ ⊆ O of objects
such that O′ covers all the blue points in B while covering the minimum
number of red points in R.

We study the RBSC problem with different classes of geometric objects such
as intervals on the real line, axis-parallel rectangles stabbing a horizontal line,
axis-parallel rectangles anchored on two parallel horizontal lines, axis-parallel
lines, vertical lines and horizontal segments, axis-parallel line segments (both
unit and arbitrary lengths), axis-parallel strips, downward shadows of segments.

1.1 Previous Work

The classical Set Cover Problem is NP-hard [13] and it can not approximated
better than O(log n) unless P=NP [15]. The Geometric Set Cover problem has
also been studied extensively in the literature. The geometric set cover problem
is known to be NP-hard even when the objects are unit disks and unit squares
[10]. Further, the problem admits PTAS for objects like unit disks [14,18] and
axis-parallel unit squares [7,9]. On the other hand, the problem is known to
be APX-hard for triangles and circles [12]. Further, Chan and Grant [6] proved
that the Geometric Set Cover is APX-hard for several classes of objects such as
axis-parallel rectangles contain a common point, axis-parallel strips, axis-parallel
rectangles that intersect exactly zero or four times, downward shadows of line
segments, and many more.

In the literature, numerous variations of the Set Cover problem (in both
classical and geometric settings) are extensively studied (see [2,8,17]). A well-
know variation is the Red-Blue Set Cover (RBSC) problem that is introduced
by Carr et al. [5] in a classical setting. They proved that this problem cannot
be approximated in polynomial time within 2log

1−δ n factor, where δ = 1
logc logn

and for any constant c ≤ 1
2 , unless P=NP, even when each set contains two red

and one blue elements (here n is the number of sets). They also provided a 2
√

n
factor approximation algorithm for the restricted case where each set contains
exactly one blue element.

In a geometric setting, the RBSC problem was first considered by Chan and
Hu [7]. They studied this problem with axis-parallel unit squares and proved
that the problem is NP-hard and gave a PTAS for the same by using the mod-
one method. Recently, Shanjani [20] proved that the RBSC problem is APX-
hard when the objects are axis-parallel rectangles. She also showed that the

On the Geometric Red-Blue Set Cover Problem 131

RBSC problem with triangles (or convex objects) cannot be approximated to

within 2log
1− 1

(log log m)c m factor in polynomial time for any constant c < 1
2 , unless

P=NP (here m is the number of objects). For the RBSC problem with unit
disks, the first constant factor approximation algorithm was proposed in [16].

1.2 Our Contributions

➤ We show that the RBSC problem is APX-hard for (i) axis-parallel rectangles
containing the origin in the plane, (ii) axis-parallel strips, axis-parallel rect-
angles that are intersecting exactly zero or four times, (iii) axis-parallel line
segments, and (iv) downward shadows of line segments. To provide these
hardness results, we define a special case of the RBSC problem with set sys-
tems called the Special Red-Blue Set Cover (SPECIAL-RBSC) problem and
prove that this problem is APX-hard (see Sect. 2). The results are inspired
from the APX-hardness results given by Chan and Grant [6] for geometric
set cover problems with different objects.

➤ For axis-parallel rectangles anchored on two parallel lines, we prove that the
RBSC problem is NP-hard. We also prove that the RBSC problem is NP-
hard when the objects are axis-parallel rectangles stabbing a horizontal line
(see Sect. 3).

➤ For axis-parallel lines, we show that the RBSC problem can be solved in
polynomial time, whereas the problem is NP-hard when the objects are hor-
izontal lines and vertical segments. For axis-parallel unit segments in the
plane, we also prove that the RBSC problem is NP-hard (see Sect. 4).

➤ We present a sweep-line based polynomial-time dynamic programming algo-
rithm for RBSC problem with intervals on the real line (see Sect. 5).

1.3 Preliminaries

Fig. 1. An instance of the Planar Monotone
Rectilinear 3 SAT problem.

The 3-SAT problem [11] is a CNF
formula φ containing n variables
x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm

where each clause Ci contains exactly
3 literals. The objective is to decide
whether a truth assignment to the
variables exist that satisfies φ. A
clause is said to be a positive clause
if it contains all positive literals, oth-
erwise if a clause contains all negative
then the clause is said to be a negative clause. A Monotone 3-SAT (M3SAT)
problem [11] is a 3-SAT problem where the formula contains either positive
or negative clauses. Both 3-SAT and M3SAT problems are NP-complete [11].
In a Planar Monotone Rectilinear 3-SAT (PMR3SAT) problem [3,4], a 3-
CNF formula φ is given that contains n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm where each clause is either positive or negative and contains

132 R. R. Madireddy et al.

exactly 3 literals. For each variable or clause, take a horizontal segment. The
variable segments are arranged on a horizontal line (may be on the x-axis) in a
order from left to right and all the positive (resp. negative) clauses are connected
by three legs to the 3 literals it contains from above (resp. below). The clauses
are placed in different levels in the y-direction. Further, the drawing is planar,
i.e., no segments and legs can intersect with each other. See Fig. 1 for an instance
φ of the PMR3SAT problem. The objective is to decide whether φ is satisfiable
or not. de Berg and Khosravi [3,4] proved that this problem is NP-complete.

The variables x1, x2, . . . , xn are ordered from left to right on the x-axis. For
a negative clause Cl containing xi, xj , and xk in this order on the x-axis, we say
that xi is the left, xj is the middle, and xk is the right variables. Let us consider
a variable xi. Let 1, 2, . . . be the left to right order of the legs of negative clauses
that connects to xi. We interpret the clause corresponding to the κ-th leg as the
(κ, i)-th clause. For example, for the variable x3, C1 is (1, 3)-th, C3 is (2, 3)-th,
and C2 is (3, 3)-th clause respectively. A similar interpretation can be given for
positive clauses by taking the PMR3SAT embedding (Fig. 1) upside down.

2 APX-hardness Results

In this section, we show that the RBSC problem is APX-hard for several classes
of objects (see Theorem 2 for the exact list). For this purpose, we first define a
variation of red-blue set cover with the set system, SPECIAL-RBSC, and show
that the problem is APX-hard. Then, we give encodings of the RBSC problem
with different classes of objects to the SPECIAL-RBSC problem.

Special-Red-Blue Set Cover (SPECIAL-RBSC) Problem Let
(R ∪ B,S) be a range space where R = {r1, r2, . . . , rn, r11, r

1
2, . . . , r

1
m, r21, r

2
2,

. . . , r2m} and B = {b11, b
1
2, . . . , b

1
m, b21, b

2
2, . . . , b

2
m, b31, b

3
2, . . . , b

3
m} be sets of red

and blue elements respectively, and let S be a collection of 6m subsets of
R ∪ B satisfying the following properties:

1. Each set in S contains exactly one blue and one red elements.
2. Each blue element in B appears in exactly two sets in S, every red

element ri ∈ R appears in exactly three sets in S, and for each i =
1, 2, . . . ,m, the red elements r1i , r

2
i ∈ R appear in exactly two sets in S.

Hence, 2m = 3n.
3. For each 1 ≤ t ≤ m, there exist two positive integers i and j, where

1 ≤ i < j ≤ n, such that S contains the sets {ri, b
1
t}, {b1t , r

1
t }, {r1t , b

2
t},

{b2t , r
2
t }, {r2t , b

3
t}, and {b3t , rj}.

The goal is to find a sub-collection S′ ⊆ S, which covers all blue elements
in B while covering the minimum number of red elements in R.

In the following, we use the L-reduction [19] to show that the SPECIAL-
RBSC problem is APX-hard. Let A and B be two optimization problems and
let g be a polynomial-time computable function from A to B. For an instance

On the Geometric Red-Blue Set Cover Problem 133

τ of A, let OPT (τ) and OPT (g(τ)) be the sizes of the optimal solutions of τ
and g(τ) respectively. Function g is said to be an L-reduction if there exists two
positive constants α and β (usually 1) such that the following two properties
hold for each instance τ of A:

P1: OPT (g(τ)) ≤ α · OPT (τ).
P2: For any given feasible solution of g(τ) with cost C(g(τ)), there exists a

polynomial-time algorithm that finds a feasible solution of τ with cost C(τ)
such that |C(τ) − OPT (τ)| ≤ β · |C(g(τ)) − OPT (g(τ))|.

Theorem 1. The SPECIAL-RBSC problem is APX-hard.

Proof. We give a L-reduction [19] from a known APX-hard problem, the vertex
cover on cubic graphs [1]. In this problem, a graph G = (V,E) is given, V =
{v1, . . . , vn} and E = {e1, . . . , em}, and the degree of each vertex is exactly
three, the goal is to find a minimum size subset V ∗ ⊆ V of vertices that covers
all the edges of G. We construct an instance of the SPECIAL-RBSC problem
as follows:

1. For each vertex vi ∈ V , place a red element ri in a set R1. Thus, R1 =
{r1, . . . , rn}.
2. For each edge et = (vi, vj) where i < j (1 ≤ t ≤ m), consider three blue
elements b1t , b

2
t , and b3t and two red elements r1t and r2t . Further, consider six

sets {ri, b
1
t}, {b1t , r

1
t }, {r1t , b

2
t}, {b2t , r

2
t }, {r2t , b

3
t}, and {b3t , rj} in S.

3. Let B = {b1t , b
2
t , b

3
t | for all t = 1, 2, . . . ,m}. Further, let R2 = {r1t , r

2
t |

for all t = 1, 2, . . . ,m}. Finally, let R = R1 ∪ R2.

We now show that this is a L-reduction with α = 4 and β = 1. For any set
S′ ⊆ S, let cost(S′) denote the number of red elements in R that are covered by
the sets in S′. Let V ∗ ⊆ V be an optimal vertex cover of G. In the following,
we give a procedure to compute an optimal solution S∗ ⊆ S for the above
instance of the SPECIAL-RBSC problem. Let (vi, vj) be the t-th edge in E, for
1 ≤ i < j ≤ n. Since V ∗ is an optimal vertex cover for G, we have three cases:

i) Both vi, vj ∈ V ∗: Pick both sets {ri, b
1
t} and {b3t , rj} in S∗. Further, to

cover the blue element b2t , pick exactly one set among {r1t , b
2
t} and {b2t , r

2
t }

in S∗.
ii) vi ∈ V ∗ and vj /∈ V ∗: Pick set {ri, b

1
t} in S∗. Further, to cover the blue

elements b2t and b3t , pick sets {b2t , r
2
t } and {r2t , b

3
t} in S∗.

iii) vj ∈ V ∗ but vi /∈ V ∗: Pick three sets {b3t , rj}, {b1t , r
1
t }, and {r1t , b

2
t} in

S∗.

Do the same process for all edges in E. One can observe that the set S∗

is an optimal solution for the instance of SPECIAL-RBSC problem. Further,
cost(S∗) = |V ∗| + |E|.
Proof of α = 4: Since the given graph G is a cubic graph, |V ∗| ≥ |E|/3, which
implies that cost(S∗) ≤ 4|V ∗|. Hence, α = 4.

134 R. R. Madireddy et al.

Proof of β = 1: Let S′ ⊆ S be a solution of the SPECIAL-RBSC problem.
We now obtain a vertex cover V ′ ⊆ V of G, in polynomial time such that
||V ′| − |V ∗|| ≤ |cost(S′) − cost(S∗)|. Let R′ ⊆ R be the set of red elements
covered by the sets in S′. For each t = 1, 2, . . . , m, we do the following: let
(vi, vj) be the t-th edge in G for 1 ≤ i < j ≤ n. There are three possible cases:
a) Both ri and rj are in R′. Pick both vi and vj in V ′. Note that in this case,
at least one red element among r1t and r2t is in R′.
b) Exactly one of ri and rj is in R′. Assume that ri ∈ R′ (other case is similar).
Note that r2t is also in R′. In this case, place vi in V ′.
c) None of ri and rj is in R′. In this case, both r1t and r2t must be in R′. Pick
any one of the vertices vi and vj in V ′.

Observe that V ′ is a vertex cover for G. Further, for each t = 1, 2, . . . ,m,
there exists at least one red element in R′ for which we have not picked a
vertex in V ′. Hence, |V ′| ≤ |R′| − |E| = cost(S′) − |E|. Thus, ||V ′| − |V ∗|| ≤
|cost(S′) − |E| − |V ∗|| = |cost(S′) − cost(S∗)|. Therefore, β = 1. �	
Theorem 2. The RBSC problem is APX-hard for following classes of objects:

C1: Rectangles containing the origin of the plane.
C2: Downward shadows of segments.
C3: Axis-parallel strips.
C4: Rectangles intersecting exactly zero or four times.
C5: Axis-parallel line segments.

Proof. We prove the theorem by giving an encoding of each class of problems
from the SPECIAL-RBSC problem. For every blue (resp. red) element in an
instance of SPECIAL-RBSC problem, we consider a blue (resp. red) point in
the plane, and for every set in the instance of SPECIAL-RBSC problem, we
consider a geometric object. The detailed embedding is given below for each
class of objects.

C1: See the encoding in Fig. 2(a). Place the red points r1, r2, . . . , rn, in the order
from bottom to top, on a line parallel to y = x−1 in the fourth quadrant. Further,

(a) (b)

Fig. 2. Encoding of SPECIAL-RBSC problem (a) Class C1. (b) Class C2. (Color
figure online)

On the Geometric Red-Blue Set Cover Problem 135

place all the blue points b11, b
1
2, . . . , b

1
m, b21, b

2
2, . . . , b

2
m, b31, b

3
2, . . . , b

3
m and red points

r11, r
1
2, . . . , r

1
m, r21, r

2
2, . . . , r

2
m on a line parallel to y = x+1 in the second quadrant

such that for each t = 1, 2, . . . ,m, the five points b1t , r
1
t , b

2
t , r

2
t , and b3t are always

together in the same order from bottom to top. For each t = 1, 2, . . . ,m, place
a rectangle for each set {ri, b

1
t}, {b1t , r

1
t }, {r1t , b

2
t}, {b2t , r

2
t }, {r2t , b

3
t} and {b3t , rj},

where 1 ≤ i < j ≤ n, that cover the respective points.

C2: See the encoding in Fig. 2(b). Place the red points r1, r2, . . . , rn in the same
order, from bottom to top, on a line parallel to y = −x. Further, the placement
of blue points and other red points are similar to C1. Place the objects (segments
and its shadows) as show in Fig. 2(b).

C3: Place the red points r1, r2, . . . , rn, on a diagonal line with sufficiently large
gap between every two consecutive points (see Fig. 3(a)). We know that each red
point ri (i = 1, 2, . . . , n) is in exactly three sets. We place blue points b1t , b

2
t , b

3
t ,

other red points r1t , r
2
t , 1 ≤ t ≤ m, and strips as follows: If {ri, b

1
t} is the first

set in which ri appears, then place b1t to the left of ri below the diagonal and
cover both of them with a vertical strip (see Fig. 3(b)). If {ri, b

1
t} is the second

set in which ri appears, then place b1t to the right of ri below the diagonal and
cover both of them with a vertical strip. If {ri, b

1
t} is the third set in which ri

appears, then place b1t to the left of ri above the diagonal and cover both points
with a horizontal strip (see Fig. 3(c)). The same is true for b3t . Now place the red
point r1t and blue point b2t as follows: If b1t is placed below the diagonal line and
is to the left (resp. right) of ri, place r1t to the left (resp. right) of b1t such that
a horizontal strip can cover only b1t and r1t . Further, place b2t vertically below r1t
and cover the points with a horizontal strip. If b1t is placed above the diagonal,
then place r1t vertically above b1t and cover the points with a horizontal strip.
Further, place b2t vertically above r1t and cover the points with a horizontal strip.
Finally, place the point r2t appropriately and cover with an axis-parallel strip (see
Figs. 3(b) and 3(c)).

C4: This case is similar to the class C3.

(a) (b) (c)

Fig. 3. Class C3 (a) Position of red points r1, r2, . . . , rn (b) {ri, b1t} is the first set
containing ri for some t. (c) {ri, b1t} is the third set containing ri for some t. (Color
figure online)

136 R. R. Madireddy et al.

C5: This case is also similar to classes C3 and C4. We place the red points
r1, r2, . . . , rn on a diagonal line from bottom to top with sufficiently large gap
between every two consecutive points. See Fig. 3(a). We place the segments for
the six sets {ri, b

1
t}, {b1t , r

1
t }, {r1t , b

2
t}, {b2t , r

2
t }, {r2t , b

3
t}, and {b3t , rj} as follows.

1. Suppose t is the smallest integer such that ri appear in a set {ri, b
1
t}. Then,

place a blue point b1t just vertically above ri. Further, place the vertical seg-
ment that covers only points ri and b1t for set {ri, b

1
t}. Place r1t vertically

above b1t and place b2t vertically above r1t . Further, place the smallest vertical
segments to cover the sets {b1t , r

1
t } and {r1t , b

2
t} covering the respective points.

2. Suppose ri appears in exactly one set {ri, b
1
t′} for t′ < t. Then place the point

b1t just horizontally right to ri. Further, place the smallest horizontal segment
covering ri and b1t for set {ri, b

1
t}. Place r1t to the right b1t and place b2t to the

right of r1t . Further, place the smallest horizontal segments to cover the sets
{b1t , r

1
t } and {r1t , b

2
t} covering the respective points.

3. Suppose ri appears in exactly two sets {ri, b
1
t′} and {ri, b

1
t′′}, for t′ < t′′ < t.

This case is symmetric to the first case.

Similarly, the blue point b3t is placed based on the red point rj and place an
appropriate axis-parallel segment for the set {b3t , rj}. Finally, one can place the
red point r2t at an appropriate position and connect it with b2t and b3t by using
axis-parallel segments which do not cover any other points. �	

3 Rectangles Anchored on Two Parallel Lines

We prove that the RBSC problem with axis-parallel rectangles anchored on
two parallel lines (RBSC-RATPL) is NP-hard. We give a reduction from the
PMR3SAT problem. From an instance φ of the PMR3SAT problem, we create
an instance I of the RBSC-RATPL problem as follows.

Variable Gadget: Consider two infinite horizontal lines L1 and L2. For each
variable xi, the gadget (see Fig. 4) consists of 36m + 4 rectangles {tij |1 ≤ j ≤
36m + 4}. The 18m + 2 rectangles {tij |1 ≤ j ≤ 18m + 2} are anchored on the

Fig. 4. Variable gadget (Color figure online)

On the Geometric Red-Blue Set Cover Problem 137

line L1 and the remaining 18m + 2 rectangles {tij |18m + 3 ≤ j ≤ 36m + 4} are
anchored on the line L2. The rectangle ti1 contains two blue points bi1 and bi36m+4

and the rectangle tij contains the two blue points bij−1 and bij for 2 ≤ j ≤ 36m+4.
Further, the rectangle tij contains the red point rij , for 1 ≤ j ≤ 36m + 4. See
Fig. 4 for the structure of the gadget for xi.

It is easy to observe that, there are exactly two disjoint sets of rectangles
T i
0 = {ti2, t

i
4, . . . , t

i
36m+4} and T i

1 = {ti1, t
i
3, . . . , t

i
36m+3} such that each set covers

all the blue points and also covers the minimum possible number, i.e., 18m + 2,
of red points. This two sets correspond to the truth value of the variable xi; T i

1

corresponds xi is true and T i
0 corresponds xi is false.

Clause Gadget and Variable-Clause Interaction: We first give a schematic
overview of the structure and position of the variable and clause gadgets (rect-
angles, red, and blue points). See Fig. 5, for a schematic diagram of the variable
and clause gadgets. Each variable has a designated area, the variable area. The
gadget (Fig. 4) is fully contained inside its corresponding area. Each variable
area has a special area, the variable region where the points corresponding to
the variable gadget are placed. Similarly, each clause has a designated area, the
clause area. The clause gadget is fully contained inside that area. Each clause
has a special area called the clause region. We place some red and blue points
(other than the points of the variables) in that region.

Fig. 5. Schematic diagram of clause gadget (Color figure online)

Let Cl be a negative clause that contains variables xi, xj and xk in
the order from left to right (Fig. 1). For this clause we take 11 blue points
{al

i, a
l
j , a

l
k, c

l
1, c

l
2, c

l
3, c

l
4, c

l
5, c

l
6, c

l
7, c

l
8}, 8 red points {ql1, q

l
2, . . . , q

l
8}, and 4 rectan-

gles {sl1, s
l
2, s

l
3, s

l
4} anchored on L1. Now we describe the placement of these

points and rectangles.
Note that for clause Cl, xi, xj , and xk are left, middle, and right variables

respectively. Let us assume that Cl is a (κ1, i)-th, (κ2, j)-th, and (κ3, k)-th clause
for the variables xi, xj , and xk, respectively.

Since xi is a left variable that is negatively present in Cl, place the point
al
i inside the rectangle 18κ1 + 4. Similarly, since xk is a right variable that is

negatively present in Cl, place the point al
k inside the rectangle 18κ3 + 4.

138 R. R. Madireddy et al.

The variable xj is a middle variable that is negatively present in Cl, place
the 17 points ql1, q

l
2, c

l
1, c

l
2, c

l
3, c

l
4, q

l
3, q

l
4, a

l
j , q

l
5, q

l
6, c

l
5, c

l
6, c

l
7, c

l
8, q

l
7, q

l
8 in the left to

right order inside the rectangles 18κ2 + 2, 18κ2 + 3, . . . , 18κ2 + 18, respectively.
The rectangle sl1 covers the points al

i, q
l
1, q

l
2, c

l
1, c

l
2, c

l
3, c

l
4, the rectangle sl2 cov-

ers the points cl1, c
l
2, c

l
3, c

l
4, q

l
3, q

l
4, a

l
j , the rectangle sl3 covers the points al

j , q
l
5,

ql6, c
l
5, c

l
6, c

l
7, c

l
8, and the rectangle sl4 covers cl5, c

l
6, c

l
7, c

l
8, q

l
7, q

l
8, a

l
k (see Fig. 6).

Fig. 6. Clause gadget and variable-clause interaction

For a positive clause the construction is similar by looking at the
PMR3SAT instance upside down. The only difference is now the literals that a
clause contains are all positive. For this case we place the points of the clauses
in an identical way by adding 1 to each index of the rectangles of the clause
gadget.

Observe that the number of red and blue points, and rectangles in I is poly-
nomial with respect to n and m and the construction can be made in polynomial
time. We conclude the following theorem (proof is in the full version).

Theorem 3. The RBSC-RATPL problem is NP-hard.

Modifying the above construction, we prove that the RBSC problem with
axis-parallel rectangles intersecting a horizontal line (RBSC-RSHL) is NP-hard.

4 Axis-Parallel Lines and Segments

The RBSC problem can be solved in polynomial time when the objects are axis-
parallel lines (see full version of the paper). Further, it can be proved that the
problem is NP-hard for axis-parallel unit segments (see full version of the paper).

We prove that the RBSC problem is NP-hard for horizontal lines and vertical
segments (RBSC-HLVS) by a polynomial-time reduction from the M3SAT prob-
lem. The reduction is similar to the NP-hard reduction of the maximum inde-
pendent coverage problem with horizontal lines and vertical segments [8]. We
generate an instance I of the RBSC-HLVS from an instance φ of M3SAT.

Overall Structure: The overall structure is in Fig. 7(a). The variable gadgets
are placed horizontally, one after another, from top to bottom. Each variable

On the Geometric Red-Blue Set Cover Problem 139

gadget has an area within which the gadget is placed. Inside each area, there is
a portion called the variable region where the red and blue points of the variable
gadget are placed. The clause gadgets are placed vertically, one after another,
from left to right after the variable regions. Clause gadgets are fully contained
inside its area. There is a horizontal space called the inter-variable area between
two variable areas where some blue points of clause gadgets are placed.

Variable Gadget: The gadget (Fig. 7(b)) of variable xi contains two horizon-
tal lines hi

1 and hi
4, four vertical segments hi

2, h
i
3, h

i
5, and hi

6, six blue points
bi1, b

i
2, . . . , b

i
6, and 6 red points ri1, r

i
2, . . . , r

i
6. The blue points bi1 and bi6 are cov-

ered by hi
6 and the blue points bij , bij+1 are covered by hi

j , for 1 ≤ j ≤ 5. Further,
hi
j covers the red point rij , 1 ≤ j ≤ 6. Observe that, there are two ways to

cover the blue points while minimizing the red points: either Hi
1 = {hi

1, h
i
3, h

i
5}

or Hi
0 = {hi

2, h
i
4, h

i
6} each covering exactly 3 red points. The set Hi

0 represents
xi is true and Hi

1 represents xi is false.

Clause Gadget and Variable-Clause Interaction: The gadget for the clause
Cl consists of four vertical segments gl1, gl2, gl3, and gl4, five blue points cl1, cl2, cl3,
cl4, and cl5, and four red points ql1, ql2, ql3, and ql4. The vertical segments are on
a vertical line and inside the clause area. The segment glj covers two blue points
clj and clj+1, and one red point qij , 1 ≤ j ≤ 4. Let Cl be a positive clause that
contains variables xi, xj , and xk. Then we place the blue points cl1, cl3, and cl5
on segments hi

4, hj
4, and hk

4 respectively. If Cl be a negative clause that contains
variables xi, xj , and xk. Then we place the blue points cl1, cl3, and cl5 on segments
hi
1, hj

1, and hk
1 , respectively. See Fig. 7(b) for this construction.

(a) (b)

Fig. 7. (a) Overall structure of the construction. (b) Structure of variable and clause
gadgets and their interaction. (Color figure online)

This completes the construction. Clearly, the number of horizontal lines,
vertical segments, and blue and red points in I is polynomial in n and m and the

140 R. R. Madireddy et al.

construction can be performed in polynomial time. We now have the following
theorem (proof is in the full version).

Theorem 4. The RBSC-HLVS problem is NP-hard.

5 Intervals on the Real Line

In this section, we consider that all blue and red points are on the real line and
the objects are arbitrary size intervals. For this case, we give an exact algorithm
with O(nm2)-time where n = |R∪B| and m = |S|. Each i-th interval is denoted
by [li, ri] where li (left endpoint) and ri (right endpoint) are some real numbers.

Let O∗ ⊆ O be an optimal set of intervals which cover all blue points
while covering the minimum number of red points. Without loss of gener-
ality, we assume that no interval in O∗ is completely contained inside an
another interval in O∗. In the following, we reduce the problem to a shortest
path problem in a directed acyclic graph G. Let l = min{l1, l2, . . . , lm} and
r = max{r1, r2, . . . , rm}. We add two dummy intervals d1 and d2 where d1 com-
pletely lies to the left of x = l and d2 completely lies to the right of x = r. Note
that the dummy intervals d1 and d2 will not cover any blue and red points.

Consider a node for each interval in S, i.e., V (G) = {vi | i
is an interval in S}. We place directed edges (vi, vj) if the following conditions

are satisfied: (i) li < lj and ri < rj and (ii) all the blue points in [li, lj] are cov-
ered by interval [li, ri]. The cost of the edge (vi, vj) is the number of red points
covered by [lj , rj] which are not covered by [li, ri].

We note that graph G has O(m) vertices and O(m2) edges. Further, we
require O(n)-time to check the feasibility of an edge and compute an edge’s
cost. Hence, one can compute the graph G in O(nm2)-time. Further, from the
construction, it is clear that G is acyclic. From the addition of two dummy
vertices, d1 and d2 we claim that G has unique source, say s, and unique sink,
say t. Further, we claim that the cost of the optimal solution of RBSC is also
the same as the shortest path’s cost from s to t in G. Since G is acyclic directed
graph, one can compute the shortest path from s to t in O(nm2)-time.

Theorem 5. There exists O(nm2)-time exact algorithm to solve red-blue set
cover with intervals on a real-line.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1), 123–134 (2000)

2. Bereg, S., Cabello, S., Dı́az-Báñez, J.M., Pérez-Lantero, P., Seara, C., Ventura, I.:
The class cover problem with boxes. Comput. Geom. 45(7), 294–304 (2012)

3. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai,
M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14031-0 25

https://doi.org/10.1007/978-3-642-14031-0_25

On the Geometric Red-Blue Set Cover Problem 141

4. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

5. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover prob-
lem. In: SODA, pp. 345–353 (2000)

6. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. 47(2), 112–124 (2014)

7. Chan, T.M., Hu, N.: Geometric red blue set cover for unit squares and related
problems. Comput. Geom. 48(5), 380–385 (2015)

8. Dhar, A.K., Madireddy, R.R., Pandit, S., Singh, J.: Maximum independent and
disjoint coverage. J. Comb. Optim. 39(4), 1017–1037 (2020)

9. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In:
Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM -2010.
LNCS, vol. 6302, pp. 166–177. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15369-3 13

10. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Har-Peled, S.: Being Fat and Friendly is Not Enough. CoRR abs/0908.2369 (2009)
13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

14. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9134, pp. 898–909. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47672-7 73

15. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41(5), 960–981 (1994)

16. Madireddy, R.R., Mudgal, A.: A constant-factor approximation algorithm for red-
blue set cover with unit disks. In: WAOA (2020, to be appeared)

17. Mehrabi, S.: Geometric unique set cover on unit disks and unit squares. In: CCCG,
pp. 195–200 (2016)

18. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete Comput. Geom. 44(4), 883–895 (2010). https://doi.org/10.1007/s00454-010-
9285-9

19. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

20. Shanjani, S.H.: Hardness of approximation for red-blue covering. In: CCCG (2020)

https://doi.org/10.1007/978-3-642-15369-3_13
https://doi.org/10.1007/978-3-642-15369-3_13
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1007/s00454-010-9285-9

Fixed-Treewidth-Efficient Algorithms
for Edge-Deletion to Interval Graph

Classes

Toshiki Saitoh1(B) , Ryo Yoshinaka2 , and Hans L. Bodlaender3

1 Kyushu Institute of Technology, Kitakyushu, Japan
toshikis@ces.kyutech.ac.jp

2 Tohoku University, Sendai, Japan
ryoshinaka@tohoku.ac.jp

3 Utrecht University, Utrecht, The Netherlands
H.L.Bodlaender@uu.nl

Abstract. For a graph class C, the C-Edge-Deletion problem asks
for a given graph G to delete the minimum number of edges from G in
order to obtain a graph in C. We study the C-Edge-Deletion problem
for C the class of interval graphs and other related graph classes. It fol-
lows from Courcelle’s Theorem that these problems are fixed parameter
tractable when parameterized by treewidth. In this paper, we present
concrete FPT algorithms for these problems. By giving explicit algo-
rithms and analyzing these in detail, we obtain algorithms that are sig-
nificantly faster than the algorithms obtained by using Courcelle’s theo-
rem.

Keywords: Parameterized algorithms · Treewidth · Edge-Deletion ·
Interval graphs

1 Introduction

Intersection graphs are represented by geometric objects aligned in certain ways
so that each object corresponds to a vertex and two objects intersect if and only
if the corresponding vertices are adjacent. Intersection graphs are well-studied
in the area of graph algorithms since there are many important applications and
we can solve many NP-hard problems in general graphs in polynomial time on
such graph classes. Interval graphs are intersection graphs which are represented
by intervals on a line. Clique, Independent Set, and Coloring on interval
graphs can be solved in linear time and interval graphs have many applications
in bioinformatics, scheduling, and so on. See [3,14,26] for more details of interval
graphs and other intersection graphs.

Graph modification problems on a graph class C are to find a graph in C
by modifying a given graph in certain ways. C-Vertex-Deletion, C-Edge-
Deletion, and C-Completion are to find a graph in C by deleting ver-
tices, deleting edges, and adding edges, respectively, with the minimum cost.
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 142–153, 2021.
https://doi.org/10.1007/978-3-030-68211-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_12&domain=pdf
http://orcid.org/0000-0003-4676-5167
http://orcid.org/0000-0002-5175-465X
http://orcid.org/0000-0002-9297-3330
https://doi.org/10.1007/978-3-030-68211-8_12

FPT Algorithms for Edge-Deletion to Interval Graph Classes 143

These problems can be seen as generalizations of many NP-hard problems.
Clique is equivalent to Complete-Vertex-Deletion: we find a complete
graph by deleting the smallest number of vertices. Modification problems on
intersection graph classes also have many applications. For example, Interval-
Vertex/Edge-Deletion problems have applications to DNA (physical) map-
ping [12,13,27]. Lewis and Yannakakis showed that C-Vertex-Deletion is
NP-complete for any nontrivial hereditary graph class [18]. A graph class C
is hereditary if for any graph in C, every induced subgraph of the graph is also
in C. Since the class of intersection graphs are hereditary, C-Vertex Dele-

tion is NP-complete for any nontrivial intersection graph class C. The problems
C-Edge-Deletion are also NP-hard when C is the class of perfect, chordal,
split, circular arc, chain [24], interval, proper interval [13], trivially perfect [25],
threshold [21], permutation, weakly chordal, or circle graphs [4]. See the lists
in [4,20].

Parameterized complexity is well-studied in the area of computer science.
A problem with a parameter k is fixed parameter tractable, FPT for short, if
there is an algorithm running in f(k)nc time where n is the size of input, f
is a computable function and c is a constant. Such an algorithm is called an
FPT algorithm. The treewidth tw(G) of a graph G represents treelikeness and
is one of the most important parameters in parameterized complexity concern-
ing graph algorithms. For many NP-hard problems in general, there are tons of
FPT algorithms with parameter tw(G) by dynamic programming on tree decom-
positions. Finding the treewidth of an input graph is NP-hard and it is known
that Chordal-Completion with minimizing the size of the smallest maximum
clique is equivalent to the problem. There is an FPT algorithm for computing
the treewidth of a graph by Bodlaender [2] which runs in O(f(tw(G))(n + m))
time where n and m are the numbers of vertices and edges of a given graph:
i.e., the running time is linear in the size of input. Courcelle showed that every
problem that can be expressed in monadic second order logic (MSO2) has a lin-
ear time algorithm on graphs of bounded treewidth [9]. Some intersection graph
classes, for example interval graphs, proper interval graphs, chordal graphs, and
permutation graphs, can be represented by MSO2 [8] and thus there are FPT
algorithms for Edge-Deletion problems on such graph classes. However, the
algorithms obtained by Courcelle’s theorem have a very large hidden constant
factor even when the treewidth is very small, since the running time is the expo-
nential tower of the coding size of the MSO2 expression.

Our Results: We propose concrete FPT algorithms for Edge-Deletion to
interval graphs and other related graph classes, when parameterized by the
treewidth of the input graph. Our algorithms virtually compute a set of edges S
with the minimum size such that G − S is in a graph class C by using dynamic
programming on a tree-decomposition. We maintain possible alignments of geo-
metric objects corresponding to vertices in the bag of each node of the tree-
decomposition. Alignments of the objects of forgotten vertices are remembered
only relatively to the objects of the current bag. If two forgotten objects have
the same relative position to the objects of the current bag, we remember only

144 T. Saitoh et al.

the fact that there is at least one forgotten object at that position. In this way,
we achieve the fixed-parameter-tractability, while guaranteeing that no object
pairs of non-adjacent vertices of the input graph will intersect in our dynamic
programming algorithm. Our algorithms run in O(f(tw(G))·(n+m)) time where
n and m are the numbers of vertices and edges of the input graph. Our explicit
algorithms are significantly faster than those obtained by using Courcelle’s the-
orem. We also analyze the time complexity of our algorithms parameterized by
pathwidth which is analogous to treewidth. The relation among the graph classes
for which this paper provides C-Edge-Deletion algorithms is shown in Fig. 1.

Circular Arc

Interval

Proper Interval Trivially Perfect

Threshold

Fig. 1. The graph classes of which this paper presents algorithms for the edge-deletion
problems.

Related Works: Another kind of common parameters considered in parame-
terized complexity of graph modification problems is the number of vertices or
edges to be removed or to be added. Here we review preceding studies on those
problems for intersection graphs with those parameters.

Concerning parameterized complexity of C-Vertex-Deletion, Hof et al.
proposed an FPT algorithm for Proper-Interval-Vertex-Deletion [16],
and Marx proposed an FPT algorithm for Chordal-Vertex-Deletion [22].
Heggernes et al. showed Perfect-Vertex-Deletion and Weakly-Chordal-

Vertex-Deletion are W[2]-hard [15]. Cai showed that C-Vertex/Edge-

Deletion are FPT when C is characterized by a finite set of forbidden induced
subgraphs [5].

For modification problems on interval graphs, Villanger et al. presented an
FPT algorithm for Interval-Completion [28], and Cao and Marx presented
an FPT algorithm for Interval-Vertex-Deletion [7]. Cao improved these
algorithms and developed an FPT algorithm for Edge-Deletion [6].

It is known that Threshold-Edge-Deletion, Chain-Edge-Deletion

and Trivially-Perfect-Edge-Deletion are FPT, since threshold graphs,
chain graphs and trivially perfect graphs are characterized by a finite set of for-
bidden induced subgraphs [5]. Nastos and Gao presented faster algorithms for
the problems [23], and Liu et al. improved their algorithms to O(2.57k(n + m))
and O(2.42k(n + m)) using modular decomposition trees [19], where k is the
number of deleted edges. There are algorithms to find a polynomial kernel for
Chain-Edge-Deletion and Trivially Perfect-Edge-Deletion [1,11].

FPT Algorithms for Edge-Deletion to Interval Graph Classes 145

Organization of this Article: Section 2 prepares the notation and defini-
tions used in this paper. We propose an FPT algorithm for Interval-Edge-

Deletion in Sect. 3. We then extend the algorithm related to the interval graphs
in Sect. 4. We conclude this paper and provide some open questions in Sect. 5.

2 Preliminaries

For a set X, its cardinality is denoted by |X|. A partition of X is a tuple
(X1, . . . , Xk) of subsets of X such that X = X1 ∪ · · · ∪ Xk and Xi ∩ Xj = ∅ if
1 ≤ i < j ≤ k, where we allow some of the subsets to be empty. For entities
x, y, z ∈ X, we let x[y/z] = y if x = z, and x[y/z] = x otherwise. For a subset
Y ⊆ X, define Y [y/z] = {x[y/z] | x ∈ Y }.

For a linear order π over a finite set X, by sucπ(x) we denote the successor
of x ∈ X w.r.t. π, i.e., x <π sucπ(x) and sucπ(x) ≤π y for all y with x <π y. The
maximum element of X w.r.t. π is denoted by maxπ X. Note that sucπ(maxπ X)
is undefined. Similarly predπ(x) is the predecessor of x and minπ X is the least
element of X.

A simple graph G = (V,E) is a pair of vertex and edge sets, where each
element of E is a subset of V consisting of exactly two elements.

A tree-decomposition of G = (V,E) is a tree T such that1

– to each node of T a subset of V is assigned,
– if the assigned sets of two nodes of T contain a vertex u ∈ V , then so does

every node on the path between the two nodes,
– for each {u, v} ∈ E, there is a node of T whose assigned set includes both u

and v.

The width of a tree-decomposition is the maximum cardinality of the assigned
sets minus one and the treewidth of a graph is the smallest width of its tree-
decompositions. A tree-decomposition is said to be nice if it is rooted, the root
is assigned the empty set, and its nodes are grouped into the following four:

– leaf nodes, which have no children and are assigned the empty set,
– introduce nodes, each of which has just one child, where the set assigned to

the parent has one more vertex than the child’s set,
– forget nodes, each of which has just one child, where the set assigned to the

parent has one less vertex than the child’s set,
– join nodes, each of which has just two children, where the same vertex set is

assigned to the parent and its two children.

It is known that every tree-decomposition has a nice tree-decomposition of
the same width whose size is O(k|V |), where k is the treewidth of the tree-
decomposition [10,17]. Hereafter, under a fixed graph G and a fixed nice tree-
decomposition T , we let Xs denote the subset of V assigned to a node s of a
tree-decomposition and X≤s denote the union of all the subsets assigned to the

1 We use the terms “vertices” for an input graph and “nodes” for a tree-decomposition.

146 T. Saitoh et al.

node s and its descendant nodes. We call vertices in Xs and in X≤s − Xs active
and forgotten, respectively. Moreover, we define Es = { {u, v} ∈ E | u, v ∈ Xs}
and E≤s = { {u, v} ∈ E | u, v ∈ X≤s}. Given a tree decomposition of treewidth
k, we can compute a nice tree-decomposition with treewidth k and O(kn) nodes
in O(k2(n + m)) time [10].

A tree-decomposition is called a path-decomposition if the tree is a path. The
pathwidth of a graph is the smallest width of its path-decompositions. Every
path-decomposition has a nice path-decomposition of the same pathwidth, which
consists of leaf, introduce, forget, but not join nodes.

The problem we tackle in this paper is given as follows.

Definition 1. For a graph class C, the C-Edge-Deletion is a problem to find
the minimum natural number c such that there is a subgraph G′ = (V,E′) of G
with G′ ∈ C and |E| − |E′| = c for an input simple graph G = (V,E).

In the succeeding sections, for different classes C of intersection graphs, we
present algorithms for C-Edge-Deletion that run in linear time in the input
graph size when the treewidth is bounded. We assume that the algorithm takes
a nice tree-decomposition T of G in addition as input [2,17]. Our algorithms are
dynamic programming algorithms that recursively compute solutions (and some
auxiliary information) for the subproblems on (X≤s, E≤s) for each node s in the
given tree-decomposition from leaves to the root.

(a)

lu1
ru1

lu2
ru2

lu3
ru3

lw1
rw1

lw2
rw2

lw3
rw3

(b)

u1 u2 u3

w1 w2 w3

Fig. 2. (a) Interval representation ρ. (b) Interval graph Gρ. We have A (ρ, s) =
(π, I, J, K, c) for Xs = {u1, u2, u3} and X≤s − Xs = {w1, w2, w3} where I =
{lu1 , ru1 , ru2 , lu3 , ru3}, J = {ru2 , lu3 , ru3}, and K = {ru2 , lu3}.

3 Finding a Largest Interval Subgraph

An interval representation π over a set X is a linear order over the set LRX =
LX ∪ RX ∪ {⊥,	} with LX = { lx | x ∈ X } and RX = { rx | x ∈ X } such that
⊥ <π lx <π rx <π 	 for all x ∈ X. Let 〈〈p1, p2〉〉π = { q ∈ LRX | p1 ≤π q <π p2 }
and for Y ⊆ X, let

[[Y]]π =
⋃

u∈Y

〈〈lu, ru〉〉π = { q ∈ LRX | lu ≤π q <π ru for some u ∈ Y } ,

FPT Algorithms for Edge-Deletion to Interval Graph Classes 147

which may contain some elements of LRX − LRY . The interval graph Gπ of an
interval representation π on V is (V,Eπ) where

Eπ = { {u, v} ⊆ V | 〈〈lu, ru〉〉π ∩ 〈〈lv, rv〉〉π �= ∅ and u �= v }.

Figure 2 shows an example of an interval graph.
This section presents an FPT algorithm for the interval edge deletion problem

w.r.t. the treewidth. Let G = (V,E) be an input graph and s a node of a nice
tree-decomposition T of G. On each node s of T , for each interval representation
ρ over X≤s that gives an interval subgraph of (X≤s, E≤s), we would like to
remember some pieces of information about ρ, which we call the “abstraction”
of ρ. The abstraction includes the linear order π over LRXs

that restricts ρ. In
addition, we remember how the intervals of the forgotten vertices intersect the
points of the active vertices using three sets I, J,K ⊆ LRX . Figure 3 explains
the meaning of those sets. When p ∈ I, (p, sucπ(p)) intersects with a forgotten
interval. If p ∈ J , p is within a forgotten interval. Moreover if p ∈ K, then the
interval (p, sucπ(p)) is properly covered by some forgotten intervals. Using those
sets, we can introduce new interval without making it intersect with forgotten
intervals.

More formally, for an interval representation ρ over X≤s such that Gρ is a
subgraph of (X≤s, E≤s), we define the abstraction A (ρ, s) of ρ for s to be the
quintuple (π, I, J,K, c) such that

– π is the restriction of ρ to LRXs
,

– I = { p ∈ LRXs
| 〈〈p, sucπ(p)〉〉ρ ∩ [[X≤s − Xs]]ρ �= ∅ },

– J = { p ∈ LRXs
| p ∈ [[X≤s − Xs]]ρ },

– K = { p ∈ LRXs
| 〈〈p, sucπ(p)〉〉ρ ⊆ [[X≤s − Xs]]ρ },

– c = |E≤s − Eρ − Es|
= |{ {u, v} ∈ E≤s | u /∈ Xs and 〈〈lu, ru〉〉ρ ∩ 〈〈lv, rv〉〉ρ = ∅ }|.

Note that p ∈ K implies p, sucπ(p) ∈ J . Moreover, if p ∈ J or sucπ(p) ∈ J ,
then p ∈ I. We say that A (ρ′, s) = (π′, I ′, J ′,K ′, c′) dominates A (ρ, s) =
(π, I, J,K, c) iff π′ = π, I ′ ⊆ I, J ′ ⊆ J , K ′ ⊆ K, and c′ ≤ c. In this case, every
possible way of introducing new intervals to ρ is also possible for ρ′ by cheaper or
equivalent cost. Therefore, it is enough to remember A (ρ′, s) discarding A (ρ, s).
We call a set of abstractions reduced if it has no pair of distinct elements such
that one dominates the other.

Our algorithm calculates a reduced set Is of abstractions of interval rep-
resentations of interval subgraphs of (X≤s, E≤s) for each node s of T which
satisfies the following invariant.

Condition 1

– Every element (π, I, J,K, c) ∈ Is is the abstraction of some interval repre-
sentation of an interval subgraph of (X≤s, E≤s) for Xs,

– Any interval representation ρ of any interval subgraph of (X≤s, E≤s) has an
element of Is that dominates its abstraction A (ρ,Xs).

148 T. Saitoh et al.

(a)

lu ru

p sucπ(p)

lx rx

(b)

lu ru

p

lx rx

(c)

lu ru lv rv

lw rw

p sucπ(p)

lx rx

Fig. 3. Typical situations with (a) p ∈ I, (b) p ∈ J , (c) p ∈ K, where A (ρ, s) =
(π, I, J, K, c) and u, v, w ∈ X≤s − Xs are forgotten vertices. In the respective cases, we
cannot introduce a new interval (lx, rx) that (a) covers (p, sucπ(p)), (b) includes p, (c)
overlaps (p, sucπ(p)).

Since Is is reduced, if Xs = ∅, we have Is = {(o, I, ∅, ∅, c)} for some I ⊆ {⊥}
and c ∈ N, where o is the trivial order such that ⊥ <o 	. Particularly for the root
node s, the number c is the least number such that one can obtain an interval
subgraph by removing c edges from G. That is, c is the solution to our problem. If
s is a leaf, Is = {(o, ∅, ∅, ∅, 0)} by definition. It remains to show how to calculate
Is from the child(ren) of s, while preserving the invariant (Condition 1).

Introduce Node: Suppose that s has just one child t such that Xs = Xt ∪ {x}.
For (π, I, J,K, c) in It, we say an extension π′ of π to Xs respects E, I, J,K if

– {x, u} /∈ E for u ∈ Xt implies 〈〈lx, rx〉〉π′ ∩ 〈〈lu, ru〉〉π′ = ∅,
– p ∈ I implies 〈〈p, sucπ(p)〉〉π′ � 〈〈lx, rx〉〉π′ ,
– p ∈ J implies p /∈ 〈〈lx, rx〉〉π′ ,
– p ∈ K implies 〈〈p, sucπ(p)〉〉π′ ∩ 〈〈lx, rx〉〉π′ = ∅,

respectively. If π′ does not respect some of E, I, J,K, then it means that we
are creating an edge between two vertices which are not connected in the input
graph G. For each interval representation π′ extending π to LRXs

that respects
E, I, J,K, we put one or two elements into I ′

s by the following manner. If rx �=
sucπ′(lx), we add (π′, I[rx/predπ′(rx)], J,K, c) to I ′

s (see Fig. 4 (a)). Otherwise,
let p = predπ′(lx), for which it holds that p <π′ lx <π′ rx <π′ sucπ(p). We have
four exhaustive cases shown in Fig. 4 (b). If either p /∈ I or J∩{p, sucπ(p)} = {p},
we add (π′, I, J,K, c) to I ′

s . If sucπ(p) ∈ J , we add (π′, I ∪{rx}, J,K, c) to I ′
s . If

p ∈ I and J∩{p, sucπ(p)} = ∅, we add both (π′, I, J,K, c) and (π′, I[rx/p], J,K, c)
to I ′

s . Those exhaust all the possibilities. We then obtain Is by reducing I ′
s .

Forget Node: Suppose that s has just one child t such that Xt = Xs ∪ {x}. For
each (π, I, J,K, c) in It, in accordance with the definition of abstractions, we
add to I ′

s the quintuple (π′, I ′, J ′,K ′, c) where

– π′ is the restriction of π,
– I ′ = { p ∈ LRXs

| 〈〈p, sucπ′(p)〉〉π ∩ (I ∪ 〈〈lx, rx〉〉π) �= ∅ },
– J ′ = { p ∈ LRXs

| p ∈ J ∪ 〈〈lx, rx〉〉π },
– K ′ = { p ∈ LRXs

| 〈〈p, sucπ′(p)〉〉π ⊆ K ∪ 〈〈lx, rx〉〉π },

FPT Algorithms for Edge-Deletion to Interval Graph Classes 149

p0

lx

p1 predπ′(rx)
rx

pk

⊆ [[X≤t − Xt]]ρ
∈ LRXt

(a) When rx �= sucπ′(lx). We assume possible forgotten intervals should appear left
to lx and right to rx to prevent (lx, rx) from intersecting forgotten intervals.

)

p

lx rx

sucπ(p)

p /∈ I

p ∈ J and sucπ(p) /∈ J

sucπ(p) ∈ J
⎫⎬
⎭ p, sucπ(p) /∈ J and p ∈ I

(b) When rx = sucπ′(lx). Our algorithm does not consider all the admissible ex-
tensions ρ′ of π′. For example, we do not put (π, I ∪ {p, rx}, J, K, c) into I ′

s as
illustrated in the parentheses above, since it is dominated by other possibilities and
will be absent in Is anyway.

Fig. 4. Illustrating how we insert lx and rx into previously determined interval rep-
resentation. Thick lines illustrate [[X≤t − Xt]]ρ for a possible extension ρ such that
A (ρ, Xt) = (π, I, J, K, c).

– c′ = c + |{ {x, u} ∈ E | 〈〈lu, ru〉〉π ∩ 〈〈lx, rx〉〉π = ∅ and u ∈ Xs }|.
Then we obtain Is by reducing I ′

s .

Join Node: Suppose that s has two children t1 and t2, where Xs = Xt1 = Xt2 .
We say that A1 = (π1, I1, J1,K1, c1) ∈ It1 and A2 = (π2, I2, J2,K2, c2) ∈ It2

are compatible if π1 = π2 and J1 ∩J2 = I1 ∩K2 = K1 ∩ I2 = ∅. If A1 and A2 are
not compatible, any interval representation ρ on X≤s which extends ρ1 and ρ2
will connect two vertices which are not adjacent in the input graph G for any
interval representations ρi on X≤ti of which Ai is the abstraction for i = 1, 2.
For each compatible pair (A1, A2), one can find an interval representation ρ
on X≤s that forms a subgraph of (X≤s, E≤s) which extends some ρ1 and ρ2
whose abstractions are A1 and A2, respectively. Then we add the quintuple
(π1, I1 ∪ I2, J1 ∪ J2, K1 ∪ K2, c1 + c2) to I ′

s . We obtain Is by reducing I ′
s .

Theorem 1. The edge deletion problem for interval graphs can be solved in
O(|V |N2poly(k)) time where N = (2k)! · 22k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.

Proof. Let k be the maximum size of the assigned set Xs to a node of a nice tree-
decomposition. Each Is may contain at most N = (2k)!/2k · (2k)3 = (2k)! · 22k

150 T. Saitoh et al.

elements. To calculate Is from It for children t of s, it takes O(N �poly(k)) time
for some polynomial function poly, if it has at most � children. Since the nice
tree-decomposition has O(|V |) nodes, we obtain the conclusion.

4 Algorithms for Other Graph Classes

We in this section present Edge-Deletion algorithms on some graph classes
related to interval graphs by modifying the algorithm in the previous section.

4.1 Proper Interval Graphs

An interval representation π is said to be proper if there are no u, v ∈ V such that
lu <π lv <π rv <π ru. An interval graph is proper if it admits a proper interval
representation. The algorithm presented in Sect. 3 can easily be modified so that
it solves the edge deletion problem for proper interval graphs. In accordance
with the definition of a proper interval representation, we simply require π′ in
Introduce Node to be a proper interval representation. Under the restriction, we
see that I = { p | p ∈ J or sucπ(p) ∈ J } if (π, I, J,K, c) ∈ Is. Then, I can be
discarded from each abstraction.

Corollary 1. The edge deletion problem for proper interval graphs can be solved
in O(|V |N2poly(k)) time where N = (2k)! · 2k for the treewidth k of G. If k is
the pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.2 Trivially Perfect Graphs

An interval representation π is said to be nested if there are no u, v ∈ V , such
that lu <π lv <π ru <π rv. A trivially perfect graph is an interval graph that
admits a nested interval representation. The algorithm presented in Sect. 3 can
easily be modified so that it solves the edge deletion problem for trivially perfect
graphs. In accordance with the definition of the graph class, we simply require π′

in Introduce Node to be a nested interval representation. Under the restriction,
we see that lv ∈ J if and only if rv ∈ J if and only if lv ∈ K. Therefore, we do
not need to have the set J any more.

Corollary 2. The edge deletion problem for trivially perfect graphs can be solved
in O(|V |N2poly(k)) time where N = (2k)! · 2k for the treewidth k of G. If k is
the pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.3 Circular-Arc Graphs

Circular-arc graphs are a generalization of interval graphs which have a “circu-
lar” interval representation. For a linear order π over a set S, we let

〈〈p1, p2〉〉π =

{
{ q ∈ S | p1 ≤π q <π p2 } if p1 ≤π p2,

{ q ∈ S | p1 ≤π q ∨ q <π p2 } if p2 <π p1.

FPT Algorithms for Edge-Deletion to Interval Graph Classes 151

A circular-arc graph is a graph Gπ = (V,E) such that

E = { {u, v} ⊆ V | 〈〈lu, ru〉〉π ∩ 〈〈lv, rv〉〉π �= ∅ }

for some linear order π over LV ∪ RV . Note that this set contains neither 	
nor ⊥. The algorithm presented in Sect. 3 can easily be modified so that it
solves the edge deletion problem for circular-arc graphs by replacing the defi-
nition of 〈〈p1, p2〉〉π as above, and defining sucπ(maxπ LRV) = minπ LRV and
predπ(minπ LRV) = maxπ LRV . Since we allow ru <π lu, the number of admis-
sible circular interval representations is bigger than that of (ordinary) interval
representations. This affects the computational complexity.

Corollary 3. The edge deletion problem for circular-arc graphs can be solved in
O(|V |N2poly(k)) time where N = (2k)! · 23k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.

4.4 Threshold Graphs

Threshold graphs are special cases of trivially perfect graphs, which can be
defined in several different ways. Here we use a pair of a vertex subset W ⊆ V
and a linear order π over RV as a threshold interval representation. We say that
vertices u and v intersect on (W,π) if and only if u ∈ W and rv <π ru or
the other way around. A threshold graph is a graph GW,π = (V,EW,π) where
(W,π) is a threshold interval representation on V and EW,π = { {u, v} ⊆ V |
u and v intersect on (W,π) }. By extending π to π′ over LRV so that lw <π′ rv

for all w ∈ W and v ∈ V and sucπ′(lu) = ru for all u ∈ V − W , then the
induced interval graph coincides with the threshold graph. To attain drastic
improvement on the complexity, we design an algorithm for the edge deletion
problem for threshold graphs from scratch, rather than modifying the one for
interval graphs.

For a threshold representation (Y, ρ) of a subgraph GY,ρ = (X≤s, EY,ρ), we
define its abstraction A ((Y, ρ), s) = (Y ′, π, b, p, c) as follows: (1) π is the restric-
tion of ρ to RXs

, (2) Y ′ = Y ∩ Xs, (3) if Y ′ = Y , then b = 0 and p = maxπ{ p ∈
RXs

| p <ρ ry for all y ∈ X≤s − Xs }, (4) if Y ′ �= Y , then b = 1 and p =
maxπ{ p ∈ RXs

| p <ρ ry for some y ∈ Y −Y ′ } , and (5) c = |E≤s −EY,ρ −Es| =
|{ {u, v} ∈ E | {u, v} � Xs and u and v do not intersect on (Y, ρ) }|.

We say that (Y ′, π′, b′, p′, c′) dominates (Y, π, b, p, c) if Y ′ = Y , π′ = π,
c′ ≤ c, and either (a) b′ = b = 0 and p′ ≥π p, (b) b′ = b = 1 and p′ ≤π p, or (c)
b′ = 0 and b = 1. Using the above invariant, we can provide an algorithm for
Threshold-Edge-Deletion.

Theorem 2. The edge deletion problem for threshold graphs can be solved in
O(|V |N2poly(k)) time where N = k! · 2k for the treewidth k of G. If k is the
pathwidth, it can be solved in O(|V |Npoly(k)) time.

152 T. Saitoh et al.

5 Conclusion

We propose FPT algorithms for Edge-Deletion to some intersection graphs
parameterized by treewidth in this paper. Our algorithms maintain partial inter-
section models on a node of a tree decomposition with some restrictions and
extend the models consistently for the restrictions in the next step. We expect
that the ideas in our algorithms can be applied to other intersection graphs
whose intersection models can be represented as linear-orders, for example cir-
cle graphs, chain graphs and so on, and to Vertex-Deletion of intersection
graphs.

We have the following questions as future work:

– Do there exist single exponential time algorithms for the considered problems,
that is, O∗(2tw(G)) time, or can we show matching lower bounds assuming
the Exponential Time Hypothesis?

– Are there FPT algorithms parameterized by treewidth for C-Completion

which is to find the minimum number of adding edges to obtain a graph in an
intersection graph class C? We can naturally apply the idea of our algorithms
to C-Completion problems. While C-Edge-Deletion algorithms do not
allow introduced objects to intersect with forgotten objects, C-Completion

algorithms do allow it with the cost of addition of new edges. Thus C-
Completion algorithms based on this naive approach will be XP algorithms
since we have to remember the number of forgotten objects in the represen-
tation to count the number of intersections between the introduced objects
and forgotten objects.

– Are there FPT algorithms for Edge-Deletion to intersection graphs defined
using objects on a plane, like unit disk graphs? The intersection graph classes
discussed in this paper are all defined using objects aligned on a line. Going
up to a geometric space of higher dimension is a challenging topic.

Acknowledgement. This work was supported in part by JSPS KAKENHI Grant
Numbers JP18H04091 and JP19K12098.

References

1. Bessy, S., Perez, A.: Polynomial kernels for proper interval completion and related
problems. Inf. Comput. 231, 89–108 (2013)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (1999)

4. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

6. Cao, Y.: Linear recognition of almost interval graphs. In: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, 10–12 January 2016, pp. 1096–1115 (2016)

FPT Algorithms for Edge-Deletion to Interval Graph Classes 153

7. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms 11(3), 21:1–21:35 (2015)

8. Courcelle, B.: The monadic second-order logic of graphs XV: on a conjecture by
D. Seese. J. Appl. Logic 4(1), 79–114 (2006)

9. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press (2012)

10. Cygan, M., et al.: Lower bounds for kernelization. In: Cygan, M., et al. (eds.)
Parameterized Algorithms, pp. 523–555. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3 15

11. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. Algo-
rithmica 80(12), 3481–3524 (2018). https://doi.org/10.1007/s00453-017-0401-6

12. Frenkel, Z., Paux, E., Mester, D.I., Feuillet, C., Korol, A.B.: LTC: a novel algo-
rithm to improve the efficiency of contig assembly for physical mapping in complex
genomes. BMC Bioinform. 11, 584 (2010). https://doi.org/10.1186/1471-2105-11-
584

13. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Dis-
crete Mathematics, vol. 57). North-Holland Publishing Co., Amsterdam (2004)

15. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parame-
terized complexity of vertex deletion into perfect graph classes. Theor. Comput.
Sci. 511, 172–180 (2013)

16. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4),
845–867 (2013). https://doi.org/10.1007/s00453-012-9661-31

17. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

18. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

19. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: Branching
facilitated by modular decomposition. Theor. Comput. Sci. 573, 63–70 (2015)

20. Mancini, F.: Graph modification problems related to graph classes. Ph.D. thesis,
University of Bergen, May 2008

21. Margot, F.: Some complexity results about threshold graphs. Discrete Appl. Math.
49(1–3), 299–308 (1994)

22. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–
768 (2010). https://doi.org/10.1007/s00453-008-9233-8

23. Nastos, J., Gao, Y.: Bounded search tree algorithms for parametrized cograph
deletion: Efficient branching rules by exploiting structures of special graph classes.
Discrete Math., Alg. and Appl. 4(1) (2012)

24. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Appl. Math. 113(1), 109–128 (2001)

25. Sharan, R.: Graph Modification Problems and their Applications to Genomic
Research. Ph.D. thesis, University of Bergen, May 2008

26. Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs.
American Mathematical Society, Providence (2003)

27. Waterman, S., Griggs, M.R.: Interval graphs and maps of DNA. J. Bull. Math.
Biol. 48, 189–195 (1986)

28. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed
parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2009)

https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/s00453-017-0401-6
https://doi.org/10.1186/1471-2105-11-584
https://doi.org/10.1186/1471-2105-11-584
https://doi.org/10.1007/s00453-012-9661-31
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/s00453-008-9233-8

r-Gathering Problems on Spiders:
Hardness, FPT Algorithms, and PTASes

Soh Kumabe1,2(B) and Takanori Maehara2

1 The University of Tokyo, Tokyo, Japan
soh kumabe@mist.i.u-tokyo.ac.jp

2 RIKEN AIP, Tokyo, Japan
takanori.maehara@riken.jp

Abstract. We consider the min-max r-gathering problem described as
follows: We are given a set of users and facilities in a metric space. We
open some of the facilities and assign each user to an opened facility
such that each facility has at least r users. The goal is to minimize the
maximum distance between the users and the assigned facility. We also
consider the min-max r-gather clustering problem, which is a special case
of the r-gathering problem in which the facilities are located everywhere.
In this paper, we study the tractability and the hardness when the under-
lying metric space is a spider, which answers the open question posed
by Ahmed et al. [WALCOM’19]. First, we show that the problems are
NP-hard even if the underlying space is a spider. Then, we propose FPT
algorithms parameterized by the degree d of the center. This improves
the previous algorithms because they are parameterized by both r and
d. Finally, we propose PTASes to the problems. These are best possible
because there are no FPTASes unless P = NP.

1 Introduction

Background and Motivation. We consider the following problem, called the
min-max r-gathering problem (r-gathering problem, for short) [5].

