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Abstract. Cadences are structurally maximal arithmetic progressions
of indices corresponding to equal characters in an underlying string.

This paper provides a detection algorithm for 3-cadences in binary
strings which runs in linear time on uncompressed strings and in polyno-
mial time on grammar-compressed strings.

Furthermore, this paper proves that several variants of the cadence
detection problem are NP-complete on grammar-compressed strings and
that the equidistant subsequence matching problem with patterns of
length three is NP-complete on grammar-compressed ternary strings.
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matching

1 Introduction

A sub-cadence in a string is an arithmetic progression of indices corresponding
to equal characters. Van der Waerden shows in [12] that for each k and each
alphabet size |Σ|, there is a natural number m(k, |Σ|), such that each sequence
of characters in Σ with length greater than or equal to m(k, |Σ|) has a sub-
cadence consisting of k indices. However, the term cadence in the context of
strings was first used by Gardelle in [5] in the year 1964.

In this paper, we use the notation of Amir et al. in [1] and say that a cadence
is a sub-cadence which is structurally maximal in the sense that the extension of
the arithmetic progression to the left or to the right would not result in a valid
index of the string.

For example, in the string S = 10101, the three indices 1, 3, 5 form a cadence,
since the indices −1 and 7 are both outside of the string. On the other hand, in
the string S = 01110, the three indices 2, 3, 4 do not form a cadence, since, for
example, the index 1 is inside the string.

Funakoshi and Pape-Lange prove in [4] that if the underlying alphabet has
a constant size, the number of 3-cadences in an uncompressed string of length n
can be counted in O(n(log n)2) time using fast Fourier transform.

Furthermore, Funakoshi et al. present in [3] the more general problem of
equidistant subsequence matching which extends the sub-cadences to arbitrary
arithmetic factors, and showed that techniques for cadence-detection can be
adopted to solve equidistant subsequence matching with similar time complexity.
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Strings can be compressed by straight-line programs, which are context-free
grammars whose languages contain exactly one string each. Since this grammar-
based compression is able to compress some strings to logarithmic size, we are
interested which polynomial time problems on uncompressed strings can also
be solved in polynomial time with respect to the compressed size of the string.
For example, grammar-based compression allows for fast algorithms as the fully
compressed pattern matching by Jeż presented in [6]. Also, the size of the smallest
grammar is comparable to other strong string compression algorithms as LZ77
(as proven simultaneously by Rytter in [11] and by Charikar et al. in [2]) and
hence as the run-length encoded Burrows-Wheeler transform (as recently proven
independently by Kempa and Kociumaka in [7] and by Pape-Lange in [10]).

In this paper, we will consider several variants of the k-cadence detection
problem. I.e. the decision problem on whether such a k-cadence occurs in a
given string.

We prove that the 3-cadence detection problem can be solved in linear time on
an uncompressed binary string and in polynomial time on a grammar-compressed
binary string.

Furthermore, on grammar-compressed strings, the cadence detection problem
becomes NP-complete for longer cadences or 3-cadences over a ternary alphabet.

In order to obtain these algorithms, this paper introduces two new special
cases of the sub-cadence, the L-R-cadence, which starts and ends in given inter-
vals, and the even/odd 3-sub-cadence, which starts at even/odd indices.

2 Preliminaries

A string S of length n is the concatenation S = S[1]S[2]S[3] . . . S[n] of characters
from an alphabet Σ. Strings naturally split into runs of equal characters. For
example, the string 00010101100 splits into 000 · 1 · 0 · 1 · 0 · 11 · 00. In this paper,
these runs of equal characters are just called runs for the sake of simplicity.

For the sub-cadences and cadences, this paper uses the definitions of Amir
et al. in [1]. These definitions are slightly different from the definition by Gardelle
in [5] and by Lothaire in [9]. Funakoshi and Pape-Lange present a comparison
of these definitions in [4].

