
Alberto Leporati
Carlos Martín-Vide
Dana Shapira
Claudio Zandron (Eds.)

LN
CS

 1
26

38 Language
and Automata Theory
and Applications
15th International Conference, LATA 2021
Milan, Italy, March 1–5, 2021
Proceedings

Lecture Notes in Computer Science 12638

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alberto Leporati • Carlos Martín-Vide •

Dana Shapira • Claudio Zandron (Eds.)

Language
and Automata Theory
and Applications
15th International Conference, LATA 2021
Milan, Italy, March 1–5, 2021
Proceedings

123

Editors
Alberto Leporati
University of Milano-Bicocca
Milan, Italy

Carlos Martín-Vide
Rovira i Virgili University
Tarragona, Spain

Dana Shapira
Ariel University
Ariel, Israel

Claudio Zandron
University of Milano-Bicocca
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-68194-4 ISBN 978-3-030-68195-1 (eBook)
https://doi.org/10.1007/978-3-030-68195-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8105-4371
https://orcid.org/0000-0003-1670-6000
https://orcid.org/0000-0002-2320-9064
https://orcid.org/0000-0002-2163-7639
https://doi.org/10.1007/978-3-030-68195-1

Preface

These proceedings contain the papers that were presented at the 15th International
Conference on Language and Automata Theory and Applications (LATA 2021), held
in Milan, Italy, during March 1–5, 2021.

Due to the Covid-19 pandemic, LATA 2020 and LATA 2021 were merged and held
on these dates together. LATA 2020 proceedings were published as LNCS 12038.

The scope of LATA is rather broad, including: algebraic language theory; algo-
rithms for semi-structured data mining; algorithms on automata and words; automata
and logic; automata for system analysis and programme verification; automata net-
works; automatic structures; codes; combinatorics on words; computational complex-
ity; concurrency and Petri nets; data and image compression; descriptional complexity;
foundations of finite-state technology; foundations of XML; grammars (Chomsky
hierarchy, contextual, unification, categorial, etc.); grammatical inference, inductive
inference and algorithmic learning; graphs and graph transformation; language varieties
and semigroups; language-based cryptography; mathematical and logical foundations
of programming methodologies; parallel and regulated rewriting; parsing; patterns;
power series; string-processing algorithms; symbolic dynamics; term rewriting; trans-
ducers; trees, tree languages and tree automata; weighted automata.

LATA 2021 received 52 submissions. Every paper was reviewed by three
Programme Committee members. Some external experts were also consulted. After a
thorough and vivid discussion phase, the committee decided to accept 26 papers (which
represents an acceptance rate of exactly 50%). The conference program included 6
invited talks as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions properly and handle the preparation of these
proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

December 2020 Alberto Leporati
Carlos Martín-Vide

Dana Shapira
Claudio Zandron

Organization

Program Committee

Jorge Almeida University of Porto, Portugal
Franz Baader Technical University of Dresden, Germany
Alessandro Barenghi Polytechnic University of Milan, Italy
Marie-Pierre Béal University of Paris-Est, France
Djamal Belazzougui CERIST, Algeria
Marcello Bonsangue Leiden University, The Netherlands
Flavio Corradini University of Camerino, Italy
Bruno Courcelle University of Bordeaux, France
Laurent Doyen ENS Paris-Saclay, France
Manfred Droste Leipzig University, Germany
Rudolf Freund Technical University of Vienna, Austria
Paweł Gawrychowski University of Wrocław, Poland
Amélie Gheerbrant University of Paris, France
Tero Harju University of Turku, Finland
Lane A. Hemaspaandra University of Rochester, USA
Lukáš Holik Brno University of Technology, Czech Republic
Jarkko Kari University of Turku, Finland
Dexter Kozen Cornell University, USA
Markus Lohrey University of Siegen, Germany
Sebastian Maneth University of Bremen, Germany
Nicolas Markey IRISA, Rennes, France
Carlos Martín-Vide (Chair) Rovira i Virgili University, Spain
Giancarlo Mauri University of Milano-Bicocca, Italy
Victor Mitrana University of Bucharest, Romania
Paliath Narendran University at Albany, USA
Gennaro Parlato University of Molise, Italy
Madhusudan Parthasarathy University of Illinois at Urbana-Champaign, USA
Dominique Perrin University of Paris-Est, France
Nir Piterman Chalmers University of Technology, Sweden
Sanguthevar Rajasekaran University of Connecticut, USA
Antonio Restivo University of Palermo, Italy
Wojciech Rytter University of Warsaw, Poland
Kai Salomaa Queen’s University, Canada
Helmut Seidl Technical University of Munich, Germany
William F. Smyth McMaster University, Canada
Jiří Srba Aalborg University, Denmark
Edward Stabler University of California, Los Angeles, USA
Benjamin Steinberg City University of New York, USA

Frank Stephan National University of Singapore, Singapore
Jan van Leeuwen Utrecht University, The Netherlands
Margus Veanes Microsoft Research, USA
Mikhail Volkov Ural Federal University, Russia

Additional Reviewers

Bønneland, Frederik M.
Cacciagrano, Diletta Romana
Cameron, Peter
Carayol, Arnaud
Castiglione, Giuseppa
Corradini, Andrea
Dolce, Francesco
Domaratzki, Mike
Dudek, Bartlomiej
Eğecioğlu, Ömer
Erbatur, Serdar
Erofeev, Evgeny
Fernau, Henning
Gauwin, Olivier
Giammarresi, Dora
Havlena, Vojtěch
Inenaga, Shunsuke
Itsykson, Dmitry
Jecker, Ismaël
Jurvanen, Eija
Klíma, Ondřej
Lorber, Florian
Loreti, Michele
Maletti, Andreas
Marzouk, Reda

Maslennikova, Marina
Mhaskar, Neerja
Modanese, Augusto
Moerman, Joshua
Okhotin, Alexander
Pighizzini, Giovanni
Popescu, Marius
Prezza, Nicola
Pulver, Andrew
Rao, Michael
Rinaldi, Simone
Ryzhikov, Andrew
Sangnier, Arnaud
Schou, Morten Konggaard
Sciortino, Marinella
Suchy, Ashley
Sznajder, Nathalie
Síč, Juraj
Teh, Wen Chean
Tesei, Luca
Tesson, Pascal
Tiezzi, Francesco
Trivedi, Ashutosh
van Heerdt, Gerco
Zhang, Yu

viii Organization

Contents

Algebraic Structures

On Language Varieties Without Boolean Operations 3
Fabian Birkmann, Stefan Milius, and Henning Urbat

Partially Directed Animals with a Bounded Number of Holes 16
Valentina Dorigatti and Paolo Massazza

On the Computational Power of Programs over BA2 Monoid 29
Manasi S. Kulkarni, Jayalal Sarma, and Janani Sundaresan

Automata

Location Based Automata for Expressions with Shuffle 43
Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

Succinct Representations for (Non)Deterministic Finite Automata 55
Sankardeep Chakraborty, Roberto Grossi, Kunihiko Sadakane,
and Srinivasa Rao Satti

Optimising Attractor Computation in Boolean Automata Networks 68
Kévin Perrot, Pacôme Perrotin, and Sylvain Sené

On the Transformation of Two-Way Deterministic Finite Automata
to Unambiguous Finite Automata . 81

Semyon Petrov and Alexander Okhotin

Complexity

Deciding Non-emptiness of Hypergraph Languages Generated
by Connection-preserving Fusion Grammars is NP-complete 97

Aaron Lye

On the Power of Nondeterministic Circuits
and Co-Nondeterministic Circuits . 109

Hiroki Morizumi

On Hardest Languages for One-Dimensional Cellular Automata 118
Mikhail Mrykhin and Alexander Okhotin

Usefulness of Information and Unary Languages. 131
Giovanni Pighizzini, Branislav Rovan, and Šimon Sádovský

Learning

Learnability and Positive Equivalence Relations . 145
David Belanger, Ziyuan Gao, Sanjay Jain, Wei Li, and Frank Stephan

Learning Mealy Machines with One Timer. 157
Frits Vaandrager, Roderick Bloem, and Masoud Ebrahimi

Logics and Languages

Finite-Word Hyperlanguages . 173
Borzoo Bonakdarpour and Sarai Sheinvald

Temporal Logics with Language Parameters . 187
Jens Oliver Gutsfeld, Markus Müller-Olm, and Christian Dielitz

Commutative Rational Term Rewriting . 200
Mamoru Ishizuka, Takahito Aoto, and Munehiro Iwami

Context-Free Grammars with Lookahead . 213
Takayuki Miyazaki and Yasuhiko Minamide

Tree-Like Unit Refutations in Horn Constraint Systems 226
K. Subramani and Piotr Wojciechowski

Trees and Graphs

Homomorphic Characterization of Tree Languages Based
on Comma-Free Encoding . 241

Stefano Crespi Reghizzi and Pierluigi San Pietro

Approximated Determinisation of Weighted Tree Automata 255
Frederic Dörband, Thomas Feller, and Kevin Stier

Sequentiality of Group-Weighted Tree Automata. 267
Frederic Dörband, Thomas Feller, and Kevin Stier

An Algorithm for Single-Source Shortest Paths Enumeration
in Parameterized Weighted Graphs . 279

Bastien Sérée, Loïg Jezequel, and Didier Lime

Words and Strings

On Balanced Sequences and Their Asymptotic Critical Exponent 293
Francesco Dolce, L’ubomíra Dvořáková, and Edita Pelantová

x Contents

Completely Reachable Automata, Primitive Groups and the State
Complexity of the Set of Synchronizing Words . 305

Stefan Hoffmann

State Complexity of the Set of Synchronizing Words for Circular Automata
and Automata over Binary Alphabets . 318

Stefan Hoffmann

Cadences in Grammar-Compressed Strings. 331
Julian Pape-Lange

Author Index . 343

Contents xi

Algebraic Structures

On Language Varieties Without Boolean
Operations

Fabian Birkmann, Stefan Milius , and Henning Urbat(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{fabian.birkmann,stefan.milius,henning.urbat}@fau.de

Abstract. Eilenberg’s variety theorem marked a milestone in the alge-
braic theory of regular languages by establishing a formal correspondence
between properties of regular languages and properties of finite monoids
recognizing them. Motivated by classes of languages accepted by quan-
tum finite automata, we introduce basic varieties of regular languages, a
weakening of Eilenberg’s original concept that does not require closure
under any boolean operations, and prove a variety theorem for them.
To do so, we investigate the algebraic recognition of languages by lattice
bimodules, generalizing Kĺıma and Polák’s lattice algebras, and we utilize
the duality between algebraic completely distributive lattices and posets.

1 Introduction

The introduction of algebraic methods into the study of regular languages pro-
vides a convenient classification system that allows to study finite automata
and their languages in terms of associated finite algebraic structures. A cel-
ebrated example is Schützenberger’s theorem [20] stating that a language is
star-free iff its syntactic monoid is aperiodic, thus proving the decidability of
star-freeness. Eilenberg’s variety theorem [9] formalizes this type of correspon-
dence as a bijection between varieties of regular languages (i.e. classes of regular
languages closed under the set-theoretic boolean operations, word derivatives
and preimages of monoid homomorphisms) and pseudovarieties of monoids (i.e.
classes of finite monoids closed under finite products, submonoids and quotient
monoids).

Numerous extensions and generalizations of Eilenberg’s theorem have been
discovered over the past four decades, differing from the original one by either
changing the type of languages under consideration, e.g. from regular languages
to ω-regular languages [22], or by considering notions of varieties with relaxed
closure properties. On the algebraic side, such a relaxation requires to replace
monoids by more complex algebraic structures. For instance, Pin [16] studied
positive varieties of regular languages, where the closure under complement is

∗ Supported by Deutsche Forschungsgemeinschaft under projects MI 717/5-2 and
MI 717/7-1
∗∗ Supported by Deutsche Forschungsgemeinschaft under project SCHR 1118/8-2.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-68195-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_1&domain=pdf
http://orcid.org/0000-0002-2021-1644
https://doi.org/10.1007/978-3-030-68195-1_1

4 F. Birkmann et al.

dropped, and proved them to biject with pseudovarieties of ordered monoids.
Subsequently, Polák [17] introduced disjunctive varieties of regular languages,
where in addition to closure under complement also the closure under intersection
is dropped, and related them to pseudovarieties of idempotent semirings.

One item is conspicuously missing from this list: a variety theorem for classes
of languages that need not be closed under any boolean operations, i.e. in which
only closure under word derivatives and preimages of monoid homomorphisms is
required. Such basic varieties of regular languages subsume all the above notions
of varieties and naturally arise in several areas of automata theory, most notably
in the study of languages accepted by reversible finite automata [11] or quan-
tum finite automata [13]. In the present paper, we close this gap by developing
the theory of basic varieties. As the corresponding algebraic structure we intro-
duce lattice bimodules, a two-sorted generalization of the lattice algebras recently
studied by Kĺıma and Polák [12], as algebraic recognizers for regular languages.
The two-sorted approach allows for a clearer and more conceptual view of the
underlying categorical and universal algebraic concepts. As our main result, we
establish the following algebraic classification of basic varieties:

Basic Variety Theorem. Basic varieties of regular languages correspond bijec-
tively to pseudovarieties of lattice bimodules.

This answers the open problem of Kĺıma and Polák [12] about an Eilenberg-
type correspondence. Our presentation of the theorem and its proof is inspired
by the recently developed duality-theoretic perspective on algebraic language
theory [1,10,19,21], which provides the insight that correspondences between
language varieties and pseudovarieties of algebraic structures can be understood
in terms of an underlying dual equivalence of categories. In our setting, we
shall demonstrate that pseudovarieties of lattice bimodules can be interpreted
as theories of lattice bimodules in the category AlgCDL of algebraic completely
distributive lattices, while basic varieties give rise to (basic) cotheories of regular
languages in the category Pos of posets. Our Eilenberg correspondence for basic
varieties then boils down to an application of the duality AlgCDL �op Pos.

Let us note that our main result is not an instance of previous category-
theoretic generalizations of Eilenberg’s theorem [1,5,19,21] since the two-sorted
nature of lattice bimodules requires to introduce the novel concept of reduced
structures, which makes the ensuing notion of pseudovariety more intricate than
the ones studied in op. cit. However, much of the general methodology developed
there turns out to apply smoothly, which can be seen as further evidence of its
scope and flexibility. In order to make the present paper accessible to readers not
familiar with the previous work, we opted to give a self-contained presentation
of our results, merely assuming some familiarity with basic category theory.

2 Lattice Bimodules

In this section we introduce a new algebraic structure whose aim it is to capture
languages varieties that are not necessarily closed under boolean operations.

On Language Varieties Without Boolean Operations 5

Our notion is a two-sorted generalization of Kĺıma and Polák’s lattice alge-
bras [12]. Intuitively, for our intended purpose the following structure should
be present:

(1) a monoid action that corresponds to word derivation on the language side;
(2) lattice-like operations to compensate for the missing closure under union

and intersection on the language side;
(3) equational axioms specifying the interaction of (1) and (2).

From a categorical perspective, the last point means that our algebras can be
modeled by a monad. This allows us to use previous work on languages recog-
nizable by monad algebras [5,19,21] as a guide towards our results.

While Kĺıma and Polák considered distributive lattices with an embedded
monoid acting on them, we upgrade the lattice to a completely distributive lattice
(shortly, CDL), i.e. a complete lattice satisfying the infinite distributive law∨

i∈I

∧
j∈Ji

xi,j =
∧

f∈F

∨
i∈I xi,f(i) for every family {xi,j : i ∈ I, j ∈ Ji} of

elements, where F is the set of all choice functions f mapping each i ∈ I to
some f(i) ∈ Ji. Morphisms of CDLs are maps preserving all joins and meets.
We let CDL denote the category of CDLs and their morphisms. Even though
completeness makes no difference for finite structures, completely distributive
lattices admit a more convenient duality theory than general distributive lattices.

In addition, in lieu of an embedded monoid we use a two-sorted structure with
a monoid in the first sort. This avoids partial operations, which are somewhat
awkward from the perspective of (categorical) universal algebra.

Definition 2.1. (1) A lattice bimodule (M,D, ι, �, �), abbreviated as (M,D),
is given by a monoid (M, ·, 1), a CDL (D,∨,∧), and three operations

� : M × D → D, � : D × M → D, ι : M → D,

such that � and � form a monoid biaction of M on D that distributes over
the lattice operations, and ι translates the multiplication of M to � and �;
that is, for all m,n ∈ M , d ∈ D and {di}i∈I ⊆ D, the following equational
laws hold:

(m · n) � d = m � (n � d), d � (m · n) = (d � m) � n,
1 � d = d, d � 1 = d,

(m � d) � n = m � (d � n),
m � (

∨
i∈I di) =

∨
i∈I(m � di), (

∨
i∈I di) � m =

∨
i∈I(di � m),

m � (
∧

i∈I di) =
∧

i∈I(m � di), (
∧

i∈I di) � m =
∧

i∈I(di � m),
m � ι(n) = ι(m · n), ι(m) � n = ι(m · n).

Note that since the least and the greatest element of D are given by ⊥ =
∨

∅
and
 =

∧
∅, resp., we also have m�⊥ = ⊥ = ⊥�m and m�
 =
 =
�m.

(2) A homomorphism from a lattice bimodule (M,D, ι, �, �) to a lattice bimod-
ule (M ′,D′, ι′, �′, �′) is given by a two-sorted map h = (h�, h�) : (M,D) →
(M ′,D′) such that h� is a monoid homomorphism, h� is a morphism of
completely distributive lattices and the following diagrams commute:

6 F. Birkmann et al.

M × D D

M ′ × D′ D′

�

h�×h� h�

�′

D × M D

D′ × M ′ D′

�

h�×h� h�

�′

M D

M ′ D′

ι

h� h�

ι′

Subbimodules and quotient bimodules of lattice bimodules are represented
by sortwise injective and surjective homomorphisms, respectively.

We let LBM denote the category of lattice bimodules and their homomor-
phisms. A free lattice bimodule over a pair (Σ,Γ) of sets is given by a lattice
bimodule (Σ̂, Γ̂) together with a sorted map η = (η�, η�) : (Σ,Γ) → (Σ̂, Γ̂) satis-
fying the universal mapping property: for every sorted map h0 : (Σ,Γ) → (M,D)
to a lattice bimodule (M,D) there exists a unique lattice bimodule homomor-
phism h : (Σ̂, Γ̂) → (M,D) such that h·η = h0. In the following, we denote by Σ�

the free monoid on the set Σ with neutral element ε ∈ Σ� and by FCDL(Γ) the
free completely distributive lattice [14] on the set Γ . The latter can be described
as the lattice of downwards closed subsets of the power set P(Γ), or equivalently
as the lattice of all formal expressions

∨
i∈I

∧
j∈Ji

xi,j , where xi,j ∈ Γ , modulo
the equational laws of CDLs. We view Γ as a subset of FCDL(Γ).

Proposition 2.2. The free lattice bimodule over (Σ,Γ) is given by η : (Σ,Γ) →
(Σ�,FCDL(Σ� + Σ� × Γ × Σ�)) with η�(a) = a, η�(b) = (ε, b, ε), and operations
uniquely determined by the following identities for u, v, w ∈ Σ� and z ∈ Γ :

ι(u) = u, u�v = uv, u�(v, z, w) = (uv, z, w), u�v = uv, (v, z, w)�u = (v, z, wu).

Notation 2.3. We write (Σ�, Σ�) = (Σ�,FCDL(Σ�)) for the free lattice bimod-
ule on (Σ, ∅). Note that a homomorphism h : (Σ�, Σ�) → (M,D) is completely
determined by its first component h� : Σ� → M . In fact, its second component
h� : Σ� → D is the unique CDL-morphism extending the map ι · h� : Σ∗ → D.

We now define three properties of lattice bimodules needed subsequently.

Definition 2.4. A lattice bimodule (M,D) is called

(1)
-generated if the complete lattice D is generated by the image ι[M] ⊆
D: For all d ∈ D there exist elements mi,j ∈ M such that d =∨

i∈I

∧
j∈Ji

ι(mi,j);
(2)
-embedded if the operation ι : M → D is injective;
(3) reduced if for every quotient bimodule h : (M,D) � (M ′,D′) such that

h� : D � D′ is a CDL-isomorphism, h is an LBM-isomorphism.

We note that finite
-embedded lattice bimodules are precisely the finite lattice
algebras of Kĺıma and Polák [12]. The following lemma links the above concepts:

On Language Varieties Without Boolean Operations 7

Lemma 2.5. (1) A lattice bimodule (M,D) is
-generated if and only if there
exists a surjective homomorphism from (Σ�, Σ�) to (M,D) for some set Σ.

(2) Every
-embedded lattice bimodule is reduced.
(3) Every
-generated reduced lattice bimodule is
-embedded.

In Section 3 we will study lattice bimodules that are
-generated and reduced
(equivalently,
-generated and
-embedded). Intuitively, these properties capture
lattice bimodules whose monoid component generates the lattice component and
is “minimal” with that property. This allows us to relate the two-sorted notion
of lattice bimodules to the single-sorted notion of languages recognized by them.

In the categorical approach to variety theorems [21] it was shown that the key
to understanding language derivatives lies in the concept of a unary presentation
of an algebraic structure. Informally, such a presentation expresses the structure
of an algebra in terms of suitable unary operations in the underlying category,
which then dualize to the derivative operations on the set of languages recognized
by that algebra. The heterogeneous nature of our present setting, which regards
lattice bimodules as algebraic structures over the product category Set×CDL,
requires a slight adaptation of the concepts from op. cit.

Definition 2.6. Let (M,D) be a lattice bimodule. A unary operation on (M,D)
is either a map of type M → M or M → D, or a CDL-morphism D → D. A
set U of unary operations forms a unary presentation of (M,D) if for every pair
e = (e�, e�) of a surjective map e� : M � M ′ and a surjective CDL-morphism
e� : D � D′, the following statements are equivalent:

(1) There exists a lattice bimodule structure on (M ′,D′) making e a homomor-
phism of lattice bimodules.

(2) For every u ∈ U, there exists ū making the respective square below commute:

M M

M ′ M ′

e�

u

e�

ū

M D

M ′ D′

e�

u

e�

ū

D D

D′ D′

e�

u

e�

ū

Lemma 2.7. Every lattice bimodule (M,D) admits a unary presenation com-
posed of the following unary operations ranging over m ∈ M and d ∈ D:

(m ·), (·m) : M → M, ι : M → D, (m �), (�m) : D → D, (� d), (d �) : M → D.

Note that the maps (m �) and (�m) are indeed CDL-morphisms, as required.

3 Pseudovarieties of Reduced Lattice Bimodules

In this section, we introduce pseudovarieties and theories of (reduced) lattice
bimodules and show them to be in one-to-one correspondence. The concept of
a pseudovariety originates in Eilenberg’s classical variety theorem [9] where a

8 F. Birkmann et al.

pseudovariety of monoids is a class of finite monoids closed under finite prod-
ucts, submonoids, and quotient monoids. In our setting of lattice bimodules, we
shall consider pseudovarieties of
-generated reduced lattice bimodules. Their
definition is slightly more involved than in the case of monoids because subbi-
modules of
-generated lattice bimodules are not necessarily
-generated and
quotient bimodules of reduced lattice bimodules are not necessarily reduced.

Definition 3.1. A pseudovariety of lattice bimodules is a class V of
-generated
reduced finite lattice bimodules such that

(1) V is closed under reduced quotients: for every surjective homomorphism
e : (M,D) � (M ′,D′) of lattice bimodules, if (M,D) ∈ V and (M ′,D′) is
reduced then (M ′,D′) ∈ V.

(2) V is closed under
-generated subbimodules of finite products: for every
injective homomorphism (M,D) �

∏n
i=1(Mi,Di) of lattice bimodules, if

(Mi,Di) ∈ V for i = 1, . . . , n and (M,D) is
-generated then (M,D) ∈ V.

We shall also consider the notion of a local pseudovariety. It is local in the sense
that it involves only quotient bimodules of a fixed free lattice bimodule (Σ�, Σ�).
The set of all such quotients carries a partial order: given ei : (Σ�, Σ�) �
(Mi,Di), i = 0, 1, put e0 ≤ e1 iff e0 = h · e1 for some LBM-morphism h.

Definition 3.2. A local pseudovariety of lattice bimodules over the finite set Σ
is a set TΣ of quotient bimodules of (Σ�, Σ�) such that

(1) The codomain of every e ∈ TΣ is finite and reduced. (Note that it is also

-generated by Lemma 2.5(1).)

(2) TΣ is downwards closed: if e ∈ TΣ and e′ : (Σ�, Σ�) � (M,D) is a quotient
bimodule with reduced codomain, then e′ ≤ e implies e′ ∈ TΣ .

(3) TΣ is directed: if e0, e1 ∈ TΣ , then there exists e ∈ TΣ with e0, e1 ≤ e.

In order-theoretic terminology, a local pseudovariety is thus precisely an ideal in
the poset of finite reduced quotient bimodules of (Σ�, Σ�).

Definition 3.3. A theory of lattice bimodules is a family T = (TΣ)Σ∈Setf of
local pseudovarieties, with Σ ranging over the class Setf of finite sets, such that
for each homomorphism h : (Δ�,Δ�) → (Σ�, Σ�) and eΣ ∈ TΣ their composite
eΣ ·h lifts through TΔ, that is, there exist eΔ ∈ TΔ and h such that eΣ ·h = h̄·eΔ.

(Δ�,Δ�) (Σ�, Σ�)

(M ′,D′) (M,D)

eΔ

h

eΣ

h̄

(3.1)

This notion resembles the concept of an equational theory from universal algebra:
equations can be identified with quotients of free algebras, and the closure of a
theory under substitution is expressed by a commutative diagram like (3.1).

On Language Varieties Without Boolean Operations 9

Notation 3.4. (1) Given a theory T , let VT be the class of all lattice bimodules
(M,D) such that some TΣ contains a quotient with codomain (M,D).

(2) Given a pseudovariety V, form the family T V = (T V
Σ)Σ∈Setf where T V

Σ con-
sists of all quotient bimodules of (Σ�, Σ�) with codomain in V.

The class of all pseudovarieties of lattice bimodules forms a lattice ordered by
inclusion. Similarly, the class of all theories of lattice bimodules forms a lattice
ordered by pointwise inclusion: T ≤ T ′ iff TΣ ⊆ T ′

Σ for each Σ.

Theorem 3.5. The maps V �→ T V and T �→ VT give rise to an isomorphism
between the lattice of pseudovarieties of lattice bimodules and the lattice of the-
ories of lattice bimodules.

We conclude this section with another characterization of theories, linking them
to the concept of a unary presentation. For any set Σ, let UΣ be the canon-
ical unary presentation of the free lattice bimodule (Σ�, Σ�) given by Lemma
2.7, and denote by UΣ its closure under composition. Then UΣ also forms a
unary presentation of (Σ�, Σ�). We write UΣ(S, T) ⊆ UΣ for the set of unary
operations in UΣ with domain S and codomain T , where S, T ∈ {Σ�, Σ�}. In
particular, UΣ(Σ�, Σ�) = {x �→ vxw | v, w ∈ Σ�}.

Definition 3.6. (1) A quotient e : Σ� � D in CDL is called a U -quotient if
for every unary operation u ∈ UΣ(Σ�, Σ�) there exists a CDL-morphism
ū : D → D such that e · u = ū · e. We call such a ū a lifting of u along e.

(2) A local pseudovariety of U-quotients over the finite set Σ is an ideal in the
poset of finite U-quotients of Σ�.

(3) A theory of U-quotients is a family T = (TΣ)Σ∈Setf of local pseudova-
rieties of U-quotients such that for each lattice bimodule homomorphism
h : (Δ�,Δ�) → (Σ�, Σ�) and eΣ ∈ TΣ their composite eΣ · h� lifts through
TΔ: there exist morphisms eΔ ∈ TΔ and h such that eΣ · h� = h · eΔ.

Σ� Σ�

D D

e

u

e

u

Δ� Σ�

D′ D

eΔ

h�

eΣ

h̄

(3.2)

Proposition 3.7. The lattice of theories of lattice bimodules is isomorphic to
the lattice of theories of U-quotients. The isomorphism is given by T �→ T �,
where T � consists of all quotients in T restricted to their -component.

The advantage in using theories of U-quotients is that they are easier to dualize
but still carry as much information as theories of lattice bimodules.

4 Basic Varieties of Regular Languages

In this section, we study lattice bimodules as recognizers for regular languages.
Their purpose is to capture classes of regular languages with no boolean closure

10 F. Birkmann et al.

at all, which we thus call basic varieties. Observe that since the set 2 = {0, 1}
with 0 ≤ 1 forms a CDL and the set Σ� generates the free completely distributive
lattice Σ�, we get the correspondence P(Σ�) ∼= Set(Σ�, 2) ∼= CDL(Σ�, 2). We
use the term “language” for elements of any of these sets, identifying elements
that correspond to each other via the bijections. Thus, we use the same symbol
for a subset L ⊆ Σ� and for its characteristic function. We denote the extension
of L : Σ� → 2 to a lattice morphism by L� : Σ� → 2, and in turn denote the
restriction of a lattice morphism L : Σ� → 2 to Σ� by L� = L · ι : Σ� → Σ� → 2.

Definition 4.1. A language L : Σ� → 2 is recognized by a finite lattice bimodule
(M,D) if there exists a lattice bimodule homomorphism h : (Σ�, Σ�) → (M,D)
and a CDL-morphism p : D → 2 with L� = p · h�.

Lemma 4.2. The languages recognizable by finite lattice bimodules are precisely
the regular languages.

We now introduce our concept of a language variety that we will show to corre-
spond to pseudovarieties of lattice bimodules. It subsumes Eilenberg’s original
concept [9], as well as its variants due to Pin [16] and Polák [17], by drop-
ping the requirement of being closed under any set-theoretic boolean opera-
tions. Recall that the derivatives of a language L ⊆ Σ� are the languages
v−1Lw−1 = {u ∈ Σ� | vuw ∈ L} for v, w ∈ Σ�. The preimage of L w.r.t. a
monoid homomorphism g : Δ� → Σ� is given by g−1L = {w ∈ Δ� | g(w) ∈ L}.
In the following we write RegΣ for the set of all regular languages over Σ.

Definition 4.3. (1) A basic local variety of languages over Σ is a set VΣ ⊆
RegΣ closed under derivatives: If L ∈ VΣ then v−1Lw−1 ∈ VΣ for all
v, w ∈ Σ�.

(2) A basic variety of languages is a family (VΣ ⊆ RegΣ)Σ∈Setf of local vari-
eties closed under preimages of monoid homomorphisms: If L ∈ VΣ then
g−1L ∈ VΔ for each monoid homomorphism g : Δ� → Σ�.

Just as pseudovarieties of reduced lattice bimodules can be presented as theories,
basic varieties of languages correspond uniquely to cotheories. As suggested by
the terminology, theories and cotheories form dual concepts, see Sect. 5. In the
following, P(X) denotes the poset of subsets of a set X. Recall that an ideal of
P(X) is a subset I ⊆ P(X) that is downwards closed and upwards directed.

Definition 4.4. A basic cotheory of regular languages is a family

T = (IΣ ⊆ P(RegΣ))Σ∈Setf

of ideals with the following properties:

(1) Every element FΣ ∈ IΣ is a finite basic local variety.
(2) T is closed under preimages of monoid homomorphisms: If FΣ ∈ IΣ , then

g−1[FΣ] = {g−1L | L ∈ FΣ} ∈ IΔ for each monoid homomorphism
g : Δ� → Σ�.

On Language Varieties Without Boolean Operations 11

In diagrammatic terms, (1) means that for every u ∈ UΣ(Σ�, Σ�), viewed as a
map u : Σ� → Σ� by restricting its domain and codomain, the preimage map
u−1 : P(Σ�) → P(Σ�) restricts to FΣ . Indeed, since UΣ(Σ�, Σ�) consists of all
unary operations u of the form x �→ vxw for v, w ∈ Σ�, the map u−1 is given by
L �→ v−1Lw−1. Similarly, (2) means that for every FΣ ∈ IΣ and g : Δ� → Σ�,
the map g−1 : P(Σ�) → P(Δ�) restricts to one between FΣ and some FΔ ∈ IΔ.

P(Σ�) P(Σ�)

FΣ FΣ

u−1

⊆ ⊆

P(Σ�) P(Δ�)

FΣ FΔ

g−1

⊆ ⊆ (4.1)

Theorem 4.5. The lattice of basic varieties of regular languages (ordered by
inclusion) is isomorphic to the lattice of basic cotheories of regular languages.
The isomorphism and its inverse are given pointwise for Σ ∈ Setf by the maps
IΣ �→

⋃
IΣ and VΣ �→ {F ⊆ VΣ | F is a finite basic local subvariety of VΣ }.

5 Duality and the Basic Variety Theorem

The glue between the algebraic concepts of Sect. 3 and the language-theoretic
ones of Sect. 4 is provided by duality, more precisely, the dual equivalence
AlgCDL �op Pos between the full subcategory AlgCDL of CDL given by
algebraic completely distributive lattices and the category Pos of posets and
monotone maps [8]. Recall that a complete lattice D is algebraic if every ele-
ment is a join of compact elements, where c ∈ D is compact if for every subset
S ⊆ D with c ≤

∨
S one has c ≤

∨
F for some finite F ⊆ S. Since all free CDLs

and finite CDLs are algebraic, a theory of U-quotients (Definition 3.6) lives in
the category AlgCDL. Similarly, a basic cotheory of regular languages (Defini-
tion 4.4) lives in Pos, viewing the set P(Σ�) of languages as a poset ordered by
inclusion. Let us now make the key observation that, under the above duality,
theories of U-quotients dualize to basic cotheories of regular languages: One can
show that, up to isomorphism, the duals of the commutative squares (3.2) in
AlgCDL are precisely the commutative squares (4.1) in Pos where g = h� and
FΣ and FΔ are the posets of languages recognized by eΣ and eΔ, respectively.
We can therefore bring the results of the previous sections together to establish
our main result:

Theorem 5.1 (Basic Variety Theorem). The lattice of basic varieties of reg-
ular languages is isomorphic to the lattice of pseudovarieties of lattice bimodules.

12 F. Birkmann et al.

Proof. We simply compose all the previously established lattice isomorphisms:

Pseudovarieties of lattice bimodules
∼= Theories of lattice bimodules (Theorem 3.5)
∼= Theories of U-quotients (Proposition 3.7)
∼= Basic cotheories of regular languages (Duality)
∼= Basic varieties of regular languages (Theorem 4.5) ��

Spelling out the four isomorphisms in the proof, from top to bottom we transform
between the following collections:

V
∼=

T V = ({(Σ�, Σ�)
e� (M,D) | (M,D) ∈ V})Σ∈Setf

⎫
⎬

⎭
LBM

∼=
({Σ� e�

� D | e ∈ T V})Σ∈Setf AlgCDL
∼=op

(IΣ ↪→ P(RegΣ))Σ∈Setf∼=
(VΣ ↪→ RegΣ)Σ∈Setf

⎫
⎪⎬

⎪⎭
Pos

Thus, starting from the top, a pseudovariety V of lattice bimodules is sent to the
basic variety of all regular languages recognized by some lattice bimodule in V.
Conversely, starting from the bottom, a basic variety (VΣ)Σ∈Setf of languages
is sent to the pseudovariety of all
-generated reduced finite lattice bimodules
(M,D) such that every language L ⊆ Σ� recognized by (M,D) lies in VΣ .

6 Quantum Finite Automata

In this section we present a natural example of a basic variety of regular lan-
guages that is not closed under union and intersection and therefore not captured
by any previously known Eilenberg-type correspondence. It is concerned with
languages accepted by quantum finite automata (QFA). Several different notions
of QFA have been proposed and studied, varying in their expressive power; see
e.g. the recent survey paper by Ambainis and Yakaryılmaz [2]. Here, we focus
on the model of Kondacs-Watrous quantum finite automata (KWQFA) [13], also
known in the literature as measure-many quantum finite automata.

A KWQFA M = (Q,Σ, T, q0, Qacc, Qrej, Qnon) is given by a finite set Q of
basis states, an input alphabet Σ not containing the end markers κ and $, an
initial state q0 ∈ Q and a partition Qacc ∪̇ Qrej ∪̇ Qnon of Q into accepting,
rejecting and non-halting states. The transitions are specified by a family of
unitary linear maps Tσ : HQ → HQ (σ ∈ Σ∪{κ, $}) on the complex Hilbert space
HQ with orthonormal basis Q. Thus, denoting the basis vectors by |q〉 (q ∈ Q),
every element |ψ〉 of HQ can be uniquely expressed as a linear combination

On Language Varieties Without Boolean Operations 13

|ψ〉 =
∑

q∈Q αq|q〉 with αq ∈ C. The states of M are those |ψ〉 ∈ HQ with norm
∑

q∈Q |αq|2 = 1. Note that a unitary transformation Tσ maps states to states. A
measurement collapses the state |ψ〉 to the basis state |q〉 with probability |αq|2.

Initially, the automaton is in the basis state |q0〉. An input w ∈ Σ� is pro-
cessed by first adding the left (κ) and right ($) end markers. Then, for every
successive symbol σ in w̃ = κw$ the corresponding transformation Tσ is applied
and a measurement is performed. The automaton halts and accepts if the result-
ing basis state lies in Qacc, halts and rejects if it lies in Qrej, and continues with
processing the next input letter if it lies in Qnon. Thus, if the QFA is in the state
|ψ〉 =

∑
q∈Qacc

αq |q〉 +
∑

q∈Qrej
βq |q〉 +

∑
q∈Qnon

γq |q〉 after reading the current
input symbol but before making the measurement, it accepts with probability∑

q∈Qacc
|αq|2, rejects with probability

∑
q∈Qrej

|βq|2 and continues processing the
input with probability

∑
q∈Qnon

|γq|2. This yields an overall probability p ∈ [0, 1]
that the input word w is accepted, i.e. that at any stage of the computation the
automaton reaches a state in Qacc.

We say that M accepts the language L ⊆ Σ� (with bounded error) if there
exists a real number p > 1/2 such that M accepts every word in L with prob-
ability ≥ p and rejects every word not in L with probability ≥ p. The class of
languages accepted by KWQFA is denoted by RMM. It is known to be a proper
subclass of the class of all regular languages; for instance, {a, b}�a �∈ RMM [13,
Proposition 7]. Subsequent work has identified certain “forbidden configurations”
in the minimal deterministic finite automaton of a regular language making it
unrecognizable by a KWQFA [4,6]. In this way, it was shown that RMM is not
closed under union and intersection [4, Corollary 3.2]. However, RMM is closed
under preimages of monoid homomorphisms and derivatives [6, Theorem 4.1]
and thus forms a basic variety of regular languages.

The questions whether RMM is decidable and whether it has an algebraic
characterization remain open problems in the theory of quantum automata [3].
Our Basic Variety Theorem provides strong evidence that such a characterization
must exist: it asserts that RMM corresponds to a pseudovariety of reduced
lattice bimodules, which by Theorem3.5 admits an (abstract form of) equational
presentation. We expect that the latter can be turned into a more concrete
form using profinite equations over free lattice bimodules (Σ�, Σ�), analogous
to Reiterman’s [18] description of pseudovarieties of finite monoids in terms of
profinite equations over free monoids Σ�. A concrete profinite axiomatization of
the pseudovariety induced by RMM might pave the way towards the decidability
of that class: deciding whether a given regular language lies in RMM reduces to
checking whether its syntactic lattice bimodule satisfies the equational axioms.

7 Conclusion and Future Work

We have introduced a new two-sorted algebraic structure, lattice bimodules, for
the recognition of regular languages. Our main result is a new Eilenberg-type
correspondence between basic varieties of regular languages, which need not be
closed under set-theoretic boolean operations, and pseudovarieties of reduced

14 F. Birkmann et al.

lattice bimodules. The proof is guided by the recent category-theoretic approach
to algebraic language theory and makes use of the duality between algebraic
completely distributive lattices and posets.

An immediate next step to unleash the full power of our new variety theo-
rem is to establish a Reiterman-type theorem for lattice bimodules leading to
a description of pseudovarieties of lattice bimodules in terms of profinite equa-
tions. The recent categorical account of (profinite) equational theories [7,15]
should provide inspiration in this direction. This may lead to new results on
the decidability of basic varieties of regular languages, e.g. language classes rec-
ognized by different models of reversible automata [11] or quantum automata
(cf. Sect. 6).

Furthermore, several generalizations of our work are conceivable. The most
obvious one is to replace the duality AlgCDL �op Pos by an abstract dual
equivalence A �op B between suitable categories A and B, and to consider
the recognition of languages by A -bimodules. We anticipate that this minor
generalization already recovers results closely related to the original Eilenberg
theorem for A being the category of sets, and to Polák’s variety theorem for
idempotent semirings for A being the category of complete semilattices. In an
orthogonal direction, the monoid action on the algebra may be generalized to
the action of a monad T on the category of sets, but the dependence between
the monad T and the category A is not obvious and remains to be investigated.