Problem 1 (r-gathering problem). We are given a set U of n users, a set
F of m facilities on a metric space (M,dist), and a positive integer r. We open
a subset of the facilities and assign each user to an opened facility such that all
opened facilities have at least r users. The objective is to minimize the maximum
distance from the users to the assigned facilities. Formally, the problem is written
as follows.

minimize maxu∈U (dist(u, π(u)))
such that π(u) ∈ F for all u ∈ U ,

|π−1(f)| = 0 or |π−1(f)| ≥ r for all f ∈ F .
(1)

We also consider the r-gather clustering problem [2,3,8], which is a variant of
the r-gathering problem in which the facilities are located everywhere.
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 154–165, 2021.
https://doi.org/10.1007/978-3-030-68211-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_13

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 155

Problem 2 (r-gather clustering problem). We are given a set U of n users
on a metric space (M,dist) and a positive integer r. We partition U into arbi-
trarily many clusters C1, . . . , Ck such that each user is contained in exactly one
cluster, and all clusters contain at least r users. The objective is to minimize the
maximum diameter (distance between the farthest pair) of the clusters. Formally
the problem is written as follows.

minimize max{diam(C1), . . . ,diam(Ck)}
such that {C1, . . . , Ck} is a partition of U ,

|C1| ≥ r, . . . , |Ck| ≥ r.
(2)

These problems have several practical applications, with privacy protec-
tion [10] being a typical one. Imagine a company that publishes clustered data
about their customers. If there is a tiny cluster, each individual of the cluster
can be easily identified. Thus, to guarantee anonymity, the company requires the
clusters to have at least r individuals; this criterion is called the r-anonymity.
Such clusters are obtained by solving the r-gather clustering problem. Another
typical problem is the sport-team formation problem [2]. Imagine that a town
has n football players and m football courts. We want to divide the players into
several teams, each of which contains at least eleven people and assign a court
to each team such that the distance from their homes to the court is minimized.
Such an assignment is obtained by solving the 11-gathering problem.

In theory, because the r-gathering problem and r-gather clustering problem
are some of the simplest versions of the constrained facility location problems [6],
several studies have been conducted, and many tractability and intractability
results have been obtained so far. If M is a general metric space, there is a
3-approximation algorithm for the r-gathering problem, and no algorithm can
achieve a better approximation ratio unless P = NP [5]. If the set of locations
of the users is a subset of that of the facilities1, there is a 2-approximation
algorithm [1], and no algorithm can achieve a better approximation ratio unless
P = NP [5]. If M is a line, there are polynomial-time exact algorithms by dynamic
programming (DP) for the r-gathering problem [3,4,7,8], where the fastest algo-
rithm runs in linear time [4]. The same technique can be implemented to the
r-gather clustering problem.

If M is a spider, which is a metric space constructed by joining d half-line-
shaped metrics together at endpoints2 there are fixed-parameter tractable (FPT)
algorithms parameterized by both r and d [2]—More precisely, the running time
of their algorithm is O(n+m+rd2d(r+d)d) time3. Note that this is not an FPT
algorithm parameterized only by d because it has a factor of rd. They also posed
an open problem that demands a reduction in the complexity of the r-gathering
problem on a spider.
1 This version of the problem is originally called the r-gather clustering problem [1].
2 Ahmed et al. [2] called this metric space “star.” In this paper, we followed https://
www.graphclasses.org/classes/gc 536.html, a part of Information System of Graph
Classes and their Inclusions (ISGCI).

3 Ahmed et al. [2]’s original algorithm runs in O(n+ r2m+ rd2d(r+d)d) time, but by
combining Sarker [4]’s linear-time algorithm on a line, we obtain this running time.

https://www.graphclasses.org/classes/gc_536.html
https://www.graphclasses.org/classes/gc_536.html

156 S. Kumabe and T. Maehara

Our Contribution. In this study, we answer the open question that asks the
complexity of r-gathering problem, posed by Ahmed et al. [2] by closing the gap
between the tractability and intractability of the problems on a spider.

First, we prove that the problems are NP-hard, even on a spider as follows.

Theorem 1. The min-max r-gather clustering problem and min-max r-
gathering problem are NP-hard even if the input is a spider.

The proof outline appears in Sect. 3. See the full version for the full proof. This
implies that some parameterization, such as by the degree d of the center of the
spider, is necessary to obtain FPT algorithms for the problems.

Second, we propose FPT algorithms parameterized by d as follows.

Theorem 2. There is an algorithm to solve the r-gather clustering problem on
a spider in O(2dr4d5 +n) time, where d is the degree of the center of the spider.
Similarly, there is an algorithm to solve the r-gathering problem on a spider in
O(2dr4d5 + n + m) time.

The proof appears in Sect. 4. This result is the best possible in the sense of the
number of parameters with superpolynomial dependence because at least one
parameter (e.g., degree) is necessary according to Theorem 1. Our algorithms
have lower parameter dependencies than previous algorithms [2] because they
are parameterized by both r and d. More concretely, our algorithms have no
O(rd) factors.

Finally, we propose polynomial-time approximation schemes (PTASes) to the
problems.

Theorem 3. There are PTASes to the r-gather clustering problem and r-
gathering problem on a spider.

The proof appears in Sect. 5. This result is also the best possible because The-
orem 1 implies that there are no fully polynomial-time approximation schemes
(FPTASes) unless P = NP (Corollary 1). These PTASes can be generalized to
the r-gather clustering problem and r-gathering problem on a tree (see the full
version).

2 Preliminaries

A spider L = {l1, . . . , ld} is a set of half-lines that share the endpoint o (see
Figure (a)). Each half-line is called a leg and o is the center. The point on leg l,
whose distance from the center is x, is denoted by (l, x) ∈ L × R+. It should be
noted that (l, 0) is the center for all l. L induces a metric space whose distance
is defined by dist((l, x), (l′, x′)) = |x − x′| if l = l′ and x + x′ if l �= l′.

Let U = {u1, . . . , un} be a set of n users on L. A cluster C is a subset of users.
The diameter of C is the distance between two farthest users in the cluster, i.e.,
diam(C) = maxui,uj∈C dist(ui, uj).

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 157

(a) Spider
(b) Instance of r-gather
clustering problem (Black
points represents users)

(c) Example solution of
r-gather clustering problem,

where r = 3

(d) Instance of r-gathering
(black and white points
represent users and

facilities, respectively)

(e) Example solution of
r-gathering, where r = 3
(Bold borders represent

Opened facilities)

3 NP-Hardness of r-Gather Clustering on Spider

We prove Theorem 1 by showing the r-gather clustering problem is NP-hard even
on a spider. The NP-hardness of the r-gathering problem immediately follows
from this result because the r-gathering problem is reduced to the r-gather
clustering problem by putting facilities on the midpoints of the pairs of users.

The strategy for the proof is as follows. We first introduce the arrears problem
(Problem 3) as an intermediate problem. Then, we reduce the arrears problem
to the r-gather clustering problem on a spider. Finally, we prove the strong
NP-hardness of the arrears problem.

The arrears problem is the following decision problem.

Problem 3 (Arrears Problem). We are given n sets S1, . . . , Sn of pairs of
integers, i.e., Si = {(ai,1, pi,1), . . . , (ai,|Si|, pi,|Si|)} for all i = 1, . . . , n, and m
pairs of integers (b1, q1), . . . , (bm, qm). The task is to decide whether there are n
integers z1, . . . , zn such that the following inequality holds for all j = 1, . . . , m:

∑

ai,zi
≤bj

pi,zi ≤ qj . (3)

The name of the “arrears problem” comes from the following interpretation.
Imagine a person who has pending arrears in his n payment duties S1, . . . , Sn.
Each payment duty Si has multiple options (ai,1, pi,1), . . . , (ai,|Si|, pi,|Si|) such
that he can choose a payment amount of $pi,k with the payment date ai,k for
some k. Each pair (bj , qj) corresponds to his budget constraint such that he can
pay at most $qj until the bj-th day.

The arrears problem itself may be an interesting problem, but here we use
this problem as a milestone to prove the hardness of the r-gather clustering
problem on a spider. The proof follows the following two propositions.

158 S. Kumabe and T. Maehara

Proposition 1 (Reduction from the arrears problem). If the arrears prob-
lem is strongly NP-hard, the min-max r-gather clustering problem on a spider is
NP-hard.

Proposition 2 (Hardness of the arrears problem). The arrears problem is
strongly NP-hard.

Without loss of generality, we assume that b1 < · · · < bm and q1 < · · · < qm.
We also assume that ai,1 < · · · < ai,|Si| and pi,1 < · · · < pi,|Si| for all i = 1, . . . , n.

3.1 Reduction from Arrears Problem

We first prove Proposition 1. In this subsection, let n be the number of payment
duties and m be the number of budget constraints.

Let I be an instance of the arrears problem. We define L =
max{maxi ai,|Si|, bm} + 1 and r = max{maxi pi,|Si|, qm} + 1. We construct an
instance I ′ of the decision version of the r-gather clustering problem on a spider
that requires to decide whether there is a way to divide the vertices into clusters
each of which has the size of at least r and the diameters of at most 2L.

In the construction, we distinguish the legs into two types — long and short.
Each long leg corresponds to a payment duty and each short leg corresponds to
a budget constraint. For each payment duty Si, we define a long leg i. We first
put r users on (i, 4L−ai,|Si| +1). Then, we put pi,k+1−pi,k users on (i, 2L−ai,k)
for all k = 1, . . . , |Si|−1. Finally, we put r−pi,|Si| users on (i, 2L−ai,|Si|). Each
short leg has only one user. The distance from the center to the user is referred
to as the length of the short leg. For each j = 1, . . . ,m, we define qj − qj−1 short
legs of length bj−1 + 1, where we set q0 = b0 = 0. We also define r short legs of
length L. This construction is done in pseudo-polynomial time.

Now, we prove that I ′ has a feasible solution if and only if I is a YES-
instance of the arrears problem. We first observe a basic structure of clusters
in a feasible solution of I ′. The following lemma ensures that the choices of the
payment dates on different payment duties are independent of each other.

Lemma 1. In a feasible solution to I ′, there is no cluster that contains users
from two different long legs.

Proof. By definition, the distance between the center and a user on a long leg
is larger than L. Therefore, the distance between users from two different long
legs exceeds 2L, indicating that they cannot be in the same cluster.

An end cluster of long leg i is a cluster that contains the farthest user of
i. The above lemma implies that in a feasible solution, any end cluster of a
different long leg is different. Intuitively, the “border” of the end cluster of long
leg i corresponds to the choice from the options of payment duty Si.

Lemma 2. For each long leg i, the following three statements hold. (a) An end
cluster of i only contains the users from i. (b) There is exactly one end cluster
of i, and no other cluster consists of only users from leg i. (c) Some users on i
are not present in the end cluster.

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 159

Proof. (a) The endpoint of i is distant by more than 2L from the center. (b)
There are less than 2r users on i; therefore, they cannot form more then one
clusters alone. (c) Users on the point (i, 2L−ai,|Si|) are distant from the endpoint
of i by more than 2L; thus they cannot be in the same cluster.

Lemma 1 and Statement (c) of Lemma 2 imply that the users on a long leg
who are not contained in end clusters should form a cluster together with users
from short legs. Now, we prove Proposition 1.

Proof. (Proof of Proposition 1). Suppose that we have a feasible solution to the
instance of the r-gathering problem on a spider that is constructed as mentioned
above. For each long leg i, let ui be the last user that is not contained in end
clusters, and Ci be the cluster that contains ui. Then, the location of ui is
represented as (i, 2L − ai,zi) using an integer zi. We choose the payment date
ai,zi for payment duty i. We prove that these choices of payment dates are a
feasible solution to the arrears problem.

As described above, Ci consists of users from leg i and short legs. Because
there are only (r−pi,|Si|)+(pi,|Si|−pi,|Si|−1)+· · ·+(pi,zi+1−pi,zi) = r−pi,zi users
in leg i on the path from the center to the location of ui, Ci should contain at
least pi,zi users on short legs with an at most length of ai,zi . For the j-th budget
constraint, by the rule of construction, there are (q1 −q0)+ · · ·+(qj −qj−1) = qj
users on short legs whose length is at most bj . Suppose ai,zi ≤ bj . We use at
least pi,zi users on short legs whose lengths are at most ai,zi ≤ bj in the cluster
Ci. Thus, the sum of pi,zi among all i with ai,zi ≤ bj is at most the number of
users on short legs whose length is at most bj , that is, qj . This implies that the
budget constraint is valid.

Conversely, suppose that we are given a feasible solution to the instance I
of the arrears problem. First, for each payment duty i we make a cluster with
all users located between (i, 4L − ai,|Si| + 1) and (i, 2L − ai,zi + 1), inclusively.
This cluster contains at least r users because there are r users on point (i, 4L −
ai,|Si| + 1) with a diameter of at most 2L. We renumber the payment duties in
the non-decreasing order of ai,zi and proceed them through the order of indices:
for a payment duty i = 1, 2, . . . , n, we make a cluster Ci using all remaining
users on leg i and all users from the remaining pi,zi shortest short legs. By the
construction, these clusters have exactly r users. We show that the diameter of
Ci is at most 2L. The diameter is spanned by a long leg and the longest short
leg. The distance to the long leg in Ci is 2L − ai,zi . The longest short leg in
Ci is the p1,z1 + · · · + pi,zi-th shortest short leg. We take the smallest j such
that ai,zi ≤ bj . Then, because the given solution is a feasible solution to I,
p1,z1 + · · · + pi,zi ≤ qj holds. Because there are qj users on short legs with a
length of less than bj−1 +1 ≤ ai,zi , the length of the longest short leg in Ci is at
most ai,zi . This gives the diameter of Ci to be at most 2L. Finally, we make a
cluster with all remaining users. Because there are r short legs of length L and
all these users are located within the distance L from the center, we can put
them into a cluster. Then, we obtain a feasible solution to I ′.

160 S. Kumabe and T. Maehara

3.2 Strong NP-Hardness of Arrears Problem

Now we give a proof outline of Proposition 2; the full proof is given in full version.
We reduce the 1-IN-3SAT problem, which is known to be NP-complete [9].

Problem 4 (1-IN-3 SAT problem [9]). We are given a set of clauses, each of
which contains exactly three literals. Decide whether there is a truth assignment
such that all clauses have exactly one true literal.

Proof (Proof Outline of Proposition 2). Let n and m be the number of boolean
variables and clauses, respectively. For each variable xi, we prepare N = 3m(m+
2) + 1 items Ti for a positive literal xi and N items T̄i for a negative literal x̄i.
Let T =

⋃
i(Ti ∪ T̄i) be the set of all items. Each item y ∈ T corresponds to a

payment duty {(ay,1, py,1), (ay,2, py,2)} of two options. Then, a solution to the
arrears problem is specified by a set X ⊆ T of items y such that ay,2 is chosen.
The complement of X is denoted by X̄ = T \X. We want to construct a solution
to the 1-IN-3SAT problem from a solution X to the arrears problem by xi = true
if y ∈ X for some y ∈ Ti; otherwise xi = false. We define the payment dates and
the amounts suitably to make this construction valid as follows. The payment
days consist of two periods: the first period is {1, . . . , n} and the second period
is {n + 1, . . . , n + m + 2}. For each item y, ay,1 belongs to the first period and
ay,2 belongs to the second period. Let i = ay,1 and j = ay,2 − (n + 1). Then,
the payment amount py,1 is given in the form of B4 + αyB

3 + iB2 + iαyB + j
where B is a sufficiently large integer, and αy is a non-negative integer, where∑

y∈Ti
αy =

∑
y∈T̄i

αy = N holds for all i. We define py,2 = 2py,1 for all y ∈ T .
Let R = (1/2)

∑
y∈T py,1 = nNB4+nNB3+n(n+1)/2NB2+n(n+1)/2NB+

· · · . We make two budget constraints (n,R) and (n + m + 2, 3R). Then, these
constraints hold in equality: Let x ≤ R be the total payment until n. Then, the
total payment until n+m+2 is x+2(2R−x) = 4R−x ≤ 3R. These inequalities
imply that x = R. (see the full version).

We use the first period to ensure that the truth assignment produced by X
is well-defined, i.e., if y ∈ X for some y ∈ Ti, then y′ ∈ X for all y′ ∈ Ti. First,
for each i = 1, . . . , n, we add a budget constraint (i, iNB4 + iNB3 + (B3 − 1)).
By comparing the coefficients of B4 and B3, we have

∑

y∈X̄∩⋃i
j=1(Tj∪T̄j)

(B4 + ayB
3) ≤ iNB4 + iNB3. (4)

We can prove that for all i, these inequalities hold in equality, i.e.,
∑

y∈y∈X̄∩(Ti∪T̄i)

(B4 + ayB
3) = NB4 + NB (5)

for all i as follows. Using the relation between the coefficients of py,1, we have∑
y∈X̄(iB2+iayB) ≥ n(n+1)

2 NB2+ n(n+1)
2 NB (see the full version). Because the

budget constraint (n,R) is fulfilled in equality, and the coefficients of B2 and B

in R are both n(n+1)
2 N , this inequality holds in equality, which implies Eq. (5).

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 161

Then, we define the values of αy appropriately so that only X ∩ (Ti ∩ T̄i) = Ti

or X ∩ (Ti ∩ T̄i) = T̄i satisfies Eq. (5) (see the full version). This ensures the
well-definedness of the truth assignment.

The second period represents the clauses. Let Zi be the set of items with
ay,2 = i. We put a budget constraint (i, (nN + 2

∑i
j=n+1 Kj)B4 + (B4 − 1))

for each i = n + 1, . . . , n + m + 2, where Kn+1, . . . ,Kn+m+2 are non-negative
integers determined later. Then, as similar to the first period, we can prove that

|X̄| + 2|X ∩ (Zn+1 ∪ · · · ∪ Zi)| = nN + 2
i∑

j=n+1

Kj (6)

for each i = n+1, . . . , n+m+2 (see the full version). This implies that |X∩Zi| =
Ki for each i = n + 1, . . . , n + m + 2. The budget constraint on day i ≥ n + 3
corresponds to the i − (n + 2)-th clause. For i = n + 3, . . . , n + m + 2, we set
Ki = 1. Then, we have |X ∩ Zi| = 1, i.e., exactly one literal in the i − (n + 2)-th
clause is true. The budget constraints on day n + 1 and n + 2 are used for the
adjustment. Because {Zn+1, . . . , Zn+m+2} forms a partition of items, we have
|X ∩ Zn+1| + |X ∩ Zn+2| = |X| − (|X ∩ Zn+3| + · · · + |X ∩ Zn+m+2|) = N − m.
Moreover, because the constant term ey,0 of py,1 is ey,0 = i−(n+1) for all y ∈ Zi

and i = n+1, . . . , n+m+2, we have
∑

y∈X ey,0 =
∑n+m+2

i=n+1 (i−(n+1))|X∩Zi|. By
solving these equations, we obtain Kn+1 = |X ∩ Zn+1| and Kn+1 = |X ∩ Zn+2|.
Because all values appearing in I ′ are at most 2B4, we can take B in a polynomial
of n,m. Thus, the hardness proof is completed.

The following is a consequence of the construction.

Corollary 1 The r-gather clustering problem on a spider does not admit an
FPTAS unless P = NP.

Proof. The diameter of the constructed spider is bounded by O(n + m). Let us
take such an instance. If there is an FPTAS for the r-gathering problem on a
spider, by taking ε = 1/(c(n + m)) for a sufficiently large constant c, we get an
optimal solution because the optimal value is an integer at most O(n+m). This
contradicts the hardness.

4 FPT Algorithm for R-Gather Clustering
and r-Gathering on Spider

We prove Theorem 2 by obtaining FPT algorithms to solve the r-gather cluster-
ing problem and r-gathering problem on a spider parameterized by the number
d of legs. Due to the space limitation, we put all the pseudocodes in the full
version.

First, we exploit the structure of optimal solutions. After that, we give a
brute-force algorithm. Finally, we accelerate it by DP.

We denote the coordinate of user u by (l(u), x(u)). Without loss of generality,
we assume that x(u1) ≤ · · · ≤ x(un). We use this order to explain a set of users;

162 S. Kumabe and T. Maehara

for example, “the first (resp. last) k users on leg l” indicates the users with k
smallest (resp. largest) index among all users on leg l. We choose an arbitrary
leg and consider all the users on the center as being located on this leg.

We introduce a basic lemma about the structure of a solution. A cluster is
single-leg if it contains users from a single leg; otherwise, it is multi-leg. Ahmed
et al. [2] showed that there is an optimal solution that has a specific single-
leg/multi-leg structure as follows.

Lemma 3 ([2, Lemma 2]). For both r-gather clustering problem and r-gathering
problem, there is an optimal solution such that for all leg l, some users from the
beginning (with respect to the order described above) are contained in multi-leg
clusters, and the rest of them are contained in single-leg clusters.

Now, we concentrate on the structure of multi-leg clusters. Let C be a multi-
leg cluster. Let ui be the last user in C and uj be the last user with l(ui) �= l(uj)
in C. A ball part of C is the set of users in C whose indices are at most j and
a segment part of C is the set of the remaining users in C. C is special if C
contains all users on l(ui) and the ball part is {u1, . . . , uk} for some integer k.
The list of multi-leg clusters {C1, . . . , Ct} are suffix-special if for all 1 ≤ i ≤ t,
Ci is a special when we only consider the users in Ci, . . . , Ct.

The following lemma is the key to our algorithm. We omit the proof because
it is a reformulation of Lemma 3 and Lemma 8 in [2] using Lemma 2 in [8].

Lemma 4 (Reformulation of [2, Lemmas 3 and 8] by [8, Lemma 2]). Suppose
|U| ≥ 1 and there exists an optimal solution without any single-leg cluster. Then,
there is an optimal solution such that all clusters contain at most 2r − 1 users,
and there exists a special cluster.

By definition, the segment part of a cluster is non-empty and contains users
from a single leg. By removing a special cluster and applying the lemma repeat-
edly, we can state that there is an optimal solution consisting of a suffix-special
family of multi-leg clusters.

We give a brute-force algorithm that enumerates all suffix-special families of
multi-leg clusters in the full version, whose correctness is clear from the defini-
tion. For each enumerated clusters, we fix them and consider the remaining prob-
lem, which consists of single-leg clusters. Thus, the optimal solution is obtained
by solving the line case problems independently for each leg.

Now, we accelerate this algorithm by DP. We observe that instead of remem-
bering all data of C, it is sufficient to remember (1) the size of C (to avoid
creating too-small clusters) and (2) the index of the last user in the ball part
of C (to calculate the diameter/cost of the cluster). Here, (2) implies that if
we know the last user u in the ball part of C and last user v in the segment
part of C, the diameter/cost of C is computed because C is spanned by u and
v. Below, we denote the diameter/cost of the multi-leg cluster by Cost(v, u) for
both problems.

We also accelerate the process for single-leg clusters. As pre-processing for all
leg l and all integers k from 0 to the number of users on leg l, we first compute
the optimal value of the problem that only considers the last k users on leg l.

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 163

For each user ui, we denote the optimal objective value for the set of users on leg
l(ui) whose indices are greater than i and no less than i by R+(ui) and R−(ui),
respectively. All these values can be computed in linear time for both r-gather
clustering problem and r-gathering problem using the same technique as in [4]
(see the full version for details).

The complete algorithm is presented in the full version. The correctness is
clear from the construction. Thus, we analyze the time complexity. A naive
implementation of the algorithm requires O(2dn2r2d) evaluations of Cost and
preprocessing for R+ and R−. Each evaluation of Cost requires O(1) time for
the r-gather clustering problem and O(m) time for the r-gathering problem.
The preprocessing requires O(n) time for the r-gather clustering problem and
O(n + m) time for the r-gathering problem [4]. Thus, the time complexities
are O(2dn2r2d) for the r-gather clustering problem and O(2dn2r2dm) for the
r-gathering problem.

We can further improve the complexities of the algorithms. The loop for i is
bounded to look only the first (2r − 1)d users from each leg because other users
cannot be contained in the ball part of multi-leg clusters. Thus, we can reduce
n to rd2 in the complexity so as we obtain the complexities O(2dr4d5 + n)
for the r-gather clustering problem and O(2dr4d5m + n) for the r-gathering
problem. This proves Theorem 2 for the r-gather clustering problem. In the r-
gathering problem, we can further improve the complexity by improving the
algorithm to calculate Cost (see the full version). This reduces the complexity
to O(2dr4d5 + n + m), which proves Theorem 2 for the r-gathering problem.

5 PTAS for r-Gathering Problem

We prove Theorem 3 by demonstrating a PTAS for the r-gathering problem. The
technique in this section can be extended to the case that the input is a tree;
see the full version.

As mentioned at the beginning of Sect. 3, the r-gather clustering problem is
reduced to the r-gathering problem. This establishes the existence of a PTAS
for the r-gather clustering problem.

Given an instance I and a positive number ε > 0, our algorithm outputs a
solution whose cost is at most (1+ ε)OPT(I). Without loss of generality, we can
assume that ε ≤ 1. First, we guess the optimal value. We can try all candidates of
the optimal values because the optimal value is the distance between a user and
a facility. We then solve the corresponding (relaxed) feasibility problem whose
objective value is at most the guessed optimal value.

Now we consider implementing the following oracle Solve(I, b, δ): Given an
instance I, a threshold b, and a positive number δ, it reports YES if OPT(I) ≤
(1+δ)b and NO if OPT(I) > b. If b < OPT(I) ≤ (1+δ)b then both answers are
acceptable. Our oracle also outputs the corresponding solution as a certificate
if it returns YES. It should be noted that we cannot set δ = 0 because it gets
reduced to the decision version of the r-gathering problem, which is NP-hard
on a spider (Theorem 1). To obtain a PTAS, we call the oracle Solve(I, b, ε) for

164 S. Kumabe and T. Maehara

each candidate of the optimal value b. We return the smallest b that the oracle
returns YES.

5.1 Algorithm Part 1: Rounding Distance

This and the next subsections present an implementation of Solve(I, b, δ). Our
algorithm is a DP that maintains distance information in the indices of the DP
table. For this purpose, we round the distances so that the distances from the
center to the vertices (thus, the users and facilities) are multiples of a positive
number t as follows: For each user or facility on point (l, x), we move it to the
coordinate (l, 	x/t
) to make a rounded instance I ′. Intuitively, this moves all
users and facilities “toward the center” and regularizes the edge lengths into
integers. Then, we define the rounded distance d′ on I ′. This rounding process
changes the optimal value only slightly as follows.

Lemma 5. For any pair of points v and w, we have d(v, w) ≤ d′(v, w)t ≤
d(v, w) + 2t. Especially, |OPT(I) − OPT(I ′)t| ≤ 2t.

Proof. Let o be the center of the spider. Then, d(v, w) = d(v, o) + d(o, w) holds.
By definition, d(v, o) ≤ d′(v, o)t ≤ d(v, o)+t and d(o, w) ≤ d′(o, w)t ≤ d(o, w)+t.
Adding them yields the desired inequality.

This lemma implies that an algorithm that determines whether I ′ has a solution
whose cost is at most b/t works as an oracle Solve(I, b, ε) by taking t = bδ/2.

5.2 Algorithm Part 2: Dynamic Programming

Now we propose an algorithm to determine whether I ′ has a solution whose cost
is at most b/t. Because all distances between the users and the facilities of I ′ are
integral, we can replace the threshold by K = �b/t�. An important observation
is that K is bounded by a constant because of K ≤ b/t = 2/δ.

Now, we establish a DP. We define a multi-dimensional table S of boolean
values such that for each integer i and integer arrays P = (p0, . . . , pK) and
Q = (q0, . . . , qK), S[i][P][Q] is true if and only if there is a way to

– open some facilities on l≤i := l1 ∪ · · · ∪ li, and
– assign some users on l≤i to the opened facilities so that

• for all j = 0, . . . , K, there are pj unassigned users in l≤i who are distant
from the center by distance j and no other users are unassigned, and

• for all j = 0, . . . , K, we will assign qj users out of l≤i who are distant
from the center by distance j to the opened facilities in l≤i.

Then, S[d][(0, . . . , 0)][(0, . . . , 0)] is the output of the Solve oracle. The elements
of P and Q are non-negative integers at most n; thus, the size of the DP table
is O(d × n2(K+1)), which is polynomial in the size of input.

To fill the table S, we use an auxiliary boolean table R that only considers
the i-th leg, i.e., for each integer i and integer arrays P = (p0, . . . , pK) and
Q = (q0, . . . , qK), R[i][P][Q] is true if and only if there is a way to

r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes 165

– open some facilities on li, and
– assign some users on li to the opened facilities so that

• for all j = 0, . . . ,K, there are pj unassigned users in li who are distant
from the center by distance j and no other users are unassigned, and

• for all j = 0, . . . , K, we will assign qj users out of li who are distant from
the center by distance j to the opened facilities in li.

We can fill the table R in polynomial time, and if we have the table R, we can
compute the table S. Therefore we have Theorem 3. Due to the space limitation,
the proof is given in the full version.

References

1. Aggarwal, G., et al.: Achieving anonymity via clustering. ACM Trans. Algorithms
6(3), 49:1–49:19 (2010)

2. Ahmed, S., Nakano, S., Rahman, M.S.: r -gatherings on a star. In: Das, G.K.,
Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS,
vol. 11355, pp. 31–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
10564-8 3

3. Akagi, T., Nakano, S.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 25–32. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19647-3 3

4. Sarker, A., Sung, W., Rahman, M.S.: A linear time algorithm for the r -gathering
problem on the line (extended abstract). In: Das, G.K., Mandal, P.S., Mukhopad-
hyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 56–66.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 5

5. Armon, A.: On min-max r-gatherings. Theoret. Comput. Sci. 412(7), 573–582
(2011)

6. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer
(2001)

7. Han, Y., Nakano, S.I.: On r-gatherings on the line. In: Proceedings of International
Conference on Foundations of Computer Science, pp. 99–104 (2016)

8. Nakano, S.: A simple algorithm for r-gatherings on the line. In: Rahman, M.S.,
Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 1–7.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 1

9. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
tenth annual ACM symposium on Theory of computing, pp. 216–226. ACM (1978)

10. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty,
Fuzziness and Knowl.-Based Syst. 10(05), 557–570 (2002)

https://doi.org/10.1007/978-3-030-10564-8_3
https://doi.org/10.1007/978-3-030-10564-8_3
https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-030-10564-8_5
https://doi.org/10.1007/978-3-319-75172-6_1

An Improvement of Reed’s Treewidth
Approximation

Mahdi Belbasi(B) and Martin Fürer

Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802, USA

{belbasi,furer}@cse.psu.edu

Abstract. We present a new approximation algorithm for the treewidth
problem which constructs a corresponding tree decomposition as well.
Our algorithm is a faster variation of Reed’s classical algorithm. For
the benefit of the reader, and to be able to compare these two algo-
rithms, we start with a detailed time analysis for Reed’s algorithm. We
fill in many details that have been omitted in Reed’s paper. Computing
tree decompositions parameterized by the treewidth k is fixed parame-
ter tractable (FPT), meaning that there are algorithms running in time
O(f(k)g(n)) where f is a computable function, g(n) is polynomial in n,
and n is the number of vertices. An analysis of Reed’s algorithm shows
f(k) = 2O(k log k) and g(n) = n log n for a 5-approximation. Reed simply
claims time O(n logn) for bounded k for his constant factor approxima-
tion algorithm, but the bound of 2Ω(k log k)n log n is well known. From a
practical point of view, we notice that the time of Reed’s algorithm also
contains a term of O(k2224kn logn), which for small k is much worse
than the asymptotically leading term of 2O(k log k)n logn. We analyze
f(k) more precisely, because the purpose of this paper is to improve the
running times for all reasonably small values of k.

Our algorithm runs in O(f(k)n logn) too, but with a much smaller
dependence on k. In our case, f(k) = 2O(k). This algorithm is simple
and fast, especially for small values of k. We should mention that Bod-
laender et al. [2016] have an asymptotically faster algorithm running in
time 2O(k)n. It relies on a very sophisticated data structure and does not
claim to be useful for small values of k.

1 Introduction

Since the 1970s and early 1980s, when the notions of treewidth and tree decom-
position were introduced [3,10,13], they have played important roles in computer
science [5]. In a nutshell, treewidth is a parameter of a graph that measures how
similar it is to a tree. One of the main reasons that the tree decomposition
is widely studied is that many NP-complete problems have efficient algorithms
for graphs with small treewidth. A graph problem is fixed parameter tractable
(FPT) if it can be solved in time O(f(k)poly(n)), where f is a computable func-
tion, k is a parameter of the graph, and n is the number of vertices. In fact,
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 166–181, 2021.
https://doi.org/10.1007/978-3-030-68211-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_14

An Improvement of Reed’s Treewidth Approximation 167

Courcelle’s metatheorem states that every graph property definable in monadic
second-order logic of graphs can be solved in linear time on graphs of bounded
treewidth [7]. The first step of solving such problems is to find a good or opti-
mal tree decomposition. However, finding an optimal tree decomposition itself
is NP-hard [2]. In this work, we propose an algorithm which is based on Reed’s
algorithm [12] to approximate the treewidth and find an approximately optimal
tree decomposition.

1.1 Previously Known Results

In this work, we are interested in algorithms which run fast (polynomial in
terms of the number of vertices) for graphs with bounded treewidth. One of
the first algorithms given for this problem goes back to the same paper where
treewidth has been shown to be NP-complete. Arnborg et al. [2] gave an algo-
rithm which runs in time O(nk+2). In 1986, Robertson and Seymour [14] gave a
quadratic time FPT approximation algorithm. Later on, Lagergren introduced
an 8-approximation algorithm with the time complexity of 2O(k log k)n log2 n [11].
In 1992, Reed [12] improved these algorithms to have an algorithm running in
time O(n log n), for fixed k. In this paper, we show that the approximation
ratio is 7 or 5, depending on the frequency of the split by volume. We show
that this algorithm runs in time 2Θ(k log k)n log n, in order to be able to com-
pare it to our algorithm. Like the algorithms of Robertson and Seymour, Reed’s
algorithm is recursive. In [14], they find a separator that partitions G into two
parts but they do not force the separator to partition the entire graph in a
balanced fashion. Reed finds a separator which partitions the graph in a bal-
anced way to obtain time O(n log n) for bounded k. This paper focuses on this
algorithm. Later, Bodlaender gave an exact algorithm which runs in 2O(k3)n [4].
Even though we focus only on constant-factor approximation algorithms but it
is worth mentioning the two f(k)-approximation algorithms [8], and [1]. Finally,
Bodlaender et al. [6] gave two constant factor approximation algorithms which
run in 2O(k)O(n log n) and 2O(k)O(n). The former one is a 3-approximation and
latter one is a 5-approximation. Although it is a great result from a theoreti-
cal point of view. It uses a sophisticated data structure and the constant factor
hidden in O(k) is not claimed to be practical. That is why we focus on Reed’s
simple and elegant O(n log n) algorithm [12] here.

1.2 Our Contribution

First, we analyze Reed’s algorithm [12] in detail. Reed has focused on the depen-
dence on n because he wanted to come up with an algorithm which runs faster
than O(n2) (or even O(n log2 n) in [11]), for fixed k. We show that the depen-
dence on k is of the form 2Ω(k log k). Furthermore, we give a proof for the approx-
imation ratio of Reed’s algorithm by filling in the details.

Then, we propose two improvements and prove that the approximation ratio
stays 5. One of our improvements focuses on the notion of “balanced split”.

168 M. Belbasi and M. Fürer

We call a split balanced, if we get two parts of volume 1 − ε and ε (or better).
Then, the running time of our algorithm has another factor of 1/ε. For instance,
if we set ε = 1

100 , a generous estimation shows that the dependence on k in
our O(f(k)n log n)-time algorithm is k2 28.87k, instead of 224k(k + 1)! in Reed’s
algorithm (here the asymptotic notation is a bit misleading from a practical
point of view, as 224k = o(k!), even though k! is reasonable for small k, while
224k is not). In the end, the main aim of this paper is to produce an algorithm
that runs in time 2ckn log n with c as small as possible.

2 Preliminaries

2.1 Tree Decomposition

Definition 1. A tree decomposition of a graph G = (V,E), is a tree T =
(VT , ET) such that each node x in VT is associated with a set Bx (called the bag
of x) of vertices in G, and such that T has the following properties:

– The union of all bags is equal to V. In other words, for each v ∈ V, there
exists at least one node x ∈ VT with Bx containing v.

– For every edge {u, v} ∈ E, there exists a node x such that u, v ∈ Bx.
– For any nodes x, y ∈ VT , and any node z ∈ VT belonging to the path connect-

ing x and y in T , Bx ∩ By ⊆ Bz.

In this paper we use a variation of tree decomposition where the adjacent
bags differ in at most one vertex (converting can happen in linear time).

The width of a tree decomposition is the size of its largest bag minus one.
The treewidth of a graph G is the minimum width over all tree decompositions
of G called tw(G). Observe that the treewidth of a tree is 1. In the following,
we reserve the letter k for the treewidth+1. As we mentioned earlier, in 1992,
Reed gave an algorithm which solves this problem in a nice balanced recursive
way. That is why the running time of his algorithm is O(f(k)n log n), for some
computable function f . Reed does not specify f but an analysis of his algorithm
shows it to be k!. This algorithm was a huge improvement in this field. Before,
the fastest algorithm used quadratic time.

We have to mention that Bodlaender et al. [6] filled in some details on Reed’s
algorithm. We need to be more detailed because we do not use Reed’s algorithm
as a black box. That is why first we analyze Reed’s algorithm precisely (Sect. 3)
and then introduce improvements of his algorithm (Sect. 4).

3 Analysis of Reed’s Algorithm

In 1992, Reed gave an elegant algorithm [12] to either construct a tree decompo-
sition of width at most 7k or 5k of a given graph G, or declare that the treewidth
is greater than k and outputs a subgraph which is a bottleneck (no separator of
size ≤ k).

An Improvement of Reed’s Treewidth Approximation 169

3.1 Summary of Reed’s Algorithm

In Reed’s algorithm, one of the main tasks is to find a “balanced” separator S
that splits the graph G − S into two subgraphs with sets of vertices X,Y ⊆
V (G). Once a balanced separator is found, the algorithm recursively finds a tree
decomposition for G[X ∪ S] (the subgraph induced by X ∪ S) and G[Y ∪ S].

The main task is to find a balanced separator. Instead of branching on every
vertex (going to X,Y, or S, which will be exponential in n), Reed groups vertices
together and works with the representatives of the groups. Then, he branches
on the representatives.

Reed does a DFS and finds the deepest vertex v whose subtree has at least
n

24k vertices (later, we talk about this threshold). We call such a vertex a “rep-
resentative”, and he defines weight of the representative (w(v)) as the size of
its subtree. We call these types of subtrees “small subtrees”. The idea here, is
that if a representative goes to either X or Y , most of its descendants will go to
the same set. The reason is that if a descendant goes to another set, the path
connecting the representative to the descendant should have at least one vertex
in the separator. However, we know that the separator cannot have more than
k vertices. So, not many vertices will go to the wrong set (not more than n

24
vertices, in total. This is because every subtree that partially goes to the other
side should go through the separator and have one vertex there. Hence, not more
than k small subtrees can go through the separator, which results in at most n

24
vertices on the wrong side). This nice property allows Reed to work with the set
of representatives (which is much smaller) rather than all the vertices.

Now, one might think that why not just check all the possibilities of the rep-
resentatives going to X,Y, or S. The reason that this simple idea does not work is
that if a representative goes to the separator, its entire substree of arbitrary size
can go anywhere and we do not have any control over them. Reed handles this
problem by deciding if any representative is going to the separator, at the very
beginning of the algorithm. If so, he just places such a representative (namely v)
into S (and not its subtree) and starts forming a new group of representatives by
running a new DFS on G−{v}. So, the other representatives might change. Also,
since one vertex has been placed into the separator, now k ← k − 1. However, if
none of the representatives goes to the separator, he branches on placing them
left (X) or right (Y). This is the high-level idea of Reed’s algorithm.

Our main modification improves the running time (the dependence on k)
significantly. We do not decide in the beginning whether any representative is
going to the separator. Instead, we follow a sequential process and handle vertices
one at a time, in a serial fashion. Whenever we find a small subtree and its
representative v, we decide whether v goes into the separator or not. If it does
not go to the separator, we consider both possibilities of that vertex going to
X or Y . But once a representative (namely v) is to go to the separator, we
do not start from scratch, and we do not do DFS for the entire G − {v}. We
place v into S and undo the DFS for the small subtree rooted at v (unmark
the vertices in its corresponding small subtree) and continue the DFS (for the
remaining tree). This was the high-level idea of one of our improvements which

170 M. Belbasi and M. Fürer

we discuss and analyze later in detail. Let’s start with presenting and reviewing
some definitions.

3.2 Centroids and Separators

For an undirected graph G = (V,E) and a subset W of the vertices, G[W] is the
subgraph induced by W . For the sake of simplicity throughout this paper, let
G−W be G[V \W] and G−v be G−{v} for any W ⊆ V (G) and any v ∈ V (G).

Also, in a weighted graph, a non-negative integer weight w(v) is defined for
each vertex v. For a subset W of the vertices, the weight w(W) is simply the
sum of the weights of all vertices in W . Furthermore, the total weight or the
weight of G is the weight of V .

Definition 2. A centroid of a weighted tree T is a node x such that none of the
trees in the forest T − x has more than half the total weight.

For a tree decompositions with the adjacent bags differing in at most one node
(call it “good tree decomposition”), we choose a stronger version of centroid.

Definition 3. A strong centroid of a good tree decomposition τ of a graph G =
(V,E) with respect to W ⊆ V is a node x of τ such that none of the connected
components of G − Bx contains more than 1

2 |W \ Bx| vertices of W .

The following lemma shows the existence of a strong centroid for any given
W ⊆ V .

Lemma 1. For every good tree decomposition (T , {Bx : x ∈ VT }) of a graph
G = (V,E) and every subset W ⊆ V , there exist a strong centroid with respect
to W (proved in the Arxiv version).

We use the definitions of balanced W -separator and weakly balanced W
separation from the book of Flum and Grohe [9].

Definition 4. Let G = (V,E) be a graph and W ⊆ V . A balanced W -separator
is a set S ⊆ V such that every connected component of G − S has at most 1

2 |W |
vertices.

Lemma 2 [9, Lemma 11.16]. Let G = (V,E) be a graph of treewidth at most
k − 1 and W ⊆ V . Then there exists a balanced W -separator of G of size at
most k.

We say that a separator S separates X ⊆ V from Y ⊆ V if C ∩ X = ∅ or
C ∩ Y = ∅ for every connected component C of G − S.

Definition 5. Let G = (V,E) be a graph and W ⊆ V . A weakly balanced
separation of W is a triple (X,S, Y), where X,Y ⊆ W , S ⊆ V are pairwise
disjoint sets such that:

– W = X ∪ (S ∩ W) ∪ Y .
– S separates X from Y .
– 0 < |X|, |Y | ≤ 2

3 |W |.

An Improvement of Reed’s Treewidth Approximation 171

Lemma 3 [9, Lemma 11.19]. For k ≥ 3, let G = (V,E) be a graph of treewidth
at most k−1 and W ⊆ V with |W | ≥ 2k+1. Then there exists a weakly balanced
separation of W of size at most k.

Theorem 1 [9, Corollary 11.22]. For a graph of treewidth at most k − 1 with a
given set W ⊆ V of size |W | = 3k − 2, a weakly balanced separation of W can
be found in time O(23kk2n).

3.3 Algorithm to Find a Weakly Balanced Separation

Separation(G, k) is the main part of Reed’s algorithm. It finds a separator of size
at most k in G using the procedures Split(G,X, Y, k) and DFS-Trees(G, k). We
explain each of these procedures (check the Arxiv version for the pseudocodes).

Split(G,X,Y, k). For X, Y disjoint subsets of V , Split(G,X, Y, k) finds a sep-
arator S of size at most k in G which is strictly between X and Y . Split reports
failure if no such separator exits (described in Lemma 11.20 of [9]).

DFS-Trees(G, k). DFS-Trees(G, k) (Algorithm 1 in the Arxiv version) selects
a set W ′ ⊆ V in a DFS (Depth-First Search) tree of G such that:

– the size (number of vertices) of the selected subtree T rooted at any vertex
v ∈ W ′, with all the subtrees rooted in any vertex v′ ∈ VT ∩ W ′ removed, is
at least n/24k, and

– there is no vertex v′
= v of VT ∩ W ′ with this property.

W ′ is a set of roots (representatives) of (intended to be) small DFS trees.
The children of the vertices in W ′ are roots of the subtrees of size less than n

24k .
The weight w[v] for v ∈ W ′ is the number of vertices in the small tree with

root v.

Separation(G, k). Separation(G, k) is the recursive procedure that splits
according to the number of vertices (Algorithm3). Note that when any ver-
tex v is placed into the separator S, then the procedure Separation removes that
vertex v from the graph and starts from scratch. The idea is that when we place
a root of a small tree (a representative) left or right, then we want to put the
whole small tree there. But when a representative is placed into the separator,
then its tree does not go there. At this point a new collection of trees is formed.

3.4 Running Time of Reed’s Algorithm

Let T (n, k) be the running time of the procedure SEPARATION(G, k) for
G = (V,E) and n = |V |. Let n′ and k′ be the current bound on the graph
size and current separator capacity. Initially n′ = n and k′ = k. We have the
following recurrence for Reed’s algorithm.

T (n′, k′) ≤ 24k′T (n′ − 1, k′ − 1) + 224k′
c(k′ + 1)kn′
︸ ︷︷ ︸

flow algorithm

, (1)

172 M. Belbasi and M. Fürer

for some c > 0. It is difficult to obtain a good solution, but by induction on k′

we get the following loose upper bound.

T (n′, k′) ≤ c224k′
k′! kn. (2)

For k′ = 0 and k′ = 1, this bound is valid. For k′ ≥ 2, we have:

T (n′, k′) ≤ 24k′T (n′ − 1, k′ − 1) + c224k′
k′kn′

≤ 24k′c224(k
′−1)(k′ − 1)! kn + c224k′

k′kn′ by induction hypothesis

= c224k′
kn(

24k′!
224

+ k′) ≤ c224k′
knk′! (

24
224

+
1

(k′ − 1)!
)

≤ c224k′
k′! kn.

Even though, this is not a tight bound, we have T (n, k) ≥ c′24kk!(n − k), which
is 2Ω(k log k)n.

T (n, 0) ≥ c′n
T (n, k) ≥ 24kT (n − 1, k − 1)

≥ c′24k24k−1(k − 1)! (n − k) by inductive hypothesis
≥ c′24kk! (n − k)

Check the Arxiv version for the proof of correctness of the Reed’s algorithm.

4 Our Improved Algorithm

In this section, we discuss how to improve Reed’s algorithm. The dependence
on k in the running time of Reed’s algorithm is huge. We decrease this factor
significantly to make the algorithm more applicable. We introduce two main
modifications. First, we work with a larger cut-off threshold than Reed’s |V |

24k .
Such an improvement can be achieved by replacing the arbitrary 3/4 bound
by 1 − ε. But even more is possible by arguing about the weights of connected
components instead of the weights of the parts of a bipartition.

The second improvement is to avoid branching on whether there is a repre-
sentative going into the separator or not. Reed branches on these two cases at
the beginning, while we branch 3-fold for every representative.

4.1 Relax the Balancing Requirement

Reed’s argument starts with a weakly balanced separation by volume that is
known to exist. The larger side has at most 2/3 of the volume, but it might have
up to 2/3 + 1/24 of the weight. The algorithmic split by this weight partition
might pick a set with another 1/24 fraction more volume. Thus the worst kind of
volume split found is now 3/4 to 1/4. Recall that these differences are bounded
this way for the following reason. When the weight carrying root of a tree is on

An Improvement of Reed’s Treewidth Approximation 173

one side, some of its small subtrees rooted at the children can be partially on
the other side. But the separator prevents more than k small subtrees to have
any part on a different side than the root, and each small subtree contains less
than |V |

24k vertices. Instead of 3/4, one can choose any number strictly between
2/3 and 1. If 1 − ε is chosen, then the constant 24 is replaced by 1

((1−ε)−2/3)/2 =
6

1−3ε ≤ 6 + 24ε for ε < 1/12.
More improvement is possible by a modification of the analysis. We start with

a restricted balanced separator by volume. No connected component of G − S
has more than half the vertices. We can afford it to contain up to a fraction of
3/4− ε/2 of the weight. There is still a partition of G−S into left and right with
a ratio of at most 3/4−ε/2 to 1/4−ε/2 by weight. The separator found for such a
partition by weight creates a partition by volume with a worst case ratio of 1− ε
to ε. This time, the constant 24 is replaced by 1

((1−ε)−1/2)/2 = 4
1−2ε ≤ 4 + 12ε

for ε < 1/6.

4.2 Main Improvement

The other improvement is to allow the representatives (the roots of the subtrees)
to go either, left, right, or into the separator. Once a representative v goes into
the separator, we change its weight to 0. We also delete v from G and unmark
all of the vertices in its subtree, so that they can be searched again. Then, we
continue the DFS from the parent of v. There is one complication here that we
have to take care of; what happens if G − v gets disconnected?

Three cases might happen. We cover all the cases and show that they can be
handled. Let x, y, and z be three types of children of v with the small subtrees
(with size ≤ n

Ck) τx, τy, and τz, rooted respectively (Fig. 1(a)). The cases are:

– There is a back edge from a vertex in τx to an ancestor of v. If we delete v from
the tree, the vertices of τx can still be searched because they are connected
to an ancestor of v. So, we do not need to worry about this case.

– There is no back edge from any vertex of τy to an ancestor of v and further-
more, there is a leaf p in τy with a small subtree τq attached to it with q as its
root such that q is the last representative below τy which has not gone into
the separator (this is a bottom-up approach). Even though this case seems
to be troublesome, we can fix it. Let τp,y be τy rooted at p (dangling from p).
Make p a child of q. Now, the problem has been fixed (Fig. 1(b)). The same
reasoning applies when v is a root and its subtree is too small.

– There is no back edge from τz to an ancestor of v, and there is no small
subtree below. So deleting v makes τz disconnected from the entire tree, and
this is only for our advantage.

The main difference here is that Reed branches in the beginning and considers
two cases. In the first case, none of the representatives goes to the separator, and
in the second case at least one goes to the separator. In the second case, Reed’s
algorithm branches into at most 24k (upper bound for the number of subtrees).
This affects the running time a lot. We want to avoid these branches and each

174 M. Belbasi and M. Fürer

v

x y z

q

DFS Tree

p

y

(a) (b)

q

v

q
v

p

p

Fig. 1. How to fix the cases after a representative goes to the separator

time only branch into three cases. Assume we want to decide where to put v (a
representative with weight w(v)). Let L, S, and R be the left, the separator, and
the right sets, respectively. If we put v into L (or R), usually most of the vertices
in its subtree will be in L (or R) as well. In case v goes to S, we release the
other vertices of its tree to be searched again. We have to mention that unlike
Reed, we do not decide at the beginning if at least one vertex is going to the
separator. Instead, we consider this case for every representative only when we
handle that representative (also, we handle the representative in a serial way).

5 Running Time of Our Algorithm

Let G, k, and t be the initial graph, the bound on the size of the separator, and
the number of representatives, respectively. t is at most Cεk since the cut-off
threshold for the volume of the subtrees was n

Cεk . While proceeding with the
algorithm at each step, let G′, k′, and t′ be the current graph, the current bound
on the size (capacity) of the separator, and the current number of representatives,
respectively. Each time we send some vertex to the separator, we decrease the
capacity by one. The recurrence for the running time to find a separator of size
at most k′ in G′ is:

T (t′, k′) ≤ T (t′
k′ − 1

k′ , k′ − 1) + 2T (t′ − 1, k′) + Qkn + O(1), for t′, k′ > 0, (3)

where Q is the constant factor of the DFS. On the R.H.S., the first term handles
the case where the representative goes to the separator. Therefore, k′ decreases
by 1, and the number of subtrees becomes at most t′ k′−1

k′ (delete that vertex
and continue the DFS). The second term handles the case that the current
representative does not go into the separator but left or right. Here, the capacity
of the separator is unchanged but the number of subtrees decreases by 1. The
third term is the upper bound of the exact running time of the DFS. And the last
term O(1) is the overhead to make the calls. The base cases of the recurrence:

An Improvement of Reed’s Treewidth Approximation 175

T (0, k′) ≤ Q(k′ + 1)kn to continue k′+1 DFSs. We find k′ paths from X to Y ,
and search for augmenting paths

T (t′, 0) ≤ Qkn We have to test whether S is indeed a separator.

The recurrence in 3 might seem hopeless, so we simplify it (generous bound).

T (t′, k′) ≤ T (t′, k′ − 1) + 2T (t′ − 1, k′) + Qk′n + O(1), t′, k′ > 0 (4)

Now, we have to solve this recurrence. Our recursion tree starts from the root
T (t′, k′) and has two children T (t′, k′ −1) and T (t′ −1, k′), left and right, respec-
tively. This is an unbalanced binary tree. Each strand terminates when one of the
arguments of T (·, ·) becomes zero. Each time we choose the left branch (putting
one representative into the separator), we decrease k′ by 1. Otherwise (putting
the representative and its subtree to the right or left set of the separator), we
decrease t′ by 1 and multiply the value by 2. Let #(t′ − i, 0) be the number
of leaves with the first argument t′ − i and the second argument k′ = 0, for
0 ≤ i < t′ (analogous notation for #(0, k′ − j) for 0 ≤ j < k′). Observe that
#(t′ − i, 0) =

(
t′+k′−i

k′
)

, and #(0, k′ − i) =
(
t′+k′−i

t′
)

. The first two terms of the
Eq. 4 can be computed at the leaves and the other two terms are spent in every
vertex of the recursion tree. Let us compute the first part.

t′−1
∑

i=0

⎛

⎝#(t′ − i, 0) 2i
︸︷︷︸

i right branches

T (t′ − i, 0)

⎞

⎠ +
k′−1
∑

i=0

⎛

⎝#(0, k′ − i) 2t′

︸︷︷︸

t′ right branches

T (0, k′ − i)

⎞

⎠

≤
t′

∑

i=0

⎛

⎜

⎝

(

k′ + i

i

)

2i Qk′kn
︸ ︷︷ ︸

Eq. 4

⎞

⎟

⎠ +
k′

∑

i=0

⎛

⎜

⎝

(

t′ + i

i

)

2t′
Qkn
︸︷︷︸

Eq. 4

⎞

⎟

⎠

≤ 2t′
Qk′kn

⎛

⎝

t′
∑

i=0

(

k′ + i

i

)

+
k′

∑

i=0

(

t′ + i

i

)

⎞

⎠

= 2t′
Qk′kn

((

k′ + t′ + 1
t′ + 1

)

+
(

k′ + t′ + 1
k′ + 1

))

= 2t′
Qk′kn

(

k′ + t′ + 2
k′ + 1

)

Now, we have to compute the second part of the Eq. 4 where we should look at
every internal vertex of the tree. We have

(
t′+k′

k′
)

internal vertices and in each
vertex we spend at most Qk′kn + O(1) ≤ Qk′kn(1 + O(1

n)). Hence,

T (t′, k′) ≤ 2t′
Qk′kn

(

k′ + t′ + 2
k′ + 1

)

+ Qk′kn(1 + O(
1
n

))
(

t′ + k′

k′

)

= Qk′kn

(

2t′ k′ + t′ + 2
k′ + 1

(

k′ + t′ + 1
k′

)

+ (1 + O(
1
n

))
(

t′ + k′

k′

)) (5)

Notice that T (·, k′) is monotonic (due to the definition of T) and use the fact
that t′ ≤ Cεk

′. Now, we simplify the Eq. 5 by bounding T (t′, k′) with T (Cεk
′, k′)

176 M. Belbasi and M. Fürer

due to the monotonicity of T (·, k′) and the fact that t′ ≤ Cεk
′ (below, let Un =

(1 + O(1
n))).

T (t′, k′) ≤ T (Cεk
′, k′)

≤ Qk′kn

(

2Cεk′ (Cε + 1) k′ + 2
k′ + 1

(

(Cε + 1) k′ + 1
k′

)

+ Un

(

(Cε + 1) k′

k′

))

≤ Qk′knek′
(

2Cεk′ (Cε + 1) k′ + 2
k′ + 1

(

(Cε + 1) k′ + 1
k′

)k′

+ Un

(

(Cε + 1) k′

k′

)k′)

Here, in order to simplify the closed form, we bound the above running time
very generously and give a very loose bound for now.

T (t′, k′) ≤ Qk′knek′
(Cε + 1)k′ (

2(Cε+1)k′
(Cε + 1) + 2

)

(6)

Now, we compute the running time (TV), when we split based on V .

TV (n, k) = TV (εn + k, k) + TV ((1 − ε)n + k, k) + T (t′, k)

≤ TV (εn + k, k) + TV ((1 − ε)n + k, k) + Qk2nek(Cε + 1)k
(
2(Cε+1)k(Cε + 1)+2

)

≤ Qk2ek(Cε + 1)k
(
2(Cε+1)k(Cε + 1) + 2

) 1

ε
n lnn

(7)

In the above equation, we use the following lemma (Lemma 4). Furthermore,
the reason that we add k to both recursive calls is that we add the separator to
the both subproblems.

Lemma 4. Assume 0 < ε ≤ 1
2 , 0 < c′ ≤ c, 2 ≤ k, and n1 + n2 = n. Then the

recurrence

f(n + k) ≤
{

c′(n + k) if n ≤ 4k

f(n1 + k) + f(n2 + k) + c(n + k) otherwise,

where 1
2n ≤ n1 ≤ (1−ε)n has a solution with f(n+k) ≤ c

εn ln n−ck, for n ≥ 2k.

The proof can be found in Arxiv version.

Corollary. Under the conditions of the Lemma4,

f(n) ≤ c

ε
n ln n.

Now, the total running time of the algorithm (Tt) is:

Tt(n, k) ≤ Qk2ek(Cε + 1)k
(

2(Cε+1)k(Cε + 1) + 2
)

(

1 + log 3
2

k
)

ε
n ln n,

where it takes log 3
2

k steps so that the kexcess (check the Arxiv version for the
details) drops to zero (that is when we need to split by V once more).

An Improvement of Reed’s Treewidth Approximation 177

As we mentioned in Sect. 4.1, Cε = 4
1−2ε . We plug that into Eq. 7.

Tt(n, k) ≤ Qk2ek(
4

1 − 2ε
+1)k

(

2(
4

1−2ε+1)k(
4

1 − 2ε
+ 1) + 2

)

(

1 + log 3
2

k
)

ε
n ln n,

(8)
for any positive constant ε ≤ 1

6 . For instance, if we set ε = 1
100 , the running time

would be at most 353Q log 3
2
(k) k2 28.87k n ln n. Looking at the limit for ε → 0,

we have shown the following theoretical result.

Theorem 2. Let C0 = log2 e + log2 5 + 5 < 8.765. For every C > C0, a 5-
approximation of the treewidth can be computed in time O(2Ckn log n).

Our algorithm with ε sufficiently small such that the exponent in Ineq. (8) is
less than C has this running time. This shows that the dependence on k in our
algorithm is much smaller than in Reed’s algorithm.

A Appendix

The following is the proof of Lemma1.

Proof. If a node x is not a strong centroid with respect to W , then let Cx be the
set of vertices in the unique connected component of G − Bx containing more
than 1

2 |W \Bx| vertices of X. In the forest obtained from the tree T by removing
x, there is a tree Tx with the property that the union of all bags in Tx contains
all the vertices of Cx.

Now, we define a set F of directed tree edges by (x, y) ∈ F , if all the following
conditions hold:

– x is not a centroid
– y is a neighbor of x in T ,
– y is a node in Tx.

Now we show that there is a node x with out-degree 0 in (VT , F). Such an x
is a centroid, and we are done. Otherwise, F contains (x, y) and (y, x) for some
x, y ∈ VT . W.l.o.g., By = Bx ∪ {v} for some v ∈ V \ Bx. Note that Tx and Ty

are disjoint. Furthermore, any vertex that is in a bag of Tx and in a bag of Ty is
also in Bx and By. Thus also Cx and Cy are disjoint.

Furthermore, |W ∩ Cx| > 1
2 |W \ Bx| implies |W ∩ Cx| > |W ∩ Cy|, because

[W ∩ Cy] ⊆ [W \ Bx]. Likewise, |W ∩ Cy| > 1
2 |W \ By| implies |W ∩ Cy| >

|W ∩ (Cx \{v})|, because [W ∩ (Cx \{v})] ⊆ [W \By]. Thus we have |W ∩Cx| >
|W ∩ Cy| > |W ∩ (Cx \ {v})|. Since these are all integers, and the difference
between the first and the last number is at most 1, it is a contradiction. Hence,
there exists a node x which is a strong centroid.

Now, we present the pseudocodes of Sect. 3.3.

178 M. Belbasi and M. Fürer

Algorithm 1: Construct Small DFS-Trees
Result: Roots of DFS-Trees with sizes of their strict subtrees ≤ |V |/(24k)
Procedure DFS-Trees(G, k) // G is a connected graph.

∗s = |V |
24k

// s : the size bound for splitting off a small tree.
∗W ′ = ∅
∗ for all v ∈ V do

∗color[u] = WHITE
end
∗count = 0
∗Pick any vertex u of G.
∗DFS-visit(G, u)
∗Add count to w[v], where v is the vertex last included in W ′.
∗return W ′ and w[v] for all v ∈ W ′

End Procedure

Algorithm 2: Main recursive procedure of DFS-Trees
Procedure DFS-Visit(G, u)
∗color[u] = GRAY
∗ for all v adjacent to u do

∗ if color[v] == WHITE // The white vertex v has been discovered.

then
∗DFS-Visit(G, v)

end

end
∗count = count+1
∗ if count ≥ s // u is a root of a small tree.

then
∗W ′ = W ′ ∪ {u}
∗w[u] = count
∗count = 0

end
End Procedure

A.1 The Correctness of Reed’s Algorithm

If the treewidth is at most k −1, then there is a good tree decomposition of G of
width k − 1. Let x be a centroid in it. The connected components of G[V \ Bx]
can be partitioned into 2 parts L and R, such that no part has more than 2

3 |V |
vertices.

Note that for the correctness proof, we do not have to find this tree decom-
position. It is sufficient to know that it exists. We can assume, that we have
fixed such a tree decomposition, a centroid x and the sets L and R.

We know that the set W ′ is partitioned into parts in L, the separator S = Bx,
and R.

One of the many branches of the procedure Separation(G, k) will try this
partition of W ′ and will succeed. First, it decides which part of W ′ goes into

An Improvement of Reed’s Treewidth Approximation 179

Algorithm 3: Main recursive procedure in Reed’s algorithm
Result: A weakly balanced separation (X,S, Y) of G of size ≤ k
Procedure SEPARATION(G, k)
∗ if k > 0 then

(W ′, {w(v) : v ∈ W ′}) = DFS-Trees(G, k)
end
∗ for all v ∈ W ′ // Here v is placed into separator S.
do

∗(X,S, Y) = SEPARATION(G − v, k − 1)
∗ if ¬failure then

∗return (X,S ∪ {v}, Y)
end

end
// The set of vertices W ′ is partitioned into L and R = W ′ \ L.

∗ for all X ⊆ W ′ // Here no vertex is put into S.
do

∗ if (1
3

− 1
24

)n ≤ w(X) ≤ (2
3

+ 1
24

)n) then
∗Split(G,X,W ′ \ X, k)
∗ if ¬failure then

∗return (X,S, Y)
end

end

end
return failure
End Procedure

S, one vertex v at a time. This vertex v is removed from G, but otherwise, we
still consider the same tree decomposition. |Bx| has now decreased by 1, as v is
removed from it.

We then consider the case that none of the remaining vertices in W ′ are in
the separator. Now the weight of each part is at most (23 + 1

24)n as at most k
small subtrees can have some of their vertices on the wrong side. And this is at
most k times at most n

24k .
On the branch of the procedure Separation(G, k) which finds this partition of

W ′, there is the separator Bx of size at most k between X and Y . Our algorithm
cannot guarantee to find this separator Bx, but it will find some separator S
of size at most k between X and Y . Again up to 1

24n vertices can be on the
other side than their representatives. Now the larger side can contain at most
(23 + 2 · 1

24)n = 3
4n vertices. Thus we have a somewhat balanced partition (a

constant fraction on each side).
The overall algorithm can alternate between splitting W as in the O(23kn2)

algorithm and splitting V . Now W can be of size at most 6k. On each side, we
have at most (23 · 6k) = 4k. Splitting by W as well as splitting by V adds k to
the separator. Thus, we are back at 6k. The constructed tree decomposition has
then width at most 7k. But we show that this can be actually a 5-approximation
algorithm. We do not need to alternate between splitting W and V . Splitting

180 M. Belbasi and M. Fürer

V is a costly procedure. We can do it only after every log 3
2

k steps and we still
spend O(n log n) time.