Definition 1. A k-sub-cadence is an arithmetic progression

(i, i + d, . . . , i + (k − 1)d)

of indices given by the triple (i, d, k) of integers with d, k > 0 such that

S[i] = S[i + d] = · · · = S[i + (k − 1)d]

holds.

As a special case, cadences additionally have to be structurally maximal in
the sense that neither of the extensions of the underlying arithmetic progression
is contained in the integer interval {1, 2, 3, . . . , n} anymore. More formally:
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Definition 2. A k-cadence is a k-sub-cadence (i, d, k) such that the inequalities
i − d ≤ 0 and n < i + kd hold.

In this paper, we will also consider a new special case of the sub-cadence, in
which the first element and the last element of the sub-cadence are contained in
given intervals:

Definition 3. For two disjoint intervals L and R, an L-R-k-cadence is a k-
sub-cadence (i, d, k) which starts in the interval L and ends in the interval R.
I.e. i ∈ L and i + (k − 1)d ∈ R hold.

Since the first element and the third element of each 3-sub-cadence have the
same parity, it is useful to divide the L-R-3-cadences and 3-cadences according
to this parity. Without loss of generality, we will only consider the even sub-
cadences.

Definition 4. An L-R-3-cadence/3-cadence is even if its first element is an
even number and odd otherwise.

For each set M , we define Meven := M ∩ 2Z and Modd := M ∩ (2Z + 1)
and for each M = {a1, a2, . . . , al} ⊂ Z with 1 ≤ a1 < a2 < a3 < · · · < al ≤ n,
we define the string S[M ] = S[a1]S[a2] . . . S[al] as the subsequence of characters
with indices given by M .

The string Seven is defined by Seven := S
[{

2, 4, 6, . . . , 2
⌊

|S|
2

⌋}]
.

For the compressed problems, we consider the strings to be given by straight-
line grammars.

Definition 5. A straight-line grammar is a context-free grammar (V,Σ,R, S)
with variables V = {v1, v2, . . . , vi} such that for each variable vi there is exactly
one rule vi → u1u2 . . . uj and each uk on the right-hand side is either a character
in Σ or a variable vk′ in V with a smaller index than vi. I.e. k′ < i.

The size of a straight-line grammar is given by the total length of the right-
hand sides of the rules.

These straight-line grammars allow on the one hand compression to logarith-
mic size and on the other hand fully compressed pattern matching in polynomial
time with respect to the compressed sizes of the string and the pattern.

3 NP-Complete Cadence Problems

In this section, we will prove the following theorem:

Theorem 1. If at least one of the following conditions holds, the k-cadence
detection problem on compressed strings is NP-complete:

– k ≥ 3 and |Σ| ≥ 2 and we only consider k-cadences with a given character,
– k ≥ 3 and |Σ| ≥ 3 or
– k ≥ 4 and |Σ| ≥ 2.
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Since we can test for a given candidate (i, d, k) of a k-cadence in polynomial
time, whether (i, d, k) forms indeed a k-cadence, all three problems mentioned
above belong to NP and it is left to show that they are NP-hard.

To show the NP-hardness, we will reduce the following problem, which
Lohrey proves in Theorem 3.13 of [8] to be NP-complete, to the problems above:

input: Two compressed strings P and P ′ over the alphabet {0, 1}.
output: Is there an index l with P [l] = P ′[l] = 1?

Let P and P ′ be compressed strings over the alphabet {0, 1}. Without loss
of generality, the inequality |P ′| ≤ |P | holds. Define P ′′ = (P ′0|P |−|P ′|)rev.

In this setting, for every index l, the equation P [l] = P ′[l] = 1 holds if and
only if the equation P [l] = P ′′[|P | + 1 − l] = 1 holds as well.