References

1. Adámek, J., Milius, S., Myers, R., Urbat, H.: Generalized Eilenberg theorem: vari-
eties of languages in a category. ACM Trans. Comput. Log. 20(1), 3:1–3:47 (2019)

2. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing (2018).
https://arxiv.org/abs/1507.01988

3. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.:
Algebraic results on quantum automata. In: Diekert, V., Habib, M. (eds.) STACS
2004. LNCS, vol. 2996, pp. 93–104. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24749-4 9

4. Ambainis1, A., Kikusts, A., Valdats, M.: On the class of languages recognizable by
1-way quantum finite automata. In: Ferreira, A. Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44693-1 7

5. Bojańczyk, M.: Recognisable languages over monads. In: Potapov, I. (ed.) DLT
2015. LNCS, vol. 9168, pp. 1–13. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21500-6 1

6. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 31, 73–91 (1999)

7. Chen, L.-T., Adámek, J., Milius, S., Urbat, H.: Profinite monads, profinite equa-
tions, and Reiterman’s theorem. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016.
LNCS, vol. 9634, pp. 531–547. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49630-5 31

8. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2 edn. Cambridge
University Press, Cambridge (2002)

https://arxiv.org/abs/1507.01988
https://doi.org/10.1007/978-3-540-24749-4_9
https://doi.org/10.1007/978-3-540-24749-4_9
https://doi.org/10.1007/3-540-44693-1_7
https://doi.org/10.1007/3-540-44693-1_7
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1007/978-3-319-21500-6_1
https://doi.org/10.1007/978-3-662-49630-5_31
https://doi.org/10.1007/978-3-662-49630-5_31

On Language Varieties Without Boolean Operations 15

9. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Cambridge
(1974)

10. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 246–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 21

11. Golovkins, M., Pin, J.-E.: Varieties generated by certain models of reversible finite
automata. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp.
83–93. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678 11

12. Kĺıma, O., Polák, L.: Syntactic structures of regular languages. Theoret. Comput.
Sci. 800, 125–141 (2019)

13. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of the FOCS, pp. 66–75. IEEE (1997)

14. Markowsky, G.: Free completely distributive lattices. Proc. Amer. Math. Soc. 74,
227–228 (1979)

15. Milius, S., Urbat, H.: Equational axiomatization of algebras with structure. In:
Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 400–417.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 23

16. Pin, J.E.: A variety theorem without complementation. Russ. Math. 39, 80–90
(1995)

17. Polák, L.: Syntactic semiring of a language. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, pp. 611–620. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44683-4 53

18. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1),
1–10 (1982). https://doi.org/10.1007/BF02483902

19. Salamanca, J.: Unveiling Eilenberg-type correspondences: Birkhoff’s theorem for
(finite) algebras + duality (2017). https://arxiv.org/abs/1702.02822

20. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform.
Control 8(2), 190–194 (1965)

21. Urbat, H., Adámek, J., Chen, L.T., Milius, S.: Eilenberg theorems for free. In:
Proceedings of the MFCS. LIPIcs, vol. 83, pp. 43:1–43:14 (2017)

22. Wilke, T.: An Eilenberg theorem for infinity-languages. In: Proceedings of the
ICALP. LNCS, vol. 510, pp. 588–599. Springer, Heidelberg (1991)

https://doi.org/10.1007/978-3-540-70583-3_21
https://doi.org/10.1007/11809678_11
https://doi.org/10.1007/978-3-030-17127-8_23
https://doi.org/10.1007/3-540-44683-4_53
https://doi.org/10.1007/BF02483902
https://arxiv.org/abs/1702.02822

Partially Directed Animals
with a Bounded Number of Holes

Valentina Dorigatti(B) and Paolo Massazza

Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
{vdorigatti,paolo.massazza}@uninsubria.it

Abstract. We address the problem of the exhaustive generation of a
particular class of polyominoes, corresponding to partially directed ani-
mals with a bounded number of holes. We apply an approach based on
discrete dynamical systems to develop an algorithm that generates each
polyomino in constant amortized time and space O(n). By implementing
the algorithm in C++ we have obtained new sequences that do not appear
in the On-Line Encyclopedia of Integer Sequences.

Keywords: Exhaustive generation · Polyominoes · CAT algorithms

1 Introduction

A polyomino is a finite and connected union of unitary squares, called cells, in
the plane Z × Z, considered up to translations [12]. The number of cells of a
polyomino is its area. The problem of determining the number of polyominoes
of area n is still open. Indeed, no closed formula for the number of polyominoes
of area n is known, and the most used algorithm to compute this number has
exponential complexity (both in time and in space) [13]. So, it is worthwhile
to design efficient generating algorithms with strict constraints on the space.
Several subclasses of polyominoes have been introduced in literature, with the
aim of classifying them as well as tackling some difficult questions (e.g. counting
and exhaustive generation [3,6–9]). A good survey for (solved and unsolved)
problems on polyominoes is [2].

Previous works dealt with the problem of generating (and enumerating) the
class of polyominoes corresponding to partially directed animals [10], also in the
case where holes are forbidden [15,17]. We also recall that a different class of
combinatorial objects, namely, directed animals on the square (resp., triangular)
lattice, has been enumerated in [1] by means of the so-called ECO method.

Here we are interested in CAT algorithms, that is, algorithms which generate
each polyomino in Constant Amortized Time. CAT algorithms for the exhaustive
generation of certain classes of polyominoes and other combinatorial structures
have been already developed by exploiting discrete dynamical systems [4,5,10,
11,14,16]. In this work we apply discrete dynamical systems to develop a CAT
algorithm for the class HPDAk of polyominoes that are duals of Partially Directed

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 16–28, 2021.
https://doi.org/10.1007/978-3-030-68195-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_2

Bounded Holes PDA 17

Animals with at most k holes. We show that the set HPDAk(n) can be generated
by a CAT algorithm that uses space O(n) (n represents the area). We provide also
the counting sequences for HPDAk, with 1 ≤ k ≤ 3, compared to the sequences
associated with partially directed animals, with or without holes, up to n = 22.
All proofs appear in the appendix which is omitted due to bounds on the number
of pages for conference papers.

2 Notation and Preliminaries

The area A(P) of a polyomino P is the number of its cells. A cell is identified by
integer coordinates (the center of the unitary square). We say that two squares
(i, j) and (i′, j′) are adjacent if |i − i′| + |j − j′| = 1. A path from a square a
to a square b is a sequence q1, q2, . . . , qk of squares such that q1 = a, qk = b
and qi, qi+1 are adjacent for all i with 1 ≤ i < k. A path in P is a path whose
squares are cells of P . A polyomino can be seen as a finite sequence of columns.
A column of a polyomino consists of a sequence of vertical segments separated by
empty unitary squares. A vertical segment is a finite sequence of adjacent cells
in the same column. The position of a cell is its y-coordinate. The position of
the top (resp., bottom) cell of a segment s is denoted by Top(s) (resp., Bot(s)).
We represent a segment s of a column by means of the pair (A(s) ,Top(s)).
Segments belonging to the same column are numbered from top to bottom, so a
column with p segments is simply a sequence of disjoint segments c = (s1, ..., sp),
with Top(si+1) < Top(si) − A(si) for 1 ≤ i < p. Furthermore, the position
of c is the position of the top cell of the first segment, Top(c) = Top(s1).
Similarly, we set Bot(c) = Bot(sp). Given a segment s and an integer j such that
Top(s) > j ≥ Bot(s), we denote by s>j (resp., s≤j) the part of s consisting of
the cells with position greater than j (resp., smaller than or equal to j). The part
of a column c that is above the position j is c>j (c≥j , c<j and c≤j are defined
similarly). Given two segments s and t with Bot(s) > Top(t) or Bot(t) > Top(s),
their vertical distance is d(s, t) = min(|Bot(s) − Top(t) |, |Bot(t) − Top(s) |) − 1.
We set d(s, t) = ∞ if either s or t is the null segment (denoted by ε). Segments
can be ordered with respect to their position and their area.

Definition 1. (< on segments) Let u and v be two segments. Then, u < v iff
Top(u) > Top(v) or Top(u) = Top(v) ∧ A(u) > A(v).

We can extend < in order to obtain a total order on columns, denoted by ≺.

Definition 2. (≺ on columns) Let b = (s1, ..., sp) and c = (t1, ..., tq) be two
columns. Then, b ≺ c iff A(b) > A(c), or A(b) = A(c) and there exists m, with
1 ≤ m ≤ min(p, q), such that sm < tm and sj = tj ∀j < m.

We assume that the position of the bottom cell of the last segment of the first
column of a polyomino is 0. We denote by Pol(n) the set of polyominoes of area
n. Given P ∈ Pol(n), we denote by P≤i (resp., Pi) the i-prefix of P (resp., the
i-th column of P), that is, the sequence of the first i columns of P . Notice that
P≤i is not necessarily a polyomino. The width w(P) of P is the number of its

18 V. Dorigatti and P. Massazza

Fig. 1. The gender of s↑ is 2, (h1 = h2 = 1 in Definition 5), while s has gender 0.

columns. A segment s of Pi is left-adjacent (l-adjacent, for short) to a segment
t of Pi−1 if there exists a cell of s that is adjacent to a cell of t. A segment that
is not l-adjacent is called left-detached (l-detached, for short).

From here on, given a segment s of Pi, the segment of Pi immediately above
(resp., below) s is denoted by s↑ (resp., s↓). The second segment below s is s↓↓,
and the last (resp., first) segment to which s is l-adjacent is ↓s (resp., ↑s).

We consider a class of polyominoes (called prefix-closed in [10]) that corre-
spond to partially directed animals on the square grid [18,19].

Definition 3. (The class PDA) The class PDA(n) is the class containing all
P ∈ Pol(n) such that P≤i is a polyomino for all i ∈ N with 1 ≤ i ≤ w(P).

Definition 4. (Hole) A hole of P ∈ Pol is a finite maximal set S of empty
unit squares such that:

– for any two squares a and b in S, there exists a path in S connecting a to b;
– for any two empty unit squares c /∈ S and a ∈ S, there is not a path connecting

c to a that crosses only empty unit squares.

In this work we deal with prefix-closed polyominoes with at most k holes.
They are duals of Partially Directed Animals with at most k holes, hence we are
going to call HPDAk such a class.

Since we want to limit the number of holes, we define the concept of gender
of a segment s, denoted by Gen(s), as the number of holes the segment creates
when considering the columns to its left.

Definition 5. (Gender of a segment) Given P ∈ PDA and i ∈ N, with
1 < i ≤ w(P), let s be a segment of Pi. Then, Gen(s) is defined as the number

Gen(s) = �{t ∈ Pi−1 : s is l-adjacent to t} − 1 + h1 + h2

where h1 = 1 if d((↑s)↑, s)) = 0 (h1 = 0 if d((↑s)↑, s)) > 0), and h2 = 1 if
d(s, (↓s)↓) = 0 (h2 = 0 if d(s, (↓s)↓) > 0).

An example of gender of a segment is shown in Fig. 1.
The number of holes in P ∈ PDA is H(P). For any k ∈ N we define a class

of polyominoes called HPDAk.

Definition 6. (The class HPDAk) Let k ∈ N. A polyomino P belongs to
HPDAk if P ∈ PDA and H(P) ≤ k.

Bounded Holes PDA 19

In the sequel, we generate polyominoes column-by-column by exploiting a rela-
tion between polyominoes in HPDAk and columns, called k-compatibility.

Definition 7. (k-compatibility) Fix k ∈ N. Given P ∈ HPDAk and a column
b, we say that b is k-compatible with P , denoted by P �k b, if every segment s
of b is l-adjacent to at least one segment of Pw(P) and

∑

s∈b

Gen(s) + H(P) ≤ k.

The (right) column concatenation | is the operation which takes a polyomino
P ∈ HPDAk and a column c such that P �k c, and produces a polyomino
P ′ = P |c, with w(P) + 1 columns, which is still in HPDAk. Notice that the left
hand side of the inequality in Definition 7 is precisely the number of holes of
P |b.

Remark 1. For any n > 0, the one-column polyomino (((n), n − 1)) (consisting
of one segment of area n) is in HPDAk(n). So, a polyomino P is in HPDAk if
and only if for all i, with 1 < i ≤ w(P), one has P<i ∈ HPDAk and P<i �k Pi.

The set of all columns that are k-compatible with P ∈ HPDAk and have area r
is indicated by Compk(P, r) = {b : P �k b and A(b) = r}.

The main idea of the paper is to generate all polyominoes in HPDAk(n)
according to the following total order.

Definition 8. (Order on HPDAk) Given P,Q ∈ HPDAk(n), set P < Q if
there exists i such that P<i = Q<i and Pi ≺ Qi.

3 A Dynamical System for HPDAk

We are going to define a specific family fP,k,r of discrete dynamical systems
depending on three parameters k, r ∈ N and P ∈ HPDAk. For fixed values of
the parameters, fP,k,r takes in input a column b ∈ Compk(P, r) and outputs a
column c ∈ Compk(P, r) such that b ≺ c.

The initial state of the system is the column cmin = min≺(Compk(P, r)).
This is a column consisting of one segment of area r whose bottom cell has
position Top

(
Pw(P)

)
, cmin = ((r,Top

(
Pw(P)

)
+ r − 1)). The evolution rule fP,k,r

rearranges the cells of the column in input according to four operations called
moves. A move in a column b ∈ Compk(P, r) may occur only in a position j
of a cell of a segment s of b. We have four different moves called shift, split,
shift-and-split and split-and-shift. The behaviour of these moves depends on
H(P), the number of holes in P .

A shift move corresponds to sliding s downward (this implies j = Top(s)).
More precisely, the position of s is decreased by x, where x is the smallest integer
greater than zero such that the resulting column is in Compk(P, r), see Fig. 2.

20 V. Dorigatti and P. Massazza

Fig. 2. Shift(P, a, 5) is defined only if H(P) < k, whereas Shift&Split(P, a, 5) is defined
only if H(P) = k. The move Shift(P,b, 5) is always defined (x = 1 if H(P) < k, x = 3
if H(P) = k).

A split move is to split s into two and slide the lower portion downward
(this implies Bot(s) ≤ j < Top(s)). It suffices to consider only splits somewhere
strictly below Top

(↑s
)
, because the upper portion has to be l-adjacent to ↑s. So,

s>j maintains the position, whereas the portion s≤j slides x positions downward,
where x is the smallest integer greater than zero such that the resulting column
belongs to Compk(P, r), see Fig. 3.

We point out that the number of holes before a move differs from the number
of holes after a move by at most 1.

The two moves shift-and-split and split-and-shift are needed to guarantee
that the phase state of fP,k,r is equal to Compk(P, r). They are defined only
for the last or the second to last segment s of a column, and require that
H(P |b≥Bot(s)) = k. Both moves operate in two steps (each one consisting of
sliding a suitable portion of a segment one position downward).

A shift-and-split move can occur at j only if both the following conditions
holds: j = Top(s), d((↑s)↑, s) > 0 and either d(s, s↓) = 1 ∧ ↓s 	= ↑(s↓) or
d(s, s↓) > 1 ∧ d(s, (↓s)↓) = 1 ∧ A(s) > 1. Furthermore, if A(s) > 1 the relations
Bot(s) = Top(↓s) and ↑s = ↓s must hold. In the first step, s slides one position
downward and creates the (k + 1)-th hole. Indeed, no existing hole disappears
since d((↑s)↑, s) > 0, whereas a new hole arises since d(s, s↓) = 1 or d(s, (↓s)↓) =
1. Then, a split move (or a shift move if A(s) = 1) is made at Bot(↓s) − 1, and
the segment slides exactly one position downward. The shift-and-split move is
not defined if the resulting column is not in Compk(P, r). Figure 2 shows an
example of shift-and-split.

A split-and-shift move may occur only at the position Bot(s) of a segment s
with A(s) > 1. The move is enabled only if d(s, s↓) = 1, Bot(s) = Bot(↓s) and
Top

(↑s
)

> Bot(s). Firstly, s is split at Bot(s) and the bottom cell of s slides one
position downward joining s↓ (this step creates the (k + 1)-th hole). The new
segment then slides one position downward to reduce the number of holes (see
Fig. 3). The split-and-shift move is not defined if the resulting column is not in
Compk(P, r).

Given j ∈ N, P ∈ HPDAk and a column b ∈ Compk(P, r), we denote by
Split(P,b, j) (resp., Shift(P,b, j), Shift&Split(P,b, j) and Split&Shift(P,b, j))
the function that returns the column obtained by applying the corresponding

Bounded Holes PDA 21

Fig. 3. Split(P, c, 4) is defined if H(P) < k, whereas Split&Shift(P, c, 4) is defined if
H(P) = k. Split(P,d, 5) is defined in all cases (x = 1 if H(P) < k, x = 3 if H(P) = k).

operation to the segment of b with a cell in position j. Notice that there is at
most one move defined at j.

We simply write b
j−→ b′ if b′ is the column obtained by a move at j in b.

We introduce a partial order � on the set Compk(P, r), which corresponds to the
notion of derivation by means of a sequence of moves.

Definition 9. Let P ∈ HPDAk and b, c ∈ Compk(P, r). We set b � c if b = c
or there exists a sequence of integers i1, ..., ik such that:

b i1−→ b(1) i2−→ b(2)...b(k−1) ik−→ b(k) = c.

The four moves on columns defined above allow us to obtain any k-compatible
column starting from the smallest column cmin and applying a suitable sequence
of moves. Indeed, one has the following theorem.

Theorem 1. Let P ∈ HPDAk. Then, one has

Compk(P, r) = {b : cmin � b}.

We indicate by Mc(P,b) the set of positions of moves in b ∈ Compk(P, r),

that is, Mc(P,b) = {j ∈ N : b
j−→ b′}. It is immediate that Mc(P,b) = ∅ if and

only if b is equal to cmax = max≺(Compk(P, r)), that is, b = ((r,Bot
(
Pw(P)

)
)).

In particular, we are interested in the move occurring at min(Mc(P,b)). This
move occurs in the last segment s of b if and only if Top(s) > Bot(t), where t
is the last segment of Pw(P). Otherwise, one has Top(s) = Bot(t) and the move
occurs in s↑. More precisely, the following lemma characterizes the position of
the lowest move in a column.

Lemma 1. Given P ∈ HPDAk and b ∈ Compk(P, r), let s (resp., t) be the
last segment of b (resp., Pw(P)). Suppose that we have Mc(P,b) 	= ∅ and let
j = min(Mc(P,b)). If Top(s) > Bot(t) then

j =

⎧
⎪⎨

⎪⎩

Top(s) if A(s) = 1 ∨ Bot(s) = Top
(↑s

) ∨ ↓s = ↑s = t ∧ A(t) ≤ 2,

Bot(s) if A(s) > 1 ∧ Bot(t) < Bot(s) < Top
(↑s

)
,

Bot(t) + 1 if Bot(s) ≤ Bot(t) ∧ A(t) > 2.

22 V. Dorigatti and P. Massazza

Fig. 4. The shaded cell is where the lowest move occurs.

Otherwise, one has Top(s) = Bot(t) and

j =

{
Bot

(
s↑) if Bot

(
s↑) < Top

(↑(s↑)),
Top

(
s↑) if Bot

(
s↑) = Top

(↑(s↑)).

Figure 4 illustrates the cases of Lemma 1.
The lowest move in b allows us to determine a particular column, called the

grand ancestor of b, denoted by GAk(P,b). The column GAk(P,b) is defined so
that, by making a move at j = min(Mc(P,b)) in GAk(P,b) one gets the column
that follows b in the ordered sequence of columns belonging to Compk(P,A(b)).

Intuitively, the column GAk(P,b) differs from b only if j refers to the second-
last segment of b. In this case, GAk(P,b) is obtained from b by deleting the last
segment s and increasing the area of s↑ by the largest integer e (with e ≤ A(s))
such that the resulting column, say b′, is k-compatible with P and the move
at j in b′ won’t generate a (k + 1)-th hole. The remaining A(s) − e cells are
placed below s↑, in the highest possible positions such that the column remains
in Compk(P,A(b)), while ensuring a move at j. More formally, one has:

Definition 10. (Grand Ancestor) Fix k ∈ N and let P ∈ HPDAk. Given
a column b ∈ Compk(P, r), with b 	= cmax, let s be the last segment of b,
j = min(Mc(P,b)), v = ↓(s↑) and w = ↑(s↑). If j ≤ Top(s) then GAk(P,b) = b.

Otherwise, let b′ be the column obtained from b by replacing s and s↑ with
a segment t with Top(t) = Top

(
s↑) and A(t) = A

(
s↑) + A(s). We distinguish

three main cases:

(H(P |b′) < k)
in this case one has GAk(P,b) = b′; (i)

(H(P |b′) = k)
there are two cases:
(d(t, (↓t)↓) 	= 1) one has GAk(P,b) = b′; (ii)
(d(t, (↓t)↓) = 1) if j = Top(t)∧d(w↑, t) = 0 or j = Bot

(
s↑)∧(j < Bot(v)∨j =

Bot(v) ∧ v = ↓t) then GAk(P,b) = b′. (iii)
Otherwise, one has GAk(P,b) = b′′, where b′′ is obtained from b′ by
deleting the bottom cell of t and placing a one-cell segment with position
Top((↓t)↓); (iv)

Bounded Holes PDA 23

Fig. 5. The grand ancestor.

(H(P |b′) > k) (v)
Let m be the smallest integer such that by replacing t with a segment t̂ with
A

(
t̂
)

= A(t)−m and Top
(
t̂
)

= Top(t), one gets a column b′′ ∈ Compk(P, r−
m) with d(t̂, (↓t̂)↓) = p, where p = 1 (if j < Bot(v)∨j = Bot(v)∧H(P |b) < k)
or p = 2 (if j > Bot(v) ∨ j = Bot(v) ∧ H(P |b) = k).
Then, GAk(P,b) = b′′′, where

b′′′ = min ≺{c ∈ Compk(P, r) : c≥Bot(b′′)−p = b′′, j ∈ Mc(P, c)}.

The construction of column b′′′ in Definition 10 is straightforward. Indeed,
let Pw(P) = (s1, . . . , se, . . . , se+q), where se = ↓(t̂). We simply add below the

segment t̂ a sequence of segments (s′
1, . . . , s

′
h), such that A

(
b>Top(t̂)

)
+ A

(
t̂
)

+
∑h

i=1 A(s′
i) = r and Top(s′

i) = Top(se+i), A(s′
i) = A(se+i)+d(se+i, se+i+1)− 1,

for 1 ≤ i < h, with Top(s′
h) = Top(se+h). Figure 5 illustrates the construction of

the grand ancestor in some of the cases of Definition 10. We define the discrete
dynamical system fP,k,r : Compk(P, r) → Compk(P, r) over columns as follows.

Definition 11. (fP,k,r) Let P ∈ HPDAk and b ∈ Compk(P, r). Then,

fP,k,r(b) =

{
c if GAk(P,b)

j−→ c, j = min(Mc(P,b))
(r,Bot

(
Pw(P)

)
) if Mc(P,b) = ∅

We denote by fn
P,k,r the n-fold composition of with itself. The main properties

of the dynamical system are stated in the following lemma.

Lemma 2. Given r, k ∈ N and P ∈ HPDAk, for all b ∈ Compk(P, r):

1. fn
P,k,r(b) ≺ fn+1

P,k,r(b) if fn
P,k,r(b) 	= cmax;

2.
⋃

n∈N
fn
P,k,r(cmin) = Compk(P, r).

24 V. Dorigatti and P. Massazza

Given two columns b, c ∈ Compk(P, r) such that b 	= c, one possibly has
GAk(P,b) = GAk(P, c). Nevertheless, the column fP,k,r(b) is different from
fP,k,r(c), since min(Mc(P,b)) 	= min(Mc(P, c)). Indeed, if min(Mc(P,b)) =
min(Mc(P, c)) and GAk(P,b) = GAk(P, c) then b = c.

4 Exhaustive Generation

The algorithm for generating HPDAk(n) exploits Lemma 2 and adopts an induc-
tive approach. We suppose that a polyomino P ∈ HPDAk(n−r) has been already
generated. Thus, the aim is to add all columns in Compk(P, j) (one at a time, by
exploiting Lemma 2), for all j with 1 ≤ j ≤ r. Then, for each c ∈ Compk(P, j)
we recursively add all columns in Compk(P |c, h), with 1 ≤ h ≤ n − r − j, and
so on until we obtain a polyomino in HPDAk(n).

The computation starts by calling HPDAGen(n, k) (see Algorithm 1), which
sets the first column of the polyomino (a segment of area r, with 1 ≤ r ≤ n)
and then calls ColGen to (recursively) add all subsequent columns, until a
polyomino of area n is obtained. Procedure ColGen(i, r, k) (see Algorithm 2)
assumes that a polyomino P ∈ HPDAk(n−r) with i−1 columns has been already
generated and adds all i-th columns of area at most r that are k-compatible with
P . Notice that the order of generation derives from Definition 2. As a matter of
fact, procedure ColGen is an application of Lemma 2 and consists of a while-
loop, where at each iteration a move is executed. The polyomino is given in
output if the area is n; otherwise a recursive call is made. Procedure GrAn(Pi, k)
restores the grand ancestor of the current column Pi and returns min(Mc(P, Pi)),
the position used to make a move in the next step. Lastly, Move(i, j, k) makes
a move at j in the grand ancestor (either a Shift or a Split or a Shift&Split or
Split&Shift), producing the next column (with respect to ≺).

Algorithm 1. Generation of HPDAk(n)
procedure HPDAGen(n, k)

P = ((n, n − 1)); Output(P);
for r = n − 1 downto 1 do

P1 = ((r, r − 1));
ColGen(2, n − r, k);

end for
end procedure

4.1 Data Structure

A polyomino P is simply a sequence of columns, where a column b is represented
by a doubly-linked list Lb associated with the sequence of segments in b (as many
nodes as segments). So, a node of the list corresponds to a segment s and contains
seven entries (A(s) ,Top(s) , e, l1, l2, l3, l4) where:

Bounded Holes PDA 25

Algorithm 2. Generation of columns
procedure ColGen(i, r, k)

for d = r downto 1 do
Pi = ((d,Top(Pi−1) + d − 1)); #the smallest column w.r.t. ≺
if d < r then ColGen(i + 1, r − d, k);
else Output(P);
end if
while !(IsFixedPoint(Pi)) do

j = GrAn(Pi, k); # set Pi to the grand ancestor of the current column
Move(i, j, k); #Pi is changed by a move at j
if d < n then ColGen(i + 1, r − d, k);
else Output(P);
end if

end while
end for

end procedure

– e is the number of holes in the polyomino consisting of s, the columns to the
left of s and the segments above s;

– l1 is the link to the preceding node in the list Lb (associated with s↑);
– l2 is the link to the next node in the list Lb (associated with s↓);
– l3 is a link to the node representing ↑s (in the previous list);
– l4 is a link to the node representing ↓s (in the previous list).

Lemma 1 states that the move at min(Mc(P, b)) regards either the last or the
second-last segment of b. Thus, P is represented by an array of records, where
the i−th record has three fields, namely, the area of Pi, and two links to the
nodes associated with the first and the last segment of Pi, respectively.

4.2 Complexity

The data structure used to represent a polyomino of area n requires space O(n).
In order to determine the time complexity, notice that the execution of HPDA-
Gen(n, k) is described by a tree with the following properties:

– the root corresponds to the procedure call HPDAGen(n, k);
– an internal node v at level i, with i > 0, corresponds to a procedure call

ColGen(i + 1, r, k) for a suitable r > 0. This call adds all k-compatible
(i + 1)−th columns of area at most r (associated with the children of v) to
a particular polyomino with i columns and area n − r, uniquely identified by
the path from the root to v;

– there is a one-to-one mapping between leaves and polyominoes in HPDAk(n);
– each internal node has at least two children or the only child is a leaf.

The complexity of ColGen depends on the complexity of IsFixedPoint,
GrAn and Move. Firstly, by using the data structure described in Sect. 4.1, one
can easily develop a function IsFixedPoint that runs in constant time. Indeed, a

26 V. Dorigatti and P. Massazza

Table 1. Enumeration of some classes of polyominoes up to area 22.

Area PDA HFPDA HPDA1 HPDA2 HPDA3

1 1 1 1 1 1

2 2 2 2 2 2

3 6 6 6 6 6

4 19 19 19 19 19

5 62 62 62 62 62

6 206 206 206 206 206

7 694 692 694 694 694

8 2362 2341 2362 2362 2362

9 8101 7961 8101 8101 8101

10 27951 27186 27951 27951 27951

11 96905 93157 96900 96905 96905

12 337298 320149 337221 337298 337298

13 1177935 1103017 1177242 1177935 1177935

14 4125287 3808621 4120447 4125281 4125287

15 14482481 13176367 14453400 14482370 14482481

16 50950871 45663745 50792682 50949682 50950871

17 179584544 158494947 178782399 179574832 179584536

18 634020055 550882849 630157968 633952924 634019865

19 2241695805 1917098855 2223822306 2241281792 2241693374

20 7936423123 6679141228 7856231219 7934072801 7936400300

21 28131425351 23293978379 27780457688 28118894420 28131248036

22 99822752304 81315858059 98317497644 99759138360 99821541631

column Pi of area d is a fixed point if and only if Pi = ((d,Bot(Pi−1))). Procedure
GrAn(Pi, k) is used to restore the grand ancestor of the current column Pi.
Lemma 1 allows us to compute the value j = min(Mc(P, Pi)) (corresponding to
a cell in the last or in the second-last segment of Pi) in time O(1). When j is the
position of a cell in the last segment, the construction of the grand ancestor runs
in time O(1), since GAk(P, Pi) = Pi. Unfortunately, this is not true in general,
and the construction runs in time O(min(q,A(s))), where q is the number of
segments in Pi−1 with position smaller than j, and s is the last segment of Pi.
Nevertheless, an amortized analysis leads to the following result.

Lemma 3. Let P ∈ HPDAk. Consider two columns b, c in Compk(P, r) such
that GrAn(b, k) and GrAn(c, k) with cost Θ(p1) and Θ(p2), respectively. Then,
there exist two sets T1, T2 ⊆ Compk(P, r), with |T1| = Ω(p1), |T2| = Ω(p2) and
T1 ∩ T2 = ∅, such that GrAn(d, k) has cost O(1) for any column d ∈ T1 ∪ T2.

From Lemma 3 one easily obtains the following lemma and the main result.

Bounded Holes PDA 27

Lemma 4. Let P ∈ HPDAk and i = w(P). Then, ColGen(i + 1, r, k) runs in
time O(t), where t =

∑r
e=1 |Compk(P, e)| is the number of all columns c (of area

at most r) that can be added to P so that P |c ∈ HPDAk.

Theorem 2. HPDAGen(n, k) runs in constant amortized time.

5 Conclusion and Future Works

In this paper we consider the approach to polyominoes generation based on
discrete dynamical systems (previously used in [10,15]) and, for any fixed integer
k > 0, we define a dynamical system that is used for the exhaustive generation of
the class HPDAk of polyominoes corresponding to partially directed animals with
at most k holes. As in previous works, the properties of the dynamical system
ensure that the generation is as efficient as possible, that is, each polyomino
is generated in constant amortized time. We have implemented the algorithm
in C++, obtaining the counting sequences of HPDAk(n) up to n = 22 and 1 ≤
k ≤ 3. None of these sequences appears in the OEIS database. A comparison of
these sequences with the sequences associated with PDA and HFPDA (Hole-Free
Partially Directed Animals) is given in Table 1.

We plan to develop a parallel version of the algorithm to compute more items
of the counting sequences of HPDAk(n).

References

1. Barcucci, E., Lungo, A.D., Pergola, E., Pinzani, R.: Directed animals, forests and
permutations. Discrete Math. 204(1–3), 41–71 (1999)

2. Barequet, G., Golomb, S.W., Klarner, D.A.: Polyominoes. In: Handbook of Discrete
and Computational Geometry, 3rd edn., pp. 359–380. Chapman and Hall/CRC
Press (2017)

3. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Math. 154(1–3), 1–25 (1996)

4. Brocchi, S., Castiglione, G., Massazza, P.: On the exhaustive generation of k-convex
polyominoes. Theor. Comput. Sci. 664, 54–66 (2017)

5. Castiglione, G., Massazza, P.: An efficient algorithm for the generation of Z-convex
polyominoes. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014.
LNCS, vol. 8466, pp. 51–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07148-0 6

6. Castiglione, G., Restivo, A.: Reconstruction of L-convex polyominoes. Electron.
Notes Discrete Math. 12, 290–301 (2003)

7. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enumer-
ation of some classes of convex polyominoes. Electron. J. Comb. 11(1) (2004)

8. Delest, M.P., Viennot, G.: Algebraic languages and polyominoes enumeration.
Theor. Comput. Sci. 34(1–2), 169–206 (1984)

9. Duchi, E., Rinaldi, S., Schaeffer, G.: The number of Z-convex polyominoes. Adv.
Appl. Math. 40(1), 54–72 (2008)

10. Formenti, E., Massazza, P.: From tetris to polyominoes generation. Electron. Notes
Discrete Math. 59, 79–98 (2017)

https://doi.org/10.1007/978-3-319-07148-0_6
https://doi.org/10.1007/978-3-319-07148-0_6

28 V. Dorigatti and P. Massazza

11. Formenti, E., Massazza, P.: On the Generation of 2-Polyominoes. In: Konstantini-
dis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 101–113. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94631-3 9

12. Golomb, S.W.: Checker boards and polyominoes. Amer. Math. Monthly 61, 675–
682 (1954)

13. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102(3), 865–
881 (2001)

14. Mantaci, R., Massazza, P.: From linear partitions to parallelogram polyominoes. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 350–361. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1 30

15. Massazza, P.: A dynamical system approach to polyominoes generation (2020 sub-
mitted)

16. Massazza, P.: On the generation of convex polyominoes. Discrete Appl. Math. 183,
78–89 (2015)

17. Massazza, P.: Hole-free partially directed animals. In: Hofman, P., Skrzypczak, M.
(eds.) DLT 2019. LNCS, vol. 11647, pp. 221–233. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24886-4 16

18. Privman, V., Barma, M.: Radii of gyration of fully and partially directed lattice
animals. Zeitschrift für Physik B Condensed Matter 57(1), 59–63 (1984)

19. Redner, S., Yang, Z.R.: Size and shape of directed lattice animals. J. Phys. A:
Math. Gen. 15(4), L177–L187 (1982)

https://doi.org/10.1007/978-3-319-94631-3_9
https://doi.org/10.1007/978-3-642-22321-1_30
https://doi.org/10.1007/978-3-030-24886-4_16
https://doi.org/10.1007/978-3-030-24886-4_16

On the Computational Power
of Programs over BA2 Monoid

Manasi S. Kulkarni, Jayalal Sarma(B), and Janani Sundaresan

Indian Institute of Technology Madras, Chennai, India
jayalal@cse.iitm.ac.in

Abstract. The PLP conjecture for monoids states that for every monoid
M , either M is universal (that is, for every language L ⊆ Σ∗ there is a
program over M which accepts the language L) or it has the polynomial
length property (that is, every program over the monoid M has an equiv-
alent program of length poly(n)). The conjecture has been confirmed
(Tesson-Therien (2001)) for the case of groups and several subclasses of
aperiodic monoids such as the variety DA and the monoids divided by
the monoid U. However, the case of the set of monoids divided by the
monoid BA2 is still open, which if resolved, confirms the conjecture for
all aperiodic monoids.

In this paper, we make progress towards confirming the conjecture
for the case when the monoid is BA2. It is known (Tesson-Therien 2001)
already that the monoid BA2 is not universal.

Towards proving that the monoid BA2 has polynomial length prop-
erty, we show the following results: we define a program over a monoid
M to be a non-nullable program if there is no input for which the yield
of the program is the zero of the monoid. We prove the following:
– If a program over BA2 is non-nullable, then there is an equivalent

program with length at most poly(n).
– If a program over BA2 is nullable, then it should be exponentially

non-nullable - that is there should be at least 2Ω(n) many inputs
which send the output of the program to 0 of BA2. We show that for
any program P over BA2, if the zeroes of the program have a witness
subprogram of polynomial length, then there is a program of length
poly(n) equivalent to program P .

On the universality front, Tesson and Therien(2001) have already shown
that PARITY cannot be computed by programs over BA2. We strengthen
this in two ways. Firstly, we show that programs over BA2 cannot accept
any subset of PARITY or PARITY of size nω(1). Secondly, we generalize
the model of programs to allow parity queries to the input instead of
variables. We show that BA2 cannot compute parity of n input bits even
when parity queries are allowed of size k < n

3
. In contrast, we show that

there are polynomial length programs over BA2 to compute parity when
queries are allowed as parity of n

3
bits or higher.

M. S. Kulkarni—Supported by postdoctoral fellowship from National Board of Higher
Mathematics, Department of Atomic Energy (Government of India).

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 29–40, 2021.
https://doi.org/10.1007/978-3-030-68195-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_3

30 M. S. Kulkarni et al.

Keywords: Combinatorics on words · Polynomial length program
(PLP) conjecture · Programs over monoids · Monoids and computation

1 Introduction

A program Pk ∈ {Pn}n≥0 over a monoid M is a tuple (I, A) where A ⊂ M
and I is sequence I = I1, I2, . . . I� of triplets of the form 〈i, g0, g1〉 where i is
any position in the input (1 ≤ i ≤ k), and g0, g1 ∈ M . Each triplet is called an
instruction and � is the length of the program. For a given input x ∈ {0, 1}n,
the acceptance of the program Pn is defined as follows : For 0 ≤ t ≤ �, for
each instruction of the form It = 〈i, g0, g1〉, define : Yield(It, x) = g0 if xi

= 0 and g1 otherwise. The input x is said to be accepted by the program if
Yield(Pn, x) =

∏�
i=1 Yield(Ii, x) ∈ A where the product operation is the opera-

tion in the monoid.
The above model of computation caught a lot of attention due the surpris-

ing result due to Barrington [2] (partly observed earlier in [9]) which showed
that the circuit complexity class of NC1, exactly coincides with the languages
that can be accepted by polynomial length programs over the group S5 (and in
fact, any monoid M which has a non-solvable group inside in it). This led to
lot of research efforts [1,3,8,10,12,13], using the extensive tools from algebraic
automata theory [5,7,11] in understanding the power of programs over different
varieties of monoids.

Despite the set of deep tools, a particularly striking question that remains
elusive is a characterization of efficient computation and universal computation
by programs over monoids (See [14] and references therein). A monoid M is said
to have the polynomial length property, if for any program P over the monoid
M , accepting the set of strings Ln ⊆ {0, 1}n, there is a program P ′ equivalent
to P (the set of accepted strings remains same) and length of P ′ is bounded by
nc (where n is the input length and c is a constant). A monoid M is said to be
universal, if for any language L = {Ln}n≥0 there is a family of programs {Pn}n≥0

accepting L. Tesson and Therien [14] formulated the following conjecture:
PLP Conjecture: For any monoid M , M is universal if and only if M does
not have the polynomial length property.

Known Results: Forward direction of the conjecture follows from a standard
counting argument [14]. Indeed, we can argue that there must be a language
L ⊆ Σ∗ that requires exponential length for any program that computes it.
Hence, the challenge in the conjecture is to prove that if a monoid M is not
universal then it must necessarily have polynomial length property. The PLP
conjecture has been confirmed [1,14] for the case when M is a group. This is
achieved by showing that if a group is nilpotent then it has polynomial length
property and if it is not nilpotent then it is universal and hence cannot have
polynomial length property.

For monoids, notable research efforts were in the case of aperiodic monoids.
A variety of monoids contained in the set of aperiodic monoids is that of DA.

On the Computational Power of Programs over BA2 Monoid 31

A celebrated classification of aperiodic monoids [4]: every aperiodic monoid is
either in the variety DA or it is divided1 by one of the two special monoids
named U or BA2 (See Sect. 2 for a precise definition).

Tesson and Therien [14] established the polynomial length property (and
hence the PLP conjecture) for the variety2 DA. In addition, Grosshands et al. [6]
also showed explicit languages that cannot be computed by programs (with any
length) over monoids in DA.

Hence, it is interesting to study the conjecture for the monoids U and BA2.
It is known that U [14] is universal and hence cannot have polynomial length
property by counting arguments. Hence, the conjecture is confirmed for U and
any monoid that it divides. However, the monoid BA2 behaves differently and
is less understood [13] - it is known [14] that no program (of any length) over
BA2 can compute parity function on n bits. Hence, to confirm the conjecture, a
starting point3 is to prove that BA2 itself has polynomial length property.

Our Results: In this work, we make progress towards confirming the conjec-
ture for the case when the monoid is BA2. Our results are on both frontiers of
universality and polynomial length property.

On the Polynomial Length Property: Towards proving that the monoid
BA2 has polynomial length property, we show the following results: we define
a program over a monoid M to be a non-nullable program if there is no input
which takes the output of the program to the zero of the monoid.

PLP for Non-nullable Programs: If a program over BA2 is non-nullable, then we
prove that there is an equivalent program with length at most poly(n) (The-
orem 1).

Zeroes of Nullable Programs: If a program over BA2 is nullable, then we first show
a dichotomy that it should be exponentially non-nullable - that is there should
be at least 2Ω(n) many inputs which sends the output of the program to 0 of
BA2 (Proposition 1).

PLP for (Restricted) Nullable Programs: We show that for any program P over
BA2, if the zeros of the program has a witness subprogram of polynomial
length, then there is program of length poly(n) equivalent to P (Theorem 2).

Universality Property: Tesson and Therien [14] proved that the language
PARITY = {w ∈ {0, 1}∗ | w has odd number of 1s} cannot be computed by
programs over BA2. We strengthen this in two ways.

1 A monoid M is said to be divided by another monoid N if there is a homomorphism
from a submonoid of M onto N .

2 Languages recognized by polynomial length programs over monoids in DA are con-
tained in AC0 (with depth 3). And more generally, polynomial length programs over
aperiodic monoids are known [3] to capture exactly the complexity class AC0.

3 Note, however, that even if BA2 is proven to be having the polynomial length prop-
erty, it does not imply the conjecture for all aperiodic monoids since monoids such
as BA2 × U which is divided by BA2 does not have the polynomial length property.

32 M. S. Kulkarni et al.

Programs over BA2 and subsets of PARITY: We show that programs over BA2

cannot accept any subset of PARITY or PARITY of size nω(1). (Theorem 3).
Computing PARITY with smaller parity queries: We generalize the model of pro-

grams to allow parity queries to the input instead of variables. We show that
BA2 cannot compute parity of n input bits even when parity queries are
allowed of size k < n

3 (Sect. 4). In contrast, we show that there are polyno-
mial length programs over BA2 to compute parity when queries are allowed
as parity of size n

3 or higher.

2 Preliminaries

A monoid M is a set with an associative binary operation where the set is closed
under the operation and has an identity with respect to it. That is, there is an
e ∈ M ae = ea = a for all a ∈ M . In addition, if for every a ∈ M , there is a
unique b ∈ M such that ab = ba = e, then the set is a group.

Monoids are associated with regular languages through their syntactic con-
gruence. U is the syntactic monoid of the regular language (aa∗b)∗, that is, one
or more as separated by exactly one b. For the purpose of this paper, we only
need the multiplicative structure of this monoid. The monoid has six elements
a, b, ab, ba, e, 0 with e as the identity and 0 as the sink state. Two bs occurring
consecutively gives 0. Similarly, BA2 is the syntactic monoid of the regular lan-
guage (ab)∗. The monoid has six elements a, b, ab, ba, e, 0 with e as the identity
and 0 as the sink state with following relations between the elements of the
monoid: aa = 0, bb = 0, aba = a, bab = b.

Normal Form for Programs over BA2: Recall the definition of programs
over monoids and acceptance of languages by programs from the introduction.
By using a standard transformation we force each instruction to have one of
{a, b, 0} as a possible output when the literal queried is 1 and identity in the
other case, or vice-versa. We do this by observing that the following instruc-
tion sequences are equivalent for 1 ≤ i ≤ n. (1) (i, x, y) ≡ (i, x, e)(i, e, y) for
x, y ∈ BA2 and x 	= e and y 	= e (2) (i, ab, e) ≡ (i, a, e)(i, b, e). (3) (i, e, ab) ≡
(i, e, a)(i, e, b). (4) (i, ba, e) ≡ (i, b, e)(i, a, e). (5) (i, e, ba) ≡ (i, e, b)(i, e, a).

The position of the instructions with 0 and e do not matter, as operations
with 0 and e are commutative. We push them towards the beginning of the
program. In a program P , we call a segment Pij , as an x-sequence if it is a
largest sequence of contiguous instructions such that the yield of each instruction
is either x or e. We call these instructions of x-type (x-instructions for short).