We start with W of size at most 4k (3k and kexcess as excess). Ini-
tially, kexcess = k. Each time we split W , we get |W | ≤ 2

3 · 3k +
k

︸︷︷︸

adding separator

+ 2
3kexcess = 3k + 2

3kexcess, and then update kexcess ← � 2
3kexcess.

The excess drops by a factor of 2
3 . After log 3

2
k many steps, the excess becomes

zero and then we can split by V , where |W | becomes ≤ 4k again (3k was the size
of W before this step, and when we split by V , we have to include the separator
as well). In the end, we end up with |W | ≤ 4k and we add the separator to
the root bag, which means the largest bag has size at most 5k. Therefore, it is
a 5-approximation algorithm. Reed mentions 5k in his paper but he does not
bother himself giving the details. We think based on what it has been described
in Reed’s algorithm, it seems we should have 7k. However, if splitting by V does
not happen very often, we can achieve 5k.

Lemma 5. Assume 0 < ε ≤ 1
2 , 0 < c′ ≤ c, 2 ≤ k, and n1 + n2 = n. Then the

recurrence

f(n + k) ≤
{

c′(n + k) if n ≤ 4k

f(n1 + k) + f(n2 + k) + c(n + k) otherwise,

where 1
2n ≤ n1 ≤ (1−ε)n has a solution with f(n+k) ≤ c

εn ln n−ck, for n ≥ 2k.

Proof. Case 1: 2k ≤ n ≤ 4k. Then n ≥ 4 and

f(n + k) ≤ c(n + k) < 2cn − ck <
c

ε
n ln n − ck.

Case 2: n ≥ 4k and n2 ≥ 2k.

f(n + k) ≤ f(n1 + k) + f(n2 + k) + c(n + k)

≤ c

ε
(n1 ln n1 + (n − n1) ln(n − n1)) − 2ck + c(n + k)

≤ c

ε
(1 − ε)n(ln(1 − ε)

︸ ︷︷ ︸

<−ε

+ ln n) + εn(ln ε + ln n) + c(n − k)

<
c

ε
n ln n − c(1 − ε)n + cn ln ε + c(n − k)

≤ c

ε
n ln n − cn + cεn + cn ln ε + c(n − k)

≤ c

ε
n ln n + (ε + ln ε

︸ ︷︷ ︸

<0 for ε ≤ 1
2

) cn − ck

≤ c

ε
n ln n − ck

An Improvement of Reed’s Treewidth Approximation 181

Case 3: n ≥ 4k and n2 = n − n1 < 2k.

f(n + k) ≤ f(n1 + k) + f(n2 + k) + c(n + k)

≤ c

ε
n1 ln n1 − ck + c′(n2 + k) + c(n + k)

≤ c

ε
(1 − ε)n(ln(1 − ε) + ln n) − ck + c′(n2 + k) + c(n + k)

<
c

ε
(1 − ε)n(−ε + ln n) − ck + c′(n2 + k) + c(n + k)

≤ c

ε
n ln n − ck − cn ln n − c(1 − ε)n + c′(n2 + k) + c(n + k)

<
c

ε
n ln n − ck

The last inequality is true, because n ≥ 4k ≥ 8 implying lnn > 2.

References

1. Amir, E.: Approximation algorithms for treewidth. Algorithmica 56(4), 448–479
(2010)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discret. Methods 8, 277–284 (1987)

3. Bertele, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory
Ser. A 14(2), 137–148 (1973)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4 1

6. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A O(ck n) 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

7. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

8. Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for
minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCS. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-29953-X

10. Halin, R.: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976)
11. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J.

Algorithms 20(1), 20–44 (1996)
12. Reed, B.A.: Finding approximate separators and computing tree width quickly.

In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 221–228. ACM (1992)

13. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

14. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/3-540-29953-X

Homomorphisms to Digraphs with Large
Girth and Oriented Colorings of Minimal

Series-Parallel Digraphs

Frank Gurski(B), Dominique Komander, and Marvin Lindemann

Institute of Computer Science, Algorithmics for Hard Problems Group,
Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany

frank.gurski@hhu.de

Abstract. An oriented r-coloring of an oriented graph G corresponds
to an oriented graph H on r vertices, such that there exists a homo-
morphism from G to H. The problem of deciding whether an acyclic
digraph allows an oriented 4-coloring is already NP-hard. The oriented
chromatic number of an oriented graph G is the smallest integer r such
that G allows an oriented r-coloring.

In this paper we consider msp-digraphs (short for minimal series-
parallel digraphs), which can be defined from the single vertex graph
by applying the parallel composition and series composition. In order
to show several results for coloring msp-digraphs, we introduce the con-
cept of oriented colorings excluding homomorphisms to digraphs H with
short cycles. A g-oriented r-coloring of an oriented graph G is a homo-
morphism from G to some digraph H on r vertices of girth at least g+1.
The g-oriented chromatic number of G is the smallest integer r such that
G allows a g-oriented r-coloring.

As our main result we show that for every msp-digraph the g-oriented
chromatic number is at most 2g+1 − 1. We use this bound together with
the recursive structure of msp-digraphs to give a linear time solution
for computing the g-oriented chromatic number of msp-digraphs. This
implies that every msp-digraph has oriented chromatic number at most 7.
Furthermore, we conclude that the chromatic number of the underlying
undirected graphs of msp-digraphs can be bounded by 3. Both bounds
are best possible and the exact chromatic numbers can be computed in
linear time. Finally, we conclude that k-power digraphs of msp-digraphs
have oriented chromatic number at most 22k+1 − 1.

Keywords: Oriented coloring · Graph homomorphisms · Minimal
series-parallel digraphs · Linear time algorithms

1 Introduction

An oriented r-coloring of an oriented graph G = (V,E) is a partition of the
vertex set V into r independent sets, such that all arcs linking two of these

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 182–194, 2021.
https://doi.org/10.1007/978-3-030-68211-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_15

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 183

subsets have the same direction. The oriented chromatic number of an oriented
graph G, denoted by χo(G), is the smallest integer r such that G allows an
oriented r-coloring. Equivalently, there is an oriented r-coloring of an oriented
graph G if and only if there is a homomorphism from G to some oriented graph
H on r vertices and the oriented chromatic number of G is the minimum number
of vertices in an oriented graph H, such that there is a homomorphism from G to
H. Oriented coloring appears e.g. in scheduling models where incompatibilities
are oriented, see [6]. Even deciding whether an acyclic digraph allows an oriented
4-coloring is NP-hard [6], which motivates to study the problem on special graph
classes.

In [8], there was shown an FPT-algorithm for the oriented chromatic number
problem (OCN) w.r.t. the parameter tree-width (of the underlying undirected
graph) by Ganian. Additionally, he has shown that OCN is DET-hard1 for classes
of oriented graphs of bounded rank-width (of the underlying undirected class).

Presently, the definition of oriented coloring is mainly considered for undi-
rected graphs, where the maximum value χo(G′) of all possible orientations G′ of
an undirected graph G is considered. For various special undirected graph classes
the oriented chromatic number has been bounded, e.g. for forests and cycles [18],
for outerplanar graphs [17], and Halin graphs [7]. Moreover, the oriented chro-
matic number of planar graphs with large girth was intensively investigated e.g.
in [14–16].

Until now, it seems that the subject of oriented coloring of special classes of
oriented graphs is not well studied. In [10,11] we investigated the problem on
oriented co-graphs, which can be defined from the single vertex graph by applying
the disjoint union and order composition. In [11] we considered oriented coloring
of msp-digraphs, which can be defined from the single vertex graph by applying
the parallel composition and series composition. These graphs are useful for
modeling flow diagrams and dependency charts, as well as they are helpful in
applications for scheduling under constraints, see [2, Section 11.1].

In this paper we expand these outcomes with further interesting more general
results about the oriented coloring problem restricted to msp-digraphs. There-
fore, we generalize the concept of oriented colorings by excluding homomor-
phisms to digraphs H with short cycles. A g-oriented r-coloring of an oriented
graph G is a homomorphism from G to some digraph H on r vertices of girth at
least g + 1. The g-oriented chromatic number of G is the smallest integer r such
that G allows a g-oriented r-coloring. It follows that for g = 1 we obtain the
chromatic number of the underlying undirected graph and for g = 2 we obtain
the oriented chromatic number.

Our main result is that for every msp-digraph the g-oriented chromatic num-
ber is at most 2g+1 − 1. We use this bound together with the recursive structure
of msp-digraphs to give a linear time solution for computing the g-oriented chro-
matic number of msp-digraphs. This implies that every msp-digraph has oriented
chromatic number at most 7, which re-proves our result from [11]. Furthermore,

1 DET is the class of decision problems which are reducible in logarithmic space to
the problem of computing the determinant of an integer valued n × n-matrix.

184 F. Gurski et al.

we conclude that the chromatic number of the underlying undirected graphs of
msp-digraphs can be bounded by 3. Both bounds are sharp and the exact chro-
matic numbers can be computed in linear time. Finally, we conclude that k-power
digraphs of msp-digraphs have oriented chromatic number at most 22k+1 − 1.

2 Preliminaries

2.1 Graphs and Digraphs

We use the notations of Bang-Jensen and Gutin [1] for (di)graphs. A graph
is a pair G = (V,E) with a finite set of vertices V and a finite set of edges
E ⊆ {{u, v} | u, v ∈ V, u �= v}. A directed graph or digraph is a pair G = (V,E),
in which V is a finite set of vertices and E ⊆ {(u, v) | u, v ∈ V, u �= v} is a finite
set of ordered pairs of distinct vertices called arcs or directed edges. For a vertex
v ∈ V , the sets N+(v) = {u ∈ V | (v, u) ∈ E} and N−(v) = {u ∈ V | (u, v) ∈ E}
are called the set of all successors and the set of all predecessors of v. The
outdegree of v, outdegree(v) for short, is the number of successors of v, while the
indegree of v, indegree(v) for short, is the number of predecessors of v.

For digraph G = (V,E), we define its underlying undirected graph by ignoring
the directions of the arcs, i.e. un(G) = (V, {{u, v} | (u, v) ∈ E, u, v ∈ V }). A
digraph G′ = (V ′, E′) is a subdigraph of digraph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. Further, if every arc of E with both end vertices in V ′ is in E′, we call
G′ an induced subdigraph of G and we write G′ = G[V ′].

An oriented graph is a digraph without loops or opposite arcs. A tournament
is a digraph in which exists exactly one edge between every two distinct vertices.
A directed acyclic graph (DAG for short) is a digraph with no directed cycles.
The girth of digraph G is the length (number of arcs) of a shortest directed cycle
in G. If G is a DAG its girth is defined to be infinity.

2.2 Coloring Oriented Graphs

In 1994 Courcelle [4] introduced oriented graph coloring, where we look at ori-
ented graphs, i.e. digraphs with no loops and no opposite arcs.

Definition 1 (Oriented graph coloring [4]). An oriented r-coloring of an
oriented graph G = (V,E) is a mapping c : V → {1, . . . , r} such that:

– c(u) �= c(v) for every (u, v) ∈ E,
– c(u) �= c(y) for every two arcs (u, v) ∈ E and (x, y) ∈ E with c(v) = c(x).

The oriented chromatic number of G, denoted with χo(G), is the smallest r such
that G has an oriented r-coloring. Then Vi = {v ∈ V | c(v) = i}, 1 ≤ i ≤ r is a
partition of V , which we call color classes.

Within our generalization of oriented colorings in the next section we will
use the following equivalent characterization of oriented graph coloring from
[17]. For two digraphs G1 = (V1, E1) and G2 = (V2, E2) a homomorphism from

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 185

G1 to G2 is a mapping h : V1 → V2, which preserves the edges, i.e., (u, v) ∈ E1

implies (h(u), h(v)) ∈ E2. A homomorphism from G1 to G2 can be regarded as
an oriented coloring of G1 that uses the vertices of G2 as colors classes. Thus,
we call G2 the color graph of G1. This leads to equivalent definitions for the
oriented coloring and the oriented chromatic number. There is an oriented r-
coloring of an oriented graph G1 if and only if there is a homomorphism from G1

to some oriented graph G2 on r vertices. Then, the oriented chromatic number
of G1 is the minimum number of vertices in an oriented graph G2 such that
there is a homomorphism from G1 to G2. Clearly, it is possible to choose G2 as
a tournament.

We denote the (undirected) chromatic number of a (-n undirected) graph G
by χ(G).

Observation 1 ([11]). For every oriented graph G it holds that χ(un(G)) ≤
χo(G).

Name: Oriented Chromatic Number (OCN)
Given: An oriented graph G = (V,E) and a positive integer r ≤ |V |.
Question: Is there an oriented r-coloring for G?

If r is not part of the input but a constant, we call the related problem the
r-Oriented Chromatic Number (OCNr). If r ≤ 3, then we can decide OCNr

in polynomial time, but OCN4 is NP-complete [13]. Moreover, OCN4 is also
NP-complete for several restricted classes of digraphs, e.g. for DAGs [6].

So far, the definition of oriented coloring was often used for undirected graphs,
where the maximum value χo(G′) of all possible orientations G′ of a graph G is
considered. This leads to the fact that every tree has oriented chromatic number
at most 3. There are also bounds on the oriented chromatic number for other
graph classes, e.g. for outerplanar graphs [17] and Halin graphs [7]. Moreover,
the oriented chromatic number of planar graphs with large girth was intensively
investigated e.g. in [14–16].

2.3 Generalization of Oriented Colorings

Next, we generalize the concept of oriented colorings by excluding homomor-
phisms to oriented graphs with short cycles. This allows us to show good bounds
on the oriented chromatic number of msp-digraphs, k-power digraphs of msp-
digraphs, and the chromatic number of the underlying undirected graphs.

Definition 2 (g-oriented graph coloring). A g-oriented r-coloring of an ori-
ented graph G is a homomorphism from G to some digraph H on r vertices of
girth at least g + 1. The g-oriented chromatic number of G, denoted by χg(G),
is the minimum number of vertices in a digraph H of girth at least g + 1, such
that there is a homomorphism from G to H.2

2 While within oriented graph coloring only homomorphisms to oriented graphs are
important, in Definition 2 we consider colorings of oriented graphs G where the color
graph H is only oriented for g ≥ 2.

186 F. Gurski et al.

Name: g-Oriented Chromatic Number (g-OCN)
Instance: An oriented graph G = (V,E) and a positive integer r ≤ |V |.
Question: Is there a g-oriented r-coloring for G?

If r is constant and not part of the input, the corresponding problem is
denoted by r-Generalized Oriented Chromatic Number (g-OCNr).

The following two observations state that g-oriented r-colorings of oriented
graphs generalize oriented r-colorings as well as r-colorings of the underlying
undirected graph.

Observation 2. For every oriented graph G it holds χ1(G) = χ(un(G)).

Observation 3. For every oriented graph G it holds χ2(G) = χo(G).

Observation 4. For every oriented graph G and every integer g it holds that
χg(G) ≤ χg+1(G).

By Observations 2 and 4 we obtain the next result.

Corollary 1. For every oriented graph G and every integer g it holds that
χ(un(G)) ≤ χg(G).

Lemma 1. Let G be an oriented graph and h be a homomorphism from G to
some digraph H on r vertices of girth at least g + 1. Then, for every subdigraph
G′ of G there is a homomorphism h′ from G′ to an induced subdigraph H ′ of H
(on at most r vertices) of girth at least g + 1.

Corollary 2. Let G be an oriented graph and G′ be a subdigraph of G, then
χg(G′) ≤ χg(G).

3 Coloring Msp-Digraphs

3.1 Msp-Digraphs

We recall definitions from [2] which are based on [20].

Definition 3 (Msp-digraphs [2]). The class of minimal series-parallel di-
graphs, msp-digraphs for short, is recursively defined as follows.

1. Every digraph on a single vertex ({v}, ∅), denoted by v, is a minimal series-
parallel digraph.

2. If G1 = (V1, E1) and G2 = (V2, E2) are minimal series-parallel digraphs and
O1 is the set of vertex of outdegree 0 (set of sinks) in G1 and I2 is the set of
vertices of indegree 0 (set of sources) in G2, then

(a) the parallel composition G1 ∪G2 = (V1 ∪V2, E1 ∪E2) is a minimal series-
parallel digraph and

(b) the series composition G1 × G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2)) is a
minimal series-parallel digraph.

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 187

1v v5

v4

3v2v

Fig. 1. Digraph(X1) in Example 1.

1v v6

v5

2v 3v 4v

Fig. 2. Digraph(X2) in Example 1.

Every expression X using the operations of Definition 3 is called an msp-
expression. The digraph defined by the expression X is denoted by digraph(X).
We illustrate this by two expressions which we will refer to later.

Example 1. The following msp-expressions X1 and X2 define msp-digraphs on
five and six vertices shown in Fig. 1 and Fig. 2.

X1 = (v1 × ((v2 × v3) ∪ v4)) × v5

X2 = (v1 × ((v2 × (v3 × v4)) ∪ v5)) × v6

If vertex v3 is deleted from the msp-digraph digraph(X2) in Example 1, we
resulting oriented graph is not an msp-digraph. Consequently, the set of all msp-
digraphs is not closed under taking induced subdigraphs.

For every msp-digraph we can define a tree structure, which is denoted as
msp-tree. The leaves of an msp-tree correspond to the vertices of the digraph,
while the inner vertices of the msp-tree represent the operations applied on the
subexpressions defined by the subtrees. For every msp-digraph, an msp-tree is
computable in linear time [20].

3.2 Generalized Oriented Coloring Msp-Digraphs

Next, we show a bound on the g-oriented chromatic number of msp-digraphs,
which generalizes some of our results from [11].

Theorem 1. Let G be an msp-digraph. Then, it holds that χg(G) ≤ 2g+1 − 1.

Proof. We work with recursively defined msp-digraphs Mi, where digraph M0 is
the single vertex graph and for i ≥ 1 it holds that

Mi = Mi−1 ∪ Mi−1 ∪ (Mi−1 × Mi−1).

By [11], every msp-digraph G is a (-n induced) subdigraph of a digraph Mi,
such that every source in G is a source in Mi and every sink in G is a sink in Mi.

Since by Lemma 1 a g-oriented coloring of an oriented graph is also a g-
oriented coloring for every subdigraph, we can show the theorem by giving a
coloring for the digraphs Mi. Since the first two occurrences of Mi−1 in Mi can

188 F. Gurski et al.

be colored in the same way, we can restrict to msp-digraphs M ′
i which are defined

as follows. Digraph M ′
0 is a single vertex graph and for i ≥ 1 we define digraph

M ′
i = M ′

i−1 ∪ (M ′
i−1 × M ′

i−1).

Let d = 2g+1 − 1. We define a g-oriented d-coloring c for digraph M ′
i as

follows. For some vertex v of M ′
i we define by c(v, i) the color of v in M ′

i . First
we color M ′

0 by assigning color 0 to the single vertex in M ′
0. For i ≥ 1 we define

the colors for the vertices v in M ′
i = M ′

i−1 ∪ (M ′
i−1 × M ′

i−1) according to the
three copies of M ′

i−1 in M ′
i (numbered from left to right). Therefore, we use the

two functions p(x) = (2g · x) mod d and q(x) = (2g · x + 1) mod d. We define

c(v, i) =

⎧
⎪⎪⎨

⎪⎪⎩

c(v, i − 1) if v is from the first copy,

p(c(v, i − 1)) if v is from the second copy, and

q(c(v, i − 1)) if v is from the third copy.

Next we show that c leads to a g-oriented d-coloring for M ′
i . For two integers

a and b we defined a ≡d b if and only if a mod d = b mod d. Let Ci = (Wi, Fi)
with Wi = {0, . . . , d − 1} and Fi = {(c(u, i), c(v, i)) | (u, v) ∈ Ei} be the color
graph of M ′

i = (Vi, Ei). By the definition of digraph M ′
i it holds that

Fi = Fi−1 ∪ {(p(x), p(y)) | (x, y) ∈ Fi−1}
∪ {(q(x), q(y)) | (x, y) ∈ Fi−1}
∪ {(p(c(v, i − 1)), q(c(w, i − 1))) | v sink of M ′

i−1, w source of M ′
i−1}.

In Fig. 3 the color graph Ci for g = 2 (d = 7) and i ≥ 5 is given [11].

1

2

34

5

6

0

Fig. 3. The color graph Ci for g = 2 (d = 7) and i ≥ 5 used in the proof of Theorem1
which corresponds to the Paley tournament of order 7.

In order to ensure a g-oriented d-coloring of M ′
i we verify that Ci is a digraph

of girth at least g + 1.
Every source in M ′

i is colored by 0 since p(0) = 0. Every sink in M ′
i is colored

by some color from T = {∑g+1
j=k 2j mod d | k ∈ {1, . . . , g + 1}}, since 0 ∈ T :

0 ≡d 2g+1 − 1 =
g∑

j=0

2j ≡d

g+1∑

j=1

2j (since 2g+1 ≡d 1)

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 189

and for x =
∑g+1

j=k 2j mod d ∈ T it also holds that q(x) ∈ T :

q(x) = q

⎛

⎝
g+1∑

j=k

2j mod d

⎞

⎠ ≡d

g∑

j=k−1

2j + 1 ≡d

g∑

j=k−1

2j + 2g+1 ≡d

g+1∑

j=k−1

2j

Remember that 2g+1 ≡d 1 and thus, 2g ≡d
1
2 such that q(x) = (x2 +1) mod d.

Since for k = 1 it holds that
∑g+1

j=k−1 2j =
∑g+1

j=0 2j = d+2g+1 ≡d 2g+1, we know
that q(x) ≡d

∑g+1
j=k−1 2j ∈ T .

In order to consider the girth of color graph Ci = (Wi, Fi) of M ′
i we color each

edge (c1, c2) ∈ Fi, c1, c2 ∈ {0, . . . , d} by the value c2 − c1 mod d. This implies
that every edge in Ci is colored by a value in T2 = {2k mod d | k ∈ {0, . . . , g}}.
This holds true, since every edge which is not from a copy of M ′

i−1 is of the type
(p(c(t, i − 1)), q(c(s, i − 1))) for some sink t and some source s in M ′

i−1, which
implies for the coloring of this edge

q(c(s, i − 1)) − p(c(t, i − 1)) = q(0) − p(

g+1∑

j=k

2j) ≡d 1 −
g∑

j=k−1

2j ≡d 2g+1 − ∑g
j=k−1 2

j

= 2k−1

for some k ∈ {1, . . . , g+1} (which implies that 2k−1 ∈ T2). Also the edges which
come from a copy of M ′

i−1 fulfill this property, since for c2 − c1 ≡d 2k ∈ T2 it
holds

p(c2) − p(c1) = q(c2) − q(c1) ≡d
1
2
(c2 − c1) = 2k−1

and since 2−1 ≡d 2g, it holds 2k−1 ∈ T2. Thus, for all edges (c1, c2) from Ci it
holds that c2 − c1 ∈ T2. This can be used to show that the girth of Ci is at least
g + 1. Every cycle in Ci fulfills that the sum of the colors of the edges modulo d
is 0. Assume that there is a cycle of length g′ ≤ g in Ci, then it holds that

0 ≡d

g′
∑

j=1

2kj .

We consider the exponents k1, . . . , kg′ of this sum. We combine two equal expo-
nents 2k + 2k = 2k+1 until there are no equal exponents and for 2k+1 = 2g+1 we
replace 2g+1 by 1. Since in each of these combination steps two summands are
replaced by one, this process terminates. This implies that 0 ≡d

∑g′′

j=1 2k
′
j for

0 < g′′ ≤ g and all k′
j ∈ T2 are mutually different. Thus, it holds that

g′′
∑

j=1

2k
′
j ≤

g∑

j=1

2j <

g∑

j=0

2j = d.

But since all summands 2k
′
1 , . . . , 2k

′
g′′ are positive and their sum is less than d

their sum can not be 0 modular d. Thus, our assumption was false and all cycles
in color graph Ci must have at least g + 1 directed edges. ��

190 F. Gurski et al.

Let g ≥ 1 be some integer. In order to compute the g-oriented chromatic
number of some msp-digraph G defined by some msp-expression X we compute
the set F (X) of all triples (H,L,R). In this context H is a color graph for G and
L and R are the sets of colors of all sinks and all sources in G with respect to
the coloring by H. The number of vertex labeled oriented graphs on n vertices is
3n(n−1)/2, where vertex labeled means that the vertices are distinguishable from
each other. By Theorem 1 we can conclude that

|F (X)| ≤ 3(2g+1−1)(2g+1−2)/2 · 22
g+1−1 · 22

g+1−1 ∈ O(1)

which is independent of the size of G.
Given two color graphs H1 = (V1, E1) and H2 = (V2, E2) we define H1+H2 =

(V1 ∪ V2, E1 ∪ E2).

Lemma 2. 1. Let v ∈ V , then it holds that F (v) = {(({i}, ∅), {i}, {i}) | 0 ≤ i ≤
2g+1 − 2}.

2. Let X1 and X2 be two msp-expressions, then we obtain F (X1 ∪ X2) from
F (X1) and F (X2) as follows. For every (H1, L1, R1) ∈ F (X1) and every
(H2, L2, R2) ∈ F (X2) such that graph H1 + H2 has girth at least g + 1 we put
(H1 + H2, L1 ∪ L2, R1 ∪ R2) into F (X1 ∪ X2).

3. Let X1 and X2 be two msp-expressions, then we obtain F (X1 × X2) from
F (X1) and F (X2) as follows. For every (H1, L1, R1) ∈ F (X1) and every
(H2, L2, R2) ∈ F (X2) such that graph H1 + H2 together with the arcs in
R1 × L2 has girth at least g + 1 we put ((V1 ∪ V2, E1 ∪ E2 ∪ R1 × L2), L1, R2)
into F (X1 × X2).

Proof. 1. F (v) includes obviously all possible solutions to color every vertex on
its own with the 2g+1 − 1 given colors.

2. Let (H1, L1, R1) be any possible solution for coloring digraph(X1), which
therefore is included in F (X1), as well as a possible solution (H2, L2, R2) for
coloring digraph(X2) which is included in F (X2). Let further H1 + H2 be a
digraph of girth at least g + 1. Since the operation ∪ creates no additional
edges in digraph(X1 ∪ X2), the vertices of digraph(X1) can still be colored
with H1 and the vertices of digraph(X2) can still be colored with H2 such
that all vertices from digraph(X1 ∪ X2) are legally colored. Further, all sinks
in digraph(X1) and digraph(X2) are also sinks in digraph(X1∪X2). The same
holds for the sources. For a digraph H1 + H2 of girth at least g + 1 this leads
to (H1 + H2, L1 ∪ L2, R1 ∪ R2) ∈ F (X1 ∪ X2).
Let (H,L,R) ∈ F (X1∪X2), then by Lemma 1 there is an induced subdigraph
H1 of the color graph H of girth at least g+1 which colors digraph(X1) which
is an induced subdigraph of digraph(X1∪X2). Let L1 ⊆ L be the sources with
vertices in digraph(X1) and R1 ⊆ R be the sinks for vertices in digraph(X1).
Then, it holds that (H1, L1, R1) ∈ F (X1). The same arguments hold for X2,
such that (H2, L2, R2) ∈ F (X2).

3. Let (H1, L1, R1) be any possible solution for coloring digraph(X1), which
therefore is included in F (X1), as well as a possible solution (H2, L2, R2)
for coloring X2 which is included in F (X2). Further, let H1 + H2 together

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 191

with edges from R1 × L2 be a digraph of girth at least g + 1. Then, H =
(V1∪V2, E1∪E2∪R1×L2) is a legit coloring for X = X1×X2. Since the sinks
of digraph(X1) are connected with the sources of digraph(X2) in digraph(X),
the sources of L1 are the only sources left in digraph(X) as well as the sinks
in R2 are the only sinks left in digraph(X). This leads to (H,L1, R2) ∈ F (X).
Let (H,L,R) ∈ F (X1×X2), then by Lemma 1 there is an induced subdigraph
H1 of the color graph H of girth at least g + 1 which colors digraph(X1)
which is an induced subdigraph of digraph(X1 × X2). Since all the sources of
digraph(X1 × X2) are in digraph(X1) it holds that L1 = L are also sources
of digraph(X1). Let R1 be the vertices in digraph(X1) which only have out-
going neighbors in digraph(X2) but not in digraph(X1), then R1 are the sinks
of digraph(X1). Thus, it holds that (H1, L1, R1) ∈ F (X1). Simultaneously, by
Lemma 1 there is an induced subdigraph H2 of the color graph H of girth
at least g + 1 which colors digraph(X2) which is an induced subdigraph of
digraph(X1 ×X2). Since all the sinks of digraph(X1 ×X2) are in digraph(X2)
it holds that R2 = R are also sinks of digraph(X2). Let L2 be the vertices
in digraph(X2) which only have in-going neighbors in digraph(X1) but not
in digraph(X2), then L2 are the sources of digraph(X2). Thus, it holds that
(H2, L2, R2) ∈ F (X2).

This shows the statements of the lemma. ��
Since every oriented coloring of G is considered of the set F (X), where X is

an msp-expression for G, we can find a minimum coloring for G as follows.

Corollary 3. Let G be an msp-digraph which is given by some msp-expression
X. Then, there is a g-oriented r-coloring for G if and only if there is some
(H,L,R) ∈ F (X), such that color graph H has r vertices. Therefore, χg(G) =
min{|V | | ((V,E), L,R) ∈ F (X)}.
Theorem 2. Let G be an msp-digraph and g be some integer. Then, the g-
oriented chromatic number of G can be computed in linear time.

Proof. Let G = (V,E) be an msp-digraph with n = |V | vertices and m = |E|
edges and let T be an msp-tree for G with root r. For a vertex u of T we denote
by Tu the subtree rooted at u and by Xu the msp-expression defined by Tu.

For computing the g-oriented chromatic number for some msp-digraph G, we
traverse msp-tree T in bottom-up order. For every vertex u of T we can compute
F (Xu) by following the rules given in Lemma2. By Corollary 3 we can solve our
problem using F (Xr) = F (X).

An msp-tree T can be computed in O(n + m) time from G, see [20]. By
Lemma 2 we obtain the following running times.

– For every vertex v ∈ V set F (v) is computable in O(1) time.
– For every two msp-expressions X1 and X2 set F (X1 ∪ X2) can be computed

in O(1) time from F (X1) and F (X2).
– For every two msp-expressions X1 and X2 set F (X1 × X2) can be computed

in O(1) time from F (X1) and F (X2).

192 F. Gurski et al.

Since T consists of n leaves and n − 1 inner vertices, the overall running time is
in O(n + m). ��

3.3 Oriented Coloring Msp-Digraphs

By Theorem 1 and Observation 3 we obtain the following result, which re-proves
our result from [11].

Corollary 4. Let G be an msp-digraph. Then, it holds that χo(G) ≤ 7.

Digraph G in Example 2 satisfies χo(G) = 7, which was found in [11] by a
computer program. This implies that the bound of Corollary 4 is best possible.

Example 2. In the subsequent msp-expression we assume that the series compo-
sition binds more strongly than the parallel composition.

X = v1 × (v2 ∪ v3 × (v4 ∪ v5 × v6)) × (v7 ∪ (v8 ∪ v9 × v10) × (v11 ∪ v12 × v13))
× (v14 ∪ (v15 ∪ (v16 ∪ v17 × v18) × (v19 ∪ v20 × v21))
× (v22 ∪ (v23 ∪ v24 × v25) × v26)) × v27

By Theorem 2 and Observation 3 we obtain the following result.

Corollary 5. Let G be an msp-digraph. Then, the oriented chromatic number
of G can be computed in linear time.

3.4 Coloring Underlying Undirected Graphs of Msp-Digraphs

Theorem 1 and Observation 2 imply the following result, which re-proves our
result stated in [11].

Corollary 6. Let G be an msp-digraph. Then, it holds that χ(un(G)) ≤ 3.

For expression X1 given in Example 1 we obtain by un(digraph(X1)) a cycle
on five vertices of chromatic number 3, which implies that the bound of Corollary
6 is sharp.

By Theorem 2 and Observation 2 we obtain the following result.

Corollary 7. Let G be an msp-digraph. Then, the chromatic number of un(G)
can be computed in linear time.

3.5 Coloring Powers of Msp-Digraphs

A well known concept in graph theory is the concept of graph powers, see [2]
and [3].

Definition 4 (k-power digraph). The k-power digraph Gk of a digraph G is
a digraph with the same vertex set as G. There is an arc (u, v) in Gk if and only
if u �= v and there is a directed path from u to v in G of length at most k.

By this definition it holds that G1 is G.

Homomorphisms to Digraphs with Large Girth and Oriented Colorings 193

Theorem 3. Let G be an oriented graph. Then, it holds that χg(Gk) ≤ χg·k(G).

Proof (idea). Every homomorphism from G to some graph H of girth at least
g · k + 1 is also a homomorphism from Gk to Hk and Hk has girth at least
g + 1. ��
Corollary 8. Let G be an msp-digraph. Then, it holds that χo(Gk) ≤ 22k+1 −1.

Proof. By Observation 3, Theorem 3, and Theorem 1 it holds χo(Gk) = χ2(Gk)
≤ χ2k(G) ≤ 22k+1 − 1. ��

Digraph G in Example 2 satisfies χo(G) = 7, which implies that the bound
of Corollary 8 is sharp for k = 1.

4 Conclusions and Outlook

In this paper we generalized the concept of oriented r-colorings to g-oriented r-
colorings by excluding homomorphisms to oriented graphs with cycles of length
at most g. We have shown that every msp-digraph has g-oriented chromatic
number at most 2g+1 − 1. Using this bound together with the recursive struc-
ture of msp-digraphs we could give a linear time solution for computing the
g-oriented chromatic number of msp-digraphs. This result immediately lead to
sharp bounds on the oriented chromatic number of msp-digraphs and the chro-
matic number of the underlying undirected graphs.

For future work it could be interesting to apply the concept of g-oriented r-
colorings to further recursively defined graph classes, such as oriented co-graphs
[10]. Furthermore, it remains open to expand the solutions to superclasses e.g.
series-parallel digraphs [20]. Moreover, the parameterized complexity of OCN
and OCNr w.r.t. structural parameters has only been studied in [8] and [9]. For
the parameters directed modular-width [19] and directed clique-width [5,12] the
parameterized complexity of OCN is still open.

Acknowledgment. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 388221852.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms and Applications.
Springer, Berlin (2009)

2. Bang-Jensen, J., Gutin, G.: Classes of Directed Graphs. Springer, Berlin (2018)
3. Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs

on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)
4. Courcelle, B.: The monadic second-order logic of graphs VI: on several representa-

tions of graphs by relational structures. Discret. Appl. Math. 54, 117–149 (1994)
5. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.

Appl. Math. 101, 77–114 (2000)

194 F. Gurski et al.

6. Culus, J.-F., Demange, M.: Oriented coloring: complexity and approximation. In:
Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 226–236. Springer, Heidelberg (2006). https://doi.org/
10.1007/11611257 20

7. Dybizbański, J., Szepietowski, A.: The oriented chromatic number of Halin graphs.
Inf. Process. Lett. 114(1–2), 45–49 (2014)

8. Ganian, R.: The parameterized complexity of oriented colouring. In: Proceedings
of Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, MEMICS. OASICS, vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2009)

9. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.:
Digraph width measures in parameterized algorithmics. Discret. Appl. Math. 168,
88–107 (2014)

10. Gurski, F., Komander, D., Rehs, C.: Oriented coloring on recursively defined
digraphs. Algorithms 12(4), 87 (2019)

11. Gurski, F., Komander, D., Lindemann, M.: Oriented coloring of MSP-digraphs
and oriented co-graphs (extended abstract). In: Wu, W., Zhang, Z. (eds.) COCOA
2020. LNCS, vol. 12577, pp. 743–758. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64843-5 50

12. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616,
1–17 (2016)

13. Klostermeyer, W., MacGillivray, G.: Homomorphisms and oriented colorings of
equivalence classes of oriented graphs. Discret. Math. 274, 161–172 (2004)

14. Marshall, T.: Homomorphism bounds for oriented planar graphs of given minimum
girth. Graphs Combin. 29, 1489–1499 (2013)

15. Marshall, T.: On oriented graphs with certain extension properties. Ars Combina-
toria 120, 223–236 (2015)

16. Ochem, P., Pinlou, A.: Oriented coloring of triangle-free planar graphs and 2-
outerplanar graphs. Graphs Combin. 30, 439–453 (2014)

17. Sopena, É.: The chromatic number of oriented graphs. J. Graph Theory 25, 191–
205 (1997)

18. Sopena, É.: Homomorphisms and colourings of oriented graphs: an updated survey.
Discret. Math. 339, 1993–2005 (2016)

19. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width.
In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2 33

20. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel digraphs. SIAM
J. Comput. 11, 298–313 (1982)

https://doi.org/10.1007/11611257_20
https://doi.org/10.1007/11611257_20
https://doi.org/10.1007/978-3-030-64843-5_50
https://doi.org/10.1007/978-3-030-64843-5_50
https://doi.org/10.1007/978-3-030-39219-2_33

Overall and Delay Complexity
of the CLIQUES and Bron-Kerbosch

Algorithms

Alessio Conte1(B) and Etsuji Tomita2

1 University of Pisa, Pisa, Italy
conte@di.unipi.it

2 The Advanced Algorithms Research Laboratory,
The University of Electro-Communications,

Chofugaoka 1–5–1, Chofu, Tokyo 182–8585, Japan
e.tomita@uec.ac.jp

Abstract. We revisit the maximal clique enumeration algorithm
cliques by Tomita et al. that appeared in Theoretical Computer Science
2006. It is known to work in O(3n/3)-time in the worst-case for an n-
vertex graph. In this paper, we extend the time-complexity analysis with
respect to the maximum size and the number of maximal cliques, and to
its delay, solving issues that were left as open problems since the original
paper. In particular, we prove that cliques does not have polynomial
delay, unless P = NP , and that this remains true for any possible pivot-
ing strategy, for both cliques and Bron-Kerbosch. As these algorithms
are widely used and regarded as fast “in practice”, we are interested
in observing their practical behavior: we run an evaluation of cliques

and three Bron-Kerbosch variants on over 130 real-world and synthetic
graphs, and observe how their performance seems far from its theoretical
worst-case behavior in terms of both total time and delay.

Keywords: Maximal cliques · Graph enumeration · Output sensitive ·
Delay

1 Introduction

A clique is defined to be a subgraph in which all vertices are pairwise adjacent.
In particular, it is maximal if it is not contained in a strictly larger clique.
Given a graph, the enumeration of all its maximal cliques is a fundamental and
important problem in graph theory [20] and has many practical applications
in clustering, data mining, bioinformatics, social networks, and more, mostly
related to community detection [10]. An independent set of a graph G is a clique
of the complement graph Ḡ.

Tsukiyama et al. [25] gave the first algorithm MIS for enumerating maximal
independent sets with a theoretical time-complexity analysis. For a graph G with
n vertices and m edges, MIS enumerates all maximal independent sets in time
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 195–207, 2021.
https://doi.org/10.1007/978-3-030-68211-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_16

196 A. Conte and E. Tomita

O(nm) per maximal independent set; this can be adapted to enumerate maximal
cliques in the same complexity per solution [15].

Tomita et al. [23] and Bron and Kerbosch [2] independently presented dif-
ferent algorithms for the problem, although it was later understood that their
pruning techniques were the same. These algorithms do not have output-sensitive
guarantees but boast good practical performance.

Furthermore, while the complexity of Bron-Kerbosch is as of today still
unknown, cliques [23], based on depth-first search algorithms for finding a max-
imum clique [11,21], was the first maximal clique enumeration algorithm with
proven worst-case optimal time (as a function of n): indeed its O(3n/3)-time
worst-case time complexity matches the number of maximal cliques in Moon-
Moser graphs [18].

The algorithms modeled after Tsukiyama et al. typically follow the reverse-
search framework [1] and enumerate the cliques in an output-sensitive fashion:
if a problem has size n and α solutions, an algorithm is output-sensitive if its
complexity is O(poly(α, n))-time, for some polynomial poly(·), and amortized
polynomial time if it is just O(α poly(n)).

In this line, steady improvements have been made by Chiba and Nishizeki [5],
Johnson et al. [12], Makino and Uno [15], Chang et al. [4], Comin and Rizzi [6],
and Conte et al. [8] and Manoussakis [16]. Most of these algorithms prove a
stronger result than output-sensitivity, that is polynomial delay, i.e., the time
elapsed between two consecutive outputs of a solution is polynomial. Some rely
on matrix multiplication, like the one by Comin and Rizzi [6], with O(n2.094)-
time delay, while others on combinatorial techniques, such as the one by Conte et
al. [8], with O(qdΔ)-time delay, where q is the size of a maximum clique, d is the
degeneracy of G (the smallest number such that every subgraph of G contains
a vertex of degree at most d), and Δ the maximum degree. Based on cliques,
Eppstein et al. proposed an improved algorithm for sparse graphs that runs in
O(d(n − d)3d/3)-time. In general, it is experimentally observed that algorithms
based on cliques and Bron-Kerbosch are fast in practice [7,9,19,24]. However,
no theoretical time-complexity analysis with respect to the number of maximal
cliques is made for cliques in 2006 [24], where the problem is noted in [24] as
an important open problem. This is in contrast to the time-complexity analysis
in reverse-search approach.

It is natural to ask whether cliques is output sensitive, and whether it has
polynomial delay, under general or restricted conditions. In this paper, we are
concerned with a new complexity analysis of cliques and similar approaches
with respect to the number and the maximum size of maximal cliques. A pre-
liminary version of this paper appeared in [22].

2 Definitions and Notation

We consider a simple undirected graph G = (V (G), E(G)), or simply (V,E) when
G is clear from the context, with a finite set V of vertices and a finite set E of
unordered pairs (v, w) of distinct vertices, called edges. A pair of vertices v and w

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 197

are adjacent if (v, w) ∈ E. For a vertex v ∈ V , let Γ (v) be the set of all vertices
that are adjacent to v in G = (V,E), i.e., Γ (v) = {w ∈ V | (v, w) ∈ E}(�� v).

For a subset W ⊆ V of vertices, G(W) = (W,E(W)) with E(W) = (W ×
W)∩E is called a subgraph of G = (V,E) induced by W . For a set W of vertices,
|W | denotes the number of elements in W .

Given a subset Q ⊆ V of vertices, if (v, w) ∈ E for all v, w ∈ Q with v �= w
then the induced subgraph G(Q) is called a clique. In this case, we may simply
say that Q is a clique. If a clique is not a proper subgraph of another clique then
it is called a maximal clique.

3 Maximal Clique Enumeration Algorithm CLIQUES

We briefly revisit a depth-first search algorithm, cliques [23,24], which enu-
merates all maximal cliques of an undirected graph G = (V,E), with |V | = n
vertices, giving the output in a tree-like form. A more detailed explanation is
deferred to [22].

The algorithm (detailed in Algorithm1) consists of a recursive call procedure
based on two vertex sets SUBG and CAND. Initially, we set SUBG ← V and
CAND ← V , and the recursive task of cliques(SUBG,CAND) is to enumerate
all maximal cliques in G(SUBG) which are fully contained in CAND.

We maintain a global variable Q = {p1, p2, ..., ph} with the vertices of a
current clique, and SUBG = V ∩ Γ (p1) ∩ Γ (p2) ∩ · · · ∩ Γ (ph). The cliques found
in a recursive subtree correspond to extensions of Q, which is initially empty.

The algorithm employs two pruning methods to avoid unnecessary recursive
calls, which happen to be the same as in the Bron-Kerbosch algorithms [2]:

Avoiding Duplication. The set FINI = SUBG\CAND (short for FINISHED)
contains vertices that were already processed and can be skipped as they can
only lead to duplicate solutions.

Pivoting. The vertex u selected on Line 6, called the pivot, allows us to skip
recurring on vertices in Γ (u): any maximal clique Q′ in G(SUBG ∩ Γ (u)) is not
maximal in G(SUBG), as it is contained in Q′ ∪ {u}; therefore, any maximal
clique either contains u or a vertex in SUBG \ Γ (u).

cliques selects u ∈ SUBG that maximizes |CAND ∩ Γ (u)|, crucial to the
worst-case optimal complexity of O(3n/3)-time, and prints the output in a tree-
like form (shown in Fig. 1).

3.1 Bron-Kerbosch Algorithms

Let us recall the antecedent algorithm by Bron and Kerbosch for enumerating
maximal cliques [2], which use a backtracking strategy essentially similar to
cliques. However, we will highlight some key differences. We will call bk the
version of the Bron-Kerbosch algorithm without pivoting, and bkp a variant of
the Bron-Kerbosch algorithm with pivoting (where no specific pivot choice is
mandated).

198 A. Conte and E. Tomita

Algorithm 1: Algorithm cliques in [24]
Input : A graph G = (V, E).
Output: All maximal cliques in G.
/* Q ← ∅ is a global variable representing a clique */

1 cliques (V, V)

2 Function cliques(SUBG,CAND)
3 if SUBG = ∅ then
4 print (“clique,”) /* Q is a maximal clique */

5 else
6 u ← a vertex in SUBG maximizing |CAND ∩ Γ (u)|

/* FINI ← ∅ */

7 while CAND \ Γ (u) �= ∅ do
8 p ← a vertex in CAND \ Γ (u)
9 print (p,“,”) /* Q ← Q ∪ {p} */

10 SUBGp ← SUBG ∩ Γ (p)
11 CANDp ← CAND ∩ Γ (p)
12 cliques(SUBGp,CANDp)
13 CAND ← CAND \ {p}

/* FINI ← FINI ∪ {p} */

14 print (“back,”) /* Q ← Q \ {p} */

One difference is that cliques outputs all maximal cliques in a tree-like
format (Lines 4, 9, 14), to pay just O(1) time per output; another is the choice
of pivot u maximizing |CAND∩Γ (u)|. Both of these factors are crucial to prove
the worst-case optimal O(3n/3)-time complexity of cliques, and indeed the
worst-case running time of bkp is yet unknown.

While bk and cliques handle vertices differently (see the pseudo code in [2]),
the recursion tree and pivoting step of bkp are inherently similar to that of
cliques, thus the results proven in this paper for the search tree of cliques

extend to bkp as well.

3.2 Search Tree

We use the search tree (illustrated in Fig. 1) to represent the enumeration process
of cliques.

– The root of the search tree is a newly introduced dummy root p0 (/∈ V) to
form a tree.

– Every vertex in V is a child of the dummy root p0, and every node of the
search tree except the root corresponds to a vertex in V .

– Assume we have a path from the dummy root p0 to a certain node ph in
the search tree as a sequence of nodes p0, p1, p2, ..., ph, and let SUBGh =
V ∩ Γ (p1) ∩ Γ (p2) ∩ · · · ∩ Γ (ph). Then, every vertex in SUBGh is a child of
ph in the search tree.

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 199

Fig. 1. Left: An example run of cliques from [24]. Right: part of a search tree

Furthermore, every vertex in FINI corresponds to a bad node, i.e., a recursive
node whose execution is prevented and, similarly, every neighbor of the pivot
(that also is not expanded by the algorithm) corresponds to a black node.

When the above SUBGh is a singleton {q1}, q1 is a leaf in the search tree.
Let qi be a child of ph, then the set {p1, p2, ..., ph, qi} constitutes a clique,

called an accompanying clique and is denoted by Qp1,...,qi , or simply Qqi , or Q
when it is clear. Figure 1 shows an example run of cliques [24] (left), and a
part of a general search tree (right).

4 Overall Complexity of CLIQUES

The time-complexity of cliques directly depends on the size of the search tree.
Suppose we have a path from the dummy root p0 to a certain node ph in the
search tree as a sequence of nodes p0, p1, p2, ..., ph. Then the set {p1, p2, ..., ph}
is an accompanying clique.

We are interested in the accompanying clique Q across different search tree
nodes, and in particular, let us observe the following:

Lemma 1. The accompanying clique Q is distinct in any internal (non-leaf)
node of a search tree of cliques.

Proof. Proof sketch (full proof in [22]). Tracing any two internal nodes x and
y (assuming x is executed before y) to their nearest common ancestor in the
search tree we can observe how a vertex in the accompanying clique of x must
be in FINI when y is executed. 	

Now let q be the size of a maximum clique and α the number of maximal
cliques; we can prove the following on the complexity of cliques:

Theorem 1. The search tree of cliques has at most (1 + Δ)α2q nodes. Con-
sequently, the running time of cliques is O(α2qn2Δ).

200 A. Conte and E. Tomita

Proof. Lemma 1 implies that the number of internal nodes is bounded by the
number of possible accompanying cliques, i.e., distinct non-maximal cliques of
G. Each maximal clique has at most 2q distinct subsets, so the internal nodes
are at most α2q, and the number of leaves of the search tree is at most Δα2q.
The number of nodes of a search tree is thus at most (1 + Δ)α2q. Since each
node can be executed in O(n2)-time [24], the statement follows. 	

Theorem 1 has the following noteworthy consequence (the proof is straight-
forward, but reported in [22] for completeness):

Corollary 1. The running time of cliques on a graph G with n vertices and
maximum clique size q = O(log n) is amortized polynomial.

This condition immediately applies to many sparse graphs, where Δ is
assumed to be small, and even in graphs with large Δ but small degeneracy
d, as q ≤ d + 1 ≤ Δ + 1. Corollary 1 however claims more: even dense graphs
may satisfy this property. A simple example is the complete bipartite graph
Kn

2 ,n2
, which is by no means sparse as all vertices have degree n/2, but the size

of a maximum clique is 2. It is often observed that the size q of a maximum clique
is O(log n) in real-world graphs (with n vertices). To support this claim, and the
scope of Corollary 1, we analyzed over a hundred real-world graphs, reporting
our findings in Sect. 6. Finally, we recall that this corollary also holds for bkp.

5 There Is No Polynomial Delay Strategy for CLIQUES
and Bron-Kerbosch Unless P=NP

Known pivoting strategies can have a large impact on the number of recursive
nodes, this can be observed e.g., in [3] and our experiments in Sect. 6.

It is natural to ask: is there an ideal pivoting strategy with polynomial delay?
That is, is there a strategy that guarantees a new clique —or the end of the
algorithm— is always reached within polynomial time? We complete our results
by showing that no such strategy can exist unless P = NP .1

To do so, we define the extension problem for maximal cliques, showing that
it is NP -complete. Then, we show how a pivoting strategy for Algorithm 1 that
guarantees polynomial delay could be used to solve this problem in polynomial
time.

Hardness of the Extension Problem

Problem 1 (Extension Problem, EXT-P (G(V,E),X)). Given a graph G(V,E)
and X ⊂ V , does G have a maximal clique Q that does not intersect X?

1 Polynomial delay might be achieved by other means, what we prove here is that
cliques and bkp cannot guarantee polynomial delay even changing the pivot selec-
tion strategy, unless P = NP .

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 201

p1 , p2 , p3 , . . . , ph

n1 , n2 , n3 , . . . , nh

c1

c2
c3

Fig. 2. Example construction of G from the F formula for a clause c1 = (v1, ¬v3, ¬vh).
Note how c1 is connected to all literals that do not satisfy it, including, e.g., p2 and
n2. The set X is composed of all ci vertices.

Looking at a recursive node of cliques, with its sets Q, CAND, and SUBG,
we can observe how a maximal clique will be output in its recursive subtree iff
there exists a maximal clique in G(SUBG) that does not intersect SUBG\CAND.
In other words, the problem answers the question “will a maximal clique be
output in this recursive subtree?”. This problem is, however, NP -complete, as
we show by a reduction from CNFSAT.

Theorem 2. The extension problem for maximal cliques is NP -complete.

Proof. Let F be a CNF Boolean formula on h variables v1, . . . , vh and l clauses
c1, . . . , cl, and let the positive and negative literals of the variable vi be repre-
sented by vi and ¬vi.

We build a graph G, with a suitable vertex set X, such that F can be satisfied
iff G has a maximal clique not intersecting X. Let V (G) and E(G) be as follows:

– V (G) contains a vertex pi for each positive literal vi in F .
– V (G) contains a vertex ni for each negative literal ¬vi in F .
– V (G) contains a vertex ci for each clause of F .
– E(G) contains, for all distinct i and j, (pi, pj), (pi, nj), (ni, pj), and (ni, nj),

i.e., all literals are connected to all others (positive and negative) except their
own negation.

– E(G) contains (ci, pi) if literal vi does not appear in ci. Similarly, (ci, ni) ∈
E(G) if ¬vi does not appear in ci, i.e., clauses are connected to all literals
that do not satisfy them.

– Finally, let X be the set of all vertices ci corresponding to clauses. Note that
V \ X is the set of all vertices corresponding to literals.

An example is shown in Fig. 2.
Observe how a clique cannot contain both pi and ni, and any set S ⊆ (V \X)

is a clique iff it does not contain both a literal and its negation: thus any clique
in V \ X corresponds to valid truth assignments of the variables of F . We can
now prove that a maximal clique S ⊆ (V \ X) exists iff F can be satisfied.

Firstly, if S is a maximal clique, each ci is not adjacent to some vertex
v ∈ S: from the construction of the graph, this means ci is satisfied by the literal
corresponding to v, meaning the literals in S satisfy all clauses in F .

To prove the converse, assume S does not contain any literal satisfying a
clause ci: then (again from how G is built) ci is adjacent to all literals in S and
S ∪ {ci} is a clique, so S is not maximal.

202 A. Conte and E. Tomita

Fig. 3. Graph G′, obtained as two copies of the graph H

It follows that EXT-P (G(V,E),X) has a positive answer iff F can be sat-
isfied. As EXT-P (G(V,E),X) is in NP , because we can test a solution by
verifying the maximality of a clique, the proof is complete. 	

A Polynomial Delay Pivoting Strategy Implies P=NP
Now, given G(V,E) and X, we build a graph G′(V ′, E′) such that, if Algorithm 1
runs on G′(V ′, E′) with polynomial delay, then we can solve the NP -complete
problem EXT-P (G(V,E),X) in polynomial time.

G′(V ′, E′) consists of two identical disjoint copies of a graph H(V (H), E(H)),
built as follows. V (H) = X ∪ {v} ∪ P , where:

– X = {x1, . . . , x|X|} is the set of vertices of X from EXT-P (G(V,E),X).
– P = {p1, . . . , p|P |} is the set of vertices of V \ X from EXT-P (G(V,E),X).

E(H) is obtained connecting all vertices from G(V,E) as they are connected
in G, and the vertex v to all of P and X. Figure 3 shows a graphical example.

Let the two copies of H be H ′ and H ′′. If we run Algorithm 1 on G′, it will
first choose a pivot vertex from either H ′ or H ′′: assume wlog it is H ′′ (the other
case is identical); this means that no vertex of H ′ is adjacent to the pivot, so at
least every vertex of H ′ is processed by Algorithm 1. By processing we mean it
is considered in the foreach loop of the root recursive call of the algorithm.

As the algorithm does not specify in which order vertices are processed, we
assume the order is as in Fig. 3, i.e., first x1, . . . , x|X|, then v, then p1, . . . , p|P |
(vertices of H ′′ are not relevant and can be disregarded). Now, take the moment
when v is processed: We have that CAND ∩ Γ (v) is exactly P , and (SUBG \
CAND) ∩ Γ (v) = FINI ∩ Γ (v) is X as we processed all vertices of X.

If Algorithm 1 —with any arbitrary pivoting strategy— has polynomial delay,
it must either find a new maximal clique or terminate, in polynomial time: as
any maximal clique containing vertices of X has already been found, this process
will output a new maximal clique iff there is a maximal clique in P that cannot
be extended with vertices of X, i.e., since P corresponds to V \ X, there is a
maximal clique in G(V,E) that does not intersect X. Finally, since Algorithm1
may spend exponential time before processing v, we want to skip this time:
we do so by simply running the algorithm with Q = {v}, CAND = P and
SUBG = X ∪ P . We can thus state:

Theorem 3. No pivoting strategy for the cliques [24] and bkp [2] can guar-
antee polynomial delay unless P = NP . 	

We finally remark that a class of graphs where cliques has exponential delay
can be constructed, although details are omitted for space reasons.

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 203

6 Experimental Results

While cliques and Bron-Kerbosch may not have worst-case polynomial delay,
we are also interested in their delay and overall performance in practice. To give
a complete picture, we present an experimental evaluation of cliques and Bron-
Kerbosch variants on real-world networks, showing how their behavior appears to
be output-sensitive and to have small delay on real-world networks. The worst-
case amortized cost remains an open question. Aiming to get substantial experi-
mental evidence we ran our experiments on 138 real-world and synthetic graphs
taken from the SNAP [14] and LASAGNE [13] repositories, with up to 3 million
edges. For space reasons, we report only a subset in Table 1.

6.1 Maximum Clique Size in Real-World Networks

Firstly, to gauge the scope of Corollary 1, we computed the maximum clique size
q of real-world networks in our dataset (128 out of 138). We report this in Fig. 4
against log n: indeed q is below log n on the majority of networks, and below
10 log n in almost all cases. The significant outlier is the co-authorship network
ca-HepPh concerning High Energy Physics papers on ArXiv, with 12 006 vertices
and a maximum clique of size 239; this is perhaps not surprising as each paper
makes a clique of its co-authors, and hyperauthorship is not uncommon in the
Physics literature.

103 104 105 106

0

50

100

150

200

250
log n

10 log n

n (log scale)

q

Fig. 4. Maximum clique size q against number of vertices n in 128 real-world graphs.

204 A. Conte and E. Tomita

6.2 Experimental Setup

We consider the following algorithms.

– cliques: the algorithm in [24], described in Algorithm 1 (with pivot u chosen
as the vertex in SUBG maximizing |CAND ∩ Γ (u)|).

– bkpM : bkp [2] with pivot u chosen as the highest-degree vertex in SUBG .
– bkpR: bkp Randomized, i.e., with pivot u chosen randomly in SUBG .
– bk: Bron-Kerbosch, without pivoting.

Other efficient algorithms exist, but their inclusion is not meaningful, as we aim
to judge pruning effectiveness of pivoting strategies and not the running time.
Notable examples are the algorithm by Eppstein et al. [9], effective on sparse
graphs, that uses cliques as a subroutine, and the algorithms by San Segundo et
al. [19], which aim to quickly find a good (but not optimal) candidate according
to cliques’s metric.

Metrics. We are not strictly interested in the running time, as a recursive node
has polynomial cost. As solutions are output in leaves, we are interested in what
portion of the leaves outputs a solution: the total running time is O(poly(n))
times the number of leaves, so the ratio cliques

leaves
(number of maximal cliques

divided by the number of leaves of the recursion tree) gives an idea of “how
output-sensitive” the execution is. We also show the delay in terms of nodes and
leaves, i.e., the longest sequence of nodes/leaves between two consecutive out-
puts. For completeness, we also report the total time and delay in milliseconds.

6.3 Results

For each algorithm, on each graph, we computed the number of nodes and leaves
in the recursion tree, and the metrics discussed above. Due to the large number
of experiments (and the tendency of bk to time out even on small graphs)
to provide a fair comparison, we set a 30 minutes time limit on all reported
executions. For space reasons we omit the raw data and only comment on the
result obtained.

Nodes and Leaves Generated. We first observed how cliques, thanks to its
pivoting strategy, is more effective in pruning than bkpM and bkpR: cliques
often produces less half the recursive nodes of the next best algorithm, and some-
times orders of magnitude less (e.g., bccstk30, ca-AstroPh, ca-HepPh). Same
goes for the delay: cliques has typically lower delay, both in terms of time (see
delay, column ms) and in terms of nodes and leaves. On the other hand, bk
produces a far larger amount of recursive nodes, and frequently times out.

The most relevant value to observe is the cliques

leaves
ratio: a high value shows

that the algorithm is performing in an output-sensitive way. Again we observed
how cliques consistently has the highest ratio, sometimes by an order of mag-
nitude (e.g., bcsstk30, Slashdot090221, soc-sign-epinions). For completeness, it
is worth observing that the cliques

leaves
ratios of bkpM and bkpR, while worse than

cliques, are still often high. Furthermore, cliques

leaves
for cliques, bkpM and bkpR

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 205

Table 1. Excerpt of the graphs used, with number of vertices (n), edges (m), maximum
degree (Δ), degeneracy (d) and the number of maximal cliques (#cliques).

graph n m Δ d q #cliques
GoogleNw 15 763 148 585 11 401 102 66 75 258

Meth 956 1 157 31 3 3 1 046
add32 4 960 9 462 31 3 4 4 519

amazon0601 403 394 2 443 408 2 752 10 11 1 023 572
auto 448 695 3 314 611 37 9 7 2 164 046

bcsstk30 28 924 1 007 284 218 58 48 6 706
brack2 62 631 366 559 32 7 5 282 557

ca-AstroPh 18 771 198 050 504 56 57 36 427
ca-HepPh 12 006 118 489 491 238 239 14 937

graph n m Δ d q #cliques
darwinBookInter 7 381 45 229 2 686 306 16 127 055

fe ocean 143 437 409 593 6 4 2 409 593
forest1e4 2 10 000 153 925 1 124 101 29 96 861 484
interdom 1 706 78 983 728 129 123 3 351

Slashdot090221 82 140 500 480 2 548 54 27 854 407
soc-sign-epinions 131 827 711 209 3 558 121 94 22 226 172
spanishBookInter 11 586 44 214 3 327 342 14 66 505

ud 1e4 10 000 313 726 523 285 258 132 557
yeast bo 1 846 2 203 56 5 6 1 940

is seemingly independent of the size of the graph, and in most cases even close
to 1. This supports the idea that cliques

leaves
is in practice Ω(1/poly(n)) for cliques,

bkpM and bkpR, and that the algorithms behave in an output-sensitive way in
practice.

Running Time. While a running time comparison is not the goal of this paper
(and the implementations are not optimized for this purpose), it is worth observ-
ing that cliques seems to perform best on graphs with highest degeneracy,
denser and with more solutions; in some cases it is the only one to terminate
(e.g., forest1e4 2, soc-sign-epinions, ud 1e4). When bkpM and bkpR terminate,
in some cases cliques is still significantly faster (e.g., ca-HepPh, interdom,
bcsstk30). In others, bkpM is competitive (e.g., GoogleNW, spanishBookInter)
or faster (e.g., darwinBookInter) despite generating more recursive nodes, prob-
ably due to cliques having an expensive pivot computation. On small graphs,
with low degeneracy, few maximal cliques (e.g., Meth, add32, brack2, fe ocean,
yeast bo) the differences flatten out, and performance become comparable.

7 Concluding Remarks

We presented a study of the cliques and Bron-Kerbosch algorithms, showing
how their delay is exponential in the worst case, unless P = NP , settling a
question unsolved for a long time. Furthermore, we have shown that the claim
remains true for any pivoting strategy that can be computed in polynomial time.
On the other hand, we proved that their time complexity is amortized polynomial
on graphs whose largest clique has logarithmic size; we showed this condition
can hold in both sparse and dense graphs, and observed experimentally that
it is generally true in real-world graphs. Our experiments further support this
claim as both algorithms perform well in practice on over a hundred real-world
graphs. This result partially fills the long-standing gap between the theoretical
worst-case exponential time complexity of cliques and its practical efficiency.

While writing this manuscript, we noticed a preprint [17] claiming “The
Bron-Kerbosch algorithm with vertex ordering is output-sensitive.” However, a
bug in the approach was pointed out and later confirmed by the author. The
worst-case amortized cost per solution of cliques and Bron-Kerbosch, and the
worst-case time of Bron-Kerbosch remain open.

