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Abstract. We present Mealy machines with a single timer (MM1Ts), a
class of models that is both sufficiently expressive to describe the real-
time behavior of many realistic applications, and can be learned effi-
ciently. We show how learning algorithms for MM1Ts can be obtained
via a reduction to the problem of learning Mealy machines. We describe
an implementation of an MM1T learner on top of LearnLib, and compare
its performance with recent algorithms proposed by Aichernig et al. and
An et al. on several realistic benchmarks.

1 Introduction

Model learning, also known as active automata learning, is a black-box technique
for constructing state machine models of software and hardware components
from information obtained through testing (i.e., providing inputs and observing
the resulting outputs). Model learning has been successfully used in numerous
applications, for instance for spotting bugs in implementations of major network
protocols. e.g.. in [5–8,20]. We refer to [13,24] for surveys and further references.

Timing plays a crucial role in many applications. A TCP server, for instance,
may retransmit packets if they are not acknowledged within a specified time.
Also, a timeout will occur if a TCP server does not receive an acknowledgment
after a number of retransmissions, or if it remains in certain states too long.
Timing behavior cannot be captured using existing learning tools, which typi-
cally only support learning of deterministic finite automata (DFAs) and related
models. In the case of TCP, previous work only succeeded to learn models of
real implementations by having the network adaptor ignore all retransmissions,
and by completing learning queries before the occurrence of certain timeouts [8].
All timing issues had to be artificially suppressed.
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The challenge to extend model learning algorithms to a setting of timed
systems has been addressed by several authors. Most proposals aim to develop
learning algorithms for the popular framework of timed automata [2], which
extends DFAs with clock variables. Transitions of timed automata may contain
both guards that test the values of clocks, and resets that update the clocks.
Since guards and resets are not directly observable in a black-box setting, this
poses major challenges during learning. Grinchtein et al. [9,10] developed learn-
ing algorithms for deterministic event-recording automata (DERAs), which have
a clock for each action in the alphabet, and where each transition resets the clock
corresponding to its input action. This restriction makes resets observable, but
the complexity of the resulting algorithms still appears to be prohibitively high,
due to the difficulties of inferring guards. The restrictions of DERAs also make it
hard to capture the timing behavior of common network protocols. For instance,
a pattern that often occurs is that within t time units after an event a there
should be an event b. (For instance, in TCP a SYN should be followed by a
SYN-ACK within a specified time interval.) In a DERA, upon occurrence of
two consecutive a’s, the automaton no longer remembers when the first a has
occurred, and can thus not ensure the occurrence of a timeout at the required
moment in time. Recently, Henry et al. [11] proposed a learning algorithm for
a slightly larger class of reset-free DERAs, where some transitions may reset no
clocks. Even though this algorithm appears to be more efficient than those of
[9,10], it still suffers from a combinatorial blow up because, for each transition,
it has to guess whether this transition resets a clock. An et al. [3] developed a
learning algorithm for deterministic one-clock timed automata (DOTAs), using
a brute force approach to reset guessing, also leading to a combinatorial blow
up. Entirely different, heuristic algorithms are proposed recently by Aichernig
et al. [1,23], using genetic programming. They succeeded to learn timed
automata models with one clock for several industrial benchmarks.

Given the difficulties to infer the guards and resets of timed automata, the
question arises whether timed automata provide the right modeling framework
to support learning algorithms. As an alternative, we propose to consider the use
of timers instead of clocks. The difference is that the value of a timer decreases
when time advances, whereas the value of a clock increases. In a setting with
clocks, guards and invariants are required to constrain the timing of events, but
a timer simply triggers a timeout whenever its value becomes 0. The absence
of guards and invariants makes model learning much easier in a setting with
timers. A learner still has to figure out which transitions set a timer, but this
also becomes easier and does not create a combinatorial blow-up. If a transition
sets a timer then slight changes in the timing of this transition will trigger cor-
responding changes in the timing of the resulting timeout, allowing a learner to
figure out the exact cause of each timeout event. DFAs with timers are strictly
less expressive than timed automata if we assume that timeout events can be
observed. For many realistic applications, however, this reduced expressivity
causes no problems. Kurose and Ross [15], for instance, use finite state machine
models with timers to explain transport layer protocols. Caldwell et al. [4]
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propose a learning algorithm for a simple class of automata with timers, which
they call time delay Mealy machines. These machines have only a single timer,
which is reset on every transition. As a result, time delay Mealy machines are
not sufficiently expressive to capture the timing behavior of realistic network
protocols.