The program, after the above changes, can be viewed as a 0-sequence, fol-
lowed by alternating a-sequences and b-sequences. Here onward, we will consider
every program over BA2 to be of this form. The length of our program will be
at most 4 times the length of the original program. Ignoring 0-instructions, we
have only 4n types of instructions. (n choices exist for the input bit queried,
whether it is an a-instruction or a b-instruction, and on which value of the input
literal queried (1 or 0) it becomes identity.) We will use this fact repeatedly.

On the Computational Power of Programs over BA2 Monoid 33

As a warm up for the arguments in this paper, consider a special monoid
Uk = {a1, a2, . . . , ak} ∪ {e}, defined by the operation aiaj = aj for each i, j ∈
{1, . . . , k}. While it is known that Uk is a monoid in the variety DA (hence
it is known to have polynomial length property already [14]), this serves as a
simpler case to work with for the arguments in this paper. However, due to space
limitations, we refer the reader to the full version.

3 PLP for (Restricted) Programs over BA2

In this section, we prove the that programs over BA2, satisfying some constraints
can be reduced to polynomial size programs accepting the same language.

Let our program be P and let it have � instructions. Instruction at position k
will be called Ik, querying index ik. Pi−j denotes the part of program P from the
instruction at position i to that in j, both inclusive. We will split the analysis
into two cases, in the next two sections. A program P is said to be non-nullable
if ∀w P (w) 	= 0. The program is said to be nullable if ∃w such that P (w) = 0.

3.1 PLP for Non-nullable Programs

In this subsection, we show that for any non-nullable program there is an equiv-
alent program with length at most poly(n). Recall that for such programs,
∀wP (w) 	= 0. For some word w ∈ {0, 1}n and program P , we call |P (w)| as
the total number of instructions in P which are not identity on w. wi denotes
the value at position i in w. I(w) denotes the output of a particular instruction
on w. We observe that any program P with P (w) 	= 0 and |P (w)| > 2 on BA2,
removing two consecutive abs or bas does not change the output.

Theorem 1. For any non-nullable program P , there is a program P ′ with |P ′| ≤
nc for some constant c > 0 such that P and P ′ are equivalent. That is, ∀w ∈
{0, 1}n, P (w) = P ′(w).

Proof. The idea of the proof is as follows. To reduce the length of the program, we
need to remove instructions. We will first identify which instructions, if removed
will necessarily change the output of the program. An instruction I in P is said to
be non-removable if ∃w such that I(w) 	= e and |P (w)| ≤ 2. If we remove such an
instruction we will change the output on w. Instructions which do not obey this
condition are called removable. We show that if all the instructions in a program
are non-removable, then the program cannot be too long. Hence, it suffices to
remove the actual removable instructions without changing the output.

We start with the following lemma, which bounds the length of a program
that contains only non-removable instructions. Details appear in the full version.

Lemma 1. If all instructions in P are non-removable, then |P | ≤ 8n.

We proceed to the proof of the theorem. We define a good pair of instructions
as two instructions Ii and Ij of the same type which query different indices, ai

and aj respectively. We handle the rest of the proof in two different cases:

34 M. S. Kulkarni et al.

Case 1: A good pair exists: Consider a good pair such that |i − j| is minimum.
We will call it the closest good pair. Without loss of generality, assume Ii

and Ij are a-type instructions. By definition, Ii and Ij cannot have any other
a-type instruction between them. Let P ′ be the sequence that lies in between
them. Since every instruction in P ′ is a b-type instruction, they can be re-
ordered without changing the output of the program. We have the following
two exhaustive cases.
Case 1(a): [∀w ∈ {0, 1}n : P ′(w) = b]. Since the program P is non-nullable,

and P ′ can contain only b-type instructions, P ′ is equivalent to (ai, b, e)
and (ai, e, b) next to each other (or in the reverse order, but notice that the
order can be interchanged). We can combine one of these with Ii so that
the output of Ii is ab or identity. We remove this as we know the output
is never zero, and leave the other b-type instruction behind. For example,
if Ii was (ai, a, e), the segment IibIj would be replaced by (ai, e, b)Ij . The
pair of instructions we want to eliminate must be removable because when
ai = 1, for some w, |P (w)| ≥ 3.

Case 1(b) - [∃w ∈ {0, 1}n : P ′(w) = e]. If no instruction in the sequence
P ′ queries ai or aj , we show that P should be nullable by constructing
a w′ ∈ {0, 1}n with P (w′) = 0 as follows: we fix all indices which P ′

queries such that P ′(w) = e set ai, aj so that both Ii and Ij yields a.
If P ′ does not query ai or aj , we are done because we can ensure that
P ′(w) = e and P (w) = 0. Otherwise, P ′ must query at least one of ai

or aj . Now we reorder the instructions in P ′ so that either the b-type
instruction querying ai is adjacent to Ii (or respectively aj with Ij). We
can combine them to get new instructions I ′

i and I ′
j . At least one of them

can be eliminated if they are of the form (ai, ab, e) or (ai, e, ab).
Case 2: No good pair exists: This implies that the program queries only two input

indices - one for the a-type instructions, and another for b-type instructions.
Let the two indices queried be i and j, i.e., (i, a, e), (i, e, a), (j, e, b), (j, b, e)
are the only four types of instructions produced in the program. On setting
wi = 1, each instance of the instruction (i, a, e) must be separated by an
instruction producing b irrespective of the values of wj . If we have a single
instruction producing b, we proceed according to the above first case to reduce
the length. If not, j must be equal to i which is a contradiction.

Thus, the length of the program can always be reduced till only non- remov-
able instructions, and a constant number of removable remain (this may be left
by the end points of the last good pair). This proves the theorem. ��
The next section talks of the other case, the nullable programs and gives a lower
bound on the number of zeroes.

3.2 PLP for (Restricted) Nullable Programs

We now handle the programs where there are inputs such that the program
outputs zero on it. A natural approach is to bound the number of inputs which

On the Computational Power of Programs over BA2 Monoid 35

makes it zero. However, we show the following strong dichotomy using the struc-
ture of the monoid BA2. More precisely, we show that if the set of inputs which
make the program go to zero output in the monoid (which we denote by Z) is
non-empty then it has to be exponential large in size.

Proposition 1. If P is nullable (that is, |Z| > 0), then |Z| ≥ 2n−3.

The main idea of the proof is that, if program P is nullable, only the following
reasons are possible: (a) One instruction Ik which has 0 as the output. (b) Two
instructions Ip and Ip+m of the same type, with x = Ip(w) = Ip+m(w) and x
is either a or b, along with the condition that Ip+i(w) = e for 1 ≤ i < m. The
first case is easier to handle. If i is the index queried by Ik, and if we set wi for
some input such that Ik(w) = 0, we have 2n−1 choices for the remaining indices.
There are at least 2n−1 inputs for which the output of the program is zero. The
second one requires a more careful argument (see full version for details) keeping
track of the pair of instructions which influences the output. Now we prove the
polynomial length property for some restricted nullable programs.

Definition 1 (Witness for Zeroes). For a program P , we call a set of instruc-
tions I of the program P , a witness for the zeroes of P if for all w with
P (w) = 0 where either ∃I ∈ I, I(w) = 0 or ∃i < j with Ii, Ij ∈ I such that
Ii(w) = Ij(w) 	= e while Ik(w) = e,∀k ∈ (i, j).

We now show that nullable programs which have polynomial size witness I
can be reduced to equivalent programs of polynomial length.

Theorem 2. For any P such that ∃I, a witness for the zeroes of P and |I| ≤
q(n) where q is some polynomial in n, then there exists a program P ′ with |P ′| ≤
nc, for constant c such that P ′(w) = P (w) for all w ∈ {0, 1}n.

Given a witness I for P , the sequence of instructions from Ip+1 to Iq−1 is
called a witness-free interval if Ir /∈ I for all p < r < q and Ip, Iq if they exist,
belong to I. We will show that the size of any witness-free interval can be reduced
to poly(n) while preserving output of the program, by removing certain subsets
of instructions.

Lemma 2 (Witness-free Interval Shortening Lemma). Given a sequence
of instructions Q as a witness-free interval, there exists Q′ such that ∀w ∈ {0, 1}n

if Q(w) 	= 0 then Q(w) = Q′(w) and |Q′| ≤ q′(n) for some polynomial q′.

We first give the proof of Theorem 2, followed by the proof of witness-free
interval shortening lemma.

Proof of Theorem 2: For a program P , let P ′ be the program obtained from
Lemma 2. If P (w) 	= 0, then P ′(w) = P ′

0(w)I1(w)P ′
1(w)I2(w) . . . Ik(w)P ′

k(w) and
which after rewriting gives P0(w)I1(w)P1(w)I2(w) . . . Ik(w)Pk(w) which gives
P (w), where each Pi is a witness-free interval, and P ′

i is the corresponding
reduced equivalent interval given by the above lemma. The output is preserved
by the lemma. Indeed, in the case when P (w) = 0 as all instructions from the
witness I are retained, the output is unchanged.

36 M. S. Kulkarni et al.

To analyze the length of the program, let the total number of elements in I
be bounded by the polynomial q(n), and the length of any witness-free interval
be bounded by the polynomial q′(n). The total number of witness-free intervals
will be at most q(n)+1, at most one between any two elements of I if they were
ordered by their position in P . The size of the entire program will be less than
q′(n)(q(n) + 1) which is indeed poly(n). ��
The Witness-boundary Graph Representation: We now introduce the
main technical tool which is the graph representation of such programs. For
each witness-free interval, we will define a graph which captures the program
contained in the interval. Let NZ be the set of inputs for which the program
yields a non-zero element, i.e., NZ = {w|P (w) 	= 0}.

For the witness-free interval in consideration, we first remove all instructions
Ij such that ∀w ∈ NZ, Ij(w) = e. Let the resulting sequence of instructions be
I1I2 . . . I� which we denote by Q for the rest of the argument.

Definition 2 (Witness-boundary Graph). The witness-boundary (directed)
graph G : (V,E) for Q is as follows: V = {1, 2, . . . , �}. We associate each vertex
with the corresponding instruction Ij for 1 ≤ j ≤ �. We define the edges g =
(Ii, Ij) ∈ E if ∃w ∈ NZ such that both Ii(w) 	= e, Ij(w) 	= e and Ik(w) = e,
∀k ∈ (i, j) in the program Q.

In addition, for each vertex j ∈ V , associate the non-empty subset Nj =
{w ∈ NZ | Ij(w) 	= e}, and for each edge g = (i, j) ∈ E associate Dg = {w ∈
NZ | Ii(w) 	= e, Ij(w) 	= e, and ∀j,∈ (i, j), Ij(w) = e in the program Q}. Note
that, by definition, both Nj and Dg are non-empty subsets of NZ for all vertices
j and edges g.

Each witness-free interval gives a graph, and these graphs in order by the
position of the witness-free interval capture the program. We will prove that a
witness-free interval Q′ can be constructed from the graph of Q alone which has
the same output as Q on all inputs w ∈ NZ. Q′ will have as many instruc-
tions as the vertices of the graph of Q. This will prove that the graph model is
equivalent to the corresponding witness-free interval, and that we do not lose
any information about the program in the graph model even though we do not
retain positional information.

Proposition 2. From the witness-boundary graph G for the witness-free inter-
val Q, we can construct a program Q′ back such that ∀w ∈ NZ,Q′(w) = Q(w).

We will identify how to reduce the size of the graph without affecting the
output. Towards this, we will introduce a set of reduction rules which enables
us to remove sets of vertices.

A Reduction Rule for Witness-boundary Graphs: As mentioned before,
if we remove ab’s or ba’s which occur consecutively in the word problem P (w)
when P (w) 	= 0, we will not change the output. We will use this to design a way
to remove vertices repeatedly from the graph.

On the Computational Power of Programs over BA2 Monoid 37

Consider any induced subgraph of G with vertex set V ′. A path in the sub-
graph is said to be a w-maximal path if it is a path χ = (u1, u2, . . . uk) where
∀1 ≤ i < k, if g = (ui, ui+1), w ∈ Dg and if v = uj , ∀1 ≤ j ≤ k,w ∈ Nv, and the
path cannot be extended, obeying this condition.4.

Definition 3 (Removable Vertices). A subset of instructions (vertices) C is
removable if the following is true: let Q′ be the program obtained after removing
the instructions in the set C. (1) ∀w ∈ NZ, Q′(w) = e implies Q(w) = e. (2)
∀w ∈ S =

⋃
j∈C Nj, all w-maximal paths have odd length.

We will refer to the above as a reduction rule. We justify the removal by
showing that ∀w ∈ NZ, Q′(w) = Q(w). For any w /∈ S, the output is not
changed, as all instructions in C are anyway yielding e on w. If w ∈ S, each
w-maximal path corresponds to a sequence of instructions that has non-identity
output on w and occur continuously in P (w). Note that since Q(w) is not zero,
it must be in one of the four forms (ab)∗a, (ab)∗, (ba)∗b or (ba)∗.

Let χ = {a1, a2, . . . ak} be the path we remove. If k = 2m + 1, the sequence
in Q(w) corresponding to χ would be either (ab)∗a or (ba)∗b. On removing such
a sequence, Q(w) will become zero. Otherwise, if k = 2m for some m and the
path p was of odd length, the sequence in Q(w) corresponding to χ would be of
the form (ab)∗ or (ba)∗ which can be removed. We also do not remove the entire
sequence to make Q(w) = e from the first condition.

To reinterpret the reduction rules, we define a chain for any w ∈ NZ as
follows. A chain for w is a sequence of instructions I ′

j from j = 1 to k such
that I ′

j(w) 	= e ∀1 ≤ j ≤ k and Ij occurs before Ij+1 in Q. It will be a path in
the graph, as edges (Ij , Ij+1) will be present. In subset C of V , if for some w
∃v ∈ C which appears in the chain for w, then the intersections of the chain for
w with the subgraph induced by C will be w-maximal paths. It is sufficient if
these intersections between chains and the subgraph are of odd length.

It remains to prove that on successively using the reduction rule, the size of
the graph reduces to polynomial in input size. To this end, we prove a bound on
the number nodes where a chain can start or end. See full version for a proof.

Lemma 3. The number of vertices at which chains start or end is at most O(n).

Proof of the Witness-free Interval Shortening Lemma: We are now ready
to prove the witness-free interval shortening lemma from the following:

Lemma 4. Any given graph G : (V,E) for witness-free interval Q, can be
reduced to G′ : (V ′, E) corresponding to the polynomial length program Q′ such
that Q(w) = Q′(w) for all w ∈ NZ.

Proof. The algorithm considers each subset which appears consecutively in the
topological ordering without a vertex where a chain starts or ends. The size of
each subset is reduced to poly(n) from the reduction rules, and the total number
of such sets is also poly(n).

4 Such paths can also have zero length, when it is just a vertex v with input w ∈ Nv.

38 M. S. Kulkarni et al.

Algorithm 1: Reducing Size of G with Reduction Rules.
1 Let [v1v2 . . . v�] be the topological ordering of graph G.
2 V1 ← {i | ∃w, the chain for w starts or ends at vi}.
3 Let V1 = {a1, a2, . . . ak} in ascending order.
4 a0 = 0, ak+1 = � + 1.
5 R ← V1

6 for i = 1 to k + 1 do
7 C ← {vp | ai−1 < p < ai}.
8 Γ ← C.
9 while Γ �= φ do

10 Γ1 ← {v ∈ Γ | ∃v′ ∈ V \ Γ, (v′, v) ∈ E}
11 Γ2 ← {v ∈ Γ | ∃v′ ∈ V \ Γ, (v, v′) ∈ E}
12 Γ ← Γ \ (Γ1 ∩ Γ2)
13 R ← R ∪ (Γ1 ∩ Γ2)
14 if ∀w w-maximal path in subgraph induced by Γ > 2 then
15 Γ1 ← {v ∈ Γ | ∃v′ ∈ V \ Γ, (v′, v) ∈ E}
16 Γ2 ← {v ∈ Γ | ∃v′ ∈ V \ Γ, (v, v′) ∈ E}
17 Γ ′ ← Γ \ ({v : v ∈ Γ1, v is b-type} ∪ {v : v ∈ Γ2, v is a-type})
18 Γ ← Γ \ Γ ′

19 end
20 else

// ∃w w-maximal path in subgraph induced by Γ is edge

(vi, vj).
21 R ← R ∪ {vi, vj}
22 Γ ← Γ \ {vi, vj}
23 end

24 end

25 end
26 return G : (R, E).

Correctness: The set R is the set of vertices which will be retained in the
graph. The only step where vertices are removed from the set Γ , but not added
to R is line 18. We will prove that Γ ′ is a removable set. From lines 15 to 18,
we know that all w-maximal paths in Γ are of length at least 3. From Γ , each
vertex of a-type having an incoming edge from V \ Γ , and each vertex of b-type
having an outgoing edge to V \Γ is removed. Notice that, Γ ′ will be non-empty,
as we remove at most two vertices from each w-maximal path and all such paths
were of length at least three. Now, ∀w each w-maximal path starts with an a
and ends with a b in C ′, forming a sequence in Q(w) of the form (ab)∗ and an
odd length path. Γ ′ is removable. Therefore, the program Q′ constructed after
running the algorithm has the same output as Q on all w ∈ NZ.

We still have to prove the truth of the comment before line 21 of the algo-
rithm. Γ1 ∩ Γ2 is the set of all vertices from Γ which have both an incoming
edge and outgoing edge from V \ Γ . Γ ′ is removed from Γ and added to R. For
each w, any w-maximal path in Γ , if present, must be of length at least two

On the Computational Power of Programs over BA2 Monoid 39

now, as all w-maximal paths of length one in the subgraph induced by Γ must
be present as vertices in Γ1 ∩ Γ2.

Bounding the Size of the Retained Set R: We will look at the final size
of R, and show that it is polynomial. |R| ≤ k + (k + 1)(2 + k1)(k2) where
k = |V1|, (k + 1) is the number of iterations of the for loop starting at line 6, k1
is the maximum size of Γ1 ∩ Γ2 during the course of the algorithm and k2 is the
maximum number of iterations of the while loop starting at line 10.

V1 is the set of all vertices where a chain starts or ends, and all these vertices
are added to R initially, which accounts for the first term. We know |V1| = k =
O(n) from Lemma 3. The total number of intervals in the topological ordering
between vertices in V1 will be k+1, the number of iterations of the loop at line 6.

The size of (Γ1 ∩ Γ2) is O(n) for all values of Γ , as each instruction I of
the 4n types can be associated with only one vertex in (Γ1 ∩ Γ2). If not, if two
vertices have the same instruction I associated with them, then they must have
a path between them and cannot belong to both Γ1 and Γ2. Thus, k1 ≤ O(n).

Let the instructions associated with a w-maximal path (vi, vj) be I1 and I2.
No vertex in Γ \{vi, vj} can have I1 or I2 as the instruction associated with them
as otherwise the length of w-maximal path (vi, vj) would be higher. Every time
we remove a w-maximal path of length two from Γ , we pick two instructions
which cannot occur in any subset of Γ from the 4n types of instructions. The
total number of iterations of the while loop starting at line 10 can be at most
2n. k2 = O(n). This shows that |R| ≤ k + (k + 1)(2 + k1)(k2) ≤ O(n3) which
concludes the proof. ��

4 Limitations of Programs over BA2 Monoid

The results in this section establish structure and limitations of programs over
BA2. Both of them extend the previous known result about how the parity
language cannot be computed.

Computing Subsets of PARITY: The first one demonstrates that programs
over BA2 are very much more limited than just not being able to compute PAR-
ITY. They cannot accept any subset of PARITY which is more than poly(n) size.

Theorem 3. Programs over BA2 cannot compute any L ⊆ PARITY where |L ∩
{0, 1}n| ≥ nω(1).

We actually prove a stronger theorem (defer the details to the full version),
that a language accepted by a program over BA2 which accepts a set of strings
either all with even parity or all with odd parity has poly(n) strings in it.

Lemma 5. If L ⊆ PARITY or L ⊆ PARITY is accepted by a program family
{Pn} over BA2, with accepting set, say A ⊂ BA2, then |L ∩ {0, 1}n| ≤ O(n3).

Computing PARITY with smaller PARITY Queries over BA2: We study
a generalization of the programs over BA2 that computes parity using parity

40 M. S. Kulkarni et al.

queries on smaller number of variables. We first define the model. A k-parity-
program {Pn}n≥0 over a monoid M is a tuple (I, A) where A ⊂ M and I
is sequence I = I1, I2, . . . I� of triplets of the form 〈A, g0, g1〉 where A ⊆ [n]
with |A| ≤ k, and g0, g1 ∈ M . Each triplet is called an instruction, the query
is said to be k-parity query and � is the length of the program. For a given
input x ∈ {0, 1}n, the acceptance of the program Pn is defined as follows : For
0 ≤ t ≤ �, for each instruction of the form It = 〈i, g0, g1〉, define : Yield(It, x) = g0
if ⊕i∈Axi = 0 and g1 otherwise. The input x is said to be accepted by the
program if Yield(Pn, x) =

∏�
i=1 Yield(Ii, x) ∈ A where the product operation is

the operation in the monoid. We show that even k-parity-programs (with k < n
3)

over BA2 still cannot still accept PARITY language. We state this as the theorem.
In contrast, we show that k-parity-programs can actually compute PARITY

for k ≥ n
3 , which is based on a program without k-parity queries computing

PARITY when n = 3. We also show that programs over BA2 cannot compute
PARITY even when n = 4. We defer the proof details to the full version.

References

1. Barrington, D., Straubing, H., Thérien, D.: Non-uniform automata over groups.
Inf. Comput. 89(2), 109–132 (1990). Preliminary version appeared in ICALP 1987

2. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.
ACM 35(4), 941–952 (1988)

4. Beaudry, M., McKenzie, P., Thérien, D.: The membership problem in aperiodic
transformation monoids. J. ACM 39(3), 599–616 (1992)

5. Eilenberg, S.: Automata, Languages, and Machines Vol A and B. Academic press
(1974)

6. Grosshans, N., McKenzie, P., Segoufin, L.: The power of programs over monoids in
DA. In: 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2017), vol. 83, pp. 2:1–2:20 (2017)

7. Krohn, K., Rhodes, J.: Algebraic theory of machines. I. Prime decomposition the-
orem for finite semigroups and machines. Trans. Am. Math. Soc. 116, 450–464
(1965)

8. Maciel, A., Péladeau, P., Thérien, D.: Programs over semigroups of dot-depth one.
Theor. Comput. Sci. 245(1), 135–148 (2000)

9. Maurer, W.D., Rhodes, J.L.: A property of finite simple non-Abelian groups. Proc.
Am. Math. Soc. 16(3), 552–554 (1965)

10. McKenzie, P., Péladeau, P., Thérien, D.: NC1: the automata-theoretic viewpoint.
Comput. Complex. 1, 330–359 (1991)

11. Pin, J.E., Miller, R.E.: Varieties of Formal Languages. Plenum Publishing Co.
(1986)

12. Péladeau, P., Straubing, H., Therien, D.: Finite semigroup varieties defined by
programs. Theor. Comput. Sci. 180(1), 325–339 (1997)

13. Tesson, P.: Computational Complexity Questions Related to Finite Monoids and
Semigroups. Ph.D. thesis, McGill University (2003)

14. Tesson, P., Thérien, D.: The computing power of programs over finite monoids. J.
Autom. Lang. Comb. 7(2), 247–258 (2001)

Automata

Location Based Automata for Expressions
with Shuffle

Sabine Broda , António Machiavelo , Nelma Moreira(B) ,
and Rogério Reis

CMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{sabine.broda,antonio.machiavelo,nelma.moreira,rogerio.reis}@fc.up.pt

Abstract. We define the notion of location for regular expressions with
shuffle by extending the notion of position in standard regular expres-
sions. Locations allow for the definition of the sets Follow, First and Last
with their usual semantics. From these, we construct an automaton for
regular expressions with shuffle (APOS), which generalises the standard
position/Glushkov automaton. The sets mentioned above are also the
foundation for other constructions, such as the Follow automaton, and
automata based on pointed expressions. As a consequence, all these con-
structions can now be directly generalised to regular expressions with
shuffle, as well as their known relationships. We also show that the par-
tial derivative automaton (APD) is a (right) quotient of the new position
automaton, APOS. In previous work an automaton construction based
on positions was studied (A∂pos), and here we relate APOS and A∂pos.
Finally, we extend the construction of the prefix automaton APre to the
shuffle operator and show that it is not a quotient of APOS.

Keywords: Regular expressions · Position automaton · Shuffle
operator

1 Introduction

Regular expressions with shuffle provide succinct representations for modelling
concurrent systems [9,13]. Recently, several automata constructions for expres-
sions with shuffle operators were considered [4,8,16]. For the standard interleav-
ing shuffle operator (�), Broda et al. [4] defined the partial derivative automaton
(APD) and a position automaton (A∂pos), showing that APD is a right-quotient
of A∂pos. For standard regular expressions there is a one-to-one correspondence
between (non initial) states in the position/Glushkov automaton [10] and occur-
rences of letters in the expression. This is no longer true for A∂pos. Moreover,
unlike most constructions of position automata, the definition of A∂pos did not

This work was partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with
reference UIDB/00144/2020.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 43–54, 2021.
https://doi.org/10.1007/978-3-030-68195-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_4&domain=pdf
http://orcid.org/0000-0002-3798-9348
http://orcid.org/0000-0002-7595-7275
http://orcid.org/0000-0003-0861-0105
http://orcid.org/0000-0001-9668-0917
https://doi.org/10.1007/978-3-030-68195-1_4

44 S. Broda et al.

rely on the sets First, Last, and Follow [4]. The former two sets characterise the
positions of letters that can, respectively, begin or end words of the language;
while the latter contains, for each letter position, the positions of letters that
can follow that letter in words of the language. In order to define these sets for
expressions containing the shuffle operator, we introduce novel and more com-
plex structures, which we call locations. Locations are defined in such a way
that, given an expression with nested shuffles, it allows to specify how far a
word has advanced in each of the components (shuffles) of the expression. Each
location in First corresponds to a position of a letter that can begin a word in the
language. The positions that appear in a location in Last are the ones that can
end a word. In the same way, the members of Follow represent pairs of positions
of letters such that the second can follow the first in a word. From these sets,
using locations, the definition of the position automaton APOS is the usual one.
Each location is the label of a state, and the incoming transitions of a state are
labelled with letters corresponding to positions in that location.

This new construction is presented in Sect. 3, where we give an upper bound
for the number of states of APOS in the worst case. In Sect. 4 we show that the
partial derivative automaton APD is a right-quotient of APOS. A comparison of
APOS and A∂pos is considered in Sect. 5, where their average number of states is
discussed. Restricted to expressions without shuffle both constructions coincide
with the standard position automaton. The same holds for APD [1]. Thus, the
proofs in Sect. 4 are alternatives to show that, for standard regular expressions,
APD is a quotient of APOS.

The sets First, Last and Follow are also the base for other constructions,
such as the Follow automaton [11], as well as (deterministic) automata based
on pointed expressions [2,3,15]. As a consequence, it is now straightforward
to extend those constructions to expressions with shuffle, solving a problem
stated by Asperti et al. [2]. Moreover, the known relationships between those
constructions [3] extend to expressions with shuffle. Finally, we generalize the
construction of the prefix automaton APre [12,17] to the shuffle operator and
show that APre is not a quotient of APOS. The resulting taxonomy is presented
in Sect. 6.

2 Preliminaries

Let RE denote the set of standard regular expressions over an alphabet Σ.
The language associated with an expression α ∈ RE is denoted by L(α). The
empty word is denoted by ε. We define ε(α) by ε(α) = ε if ε ∈ L(α), and
ε(α) = ∅ otherwise. Given a set of expressions S, the language associated with
S is L(S) =

⋃
α∈S L(α). Moreover, we consider εS = Sε = S and ∅S = S∅ = ∅,

for any set S of expressions. The alphabetic size |α|Σ is its number of letters. We
denote the subset of Σ containing the symbols that occur in α by Σα.

A nondeterministic finite automaton (NFA) is a quintuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition

Location Based Automata for Expressions with Shuffle 45

function. If |I| = 1 and |δ(q, σ)| ≤ 1, for all q ∈ Q,σ ∈ Σ, A is deterministic
(DFA). The language of A is denoted by L(A) and two automata are equivalent if
they have the same language. Given an automaton A = 〈Q,Σ, δ, I, F 〉 its reversal
is AR = 〈Q,Σ, δR, F, I〉, where δR(q, σ) = { p | q ∈ δ(p, σ) }, and L(AR) =
L(A)R, which is the language obtained by reversing the words in L(A). Two
automata A1 = 〈Q1, Σ, δ1, I1, F1〉 and A2 = 〈Q2, Σ, δ2, I2, F2〉 are isomorphic,
A1 	 A2, if there is a bijection ϕ : Q1 −→ Q2 such that ϕ(I1) = I2, ϕ(F1) =
F2, and ϕ(δ1(q1, σ)) = δ2(ϕ(q1), σ), for all q1 ∈ Q1, σ ∈ Σ. An equivalence
relation ≡ defined on the set of states Q is right-invariant w.r.t. A if and only
if ≡ ⊆ (Q − F)2 ∪ F 2 and if p≡ q, then ∀σ ∈ Σ, p′ ∈ δ(p, σ), ∃q′ ∈ δ(q, σ)
such that p′ ≡ q′, for all p, q ∈ Q. If ≡ is a right-invariant relation on Q, the
right-quotient automaton A/≡ is given by A/≡ = 〈Q/≡ , Σ, δ/≡ , I/≡ , F/≡ 〉,
where δ/≡ ([p], σ) = { [q] | q ∈ δ(p, σ) }. Then, L (A/≡) = L(A). An equivalence
relation on Q is left-invariant w.r.t. A if it is right-invariant w.r.t. AR.

The Position Automaton. Given α ∈ RE, one can mark each occurrence of a
letter σ with its position in α, reading it from left to right. The resulting regular
expression is a marked regular expression α with all letters occurring only once
(linear) and belonging to Σα. Thus, a position i ∈ [1, |α|Σ] corresponds to the
symbol σi in α, and consequently to exactly one occurrence of σ in α. For
instance, if α = a(bb+aba)�b, then α = a1(b2b3 +a4b5a6)�b7. The same notation
is used for unmarking, α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) =
Pos(α) ∪ {0}. Positions were used by Glushkov [10] to define an NFA equivalent
to α, usually called the position or Glushkov automaton, APOS(α). Each state of
the automaton, except for the initial one, corresponds to a position, and there
exists a transition from i to j by σ such that σj = σ, if σi can be followed
by σj in some word represented by α. The sets that are used to define the
position automaton are First(α) = { i | ∃w ∈ Σ�

α . σiw ∈ L(α) }, Last(α) =
{ i | ∃w ∈ Σ�

α . wσi ∈ L(α) } and, given i ∈ Pos(α), Follow(α, i) = { j | ∃u, v ∈
Σ�

α . uσiσjv ∈ L(α) }. For the sake of readability, whenever an expression α is not
marked, we take f(α) = f(α), for any function f that have marked expressions
as arguments. We define the position automaton using the approach in Broda et
al [3], where the transition function is expressed as the composition of functions
Select and Follow. Given a letter σ and a set of positions S, the function Select
selects the subset of positions in S that correspond to letter σ. Formally, given
S ⊆ Pos(α) and σ ∈ Σ, let Select(S, σ) = { i | i ∈ S ∧ σi = σ }. Then, the
position automaton for α is APOS(α) = 〈Pos0(α), Σ, δPOS, 0, Last0(α)〉, where
δPOS(i, σ) = Select(Follow(α, i), σ).

Regular Expressions with Shuffle. Given an alphabet Σ, the shuffle of two words
in Σ� is the finite set of words defined inductively as follows: x� ε = ε� x =
{x} and ax � by = { az | z ∈ x � by } ∪ { bz | z ∈ ax � y }, for x, y ∈ Σ�,
and a, b ∈ Σ. This definition is extended to languages in the natural way by
L1�L2 =

⋃
x∈L1,y∈L2

x� y. It is well known that � is a regular operator. One
can, hence, extend regular expressions to include the � operator. The set of
regular expressions with shuffle over Σ, R(�), contains ∅ plus all terms generated

46 S. Broda et al.

by the grammar

α → ε | a | (α + α) | (α · α) | (α� α) | α� (a ∈ Σ).

The language represented by an expression α�β is L(α�β) = L(α)�L(β).

3 A Location Based Position Automaton

In this section we define a new construction for a position automaton for expres-
sions with shuffle, which is based on the sets First, Last, and Follow. In order
to define those sets for expressions containing the shuffle operator, we need to
consider more complex structures, which we call locations. Locations are defined
in such a way that, given an expression with nested shuffles, it allows to specify
how far a word has advanced in each of the components (shuffles) of this expres-
sion. Given α ∈ R(�), we associate a set of locations Loc(α) = Loc(α), which
is inductively defined on the structure of the expression α as follows (where the
concatenation operator · is omitted).

Loc(ε) = ∅, Loc(σi) = {i}, Loc(α�) = Loc(α),
Loc(α1 + α2) = Loc(α1α2) = Loc(α1) ∪ Loc(α2),
Loc(α1 � α2) = Loc(α1) × Loc(α2) ∪ Loc(α1) × {0} ∪ {0} × Loc(α2).

Note that each location p in α is either a position i ∈ Pos(α), or of the form
(0, p2), (p1, 0), or (p1, p2), where p1, p2 are also locations in α. The set of positions
of a location p, ipos(p), is defined inductively by ipos(i) = {i}, ipos((0, p)) =
ipos((p, 0)) = ipos(p), and finally ipos((p1, p2)) = ipos(p1) ∪ ipos(p2).

Example 1. For α = (a�b� cd)�
� (ac)� and α = (a�

1b2 � c3d4)�
� (a5c6)�,

Loc(α) = { ((0, 3), n), ((0, 4), n), ((1, 0), n), ((2, 0), n), (0, 5), (0, 6), ((1, 3), n),
((2, 3), n), ((1, 4), n), ((2, 4), n) | n = 0, 5, 6 },

ipos(((2, 3), 0)) = {2, 3}, and ipos(((2, 3), 5)) = {2, 3, 5}. For instance, the loca-
tion ((2, 3), 5) corresponds to words for which the last letters read in the subex-
pressions a�b, cd and (ac)�, are respectively b, c, and a.

Lemma 1. Given α ∈ R(�) and i ∈ Pos(α), there is p ∈ Loc(α) with i ∈ ipos(p)
if and only if there are words w,w′ ∈ Σ�

α, such that wσiw
′ ∈ L(α).

Given α ∈ R(�), the states in the position automaton will be labelled by
the elements in Loc(α), except for the initial state labelled as 0. The following
proposition gives an upper bound on the size of Loc(α), and the next example
exhibits an expression for which this upper bound is reached.

Proposition 1. Given α ∈ R(�), one has |Loc(α)| ≤ 2|α|Σ − 1.

Example 2. Consider αn = a1�· · ·�an, where n ≥ 1, ai �= aj for 1 ≤ i �= j ≤ n.
Then, ipos(Loc(αn)) = 2Pos(αn) \ {∅}, which is of size 2n − 1.

Location Based Automata for Expressions with Shuffle 47

The sets First, Last and Follow are defined extending the usual definitions, [5,
11], to the shuffle operator. The set First(α) for α = α1�α2 is defined as follows,

First(α1 � α2) = First(α1) × {0} ∪ {0} × First(α2).

Fact 1. One has First(α) ⊆ Loc(α). Furthermore, every location p ∈ First(α)
contains exactly one non-null component i ∈ Pos(α). Thus, ipos(p) = {i}.
Lemma 2. Given α ∈ R(�), there is a location p ∈ First(α) with ipos(p) = {i}
if and only if there is some w ∈ Σ�

α, such that σiw ∈ L(α).

Proof. The proof is by structural induction on the marked expression α. For ε
and marked singletons the result is obvious. For union, concatenation and Kleene
star the proof is similar to the one for standard expressions. Consider the case of
an expression α1�α2. Let (p, 0), with p ∈ First(α1) and ipos((p, 0)) = ipos(p) =
{i}. By the induction hypothesis, there is some w ∈ Σ�

α, such that σiw ∈ L(α1).
Consider any word w′ ∈ L(α2) �= ∅. Then, σiww′ ∈ L(α1)�L(α2) = L(α1�α2).
The case of (0, p), with p ∈ First(α2) is analogous. For the other direction,
consider a word σiw ∈ L(α1 � α2). By definition, either there is some σiw1 ∈
L(α1) and some w2 ∈ L(α2) such that w ∈ w1 � w2, or vice-versa. By the
induction hypothesis, there exists a location p ∈ First(α1) with ipos(p) = {i}.
Consequently (p, 0) ∈ First(α1 � α2). ��

The set Last(α) for α = α1 � α2 is defined by

Last(α1 � α2) = Last(α1) × Last(α2)
⋃

ε(α1)
(
{0} × Last(α2)

) ⋃
ε(α2)

(
Last(α1) × {0}

)
.

Lemma 3. Given α ∈ R(�), there is a location p ∈ Last(α) and i ∈ ipos(p) if
and only if there is some w ∈ Σ�

α, such that wσi ∈ L(α).

Proof. The proof is by structural induction on α. We need only to consider the
case of an expression α1�α2. Let (p1, p2) ∈ Last(α1)×Last(α2) and i ∈ ipos(p1).
By the induction hypothesis, there is some w1 ∈ Σ�

α1
, such that w1σi ∈ L(α1).

For any w2 ∈ L(α2) �= ∅, w2w1σi ∈ L(α1 � α2). Next, consider a location
(0, p) ∈ ε(α1)({0} × Last(α2)) and i ∈ ipos((0, p)) = ipos(p). By the induction
hypothesis, there is some w2 ∈ Σ�

α2
, such that w2σi ∈ L(α2). On the other hand

ε ∈ L(α1). Thus, w2σi ∈ L(α1 � α2). The remaining cases are analogous.
For the other direction, consider wσi ∈ L(α1 � α2). By definition, there is

some w1σi ∈ L(α1) and some w2 ∈ L(α2) such that w ∈ w1 � w2 (or vice-
versa). By the induction hypothesis, there exists a location p1 ∈ Last(α1) with
i ∈ ipos(p1). If w2 = w′

2σj , by induction there is some p2 ∈ Last(α2) with j ∈
ipos(p2). Thus, (p1, p2) ∈ Last(α1) × Last(α2) and i ∈ ipos(p1) ⊆ ipos((p1, p2)).
If w2 = ε, then (p1, 0) ∈ ε(α2)(Last(α1) × {0}) and i ∈ ipos(p1) = ipos((p1, 0)).��

48 S. Broda et al.

For expressions without shuffle, each position i corresponds exactly to one
marked letter σi and, consequently, all incoming transitions of state i are labelled
by σ. This is no longer true for expressions with shuffle. In this case a location p
labelling a state can have incoming transitions labelled by different letters (cor-
responding to the positions in ipos(p)), depending on the source state. For this
reason we will include letters in the definition of the Follow set.

Let FirstL(α) = { (σi, p) | p ∈ First(α) ∧ ipos(p) = {i} }. We also define
Loc0(α) = Loc(α) ∪ {0} and Last0(α) = Last(α) ∪ ε(α){0}. Finally, we define
Follow : R(�) × Loc0(α) → 2Σ×Loc(α) by setting Follow(α, 0) = FirstL(α), and
for p ∈ Loc(α),

Follow(ε, p) = Follow(σi, p) = ∅,

Follow(α1 + α2, p) =

{
Follow(α1, p), if p ∈ Loc(α1),
Follow(α2, p), if p ∈ Loc(α2).

Follow(α1α2, p) =

⎧
⎪⎨

⎪⎩

Follow(α1, p), if p ∈ Loc(α1) \ Last(α1),
Follow(α1, p) ∪ FirstL(α2), if p ∈ Last(α1),
Follow(α2, p), if p ∈ Loc(α2).

Follow(α�
1, p) =

{
Follow(α1, p), if p /∈ Last(α1),
Follow(α1, p) ∪ FirstL(α1), otherwise.

Follow(α1 � α2, p) = { (σi, (p′
1, p2)) | (σi, p

′
1) ∈ Follow(α1, p1) }

∪ { (σi, (p1, p′
2)) | (σi, p

′
2) ∈ Follow(α2, p2) }
if p = (p1, p2) ∧ p ∈ Loc(α1 � α2).

Furthermore, given S ∈ 2Loc0(α) set Follow(α, S) =
⋃

p∈S Follow(α, p).

Example 3. For α = a�
� b� and α = a�

1 � b�
2, Last(α) = {(1, 0), (0, 2), (1, 2)},

Follow(α, 0) = FirstL(α) = {(a1, (1, 0)), (b2, (0, 2))}, and

Follow(α, (1, 0)) = {(a1, (1, 0)), (b2, (1, 2))},

Follow(α, (0, 2)) = {(a1, (1, 2)), (b2, (0, 2))},

Follow(α, (1, 2)) = {(a1, (1, 2)), (b2, (1, 2))}.

Lemma 4. For an expression α ∈ R(�) and i, j ∈ Pos(α), there are locations
p, q ∈ Loc(α) with (σj , q) ∈ Follow(α, p) and i ∈ ipos(p) if and only if there are
w,w′ ∈ Σ�

α, such that wσiσjw
′ ∈ L(α).

For a set S ⊆ Σα × Loc(α) and σ ∈ Σ, let

Select(S, σ) = { p | (σi, p) ∈ S ∧ σi = σ }.

The position automaton for α is APOS(α) = 〈Loc0(α), Σ, δPOS, 0, Last0(α)〉,
where δPOS(p, σ) = Select(Follow(α, p), σ), for p ∈ Loc0(α), σ ∈ Σ.

Example 4. For α = (ab)�
� (bc)� with α = (a1b2)�

� (b3c4)�, Loc0(α) =
{0, (0, 3), (0, 4), (1, 0), (2, 0), (1, 3), (1, 4), (2, 3), (2, 4)}, First(α) = {(1, 0), (0, 3)},
and Last0(α) = {0, (0, 4), (2, 0), (2, 4)}. The position automaton APOS(α) is
depicted below.

Location Based Automata for Expressions with Shuffle 49

0

(1, 0)

(0, 3)

(2, 0)

(1, 3)

(0, 4)

(2, 3)

(1, 4)

(2, 4)

a

b

b

b

a

c

a

b

b

c

b

a

c

a

b

b

b

a

The correctness of this construction follows from the previous four lemmas.

Proposition 2. L(APOS(α)) = L(α).

Note that, for an expression α without shuffle we have Loc(α) = Pos(α) and
APOS(α) is exactly the standard position automaton. In fact, the usual Follow
set for a position j is equal to { i | (σi, i) ∈ Follow(α, j) }.

4 APD(α) as a Quotient of APOS(α)

In this section we show that the partial derivative automaton APD(α) for expres-
sions α ∈ R(�) [4] is a quotient of the position automaton as defined in the pre-
vious section. We recall the definition of the set of partial derivatives of α ∈ R(�)
w.r.t. a letter σ ∈ Σ, for α = α1 � α2:

∂σ(α1 � α2) = ∂σ(α1)� {α2} ∪ {α1}� ∂σ(α2).