206 A. Conte and E. Tomita

Acknowledgement. The authors would like to thank G. Manoussakis, E. Harley and
L. Versari for useful discussions. This work was supported in part by JSPS KAKENHI,
Grant JP17K00006 and MIUR, Grant 20174LF3T8 AHeAD.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–
3), 21–46 (1996)

2. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

3. Cazals, F., Karande, C.: Reporting maximal cliques: new insights into an old prob-
lem. Research report RR-5615, INRIA (2006)

4. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in sparse graphs.
Algorithmica 66(1), 173–186 (2013)

5. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

6. Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. Algorithmica 80(12), 3525–3562 (2018)

7. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enu-
meration for massive network analytics: maximal cliques. In: ICALP 2016, vol. 55,
pp. 148:1–148:15 (2016)

8. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space and bounded-delay
algorithms for maximal clique enumeration in graphs. Algorithmica 82(6), 1547–
1573 (2020)

9. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics 18, 3.1:1–3.1:21 (2013)

10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
11. Fujii, T., Tomita, E.: On efficient algorithms for finding a maximum clique. Tech-

nical report of IECE, AL81-113, pp. 25–34 (1982)
12. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal

independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)
13. Laboratory of Algorithms, models, and Analysis of Graphs and NEtworks. https://

www.pilucrescenzi.it/wp/software/lasagne/. Accessed September 2020
14. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection

(2015). https://snap.stanford.edu/data/
15. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:

Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8 23

16. Manoussakis, G.: A new decomposition technique for maximal clique enumeration
for sparse graphs. Theor. Comput. Sci. 770, 25–33 (2019)

17. Manoussakis, G.: The Bron-Kerbosch algorithm with vertex ordering is output-
sensitive. arXiv:1911.01951v2 (2019). (Pdf not served as of Sept. 2020)

18. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math 3(1), 23–28 (1965)
19. San Segundo, P., Artieda, J., Strash, D.: Efficiently enumerating all maximal

cliques with bit-parallelism. Comput. Oper. Res. 92, 37–46 (2018)
20. Tomita, E.: Clique enumeration. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms,

2nd edn, pp. 1–6. Springer, Boston (2016). https://doi.org/10.1007/978-3-642-
27848-8 725-2

https://www.pilucrescenzi.it/wp/software/lasagne/
https://www.pilucrescenzi.it/wp/software/lasagne/
https://snap.stanford.edu/data/
https://doi.org/10.1007/978-3-540-27810-8_23
http://arxiv.org/abs/1911.01951v2
https://doi.org/10.1007/978-3-642-27848-8_725-2
https://doi.org/10.1007/978-3-642-27848-8_725-2

Overall and Delay Complexity of CLIQUES and Bron-Kerbosch 207

21. Tomita, E.: Efficient algorithms for finding maximum and maximal cliques and
their applications. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM
2017. LNCS, vol. 10167, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53925-6 1

22. Tomita, E., Conte, A.: Another time-complexity analysis for maximal clique enu-
meration algorithm CLIQUES. Technical report of IEICE COMP, (1), pp. 1–8
(2020). http://id.nii.ac.jp/1438/00009571/

23. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for finding
all the cliques. Techncial report of the University of Electro-Communications, UEC-
TR-C 5(2), pp. 1–19 (1988). http://id.nii.ac.jp/1438/00001898/

24. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theor. Comput. Sci.
363(1), 28–42 (2006)

25. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

https://doi.org/10.1007/978-3-319-53925-6_1
https://doi.org/10.1007/978-3-319-53925-6_1
http://id.nii.ac.jp/1438/00009571/
http://id.nii.ac.jp/1438/00001898/

Computing L(p, 1)-Labeling
with Combined Parameters

Tesshu Hanaka1(B) , Kazuma Kawai2, and Hirotaka Ono2

1 Chuo University, Tokyo 112-8551, Japan
hanaka.91t@g.chuo-u.ac.jp

2 Nagoya University, Nagoya 464-8601, Japan
kawai.kazuma@g.mbox.nagoya-u.ac.jp, ono@i.nagoya-u.ac.jp

Abstract. Given a graph, an L(p, 1)-labeling of the graph is an assign-
ment f from the vertex set to the set of nonnegative integers such that for
any pair of vertices (u, v), |f(u) − f(v)| ≥ p if u and v are adjacent, and
f(u) �= f(v) if u and v are at distance 2. The L(p, 1)-labeling problem
is to minimize the span of f (i.e.,maxu∈V (f(u)) − minu∈V (f(u)) + 1).
It is known to be NP-hard even for graphs of maximum degree 3 or
graphs with tree-width 2, whereas it is fixed-parameter tractable with
respect to vertex cover number. Since the vertex cover number is a kind
of the strongest parameter, there is a large gap between tractability and
intractability from the viewpoint of parameterization. To fill up the gap,
in this paper, we propose new fixed-parameter algorithms for L(p, 1)-
Labeling by the twin cover number plus the maximum clique size and
by the tree-width plus the maximum degree. These algorithms reduce
the gap in terms of several combinations of parameters.

Keywords: Distance constrained labeling · L(p, 1)-labeling · Fixed
Parameter Algorithm · Treewidth · Twin Cover

1 Introduction

Let G be an undirected graph, and p and q be constant positive integers. An
L(p, q)-labeling of a graph G is an assignment f from the vertex set V (G) to the
set of nonnegative integers such that |f(x) − f(y)| ≥ p if x and y are adjacent
and |f(x)−f(y)| ≥ q if x and y are at distance 2, for all x and y in V (G). We call
the former distance-1 condition and the latter distance-2 condition. A k-L(p, q)-
labeling is an L(p, q)-labeling f : V (G) → {0, . . . , k}, where the labels start from
0 for conventional reasons. The k-L(p, q)-Labeling problem determines whether
given G has a k-L(p, q)-labeling, or not, and the L(p, q)-Labeling problem asks
the minimum k among all possible assignments. The minimum value k is called
the L(p, q)-labeling number, and we denote it by λp,q(G), or simply λp,q. Notice
that we can use k + 1 different labels when λp,q(G) = k.

This work is partially supported by JSPS KAKENHI Grant Numbers JP17K19960,
JP17H01698, JP19K21537 and JP20H05967. A full version is available in [21].
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 208–220, 2021.
https://doi.org/10.1007/978-3-030-68211-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_17&domain=pdf
http://orcid.org/0000-0001-6943-856X
http://orcid.org/0000-0003-0845-3947
https://doi.org/10.1007/978-3-030-68211-8_17

Computing L(p, 1)-Labeling with Combined Parameters 209

The original notion of L(p, q)-labeling can be seen in the context of frequency
assignment. Suppose that vertices in a graph represent wireless devices. The pres-
ence/absence of edges indicates the presence/absence of direct communication
between the devices. If two devices are very close, that is, they are connected in
the graph, they need to use sufficiently different frequencies, that is, their fre-
quencies should be apart at least p. If two devices are not very but still close, that
is, they are at distance 2 in the graph, their frequencies should be apart at least
q (≤ p). Thus, the setting of q = 1 as one unit and p ≥ q = 1 is considered natu-
ral and interesting, and the minimization of used range becomes the issue. Note
that L(1, 1)-labeling on G is equivalent to the ordinary coloring on the square
of G. From these, L(p, 1)-Labeling for p > 1 is intensively and extensively
studied among several possible settings of p. In particular, L(2, 1)-Labeling is
considered the most important. A reason is that it is natural and suitable as a
basic step to consider, and another reason is that the computational complexity
(e.g., hardness or polynomial-time solvability) tends to be inherited from L(2, 1)
to L(p, 1) of p > 2; for example, if L(2, 1)-Labeling is NP-hard in a setting, the
hardness proof could be modified to L(p, 1)-Labeling in the same setting. Also
many polynomial-time algorithms of L(2, 1)-labeling for specific graph classes
can be easily extended to L(p, 1). We can find various related results in surveys
by Calamoneri [6]. See also [23] for algorithmic results.

The notion of L(p, q)-Labeling firstly appeared in [19] and [28]. Griggs and
Yeh formally introduced the L(2, 1)-Labeling problem [17]. They also show
that L(2, 1)-Labeling is NP-hard in general. Furthermore, L(2, 1)-Labeling is
shown to be NP-hard even for planar graphs, bipartite graphs, chordal graphs [4],
graphs with diameter of 2 [17] and graphs with tree-width 2 [11]. Moreover,
for every k ≥ 4, k-L(2, 1)-Labeling, that is the decision version of L(2, 1)-
Labeling is NP-complete for general graphs [13] and even for planar graphs [8].
These results imply that k-L(2, 1)-Labeling is NP-complete for every Δ ≥ 3,
where Δ denotes the maximum degree. On the other hand, L(2, 1)-Labeling
can be solved in polynomial time for paths, cycles, wheels [17], but these are
rather trivial. For non-trivial graph classes, only a few graph classes (e.g., co-
graphs [7]) are known to be solvable in polynomial time. In particular, Griggs
and Yeh conjectured that L(2, 1)-Labeling on trees was NP-hard, which was
later disproved (under P �=NP) by the existence of an O(n5.5)-time algorithm [7].
It is now known that L(p, 1)-Labeling on trees can be solved in linear time [22].

From these results, we roughly understand the boundary between polyno-
mial time solvability and NP-hardness concerning graph classes, and studies are
going to fixed-parameter (in)tractability. For a problem A with input size n and
parameter t, A is called fixed-parameter tractable with respect to t if there is an
algorithm whose running time is g(t)nO(1), where g is a certain function. Such
an algorithm is called a fixed-parameter algorithm. If problem A is NP-hard for
a constant value of t, there is no fixed-parameter algorithm unless P=NP; we
say A is paraNP-hard. Unfortunately, L(2, 1)-Labeling is already shown to be
paraNP-hard for several parameters such as λ2,1, maximum degree and tree-
width as seen above. For positive results, it is fixed-parameter tractable with

210 T. Hanaka et al.

respect to vertex cover number [12] or neighborhood diversity [10]. Note that
vertex cover number is a stronger parameter than tree-width, which means that
if the vertex cover number is bounded, the tree-width is also. There is still a
gap on fixed-parameter (in)tractability between them. For such a situation, two
approaches can be taken. One is to finely classify intermediate parameters and
see fixed-parameter (in)tractability for them, and the other is to combine two
or more parameters and see fixed-parameter (in)tractability under the combina-
tions. In this paper, we take the latter approach.

1.1 Our Contribution

In this paper, we present algorithms with combined parameters. The parameters
that we focus on are clique-width (cw), tree-width (tw), maximum clique size
(ω), maximum degree (Δ) and twin cover number (tc). These are selected in
connection with aforementioned parameters, λp,1, maximum degree and tree-
width. Maximum clique size and clique-width are well used parameters weaker
than tree-width. Maximum degree itself is a considered parameter, which is
strongly related to λp,q(G). In fact, it is easy to see that λp,1 ≥ Δ + p − 1,
and λp,1 ≤ Δ2 + (p − 1)Δ − 2 [16]. Thus, λp,1 and Δ are parameters equivalent
in terms of fixed-parameter (in)tractability. Twin cover number is picked up as
a parameter that is moderately weaker than vertex cover number but stronger
than clique-width and is also incomparable to neighborhood diversity.

These parameters are ordered in the following two ways: (1) (vc �){tw, tc} �
cw and (2) (λp,1 �)Δ � ω. Here, for graph parameters α and β, α � β represents
that there is a positive function g such that g(α(G)) ≥ β(G) holds for any G,
and we denote α � β if α � β and β � α. For combined parameters of one from
(1) and another from (2), we design fixed-parameter algorithms. Note that some
combination yields essentially one parameter. For example, tw+ ω is equivalent
to tw, because tw ≥ ω − 1 holds. The obtained results are listed below:

– L(p, 1)-Labeling can be solved in time ΔO(twΔ)n for p ≥ 1. Since it is known
that tw ≤ 3cwΔ−1 ([18]), it is also a ΔO(cwΔ2)n-time algorithm, which implies
L(p, 1)-Labeling is actually FPT with respect to cw + Δ. This result also
implies that L(p, 1)-Labeling is FPT when parameterized by band-width.

– L(p, 1)-Labeling is FPT when parameterized by tc+ω. Since tc+ω ≤ vc+1
for any graph, it generalizes the fixed-parameter tractability with respect to
vertex cover number in [12]. Since tc+ω ≥ tw, tc+ω is located between tw
and vc.

– L(1, 1)-Labeling is FPT when parameterized by only twin cover number.
This also yields a fixed-parameter p-approximation algorithm for L(p, 1)-
Labeling with respect to twin cover number.

Figure 1 illustrates the detailed relationship between graph parameters and the
parameterized complexity of L(p, 1)-Labeling.

Computing L(p, 1)-Labeling with Combined Parameters 211

Fig. 1. The relationship between graph parameters and the parameterized complexity
of L(p, 1)-Labeling. Let ω, Δ, cw, mw, nd, tc, tw, fvs, fes, bw, ml, and vc denote maxi-
mum clique size, maximum degree, clique-width, modular-width, neighborhood diver-
sity, twin cover number, tree-width, feedback vertex set number, feedback edge set
number, band-width, max leaf number, and vertex cover number, respectively. Con-
nections between two parameters imply that the upper is bounded by a function of the
lower. The underlines for parameters indicate that they are obtained in this paper.

1.2 Related Work

As mentioned above, L(p, 1)-Labeling is NP-hard even on graphs of tree-width
2 [11]. Using stronger parameters than tree-width, Fiala et al. showed that
L(p, 1)-Labeling is fixed-parameter tractable when parameterized by vertex
cover [12] and neighborhood diversity [10]. Moreover, Fiala, Kloks and Kra-
tochvíl showed that the problem is XP when parameterized by feedback edge set
number [13]. For approximation, it is NP-hard to approximate L(p, 1)-Labeling
within a factor of n0.5−ε for any ε > 0, whereas it can be approximated within
O(n(log log n)2/ log3 n) [20]. For L(1, 1)-Labeling, it can be solved in time
O(Δ28(tw+1)+1

n+n3), and hence it is XP by tree-width [30]. This result is tight in
the sense of fixed-parameter (in)tractability, because it is W [1]-hard with respect
to tree-width [12]. Moreover, it can be solved in time O(cw326cwn24cw+22cw+1) [29].

Apart from L(p, 1)-Labeling, twin cover number is a relatively new graph
parameter, which is introduced in [14] as a stronger parameter than vertex cover
number. In the same paper, many problems are shown to be FPT when param-
eterized by twin cover number, and it is getting to be a standard parameter
(e.g., [1,9,15,24,25]). Recently, for Imbalance, which is one of graph layout
problems, a parameterized algorithm is presented [27]. It is interesting that they
also adopt twin cover number plus maximum clique size as the parameters.

212 T. Hanaka et al.

2 Preliminaries

In this paper, we use the standard graph notations. Suppose that G = (V,E)
is a simple and connected graph with the vertex set V and the edge set E. We
sometimes use V (G) or E(G) instead of V or E respectively, to specify graph
G. For G = (V,E), we denote the numbers of vertices and edges by n = |V |
and m = |E|, respectively. For V ′ ⊆ V , we denote by G[V ′] the subgraph of
G induced by V ′. For two vertices u and v, the distance distG(u, v) is defined
by the length of a shortest path between u and v where the length of a path is
the number of edges of it. We denote the closed neighbourhood and the open
neighbourhood of a vertex v by NG[v] and NG(v), respectively. We also define
N �

G[v] = {u | distG(u, v) = �}, N≤�
G [v] = {u | distG(u, v) ≤ �}, N �

G(v) = N �
G[v] \

{v}, and N≤�
G (v) = N≤�

G [v] \ {v}. For a set S ⊆ V , let NG(S) =
⋃

v∈S NG(v)
and NG[S] =

⋃
v∈S NG[v]. The degree of v is denoted by dG(v) = |NG(v)|. The

maximum degree of G is denoted by Δ(G). For simplicity, we sometimes omit
the subscript G.

The k-th power Gk = (V,Ek) of a graph G = (V,E) is a graph such that
the set of vertices is V and there is an edge (u, v) in Ek if and only if there is
a path of length at most k between u and v in G [5]. In particular, G2 is called
the square of G.

Graph parameters

In the following, we introduce several graph parameters.

Definition 1 (Tree Decomposition). A tree decomposition of a graph G =
(V,E) is defined as a pair 〈X , T 〉, where T is a tree with node set I(T) and
X = {Xi | i ∈ I(T)} is a collection of subsets, called bags, of V such that:

1. (vertex condition)
⋃

i∈I(T) Xi = V ;
2. (edge condition) For every {u, v} ∈ E, there exists an i ∈ I(T) such that

{u, v} ⊆ Xi;
3. (coherence property) For every u ∈ V , Iu = {i ∈ I(T) | u ∈ Xi} induces a

connected subtree of T .

The width of a tree decomposition is defined as maxi∈I |Xi|−1 and the tree-width
of G, denoted by tw(G), is defined as the minimum width among all possible tree
decompositions of G.

Two vertices u, v are called twins if N(u) = N(v). Moreover, if twins u, v
have edge {u, v}, they are called true twins and the edge is called a twin edge.
Then a twin cover of G is defined as follows.

Definition 2 (Twin Cover, [14]). A set of vertices X is a twin cover of G
if every edge {u, v} ∈ E satisfies either (1) u ∈ X or v ∈ X, or (2) u, v are
true twins. The twin cover number of G, denoted by tc(G), is defined as the
minimum size of twin covers in G.

Computing L(p, 1)-Labeling with Combined Parameters 213

An important observation is that the complement V \ X of a twin cover X
induces disjoint cliques. Moreover, for each clique Z of G[V \ X], N(u) ∩ X =
N(v) ∩ X for every u, v ∈ Z [14].

A vertex cover X is the set of vertices such that for every edge, at least one
endpoint is in X. The vertex cover number of G, denoted by vc(G), is defined
as the minimum size of vertex covers in G. Since every vertex cover of G is
also a twin cover of G, tc(G) ≤ vc(G) holds. Also, for any graph G, we have
tc(G) + ω(G) ≤ vc(G) + 1.

Integer Linear Programming

Integer Linear Programming Feasibility is formulated as follows.

Input: An q × p matrix A with integer elements, an integer vector b ∈ Z
q

Question: Is there a vector x ∈ Z
p such that A · x ≤ b?

Lenstra [26] proved that Integer Linear Programming Feasibility is
FPT when parameterized by the number of variables.

3 Parameterization by cw + Δ and tw + Δ

As L(p, 1)-Labeling is paraNP-hard for tree-width, so is for clique-width. In
this section, as a complement, we show that L(p, 1)-Labeling (actually, L(p, q)-
Labeling for any constant p and q) is fixed-parameter tractable when parame-
terized by cw+ Δ.

To this end, we give a fixed-parameter algorithm for L(p, 1)-Labeling
parameterized by not cw+Δ but tw+Δ, which actually implies that the problem
is FPT with respect to cw + Δ, because it is known that tw ≤ 3cwΔ − 1 [18].
The running time of the algorithm is ΔO(twΔ)n, and so it is ΔO(cwΔ2)n.

In the algorithm, we first construct the square G2 of G and then com-
pute L(p, 1)-Labeling of G by dynamic programming on a tree decomposition
〈X ′, T ′〉 of G2. Actually, the algorithm runs for L(p, q)-Labeling though the
running time depends on λp,q(G). One can obtain the square of G2 in time
O(mΔ(G)) = O(Δ(G)2n). We then prove the following lemma.

Lemma 1. Given a tree decomposition of a graph G of width t with � bags, one
can construct a tree decomposition of G2 of width at most (t + 1)Δ(G) + t with
� bags in time O(tΔ(G)�).

Proof. We are given a tree decomposition 〈X , T 〉 of G of width t. Let X ′
i =

Xi ∪N(Xi) and X ′ = {X ′
i | i ∈ I(T)} be the set of bags. We here define 〈X ′, T ′〉

as a tree decomposition of G2, where T ′ and T are identical; T and T ′ has the
same node set and the same structure, where each i ∈ I(T ′) corresponds to
i ∈ I(T). In the following, we denote 〈X ′, T 〉 instead of 〈X ′, T ′〉.

We can see that 〈X ′, T 〉 is really a tree decomposition of G2 with width
(t + 1)Δ(G) + t. It satisfies the properties of tree decomposition indeed: Since

214 T. Hanaka et al.

⋃
i∈I(T) X ′

i =
⋃

i∈I(T)(Xi ∪ N(Xi)) = V (G) = V (G2), the vertex condition is
satisfied. We next see the edge condition. For each e ∈ E, there is Xi containing
e, so e ∈ X ′

i. For each {u, v} ∈ E2 \ E, there is a vertex v′(�= u, v) such that
{u, v′} ∈ E and {v′, v} ∈ E. Thus there is Xi satisfying {u, v′} ⊆ Xi, which
implies {u, v} ⊆ Xi ∪ {v} ⊆ Xi ∪ N({v′}) ⊆ X ′

i. These show that the edge
condition is satisfied.

Finally, we check coherence property: we show that for every u ∈ V , I ′
u =

{i ∈ I(T) | u ∈ X ′
i} induces a connected subtree of T . Note that

I ′
u = {i ∈ I(T) | u ∈ X ′

i} = {i ∈ I(T) | u ∈ Xi} ∪
⋃

v∈N(u)

{i ∈ I(T) | v ∈ Xi}.

Here, the subgraph Tv of T induced by {i ∈ I(T) | u ∈ Xi} is connected by
the coherent property of 〈X , T 〉. Also for each v ∈ N(u), the subgraph Tv of T
induced by {i ∈ I(T) | v ∈ Xi} is connected. By {u, v} ∈ E, the edge condition
of 〈X , T 〉 implies that there exists a bag Xj containing both u and v. Since Tu

and Tv has a common node j, the subgraph of T induced by {i ∈ I(T) | u ∈
Xi} ∪ {i ∈ I(T) | v ∈ Xi} is also connected, which leads that the subgraph of T
induced by I ′

u is also connected.
Hence, 〈X ′, T 〉 is a tree decomposition of G2. Since the size of bag X ′

i is
|X ′

i| = |Xi ∪ N(Xi)| = |⋃u∈Xi
N [u]| ≤ (t + 1)(Δ(G) + 1), the width is at most

(t+ 1)(Δ(G) + 1)− 1 = (t+ 1)Δ(G) + t. The construction of 〈X ′, T 〉 is done by
preparing each X ′

i, which takes O(tΔ(G)) steps for each i. Thus it can be done
in time O(tΔ(G)�) in total. ��
Corollary 1. tw(G2) ≤ (tw(G) + 1)Δ(G) + tw(G) holds.

By the above lemma, the tree-width of G2 is bounded if tw(G) and Δ(G)
are bounded. Thus we can design a dynamic programming algorithm on a tree
decomposition of G2, although we omit the detail.

Lemma 2. Given a tree decomposition of G2 of width at most t, one can com-
pute k-L(p, q)-Labeling on G in time O((k + 1)t+1t2n).

Here, one can construct a tree decomposition 〈X , T 〉 of G of width 5tw(G)+
4 with O(n) bags in time 2O(tw(G))n [3]. By Lemma 1, we can obtain a tree
decomposition 〈X ′, T 〉 of G2 of width (5tw(G) + 4 + 1)Δ(G) + 5tw(G) + 4 =
O(tw(G)Δ(G)) from 〈X , T 〉 in time O(tw(G)Δ(G)n). By Lemma 2 and λp,q ≤
max{p, q}Δ2, we have the following theorem.

Theorem 1. For any positive constant p and q, there is an algorithm to solve
L(p, q)-Labeling in time ΔO(twΔ)n, which is also bounded by ΔO(cwΔ2)n.

For the band-width bw(G) and the max leaf number ml(G) of G, we have
tw(G) ≤ bw(G) ≤ ml(G) and Δ(G) ≤ 2bw(G) [2]. Thus, the following corollary
holds.

Corollary 2. For any positive constant p and q, L(p, q)-Labeling is fixed-
parameter tractable when parameterized by max leaf number, and even band-
width.

Computing L(p, 1)-Labeling with Combined Parameters 215

4 Parameterization by Twin Cover Number

4.1 L(p, 1)-Labeling parameterized by tc + ω

We design a fixed-parameter algorithm for L(p, 1)-Labeling with respect to
tc + ω. Notice that for a twin cover X of G = (V,E), each of the connected
components of G[V \ X] forms a clique. We categorize vertices in V \ X with
respect to the neighbors in X. Let T1, T2, . . . , Ts be the sets of vertices having
common neighbors in X, called types of vertices in V \X, where s is the number
of types. Moreover, we say that a clique C ⊆ V \ X is of type Ti if C ⊆ Ti. Note
that V \ X =

⋃s
i=1 Ti. Let ni = |Ti| and ωi be the maximum clique size in Ti.

We first see a general property about cliques with the common neighbors:
Suppose that a graph G consists of only cliques C1, C2, . . . , Ch and the common
neighbors Y of all the vertices in the cliques. That is, all the vertices are within
distance 2. Note that a twin cover focuses on such a substructure in a graph.
Then the following lemma holds.

Lemma 3. Suppose that a graph G is above defined by cliques C1, C2, . . . , Ch,
in the descending order of the size and their common neighbors Y , where the
vertices in Y are labeled by a1, a2, . . . , a|Y |. For an arbitrary set L of labels that
are at least p apart from a1, a2, . . . , a|Y |, if |L| ≥ ∑

j |Cj | and
∑

j |Cj | ≥ p|C1|
hold, there exists an L(p, 1)-labeling of C1, . . . , Ch using only labels in L.

Proof. Let n′ =
∑

j |Cj | and ω = |C1|. Let us assume L = {l1, l2, . . . , ln′}. Since
we can use distinct labels for vertices in C1, C2, . . . , Ch, only the distance-1 con-
dition inside of a same clique matters. If n′ ≡ 1 (mod p), we label the vertices in
C1, C2, . . ., Cn′ in this order by using labels in order of l1, lp+1, l2p+1, . . . , ln′ , l2,
lp+2, l2p+2 . . ., ln′−p+2, l3 . . . , lp, l2p, . . . , ln′−1. Note that the vertices in C1 are
labeled by l1, lp+1, . . . , lp(ω−1)+1 (note that pω ≤ n′). Since the difference
between lαp+i and l(α+1)p+i for each i and α is at least p, the labeling for cliques
does not violate the distance-1 condition. We can choose similar orderings for
the other residuals. ��

Now we go back to the algorithm parameterized by tc + ω. Given a twin
cover X, we say that a k-L(p, 1)-labeling is good for X if it uses only labels in
{0, 1, . . . , (2p−1)|X|−p}∪{k−(2p−1)|X|+p, . . . , k} for X. The following lemma
is also important. It can be shown by repeatedly applying Lemma 3 though we
omit the detail.

Lemma 4. Let X be a twin cover in G such that each Ti satisfies ωi ≤ ni/p. If
G has a k-L(p, 1)-labeling, then G also has a good k-L(p, 1)-labeling for X.

Thus, we consider to find a good L(p, 1)-labeling. Using the lemma, we show
that L(p, 1)-Labeling is fixed-parameter tractable with respect to tc+ ω.

Theorem 2. L(p, 1)-Labeling is fixed-parameter tractable when parameterized
by tc+ ω.

216 T. Hanaka et al.

Proof. We present an algorithm to solve k-L(p, 1)-Labeling instead of L(p, 1)-
Labeling. We first compute a minimum twin cover X in time O(1.2738tc+tcn+
m) [14]. For twin cover X, we define Ti’s. Then, we define another twin cover
of X ′ = X ∪ ⋃

i:ωi>ni/p Ti, where X ′ is obtained by adding every Ti breaking
the condition of Lemma 4 to X. By this modification, our algorithm can utilize
a twin cover that satisfies the condition of Lemma 4. The size of X ′ is at most
tc + 2tc · p · ω, because the number of types is at most 2tc and the size of Ti

joining X is at most p · ω. Let tc′ = |X ′|.
We are now ready to present the core of the algorithm. We classify an instance

into two cases. If k is small enough, we can apply a brute-force type algorithm.
Otherwise, we try to find a good k-L(p, 1)-labeling.

(Case: k < 4ptc′) For each type Ti, the distance between two vertices in Ti is
at most 2. Thus, the labels of vertices in Ti must be different each other. Due to
k < 4ptc′, if |Ti| ≥ 4ptc′, we conclude that the input is a no-instance. Otherwise,
n = |X ′| + ∑ |Ti| ≤ tc′ + 4ptc′2tc holds, because the number of Ti’s is at most
2tc. Thus we check all the possible labelings in time O((4ptc′)tc

′(4p2tc+1)).

(Case: k ≥ 4ptc′) Let C0, C1, . . . Ct be the family of all possible set systems on
{T1, . . . , Ts} such that whenever two distinct Tj and Tj′ are in Ci then N(Tj) ∩
N(Tj′) = ∅. Here, C0 is the empty set. These are introduced to describe a set
of Tj ’s that can use a same label. For each Ci, we prepare a set Li of labels,
which will be used during the execution of the algorithm to represent the set of
labels that could be used for vertices in Tj ∈ Ci. Note that L0, L1, . . . , Lt must
be disjoint each other, and a label in Li is used exactly once per Tj . We also
define L0 as the set of labels not used in V \ X ′. Each Li can be empty.

By Lemma 4, there is a good k-L(p, 1)-labeling for X such that vertices in X
only use labels in {0, 1, . . . , 2p(tc′ − 1)− p} ∪ {k − 2p(tc′ − 1) + p, . . . , k} if the
input is an yes-instance. Thus we try all the possible partial labelings for X, each
of which uses only labels in {0, 1, . . . , 2p(tc′−1)−p}∪{k−2p(tc′−1)+p, . . . , k}.
Since the number of labels is 2(2p(tc′ − 1) − p + 1) ≤ 4ptc′, there are at most
(4ptc′)tc

′
possible labelings of X. For each of them we further try all the possible

placement of labels in {0, 1, . . . , 2p(tc′ − 1) − 1} ∪ {k − 2p(tc′ − 1) + 1, . . . , k}
into L0, L1, . . . , Lt, which is a little wider than above. The number of possible
placements is at most t4ptc′

due to the disjointness of Li’s. Therefore, the total
possible nonisomorphic partial labelings is at most (4ptc′)tc ·t4ptc′

. Note that no
vertex will be labeled by a label in {0, 1, . . . , 2p(tc′ −1)−1}∪{k −2p(tc′ −1)+
1, . . . , k} hereafter. Thus we consider how we use labels in {2p(tc′ − 1), . . . , k −
2p(tc′ − 1)} for V \ X, which does not yield any conflict with X.

We then formulate how many labels should be placed in L0, L1, . . . , Lt for
one partial labeling using {0, 1, . . . , 2p(tc′ −1)−p}∪{k −2p(tc′ −1)+p, . . . , k}
as Integer Linear Programming. For a fixed partial labeling, let ai be the number
of labels that have been already assigned to Li, and xi be a variable representing
the number of labels used in Li in the desired labeling.

Computing L(p, 1)-Labeling with Combined Parameters 217

The following is the ILP formulation.
⎧
⎪⎨

⎪⎩

x0 + · · · + xt ≤ k + 1
xi ≥ ai, for i ∈ {0, . . . , t}
∑

i:Tj∈Ci
xi = |Tj |, for j ∈ {1, . . . , s}

The first constraint shows that the total number of labels is at most k+1. Note
that the number of unused labels is x0. The second one is for consistency to the
partial labeling. The last one, which is the most important, guarantees that every
vertex in Tj can receive a label; the number of usable labels is |{i | Tj ∈ Ci}|,
because a label in Li is used exactly once per Tj .

If the above ILP has a feasible solution, it is possible to assign labels to all
the vertices in V \ X if we ignore the distance-1 condition inside of each clique.
Actually, we can see that the information is sufficient to give a proper k-L(p, 1)-
labeling. At the beginning of the algorithm, we take twin cover X ′, which means
that for every Ti ⊆ V \ X, ni ≥ pωi holds. Since cliques in G[Ti] have common
neighbors and ni ≥ pωi, only the number of available labels matters by Lemma 3.
Since the existence of an ILP solution guarantees this, we can decide whether a
partial labeling can be extended to a proper k-L(p, 1)-labeling, or not.

Because t ≤ 2s ≤ 22
tc

, the number of variables of the ILP is at most 22
tc

; it
can be solved in FPT time with respect to tc [26]. Since tc′ ≤ tc + 2tc · p · ω,
the total running time is FPT time with respect to tc+ ω. ��

4.2 L(1, 1)-Labeling parameterized by tc

Unlike L(p, 1)-labeling with p ≥ 2, the distance-1 condition of L(1, 1)-labeling
requires just that the labels between adjacent vertices are different. Thus, L(1, 1)-
Labeling seems to be easier than L(p, 1)-Labeling with p ≥ 2. Actually, we
can show that L(1, 1)-Labeling is fixed-parameter tractable parameterized only
by twin cover number.

Lemma 5. For a graph G, let u and v be twins with edge {u, v}. For G′ =
(V,E′) with E′ = E \ {{u, v}}, any L(1, 1)-labeling on G′ is also an L(1, 1)-
labeling on G and vice versa.

Proof. The statement is true, if N≤2
G [y] = N≤2

G′ [y] holds for any vertex y ∈ V ,
and we show this below. Since N≤2

G [y] ⊇ N≤2
G′ [y] is obvious, we show N≤2

G [y] ⊆
N≤2

G′ [y], that is, for any y ∈ V , if w ∈ N≤2
G [y], w also belongs to N≤2

G′ [y]. Note
that w ∈ N≤2

G [y] means there is a path with length at most 2 between y and
w. If G has such a path between y and w not containing {u, v}, G′ also does,
and w ∈ N≤2

G′ [y] holds. Otherwise, every path with length at most 2 between y
and w in G contains {u, v}, which implies that either y or w is u or v. We just
see the case when y = u for symmetry, and take such a path between y(= u)
and w. If the path length is 1 (that is, w = v) in G, y(= u) and w(= v) has a
common neighbor because u and v are twins, which implies that w and y are
within distance 2 in G′. If the path length is 2, the path forms (y, v, w). Namely,
w is a neighbor of v and also of u(= y) in G′. This completes the proof. ��

218 T. Hanaka et al.

Corollary 3. For G′ defined as above, λ1,1(G′) = λ1,1(G) holds.

Let X be a twin cover again, and then each connected component in G[V \X]
forms a clique, each of the edges in which are twin edges. Lemma 5 implies that
graph G′ obtained by removing all the edges in G[V \ X] has the same L(1, 1)-
labeling number of G. The above deletion shows that X is also a vertex cover
of G′. Since L(1, 1)-Labeling is fixed-parameter tractable when parameterized
by vertex cover number [12], we have the following theorem.

Theorem 3. L(1, 1)-Labeling is fixed-parameter tractable when parameterized
by twin cover number.

Since λ1,1(G) ≤ λp,1(G) ≤ λp,p(G) = pλ1,1(G) holds, an L(1, 1)-labeling
gives an approximation for L(p, 1)-Labeling. In fact, by replacing the labels of
an optimal L(1, 1)-labeling of G with multiples of p, we obtain an L(p, 1)-labeling
whose approximation factor is at most p.

Corollary 4. For L(p, 1)-Labeling, there is a fixed-parameter p-approxi-
mation algorithm with respect to twin cover number.

Acknowledgements. We are grateful to Dr. Yota Otachi for his insightful comments.

References

1. Asahiro, Y., Eto, H., Hanaka, T., Lin, G., Miyano, E., Terabaru, I.: Parameterized
algorithms for the happy set problem. In: Rahman, M.S., Sadakane, K., Sung, W.-
K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp. 323–328. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39881-1_27

2. Blum, J.: Hierarchy of transportation network parameters and hardness results. In:
International Symposium on Parameterized and Exact Computation (IPEC 2019),
vol. 148, pp. 4:1–4:15 (2019)

3. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.
45(2), 317–378 (2016)

4. Bodlaender, H.L., Kloks, T., Tan, R.B., Van Leeuwen, J.: Approximations for λ-
colorings of graphs. Comput. J. 47(2), 193–204 (2004)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New york (2008)
6. Calamoneri, T.: The L(h, k)-labelling problem: an updated survey and annotated

bibliography. Comput. J. 54(8), 1344–1371 (2011)
7. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Disc. Math.

9(2), 309–316 (1996)
8. Eggemann, N., Havet, F., Noble, S.D.: k-L(2, 1)-labelling for planar graphs is NP-

complete for k ≥ 4. Disc. Appl. Math. 158(16), 1777–1788 (2010)
9. Eto, H., Hanaka, T., Kobayashi, Y., Kobayashi, Y.: Parameterized algorithms

for maximum cut with connectivity constraints. In: International Symposium on
Parameterized and Exact Computation (IPEC 2019), vol. 148, pp. 13:1–13:15
(2019)

https://doi.org/10.1007/978-3-030-39881-1_27

Computing L(p, 1)-Labeling with Combined Parameters 219

10. Fiala, J., Gavenčiak, T., Knop, D., Kouteckỳ, M., Kratochvíl, J.: Parameterized
complexity of distance labeling and uniform channel assignment problems. Disc.
Appl. Math. 248, 46–55 (2018)

11. Fiala, J., Golovach, P.A., Kratochvíl, J.: Distance constrained labelings of graphs
of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468_30

12. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523
(2011)

13. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings.
Disc. Appl. Math. 113(1), 59–72 (2001)

14. Ganian, R.: Improving vertex cover as a graph parameter. Disc. Math. Theor.
Comput. Sci. 17(2), 77–100 (2015)

15. Gaspers, S., Najeebullah, K.: Optimal surveillance of covert networks by minimiz-
ing inverse geodesic length. In: AAAI Conference on Artificial Intelligence (AAAI
2019), pp. 533–540 (2019)

16. Gonçalves, D.: On the L(p, 1)-labelling of graphs. Disc. Math. 308(8), 1405–1414
(2008)

17. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Disc. Math. 5(4), 586–595 (1992)

18. Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without
Kn,n. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 196–205.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40064-8_19

19. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12),
1497–1514 (1980)

20. Halldórsson, M.M.: Approximating the L(h, k)-labelling problem. Int. J. Mobile
Netw. Des. Innov. 1(2), 113–117 (2006)

21. Hanaka, T., Kawai, K., Ono, H.: Computing L(p, 1)-labeling with combined param-
eters (2020). arXiv: 2009.10502

22. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2, 1)-
labeling of trees. Algorithmica 66(3), 654–681 (2013)

23. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: Algorithmic aspects of distance con-
strained labeling: a survey. Int. J. Netw. Comput. 4(2), 251–259 (2014)

24. Jansen, B.M.P., Pieterse, A.: Optimal data reduction for graph coloring using low-
degree polynomials. Algorithmica 81(10), 3865–3889 (2019)

25. Knop, D., Masarík, T., Toufar, T.: Parameterized complexity of fair vertex eval-
uation problems. In: International Symposium on Mathematical Foundations of
Computer Science (MFCS 2019), vol. 138, pp. 33:1–33:16 (2019)

26. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

27. Misra, N., Mittal, H.: Imbalance parameterized by twin cover revisited. In: Kim,
D., Uma, R.N., Cai, Z., Lee, D.H. (eds.) COCOON 2020. LNCS, vol. 12273, pp.
162–173. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58150-3_13

28. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Disc. Math.
93(2), 229–245 (1991)

https://doi.org/10.1007/11523468_30
https://doi.org/10.1007/3-540-40064-8_19
http://arxiv.org/abs/2009.10502
https://doi.org/10.1007/978-3-030-58150-3_13

220 T. Hanaka et al.

29. Todinca, I.: Coloring powers of graphs of bounded clique-width. In: Bodlaender,
H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39890-5_32

30. Zhou, X., Kanari, Y., Nishizeki, T.: Generalized vertex-colorings of partial k-trees.
IEICE Trans. Fundamentals Electron. Commun. Comput. Sci. E83-A(4), 671–678
(2000)

https://doi.org/10.1007/978-3-540-39890-5_32

On Compatible Matchings

Oswin Aichholzer1 , Alan Arroyo2 , Zuzana Masárová2 , Irene Parada3 ,
Daniel Perz1(B) , Alexander Pilz1 , Josef Tkadlec2 ,

and Birgit Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{oaich,daperz,apilz,bvogt}@ist.tugraz.at

2 IST Austria, Klosterneuburg, Austria
{alanmarcelo.arroyoguevara,zuzana.masarova,josef.tkadlec}@ist.ac.at

3 TU Eindhoven, Eindhoven, The Netherlands
i.m.de.parada.munoz@tue.nl

Abstract. A matching is compatible to two or more labeled point sets
of size n with labels {1, . . . , n} if its straight-line drawing on each of
these point sets is crossing-free. We study the maximum number of edges
in a matching compatible to two or more labeled point sets in general
position in the plane. We show that for any two labeled convex sets
of n points there exists a compatible matching with �√2n� edges. More
generally, for any � labeled point sets we construct compatible matchings
of size Ω(n1/�). As a corresponding upper bound, we use probabilistic
arguments to show that for any � given sets of n points there exists
a labeling of each set such that the largest compatible matching has
O(n2/(�+1)) edges. Finally, we show that Θ(log n) copies of any set of n
points are necessary and sufficient for the existence of a labeling such
that any compatible matching consists only of a single edge.

Keywords: Compatible graphs · Crossing-free matchings · Geometric
graphs

1 Introduction

For plane drawings of geometric graphs, the term compatible is used in two rather
different interpretations. In the first variant, two plane drawings of geometric
graphs are embedded on the same set P of points. They are called compatible
(to each other with respect to P) if their union is plane (see e.g. [5,19]). Note

A.A. funded by the Marie Sk�lodowska-Curie grant agreement No. 754411. Z.M. par-
tially funded by Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-
N31. I.P., D.P., and B.V. partially supported by FWF within the collaborative DACH
project Arrangements and Drawings as FWF project I 3340-N35. A.P. supported by
a Schrödinger fellowship of the FWF: J-3847-N35. J.T. partially supported by ERC
Start grant no. (279307: Graph Games), FWF grant no. P23499-N23 and S11407-N23
(RiSE).

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 221–233, 2021.
https://doi.org/10.1007/978-3-030-68211-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_18&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0003-2401-8670
http://orcid.org/0000-0002-6660-1322
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0002-6557-2355
http://orcid.org/0000-0002-6059-1821
http://orcid.org/0000-0003-0148-7722
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-030-68211-8_18

222 O. Aichholzer et al.

that this is different to simultaneous planar graph embedding, as it is required
not only that the two graphs are plane, but also that their union is crossing-free.

In the second setting, which is the one that we will consider in this work, one
planar graph G is drawn straight-line on two or more labeled point sets (with
the same label set). We say that G is compatible to the point sets if the drawing
of G is plane for each of them (where each vertex of G is mapped to a unique
label and thereby identified with a unique point of each point set). Note that
the labelings of the point sets can be predefined or part of the solution. As an
example, we mention the compatible triangulation conjecture [3]: For any two
sets P1 and P2 with the same number of points and the same number of extreme
points, there is a labeling of the two sets such that there exists a triangulation
which is compatible to both sets, P1 and P2.

Motivation and Related Work. The study of the type of compatibility con-
sidered in this work (the second type from above) is motivated by applications
in morphing [7,16,17], 2D shape animation [12], or cartography [22].

Compatible triangulations were first introduced by Saalfeld [22] for labeled
point sets, who studied the construction of compatible triangulations using
Steiner points (compatible triangulations do not always exist for pairs of labeled
point sets). Aronov et al. [9] and Babikov et al. [11] showed that O(n2) Steiner
points are always sufficient, while Pach et al. [21] showed that Ω(n2) Steiner
points are sometimes necessary. The compatible triangulation conjecture states
that – in contrast to labeled point sets – two unlabeled point sets (in general
position and with the same number of extreme points) can always be compatibly
triangulated without using Steiner points. To date, the conjecture has only been
proven for point sets with at most three interior points [3]. Krasser [20] showed
that more than two point sets cannot always be compatibly triangulated.

Concerning compatible paths, Hui and Schaefer [18] showed that it is NP-
hard to decide whether two labeled point sets admit a compatible spanning
path. Arseneva et al. [10] presented efficient algorithms for finding a monotone
compatible spanning path, or a compatible spanning path inside simple polygons
(if they exist). Czyzowicz et al. [15] showed that any two labeled point sets admit
a compatible path of length at least

√
2n and also presented an O(n2 log n)

algorithm to find such a path for two convex point sets. In a similar direction,
results from Czabarka and Wang [14] imply a lower bound of (

√
n − 2 + 2)/2 on

the length of the longest cycle compatible to two convex point sets.
In this paper we will focus on compatible matchings. To the best of our

knowledge, previous results on (geometric) matchings study only compatibility
of the first type, that is, where two matchings are embedded on the same point
set. A well-studied question in this setting is whether any two perfect matchings
can be transformed into each other by a sequence of steps such that at every
step the intermediate graph is a perfect matching and the union of any two
consecutive matchings is plane. Aichholzer et al. [5] proved that such a sequence
of at most O(log n) steps always exists. Questions of whether any matching of a
given point set can be transformed into any other and how many steps it takes
(that is, the connectivity of and the distance in the so-called reconfiguration

On Compatible Matchings 223

2

3

45

6

1 3

5

26

4

1

(a)

1

4

2

3

1

4

3

2

1

3

2

4

(b)

Fig. 1. (a) There is no perfect matching compatible to the two labeled sets. (b) Any
possible pair of matching edges crosses in exactly one of the three sets.

graph of matchings, as well as its other properties) have been investigated also
for matchings on bicolored point sets and for edge-disjoint compatible matchings,
see for example [4,8,19].

Our Results. We study the second type of compatibility for matchings on two
or more point sets. This is a setting for which no previous comprehensive theory
appears to exist. Let us mention that throughout this paper we denote unlabeled
point sets with P and labeled point sets with P. We start by considering convex
point sets: given two unlabeled convex point sets P1, P2, both with n points,
we study the largest guaranteed size ccm(n) of a compatible matching across all
pairs of labelings of P1 and P2. More formally, ccm(n) is the minimum over all
pairs of labelings of the maximum compatible matching size for the accordingly
labeled n-point set pairs. The largest compatible matching for two labeled point
sets is not necessarily perfect, see Fig. 1(a). In Sect. 2 we present upper and
lower bounds on ccm(n). In particular, for any n that is a multiple of 10, we
construct two labeled convex sets P1,P2 of n points each, for which the largest
compatible matching has 2n/5 edges. Using probabilistic arguments, we obtain
an upper bound of ccm(n) = O(n2/3). For the lower bound, we show that for
any pair of labeled convex point sets P1, P2 there exists a compatible matching
consisting of �√2n� edges. This implies that ccm(n) = Ω(

√
n).

We further extend our study to consider � point sets in general position
instead of just two point sets in convex position. Given � unlabeled sets P1, . . . , P�

of n points in general position, we denote by cm(n;P1, . . . , P�) the largest guaran-
teed size of a compatible matching across all �-tuples of labelings of P1, . . . , P�.
We remark that the size n of the point sets is included in the notation only
for the sake of clarity (since our bounds depend on n). In Sect. 3 we give
bounds on cm(n;P1, . . . , P�) for any sets P1, . . . , P� of n points in general posi-
tion. Building on the ideas of the proofs for two convex sets, we show that
cm(n;P1, . . . , P�) = O(n2/(�+1)) and that cm(n;P1, . . . , P�) = Ω(n1/�).

Finally, we investigate the question of how many labeled copies of a given
unlabeled point set are needed so that the largest compatible matching con-
sists of a single edge. Already for four points in convex position, three different
sets are needed (and sufficient, see Fig. 1(b)). In Sect. 4 we prove that for any
given set of n ≥ 5 points in general position, Θ(log n) copies of it are necessary
and sufficient for the existence of labelings forcing that the largest compatible
matching consists of a single edge.

224 O. Aichholzer et al.

For brevity, a plane matching that consists of k edges is called a k-matching.
Due to lack of space, several proofs are only sketched. Full versions of those
proofs can be found in the full version.

2 Two Convex Sets

Throughout this section we consider two labeled convex point sets P1, P2 con-
sisting of n points each. Without loss of generality we assume that P1 is labeled
(1, 2, . . . , n) in clockwise order and that P2 is labeled (π(1), π(2), . . . , π(n)) in
clockwise order for some permutation π : [n] → [n].

In the following, we present lower and upper bounds on the largest guaranteed
size ccm(n) of a compatible matching of any two such sets. Starting with lower
bounds, we present four pairwise incomparable results (Theorem 1), each of
them giving rise to a polynomial-time algorithm for constructing a compatible
k-matching with k = Ω(

√
n) edges. The results are ordered by the size of the

obtained compatible k-matching, where the last one gives the best lower bound
for ccm(n), while the three other results yield compatible matchings of special
structure. The second result can be generalized to any number of (not necessarily
convex) sets (Theorem 3). We remark that [15] implies a lower bound of

√
2n/2,

which is weaker than the fourth result.
Before stating the theorem, we introduce the notion of a shape of a matching

on a convex point set which, informally stated, captures “how the matching
looks”. Consider a labeled point set P and a plane matching M on P. Let
PM ⊆ P be the points of P that are incident to an edge of M . The shape of
M is the combinatorial embedding1 of the union of M and the boundary of the
convex hull of PM . Further, M is called non-nested if its shape is a cycle, that
is, all edges of M lie on the boundary of the convex hull of PM . Note that the
shape of M also determines the number of its edges (even though some or all of
the edges might be “hidden” in the boundary of the convex hull of PM). We say
that two matchings have the same shape, if their shapes are identical, possibly
up to a reflection.

Theorem 1 (Lower bound for two convex sets). For any two labeled
convex sets P1, P2 of n points each, it holds that: (i) If n ≥ (2k − 2)2 + 2 then
for any shape of a k-matching there exists a compatible k-matching having that
shape in both P1 and P2. (ii) If n ≥ k2 + 2k − 1 then any maximal compatible
matching consists of at least k edges. (iii) If n ≥ k2 + k then there exists a
compatible k-matching that is non-nested in both P1 and P2. (iv) If n ≥ 1

2k2 + k
then there exists a compatible k-matching.

1 The combinatorial embedding fixes the cyclic order of incident edges for each vertex.

On Compatible Matchings 225

1
2

3

4
567

8

9

10

11 12

1

2

3

4

5

6 7

8

9
10

11

12

(iii) (iv)

P1 P2

1
1

1
1

1
1

1
1

1
1

1
1

(iv)
1 127 8 10 112 31

5

764

9

2 3

1

8

2

3

7

9

4

5

6

10

11

12

Fig. 2. Theorem 1, Claim (iii): Illustration with n = 12 points and k = 3 blocks (grey).
After drawing an edge we switch the color of processed points (red to green to blue).
Claim (iv): The permutation matrix Π and two 2-balls (yellow). A 2-ball centered at
[5, 7] would intersect a 2-ball at [7, 9], so drawing the edge between points labeled 7, 9
forces us to discard at most 2 other points (6 and 8). (Color figure online)

Proof.

(i) By the circular Erdős-Szekeres Theorem [14], the permutation π contains a
monotone subsequence σ having length 2k. The sequence S = {xi|i ∈ σ} of
points whose labels belong to σ has the same cyclic order in both sets P1,
P2 (possibly once clockwise and once counter-clockwise), hence any plane
matching on S in P1 is also plane in P2 and has the same shape.

(ii) Suppose we have already found a compatible matching M consisting of
m ≤ k−1 edges. This leaves at least n−2m ≥ k2+1 points yet unmatched.
The unmatched points are split by the m matching edges into at most
m + 1 ≤ k subsets, both in P1 and in P2. Since there are at most k2

different ways to choose one such subset from P1 and one from P2, there
exist two yet unmatched points x, y that lie in the same subset in P1 and
in the same subset in P2. Hence xy can be added to the matching M .

(iii) This claim is equivalent to Problem 5 given at IMO 2017.2 For completeness
we sketch a proof (see Fig. 2): split the perimeter of P2 into k contiguous
blocks B1, . . . , Bk consisting of k +1 points each (that is, block B1 consists
of points labeled π(1), . . . , π(k+1) and so on). We aim to draw one matching
edge per block. We process points xi in order i = 1, . . . , n in which they
appear in P1. Once some block, say B�, contains two processed points,
say xu and xv, we draw edge xuxv, discard other already processed points
and discard other points in B�. In this way, any time we draw an edge in
some block, we discard at most one point from each other block. Since each
block initially contains k + 1 points, we will eventually draw one edge in
each block. The produced matching contains one edge per block, hence it
is non-nested in P2. Since points xi are processed in order i = 1, . . . , n, the
matching is also non-nested in P1.

(iv) The idea is to find two points xi, xj that are close to each other in the cyclic
order in both P1 and P2. Then draw the edge xixj , omit all points on the

2 https://www.imo-official.org/problems/IMO2017SL.pdf, Problem C4.

https://www.imo-official.org/problems/IMO2017SL.pdf

226 O. Aichholzer et al.

shorter arcs of xixj in both P1 and P2, and proceed recursively.
Consider the permutation matrix Π given by π, that is, an n × n matrix
such that Πi,j = 1 if π(i) = j and 0 otherwise. Given an integer r > 0
and a cell Πi,j containing a digit 1, the r-ball centered at Πi,j is a set
B(Πi,j , r) = {Πu,v : |i − u| + |j − v| ≤ r} of cells whose L1-distance
from Πi,j is at most r, where all indices are considered cyclically modulo n
(see Fig. 2). Note that an r-ball contains 2r2 + 2r + 1 cells.
Now suppose n and r satisfy n ≤ 2r2 + 2r and consider r-balls centered at
all n cells containing a digit 1. The balls in total cover n ·(2r2+2r+1) > n2

cells, hence some two r-balls intersect and their centers Πi,π(i), Πj,π(j) have
L1-distance at most 2r. This means that the shorter arcs between points
labeled π(i) and π(j) contain, together in both point sets P1 and P2, at
most 2r − 2 other points. Drawing an edge π(i)π(j) and removing these
2r−2 other points leaves convex sets in both P1 and P2 whose convex hulls
do not intersect the matched edge π(i)π(j).
The rest is induction. The claim holds for k ∈ {1, 2}. Suppose that k = 2r
is even and that n = 1

2k2 + k = 2r2 + 2r. By the above argument, find a
“short” edge xixj and remove up to 2r − 2 other points. This leaves n − 2r
(< 2r2 + 2r) points, so find another edge xuxv and remove up to 2r − 2
other points. This leaves 2r2 − 2r = 2(r − 1)2 + 2(r − 1) points and the
induction applies. Last, note that the above shows that having 2r2 points
implies a (2r − 1)-matching. Since 2r2 =
 1

2 (2r − 1)2 + 2r − 1�, the case of
k = 2r − 1 odd and n =
 1

2 (2r − 1)2 + 2r − 1� is also settled. �
For the remainder of this section, we consider upper bounds on the size of

compatible matchings for pairs of convex point sets.
We first describe an explicit construction of two labeled point sets Pid and Pπ,

where n is a multiple of 10, the set Pid is labeled (1, 2, . . . , n) in clockwise order,
and the set Pπ is labeled (π(1), π(2), . . . , π(n)) in clockwise order, by defining a
specific permutation π : [n] → [n]. We will show that any compatible matching
of Pid and Pπ misses at least n/5 of the points.

Our building block for π is the permutation (2, 4, 1, 5, 3) of five elements. For
labeling the n = 5k points of Pπ (with k ≥ 2 even) we use the permutation π =
(2, 4, 1, 5, 3, 7, 9, 6, 10, 8, . . . , 5(k−1)+2, 5(k−1)+4, 5(k−1)+1, 5(k−1)+5, 5(k−1)+3)
that yields k blocks of 5 points each in both P1 and P2 (see Fig. 3).

Fig. 3. The two labeled point sets Pid and Pπ for the permutation π.

Proposition 1 (Constructive upper bound for two convex sets). The
largest compatible matching of the two labeled n-point sets Pid and Pπ defined
above contains 2

5n edges.

On Compatible Matchings 227

Proof (sketch). Consider any compatible matching M of Pid and Pπ. For the
upper bound we show that M misses at least one point within each of the k
blocks. To this end, we classify the edges of M into two types: those that connect
two points in one block (we call them short edges) and those that connect two
points from different blocks (we call them long edges). For each block B, we
distinguish two cases:

Case 1: B contains at least one short edge. In this case we show by elementary
casework that there is always at least one unmatched point in B.

Case 2: B contains no short edge. We argue that, under the assumption that
all five points in B are matched (by a long edge), all those five edges in fact
must go to the same block B′, which we then show to be impossible.

To see that the bound is tight, note that within each block of Pπ we can match
the first two points and the next two points. This yields a compatible matching
of Pid and Pπ with 2k = 2

5n edges consisting only of short edges. �
The above construction yields an upper bound of ccm(n) ≤
 2

5n�. However,
this bound is not tight. We next show in a probabilistic way that there exists
a permutation π : [n] → [n] for which the largest compatible matching consists
of k = O(n2/3) edges. In Sect. 3, we will extend this approach to any number of
point sets, not necessarily in convex position (Theorem 4).

Theorem 2 (Probabilistic upper bound for two convex sets). Fix n and
let k = 4n2/3. Then two convex sets P1, P2 of n points each can be labeled such
that the largest compatible matching consists of fewer than k edges.

Proof. Let P1 be P1 with labeling (1, 2, . . . , n) in clockwise order and let P2 not
yet be labeled. The idea for this proof is that for large n there are more ways to
label P2 than there are ways to draw a compatible k-matching.

For any k ≤ n, let f(k) be the number of plane k-matchings of Pi, i ∈ {1, 2}
(that is, matchings leaving n − 2k points unmatched). As there are

(
n
2k

)
ways to

select the 2k points to be matched and the number of plane perfect matching
on those points is 1

k+1

(
2k
k

)
(the k-th Catalan number), we obtain f(k) =

(
n
2k

) ·
1

k+1

(
2k
k

) ≤ n!
(n−2k)!·k!·k! .

Given two plane k-matchings, one of P1 and one of P2, there are exactly
g(k) = (n− 2k)! ·k! · 2k labelings of P2 for which those two matchings constitute
a compatible k-matching: there are (n−2k)! ways to label the unmatched points
of P2, k! ways to pair up the matching edges and 2k ways to label their endpoints.

Therefore, (f(k))2g(k) is an upper bound for the number of labelings π of
P2 such that there is a compatible k-matching for P1 and P2 (P2 with labeling
π). On the other hand, there are n! labelings of P2 in total.

Our goal is to show that (f(k))2 ·g(k) < n!. If we succeed, then there exists a
labeling π of P2 such that there is no compatible k-matching for P1 and P2 (P2

with labeling π). Canceling some of the factorials and using standard bounds
(n/e)n < n! < nn on the remaining ones (where e denotes Euler’s number), we
obtain

228 O. Aichholzer et al.

(f(k))2 · g(k)
n!

≤ n! · 2k

(n − 2k)! · (k!)3
≤ n2k · 2k

(k/e)3k
=

(
2e3n2

k3

)k

.

For k ≥ 4n2/3, the above expression is less than one (we have 2e3 < 43), which
completes the proof. �

3 Generalized and Multiple Sets

In this section we generalize our results in two ways, by considering point sets
in general position and more than two sets. We again start with lower bounds.
Theorem 3, which is a generalization of the second result of Theorem 1, implies
that for any �-tuple of point sets P1, . . . , P� we have cm(n;P1, . . . , P�) = Ω(n1/�).

Theorem 3 (Lower bound for multiple sets). Let P1,P2, . . . ,P� be labeled
sets of n points each. If n ≥ k� + 2k − 1, then any maximal compatible matching
consists of at least k edges.

Proof. We extend the idea from the proof of Theorem 1, part (ii): suppose we
have already found a compatible matching M consisting of m ≤ k − 1 edges.
This leaves at least k� + 2k − 1 − m ≥ k� + 2k − 1 − 2(k − 1) = k� + 1 points yet
unmatched. Imagine the � point sets live in � different planes. We process the
m matching edges one by one. When an edge is processed, we extend it along
its line in both directions until it hits another matching edge or an extension of
a previously processed edge (in all � planes). In this way, the m lines partition
each plane into m + 1 ≤ k convex regions. By simple counting (k� + 1 > k�),
there exist two yet unmatched points x, y that lie in the same region in each of
the � planes. Hence xy can be added to the matching M . �

Regarding upper bounds, the following theorem implies that for any fixed �
and any �-tuple of point sets P1, . . . , P�, we have cm(n;P1, . . . , P�) = O(n2/(�+1)).

Theorem 4 (Probabilistic upper bound for multiple sets). Fix n and �
and let k = 125·n2/(�+1). Then any � sets P1, . . . , P� of n points each, where each
Pi is in general position, can be labeled such that the largest compatible matching
consists of fewer than k edges.

This theorem can be proven by extending the idea from the proof of The-
orem 2 and combining results of Sharir, Sheffer and Welzl [24] and Sharir and
Sheffer [23] on the number of triangulations and plane perfect matchings.

4 Forcing a Single-Edge Compatible Matching

In this section we consider the following question: Given an unlabeled point set
P with n points, is there an integer � such that there exist � labelings of P for
which every compatible matching has at most one edge? If � exists, we denote as
force(n;P) the minimum number � of copies of P such that cm(n;P, . . . , P) = 1

On Compatible Matchings 229

Fig. 4. Three labeled point sets obtained from different orders and orientations of four
blocks A, B, C, and D.

(where P appears force(n;P) times). Otherwise, we set force(n;P) = ∞. In
other words, we are asking for the existence (and minimal number) of labelings
of the set P so that any pair of labeled edges crosses for at least one labeling. We
remark that, again, the size n of the point sets is included in the notation only
for the sake of clarity. Note that force(n;P) = ∞ if and only if the straight-line
drawing of Kn on P contains no crossing. Hence force(n;P) is finite for any set
P of n ≥ 5 points.

We first focus on upper bounds and on the case when P is in convex position.
We denote by cforce(n) the minimum number of copies of a convex set with n
points that need to be labeled so that the largest compatible matching consists
of only a single edge.

Let b(n) =
log2 n�, which is the number of bits that are needed to represent
the labels 1 to n. We construct a family of 3

2b(n)2 labeled convex n-point sets such
that all pairs of edges cross in at least one set. First consider three labeled convex
point sets, which are obtained by partitioning the set of labels into four blocks
A, B, C, D, and combining those blocks in different orders and orientations as
depicted in Fig. 4. The order within a block is arbitrary, but identical for all
three sets (up to reflection; those block orientations are indicated by arrows).

Lemma 1. Consider three convex point sets P1, P2, and P3 that are labeled as
in Fig. 4 for some partition A, B, C, and D of their label set. Then any pair of
independent3 edges, where none of them has both labels in one of the blocks A,
B, C, and D, forms a crossing in at least one of P1, P2, and P3.

The proof of this lemma, a case analysis depending on the number of blocks
that contain at least one endpoint of the two edges, is deferred to the full version.

We next identify a small number of 4-partitions of the label set {1, 2, . . . , n}
such that each edge pair fulfills the condition of Lemma 1 in at least one of
the partitions (when the four subsets form blocks). This yields the following
constructive upper bound for cforce(n).

Proposition 2 (Constructive upper bound on cforce(n)). For any n≥4
and for b(n) =
log2 n�, we can define 3

(
b(n)
2

)
labeled convex sets of n points

such that the largest matching compatible to all of them consists of a single edge.

3 Two edges are independent if they do not share an endpoint.

230 O. Aichholzer et al.

Proof. Given a convex set of n points, we construct
(
b(n)
2

)
4-partitions of the

labels and use each such partition to obtain three labeled point sets as depicted
in Fig. 4. For any two bit positions i, j, 0 ≤ i �= j < b(n), of the labels, partition
the label set {1, 2, . . . , n} so that A contains all labels where those two bits are
zero, B those where the bits are zero-one, C those with one-zero, and finally D
the ones with both one. This gives

(
b(n)
2

)
different partitions.