Consider the string

S =
(
0(k−1)|P | ·P ·0·0k|P |

)(
0k|P | ·1·0k|P |

)(
0k|P | ·0·P ′′ ·0(k−1)|P |

)(
12k|P |+1

)k−3

,

A grammar of this string can be built by the grammars of P and P ′ and
O (

log(k2|P |)) additional nonterminals. Since the compression of a string P
needs at least Ω(log |P |) nonterminals, the compressed size of S is, for fixed
k, polynomial in the compressed size of the inputs.

If there is an index l with P [l] = P ′′[|P | + 1 − l] = 1, the corresponding
indices are contained in the arithmetic progression starting at i = (k − 1)|P | + l
with distance d = 2k|P | + 1 + (|P | + 1 − l) and length k.

For each −1 ≤ j ≤ k the inequality j(2k|P |+1) < i+ jd ≤ (j +1)(2k|P |+1)
holds. Therefore, the indices of the arithmetic progression starting at the index
i = (k − 1)|P | + l with distance d = 2k|P | + 1 + (|P | + 1 − l) and length k
correspond to 1s in S and the inequalities i − d ≤ 0, i > 0, i + (k − 1)d ≤ n and
i + kd > n hold. Therefore, this arithmetic progression is a k-cadence.

Conversely, if the triple (i, d, k) defines a k-cadence with character 1 in S,
the inequalities i − d ≤ 0 < i and i + (k − 1)d ≤ n < i + kd of the cadence imply

j

k
n <

k − j

k
i+

j

k
(i+kd) = i+jd =

k − j − 1
k

(i−d)+
j + 1

k
(i+(k−1)d) ≤ j + 1

k
n.

In particular, the index i + d has to be the single 1 in the second bracket which
has the index (2k|P | + 1) + (k|P |) + 1. Furthermore, the first element of the
k-cadence has to be a 1 in P in the first bracket and the third element of the
k-cadence has to be a 1 in P ′′ in the third bracket.

By construction, the two indices of these characters have the same distance
to the index (2k|P | + 1) + (k|P |) + 1, and the two strings P and P ′′ have the
same distance to the index (2k|P | + 1) + (k|P |) + 1 as well. Therefore, the first
element of the k-cadence and the third element of the k-cadence define an index
l with P [l] = P ′′[|P | + 1 − l] = 1.

Therefore, the string S has a k-cadence with character 1 if and only if there
is an index l such that P [l] = P ′[l] = 1 holds.

If k > 3 holds, the requirement that the underlying character has to be 1 can
be dropped since there is at least one bracket in S containing only 1s.
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For 3-cadences on a ternary alphabet we consider the string

S =
(
0(k−1)|P | · P · 0 · 0k|P |

)(
2k|P | · 1 · 2k|P |

)(
0k|P | · 0 · P ′′ · 0(k−1)|P |

)

which similarly has a 3-cadence if and only if there is an index l such that
P [l] = P ′[l] = 1 holds.

This concludes the proof of Theorem 1.

4 L-R-Cadences

The algorithm of Funakoshi and Pape-Lange in [4] counts the 3-cadences of an
uncompressed string of length n in O (

n(log n)2
)

time. This is done by counting
the L-R-3-cadences in O ((|L| + |R|)(log(|L| + |R|))) time. It therefore seems
reasonable to understand the L-R-cadences to be a simplification of cadences.

Nevertheless, in this section, we will show that all detection problems on
compressed strings discussed in the last section are also NP-complete for the
L-R-cadences, even if k = 3 and |Σ| = 2 hold.

However, for k = 3 and |Σ| = 2, we will provide a detection algorithm for L-
R-3-cadences which needs on uncompressed strings only O (|L| + |R|) time and
on compressed strings polynomial time with respect to the compressed size of
the string and the additional variable max

(
|L|
|R| ,

|R|
|L|

)
.

Theorem 2. For k ≥ 3 and |Σ| ≥ 2, the L-R-k-cadence detection problem is
NP-complete on compressed strings.