As usual, the set of partial derivatives of α ∈ R(�) w.r.t. a word w ∈ Σ�

is inductively defined by ∂ε(α) = {α} and ∂wσ(α) = ∂σ(∂w(α)). Let ∂(α) =⋃
w∈Σ� ∂w(α), and ∂+(α) = ∂(α) \ ∂ε(α). The partial derivative automaton of

α ∈ R(�) is APD(α) = 〈∂(α), Σ, {α}, δPD, FPD〉, where FPD = {β ∈ ∂(α) |
ε(β) = ε } and δPD(β, σ) = ∂σ(β), for β ∈ R(�), σ ∈ Σ.

The partial derivative automaton for α1 � α2, where α1 = (ab)� and α2 =
(bc)�, from Example 4, is depicted on the right.

α1 � α2

bα1 � α2

α1 � cα2

bα1 � cα2

a

b

b

b

a

c

c

b

Note that both ∂+(α) and Loc0(α) are
at most of size 2|α|Σ , cf. [4]. Champarnaud
and Ziadi [7] proved that, for standard regular
expressions, APD is a quotient of the position
automaton APOS. It was shown that, given a
position i, there exists some expression, ci(α),
such that for all w ∈ Σ�

α, either ∂wσi
(α) is

empty or is {ci(α)}. This naturally induces
a right-invariant relation on the set of posi-
tions, where i ≡o j if ci(α) = cj(α), and such that APOS(α)/≡o 	 APD(α).
For expressions in R(�) it is no longer true that given a position i there exists a
unique expression ci(α) satisfying the conditions described above. The following
is an example of this.

50 S. Broda et al.

Example 5. Consider α = (a� + b)�
� (c� + d)� and α = α1 � α2, where α1 =

(a�
1 + b2)� and α2 = (c�

3 + d4)�. For the letter a1 we have ∂a1(α) = {a�
1α1�α2},

while ∂c3a1(α) = {a�
1α1 � c�

3α2}.

However, for expressions with shuffle we can associate a unique expression c(α, p)
to each location p, which will be used to show that, also in this case, APD is a
quotient of APOS. The c-continuation c(α, p) of α w.r.t. p is defined as:

c(σi, i) = ε, c(α�, p) = c(α, p)α�,

c(α1 + α2, p) =

{
c(α1, p), if p ∈ Loc(α1),
c(α2, p), if p ∈ Loc(α2),

c(α1α2, p) =

{
c(α1, p)α2, if p ∈ Loc(α1),
c(α2, p), if p ∈ Loc(α2),

c(α1 � α2, (p, 0)) = c(α1, p)� α2, c(α1 � α2, (0, p)) = α1 � c(α2, p),
c(α1 � α2, (p1, p2)) = c(α1, p1)� c(α2, p2), if p1, p2 �= 0.

Example 6. Consider again α = (ab)�
� (bc)� from Example 4. For the ele-

ments in Loc0(α) we have c(α, 0) = c(α, (2, 0)) = c(α, (2, 4)) = c(α, (0, 4)) = α,
c(α, (0, 3)) = c(α, (2, 3)) = (a1b2)�

� c4(b3c4)�, c(α, (1, 0)) = c(α, (1, 4)) =
b2(a1b2)�

� (b3c4)�, and c(α, (1, 3)) = b2(a1b2)�
� c4(b3c4)�. The partial deriva-

tive automaton of the expression given above is obtained by merging the states
in the APOS(α) labelled with locations that have the same c-continuation.

To show that APD(α) is a quotient of APOS(α), we first prove that the set of
all c-continuations is precisely ∂+(α). Furthermore, p is a final state in APOS(α)
if and only if c(α, p) is a final state in APD(α). Finally, in Proposition 3 we relate
∂σi

(c(α, p)) with Follow(α, p).

Lemma 5. ∂+(α) = { c(α, p) | p ∈ Loc(α) }.

Lemma 6. For α ∈ R(�) and p ∈ Loc(α), ε(c(α, p)) = ε ⇐⇒ p ∈ Last(α).

Proposition 3. For α ∈ R(�), p ∈ Loc0(α), and σi ∈ Σα, one has
β ∈ ∂σi

(c(α, p)) ⇐⇒ ∃q ∈ Loc(α) (β = c(α, q) ∧ (σi, q) ∈ Follow(α, p)).

Now, the equivalence relation ≡o on Loc0(α), that defines APD(α) as a quo-
tient of APOS(α), is defined by p ≡o q if c(α, p) = c(α, q).

Lemma 7. The relation ≡o is right-invariant w.r.t. APOS(α).

Example 7. Consider again α = (ab)�
� (bc)� from Example 4. Recall that

c(α, (2, 0)) = c(α, (0, 4)) = α, i.e. (2, 0) ≡o (0, 4). Furthermore, (a1b2)�
�

c4(b3c4)� ∈ ∂b3(α), (b3, (2, 3)) ∈ Follow(α, (2, 0)), (b3, (0, 3)) ∈ Follow(α, (0, 4)),
and (2, 3) ≡o (0, 3).

Given an expression α, one can naturally apply any automaton construction
A to the marked expression α, where transitions are labelled with marked letters.
We denote by A(α) the automaton obtained from A(α) by unmarking the labels
of transitions, but without changing the labels of the states.

Location Based Automata for Expressions with Shuffle 51

Proposition 4. APOS(α)/≡o 	 APD(α).

Proof. We show that the function ϕc : Loc0(α)/≡o −→ ∂+(α), defined by
ϕc([p]) = c(α, p), is an isomorphism. Injectivity follows from Lemma 7 and sur-
jectivity from Lemma 5. For the initial state we have ϕc([0]) = c(α, 0) = α.
Furthermore, by Lemma 6, [p] is a final state in APOS(α)/≡o if and only
if ϕc([p]) is a final state in ∂+(α). Finally, ϕc(δPOS/≡o([p], σ)) = ϕc({ [q] |
(σi, q) ∈ Follow(α, p) ∧ σi = σ }) = { c(α, q) | (σi, q) ∈ Follow(α, p) ∧ σi =
σ } =

⋃
σi=σ ∂σi

(c(α, p)) = δPD(ϕc([p]), σ). ��

Broda et al. [4] showed that APD(α) is a quotient of APD(α) by the right-
invariant equivalence relation ≡2 defined on the states of APD(α) by β1 ≡2 β2

if β1 = β2. Let ≡c be the relation ≡2 ◦ ≡o. Thus, we have the following result.

Proposition 5. APOS(α)/≡c 	 (APD(α))/≡2 	 APD(α).

Example 8. It follows from the c-continuations computed in Example 6 for
α = (ab)�

� (bc)�, that there are no β1 �= β2 ∈ ∂+(α) such that β1 ≡2 β2.
Consequently, in this particular case, APD(α) 	 APD(α).

5 APOS(α) Vs. A∂pos(α)

In this section, we relate the position automaton defined in this paper with the
one presented by Broda et al. [4]. The states of A∂pos are labelled by pairs
(γ, i), where i is a position of a letter in the original expression, and γ ∈ R(�)
describes the right-language of the state. Given α ∈ R(�), the automaton
obtained by that construction will be denoted by A∂pos(α), and is defined by
A∂pos(α) = 〈S0

∂pos(α), Σ, {(α, 0)}, δ∂pos, F∂pos〉, where S0
∂pos(α) = { (α, 0) } ∪

{ (γ, i) | γ ∈ ∂σi
(∂(α)), σi ∈ Σα }, F∂pos = { (γ, i) ∈ S0

∂pos(α) | ε(γ) = ε } and
δ∂pos((γ, i), σ) = { (β, j) | β ∈ ∂σj

(γ), σ = σj }.

α
0

b2α1� α2
1

α1� c4α2
3

α
2

b2α1� c4α2
3

α
4

b2α1� c4α2
1

α1� c4α2
2

b2α1� α2
4

a

b

b

b

a
c

a

b

c

b

b

a

c

b

a

c

b
b

Consider the expression
α = (ab)�

� (bc)� from Exam-
ple 4, with α = α1 � α2,
where α1 = (a1b2)� and
α2 = (b3c4)�. A∂pos(α) is
depicted on the right. Merg-
ing the states whose labels
contain the same expression,
we obtain APD(α), which
in this case coincides with
APD(α), displayed in page 7.
However, neither APOS(α) is a quotient of A∂pos(α), nor vice-versa. It was
shown [4] that APD(α) is a quotient of A∂pos(α) by the right-invariant equiva-
lence relation ≡1 defined on the set of states in A∂pos(α) by (β1, i) ≡1 (β2, j) if
β1 = β2. Thus, we obtain the following relation between APOS(α) and A∂pos(α).

Corollary 1. A∂pos(α)/≡1 	 APOS(α)/≡o 	 APD(α).

52 S. Broda et al.

We note that, for standard regular expressions, A∂pos coincides (up to isomor-
phism) with the standard position automaton. This is due to the fact that,
whenever γ, γ′ ∈ ∂σi

(∂(τ)) then γ = γ′ = c(τ , i). The average number of states
of APD, which is (43 + o (1))|α|Σ , was estimated using an upper bound p(α) for
the number of elements in ∂(α) (see [4]). The value of p(α) is precisely |Loc(α)|,
obtained by the definition of locations. Thus, we conclude that the average num-
ber of states of APOS is the same. However, an analogous analysis gives an upper
bound for the average number of states for A∂pos of (53 + o (1))|α|Σ (see [4]).

6 Relation with Other Constructions

A conversion from regular expressions to automata that has been recently
studied is the prefix-automaton APre [3,12,17]. For standard regular expres-
sions it is a left-quotient of the APOS, and for linear expressions α one has
APOS(α) 	 APre(α). Being a left-quotient also implies that the determinisa-
tion of APre coincides with the determinisation of APOS [3]. Below we define an
extension of the APre-construction for expressions in R(�). However, the rela-
tionship with the position automaton doesn’t hold any more neither for APOS,
nor for A∂pos. Every state in APre is labelled either with ε or with an expression
of the form ασ, which describes the left-language of that state. To obtain those
expressions, one uses a function R that, given an expression α, computes a set
of normalised expressions of the form α′σ. For α = α1 � α2, R(α) is given by

R(α1 � α2) = { (α′
1 � α2)σ | α′

1σ ∈ R(α1) } ∪ { (α1 � α′
2)σ | α′

2σ ∈ R(α2) }.

One can see that Rε(α) = R(α) ∪ ε(α) is such that L(Rε(α)) = L(α). Thus,
this is the set of final states of APre(α). Then, the remaining construction of
the automaton is done backwards. For each state of the form α′σ the set Rε(α′)
is computed and a transition by σ is added from each element α′′ ∈ Rε(α′) to
α′σ. The state labelled by ε is the initial state of APre(α). Formally, consider
the function pw(α) for words w ∈ Σ� defined as follows: pε(α) = Rε(α), and
pσw(α) =

⋃
α′σ ∈ pw(α) Rε(α′). We have that L(pw(α)) = {x | xw ∈ L(α) }. The

prefix automaton of α is APre(α) = 〈Pre(α), Σ, δPre, ε,Rε(α)〉, where Pre(α) =⋃
w∈Σ� pw(α), δPre = { (α′′, σ, α′σ) | α′σ ∈ Pre(α), α′′ ∈ Rε(α′), σ ∈ Σ }, that

is, for all α′σ ∈ Pre(α), δRPre(α
′σ, σ) = Rε(α′).

Proposition 6. L(APre(α)) = L(α).

For expressions with shuffle APre is neither a quotient of APOS, nor of A∂pos.
Considering the expression α1 = (ab)�

� (bc)� of Example 4, APre(α1) does not
coincide with APOS(α1). The automaton APre(α1) is obtained from APre(α1)
by merging states that after unmarking are labelled with identical expressions.
One can verify that APre(α1) is not a quotient of APOS(α1). Also, the deter-
minisation of APre(α1) does not coincide with the determinisation of APOS(α1).
Moreover, for the linear expression α2 = (a∗ + b∗)� c, the automata A∂pos(α2)
and APre(α2) do not coincide. Nevertheless, the relationship between APre and

Location Based Automata for Expressions with Shuffle 53

APD established in Broda et al. [3] still holds for the set R(�). To show that,
it is enough to consider the dual reversal of APre, i.e. A←−

Pre
(α) 	 APre(αR)R.

Defining L(α) = R(αR)R and ←−p w(α) as pw(α), but using L instead of R, we
have A←−

Pre
(α) = 〈←−

Pre(α), Σ, δ←−
Pre

, Lε(α), ε〉, where
←−
Pre(α) =

⋃
w∈Σ�

←−p w(α) and
δ←−
Pre

(α′, σ) = Lε(α′′) if α′ = σα′′, and δ←−
Pre

(α′, σ) = ∅ otherwise, for σ ∈ Σ.
The following lemma establishes the relationship of L with partial derivatives
for α ∈ R(�).

Lemma 8. Lε(α) =
⋃

σ∈Σ σ∂σ(α) ∪ ε(α).

Then, one can prove that the determinisation of A←−
Pre

is isomorphic to a quotient
of the determinisation of APD by a right-invariant relation (≡Lε

) [3]. The same
holds if one considers Brzozowski derivatives [6] extended with shuffle and the
correspondent deterministic automaton (B in Fig. 1).

Fig. 1. Taxonomy of conversions for regular expressions with shuffle to finite automata.
Edges correspond to operations/conversions between models (which are the nodes). The
edges labelled by R correspond to the reversal operation, and the ones labelled by D
to determinisation. The remaining labelled edges correspond to quotients where the
labels identify the defining relation (see [3] for details).

Broda et al. [3] established relations between different conversions from regu-
lar expressions to equivalent finite automata, using the notion of position, the sets
Follow and Select, and operations such as quotients, determinisation and reversal.
These constructions are the Follow automaton (AF) [11], the Au Point automa-
ton (AMB) [2,15], the McNaughton-Yamada automaton (AMY, AMA) [14,15], as
well as some dual constructions using a double reversal. Considering locations
instead of positions and the definitions of Follow and Select given in this paper,
these constructions are now automatically defined for expressions in R(�). More-
over, all the relationships established between them extend to expressions with

54 S. Broda et al.

shuffle. Those relationships are depicted in Fig. 1. In contrast to the situation
for RE, for R(�) we cannot ensure that D(A←−

Pre
) is always the smallest DFA

among the ones represented, as it is incomparable (for instance) with AMB: for
α1 = (a + b�)�

� (bc)�, AMB(α1) has three states and D(A←−
Pre

(α1)) has eight
states; while for α2 = b� ab, AMB(α2) has seven states and D(A←−

Pre
(α2)) has

six states. Exploring the applicability of the notion of locations to other shuffle
operators or even intersection is left for future work.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Asperti, A., Coen, C.S., Tassi, E.: Regular expressions, au point. CoRR
abs/1010.2604 (2010)

3. Broda, S., Holzer, M., Maia, E., Moreira, N., Reis, R.: A mesh of automata. Inf.
Comput. 265, 94–111 (2019)

4. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259(2), 162–173 (2018)

5. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 48, 197–213 (1993)

6. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
7. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite

automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)
8. Estrade, B.D., Perkins, A.L., Harris, J.M.: Explicitly parallel regular expressions.

In: Ni, J., Dongarra, J. (eds.) 1st IMSCCS, pp. 402–409. IEEE (2006)
9. Garg, V., Ragunath, M.: Concurrent regular expressions and their relationship to

Petri nets. Theoret. Comput. Sci. 96(2), 285–304 (1992)
10. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53

(1961)
11. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
12. Maia, E., Moreira, N., Reis, R.: Prefix and right-partial derivative automata. In:

Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp.
258–267. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 26

13. Mayer, A.J., Stockmeyer, L.J.: Word problems-this time with interleaving. Inf.
Comput. 115(2), 293–311 (1994)

14. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Trans. Comput. 9, 39–47 (1960)

15. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equiv-
alence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 29

16. Sulzmann, M., Thiemann, P.: Derivatives for regular shuffle expressions. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 275–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15579-1 21

17. Yamamoto, H.: A new finite automaton construction for regular expressions. In:
Bensch, S., Freund, R., Otto, F. (eds.) 6th NCMA. books@ocg.at, vol. 304, pp.
249–264. Österreichische Computer Gesellschaft (2014)

https://doi.org/10.1007/978-3-319-20028-6_26
https://doi.org/10.1007/978-3-319-08970-6_29
https://doi.org/10.1007/978-3-319-15579-1_21
https://doi.org/10.1007/978-3-319-15579-1_21

Succinct Representations for
(Non)Deterministic Finite Automata

Sankardeep Chakraborty1 , Roberto Grossi2 , Kunihiko Sadakane3 ,
and Srinivasa Rao Satti4(B)

1 National Institute of Informatics, Tokyo, Japan
sankar@nii.ac.jp

2 Università di Pisa, Pisa, Italy
grossi@di.unipi.it

3 The University of Tokyo, Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

4 Seoul National University, Seoul, South Korea
ssrao@cse.snu.ac.kr

Abstract. Deterministic finite automata are one of the simplest and
most practical models of computation studied in automata theory. Their
extension is the non-deterministic finite automata which also have plenty
of applications. In this article, we study these models through the lens
of succinct data structures where our ultimate goal is to encode these
mathematical objects using information theoretically optimal number of
bits along with supporting queries on them efficiently. Towards this goal,
we first design a succinct data structure for representing any determinis-
tic finite automaton D having n states over a σ-letter alphabet Σ using
(σ−1)n log n(1+o(1)) bits, which can determine, given an input string x
over Σ, whether D accepts x in optimal O(|x|) time. We also consider the
case when there are N < σn non-failure transitions, and obtain various
time-space trade-offs in both the cases. When the input deterministic
finite automaton A is acyclic, not only we can improve the above space
bound significantly to (σ − 1)(n − 1) log n + O(n + log2 σ) bits, we can
also check if an input string x over Σ can be accepted by A optimally in
O(|x|) time. We also exhibit a succinct data structure for representing
a non-deterministic finite automaton N having n states over a σ-letter
alphabet Σ using σn2+n bits of space, such that given an input string x,
we can decide whether N accepts x efficiently in O(n2|x|) time. Finally,
we also provide time and space efficient algorithms for performing several
standard operations such as union, intersection and complement on the
languages accepted by deterministic finite automata.

Keywords: Data and image compression · Computational complexity

The full version of this paper appears as [4]. The work of the first author is supported
by JSPS KAKENHI Grants Number 18H05291.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 55–67, 2021.
https://doi.org/10.1007/978-3-030-68195-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_5&domain=pdf
http://orcid.org/0000-0002-2395-4160
http://orcid.org/0000-0002-7985-4222
http://orcid.org/0000-0002-8212-3682
http://orcid.org/0000-0003-0636-9880
https://doi.org/10.1007/978-3-030-68195-1_5

56 S. Chakraborty et al.

1 Introduction

Automata theory is a branch of theoretical computer science that deals exclu-
sively with the definitions, properties and applications of different mathematical
models of computation. These models play a major role in multiple applied
areas of computer science. One of the most basic and fundamental models that
is studied in automata theory since a long time ago is called the finite automata.
They primarily come in two different types, deterministic finite automata (hence-
forth DFA) and non-deterministic finite automata (henceforth NFA) among oth-
ers. There exists more complex and sophisticated models as well, for example,
Context-free grammars, Turing machines etc. In what follows, let us formally
define DFA and NFA in a nutshell as these are our primary subjects of study in
this article. A DFA D is a quintuple D = (Σ,Q, q0, δ, F) where: Σ is an alphabet
i.e., a finite set of letters, Q is the finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → Q is the transition function and finally, F ⊆ Q is the set of final
states. We often extend the transition function to δ : Q × Σ∗ → Q which is
defined recursively as follows: δ(q, ε) = q for all q ∈ Q, where ε is the empty
string; and δ(q, aw) = δ(δ(q, a), w) for all q ∈ Q, a ∈ Σ, and w ∈ Σ∗. Given the
above definition, we say that the DFA accepts a string x over the alphabet Σ if
and only if δ(q, x) ∈ F . The language L accepted by a DFA D is defined as the
set of all strings accepted by the DFA D, and is denoted by L(D). In the rest of
this paper, we assume that the alphabet Σ is {1, 2, . . . , σ}, and the state set Q
is {q0, q1, . . . , qn−1}. A deterministic automaton A is called acyclic [18] if it has
a unique recurrent state where a state q is defined as recurrent if there exists
a non-empty string x over Σ such that δ(q, x) = q. Non-recurrent states are
typically called transient, and the unique recurrent state (denoted by q′′ ∈ Q)
is classically called the dead state as δ(q′′, σ) = q′′ for all σ ∈ Σ. An NFA is a
conceptual extension of DFAs where the definition of the transition function is
mainly extended. More specifically, for DFA, the transition function is defined
as δ: Q × Σ → Q whereas for NFA, the same is defined as δ: Q × Σ → P(Q)
where P(Q) denotes the power set of Q. Another extension, which is sometimes
used in the literature, is to simply allow more than one initial state in an NFA,
and in this case, the third item in the tuple becomes I denoting the set of initial
states, instead of singleton {q0}. The rest of above quintuple definition remains
as it is for NFA. Thus, in the case of NFA N , the language L(N) is defined as
{x | ∃q∈I∃q′∈F [q′ ∈ δ(q, x)]}. We refer the readers to the classic texts of [16,22]
for a thorough discussions on these mathematical models and automata theory
in general.

Even if a DFA is defined as an abstract mathematical concept, still it has a
myriad of practical applications. More specifically, it is used in text processing,
compilers, and hardware design [22]. Quite often it is implemented in small
hardware and software tools for solving various specific tasks. For example, a
DFA can model a software that can figure out whether or not online user input
such as email addresses are valid. DFAs/NFAs are also used for network packet
filtering. In some of these applications, the alphabet is large and there is a

Succinct Representations for (Non)Deterministic Finite Automata 57

failure/exit state so that only a subset of transitions go to non-failure states; so
we call the latter ones non-failure transitions.

Despite having so many applications in practically motivated problems, we
are aware of only a few studies of encoding arbitrary DFAs and NFAs from the
point of view of succinct data structures (refer to the related work section) where
the goal is to store an arbitrary element from a set Z of objects using the infor-
mation theoretic minimum log(|Z|)+o(log(|Z|)) bits of space while being able to
support the relevant set of queries efficiently, which is what we focus on in this
paper. We also assume the usual model of computation, namely a Θ(log n)-bit
word RAM model where n is the size of the input.

Related Work: The field of succinct data structures originally started with the
work of Jacobson [17], and by now it is a relatively mature field in terms of
breadth of problems considered. To illustrate this further, there already exists a
large body of work on representing various combinatorial objects succinctly, such
as trees [19,20], interval graphs [1] etc. Regarding encoding DFA/NFA, the work
on Wheeler NFA [15] can be considered as an attempt to encode particular classes
of NFA succinctly, and this work has recently been generalized to arbitrary NFA
in [7]. In the later part of our paper, we will compare these results with ours.

For DFA/NFA, other than the basic structure that is mentioned in the intro-
duction, there exists many extensions/variations in the literature, for example,
two-way finite automata, Büchi automata and many more. Researchers generally
study the properties, limitations and applications of these mathematical struc-
tures. One such line of study that is particularly relevant to us for this paper
is the research on counting DFAs/NFAs. Since the fifties there are plenty of
attempts in exactly counting the number of DFAs/NFAs with n states over the
alphabet Σ, and the state-of-the-art result is due to [3] for DFAs and [11] for
NFAs. We refer the readers to the survey of Domaratzki [10] for more details.
Basically, from these results, we can deduce the information theoretic lower
bounds on the number of bits required to represent any DFA or NFA. Then we
augment these lower bounds by designing succinct data structures capable of
executing algorithms efficiently using this representation, and this is our main
contribution.

DFA and NFA Enumeration: After a number of efforts by several authors,
finally Bassino and Nicaud [3] found a matching upper and lower bound on the
number of non-isomorphic initially-connected (i.e., all the states are reachable
from the initial state) DFA’s. They showed that the number of DFAs with n
states over an alphabet of size σ is Θ(n22nS2(σn, n)) where S2(n,m) denotes
the Stirling numbers of the second kind. Using the approximation of the Stirling
numbers of the second kind [14], which states that S2(n,m) ≈

mn

m! , we can obtain
the information theoretic lower bound for representing any DFA having n states
and σ-sized alphabet is given by lg(n22nS2(σn, n)) = (σ − 1)n lg n + O(n) bits.
On the other hand, Domaratzki et al. [11] showed that there are asymptotically
2σn2+n initially connected NFAs on n states over a σ-letter alphabet with a

58 S. Chakraborty et al.

fixed initial state and one or more final states. Thus, information theoretically,
we need at least σn2 + n bits to represent any NFA. In what follows later, we
show that we can represent any given DFA/NFA using asymptotically optimal
number of bits as mentioned here. Throughout this paper, we assume that the
input DFAs/NFAs that we want to encode succinctly are initially connected.

1.1 Our Main Results and Paper Organization

The classical representation of DFAs/NFAs consists of explicitly writing the
transition function δ in a two dimensional array J [0..n − 1][1..σ] having n rows
corresponding to the n states of the DFA/NFA and σ (where |Σ| = σ) columns
corresponding to the alphabet Σ such that J [i][j] = δ(qi, j) where qi ∈ Q, j ∈ Σ.
For DFA, the entry in J [i][j] is a singleton set whereas for NFA it could possibly
contain a set having more than one state. Thus, the space requirement for repre-
senting any given DFA (NFA respectively) is given by O(nσ log n) (O(n2σ log n)
respectively) bits. These space bounds are clearly not optimal – for the DFAs,
it is off by an additive n log n term from the information theoretic minimum,
while for the NFAs, it is off by a multiplicative factor of log n from the optimal
bound. We alleviate this discrepancy in the space bounds by designing optimal
succinct data structures for these objects.

Towards this goal, in Sect. 2.1 we first discuss the relevant prior work from [3],
and show that, by using suitable data structures, their work already gives a
succinct encoding of DFA. But the major drawback of this encoding is that it
is not capable of handling the problem of checking whether a string is accepted
by the DFA extremely efficiently. In Section 2.3, we overcome this problem by
designing a succinct data structure for DFA, which can also check the string
acceptance almost optimally. We summarize our results below.

Theorem 1. Given a DFA D having n states and working over an alphabet Σ
of size σ, and a query string x for which we want to check the membership in
L(D), there exists a succinct encoding for D taking:

– (σ − 1)n log n + σn + o(σn) bits, to support queries in O(|x|) time;
– (σ − 1)n log n + O(n log σ) bits, to support queries in O(|x| log σ) time; and
– (σ − 1)n log n + n log σ + O(n) bits, to support queries in O(|x| log n) time.

If D has N < σn non-failure transitions, then there exists an encoding taking:

– (N − n) log n + O(nσ) bits, to support queries in O(|x|) time;
– (N − n) log n + O(N log σ) bits, to support queries in O(|x| log σ) time; and
– N(log n + log σ + 1.45) bits, to support queries in O(|x| log n) time.

The upper bounds in Theorem 1 save roughly n log n bits with respect to the
immediate representation of the DFA. The former upper bound is optimal as it
matches the information-theoretical lower bound in Sect. 1, up to lower order
terms. As for the latter upper bound, we do not know its optimality but it is
smaller than the information-theoretical lower bound of �log

(
n2

N

)� + Θ(N log σ)

Succinct Representations for (Non)Deterministic Finite Automata 59

bits derived for edge-labeled deterministic directed graphs [13]. Indeed, DFAs
can be seen as a special case of these graphs where n is the number of nodes,
N ≥ n − 1 is the number of arcs, and σ is the maximum node degree.1

We can improve the above space bound significantly if the given DFA is
acyclic along with obtaining optimal query time for string acceptance checking.
More specifically, in full version of this paper, we obtain the following result in
this case.

Theorem 2. Given an acyclic DFA A having n − 1 transient states, a unique
dead state and working over an alphabet Σ of size σ, there exists a succinct
encoding for A taking (σ−1)(n−1) log n+3n+O(log2 σ)+o(n) bits of space, which
can optimally determine, given an input string x over Σ, whether A accepts x
in time proportional to the length of x, using constant words of working space.

This is followed by the succinct data structure for NFA (see full version of the
paper for the proof) where we prove the following result. Note that the running
time for string acceptance checking in the following theorem is close to optimal,
due to the lower bound of Equi et al. [12].

Theorem 3. Given an NFA N having n states and working over an alphabet
Σ of size σ, there exists a succinct encoding for N taking σn2 + n bits of space,
which can determine, given an input string x over Σ, whether N accepts x in
O(n2|x|) time, using 2n bits of working space.

Next we move on to discuss how one can support several standard opera-
tions such as union and intersection of two languages accepted by the deter-
ministic finite automata. Classically it is done via the product automaton con-
struction [16,22], and here we provide a time and space efficient algorithm for
performing this construction. More specifically, we show the following theorem
in the full version of our paper.

Theorem 4. Suppose we are given the succinct representations for two DFAs
D1 (having n states) and D2 (having n′ states) respectively such that both are
working over the same alphabet Σ. Also suppose that the product automaton
(denoted by P) has n′′ states where n′′ ≤ nn′. Then, using O(σn′′) expected
time and O(n′′ log n′′) bits of working space, we can directly construct a suc-
cinct representation for P. Moreover, P can be represented optimally using
(σ−1)n′′ log n′′+O(n′′ log σ) bits overall, and by suitably defining the final states
of P, we can make P accept either L(D1) ∪ L(D2) or L(D1) ∩ L(D2). Finally,
given an input string x over Σ, we can decide whether x ∈ L(P) in O(|x| log σ)
time using constant words of working space.

1 A directed graph with labels on its arcs is deterministic if no two out-neighbor arcs

have the same label. Since there are �log
(
n2

N

)� directed graphs [13] with n nodes
and N arcs, each deterministic graph G = (V, E) can have L =

∏
u∈V du! label

assignments for its arcs, where du s the out-degree of node u and N =
∑

u∈V du.
Note that log L = Θ(N log σ) when labels are from Σ and thus du ≤ σ.

60 S. Chakraborty et al.

We conclude in Sect. 3 with some remarks on future research avenues.

Preliminaries: We will assume the knowledge of basic graph theoretic terminol-
ogy (like trees, paths etc.) as given in [8] and basic graph algorithms (mostly the
depth first search (henceforth DFS) traversal of a graph and its related concepts)
as given in [6].

Fig. 1. A diagram of width m = 5 and height n = 4, a boxed diagram, a k-Dyck
diagram and a k-Dyck boxed diagram with k = 2.

2 Succinct Representations for DFA and NFA

In this section, we provide all the upper bound results of our paper dealing with
DFA/NFA. Throughout this section, whenever we mention DFA (NFA resp.),
it should refer to an initially-connected deterministic (non-deterministic resp.)
finite automata having n states and working over an alphabet Σ of size σ. With
this notation in mind, we start with the succinct encoding of DFA first.

2.1 Succinct Encoding of DFA

Bassino and Nicaud [3] proved a beautiful bijection between the state transition
diagram of any DFA and pairs of integer sequences which can be represented by
boxed diagrams (will be defined shortly) along with providing an efficient algo-
rithm to perform this construction. We will refer the readers to [3] for complete
details regarding the bijection, counting and many other details that we choose
to not repeat here. Later, Almeida et al. [2] also analysed the construction of
Bassino and Nicaud [3] from which one can obtain a succinct encoding of DFA.
These encodings do not support membership queries efficiently.

In what follows, we provide another succinct encoding based on the construc-
tion of Bassino and Nicaud [3] which is then used in Sect. 2.3 for efficient mem-
bership query support as well. Following [3], a diagram of width m and height
n is defined as a sequence (x1, . . . , xm) of non-decreasing non-negative integers
such that xm = n. See Fig. 1 for better visual description and understanding. A
boxed diagram can be defined as a pair of sequences ((x1, . . . , xm), (y1, . . . , ym))
where (x1, . . . , xm) is a diagram and for all i (such that 1 ≤ i ≤ m), the yi-th box
of the column i of the diagram is marked. Note that 1 ≤ yi ≤ xi. Thus, a diagram
can lead to

∏m
i=1 xi boxed diagrams. A k-Dyck diagram of size n is defined as a

Succinct Representations for (Non)Deterministic Finite Automata 61

diagram of width m := (k−1)n+1 and height n such that xi ≥ �i/(k − 1)� for all
i ≤ m− 1. Finally, a k-Dyck boxed diagram of size n is boxed diagram where the
first coordinate (x1, . . . , x(k−1)n+1) is a k-Dyck diagram of size n. Given these
definitions, Bassino and Nicaud [3] proved the following theorem.

Theorem 5. [3] The set Dn containing non-isomorphic initially-connected
DFAs having n states and working over a σ-letter alphabet is in bijection with
the set Bn of σ-Dyck boxed diagrams of size n. Moreover, the algorithms to
construct the transition diagram of the DFA from k-Dyck boxed diagram, and
vice versa run in linear time and space.

Thus, by applying the above theorem, from any given DFA with n states
and σ-letter alphabet, [3] produces a σ-Dyck boxed diagrams of size n, which
can be in turn represented by two integer arrays Max [1..m] and Boxed [1..m] of
length m := (σ −1)n+1 each. Furthermore, from these two arrays, it is possible
to entirely reconstruct the DFA using the algorithm of Theorem 5. Thus, it is
sufficient to store just these two arrays in order to encode any given DFA. For
more details, readers are referred to [3]. For an example, see Fig. 2 which will
also serve as the working example for this part of our paper.

1

2

4

5

6
7

a
a

a

a

a

a

a

a

b

b
b

b
b

b

b

b
c

c

c

c

c

c

c

c
c

3

1
2

2

2

2

3
4
5
6
7

7 6
4

4 4

4
4 5

53

3
3

3
3

1

1
1

6

Fig. 2. Three ways to define the same DFA. This DFA will serve as the working exam-
ple for our discussion. By using the techniques of [3], this DFA can be entirely rep-
resented by the Max [1..15] = {3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7} and Boxed [1..15] =
{1, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 4, 5, 3, 6} arrays of length (σ − 1)n + 1 = 15 each.

First, we observe that, 1 ≤ Max [1] ≤ Max [2] ≤ · · · ≤ Max [m] ≤ n and 1 ≤
Boxed [i] ≤ Max [i] for each i = 1, 2, . . . ,m. This happens precisely because the
translation is obtained by following a DFS on the DFA using the lexicographic
order of words, and on each backtracking edge adding to the first vector the
number of states scanned so far, and to the second vector the state reached. This
also explains why each entry of these two arrays are upper bounded by n, the
number of states of the given DFA. Now we consider the number of bits needed to
encode the array Max [1..m]. It is easy to transform this array into an equivalent

62 S. Chakraborty et al.

bit vector M of length n + m with n ones in it (by storing the multiplicities of
each of the n values from 1 to n in unary). Now, we encode the bit vector M

using the structure of [21] using log
(
(n+m)

n

)
+o(n)+O(log log(m+n)) bits. Since

m = (σ−1)n+1, this space is n log σ+O(n) bits. Next we consider the number of
bits required for array Boxed [1..m]. Because each entry of this array is an integer
from 1 to n, we can use the result of [9] to represent the Boxed [1..m] array using
(σ − 1)n log n + O(log2 m) bits. Thus, in total, the size of the representation is
(σ−1)n log n+n log σ+O(n) bits. Because the information theoretic lower bound
is (σ − 1)n log n + O(n) bits for the representation of DFA, this representation
is succinct. In what follows, we show how to further reduce the encoding space.

2.2 Reducing the Space Further

Now consider the case when there is a failure/exit state labeled 0, and only
N transitions among all the σn transitions go to non-failure states, for some
n ≤ N ≤ σn. Note that Boxed has N − n + 1 non-zero values. In this case
we can reduce the space for Boxed [1..m] by using a new bitvector Z[1..m]
which has N − n + 1 ones. We use a new array Boxed ′[1..N − n + 1] which
stores non-zero values of Boxed [1..m]. Then Boxed [i] is computed as follows.
If Z[i] = 0, Boxed [i] = 0 (transition to the failure state). If Z[i] = 1,
Boxed [i] = Boxed ′[partial rank1(Z, i)]. If we use the data structure of [5], Z
is represented in σn + o(σn) bits, which is asymptotically smaller than the
space lower bound of (σ − 1)n log n + O(n). But, by using the data structure
of [21], the bitvector Z can be represented in log

(
σn
N

)
+ o(N)+O(log log(σn)) =

N log σne
N + o(N) ≤ N log σ + N log e + o(N) bits. The space for Boxed ′ is

(N − n + 1) log n bits. Therefore the total space for representing a DFA with N
non-failure transitions is (N − n) log n + N log σ + N log e + o(N) bits, i.e., less
than log n + log σ + 1.45 bits per transition.

Given a string x over Σ, it takes linear time (in the size of the DFA, i.e.,
O(σn) time) to decide whether the DFA accepts the string x, which is clearly not
optimal as ideally it should be performed in time O(|x|). This happens because
the algorithm of Theorem 5 actually unravels the DFA from these two arrays
Max [1..m] and Boxed [1..m], and then checks whether the input string can be
accepted or not. Thus, from the point of view of string acceptance, these encod-
ings of DFA (including the encodings of Bassino and Nicaud [3], and Almeida
et al. [2]) are not optimal, whereas from the space requirement point of view,
these are optimal. This motivates the need for a succinct encoding of a given
DFA, where the problem of string acceptance can be performed in optimal time.
In what follows, we provide such an encoding.

2.3 Succinct Data Structure for DFA

To design a succinct data structure for DFA, we need the following three bitvec-
tors F , P and T in addition to an integer array NewBoxed [1..m] (that can be
obtained from the Boxed [1..m] array of the previous section, as described later),

Succinct Representations for (Non)Deterministic Finite Automata 63

which are defined as follows. P is a balanced parentheses sequence of length 2n
obtained from the lexicographic depth-first search (DFS) tree of the given input
automaton D. More specifically, given any DFA D, we first perform the lexico-
graphic DFS on D to generate the lexicographic DFS tree R of D, i.e., while
looking for a new edge to traverse during DFS, the algorithm always searches
in lexicographic order of edge labels. For example, in Fig. 2, from any vertex,
lexicographic DFS first tries to traverse the edge labeled a, followed by b and
finally c. The tree R is represented as a balanced parenthesis sequence P together
with auxiliary structures to support the navigational queries on R, as mentioned
in [19], using 2n + o(n) bits. The bitvector F is used to mark all the final states
of the input DFA, hence it takes n bits.

Fig. 3. The extended lex-DFS tree S of the automaton of Fig. 2 along with the corre-
sponding bitvectors P , T , and the NewBoxed [1..15] array (the elements of this array
are drawn exactly below the corresponding 0s with which they share one to one cor-
respondence with). Note that, for the same automaton Boxed [1..15] array is given as
Boxed [1..15] = {1, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 4, 5, 3, 6}.

Before explaining the other bitvector, T , required for our succinct encoding,
we want to explain the contents of Fig. 3. The tree depicted in the figure is what
we call an extended lexicographic DFS tree or extended lex-DFS tree (denoted by
S) in short. If we delete the squared nodes and their incident edges (originating
from the circled nodes), we obtain the lexicographic DFS tree of the automaton
D. Actually these edges represent the back edges/cross edges/forward edges [6]
(i.e., non-tree edges) in the DFS tree of the automaton D. Traditionally the
vertices in the square are not drawn (as in our case of Fig. 3), rather the edges
point to the nodes in the circle only (hence all the nodes appear only once). We
have chosen to draw and define the extended lex-DFS tree this way as it helps
us to design and explain our succinct data structure well. Also note that, edges
originating from a circled node and going to another circled node represents tree
edges whereas edges from circled to squared nodes represent non-tree edges.

64 S. Chakraborty et al.

Now given the extended lex-DFS tree S, we visit the nodes of S in DFS
order and append a bit string of length σ for each vertex v of S marking which
of its children are attached to v via tree edges (marked with 1) and which are
attached to v via non-tree edges (marked with 0) in the lexicographic order of
the edge labels. The string obtained this way is referred to as T . Thus, T is
a bit-vector of length σn which captures the information about the tree and
non-tree edges of S. More specifically, it has exactly n − 1 ones, which have
one-to-one correspondence with the tree edges of the lexicographic DFS tree
of DFA D, and has exactly (σ − 1)n + 1 zeros, which correspond to non-tree
edges of the lexicographic DFS tree of DFA D. See Fig. 3 for an example. We
relabel all the states of D such that the i-th vertex (state) in R in preorder
has label i, and also modify the transition function accordingly. Now it is easy
to see that, for the state with label i (1 ≤ i ≤ n), the corresponding node in
the lexicographic DFS tree has exactly σ outgoing edges, and we encode the
tree edges among them using the bits in the range T [σ(i − 1) + 1..σi]. More
specifically, T [σ(i−1)+ c] = 1 if and only if the outgoing edge labeled c is a tree
edge (1 ≤ c ≤ σ). Similarly, we can also find the j-th outgoing tree edge from
the state i by select1(T, j + rank1(T, σ(i − 1))).

In what follows, we show three different ways to represent the T array. (1) In
the first method, we simply encode T using the structure of [5] as a bitvector of
length σn having exactly n−1 ones while supporting constant time rank/select
queries in T . (2) In the second method, we compress T by observing that the
positions of 1s in the T array form an increasing sequence, hence by using the
data structure D(n − 1, σn, ε) of [23], T can be encoded in O(n log σ) bits (by
setting ε = 1/ log(σ − 1)) while supporting access, rank and select operations
in O(log σ) time. (3) Finally, we can encode T using the data structure of [21]
in n log σ + O(n) bits (like we did for Max array in Sect. 2.1) while supporting
the rank query in O(log n) time and select in O(1) time.

Now let us define the new integer array NewBoxed [1..m]. First, observe that
elements of the array Boxed [1..m] are nothing but the leaves (i.e., node labels
in the squared nodes) of the extended lex-DFS tree S in the left to right order.
More specifically, they are the node labels of the destinations of the non-tree
edges emanating from the nodes of the lexicographic DFS tree of the automaton
D in their preorder. Instead of this specific ordering (followed in the Boxed [1..m]
array), NewBoxed [1..m] lists the same node labels in the order of their appear-
ance in the T bitvector (from left to right). Note that, as mentioned previously,
these node are marked by 0s in T and they are in one-to-one correspondence with
all the non-tree edges of the lexicographic DFS tree of the automaton D. Thus,
the NewBoxed [1..m] array contains the same node labels as the Boxed [1..m]
array, but in a different order. See Fig. 3 for an example. This completes the
description of our succinct data structure for DFA. Note that Max is no longer
used in our data structure.

Space Complexity. We now analyze the space complexity of our data struc-
ture. The array NewBoxed [1..m] takes (σ−1)n log n+O(log2 m) bits (by similar

Succinct Representations for (Non)Deterministic Finite Automata 65

analysis as before for the Boxed [1..m] array). The bitvector F consumes n bits.
The bitvector P is stored using the structure of [19], hence it occupies 2n+ o(n)
bits. Depending on the three different choices for storing T , the space require-
ment is (1) σn+o(σn), (2) O(n log σ) or (3) n log σ+O(n) bits. Thus, the overall
space usage is as stated in the Theorem 1.