Now consider two arbitrary edges e and f . Then there is a bit position in
which the two endpoints of e have different values, and the same is true for f .
Let i and j, respectively, be those positions. If this would give i = j, then choose
j arbitrarily but not equal to i. By Lemma 1, the edges e and f cross in one of
the three labeled point sets for the partition generated for i and j. �

The upper bound O(log2 n) of cforce(n) from Lemma 2 is constructive but
it is not asymptotically tight. Next we present a probabilistic argument which
shows that we actually have force(n;P) = O(log n) for any point set P of n ≥ 5
points.

Lemma 2 (Probabilistic upper bound on force(n;P)). Given a set P of
n ≥ 5 points in general position, there exists a constant cP ≥ 15/14 such that
force(n;P) ≤ logcP (3

(
n
4

)
) = O(log n).

Proof. Fix P and let αP ∈ (0, 1) be the proportion of 4-tuples of points in P
that are in convex position. Note that since any 5-tuple of points contains at
least one 4-tuple in convex position, we have αP ≥ 1/5 (here we use n ≥ 5).

There are r = 3
(
n
4

)
pairs of non-incident edges. Fix one of them, say ac and

bd. Note that when P is labeled uniformly at random, the edges ac, bd intersect
with constant probability αP /3: indeed, the edges intersect if their 4 endpoints
form a convex quadrilateral and the points a, b, c, d lie on its perimeter in two
out of the six possible cyclic orders.

Now set cP = (1 − αP /3)−1 ≥ 15/14 and consider � > logcP (r) copies of P
labeled independently and uniformly at random. We say that a pair of edges is
bad if it is non-crossing in all � point sets. Then any one fixed pair of edges is
bad with probability ρ = (1 − αP /3)� < 1/r. By linearity of expectation, the
expected number of bad pairs of edges is r · ρ < 1. Therefore there exists a
labeling of the � point sets for which no pair of edges is bad. In such a labeling,
the largest compatible matching consists of a single edge. �

We remark that for a fixed set P , one can often obtain a better bound on
parameter αP used in the proof and thus a better bound on cP , which then gives
a constant factor improvement on force(n;P). Specifically, for sufficiently large
n, finding the maximum constant α is a topic of high relevance in connection
with the rectilinear crossing number of the complete graph, see [2] for a nice
survey of this area. The currently best known bounds are 0.37997256 < α <
0.38044919 [1,6]. Moreover, when P is in convex position we have αP = 1 and
thus the above proof implies cforce(n) ≤ log3/2(3

(
n
4

)
). On the other hand, none

of these observations leads to an asymptotic improvement on the upper bound
of force(n;P) or cforce(n). In the following we show that any such asymptotic
improvement is in fact impossible.

On Compatible Matchings 231

Lemma 3 (Lower bound on force(n;P)). Fix k ≥ 1 and let P be any set
of n = 2k + 3 points in general position. Then force(n;P) ≥ k + 2 = Ω(log n).

Proof. We use a similar argument as the one used in Theorem 3. Denote by
P1, . . . ,Pk+1 any k + 1 labeled copies of P . Take an arbitrary edge ab on the
convex hull of Pk+1. The line containing ab divides each of P1, . . . ,Pk into two
parts (one possibly empty). Since there are n−2 = 2k+1 > 2k unmatched points,
there exist two points, say x, y, that lie in the same part, for each i = 1, . . . , k.
Thus the two edges xy and ab form a compatible 2-matching implying that
force(n;P) ≥ k + 2. �

Combining upper and lower bounds for force(n;P) from Lemma 3 and 2, we
obtain the following conclusion:

Theorem 5. For every set P of n ≥ 5 points in general position, it holds that

force(n;P) = Θ(log n).

5 Future Research

Besides the presented results there are several related directions of research.
Below we list some of them, together with open questions emerging from the
previous sections.

1. A natural open problem is the computational complexity of finding compati-
ble matchings of a certain size or even deciding their existence: How fast can
we decide if two (or more) given (general or convex) labeled point sets have
a perfect compatible matching (or a compatible matching of size k)?

2. Can we close the gaps between the lower and upper bounds, Ω(
√

n) and
O(n2/3) respectively, for the size of the largest compatible matchings for two
labeled point sets (general, convex, or of any other particular order type)?

3. Can we improve the constructions to match their according probabilistic
bounds?

4. Consider the following game version: two players alternately add an edge
which must not intersect any previously added edge. The last player who is
able to add such an edge wins. It is not hard to see that for a single set of
points in convex position, this is the well-known game Dawson’s Kayles, see
e.g. [13]. This game can be perfectly solved using the nimber theory developed
by Sprague-Grundy, see also [13] for a nice introduction to the area. An
interesting generalization of Dawson’s Kayles occurs when the players use
two (or more) labeled (convex) point sets and add compatible edges.

5. What are tight bounds for the size of compatible paths and compatible cycles
(see [14,15])? In ongoing work we have obtained first results in this direction.

232 O. Aichholzer et al.

References

1. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: A central approach
to bound the number of crossings in a generalized configuration. In: LAGOS2007,
pp. 273–278. ENDM (2007)

2. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing num-
ber of Kn: closing in (or are we?). In: Pach, J. (ed.) Thirty Essays on Geomet-
ric Graph Theory, pp. 5–18. Springer (2013). https://doi.org/10.1007/978-1-4614-
0110-0 2

3. Aichholzer, O., Aurenhammer, F., Hurtado, F., Krasser, H.: Towards compatible
triangulations. TCS 296(1), 3–13 (2003)

4. Aichholzer, O., Barba, L., Hackl, T., Pilz, A., Vogtenhuber, B.: Linear transfor-
mation distance for bichromatic matchings. CGTA 68, 77–88 (2018)

5. Aichholzer, O., et al.: Compatible geometric matchings. CGTA 42(6–7), 617–626
(2009)

6. Aichholzer, O., Duque, F., Fabila-Monroy, R., Hidalgo-Toscano, C., Garćıa-
Quintero, O.E.: An ongoing project to improve the rectilinear and the pseudolinear
crossing constants. ArXiv e-Prints (2020)

7. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017)

8. Aloupis, G., Barba, L., Langerman, S., Souvaine, D.: Bichromatic compatible
matchings. CGTA 48(8), 622–633 (2015)

9. Aronov, B., Seidel, R., Souvaine, D.: On compatible triangulations of simple poly-
gons. CGTA 3, 27–35 (1993)

10. Arseneva, E., et al.: Compatible paths on labelled point sets. In: CCCG 2018, pp.
54–60 (2020)

11. Babikov, M., Souvaine, D.L., Wenger, R.: Constructing piecewise linear homeo-
morphisms of polygons with holes. In: CCCG 1997 (1997)

12. Baxter III, W.V., Barla, P., Anjyo, K.: Compatible embedding for 2D shape ani-
mation. IEEE Trans. Vis. Comput. Graph. 15(5), 867–879 (2009)

13. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical
plays, vol. 1, 2 edn. A. K. Peters Ltd. (2001)

14. Czabarka, É., Wang, Z.: Erdő-Szekeres theorem for cyclic permutations. Involve J.
Math. 12(2), 351–360 (2019)

15. Czyzowicz, J., Kranakis, E., Krizanc, D., Urrutia, J.: Maximal length common
non-intersecting paths. In: CCCG 1996, pp. 185–189 (1996)

16. Erten, C., Kobourov, S.G., Pitta, C.: Intersection-free morphing of planar graphs.
In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 320–331. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24595-7 30

17. Floater, M.S., Gotsman, C.: How to morph tilings injectively. JCAM 101, 117–129
(1999)

18. Hui, P., Schaefer, M.: Paired pointset traversal. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 534–544. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30551-4 47

19. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings.
DCG 49, 89–131 (2013)

20. Krasser, H.: Kompatible Triangulierungen ebener Punktmengen. Master’s thesis,
Graz University of Technology (1999)

21. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algo-
rithmica 16(1), 111–117 (1996)

https://doi.org/10.1007/978-1-4614-0110-0_2
https://doi.org/10.1007/978-1-4614-0110-0_2
https://doi.org/10.1007/978-3-540-24595-7_30
https://doi.org/10.1007/978-3-540-30551-4_47
https://doi.org/10.1007/978-3-540-30551-4_47

On Compatible Matchings 233

22. Saalfeld, A.: Joint triangulations and triangulation maps. In: SoCG 1987, pp. 195–
204 (1987)

23. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. E-JC18(1)
(2011)

24. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, span-
ning cycles, and Kasteleyn’s technique. JCTA 120(4), 777–794 (2013)

Upward Point Set Embeddings
of Paths and Trees

Elena Arseneva1 , Pilar Cano2 , Linda Kleist3(B) , Tamara Mchedlidze4,
Saeed Mehrabi5 , Irene Parada6 , and Pavel Valtr7

1 Saint Petersburg State University, Saint Petersburg, Russia
e.arseneva@spbu.ru

2 Université Libre de Bruxelles, Brussels, Belgium
pilar.cano@ulb.ac.be

3 Technische Universität Braunschweig, Brunswick, Germany
kleist@ibr.cs.tu-bs.de

4 Utrecht University, Utrecht, Netherlands
mched@iti.uka.de

5 Memorial University, St. John’s, Canada
smehrabi@mun.ca

6 TU Eindhoven, Eindhoven, The Netherlands
i.m.de.parada.munoz@tue.nl

7 Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Prague, Czech Republic

Abstract. We study upward planar straight-line embeddings (UPSE)
of directed trees on given point sets. The given point set S has size at
least the number of vertices in the tree. For the special case where the
tree is a path P we show that: (a) If S is one-sided convex, the number
of UPSEs equals the number of maximal monotone paths in P . (b) If
S is in general position and P is composed by three maximal monotone
paths, where the middle path is longer than the other two, then it always
admits an UPSE on S. We show that the decision problem of whether
there exists an UPSE of a directed tree with n vertices on a fixed point
set S of n points is NP-complete, by relaxing the requirements of the
previously known result which relied on the presence of cycles in the
graph, but instead fixing position of a single vertex. Finally, by allowing
extra points, we guarantee that each directed caterpillar on n vertices
and with k switches in its backbone admits an UPSE on every set of
n2k−2 points.

Keywords: Upward planarity · Directed graph · Digraph · Tree ·
Caterpillar · Path · NP-completeness · Counting · Upper bound

1 Introduction

A classic result by Fary, Stein, Wagner [11,15,16], known as Fary’s theorem,
states that every planar graph has a crossing-free straight-line drawing. Given a
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 234–246, 2021.
https://doi.org/10.1007/978-3-030-68211-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_19&domain=pdf
http://orcid.org/0000-0002-5267-4512
http://orcid.org/0000-0002-4318-5282
http://orcid.org/0000-0002-3786-916X
http://orcid.org/0000-0003-0994-6428
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0002-3102-4166
https://doi.org/10.1007/978-3-030-68211-8_19

Upward Point Set Embeddings of Paths and Trees 235

directed graph (called digraph for short), it is natural to represent the direction
of the edges by an upward drawing, i.e., every directed edge is represented by
a monotonically increasing curve. Clearly, it is necessary for the digraph to be
acyclic in order to allow for an upward drawing.

In nice analogy to Fary’s theorem, if a planar digraph has an upward planar
drawing, then it also allows for an upward planar straight-line drawing [8]. In
contrast, not every planar acyclic digraph has an upward planar drawing [8]. Nev-
ertheless, some classes of digraphs always allow for such drawings. For instance,
every directed tree has an upward planar straight-line drawing [7, p. 212].

In this work, we study upward planar straight-line drawings of directed trees
on given point sets. An upward planar straight-line embedding (UPSE, for short)
of a digraph G = (V,E) on a point set S, where |V | ≤ |S|, is an injection
from V to S such that the induced straight-line drawing is planar (crossing-free)
and upward, i.e., for the directed edge uv ∈ E(G), the point representing u lies
below the point representing v. As point-set embeddings of planar undirected
graphs [3–6,14], UPSEs have been an active subject of research [1,2,12,13]. In
the following we review the state of the art in relation to our problems.

Kaufmann et al. [12] showed that in case |V | = |S| it is NP-complete to
decide whether an upward planar digraph admits an UPSE on a given point set.
We note that the upward planar digraph obtained in their reduction contains
cycles in its underlying undirected graph. The same authors gave polynomial-
time algorithm to decide if an upward planar digraph admits an UPSE on a
convex point set.

A digraph whose underlying undirected structure is a simple path is called
oriented path. For the class of oriented paths multiple partial results have been
provided, by either limiting the class of the point set, the class of oriented paths,
or by considering the case where |S| > |V |. In particular, by limiting the class
of point sets, Binucci et al. showed that every oriented path admits an UPSE
on every convex point set of the same size [2]. By limiting the class of oriented
paths, it has been shown that the following subclasses of oriented paths always
admit an UPSE on any general point set of the same size:

1. An oriented path with at most five switches1 and at least two of its sections2

having length3 two [1].
2. An oriented path P with three switches [2].
3. An oriented path P = (v1, . . . , vn), so that if its vertex vi is a sink, then its

vertex vi+1 is a source [2].
4. An oriented path P such that its decomposition into maximal monotone paths

P1, P2 . . . , Pr satisfies that |Pi| ≥ ∑
j>i |Pj | for every i = 1, 2, . . . , r − 1 [6].

Given these partial results, it is an intriguing open problem whether every
oriented path P admits an UPSE on every general point set S with |P | = |S|.
In contrast to this question, there exists a directed tree T with n vertices and

1 A vertex of a digraph which is either a source or a sink is called switch.
2 A section of an oriented path is a subpath that connects two consecutive switches.
3 The length of a path is the number of vertices in it.

236 E. Arseneva et al.

a set S with n points in convex position such that T does not admit an UPSE
on S [2]. While restricting the class of trees to directed caterpillars, Angelini
et al. [1] have shown that an UPSE exists on any convex point set.

The variant of the problem where the point set is larger than the oriented
path, was considered by Angelini et al. [1] and Mchedlidze [13]. They proved that
every oriented path P with n vertices and k switches admits an UPSE on every
general point set with n2k−2 points [1] or on (n−1)2 +1 points Mchedlidze [13],
respectively.

Our Contribution. In this paper we continue the study of UPSE of digraphs.
We tackle the aforementioned open problem from multiple sides. Firstly, we show
that the problem of deciding whether a digraph on n vertices admits an UPSE
on a given set of n points remains NP-complete even for trees when one ver-
tex lies on a predefined point. (Sect. 5). This strengthens the previously known
NP-completeness result, where the underlying undirected structure contained
cycles [12]. Thus, even if it is still possible that every oriented path admits an
UPSE on every general point set, this new NP-completeness might foreshadow
that a proof for this fact will not lead to a polynomial time construction algo-
rithm. Secondly, we provide a new family of n-vertex oriented paths that admit
an UPSE on any general set of n points (Section 3), extending the previous
partial results [1,2]. Thirdly, by aiming to understand the degrees of freedom
that one has while embedding an oriented path on a point set, we show that the
number of different UPSEs of an n-vertex oriented path on a one-sided convex
set of n points is equal to the number of sections the path contains (Sect. 2).
Finally, as a side result, we study the case where the point set is larger than
the graph and show that the upper bound n2k−2 on the size of a general point
set that hosts every oriented path [1] can be extended to caterpillars (Sect. 4),
where k is the number of switches in the caterpillar. The proof is largely inspired
by the corresponding proof for oriented paths. However, the result itself opens a
new line of investigations of providing upper bounds on the size of general point
sets that are sufficient for UPSE of families of directed trees.

Definitions. A set of points is called general, if no three of its points lie on the
same line and no two have the same y-coordinate. The convex hull H(S) of a
point set S is the point set that can be obtained as a convex combination of the
points of S. We say that a point set is in convex position, or is a convex point
set, if none of its points lie in the convex hull of the others. Given a general
point set S, we denote the lowest and the highest point of S by b(S) and t(S),
respectively. A subset of points of a convex point set S is called consecutive if its
points appear consecutively as we traverse the convex hull of S. A convex point
set S is called one-sided if the points b(S) and t(S) are consecutive in it; refer
to Fig. 1.

Let Γ be an UPSE of a digraph G = (V,E) on a point set S. For every
v ∈ V , Γ (v) denotes the point of S where vertex v has been mapped to by Γ .
A directed tree is a digraph, whose underlying graph is a tree. A digraph, whose
underlying graph is a simple path is called oriented path. A directed caterpillar
is a directed tree in which the removal of the vertices of degree 1 results in an

Upward Point Set Embeddings of Paths and Trees 237

oriented path: the backbone. For an oriented path (v1, v2, . . . , vn), we call vivi+1

a forward (resp., backward) edge if it is oriented from vi to vi+1 (resp., from vi+1

to vi). A vertex of a digraph with in-degree (resp., out-degree) equal to zero is
called a source (resp., sink). A vertex of a digraph which is either a source or
a sink is called switch. A subpath of an oriented path P connecting two of its
consecutive switches is said to be monotone and called a section of P . A section
is forward (resp., backward) if it consists of forward (resp., backward) edges.

2 Counting Embeddings of Paths on Convex Sets

In this section, we study the number of UPSEs that an n-vertex oriented path
has on a one-sided convex set of n points. We show that this number is equal to
the number of sections in the oriented path. We start with the following

Lemma 1. Let P be an n-vertex oriented path with v1 being one of its end-
vertices and let S be a one-sided convex point set with |S| = n. For any two
different UPSEs Γ1 and Γ2 of P on S, it holds that Γ1(v1) �= Γ2(v1).

Proof. Let {p1, . . . , pn} be the points of S sorted by y-coordinate. For the sake of
contradiction, assume that there exist two different UPSEs Γ1 and Γ2 of P on S
with Γ1(v1) = Γ2(v1). Additionally, assume that the considered counterexample
is minimal, in the sense that for the vertex v2 of P , adjacent to v1, Γ1(v2) �=
Γ2(v2). By [2, Lemma 3], vertices v1 and v2 lie on consecutive points of S. We
assume that the edge v1v2 is a forward edge; the case when v1v2 is a backward
edge is symmetric. Conditions Γ1(v1) = Γ2(v1), Γ1(v2) �= Γ2(v2), and the fact
that v1, v2 lie on consecutive points of S, imply that Γ1(v1) = Γ2(v1) = p1, and
Γi(v2) = pn, Γj(v2) = p2, with i, j ∈ {1, 2}. Embedding Γi is an UPSE of P
when the edge v2v3 is backward, while Γj is an UPSE of P when the edge v2v3
is forward. We arrive to a contradiction. ��

We are now ready to prove the result of this section.

Theorem 1. An n-vertex oriented path P with k sections has exactly k UPSEs
on a one-sided convex set of n points.

Proof. We first show that P has at least k UPSEs. To do so, let P = (v1, . . . , vn)
be an oriented path with k sections and let S be a one-sided convex point set
with points {p1, . . . , pn} ordered by the increasing y-coordinate. Let vl be the
switch of P preceding vn. Thus, the subpath of P between vl and vn is P ’s last
section. Let denote the subpath of P between v1 and vl by P ′. We prove the
statement of the theorem by the following stronger induction hypothesis: there
are k UPSEs of P on S, such that one of them maps vn to pn (resp., p1) if the last
section is forward (resp., backward). The base case of k = 1 is trivial. Assume
that the k-th section of P is forward (resp., backward) and let S′ = {p1, . . . , pl}
(resp., S′ = {pn−l+1, . . . , pn}). By induction hypothesis, the path P ′ has k − 1
UPSEs on S′, with one of them mapping vl to p1 (resp., pn). Let Γ be one of
them. Assume that Γ (vl) = pi, pi ∈ S′. We shift every vertex that has been

238 E. Arseneva et al.

mapped to point pj , i < j ≤ l (resp., n− l +1 ≤ j < i) by n− l points up (resp.,
down); refer to Fig. 1(a). We map the k-th section to points pi+1, . . . , pi+n−l

(resp., pi − 1, . . . , pi−n+l). This gives us k − 1 UPSEs of P on S.

Fig. 1. (a–b) An illustration for the proof of Theorem 1, showing an extension of an
UPSE of P ′ (black) to an UPSE of P (gray). In (a) vl lies on a non-extreme point of S′,
in (b) vl is an extreme point of S′. (c) Description of path P presented in Theorem 2.

Recall that, by induction hypothesis, P ′ has an UPSE Γ ′ on S′ that maps vl

to p1 (resp., pn) on S′, since its last section is backward (resp., forward). Thus,
we can also extend Γ ′ by mapping the k-th section to points pl+1, . . . , pn (resp.,
p1, . . . , pn−l); refer to Fig. 1(b). Hence, there exists a UPSE of P that maps vn

to pn(resp., p1) if the last section is forward (resp., backward). By Lemma 1,
no two of the constructed embedding of P on S are the same. Thus, P has at
least k UPSEs on S.

We now apply a counting argument to show that each oriented path with k
sections has exactly k UPSEs on S. Note that the total number of possible UPSEs
of different directed paths of size n on an n-point one-sided convex point set is
n·2n−2. To see this, note that an UPSE can be encoded by the start point and the
position (clockwise or counterclockwise consecutive) of the next point. For the
last choice the clockwise and the counterclockwise choices coincide. Moreover,
the number of oriented paths with n − 1 edges and k sections is ρk := 2

(
n−2
k−1

)

and the number of n-vertex oriented paths is
∑n−1

k=1 ρk = 2n−1. Let ηk denote
the number of UPSEs of all oriented paths on n vertices with k sections.

As shown above, an oriented path with k sections has at least k UPSEs on S.
By the symmetry of the binomial coefficient, it holds that ρk = ρn−k. Therefore,
the number of UPSEs of all oriented paths with k and n − k sections evaluates
to at least kρk + (n − k)ρn−k = n

2 (ρk + ρn−k). This implies

n2n−2 =
n−1∑

k=1

ηk ≥
n−1∑

k=1

kρk =
n

2
·

n−1∑

k=1

ρk =
n

2
· 2n−1 = n2n−2.

Consequently, each oriented path with k sections has exactly k UPSEs on S. ��

Upward Point Set Embeddings of Paths and Trees 239

3 Embedding of Special Directed Paths

In this section we present a family of oriented paths that always admit an UPSE
on every general point set of the same size. For an illustration of paths in this
family, consider Fig. 1(c).

Theorem 2. Let P be an oriented path with three sections P1 = (u1, . . . , ua),
P2 = (v1, . . . , vb) and P3 = (w1, . . . , wc), where ua = v1, vb = w1 and b ≥ a, c.
Then path P admits an UPSE on any general set S of n = a + b + c − 2 points.

Proof. We assume that P1 is forward, otherwise, we rename the vertices of P by
reading it off from vertex wc. Let � denote the line through t(S) and b(S), and
let �− (resp., �+) be the halfplane on the left (resp., on the right) when walking
from b(S) to t(S) along �. We assume that both �− and �+ are closed, and hence
|S ∩ �+| + |S ∩ �−| = a + b + c. We now consider two cases.

Fig. 2. An illustration of the proof of Theorem 2. (a) Embedding of P in Case 1.
(b) Embedding of P in Case 2. Point set S2 lies in the red convex polygon.

Case 1: |S ∩�+| ≥ a+c or |S ∩�−| ≥ a+c. We consider the case |S ∩�−| ≥ a+c
(refer to Fig. 2(a), with |S∩�+| ≥ a+c being symmetric. We rotate a left heading
horizontal ray r emanating from t(S) in counter-clockwise direction until it hits
the a-th point (including t(S)); we let p denote this point and let S1 denote the
points swept by r. Notice that b(S) �∈ S1 because |S ∩ �−| > a. We embed P1 on
the points in S1, by sorting them by ascending y-coordinate.

From |S ∩ �−| ≥ a + c it follows that |(S \ S1) ∩ �−| ≥ c. Hence, we can
embed P3 on S ∩ �−. To do so, we rotate around b(S) a left-heading horizontal
ray r′ in clockwise direction until it hits the c-th point of (S \ S1) ∩ �−; denote
these c points by S3 and let p′ be the last point hit by r′. We embed P3 on the
points of S3 by sorting them by ascending y-coordinate.

Let S2 = (S\(S1∪S3))∪{b(S), t(S)}. Then, the polygonal region determined
by the horizontal lines through t(S) and b(S), the line through t(S) and p, the

240 E. Arseneva et al.

line through b(S) and p′, and the vertical line through the rightmost point of S2

is a convex region that contains all points in S2 and and has t(s) (resp., b(s)) as
its topmost (resp., bottommost) vertex. Therefore, we can embed P2 onto S2 by
sorting them by descending y-coordinate. We observe that ua = v1 and vb = w1

have been consistently embedded on b(S) and t(S), respectively.

Case 2: |S ∩ �+| ≤ a + c and |S ∩ �−| ≤ a + c. It follows that |S ∩ �−| ≥ b ≥ a
and |S ∩ �+| ≥ b ≥ c; refer to Fig. 2(b). Since |S ∩ �−| ≥ a, we can construct the
set S1 ⊂ S ∩ �− similarly to Case 1, and embed P1 on its points. We then rotate
a right-headed horizontal ray r′ in counter-clockwise direction around b(S) until
it hits the c-th point p′ of �+ and denote by S3 the points swapped by r′. Since
|S ∩�+| > c, t(S) �∈ S3. We embed P3 onto S3 by sorting the points by ascending
y-coordinate.

Finally, let S2 = (S \ (S1 ∪ S3)) ∪ {b(S), t(S)}. We note that the polygonal
region determined by the horizontal lines through t(S) and b(S), the line through
t(S) and p, and the line through b(S) and p′ is a convex polygon that contains
all points of S2. Also recall that b(S) and t(S) are respectively the bottommost
and the topmost points of S2. Thus, we can embed P2 onto the points in S2 by
sorting them by descending y-coordinate. Note that ua = v1 and vb = w1 have
been consistently mapped to t(S) and b(S), respectively. ��

4 Embedding Caterpillars on Larger Point Sets

In this section, we provide an upper bound on the number of points that suffice to
construct an UPSE of an n-vertex caterpillar. We first introduce some necessary
notation. Let C be a directed caterpillar with n vertices, r of which, v1, v2, . . . , vr,
form its backbone. For each vertex vi (i = 1, 2, . . . , r), we denote by A(vi) (resp.,
B(vi)) the set of degree-one vertices of C adjacent to vi by outgoing (resp.,
incoming) edges. Moreover, we let ai = |A(vi)| and bi = |B(vi)|.
Theorem 3. Let C be a directed caterpillar with n vertices and k switches in its
backbone. Then C admits an UPSE on any general point set S with |S| ≥ n2k−2.

Proof. Assume that C contains r vertices v1, v2, . . . , vr in its backbone. Let Cα,β

denote the subgraph of C induced by the vertices
⋃β

i=α {vi} ∪ A(vi) ∪ B(vi). We
first make the following observation.

Observation 4 If the backbone of C contains exactly one section, C has an
UPSE on any general set S of n points.

To see that, we sort the points in S = {p1, . . . , pn} by ascending y-coordinate
and, assuming C is forward (the backward case is symmetric), we embed vi on
px, where x = i + bi +

∑i−1
j=1(bj + aj). See to Fig. 3(a) for an illustration.

We now prove the theorem by induction on k. We assume as the induction
hypothesis that a directed caterpillar C with i switches and ni vertices has an
UPSE on any general point set S of at least ni2i−2 points. Let v denote the first
vertex of the backbone of C. We additionally assume that if v is a source (resp.

Upward Point Set Embeddings of Paths and Trees 241

sink), then v is mapped on the (|B(v)|+1)-th bottommost (resp. (|A(v)|+1)-th
topmost) point of S. For k = 2, the backbone of C contains one section; hence,
the induction hypothesis follows from Observation 4 and its proof.

We now consider a caterpillar C with i+1 switches and ni+1 vertices. Let v1
and vl denote the first and the second switches of the backbone of C, respectively.
Let S be a set of at least N = ni+12i−1 points. In the following, we only consider
the case where the backbone of C1,l is forward; the backward case is symmetric.

We construct an UPSE of C1,l−1 on the c1 =
∑l−1

i=1 (1 + bi + ai) lowest points
of S by applying Observation 4. Let p denote the point where vl−1 is mapped.
Let S′ denote the unused points of S; thus, |S′| = N−c1. We have ni+1 = ni+c1,
where ni is the number of vertices of Cl,r. Recall that N = ni+12i−1. Therefore,
|S′| > ni2i−1. Let p′ be the (al + 1)-th topmost point in S′ and let � denote the
line through p and p′. Line � partitions S′ into two sets, so that for the largest,
say S′′, it holds that |S′′| ≥ ni2i−2. Let S′′′ be the union of S′′ with the set of
points lying above vl. Since Cl,r contains i switches, by induction hypothesis, we
can construct an UPSE of Cl,r on S′′′ such that vl is mapped on the (al + 1)-th
topmost point of S′′′, which is the point p′. The only edge of the drawing of C1,l

that interferes with the drawing of Cl,r is (vl−1, vl); however, the drawing of Cl,r

(except for the edges incident to vl) lies on one side of the edge (vl−1, vl). ��

Fig. 3. Illustration of the proofs of (a) Observation 4; (b) Theorem 3; (c) An illustration
of the tree T in the proof of Theorem 5.

5 NP-Completeness for Trees

In this section, we consider the following problem: Given a directed tree T with
n vertices, a vertex v of T , a set S of n points in the plane, and a point p in S,
does T have an UPSE on S which maps v to p? Our goal is to show the following.

Theorem 5. UPSE of a directed tree with one fixed vertex is NP -complete.

242 E. Arseneva et al.

The 3-Partition problem is a strongly NP-complete problem by Garey and
Johnson [9,10], which is formulated as follows: For a given multiset of 3m inte-
gers {a1, . . . , a3m}, does there exist a partition into m triples (a11, a21, a31), . . . ,
(a1m, a2m, a3m), so that for each j ∈ [m],

∑3
i=1 aij = b, where b = (

∑3m
i=1 ai)/m.

In this section, we present a reduction from 3-Partition. Without loss of gener-
ality, we may assume, possibly multiplying each ai by 3, that each ai is divisible
by 3.

Given 3m integers {a1, . . . , a3m}, where each ai is divisible by 3, we construct
an instance of our problem as follows. Let � and h be two large numbers such that
� > mb and h = m + 1. We construct a tree T with n := mb + h� + 1 vertices,
and a point set S with n points. As illustrated in Fig. 3(c), (the undirected
version of) the tree T is a subdivision of a star, that is, T has a single vertex s
of degree greater than two. Specifically, the degree of vertex s is 3m + h, i.e.,
3m+h paths meet in their initial vertex s; we call each such path a branch of T .
Let T1, . . . , T3m+h denote the branches, respectively. For i ∈ {1, . . . , 3m}, the
branch Ti is a path with ai edges and called small ; for i ∈ {3m+1, . . . , 3m+h},
the branch Ti is a path with � edges and called large. Note that ai and � may also
be interpreted as the number of vertices of a branch that are different from s.

For each branch Ti, we define its root ri as follows. For a small branch Ti,
ri is the first vertex on Ti that is different from s; for a large branch, ri is the
second vertex different from s. For every branch, all edges are oriented so that
its root is the unique sink of the branch. Thus the sinks of T are exactly the
3m + h roots of the branches, and the sources of T are s and the 3m + h leaves
of T .

The point set S is depicted in Fig. 4(a) and constructed as follows. The
lowest point of S is p = (0, 0). Let E be an ellipse with center at p, (horizontal)
semi-major axis 5 and (vertical) semi-minor axis 3. Let C be a convex x- and y-
monotone curve above E and also above the point (−3, 3), represented by the
filled square mark in Fig. 4(a). Consider the cone defined by the upward rays
from p with slopes -1, -2, and subdivide this cone into 2m + 1 equal sectors by
2m upward rays from p. Let s0, . . . , s2m denote the obtained sectors ordered
counter-clockwise. For each odd i = 2k + 1 with 0 < i ≤ 2m, consider the
intersection between the sector si and the ellipse E (the orange arcs in Fig.
4(a)) and let Bk be the set of b equally spaced points on this intersection.

For each even i = 2k with 0 ≤ k ≤ m, consider the intersection ck between
sector si and curve C (the green arcs in Fig. 4(a)). Let the point set Lk be
constructed as follows. Place the first point q′

k of Lk in the sector si slightly to
the right of (and thus slightly below, to stay inside the sector) the topmost point
of the arc ck. Let, for k > 0, xk be the point of intersection between ck and the
line through q′

k and the topmost point of the set Bk. For k = 0 let xk be the
highest point of ck. Place the second point qk of Lk on ck slightly below xk, but
still above q′

k, see also Fig. 4(a). Place �−2 points equally spaced on ck below qk.
This concludes our description of T and S. In the remaining, the point sets Bk

are called small sets, and the point sets Lk are called large sets.

Upward Point Set Embeddings of Paths and Trees 243

Fig. 4. An illustration for the proof of Theorem 5 with zoomed portions: (a) the point
set S, and (b) a schematic illustration of a consistent embedding of T on S. (Color
figure online)

To prove Theorem 5, we show that {a1, . . . a3m} admits a 3-partition if and
only if T admits an UPSE Γ on S where Γ (s) = p. In particular, our proof is
based on the fact that if such an UPSE exists, then it nearly fulfills the special
property of being a consistent embedding of T on S (Lemma 2). An embedding
Γ is consistent if Γ (s) = p and each large branch of T is mapped to exactly one
large point set; for a schematic illustration consider Fig. 4(b).

By construction of S, if the large branches are mapped to the large point
sets, then the small branches of T must be subdivided into m groups each with
a total of b vertices. Each such group then corresponds to a triple (a1i, a2i, a3i)
of the partition of (a1, . . . , a3m) that sums up to b. Conversely, a 3-partition
directly yields a consistent embedding. This proves the following fact:

Fig. 5. (a) A partial embedding Γi+1 of Γ that is not consistent, while Γi is. (b) A
modification Γ ′ of Γ such that Γ ′

i+1 is consistent.

244 E. Arseneva et al.

Observation 6. T has a consistent embedding on S if and only if {a1, . . . a3m}
has a 3-partition.

Now we prove the main lemma of this section in order to conclude Theorem 5.

Lemma 2. If T admits an UPSE Γ on S mapping s to p (Γ (s) = p), then T
also admits a consistent UPSE on S mapping s to p.

Proof. To show that T admits a consistent embedding, we work our way from
right to left. Let Γi denote the partial embedding of T induced by restricting Γ
to the points in Si := ∪k≤i(Lk ∪ Bk) for every i. We say Γi is consistent if
large branches are mapped to large sets of Si and small branches are mapped to
small sets of Si. In particular, we prove the following: If there is an embedding
Γ with Γ (s) = p whose partial embedding Γi is consistent, then there is an
embedding Γ ′ with Γ ′(s) = p whose partial embedding Γ ′

i+1 is consistent.
For unifying notation, we define B0, B−1, L−1 := ∅. Suppose there is an

embedding Γ such that Γi is consistent. Suppose that the partial embedding
Γi+1 of Γ is not consistent (otherwise let Γ ′ be Γ). Since qi+1 is the highest
point of S \ Si, Γ (rj) = qi+1 for some branch Tj . We distinguish two cases
depending on whether Tj is a small or large branch. If Tj is a small branch,
then Bi+1 and q′

i+1 is to the right of segment pqi+1. Depending on whether
Tj continues left or right, a set of small branches is mapped on Bi+1 ∪ {q′

i+1}
or Bi+1 ∪ {qi+1, q

′
i+1}, respectively. (In the latter case, Tj is one of the small

branches mapped on Bi+1 ∪ {qi+1, q
′
i+1}.) However, the cardinality of these sets

is not divisible by three; a contradiction. Therefore Tj is a large branch.
Then there exists a point y �= q′

i+1 such that the segments py and yqi+1

represent the first two edges of Tj . If y belongs to a large set, then yqi+1 separates
all points between y and qi+1 on C from p. Therefore, there are only three
different options for the placement of y on a large set: qi+2, q′

i+2 or the left
neighbour of qi+1 in Li+1. If y is qi+2 or q′

i+2, then a number of small branches
are mapped to Bi+1 ∪ {q′

i+2, q
′
i+1} or to Bi+1 ∪ {q′

i+1}, respectively. However,
the cardinality of these sets is not divisible by three, a contradiction. In the
case that y is the left neighbour of qi+1 in Li+1, branch Tj must continue to
the right of qi+1. However, this would imply that Tj contains at most b + 3
points, a contradiction to � > b + 3. Therefore, y belongs to a small set Bj with
j > i + 1. Moreover, y belongs to Bi+2, otherwise q′

i+2 had to be the root of a
large branch which would lead to a contradiction. Let A be the set of all points
of Bi+2 to the right of y. The set A ∪ {q′

i+1} is separated from the rest of the
points of S \ (Si ∪ Γ (Tj) ∪ Bi+1) by the segments py and yqi+1. Since there are
less than � points in A ∪ {q′

i+1} ∪ Bi+1, several small branches of T are mapped
to A ∪ {q′

i+1} ∪ Bi+1. In addition, since |Bi+1 ∪ {q′
i+1}| is not divisible by three,

for the small branch that maps its root to q′
i+1, the rest of this branch is mapped

to the left of pq′
i+1. To construct a sought embedding Γ ′ we modify Γ as follows.

Consider the point y′ in Bi+2 (y′ lies to the right of y) such that the segment
y′q′

i+1 is in the partial embedding of Γi+1. First, we map to q′
i+1 the vertex of Tj

previously mapped to y (i.e., Γ−1(y)). Let A′ ⊂ A be all the points to the left of
y′ in A. For each vertex mapped to a point z in A′ ∪ {y′}, we map such vertex

Upward Point Set Embeddings of Paths and Trees 245

to the left neighbour of z in A′ ∪ {y}. Finally, the vertex that was mapped to
q′
i+1 is now mapped to y′. See Fig. 5.

The obtained embedding Γ ′ is such that Γ ′
i+1 is consistent. Indeed, in Γ ′ the

branch Tj is embedded entirely on Li+1; otherwise some point of Li+1 would be
separated from p. And since |Bi+1| = b < �, a set of small branches is embedded
on Bi+1. Together with the obvious fact that in any UPSE Γ of T on S, Γ−1 is
consistent, the above observation implies the claim of the lemma. ��

6 Conclusion and Open Problems

In this paper, we continued the study of UPSE of directed graphs, specifically
of paths, caterpillars, and trees. On the positive side, we showed that a certain
family of n-vertex oriented paths admits an UPSE on any general n-point set
and that any caterpillar can be embedded on a general point set if the set is
large enough. Moreover, we provided the exact number of UPSEs for every path
on a one-sided convex set. On the negative side, we proved that the problem
of deciding whether a directed graph on n vertices admits an UPSE on a given
set of n points remains NP-complete even for trees when one vertex lies on a
pre-defined point. We conclude with a list of interesting open problems:

1. Given any oriented path P and any general point set S with |P | = |S|, does
there exist an UPSE of P on S?

2. If the answer to the previous question turns out to be negative, what is the
smallest constant c such that a set of c paths on a total of n vertices, has an
UPSE on every general point set on n points? This problem could also be an
interesting stepping stone towards a positive answer of the previous question.

3. Given a directed tree T on n vertices and a set S of n points, is it NP-hard
to decide whether T has an UPSE on S?

4. Can the provided upper bound on the size of general point sets that host every
caterpillar be improved to polynomial in the number of vertices, following the
result in [13]? If yes, can this be extended to general directed trees?

Acknowledgement. This work was initiated at the 7th Annual Workshop on Geome-
try and Graphs, March 10-15, 2019, at the Bellairs Research Institute of McGill Univer-
sity, Barbados. We are grateful to the organizers and to the participants for a wonderful
workshop. E. A. was partially supported by RFBR, project 20-01-00488. P. C. was sup-
ported by the F.R.S.-FNRS under Grant no. MISU F 6001 1. The work of P. V. was
supported by grant no. 19-17314J of the Czech Science Foundation (GAČR).

References

1. Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.:
Upward geometric graph embeddings into point sets. In: Brandes, U., Cornelsen, S.
(eds.) GD 2010. LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18469-7 3

https://doi.org/10.1007/978-3-642-18469-7_3
https://doi.org/10.1007/978-3-642-18469-7_3

246 E. Arseneva et al.

2. Binucci, C., et al.: Upward straight-line embeddings of directed graphs into point
sets. Comput. Geom. 43, 219–232 (2010)

3. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.
23(3), 303–312 (2002)

4. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. J. Graph Algorithms Appl. 1(2), 1–15 (1997)

5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)

6. Cagirici, O., et al.: On upward straight-line embeddings of oriented paths. In: Abs.
of the XVII Spanish Meeting on Computational Geometry, pp. 49–52 (2017)

7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

8. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theoret. Comput. Sci. 61(2–3), 175–198 (1988)

9. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., London (1979)

11. István, F.: On straight-line representation of planar graphs. Acta Scientiarum
Mathematicarum 11(229–233), 2 (1948)

12. Kaufmann, M., Mchedlidze, T., Symvonis, A.: On upward point set embeddability.
Comput. Geom. 46(6), 774–804 (2013)

13. Mchedlidze, T.: Reprint of: upward planar embedding of an n-vertex oriented path
on O(n2) points. Comput. Geom. 47(3), 493–498 (2014)

14. Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991)

15. Stein, S.K.: Convex maps. Proc. AMS 2(3), 464–466 (1951)
16. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen

Mathematiker-Vereinigung 46, 26–32 (1936)

2-Colored Point-Set Embeddings
of Partial 2-Trees

Emilio Di Giacomo1(B), Jaroslav Hančl Jr.2, and Giuseppe Liotta1

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
{emilio.giacomo,giuseppe.liotta}@unipg.it

2 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
jarda.hancl@gmail.com

Abstract. Let G be a planar graph whose vertices are colored either red
or blue and let S be a set of points having as many red (blue) points as
the red (blue) vertices of G. A 2-colored point-set embedding of G on S
is a planar drawing that maps each red (blue) vertex of G to a red (blue)
point of S. We show that there exist properly 2-colored graphs (i.e.,
2-colored graphs with no adjacent vertices having the same color) hav-
ing treewidth two whose point-set embeddings may require linearly many
bends on linearly many edges. For a contrast, we show that two bends
per edge are sufficient for 2-colored point-set embedding of properly
2-colored outerplanar graphs. For separable point sets this bound reduces
to one, which is worst-case optimal. If the 2-coloring of the outerplanar
graph is not proper, three bends per edge are sufficient and one bend per
edge (which is worst-case optimal) is sufficient for caterpillars.

Keywords: Point-set embedding · Curve complexity · Topological
book embeddings · 2-page bipartite book embedding

1 Introduction

Let G be a planar graph with n vertices and let S be a set of n distinct points
in the plane. A point-set embedding of G on S is a crossing free drawing of G
such that every vertex of G is mapped to a distinct point of S. Point-set embed-
dings are a classical subject of investigation in graph drawing and computational
geometry. The problem has been studied either assuming that the mapping of
the vertices of G to the points of S is part of the input (see, e.g., [23]), or when
the drawing algorithm can freely map any vertex of G to any distinct point of S
(see, e.g., [21]), or when specific subsets of vertices of G can be freely mapped to
specific subsets of points of S with the same cardinality (see, e.g., [11]). Recently,
point-set embeddings in the “beyond planar” scenario, when a constant number
of crossings per edge are allowed, have been also studied (see, e.g., [7,20]).

Work partially supported by: MIUR, grant 20174LF3T8 AHeAD: efficient Algorithms
for HArnessing networked Data, and grant SVV–2020–260578.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 247–259, 2021.
https://doi.org/10.1007/978-3-030-68211-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_20

248 E. Di Giacomo et al.

In this paper we study 2-colored point-set embeddings: The input consists of
a planar graph G with n vertices and of a set S of n distinct points in the plane.
The graph G is 2-colored, that is its vertex set is partitioned into a subset VR of
red vertices and a subset VB of blue vertices. If no two adjacent vertices have the
same color, we say that G is properly 2-colored. Further, S is compatible with G,
i.e. it has |VR| red points and |VB | blue points. We want to construct a planar
drawing of G where every red vertex is mapped to a red point, every blue vertex
is mapped to a blue point, and the number of bends per edge is small.

The literature about the 2-colored point-set embeddability problem is very
rich and, for brevity, we mention here only some of the most relevant results. The
case when no bends along the edges are allowed has been studied for properly
2-colored paths (see, e.g., [1,2,17]), 2-colored trees and forests (see, e.g., [6,10,
16,22,24]), and properly 2-colored cycles (see, e.g., [18]). When bends along the
edges are allowed, Badent et al. prove that there are 2-colored graphs whose 2-
colored point-set embeddings may require linearly many bends on linearly many
edges [4]. On the positive side, outerplanar graphs always admit a 2-colored
point set embedding with curve complexity at most five [9] which reduces to at
most one when the input is a 2-colored path [13]. Variants of the 2-colored point-
set embeddability problem, where the edges are orthogonal chains and only few
bends per edge are allowed have also been studied (see, e.g., [12,19]). The main
contributions of this paper are as follows.

– We show that for any n ≥ 14 there exists a properly 2-colored bipartite
graph G with 2n+4 vertices and treewidth two for which a 2-colored point-set
embedding of G may require at least n−9

4 bends on at least n−5
2 edges (Sect. 3).

We remark that the known linear lower bound on the curve complexity of 2-
colored point-set embeddings assumes the coloring not to be proper and the
treewidth to be larger than two [4].

– We prove that for properly 2-colored outerplanar graphs two bends per edge
are sufficient to compute a 2-colored point-set embedding. The curve com-
plexity can be reduced to one (which is tight) if the point set is linearly
separable, i.e., there exists one line with all the blue points on one side of the
line and all the red points on the other side (Sect. 4).

– We extend the study to partial 2-trees whose coloring may not be proper.
We show that curve complexity three is always sufficient for 2-colored point-
set embeddings of outerplanar graphs and that one bend per edge is a tight
bound for caterpillars (Sect. 5). This results improve over the known upper
bounds of five and two, respectively, for these graph families [9,13].

We remark that the problem of computing a 2-colored point-set embedding
of a graph G with few bends per edge is strictly related with the problem of
computing a 2-colored topological book embedding with few spine crossings per
edge. Let G be a 2-colored graph and let σ be a sequence of red and blue
colors. A 2-colored topological book embedding of G is a planar drawing where
all vertices are points along a horizontal line called spine, the edges are curves
that can cross the spine, and the sequence of colors along the spine coincides

2-Colored Point-Set Embeddings of Partial 2-Trees 249

with σ. By establishing bounds on the number of spine crossings per edge in
a 2-colored topological book embedding of G, we shall establish bounds on the
curve complexity of the 2-colored point-set embeddings of G.

2 Book Embeddings and Point-Set Embeddings

Let G be a planar graph. A 2-page book embedding of G is a planar drawing
of G where all vertices lie on a horizontal line � called the spine and each edge
is drawn in one of the two half-planes defined by �. A 2-page topological book
embedding of G is a planar drawing of G such that all vertices still lie on the
spine � but the edges can cross the spine. Each crossing between an edge an the
spine is called a spine crossing.

Let G be a 2-colored planar graph. A 2-colored sequence is a sequence of
colors such that each element is either red or blue. A 2-colored sequence σ is
compatible with G if the number of red (blue) elements in σ is equal to the
number of red (blue) vertices in G. A (topological) 2-page book embedding of a
2-colored graph G is consistent with a given 2-colored sequence σ if the sequence
of the vertex colors along the spine coincides with σ. Let S be a 2-colored point
set. Set S is compatible with G if its number of red (blue) points is equal to the
number of red (blue) vertices of G. Assume that the points of S have different
x-coordinates (if not we can rotate the plane so to achieve this condition) and
project the points of S on the x-axis. We denote by seq(S) the left-to-right
sequence of colors of the projected points.

In the rest of the paper we will use of the following theorem.

Theorem 1 [13]. Let G be a 2-colored planar graph and let σ be a compatible
2-colored sequence. If G admits a 2-page topological book embedding with at most
one spine crossing per edge consistent with σ, then G admits a 2-colored point-
set embedding on any compatible 2-colored point set S for which seq(S) = σ such
that every edge that crosses the spine in the topological book embedding has two
bends, while every edge that does not cross the spine has one bend.

Note: If this paper is printed black and white, grey points stand for red points.

3 Properly 2-Colored Partial 2-Trees

In this section we prove that there exist partial 2-trees whose 2-colored point-set
embeddings may have linear curve complexity on linearly many edges.

Theorem 2. For every n ≥ 14, there exists a properly 2-colored partial 2-tree
G with 2n + 4 vertices and a 2-colored point set compatible with G such that
every 2-colored point-set embedding of G on S has at least n−5

2 edges each hav-
ing at least n−9

4 bends.

250 E. Di Giacomo et al.

Fig. 1. (a) A properly partial 2-tree G for the proof of Theorem 2. (b) A different planar
embedding of G. In both figures the face colored gray is the only face containing both
red and blue vertices of degree 2.

Proof. Let G be the properly 2-colored partial 2-tree of Fig. 1(a), which consists
of two copies of K2,n connected by an edge; in the first copy of K2,n there are n
blue vertices and 2 red vertices, while in the second copy there are n red vertices
and 2 blue vertices. The additional edge connects a high-degree vertex of the
first copy to a high-degree vertex of the second copy. Let S be a set of points
along a horizontal line � whose colors are alternately red and blue. Let Γ be any
point-set embedding of G on S. If we connect the vertices of Γ with additional
edges in the order they appear along � and we also connect the last vertex along
� to the first one, we obtain a Hamiltonian cycle that alternates red and blue
vertices and possibly crosses some edges of G. If an edge of G is crossed b times
by this cycle, then it has at least b+1 bends. We now show that for any cycle C
that passes through all vertices of G alternating between red and blue vertices
there are at least n−5

2 edges that are crossed at least n−9
4 − 1 = n−13

4 times.
Assume first that n is even. Whatever is the planar embedding of G there exists
only one face f that contains both red and blue vertices of degree 2 (see Fig. 1
for two different planar embeddings of G). We assign a level to the degree-2 blue
vertices as follows. The degree-2 blue vertices of face f are vertices of level 0;
the degree-2 blue vertices that are on face f after the removal of vertices of level
i are vertices of level i + 1. The number of degree-2 blue vertices is n, which is
even, and there are two such vertices at each level; hence the number of levels is
n/2. The blue vertices of level i (0 ≤ i ≤ n/2 − 1) together with their adjacent
vertices (i.e. the two red vertices of high degree) form a 4-cycle Ci that separates
the blue vertices of level j > i from the degree-2 red vertices. The number of
blue vertices of level j > i are n−2(i+1); each of them has two incident edges in
C. At most 4 of these edges can be incident to the two high-degree red vertices
and therefore at least 2(n − 2(i + 1)) − 4 of them have to cross the edges of
all the 4-cycles Cl with l ≤ i. Thus we have at least i cycles crossed at least
2(n − 2(i + 1)) − 4 times, which implies that there are at least i edges (one per
cycle) crossed at least 2(n−2(i+1))−4

4 times. For i = n
4 − 1, we obtain that there

are at least n
4 − 1 edges each crossed at least n−12

4 times. By applying the same

2-Colored Point-Set Embeddings of Partial 2-Trees 251

argument as above to the red vertices of degree 2, we obtain that there are at
least n

4 − 1 edges incident to the degree-2 red vertices each crossed at least n−12
4

times. Thus in total we have at least n
2 − 2 = n−4

2 edges each crossed at least
n−12

4 times. If n is odd we remove one blue and one red vertex of degree 2 and
by the same argument as above, there are at least n−5

2 edges each crossed at
least n−13

4 times. ��
It may be worth recalling that a linear lower bound on the curve complexity

of 2-colored planar graphs was already known [4], but this lower bound holds for
graphs with treewidth larger than two and with a 2-coloring that is not proper.

4 Properly 2-Colored Outerplanar Graphs

Theorem 2 motivates the study of meaningful families of properly 2-colored
graphs having treewidth two and such that a bound on the number of bends per
edge is independent from the number of vertices. In this section we show that
for the properly 2-colored outerplanar graphs two bends per edge are always
sufficient and that one bend per edge is sufficient for special configurations of the
points. We start with two lemmas about 2-colored topological book embeddings.

Fig. 2. Illustration of Lemma 1.

Lemma 1. Let G be a properly 2-colored outerplanar graph and let σ be a com-
patible 2-colored sequence. G admits a 2-page topological book embedding consis-
tent with σ and at most one spine crossing per edge.

252 E. Di Giacomo et al.

Sketch of Proof. Compute a 1-page book embedding Γ of G without taking into
account the colors of the vertices. The sequence of the vertex colors along the
spine of Γ is in general different from the given sequence σ (see Fig. 2(a)). The
idea now is to move some vertices and allow spine crossings in order to make the
sequence of colors along the spine coincide with σ. To this aim it is sufficient to
remap only the vertices of one color, say the blue color. Add to the spine of Γ
new blue positions in such a way that the original red positions and these new
blue positions define a sequence of colors that coincides with σ (see the small
blue squares in Fig. 2(b)). Using a matching bracket algorithm we add matching
edges in the second page between the blue vertices and these new positions (see
Fig. 2(c)). These edges do not cross each other and do not cross the original
edges. We now replace each original blue vertex v with as many spine crossings
as the number of edges incident to them. Each edge is assigned to one of these
spine crossings in such a way to avoid crossings between these edges and each
spine crossing is connected to the new location matched to v (see Fig. 2(d)). In
this way we obtain a topological book embedding of G consistent with σ. The
edges cross the spine at their blue end-vertices. Since G is properly 2-colored,
each edge has only one blue end-vertex and thus crosses the spine only once.

When the 2-colored sequence is separable, i.e. all elements of a color precede
those of the other color, we can avoid spine crossings. A 2-page book embedding
where all vertices of a partition set appear consecutive along the spine is called a
2-page bipartite book embedding. It may be worth remarking that 2-page bipartite
book embeddings find applications, for example, in the study of hybrid planarity
testing problems [3,8].

Lemma 2. An outerplanar bipartite graph has a 2-page bipartite book embed-
ding.

Proof. The proof is a consequence of [5,14,15]. Let G be an outerplanar bipartite
graph. We construct a (2, 2)-track layout of G, i.e., a drawing of G such that: (i)
the vertices are placed on two different horizontal lines called tracks, (ii) no two
vertices on a same track are adjacent, (iii) and the edges are partitioned into two
sets such that the edges in the same set do not cross each other. Starting from a
red vertex we number the vertices of G according to a BFS traversal where the
vertices adjacent to a vertex are visited in the order induced by an outerplanar
embedding of G. The red vertices are placed on one of the two tracks ordered
from left to right according to their BFS number; analogously the blue vertices
are placed on the other track ordered from left to right according to their BFS
number. The edges can be partitioned into two color classes: one containing the
edges whose blue vertex has a lower BFS number than the red vertex, and the
other one containing all the other edges (i.e. those whose red vertex has a lower
BFS number than the blue one). By construction no two edges in the same set
cross. Starting from the constructed (2, 2)-track layout a 2-page bipartite book
embedding is computed by applying Lemma 13 of [14]. ��

We are now ready to give the main result of this section.

2-Colored Point-Set Embeddings of Partial 2-Trees 253

Theorem 3. Let G be a properly 2-colored outerplanar graph and let S be a
compatible 2-colored point set. G admits a 2-colored point-set embedding on S
with at most two bends per edge. If S is separable, G admits a 2-colored point-set
embedding on S with at most one bend per edge, which is worst-case optimal.

Proof. By Lemma 1, G admits a 2-page topological book embedding consistent
with σ and at most one spine crossing per edge. By Theorem 1 G has a 2-
colored point-set embedding on S with at most two bends per edge. If S is
separable, by Lemma 2 and Theorem 1 follows that the number of bends per
edge reduces to one. This is worst case optimal since a straight-line 2-colored
point-set embedding on a separable 2-colored point-set may not exist even when
G is a properly 2-colored cycle [18]. ��

5 Non Proper 2-Colorings

The results in Sect. 4 consider outerplanar graphs with a proper 2-coloring. In
the following we extend the results of the previous section to 2-colored outer-
planar graphs whose coloring may not be proper. A variant of the construction
in the proof of Theorem 3 and an ad-hoc geometric strategy to draw the edges
give rise to the following theorem. See Fig. 3 for an illustration of this variant
of Theorem 3 and the appendix for a complete proof.

Fig. 3. Illustration for Theorem 4: Edges whose endvertices are both blue make two
spine crossings. These edges are subdivided with a dummy vertex.

254 E. Di Giacomo et al.

Theorem 4. Let G be a 2-colored outerplanar graph and let S be a 2-colored
point set compatible with G. G admits a 2-colored point-set embedding on S with
at most three bends per edge.

In the special case of caterpillars, we show a construction that achieves one
bend per edge, which is worst-case optimal since a straight-line 2-colored point-
set embedding may not exist even for properly 2-colored paths [2].

Fig. 4. Illustration for the proof of Theorem 5. The grey region represents the already
computed book embedding; the free points are small squares while the used points are
disks. The distinguished vertices are highlighted. Examples of free points that are top-
and/or bottom-visible are connected with dashed curves. See the appendix for a larger
figure.

Theorem 5. Let T be a (not necessarily proper) 2-colored caterpillar and let S
be a 2-colored point set compatible with T . T has a 2-colored point-set embedding
on S with at most one bend per edge, which is worst-case optimal.

Proof. Based on Theorem 1, we prove that T has a 2-page book embedding
compatible with seq(S). Let v1, v2, . . . , vs be the spine of T , let V R

i and V B
i

be the set of leaves connected to vi of color red and blue, respectively, and let
nc
i = |V c

i | (c ∈ {R,B}). For the ease of description, we present the construction
of the book embedding as a mapping of the vertices of T to any set of points
S′ placed along the spine and colored so that seq(S′) = seq(S). We denote by
p1, p2, . . . , pn the points in S′ in the order they appear along the spine from left
to right. We denote by c(x) the color of x, where x is either a vertex or a point.
We call spine edge an edge that belongs to the spine of T and leaf edge an edge
incident to a leaf in T .

The algorithm works in s steps; at Step i the vertex vi and all the leaves
in Vi = V R

i ∪ V B
i are mapped to nR

i + nB
i + 1 points of S′ suitably chosen.

When the algorithm adds a vertex v to the book embedding constructed so far
mapping it to a point p, it also adds an edge connecting v to some other vertex
already in the book embedding. We say that vertex v is mapped to p with a top
(resp. bottom) edge to mean that v is mapped to p and the edge connecting v to
the existing book embedding is drawn in the top (resp. bottom) page. Denote

2-Colored Point-Set Embeddings of Partial 2-Trees 255

by Γi the book embedding constructed at the end of Step i. A point is used in
Γi if a vertex has been mapped to it, free otherwise. Let pj and pk be two points
of S′, we say that pj and pk are top-connectible (resp. bottom-connectible) if it is
possible to connect pj and pk by a curve in the top (resp. bottom) page without
intersecting any other edge of Γi. Denote by p

(i)
k1

the first free point and by p
(i)
k3

the last free point at the end of Step i. Also, denote by p
(i)
k2

the last free point

such that c(p(i)k2
) �= c(p(i)k3

). Points p
(i)
k1

, p
(i)
k2

, and p
(i)
k3

are the distinguished points
at the end of Step i. In our notation of the three distinguished points, the apex
i indicates the Step i, while k1, k2 and k3 are the indices of the points in the
sequence p1, p2, . . . , pn. Note that all points before p

(i)
k1

and all points after p
(i)
k3

are used; moreover, all points between p
(i)
k2

and p
(i)
k3

with the same color as p
(i)
k2

are used. The algorithm maintains the following invariants at the end of Step i
(see Fig. 4 for a schematic illustration):

I1 Let pj and ph be two points connected by a spine edge e such that pj is to
the left of ph. If ph is red, edge e is in the bottom page; if ph is blue, edge e
is in the top page.

I2 Let pj and ph be two points connected by a leaf edge e such that the leaf
vertex of e is mapped to ph. If ph is red, edge e is in the bottom page; if ph
is blue, edge e is in the top page.

I3 Let pj be the point where vi is mapped and let ph be a free point. If pj �= p
(i−1)
k3

then pj and ph are top-connectible if c(ph) = B and bottom-connectible if
c(ph) = R. If pj = p

(i−1)
k3

then pj and ph are top-connectible if c(ph) = c(pj) =
B and bottom-connectible if c(ph) = c(pj) = R.

I4 Let pj and ph be two free points. If k1 ≤ j, h ≤ k2, pj and ph are both top-
and bottom-connectible. If k2 < j ≤ k3, pj and ph are top-connectible if
c(pj) = B and bottom-connectible if c(pj) = R.

I5 If pj is an used point such that k2 < j < k3 and c(pj) = p
(i)
k3

, then the vertex
mapped to pj is a leaf.

I6 If pj is an used point such that k2 < j < k3 and c(pj) �= p
(i)
k3

, then no spine
edge is incident ot pj from bottom (resp. top) if c(pj) = B (resp. c(pj) = R).

Assume that c(p1) = c(v1); if this is not the case, we can add a dummy
vertex at the beginning of the spine (with no leaves) and a dummy point at the
beginning of S′ giving them the same color. At Step 1 we first map v1 to p1; then
we map all the leaves in V R

1 to the nR
1 rightmost red points with bottom edges.

Finally, we map all vertices of V B
1 to the nB

1 rightmost blue points with top
edges. At the end of Step 1, Invariants I1, I2, I5 and I6 trivially hold. Invariants
I3 and I4 are maintained because the leaves adjacent to v1 are mapped to the
rightmost red and blue points.

Now, assume that at the end of Step i − 1 the invariants hold; we describe
how to execute Step i. Vertex vi is always mapped to one of the distinguished
points p

(i−1)
k1

, p
(i−1)
k2

and p
(i−1)
k3

. In order to preserve Invariant I1 we will draw
the edge (vi−1, vi) in the top or in the bottom page depending on the color of

256 E. Di Giacomo et al.

its rightmost end-vertex. We distinguish various cases depending on which of
the three distinguished points has the same color as vi (since p

(i−1)
k2

and p
(i−1)
k3

have different colors, at least one of the three points as the same color as vi);
in particular, we use points p

(i−1)
k2

and p
(i−1)
k3

only when it is not possible to use

p
(i−1)
k1

, i.e., when c(vi) �= (p(i−1)
k1

). We assume that the color of vi is red (the case
when it is blue is analogous exchanging red with blue and top with bottom).
For space reasons, we shall just describe where the algorithm maps vi and its
adjacent leaves. See the appendix for a proof that Γi is a 2-page book embedding
that maintains Invariants I1–I6.

Fig. 5. Proof of Theorem 5: (a)–(b) Case 1. (c)–(d) Case 2. (e)–(f) Case 3.

Case 1: c(vi) = c(p(i−1)
k1

). Refer to Figs. 5(a) and 5(b). If p
(i−1)
k1

is to the right of

the point pj representing vi−1 we map vi to p
(i−1)
k1

with a bottom edge. If p
(i−1)
k1

is to the left of pj we map vi to p
(i−1)
k1

with a top edge. We map all the leaves in
V R
i to the nR

i rightmost free red points with bottom edges. Finally, we map all
vertices of V B

i to the nB
i rightmost free blue points with top edges.

Case 2: c(vi) �= c(p(i−1)
k1

) and c(vi) = c(p(i−1)
k2

). Refer to Figs. 5(c) and 5(d). We

map vi to p
(i−1)
k2

with a bottom edge. We then map all the leaves in V R
i to the

rightmost nR
i free red points with bottom edges. Finally, we map the leaves in

V B
i to the nB

i leftmost free points to the right of p
(i−1)
k2

with top edges; if the free

2-Colored Point-Set Embeddings of Partial 2-Trees 257

points to the right of p
(i−1)
k2

are not enough, we just use the nB
i rightmost free

points. In other words, if the free points to the right of p
(i−1)
k2

are not enough,

we use all of them plus those to the left of p
(i−1)
k2

that are the closest to p
(i−1)
k2

.