In this paper, we present Mealy machines with a single timer (MM1Ts),
a class of models that is both sufficiently expressive to describe the real-time
behavior of many realistic applications, and can be learned efficiently. In an
MM1T, the timer can be set to integer values on transitions, and may be stopped
or time out in later transitions. Each timeout triggers an observable output,
allowing a learner to observe the occurrence of timeouts. We show how learn-
ing algorithms for MM1Ts can be obtained via a reduction to the problem of
learning Mealy machines. We describe an implementation of an MM1T learner
on top of LearnLib, a state-of-the-art tool for learning Mealy machines [17], and
compare its performance with the tools of Aichernig et al. [1] and An et al. [3]
on several benchmarks: TCP connection setup, Android’s Authentication and
Key Management (AKM) service, and some industrial benchmarks taken from
[1]. Our implementation outperforms the tool of [1] with several orders of mag-
nitude in terms of the total number of input symbols required to learn a model.
The tool of [3] is only able to learn the benchmarks with a “helpful” teacher
that provides information about resets; without help, it is unable to learn the
benchmarks.

2 Mealy Machines with a Single Timer

In this section, we introduce the notion of Mealy machines with a single timer
(MM1T). We write f : X ⇀ Y to denote that f is a partial function from X to
Y . We write f(x) ↓ to mean that the result is defined for x, that is, ∃y : f(x) = y,
and f(x) ↑ if the result is undefined. We often identify a partial function f with
the set of pairs {(x, y) ∈ X × Y | f(x) = y}.

MM1Ts are just regular (deterministic) Mealy machines, augmented with a
timer that can be switched on and off, a timeout input, and a function that
specifies how transitions affect the timer. We view timeout’s as input events, a
choice that makes sense if we view the hardware clock (or whatever the device
is that triggers timeout interrupts) as part of the environment of the machine.

Definition 1. A Mealy machine with a single timer (MM1T) is defined as a
tuple M = (I,O,Q, q0, δ, λ, τ), where

– I is a finite set of inputs, containing a special element timeout,
– O is a finite set of outputs,
– Q = Qoff ∪ Qon is a finite set of states, partitioned into subsets where the

timer is on and off, respectively; q0 ∈ Qoff is the initial state,
– δ : Q × I ⇀ Q is a transition function, satisfying

δ(q, i) ↑ ⇔ i = timeout ∧ q ∈ Qoff (1)

(inputs are always defined, except for timeout in states where timer is off),



160 F. Vaandrager et al.

– λ : Q × I ⇀ O is an output function, satisfying

λ(q, i) ↓ ⇔ δ(q, i) ↓ (2)

(each transition has both an input and an output),
– τ : Q × I ⇀ N

>0 is a reset function, satisfying

τ(q, i) ↓ ⇒ δ(q, i) ∈ Qon (3)
q ∈ Qoff ∧ δ(q, i) ∈ Qon ⇒ τ(q, i) ↓ (4)

δ(q, timeout) ∈ Qon ⇒ τ(q, timeout) ↓ (5)

(when a transition (re)sets the timer, the timer is on in the target state; when
it moves from a state where the timer is off to a state where the timer on, it
sets the timer; if the timer stays on after a timeout, it is reset).

Let δ(q, i) = q′ and λ(q, i) = o. We write q
i/o,n−−−→ q′ if τ(q, i) = n ∈ N

>0, and

q
i/o,⊥−−−→ q′ or just q

i/o−−→ q′ if τ(q, i) ↑.