It is easy to further reduce the size if the DFA has only N < σn non-failure
transitions. Using the bitvector Z[1..m] (as defined in Sect. 2.2) for indicating
non-failure transitions, the array NewBoxed [1..m] is compressed to N − n + 1
non-zero values, which can be stored in (N − n) log n + O(log2 n) bits. Since Z
is a bit vector of length σn with N ones in it, we can use the three choices as
above for representing T , using (1) σn + o(σn), (2) O(N log σ) or (3) N log σ +
1.44N +o(N) bits. Thus the overall space usage is (1) (N −n) log n+O(nσ), (2)
(N −n) log n+O(N log σ), or (3) (N −n) log n+(N +n) log σ+N log e+o(N) ≤
N(log n + log σ + 1.45) bits, depending on the representation used for T and Z.

Query Algorithm. Suppose we are given an input string x of length y over Σ,
and we need to decide if the DFA D accepts x or not. We start the following
procedure from the initial state (stored explicitly using O(log n) bits) and repeat
until the end of the input string x. At any generic step, to figure out the transition
function δ(q, c) := q′ where 1 ≤ q, q′ ≤ n are the states, we first look at the bit
T [σ(q − 1) + c]. If it is 1, the outgoing edge labeled c from state q is a tree edge.
Let j := rank1(T, σ(q−1)+c)−rank1(T, σ(q−1)). Then the outgoing edge is the
j-th tree edge of node q in the lex DFS tree. Therefore q′ = child(q, j) (supported
using the structure of [19]). If the bit is 0, the outgoing edge labeled c from state
q is a non-tree edge. Let j := rank0(T, σ(q − 1) + c). Then the edge is the j-th
non-tree edge in the DFA, and q′ is obtained by q′ := NewBoxed [j]. Hence, when
we reach the end of x, and if we are at an accepting/final states (can be figured
out from the bitvector F), we say that the DFA D accepts x. Now, depending
on the three choices for storing the T array and supporting rank/select queries
in it, we obtain three different query time bounds for accepting x. In option
(1), the input string x can be accepted optimally in O(|x|) time. In (2), as the
rank operations on T take O(log σ) time while all other operations, at each
step, take O(1) time, the overall run time for checking the membership of x is
O(|x| log σ). Finally, in (3), because of the O(log n) time rank operation on T ,
the membership of x can be checked in O(|x| log n) time. The query times remain
the same, even in the case where we have N < σn non-failure transitions (using
the data structures mentioned in the previous paragraph). This completes the
proof of Theorem 1.

Note that Cotumaccio and Prezza [7] recently gave an encoding for DFAs
using log p + log σ + 2 bits per transition (where 1 ≤ p ≤ n is compressibility
parameter), while our data structure takes log n+log σ+1.45 bits per transition
with efficient support for membership checking.

66 S. Chakraborty et al.

3 Concluding Remarks

We considered the problem of succinctly encoding any given DFA D, acyclic DFA
A or NFA N so as to check efficiently if they accept a given input string. To this
end, we successfully designed succinct data structures for them that also sup-
port the string acceptance query efficiently for DFAs, acyclic DFAs, and NFAs.
We believe that our work will spur further interest in designing succinct data
structures for other mathematical models from the world of automata theory in
future. For example, it would be interesting to see if other variants of automata
can also be succinctly encoded with efficient query support mechanism.

References

1. Acan, H., Chakraborty, S., Jo, S., Satti, S.R.: Succinct data structures for families
of interval graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS
2019. LNCS, vol. 11646, pp. 1–13. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-24766-9 1

2. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)

3. Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)

4. Chakraborty, S., Grossi, R., Sadakane, K., Satti, S.R.: Succinct representation for
(non) deterministic finite automata. CoRR abs/1907.09271 (2019)

5. Clark, D.R.: Compact pat trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3 edn. MIT Press, Cambridge (2009)

7. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. CoRR
abs/2007.07718 (2020)

8. Diestel, R.: Graph Theory, 4th edn. Graduate texts in mathematics, vol. 173.
Springer, Heidelberg (2012)

9. Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In:
STOC, pp. 593–602 (2010)

10. Domaratzki, M.: Enumeration of formal languages. Bull. EATCS 89, 117–133
(2006)

11. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages
accepted by finite automata with n states. J. Autom. Lang. Comb. 7(4), 469–486
(2002)

12. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string
matching for graphs. In: 46th ICALP. LIPIcs, vol. 132, pp. 55:1–55:15 (2019)

13. Farzan, A., Munro, J.I.: Succinct encoding of arbitrary graphs. Theor. Comput.
Sci. 513, 38–52 (2013)

14. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

15. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theor. Comput. Sci. 698, 67–78 (2017)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation - International Edition, 2 edn. Addison-Wesley, Boston
(2003)

https://doi.org/10.1007/978-3-030-24766-9_1
https://doi.org/10.1007/978-3-030-24766-9_1

Succinct Representations for (Non)Deterministic Finite Automata 67

17. Jacobson, G.J.: Succinct static data structures. Ph.D. thesis, Carnegie Mellon Uni-
versity (1998)

18. Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Discrete
Appl. Math. 154(3), 537–551 (2006)

19. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

20. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 16 (2014)

21. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

22. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

23. Sumigawa, K., Sadakane, K.: An efficient representation of partitions of integers.
In: Iliopoulos, C., Leong, H.W., Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol.
10979, pp. 361–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94667-2 30

https://doi.org/10.1007/978-3-319-94667-2_30
https://doi.org/10.1007/978-3-319-94667-2_30

Optimising Attractor Computation
in Boolean Automata Networks

Kévin Perrot2, Pacôme Perrotin1(B), and Sylvain Sené2

1 Aix Marseille University, Université de Toulon, CNRS, LIS, Marseille, France
pacome.perrotin@lis-lab.fr

2 Université Publique, Marseille, France

Abstract. This paper details a method for optimising the size of
Boolean automata networks in order to compute their attractors under
the parallel update schedule. This method relies on the formalism of mod-
ules introduced recently that allows for (de)composing such networks. We
discuss the practicality of this method by exploring examples. We also
propose results that nail the complexity of most parts of the process,
while the complexity of one part of the problem is left open.

Keywords: Boolean automata networks · Modularity · Optimisation

1 Introduction

Boolean automata networks (BANs) are studied for their capacity to succic-
ntly expose the complexity that comes with the composition of simple entities
into a network. They belong to a wide family of systems which include cellular
automata and neural networks, and can be described as cellular automata with
arbitrary functions and on arbitrary graph structures.

Understanding and predicting the dynamics of computing with BANs has
been a focus of the scientific community which studies them, in particular since
their applications include the modelling of gene regulatory networks [13,15,22]
[5,6]. In those applications, fixed points of a BAN are often viewed as cellular
types and limit cycles as biological rhythms [13,22]. It follows that most biologi-
cal studies relying on BANs require the complete computation of their dynamics
to propose conclusions. The complete computation of the dynamics of BANs is
an exponentially costly process. Indeed, for n the size of a BAN, the size of its
dynamics is precisely 2n. The dynamics of a BAN is usually partitioned in two
sorts of configurations: the recurring ones that are parts of attractors and either
belong to a limit cycle or are fixed points; the others that evolve towards these
attractors and belong to their attraction basins. The questions of characterising,
computing or counting those attractors from a simple description of the net-
work have been explored [1,2,7,8,10,16], and have been shown to be difficult
problems [3,4,8,17,18].

In this paper, we propose a new method for computing the attractors of a
BAN under the parallel update schedule. For any input network, this method
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 68–80, 2021.
https://doi.org/10.1007/978-3-030-68195-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_6

Optimising Attractor Computation in Boolean Automata Networks 69

Fig. 1. Illustration of the optimisation pipeline explored in this paper. Each arrow
corresponds to a part of the pipeline, and a section in this article.

generates another network which is possibly smaller and which is guaranteed
to possess attractors isomorphic to those of the input network. Computing the
dynamics of this smaller network therefore takes as much time as needed to
compute the dynamics of the input networks, divided by some power of two.

This method uses tools and results developed in previous works by the
authors [19,20]. These works involve adding inputs to BANs, in a generalisa-
tion called modules. In some cases, the entire computation of a module can be
understood as functions of the states of its inputs, disregarding the network
itself. In particular, a result (Theorem 16) states that two networks that have
equivalent such computations share isomorphic attractors.

Section 2 starts by exposing all the definitions needed to read this paper.
Section 3 explores the question of obtaining an acyclic module (AM) from a
BAN. Section 4 explains how to extract so called output functions from a module.
Section 5 details how to generate a minimal module from a set of output func-
tions. Finally Sect. 6 shows the final step of the method, which implies construct-
ing a BAN out of an AM and computing its dynamics. Each section explores
complexity results of the different parts of the process, and details examples
along the way. An illustrative outline of the paper can be found in Fig. 1.

2 Definitions

2.1 Boolean Functions

In this paper, we consider a Boolean function as any function f : B
A → B,

for A a finite set. An affectation x of f is a vector in B
A. When considered as

the input or output of a complexity problem, we encode Boolean functions as
Boolean circuits. A Boolean circuit of f is an acyclic digraph in which nodes
without incoming edges are labelled by an element in A, and every other node
by a Boolean gate in {∧,∨,¬}, with a special node marked as the output of the
circuit. The evaluation f(x) is computed by mapping x to the input nodes of the

70 K. Perrot et al.

Fig. 2. On the left, the interaction digraph of FA, as described in Example 1. On the
right, the interaction digraph of FB , as described in Example 2.

circuit, and propagating the evaluation along the circuit using the gates until
the output node is reached.

2.2 Boolean Automata Networks and Acyclic Modules

Boolean Automata Networks. BANs are composed of a set S of automata.
Each automaton in S, or node, is at any time in a state in B. Gathering those
isolated states into a vector of dimension |S| provides us with a configuration of
the network. More formally, a configuration of S over B is a vector in B

S . The
state of every automaton is bound to evolve as a function of the configuration of
the entire network. Each node has a unique function, called a local function, that
is predefined and does not change over time. A local function is thus a function
f defined as f : B

S → B. Formally, a BAN F is a set that assigns a local function
fs over S for every s ∈ S.

BANs are usually represented by the influence that automata hold on each
other. As such the visual representation of a BAN is a digraph, called an inter-
action digraph, whose nodes are the automata of the network, and arcs are the
influences that link the different automata. Formally, s influences s′ if and only
if there exist two configurations x, x′ such that fs′(x) �= fs′(x′) and for all r in
S, r �= s if and only if xr = x′

r.

Example 1. Let SA = {a, b, c, d}. Let FA be the BAN defined by fa(x) = xd,
fb(x) = fc(x) = xa, and fd(x) = ¬xb ∨¬xc. The interaction digraph of this BAN
is depicted in Fig. 2 (left panel).

Example 2. Let SB = {St, Sl, Sk, Pp,Ru, S9, C, C25,M,C∗}. Let FB be the
BAN defined by fSt(x) = ¬xSt, fSl(x) = ¬xSl ∨ xC∗ , fSk(x) = xSt ∨ ¬xSk,
fPp(x) = xSl ∨ ¬xPp, fRu(x) = fS9(x) = ¬xSk ∨ xPp ∨ ¬xC ∨ ¬xC∗ , fC(x) =
¬xRu ∨ ¬xS9 ∨ ¬xSl, fC25(x) = ¬xPp ∨ xC , fM (x) = xPp ∨ ¬xC , and fC∗(x) =
¬xRu ∨ ¬xS9 ∨ xC25 ∨ ¬xM . The interaction digraph of this BAN is depicted in
Fig. 2 (right panel).

In the scope of this paper, BANs (and modules) are udated according to the
parallel update schedule. Formally, for F a BAN and x a configuration of F , the

Optimising Attractor Computation in Boolean Automata Networks 71

update of x under F is denoted by configuration F (x), and defined as for all s
in S, F (x)s = fs(x).

Example 3. Consider FA of Example 1, and x ∈ B
SA such that x = 1001. We

observe that FA(x) = 1111. Configurations 1000 and 0111 are recurring and
form a limit cycle of size 2, as well as configurations 0000, 0001, 1001, 1111,
1110 and 0110 that form a limit cycle of size 6.

Dynamics and Attractors. We define the dynamics of a BAN F as the
digraph with B

S as its set of vertices. There exists an edge from x to y if and
only if F (x) = y. An attractor of F is a strongly connected component of its
dynamics. Computing the dynamics of a BAN from the description of its local
function is an exponential process. See [21] for a more throughout introduction
to BANs and related subjects.

Modules. Modules were first introduced in [19]. A module M is a BAN with
added inputs. It is defined on two sets: S a set of automata, and I a set of
inputs, with S∩I = ∅. Similarly to standard BANs, we can define configurations
as vectors in B

S , and we define input configurations as vectors in B
I . A local

function of a module updates itself based on a configuration x and an input
configuration i, concatenated into one configuration. Formally, a local function
is defined from B

S∪I to B. The module M defines a local function for every node
s in S.

Example 4. Let Me be the module defined on Se = {p, q, r} and I = {α, β},
such that fp(x) = xα, fq(x) = ¬xp, and fr(x) = xq ∨ ¬xβ .

We represent modules with an interaction digraph, in the same way as for
BANs. The interaction digraph of a module has added arrows that represent the
influence of the inputs over the nodes; for every node s and every input α, the
node s of the interaction digraph has an ingoing arrow labelled α if and only
if α influences s, that is, there exists two input configurations i, i′ such that
for all β in I, β �= α if and only if iβ = i′β , and x a configuration such that
fs(x · i) �= fs(x · i′), where · denotes the concatenation operator.

A module is acyclic if and only if its interaction digraph is cycle-free.

Recursive Wirings. A recursive wiring over a module M is defined by a partial
function ω : I �→ S. The result of such a wiring is denoted �ω M , a module
defined over sets S and I \ dom(ω), in which the local function of node s is
denoted f ′

s and defined as

∀x ∈ B
S∪I\dom(ω), f ′

s(x) = fs(x ◦ ω̂), with ω̂(i) =
{

ω(i) if i ∈ dom(ω)
i if i ∈ I \ dom(ω) .

72 K. Perrot et al.

Output Functions. Output functions were first introduced in [20] and present
another way of computing the evolution of an acyclic module. In the Boolean
case, those functions are defined on B

I×{1,...,D} → B, for I the input set of
the module, and D some integer. We interpret an input in B

I×{1,...,D} as an
evaluation over B of a set of variables I × {1, . . . , D}, and for α ∈ I and d ≤ D,
we denote this variable by αd. In the context of an acyclic module M , αd is
refering to the evaluation of the input α on the dth update of the module. A
vector j ∈ B

I×{1,...,D} simply describes an evaluation of all the inputs of the
network over D iterations. With such a vector, and x ∈ B

S , it is easy to see that
the acyclic module M can be updated k times in a row, for any k ≤ D. The result
of this update is denoted by M(x, j[1,...,k]). The delay of an output function O
is the maximal value in the set of all the d ∈ N for which there exists α ∈ I such
that variable αd has an influence on the computation of O. That is, there exists
a couple of vectors x, x′ ∈ B

I×{1,...,D} which are equal except for x(α,d) �= x′
(α,d),

and O(x) �= O(x′). Finally, for M an acyclic module defined on the sets S and
I, for D a large enough integer, for x ∈ B

S and j ∈ B
I×{1,...,D} some vectors,

and for s a node in S, we define the output function of s, denoted Os, as the
output function with minimal delay d such that Os(j) = M(x, j[1,...,k])s. Such a
function always exists, and since it has minimal delay it is always unique.

2.3 Promise Problems and Classes of Function Problems

In this paper, we make the hypothesis that every module that is part of an
instance of a complexity problem follows the property that each of its local
functions has only essential variables. That is, a variable is included as input of
the circuit encoding the function if and only if the automaton or input repre-
sented by that variable has an influence on said function. This hypothesis will
be implemented throughout this paper by the use of promise problems [9], which
include a decision method which can dismiss instances of the problem without
that method’s complexity cost being included in the complexity of the problem.

This approach is motivated by the fact that obfuscating the relation between
automatons by building redundant variables in a circuit increases the complexity
of most considered problems. We justify our decision in two points: first, the
approach of this paper is that of providing and studying an applicable method in
a context where misleading inputs in local functions are unlikely. Second, despite
the inclusion of these promises, high complexity issues arise in our pipeline. As
such, we consider that they help understanding the precise issues that prevent
our method from being efficient.

Additionally, we consider the FP and FNP classes as defined in [14].

3 From BANs to AMs

The first step of our process is to unfold a BAN into an AM. This simply requires
the removal of any cycle in the interaction digraph of the BAN, and their replace-
ment by inputs. In the scope of this paper, the number of inputs generated is

Optimising Attractor Computation in Boolean Automata Networks 73

required to be minimal. This is justified by the fact that the complexity of most
of the problems addressed in the pipeline highly depends on the number of inputs
of the considered AM.

� Acyclic Unfolding Functional Problem
Input: A Boolean automata network F , an integer k.
Promise: The encoding of the local functions of F only has essential vari-

ables.
Output: An acyclic module M with at most k inputs and a recursive wiring

ω such that �ω M = F .

Theorem 5. The Acyclic Unfolding Functional Problem is in FNP.

Proof. The promise of this problem allows us to compute the interaction digraph
of F in polynomial time.

Consider the following simple non-deterministic algorithm: first guess a mod-
ule M and a wiring ω; then check that the number of inputs in M is no more
than k and that �ω M syntactically equals F .

This algorithm operates in polynomial non-deterministic time since the recur-
sive wiring is a simple substitution of variables, and thanks to the fact that one
only needs to compare �ω M and F at a syntactical level. Indeed, if any solution
exists, then a solution exists with the same number of nodes, the same inputs,
the same wirings, and such that the substitution operated by ω on M leads to
a syntaxical copy of the local functions of F . ��
Theorem 6. The Acyclic Unfolding Functional Problem is NP-hard.

Sketch of Proof. There is a straightforward reduction from the Feedback Vertex
Set problem: given G, k we construct a BAN F with OR local functions whose
interaction digraph is isomorphic to G. Then the inputs of a solution M to F, k
correspond to a feedback vertex set (which is given by the codomain of ω). ��
Example 7. Consider SA and FA of Example 1. Let us define IA = {α}. Let
MA be the acyclic module that defines f ′

a(x) = xα, f ′
b(x) = f ′

c(x) = xa, and
f ′

d(x) = ¬xb ∨ ¬xc. The module MA is a valid answer to the instance FA, k = 1
of the Acyclic Unfolding Functional Problem. The interaction digraph of this
module is represented in Fig. 3 (left panel).

Example 8. Consider SB and FB of Example 2. Let us define IB = {αSt, αSl,
αSk, αPp, αC , αC∗}. Let MB be the acyclic module that defines f ′

St(x) = ¬xαSt
,

f ′
Sl(x) = ¬xαSl

∨xαC∗ , f ′
Sk(x) = xαSt

∨¬xαSk
, f ′

Pp(x) = xαSl
∨¬xαPp

, f ′
Ru(x) =

fS9(x) = ¬xαSk
∨xαPp

∨¬xαC
∨¬xαC∗ , f ′

C(x) = ¬xRu∨¬xS9∨¬xαSl
, f ′

C25(x) =
¬xαPp

∨xαC
, f ′

M (x) = xαPp
∨¬xαC

, and f ′
C∗(x) = ¬xRu∨¬xS9∨xC25∨¬xM . The

module MB is a valid answer to the instance FB, k = 6 of the Acyclic Unfolding
Functional Problem. The interaction digraph of this module is represented in
Fig. 3 (right panel).

74 K. Perrot et al.

Fig. 3. On the left, the interaction digraph of MA, as described in Example 7. On the
right, the interaction digraph of MB , as described in Example 8.

4 Output Functions

Output functions were first introduced in [20]. They are a way to characterise the
asymptotic behaviour of an AM as a set of Boolean functions that are computed
from the local functions of the AM. Computing the output functions of an AM
is a crucial step in the pipeline proposed in this work.

� Output Circuit Computation Problem
Input: An acyclic module M , and X ⊆ S a set of output nodes.
Promise: The encoding of the local functions of M only has essential vari-

ables.
Output: An output function for each node in X, encoded as a Boolean

circuit.

Theorem 9. The Output Circuit Computation Problem is in FP.

Sketch of Proof. To build the circuit that encodes some output function of the
network, we first construct a list of every output function at different delays
that are required to build it, and prove that this list can be constructed in
polynomial time. We then replace every entry on that list by the circuit that
encodes the corresponding local function, and merge them together to obtain
the circuit encoding the result. ��
Example 10. Consider MA of Example 7. Let XA = {d} be an instance of the
Output Circuit Computation Problem. The circuit Od = ¬α3 is a valid answer
to that instance.

Example 11. Consider MB of Example 8. Let XB = {St, Sk, Sl, Pp, C,C∗} be
an instance of the Output Circuit Computation Problem. The circuits OSt =
¬αSt,1, OSl = ¬αSl,1 ∨ αC∗,1, OSk = αSt,1 ∨ ¬αSk,1, OPp = αSl,1 ∨ ¬αPp,1,
OC = (αSk,2 ∧ ¬αPp,2 ∧ αC,2 ∧ αC∗,2) ∨ ¬αSl,1 and OC∗ = αC,2 ∨ ¬αPp,2 taken
altogether are a valid answer to that instance.

Optimising Attractor Computation in Boolean Automata Networks 75

5 Optimal Acyclic Module Synthesis

This part of the process takes as input a set of output functions and generates
a module that realizes these functions with an hopefully minimal number of
nodes. In this part the actual optimisation of the pipeline, if any, can be directly
observed. It is also the part of the pipeline which bears most of the computational
cost.

� Module Synthesis Problem
Input: A set I of input labels, a finite set of output functions O, encoded

as Boolean circuits, defined on those labels, and k an integer.
Output: An acyclic module M with at most k nodes such that every function

in O is the output function of at least one node in M .

Theorem 12. The Module Synthesis Problem is coNP-hard.

Proof. Consider an instance f of the Tautology problem, with I the set of propo-
sitional variables contained in f . We define f ′ as the output function defined on
the labels I such that f ′ is obtained from f by substituting all variables α ∈ I by
their equivalent of delay 1, α1. Let us also define f1 as the constant output func-
tion of delay 0 which value is always 1. We compose an instance of the Module
Synthesis Problem with I the set of input labels, O = {f ′, f1} and k = 1. This
instance has a solution if and only there exists an acyclic module with only one
node such that the output function of this node is equivalent to all the output
functions in O. This implies that, if the problem has a solution, f ′ is equiva-
lent to f1, which proves that f ′ and f are tautologies. Therefore computing the
output of the Module Synthesis Problem requires solving a coNP-hard decision
problem. ��
Theorem 13. The Module Synthesis Problem is in FNPcoNP.

Proof. Consider the following algorithm. First, guess an acyclic module M , with
size k. Compute every output function of the network, which is in FP. Then
simply check that every function in O is equivalent to at least one output function
in M , which requires at most |M | × |O| calls to a coNP oracle. ��

It is unclear whether the synthesis problem can be proven to be in FNP or
to be NPcoNP-hard. An attempt has been made to prove the former by using a
greedy algorithm which would fuse nodes in an acyclic module, starting from a
trivially large enough module. However this method seems to require a singular
fusion operation which does not seem to be computable in polynomial time. This
leads us to believe that a greedy algorithm would not prove the Optimal Module
Synthesis Problem to be in FNP. Similarly, it is interesting to consider the open
question of whether or not the Module Synthesis Problem can be proven NPcoNP-
hard. This implies to prove, between other things, that the problem is NP-hard.
This is, to us, another open problem as the Module Synthesis Problem does not
seem equiped to compute the satisfaction of a Boolean formula or circuit.

76 K. Perrot et al.

This open question bears strong ressemblance to another open problem that
concerns Boolean circuits. The Circuit Minimisation Problem is known to be
in NP but it is not known whether the problem is in P or NP-hard, as both
possibilities have deep consequences on famous open questions in theoretical
computer sciences [12]. The same problem has been found to be NP-complete in
both restricted (DNFs) and generalised (unrestricted Boolean circuits) variations
of the Boolean circuit model [11].

There are strong similarities between acyclic modules and Boolean circuits.
Both are defined on acyclic digraphs, have inputs and outputs, and compute
Boolean functions. It is important to note that this analogy is misleading when
talking about the optimisation of their size. Optimising a Boolean circuit requires
the optimisation of a Boolean function in terms of the number of gates that
computes it. Optimising an acyclic module, however, requires the optimisation
of a network of functions with respect to a notion of delay of the inputs, whereas
in this case one node may contain an arbitrary Boolean function. As such these
problems seem too independent to provide any reduction between them.

Example 14. Consider the output function Od defined in Example 10. Let us
define M ′

A as the module defined on S′
A = {a, b, d} and IA = {α}, such that

f ′′
a = xα, f ′′

b = xa and fd = ¬xb. The module M ′
A is a valid answer to the instance

IA, {Od}, k = 3 of the Module Synthesis Problem. The interaction digraph of this
module is depicted in Fig. 4 (left panel).

Example 15. Consider the output functions OB = {OSt, OSl, OSk, OPp, OC ,
OC∗} defined in Example 11. Let us define M ′

B as the module defined on
S′

B = {St, Sl, Sk, Pp,Ru,C25, C, C∗} and IB = {αSt, αSl, αSk, αPp, αC , αC∗},
such that f ′′

St(x) = ¬xαSt
, f ′′

Sl(x) = ¬xαSl
∨ xαC∗ , f ′′

Sk(x) = xαSt
∨ ¬xαSk

,
f ′′

Pp(x) = xαSl
∨ ¬xαPp

, f ′′
Ru(x) = ¬xαSk

∨ xαPp
∨ ¬xαC

∨ ¬xαC∗ , f ′′
C(x) =

¬xRu ∨ ¬xαSl
, f ′′

C25(x) = ¬xαPp
∨ xαC

, and f ′
C∗(x) = xC25. The module M ′

B is
a valid answer to the instance IB, OB , k = 8 of the Module Synthesis Problem.
The interaction digraph of this module is depicted in Fig. 4 (right panel).

6 Final Wiring and Analysis

The final step in the pipeline is simply to wire the module obtained in Sect. 5
so that the obtained networks hold isomorphic attractors to the input network.
This is ensured by application of the following result.

Theorem 16 [20]. Let M and M ′ be two acyclic modules, with T and T ′ subsets
of their nodes such that |T | = |T ′|. If there exists a bijection g from I to I ′ and
a bijection h from T to T ′ such that for every s ∈ T , Os and O′

h(s) have same
delay, and for every input sequence j with length the delay of Os,

Os(j) = O′
h(s)(j ◦ g−1)

then for any function ω : I → T , the networks �ω M and �h◦ω◦g−1 M ′ have
isomorphic attractors (up to the renaming of automata given by h).

Optimising Attractor Computation in Boolean Automata Networks 77

Fig. 4. On the left, the interaction digraph of M ′
A, as described in Example 14. On the

right, the interaction digraph of M ′
B , as described in Example 15.

Applying this theorem to the current problem is simple: the module M is the
module obtained in Sect. 3, and the module M ′ is the module obtained in Sect. 5.
The set T is the set of nodes which are substituted by new inputs in the process
described in Sect. 3. The set T ′ is the set of nodes in M ′ which are considered
as the output of the module, for example when the module M ′ is obtained as
the result of the application of the functional problem defined in Sect. 5.

As modules M and M ′ are defined over the same set of inputs, the bijection
g is the identity. The bijection h is directly constructed so that for all s ∈ T ,
h(s) in M ′ has an equivalent output function as s in M , which is always possible
thanks to the careful structure of our pipeline. It follows quite clearly that for
any s ∈ T , and for any input sequence j, Os(j) = O′

h(s)(j ◦ g−1) holds, and the
theorem applies.

Example 17. Consider M ′
A of Example 14. Let ωA(α) = d. The AN �ωA

M ′
A is

defined over S′
A = {a, b, d} such that f ′′′

a (x) = xd, f ′′′
b (x) = xa, f ′′′

d (x) = ¬xb.
The interaction digraph of this module is depicted in Fig. 5 (left panel).

Example 18. Consider M ′
B of Example 15. Let ωB(αs) = s, for all s ∈ XB .

The AN �ωB
M ′

B is defined over S′
B = {St, Sl, Sk, Pp,Ru,C25, C∗} such that

f ′′′
St(x) = ¬xSt, f ′′′

Sl(x) = ¬xSl ∨xC∗ , f ′′′
Sk(x) = xSt ∨¬xSk, f ′′′

Pp(x) = xSl ∨¬xPp,
f ′′′

Ru(x) = ¬xSk ∨xPp∨¬xC ∨¬xC∗ , f ′′′
C (x) = ¬xRu∨¬xSl, f ′′′

C25(x) = ¬xPp∨xC ,
and f ′

C∗(x) = xC25. The interaction digraph of this module is depicted in Fig. 5
(right panel).

This allows us to compute the attractors of any BAN by computing the
dynamics of another BAN with possibly less nodes, thus dividing the number of
computed configurations by some power of two. Examples throughout this paper
showcase the application of the pipeline over two initial examples.

Examples 1, 7, 10, 14 and 17 show the optimisation of a simple four nodes net-
work into a three nodes equivalent network. The optimisation proceeds here by
‘compacting’ two trivially equivalent nodes, b and c, into one. The resulting BAN
has dynamics 21 times smaller than the initial network, with isomorphic attrac-

78 K. Perrot et al.

Fig. 5. On the left, the interaction digraph of F ′
A, as described in Example 17. On the

right, the interaction digraph of F ′
B , as described in Example 18.

tors. Examples 2, 8, 11, 15 and 17 show the optimisation of a larger, more intri-
cate network which is drawn from a model predicting the cell cycle sequence of
fission yeast [5]. This practical example, processed through our pipeline, reduces
from 10 nodes to 8. This implies a reduction in dynamics size of 22, while keep-
ing isomorphic attractors. Both sets of examples are illustrated throughout the
paper in Figs. 2, 3, 4 and 5.

7 Conclusion

The present paper showcases an innovative way of reducing the cost of computing
the attractors of Boolean automata networks. The method provides better opti-
misation on networks showing structural redundancies, which are removed by the
pipeline. The limitations of this method are still significant; it requires solving a
problem that is at least coNP-hard, and believed to be FNPcoNP-complete. As
it presently stands, this method is not as much a convincing practical tool as it
is a good argument in favor of the powerfulness of acyclic modules, their output
functions, and the approaches they allow together towards the computation of
BAN dynamics.

Other future perspectives include finding better complexity bounds to the
Module Synthesis Problem, finding efficient heuristical or approximate imple-
mentations of the pipeline, and generalising the formalism of output functions
and the optimisation pipeline to different update schedules distinct from parallel.

Acknowledgements. The works of Kévin Perrot and Sylvain Sené were funded
mainly by their salaries as French State agents, affiliated to Aix-Marseille Univ., Univ.
de Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to Univ. Côte d’Azur,
CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and secondarily by ANR-18-
CE40-0002 FANs project, ECOS-Sud C19E02 project, STIC AmSud CoDANet 19-
STIC-03 (Campus France 43478PD) project.

Optimising Attractor Computation in Boolean Automata Networks 79

References

1. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull.
Math. Biol. 70, 1398–1409 (2008). https://doi.org/10.1007/s11538-008-9304-7

2. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in
monotone Boolean networks. SIAM J. Discr. Math. 31, 1702–1725 (2017)

3. Bridoux, F., Durbec, N., Perrot, K., Richard, A.: Complexity of maximum fixed
point problem in Boolean networks. In: Manea, F., Martin, B., Paulusma, D.,
Primiero, G. (eds.) CiE 2019. LNCS, vol. 11558, pp. 132–143. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22996-2 12

4. Bridoux, F., Gaze-Maillot, C., Perrot, K., Sené, S.: Complexity of limit-cycle prob-
lems in Boolean networks (2020, submitted) arXiv:2001.07391

5. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS One 3, e1672 (2008)

6. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One 5, e11793 (2010)

7. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits
dynamics. Discrete Appl. Math. 160, 398–415 (2012)

8. Floreen, P., Orponen, P.: Counting stable states and sizes of attraction domains in
Hopfield nets is hard. In: Proceedings of IJCNN 1989, pp. 395–399. IEEE (1989)

9. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

10. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean
networks. Theor. Comput. Sci. 396, 247–253 (2008)

11. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of circuit minimization for multi-
output functions. In: Proceedings of ECCC 2020, pp. TR20-021 (2020)

12. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of STOC
2000, pp. 73–79. ACM (2000)

13. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22, 437–467 (1969)

14. Meggido, N., Papadimitriou, C.: A note on total functions, existence theorems,
and computational complexity. Technical report, IBM (1989)

15. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for
Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)

16. Noual, M.: Dynamics of circuits and intersecting circuits. In: Dediu, A.-H., Mart́ın-
Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 433–444. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28332-1 37

17. Noûs, C., Perrot, K., Sené, S., Venturini, L.: #P-completeness of counting update
digraphs, cacti, and a series-parallel decomposition method. In: Proceedings of CiE
2020 (2020, accepted), arXiv:2004.02129

18. Orponen, P.: Neural networks and complexity theory. In: Havel, I.M., Koubek,
V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 50–61. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55808-X 5

19. Perrot, K., Perrotin, P., Sené, S.: A framework for (De)composing with Boolean
automata networks. In: Durand-Lose, J., Verlan, S. (eds.) MCU 2018. LNCS, vol.
10881, pp. 121–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92402-1 7

https://doi.org/10.1007/s11538-008-9304-7
https://doi.org/10.1007/978-3-030-22996-2_12
http://arxiv.org/abs/2001.07391
https://doi.org/10.1007/11685654_12
https://doi.org/10.1007/978-3-642-28332-1_37
http://arxiv.org/abs/2004.02129
https://doi.org/10.1007/3-540-55808-X_5
https://doi.org/10.1007/978-3-319-92402-1_7
https://doi.org/10.1007/978-3-319-92402-1_7

80 K. Perrot et al.

20. Perrot, K., Perrotin, P., Sené, S.: On the complexity of acyclic modules in automata
networks. In: Chen, J., Feng, Q., Xu, J. (eds.) TAMC 2020. LNCS, vol. 12337, pp.
168–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59267-7 15.
arXiv:1910.07299

21. Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986).
https://doi.org/10.1007/978-3-642-61607-5

22. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42,
563–585 (1973)

https://doi.org/10.1007/978-3-030-59267-7_15
http://arxiv.org/abs/1910.07299
https://arxiv.org/arXiv:1910.07299
https://doi.org/10.1007/978-3-642-61607-5

On the Transformation of Two-Way
Deterministic Finite Automata to
Unambiguous Finite Automata

Semyon Petrov and Alexander Okhotin(B)

Department of Mathematics and Computer Science, St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
semenuska2010@yandex.ru, alexander.okhotin@spbu.ru

Abstract. The paper estimates the number of states in an unambiguous
finite automaton (UFA) that is sufficient and in the worst case necessary
to simulate an n-state two-way deterministic finite automaton (2DFA).
It is proved that a 2DFA with n states can be transformed to a UFA
with fewer than 2n · n! states. On the other hand, for every n, there is
a language recognized by an n-state 2DFA that requires a UFA with at
least Ω((4

√
2)n · n−1/2) states. The latter result is proved by estimating

the rank of a certain matrix.

Keywords: Descriptional complexity · Two-way finite automata ·
Unambiguous finite automata

1 Introduction

Many variants of finite automata are known, and although all of them define the
same class of regular languages, they differ in terms of succinctness of descrip-
tion. In particular, it is well-known that every nondeterministic finite automa-
ton (NFA) with n states can be transformed to a deterministic finite automaton
(DFA) with 2n states, and this number of states is in the worst case necessary.
This kind of succinctness tradeoffs have been studied for quite a few types of
finite automata.

Transformations involving two-way finite automata, deterministic (2DFA)
and nondeterministic (2NFA), have received particular attention in the liter-
ature [1–3,8,10,11,15,17,18]. In particular, the question of whether two-way
automata can be determinized using polynomially many states is one of the
most important open problems of automata theory, due to its connection to the
L vs. NL problem [7]. Their transformation to one-way automata was studied
over the years [1,11,17], until Kapoutsis [6] presented an optimal transforma-
tion. Kapoutsis [6] showed how to transform an n-state 2DFA to an NFA with(

2n
n+1

)
states, and proved that this number of states is necessary in the worst

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 81–93, 2021.
https://doi.org/10.1007/978-3-030-68195-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_7&domain=pdf
http://orcid.org/0000-0002-2053-3731
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-68195-1_7

82 S. Petrov and A. Okhotin

case; transforming a 2DFA to a DFA takes n(nn − (n − 1)n) states in the worst
case [6].

Between these two perfectly conclusive results, there is an open question
involving an intermediate model between DFA and NFA: the unambiguous finite
automata (UFA), which can use nondeterminism, yet are bound to accept each
string in at most one computation (as in the unambiguous complexity classes,
such as UL and UP). What is the complexity of transforming a 2DFA to a UFA?

The size of UFA has received some attention in the literature. As shown
by Leung [9], transforming an n-state UFA to a DFA requires 2n states in the
worst case, whereas the NFA-to-UFA transformation incurs a blowup from n to
2n − 1 states. In the case of a unary alphabet, first studied by Ravikumar and
Ibarra [14], it is now known that transforming a UFA to a DFA in the worst
case takes eΘ(3

√
n log2 n) states, and the NFA-to-UFA transformation requires

eΘ(
√

n log n) states [12]. Jirásek Jr. et al. [5] showed that complementing a UFA
requires at least 20.79n states, with an upper bound of 2n states. In the unary
case, the known lower bound on complementing a UFA is nΩ(log log log n) [13].

Turning to the complexity of the 2DFA-to-UFA transformation, it is bound
to lie between the two bounds of Kapoutsis [6],

(
2n

n+1

)
and n(nn − (n − 1)n),

and it is natural to ask what is the exact function in this case. This question is
addressed in the present paper.

The first task is to establish an upper bound that would improve over the
2DFA-to-DFA transformation. This is achieved by augmenting the NFA con-
structed by Kapoutsis [6] to store extra data that allows it to ensure the unique-
ness of its accepting computation. The resulting UFA, presented in Sect. 3, has
fewer than 2n · n! states.

Turning to a lower bound on the 2DFA-to-UFA transformation, a witness
language is defined in Sect. 4 by constructing a 2DFA. The plan is to prove
a lower bound on the size of every UFA recognizing the same language using
Schmidt’s theorem [16], which relies on the rank of a certain matrix related to the
language. The rank of the matrix constructed in the paper is estimated by first
applying some linear transformation, and then reducing the problem to finding
the rank of another matrix P (k), defined entirely in terms of permutations.

A lower bound on the rank of P (k) is established in Sect. 5 by showing that
each P (k) contains a submatrix

(
0 P (k−1)

P (k−1) 0

)
, and hence the rank is at least

2k−1. This estimation yields a lower bound of Ω((4
√

2)n · n−1/2) states on the
2DFA-to-UFA tradeoff.

It is also shown that the matrix constructed in this paper is “optimal” in
the sense that any lower bound on the 2DFA-to-UFA tradeoff obtained using
Schmidt’s theorem cannot exceed the rank of this matrix.

2 Definitions

The paper uses standard finite automata models: two-way deterministic
automata and one-way unambiguous automata.

On the Transformation of Two-Way Deterministic Infinite Automata 83

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple
A = (Σ,Q, q0, δ, F), in which Σ is a finite alphabet; Q is a finite set of states;
q0 ∈ Q is the initial state; δ : Q × (Σ ∪ {�,�}) → Q × {−1,+1} is the transition
function, which defines a transition in a given state while observing a given tape
symbol; F ⊆ Q is the set of accepting states, effective at the right end-marker �.

Given an input string w = a1 . . . a�, a 2DFA operates on a read-only tape
�w�. It begins its computation in the initial state, with the head at the left
end-marker (�). At every step of the computation, the automaton is in a state
q ∈ Q and observes a symbol a ∈ Σ ∪ {�,�}; the transition function gives a pair
δ(q, a) = (r, d) representing the next state and the direction in which the head
moves. The set of strings, on which the computation eventually reaches the right
end-marker in an accepting state, is denoted by L(A).

Definition 2. A nondeterministic finite automaton (NFA) is a quintuple B =
(Σ,Q,Q0, δ, F), in which Σ is a finite alphabet; Q is a finite set of states; Q0 ⊆ Q
is the set of initial states; the transition function δ : Q×Σ → 2Q defines possible
next states after reading a given symbol in a given state; F ⊆ Q is the set of
accepting states. On an input string w = a1 . . . a�, a computation is a sequence
of states p0, p1, . . . , p� satisfying p0 ∈ Q0 and pi+1 ∈ δ(pi, ai+1) for all i. It is
accepting if, furthermore, p� ∈ F . The set of strings, on which there is at least
one accepting computation, is denoted by L(B).

An NFA is said to be unambiguous (UFA), if there is at most one accepting
computation on each string.

3 Upper Bound

The proposed new transformation of 2DFA to UFA is derived from the known
2DFA-to-NFA transformation by Kapoutsis [6].

For a 2DFA with a set of states Q, Kapoutsis [6] constructs an NFA with
states of the form (P,R), with P,R ⊆ Q and |P |+1 = |R|. For an input string uv,
after reading a prefix u, the NFA guesses a frontier of the 2DFA’s computation
on �uv�: this is a pair (P,R), where the set R consists of all states, in which
the 2DFA moves to the right from the last symbol of u; states in P are those,
in which the 2DFA moves to the last symbol of u from the left. The constructed
NFA guesses a 2DFA computation’s frontier at every step of its computation.

Theorem A (Kapoutsis [6]) For every 2DFA with n states, there exists an
NFA with

(
2n

n+1

)
states that recognizes the same language.

The NFA constructed by the method of Kapoutsis is, in general, ambigu-
ous, because, while guessing the next frontier, it may produce a closed cycle
alongside the main computation. This closed cycle shall eventually be cancelled
out, without the NFA’s noticing, whereas the correctly guessed computation of
the 2DFA would drive the NFA to acceptance. This yields multiple accepting
computations.

84 S. Petrov and A. Okhotin

The above construction shall now be elaborated to ensure unambiguity.
Besides a pair (P,R), the automaton shall remember a bijection f : P ∪
{Start} → R representing the states in R reached from each state in P , as
well as from the initial configuration. Such a triple (P,R, f), illustrated in Fig. 1,
shall be called a (prefix) profile.

Fig. 1. A profile (P, R, f) of a computation that holds short of reading the symbol a.