Case 3: c(vi) �= c(p(i−1)
k1

) and c(vi) �= c(p(i−1)
k2

). Refer to Figs. 5(e) and 5(f). In

this case c(p(i−1)
k3

) = c(vi) because c(p(i−1)
k3

) �= c(p(i−1)
k2

). We map vi to p
(i−1)
k3

with
a bottom edge. In order to maintain Invariant I2 we need to connect vi to its blue
leaves by using edges in the top page. However, this may not be possible because
there could be edges in the top page incident to blue vertices mapped between
p
(i−1)
k2

and p
(i−1)
k3

. Let Q′ = {p′
1, . . . , p

′
nB
i
} be the rightmost blue points (possibly

used) that are to the left of p
(i−1)
k3

. Informally speaking, the idea is to “move
leftward” the book embedding until all points of Q′ become top-connectible to
p
(i−1)
k3

. As it is proven in the appendix Invariant I5 and I6 allow us to do so
without introducing edge crossings. Once the points in Q′ are moved, we map vi
to p

(i−1)
k3

and connect vi to all the points in Q′ with top edges. Finally, we map
the leaves in V R

i to the nR
i rightmost free red points with bottom edges. ��

Figure 6(c) shows a 2-page book embedding constructed according to Theo-
rem 5.

Fig. 6. Illustration for Theorem 5. See the appendix for a larger figure.

6 Open Problems

We conclude by listing three open problems that we find interesting.

OP.1: Are the upper bounds on the curve complexity stated in Theorem 3 and
in Theorem 4 tight?

258 E. Di Giacomo et al.

OP.2: Theorem 5 shows that 2-colored caterpillars admit 2-page book embed-
dings for any compatible 2-colored sequence. Can this be extended to 2-
colored trees?

OP.3: Would it be possible to trade curve complexity with edge crossings? For
example, does every properly 2-colored 2-tree with n vertices admit a 2-colored
point set embedding with o(n) curve complexity and o(n) crossings per edge? A
good starting point is the work of Claverol et al. [7].

References

1. Abellanas, M., Garcia-Lopez, J., Hernández-Peñver, G., Noy, M., Ramos, P.A.:
Bipartite embeddings of trees in the plane. DAM 93(2–3), 141–148 (1999)

2. Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Math. 84,
101–103 (1990)

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. JGAA 21(4), 731–755 (2017)

4. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2–3), 129–142 (2008)

5. Bannister, M.J., Devanny, W.E., Dujmović, V., Eppstein, D., Wood, D.R.: Track
layouts, layered path decompositions, and leveled planarity. Algorithmica 81(4),
1561–1583 (2019)

6. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. JGAA 2(1), 1–15 (1997)

7. Claverol, M., Olaverri, A.G., Garijo, D., Seara, C., Tejel, J.: On hamiltonian alter-
nating cycles and paths. Comput. Geom. 68, 146–166 (2018)

8. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing nodetrix rep-
resentations of clustered graphs. JGAA 22(2), 139–176 (2018)

9. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.:
k−colored point-set embeddability of outerplanar graphs. JGAA 12(1), 29–49
(2008)

10. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Constrained
point-set embeddability of planar graphs. Int. J. Comput. Geometry Appl. 20(5),
577–600 (2010)

11. Di Giacomo, E., G ↪asieniec, L., Liotta, G., Navarra, A.: Colored point-set embed-
dings of acyclic graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692,
pp. 413–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-
1 32

12. Di Giacomo, E., Grilli, L., Krug, M., Liotta, G., Rutter, I.: Hamiltonian ortho-
geodesic alternating paths. J. Discrete Algorithms 16, 34–52 (2012)

13. Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points.
Int. J. Found. Comput. Sci. 17(5), 1071–1094 (2006)

14. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discret. Math. Theor.
Comput. Sci. 6(2), 497–522 (2004)

15. Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer
grids in two and three dimensions. JGAA 7(4), 363–398 (2003)

16. Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding
problem into points in the plane. Discrete Comput. Geometry 11(1), 51–63 (1994).
https://doi.org/10.1007/BF02573994

https://doi.org/10.1007/978-3-319-73915-1_32
https://doi.org/10.1007/978-3-319-73915-1_32
https://doi.org/10.1007/BF02573994

2-Colored Point-Set Embeddings of Partial 2-Trees 259

17. Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the
plane. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, Volume 342 of
Contemporary Mathematics. American Mathematical Society (2004)

18. Kaneko, A., Kano, M., Yoshimoto, K.: Alternating hamilton cycles with minimum
number of crossing in the plane. IJCGA 10, 73–78 (2000)

19. Kano, M.: Discrete geometry on red and blue points on the plane lattice. In: Pro-
ceedings of JCCGG 2009, pp. 30–33 (2009)

20. Kaufmann, M.: On point set embeddings for k-planar graphs with few bends per
edge. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM
2019. LNCS, vol. 11376, pp. 260–271. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10801-4 21

21. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

22. Pach, J., Törőcsik, J.: Layout of rooted tree. In: Trotter, W.T. (ed.) Planar Graphs
(DIMACS Series in Discrete Mathematics and Theoretical Computer Science), vol.
9, pp. 131–137. American Mathematical Society (1993)

23. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph.
Combin. 17(4), 717–728 (2001)

24. Tokunaga, S.: On a straight-line embedding problem graphs. Discrete Math. 150,
371–378 (1996)

https://doi.org/10.1007/978-3-030-10801-4_21
https://doi.org/10.1007/978-3-030-10801-4_21

Better Approximation Algorithms
for Maximum Weight Internal Spanning
Trees in Cubic Graphs and Claw-Free

Graphs

Ahmad Biniaz(B)

School of Computer Science, University of Windsor, Windsor, Canada
ahmad.biniaz@gmail.com

Abstract. Given a connected vertex-weighted graph G, the maximum
weight internal spanning tree (MaxwIST) problem asks for a spanning
tree of G that maximizes the total weight of internal nodes. This problem
is NP-hard and APX-hard, with the currently best known approximation
factor 1/2 (Chen et al., Algorithmica 2019). For the case of claw-free
graphs, Chen et al. present an involved approximation algorithm with
approximation factor 7/12. They asked whether it is possible to improve
these ratios, in particular for claw-free graphs and cubic graphs.

For cubic graphs we present an algorithm that computes a spanning
tree whose total weight of internal vertices is at least 3

4
− 3

n
times the

total weight of all vertices, where n is the number of vertices of G. This
ratio is almost tight for large values of n. For claw-free graphs of degree
at least three, we present an algorithm that computes a spanning tree
whose total internal weight is at least 3

5
− 1

n
times the total vertex weight.

The degree constraint is necessary as this ratio may not be achievable if
we allow vertices of degree less than three.

With the above ratios, we immediately obtain better approximation
algorithms with factors 3

4
− ε and 3

5
− ε for the MaxwIST problem in

cubic graphs and claw-free graphs having no degree-2 vertices, for any
ε > 0. The new algorithms are short (compared to that of Chen et
al.) and fairly simple as they employ a variant of the depth-first search
algorithm. Moreover, they take linear time while previous algorithms for
similar problem instances are super-linear.

Keywords: Approximation algorithm · Vertex-weighted tree · Internal
spanning tree · Cubic graph · Claw-free graph · Depth-first search

1 Introduction

The problems of computing spanning trees with enforced properties have been
well studied in the fields of algorithms and graph theory. In the last decades,

Supported by NSERC. See [3] for a full version of the paper.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 260–271, 2021.
https://doi.org/10.1007/978-3-030-68211-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_21

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 261

a number of works have been devoted to the problem of finding spanning trees
with few leaves. Besides its own theoretical importance as a generalization of the
Hamiltonian path problem, this problem has applications in the design of cost-
efficient communication networks [19] and pressure-consistent water supply [4].

The problem of finding a spanning tree of a given graph having a minimum
number of leaves (MinLST) is NP-hard—by a simple reduction from the Hamil-
tonian path problem—and cannot be approximated within a constant factor
unless P = NP [16]. From an optimization point of view, the MinLST problem
is equivalent to the problem of finding a spanning tree with a maximum num-
ber of internal nodes (the MaxIST problem). The MaxIST is NP-hard—again
by a reduction form the Hamiltonian path problem—and APX-hard as it does
not admit a polynomial-time approximation scheme (PTAS) [15]. Although the
MinLST is hard to approximate, there are constant-factor approximations algo-
rithms for the MaxIST problem with successively improved approximation ratios
1/2 [17,19], 4/7 [18] (for graphs of degree at least two), 3/5 [12], 2/3 [13], 3/4
[15], and 13/17 [5]. The parameterized version of the MaxIST problem, with the
number of internal vertices as the parameter, has also been extensively studied,
see e.g. [4,8,9,14,17].

This paper addresses the weighted version of the MaxIST problem. Let G be
a connected vertex-weighted graph where each vertex v of G has a non-negative
weight w(v). The maximum weight internal spanning tree (MaxwIST) problem
asks for a spanning tree T of G such that the total weight of internal vertices of
T is maximized.

The MaxwIST problem has received considerable attention in recent years.
Let n and m denote the number of vertices and edges of G, respectively, and let
Δ be the maximum vertex-degree in G. Salamon [18] designed the first approxi-
mation algorithm for this problem. Salamon’s algorithm runs in O(n4) time, has
approximation ratio 1/(2Δ−3), and relies on the technique of locally improving
an arbitrary spanning tree of G. By extending the local neighborhood in Sala-
mon’s algorithm, Knauer and Spoerhase [12] obtained the first constant-factor
approximation algorithm for the problem with ratio 1/(3 + ε), for any constant
ε > 0.

Very recently, Chen et al. [6] present an elegant approximation algorithm
with ratio 1/2 for the MaxwIST problem. Their algorithm, which is fairly short
and simple, works as follows. Given a vertex-weighted graph G, they first assign
to each edge (u, v) of G the weight w(u) + w(v). The main ingredient of the
algorithm is the observation that the total internal weight of an optimal solution
for the MaxwIST problem is at most the weight of a maximum-weight matching
in G. Based on this, they obtain a maximum-weight matching M and then
augment it to a spanning tree T in such a way that the heavier end-vertex of every
edge of M is an internal node in T . This immediately gives a 1/2 approximate
solution for the MaxwIST problem in G. The running time of the algorithm is
dominated by the time of computing M which is O(nmin{m log n, n2}).

The focus of the present paper is the MaxwIST problem in cubic graphs (3-
regular graphs) and claw-free graphs (graphs not containing K1,3 as an induced

262 A. Biniaz

subgraph). We first review some related works for these graph classes, and then
we provide a summary of our contributions.

1.1 Related Works on Cubic Graphs and Claw-Free Graphs

The famous Hamiltonian path problem is a special case of the MaxIST problem
that seeks a spanning tree with n−2 internal nodes, where n is the total number
of vertices. The Hamiltonian path problem is NP-hard in cubic graphs [10] and
in line graphs (which are claw-free) [2]. Therefore, the MaxIST problem (and
consequently the MaxwIST problem) is NP-hard in both cubic graphs and claw-
free graphs.

For the unweighted version, Salamon and Wiener [19] present approximation
algorithms with ratios 2/3 and 5/6 for the MaxIST problem in claw-free graphs
and cubic graphs, respectively. Although the first ratio has been improved to
13/17 (even for arbitrary graphs) [5], the ratio 5/6 is still the best known for
cubic graphs. Binkele-Raible et al. [4] studied the parameterized version of the
MaxIST problem in cubic graphs. They design an FPT-algorithm that decides
in O∗(2.1364k) time whether a cubic graph has a spanning tree with at least k
internal vertices. The Hamiltonian path problem (which is a special case with k =
n− 2) arises in computer graphics in the context of stripification of triangulated
surface models [1,11]. Eppstein studied the problem of counting Hamiltonian
cycles and the traveling salesman problem in cubic graphs [7].

For the weighted version, Salamon [18] presented an approximation algorithm
with ratio 1/2 for the MaxwIST problem in claw-free graphs (this is obtained by
adding more local improvement rules to their general 1/(2Δ− 3)-approximation
algorithm). In particular, they show that if a claw-free graph has degree at least
two, then one can obtain a spanning tree whose total internal weight is at least
1/2 times the total vertex weight. Chen et al. [6] improved this approxima-
tion ratio to 7/12; they obtain this ratio by extending their own simple 1/2-
approximation algorithm for general graphs. In contrast to their first algorithm
which is simple, this new algorithm (restricted to claw-free graphs) is highly
involved and relies on twenty-five pages of detailed case analysis.

For the MaxwIST problem in cubic graphs, no ratio better than 1/2 (which
holds for general graphs) is known. Chen et al. [6] asked explicitly whether it is
possible to obtain better approximation algorithms for the MaxwIST problem
in cubic graphs and claw-free graphs.

1.2 Our Contributions

We study the MaxwIST problem in cubic graphs and claw-free graphs. We obtain
approximation algorithms with better factors for both graph classes. For cubic
graphs we present an algorithm, namely A1, that achieves a tree whose total
internal weight is at least 3

4 − 3
n times the total vertex weight. This ratio (with

respect to the total vertex weight) is almost tight if n is sufficiently large.
For claw-free graphs of degree at least three we present an algorithm, namely

A2, that achieves a tree whose total internal weight is at least 3
5 − 1

n times the

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 263

total vertex weight. This ratio (with respect to the total vertex weight) may not
be achievable if we drop the degree constraint.

With the above ratios, immediately we obtain better approximation algo-
rithms with factors 3

4 − ε and 3
5 − ε for the MaxwIST problem in cubic graphs

and claw free graphs (without degree-2 vertices). For cubic graphs if n � 3
ε then

we find an optimal solution by checking all possible spanning trees, otherwise
we run our algorithm A1. This establishes the approximation factor 3

4 − ε. The
factor 3

5 − ε for claw-free graphs is obtained analogously by running A2 instead.

Simplicity. In addition to improving the approximation ratios, the new algo-
rithms (A1 and A2) are relatively short compared to that of Chen et al. [6]. The
new algorithms are not complicated either. They involve an appropriate use of
the depth-first search (DFS) algorithm that selects a relatively-large-weight ver-
tex in every branching step. The new algorithms take linear time, while previous
algorithms for similar problem instances are super-linear.

1.3 Preliminaries

Let G be a connected undirected graph. A DFS-tree in G is the rooted spanning
tree that is obtained by running the depth-first search (DFS) algorithm on G
from an arbitrary vertex called the root. It is well-known that the DFS algorithm
classifies the edges of an undirected graph into tree edges and backward edges.
Backward edges are the non-tree edges of G. These edges have the following
property that we state in an observation.

Observation 1. The two end-vertices of every non-tree edge of G belong to
the same path in the DFS-tree that starts from the root. In other words, one
end-vertex is an ancestor of the other.

Let T be a DFS-tree in G. For every vertex v we denote by dT (v) the degree
of v in T . For every two vertices u and v we denote by δT (u, v) the unique path
between u and v in T . For every edge e in G, we refer to the end-vertex of e that
is closer to the root of T by the higher end-vertex, and refer to other end-vertex
of e by the lower end-vertex.

If G is a vertex-weighted graph and S is a subset of vertices of G, then we
denote the total weight of vertices in S by w(S).

2 The MaxwIST Problem in Cubic Graphs

Let G be a connected vertex-weighted cubic graph with vertex set V such that
each vertex v ∈ V has a non-negative weight w(v). For each vertex v let N(v) be
the set containing v and its three neighbors. Let r be a vertex of G with minimum
w(N(r)). Observe that w(N(r)) � 4w(V)/n, where n = |V |. We employ a greedy
version of the DFS algorithm that selects—for the next node of the traversal—a
node x that maximizes the ratio w(x)

u(x) where u(x) is the number of unvisited
neighbors of x. If u(x) = 0 then the ratio is +∞. Let T be the tree obtained

264 A. Biniaz

Fig. 1. A cubic graph in which black and white vertices have weights 1 and 0,
respectively.

by running this greedy DFS algorithm on G starting from r. Notice that T is
rooted at r. Also notice that, during the DFS algorithm, for every vertex x (with
x �= r) we have u(x) ∈ {0, 1, 2}.

In the rest of this section we show that T is a desired tree, that is, the total
weight of internal vertices of T is at least 3/4 − 3/n times the total weight of all
vertices. This ratio is almost tight for large n. For example consider the cubic
graph in Fig. 1 where every black vertex has weight 1 and every white vertex
has weight 0. In any spanning tree of this graph at most three-quarter of black
vertices can be internal. The following lemma plays an important role in our
analysis. In the rest of this section the expression “while processing x” refers to
the moment directly after visiting vertex x and before following its children in
the DFS algorithm.
Lemma 1. Let x0x

′
1 be a backward edge with x0 lower than x′

1.
Let

δ(x0, x
′
1) = (x′

1x1, x1x
′
2, x

′
2x2, . . . , xk−1x

′
k, x′

kxk) with k � 1

be a path in G such that each x′
ixi is a tree-edge where xi is the

child of x′
i on the path δT (x′

i, x0), each xix
′
i+1 is a backward edge

with xi lower than x′
i+1, and u(xk) = 2 while processing x′

k. Let
u(x0) be the number of unvisited neighbors of x0 while processing
x′
1. Then, it holds that u(x0) ∈ {1, 2}, and

w(x1) + w(x2) + · · · + w(xk) � 2w(x0)
u(x0)

.

Moreover, dT (xi) = dT (x′
i) = 2 for all i ∈ {1, . . . , k − 1} if k > 1,

and either x′
k is the root or it has degree 2 in T .

Proof. In the figure to the right, dotted lines represent backward edges, bold-
solid lines represent tree-edges, every normal-solid line represents a path in T ,
and the dashed line represents either a tree edge or a backward edge connecting
xk to a lower vertex.

First we determine potential values of u(x0). At every step of the DFS algo-
rithm the number of unvisited neighbors of the next node—to be traversed—is
at most 2, because of the 3-regularity. Thus, u(x0) � 2. Since x0x

′
1 is a backward

edge, there is a node, say x′
0, on the path δT (x′

1, x0) such that x′
0x0 is a tree edge

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 265

(it might be the case that x′
0 = x1). Thus at the moment x′

1 was processed, x′
0

was an unvisited neighbor of x0, and thus u(x0) � 1. Therefore, u(x0) ∈ {1, 2}.
Now we prove the inequality. For every i ∈ {1, . . . , k} it holds that w(xi)

u(xi)
�

w(xi−1)
u(xi−1)

while processing x′
i, because otherwise the greedy DFS would have

selected xi−1 instead of xi. If k = 1, then by the statement of the lemma we
have u(x1) = 2 (as x′

2 is undefined), and thus w(x1)
2 � w(x0)

u(x0)
and we are done.

Assume that k � 2. For every i ∈ {1, . . . , k − 1} it holds that u(xi) = 1 while
processing x′

i, because xi has a visited neighbor x′
i+1 and an unvisited neigh-

bor which is xi’s child on the path δT (xi, x0). For every i ∈ {2, . . . , k} it holds
that u(xi−1) = 2 while processing x′

i, because xi−1 has two unvisited neighbors
which are x′

i−1 and xi−1’s child on the path δT (xi−1, x0). By the statement of
the lemma u(xk) = 2 while processing x′

k. Therefore,

w(xk) � w(xk−1),

w(x1) � w(x0)
u(x0)

, and

w(xi) � w(xi−1)
2

for i ∈ {2, . . . , k − 1}.

The above inequalities imply that

w(xk) � 1
2k−2

· w(x0)
u(x0)

, and

w(xi) � 1
2i−1

· w(x0)
u(x0)

for i ∈ {1, . . . , k − 1}.

Therefore,

w(x1) + w(x2) + · · · + w(xk) �
(

1

20
+

1

21
+ · · · + 1

2k−3
+

1

2k−2
+

1

2k−2

)
· w(x0)

u(x0)

= 2 · w(x0)

u(x0)
.

To verify the degree constraint notice that each vertex x ∈ {x1, . . . ,
xk−1, x

′
1, . . . , x

′
k−1} has a child and a parent in T , and also it is incident to

a backward edge. Therefore dT (x) = 2. The vertex x′
k has a child in T , and

also it is incident to a backward edge. If x′
k has a parent in T then dT (x′

k) = 2
otherwise it is the root. ��

266 A. Biniaz

Let L be the set of nodes of T that do not have any chil-
dren (the leaves); L does not contain the root. Consider any
leaf a in L. Let b′

1 and c′
1 be the higher end-vertices of the

two backward edges that are incident to a. It is implied from
Observation 1 that both b′

1 and c′
1 lie on δT (r, a). Thus we can

assume, without loss of generality, that c′
1 is an ancestor of

b′
1.

Start from a, follow the backward edge ab′
1, then follow

the tree edge b′
1b1 where b1 is the child of b′

1 on δT (b′
1, a), and

then follow non-tree and tree edges alternately and find the
path δ(a, b′

1) = (b′
1b1, b1b

′
2, . . . , b

′
kbk) with k � 1, that satisfies

the conditions of the path δ(x0, x
′
1) in Lemma 1 where a plays

the role of x0, bis play the roles of xis, and b′
is play the roles of x′

is. (If u(bi) < 2
while processing b′

i, then bi must be the lower endpoint of some backward edge
bib

′
i+1.) Observe that such a path exists and it is uniquely defined by the pair

(a, b′
1) because u(bk) = 2 while processing b′

k and dT (bi) = dT (b′
i) = 2 for all

i ∈ {1, . . . , k − 1} if k > 1. While processing b′
1 we have u(a) = 1. Therefore, by

Lemma 1 we get
w(b1) + · · · + w(bk) � 2w(a).

Analogously, find the path δ(a, c′
1) = (c′

1c1, c1c
′
2 . . . , c′

lcl) with l � 1, by
following the backward edge ac′

1. Since u(a) = 2 while processing c′
1, Lemma 1

implies that
w(c1) + · · · + w(cl) � w(a).

Adding these two inequalities, we get

w(b1) + · · · + w(bk) + w(c1) + · · · + w(cl) � 3w(a). (1)

Consider the sets {b1, . . . , bk} and {c1, . . . , cl} for all leaves in L; notice that
there are 2|L| sets. All elements of these sets are internal vertices of T as they
have a parent and a child. Each such parent, possibly except the root of T , is
incident to exactly one backward edge. Thus if the root is incident to at most one
backward edge, then these sets do not share any vertex. If the root is incident
to two backward edges then it has only one child in the tree which we denote it
by rc. In this case the sets can share (only) rc. Moreover only two sets can share
rc (because only two backward edges are incident to the root).

Let I be a set that contains all internal nodes of T except the root. Then
V = I ∪ L ∪ {r}. Based on the above discussion and Inequality (1) we have

w(I) � 3w(L) − w(rc) = 3 (w(V) − w(I) − w(r)) − w(rc).

By rearranging the terms and using the fact that w(N(r)) � 4w(V)/n we have

4w(I) � 3w(V) − 3w(r) − w(rc) � 3w(V) − 3w(N(r)) � 3w(V) − 12w(V)/n

Dividing both sides by 4w(V) gives the desired ratio

w(I)
w(V)

� 3
4

− 3
n

.

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 267

Therefore, T is a desired tree. As discussed in Sect. 1.2 we obtain a
(
3
4 − ε

)
-

approximation algorithm for the MaxwIST problem in cubic graphs. Because
of the 3-regularity, the number of edges of every n-vertex cubic graph is O(n).
Therefore, the greedy DFS algorithm takes O(n) time.

Theorem 1. There exists a linear-time
(
3
4 − ε

)
-approximation algorithm for the

maximum weight internal spanning tree problem in cubic graphs, for any ε > 0.

A Comparison. The 5/6 approximation algorithm of Salamon and Wiener [19]
for unweighted cubic graphs is also based on a greedy DFS. However, there
are major differences between their algorithm and ours: (i) The DFS algorithm
of [19] selects a vertex with minimum number of unvisited neighbors in every
branching step. This criteria does not guarantee a good approximation ratio for
the weighted version. Our branching criteria depends on the number of unvisited
neighbors and the weight of a node. (ii) The ratio 5/6 is obtained by a counting
argument that charges every leaf of the DFS tree to five internal nodes. The
counting argument does not work for the weighted version. The weight of a leaf
could propagate over many internal nodes, and thus to bound the approximation
ratio more powerful ingredients and analysis are required, such as our Lemma1.

3 The MaxwIST Problem in Claw-Free Graphs

Let G be a connected vertex-weighted claw-free graph with vertex set V such
that each vertex v ∈ V is of degree at least 3 and it has a non-negative weight
w(v).

Our algorithm for claw-free graphs is more involved than the simple greedy
DFS algorithm for cubic graphs. For cubic graphs we used the DFS-tree directly
because we were able to charge the weight of every internal vertex (except the
root) to exactly one leaf as every internal vertex is incident to at most one
backward edge. However, this is not the case for claw-free graphs—every internal
vertex of a DFS-tree can be incident to many backward edges. To overcome this
issue, the idea is to first compute a DFS-tree using a different greedy criteria
and then modify the tree.

Here we employ a greedy version of the DFS algorithm that selects a
maximum-weight vertex in every branching step. Let T be the tree obtained
by running this greedy DFS algorithm on G starting from a minimum-weight
vertex r. Notice that T is rooted at r, and w(r) � w(V)/n, where n = |V |. In
the rest of this section we modify T to obtain another spanning tree T ′ whose
total internal weight at least 3/5 − 1/n times its total vertex weight. This ratio
may not be achievable if we allow vertices of degree less than 3. For example
consider the claw-free graph in Fig. 2 where every black vertex has weight 1 and
every white vertex has weight 0. In any spanning tree of this graph at most half
of black vertices can be internal.

268 A. Biniaz

Fig. 2. A claw-free graph in which black and white vertices have weights 1 and 0,
respectively.

3.1 Preliminaries: Some Properties of T

The following lemma, though very simple, plays an important role in the design
of our algorithm.

Lemma 2. The tree T is a binary tree, i.e., every node of T has at most two
children.

Proof. If a node v ∈ T has more than two children, say v1, v2, v3, . . . , then by
Observation 1 there are no edges between v1, v2, and v3 in G. Therefore, the
subgraph of G that is induced by {v, v1, v2, v3} is a K1,3. This contradicts the
fact that G is claw-free. ��

In the following description, “a leaf of
T” refers to a node of T that does not
have any children, so the root is not a leaf
even if it has degree 1. For every leaf a of
T , we denote by a1, a2, . . . , ak the higher
end-vertices of the backward edges inci-
dent to a while walking up T from a to the
root. Since each vertex of G has degree at
least three, every leaf a is incident to at
least two backward edges, and thus k � 2.
For each i ∈ {1, . . . , k} we denote by a′

i

the child of ai on the path δT (ai, a); by
Observation 1 such a path exists (it might
be the case that ai = a′

i+1 for some i).
Our greedy choice in the DFS algorithm
implies that for each i

w(a′
i) � w(a).

In the figure to the right, dotted lines represent backward edges, bold-solid lines
represent tree-edges, and every normal-solid line represents a path in T . By
Lemma 2, T is a binary tree and thus its vertices have degrees 1, 2, and 3. For
every leaf a of T , we denote by a∗ the degree-3 vertex of T that is closest to a,
and by a′

∗ the child of a∗ on the path δT (a∗, a); it might be the case that a′
∗ = a.

If such a degree-3 vertex does not exist (T is a path), then we set a∗ to be the
root r. We refer to the path δT (a∗, a) as the leaf-branch of a, and denote it by

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 269

δT (a) (because this path is uniquely defined by a). A leaf-branch is short if it
contains only two vertices a and a∗, and it is long otherwise. A deep branching-
vertex is a degree-3 vertex of T that is incident to two leaf-branches. Thus the
subtree of every deep branching-vertex has exactly two leaves. In the figure to
the right x is a deep branching-vertex, but a∗ is not. The following lemma comes
in handy for the design of our algorithm.

Lemma 3. Every internal node (of T) is adjacent to at most two leaves (of T)
in G.

Proof. For the sake of contradiction assume that an internal node v is adjacent to
more than two leaves, say l1, l2, l3, . . . in G. By Observation 1 there are no edges
between l1, l2, l3 in G. Therefore, the subgraph of G induced by {v, l1, l2, l3} is a
K1,3. This contradicts the fact that G is claw-free. ��

It is implied by Lemma 3 that every internal node of T is an endpoint of at
most two backward edges that are incident to leaves of T .

3.2 Obtaining a Desired Tree from T

We assign to every vertex v ∈ V a charge equal to the weight of v. Thus every
vertex v holds the charge w(v). In a general picture, our algorithm (described in
the full version of the paper [3]) distributes the charges of internal nodes between
the leaves and at the same time modifies the tree T to obtain another tree T ′ in
which every leaf a (excluding r) has at least 2.5w(a) charge. The algorithm does
not touch the charge of r. In the end, T ′ would be our desired tree. Therefore, if
L′ is the set of leaves of T ′ (not including r) and I ′ is the set of internal nodes
of T ′ (again not including r) then we have

w(I ′) � 2.5w(L′) − w(L′) = 1.5w(L′) = 1.5(w(V) − w(I ′) − w(r)).

By rearranging the terms and using the fact that w(r) � w(V)/n we get

2.5w(I ′) � 1.5w(V) − 1.5w(V)/n.

Dividing both sides by 2.5w(V) gives the desired ratio

w(I ′)
w(V)

� 3
5

− 3
5n

>
3
5

− 1
n

.

The algorithm is described in detail in the full version of the paper [3]; in
particular it shows how to obtain T ′ from T . The running time analysis and
inclusion of degree-1 vertices are also described in [3]. The following theorem
summarizes our result.

Theorem 2. There exists a linear-time
(
3
5 − ε

)
-approximation algorithm for the

maximum weight internal spanning tree problem in claw-free graphs having no
degree-2 vertices, for any ε > 0.

270 A. Biniaz

4 Conclusions

Although the ratio 3/4 − 3/n for cubic graphs is almost tight and cannot be
improved beyond 3/4 (with respect to total vertex weight) and the ratio 3/5−1/n
(with respect to total vertex weight) may not be achievable for claw-free graphs
of degree less than 3, approximation factors better than 3/4−ε and 3/5−ε might
be achievable. A natural open problem is to improve the approximation factors
further. It would be interesting to drop the “exclusion of degree-2 vertices” from
the (3/5 − ε)-approximation algorithm for claw-free graphs. Also, it would be
interesting to use our greedy DFS technique to obtain better approximation
algorithms for the MaxwIST problem in other graph classes.

References

1. Arkin, E.M., Held, M., Mitchell, J.S.B., Skiena, S.S.: Hamiltonian triangulations
for fast rendering. Vis. Comput. 12(9), 429–444 (1996). https://doi.org/10.1007/
BF01782475. Also in ESA 1994

2. Bertossi, A.A.: The edge Hamiltonian path problem is NP-complete. Inf. Process.
Lett. 13(4/5), 157–159 (1981)

3. Biniaz, A.: Better approximation algorithms for maximum weight internal spanning
trees in cubic graphs and claw-free graphs. arXiv:2006.12561 (2020)

4. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized
algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013).
https://doi.org/10.1007/s00453-011-9575-5. Also in WG 2009

5. Chen, Z.-Z., Harada, Y., Guo, F., Wang, L.: An approximation algorithm for max-
imum internal spanning tree. J. Comb. Optim. 35(3), 955–979 (2018). https://doi.
org/10.1007/s10878-017-0245-7

6. Chen, Z.Z., Lin, G., Wang, L., Chen, Y., Wang, D.: Approximation algo-
rithms for the maximum weight internal spanning tree problem. Algorithmica
81(11–12), 4167–4199 (2019). https://doi.org/10.1007/s00453-018-00533-w. Also
in COCOON 2017

7. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algo-
rithms Appl. 11(1), 61–81 (2007). Also in WADS 2003

8. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for
maximum internal spanning tree. J. Comput. Syst. Sci. 79(1), 1–6 (2013). Also in
ISAAC 2009

9. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and
applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706
(2012). https://doi.org/10.1007/s00453-011-9555-9. Also in LATIN 2010

10. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

11. Gopi, M., Eppstein, D.: Single-strip triangulation of manifolds with arbitrary topol-
ogy. Comput. Graph. Forum 23(3), 371–380 (2004). Also in SoCG 2004

12. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum
internal spanning tree problem. Algorithmica 71(4), 797–811 (2015). https://doi.
org/10.1007/s00453-013-9827-7. Also in WADS 2009

13. Li, W., Cao, Y., Chen, J., Wang, J.: Deeper local search for parameterized and
approximation algorithms for maximum internal spanning tree. Inf. Comput. 252,
187–200 (2017). Also in ESA 2014

https://doi.org/10.1007/BF01782475
https://doi.org/10.1007/BF01782475
http://arxiv.org/abs/2006.12561
https://doi.org/10.1007/s00453-011-9575-5
https://doi.org/10.1007/s10878-017-0245-7
https://doi.org/10.1007/s10878-017-0245-7
https://doi.org/10.1007/s00453-018-00533-w
https://doi.org/10.1007/s00453-011-9555-9
https://doi.org/10.1007/s00453-013-9827-7
https://doi.org/10.1007/s00453-013-9827-7

Maximum Weight Internal Spanning Trees in Cubic and Claw-Free Graphs 271

14. Li, W., Wang, J., Chen, J., Cao, Y.: A 2k -vertex kernel for maximum internal
spanning tree. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS,
vol. 9214, pp. 495–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21840-3 41

15. Li, X., Zhu, D.: Approximating the maximum internal spanning tree problem via a
maximum path-cycle cover. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS,
vol. 8889, pp. 467–478. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13075-0 37. Also in arXiv:1409.3700 under the title: A 4=3-approximation algo-
rithm for finding a spanning tree to maximize its internal vertices

16. Lu, H.-I., Ravi, R.: The power of local optimization: approximation algorithms for
maximum-leaf spanning tree. In: Proceedings of the 13th Annual Allerton Confer-
ence on Communication, Control and Computing, pp. 533–542 (1996)

17. Prieto, E., Sloper, C.: Either/or: using vertex cover structure in designing FPT-
algorithms—The case of k -internal spanning tree. In: Dehne, F., Sack, J.-R.,
Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45078-8 41

18. Salamon, G.: Approximating the maximum internal spanning tree problem. The-
oret. Comput. Sci. 410(50), 5273–5284 (2009). Also in MFCS 2007

19. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process.
Lett. 105(5), 164–169 (2008)

https://doi.org/10.1007/978-3-319-21840-3_41
https://doi.org/10.1007/978-3-319-21840-3_41
https://doi.org/10.1007/978-3-319-13075-0_37
https://doi.org/10.1007/978-3-319-13075-0_37
http://arxiv.org/abs/1409.3700
https://doi.org/10.1007/978-3-540-45078-8_41

APX-Hardness and Approximation
for the k-Burning Number Problem

Debajyoti Mondal1 , N. Parthiban2 , V. Kavitha2, and Indra Rajasingh3(B)

1 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
dmondal@cs.usask.ca

2 Department of Computer Science and Engineering,
SRM Institute of Science and Technology, Chennai, India
parthiban24589@gmail.com, kavitha.psk@gmail.com

3 School of Advanced Sciences, Vellore Institute of Technology,
Chennai, India

indrarajasingh@yahoo.com

Abstract. Consider an information diffusion process on a graph G that
starts with k > 0 burnt vertices, and at each subsequent step, burns the
neighbors of the currently burnt vertices, as well as k other unburnt ver-
tices. The k-burning number of G is the minimum number of steps bk(G)
such that all the vertices can be burned within bk(G) steps. Note that the
last step may have smaller than k unburnt vertices available, where all of
them are burned. The 1-burning number coincides with the well-known
burning number problem, which was proposed to model the spread of
social contagion. The generalization to k-burning number allows us to
examine different worst-case contagion scenarios by varying the spread
factor k.

In this paper we prove that computing k-burning number is APX-
hard, for any fixed constant k. We then give an O((n + m) logn)-time
3-approximation algorithm for computing k-burning number, for any
k ≥ 1, where n and m are the number of vertices and edges, respec-
tively. Finally, we show that even if the burning sources are given as an
input, computing a burning sequence itself is an NP-hard problem.

Keywords: Network analysis · Burning number · APX-hard ·
Approximation · k-Burning

1 Introduction

We consider an information diffusion process that models a social contagion over
time from a theoretical point of view. At each step, the contagion propagates
from the infected people to their neighbors, as well as a few other people in the
network become infected. The burning process, proposed by Bonato et al. [6,7],

The work of D. Mondal is partially supported by NSERC, and by two CFREF grants
coordinated by GIFS and GIWS.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 272–283, 2021.
https://doi.org/10.1007/978-3-030-68211-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_22&domain=pdf
http://orcid.org/0000-0002-7370-8697
http://orcid.org/0000-0001-9951-7517
https://doi.org/10.1007/978-3-030-68211-8_22

APX-Hardness and Approximation for the K-Burning Number Problem 273

Fig. 1. The process of burning a graph G. The unburnt vertices that have been chosen
to burn at round i (except for the neighbors of the previously burned vertices) are
labelled with ti. (a) A 1-burning with 4 rounds, which is also the minimum possible
number of rounds to burn all the vertices with 1-burning, i.e., b(G) = 4. (b) A 2-burning
with 3 rounds, which is the minimum possible, i.e., b2(G) = 3.

provides a simple model for such a social contagion process. Specifically, the
burning number b(G) of a graph G is the minimum number of discrete time steps
or rounds required to burn all the vertices in the graph based on the following
rule. One vertex is burned in the first round. In each subsequent round t, the
neighbors of the existing burnt vertices and a new unburnt vertex (if available)
are burned. If a vertex is burned, then it remains burnt in all the subsequent
rounds. Figure 1(a) illustrates an example of the burning process. The vertices
that are chosen to burn directly at each step, form the burning sequence.

In this paper we examine k-burning number for a graph, which generalizes the
burning number by allowing to directly burn k unburnt vertices at each round;
see Fig. 1(b). Throughout the paper, we use the notation bk(G) to denote the k-
burning number of a graph G. Note that in the case when k = 1, the 1-burning
number b1(G) coincides with the original burning number b(G). The burning
process can be used to model a variety of applications, e.g, the selection of the
vertices in social networks (e.g., LinkedIn or Facebook) to fast spread information
to the target audience with a pipeline of steady new recruits. It may also be used
in predictive models to examine the worst-case spread of disease among humans
or crop fields. The generalization of a burning process to k-burning allows us to
use k as a model parameter, i.e., one can choose a cost-effective value for k to
increase the probability of reaching the target audience.

Related Work: The problem of computing the burning number of a graph
is NP-complete, even for simple graph classes such as trees with maximum
degree three, and for forests of paths [4]. A rich body of research examines
upper and lower bounds for the burning number for various classes of graphs.
Bonato et al. [4,6] showed that for every connected graph G, b(G) ≤ 2

√
n − 1,

where n is the number of vertices, and conjectured that the upper bound can be
improved to �√n�. While the conjecture is still open, Land and Lu [17] improved

274 D. Mondal et al.

this bound to
√
6n
2 . However, the �√n� upper bound holds for spider graphs [9]

and for p-caterpillars with at least 2 �√n� − 1 vertices of degree 1 [13].
The burning number problem has received considerable attention in recent

years and nearly tight upper and lower bounds have been established for
various well-known graph classes including generalized Petersen graphs [22],
p-caterpillars [13], graph products [20], dense and tree-like graphs [15] and
theta graphs [18]. The NP-hardness of the burning number problem motivated
researchers to study the parameterized complexity and approximation algo-
rithms. Kare and Reddy [16] gave a fixed-parameter tractable algorithm to com-
pute burning number parameterized by neighborhood diversity, and showed that
for cographs and split graphs the burning number can be computed in polyno-
mial time. Bonato and Kamali [8] showed that the burning number of a graph
is approximable within a factor of 3 for general graphs and 2 for trees. They
gave a polynomial-time approximation scheme (PTAS) forests of paths, and a
polynomial-time algorithm when the number of paths is fixed. They also men-
tioned that ‘it might be possible that a PTAS exists for general graphs’.

A closely related model that relates to the burning process is the firefighter
model [12]. In a firefighter problem, a fire breaks out at a vertex, and at each sub-
sequent step, the fire propagates to the undefended neighbors and the firefighter
can defend a vertex from burning. The burnt and defended vertices remain so in
the next steps. The problems seek to maximize the number of defended vertices.
This problem does not have a constant factor approximation [2], which indicates
that it is very different than the burning number problem. A variant of firefighter
problem where b ≥ 2 vertices can be defended at each step has been shown not
to be approximable within a constant factor [3]. There are many information dif-
fusion models and broadcast scheduling methods in the literature [5,19,23], but
the k-burning process seems to differ in the situation that at each step it allows
k new sources to appear anywhere in the graph, i.e., some new burn locations
may not be in close proximity of the currently burnt vertices.

Our Contribution. In this paper, we generalize the concept of burning number
of a graph to k-burning number. We first prove that computing burning number
is APX-hard, settling the complexity question posed by Bonato and Kamali [8].
We then show that the hardness result holds for k-burning number, for any fixed
k. We prove that k-burning number is 3-approximable in polynomial time, for
any k ≥ 1, where a 3-approximation algorithm was known previously for the
case when k = 1 [8]. Finally, we show that even if the burning sources are given
as an input, computing a burning sequence itself is an NP-hard problem.

2 Preliminaries

In this section we introduce some notation and terminology. Given a graph G,
the k-burning process on G is a discrete-time process defined as follows: Initially,
at time t = 0, all the vertices are unburnt. At each time step t ≥ 1, the neighbors
of the previously burnt vertices are burnt. In addition, k new unburnt vertices
are burned directly, which are called the burning sources appearing at the tth

APX-Hardness and Approximation for the K-Burning Number Problem 275

step. If the number of available unburnt vertices is less than k, then all of them
are burned. The burnt vertices remain in that state in the subsequent steps.
The process ends when all vertices of G are burned. The k-burning number of
a graph G, denoted by bk(G), is the minimum number of rounds needed for the
process to end. For k = 1, we omit the subscript k and use the notation b(G).

The burning sources are chosen at every successive round form an ordered list,
which is referred to as a k-burning sequence. A burning sequence corresponding
to the minimum number of steps bk(G) is referred to as a minimum burning
sequence. We use the notation L(G, k) to denote the length of a minimum k-
burning sequence.

Let G = (V,E) be a graph with n vertices and m edges. A vertex cover is
a set S ⊆ V such that at least one end-vertex of each edge belongs to S. A
dominating set of G is a set D ⊆ V such that every vertex in G is either in
D or adjacent to a vertex in D. An independent set of G is a set of vertices
such that no two vertices are adjacent in G. A minimum vertex cover (resp.,
minimum independent and dominating set) is a vertex cover (resp., independent
and dominating set) with the minimum cardinality. An independent set Q is
called maximal if one cannot obtain a larger independent set by adding more
vertices to Q, i.e., every vertex in V \ Q is adjacent to a vertex in Q.

3 APX-Hardness

In this section we show that computing burning number is an APX-hard prob-
lem, which settles the complexity question posed by Bonato and Kamali [8]. We
then show that the k-burning number problem is APX-hard for any k ∈ O(1).

3.1 APX-Hardness for Burning Number

A graph is called cubic if all its vertices are of degree three. We will reduce
the minimum vertex cover problem in cubic graphs, which is known to be
APX-hard [1]. Given an instance G = (V,E) of the minimum vertex cover,
we construct a graph G′ of the burning number problem. We then show that
a polynomial-time approximation scheme (PTAS) for the burning number in
G′ = (V ′, E′) implies a PTAS for the minimum vertex cover problem, which
contradicts that the minimum vertex cover problem is APX-hard.

Construction of G′. The graph G′ = (V ′, E′) will contain vertices that cor-
respond to the vertices and edges of G. Figures 2(a)–(c) illustrate an example
for the construction of G′ from G. To keep the illustration simple, we used a
maximum degree three graph instead of a cubic graph.

To construct V ′, we first make a set S by taking a copy of the vertex set
V . We refer to S as the v-vertices of G′. For every edge (u, v) ∈ E, we include
two vertices uv and vu in V ′, which we refer to as the e-vertices of G′. In
addition, we add (2n + 3) isolated vertices in V ′, where n = |V |. For every edge
(u, v) ∈ E, we add three edges in E′: (u, uv), (v, vu) and (uv, vu). Figure 2(b)
illustrates the resulting graph. We then divide the edge (uv, vu) with 2n division

276 D. Mondal et al.

Fig. 2. Illustration for the construction of G′ from G. To keep the illustration simple,
here we use a maximum degree three graph instead of a cubic graph. (a) G, (b) con-
struction idea, and (c) G′, where v- and e-vertices are shown in black disks, d-vertices
are shown in squares, tail vertices are shown in cross, and isolated vertices are shown
in unfilled circles. (d) Hbc. (e) Burning Hbc with burning sources p and q, which are
outside of Hbc.

vertices. We refer to these division vertices as the d-vertices of G′. We also add
an n-vertex path and connect one end with the median division vertices of the
path u, uv, . . . , vu, v. We refer to this n-vertex path as the tail of edge (u, v).
Figure 2(c) illustrates the resulting graph.

This completes the construction of G′. Note that the number of vertices and
edges in G′ is O(n), and it is straightforward to compute G′ in O(n) time.

Reduction. In the following, we show how to compute a burning sequence in
G′ from a vertex cover in G, and vice versa.

Lemma 1. If G has a vertex cover of size at most q, then G′ has a burning
sequence of length at most (q + 2n + 3), and vice versa.

Proof. We will use the idea of a neighborhood of a vertex. By a r-hop neighbor-
hood of a vertex u in G′, we denote the vertices that are connected to u by a
path of at most r edges.

Vertex Cover to Burning Sequence: Let C be a vertex cover of G of size at
most q. In G′, we create a burning sequence S by choosing the v-vertices of C
as the burning sources (in any order), followed by the burning of the (2n + 3)

APX-Hardness and Approximation for the K-Burning Number Problem 277

isolated vertices. Note that we need at most q rounds to burn the v-vertices in
G′ that correspond to the nodes in C, and in the subsequent (2n+3) rounds, we
can burn the isolated vertices.

We now show that all the vertices are burnt within (q +2n+3) rounds. First
observe that after q rounds, all the v-vertices corresponding to C are burnt. Since
C is a vertex cover, all the v-vertices that do not belong to C are within (2n+3)-
hop neighborhood from some vertex in C. Therefore, all v-vertices will be burnt
within the next (2n + 3) rounds. Similarly, all the e-vertices, d-vertices and tail
vertices are within (2n + 3)-hop neighborhood from some vertex in C, and thus
they will be burnt within the next (2n + 3) rounds. Since the isolated vertices
are chosen as the burning sources for the last (2n + 3) rounds, all the vertices of
G′ will be burnt within (q + 2n + 3) rounds.

Burning Sequence to Vertex Cover: We now show how to transform a given
burning sequence S of length (q + 2n + 3) into a vertex cover C of G such that
|C| ≤ q. Let S be the burning sources of the given burning sequence for G′.

For every edge (b, c) ∈ E, we define Hbc to be a subgraph of G′ induced by
the (n + 1)-hop neighborhood of b and c, as well as the vertices on the path
b, bc, . . . , cb, c, and the vertices of the tail associated to (b, c), e.g., see Fig. 2(d).
For every Hbc and for each burning source w in it, we check whether w is closer
to b than c. If b (resp., c) has a smaller shortest path distance to w, then we
include b (resp., c) into C. We break ties arbitrarily.

We now prove that C is a vertex cover of G. Suppose for a contradiction
that there exists an edge (b, c) ∈ E, where neither b nor c belongs to C. Then
every burning source s in G′ is closer to some v-vertex other than b and c. In
other words, Hbc is empty of any burning source. Since Hbc contains an induced
path of (n + 1) + 1 + (2n + 2) + 1 + (n + 1) = (4n + 6) vertices and a tail of n
vertices, burning all the vertices by placing burning sources outside Hbc would
take at least (4n+6

2 + n + 1) steps, which is strictly larger than (q + 2n + 3),
e.g., see Fig. 2(d). Therefore, by construction of C, at least one of b and c must
belong to C.

It now suffices to show that the size of C is at most q. Since there are (2n+3)
isolated vertices in G′, they must correspond to (2n + 3) burning sources in the
burning sequence. The remaining q burning sources are distributed among the
graphs Huv. Therefore, C can have at most q vertices. 	

We now have the following theorem.

Theorem 1. The burning number problem is APX-hard.

Proof. Let G be an instance of the vertex cover problem in a cubic graph, and let
G′ be the corresponding instance of the burning number problem. By Lemma1,
if G has a vertex cover of size at most q, then G′ has a burning sequence of
length at most (q + 2n + 3), and vice versa. Let C∗ be a minimum vertex cover
in G. Then b(G′) ≤ |C∗| + 2n + 3.

Let A be a (1+ε)-approximation algorithm for computing the burning num-
ber, where ε > 0. Then the burning number computed using A is at most

278 D. Mondal et al.

(1 + ε)b(G′). By Lemma 1, we can use the solution obtained from A to compute
a vertex cover C of size at most (1 + ε)b(G′) − 2n − 3 in G. Therefore, |C|

|C∗| =
(1+ε)b(G′)−2n−3

|C∗| = b(G′)+εb(G′)−2n−3
|C∗| ≤ (|C∗|+2n+3)+εb(G′)−2n−3

|C∗| = 1 + εb(G′)
|C∗| .

Note that G′ has n v-vertices, (2n+3) isolated vertices, 2|E| e-vertices, n|E|
tail vertices and 2n|E| d-vertices. Since |E| ≤ 3n/2, the total number of vertices
in G′ without the isolated vertices is upper bounded by n + 3n + n2 + 3n2 ≤
4n2 + 4n ≤ 5n2, for any n > 4. Since the burning number of a connected graph
with r vertices is bounded by 2

√
r [4], the burning number of G′ is upper bounded

by (2n + 3) + 2
√

5n2 < 8n, where the term (2n + 3) corresponds to the isolated
vertices in G′. In other words, we can always burn the connected component first,
and then the isolated vertices. Furthermore, by Brooks’ theorem [10], |C∗| > n/3.

We thus have |C|
|C∗| ≤ 1 + εb(G′)

|C∗| ≤ 1 + 8nε
|C∗| ≤ 1 + 8nε

n/3 = 1 + 24ε, which
implies a polynomial-time approximation scheme for the minimum vertex cover
problem. Hence the APX-hardness of burning number problem follows from the
APX-hardness of minimum vertex cover. 	

Hardness for Connected Graphs: Note that in our reduction, G′ was discon-
nected. However, we can prove the hardness even for connected graphs as follows.
Let G be the input cubic graph, and let v be a vertex in G. We create another
graph H by adding two vertices w and z in a path v, w, z. It is straightforward
to see that the size of a minimum vertex cover of H is exactly one plus the min-
imum vertex cover of G. We now carry out the transformation into a burning
number instance G′ using H, but instead of using (2n + 3) isolated vertices, we
connect them in a path P = (w,Q,Q′, i1, Q′, i2, Q′, . . . , i2n+3, Q

′), where Q is
a sequence of (q + 2n + 2) vertices, Q′ is a sequence of (2n + 2) vertices, and
i1, . . . , i2n+3 are the vertices corresponding to the (previously) isolated vertices.
Note that P \ {u,Q} has (2n + 2)(2n + 3) + (2n + 3) = (2n + 3)2 vertices. Since
the burning number of a path of r vertices is �√r� [4], any burning sequence will
require (2n + 3) burning sources for P \ {u,Q}.

Note given a vertex cover C in H of length q, if w is not in C, then C must
contain z. Hence we can replace z by w. Therefore, we can burn all the vertices
within (q+2n+3) rounds by burning w first and then the other vertices of C, and
then the vertices of P \ {u,Q} using the known algorithm for burning path [4].
On the other hand, if a burning sequence of length (q + 2n + 3) is provided,
then (2n + 3) sources must be used to burn P \ {u,Q}. Since they are at least
(q +2n+3) distance apart from the vertices of H, at most q burning sources are
distributed in H, implying a vertex cover of size q. We thus have the following
corollary.

Corollary 1. The burning number problem is APX-hard, even for connected
graphs.

The generalization of the APX-hardness proof for k-burning number is
included in the full version [21].

APX-Hardness and Approximation for the K-Burning Number Problem 279

G2,2G G2

Fig. 3. Illustration for the construction of G2 and G2,2 from G.

4 Approximation Algorithms

Bonato and Kamali [8] gave an O((n+m) log n)-time 3-approximation for burn-
ing number We leverage Hochbaum and Shmoys’s [14] framework for designing
the approximation algorithm and give a generalized algorithm for computing
k-burning number. For convenience, we first describe the 3-approximation algo-
rithm in terms of Hochbaum and Shmoys’s [14] framework (Fig. 3).

4.1 Approximating Burning Number

Here we show that for connected graphs, the burning number can be approxi-
mated within a factor of 3 in O((n + m) log n) time. Let Gi be the ith power
of G, i.e., the graph obtained by taking a copy of G and then connecting every
pair of vertices with distance at most i with an edge. We now have the following
lemma.

Lemma 2. Let G be a connected graph and assume that b(G) = t. Then Gt

must have a dominating set of size at most t.

Proof. Since b(G) = t, all the vertices are burnt within t rounds. Therefore,
every vertex in G must have a burning source within its t-hop neighborhood.
Consequently, each vertex in Gt, which does not correspond to a burning source
in G, must be adjacent to at least one burning source. One can now choose the
set of burning sources as the dominating set in Gt. 	

For convenience, we define another notation Gi,j , which is the jth power
of Gi. Although Gi,j coincides with Gi+j , we explicitly write i, j. Let Mi,2 be
a maximal independent set of Gi,2. We now have the following lemma, which
follows from the observation in [14] that the size of a minimum dominating set
in G is at least the size of a maximal independent set in G2. However, we give
a proof for completeness.

Lemma 3. The size of a minimum dominating set in Gi is at least |Mi,2|.
Proof. Let Q be a minimum dominating set in Gi. It suffices to prove that for
each vertex v in (M i,2 \ Q), there is a distinct vertex in (Q \ Mi,2) dominating
v (i.e., in this case, adjacent to v).

280 D. Mondal et al.

Let {p, q} ⊂ (Mi,2\Q) be two vertices in Gi, which are dominated by a vertex
w ∈ Q in Gi. Since w is adjacent to p, q in Gi,2 and Mi,2 is an independent set,
we must have w ∈ (Q \ Mi,2). Since w is adjacent to two both p, q in Gi, p, q
will be adjacent in Gi,2, which contradicts that they belong to the independent
set Mi,2. Therefore, each vertex in (M i,2 \ Q), must be dominated by a distinct
vertex in (Q \ Mi,2). 	

Assume that b(G) = t. By Lemma 3, Gt must have a dominating set of size
at least |Mt,2|. By Lemma 2, the size of a minimum dominating set Q in Gt is
upper bounded by t. We thus have the condition |Mt,2| ≤ |Q| ≤ t.

Corollary 2. Let G be a graph with burning number t and let Mt,2 be a maximal
independent set in Gt,2. Then |Mt,2| ≤ t.

Note that for any other positive integer k < t, the condition |Mk,2| ≤ k is not
guaranteed. We use this idea to approximate the burning number. We find the
smallest index j, where 1 ≤ j ≤ n, that satisfies |Mj,2| ≤ j and prove that the
burning number cannot be less than j.

Lemma 4. Let j′ be a positive integer such that j′ < j. Then b(G) �= j′.

Proof. Since j is the smallest index satisfying |Mj,2| ≤ j, for every other Mj′,2,
with j′ < j we have |Mj′,2| ≥ j′ + 1. Suppose for a contradiction that b(G) = j′,
then by Lemma 2, Gj′

will have a dominating set of size at most j′. But by
Lemma 3, Gj′

has a minimum dominating set of size at least |Mj′,2| ≥ j′ + 1. 	

The following theorem shows how to compute a burning sequence in G of

length 3j. Since j is a lower bound on b(G), this gives us a 3-approximation
algorithm for the burning number problem.

Theorem 2. Given a connected graph G with n vertices and m edges, one can
compute a burning sequence of length at most 3b(G) in O((n + m) log n) time.

Proof. Note that Lemma 4 gives a lower bound for the burning number. We now
compute an upper bound. We burn all the vertices of Mj,2 in any order. Since
every maximal independent set is a dominating set, Mj,2 is a dominating set in
Gj,2. Therefore, after the jth round of burning, every vertex of G can be reached
from some burning source by a path of at most 2j edges. Thus all the vertices
will be burnt in |Mj,2| + 2j ≤ 3j steps. Since j is a lower bound on b(G), we
have |Mj,2| + 2j ≤ 3j ≤ 3b(G).

It now suffices to show that the required j can be computed in O((n +
m) log n) time. Recall that j is the smallest index satisfying |Mj,2| ≤ j. For
any j′ > j, we have |Mj′,2| ≤ |Mj,2| ≤ j < j′. Therefore, we can perform a
binary search to find j in O(log n) steps. At each step of the binary search,
we need to compute a maximal independent set Mr,2 in a graph Gr,2 = G2r,
where 1 ≤ r ≤ n. To compute Mr,2, we repeatedly insert an arbitrary vertex
w of G into Mr,2 and then delete w along with its r-hop neighborhood in G
following a breadth-first order. Figure 4 illustrates such a process. Since every
edge is considered at most once, and the process takes O(m + n) time. Hence
the total time is O((n + m) log n). 	

APX-Hardness and Approximation for the K-Burning Number Problem 281

p

q

1

2

3

4

p

q

(a) (b) (c)

5

6 7

8

Fig. 4. Illustration for computing Mr,2, when r = 1. (a) G1,2 = G2, where the edges
of G is shown in black, and a maximal independent set M1,2 = {p, q}. (b)–(c) Compu-
tation of M1,2, where the numbers represent the order of vertex deletion.

4.2 Approximating k-Burning Number

It is straightforward to generalize Lemma2 for k-burning number, i.e., if bk(G) =
t, then the size of a minimum dominating set Q in Gt is at most kt. By Lemma
6, Gt must have a dominating set of size at least |Mt,2|. Therefore, we have
|Mt,2| ≤ |Q| ≤ kt.

Let j be the smallest index such that |Mj,2| ≤ kj. Then for any j′ < j, we
have |Mj′,2| > kj′, i.e., every minimum dominating set in Gj′

must be of size
larger than kj′. We thus have bk(G) �= j′. Therefore, j is a lower bound on bk(G).

To compute the upper bound, we first burn the vertices of Mj,2. Since
|Mj,2| ≤ kj, this requires at most j steps. Therefore, after j steps, every vertex
has a burning source within its 2j-hop neighborhood. Hence all the vertices can
be burnt within 3j ≤ 3bk(G) steps.

Theorem 3. The k-burning number of a graph can be approximated within a
factor of 3 in polynomial time.

5 Burning Scheduling Is NP-Hard

It is tempting to design heuristic algorithms that start with an arbitrary set of
burning sources and then iteratively improve the solution based on some local
modification of the set. However, we show that even when a set of k burn-
ing sources are given as an input, computing a burning sequence (i.e., burning
scheduling) using those sources to burn all the vertices in k rounds is NP-hard.

We reduce the NP-hard problem 3-SAT [11]. Given an instance I of 3-SAT
with m clauses and n variables, we design a graph G with O(n2 + m) vertices
and edges, and a set of 2n burning sources. We prove that an ordering of the
burning sources to burn all the vertices within 2n rounds can be used to compute
an affirmative solution for the 3-SAT instance I, and vice versa (e.g., see Fig. 5).
Due to space constraints, we include the details in the full version [21].

6 Directions for Future Research

A natural open problem is to find an improved approximation algorithm for
k-burning number. One can also investigate whether existing approaches to com-
pute burning number for various graph classes can be extended to obtain nearly

282 D. Mondal et al.

c1 = (x1 ∨ x2 ∨ x3) c2 = (x1 ∨ x2 ∨ x3) c3 = (x2 ∨ x3)

vx1 vx1 vx2 vx2 vx3 vx3

Fig. 5. Illustration for the construction of G, where the given sources are shown in
large disks.

tight bounds for their k-burning number. For example, the burning number of
an n-vertex path is �√n� [6], which can be generalized to �√n/k� for k-burning,
as shown in the full version [21].

It would also be interesting to examine the edge burning number, where a
new edge is burned at each step, as well as the neighboring unburnt edges of the
currently burnt edges are burned. The goal is to burn all the edges instead of all
the vertices. Edge burning number can be different than the burning number,
e.g., one can burn the vertices of every wheel graph in two rounds, but the
edge burning number can be three. Given a graph, can we efficiently determine
whether the burning number is equal to its edge burning number?

Acknowledgement. We thank Payam Khanteimouri, Mohammad Reza Kazemi, and
Zahra Rezai Farokh for an insightful discussion that resulted into the addition of tail
vertices while constructing G′ in the proof of Lemma 1.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1), 123–134 (2000)

2. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the
firefighter problem - computing cuts over time. Algorithmica 62(1–2), 520–536
(2012)

3. Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one
firefighter on trees. Discret. Appli. Math. 161(7), 899–908 (2013)

4. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a
graph is hard. Discret. Appl. Math. 232, 73–87 (2017)

5. Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite
cartesian grid. Graphs Comb. (2020, to appear)

6. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math.
12(1–2), 85–100 (2016)

7. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social
contagion. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014. LNCS,
vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13123-8 2

https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2

APX-Hardness and Approximation for the K-Burning Number Problem 283

8. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 6

9. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-
forests. Theor. Comput. Sci. 794, 12–19 (2019)

10. Brooks, R.L.: On colouring the nodes of a network. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 37, no. 2, pp. 194–197 (1941)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., London (1979)

12. Hartnell, B.: Firefighter! an application of domination. In: Proceedings of the 20th
Conference on Numerical Mathematics and Computing (1995)

13. Hiller, M., Triesch, E., Koster, A.M.C.A.: On the burning number of p-caterpillars.
CoRR abs/1912.10897 (2019)

14. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986)

15. Kamali, S., Miller, A., Zhang, K.: Burning two worlds: algorithms for burning dense
and tree-like graphs. CoRR abs/1909.00530 (2019)

16. Kare, A.S., Vinod Reddy, I.: Parameterized algorithms for graph burning prob-
lem. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol.
11638, pp. 304–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25005-8 25

17. Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bon-
ato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 1–8.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49787-7 1

18. Liu, H., Zhang, R., Hu, X.: Burning number of theta graphs. Appl. Math. Comput.
361, 246–257 (2019)

19. Middendorf, M.: Minimum broadcast time is NP-complete for 3-regular planar
graphs and deadline 2. Inf. Process. Lett. 46(6), 281–287 (1993)

20. Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor.
Comput. Sci. 746, 124–135 (2018)

21. Mondal, D., Parthiban, N., Kavitha, V., Rajasingh, I.: APX-hardness and approxi-
mation for the k-burning number problem. CoRR abs/2006.14733 (2020). https://
arxiv.org/abs/2006.14733

22. Sim, K., Tan, T.S., Wong, K.: On the burning number of generalized Petersen
graphs. Bull. Malays. Math. Sci. Soc. 41, 1657–1670 (2017). https://doi.org/10.
1007/s40840-017-0585-6

23. Singh, S.S., Singh, K., Kumar, A., Shakya, H.K., Biswas, B.: A survey on infor-
mation diffusion models in social networks. In: Luhach, A.K., Singh, D., Hsiung,
P.-A., Hawari, K.B.G., Lingras, P., Singh, P.K. (eds.) ICAICR 2018. CCIS, vol.
956, pp. 426–439. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-
3143-5 35

https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/978-3-319-49787-7_1
https://arxiv.org/abs/2006.14733
https://arxiv.org/abs/2006.14733
https://doi.org/10.1007/s40840-017-0585-6
https://doi.org/10.1007/s40840-017-0585-6
https://doi.org/10.1007/978-981-13-3143-5_35
https://doi.org/10.1007/978-981-13-3143-5_35

Efficient Enumeration of Non-isomorphic
Distance-Hereditary Graphs

and Ptolemaic Graphs

Kazuaki Yamazaki(B), Mengze Qian, and Ryuhei Uehara

School of Information Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, Japan
{torus711,qianmengze,uehara}@jaist.ac.jp

Abstract. Recently, a general framework for enumerating every non-
isomorphic element in a graph class was given. Applying this frame-
work, some graph classes have been enumerated using supercomputers,
and their catalogs are provided on the web. Such graph classes include
the classes of interval graphs, permutation graphs, and proper interval
graphs. Last year, the enumeration algorithm for the class of Ptolemaic
graphs that consists of graphs that satisfy Ptolemy inequality for the
distance was investigated. They provided a polynomial time delay algo-
rithm, but it is far from implementation. From the viewpoint of graph
classes, the class is an intersection of the class of chordal graphs and the
class of distance-hereditary graphs. In this paper, using the recent frame-
work for enumerating every non-isomorphic element in a graph class,
we give enumeration algorithms for the classes of distance-hereditary
graphs and Ptolemaic graphs. For distance-hereditary graphs, its delay
per graph is a bit slower than a previously known theoretical enumeration
algorithm, however, ours is easy for implementation. In fact, although
the previously known theoretical enumeration algorithm has never been
implemented, we implemented our algorithm and obtained a catalog of
distance-hereditary graphs of vertex numbers up to 14. We then mod-
ified the algorithm for distance-hereditary graphs to one for Ptolemaic
graphs. Its delay can be the same as one for distance-hereditary graphs,
which is much efficient than one proposed last year. We succeeded to
enumerate Ptolemaic graphs of vertex numbers up to 15.