Example 1. The MM1T shown in Fig. 1 is a simplified model of the sender
from the alternating-bit protocol, adapted from [15, Figure 3.15]. We write set-
timer(n) on the i-transition from state q to indicate that τ(q, i) = n. The MM1T
has four states, with Qon = {q1, q3} and Qoff = {q0, q2}. In the model, input
in corresponds to a request from the upper layer to transmit data. Initially,
upon receipt of such a request, the sender builds a packet from the data and a
sequence number 0, sends this over the network (output send0 ), and starts the
timer with timeout value 3. When the sender receives an acknowledgement with
the correct sequence number 0 (input ack0 ) it stops the timer and jumps to state
q2 without generating visible output (void). Acknowledgement with the incorrect
sequence number (input ack1 ) are ignored. Likewise, inputs in in state q1 and
acknowledgements in state q0 are ignored (for readability, these transitions are
not shown in the diagram). If no ack0 input arrives within 3 timeunits, a timeout
occurs and the same packet is retransmitted. The behavior in states q2 and state
q3 is symmetric to that in states q0 and q1, respectively, except that the roles of
sequence numbers 0 and 1 is swapped.

Fig. 1. MM1T model of alternating-bit protocol sender.
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Semantics. We give two semantics for MM1Ts, an untimed and a timed one.
In the untimed semantics, we just record the labels of sequences of transitions.
Formally, an untimed word over inputs I and outputs O is a sequence

w = (i0, o0, n0), (i1, o1, n1) · · · (ik, ok, nk),

where each ij ∈ I, each oj ∈ O, and each nj ∈ N
>0 ∪ {⊥} is a timer value. An

untimed run of MM1T M over w is a sequence

α = q0
i0/o0,n0−−−−−→ q1

i1/o1,n1−−−−−→ q2 · · · ik/ok,nk−−−−−→ qk+1

of transitions of M such that all qj are states of M and q0 is the initial state.
Note that, since MM1Ts are deterministic, for each untimed word w there is at
most one untimed run over w. We say that w is an untimed word of M iff M
has an untimed run over w. MM1Ts M and N with the same set of inputs are
untimed equivalent, M ≈untimed N , iff they have the same untimed words.

The timed semantics, which is slightly more involved, describes the real-
time behavior of a MM1T. It associates an infinite state transition system to a
MM1T that describes all possible configurations and transitions between them. A
configuration of a MM1T is a pair (q, t), where q ∈ Q is a state and t ∈ IR≥0∪{∞}
specifies the value of the timer. We require t = ∞ iff q ∈ Qoff . We refer to (q0,∞)
as the initial configuration. Using four rules we define a transition relation that
describes how one configuration may evolve into another. For all q ∈ Q, r ∈ Qoff ,
s, s′ ∈ Qon , i ∈ I, o ∈ O, t ∈ IR≥0 ∪ {∞}, d ∈ IR≥0 and n ∈ N

>0,

d ≤ t

(q, t) d−→ (q, t − d)
(6) q

i/o,n−−−→ s, i = timeout ⇒ t = 0

(q, t)
i/o−−→ (s, n)

(7)

q
i/o−−→ r, i = timeout ⇒ t = 0

(q, t)
i/o−−→ (r,∞)

(8)
s

i/o−−→ s′, i �= timeout

(s, t)
i/o−−→ (s′, t)

(9)

Rule (6) states that the value of the timer decreases proportionally when time
advances, until it becomes 0. Here we use the convention that ∞ − d = ∞, for
any d ∈ IR>0. So when the timer is off, time may advance indefinitely. Rule (7)
describes events where the timer is (re)set; a timeout may occur only when the
timer has expired in the source state. Rule (8) describes events where the timer
is off in the target state; again, a timeout may occur only when the timer has
expired in the source state. Finally, rule (9) describes events where the timer
remains on and is not reset.