How many prefix profiles are there? For every k = |R|, there are
(

n
k−1

)
ways

to choose the set P , and
(
n
k

)
ways to choose the set R, and k! different bijections

f . Overall, there are
∑n

k=1

(
n

k−1

)(
n
k

)
k! profiles. With the frontiers replaced by

profiles, the following theorem is obtained.

Theorem 1. For every n-state 2DFA, there is a UFA with
∑n

k=1

(
n

k−1

)(
n
k

)
k!

states that recognizes the same language.

This sum is less than 2n · n!, which is in turn asymptotically less than
n(nn − (n − 1)n). This confirms that the proposed transformation to UFA is
more efficient than transforming a 2DFA to a DFA, as per another construction
by Kapoutsis [6] (a comparison for small values of n shall be given later on in
Table 1).

4 Lower Bound

A lower bound on the state complexity of transforming a 2DFA to a UFA is based
on a witness language recognized by a small 2DFA, for which every equivalent
UFA would require a substantial number of states.

The witness language is defined over an alphabet Γ = ({1, . . . , n} ∪ { f |
f : {1, . . . , n} → {1, . . . , n} is a partial function }) × {l, r}, and is recognized by
a 2DFA Dn with the set of states Q = {1, . . . , n}, with q0 = 1 and F = {1}.
It uses the following transitions, defined for all x, y ∈ Q and f, g : {1, . . . , n} →

On the Transformation of Two-Way Deterministic Infinite Automata 85

{1, . . . , n}.

δ(q0,�) = (q0,+1), δ(q, (x, l)) = (x,+1),

δ(q, (f, l)) =

{
(f(q),+1), if f(q) is defined
(q0,−1), otherwise

δ(q, (g, r)) =

{
(g(q),−1), if g(q) is defined
(q,+1), otherwise

δ(q, (y, r)) =

{
(q0,+1), if q = y

(q,−1), otherwise

This is the automaton used by Kapoutsis [6] in his lower bound for the trans-
formation of a 2NFA to an NFA. Following Kapoutsis, the subsequent proof
uses four-symbol strings of the form (x, l) (f, l) (g, r) (y, r), with x, y ∈ Q and
with partial functions f, g, where f(x) is defined and g(y) is not. These strings
correspond to directed (n, n)-bipartite graphs, with f representing arrows from
left to right, and g, from right to left. The automaton Dn then verifies, whether
there is a path from x in the left part to y on the right.

The rest of this paper is concerned with proving a lower bound on the size of
every UFA recognizing the language L(Dn). The only known method for proving
such lower bounds is the following theorem.

Theorem B (Schmidt [16], see also Leung [9]) Let L be a regular language,
and let (x1, y1), . . . , (xn, yn) be pairs of strings. Let M be an integer matrix
defined by Mi,j = 1, if xiyj ∈ L, and Mi,j = 0 otherwise. Then, every UFA for
L has at least rankM states.

In addition to the prefix profiles, describing a computation of an automaton
on a prefix, a new type of profile shall be introduced.

Definition 3. A suffix profile is a triple (g, P,R), where P,R ⊆ Q, |P |+1 = |R|,
and g : R → P ∪ {Accept} is a bijection.

For a given computation of automaton on the string uv, the suffix profile
of v complements the prefix profile of u. The function g in the suffix profile is
constructed in a similar way as in the prefix profile: for any state q, the state
g(q) is the state in which the automaton first crosses the border between u
and v in this computation after visiting the first symbol of v in the state q—or
g(q) = Accept, if it accepts without crossing this border.

There are as many suffix profiles as prefix profiles. Indeed, for fixed P and R
with |R| = k, there are k! ways to choose a prefix profile (P,R, f) and k! ways
to choose a suffix profile (g, P,R).

The strings for Schmidt’s theorem are chosen as follows. Let (P,R, f) be a
prefix profile, where f : P ∪ {Start} → R is a bijection, and let x ∈ {1, . . . , n},
with x /∈ P ; such an x exists, since |P | < n. Let f ′ : P ∪ {x} → R be a function

86 S. Petrov and A. Okhotin

defined by f ′(p) = f(p) for p ∈ P , and f ′(x) = f(Start). Then, define xP,R,f =
(x, l) (f ′, l). The state x is added to create a bijection.

Next, for a suffix profile (g, S, T), let y be the element of T such that g(y) =
Accept. Let g′ : T \ {y} → S be a function defined by g′(r) = g(r). Define
yg,S,T = (g′, r) (y, r). Again, the state y is removed to create a bijection.

Fig. 2. An example of interaction between a prefix profile and a matching suffix profile.

For the computation of some 2DFA on a string uv, the prefix profile (P,R, f)
of u and the suffix profile (g, P,R) of v define strings xP,R,f and yg,P,R that
contain functions f ′ and g′ which complement each other to a full path. Figure 2
illustrates this relation.

Note that f ′(x) is defined and g′(y) is not, otherwise the string xP,R,f yg,S,T

would have no chance to be accepted by Dn.
Let M (n) be the square matrix defined for these strings in Schmidt’s theorem.

Each row corresponds to a prefix profile (P,R, f), each column corresponds to
a suffix profile (g, S, T), and the element at their intersection is denoted by
M

(n)
(P,R,f),(g,S,T). The order of the matrix is the total number of profiles, that is,

∑n
k=1

(
n

k−1

)(
n
k

)
k!.

In order to estimate the rank of this matrix, it shall first be subjected to a
series of rank-preserving transformations.

Definition 4. A prefix profile (P ′, R′, f ′) shall be called a subprofile of a prefix
profile (P,R, f), if P ′ ⊆ P , R′ ⊆ R and f ′(p) = f(p) for all p ∈ P ′ ∪ {Start}.
Notation: (P ′, R′, f ′) � (P,R, f).

Definition 5. On an input (x, l) (f, l) (g, r) (y, r), the automaton Dn is said to
use the left-to-right arrow from p to q, if, at some point in its computation, Dn

is in the state p on the symbol (f, l), and f(p) = q.
Similarly, Dn uses the right-to-left arrow from q to p, if, at some point, Dn

is in the state q at (g, r), and g(q) = p.

Definition 6. Define a new square integer matrix L(n) of the same order as
M (n), with rows and columns indexed by prefix and suffix profiles, respectively.
Each element L

(n)
(P,R,f),(g,S,T) is defined as 1, if Dn accepts the string xP,R,f yg,S,T

and uses all left-to-right arrows in the corresponding graph. Otherwise, let this
element be 0.

On the Transformation of Two-Way Deterministic Infinite Automata 87

It turns out that the rows of L(n) are linear combinations of the rows of M (n)

expressed by the inclusion–exclusion principle.

Lemma 1. Let (P,R, f) be a prefix profile and let (g, S, T) be a suffix profile.
Then,

L
(n)
(P,R,f),(g,S,T) =

∑

(P ′,R′,f ′)�(P,R,f)

(−1)|P |−|P ′|M (n)
(P ′,R′,f ′),(g,S,T)

M
(n)
(P,R,f),(g,S,T) =

∑

(P ′,R′,f ′)�(P,R,f)

L
(n)
(P ′,R′,f ′),(g,S,T)

Accordingly, rankL(n) = rankM (n).

The columns of the matrix shall now be transformed by the same method.

Definition 7. A suffix profile (g′, S′, T ′) shall be called a subprofile of a suffix
profile (g, S, T), if S′ ⊆ S, T ′ ⊆ T and g′(q) = g(q) for all q ∈ T ′. Notation:
(g′, S′, T ′) � (g, S, T).

Definition 8. Define yet another integer matrix K(n) of the same dimensions
as M (n) and L(n), with its rows and columns again indexed by prefix and suffix
profiles, respectively. Let K

(n)
(P,R,f),(g,S,T) be 1, if Dn accepts xP,R,f yg,S,T and uses

all left-to-right and right-to-left arrows in the corresponding graph. Otherwise,
let this element be 0.

Lemma 2. Let (P,R, f) be a prefix profile and let (g, S, T) be a suffix profile.
Then,

K
(n)
(P,R,f),(g,S,T) =

∑

(g′,S′,T ′)�(g,S,T)

(−1)|S|−|S′|L(n)
(P,R,f),(g′,S′,T ′)

L
(n)
(P,R,f),(g,S,T) =

∑

(g′,S′,T ′)�(g,S,T)

K
(n)
(P,R,f),(g′,S′,T ′)

In particular, rankK(n) = rankL(n).

The above transformations of the matrix M (3), which is of size 39 × 39, are
given in Fig. 3. The profiles are enumerated by ordering them first by |P |, and
then lexicographically by P , by R and finally by the values of f .

The figure suggests that the matrix K(3) is block diagonal. This is proved
as follows.

Lemma 3. Let (P,R, f) be a prefix profile, and let (g, S, T) be a suffix profile
with (P,R) 	= (S, T). Then, K

(n)
(P,R,f),(g,S,T) = 0.

Proof. Consider the string xP,R,f yg,S,T = (x, l)(f ′, l)(g′, r)(y, r). Assume the
contrary, that K

(n)
(P,R,f),(g,S,T) = 1. Then, Dn uses all left-to-right arrows in the

corresponding graph. In particular, the set of states in which Dn arrives to (g′, r)

88 S. Petrov and A. Okhotin

M (3) L(3) K(3)

Fig. 3. Transformation of M (3). Each filled square contains 1, each empty square has
0.

from (f ′, l) is R, since these are the heads of all left-to-right arrows, and the set
of states in which Dn arrives to (f ′, l) from (g′, r) is P : the tails of all left-to-right
arrows, except the arrow from x to f(Start).

At the same time, Dn uses all right-to-left arrows, and the set of states in
which Dn arrives to (g′, r) from (f ′, l) is T , these are the tails of all right-to-left
arrows with the addition of y, for which g(y) = Accept; the states in which Dn

arrives to (f ′, l) from (g′, r) is S, these are the heads of right-to-left arrows.
Therefore, P = S and R = T , which contradicts the assumption.

Thus, the matrix K(n) is organized into blocks corresponding to different
pairs (P,R).

The next important observation is that the blocks corresponding to pairs
(P1, R1) and (P2, R2), with |P1| = |P2|, are identical up to permutations
of rows and columns. With bijections g : P2 → P1 and h : R1 → R2 fixed, for
a profile (P1, R1, f), set g(Start) = Start, and let the corresponding profile be
(P2, R2, h◦f ◦g). The existence of a path in a bipartite graph is invariant to such
permutations of vertices. This block is denoted by P (k), where k = |R1| = |R2|.
Definition 9. Let 1 � k � n. The matrix for permutations P (k) is a k! × k!
submatrix of K(n) that consists of rows and columns corresponding to profiles
(P,R, f) with P = {1, . . . , k − 1} and R = {1, . . . , k}. Its rows and columns
are still indexed by prefix and suffix profiles prespectively, that is, the element
corresponding to the functions f and g is denoted by P

(k)
(P,R,f),(g,P,R).

The form of the matrix P (k) for k = 2, 3, 4 is presented in Fig. 4. White
squares represent zeroes, the rest of the squares contain 1.

Lemma 4. rankK(n) =
∑n

k=1

(
n

k−1

)(
n
k

)
rankP (k)

Proof. By Lemma 3, the matrix K(n) is block diagonal, and hence rankK(n) is
a sum of ranks of independent blocks. Since the blocks with the same |P | are
equivalent, each block is equivalent to the matrix for permutations P (k) with

On the Transformation of Two-Way Deterministic Infinite Automata 89

Fig. 4. The matrices P (2), P (3) and P (4).

k − 1 = |P |. There are
(

n
k−1

)(
n
k

)
different ways to choose a pair (P,R) so that

|P | = k−1, hence for every k from 1 to n there are
(

n
k−1

)(
n
k

)
blocks in K(n) that

are equivalent to P (k). This gives the formula.

Thus, it is sufficient to estimate the rank of the matrix for permutations.

Definition 10. Let (P,R, f) be a prefix profile with P = {1, . . . , k − 1} and
R = {1, . . . , k}. Then, the permutation corresponding to (P,R, f) is a func-
tion g : {1, . . . , k} → {1, . . . , k} defined by g(p) = f(p) for p ∈ P , and
g(k) = f(Start).

Definition 11. Let (f, P,R) be a suffix profile with P = {1, . . . , k − 1} and
R = {1, . . . , k}. Then, the permutation corresponding to (f, P,R) is a function
g : {1, . . . , k} → {1, . . . , k} defined by g(p) = f(p) for p ∈ R \ {y}, and g(y) = k,
where y ∈ R is the state such that f(y) = Accept.

Note that, conversely, each permutation has a unique corresponding prefix
profile, and an unique corresponding suffix profile of this form.

The elements of P (k) are characterized entirely in terms of permutations as
follows. Let (P,R, f1) be a prefix profile, and let (f2, P,R) be a suffix profile,
with P = {1, . . . , k − 1} and R = {1, . . . , k}. Let g1 and g2 be the corresponding
permutations. Denote P

(k)
g1,g2 = P

(k)
(P,R,f1),(f2,P,R).

Lemma 5. P
(k)
g1,g2 = 1 if and only if the permutation g2 ◦ g1 is cyclic.

Proof. Let (P,R, f1) and (f2, P,R) be profiles corresponding to g1 and to g2,
respectively. Let xP,R,f1 yf2,P,R = (x, l)(f ′

1, l)(f
′
2, r)(y, r) be the corresponding

string for this pair of profiles.
Consider the computation of Dk on the string (x, l)(f ′

1, l)(f
′
2, r)(y, r). Then

x = k, because P = {1, . . . , k − 1}, and y ∈ R is the state such that f2(y) =
Accept, and g2(y) = k. The automaton first moves to (f ′

1, l) in the state k, and
then alternates between the second and the third symbols. This computation is
depicted on Fig. 5.

Consider the sequence of states, in which it visits the second symbol (f ′
1, l).

The sequence begins with k. In a state q, the automaton moves to the third
symbol in the state g1(q), and then immediately returns to the second symbol

90 S. Petrov and A. Okhotin

in the state g2 ◦ g1(q), as long as g1(q) is not equal to y = g−1
2 (k), which is

equivalent to g2 ◦ g1(q) 	= k.
⇒© If P

(k)
g1,g2 = 1, then the element P

(k)
(P,R,f1),(f2,P,R) is 1. As P (k) is a submatrix

of K(k), the element K
(k)
(P,R,f1),(f2,P,R) is 1 as well. By definition, this means that

Dk accepts xP,R,f1 yf2,P,R, using all arrows in both directions in its computation.
The above sequence of states must contain all states, since the automaton

uses all left-to-right arrows in its computation. Therefore, one can reach all states
by applying g2◦g1 starting from k, and this exactly means that this permutation
is cyclic.

⇐© Assuming that the permutation g2 ◦g1 is cyclic, the above sequence must
contain all states, which means that all arrows in both directions are used. The
sequence is concluded with a state q satisfying g2 ◦ g1(q) = k, and then Dk

accepts. Therefore, P
(k)
g1,g2 = 1.

Fig. 5. A computation of Dk on the string xP,R,f1 yf2,P,R, where profiles (P, R, f1) and
(f2, P, R) correspond to permutations g1 and g2, respectively.

Theorem 2. For every n � 1, there exists a language recognized by an n-state
2DFA, for which every UFA requires at least

∑n
k=1

(
n

k−1

)(
n
k

)
rankP (k) states,

where P (k) is a k! × k! matrix, with its rows and columns corresponding to per-
tumations, and P

(k)
g1,g2 = 1 if and only if g2 ◦ g1 is a cyclic permutation.

Proof. The desired 2DFA is Dn, defined in the beginning of this section.
The strings xP,R,f , yg,S,T and the corresponding matrix M (n) are con-

structed, and, by Theorem B, every UFA recognizing this language has at least
rankM (n) states. Then, by Lemma 1, rankM (n) = rankL(n). Next, by Lemma 2,
rankL(n) = rankK(n), and, by Lemma 4, rankK(n) =

∑n
k=1

(
n

k−1

)(
n
k

)
rankP (k).

Finally, the matrix P (k) has the stated description in terms of permutations by
Lemma 5.

There is a companion result that it is not possible to achieve a better lower
bound via Schmidt’s theorem by choosing another 2DFA and different pairs of
strings.

Theorem 3. Let D be a 2DFA over an alphabet Γ with n states that recognizes
a regular language L. Let X = {x1, . . . , x�} and Y = {y1, . . . , ym} be sets of

On the Transformation of Two-Way Deterministic Infinite Automata 91

Table 1. The bounds established in this paper for small values of n, compared to the
known 2DFA-to-NFA and 2DFA-to-DFA tradeoffs.

n 2DFA → NFA 2DFA → UFA
(lower bound)

2DFA → UFA
(upper bound)

2DFA → DFA

(
2n
n+1

) ∑n
k=1

(
n

k−1

)(
n
k

)
2k−1 ∑n

k=1

(
n

k−1

)(
n
k

)
k! n(nn − (n − 1)n)

1 1 1 1 1

2 4 6 6 6

3 15 33 39 57

4 56 180 292 700

5 210 985 2 505 10 505

6 792 5 418 24 306 186 186

7 3 003 29 953 263 431 3 805 249

8 11 440 166 344 3 154 824 88 099 230

9 43 758 927 441 41 368 977 2 278 824 849

10 167 960 5 188 590 589 410 910 65 132 155 990

strings over the alphabet Γ . Let M be an � × m matrix defined by Mi,j = 1 if
xiyj ∈ L, and Mi,j = 0 otherwise. Then, rankM �

∑n
k=1

(
n

k−1

)(
n
k

)
rankP (k).

Everything is thus reduced to the task of finding the rank of one particular
matrix, P (k).

5 Estimating the Rank of the Matrix for Permutations

Theorem 4. rankP (k) � 2k−1.

Proof (a sketc.h). The proof is based on an argument that P (k) has a submatrix(
0 P (k−1)

P (k−1) 0

)
. For k = 3, 4, this submatrix can be observed in Fig. 4.

The first claim is that the main diagonal is made of (k−1)!×(k−1)! blocks of
zeroes. Formally, for every pair of permutations (g1, g2) satisfying g1(k) = g2(k),
the value of P

(k)

g1,g−1
2

is 0.

The second claim is that the matrix P (k) is symmetric, that is, P
(k)

g1,g−1
2

=

P
(k)

g2,g−1
1

, for all permutations g1, g2.

The third claim is that the matrix P (k) contains blocks that are the same as
P (k−1). In terms of matrices, this is expressed as follows. Let g1, g2 : {1, . . . , k} →
{1, . . . , k} be permutations with g1(k) = k and g2(k) = k − 1. Define two per-
mutations g̃1, g̃2 : {1, . . . , k − 1} → {1, . . . , k − 1} as follows: g̃1(p) = g1(p), thus
ignoring k; g̃2(p) = g2(p), as long as g2(p) 	= k; and g̃2(p) = k − 1, otherwise,
thus redirecting from k to k − 1. Under these assumptions, it is proved that
P

(k)

g1,g−1
2

= P
(k−1)

g̃1,g̃−1
2

. Since different permutations g2 yield different g̃2, this proves
the claim.

92 S. Petrov and A. Okhotin

Using the above three properties, one can prove that rankP (k) � 2 ·
rankP (k−1). The theorem follows from this by induction on k.

Corollary 1. For every n, there is a language recognized by an n-state 2DFA,
for which every UFA requires at least

∑n
k=1

(
n

k−1

)(
n
k

)
2k−1 = Ω

((4
√
2)n√
n

)
states.

6 Conclusion

The bounds on the state complexity of transforming 2DFA to UFA established
in this paper put it asymptotically between Ω

((2
√
2)n√
n

)
and O(2n · n!), which

shows that this is actually a new function different from the known 2DFA-to-
NFA and 2DFA-to-DFA tradeoffs [6]. For small values of n, the bounds proved
in this paper are compared in Table 1. All lower bounds, including the precise
bounds by Kapoutsis [6], rely on using alphabet of exponential size, if the size
of the alphabet is subexponential, the upper bounds are improved [4].

It would be interesting to determine the 2DFA-to-UFA tradeoff precisely.
However, as shown in Theorem 3, the lower bound methods based on Schmidt’s
theorem have virtually been exhausted: it remains to establish the exact rank of
the matrix P (k). New methods would be needed for any further improvements.

References

1. Birget, J.: State-complexity of finite-state devices, state compressibility and incom-
pressibility. Math. Syst. Theory 26, 237–269 (1993). https://doi.org/10.1007/
BF01371727

2. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003)

3. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite
automata. Inf. Comput. 205, 1173–1187 (2007)

4. Geffert, V., Okhotin, A.: One-way simulation of two-way finite automata over small
alphabets. In: NCMA (2013)

5. Jirásek, J., Jirásková, G., Sebej, J.: Operations on unambiguous finite automata.
Int. J. Found. Comput. Sci. 29, 861–876 (2018)

6. Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata.
In: Jȩjowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555.
Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 47

7. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.
Syst. 55, 421–447 (2013). https://doi.org/10.1007/s00224-013-9465-0

8. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22321-1 28

9. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16, 975–984 (2005)

10. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

https://doi.org/10.1007/BF01371727
https://doi.org/10.1007/BF01371727
https://doi.org/10.1007/11549345_47
https://doi.org/10.1007/s00224-013-9465-0
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28

On the Transformation of Two-Way Deterministic Infinite Automata 93

11. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. C–20, 1211–1214 (1971)

12. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012)

13. Raskin, M.: A superpolynomial lower bound for the size of non-deterministic com-
plement of an unambiguous automaton. In: 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 107, pp. 138:1–138:11 (2018)

14. Ravikumar, B., Ibarra, O.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

15. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: STOC 1978 (1978)

16. Schmidt, E.M.: Succinctness of descriptions of context-free, regular and finite lan-
guages. Ph.D. thesis, Cornell University, Ithaca, New York (1977)

17. Shepherdson, J.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3, 198–200 (1959)

18. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inf. Process. Lett. 30, 261–264 (1989)

Complexity

Deciding Non-emptiness of
Hypergraph Languages Generated by

Connection-preserving Fusion Grammars
is NP-complete

Aaron Lye(B)

Department of Computer Science, University of Bremen, P.O.Box 33 04 40,
28334 Bremen, Germany

lye@informatik.uni-bremen.de

Abstract. Fusion grammars are a novel approach to the generation
of hypergraph languages. A fusion grammar is a hypergraph grammar
which provides a start hypergraph of small connected components. To
get large connected hypergraphs, they can be copied multiple times and
can be fused by the application of fusion rules. In this paper, we analyze
the non-emptiness problem for connection-preserving fusion grammars
and show that this is an NP complete problem. We show this by relating
language generation by connection-preserving fusion grammars to some
variant of integer linear programming.

1 Introduction

Fusion grammars are a novel approach to the generation of hypergraph languages
(cf. [1]). They are motivated by the fact, that fusion processes occur in various
scientific fields, like DNA computing, chemistry, tiling, fractal geometry, visual
modeling, etc. A fusion grammar is a hypergraph grammar which provides a start
hypergraph of small connected components. To get large connected hypergraphs,
they can be copied multiple times and can be fused by the application of fusion
rules.

To get some insights into the power of these grammars their relation to other
well known (graph) grammars and the knowledge about the decidability and
complexity of the usual decision problems is of importance. We have shown that
fusion grammars can simulate hyperedge replacement grammars (cf. [1, Theo-
rem 2]). For hyperedge replacement the emptiness problem is decidable (cf. [2,
Corollary 1.3]). The procedure is similar to the corresponding proof in the string
case (cf. [3, Theorems 4.2, 4.3]) both are polynomial in the number of non-
terminals and rules. We have also shown that fusion grammars are more pow-
erful than hyperedge replacement grammars as they can generate hypergraphs
with unbounded tree-width (cf. [1, Proposition 5]). Generalizations like split-
ting/fusion grammars (cf [4]) and context-dependent/sensitive fusion grammars
(cf. [5,6]) turn out to be powerful enough to generate all recursively enumerable
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 97–108, 2021.
https://doi.org/10.1007/978-3-030-68195-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_8

98 A. Lye

string languages up to representation of strings as hypergraphs and are univer-
sal in this respect. It is an open question if fusion grammars are also universal
and which decision problems are deciable. In [1, Theorem 1] it is shown that
for a very restricted subclass – the so-called substantial fusion grammars – the
membership problem is decidable. Substantial fusion grammars are a subclass
of connection-preserving fusion grammars (defined in Sect. 3).

In this paper, we show that deciding the non-emptiness problem for
connection-preserving fusion grammars, i.e., deciding if the generated hyper-
graph language of the grammar is not empty, is NP-complete. Compared to
substantial fusion grammars this result applies to a much bigger subclass.

Any derived hypergraph can serve as a witness, that the generated language
is not empty. Therefore, the non-emptiness problem of these grammars is in NP,
if this derivation can be guessed and checked in non-deterministic polynomial
time.

The proof for NP-completeness is done in two steps. The key idea is that addi-
tion and multiplications of vectors and fusion and multiplications of connected
components are related.

1. We introduce vector fusion grammars and present a linear-time reduction of
the non-emptiness problem of connection-preserving fusion grammars to the
non-emptiness problem of vector fusion grammars.

2. Together with a polynomial-time equivalence of the non-emptiness problem
for vector fusion grammars and solvability of an NP-complete variant of inte-
ger linear programming this implies NP-completeness of the problem.

The paper is structured as follows. Section 2 introduces basic notions and
notations of hypergraphs as far as needed. Section 3 recalls the notion of fusion
grammars in normal form. Section 4, presents a linear-time reduction of the
non-emptiness problem of connection-preserving fusion grammars to the non-
emptiness problem of vector fusion grammars. Section 5, presents a polynomial-
time equivalence of the non-emptiness problem for vector fusion grammars and
solvability of a variant of integer linear programming. Afterwards, in Sect. 6
we conclude that the non-emptiness problem of connection-preserving fusion
grammars is NP-complete. Section 7 contains a conclusion.

2 Preliminaries

We consider hypergraphs the hyperedges of which are attached to a sequence of
vertices and labeled in a given label alphabet Σ.

A hypergraph over Σ is a system H = (V,E, att , lab) where V is a finite set
of vertices, E is a finite set of hyperedges, att : E → V ∗ is a function, called
attachment, where V ∗ is a sequence of vertices, and lab : E → Σ is a function,
called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e
is called A-hyperedge if A is its label. The components of H = (V,E, att , lab)

Deciding Non-emptiness of Hypergraph Languages 99

may also be denoted by VH , EH , attH , and labH respectively. The class of all
hypergraphs over Σ is denoted by HΣ .

By [k] we denote the discrete hypergraph with the vertices 1, . . . , k for some
k ∈ N>0 and by A• we denote the hypergraph consisting of the vertices 1, . . . , k
to which a single A-hyperedge is attached.

In drawings, a hyperedge e with attachment att(e) = v1 · · · vk is depicted by

•v1 1

•v2
2 A

•vkk

i.e., numbered tentacles connect the label with the corresponding attachment
vertices. Moreover, an A-hyperedge of type 2 may be depicted by • •A instead
of • A •1 2 . We assume the existence of a special label ∗ ∈ Σ that is omitted
in drawings. In this way, unlabeled hyperedges are represented by hyperedges
labeled with ∗.

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
Further, k · H denotes the disjoint union of H with itself k times.

Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two map-
pings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) = g∗

V (attH(e))
and labH′(gE(e)) = labH(e) for all e ∈ EH , where g∗

V : V ∗
H → V ∗

H′ is the canonical
extension of gV , given by g∗

V (v1 · · · vn) = gV (v1) · · · gV (vn) for all v1 · · · vn ∈ V ∗
H .

The fusion of vertices is defined as a quotient by means of an equivalence
relation ≡ on the set of vertices VH as follows: H/≡ = (VH/≡, EH , attH/≡, labH)
with attH/≡(e) = [v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes
the equivalence class of v ∈ VH and VH/≡ is the set of equivalence classes. It is
easy to see that f : H → H/≡ given by fV (v) = [v] for all v ∈ VH and fE(e) = e
for all e ∈ EH defines a quotient morphism.

Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×
EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v

′ = attH(en)on

and attH(ej)oj
= attH(ej+1)ij+1 for j = 1, . . . , n − 1 where, for each e ∈ EH ,

attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. H is connected if each two
vertices are connected by a path. A subgraph C of H, denoted by C ⊆ H, is
a connected component of H if it is connected and there is no larger connected
subgraph, i.e. C ⊆ C ′ ⊆ H and C ′ connected implies C = C ′. The set of
connected components of H is denoted by C(H).

We use the multiplication of H defined by means of C(H) as follows. Let
m : C(H) → N>0 be a mapping, called multiplicity, then m·H =

∑

C∈C(H)

m(C)·C.

3 Fusion Grammars

Besides a start hypergraph, a fusion grammar provides a set of fusion rules. The
application of a fusion rule merges certain vertices which are given by two com-
plementary hyperedges. Complementarity is defined on a set F of fusion labels
that comes together with a complementary label A for each A ∈ F . Given a

100 A. Lye

Fig. 1. The fusion rule fr(A) with type(A) = k(A)

hypergraph, the set of all possible fusions is finite as fusion rules never create
anything. To overcome this limitation, we allow arbitrary multiplications of dis-
joint components within derivations. The generated language does not contain
derived hypergraphs, but only the terminal part of a selected connected com-
ponent which is only terminal, marker and possibly connector labeled. Markers
are used as a feature to distinguish between wanted and unwanted connected
components. Connectors are used to preserve connectedness during the deriva-
tion process and are removed at the end. The language consists of all resulting
connected components that contain no fusion symbols and at least one marker
symbol, where marker and connector symbols are removed in the end.

Definition 1 (Fusion grammar and its generated language).

1. Let Σ be a finite alphabet. Then a subset F ⊆ Σ is called fusion alphabet if
each A ∈ F is accompanied by a complementary label A such that A �= B for
all A,B ∈ F with A �= B. Moreover, there is a type function k : F ∪ F → N

with k(A) = k(A) for all A ∈ F where F = {A | A ∈ F}. The complementary
label of A is A.

2. A fusion grammar is a system FG = (Z,F, T, μ, κ) where Z is a finite start
hypergraph, F ⊆ Σ is a finite fusion alphabet, T ⊆ Σ with T ∩ (F ∪F) = ∅ is
a finite set of terminal labels, μ, κ /∈ F ∪F ∪T are special labels called marker
and connector, respectively.

3. Each A ∈ F induces the fusion rule fr(A) being the hypergraph with
Vfr(A) = {vi, v

′
i | i = 1, . . . , k(A)}, Efr(A) = {e, e}, attfr(A)(e) = v1 · · · vk(A),

attfr(A)(e) = v′
1 · · · v′

k(A), and labfr(A)(e) = A and labfr(A)(e) = A. The rule
is depicted in Fig. 1. The rule is fully specified by the label itself.

4. A derivation step H =⇒H ′ for some H,H ′ ∈ HΣ is either a rule application
H =⇒

r
H ′ for some rule r ∈ fr(F) = {fr(A) | A ∈ F} or a multiplication

H =⇒
m

m · H for some multiplicity m.
The application of fr(A) to a hypergraph H ∈ HΣ proceeds according to
the following steps: (1) Choose a matching hypergraph morphism g : fr(A) →
H. (2) Remove the images of the two hyperedges of fr(A) yielding X =
H − (∅, {g(e), g(e)}). (3) Fuse the corresponding source and target vertices
of the removed hyperedges yielding the hypergraph H ′ = X/≡R where the
equivalence relation ≡R is generated by the relation R = {(g(vi), g(v′

i)) | i =
1, . . . , k(A)}.

Deciding Non-emptiness of Hypergraph Languages 101

5. A derivation H
n=⇒H ′ of length n is a sequence H0 =⇒H1 =⇒ . . . =⇒Hn

with H = H0 and H ′ = Hn including the case n = 0 with H0 = H = H ′ =
Hn. One may write H

∗=⇒H ′ if the length does not matter.
6. L(FG) = {rem{μ,κ}(Y) | Z

∗=⇒H,Y ∈ C(H) ∩ (HT∪{κ,μ} − HT∪{κ})} is the
generated language of FG where rem{μ,κ}(Y) is the hypergraph obtained
when removing all hyperedges with labels in {κ, μ} from Y .

Remark 1. 1. As each hyperedge belongs to a single connected component, the
fusion of two hyperedges fuses either one connected component or two con-
nected components. In particular, this can produce three different effects.
(a) Two connected components may be fused into a single one.
(b) Fusion may be a kind of folding transforming a single connected compo-

nent. , e.g., • •B B =⇒
fr(B)

• .

(c) It can result in a disconnection, e.g., • • • •C1 2
C

1 2 =⇒
fr(C)

• •

with respect to two connected components or
•

•
D

1

2

D

1

2

=⇒
fr(D)

•
•

with respect

to one connected component.
In this paper, we restrict derivations in such a way that the third case does
not occur, i.e., no result of fusion is a disconnection. We call these grammar
connection-preserving fusion grammars.

2. Without loss of generality we assume that every fusion grammar is in nor-
mal form where the start hypergraph contains exactly one marked connected
component and every derivation starts with all the multiplications, but the
marked component is never multiplied, then applies all fusions afterwards,
and derives a single connected component.

Example 1. Consider the fusion grammar FG = (
∑5

j=1 zi, {A,B}, {∗}, μ, κ) with
type(A) = type(B) = 2 and zi for i = 1, . . . , 5 as follows.

z1 = B

A
μ z2 =

A

A

z3 =

A

z4 = B

A

B z5 = B

where a box is a graph with four vertices and four edges (hyperedges of lenght 2).
The labels of the edges are written next to the edges (∗-labels are omitted). The
numbering of the attachment vertices is omitted to clarify the drawings. For A-
and A-hyperedges we assume the vertex on the left to be the first and the vertex
to the right to be the second attachment vertex. For B- and B-hyperedges we
assume the vertex on the top to be the first and the vertex to the bottom to
be the second attachment vertex. It is easy to see that the grammar generates
graphs like the following.

102 A. Lye

4 A Linear-Time Reduction of the Non-emptiness
Problem of Connection-preserving Fusion Grammars
to the Non-emptiness Problem of Vector Fusion
Grammars

In this section, we introduce a special subclass of fusion grammars, which we
call vector fusion grammars, and show that every connection-preserving fusion
grammar can be transformed in linear-time into a vector fusion grammar such
that the generated language of the fusion grammar is empty if and only if this
is also the case for the generated language of the vector fusion grammar.

Recall that connected components of the start hypergraph of a fusion gram-
mar may be multiplied and fused. A fusion consumes exactly one pair of com-
plementary labeled fusion-hyperedges. This means that the multiplied connected
components need equally many f - and f -hyperedges to obtain members of the
generated language.

The basic idea is that each connected component can be associated to as
an integer vector and vice versa. The scalars in such a vector are the difference
between the number of fusion-labeled hyperedges and the respective complemen-
tary ones within the respective connected component. Note that this applies the
equivalence relation (m,n) ∼ (m′, n′) ⇐⇒ m + n′ = m′ + n defined in N × N

yielding Z as the set of equivalence classes, where in our case m,m′ are the num-
ber of f -labeled hyperedges and n, n′ are the number of f -labeled hyperedges in
some connected component z, z′, respectively.

We apply a quantitative argument with respect to fusion labels only. Ver-
tices, attachments and terminal labels are irrelevant. Therefore, very different
connected components yield the same vector as long as the difference between
fusion-labeled hyperedges and their corresponding complementary labeled hyper-
edges are the same. If fusion never yields disconnection, then this representation
is meaningful as fusion of connected components and multiplication of connected
components is reflected in addition and multiplication of vectors.

Definition 2. 1. Let F = {f1, . . . , fr} be a fusion alphabet and let z be a con-
nected hypergraph with fusion labels in F ∪ F . Then

v(z) = (p1 − n1, . . . , pr − nr)

is the integer vector associated to z, where pi is the number of fi-labeled
hyperedges and ni is the number of f i-labeled hyperedges in z.

Deciding Non-emptiness of Hypergraph Languages 103

2. Let v = (v1, . . . , vr) ∈ Z
r and let {f1, . . . , fr} be a fusion alphabet, where all

fusion labels of type 1. Then the connected hypergraph associated to v is

h(v) = ([1], {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ |vi|}, atth(v), labh(v))

where atth(v)((i, j)) = 1 for each i, j, and labh(v)((i, j)) = fi if vi > 0 and fi

otherwise. |vi| denotes the absolute value of vi.
By h(v)x we denote h(v) with an additional designating x-flag (type-1 hyper-
edge) attached. The label of these flags may be of a terminal alphabet or μ.

The designation flag enables to have and distinguish multiple hypergraph
representations of the same vector.

Example 2. 1. Let {A,B} be a fusion alphabet with type(A) = type(B) = 2

and let z1 = B

A
μ , z2 =

A

A

, z3 =

A

, z4 = B

A

B , z5 = B .

The respective vectors v(z1), . . . , v(z5) ∈ Z
2 are the following: v(z1) =(

1, 1
)
, v(z2) =

(
0, 0

)
, v(z3) =

(−1, 0
)
, v(z4) =

(
1, 0

)
, v(z5) =

(
0,−1

)
.

2. Let v = (−2, 1, 3) and let μ be its designation. Then h(v)μ = μ
f1f1

f2

f3
f3

f3

. The

numbering of the attachments is omitted as it is clear from context.

This leads to the transformation of connection-preserving fusion grammars
into vector fusion grammars.

Construction 1. Let FG = (Z,F, T, μ, κ) be a connection-preserving fusion
grammar with one marked connected component (zμ) in its start hypergraph. Let
z1, . . . , zc be the remaining connected components in the start hypergraph. Then
VFG(FG) = (Z(V (z1, . . . , zc), v(zμ)), {f1, . . . , f|F |}, {1, . . . , c}, μ, κ), where
Z(V (z1, . . . , zc), v(zμ)) = h(v(z1))1 + . . . + h(v(zc))c + h(−v(zμ))μ, is the corre-
sponding vector fusion grammar.

The vector fusion grammar can be seen as a corresponding fusion grammar
where the structure of the connected components is significantly reduced. For
connection-preserving fusions grammars the transformation yields a meaningful
vector fusion grammar due to the following reasoning. A conneced component
is a largest connected subhypergraph. Because terminal-, μ- or κ-labeled hyper-
edges are never modified during some derivation and fusion is by assumption
connection-preserving, all vertices of a connected component can be identified.
Then all terminal and κ-labeled hyperedges can be removed and the attach-
ment length of fusion and μ-labeled hyperedges is set to 1. Fusion within each
connected component as long a possible and adding a terminal flag with the
components identifier to all except the μ-connected component yields the start
hypergraph of the vector fusion grammar.

104 A. Lye

Proposition 1. Let FG be a connection-preserving fusion grammar with one
marked connected component in its start hypergraph and VFG(FG) be the
corresponding vector fusion grammar. Then L(FG) �= ∅ if and only if
L(VFG(FG)) �= ∅.
Proof. Let FG = (Z,F, T, μ, κ), where F = {f1, . . . , fr}, and let H ∈ L(FG).
Then w.l.o.g. Z

∗=⇒Hμ, where H = rem{μ,κ}(Hμ) and Hμ ∈ HT∪{κ,μ}−HT∪{κ}.

Let the derivation be Z =⇒
m

m · Z = zμ +
c∑

i=1

mi · zi
k1=⇒

fr(f1)
. . .

kc=⇒
fr(fc)

Hμ.

Because H ∈ L(FG), and as Hμ is the fusion of zμ +
c∑

i=1

mi · zi and because

H ′ does not have any hyperedges labeled in F ∪ F , all those F ∪ F -hyperedges
disappear in the fusions. As a single fusion consumes exactly one pair fi, f i

for some i, the number of fi-hyperedges and the number of number of fusion
hyperedges and their complements in the involved connected components must
be equal, i.e., using notation of Definition 2 and denoting the number of fi-
labeled hyperedges and f i-labeled hyperedges in zμ by piμ and niμ, respectively,

ki = piμ+
c∑

j=1

pij ·mj = niμ+
c∑

j=1

nij ·mj for i = 1, . . . , r. Applying these multipli-

cies to the corresponding connected components h(v(zi))i in the start hypergraph

of VFG(FG) yield the derivation Z(V (z1, . . . , zc), v(zμ))=⇒
m

h(−b)μ +
c∑

i=1

mi ·

h(v(zi))i. Moreover, because
c∑

j=1

(pij − nij) · mj = piμ − niμ for i = 1, . . . , r

there exists a derivation h(−b)μ +
c∑

i=1

mi ·h(v(zi))i
k=⇒H ′

μ, where k =
r∑

i=1

ki and

H ′
μ ∈ H[c]∪{κ,μ} − H[c]∪κ. Consequently, L(VFG(FG)) �= ∅.

Conversely, let H ∈ L(VFG(FG)). Then there exists a derivation
Z(V (z1, . . . , zc), v(zμ)) ∗=⇒Hμ, where H = remμ(H). Hμ contains no fusion or
complementary fusion hyperedges. Using similar arguments as before we can con-
clude that there is also a derivation Z

∗=⇒H ′
μ in FG . Note that the connected

components zi corresponding to h(v(zi))i may have more fusion and comple-
mentary fusion hyperedges than h(v(zi))i. However, these can be removed by
internal fusion within the respective connected component. Consequently, H ′

μ

is only terminal, κ- and μ-labeled and, therefore, contributes to the generated
language after removing the marker, i.e., H ′ = remμ(H ′

μ) ∈ L(FG). Hence,
L(FG) �= ∅. ��

5 A Polynomial-Time Equivalence of the Non-emptiness
Problem for Vector Fusion Grammars and Solvability
of a Variant of Integer Linear Programming

In this section, we present a polynomial-time equivalence of the non-emptiness
problem for vector fusion grammars and solvability of a variant of integer linear
programming.

Deciding Non-emptiness of Hypergraph Languages 105

The integer linear programming variant used in our reduction is the following.
Let (A, b) ∈ Z

r×c × Z
r. The problem is to decide if there exists an x ∈ N

c such
that Ax = b. The problem can be seen as a submonoid membership problem. Let
(Zr,+, 0) be the free commutative monoid of r-dimensional vectors over Z, where
the operation is defined componentwise and 0 is the zero-vector. Let (S,+, 0)
be a submonoid, where the set S is generated by the column vectors of A, i.e.,
A1, . . . , Ac, by adding 0 and closing S under the operation. Asking if b ∈ S is by
definition equivalent to asking for a linear combination x1 · A1 + . . . + xc · Ac of
the generating vectors A1, . . . , Ac yielding b, where x = (x1, . . . , xc) ∈ N

c.
The basic idea of our reduction is to represent these vectors (A1, . . . , Ac) by

connected components in the start hypergraph of a vector fusion grammar. The
submonoid membership problem is then reduced to the membership problem in
vector fusion grammars (which is an instance of the membership problem for
connection-preserving fusion grammars). It turns out that this reduction is in
fact a p-isomorphism. The construction is crafted in such a way that the language
generated by the vector fusion grammar is not empty if and only if there is a
nonnegative solution for Ax = b.