Keywords: Distance-hereditary graph · Enumeration · Graph
isomorphism · Ptolemaic graph

1 Introduction

Nowadays, we have to process huge amounts of data in the area of data mining,
bioinformatics, etc. Finding a common structure from a huge amount of data is
an important problem when we deal with such data. On the other hand, since
1980s, there has been many research on the structures in graphs in the area of
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 284–295, 2021.
https://doi.org/10.1007/978-3-030-68211-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_23

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 285

graph theory and graph algorithms [4]. From the viewpoints of both applications
and graph theory, it is natural to consider that two graphs are different if and only
if they are non-isomorphic. However, in general, it is unknown whether graph
isomorphism can be solved efficiently, even on quite restricted graph classes (see,
e.g., [15]). On the other hand, even if we restrict ourselves to the graph classes
that allow us to solve graph isomorphism efficiently, such graph classes still have
certain structures with many applications.

From these backgrounds, efficient enumeration of all non-isomorphic graphs
that belong to some specific graph classes have been investigated in literature.
There are two early results [12,13]: In these papers, the authors gave efficient
enumeration algorithms for proper interval graphs and bipartite permutation
graphs. Later, these algorithms had been implemented [6,8], and the lists of
these graphs are published on a website [16]. For example, proper interval graphs
are enumerated up to n = 23 so far, where n is the number of vertices. Since
these graph classes have simple structures, the file sizes are the bottleneck to
publish on the website. They are efficient since they are designed for specific
graph classes based on their own geometric structures.

On the other hand, a general framework that gives us to enumerate all non-
isomorphic graphs in some graph classes is investigated and proposed in [18]. In
order to avoid duplicates, the graph isomorphism can be solved efficiently for the
class. In this context, enumeration algorithms for interval graphs and permuta-
tion graphs have been developed, and the data sets of these graph classes are
on public on the above website. The class of permutation graphs is enumerated
up to n = 8, and the class of interval graphs is enumerated up to n = 12 on
the website. Recently, the result has been updated to n = 15 for interval graphs
[11]. For these graph classes, since their structures are more complicated than
proper interval graphs and bipartite permutation graphs, the computation time
is the bottleneck to enumerate.

In this context, an enumeration algorithm for Ptolemaic graphs was inves-
tigated last year [14]. To solve graph isomorphism efficiently, they used a tree
structure called CL-tree proposed in [17]. The CL-tree represents laminar struc-
ture on cliques of a Ptolemaic graph. They succeeded to propose an enumer-
ation algorithm for non-isomorphic Ptolemaic graphs, however, they only give
a polynomial bound for each delay between two Ptolemaic graphs since their
algorithm is quite complicated, and hence the enumeration algorithm has not
yet implemented. From the viewpoint of graph theory, the class of Ptolemaic
graphs is the intersection of classes of chordal graphs and distance-hereditary
graphs. We note that the class of chordal graph is well investigated (see, e.g.,
[3,4]), however, the graph isomorphism problem is intractable unless the graph
isomorphism problem can be solved efficiently in general (see, e.g., [15] for fur-
ther details). On the other hand, the graph isomorphism can be solved efficiently
for distance-hereditary graphs [9].

In this paper, we first focus on enumeration of distance-hereditary graphs. In
[9], the authors proposed a tree structure DH-tree to solve graph isomorphism
efficiently. Using the DH-tree, they also claimed that they can enumerate the

286 K. Yamazaki et al.

class of distance-hereditary graphs in polynomial time delay; more precisely,
they claimed that they can enumerate distance-hereditary graphs in O(n) time
delay up to graphs of vertices n in [9, Theorem 32]. However, it is not accurate.
They actually enumerate all DH-trees for the class of distance-hereditary graphs
with O(n) delay for each tree. From a DH-tree, we should use O(n + m) time
to generate each corresponding distance-hereditary graphs, where n and m are
the numbers of vertices and edges, respectively. Therefore, when their algorithm
is used to enumerate all distance-hereditary graphs themselves, its delay should
be estimated as O(n2). In fact, as far as the authors know, this enumeration
algorithm has never been implemented. We first put this DH-tree structure to
the general framework proposed in [18]. We then obtain a simple enumeration
algorithm for distance-hereditary graphs up to n vertices which runs with O(n3)
delay. Although the running time is not as good as one in [9], we can implement
it and obtain a catalog, which is available on the web [16], of non-isomorphic
distance-hereditary graphs up to n = 15. (On the web, we put the catalog up to
n = 14 since the data file for n = 15 is too huge.)

Next we turn to the enumeration of Ptolemaic graphs. The class of Ptolemaic
graphs is the intersection of the classes of chordal graphs and distance-hereditary
graphs. Using the properties of chordal graphs, we can obtain a characterization
of Ptolemaic graphs similar to DH-tree mentioned in [2]. Precisely, when we
introduce additional constraint into generation rules for DH-tree, we can obtain
a canonical tree structure for Ptolemaic graphs. Therefore, modifying the enu-
meration algorithm for distance-hereditary graphs, we can obtain an enumera-
tion algorithm for Ptolemaic graphs. If we modify the enumeration algorithm
for distance-hereditary graphs to one for Ptolemaic graphs straightforwardly,
we need O(n) extra cost (or extra delay) for checking the constraint. However,
using the technique for amortized complexity, the extra cost can be reduced.
Thus we obtain an enumeration algorithm for Ptolemaic graphs and its delay is
O(n3), which is (theoretically) the same as distance-hereditary graphs. We have
modified the enumeration algorithm for distance-hereditary graphs to enumerate
Ptolemaic graphs, and obtained a catalog of non-isomorphic Ptolemaic graphs
up to n = 15, which is also available on the web [16].

2 Preliminaries

We consider only simple graphs G = (V,E) with no self-loop and multi edges.
We assume V = {v0, v1, . . . , vn−1} for some n and |E| = m. Let Kn denote
the complete graph of n vertices and Pn denote the path of n vertices of length
n − 1. We define a graph isomorphism between two graphs G0 = (V0, E0) and
G1 = (V1, E1) as follows. The graph G0 is isomorphic to G1 if and only if there
is a one-to-one mapping φ : V0 → V1 such that for any pair of vertices u, v ∈ V0,
{u, v} ∈ E0 if and only if {φ(u), φ(v)} ∈ E1. We denote by G0 ∼ G1 for two
isomorphic graphs G0 and G1.

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈
V | {u, v} ∈ E}. The degree of a vertex v is |NG(v)| which is denoted by degG(v).

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 287

For a subset U of V , we denote by NG(U) the set {v ∈ V | v ∈ N(u) for some u ∈
U}. If no confusion can arise, we will omit the index G. We denote the closed
neighborhood N(v) ∪ {v} by N [v]. Given a graph G = (V,E) and a subset
U of V , the induced subgraph by U , denoted by G[U], is the graph (U,E′),
where E′ = {{u, v} | u, v ∈ U and {u, v} ∈ E}. Given a graph G = (V,E),
its complement is defined by Ē = {{u, v} | {u, v} �∈ E}, which is denoted by
Ḡ = (V, Ē). A vertex set I is an independent set if G[I] contains no edges, and
then the graph Ḡ[I] is said to be a clique. Two vertices u and v are said to be
a pair of twins if N(u) \ {v} = N(v) \ {u}. For a pair of twins u and v, we say
that they are strong twins if {u, v} ∈ E, and weak twins if {u, v} �∈ E.

Given a graph G = (V,E), a sequence of the distinct vertices v0, v1, . . . , vl
is a path, denoted by (v0, v1, . . . , vl), if {vj , vj+1} ∈ E for each 0 ≤ j < l. The
length of a path is the number l of edges on the path. For two vertices u and
v, the distance of the vertices, denoted by d(u, v), is the minimum length of
the paths joining u and v. A cycle is a path beginning and ending at the same
vertex. An edge which joins two vertices of a cycle but it is not an edge of the
cycle is a chord of the cycle. A graph is chordal if each cycle of length at least
4 has a chord. Given a graph G = (V,E), a vertex v ∈ V is simplicial in G if
G[N(v)] is a clique in G.

Given a graph G = (V,E) and a subset U of V , an induced connected sub-
graph G[U] is isometric if the distances of pairs of vertices in G[U] are the
same as in G. A graph G is distance-hereditary if G is connected and every
induced path in G is isometric. In other words, a connected graph G is distance-
hereditary if and only if all induced paths are shortest paths. A connected
graph G is Ptolemaic if for any four vertices u, v, w, x of G, d(u, v)d(w, x) ≤
d(u,w)d(v, x) + d(u, x)d(v, w).

The following characterization of Ptolemaic graphs is due to Howorka [7]:

Theorem 1. The following conditions are equivalent: (1) G is Ptolemaic; (2)
G is distance-hereditary and chordal; (3) for all distinct non-disjoint maximal
cliques P,Q of G, P ∩ Q separates P \ Q and Q \ P .

2.1 Generation Rules and Tree Structures

In this section, we give generation rules for distance-hereditary graphs and Ptole-
maic graphs, and tree structures based on them. We first introduce two basic
operations for generation of a graph. For a vertex v in a graph G = (V,E), we
add pendant when we add a new vertex u into V with an edge {u, v} into E.
(The vertex u of degree 1 is called pendant, and the vertex v is called neck of
the pendant.) For a vertex v in a graph G = (V,E), we split v into weak (and
strong) twins when we add a new vertex u into V so that N(u) = N(v) (and
N [u] = N [v], respectively). For the classes of distance-hereditary graphs and
Ptolemaic graphs, the following characterizations are known:

Theorem 2 ([2], Theorem 1). A vertex is a distance-hereditary graph. Let
G = (V,E) be a distance-hereditary graph, and v be any vertex in G. Then a

288 K. Yamazaki et al.

graph obtained by either (1) adding a pendant u �∈ V to v, (2) splitting v into
weak twins, or (3) splitting v into strong twins is a distance-hereditary graph.

We here note that in [14, Corollary 1], the authors used (1) and (3) in The-
orem 2 as a characterization of the class of Ptolemaic graphs. However, it not
correct; a simple counter example is shown in [2, Figure 11], which is a Ptole-
maic graph that cannot be generated by applying only (1) and (3). The correct
characterization is given as follows:

Theorem 3 ([2],Corollary 6). A vertex is a Ptolemaic graph. Let G = (V,E)
be a Ptolemaic graph, and v be any vertex in G. Then a graph obtained by either
(1) adding a pendant u �∈ V to v, (2’) splitting v into weak twins if v is simplicial
in G, or (3) splitting v into strong twins is a Ptolemaic graph.

Fig. 1. A distance-hereditary graph G and its contracting/pruning process.

Fig. 2. The DH-tree T (G) derived from the distance-hereditary graph G in Fig. 1.

It is easy to see that K1 and K2 are Ptolemaic graphs (and hence distance-
hereditary graphs). Hereafter, to simplify the notations and arguments, we

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 289

assume that every graph has at least three vertices. For a given distance-
hereditary graphs G = (V,E), we define three families of vertex sets as follows:

S = {S | x, y ∈ S if N [x] = N [y] and |S| ≥ 2},

W = {W | x, y ∈ W if N(x) = N(y), |S| ≥ 2, and |N(x) = N(y) > 1|},

P = {P | x, y ∈ W if x is a pendant and y is its neck}.

We note that a neck can have two or more pendants. In [9, Lemma 6], they show
that these families are disjoint, and we can obtain the reverse process of the
generation process of a distance-hereditary graph (Fig. 1) based on the family
and Theorem 2. Based on this property, they introduced the DH-tree T (G) of a
distance-hereditary graph G = (V,E) (Fig. 2): (0) the set of leaves of T (G) has
one-to-one mapping to V , (1) each inner node1 has its label from s, w, and p,
corresponding to “strong twins”, “weak twins”, and “pendants & neck”. Children
of an inner node with label s (and w) are generated as strong (and weak, resp.)
twins, while children of an inner node with label p are generated as pendants
such that the leftmost child corresponds to the neck and the other children
are pendants. We here note that the nodes with labels s or w are unordered,
however, the nodes with label p should be partially ordered since the leftmost
child indicates the neck of the other children which correspond to pendants.
Some other properties of a DH-tree T (G) of a distance-hereditary graph G can
be found in [9, Lemma 10]. Based on the properties, it is proved in [9] that (1) a
graph G is a distance-hereditary graph if and only if its normalized DH-tree T (G)
is uniquely constructed, and hence (2) two distance-hereditary graphs G1 and
G2 are isomorphic if and only if T (G1) is isomorphic to T (G2) (as two labeled
trees with restrictions above). That is, a distance-hereditary graph G = (V,E)
can be represented by the corresponding DH-tree T (G) with 2|V | − 1 vertices
uniquely up to isomorphism.

Lemma 1 ([9], Theorem 32). DH-trees of distance-hereditary graphs with at
most n vertices can be enumerated in O(n) time for each, with O(n2) space.

As mentioned in Introduction, the algorithm in [9, Theorem 32] enumerates
DH-trees of distance-hereditary graphs with at most n vertices. For a DH-tree,
it is not difficult to construct the corresponding distance-hereditary graph G =
(V,E) in O(n + m) time, where n = |V | and m = |E|. Thus we can obtain the
following immediately by Lemma 1:

Theorem 4. Non-isomorphic distance-hereditary graphs with at most n vertices
can be enumerated in O(n2) time for each.

As far as the authors know, the enumeration algorithm in Theorem4 has
never been implemented.

For Ptolemaic graphs, Uehara and Uno gave a tree structure named CL-
tree, which is based on the laminar structure of intersections of maximal cliques
1 In this paper, the original graph G has its “vertices”, while corresponding tree struc-

ture T (G) has its “nodes” to distinguish them.

290 K. Yamazaki et al.

in a Ptolemaic graph [17]. The CL-tree for a Ptolemaic graph has the same
property of DH-tree for a distance-hereditary graph: (1) a graph G is a Ptolemaic
graph if and only if its normalized CL-tree is uniquely constructed in linear
time, and hence (2) two Ptolemaic graphs G1 and G2 are isomorphic if and
only if their corresponding CL-trees are isomorphic (as two labeled trees with
some restrictions). Based on this characterization, Tran and Uehara showed the
following theorem for Ptolemaic graphs [14]:

Theorem 5. Non-isomorphic Ptolemaic graphs with at most n vertices can be
enumerated in polynomial time for each.

However, their algorithm consists of two phases; it first enumerates the CL-
tree structure, and then assigns vertices of the corresponding Ptolemaic graphs.
The reason is that each node in the CL-tree corresponds to a set of strong twins
in the Ptolemaic graph G = (V,E), and hence there are many partitions of the
vertex set V into these subsets. Therefore, although it is polynomial, the exact
upper bound of the polynomial in Theorem5 is not clear in their algorithm, and
it is quite difficult to implement it from the practical point of view.

3 Enumeration Algorithms

3.1 Enumeration Algorithm for Distance-Hereditary Graphs

We first give an enumeration algorithm for distance-hereditary graphs:

Lemma 2. Distance-hereditary graphs with at most n vertices can be enumer-
ated in O(n3) time for each.

Comparing to Theorem4, this algorithm is a bit less efficient from the the-
oretical point of view. However, the algorithm in Theorem4 had never been
implemented as far as the authors know, while our algorithm in Lemma2 has
been implemented and enumerated up to n = 15. In fact, for such a “small” n,
we consider the factor n is not an essential matter.

Our algorithm uses a general framework proposed in [18], which is based on
reverse search invented by Avis and Fukuda [1]. In the context of enumeration
of distance-hereditary graphs, we first define family tree T̂ = (V̂ , Ê) as follows.
Each element in V̂ is a DH-tree, and each arc (T1, T2) in Ê joins T1 and T2 if T1

is the parent of T2. We define the root of the family tree T̂ is K2, and K1 and
K2 are output first as a special graph. (Recall that we assume that our distance-
hereditary graphs have at least three vertices.) The definition of parent-child
relationship between two DH-trees is essential. Once the parent-child relationship
is defined, our reverse search algorithm traverses the family tree T̂ in the breadth-
first search manner. As we will show later, each children DH-tree has one more
vertex than the parent DH-tree. Therefore, we can enumerate all non-isomorphic
DH-trees corresponding to non-isomorphic distance-hereditary graphs of up to
n vertices by traversing all elements of depth n − 2 in the family tree from the
root K2 of depth 0. (Here, the depth of a family tree is defined in a natural way;

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 291

the root has depth 0, and the other node has depth d + 1 where d is the depth
of its parent node.)

Now we turn to the parent-child relationship of two DH-trees T1 and T2.
The basic idea is the same as the enumeration algorithm for trees [10]: We first
introduce the order for layout of the DH-tree; a tree is drawn in the right-heavy
manner so that, for each node p, its children are in the right-heavy order. (We
note that the leftmost child of the inner node with label p is a special fixed node
to represent the neck of the pendants which correspond to the siblings in the
DH-tree.) Then, two distance-hereditary graphs G1 and G2 are isomorphic if
and only if the corresponding DH-trees are not only isomorphic, but also their
layouts are the same. Then, for two distance-hereditary graphs G1 = (V1, E1)
and G2 = (V2, E2) with |V1| = |V2| − 1, G1 is the (unique) parent of G2 if and
only if T (G1) is obtained from T (G2) by removing the rightmost leaf of the first
node having only leaves found by the DFS on the DH-tree T (G2).

As shown in [9], each normalized DH-tree of a distance-hereditary graph
of n vertices can be represented in the standardized string representation of
length O(n). Based on the parent-child relationship and the standard string
representation, our enumeration algorithm in Lemma2 is described as follows
(in each line, the last comment indicates the time complexity of the line):

0. Put the DH-tree2 of the root K2 into a queue Q; /* O(1) time. */
1. Pick up one DH-tree T from Q; /* O(n) time. */
2. Construct the distance-hereditary graph G represented by T and output G;

/* O(n2) time since G has O(n2) edges */
3. If G contains less than n vertices, construct the set C, represented by trie, of

candidates of children of T through steps 3.1 to 3.4; /* |C| = O(n). */
3.1. Generate each graph G′ obtained by adding pendant u to each vertex v

in V ; /* O(n) ways with O(1) time. */
3.2. Generate each graph G′ obtained by splitting each vertex v in V to weak

twins; /* O(n) ways with O(n) time for each to copy the edges. */
3.3. Generate each graph G′ obtained by splitting each vertex v in V to strong

twins; /* O(n) ways with O(n) time for each to copy the edges. */
3.4. Each graph G′ generated in steps 3.1–3.3 is encoded into a canonical

string that represents corresponding to the DH-tree T (G′) and put into
a trie to remove duplicates (up to isomorphism) as follows;

3.4.1. Generate the DH-tree T (G′); /* O(n2) time as step 2. */
3.4.2. Normalize T (G′) in the right-heavy manner to make it canonical up to

isomorphism; /* O(n) time. */
3.4.3. The canonical string representation of T (G′) is put into a trie to

remove duplicates; /* O(n) time. */

2 The DH-tree for K2 is the only exception that it is not well-defined. It can be seen
as two strong twins, or one of them is a pendant of the other. From the practical
point of view, it is better to initialize the queue Q by two nodes for K3 and a path
(u, v, w) of three vertices.

292 K. Yamazaki et al.

4. For each candidate string representation of T (G′) in C, check if it is a
child of T as follows, and put it into Q if the parent of T (G′) is T ;
/* The number of iterations is O(n) since |C| = O(n). */

4.0. Construct the DH-tree T (G′) from its string representation;
/* O(n) time. */

4.1. Construct the unique parent T ′ from T (G′); /* O(n) time. */
4.2. If T ′ is isomorphic to T , put T (G′) into the queue since the parent T ′ of

T (G′) is T . /* O(n) time. */

Proof. (of Lemma 2) The correctness of the framework follows the arguments in
[18]. Therefore, we discuss time complexity. Let G = (V,E) be any distance-
hereditary graph with |V | = n. A key observation is that we have one-to-one
corresponding between the set V of vertices of G and the set of leaves of the
DH-tree T (G). Since T (G) has n − 1 inner nodes, T (G) can be represented in
O(n) space. By arguments in [9], the canonical string representation of length
O(n) of T (G) can be constructed in O(n) time and vice versa. A trie is a data
structure (also known as prefix tree) to represent a set. (The details can be found
in [9] and omitted here.) Using a trie, we can obtain a set (without duplicates) of
sequences of integers from a multiset (with duplicates) of sequences of integers
in linear time of the number of total elements in the multiset. Thus, by using trie
to represent the set C in step 3, step 3.4.3 (registration of a candidate) can be
done in linear time of the size of a candidate, and we can remove the duplicates
in C if they exist. Using a queue Q to keep the DH-trees, we can traverse the
DH-trees in the breadth-first manner. Thus, in total, distance-hereditary graphs
with at most n vertices can be enumerated in O(n3) time for each.
�

3.2 Enumeration Algorithm for Ptolemaic Graphs

In this section, we give an enumeration algorithm for Ptolemaic graphs:

Theorem 6. Ptolemaic graphs with at most n vertices can be enumerated in
O(n3) time for each.

We modify the algorithm shown in the proof of Lemma2 based on Theorem 3.
Naively, we can enumerate Ptolemaic graphs by replacing the step 3.2 by the
following step 3.2’:

3.2’. Generate each graph G′ obtained by splitting each vertex v in V to
weak twins if v is simplicial in V ;
/* O(n) ways with O(n) time for each to copy the edges. */

The original step 3.2 has n candidates v in V , and then it adds deg(v) edges
into E for each candidate v. Thus this step contributes O(n2) time in total
running time O(n3). If we straightforwardly check whether N(v) is a clique in
G or not, it takes O(n2) time. Then the modified algorithm runs in O(n4) time
for each.

In order to reduce the time to check whether a given vertex v in V is simplicial
or not, we introduce a function s : V → {true, false} that indicates s(v) = true
if v is simplicial and s(v) = false otherwise.

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 293

Lemma 3. For each generation rule (1), (2’), and (3) in Theorem3, the update
of the function s(v) can be done in O(n) time, where n = |V |.
Proof. For notational simplicity, we start from K2 that consists of two vertices u
and v. We initialize s(u) = s(v) = true since they are simplicial. Let G = (V,E)
be a Ptolemaic graph with |V | ≥ 2. We have three cases to consider.
(1) Adding a pendant u �∈ V to v ∈ V : In this case, it is easy to see that we have
s(u) = true and s(v) = false. For the other vertices w in G, s(w) is not changed.
Thus this step requires O(1) time to update.
(3) Splitting v ∈ V into strong twins u and v with u �∈ V : In this case, we add
u into V and make N [u] = N [v], especially, we add an edge {u, v} into E. Then
it is easy to see that s(u) is equal to s(v). For the other vertex w in N(v), s(w)
is not changed in this case. As the same as in (1) above, s(x) is not changed for
the other vertices x in V . Thus what we have to do is set s(u) = s(v) in O(1)
time.
(2’) Splitting v ∈ V into weak twins u and v with u �∈ V : In this case, we can
observe that s(u) is equal to s(v) as the same as (3). On the other hand, each
vertex w in N(v) cannot be simplicial because u and v are not adjacent. For the
other vertices x in V , s(x) is not changed. Thus we have to set s(u) = s(v) and
s(w) = false for each w ∈ N(v) in O(degG(v)) time.

Therefore, each update of s can be done in O(n) time.
�
Using the function s, the step 3.2’ can be done in O(n2) time, which completes

the proof of Theorem 6.

3.3 Implementation and Experimental Results

We first implemented the enumeration algorithm for distance-hereditary graphs
and modified it to enumerate Ptolemaic graphs. We ran them on a supercom-
puter (Cray XC-40) in our university. The program is implemented to run in
parallel on the supercomputer, and the running time is around 90 min to enu-
merate distance-hereditary graphs up to n = 15 and Ptolemaic graphs up to
n = 15. Due to disk space, we publish the distance-hereditary graphs up to
n = 14 and Ptolemaic graphs up to n = 15 on the web [16].

We here note that the counting problem is different from the enumeration
algorithm in general. To count the number of objects, sometimes it is not neces-
sary to enumerate all objects (see, e.g., [5]). In fact, the numbers of the graphs
mentioned above have been investigated and can be found on a famous website
On-Line Encyclopedia of Integer Sequences (oeis.org). Using these sequences,
we can double-check the correctness of the outputs. (See the webpage [16] for
further details.)

4 Concluding Remarks

In this paper, we show that we can enumerate non-isomorphic distance-
hereditary graphs with at most n vertices in O(n3) time delay and non-
isomorphic Ptolemaic graphs with at most n vertices in O(n3) time delay. The

https://oeis.org/

294 K. Yamazaki et al.

first one is slower than the previously known theoretical bound, while the second
one is a new result. As described in Introduction, both algorithms can be imple-
mented on a real computer. In fact, we have already implemented the algorithms
and published their catalogs on the web [16]. When we enumerate some graph
classes, it is the issue that if a theoretical algorithm can be implemented in a
realistic sense. Moreover, we have to take a balance between (1) running time
of the algorithm, and (2) the file size required to store the output. The running
time for solving the graph isomorphism problem for the class can be a bottleneck
of our framework. Future work can be efficient enumeration (in a practical sense)
of some graph classes such that the graph isomorphism is GI-complete for them.

Acknowledgement. This work is partially supported by JSPS KAKENHI Grant
Numbers 17H06287 and 18H04091.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65,
21–46 (1996)

2. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory, Ser.
B 41(2), 182–208 (1986)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, University
City (1999)

4. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. In: Annals of Dis-
crete Mathematics, 2nd ed, vol. 57. Elsevier (2004)

5. Hanlon, P.: Counting interval graphs. Trans. Am. Math. Soc. 272(2), 383–426
(1982)

6. Harasawa, S., Uehara, R.: Efficient enumeration of connected proper interval
graphs (in Japanese). IEICE Technical Report COMP2018-44, IEICE, March 2019,
pp. 9–16 (2019)

7. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5, 323–331
(1981)

8. Ikeda, S.i., Uehara, R.: Implementation of enumeration algorithm for connected
bipartite permutation graphs (in Japanese). IEICE Technical Report COMP2018-
45, IEICE, March 2019, pp. 17–23 (2019)

9. Nakano, S.I., Uehara, R., Uno, T.: A new approach to graph recognition and appli-
cations to distance-hereditary graphs. J. Comput. Sci. Technol. 24(3), 517–533
(2009). https://doi.org/10.1007/s11390-009-9242-3

10. Nakano, S., Uno, T.: Constant time generation of trees with specified diameter.
In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp.
33–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 3

11. Mikos, P.: Efficient enumeration of non-isomorphic interval graphs.
arXiv:1906.04094 (2019)

12. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enu-
meration of bipartite permutation graphs. J. Discret. Algorithms 10, 84–97 (2012).
https://doi.org/10.1016/j.jda.2011.11.001

13. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random generation and enu-
meration of proper interval graphs. IEICE Trans. Inf. Syst. E93–D(7), 1816–1823
(2010)

https://doi.org/10.1007/s11390-009-9242-3
https://doi.org/10.1007/978-3-540-30559-0_3
http://arxiv.org/abs/1906.04094
https://doi.org/10.1016/j.jda.2011.11.001

Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs 295

14. Tran, D.H., Uehara, R.: Efficient enumeration of non-isomorphic ptolemaic graphs.
In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol.
12049, pp. 296–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39881-1 25

15. Uehara, R., Toda, S., Nagoya, T.: Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs. Discret. Appl. Math. 145(3), 479–
482 (2004)

16. Uehara, R.: Graph catalogs (2020). http://www.jaist.ac.jp/∼uehara/graphs
17. Uehara, R., Uno, Y.: Laminar structure of ptolemaic graphs with applications.

Discret. Appl. Math. 157(7), 1533–1543 (2009)
18. Yamazaki, K., Saitoh, T., Kiyomi, M., Uehara, R.: Enumeration of nonisomorphic

interval graphs and nonisomorphic permutation graphs. Theoret. Comput. Sci.
806, 323–331 (2020). https://doi.org/10.1016/j.tcs.2019.04.017

https://doi.org/10.1007/978-3-030-39881-1_25
https://doi.org/10.1007/978-3-030-39881-1_25
http://www.jaist.ac.jp/~uehara/graphs
https://doi.org/10.1016/j.tcs.2019.04.017

Physical Zero-Knowledge Proof
for Ripple Effect

Suthee Ruangwises(B) and Toshiya Itoh

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

ruangwises@gmail.com, titoh@c.titech.ac.jp

Abstract. Ripple Effect is a logic puzzle with an objective to fill num-
bers into a rectangular grid divided into rooms. Each room must contain
consecutive integers starting from 1 to its size. Also, if two cells in the
same row or column have the same number x, the space separating the
two cells must be at least x cells. In this paper, we propose a physical
protocol of zero-knowledge proof for Ripple Effect puzzle using a deck
of cards, which allows a prover to physically show that he/she knows a
solution without revealing it. In particular, we develop a physical proto-
col that, given a secret number x and a list of numbers, verifies that x
does not appear among the first x numbers in the list without revealing
x or any number in the list.

Keywords: Zero-knowledge proof · Card-based cryptography · Ripple
effect · Puzzle

1 Introduction

Ripple Effect is a logic puzzle introduced by Nikoli, a Japanese company that
developed many famous logic puzzles such as Sudoku, Numberlink, and Kakuro.
A Ripple Effect puzzle consists of a rectangular grid of size m × n divided into
polyominoes called rooms, with some cells already containing a number (we call
these cells fixed cells and the other cells empty cells). The objective of this puzzle
is to fill a number into each empty cell according to the following rules [13].

1. Room condition: Each room must contain consecutive integers starting from
1 to its size (the number of cells in the room).

2. Distance condition: If two cells in the same row or column have the same
number x, the space separating the two cells must be at least x cells. See
Fig. 1.

Suppose that Patricia, a Ripple Effect expert, created a difficult Ripple Effect
puzzle and challenged her friend Victor to solve it. After a while, Victor could
not solve her puzzle and began to doubt that the puzzle may have no solution.
Patricia needs to convince him that her puzzle actually has a solution without
showing it (which would make the challenge pointless). In this situation, Patricia
needs a protocol of zero-knowledge proof.
c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 296–307, 2021.
https://doi.org/10.1007/978-3-030-68211-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_24&domain=pdf
http://orcid.org/0000-0002-2820-1301
http://orcid.org/0000-0002-1149-7046
https://doi.org/10.1007/978-3-030-68211-8_24

Physical Zero-Knowledge Proof for Ripple Effect 297

4 1

5 6

3

2

3 2 5 4 3 2 1

5 1 2 1 4 3 5

4 3 1 5 2 4 6

1 2 4 3 5 1 2

3 4 1 2 3 5 4

1 5 2 4 1 3 1

2 1 3 1 4 2 3

Fig. 1. An example of a Ripple Effect puzzle (left) and its solution (right)

1.1 Zero-Knowledge Proof

A zero-knowledge proof is a protocol of interactive proof between a prover P
and a verifier V . Both P and V are given a computational problem x, but only
P knows a solution w of x. A protocol of zero-knowledge proof enables P to
convince V that he/she knows w without revealing any information of it. The
protocol must satisfy the following properties.

1. Completeness: If P knows w, then P can convince V with high probability.
(In this paper, we consider only the perfect completeness property where the
probability to convince V is one.)

2. Soundness: If P does not know w, then P cannot convince V , except with
a small probability called soundness error. (In this paper, we consider only
the perfect soundness property where the soundness error is zero.)

3. Zero-knowledge: V learns nothing about w, i.e. there exists a probabilistic
polynomial time algorithm S (called a simulator), not knowing w but having
a black-box access to V , such that the outputs of S and the outputs of the
real protocol follow the same probability distribution.

The concept of a zero-knowledge proof was introduced by Goldwasser et al. [6]
in 1989. Goldreich et al. [5] later showed that a zero-knowledge proof exists for
every NP problem. As Ripple Effect has been proved to be NP-complete [17],
one can construct a computational zero-knowledge proof for it. However, such
construction is not intuitive or practical as it requires cryptographic primitives.

Instead, we aim to develop a physical protocol of zero-knowledge proof with
a deck of playing cards. Card-based protocols have benefit that they do not
require computers and use only a small, portable deck of cards that can be
found in everyday life. These protocols are also suitable for teaching purpose
since they are easy to understand and verify the correctness and security, even
for non-experts in cryptography.

298 S. Ruangwises and T. Itoh

1.2 Related Work

Development of card-based protocols of zero-knowledge proof for logic puzzles
began with a protocol for Sudoku developed by Gradwohl et al. [7]. However,
each of several variants of this protocol either uses scratch-off cards or has a
nonzero soundness error. Later, Sasaki et al. [15] improved the protocol for
Sudoku to achieve perfect soundness property without using special cards. Apart
from Sudoku, protocols of zero-knowledge proof for other puzzles have been
developed as well, including Nonogram [3], Akari [1], Takuzu [1], Kakuro [1,12],
KenKen [1], Makaro [2], Norinori [4], Slitherlink [11], and Numberlink [14].

Many of these protocols employ methods to physically verify or compute
specific number-related functions, as shown in the following examples.

– A subprotocol in [7] verifies that a list is a permutation of all given numbers
in some order without revealing their order.

– A subprotocol in [2] verifies that two given numbers are different without
revealing their values.

– Another subprotocol in [2] verifies that a number in a list is the largest one
in that list without revealing any value in the list.

– A subprotocol in [14] counts the number of elements in a list that are equal
to a given secret value without revealing that value, the positions of elements
in the list that are equal to it, or the value of any other element in the list.

Observe that these four functions do not use the mathematical meaning of
numbers. In these functions, numbers are treated only as symbols distinguished
from one another in the sense that we can replace every number x with f(x) for
any function f : Z+ → Z

+ and the output will remain the same (for the third
example, f has to be an increasing function).1

1.3 Our Contribution

In this paper, we propose a physical protocol of zero-knowledge proof with perfect
completeness and perfect soundness properties for Ripple Effect puzzle using a
deck of cards. More importantly, we extend the set of functions that are known
to be physically verifiable. In particular, we develop a protocol that, given a
secret number x and a list of numbers, verifies that x does not appear among
the first x numbers in the list without revealing x or any number in the list.

Unlike the functions verified by many protocols in previous work, the function
our protocol has to verify uses the mathematical meaning of the numbers in the
sense of cardinality; it uses the value of x to determine how many elements in the
list the condition is imposed on. Therefore, this function is significantly harder
to verify without revealing x, and thus we consider this result to be an important
step in developing protocols of zero-knowledge proof.
1 Actually, some protocols from previous work can verify a function that uses the

mathematical meaning of numbers, but still not in the sense of cardinality. For
example, a subprotocol in [12] verifies that the sum of all numbers in a list is equal
to a given number; for this function, we can still replace every number x with f(x)
for any linear function f : Z+ → Z

+.

Physical Zero-Knowledge Proof for Ripple Effect 299

2 Preliminaries

2.1 Cards

Every card used in our protocol has either ♣ or ♥ on the front side, and has an
identical back side.

For 1 ≤ x ≤ y, define Ey(x) to be a sequence of consecutive y cards arranged
horizontally, with all of them being ♣ except the x-th card from the left being
♥ , e.g. E3(3) is ♣ ♣ ♥ and E4(2) is ♣ ♥ ♣ ♣ . We use Ey(x) to encode a
number x in a situation where the maximum possible number is at most y. This
encoding rule was first considered by Shinagawa et al. [16] in the context of using
a regular y-gon card to encode each integer in Z/yZ. Additionally, we encode 0
by Ey(0), defined to be a sequence of consecutive y cards, all of them being ♣ .

Normally, the cards in Ey(x) are arranged horizontally as defined above
unless stated otherwise. However, in some situations we may arrange the cards
vertically, where the leftmost card will become the topmost card and the right-
most card will become the bottommost card (hence the only ♥ will become the
x-th topmost card for x ≥ 1).

2.2 Matrix

We construct an a × b matrix of face-down cards. Let Row i denote the i-th
topmost row, and Column j denote the j-th leftmost column. Let M(i, j) denote
the card at Row i and Column j of a matrix M . See Fig. 2.

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

Row

1 2 3 4 5 6

Column

Fig. 2. An example of a 5 × 6 matrix

2.3 Pile-Shifting Shuffle

A pile-shifting shuffle was introduced by Shinagawa et al. [16]. In the pile-shifting
shuffle, we rearrange the columns of the matrix by a random cyclic permutation,

300 S. Ruangwises and T. Itoh

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

1 2 3 4 5 6

⇒
? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

5 6 1 2 3 4

Fig. 3. An example of a pile-shifting shuffle on a 5 × 6 matrix with r = 2

i.e. move every Column � to Column � + r for a uniformly random r ∈ {0, 1, ...,
b − 1} (where Column �′ means Column �′ − b for �′ > b). See Fig. 3.

One can perform the pile-shifting shuffle in real world by putting the cards
in each column into an envelope and then applying a Hindu cut, which is a
basic shuffling operation commonly used in card games [18], to the sequence of
envelopes.

2.4 Rearrangement Protocol

The sole purpose of a rearrangement protocol is to revert columns of a matrix
(after we perform pile-shifting shuffles) back to their original positions so that
we can reuse all cards in the matrix without revealing them. Slightly different
variants of this protocol were used in some previous work on card-based proto-
cols [2,8,9,14,15]. Note that throughout our main protocol, we always put Eb(1)
in Row 1 when constructing a new matrix, hence we want to ensure that a ♥
in Row 1 moves back to Column 1.

We can apply the rearrangement protocol on an a × b matrix by publicly
performing the following steps.

1. Apply the pile-shifting shuffle to the matrix.
2. Turn over all cards in Row 1. Locate the position of a ♥ . Suppose it is at

Column j. Turn over all face-up cards.
3. Shift the columns of the matrix to the left by j − 1 columns, i.e. move every

Column � to Column � − (j − 1) (where Column �′ means Column �′ + b for
�′ < 1).

2.5 Uniqueness Verification Protocol

Suppose we have sequences S0, S1, ..., Sa, each consisting of b cards. S0 encodes a
positive number, while S1, S2, ..., Sa encode nonnegative numbers. Our objective
is to verify that none of the sequences S1, S2, ..., Sa encodes the same number as
S0 without revealing any number. This protocol is a special case of the protocol
developed by Ruangwises and Itoh [14] to count the number of indices i such
that Si encodes the same number as S0. We can do so by publicly performing
the following steps.

Physical Zero-Knowledge Proof for Ripple Effect 301

1. Construct an (a + 2) × b matrix with Row 1 consisting of a sequence Eb(1)
and each Row i + 2 (i = 0, 1, ..., a) consisting of the sequence Si.

2. Apply the pile-shifting shuffle to the matrix.
3. Turn over all cards in Row 2. Locate the position of a ♥ . Suppose it is at

Column j.
4. Turn over all cards in Column j from Row 3 to Row a + 2. If there is no

♥ among them, then the protocol continues. Otherwise, V rejects and the
protocol terminates.

5. Turn over all face-up cards.

2.6 Pile-Scramble Shuffle

A pile-scramble shuffle was introduced by Ishikawa et al. [10]. In the pile-
scramble shuffle, we rearrange the columns of the matrix by a random permuta-
tion, i.e. move every Column j to Column pj for a uniformly random permutation
p = (p1, p2, ..., pb) of (1, 2, ..., b). See Fig. 4.

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

1 2 3 4 5 6

⇒
? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

5

4

3

2

1

3 6 4 1 5 2

Fig. 4. An example of a pile-scramble shuffle on a 5 × 6 matrix

One can perform the pile-scramble shuffle in real world by putting the cards
in each column into an envelope and then scrambling the envelopes together
completely randomly.

3 Main Protocol

Let k be the size of the biggest room in the Ripple Effect grid. For each fixed
cell with a number x, the prover P publicly puts a sequence of face-down cards
Ek(x) on it. Then, for each empty cell with a number x in P ’s solution, P secretly
puts a sequence of face-down cards Ek(x) on it. P will first verify the distance
condition, and then the room condition.

302 S. Ruangwises and T. Itoh

3.1 Verification Phase for Distance Condition

The most challenging part of our protocol is to verify the distance condition,
which is equivalent to the following statement: for each cell c with a number x,
the first x cells to the right and to the bottom of c cannot have a number x.

First, we will show a protocol to verify that there is no number x among the
first x cells to the right of c. Then, we apply the same protocol analogously in
the direction to the bottom of c as well.

Suppose that cell c has a number x. Let A0 be the sequence of cards on c.
For each i = 1, 2, ..., k, let Ai be the sequence of cards on the i-th cell to the
right of c, i.e. A1 is on a cell right next to the right of c, A2 is on a second cell
to the right of c, and so on (if there are only � < k cells to the right of c, we
publicly put Ek(0) in place of Ai for every i > �).

The intuition of this protocol is that, we will create sequences
B1, B2, ..., Bk−1, all being Ek(0), and insert them between Ax and Ax+1 (with-
out revealing x). Then, we will pick k sequences A1, A2, ..., Ax, B1, B2, ..., Bk−x

and use the uniqueness verification protocol introduced in Sect. 2.5 to verify that
none of them encodes the same number as A0.

P publicly performs the following steps.

1. Construct a (k + 4) × k matrix M by the following procedures. See Fig. 5.
– In Row 1, place a sequence Ek(1).
– In Row 2, place the sequence A0 (which is Ek(x)).
– In Row 3, place a sequence Ek(1).
– In Row 4, place a sequence Ek(0).
– In each Column j (j = 1, 2, ..., k), place the sequence Aj arranged verti-

cally from Row 5 to Row k + 4.
2. Apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2 of M . Locate the position of a ♥ . Suppose it

is at Column j1. Turn over all face-up cards.
4. Shift the columns of M to the right by k − j1 columns, i.e. move every

Column � to Column � + k − j1 (where Column �′ means Column �′ − k for
�′ > k). Observe that after this step, Ax will locate at the rightmost column.

5. Divide M into a 2 × k matrix M1 and a (k + 2) × k matrix M2. M1 consists
of the topmost two rows of M , while M2 consists of everything below M1.
Each cell M(i + 2, j) (i, j ≥ 1) of M will become a cell M2(i, j) of a new
matrix M2.

6. Apply the rearrangement protocol to M1. Observe that we now have Ek(1)
in Row 1 and A0 in Row 2 of M1. From now on, we will perform operations
only on M2 while M1 will be left unchanged.

7. Append k − 1 columns to the right of the matrix M2 by the following pro-
cedures, making M2 become a (k + 2) × (2k − 1) matrix.
– In Row 1, place a sequence Ek−1(0) from Column k+1 to Column 2k−1.
– In Row 2, place a sequence Ek−1(1) from Column k+1 to Column 2k−1.
– In each Column k+j (j = 1, 2, ..., k−1), place a sequence Ek(0) arranged

vertically from Row 3 to Row k + 2. We call this sequence Bj .

Physical Zero-Knowledge Proof for Ripple Effect 303

8. Apply the pile-shifting shuffle to M2.
9. Turn over all cards in Row 1 of M2. Locate the position of a ♥ . Suppose it

is at Column j2. Turn over all face-up cards.
10. For each i = 1, 2, ..., k, let Si denote a sequence of card arranged vertically

at Column j2 + i − 1 (where Column �′ means Column �′ − (2k − 1) for
�′ > 2k − 1) from Row 3 to Row k + 2 of M2. Observe that (S1, S2, ..., Sk) =
(A1, A2, ..., Ax, B1, B2, ..., Bk−x). Then, construct a (k + 2) × k matrix N
with Row 1 consisting of a sequence Ek(1) taken from Row 1 of M1, Row 2
consisting of the sequence A0 taken from Row 2 of M1, and each Row i + 2
(i = 1, 2, ..., k) consisting of the sequence Si taken from M2.

11. Apply the uniqueness verification protocol on N . The intuition of this step is
to verify that none of the sequences A1, A2, ..., Ax encodes the same number
as A0 (while B1, B2, ..., Bk−x are all Ek(0)).

12. Apply the rearrangement protocol on N , put A0 back onto c, and put
S1, S2, ..., Sk back to their corresponding columns in M2.

13. Apply the pile-shifting shuffle to M2.
14. Turn over all cards in Row 2 of M2. Locate the position of a ♥ . Suppose it

is at Column j3. Turn over all face-up cards.
15. Shift the columns of M2 to the right by k + 1 − j3 columns, i.e. move every

Column � to Column �+k+1−j3 (where Column �′ means Column �′−(2k−1)
for �′ > 2k−1). Then, remove Columns k+1, k+2, ..., 2k−1 from M2, making
M2 become a (k + 2) × k matrix again. Observe that the columns we just
removed are exactly the same k − 1 columns we previously appended to M2.

16. Apply the rearrangement protocol on M2 and put the sequences
A1, A2, ..., Ak back onto their corresponding cells on the Ripple Effect grid.

P performs these steps analogously in the direction to the right and bottom
of every cell in the grid. If every cell passes the verification, P continues to the
verification phase for room condition.

3.2 Verification Phase for Room Condition

The room condition of Ripple Effect is exactly the same as that of Makaro, and
hence can be verified by a subprotocol in [2]. Since this is the final step of our
protocol, after we finish verifying each room, we do not have to rearrange cards
back to their original positions or put them back onto their cells.

P will verify each room separately. For a room R with size s, let A1, A2, ..., As

be the sequences of cards on the cells in R in any order. To verify room R, P
publicly performs the following steps.

1. Construct a k × s matrix M by the following procedures: in each Column j
(j = 1, 2, ..., s), place the sequence Aj arranged vertically from Row 1 to Row
k.

2. Apply the pile-scramble shuffle to M .
3. Turn over all cards in M . If all columns of M are a permutation of Ek(1),

Ek(2), ..., Ek(s) arranged vertically, then the protocol continues. Otherwise,
V rejects and the protocol terminates.

304 S. Ruangwises and T. Itoh

A1 A2
... Ak

? ? ... ?

...
...

...
...

? ? ... ?

? ? ... ?

? ? ... ? Ek(0)

? ? ... ? Ek(1)

? ? ... ? A0

? ? ... ? Ek(1)

k + 4

...

6

5

4

3

2

1

Row

1 2 ... k

Column

Fig. 5. A (k + 4) × k matrix M constructed in Step 1

P performs these steps for every room. If every room passes the verification,
then V accepts.

In total, our protocol uses kmn + 2k2 + 4k − 2 = Θ(kmn) cards.

4 Proof of Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol. We omit the proofs of the verification phase for room
condition as they have been shown in [2].

Lemma 1 (Perfect Completeness). If P knows a solution of the Ripple
Effect puzzle, then V always accepts.

Proof. First, we will show that the uniqueness verification protocol will pass if
none of S1, S2, ..., Sa encodes the same number as S0. Suppose that S0 encodes a
number z > 0. A ♥ in Row 2 will locate at Column z. Since none of S1, S2, ..., Sa

encodes the number z, all cards below Row 2 in the same column as that ♥ will
be all ♣ s. This remains true after we rearrange the columns in Step 2. Therefore,
the verification in Step 4 will pass.

Now consider the main protocol. Suppose that P knows a solution of the
puzzle. The verification phase for room condition will pass [2].

Consider the verification phase for distance condition. In Step 1, a ♥ in
Row 2 is at the same column as Ax, and will always be. Therefore, in Step 4,
the column containing Ax will move to the rightmost column.

Physical Zero-Knowledge Proof for Ripple Effect 305

In Step 7, the order of the sequences (which are arranged vertically from
Row 3 to Row k + 2) from the leftmost column to the rightmost column is
Ax+1, Ax+2, ..., Ak, A1, A2, ..., Ax, B1, B2, ..., Bk−1. Also, a ♥ in Row 1 is at the
same column as A1, and a ♥ in Row 3 is at the same column as B1, and they
will always be.

In Step 10, since A1 locates at Column j, the sequences S1, S2, ..., Sk will
be exactly A1, A2, ..., Ax, B1, B2, ..., Bk−x in this order. Therefore, in Step 11,
the uniqueness verification protocol will pass because none of the sequences
A1, A2, ..., Ax encodes the number x, and B1, B2, ..., Bk−x all encode 0.

Since this is true for every cell and every direction (to the right, left, top,
and bottom), the verification phase for distance condition will pass, hence V will
always accept. �	
Lemma 2 (Perfect Soundness). If P does not know a solution of the Ripple
Effect puzzle, then V always rejects.

Proof. First, we will show that the uniqueness verification protocol will fail if at
least one of S1, S2, ..., Sa encodes the same number as S0. Suppose that S0 and
Sd (d > 0) both encode a number z > 0. A ♥ in Row 2 will locate at Column
z. Since Sd also encodes the number z, a card in Row d in the same column as
that ♥ will be a ♥ . This remains true after we rearrange the columns in Step
2. Therefore, the verification in Step 4 will fail.

Now consider the main protocol. Suppose that P does not know a solution of
the puzzle. The numbers P puts into the grid must violate either the room condi-
tion or the distance condition. If they violate the room condition, the verification
phase for room condition will fail [2].

Suppose that the numbers in the grid violate the distance condition. There
must be two cells c and c′ in the same row or column having the same number
x, where c′ locates on the right or the bottom of c with � < x cells of space
between them.

Consider when P performs the verification phase for distance condition for c
in the direction towards c′. The sequence on the cell c′ will be A�+1

By the same reason as in the proof of Lemma 1, in Step 10, the sequences
S1, S2, ..., Sk will be exactly A1, A2, ..., Ax, B1, B2, ..., Bk−x in this order and thus
include A�+1. Therefore, in Step 11, the uniqueness verification protocol will fail
because A� encodes the number x, hence V will always reject. �	
Lemma 3 (Zero-Knowledge). During the verification phase, V learns noth-
ing about P ’s solution of the Ripple Effect puzzle.

Proof. To prove the zero-knowledge property, it is sufficient to prove that all
distributions of the values that appear when P turns over cards can be simulated
by a simulator S without knowing P ’s solution.

– In the rearrangement protocol:
• Consider Step 2 where we turn over all cards in Row 1. This occurs
right after we applied the pile-shifting shuffle to the matrix. Therefore,

306 S. Ruangwises and T. Itoh

a ♥ has an equal probability to appear at each of the b columns, hence
this step can be simulated by S without knowing P ’s solution.

– In the uniqueness verification protocol:
• Consider Step 3 where we turn over all cards in Row 2. This occurs
right after we applied the pile-shifting shuffle to the matrix. Therefore,
a ♥ has an equal probability to appear at each of the b columns, hence
this step can be simulated by S without knowing P ’s solution.
• Consider Step 4 where we turn over all cards in Column j from Row 3
to Row a+2. If the verification passes, the cards we turn over must be all
♣ s, hence this step can be simulated by S without knowing P ’s solution.

– In the verification phase for room condition:
• Consider Step 3 where we turn over all cards in Row 2 of M . This occurs
right after we applied the pile-shifting shuffle to M . Therefore, a ♥ has
an equal probability to appear at each of the k columns, hence this step
can be simulated by S without knowing P ’s solution.
• Consider Step 9 where we turn over all cards in Row 1 of M2. This
occurs right after we applied the pile-shifting shuffle to M2. Therefore,
a ♥ has an equal probability to appear at each of the 2k − 1 columns,
hence this step can be simulated by S without knowing P ’s solution.
• Consider Step 14 where we turn over all cards in Row 2 of M2. This
occurs right after we applied the pile-shifting shuffle to M2. Therefore,
a ♥ has an equal probability to appear at each of the 2k − 1 columns,
hence this step can be simulated by S without knowing P ’s solution.

Therefore, we can conclude that V learns nothing about P ’s solution. �	

5 Future Work

We developed a physical protocol of zero-knowledge proof for Ripple Effect puz-
zle using Θ(kmn) cards. A possible future work is to develop a protocol for this
puzzle that requires asymptotically fewer number of cards, or for other popular
logic puzzles.

Another challenging future work is to explore methods to physically verify
other types of more complicated number-related functions.

References

1. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International
Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Proceedings of the
20th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), pp. 111–125 (2018)

3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: Proceedings of the 5th International Conference on Fun
with Algorithms (FUN), pp. 102–112 (2010)

Physical Zero-Knowledge Proof for Ripple Effect 307

4. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Proceedings of the 25th
International Computing and Combinatorics Conference (COCOON), pp. 166–177
(2019)

5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729
(1991)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

7. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. In: Proceedings of
the 4th International Conference on Fun with Algorithms (FUN), pp. 166–182
(2007)

8. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. In: Proceedings of the 10th International Con-
ference on Information Theoretic Security (ICITS), pp. 135–152 (2017)

9. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: Proceedings of the 3rd International
Conference on Mathematics and Computers in Sciences and Industry (MCSI), pp.
252–257 (2016)

10. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating
a hidden random permutation without fixed points. In: Proceedings of the 14th
International Conference on Unconventional Computation and Natural Computa-
tion (UCNC), pp. 215–226 (2015)

11. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP
for Slitherlink: how to perform physical topology-preserving computation. In: Pro-
ceedings of the 15th International Conference on Information Security Practice and
Experience (ISPEC), pp. 135–151 (2019)

12. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundamentals Electron. Commun. Comput. Sci.
E102.A(9), 1072–1078 (2019)

13. Nikoli: Ripple Effect. https://www.nikoli.co.jp/en/puzzles/ripple effect.html
14. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink. In: Pro-

ceedings of the 10th International Conference on Fun with Algorithms (FUN), pp.
22:1–22:11 (2020)

15. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In:
Proceedings of the 9th International Conference on Fun with Algorithms (FUN),
pp. 29:1–29:10 (2018)

16. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using
regular polygon cards. In: Proceedings of the 9th International Conference on Prov-
able Security (ProvSec), pp. 127–146 (2015)

17. Takenaga, Y., Aoyagi, S., Iwata, S., Kasai, T.: Shikaku and ripple effect are NP-
complete. Congressus Numerantium 216, 119–127 (2013)

18. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a
random bisection cut. In: Proceedings of the 5th International Conference on the
Theory and Practice of Natural Computing (TPNC), pp. 58–69 (2016)

https://www.nikoli.co.jp/en/puzzles/ripple_effect.html

Cyclic Shift Problems on Graphs

Kwon Kham Sai, Ryuhei Uehara, and Giovanni Viglietta(B)

School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Nomi, Japan

{saikwonkham,uehara,johnny}@jaist.ac.jp

Abstract. We study a new reconfiguration problem inspired by classic
mechanical puzzles: a colored token is placed on each vertex of a given
graph; we are also given a set of distinguished cycles on the graph. We
are tasked with rearranging the tokens from a given initial configuration
to a final one by using cyclic shift operations along the distinguished
cycles. We first investigate a large class of graphs, which generalizes
several classic puzzles, and we give a characterization of which final con-
figurations can be reached from a given initial configuration. Our proofs
are constructive, and yield efficient methods for shifting tokens to reach
the desired configurations. On the other hand, when the goal is to find
a shortest sequence of shifting operations, we show that the problem is
NP-hard, even for puzzles with tokens of only two different colors.

Keywords: Cyclic shift puzzle · Permutation group · NP-hard
problem

1 Introduction

Recently, variations of reconfiguration problems have been attracting much inter-
est, and several of them are being studied as important fundamental problems
in theoretical computer science [8]. Also, many real puzzles which can be mod-
eled as reconfiguration problems have been invented and proposed by the puzzle
community, such as the 15-puzzle and Rubik’s cube. Among these, we focus on
a popular type of puzzle based on cyclic shift operations: see Fig. 1. In these
puzzles, we can shift some elements along predefined cycles as a basic operation,
and the goal is to rearrange the pieces into a desired pattern.

In terms of reconfiguration problems, this puzzle can be modeled as fol-
lows. The input of the problem is a graph G = (V,E), a set of colors Col =
{1, 2, . . . , c}, and one colored token on each vertex in V . We are also given a set
C of cycles of G. The basic operation on G is called “shift” along a cycle C in C,
and it moves each token located on a vertex in C into the next vertex along C.
This operation generalizes the token swapping problem, which was introduced
by Yamanaka et al. [11], and has been well investigated recently. Indeed, when

This work is partially supported by KAKENHI grant numbers 17H06287 and
18H04091.

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 308–320, 2021.
https://doi.org/10.1007/978-3-030-68211-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_25

Cyclic Shift Problems on Graphs 309

Fig. 1. Commercial cyclic shift puzzles: Turnstile (left) and Rubik’s Shells (right)

we restrict each cycle in C to have length two (each cycle would correspond to an
edge in E), the cyclic shift problem is equivalent to the token swapping problem.

In the mathematical literature, the study of permutation groups and their
generators has a long history. An important theorem by Babai [1] states that
the probability that two random permutations of n objects generate either the
symmetric group Sn (i.e., the group of all permutations) or the alternating group
An (i.e., the group of all even permutations) is 1 − 1/n + O(n2). However, the
theorem says nothing about the special case where the generators are cycles.

In [4], Heath et al. give a characterization of the permutations that, together
with a cycle of length n, generate either An or Sn, as opposed to a smaller
permutation group. On the other hand, in [7], Jones shows that An and Sn

are the only finite primitive permutation groups containing a cycle of length
n − 3 or less. However, his proof is non-constructive, as it heavily relies on the
classification of finite simple groups (and, as the author remarks, a self-contained
proof is unlikely to exist). In particular, no non-trivial upper bound is known on
the distance of two given permutations in terms of a set of generators.

The computational complexity of related problems has been studied, too. It
is well known that, given a set of generators, the size of the permutation group
they generate is computable in polynomial time. Also, the inclusion of a given
permutation π in the group is decidable in polynomial time, and an expression
for π in terms of the generators is also computable in polynomial time [2].

In contrast, Jerrum showed that computing the distance between two given
permutations in terms of two generators is PSPACE-complete [6]. However, the
generators used for the reduction are far from being cycles.

In this paper, after giving some definitions (Sect. 2), we study the configura-
tion space of a large class of cyclic shift problems which generalize the puzzles
in Fig. 1 (Sect. 3). We show that, except for one special case, the permutation
group generated by a given set of cycles is Sn if at least one of the cycles has
even length, and it is An otherwise. This result is in agreement with Babai’s
theorem [1], and shows a similarity with the configuration space of the (general-
ized) 15-puzzle [10]. Moreover, our proofs in Sect. 3 are constructive, and yield
polynomial upper bounds on the number of shift operations required to reach

310 K. K. Sai et al.

a given configuration. This is contrasted with Sect. 4, where we show that find-
ing a shortest sequence of shift operations to obtain a desired configuration is
NP-hard, even for puzzles with tokens of only two different colors.

2 Preliminaries

Let G = (V,E) be a finite, simple, undirected graph, where V is the vertex set,
with n = |V |, and E is the edge set. Let Col = {1, 2, . . . , c} be a set of colors,
where c is a constant. A token placement for G is a function f : V → Col: that
is, f(v) represents the color of the token placed on the vertex v. Without loss of
generality, we assume f to be surjective.

Let us fix a set C of cycles in G (note that C does not necessarily contain
all cycles of G). Two distinct token placements f and f ′ of G are adjacent
with respect to C if the following two conditions hold: (1) there exists a cycle
C = (v1, v2, . . . , vj) in C such that f ′(vi+1) = f(vi) and f ′(v1) = f(vj) or
f ′(vi) = f(vi+1) and f ′(vj) = f(v1) for 1 ≤ i ≤ j, and (2) f ′(w) = f(w) for all
vertices w ∈ V \ {v1, . . . , vi}. In this case, we say that f ′ is obtained from f by
shifting the tokens along the cycle C. If an edge e ∈ E is not spanned by any
cycle in C, e plays no role in shifting tokens. Therefore, without loss of generality,
we assume that every edge is spanned by at least one cycle in C.

We say that two token placements f1 and f2 are compatible if, for each
color c′ ∈ Col, we have

∣
∣f−1

1 (c′)
∣
∣ =

∣
∣f−1

2 (c′)
∣
∣. Obviously, compatibility is an

equivalence relation on token placements, and its equivalence classes are called
compatibility classes for G and Col. For a compatibility class P and a cycle set
C, we define the token-shifting graph of P and C as the undirected graph with
vertex set P , where there is an edge between two token placements if and only
if they are adjacent with respect to C. A walk in a token-shifting graph starting
from f and ending in f ′ is called a shifting sequence between f and f’, and the
distance between f and f ′, i.e., the length of a shortest walk between them, is
denoted as dist(f, f ′) (if there is no walk between f and f ′, their distance is
defined to be ∞). If dist(f, f ′) < ∞, we write f � f ′.

For a given number of colors c, we define the c-Colored Token Shift problem
as follows. The input is a graph G = (V,E), a cycle set C for G, two compatible
token placements f0 and ft (with colors drawn from the set Col = {1, 2, . . . , c}),
and a non-negative integer �. The goal is to determine whether dist(f0, ft) ≤ �
holds. In the case that � is not given, we consider the c-Colored Token Shift
problem as an optimization problem that aims at computing dist(f0, ft).

3 Algebraic Analysis of the Puzzles

For the purpose of this section, the vertex set of the graph G = (V,E) will
be V = {1, 2, . . . , n}, and the number of colors will be c = n, so that Col =
V , and a token placement on G can be interpreted as a permutation of V .
To denote a permutation π of V , we can either use the one-line notation π =
[π(1) π(2) . . . π(n)], or we can write down its cycle decomposition: for instance,

Cyclic Shift Problems on Graphs 311

the permutation [3 6 4 1 7 2 5] can be expressed as the product of disjoint cycles
(1 3 4)(2 6)(5 7).

Note that, given a cycle set C, shifting tokens along a cycle (v1, v2, . . . , vj) ∈
C corresponds to applying the permutation (v1 v2 . . . vj) or its inverse
(vj vj−1 . . . v1) to V . The set of token placements generated by shifting
sequences starting from the “identity token placement” f0 = [1 2 . . . n] is
therefore a permutation group with the composition operator, which we denote
by HC , and we call it configuration group generated by C. Since we visualize per-
mutations as functions mapping vertices of G to colors (and not the other way
around), it makes sense to compose chains of permutations from right to left,
contrary to the common convention in the permutation group literature. So, for
example, if we start from the identity token placement for n = 5 and we shift
tokens along the cycles (1 2 3) and (3 4 5) in this order, we obtain the token
placement

(1 2 3)(3 4 5) = [2 3 1 4 5] [1 2 4 5 3] = [2 3 4 5 1] = (1 2 3 4 5).