Proof. If either k > 3 or |Σ| > 2 hold or if we only consider L-R-k-cadences with
a given character, the proof is essentially equal to the corresponding proof in the
last section, since for L =

{
1, 2, . . . , 1

kn
}

and R =
{

k−1
k n + 1, k−1

k n + 2, . . . , n
}
,

all k-cadences in the discussed string S are L-R-k-cadences and vice versa.
Otherwise, we have k = 3, |Σ| = 2 and we consider L-R-3-cadences with any

character. Since we can test for every triple (i, d, k), whether this triple forms
an L-R-3-cadence, this problem belongs to NP and it is left to show that even
this special case is NP-hard.

Let P and P ′ be compressed strings over the alphabet {0, 1}. Without loss
of generality, the inequality |P ′| ≤ |P | holds. Define P ′′ to be the string which
results from duplicating all characters of P ′. For example, for P ′ = 011, we define
P ′′ = 001111. This can be done by introducing two additional nonterminals.

Consider the string S = 1(0|P |)(P )(P ′′) as well as the intervals L = {1} and
R = {1 + 2|P | + 1, 1 + 2|P | + 2, . . . 1 + 2|P | + |P ′′|}. In this setting S[L] = 1
and S[R] = P ′′ holds. Furthermore, for each index 1 ≤ l ≤ |P |, the equations
P [l] = S[1 + (|P | + l)] and P ′[l] = P ′′[2l] = S[1 + 2|P | + 2l] = S[1 + 2(|P | + l)]
hold.

Therefore, for each index l, the equation P [l] = 1 = P ′[l] holds if and only
if the equation S[1] = S[1 + (|P | + l)] = S[1 + 2(|P | + l)] holds. This equation,
however, defines an L-R-3-cadence.

This concludes the proof of Theorem 2.
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Similarly, for two compressed strings P over {0, 1} and P ′ over {0, 2}, we
can define P ′′ as above and the string S = 2(0|P |)(P )(P ′′) has an equidistant
occurrence of the pattern 212 if and only if there is an index i with P [i] = 1 and
P ′[i] = 2. Therefore, equidistant subsequence matching with patterns of length
3 on compressed ternary strings is also NP-complete.

All reductions above used that we could force all cadences to use a fixed
character of the string. However, surprisingly, if L and R have similar length,
we can detect in polynomial time, whether a compressed binary string has an
L-R-3-cadence. Furthermore, with the same idea we can detect in O (|L| + |R|)
time, whether an uncompressed binary string has an L-R-3-cadence.

The remainder of this section will prove the following theorem:

Theorem 3. The problem of L-R-3-cadence detection can be done on uncom-
pressed binary strings in O (|L| + |R|) time and on compressed binary strings in
polynomial time with respect to the compressed size of the string and the addi-
tional variable max

(
|L|
|R| ,

|R|
|L|

)
.

The key insight for the detection algorithm for L-R-3-cadences is that if
the string does not contain L-R-3-cadences, either S[Leven] or S[Reven] is very
structured. The following lemma implies that if S[Leven] has the substring 01
and S[Reven] has the substring 10 or vice versa, then S has an L-R-3-cadence:

Lemma 1. Let S be a binary string and L and R be two intervals.
If there are indices i and j with

– S[i] = S[j] �= S[i + 2] = S[j − 2],
– i, i + 2 ∈ L,
– j, j − 2 ∈ R and
– i ≡ j (mod 2),

then S has an L-R-3-cadence.

Proof. Since i ≡ j (mod 2) holds, the number i+j
2 is an integer. Furthermore,

since S is binary and S[i] = S[j] �= S[i + 2] = S[j − 2] holds, we either have
S[i] = S[ i+j

2 ] = S[j] or S[i + 2] = S[ i+j
2 ] = S[j − 2]. Therefore, there is at least

one L-R-3-cadence.

This implies that if S does not contain L-R-3-cadences, then there are only
few possibilities for the subsequences S[Leven] and S[Reven]:

Corollary 1. Let S be a binary string and L and R be two intervals such that
S has no L-R-3-cadences.