A timed word over inputs I and outputs O is a sequence

w = (t0, i0, o0), (t1, i1, o1) · · · (tk, ik, ok),

where each ij ∈ I, each oj ∈ O, and each tj ∈ IR≥0. A timed word w describes
a behavior that an experimenter may observe when interacting with an MM1T:
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after an initial delay of t0 time units, input i0 is applies which triggers output
o0, after a subsequent delay of t1 time units, input i1 is applied, etc. For such a
timed word w, a timed run of MM1T M over w is a sequence

α = C0
t0−→ C ′

0

i0/o0−−−→ C1
t1−→ C ′

1

i1/o1−−−→ C2 · · · tk−→ C ′
k

ik/ok−−−→ Ck+1

of transitions of M such that all Cj , C
′
j are configurations of M and C0 is the

initial configuration. Since MM1Ts are deterministic, for each timed word w
there exists at most one run over w. We say w is a timed word of M if there
exists a run of M over w. MM1Ts M and N with the same set of inputs are
timed equivalent, M ≈timed N , iff they have the same sets of timed words.

Although the definitions are quite different, it turns out that timed and
untimed equivalence coincide.

Theorem 1. M ≈timed N ⇔ M ≈untimed N

3 Learning MM1Ts

It will be useful to explore this connection between the timed and untimed
semantics in some more detail, because this will allow us to reuse existing active
learning algorithms for untimed systems [18,21] for learning MM1Ts.

3.1 From MM1Ts to Mealy Machines and Back

MM1Ts generalize the classical notion of a Mealy machine: essentially, a Mealy
machine is just an MM1T in which the timer is off in all states. Conversely, each
MM1T can be viewed as a Mealy machine of a special form.

Definition 2. A Mealy machine is a tuple M = (I,O,Q, q0, δ, λ), where I is
a finite set of inputs, O a set of outputs, Q a finite set of states, q0 ∈ Q the
initial state, δ : Q × I → Q a transition function, and λ : Q × I → O an output
function. We generalize the transition function to sequences of inputs as usual.
Function mqM : I+ → O assigns to each sequence of inputs the final output:
mqM(σi) = λ(δ(q0, σ), i). Mealy machines M and N with the same set of inputs
I are equivalent, denoted by M ≈ N , if for all σ ∈ I+, mqM(σ) = mqN (σ).

We associate a Mealy machine Mealy(M) to each MM1T M as follows. We
keep the same states, inputs and transitions, but add timeout self-loops for each
state in Qoff to make the Mealy machine input enabled. We introduce a fresh
output nil and associate this special output to each new timeout self-loop. The
outputs of the other transitions of Mealy(M) are pairs consisting of the output
from M and the timer update.
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Definition 3. Let M = (I,O,Q, q0, δ, λ, τ) be a MM1T. Then Mealy(M) is the
Mealy machine (I, (O × (N>0 ∪ {⊥})) ∪ {nil}, Q, q0, δ

′, λ′), where

δ′(q, i) =
{

δ(q, i) if λ(q, i) ↓
q otherwise

λ′(q, i) =

⎧⎨
⎩

(λ(q, i), τ(q, i)) if τ(q, i) ↓
(λ(q, i),⊥) if λ(q, i) ↓ and τ(q, i) ↑
nil otherwise

Conversely, suppose that N = (I, (O × (N>0 ∪ {⊥})) ∪ {nil}, Q, q0, δ
′, λ′) is a

Mealy machine. Then we may reverse the above construction and define a tuple
MM1T(N ) = (I,O,Q, q0, δ, λ, τ) in the obvious way.

The following result, which follows from the definitions and Theorem 1,
asserts that Mealy and MM1T act like adjoint operators.

Theorem 2. Let M be a MM1T and let N be a Mealy machine such that
Mealy(M) ≈ N . Then MM1T(N ) is a MM1T and M ≈timed MM1T(N ).

Theorem 2 suggests that we can obtain a learner for MM1Ts from a learner for
Mealy machines. To achieve this, we place an adaptor between a Mealy machine
learner and a System Under Learning (SUL) that behaves like MM1T M. From
the perspective of the Mealy machine learner, the adaptor behaves like a teacher
for Mealy(M) that answers membership and equivalence queries. In order to
answer these queries, the adaptor interacts with the SUL and observes timed
words of M. When the learner has succeeded to learn a Mealy machine N that is
equivalent to Mealy(M), we know by Theorem 2 that M ≈timed MM1T(N ), and
so we have learned a MM1T that is equivalent to M. Effectively, the combination
of the adaptor and the Mealy machine learner acts as an MM1T learner.