(Had we composed permutations from left to right, we would have obtained the
token placement [2 4 1 5 3] = (1 2 4 5 3) as a result.)

One of our goals in this section is to determine the configuration groups
HC generated by some classes of cycle sets C. Our choice of C will be inspired
by the puzzles in Fig. 1, and will consist of arrangements of cycles that share
either one or two adjacent vertices. As we will see, except in one special case,
the configuration groups that we obtain are either the symmetric group Sn (i.e.,
the group of all permutations) or the alternating group An (i.e., the group of all
even permutations), depending on whether the cycle set C contains at least one
even-length cycle or not: indeed, observe that a cycle of length j corresponds to
an even permutation if and only if j is odd.

Note that the set of permutations in the configuration group HC coincides
with the connected component of the token-shifting graph (as defined in the
previous section) that contains f0. The other connected components are simply
given by the cosets of HC in Sn (thus, they all have the same size), while the
number of connected components of the token-shifting graph is equal to the
index of HC in Sn, i.e., n!/|HC |.

The other goal of this section is to estimate the diameter of the token-shifting
graph, i.e., the maximum distance between any two token placements f0 and ft
such that f0 � ft. To this end, we state some basic preliminary facts, which are
folklore, and can be proved by mimicking the “bubble sort” algorithm.

Proposition 1.

1. The n-cycle (1 2 . . . n) and the transposition (1 2) can generate any
permutation of {1, 2, . . . , n} in O(n2) shifts.
2. The n-cycle (1 2 . . . n) and the 3-cycle (1 2 3) can generate any even
permutation of {1, 2, . . . , n} in O(n2) shifts.1

1 Of course, the two cycles generate strictly more than An (hence Sn) if and only if n
is even; however, we will only apply Proposition 1.2 to generate even permutations.

312 K. K. Sai et al.

3. The 3-cycles (1 2 3), (2 3 4), . . . , (n − 2 n − 1 n) can generate any even
permutation of {1, 2, . . . , n} in O(n2) shifts. ��

All upper bounds given in Proposition 1 are worst-case asymptotically optimal
(refer to [6] for some proofs).

3.1 Puzzles with Two Cycles

We first investigate the case where the cycle set C contains exactly two cycles α
and β, either of the form α = (1 2 . . . a) and β = (a a+1 . . . n) with 1 < a < n,
or of the form α = (1 2 . . . a) and β = (a − 1 a a + 1 . . . n), with 1 < a ≤ n.
The first puzzle is called 1-connected (a, b)-puzzle, where n = a + b − 1, and the
second one is called 2-connected (a,b)-puzzle, where n = a + b − 2 (so, in both
cases a > 1 and b > 1 are the lengths of the two cycles α and β, respectively).
See Fig. 2 for some examples. Note that the Turnstile puzzle in Fig. 1 (left) can
be regarded as a 2-connected (6, 6)-puzzle.

Fig. 2. A 1-connected (5, 7)-puzzle (left) and a 2-connected (6, 9)-puzzle (right)

Theorem 1. The configuration group of a 1-connected (a, b)-puzzle is An if both
a and b are odd, and it is Sn otherwise. Any permutation in the configuration
group can be generated in O(n2) shifts.

Proof. Observe that the commutator of α and β−1 is the 3-cycle α−1βαβ−1 =
(a−1 a a+1). So, we can apply Proposition 1.2 to the n-cycle αβ = (1 2 . . . n)
and the 3-cycle (a−1 a a+1) to generate any even permutation in O(n2) shifts.
If a and b are odd, then α and β are even permutations, and therefore cannot
generate any odd permutation.

On the other hand, if a is even (the case where b is even is symmetric),
then the a-cycle α is an odd permutation. So, to generate any odd permutation
π ∈ Sn, we first generate the even permutation πα in O(n2) shifts, and then we
do one extra shift along the cycle α−1. ��

Cyclic Shift Problems on Graphs 313

Our first observation about 2-connected (a, b)-puzzles is that the composition
of α−1 and β is the (n−1)-cycle α−1β = (a−2 a−3 . . . 1 a a+1 . . . n), which
excludes only the element a−1. Similarly, αβ−1 = (1 2 . . . a−1 n n−1 . . . a+1),
which excludes only the element a. We will write γ1 and γ2 as shorthand for α−1β
and αβ−1 respectively, and we will use the permutations γ1 and γ2 to conjugate
α and β, thus obtaining different a-cycles and b-cycles.2

Lemma 1. In a 2-connected (3, b)-puzzle, any even permutation can be gener-
ated in O(n2) shifts.

Proof. If we conjugate the 3-cycle α−1 by the inverse of γ1, we obtain the 3-cycle
γ1α

−1γ−1
1 = (2 3 4). By applying Proposition 1.2 to the (n − 1)-cycle β and the

3-cycle (2 3 4), we can generate any even permutation of V \{1} in O(n2) shifts.
Let π ∈ An be an even permutation of V . In order to generate π, we first

move the correct token π(1) to position 1 in O(n) shifts, possibly scrambling the
rest of the tokens: let σ be the resulting permutation. If σ is even, then σ−1π is
an even permutation of V \ {1}, and we can generate it in O(n2) shifts as shown
before, obtaining π.

On the other hand, if σ is odd, then one of the generators α and β must be
odd, too. Since α is a 3-cycle, it follows that β is odd. In this case, after placing
the correct token in position 1 via σ, we shift the rest of the tokens along β, and
then we follow up with β−1σ−1π, which is an even permutation of V \ {1}, and
can be generated it in O(n2) shifts. Again, the result is σββ−1σ−1π = π. ��
Lemma 2. In a 2-connected (a, b)-puzzle with a ≥ 4 and b ≥ 5, any even per-
mutation can be generated in O(n2) shifts.

Proof. As shown in Fig. 3, the conjugate of β by γ1 is the b-cycle

δ1 = γ−1
1 βγ1 = (a a + 1 . . . n − 1 a − 1 1),

and the conjugate of β−1 by γ2 is the b-cycle

δ2 = γ−1
2 β−1γ2 = (n n − 1 . . . a + 2 a a − 2 a − 1).

Their composition is δ1δ2 = (1 a a − 2)(a − 1 n)(a + 1 a + 2), and therefore
(δ1δ2)2 is the 3-cycle (1 a − 2 a). Conjugating this 3-cycle by α−1, we finally
obtain the 3-cycle τ = α(δ1δ2)2α−1 = (1 2 a−1); note that τ has been generated
in a number of shifts independent of n. Now, since the 3-cycle τ and the (n−1)-
cycle γ2 induce a 2-connected (3, n − 1)-puzzle on V , we can apply Lemma 1 to
generate any even permutation of V in O(n2) shifts. ��

Theorem 2. The configuration group of a 2-connected (a, b)-puzzle is:

1. Isomorphic to Sn−1 = S5 if a = b = 4.
2 If g and h are two elements of a group, the conjugate of g by h is defined as h−1gh.

In the context of permutation groups, conjugation by any h is an automorphism that
preserves the cycle structure of permutations [9, Theorem 3.5].

314 K. K. Sai et al.

Fig. 3. Some permutations constructed in the proof of Lemma 2

2. An if both a and b are odd.
3. Sn otherwise.

Any permutation in the configuration group can be generated in O(n2) shifts.

Proof. By the symmetry of the puzzle, we may assume a ≤ b. The case with
a = 2 is equivalent to Proposition 1.1, so let a ≥ 3. If a
= 4 or b
= 4, then
Lemmas 1 and 2 apply, hence we can generate any even permutation in O(n2)
shifts: the configuration group is therefore at least An. Now we reason as in
Theorem 1: if a and b are odd, then α and β are even permutations, and cannot
generate any odd one. If a is even (the case where b is even is symmetric), then
α is an odd permutation. In this case, to generate any odd permutation π ∈ Sn,
we first generate the even permutation πα in O(n2) shifts, and then we do one
more shift along the cycle α−1 to obtain π.

The only case left is a = b = 4. To analyze the 2-connected (4, 4)-puzzle,
consider the outer automorphism ψ : S6 → S6 defined on a generating set of S6

as follows (cf. [9, Corollary 7.13]):

ψ((1 2)) = (1 5)(2 3)(4 6), ψ((1 3)) = (1 4)(2 6)(3 5),
ψ((1 4)) = (1 3)(2 4)(5 6), ψ((1 5)) = (1 2)(3 6)(4 5),
ψ((1 6)) = (1 6)(2 5)(3 4).

Because ψ is an automorphism, the subgroup of S6 generated by α and β is
isomorphic to the subgroup generated by the permutations ψ(α) and ψ(β). Since
α = (1 2 3 4) = (1 2)(1 3)(1 4) and β = (3 4 5 6) = (1 3)(1 4)(1 5)(1 6)(1 3),
and recalling that ψ(π1π2) = ψ(π1)ψ(π2) for all π1, π2 ∈ S6, we have:

ψ(α) = ψ((1 2))ψ((1 3))ψ((1 4)) = [1 5 6 4 3 2] = (2 5 3 6) and
ψ(β) = ψ((1 3))ψ((1 4))ψ((1 5))ψ((1 6))ψ((1 3)) = [3 1 5 4 2 6] = (1 3 5 2).

Note that the new generators ψ(α) and ψ(β) both leave the token 4 in place, and
so they cannot generate a subgroup larger than S5 (up to isomorphism). On the
other hand, we have ψ(α)ψ(β) = (1 6 2). This 3-cycle, together with the 4-cycle
ψ(α), induces a 2-connected (3, 4)-puzzle on {1, 2, 3, 5, 6}: as shown before, the

Cyclic Shift Problems on Graphs 315

configuration group of this puzzle is (isomorphic to) S5. We conclude that the
configuration group of the 2-connected (4, 4)-puzzle is isomorphic to S5, as well.
A given permutation π ∈ S6 is in the configuration group if and only if ψ(π)
leaves the token 4 in place. ��

3.2 Puzzles with Any Number of Cycles

Let us generalize the (a, b)-puzzle to larger numbers of cycles. (As far as the
authors know, there are commercial products that have 2, 3, 4, and 6 cycles.)
We say that two cycles are properly interconnected if they share exactly one
vertex, of if they share exactly two vertices which are consecutive in both cycles.
Note that all 1-connected and 2-connected (a, b)-puzzles consist of two properly
interconnected cycles. Given a set of cycles C in a graph G = (V,E), let us
define the interconnection graph Ĝ = (C, Ê), where there is an (undirected) edge
between two cycles of C if and only if they are properly interconnected.

Let us assume |V | > 6 (to avoid special configurations of small size, which
can be analyzed by hand), and let C consist of k cycles of lengths n1, n2, . . . ,
nk, respectively. We say that C induces a generalized (n1, n2, . . . , nk)-puzzle on
V if there is a subset C′ ⊆ C such that:

(1) C′ contains at least two cycles;
(2) the induced subgraph Ĝ[C′] is connected;
(3) each vertex of G is contained in at least one cycle in C′.

When we fix such a subset C′, the cycles in C′ are called relevant cycles, and the
vertices of G that are shared by two properly interconnected relevant cycles are
called relevant vertices for those cycles. See Fig. 4 for an example of a generalized
puzzle.

Fig. 4. A generalized puzzle where any permutation can be generated in O(n5) shifts,
due to Theorem 3. Note that the blue cycle is the only cycle of even length, and is
not properly interconnected with any other cycle. Also, the two red cycles and the two
green cycles intersect each other but are not properly interconnected. (Color figure
online)

316 K. K. Sai et al.

The next two lemmas are technical; their proof is found in the full version of
the paper: https://arxiv.org/abs/2009.10981.

Lemma 3. In a generalized puzzle with three relevant cycles, C′ = {C1, C2, C3},
such that C1 and C2 induce a 2-connected (4, 4)-puzzle, any permutation involv-
ing only vertices in C1 and C2 can be generated in O(n2) shifts. ��
Lemma 4. Let V = {1, . . . , n}, and let W = (w1, . . . , wm) ∈ V m be a sequence
such that each element of V appears in W at least once, and any three consecutive
elements of W are distinct. Then, the set of 3-cycles C = {(wi−1 wi wi+1) | 1 <
i < m} can generate any even permutation of V in O(n3) shifts. ��
Theorem 3. The configuration group of a generalized (n1, n2, . . . , nk)-puzzle is
An if n1, n2, . . . , nk are all odd, and it is Sn otherwise. Any permutation in the
configuration group can be generated in O(n5) shifts.

Proof. Observe that it suffices to prove that the given cycles can generate any
even permutation in O(n5) shifts. Indeed, if all cycles have odd length, they
cannot generate any odd permutation. On the other hand, if there is a cycle of
even length and we want to generate an odd permutation π, we can shift tokens
along that cycle, obtaining an odd permutation σ, and then we can generate the
even permutation σ−1π in O(n5) shifts, obtaining π.

Let us fix a set of k′ ≥ 3 relevant cycles C′ ⊆ C: we will show how to
generate any even permutation by shifting tokens only along relevant cycles.
By properties (2) and (3) of generalized puzzles, there exists a walk W on G
that visits all vertices (possibly more than once), traverses only edges of relevant
cycles, and transitions from one relevant cycle to another only if they are properly
interconnected, and only through a relevant vertex shared by them. We will now
slightly modify W so that it satisfies the hypotheses of Lemma 4, as well as
some other conditions. Namely, if wi−1, wi, wi+1 are any three vertices that are
consecutive in W , we would like the following conditions to hold:

(1) wi−1, wi, wi+1 are all distinct (this is the condition required by Lemma 4);
(2) either wi−1 and wi are in the same relevant cycle, or wi and wi+1 are in the

same relevant cycle;
(3) wi−1 and wi+1 are either in the same relevant cycle, or in two properly

interconnected relevant cycles.

To satisfy all conditions, it is sufficient to let W do a whole loop around a relevant
cycle before transitioning to the next (note that Lemma 4 applies regardless of
the length of W). The only case where this is not possible is when W has
to go through a relevant 2-cycle C = (u1 u2) that is a leaf in the induced
subgraph Ĝ[C′], such that C shares exactly one relevant vertex, say u1, with
another relevant cycle C ′ = (v0 u1 v1 v2 . . .). To let W cover C in a way
that satisfies the above conditions, we set either W = (. . . , v0, u1, u2, v1, . . .)
or W = (. . . , v1, u1, u2, v0, . . .): that is, we skip u1 after visiting u2. After this
modification, W is no longer a walk on G, but it satisfies the hypotheses of
Lemma 4, as well as the three conditions above.

https://arxiv.org/abs/2009.10981

Cyclic Shift Problems on Graphs 317

We will now show that the 3-cycle (wi−1 wi wi+1) can be generated in O(n2)
shifts, for all 1 < i < |W |. By Lemma 4, we will therefore conclude that any
even permutation of V can be generated in O(n2) · O(n3) = O(n5) shifts. Due
to conditions (2) and (3), we can assume without loss of generality that wi−1

and wi are both in the same relevant cycle C1, and that wi+1 is either in C1 or
in a different relevant cycle C2 which is properly interconnected with C1. In the
first case, by property (1) of generalized puzzles, there exists another relevant
cycle C2 properly interconnected with C1. So, in all cases, C1 and C2 induce a
1-connected or a 2-connected (|C1|, |C2|)-puzzle.

That the 3-cycle (wi−1 wi wi+1) can be generated in O(n2) shifts now follows
directly from Theorems 1 and 2, except if |C1| = |C2| = 4 and C1 and C2 share
exactly two vertices: indeed, the 2-connected (4, 4)-puzzle is the only case where
we cannot generate any 3-cycle. However, since we are assuming that V > 6,
there must be a third relevant cycle C3, which is properly interconnected with
C1 or C2. Our claim now follows from Lemma 3. ��

4 NP-Hardness for Puzzles with Two Colors

In this section, we show that the 2-Colored Token Shift problem is NP-hard.
That is, for a graph G = (V,E), cycle set C, two token placements f0 and ft for
G, and a non-negative integer �, it is NP-hard to determine if dist(f0, ft) ≤ �.

Theorem 4. The 2-Colored Token Shift problem is NP-hard.

Proof. We will give a polynomial-time reduction from the NP-complete problem
3-Dimensional Matching, or 3DM [3]: given three disjoint sets X, Y , Z, each of
size m, and a set of triplets T ⊆ X × Y × Z, does T contain a matching, i.e., a
subset M ⊆ T of size exactly m such that all elements of X, Y , Z appear in M?

Given an instance of 3DM (X,Y,Z, T), with n = |T |, we construct the
instance of the 2-Colored Token Shift problem illustrated in Fig. 5.

The vertex set of G = (V,E) includes the sets X, Y , Z (shown with a
green background in the figure: these will be called green vertices), as well
as the vertex u. Also, for each triplet t̂i = (x, y, z) ∈ T , with 1 ≤ i ≤ n,
the vertex set contains three vertices ti,1, ti,2, ti,3 (shown with a yellow back-
ground in the figure: these will be called yellow vertices), and the cycle set C
has the three cycles (u, ti,1, ti,2, ti,3, x), (u, ti,1, ti,2, ti,3, y), and (u, ti,1, ti,2, ti,3, z)
(drawn in blue in the figure). Finally, we have the vertex w, and the vertices
v1, v2, . . . , v3n−3m; for each i ∈ {1, 2, . . . , n}, the cycle set C contains the cycle
(ti,3, ti,2, ti,1, v1, v2, . . . , v3n−3m, w) (drawn in red in the figure). In the initial
token placement f0, there are black tokens on the 3n vertices of the form ti,j ,
and white tokens on all other vertices. In the final token placement ft, there is
a total of 3m black tokens on all the vertices in X, Y , Z, plus 3n − 3m black
tokens on v1, v2, . . . , v3n−3m; all other vertices have white tokens. With this
setup, we let � = 3n.

It is easy to see that, if the 3DM instance has a matching M =
{t̂i1 , t̂i2 , . . . , t̂im}, then dist(f0, ft) ≤ �. Indeed, for each t̂ij = (xj , yj , zj), with

318 K. K. Sai et al.

Z

Y

X

1v

m3−n3v

. . .

. . .

2v

3v

w

u

1v

m3−n3v. . .

2v

3v

w

u

1,1t 2,1t 3,1t

1,2t 2,2t 3,2t

. . .

1n,t 2n,t 3n,t

Z

Y

X

. . .

1,1t 2,1t 3,1t

1,2t 2,2t 3,2t

. . .

1n,t 2n,t 3n,t

Fig. 5. The initial token placement f0 (left) and the final token placement ft (right)
(Color figure online)

1 ≤ j ≤ m, we can shift tokens along the three blue cycles containing the yellow
vertices tij ,1, tij ,2, tij ,3, thus moving their three black tokens into the green ver-
tices xj , yj , and zj . Since M is a matching, these 3m shifts eventually result in
X, Y , and Z being covered by black tokens. Finally, we can shift the 3n − 3m
black tokens corresponding to triplets in T \ M along red cycles, moving them
into the vertices v1, v2, . . . , v3n−3m. Clearly, this is a shifting sequence of length
3n = � from f0 to ft.

We will now prove that, assuming that dist(f0, ft) ≤ �, the 3DM instance
has a matching. Note that each shift, no matter along which cycle, can move
at most one black token from a yellow vertex to a non-yellow vertex. Since in
f0 there are � = 3n black tokens on yellow vertices, and in ft no token is on a
yellow vertex, it follows that each shift must cause exactly one black token to
move from a yellow vertex to a non-yellow vertex, and no black token to move
back into a yellow vertex.

This implies that no black token should ever reach vertex u: if it did, it
would eventually have to be moved to some other location, because u does not
hold a black token in ft. However, the black token in u cannot be shifted back
into a yellow vertex, and therefore it will be shifted into a green vertex along a
blue cycle. Since every shift must cause a black token to leave the set of yellow
vertices, such a token will move into u: we conclude that u will always contain
a black token, which is a contradiction. Similarly, we can argue that the vertex
w should never hold a black token.

Cyclic Shift Problems on Graphs 319

Let us now focus on a single triplet of yellow vertices ti,1, ti,2, ti,3. Exactly
three shifts must involve these vertices, and they must result in the three black
tokens leaving such vertices. Clearly, this is only possible if the three black tokens
are shifted in the same direction. If they are shifted in the direction of ti,3 (i.e.,
rightward in Fig. 5), they must move into green vertices (because they cannot go
into w); if they are shifted in the direction of ti,1 (i.e., leftward in Fig. 5), they
must move into v1 (because they cannot go into u).

Note that, if a black token ever reaches a green vertex, it can no longer be
moved: any shift involving such a token would move it back into a yellow vertex
or into u. It follows that the only way of filling all the green vertices with black
token is to select a subset of exactly m triplets of yellow vertices and shift each
of their black tokens into a different green vertex. These m triplets of yellow
vertices correspond to a matching for the 3DM instance. ��

In the above reduction, we can easily observe that the final token placement
ft can always be reached from the initial token placement f0 in a polynomial
number of shifts. Therefore, for this particular set of instances, the 2-Colored
Token Shift problem is in NP. The same is also true of the puzzles introduced
in Sect. 3, due to the polynomal upper bound given by Theorem 3. However,
we do not know whether this is true for the c-Colored Token Shift problem
in general, even assuming c = 2. A theorem of Helfgott and Seress [5] implies
that, if f0 � ft, the distance between f0 and ft has a quasi-polynomial upper
bound; this, however, is insufficient to conclude that the problem is in NP. On
the other hand, it is not difficult to see that the c-Colored Token Shift problem
is in PSPACE; characterizing its computational complexity is left as an open
problem. It would also be interesting to establish if the problem remains NP-
hard when restricted to planar graphs or to graphs of constant maximum degree.

References

1. Babai, L.: The probability of generating the symmetric group. J. Comb. Theory
Ser. A 52, 148–153 (1989)

2. Furst, M., Hopcroft, J., Luks, E.: Polynomial-time algorithms for permutation
groups. In: Proceedings of the 21st Annual Symposium on Foundations of Com-
puter Science, pp. 36–41 (1980)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

4. Heath, D., Isaacs, I.M., Kiltinen, J., Sklar, J.: Symmetric and alternating groups
generated by a full cycle and another element. A. Math. Mon. 116(5), 447–451
(2009)

5. Helfgott, H.A., Seress, Á.: On the diameter of permutation groups. Anna. Math.
179(2), 611–658 (2014)

6. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci. 36, 265–289 (1985)

7. Jones, G.A.: Primitive permutation groups containing a cycle. Bull. Aust. Math.
Soc. 89(1), 159–165 (2014)

8. Nishimura, N.: Introduction to rconfiguration. Algorithms 11(4), 1–25 (2018)

320 K. K. Sai et al.

9. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New
York (1995). https://doi.org/10.1007/978-1-4612-4176-8

10. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb.
Theory Ser. B 16, 86–96 (1974)

11. Yamanaka, K., et al.: Swapping colored tokens on graphs. Theor. Comput. Sci.
729, 1–10 (2018)

https://doi.org/10.1007/978-1-4612-4176-8

Mathematical Characterizations and
Computational Complexity of Anti-slide

Puzzles

Ko Minamisawa1(B), Ryuhei Uehara1, and Masao Hara2

1 School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Ishikawa, Japan

{minamisawa,uehara}@jaist.ac.jp
2 Department of Mathematical Science, Tokai University, Kanagawa, Japan

masao@tokai-u.jp

Abstract. For a given set of pieces, an anti-slide puzzle asks us to
arrange the pieces so that none of the pieces can slide. In this paper,
we investigate the anti-slide puzzle in 2D. We first give mathematical
characterizations of anti-slide puzzles and show the relationship between
the previous work. Using a mathematical characterization, we give a
polynomial time algorithm for determining if a given arrangement of
polyominoes is anti-slide or not in a model. Next, we prove that the
decision problem whether a given set of polyominoes can be arranged
to be anti-slide or not is strongly NP-complete even if every piece is x-
monotone. On the other hand, we show that a set of pieces cannot be
arranged to be anti-slide if all pieces are convex polygons.

Keywords: Anti-slide puzzle · Interlock puzzle · Strongly
NP-completeness · x-monotone · Convexity

1 Introduction

A silhouette puzzle is a puzzle where, given a set of polygons, one must place
them on the plane in such a way that their union is a target polygon. One of the
most famous ones is the Tangram, which is the set of seven polygons (Fig. 1).
Of anonymous origin, their first known reference in literature is from 1813 in
China [11]. While we are given a silhouette as the goal in a silhouette puzzle,
many puzzles are invented such that the goal is not explicitly given recently. For
example, puzzles that ask to make a “symmetric shape” are quite popular in
puzzle society, and its computational complexity has been investigated [7].

In this paper, we investigate anti-slide puzzles, which is one of the puzzles
that have a characteristic difficulty. Typically, we are given a set P of pieces and
a frame F . The goal of this puzzle is finding an arrangement of all pieces of P
in F so that no piece slides even if we tilt or shake the frame in any direction.
(In this paper, we also investigate similar puzzles known as interlock puzzles; in

c© Springer Nature Switzerland AG 2021
R. Uehara et al. (Eds.): WALCOM 2021, LNCS 12635, pp. 321–332, 2021.
https://doi.org/10.1007/978-3-030-68211-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68211-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-68211-8_26

322 K. Minamisawa et al.

Fig. 1. Silhouette puzzle “Tangram” Fig. 2. Commercial product of the
first anti-slide puzzle [12]

an interlock puzzle, only a set of pieces are given without frame and the goal is
interlocking all pieces.)

In packing puzzles, we are also given a set P of pieces and a frame F . The goal
of this puzzle is packing all pieces in P into the frame F . In packing puzzles, the
difficulty comes from the fact that we cannot pack them into the frame without
a neat way, e.g., since the total area of the pieces is equal to the vacant area of
F . On the other hand, it is easy to pack the pieces into the frame in an anti-slide
puzzle, while it is difficult to support with each other. That is, the difficulty of
anti-slide puzzles comes from the other aspect from packing puzzles.

Originally, the first anti-slide puzzle was invented by William Strijbos, who
is a famous puzzle designer, in 1994 [12]. It was the second place winner at
the 1994 Hikimi Puzzle Competition in Japan, and it was sold as a commercial
product by Hanayama in 2007 (Fig. 2). This anti-slide puzzle is a 3D version;
it consists of 15 “caramels” of size 1 × 2 × 2 and a case of size 4 × 4 × 4. The
puzzle asks us to put 15, 14, 12, or 13 pieces into the case so that no caramel
can slide in any direction in the case. Since then, especially in 2D, several dozen
of anti-slide puzzles have been invented in the puzzle society. It is too many to
follow all these puzzles, however, we introduce an impressive puzzle Lock Device
invented by Hiroshi Yamamoto, who is also a famous puzzle designer, in 2012
(Fig. 3). This is an interlock puzzle that consists of seven distinct L-shape pieces:
We have no frame and we can arrange them so that no piece can slide from the
other pieces (it is a quite counterintuitive difficult puzzle).

While anti-slide puzzles and interlock puzzles are common in puzzle society,
little research has been done on them from the viewpoint of computer science.
Amano et al. gave an IP formulation of the problem in 2015 [1]. They investigated
a generalization of the puzzle proposed by Strijbos; that is, they investigated a
set of caramels of size 1 × 2 × 2 into a case of size n × m × �. On the other
hand, in 2019, Takenaga et al. investigated anti-slide puzzles in 2D [13]; they
formalized the case that the pieces are polyominoes (see [10]) and solved them
by using OBDD (Ordered Binary Decision Diagram). In this previous work, they

Mathematical Characterizations and Computational Complexity 323

investigated quite restricted cases, and general properties of anti-slide puzzles
are not yet formalized.

In this paper, we first give some mathematical models of the notion of anti-
slide. The formulations are given to some different models, which correspond
to previous research and natural anti-slide puzzles. As an application of the
models, we consider anti-slide puzzles of the set of polyominoes. We can give a
characterization of anti-slide (and interlock) polyominoes by using two directed
graphs. In this characterization, strong connectivity of these graphs coincides
with the property of anti-slide. Using the result, we can determine whether a
given arrangement of polyominoes is anti-slide or not in polynomial time.

Next, for a given set P of pieces and frame F , we consider the decision
problem that asks if P can be anti-slide in F or not. In a sense, the Rectangle
Packing Puzzle problem in [7], a packing problem of rectangle pieces into a
rectangular frame, gives a proof of NP-completeness. However, this is a difficulty
of a packing problem, which does not give us any difficulty of anti-slide puzzles.
Therefore, we add one more condition that we consider the set P of pieces such
that a packing of P into the frame F is trivial (always we can and it is easy to
find). Under this condition, we show that the decision problem of an anti-slide
puzzle is strongly NP-complete. Moreover, even if we remove F from the puzzle,
it is still strongly NP-complete for the decision problem of an interlock puzzle.
Especially, these NP-completeness hold even if all pieces in P are x-monotone.

Lastly, we consider the interlock puzzle for the convex pieces. Although the
decision problem of an interlock puzzle is strongly NP-complete even if all pieces
are x-monotone, any set of convex polygons cannot be interlocked. That is, when
all pieces are convex, we prove that we cannot interlock them.

2 Preliminaries

We follow the basic notations and notions in [5]: We assume that each polygon
P is given by a sequence of vertices in counterclockwise. A polygon P is convex
if the line segment pq between any pair of points p and q in P is included in P .
A polygon is a simple polygon when it is connected, no self intersections of its
edges, and no holes. For a line l, a polygon P is said to be l-monotone if the
intersection of P and l′ is connected (i.e., a line segment, a point, or empty) for
any l′ perpendicular to l. If the line l can be the x-axis, we call it x-monotone
(Fig. 4).Let ∂P denote the boundary of a polygon P . Two polygons P and Q touch
if ∂P ∩∂Q �= ∅. A feasible arrangement of a set P of polygons is an arrangement
of P such that for any pair of P,Q ∈ P, they do not share any points except on
∂P and ∂Q. Intuitively, no pair of polygons overlaps in a feasible arrangement.
Hereafter, we only consider feasible arrangements of polygons, therefore, we say
just arrangement.

When we consider slide of polygons, we have to be conscious of the direction of
gravity. When a direction is given as a vector d, we consider the vector indicates
“down” and fix an xy-coordinate following d. Then, we denote the coordinate of
a point p by (xd(p), yd(p)) with respect to d. A polygon is said to be orthogonal
when every edge of P is parallel to the x-axis or y-axis.

324 K. Minamisawa et al.

Fig. 3. 2D interlock puz-
zle “Lock Device” [14]

x-axis

Fig. 4. Two x-monotone
polyominoes

Fig. 5. Complete list
of twelve pentominoes

The input of an anti-slide puzzle consists of a set P of polygons and a frame
F . Each element in P is called piece and F is a polygon that has holes inside it.
Without loss of generality, the total area of the holes in F is equal to or greater
than the total area of the pieces in P. Each polygon and frame are given as a
sequence of the points and the total number of the vertices is n.

A polyomino is a polygon obtained by aligning squares of equal size arranged
with coincident sides [10]. Depending on its area, it is called monomino, domino,
and so on. A complete list of pentominoes (of size 5) is shown in Fig. 5.

A directed graph D = (V,A) is defined by a finite set V and a subset A of
V ×V . Each element in V = V (D) is a vertex and each element in A = A(D) ⊆
V (D)×V (D) = {(u, v) : u, v ∈ V (D)} is an arc. On a directed graph D, a vertex
v is reachable from u if we have a directed path (u, . . . , v) starting from u to v
in D. A directed graph D is strongly connected if v is reachable from u and u
is reachable from v for any pair of vertices u and v in V (D) (see [2] for further
details).

3 Mathematical Characterizations of Anti-slide Puzzles

In this section, we give some models of anti-slide puzzles for polygons in 2D and
show some basic properties. When two polygons P and Q touch, a point q in
∂Q supports a point p in ∂P with respect to a direction d when the following
conditions hold (Fig. 6):

1. both points p and q are in ∂P ∩ ∂Q and
2. we have the following for any ε > 0:

(a) let Cε(q) be a circle centered at q with radius ε and Cε(p) a circle centered
at p with radius ε,

(b) let (qε−, qε+) be two intersection points of Cε(q) and ∂Q with xd(qε−) <
xd(qε+) and (pε−, pε+) be two intersection points of Cε(p) and ∂P with
xd(pε−) < xd(pε+), and

Mathematical Characterizations and Computational Complexity 325

P

Q

p = q

qε+

qε−

Cε(q)

Fig. 6. Q supports P
from below

P

Q

p = q

d1

d2

Fig. 7. Q supports P with
respect to a direction d1,
however, Q does not sup-
port P with respect to d2

P

Fig. 8. Lower envelope
of a polygon P ; black
endpoints are included
in the envelope, while
white endpoints are not

(c) we have xd(qε−) < xd(p) < xd(qε+) or xd(pε−) < xd(q) < xd(pε+).

Intuitively, the neighbor of the points p or q has a positive width for supporting
the other point. We note that it depends on the direction d (Fig. 7).

For a direction d, the lower envelope of a polygon P is the set of points p in
∂P such that there is no point p′ inside of P with dist(p, p′) < ε, xd(p) = xd(p′),
and yd(p) > yd(p′) for any ε > 0, where dist(p, p′) is the distance between p and
p′ (Fig. 8). We define the upper envelope in the same manner.

For a given arrangement of a set of polygons, a polygon P is weakly anti-slide
with respect to d when there is a polygon Q (P �= Q) such that a point on the
lower envelope of P is supported by a point on the upper envelope of Q. In short,
we say Q supports P in this case (Fig. 9).

(a) (b) (c) (d) (e)

Q

P

Q

P

Q

P

Q

P

Q′ Q

P

Q′

Weak anti-slide N Y Y Y Y
Strong anti-slide N N N N Y

Anti-slide for polyominoes N undefined N Y Y

Fig. 9. Yes/No cases for each anti-slide model when d indicates below (each red ×
indicates the gravity center of P)

326 K. Minamisawa et al.

P

Gravity center

Balance point

Fig. 10. Gravity center
and balance point

In [13], Takenaga et al. dealt with the problems
in the weak anti-slide model (without considering the
case in Fig. 9(b)) in this context. However, in puzzle
society, the case in Fig. 9(c) is not considered as anti-
slide when its gravity center of P is not “on” Q since
P tilts right without any support. When we consider
the real anti-slide puzzles, we have to be aware of the
gravity center of a polygon. We suppose that a poly-
gon is made of uniform material and has a constant
thickness. We introduce its gravity center in the stan-
dard way of physics. We note that some polygons have
their gravity centers outside of them. Therefore we introduce a notion of balance
point (Fig. 10): For a direction d, the balance point of a polygon P is the mini-
mum point (taking of yd(p)) of the intersection points of P and the line � that is
parallel to d and passes through the gravity center of P . We have the following
observation for the balance point:

Observation 1. For any polygon P and a direction d, P has a unique balance
point with respect to d. Let g and b be the gravity center and the balance point
of P , respectively. Then we have xd(g) = xd(b).

Now we are ready to introduce another anti-slide model. For a given arrange-
ment of a set of polygons, a polygon P is strongly anti-slide with respect to d
when there are two points pr and pl in the lower envelope of P such that;

1. for the balance point p of P , we have xd(pl) ≤ xd(p) and xd(p) ≤ xd(pr) and
2. there are two polygons Q and Q′ such that pr (and pl) is supported by a

point q (and q′) in the upper envelope of Q (and Q′, respectively).

We here note that we may have pr = pl or Q = Q′. Intuitively, the gravity
center of P is supported from below by Q and Q′. Some representative examples
are shown in Fig. 9. Especially, we note that the case 9(d) is not the case of
strongly anti-slide. In real puzzles, if P has some thickness, it is considered as
an anti-slide case since P is supported by Q′ from the right.

Hereafter, we focus on orthogonal polyominoes for fixed xy-axes. We now
introduce a reasonable model between them above. A polyomino is anti-slide
if and only if it is weakly anti-slide for each of four directions parallel to the
x-axis or the y-axis. By this definition, we can consider the case in Fig. 9(d) is
anti-slide. This model fits to the anti-slide puzzles in 3D version by Amano et
al. [1], and it also fits to the real anti-slide puzzles for the set of polyominoes,
which are the most popular ones in the puzzle society.

4 Decision Problem for Interlocking of Polyominoes

In this section, we show a polynomial time algorithm for the decision problem
of whether a given arrangement of orthogonal polyominoes is anti-slide or not.

Mathematical Characterizations and Computational Complexity 327

uv

w
x

d

u

v

w

x

Fig. 11. Each of four pieces is anti-
slide, however, we can slide by combin-
ing two of them along the blue thick
lines in figure.

u
v

w
x

d

u

v

w

x
t t

Fig. 12. Five pieces are interlocking;
by the central square, we cannot slide
any set of pieces in 2D

To simplify, we consider the decision problem for the interlock problem without
frame for the set of polyominoes. (Its extension to the anti-slide puzzle with
frame is easy, and omitted here.)

First, we remark that the arrangement may not be interlocked even if every
polyomino is anti-slide. Each polyomino in the arrangement of four polyominoes
in Fig. 11(left) is anti-slide, however, if we consider two pieces as a “block”, we
can slide the block and separate into two blocks of two pieces. On the other hand,
a similar arrangement of five polyominoes in Fig. 12(left) is interlocking and we
cannot slide any block of polyominoes from the other. (The puzzle “Lock Device”
designed by Hiroshi Yamamoto consists of five L-shape polyominoes similar to
ones in Fig. 11 [14]. That is, without square piece as in Fig. 12, we can construct
the interlock structure by using just five distinct L-shape polyominoes. In this
paper, we do not give the sizes in honor to the designer.)

In order to deal with such cases, we introduce some notions. When two poly-
ominoes share at least one edge in an arrangement, a merge of two polyominoes
is a replacement of these two polyominoes by one polyomino which is obtained
by gluing these two polyominoes. Let A be an arrangement of a set P of poly-
ominoes. Let A′ be a partial arrangement induced by any subset P ′ of P. We
repeat merging of two polyominoes in A′ as many times as we can. We call
this operation a merge of the subset P ′. We suppose that we obtain a single
polyomino P ′ after merging all elements in the subset P ′. Then A′ is said to
be anti-slide when the corresponding polyomino P ′ is anti-slide after replacing
the partial arrangement A′ by P ′ in A. We define that the arrangement A is
interlocking if and only if P ′ is anti-slide for any subset P ′ of P.

By the definition, we can decide that the arrangement in Fig. 11 is not anti-
slide, while the other one in Fig. 12 is interlocking. However, it seems that we
have to check exponentially many subsets A′ of A whether the corresponding P ′

is anti-slide or not. It is not the case; we show a polynomial-time algorithm for
solving this problem.

328 K. Minamisawa et al.

4.1 Directed Graph Representation and Polynomial-Time
Algorithm

Assume that an arrangement A of a set P of orthogonal polyominoes is given.
Let {N,E, S,W} denote four directions parallel to the edges of the polyominoes.
We consider S is below (South in a map), and the other letters corresponding
to North, East, and W est. For the arrangement A and each d of four directions
{N,E, S,W}, we define four directed graphs Dd(A) = (P, Ad) as follows; for
P,Q ∈ P, we have an arc (P,Q) ∈ Ad if and only if Q supports P in direction
d. Then we have the following lemma.

Lemma 1. Let P and A be a set of polyominoes and its arrangement. Then A
interlocks if and only if the four graphs DN (A),DE(A),DS(A), and DW (A) are
strongly connected.

Proof. (Outline) We here consider the directed graph DS(A) for d = S. With-
out loss of generality, we can assume that the underlying graph of DS(A) is
connected.

We first show that when A is interlocking, DS(A) is strongly connected. To
derive contradictions, we suppose DS(A) is not strongly connected. Since DS(A)
is not strongly connected, there is a partition P1 and P2 of P such that, even
while P1 is reachable to P2 in DS(A), any P2 ∈ P2 is not reachable to any
P1 ∈ P1. For the set P1, we merge the elements in P1 as many times as we can.
Then the obtained polyomino (if there are two or more, we can pick up any of
them) can be slid to the direction N from P2. This contradicts the definition of
interlock. Thus DS(A) is strongly connected.

We next show that A is interlocking when DS(A) is strongly connected.
The transitivity of supporting, when there is a directed path from P1 to P2, P1

supports P2 from below through some polyominoes between P1 and P2. On the
other hand, if there is a directed path from P2 to P1, P2 supports P1 from below
in the same manner. Therefore, if we have two directed paths between them,
they are supporting with each other, thus we cannot slide P1 from P2 to any
direction of S and N . Therefore, when DS(A) is strongly connected, any pair
of polyominoes are in the same relationship, or A is interlocking with respect to
this direction.

By the symmetric arguments, an arrangement A is interlocking if and only
if the four graphs DN (A),DE(A),DS(A),DW (A) are strongly connected. �	

We note that the definitions are symmetric with respect to the pair of direc-
tions (S,N) and (E,W). Therefore, when we reverse all edges in DN (A), we
can obtain DS(A), and so DE(A) and DW (A) are. This implies the following
corollary:

Corollary 1. Let P and A be a set of polyominoes and its arrangement. Then A
interlocks if and only if the two graphs DN (A) and DE(A) are strongly connected.

Theorem 1. For a given arrangement A of a set P of polyominoes, we can
determine whether A is interlocking or not in O(n2) time, where n is the total
number of the vertices of the polyominoes.

Mathematical Characterizations and Computational Complexity 329

Proof. By Corollary 1, it is sufficient to construct two graphs DN (A) and DE(A).
Since the total number of vertices in P is n, we have |P| = O(n). The decision
problem for strong connectivity can be done in O(|P|2) time (see, e.g., [4]), and
hence we have the theorem. �	

In Fig. 11 and Fig. 12, the corresponding DS(A)s are shown in the right side.
In Fig. 11, the graph indicates that contracting u and x, we obtain a merged
vertex on v, w. On the other hand, in Fig. 12, we have no such a vertex set.

We note that since the underlying graph of Dd(A) is a planar graph, the run-
ning time in Theorem 1 can be improved to linear time if the graph is explicitly
given as an input.

5 Decision Problem for Anti-slide Puzzle on Polygons

In this section, for a given instance of the anti-slide puzzle, we consider the
decision problem that asks whether we can arrange the given pieces anti-slide or
not. We first prove that this problem is NP-complete even if the pieces are x-
monotone polyominoes. Next, we show that any set of convex polygons is never
anti-slide.

5.1 NP-completeness of the Anti-slide Problem on x-monotone
Polyominoes

In this section, we deal with polyominoes. We reduce the following 3-Partition
problem to our problem.

Input: A set Â = {a1, a2, a3, . . . , a3m} and a positive integer B, where each ai

is a positive integer with 1
4B < ai < 1

2B.

Output: Determine whether we can partition Â into m 3-tuples A1, A2, . . . , Am

so that ai + aj + ak = B for each Al = {ai, aj , ak}.
It is well known that the 3-Partition problem is strongly NP-complete [9].

Without loss of generality, we also assume that each ai is an odd number (by
replacing each number ai by 2ai + 1 and B by 2B + 3), and

∑
i ai = mB.

Theorem 2. Let P and F be an instance of the anti-slide puzzle. It is strongly
NP-complete to find an anti-slide arrangement for P and F .

We note that the instance of the anti-slide puzzle should be easy for packing.

Proof. We first remark that each piece in P is a polyomino and so F is. Then,
by Theorem 1, we can determine whether an arrangement is anti-slide or not
in polynomial time. Therefore, the anti-slide puzzle is in NP. Next, we show
NP-hardness. We reduce the 3-Partition problem to our problem.

For a given instance Â = {a1, . . . , a3m}, we construct a piece Pi for each ai

as shown in Fig. 13. The frame F is a rectangular polyomino with m rectangular
holes of size B × 2B. The reduction can be done in polynomial time.

330 K. Minamisawa et al.

Fig. 13. A piece Pi for an odd integer
ai

Fig. 14. Packing arrangement of any
three pieces in P

Fig. 15. Anti-slide arrangement of {Pi, Pj , Pk}

We first confirm that the packing problem for the P and F is easy to solve.
We divide P into m 3-tuples in any way and pack each 3 pieces of a 3-tuple into
a hole of size B ×2B of F as shown in Fig. 14. Since we have 1

4B < ai < 1
2B, for

any three pieces, by putting the shortest one among three pieces at the center,
the total height of them is less than B/2 + B/2 + 1, or at most B. Therefore,
the packing problem is trivial.

Thus we show that the instance Â and B of the 3-Partition problem has a
solution if and only if we can make an anti-slide arrangement of P into F .

First we assume that the instance Â and B has a solution of the 3-Partition.
Then we have m 3-tuples Al = {ai, aj , ak} such that ai +aj +ak = B for each l.
Using these 3-tuples, we can fill each hole of size B × 2B in F by corresponding
three pieces Pi, Pj , Pk as shown in Fig. 15. Clearly, they are anti-slide. Next we
assume that P and F are anti-slide. Then, by the condition 1

4B < ai < 1
2B, each

hole has exactly three pieces, and it is easy to see that the directions of three
pieces should be the same as shown in Fig. 15 (or their up-side-down direction).

Therefore, the instance Â and B of the 3-Partition has a solution if and only
if the instance P and F of the anti-slide puzzle has an anti-slide arrangement.
Thus the generalized anti-slide puzzle is strongly NP-complete. �	

We note that each piece in P in the proof of Theorem 2 is x-monotone. We
can give a stronger result as follows:

Theorem 3. Let P be an instance of the interlock puzzle. It is strongly NP-
complete to find an interlocking arrangement of P even if all pieces in P are
x-monotone.

Mathematical Characterizations and Computational Complexity 331

Proof. We divide the frame F in the proof of Theorem 2 into five x-monotone
polyominoes as shown in Fig. 16. Making the size of unit square small enough
compared to the other elements in P, the way of interlocking of F is uniquely
determined. Therefore, the proof of Theorem 2 also proves this theorem. �	

Fig. 16. Interlocking frame F

5.2 Convex Polygons Cannot Interlock

The pieces of “Lock Device” and ones in the proof of Theorem 3 are all x-
monotone. That is, the set of x-monotone polyominoes can interlock. In this
section, we consider general polygons, and we show that the set of convex poly-
gons never interlock.

Theorem 4. Let P = {P1, . . . , Pk} be a set of convex polygons for some positive
integer k. Then P does not interlock for any arrangement.

Proof. (Outline) It is easy to see that the claim holds for k = 1, 2. We assume
that k is the minimum integer such that P interlocks for some arrangement A.
Then we apply similar techniques in [8]: Roughly, we “grow” convex polygons in
P to inscribe a triangle T without changing their geometric properties, especially,
convexity. After growing and fitting to T , the polygon at the corner of T can
be slid farther from the other polygons. This implies that the corresponding
polygon in P in A can also be slid farther, which contradicts the minimality of
k. �	

Fig. 17. Are they anti-slide?

332 K. Minamisawa et al.

6 Concluding Remarks

In this paper, we proposed some 2D models for anti-slide puzzles and interlock
puzzles. Extensions to 3D are future work. In puzzle society, there are some
puzzles called coordinate-motion in which all pieces have to be moved smoothly
and simultaneously to assemble or disassemble [3]. These puzzles are decided
to be anti-slide or interlocking in our framework, however, they actually can be
slid and disassembled in neat ways. In order to deal with such movements, we
may have to consider infinitesimal rigidity in terms of architecture (see, e.g., [6,
Sec. 4.4]). However, it is not so simple as the first impression. For example, in
Fig. 17, we feel that the left tilted square in the frame is not anti-slide, while
the right tilted rectangle in the frame is anti-slide because the square can be
rotated, but the rectangle cannot be. Therefore, even for polyominoes, it is not
straightforward to extend it to general (non-orthogonal) case.

Acknowledgements. This work is partially supported by JSPS KAKENHI Grant
Numbers 17H06287 and 18H04091. The authors thank Prof. Yoshio Okamoto, who
mentioned that the techniques in [8] can be used to prove Theorem 4.

References

1. Amano, K., Nakano, S., Yamazaki, K.: Anti Slide. J. Inf. Process. 23(3), 252–257
(2015)

2. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. CRC Press,
Boca Raton (2015)

3. Coffin, S.T.: The Puzzling World of Polyhedral Dissections: Chapter 12 -
Coordinate-Motion Puzzles (1990–2012). https://puzzleworld.org/PuzzlingWorld/
chap12.htm. Accessed September 2020

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer-Verlag, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77974-2

6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

7. Demaine, E.D., et al.: Symmetric assembly puzzles are hard, beyond a few pieces.
Comput. Geom. Theory Appl. 90(101648), 1–11 (2020)

8. Edelsbrunner, H., Robison, A.D., Shen, X.-J.: Covering convex sets with non-
overlapping polygons. Discrete Math. 81, 153–164 (1990)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

10. Golomb, S.W.: Polyominoes. Princeton University Press, Princeton (1994)
11. Slocum, J.: The Tangram Book: The Story of the Chinese Puzzle with Over 2000

Puzzle to Solve. Sterling Publishing, New York (2004)
12. Strijbos, W.: Anti-Slide. (Commertial product was sold by Hanayama, 2007) (1994)
13. Takenaga, Y., Yang, X., Inada, A.: Anti-slide placements of pentominoes. In: The

22nd Japan Conference on Discrete and Computational Geometry, Graphs, and
Games (JCDCGGG), pp. 121–122 (2019)

14. Yamamoto, H.: Lock Device (2012). https://puzzleworld.org/DesignCompetition/
2012/. Accessed September 2020

https://puzzleworld.org/PuzzlingWorld/chap12.htm
https://puzzleworld.org/PuzzlingWorld/chap12.htm
https://doi.org/10.1007/978-3-540-77974-2
https://puzzleworld.org/DesignCompetition/2012/
https://puzzleworld.org/DesignCompetition/2012/

Author Index

Aichholzer, Oswin 221
Arroyo, Alan 221
Arseneva, Elena 234
Asano, Tetsuo 13

Belbasi, Mahdi 166
Biniaz, Ahmad 260
Bodlaender, Hans L. 142
Bose, Prosenjit 116
Byrne, Thomas 103

Cano, Pilar 234
Conte, Alessio 195
Czyzowicz, Jurek 65

Danda, Umesh Sandeep 40
Das, Bireswar 90
Di Giacomo, Emilio 247

Fekete, Sándor P. 103
Fujie, Tetsuya 52
Fürer, Martin 166

Georgiou, Konstantinos 65
Gurski, Frank 182

Hanaka, Tesshu 208
Hančl Jr., Jaroslav 247
Hara, Masao 321
Higashikawa, Yuya 52

Itoh, Toshiya 296

Kalcsics, Jörg 103
Katoh, Naoki 52
Kavitha, V. 272
Kawai, Kazuma 208
Kaykobad, Mohammad 3
Killick, Ryan 65
Kleist, Linda 103, 234
Komander, Dominique 182
Kranakis, Evangelos 65
Krizanc, Danny 65
Kumabe, Soh 154

Lindemann, Marvin 182
Liotta, Giuseppe 247

Madireddy, Raghunath Reddy 129
Maehara, Takanori 154
Masárová, Zuzana 221
Mchedlidze, Tamara 234
Mehrabi, Saeed 116, 234
Minamisawa, Ko 321
Miyahara, Daiki 78
Mizuki, Takaaki 78
Mondal, Debajyoti 116, 272
Murata, Soma 78

Nandy, Subhas C. 129
Narayanan, Lata 65

Ono, Hirotaka 208
Opatrny, Jaroslav 65

Pandit, Supantha 129
Pankratov, Denis 65
Parada, Irene 221, 234
Parthiban, N. 272
Perz, Daniel 221
Pilz, Alexander 221

Qian, Mengze 284

Rajasingh, Indra 272
Ramakrishna, G. 40
Ruangwises, Suthee 296

Sai, Kwon Kham 308
Saitoh, Toshiki 142
Salzborn, F. J. M. 3
Schmidt, Jens M. 40
Sharma, Shivdutt 90
Sone, Hideaki 78
Srikanth, M. 40

Teruyama, Junichi 52
Tkadlec, Josef 221

Tokuni, Yuki 52
Tomita, Etsuji 195

Uehara, Ryuhei 284, 308, 321

Valtr, Pavel 234
Viglietta, Giovanni 308
Vogtenhuber, Birgit 221

Wang, Haitao 27

Yamazaki, Kazuaki 284
Yoshinaka, Ryo 142

Zhao, Yiming 27

334 Author Index

	Preface
	Organization
	Understanding the Complexity of Motion Planning (Abstract of Invited Talk)
	Contents
	Invited Talks
	Majority Spanning Trees, Cotrees and Their Applications
	1 Preliminaries
	2 Main Results
	3 Applications
	3.1 Minimum Connection Time Problem
	3.2 Round-Robin Tournament Ranking
	3.3 Balancing One Way Roads
	3.4 Settling Multiple Debts

	4 Conclusion
	References

	A New Transportation Problem on a Graph with Sending and Bringing-Back Operations
	1 Introduction
	2 Problem Definition
	2.1 Formal Definitions and Basic Properties

	3 One-Dimensional Transportation Problem
	3.1 One-Commodity Problem Without Capacity Constraint
	3.2 One-Commodity Transportation Problem with Loading Capacity
	3.3 Optimization Problem
	3.4 Multi-commodity Transportation Problem

	4 Two-Dimensional Transportation Problem
	4.1 NP-completeness
	4.2 One-Commodity Transportation Problem on a Forest

	5 Concluding Remarks
	References

	Long Papers
	Algorithms for Diameters of Unicycle Graphs and Diameter-Optimally Augmenting Trees
	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Computing the Diameter of Unicycle Graphs
	2.1 Observations
	2.2 A Pruning Algorithm
	2.3 Computing the Diameter

	3 The Diameter-Optimally Augmenting Trees (DOAT)
	3.1 Observations
	3.2 Reducing DOAT to Finding a Shortcut for P
	3.3 Computing an Optimal Shortcut for P

	References

	On Short Fastest Paths in Temporal Graphs
	1 Introduction
	1.1 Temporal Graphs
	1.2 Our Result

	2 Dominating Paths
	3 An Algorithm for Short Fastest Paths
	4 Correctness
	5 Running Time
	References

	Minmax Regret 1-Sink Location Problems on Dynamic Flow Path Networks with Parametric Weights
	1 Introduction
	2 Preliminaries
	2.1 Evacuation Completion Time on a Dynamic Flow Path Network
	2.2 Aggregate Evacuation Time
	2.3 Minmax Regret Formulation
	2.4 Piecewise Functions and Upper/Lower Envelopes

	3 Algorithms
	3.1 Key Lemmas
	3.2 Algorithms and Time Analyses

	References

	The Bike Sharing Problem
	1 Introduction
	1.1 Related Work
	1.2 Outline and Results of the Paper

	2 Definitions and Preliminary Observations
	3 Optimal and Efficient Algorithm for the BS Problem
	3.1 Lower Bound on the Arrival Time for the Bike Sharing Problem
	3.2 Finding an Optimal Schedule for the Case ub T(m,U)
	3.3 Standardize and Reduce Procedures
	3.4 AllMakeIt*: Computationally Efficient Version of AllMakeIt
	3.5 Finding an Optimal Schedule for the Case ub > T(m,U)

	4 The RBS Problem
	5 Conclusion
	References

	Efficient Generation of a Card-Based Uniformly Distributed Random Derangement
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Related Works

	2 Preliminaries
	2.1 Cards
	2.2 Pile-scramble Shuffle
	2.3 Properties of Permutations
	2.4 Expression of Permutation Using Cards
	2.5 The Existing Protocol

	3 Proposed Protocol for Generating a Derangement
	3.1 Overview of the Proposed Protocol
	3.2 Definitions of the Two Operations
	3.3 Description of the Proposed Protocol

	4 Probability of the Need to Restart the Shuffle
	5 Conclusion
	References

	Compact Data Structures for Dedekind Groups and Finite Rings
	1 Introduction
	2 Preliminaries
	3 Meta Theorems
	4 Compact Data Structures for Special Group Classes
	5 Linear Space Representation of Finite Rings
	References

	Competitive Location Problems: Balanced Facility Location and the One-Round Manhattan Voronoi Game
	1 Introduction
	1.1 Related Work
	1.2 Main Results

	2 Preliminaries
	3 Balanced Point Sets
	4 The Manhattan Voronoi Game
	5 Properties of Unbeatable Winning Sets
	6 Open Problems
	References

	Faster Multi-sided One-Bend Boundary Labelling
	1 Introduction
	2 Preliminaries
	3 Three-Sided Boundary Labelling
	3.1 Solving an L-Shaped Problem
	3.2 Solving a -Shaped Problem

	4 Four-Sided Boundary Labelling
	5 Directions for Future Research
	References

	On the Geometric Red-Blue Set Cover Problem
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Preliminaries

	2 APX-hardness Results
	3 Rectangles Anchored on Two Parallel Lines
	4 Axis-Parallel Lines and Segments
	5 Intervals on the Real Line
	References

	Fixed-Treewidth-Efficient Algorithms for Edge-Deletion to Interval Graph Classes
	1 Introduction
	2 Preliminaries
	3 Finding a Largest Interval Subgraph
	4 Algorithms for Other Graph Classes
	4.1 Proper Interval Graphs
	4.2 Trivially Perfect Graphs
	4.3 Circular-Arc Graphs
	4.4 Threshold Graphs

	5 Conclusion
	References

	r-Gathering Problems on Spiders: Hardness, FPT Algorithms, and PTASes
	1 Introduction
	2 Preliminaries
	3 NP-Hardness of r-Gather Clustering on Spider
	3.1 Reduction from Arrears Problem
	3.2 Strong NP-Hardness of Arrears Problem

	4 FPT Algorithm for R-Gather Clustering and r-Gathering on Spider
	5 PTAS for r-Gathering Problem
	5.1 Algorithm Part 1: Rounding Distance
	5.2 Algorithm Part 2: Dynamic Programming

	References

	An Improvement of Reed's Treewidth Approximation
	1 Introduction
	1.1 Previously Known Results
	1.2 Our Contribution

	2 Preliminaries
	2.1 Tree Decomposition

	3 Analysis of Reed's Algorithm
	3.1 Summary of Reed's Algorithm
	3.2 Centroids and Separators
	3.3 Algorithm to Find a Weakly Balanced Separation
	3.4 Running Time of Reed's Algorithm

	4 Our Improved Algorithm
	4.1 Relax the Balancing Requirement
	4.2 Main Improvement

	5 Running Time of Our Algorithm
	A Appendix
	A.1 The Correctness of Reed's Algorithm

	References

	Homomorphisms to Digraphs with Large Girth and Oriented Colorings of Minimal Series-Parallel Digraphs
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Digraphs
	2.2 Coloring Oriented Graphs
	2.3 Generalization of Oriented Colorings

	3 Coloring Msp-Digraphs
	3.1 Msp-Digraphs
	3.2 Generalized Oriented Coloring Msp-Digraphs
	3.3 Oriented Coloring Msp-Digraphs
	3.4 Coloring Underlying Undirected Graphs of Msp-Digraphs
	3.5 Coloring Powers of Msp-Digraphs

	4 Conclusions and Outlook
	References

	Overall and Delay Complexity of the CLIQUES and Bron-Kerbosch Algorithms
	1 Introduction
	2 Definitions and Notation
	3 Maximal Clique Enumeration Algorithm CLIQUES
	3.1 Bron-Kerbosch Algorithms
	3.2 Search Tree

	4 Overall Complexity of CLIQUES
	5 There Is No Polynomial Delay Strategy for CLIQUES and Bron-Kerbosch Unless P=NP
	6 Experimental Results
	6.1 Maximum Clique Size in Real-World Networks
	6.2 Experimental Setup
	6.3 Results

	7 Concluding Remarks
	References

	Computing L(p,1)-Labeling with Combined Parameters
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Parameterization by cw+ and tw+
	4 Parameterization by Twin Cover Number
	4.1 L(p,1)-Labeling parameterized by tc+
	4.2 L(1,1)-Labeling parameterized by tc

	References

	On Compatible Matchings
	1 Introduction
	2 Two Convex Sets
	3 Generalized and Multiple Sets
	4 Forcing a Single-Edge Compatible Matching
	5 Future Research
	References

	Upward Point Set Embeddings of Paths and Trees
	1 Introduction
	2 Counting Embeddings of Paths on Convex Sets
	3 Embedding of Special Directed Paths
	4 Embedding Caterpillars on Larger Point Sets
	5 NP-Completeness for Trees
	6 Conclusion and Open Problems
	References

	2-Colored Point-Set Embeddings of Partial 2-Trees
	1 Introduction
	2 Book Embeddings and Point-Set Embeddings
	3 Properly 2-Colored Partial 2-Trees
	4 Properly 2-Colored Outerplanar Graphs
	5 Non Proper 2-Colorings
	6 Open Problems
	References

	Better Approximation Algorithms for Maximum Weight Internal Spanning Trees in Cubic Graphs and Claw-Free Graphs
	1 Introduction
	1.1 Related Works on Cubic Graphs and Claw-Free Graphs
	1.2 Our Contributions
	1.3 Preliminaries

	2 The MaxwIST Problem in Cubic Graphs
	3 The MaxwIST Problem in Claw-Free Graphs
	3.1 Preliminaries: Some Properties of T
	3.2 Obtaining a Desired Tree from T

	4 Conclusions
	References

	APX-Hardness and Approximation for the k-Burning Number Problem
	1 Introduction
	2 Preliminaries
	3 APX-Hardness
	3.1 APX-Hardness for Burning Number

	4 Approximation Algorithms
	4.1 Approximating Burning Number
	4.2 Approximating k-Burning Number

	5 Burning Scheduling Is NP-Hard
	6 Directions for Future Research
	References

	Efficient Enumeration of Non-isomorphic Distance-Hereditary Graphs and Ptolemaic Graphs
	1 Introduction
	2 Preliminaries
	2.1 Generation Rules and Tree Structures

	3 Enumeration Algorithms
	3.1 Enumeration Algorithm for Distance-Hereditary Graphs
	3.2 Enumeration Algorithm for Ptolemaic Graphs
	3.3 Implementation and Experimental Results

	4 Concluding Remarks
	References

	Physical Zero-Knowledge Proof for Ripple Effect
	1 Introduction
	1.1 Zero-Knowledge Proof
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 Cards
	2.2 Matrix
	2.3 Pile-Shifting Shuffle
	2.4 Rearrangement Protocol
	2.5 Uniqueness Verification Protocol
	2.6 Pile-Scramble Shuffle

	3 Main Protocol
	3.1 Verification Phase for Distance Condition
	3.2 Verification Phase for Room Condition

	4 Proof of Security
	5 Future Work
	References

	Cyclic Shift Problems on Graphs
	1 Introduction
	2 Preliminaries
	3 Algebraic Analysis of the Puzzles
	3.1 Puzzles with Two Cycles
	3.2 Puzzles with Any Number of Cycles

	4 NP-Hardness for Puzzles with Two Colors
	References

	Mathematical Characterizations and Computational Complexity of Anti-slide Puzzles
	1 Introduction
	2 Preliminaries
	3 Mathematical Characterizations of Anti-slide Puzzles
	4 Decision Problem for Interlocking of Polyominoes
	4.1 Directed Graph Representation and Polynomial-Time Algorithm

	5 Decision Problem for Anti-slide Puzzle on Polygons
	5.1 NP-completeness of the Anti-slide Problem on x-monotone Polyominoes
	5.2 Convex Polygons Cannot Interlock

	6 Concluding Remarks
	References

	Author Index