Then, either

– S[Leven] or S[Reven] is of the form 0j or 1j,
– both S[Leven] or S[Reven] are of the form 0i1j or
– both S[Leven] or S[Reven] are of the form 1i0j.
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If both S[Leven] and S[Reven] are of the form 0i1j or 1i0j , we can divide L and
R into intervals L′, L′′, R′ and R′′ such that S[L′

even] and S[R′
even] are of the form

0i and S[L′′
even] and S[R′′

even] are of the form 1i. This can be done in O (|L| + |R|)
time on uncompressed strings and in polynomial time on compressed strings.

By construction, all even L-R-3-cadences are either even L′-R′-3-cadences or
even L′′-R′′-3-cadences. The following lemma, which holds by definition of the
even L-R-3-cadence, shows that they can be detected in O (|L| + |R|) time in
uncompressed strings and in polynomial time in compressed strings.

Lemma 2. Let S be a binary string and L and R be two intervals such that
S[Leven] = 0i and S[Reven] = 0j hold. Let further lmin, lmax, rmin and rmax be
the minimal and maximal indices of Leven and Reven, respectively.

Then, the string S
[{

lmin+rmin
2 , lmin+rmin

2 + 1, . . . , lmax+rmax
2

}]
contains a 0 if

and only if S has an even L-R-3-cadence.

Fig. 1. A string with 48 characters. For L = {2} and R = {33, 34, . . . , 48}, for each
index of Reven, there is only one candidate (i, d, k) for forming an L-R-3-cadence.

The more difficult case is that one of the two subsequences contains the
substrings 01 and 10 while the other subsequence contains neither of these two
substrings. Figure 1 shows that if L is a short interval, we may have to check
linearly many pairs with respect to the length of the string in order to find an L-
R-3-cadence. This case occurred, for example, in the string S = 1(0|P |)(P )(P ′′)
in which the L-R-3-cadence detection was NP-hard. However, it turns out that
even in this case, the detection of L-R-3-cadences can be done in O (|L| + |R|)
time on uncompressed strings and using the additional variable max

(
|L|
|R| ,

|R|
|L|

)
,

the detection can also be done in polynomial time on compressed strings.
By definition of the L-R-3-cadence we get the following lemma:

Lemma 3. Let S be a string and L and R be two intervals. Let further S[Leven]
be of the form 0i and lmin, lmax, rmin and rmax be the minimal and maximal
indices of Leven and Reven, respectively.

Then, for any r0 ∈ Reven with S[r0] = 0, there is an even L-R-3-cadence
which uses r0 as last element if and only if S

[{
lmin+r0

2 , lmin+r0
2 + 1, . . . , lmax+r0

2

}]
contains a 0.



338 J. Pape-Lange

Also, for any m0 ∈ {
lmin+rmin

2 , lmin+rmin
2 + 1, . . . , lmax+rmax

2

}
with S[m0] = 0,

define r′
min = max (2m0 − lmax, rmin) and r′

max = min (2m0 − lmin, rmax). There
is an even L-R-3-cadence which uses this 0 as middle element if and only if
S [{r′

min, r
′
min + 2, . . . , r′

max}] contains a 0.

With Corollary 1, Lemma 2 and Lemma 3, it is possible to efficiently either
find an L-R-3-cadence or to shorten R without removing any L-R-3-cadences.
The resulting algorithm is also presented in Fig. 2.

Corollary 2. Let S be a binary string and L and R be two intervals. Let further
S[Leven] be of the form 0i and lmin, lmax, rmin and rmax be the minimal and
maximal indices of Leven and Reven, respectively.

If S[Reven] is of the form 1j, there is no even L-R-3-cadence.
Otherwise, define r0 = min {r ∈ Reven|S[r] = 0} and use Lemma 3 to check

whether there is an L-R-3-cadence using an index of Leven and r0.
If such an L-R-3-cadence does not exist, define mmin = lmax+r0

2 + 1 and
mmax = lmax+rmax

2 . If the substring S [{mmin,mmin + 1, . . . , mmax}] of S is of
the form 1j, then there is no even L-R-3-cadence.