Besides the representation of vectors in Z
r, we need a hypergraph represen-

tation for solution vector in N
c. Furthermore, the hypergraph representations of

vectors in Z
r and N

c must be distinguishable. We represent such a vector by a
connected hypergraph consisting of a single vertex and as many terminal-labeled
flags labeled i as the ith scalar in the vector.

Definition 3. Let x = (x1, . . . , xc) ∈ N
c and let {1, . . . , c} be a set of terminal

labels. Then the to x associated connected hypergraph is

ĥ(x) = ([1], {(i, j) | 1 ≤ i ≤ c, 1 ≤ j ≤ xi}, att ĥ(x), labĥ(x)),

where att ĥ(x)((i, j)) = 1 for all i, j and labĥ(x)((i, j)) = i.

By ĥ(x)μ we denote ĥ(x) with an additional μ-hyperedge attached.

Example 3. Let x = (0, 3, 5). Then ĥ(x) =
222

3
3 3 3

3
. The hypergraph contains as

many flags labeled with the index i as the ith entry of the vector holds. There
are no flags labeled 1, because the first entry is 0. But there are three flags
labeled 2 and five flags labeled 3 as the 2nd and 3rd entry hold the scalar 3 and
5, respectively.

Remark 2. x and ĥ(x) are in one-to-one correspondence to each other. Therefore,
we have a one-to-one mapping between the two sets {ĥ(x) | Ax = b, x ∈ N

c} and
{x ∈ N

c | Ax = b}.

Construction 2. Let (A, b) ∈ Z
r×c × Z

r. Let A1, . . . , Ac be the columns of A.
Let F = {f1, . . . , fr} be a fusion alphabet with type(f) = 1 for all f ∈ F . Then

VFG(A, b) = (Z(A, b), F, {1, . . . , c}, μ, κ),
where Z(A, b) = h(A1)1 + . . . + h(Ac)c + h(−b)μ,

is the corresponding vector fusion grammar.

106 A. Lye

Remark 3. This reduction takes polynomial time because for each column vector
exactly one connected component is created in linear time. Furthermore, this
reduction is a p-isomorphism as the mapping is bijective and also the inverse
mapping can be computed analogously in polynomial time.

Proposition 2. L(VFG(A, b)) = {ĥ(x) | Ax = b, x ∈ N
c}.

Proof. Let L(VFG(A, b))) be not empty. Then there exists some hypergraph
H ∈ L(VFG(A, b)). Let Z

∗=⇒Hμ be a derivation generating a hypergraph
containing a connected component Hμ such that H = rem{κ,μ}(Hμ) and
Hμ ∈ H[c]∪{κ,μ} − H[c]∪κ. Let mj be the number of copies of h(Aj)j needed
to construct H ′ for j = 1, . . . , c. Then, using the same argument as in the proof
of Proposition 1, we conclude that the number of number of fusion hyperedges
and their complements in the involved connected components must be equal.

Formally, using the notation as in the proof of Proposition 1, piμ +
c∑

j=1

pij ·mj =

niμ+
c∑

j=1

nij ·mj for i = 1, . . . , r. This equation is equivalent to
c∑

j=1

(pij−nij)·mj =

−(piμ − niμ) = −bi for i = 1, . . . , r, where bi is the ith entry in b. This means
that the vector x = (m1, . . . ,mc) is a solution of the linear diophantine equation
system Ax = b because by definition A = (aij)i=1,...,r,j=1,...,c with aij = pij −nij .
Furthermore, each connected component involved in this derivation contributes
with one flag to the derived hypergraph. More specifically, h(Ai)i adds one flag
labeled i and h(−b)μ adds one flag labeled μ. Consequently, H is of the form
ĥ(x)μ where x = (m1, . . . ,mc). Hence, H ∈ {ĥ(x) | Ax = b}.

Conversely, let ĥ(x) ∈ {ĥ(x) | Ax = b, x ∈ N
c}. Then x = (x1, . . . , xc) ∈ N

c

is a solution for the linear diophantine equation system Ax = b. Further, this
vector gives the multiplicity of the respective connected components of Z(A, b)
such that the number of fi-hyperedges and the number of f i-hyperedges for
i = 1, . . . , r are equal. After respective multiplications the connected components

in the hypergraph h(−b)μ +
c∑

j=1

mj ·h(Aj)j can be fused, i.e., Z(A, b) =⇒
m(x)

m(x) ·

Z(A, b) = h(−b)μ +
c∑

j=1

xi · h(Aj)j
k1=⇒

fr(f1)
. . .

kr=⇒
fr(fr)

ĥ(x)μ, where ki = piμ +
c∑

j=1

pij ·

xj = niμ +
c∑

j=1

nij · xj for i = 1, . . . , r. Because this connected component is

only marker and terminal labeled, this connected components contributes to the
language L(VFG(A, b)) after removing the marker. ��
Corollary 1. L(VFG(A, b)) �= ∅ if and only if there exists a derivation
Z(A, b) ∗=⇒ ĥ(x)μ for some x ∈ N

c.

Deciding Non-emptiness of Hypergraph Languages 107

6 Complexity-Theoretic Implications of the Reductions

In this section, we conclude the following theorem.

Theorem 1. The non-emptiness problem for connection-preserving fusion
grammars is NP-complete.

Proof. The integer linear programming variant used in our reduction in strongly
NP-complete (cf. [7–9]).

The equivalences

L(VFG(A, b)) �= ∅ ⇐⇒ ∃Z(A, b) ∗=⇒ ĥ(x)μ for some x ∈ N
c

⇐⇒ ∃x = (x1, . . . , xc) ∈ N
c : x1 · A1 + . . . + xc · Ac = b

⇐⇒ ∃x ∈ N
c : Ax = b

and p-isomorphism presented in Sect. 5 imply that the non-emptiness problem
for vector fusion grammars is in NP. Together with the reduction presented in
Sect. 4 (Proposition 1 and the following equivalence of the two notions of vector
fusion grammars) this implies that the non-emptiness problem for connection-
preserving fusion grammars is in NP.

Using the notation of Construction 1 and 2, we have VFG(FG) = VFG(A, b),

where A = V (z1, . . . , zc) =

⎛

⎜
⎜
⎜
⎝

d11 d12 . . . d1c

d21 d22 . . . d2c

...
...

...
dr1 dr2 . . . drc

⎞

⎟
⎟
⎟
⎠

, where r = |F |, dij = pij − nij ,

where pij is the number of fi-labeled hyperedges and nij is the number of f i-
labeled hyperedges in zj , and b = v(zμ).

The NP hardness of the integer linear programming variant and the reduction
presented in Sect. 5 imply that the membership problem for vector fusion gram-
mars is NP hard. Using Corollary 1 this implies that deciding non-emptiness
of the language generated by a vector fusion grammars is NP hard. As vector
fusion grammars are a special case of connection-preserving fusion grammars, we
get that the non-emptiness problem for connection-preserving fusion grammars
is NP hard. ��

7 Conclusion

In this paper, we have analyzed the non-emptiness problem for connection-
preserving fusion grammars and have showed that this is an NP-complete prob-
lem. The proof relates language generation by connection-preserving fusion
grammars to some NP-complete variant of integer linear programming using
vector fusion grammar. In particular, we have presented a transformation from
connection-preserving fusion grammars into vector fusion grammars such that
non-emptiness of the generated languages is preserved. Together with the pre-
sented polynomial-time equivalence of the non-emptiness problem for vector

108 A. Lye

fusion grammars and solvability of the variant of integer linear programming
this implies NP-completeness of the problem.

It is very interesting that the proof for deciding non-emptiness relies only on
a quantitative argument, i.e., it is irrelevant how the connected components are
fused. As a consequence, it may be interesting to analyze this closure property
of permutations further.

Connection-preserving fusion grammars are a greater subclass then substan-
tial fusion grammars. It would be interesting to analyze and relate their gener-
ative power. It would also be interesting to know if the non-emptiness problem
is decidable for fusion grammars, where disconnection may happen during the
derivation. Moreover, it would be interesting to discover further subclasses for
which the non-emptiness problem is efficiently decidable. Further studies may
be other decision problems like finiteness or equivalence of languages generated
by fusion grammars. This will provide us with better understanding of the com-
putational power of fusion grammars.

Acknowledgment. We are grateful to Hans-Jörg Kreowski and Sabine Kuske for
valuable discussions and remarks. We also thank the anonymous reviewers for their
valuable comments.

References

1. Kreowski, Hans-Jörg., Kuske, Sabine, Lye, Aaron: Fusion Grammars: a novel app-
roach to the generation of graph languages. In: de Lara, Juan, Plump, Detlef (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-61470-0 6

2. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

3. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata.
Addison-Wesley Series in Computer Science and Information Processing. Addison-
Wesley, Boston (1969)

4. Kreowski, H.-J., Kuske, S., Lye, A.: Splicing/Fusion grammars and their relation
to hypergraph grammars. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol.
10887, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-
0 1

5. Lye, A.: Transformation of turing machines into context-dependent fusion gram-
mars. In: Post-Proceedings of the 10th International Workshop on Graph Com-
putation Models, (GCM 2019). Electronic Proceedings in Theoretical Computer
Science (EPTCS) (2019). https://doi.org/10.4204/EPTCS.309.3

6. Lye, A.: Context-sensitive fusion grammars are universal. In: Leporati, A., Mart́ın-
Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 275–286.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0 19

7. Sahni, S.: Computationally related problems. SIAM J. Comput. 3(4), 262–279
(1974)

8. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, exam-
ples, and implications. J. ACM 25(3), 499–508 (1978)

9. Garey, M.R., Johnson, D.S.: Conputers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/978-3-319-92991-0_1
https://doi.org/10.1007/978-3-319-92991-0_1
https://doi.org/10.4204/EPTCS.309.3
https://doi.org/10.1007/978-3-030-40608-0_19

On the Power of Nondeterministic
Circuits and Co-Nondeterministic

Circuits

Hiroki Morizumi(B)

Shimane University, Matsue, Japan
morizumi@cis.shimane-u.ac.jp

Abstract. Revealing the power of nondeterministic computation and
co-nondeterministic computation is one of the central problems in com-
putational complexity. In this paper, we consider the two computation
and deterministic computation in Boolean circuits. We give the first sep-
arations on the power of deterministic circuits, nondeterministic circuits,
and co-nondeterministic circuits in general circuits. More precisely, we
prove the following facts.
– There is an explicit Boolean function f such that the nondeterminis-

tic U2-circuit complexity of f is at most 2n+o(n) and the determin-
istic and co-nondeterministic U2-circuit complexity of f is 3n−o(n).

– There is an explicit Boolean function f such that the co-
nondeterministic U2-circuit complexity of f is at most 2n + o(n)
and the deterministic and nondeterministic U2-circuit complexity of
f is 3n− o(n).

Keywords: Circuit complexity · Nondeterministic circuit ·
Co-nondeterministic circuit · U2-circuit

1 Introduction

In this paper, we give the first separations on the power of deterministic circuits,
nondeterministic circuits, and co-nondeterministic circuits in general circuits.
The results of this paper are the following two theorems. We denote by sized(f)
the size of the smallest deterministic U2-circuit computing a Boolean function f ,
and denote by sizend(f) and sizecnd(f) the size of the smallest nondeterministic
and co-nondeterministic U2-circuit computing a Boolean function f , respectively.

Theorem 1. There is an explicit Boolean function f such that sizend(f) ≤
2n + o(n) and sized(f) = sizecnd(f) = 3n − o(n).

Theorem 2. There is an explicit Boolean function f such that sizecnd(f) ≤
2n + o(n) and sized(f) = sizend(f) = 3n − o(n).

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 109–117, 2021.
https://doi.org/10.1007/978-3-030-68195-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_9

110 H. Morizumi

Boolean circuits are one of computation models in computation theory, and
the size of the smallest circuit computing a Boolean function f , which is called
circuit complexity of f , means the hardness to compute f by the circuits. In this
paper, we consider nondeterministic circuits and co-nondeterministic circuits,
which are Boolean circuits with the power of nondeterministic computation and
co-nondeterministic computation. Thus, Theorem 1 and Theorem 2 are an inves-
tigation for the power of nondeterministic computation and co-nondeterministic
computation.

The circuit model of this paper is U2-circuits. The computational power
by U2-circuits is close to the computational power by the standard Turing
machines, except that circuits are generally nonuniform computation models.
More precisely, the class of decision problems solvable by a nonuniform family
of polynomial-size deterministic U2-circuits is equal to P/poly, and the class of
decision problems solvable by a nonuniform family of polynomial-size nondeter-
ministic U2-circuits is equal to NP/poly. Lower bounds on the size of U2-circuits
have been well studied with a motivation as an approach to the P vs. NP prob-
lem [1,2,5].

Related Works. While both of nondeterministic computation and circuit com-
plexity are central topics in computational complexity, the circuit complexity
of nondeterministic circuits has not been relatively well studied. There are no
published works for the separations on the power of deterministic circuits and
nondeterministic circuits as far as we know.

The author proved a 3(n − 1) lower bound for the size of nondeterministic
U2-circuits computing the parity function in his previous paper [3]. In the paper,
the gate elimination method (See Sect. 2.2.) has been firstly applied to nondeter-
ministic circuits. The idea (i.e., how we apply the method to nondeterministic
circuits) is used also in this paper.

Proof Outlines. Once Theorem 1 is proved, Theorem 2 is obtained by the prop-
erties of nondeterministic circuits and co-nondeterministic circuits (and deter-
ministic circuits). We describe the properties and the proof of Theorem 2 in
Sect. 3. Thus, the main task of this paper is to prove Theorem 1.

To prove Theorem 1, we propose a simple proof strategy, and call the key
idea nondeterministic selecting. In Sect. 4, we describe nondeterministic selecting
and the proof idea using it. The proof of Theorem 1 is in Sect. 5.

2 Preliminaries

The parity function of n inputs x1, . . . , xn, denoted by Parityn, is 1 iff
∑

xi ≡ 1
(mod 2).

On the Power of Nondeterministic Circuits and Co-Nondeterministic Circuits 111

2.1 Circuits

Circuits are formally defined as directed acyclic graphs. The nodes of in-degree 0
are called inputs, and each one of them is labeled by a variable or by a constant
0 or 1. The other nodes are called gates, and each one of them is labeled by
a Boolean function. The fan-in of a node is the in-degree of the node, and the
fan-out of a node is the out-degree of the node. There is a single specific node
called output. The size of a circuit is the number of gates in the circuit.

We denote by U2 the set of all Boolean functions over two variables except
for the XOR function and its complement. A Boolean function in U2 can be
represented as the following form:

f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c,

where a, b, c ∈ {0, 1}. A U2-circuit is a circuit in which each gate has fan-in 2
and is labeled by a Boolean function in U2.

A nondeterministic circuit is a circuit with actual inputs (x1, . . . , xn) ∈
{0, 1}n and some further inputs (y1, . . . , ym) ∈ {0, 1}m called guess inputs. A
nondeterministic circuit computes a Boolean function f as follows: For x ∈
{0, 1}n, f(x) = 1 iff there exists a setting of the guess inputs {y1, . . . , ym} which
makes the circuit output 1. A co-nondeterministic circuit is also a circuit with
actual inputs (x1, . . . , xn) ∈ {0, 1}n and guess inputs (y1, . . . , ym) ∈ {0, 1}m.
A co-nondeterministic circuit computes a Boolean function f as follows: For
x ∈ {0, 1}n, f(x) = 0 iff there exists a setting of the guess inputs {y1, . . . , ym}
which makes the circuit output 0. We call a circuit without guess inputs a
deterministic circuit to distinguish it from a nondeterministic circuit or a co-
nondeterministic circuit.

2.2 The Gate Elimination Method

In our proofs, we need the gate elimination method. In this subsection, we have
a quick look at the method for the case of the parity function, which is relevant
to our case.

Consider a gate g which is labeled by a Boolean function in U2. Recall that
any Boolean function in U2 can be represented as the following form:

f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c,

where a, b, c ∈ {0, 1}. If we fix one of two inputs of g so that x = a or y = b, then
the output of g becomes a constant c. In such case, we say that g is blocked.

Theorem 3 (Schnorr [4]).

sized(Parityn) = 3(n − 1).

Proof. Assume that n ≥ 2. Let C be an optimal deterministic U2-circuit com-
puting Parityn. Let g1 be a top gate in C, i.e., whose two inputs are connected
from two inputs xi and xj , 1 ≤ i, j ≤ n. Then, xi must be connected to another

112 H. Morizumi

gate g2, since, if xi is connected to only g1, then we can block g1 by an assign-
ment of a constant to xj and the output of C becomes independent from xi,
which contradicts that C computes Parityn. By a similar reason, g1 is not the
output of C. Let g3 be a gate which is connected from g1. See Fig. 1.

Fig. 1. Proof of Theorem 3

We prove that we can eliminate at least three gates from C by an assignment
to xi. We assign a constant 0 or 1 to xi such that g1 is blocked. Then, we can
eliminate g1, g2 and g3. If g2 and g3 are the same gate, then the output of g2
(= g3) becomes a constant, which means that g2 (= g3) is not the output of C
and we can eliminate another gate which is connected from g2 (= g3). Thus, we
can eliminate at least three gates and the circuit comes to compute Parityn−1

or ¬Parityn−1. For deterministic circuits, it is obvious that sized(Parityn−1) =
sized(¬Parityn−1). Therefore,

sized(Parityn) ≥ sized(Parityn−1) + 3
...
≥ 3(n − 1).

x ⊕ y can be computed with three gates by the following form:

(x ∧ ¬y) ∨ (¬x ∧ y).

Therefore, sized(Parityn) ≤ 3(n − 1). 	

3 Proof of Theorem 2

As mentioned in Sect. 1, Theorem 2 is immediately obtained by Theorem 1. In
this section, we show the proof of Theorem 2, and we concentrate our main task
(i.e., the proof of Theorem 1) in the rest of this paper.

Nondeterministic circuits and co-nondeterministic circuits have the following
property. The property is a natural property which nondeterministic computa-
tion and co-nondeterministic computation have.

On the Power of Nondeterministic Circuits and Co-Nondeterministic Circuits 113

Proposition 1. For every Boolean function f , if sizend(f) ≥ 1 and
sizecnd(¬f) ≥ 1, then sizend(f) = sizecnd(¬f).

Proof. By the definitions of Nondeterministic circuits and co-nondeterministic
circuits, a nondeterministic circuit C computing f and one NOT gate at the
output of C is a co-nondeterministic circuit computing ¬f . Similarly, a co-
nondeterministic circuit C ′ computing f ′ and one NOT gate at the output of C ′

is a nondeterministic circuit computing ¬f ′. In U2-circuits, the one NOT gate
is not counted as the number of gates, since the NOT gate is merged to another
gate. 	

To prove Theorem 2, the following property of deterministic circuits is also
needed.

Proposition 2. For every Boolean function f , if sized(f) ≥ 1 and sized(¬f) ≥
1, then sized(f) = sized(¬f).

Proof. A deterministic circuit C computing f and one NOT gate at the output
of C is a deterministic circuit computing ¬f . In U2-circuits, the one NOT gate
is not counted as the number of gates, since the NOT gate is merged to another
gate. 	

By Proposition 1 and Proposition 2, once Theorem 1 is proved, Theorem 2
is immediately proved.

Proof (of Theorem 2). Let f1 be the f in Theorem 1. We let f (in Theorem 2)
be ¬f1. 	

4 Nondeterministic Selecting

In this section, we describe our idea for the proof of Theorem 1. We call the key
idea nondeterministic selecting.

Let f ′ : {0, 1}
√
n → {0, 1}, and

f =

√
n−1∨

i=0

f ′(x√
n·i+1, x

√
n·i+2, . . . , x

√
n·i+√

n).

Nondeterministic circuits can efficiently compute f . We construct a nondeter-
ministic circuit C computing f as follows. Firstly, we select

√
n inputs nonde-

terministically. More precisely, we construct a selector circuit C ′ which outputs
x√

n·i+1, x
√
n·i+2, . . . , x

√
n·i+√

n for each i, 0 ≤ i ≤ √
n − 1, when guess inputs of

C are assigned to an assignment. Then, one circuit C ′′ computing f ′ is enough
in C.

√
n variables of the output of C ′ are connected to the input of C ′′. It is

not difficult to confirm that C computes f by the definition of nondeterministic
circuits.

On the other hand, a trivial construction of deterministic circuits computing
f uses

√
n circuits computing f ′. Note that it is a complicated problem (called

114 H. Morizumi

a direct sum) whether
√
n circuits are needed. In our proof of Theorem 1, we

choose the parity function as f ′ so that we can prove the large lower bound on the
circuit complexity of f for deterministic circuits and even co-nondeterministic
circuits.

5 Proof of Theorem 1

To prove Theorem 1, we let

f =

√
n−1∨

i=0

Parity√
n(x√

n·i+1, x
√
n·i+2, . . . , x

√
n·i+√

n),

and prove some lemmas on the circuit complexity of f . Theorem 1 is immediately
proved by the lemmas.

Proof (of Theorem 1). By the definitions of deterministic circuits and co-
nondeterministic circuits, sizecnd(f) ≤ sized(f). By Lemma 1, Lemma 2 and
Lemma 4, the theorem holds. 	

5.1 The Nondeterministic Circuit Complexity

Nondeterministic circuits can efficiently compute f as mentioned in Section 4.

Lemma 1. sizend(f) ≤ 2n + o(n).

Proof. We construct a nondeterministic circuit computing f as mentioned in
Sect. 4. For simplicity, we assume that

√
n is a power of 2.

We use log
√
n guess inputs y1, . . . , ylog

√
n, and compute zi, 0 ≤ i ≤ √

n− 1,
by o(n) gates as follows.

zi = 1 iff i = (ylog √
nylog

√
n−1 · · · y1)2 (=

log
√
n∑

j=1

yj · 2j−1).

√
n inputs are nondeterministically selected by at most 2n gates as follows.

√
n−1∨

i=0

x√
n·i+1 ∧ zi,

√
n−1∨

i=0

x√
n·i+2 ∧ zi, . . . ,

√
n−1∨

i=0

x√
n·i+√

n ∧ zi.

Finally, we construct a circuit computing Parity√
n, which can be constructed

with o(n) gates by Theorem 3. 	

On the Power of Nondeterministic Circuits and Co-Nondeterministic Circuits 115

5.2 The Deterministic Circuit Complexity

We firstly show the upper bound.

Lemma 2. sized(f) ≤ 3n − o(n).

Proof. By Theorem 3, the obvious construction of f satisfies the lemma. 	

The following lemma can be skipped for the proof of Theorem 1. If one

hopes the separation on the power of deterministic circuits and nondeterministic
circuits (i.e., a weaker result and an easier proof than Theorem 1), then Lemma 3
is useful. Lemma 1 and Lemma 3 imply the separation.

Lemma 3. sized(f) ≥ 3n − o(n).

Proof. We refer the proof of Theorem 3. While we eliminate at least three gates
from the circuit by an assignment to xi as the proof of Theorem 3, we modify the
proof as follows. If x√

n·i+1, x
√
n·i+2, . . . , x

√
n·i+√

n have been assigned except one
variable for some i, 0 ≤ i ≤ √

n− 1, then we assign 0 or 1 to the variable so that
Parity√

n(x√
n·i+1, x

√
n·i+2, . . . , x

√
n·i+√

n) = 0 and we do not count the number
of eliminated gates at the assignment. By the modification, we can eliminate at
least 3 gates at n − √

n assignments. 	

5.3 The Co-Nondeterministic Circuit Complexity

We prove the lower bound by the gate elimination method. See Sect. 2.2 for the
definition of “block”.

Lemma 4. sizecnd(f) ≥ 3n − o(n).

Proof. Let C be an optimal co-nondeterministic U2-circuit computing f . We
prove that we can continuously eliminate at least 3 gates from C by an assign-
ment of a constant 0 or 1 to an actual input.

In the continuous eliminations, if x√
n·i+1, x

√
n·i+2, . . . , x

√
n·i+√

n have been
assigned except one variable for some i, 0 ≤ i ≤ √

n − 1, then we assign 0 or
1 to the variable so that Parity√

n(x√
n·i+1, x

√
n·i+2, . . . , x

√
n·i+√

n) = 0 and we
do not count the number of eliminated gates at the assignment. The number of
such assignment is

√
n.

Case 1. There is an actual input xi, 1 ≤ i ≤ n, which is connected to at least
two gates.

Let g1 and g2 be gates which are connected from xi. Since we can block g1
by an assignment of a constant to xi, g1 is not the output of C and there is a
gate g3 which is connected from g1. See Fig. 2.

We prove that we can eliminate at least 3 gates from C by an assignment
to xi. We assign a constant 0 or 1 to xi such that g1 is blocked. Then, we can
eliminate g1, g2 and g3. If g2 and g3 are the same gate, then the output of g2
(= g3) becomes a constant, which means that g2 (= g3) is not the output of C

116 H. Morizumi

Fig. 2. Case 1

and we can eliminate another gate which is connected from g2 (= g3). Thus, we
can eliminate at least 3 gates.

Case 2. Every actual input is connected to at most one gates.
Let g1 be a gate in C such that one of two inputs is connected from an actual

input xi and the other is connected from a node v whose output is dependent
on only guess inputs and independent from actual inputs. (v may be a gate and
may be a guess input.) Consider that an assignment to actual inputs and guess
inputs is given. Then, if the value of the output of v blocks g1 by the assignment,
then the output of C must be 1, since, if the output of C is 0, then the value
of the Boolean function which is computed by C becomes independent from xi,
which contradicts that C computes f . We use the fact above and reconstruct C
as follows.

Let c be a constant 0 or 1 such that if the output of v is c, then g1 is blocked.
We fix the input of g1 from v to ¬c and eliminate g1. We prepare a new output
gate g2 and connect the two inputs of g2 from the old output gate and v. g2 is
labeled by a Boolean function in U2 so that the output of g2 is 0 iff the input from
the old output gate is 0 and the input from v is ¬c. Let C ′ be the reconstructed
circuit. See Fig. 3.

In the reconstruction, we eliminated one gate (g1) and added one gate (g2).
Thus, the size of C ′ equals the size of C. In C ′, if the output of v is c, then the
output of C ′ becomes 1 by g2. If the output of v is ¬c, then the output of C ′

equals the output of the old output gate and g1 has been correctly eliminated
since we fixed the input of g1 from v to ¬c in the reconstruction. Thus, C and
C ′ compute a same Boolean function. We continue such reconstruction until
the reconstructed circuit satisfies the condition of Case 1. The reconstructions
must end, since one reconstruction increases continuous gates whose one input
is dependent on only guess inputs (i.e., g2) at the output. Note that g1 is not
included in the continuous gates, since the output of C must depend on at least
two actual inputs.

Thus, we can eliminate at least 3 gates at n − √
n assignments. 	

On the Power of Nondeterministic Circuits and Co-Nondeterministic Circuits 117

Fig. 3. Case 2

6 Concluding Remarks

In this paper, we considered the power of nondeterministic circuits and co-
nondeterministic circuits. To prove our results, we proposed a simple proof strat-
egy using nondeterministic selecting. It remains open that we use the strategy
and prove a similar or improved result for U2-circuits or other Boolean circuits.

Acknowledgement. The author would like to thank the anonymous reviewers for
valuable and detailed comments.

References

1. Iwama, K., Morizumi, H.: An explicit lower bound of 5n - o(n) for boolean circuits.
In: Proc. of MFCS. pp. 353–364 (2002)

2. Lachish, O., Raz, R.: Explicit lower bound of 4.5n - o(n) for boolean circuits. In:
Proc. of STOC. pp. 399–408 (2001)

3. Morizumi, H.: Lower bounds for the size of nondeterministic circuits. In: Proc. of
COCOON. pp. 289–296 (2015)

4. Schnorr, C.: Zwei lineare untere schranken für die komplexität boolescher funktio-
nen. Computing 13(2), 155–171 (1974)

5. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmet-
ric boolean functions over the basis of unate dyadic boolean functions. SIAM J.
Comput. 20(3), 499–505 (1991). https://doi.org/10.1137/0220032

https://doi.org/10.1137/0220032

On Hardest Languages for
One-Dimensional Cellular Automata

Mikhail Mrykhin(B) and Alexander Okhotin

Department of Mathematics and Computer Science, St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg 199034, Russia

mikhail.k.mrykhin@gmail.com, alexander.okhotin@spbu.ru

Abstract. Since the famous construction of “the hardest context-free
language” by Greibach (1973), the existence of hardest languages under
homomorphic reductions has been investigated for quite a few language
families. This paper shows that for one-way real-time cellular automata,
also known as trellis automata, there is no hardest language, whereas for
linear-time cellular automata, the hardest language is constructed.

1 Introduction

The notion of a complete set for a family of formal languages is among the central
concepts of theoretical computer science. Given a reduction mechanism, such as
logarithmic-space Turing machines, a language, to which every language from a
family is reducible, is called hard for that family. If, furthermore, this language
belongs to the family, it is complete for that family.

For this definition to make sense, the reduction mechanism should be compu-
tationally weaker than the family itself. Furthermore, the weaker the reduction
mechanism, the stronger are the results on the completeness of some language
with respect to those reductions. The weakest reduction mechanism are homo-
morphisms, under which every symbol a from the alphabet of the given language
is mapped to a substring h(a) over the alphabet of the hard language. There is
a notable result involving such reductions: Greibach’s [8] “hardest context-free
language”, that is, a fixed language L0 over an alphabet Σ0 defined by a formal
grammar, to which one can reduce every language L defined by a grammar over
any alphabet Σ, by a suitable homomorphism h : Σ∗ → Σ∗

0 , so that a nonempty
string w ∈ Σ+ belongs to L if and only if its image h(w) is in L0.

Greibach’s result inspired a line of research on the existence of hardest lan-
guages under homomorphic reductions in various families of formal languages.
Already Greibach [9] proved the first negative result, that for the family of lan-
guages described by LR(1) grammars, or, equivalently, recognized by determinis-
tic pushdown automata, there cannot exist such a hardest language. For another
important subfamily of grammars, the linear grammars, non-existence of hard-
est languages was established by Boasson and Nivat [2]. On the other hand, as

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 118–130, 2021.
https://doi.org/10.1007/978-3-030-68195-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_10&domain=pdf
http://orcid.org/0000-0002-9071-4909
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-68195-1_10

On Hardest Languages for One-Dimensional Cellular Automata 119

Fig. 1. Computation of (left) trellis automata, (right) cellular automata.

proved by Okhotin [20], two generalizations of ordinary (“context-free”) gram-
mars do have hardest languages: these are conjunctive grammars [15,19], with
an explicit conjunction operation in the rules, and Boolean grammars [16], which
are further equipped with a negation operation.

Hardest languages under homomorphic reductions have been investigated
beyond formal grammars. For the family of regular languages, Čuĺık and Mau-
rer [7] proved that a hardest language under homomorphic reductions can-
not exist; a related stronger result was later established by Harju, Karhumäki
and Kleijn [10]. Autebert [1] obtained the same negative result for one-counter
automata. On the other hand, Greibach [8] proved a hardest language theorem
for a certain restricted type of Turing machines, whereas Čuĺık and Maurer [7]
found a hardest language in the complexity class NSPACE(n); their argument
extends to NSPACE(f(n)) and DSPACE(f(n)) for every space-constructible
function f .

The purpose of this paper is to investigate whether hardest languages exist for
two basic kinds of one-dimensional cellular automata: one-way real-time cellular
automata, also known under a proper name of trellis automata, and the more
powerful linear-time cellular automata. The form of time-space diagrams for
these automata is illustrated in Fig. 1: on an input of length n, a trellis automaton
makes n − 1 parallel steps, with the value of a cell at each step depending on
its value and the value of its right neighbour at the previous step; a linear-time
cellular automaton makes at most C ·n steps, for some constant C, and the next
value of each cell depends on both its left and right neighbours, as well as on
itself.

Both models were first studied by Smith [21], and have later received much
attention. For trellis automata, already Smith [21] showed that they can accept
the Dyck language [21]; Ibarra and Kim [12] proved that they can recognize the
language { anb2

n | n � 1 } and some P-complete language; Čuĺık [6] applied
the famous Firing Squad Problem to construct a trellis automaton recognizing
{ ambm+ncn | m,n � 1 }. Recently, Terrier [26] presented a sophisticated sim-
ulation of formal grammars describing bounded languages by trellis automata.

120 M. Mrykhin and A. Okhotin

Okhotin [17] showed that trellis automata are equivalent to linear conjunctive
grammars—a subclass of the earlier mentioned conjunctive grammars.

A variety of methods have been employed to show some limitations of this
model: Yu [27] proved that the language { anbin | i, n � 0 } is not recognized
by trellis automata; Terrier [23] presented a non-representability argument for
{wxw | w, x ∈ {a, b}+ }; Buchholz and Kutrib [4] characterized representable
languages of the form { anbf(n) | n � 0 }. A general lemma for proving non-
representability of languages by trellis automata was established by Terrier [22],
who used it to prove the non-closure of this family under concatenation.

The linear-time cellular automaton model is much more powerful: for
instance, they can recognize the languages { a2n | n � 0 } [5] and { anbin | n, i �
1 } [3]. There is an important theoretical result on linear speed-up for this model:
every language recognized by a cellular automaton in time C ·n can be recognized
in time (1+ε)n, see Ibarra et al. [13]. Whether these automata are equivalent to
real-time cellular automata operating in time exactly n, is a long-standing open
problem raised already by Smith [21] and addressed many times in the literature.
For more details about cellular automata as language-recognition devices, the
reader is directed to a survey by Terrier [25].

Two results on hardest languages for these models are established in this
paper. The first result is that trellis automata cannot have a hardest language,
which is proved in Sect. 3 by an argument based on state complexity: it is shown
that, for every n, there is a language recognized by a trellis automaton, which
is complicated enough not to be reducible to any n-state trellis automaton. The
other result is that linear-time cellular automata do have a hardest language,
which is constructed in Sect. 4. Whether a hardest language exists for real-time
cellular automata, is left as yet another open problem concerning this elusive
class, discussed in Sect. 5.

2 Definitions

Definition 1. A trellis automaton is a 5-tuple A = (Σ,Q, I, δ, F), where

– Σ is a finite set of input symbols,
– Q is a finite set of states,
– I is a mapping from Σ to Q,
– δ is a mapping from Q × Q to Q called the transition function,
– F ⊆ Q is a subset of accepting states.

The initial configuration on an input string w = a1 . . . an, with n � 1, is
I(w) = I(a1) . . . I(an). Every next configuration is determined by a function
Δ : Q+ → Q+, defined by Δ(q1 . . . qn) = r1 . . . rn−1, where ri = δ(qi, qi+1).

After |w|−1 such steps, the string of states shrinks into a single state, which
determines the acceptance. In formal notation, the language recognized by the
automaton is L(A) = {w | Δ|w|−1(I(w)) ∈ F }.

The following example of an automaton is given to illustrate the definition;
it shall also be used in a proof later in Sect. 3.

On Hardest Languages for One-Dimensional Cellular Automata 121

Fig. 2. (left) Trellis automaton for { anbi·2
n | n, i � 1 }, (right) cellular automaton for

the FSP.

Example 1 [18]. For each p � 2, the language Lp = { anbi·pn | n, i � 1 } is
recognized by a trellis automaton A = (Σ,Q, I, δ, F) with p + 3 states, which
computes, on each string aibj , the i-th digit of the base-p representation of j, as
illustrated for p = 2 in Fig. 2(left).

Its set of states is Q = {0, . . . , p − 1, 0+, B,D}, where 0, . . . , p − 1 are base-p
digits and 0+ is “zero with carry”. The initial function sets I(a) = 0 and I(b) = B.
The transition δ(B,B) = B sets the triangle on b+. The leftmost B in each line
increments the digits on the first diagonal to the left by δ(x,B) = x+1 for all x ∈
{0, . . . , p − 2}, δ(p − 1, B) = 0+ and δ(0+, B) = 1. In every subsequent diagonal,
the digits are incremented by zero with carry: δ(x, 0+) = x+1, δ(p− 1, 0+) = 0+.
Otherwise, the digit is unchanged: δ(x, y) = x for all x, y ∈ {0, . . . , p − 1} and
δ(0+, y) = 0 for all y ∈ {0, . . . , p − 1}. For the remaining pairs of states, δ is
defined as D. The state 0+ is assumed on all strings anbi·pn

, and accordingly it
is the only accepting state.

Definition 2. A cellular automaton is a 5-tuple A = (Σ,Q, I, δ, F), where

– Σ is a finite set of terminal symbols,
– Q is a finite set of internal states, with �,� /∈ Q,
– I is a mapping from Σ to Q,
– δ : (Q ∪ {�}) × Q × (Q ∪ {�}) → Q is the transition function,
– F ⊆ Q is a subset of accepting states.

The initial configuration on w = a1 . . . an is I(a1) . . . I(an). Every next
configuration is given by a function Δ : Q+ → Q+, defined by Δ(q1 . . . qn) =
r1 . . . rn, where ri = δ(qi−1, qi, qi+1), assuming that q0 = � and qn+1 = �. A
string is accepted if the leftmost cell ever enters a state from F .

122 M. Mrykhin and A. Okhotin

A cellular automaton is linear-time, if, on an input of length n, it can enter
a state from F in at most C · n steps, for some constant C � 0.

Among various interesting problems solvable by linear-time cellular
automata, there is the famous Firing Squad Problem (FSP), stated as follows.
Assume that each cell, except the leftmost one, begins in a so-called quiescent
state �, with δ(�,�,�) = δ(�,�,�) = �. Then, in the beginning, only the left-
most cell knows that the computation has started. Its task is to communicate
this news to all cells, and have them “fire” at once, that is, bring them to the
same state at the same time.

Example 2 (Mazoyer [14]). There exists a 6-state cellular automaton solving the
firing squad problem in minimal time 2n − 2.

The automaton operates by sending signals at various speeds, which is
achieved by using other signals to slow down the main signals. These signals
form a complex geometric pattern that eventually leads to all cells firing at the
same time.

A variant of the FSP investigated by Čuĺık [6] has both the leftmost and
the rightmost states initiate the computation from both sides; then, all cells are
synchronized in time n − 1. In this paper, Čuĺık’s synchronization shall be used
in the construction of a cellular automaton recognizing the hardest language.

3 No Hardest Language for Trellis Automata

Theorem 1. There does not exist any “hardest” trellis automaton M0, such
that for every language L recognized by a trellis automaton there would be a
homomorphism h : Σ∗ → Σ∗

0 , such that w ∈ L if and only if h(w) ∈ L(A0).

The proof is by contradiction. If there exists a hardest language in this family,
then it is recognized by a trellis automaton with t states. It turns out that for
every fixed value of t there is a language that is complicated enough not to be
reducible to the supposed hardest language.

Lemma 1. For every t � 1, there is a language L ⊆ {a, b}∗ recognized by a
trellis automaton, such that L is not an inverse homomorphic image of any
language recognized by a t-state trellis automaton.

Proof. Let p be any prime greater than t. Consider the language Lp = { anbi·pn |
n, i � 1 } from Example 1, recognized by a trellis automaton with p + 3 states.
It is claimed that this language is not reducible to any trellis automaton with
fewer than p states by any homomorphism.

Suppose the contrary, that Lp is reducible to some language recognized
by some automaton A = (Σ,Q, I, δ, F), with |Q| < p, by a homomorphism
h : {a, b}∗ → Σ∗.

For every i � 0, let ui denote the last i symbols of h(a)n, for n large enough.
Similarly, for j � 0, denote the first j symbols of h(b)n by vj . Let vj,k, with
j � 0 and k � 1, be the substring of h(b)n of length k beginning at the (j +1)-th
symbol.

On Hardest Languages for One-Dimensional Cellular Automata 123

Fig. 3. Periodic sequences of states in the proof of Lemma 1.

Claim 1. For each k � 1, the sequence of states Vk = {Δ(I(vj,k))}∞
j=0 is peri-

odic with period m = |h(b)|.
Proof. Indeed, Δ(vj+m,k) = Δ(vj,k), because vj+m,k = vj,k.

For each j � 0, let πj be the periodic part of Vj , as illustrated in Fig. 3(left).

Claim 2. For each i � 0, the sequence {Δ(uivj)}∞
j=1 is ultimately periodic, with

a period of length pi � 1 beginning from di � 0. Moreover, pi+1 = cipi, for some
ci � |Q|.
Proof. Induction on i.

Induction base: i = 0. Then the sequence {Δ(vj)}∞
j=1 is formed of the first

elements of the sequences Vj . Each Vj has period m = |h(b)|, and the periodic
part πj of every next Vj depends only on πj−1. Since there are at most
|Q|m different periodic parts, the sequence {πj}j�0 is ultimately periodic,
and therefore so is the desired sequence of the first states in πj .

Induction step: Assume that the sequence {Δ(uivj)}j is periodic begin-
ning from di with period pi. Denote its periodic part by π =
Δ(uivdi

),Δ(uivdi+1), . . . , Δ(ui+1vdi+pi−1).
Consider the following states in the next diagonal: q1 = Δ(ui+1vdi

), q2 =
Δ(ui+1vdi+pi

), . . . , q|Q|+1 = Δ(ui+1vdi+|Q|pi
), as illustrated in Fig. 3(right).

Since there are |Q| + 1 states in this sequence, two of them must coincide.
Let these be Δ(ui+1vdi+spi

) = Δ(ui+1vdi+tpi
), with s < t. This makes the

(i + 1)-th diagonal periodic beginning with di + spi, with period (t − s)pi.

Let |h(a)| = � and |h(b)| = m. For each n, consider the n-th diagonal Dn =
{Δ(u�nvj)}j . By Claim 2, each Dn is periodic, and the length p�n of its period
divides Pn = p0|Q|!�n. The number |Q|! is coprime with p, because |Q| < p;
therefore, for sufficiently large n, the number Pn is not divisible by pn.

124 M. Mrykhin and A. Okhotin

Now consider the sequence D′
n = {Δ(h(a)nh(b)j)}j = {Δ(u�nvmj)}j

obtained from Dn by taking every m-th state. It is also periodic with period
p�n beginning with d�n.

For every k � 0, the string h(a)nh(b)kpn

must be accepted by A as an image of
a string in Lp. Let k be the smallest number with mkpn > d�n. Then the accept-
ing state Δ(u�nvmkpn) ∈ F is already in the periodic part of D′

n. Then, several
periods later, the state Δ(u�nvm(kpn+Pn)) = Δ(u�nvmkpn) must be accepting as
well. However, the string u�nvm(kpn+Pn) = h(anbkpn+Pn) is an image of a string
not in Lp, because Pn is not divisible by pn. This is a contradiction. �	

4 The Hardest Language for Linear-Time Cellular
Automata

In order to prove the hardest language theorem for linear-time cellular automata,
one should construct a single automaton A0 operating in time C · n, for a fixed
constant C, so that every linear-time cellular automaton could be homomorphi-
cally reduced to this one.

Theorem 2. There exists a linear-time cellular automaton A0, such that for
every language L recognized by a linear-time cellular automaton there exists a
homomorphism h : Σ∗ → Σ∗

0 , such that w ∈ L if and only if h(w) ∈ L(A0).