We implemented an adaptor that interacts with LearnLib [18] so we can bene-
fit from all optimizations already integrated into this well maintained automata
learning library. Our adaptor is available online1. Below we describe how to
implement a membership oracle for learning MM1Ts. An equivalence oracle can
be implemented in a similar manner, and is not discussed here for reasons of
space.

3.2 Membership Queries

In order to answer membership queries, the adaptor maintains an observation
tree defined as follows.

Definition 4. Let M be a MM1T. An observation tree for M is a triple T =
(S,mq , timer), where S ⊂ I∗ is a non empty, finite, prefix closed set of input
sequences, referred to as nodes, mq : S\{ε} → O×(N>0∪{⊥}) is a node labeling
function, and timer : S → {on, off } is a function that specifies whether the timer
is on or off in a node. We require that timer(ε) = off and σ · timeout ∈ S ⇒
timer(σ) = on.
1 https://extgit.iaik.tugraz.at/scos/scos.sources/LearningMMTs.

https://extgit.iaik.tugraz.at/scos/scos.sources/LearningMMTs
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Initially, the adaptor starts with a trivial observation tree with a single node
ε and timer(ε) = off . The observation tree is then extended one node at a time.
For this, the adaptor maintains a maximum timer value Δ. Initially, Δ can be
assigned some arbitrary value in N. Suppose that σ = i1 · · · ik−1 is a leaf node
of observation tree T , ik ∈ I and ik = timeout ⇒ timer(σ) = on. In order to
add node σ · ik to T , the adaptor resets the SUL and then eagerly applies σ · ik.
That is, for each j ∈ [1, k], the adaptor processes input ij as follows:

– if ij �= timeout, the adaptor feeds the input to the SUL without any delay,
– otherwise, the oracle waits for the timeout event.

The immediate response o after feeding ik accounts for the output value that
will be recorded in mq(σ · ik). Next the adaptor waits for Δ time units. If a
timeout occurs after n < Δ time units then the value of timer(σ · ik) is set to
on, otherwise it is set to off . If timer(σ ·ik) = off then we set mq(σ ·ik) = (o,⊥).
Otherwise, the adaptor performs another experiment to decide whether the clock
was set on the last transition or before:

– it resets the SUL and eagerly applies σ,
– it waits for 1/2 time unit and then applies input ik,
– it then waits until a timeout event occurs at time n′ ≤ n.
– If n′ = n it sets mq(σ · ik) = (o, n), otherwise it sets mq(σ · ik) = (o,⊥).

Once the observation tree T is big enough, the adaptor can answer a membership
query σ by computing the sequence σ′ obtained by omitting spurious timeouts
from σ, that is, timeouts from nodes of T where the timer is off. If σ ends with a
spurious timeout then the response of the adaptor is nil, otherwise it is mq(σ′).

Query Complexity. Note that in order to add a new node to the observation
tree, we need one or two experiments (membership queries) on the MM1T
(SUL), depending whether the timer is on in the target node. Thus, starting
from the trivial observation tree, we will need at most 2n membership queries
on the MM1T to implement a single membership query with n input symbols by
LearnLib, with a total number of inputs in O(n2). This way of learning MM1Ts
has a higher query complexity than learning Mealy machines, but the growth of
the total number of input symbols required is still polynomial. If the number of
states where the timer is on is low, the query complexity is comparable.

Learning the Maximum Timer Value. If the maximum timer value Δ is greater
than or equal to the SUL’s maximum timer value, no timeout event will be missed
during learning a hypothesis. Otherwise, the equivalence oracle will at some point
return a counterexample containing a timeout event that is not present in the
observation tree. Based on this counterexample, we then update Δ and start
learning from scratch.
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4 From MM1T to DOTA Learning

In order to compare our approach to those of [1,3], we translate MM1Ts to
Deterministic One-Clock Timed Automata (DOTAS). In the interest of brevity,
we will not formalize this transition, but rather illustrate it with an example.
We will construct a DOTA of the alternating-bit protocol from Fig. 1; the result
can be found in Fig. 2.