Otherwise, define m0 = min {m ∈ {mmin,mmin + 1, . . . , mmax} |S[m] = 0}.
Then use Lemma 3 to check whether there is an L-R-3-cadence using an index
of Leven and m0.

If such an L-R-3-cadence does not exist, define R′ = R ∩ Z>2m0−lmin . There
is an even L-R-3-cadence if and only if there is an even L-R′-3-cadence.

Fig. 2. A string with 48 characters after one application of Corollary 2. Let the intervals
L = {2, 3, . . . , 10} and R = {33, 34, . . . , 48} be given. First, the index r0 = 34 is found.
The minimal and maximal candidates for 3-cadences with r0 are given by the black
lines. Then, the index m0 = 23 is found. The minimal and maximal candidates for
3-cadences with m0 are given by the gray lines. Afterwards, the gray characters are
guaranteed not to form an L-R-3-cadence with characters from the first run of the
string.

In the uncompressed case, iterated application of Corollary 2 reads each char-
acter of S[

{
lmin+rmin

2 , lmin+rmin
2 + 1, . . . , lmax+rmax

2

}
] and S[Reven] at most once.

It is therefore easy to see that iterated application of this corollary only uses
O (|L| + |R|) time to decide, whether an L-R-3-cadence exists.
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On the other hand, after the application of Corollary 2 either R′ is empty or
it contains at least |L| elements less than R. Therefore, the algorithm described
in Corollary 2 has to be used at most O

(
|R|
|L|

)
times. Since each application of

Corollary 2 only takes polynomial time on compressed strings, the L-R-3-cadence
detection on compressed strings can be done in polynomial time with respect to
the compressed size of the string and the additional variable max

(
|L|
|R| ,

|R|
|L|

)
.

Since by symmetry, the detection of odd L-R-3-cadences can also be done as
the detection of even L-R-3-cadences, this concludes the proof of Theorem 3.

5 3-Cadences in Binary Strings

In this section, we will show that the results of Theorem 3 also hold for the
corresponding 3-cadence problems:

Theorem 4. The 3-cadence detection problem can be solved in linear time
on uncompressed binary strings and in polynomial time on compressed binary
strings.

Let i, d be two integers such that i − d ≤ 0 and i + 3d > n hold. Let L =
{1, 2, . . . , i} and R = {i + 2d, i + 2d + 1, . . . , n} be two intervals. Then each
L-R-3-cadence is also a 3-cadence. On the other hand, each 3-cadence defines
integers i and d such that i − d ≤ 0 and i + 3d > n hold. Therefore, Lemma 1
implies that if S has an even 3-cadence, it also has a 3-cadence that either starts
in one of the first two runs of Seven or ends in one of the last two runs of Seven.

The main challenge for the adaption of the detection algorithm for L-R-3-
cadences to an detection algorithm for 3-cadences is that while each character
in the first/last third of the string can be the first/last index in a 3-cadence, not
all 3-sub-cadences which start in the first third and end in the last third are
3-cadences. For example, in the string 001001001 the three 1s form a 3-cadence
while the in the string 001010100 the three 1s do not form a 3-cadence. Therefore,
Lemma 3 does not quite work on 3-cadences and we have to restrict the strings
in Lemma 3 to those indices such that the corresponding 3-sub-cadences are
structurally maximal.

The following lemma restricts the bound of Lemma 3 to the allowed indices
for 3-cadences with i − d ≤ 0 and i + kd > n and therefore holds by definition
of the 3-cadence:

Lemma 4. Let S be a string. Let further Seven be of the form 0iS′ and let
lmin = 2 and lmax = max

(
2i, 2

⌊
1
6n

⌋)
be the first and the last indices of the first

run of Seven which can be the first index of a 3-cadence, respectively.
Then, for any r0 ∈ Seven define l′max = min

(
lmax, 2

⌊
r0
6

⌋
, 2(

⌈
3r0−2n

2

⌉ − 1)
)
.

There is an even 3-cadence which uses this r0 as last element and any of the
first i 0s of S[Leven] as first element if and only if S[r0] = 0 holds and the string
S

[{
lmin+r0

2 , lmin+r0
2 + 1, . . . ,

l′max+r0
2

}]
contains a 0.
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Conversely, for any m0 ∈
{

lmin+2
n
3 �+2

2 ,
lmin+2
n

3 �+2

2 + 1, . . . ,
lmax+2
n

2 �
2

}

with S[m0] = 0 define r′
min = 2m0 − min

(
lmax, 2

⌊
m0
4

⌋
, 2

(⌈
3m0−n

4

⌉ − 1
))

and
r′
max = 2m0 − max

(
lmin, 2

(
m0 − ⌊

n
2

⌋))
. There is an even 3-cadence which uses

m0 as middle element if and only if S [{r′
min, r

′
min + 2, . . . , r′

max}] contains a 0.

Similarly to the case of the L-R-3-cadence, we can use this lemma to shrink
the interval in which the last element of the arithmetic progression can be.

Corollary 3. Let S be a binary string. Define R = {rmin, rmin + 1, . . . , n} for
an rmin ≥ ⌊

2
3n

⌋
+ 1. Let further Seven be of the form 0iS′ and let lmin = 2

and lmax = max
(
2i, 2

⌊
1
6n

⌋)
be the first and the last indices of the first run of

Seven which can be the first index of a 3-cadence, respectively. Define the interval
L = {lmin, lmin + 1, . . . , lmax}.

If S[Reven] is of the form 1j, there is no even 3-cadence starting in L.
Otherwise, define r0 = min {r ∈ Reven|S[r] = 0} and use Lemma 4 to check

whether there is a 3-cadence starting in L and ending with r0.
If such a 3-cadence does not exist, define mmin = l′max+r0

2 +1 with the variable
l′max = min

(
lmax, 2

⌊
r0
6

⌋
, 2(

⌈
3r0−2n

2

⌉ − 1)
)
as defined in Lemma 4 and define

mmax = lmax+n
2 . If S [{mmin,mmin + 1, . . . , mmax}] is of the form 1j, then there

is no even 3-cadence starting in L.
Otherwise, define m0 = min {m ∈ {mmin,mmin + 1, . . . , mmax} |S[m] = 0}.

Then use Lemma 4 to check whether there is a 3-cadence starting in L with
m0 as second element.

If such a 3-cadence does not exist, define R′ = R ∩ Z>r′
max

with the variable
r′
max = 2m0−max

(
lmin, 2

(
m0 − ⌊

n
2

⌋))
as defined in Lemma 4. There is an even

3-cadence starting in L if and only if there is an even 3-cadence starting in L
and ending in R′.

An application of this corollary can be seen in Fig. 3.

Fig. 3. A string with 48 characters after one application of Corollary 3. First, the
index r0 = 34 is found. The minimal and maximal candidates for 3-cadences with r0
are given by the black lines. Then, the index m0 = 20 is found. The minimal and
maximal candidates for 3-cadences with m0 are given by the gray lines. Afterwards,
the gray characters are guaranteed not to form a 3-cadence with characters from the
first run of Seven.
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In the uncompressed case, each element of the middle third and the last third
has to be read at most once in order to decide whether there is a 3-cadence which
starts in the first run of Seven. Furthermore, we can modify this algorithm to
detect the existence of a 3-cadence which start in the second run of Seven. By
symmetry, we can also decide in linear time, whether there exists a 3-cadence
which ends in one of the two last runs of Seven. Similarly, we can decide in linear
time, whether there is an odd 3-cadence.