Edges of DOTAs are labeled with an action, a clock guard that is an interval
on allowed clock values, and a Boolean that states whether to reset the clock
to zero. The set of actions consists of all input labels of the MM1T (except
timeout) prefixed with ‘?’ and all output labels (except void) prefixed with ‘!’.
In general, DOTAs have accepting and non-accepting states, we will construct
DOTAs with only accepting states.

We split each transition of the MM1T into an input and an output transition.
For instance, we encode the transition q0 → q1 into transitions q′

0 → l0 and
l0 → q′

1. In this case, the input transition can be taken at any time and it resets
the clock, causing the output transition to be taken immediately. For edges with
a void output, we omit the output transition. Thus, the self loop on q1 labeled
ack1/void is represented by a self-loop on q′

1 in the DOTA.
An MM1T transition that sets the timer is replaced by a DOTA transition

that reset the clock and appropriate clock guards on subsequent states. For
instance, the transition q0 → q1 sets the timer to 3; thus, a timeout event will
occur in q1 at time 3, causing a send. In the DOTA, this is reflected by a clock
reset on the transition l0 → q′

1 and a clock guard with value [3,∞) on the self
loop on q′

1 labeled !send.
The rest of the translation follows along the same lines.

5 Case Studies

5.1 Learning Setup

We instantiated L∗
M and TTT using the MM1T membership oracle. For coun-

terexample processing we used Rivest and Shapire’s method [19]. We close tables
using close shortest strategy. Finally, we use a random word equivalence oracle
with 1000 tests and word length of minimum 4 and of maximum 11. For further
details on above terminologies, we refer readers to LearnLib’s documentation.

5.2 Android Authentication and Key Management

To show that our algorithm can learn realistic Mealy machines with timers, we
used our algorithm to learn the Authentication and Key Management of the
WiFi implementation of a Huawei Mate10-lite running Android 8.0.0 (Kernel
4.4.23+) with a security patch dated July 5, 2019. The IEEE 802.11 standard
gives an abstract automaton of an Authentication and Key Management (AKM)
service in [14, p. 1643]. The automaton has a state that encapsulates a 4-way
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handshake mechanism granting access to the controlled port. Since learning the
4-way handshake mechanisms is already addressed in [22], we focus on learn-
ing the AKM service. We used the following management frames: Auth(Open),
AssoReq, Deauth(leaving), Disas(leaving), ProbeReq, and timeout [14, p. 45–49].

Our learning experiments resulted in the MM1T shown in Fig. 3. The SUL
deviates from the specified standards in the following ways.

Disassociation: The reference prescribes that a disassociation (Disas) terminates
an established association but maintains authentication. In the learned model
(state q2), a disassociation instead drops both the established association and
the authentication. To correct this, the access point should transit to q1 when
disassociating in q2 (red transitions from q2 must go to q1).

Association Timeout: Along the red transition from q1 to q2, SUL does not
include BSS Max Idle Period element in AssoResp frames. Yet, it implements
an association timeout event, which violates the specification. To confirm this,
we manually inspected the Android 8.0.0 (r39) source code, which excludes the
element mentioned above except for access points of Wireless Mesh Networks.

5.3 Performance Comparison

We apply our learning method for MM1Ts to a set of real-world benchmarks.
This demonstrates the expressiveness of MM1Ts, and shows the practicality of
our implementation.

Benchmarks: Our benchmark set consists of the AKM (Sect. 5.2), the TCP
Connection State Diagram ([16, p. 23]), a car alarm system (CAS) [1], and a
particle counter (PC) [1]. For the TCP benchmark, we used the one timeout on
the transmission control block indicated in the diagram in the RFC. See Table 1
for statistics on the size of the benchmarks.