In the compressed case, a problem can arise if the first run of Seven is short.
Let Seven be of the form 0i1S′. Then the 1 has index 2i + 2. Let r1 be the
smallest even index such that (2i+2)− r1−(2i+2)

2 ≤ 0 and (2i+2)+3 r1−(2i+2)
2 >

n hold. Since S[{2, 4, 6, . . . , 2i + 2}] contains 01, we can use Corollary 1 and
Lemma 2 to check in polynomial time, whether there is a 3-sub-cadence starting
in {2, 4, 6, . . . , 2i + 2} and ending with an index greater than or equal to r1. By
construction, such a 3-sub-cadence would be a 3-cadence.

If such a 3-cadence exists, we are done. Therefore, it is only left to show that
even in the compressed case, the application of Corollary 3 is fast enough to find a
3-cadence which start in the first run of Seven and end at an index smaller than r1
in polynomial time if such a cadence exists. Since each application of Corollary 3
can be done in polynomial time, it is left to show that after a polynomial number
of applications, the value r′

max is greater than r1.
In the worst case, each r0 is rmin. Since each 3-sub-cadences with distance

of at least 1
3n is a 3-cadence, we can assume r0 < r1 ≤ 2i + 2 + 2

3n holds and
therefore lmax ≥ r0 − 2

3n holds as well. Also, both 2
⌊
r0
6

⌋
and 2(

⌈
3r0−2n

2

⌉−1) are
greater than or equal to r0 − 2

3n. Therefore l′max ≥ r0 − 2
3n holds.

Similarly, in the worst case, each m0 is directly behind l′max+r0
2 ≥ r0 − 1

3n.
Hence, we can assume m0 = 2r0− 1

3n+1. With l′′min = max
(
lmin, 2

(
m0 − ⌊

n
2

⌋))
,

this implies that the inequality 2m0 − l′′min ≥ min
(
r0 + (r0 − 2

3n), n − 1
)

holds.
Therefore, for r0 < r1, one application of Corollary 3 checks for an interval of

size r0 − 2
3n, whether there is 3-cadence which starts in the first run and ends in

this interval. Therefore, we only need at most log n applications of this corollary.
This implies that it can be decided in polynomial time whether a compressed

binary string contains any 3-cadences.

6 Conclusion

This paper shows that we can decide in linear time whether an uncompressed
binary string contains a 3-cadence. While we should expect that it is more dif-
ficult to avoid 3-cadences in binary strings than to include 3-cadences, it is
surprising that it is strictly easier to decide whether there is any 3-cadence at
all than to decide whether there is a 3-cadence with a given character.

For the compressed case, we have shown that we can decide in polynomial
time whether a compressed binary string contains a 3-cadence. However, all even
slightly harder problems have been shown to be NP-complete. These hardness-
results seem to indicate that cadences may not be very useful in compressed
pattern matching.
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Regarding k-sub-cadences, there are no known nontrivial bounds on the bit
complexity of the detection of k-sub-cadences with a given character. Closely
related, it is unknown whether equidistant subsequence matching is NP-hard
on compressed binary strings.

Finally, in terms of uncompressed cadence detection, it is still unknown
whether we can decide with sub-quadratic bit complexity whether a given string
contains a 4-cadence. The currently best result is by Funakoshi et al., who pre-
sented in [3] a detection algorithm with sub-quadratic time complexity in the
word RAM model.

References

1. Amir, A., Apostolico, A., Gagie, T., Landau, G.M.: String cadences. Theor. Com-
put. Sci. 698, 4–8 (2017). https://doi.org/10.1016/j.tcs.2017.04.019

2. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7),
2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

3. Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M., Shinohara,
A.: Detecting k-(Sub-)cadences and equidistant subsequence occurrences. In: Gørtz,
I.L., Weimann, O. (eds.) 31st Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol.
161, pp. 12:1–12:11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.CPM.2020.12

4. Funakoshi, M., Pape-Lange, J.: Non-rectangular convolutions and (Sub-)cadences
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