Algorithms: Table 2 shows benchmark results for MM1T and DOTA learning
algorithms. gtalearn represents the learning algorithm by Aichernig et al. [1].
otalearn∗ represents the learning algorithm by An et al. [3] using a “smart”
teacher that provides the clock reset information. Finally, otalearn uses a nor-
mal teacher and timed out on all benchmarks.

Fig. 2. DOTA model of alternating-bit protocol sender.
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Fig. 3. MM1T of a Huawei Mate10-lite that captures granting uncontrolled port. Dou-
ble and triple edges represent a set of transitions. We rounded timer values to the
nearest 500 ms and marked specification violations with the color red.

Table 1. Benchmarks in terms of state-space (|S|) and input size (|Σ|).

Model AKM TCP CAS PC

|S| |Σ| |S| |Σ| |S| |Σ| |S| |Σ|
MM1T 4 5 11 8 8 4 8 8

DOTA 15 12 20 13 14 10 26 14

Performance Metrics: Since otalearn∗ implements its own equivalence checker
and gtalearn is not an Angluin style algorithm, we report the total number of
resets (#R), and inputs (#I) performed rather than the number of membership
and equivalence queries. We believe this gives a fair comparison of the algorithms
under the assumption that most time is spent executing the SUL.

AKM has a more sophisticated timed behavior than the other benchmarks,
which explains the higher number of resets for MM1T learners. Meanwhile, if
considering number of inputs, otalearn∗ straggles by an order of magnitude.
gtalearn shows a competitive performance in the number of inputs performed
that indicates the potentials of this novel approach.

TCP has only one timeout transition; thus, the learning algorithms do not
need to reset the SUL as often. (With the exception of otalearn.) L∗

M learns
the MM1T for TCP in one round, while TTT requires 8 rounds, which justifies
the better performance of L∗

M . MM1T learners outperform those for DOTAs by
nearly an order of magnitude when considering the number of inputs performed.

CAS and PC show a slightly more sophisticated timed behavior than TCP.
For both, the MM1T algorithms also significantly outperform the algorithms for
DOTA. Similarly, if considering the inputs performed, otalearn∗ straggles by
three orders of magnitude.
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Table 2. Benchmark results in terms of total resets and total performed inputs.

Algorithm AKM TCP CAS PC

#R #I #R #I #R #I #R #I

MM1T-L∗
M 5587 35002 413 2401 613 4822 408 2271

MM1T-TTT 5714 35948 640 4773 623 4978 369 2443

GTALEARN 2626 36411 1186 33779 1609 30870 3368 33824

OTALEARN∗ 2103 356762 2924 86880 1448 3791091 10003 3540458

OTALEARN timeout timeout timeout timeout

6 Conclusion and Future Work

Timers are commonly used in software to enforce real-time behavior, and so it
is natural to use them in formal models. We presented a framework of Mealy
machines with a single timer and showed how a learning algorithm can be
obtained via reduction to the problem of learning Mealy machines. Our app-
roach assumes that timers are set when input events occur, and timeouts trigger
instantaneous outputs. While these assumptions do not always hold, there are
many real-time systems for which the delays between timer events and observ-
able inputs and outputs are negligible, and the assumptions are justified. We
evaluated our approach on a number of realistic applications, and showed that
it outperforms the approaches of Aichernig [1] et al. and An et al. [3].

An obvious direction for future research is to extend our work to Mealy
machines with multiple timers. We expect that a learning algorithm can be devel-
oped, but a simple reduction to Mealy machine learning is no longer possible. It
would be interesting to apply the genetic programming approach of [1] in a set-
ting of Mealy machines with timers. Since it no longer needs to learn transition
guards, one may expect that a genetic algorithm will converge faster. Of course,
as noted by [3], we may resort to grey-box techniques for model learning [12] to
obtain efficient learning algorithms for real-time software. However, this forces
us to deal with numerous programming language specific details. Black-box tech-
niques can be applied without knowledge of the underlying hardware/software,
which makes it important to push these techniques to their limits.

Acknowledgement. We would like to thank Andrea Pferscher and Miaomiao Zhang
for help with running the benchmarks on their tools [1,3].
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