The hardest language uses the following 18-symbol alphabet.

Σ0 = { aS | S ⊆ {x′′
2} } ∪ { bT | T ⊆ {y1, y2, y3, z} }

There are two symbols of the form aS , namely, a{x′′
2 } and a∅, where the subscript

is used to encode a single bit of the binary representation of some number. A
symbol bT encodes four such bits.

For each cellular automaton A = (Σ,Q, I, δ, F), its input strings shall be
mapped to strings over the hardest language’s alphabet by a homomorphism
hA : Σ∗ → Σ∗

0 . Assume that Q = {1, . . . , 2k − 1}, for some k � 1, and that
F = {2k−1, . . . , 2k − 1}. Both end-markers are denoted by 0. Then, each state is
encoded in k bits, and the acceptance status of each state is determined by the
leading digit of its encoding.

The image h(c) of each symbol c ∈ Σ consists of two substrings. It begins
with the binary encoding of the state I(c), written down as k symbols of the
form aS , with S ⊆ {x′′

2}, where the flag x′′
2 denotes 1 in the corresponding

position, whereas its absence denotes 0. The rest of the image h(c) encodes the
entire transition table δ, with each entry δ(p, q, r) = s encoded as k symbols of
the form bT , with T ⊆ {y1, y2, y3, z}. This is a four-track encoding: every i-th
symbol of this encoding contains four bits, and these are the i-th bits in the
binary representations of the states p, q, r and s. Overall, the length of h(c) is
m = k + k · (2k − 1) · (2k)2 = Θ(|Q|3 log |Q|).

For the desired hardest automaton A0, it is only essential that it accepts
a well-formed image h(c1 . . . cn), with c1, . . . cn ∈ Σ, if and only if A accepts

On Hardest Languages for One-Dimensional Cellular Automata 125

c1 . . . cn. For any ill-formed strings, it is irrelevant whether A0 accepts or rejects
them.

Given h(c1 . . . cn), the automaton A0 simulates the computation of A on the
string c1 . . . cn, and accepts if and only if A accepts. Each step of A is simulated
by A0 in 2m steps, organized in two phases. During Phase I, A0 communicates
the encoded state in each cell to its two neighbours; at Phase II, A0 has a triple
of states (p, q, r) in each encoded cell, and it uses the encoded transition function
of A to determine the new value δ(p, q, r) in this encoded cell.

The cells where the symbols aS are originally placed are called state-cells:
they come in blocks of k cells, and they store the state of a single cell in A. The
cells originally containing bT are the rule-cells: a block of k rule-cells stores a sin-
gle value of the original automaton’s transition function, and holds it throughout
the computation.

At Phase I, the automaton A0 copies the number of the state encoded in each
block of state-cells to the two neighbouring blocks of state-cells, as illustrated
in Fig. 4. Each bit is propagated in both directions by two signals. At the same
time, a firing squad is used to synchronize the image of each symbol in exactly m
steps. At the moment when the firing squad fires, the signals propagating each
i-th bit of each state to the left and to the right will reach exactly the positions
of the i-th bits in the two neighbouring blocks of state-cells. Thus, at the end of
the phase, each block of state-cells knows the entire 3-symbol neighbourhood of
the original automaton, represented as a 3-track encoding of binary numbers.

At Phase II, each block of state-cells contains the 3-track encoding of its
neighbourhood. Now the task is to compare it with each transition in the rule-
cells, encoded in 4 tracks. For exactly one transition, all three tracks shall match,
and then, by the end of this phase, the state-cell should encode the resulting state
of this transition. This is implemented as follows. In the beginning of Phase II,
each rule-cell sends its contents towards the state-cells, as a left-bound signal.
After k steps, the signals that comprise the first rule arrive at the corresponding
positions in the state-cells; at the same time, the state-cells use a firing squad
to count up to k. Then, at the time when the firing squad fires, each bit of the
3-state neighbourhood is compared to the corresponding bit of this transition.

If there is any mismatch, then the corresponding cell knows that. During
the next k steps, the automaton communicates the data about the mismatches
between the state-cells, and if no mismatch is found, then the state-cells change
their value to the target state of this transition. At the same time, in the course
of these k steps, the k signals comprising the next transition arrive at the state-
cells, a firing squad again signals their arrival, and the matching goes on.

Thus, synchronization is used in two different places. At Phase I, as well as
at Phase II, each block of m cells synchronizes in m steps. During Phase II, each
block of k state-cells synchronizes in k steps once for each simulated transition.
Both synchronizations are carried out using the minimal-time solution to the
Firing Squad Problem with two generals, with the borders between state-cells
and rule-cells reinitializing these two generals each time after the squad fires.

126 M. Mrykhin and A. Okhotin

Fig. 4. Simulation of one step of A by the automaton A0.

Let FSP1 be the set of states of a cellular automaton that uses the border
between rule-cells and state-cells (that is, the border between the images of the
symbols) as both the left and the right general. This activates synchronization in
m steps. Let FSP2 be the states of an automaton that uses the border between
rule-cells and state-cells as the left general, and the border between state-cells
and rule-cells as the right general. This activaves the synchronization of a block
of state-cells in k steps. These firing squads are embedded in the definition of
the set of states given below.

In the full set of states of A0, states of Phase I and of Phase II are specifically
marked, and there is an attached firing squad that implements the alternation
of phases.

Q0 = FSP1 ×
([{I} × QI

] ∪ [{II} × QII

])

On Hardest Languages for One-Dimensional Cellular Automata 127

Both Phase-I states and Phase-II states remember whether the current cell is a
state-cell or a rule-cell, and each contains individual bits of binary representa-
tions of the encoded states and transitions.

QI =
([{state} × 2{x2}] ∪ [{rule} × 2{y1,y2,y3,z}]) × 2{x1,x3}

QII =
([{state} × 2{x1,x2,x3,#,x′

2,x′′
2 }FSP2

] ∪ [{rule} × 2{y1,y2,y3,z}])×
× 2{y′

1,y′
2,y′

3,z′}

In this definition, the variable x2 represents a single bit of the number of the
current state, encoded in a block of state-cells, and the notation 2{x2} means
that the value of this bit is 0 or 1. Each rule-cell remembers 4 bits, denoted by
y1, y2, y3, z: these are digits of binary representations of three arguments to the
transition function, along with a digit of its value. The variable x1 denotes a bit
in the number of the state being sent to the right neighbour; symmetrically, x3

is a bit sent to the left neighbour.
The initialization function sets all cells in the final configuration of Phase II,

so that the subsequent first transition starts Phase I. Symbols aS initialize the
state-cells with one bit each, symbols bT similarly mark the rule-cells.

I0(aS) = (f, II, state, S, f, ∅)
I0(bT) = (f, II, rule, T, ∅)

Here f denotes the “firing” state in both firing squads.
The basic signals propagate as follows. At the start of Phase I, x′′

2 sends x3

to the left at unit speed, x1 to the right and x2 in place; once FSP1 fires, all
these signals stop in their positions (this is the same relative position within the
images of three symbols, as exactly m steps have passed) until the next Phase I,
at which point they are discarded and new ones are sent out. The bits y1, y2, y2
and z always keep their positions, as the transition rules stay constant. At the
start of Phase II, they send the corresponding signals y′

1, y
′
2, y

′
3 and z′ to the left

at unit speed; these are also discarded at the start of a new Phase I.
Finally, the argument matching during Phase II proceeds as follows: at the

moment when FSP2 fires, all state-cells compare the bits of x1, x2 and x3 with
y1, y2 and y3, respectively. If a mismatch is found, the cell sets a falsifying #-
flag, which propagates in both directions at unit speed, and spreads over all
neighbouring state-cells by the next firing moment. At the same time, state-cells
containing z get the flag x′

2 (unverified value), which stays in place until the next
firing moment; unless it is overridden by the #-flag, it turns into x′′

2 (verified
value). A successful verification happens for exactly one transition: the true bits
represented by x′′

2 appear at that time and stay in place until Phase I.
The definition of the transition function is omitted due to space constraints.

Lemma 2. For each � � 0, let q1 . . . qn be the configuration of A after � steps
starting with I(w). Then, the automaton A0, having started with I0(hA(w)),
after 2�m steps, has the binary encoding of each state qi, with i ∈ {1, . . . , n}, in
the cells numbered (i − 1)m + 1, . . . , (i − 1)m + k.

128 M. Mrykhin and A. Okhotin

It remains to define the accepting states of A0. Accepting states are effective
at the first cell of a block of state-cells, which contains the leading digit of the
state of A encoded in this block. Accordingly, a state of A0 is deemed accepting
if this is a Phase II state-cell, both firing squads fire, and the bit x′′

2 is set; this
is the following unique accepting state.

F0 = {(f, II, state, {x′′
2}, f, ∅)}

Proof (of Theorem 2). A linear-time automaton recognizing L is first trans-
formed to work in time 2n, by the method of Ibarra et al. [13]. Let A be
the resulting automaton, operating on an n-symbol input. Then, A0, as con-
structed above, reads a string of length mn, and completes the simulation in time
4mn. Finally, A0 is modified so that it rejects after this number of steps on all
inputs. �	

5 On Real-Time vs Linear-Time Cellular Automata

In conclusion, one-way real-time cellular automata have no hardest languages,
whereas linear-time cellular automata do have one. It is natural to ask whether a
hardest language exists for the intermediate class of real-time cellular automata,
that is, cellular automata that run for n − 1 steps.

Real-time cellular automata are known to be more powerful than trellis
automata, but it is a long-standing open problem whether they are strictly
weaker than linear-time cellular automata. Over half a century since the prob-
lem was first raised by Smith [21], several potential separating languages were
conjectured, but eventually a way of recognizing each of them in real time was
found.

A few theoretical characterizations of this problem were discovered. Ibarra
and Jiang [11] showed that if the family accepted by real-time cellular automata
is closed under reversal, then this model is equivalent in power to linear-time
cellular automata. Terrier [24] proved that the closure under cyclic shift similarly
implies equivalence to linear-time cellular automata.

Turning back to hardest languages, the kind of simulation used in this paper
for linear-time cellular automata slows down the computation by a constant
factor, and is accordingly unsuitable for establishing a hardest language for real-
time cellular automata. If this family has no hardest language under homomor-
phic reductions, this would imply that real-time cellular automata and linear-
time cellular automata define different families of languages. Any methods for
proving or disproving this conjecture would be interesting to find and are sug-
gested as a subject for future research.

On Hardest Languages for One-Dimensional Cellular Automata 129

References

1. Autebert, J.: Non-principalité du cylindre des langages à compteur. Math. Syst.
Theory 11, 157–167 (1977)

2. Boasson, L., Nivat, M.: Le cylindre des langages linéaires. Math. Syst. Theory 11,
147–155 (1977)

3. Bucher, W., Culik, K.: On real time and linear time cellular automata. RAIRO
Theor. Inform. Appl. 18(4), 307–325 (1984)

4. Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular
automata. Acta Informatica 35(4), 329–352 (1998)

5. Choffrut, C., Culik II, K.: On real-time cellular automata and trellis automata.
Acta Informatica 21, 393–407 (1984)

6. Culik II, K.: Variations of the firing squad problem and applications. Inf. Process.
Lett. 30(3), 153–157 (1989)

7. Culik II, K., Maurer, H.A.: On simple representations of language families. RAIRO
Theor. Informatics Appl. 13(3), 241–250 (1979)

8. Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310
(1973)

9. Greibach, S.A.: Jump PDA’s and hierarchies of deterministic context-free lan-
guages. SIAM J. Comput. 3(2), 111–127 (1974)

10. Harju, T., Karhumäki, J., Kleijn, H.C.M.: On morphic generation of regular lan-
guages. Discrete Appl. Math. 15(1), 55–60 (1986)

11. Ibarra, O.H., Jiang, T.: Relating the power of cellular arrays to their closure prop-
erties. Theoret. Comput. Sci. 57, 225–238 (1988)

12. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theoret. Comput. Sci. 29, 123–153 (1984)

13. Ibarra, O.H., Palis, M.A., Kim, S.M.: Some results concerning linear iterative (sys-
tolic) arrays. J. Parallel Distrib. Comput. 2(2), 182–218 (1985)

14. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoret. Comput. Sci. 50, 183–238 (1987)

15. Okhotin, A.: Conjunctive grammars. J. Autom. Lang. Comb. 6(4), 519–535 (2001)
16. Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004)
17. Okhotin, A.: On the equivalence of linear conjunctive grammars and trellis

automata. RAIRO Theor. Inform. Appl. 38(1), 69–88 (2004)
18. Okhotin, A.: State complexity of linear conjunctive languages. J. Autom. Lang.

Comb. 9(2/3), 365–381 (2004)
19. Okhotin, A.: A tale of conjunctive grammars. In: Hoshi, M., Seki, S. (eds.) DLT

2018. LNCS, vol. 11088, pp. 36–59. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98654-8 4

20. Okhotin, A.: Hardest languages for conjunctive and Boolean grammars. Inf. Com-
put. 266, 1–18 (2019)

21. Smith III, A.R.: Real-time language recognition by one-dimensional cellular
automata. J. Comput. Syst. Sci. 6(3), 233–253 (1972)

22. Terrier, V.: On real time one-way cellular array. Theoret. Comput. Sci. 141(1&2),
331–335 (1995)

23. Terrier, V.: Language not recognizable in real time by one-way cellular automata.
Theoret. Comput. Sci. 156(1&2), 281–287 (1996)

24. Terrier, V.: Closure properties of cellular automata. Theoret. Comput. Sci. 352(1–
3), 97–107 (2006)

https://doi.org/10.1007/978-3-319-98654-8_4
https://doi.org/10.1007/978-3-319-98654-8_4

130 M. Mrykhin and A. Okhotin

25. Terrier, V.: Language recognition by cellular automata. In: Rozenberg, G., Bäck,
T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 123–158. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-540-92910-9 4

26. Terrier, V.: Recognition of poly-slender context-free languages by trellis automata.
Theoret. Comput. Sci. 692, 1–24 (2017)

27. Yu, S.: A property of real-time trellis automata. Discrete Appl. Math. 15(1), 117–
119 (1986)

https://doi.org/10.1007/978-3-540-92910-9_4

Usefulness of Information and Unary
Languages

Giovanni Pighizzini1 , Branislav Rovan2 , and Šimon Sádovský2(B)

1 Dipartimento di Informatica, Università degli studi di Milano, Via Celoria 18,
20133 Milan, Italy

pighizzini@di.unimi.it
2 Department of Computer Science, Comenius University,

Mlynská Dolina, 842 48 Bratislava, Slovakia
{rovan,sadovsky}@dcs.fmph.uniba.sk

Abstract. In this paper we continue the research on usefulness of infor-
mation examining the effect of supplementary information on the com-
plexity of solving a problem (see Rovan and Sádovský [7] for an overview).
We use deterministic finite automata for a formal setting. Given a prob-
lem (a regular language) Lprob we measure the complexity of its solution
– a DFA Aprob such that Lprob = L(Aprob) – using the state complexity. A
supplementary information (advice) Ladv given by Aadv is useful if a sim-
pler problem Lnew given by Anew exists such that Lprob = Lnew ∩ Ladv

and both Lnew and Ladv are simpler than Lprob. This is formalized via
the notion of decomposability of finite automata (see [1] for DFA case and
[7] for NFA case). We address the problem of decomposability of unary
regular languages and give a characterization of λ-cyclic languages upon
deterministic decomposability.

Keywords: Descriptional complexity · Deterministic finite
automaton · Regular language · Unary language · λ-cyclic language ·
Decomposability of regular languages · Supplementary information ·
Usefulness of information · State complexity

1 Introduction

In the early days of Shannon’s theory of information the main concern was
in transferring information reliably and fast over possibly noisy channels. The
amount of information was the important attribute of information considered.
Over half a century later we can identify additional aspects, like usefulness,
timeliness, etc. Research focused on formalizing these aspects of information was
initiated over fifteen years ago (see [7] for a brief overview and usefulness, also
[1] and [4] for usefulness, and [8] for timeliness). This paper further elaborates
the notion of usefulness of information in the regular languages setting.

This research has been supported in part by the grant 1/0601/20 of the Slovak Scientific
Grant Agency VEGA.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 131–142, 2021.
https://doi.org/10.1007/978-3-030-68195-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_11&domain=pdf
http://orcid.org/0000-0002-7509-7842
http://orcid.org/0000-0002-0015-403X
http://orcid.org/0000-0001-8088-1327
https://doi.org/10.1007/978-3-030-68195-1_11

132 G. Pighizzini et al.

The essence of our approach to the notion of usefulness of information can
be described as follows: Information is useful if it helps to solve a given problem
easier. A problem to be solved is formalized by a language L and its solution by
an automaton accepting it. In this paper we limit our attention to unary regular
languages and deterministic finite automata. Given a problem (a unary regular
language) Lprob, we measure the complexity of its solution – a finite automaton
Aprob such that Lprob = L(Aprob) – using state complexity. A supplementary
information (advice) Ladv given by Aadv is useful if a problem Lnew given by
Anew exists such that Lprob = Lnew ∩ Ladv and both Lnew and Ladv are simpler
than Lprob. One can interpret Anew as the simplification of A solving the original
problem relying on the provided advice. Since we look for simple solutions it
is natural to consider minimal automata. This is formalized via the notion of
decomposability of a finite automaton into two smaller finite automata (see [1]
for the DFA case and [7] for the NFA case). This notion is naturally extended
to regular languages which are considered decomposable when minimal finite
automata are decomposable. For a more detailed description of our approach
and an overview of past results see [7].

Decompositions of DFAs to finitely many, but not necessarily two, smaller
DFAs was recently elaborated in [2] and [3] using the notions of composite and
prime DFA. A DFA A is said to be composite if there are DFAs A1, . . . , At

such that L(A) =
⋂t

i=1 L(Ai) and the size of every Ai is strictly smaller than
the size of A. Otherwise, A is said to be prime. Authors refer to t as the width
of decomposition. In [2] they address the problem for unary regular languages.
They give the criterion of what they call decomposability for unary determinis-
tic finite automata (UDFA, for short). They prove that in the case of UDFAs
having tail of nonzero length it holds that if a UDFA is decomposable, then it is
decomposable to two smaller UDFAs. However, they prove that this is not the
case when one considers UDFAs consisting of one cycle only. In this case there
exist decomposable UDFAs which are not decomposable to two smaller UDFAs.

In this paper we provide a characterization of the class of λ-cyclic languages
upon deterministic decomposability. A λ-cyclic language is a unary regular lan-
guage which can be accepted by a UDFA having its cycle of length λ without
initial tail. We stress that we are interested in the decomposition of UDFA to
exactly two smaller UDFAs.

In Sect. 2 we introduce our notation for standard notions, summarize past
results needed and define the problem. Results about UDFAs, which are the
main concern of this paper, can be found in Sect. 3. Section 4 contains main
results. For the lack of space some of the proofs are omitted or just outlined.

2 Preliminaries, Notations and Definition of Problem

We use standard notation of formal languages and automata theory. The length
of a word w is denoted by |w|. ε denotes the empty word. The cardinality of a
set S is denoted by |S|.

We consider natural numbers including zero and use N
+ to denote the set of

all positive natural numbers. By Zn we denote the set of all remainders modulo

Usefulness of Information and Unary Languages 133

n, ⊕n denotes addition modulo n, i.e., a ⊕n b = (a + b) mod n for any a, b ∈ Z

and n ∈ N. When we write a | b we mean that a is a divisor of b and we use a � b
to express that a is not a divisor of b for any a, b ∈ Z.

We define the deterministic finite automaton to be a 5-tuple (K,Σ, δ, q0, F)
with the standard meaning of its components. We require the transition function
δ : K × Σ → K to be complete. The language accepted by A is L(A) = {w ∈
Σ∗ | (∃qF ∈ F) (q0, w) �∗

A (qF , ε)} where the relation ‘step of computation’ �A

on configurations is defined as usual. If it holds that |Σ| = 1, we say that A is
a unary deterministic finite automaton, which we abbreviate by UDFA. In that
case we use Σ = {a}. We use R to denote the class of regular languages.

Given a DFA A we denote by sc(A) the number of its states. For any language
L ∈ R we denote by sc(L) the so called state complexity of L, namely the number
of states of the minimal DFA accepting L.

A bipartite graph G = (V1, V2, E) is a tuple where V1 and V2 are two sets
of vertices and E ⊆ V1 × V2 is a set of edges. For v ∈ V1 we define a degree of
vertex v, denoted d(v), by d(v) = |{u ∈ V2 | (v, u) ∈ E}|. Analogously we define
a degree of vertex u ∈ V2. If for v ∈ V1 ∪ V2 it holds d(v) = 0, we say that v is
an isolated vertex.

2.1 Number Theory

It is often the case that questions about UDFAs are related to number-theoretical
problems. Also our proofs employ some number-theoretical results, which we
summarize here.

Chinese Remainder Theorem is one of classical results of number theory. We
provide its generalization to non-coprime moduli and the formulation for systems
of two congruences which suits best for our purposes.

Theorem 1 (Generalized Chinese Remainder Theorem). Let m,n, a, b ∈
N. Consider following system of congruences.

x ≡ a (mod m)
x ≡ b (mod n)

If a ≡ b (mod gcd(m,n)), then there exists the unique solution x of this system
modulo lcm(m,n). Moreover if y ≡ x (mod lcm(m,n)), then y is also a solution.
Otherwise no solution exists.

Two technical lemmas follow. We shall refer to them later in the paper. Due
to the space constraints we provide them without proofs.

Lemma 1. Let a, c ∈ N such that a is a divisor of c. Then for every n ∈ N it
holds n mod a = (n mod c) mod a.

Lemma 2. Let a, b ∈ N
+. Then for each n1, n2 ∈ N and r ∈ Z:

{(ka + r) mod b | k ∈ N; k ≥ n1} = {(i · gcd(a, b) + r) mod b | i ∈ N; i ≥ n2}.

134 G. Pighizzini et al.

2.2 Usefulness of Information

Our main interest is in the notion of usefulness of information. We consider
information useful if it helps to solve some problem easier in some sense. This
approach led our research group to define the notion of decomposability of a reg-
ular language. This notion was first defined for the deterministic finite automata
setting in [1] and further elaborated for the nondeterministic automata setting
in [7].

Definition 1. Let A be a DFA. We say that two DFAs A1 and A2 form a
decomposition of A if L(A) = L(A1) ∩ L(A2), sc(A1) < sc(A) and sc(A2) <
sc(A). In case such decomposition of A exists we say that A is decomposable.

We can interpret A1 to be a simpler solution to the problem L(A) which uses
the additional information that the input word is accepted by A2.

Definition 2. Let L be in R. We say that L is deterministically decomposable
if the minimal DFA accepting L is decomposable.

Notation 1. We denote the family of all deterministically decomposable regular
languages by Ddet.

3 Unary Deterministic Finite Automata

When dealing with deterministic finite automata over a unary alphabet (UDFA),
one can observe that all of them have a similar shape. Each UDFA is formed by
a (possibly empty) initial path, which is also called a tail, which is followed by
exactly one cycle (see Fig. 1). It is convenient to think about the size of a unary
DFA in terms of the sizes of its tail and cycle.

Fig. 1. Unary DFA of size (λ, μ)

Definition 3. The size of a UDFA A is the pair (λ, μ) where λ is the number
of states in the cycle of A and μ is the number of states in the tail of A.

Usefulness of Information and Unary Languages 135

Notation 2. When we say that we consider UDFA A = (K, {a}, δ, q[0], F) of
size (λ, μ), then, if it is not stated otherwise, we implicitly mean that K =
{q[i] | 0 ≤ i < λ + μ} and for the transition function δ it holds that (∀i, 0 ≤ i <
μ) δ(q[i], a) = q[i + 1] and (∀j ∈ Zλ) δ(q[μ + j], a) = q[μ + (j ⊕λ 1)].

Definition 4. Let L be a unary infinite language and λ ∈ N. We say that L is
λ-cyclic if there exists a DFA A of the size (λ, 0) such that L(A) = L. L is called
properly λ-cyclic if it is λ-cyclic, but not λ′-cyclic for any λ′ < λ.

When asking questions about decomposability of a regular language, we need
to deal with its minimal finite automaton. Here we provide a criterion of mini-
mality for UDFAs.

Theorem 2 (Minimal UDFA characterization, [5,6]). A UDFA A =
(K, {a}, δ, p[0], F) of size (λ, μ) is minimal if and only if both the following con-
ditions hold:

(i) for any maximal proper divisor d of λ (i.e., λ = α · d for some prime α)
there exists an integer h, with 0 ≤ h < λ, such that p[μ+h] ∈ F if and only
if p[μ + ((h + d) mod λ)] /∈ F , i.e., aμ+h ∈ L if and only if aμ+h+d /∈ L.

(ii) (If μ > 0 then) p[μ − 1] ∈ F if and only if p[μ + λ − 1] /∈ F , i.e., aμ−1 ∈ L
if and only if aμ+λ−1 /∈ L.

Informally the condition (ii) states that we cannot replace the cycle with a
shorter one and condition (ii) states that we cannot ‘roll the last state of the
cycle into the last state of the tail.’ Using Theorem 2 it is easy to prove the
following lemma.

Lemma 3. If L is a properly λ-cyclic language, then the minimal UDFA accept-
ing L has size (λ, 0).

The decomposition of a DFA is defined in terms of intersection of two DFAs.
We state a theorem providing a relationship between the sizes of two UDFAs
and the UDFA accepting their intersection.

Theorem 3 ([6]). Let L1 and L2 be two unary languages accepted by UDFAs
A1 and A2 of size (λ1, μ1) and (λ2, μ2), respectively. The intersection of L1 and
L2 is accepted by a UDFA of size (lcm(λ1, λ2),max(μ1, μ2)).

3.1 Rolling Cycle of UDFA

We formulate our techniques of ‘rolling-out’ and ‘rolling-in’ cycles of UDFAs that
we use in Sect. 4. These techniques come handy when examining the length of
the tail in a decomposition of UDFA.

Lemma 4 (Roll-out Lemma). Let A = (K, {a}, δ, q[0], F) be a UDFA of size
(λ, μ). Then for any μ′ ≥ μ and for the UDFA A′ = (K ′, {a}, δ′, q′[0], F ′) of size
(λ, μ′) where the set of accepting states is defined by

F ′ = {q′
F ∈ K ′ | (∃w ∈ L(A)) (q′[0], w) �∗

A′ (q′
F , ε)}

it holds L(A′) = L(A).

136 G. Pighizzini et al.

Lemma 5 (Roll-in Lemma). Let A = (K, {a}, δ, q[0], F) be a UDFA of size
(λ, μ) such that there exists μ′ ∈ N such that it holds:

(i) μ′ < μ
(i) For any i, j ∈ N such that μ′ ≤ i, j < λ + μ and j − i ≡ 0 (mod λ) it holds

q[i] ∈ F ⇔ q[j] ∈ F .

Then for the UDFA A′ = (K ′, {a}, δ′, q′[0], F ′) of size (λ, μ′) where the set of
accepting states is defined by

F ′ = {q′
F ∈ K ′ | (∃w ∈ L(A)) (q′[0], w) �∗

A′ (q′
F , ε)}

it holds L(A′) = L(A).

We state both Lemma 4 and Lemma 5 without presenting the proofs. How-
ever, both of them are quite intuitive. Lemma 4 states that if we have a UDFA
A with a tail of length μ, we can ‘roll-out’ its cycle to get a UDFA with longer
tail while accepting the same language. On the other hand, if the last state of
the cycle and the last state of the tail of the given UDFA agree on their finality,
then, by merging these states together, we can obtain a UDFA accepting the
same language and having a shorter tail. We call this procedure ‘rolling the last
state of the cycle into the last state of the tail.’ Let us consider a UDFA A of
size (λ, μ). Lemma 5 states conditions which are sufficient in order to apply this
‘roll-in’ procedure several times to obtain a UDFA accepting L(A) while having
a tail of length μ′ < μ.

4 Deterministic Decomposability of λ-cyclic Languages

Now we shall turn to proving our main result. When thinking about determin-
istic decomposability of a given properly λ-cyclic language, we found useful the
point of view based on bipartite graphs and Extended Chinese Remainder The-
orem (Theorem 1). We define notions based on this point of view and prove the
criterion of the deterministic decomposability of properly λ-cyclic languages.

Definition 5. Let L be a properly λ-cyclic language for some λ ∈ N and let
λ1, λ2 ∈ N. The bipartite graph induced by L, λ1 and λ2 is the bipartite graph
GL,λ1,λ2 = (Zλ1 , Zλ2 , E) where the set of edges E is defined as follows:

E = {(r1, r2) | r1 ∈ Zλ1 ; r2 ∈ Zλ2 ;
(∃m ∈ N) m ≡ r1 (mod λ1) ∧ m ≡ r2 (mod λ2) ∧ am ∈ L}.

Let V ′
1 = {r ∈ Zλ1 | d(r) > 0} and V ′

2 = {r ∈ Zλ2 | d(r) > 0} be the sets obtained
by removing all isolated vertices from GL,λ1,λ2 . We say that the graph GL,λ1,λ2

decomposes L if for all (r1, r2) ∈ V ′
1 × V ′

2 it holds that

(r1, r2) ∈ E ∨ ((�m ∈ N) m ≡ r1 (mod λ1) ∧ m ≡ r2 (mod λ2)).

Usefulness of Information and Unary Languages 137

Intuitively Definition 5 states the following. Consider that we have a properly
λ-cyclic language L and we want to decompose its minimal UDFA, which has
size (λ, 0), using UDFAs A1 and A2 of sizes (λ1, 0) and (λ2, 0) where moreover
lcm(λ1, λ2) = λ. We shall show later that if A is decomposable, then also a
decomposition of this type exists. The vertices of GL,λ1,λ2 correspond to the
remainders modulo λ1 and λ2, thus also to the states of A1 and A2. Observing
the way E is defined one can see that if (r1, r2) ∈ E, we must mark the states
corresponding to r1 in A1 and to r2 in A2 as accepting to ensure that L(A) ⊆
L(A1) ∩ L(A2). The condition in the last line of Definition 5 says that after
this marking we accept nothing more than words from L in L(A1) ∩ L(A2) and
thus L(A1) ∩ L(A2) = L. For example consider L12 = {a12k+2, a12k+11 | k ∈ N}
with its minimal UDFA A12 of size (12, 0). One can verify that the bipartite
graph GL12,4,6 (Fig. 2) induced by L12, 4 and 6 decomposes L12. This means
that the UDFAs A4 = (K4, {a}, δ4, q4[0], {q4[2], q4[3]}) of size (4, 0) and A6 =
(K6, {a}, δ6, q6[0], {q6[2], q6[5]}) of size (6, 0) form a decomposition of A12.

Fig. 2. Bipartite graph GL12,4,6 induced by L12, 4 and 6

Lemma 6. Let L be a properly λ-cyclic language for some λ ∈ N. If there exist
λ1, λ2 ∈ N such that λ1, λ2 < λ, lcm(λ1, λ2) = λ and the bipartite graph GL,λ1,λ2

induced by L, λ1 and λ2 decomposes L, then L ∈ Ddet.

Proof. Since L is a properly λ-cyclic language, the minimal UDFA accepting L
has size (λ, 0). Let us denote this UDFA A = (K, {a}, δ, q[0], F).

We shall construct a decomposition of A. To this end we define the UDFA
A1 = (K1, {a}, δ1, q1[0], F1) to be the λ1-cycle with F1 = {q1[m mod λ1] | m ∈
Zλ; q[m] ∈ F}. Similarly we define the UDFA A2 = (K2, {a}, δ2, q2[0], F2) to be
the λ2-cycle with F2 = {q2[m mod λ2] | m ∈ Zλ; q[m] ∈ F}. Since λ1, λ2 < λ,
we have sc(A1) < sc(A) and sc(A2) < sc(A). So it remains to prove that L(A) =
L(A1) ∩ L(A2).

– L(A) ⊆ L(A1) ∩ L(A2) : Let n ∈ N be such that an ∈ L(A). Let us denote
m = n mod λ. It follows that (q[0], an) �∗

A (q[m], ε) and q[m] ∈ F . Clearly
(q1[0], an) �∗

A1
(q1[n mod λ1], ε). Since λ = lcm(λ1, λ2), it holds that λ1 is a

divisor of λ. Then, following Lemma 1, we have n mod λ1 = (n mod λ) mod
λ1. Therefore q1[n mod λ1] = q1[(n mod λ) mod λ1] = q1[m mod λ1]. Since
m ∈ Zλ and q[m] ∈ F , from definition of F1 we can see that q1[m mod λ1] ∈
F1. So we conclude an ∈ L(A1). One can prove that an ∈ L(A2) by a similar
argumentation. Thus an ∈ L(A1) ∩ L(A2).

138 G. Pighizzini et al.

– L(A1) ∩ L(A2) ⊆ L(A) : Let n ∈ N such that an ∈ L(A1) ∩ L(A2). Clearly

(q1[0], an) �∗
A1

(q1[n mod λ1], ε) where q1[n mod λ1] ∈ F1

(q2[0], an) �∗
A2

(q2[n mod λ2], ε) where q2[n mod λ2] ∈ F2

We denote r1 = n mod λ1 and r2 = n mod λ2. From the definition of F1 it
follows that there exists m1 ∈ Zλ such that q[m1] ∈ F and m1 mod λ1 =
r1. Similarly from the definition of F2 it follows that there exists m2 ∈ Zλ

such that q[m2] ∈ F and m2 mod λ2 = r2. Since q[m1] ∈ F , it follows that
am1 ∈ L(A) = L. Let us denote s1 = m1 mod λ2. By the definition of GL,λ1,λ2

(Definition 5) we have that (r1, s1) ∈ E. Similarly from q[m2] ∈ F we have
am2 ∈ L(A) = L. We denote s2 = m2 mod λ1. From the definition of GL,λ1,λ2

we obtain (s2, r2) ∈ E. This means that vertices r1 ∈ Zλ1 and r2 ∈ Zλ2 are
not isolated in the graph GL,λ1,λ2 . Moreover, the system of congruences

r1 ≡ x (mod λ1)
r2 ≡ x (mod λ2)

has a solution, namely n. Therefore, since GL,λ1,λ2 decomposes L, we obtain
(r1, r2) ∈ E. Following the definition of the set of edges E of GL,λ1,λ2 we
conclude that there exists m ∈ N such that am ∈ L = L(A) and m is a
solution of the aforementioned system of congruences. Since am ∈ L(A), we
have q[m mod λ] ∈ F . Following Theorem 1 we have that all the solutions
of the aforementioned system of modular equations are congruent modulo
lcm(λ1, λ2) = λ. Since both m and n are solutions of the aforementioned
system of modular equations, it follows m mod λ = n mod λ. Therefore
q[n mod λ] ∈ F . It is clear that (q[0], an) �∗

A (q[n mod λ], ε) and this com-
putation is accepting, which completes the proof. ��

The converse implication of the Lemma 6 also holds but to prove it we need
some technical results first. We start with a result giving information about the
length of a cycle in a decomposition of a given UDFA.

Lemma 7. Let L be a unary properly λ-cyclic language such that L ∈ Ddet and
A be the minimal UDFA such that L(A) = L. Then there exists a decomposition
of A to UDFAs A1 and A2 of sizes (λ1, μ1) and (λ2, μ2) such that λ1 | λ and
λ2 | λ.

Proof. Consider L to be a unary properly λ-cyclic language such that L ∈ Ddet

and consider A to be its minimal UDFA of size (λ, 0). Therefore there exists
a decomposition of A, i.e., there exist UDFAs A1 = (K1, {a}, δ1, q1[0], F1) and
A2 = (K2, {a}, δ2, q2[0], F2) of sizes (λ1, μ1) and (λ2, μ2), respectively, such that
sc(A1) < sc(A), sc(A2) < sc(A) and L(A) = L(A1) ∩ L(A2). W.l.o.g. we assume
that A1 and A2 are minimal automata accepting their respective languages and

Usefulness of Information and Unary Languages 139

Fi = {qF ∈ Ki | (∃w ∈ L(A)) (qi[0], w) �∗
Ai

(qF , ε)} for i ∈ {1, 2}. We shall show
that λ1 | λ. Let us examine the set of accepting states F1. We can write

F1 = {qF ∈ K1 | (∃w ∈ L(A)) (q1[0], w) �∗
A1 (qF , ε)} (1)

= {qF ∈ K1 | (∃w ∈ L) (q1[0], w) �∗
A1 (qF , ε)} (2)

= {qF ∈ K1 | (∃r ∈ Zλ)(∃i ∈ N) ar ∈ L; (q1[0], aiλ+r) �∗
A1 (qF , ε)} (3)

= {q1[k] | k ∈ N; k < μ1; ak ∈ L} ∪
{q1[μ1 + ((iλ + r − μ1) mod λ1)] | r ∈ Zλ; ar ∈ L; i ∈ N; i ≥ μ1−r

λ
} (4)

= {q1[k] | k ∈ N; k < μ1; ak ∈ L} ∪
{q1[μ1 + ((i · gcd(λ1, λ) + r − μ1) mod λ1)] | r ∈ Zλ; ar ∈ L; i ∈ N} (5)

The equalities (1) and (2) are obvious. Since L is properly λ-cyclic, we have
the equality (3). For the equality (4) we use the definition of the transition
function δ1 and we separate accepting states to those in the tail of A1 and those
in its cycle. Finally we use Lemma 2 to write the equality (5) which implies the
following claim which we shall refer to as Helpful Claim:

(∀r1 ∈ Zλ1) q1[μ1+r1] ∈ F1 ⇔ (∀i ∈ N) q1[μ1+((i·gcd(λ1, λ)+r1) mod λ1)] ∈ F1

Now consider that λ1 � λ. Since λ1 < λ, this means that gcd(λ1, λ) < λ1.
However, according to Theorem 2, Helpful Claim and gcd(λ1, λ) | λ1 we obtain
that the automton A1 is not the minimal UDFA accepting L(A1) which is a
contradiction. In fact, in that case we can replace the cycle of A1 by a cycle of
length gcd(λ1, λ) and thus obtain a smaller UDFA accepting L(A1). Therefore
it must hold λ1 | λ. The proof of the fact that λ2 | λ is analogous. ��

We extend Lemma 7 using the observation that if a properly λ-cyclic language
is deterministically decomposable, then there exists a decomposition in which
both automata have no tails.

Lemma 8. Let L be a unary properly λ-cyclic language such that L ∈ Ddet and
A be the minimal UDFA such that L(A) = L. Then there exists a decomposition
of A to UDFAs A1 and A2 of sizes (λ1, 0) and (λ2, 0) such that lcm(λ1, λ2) = λ.

Proof. Let L be a unary properly λ-cyclic language such that L ∈ Ddet and let A
be the minimal UDFA such that L(A) = L. Obviously A has size (λ, 0). Following
Lemma 7 we obtain that there exists a decomposition of the automaton A to
two UDFAs of sizes (λ1, μ1) and (λ2, μ2) such that λ1 | λ and λ2 | λ. Let us
denote these automata D1 and D2. If μ1 = μ2 = 0, then there is nothing to
prove. So that for the rest of the proof we consider that μ1 > 0 or μ2 > 0. Let
k ∈ N be an arbitrary number such that kλ ≥ max(μ1, μ2). According to Roll-
out Lemma (Lemma 4) there exist UDFAs C1 = (KC

1 , {a}, δC
1 , qC

1 [0], FC
1) and

C2 = (KC
2 , {a}, δC

2 , qC
2 [0], FC

2) of sizes (λ1, kλ) and (λ2, kλ), respectively, such
that L(C1) = L(D1) and L(C2) = L(D2). Therefore it holds L(C1) ∩ L(C2) =
L(A).

Now we, informally said, synchronize tails of C1 and C2 with their respective
cycles and we prove that, after this, we still accept L(A) in the intersection. We

140 G. Pighizzini et al.

define UDFAs B1 = (KB
1 , {a}, δB

1 , qB
1 [0], FB

1) and B2 = (KB
2 , {a}, δB

2 , qB
2 [0], FB

2)
of sizes (λ1, kλ) and (λ2, kλ) where sets of accepting states FB

1 and FB
2 are

defined by

FB
1 = {qB

1 [kλ + i] | i ∈ Zλ1 ; qC
1 [kλ + i] ∈ FC

1 } ∪
{qB

1 [j] | j ∈ N; j < kλ; qC
1 [kλ + (j mod λ1)] ∈ FC

1 }
FB
2 = {qB

2 [kλ + i] | i ∈ Zλ1 ; qC
2 [kλ + i] ∈ FC

2 } ∪
{qB

2 [j] | j ∈ N; j < kλ; qC
2 [kλ + (j mod λ2)] ∈ FC

2 }.

We note that automata C1 and B1 are UDFAs of the same size, which means
that they have the same transition function up to the names of states. The same
holds for C2 and B2. Automata C1 and B1 resp. C2 and B2 may only differ in
their respective sets of accepting states. We prove that L(B1) ∩ L(B2) = L(A).

– L(B1) ∩ L(B2) ⊆ L(A): Let w ∈ L(B1) ∩ L(B2). We divide the proof in two
cases according to the length of w.

• |w| ≥ kλ: In this case w is accepted in the cycles of B1 and B2. Since C1

and B1 share the same cycle and the same holds for C2 and B2, and since
L(A) = L(C1) ∩ L(C2), we have w ∈ L(C1) ∩ L(C2) = L(A).

• |w| < kλ: Here we can write w = at for some t < kλ. Examine accepting
computations on at in both B1 and B2, which are (qB

1 [0], at) �∗
B1

(qB
1 [t], ε)

and (qB
2 [0], at) �∗

B2
(qB

2 [t], ε) where qB
1 [t] ∈ FB

1 and qB
2 [t] ∈ FB

2 . Following
definitions of FB

1 and FB
2 we have qC

1 [kλ+(t mod λ1)] ∈ FC
1 and qC

2 [kλ+
(t mod λ2)] ∈ FC

2 . Therefore akλ+t ∈ L(C1) ∩ L(C2) = L(A). L(A) is
λ-cyclic, so that at ∈ L(A).

– L(A) ⊆ L(B1) ∩ L(B2): Let w ∈ L(A) = L(C1) ∩ L(C2) and again divide the
proof in two cases according to the length of w.

• |w| ≥ kλ: As above w ∈ L(B1) ∩ L(B2) follows from the fact that B1 has
the same cycle as C1 and this is true also for B2 and C2.

• |w| < kλ: Here we can write w = at for some t < kλ. Since at ∈ L(A) and
the language L(A) is λ-cyclic, we have that akλ+t ∈ L(A) = L(C1)∩L(C2).
The word akλ+t is accepted in the automata C1 and C2 by the states
qC
1 [kλ + (t mod λ1)] ∈ FC

1 and qC
2 [kλ + (t mod λ2)] ∈ FC

2 . Following the
definitions of FB

1 and FB
2 we obtain qB

1 [t] ∈ FB
1 and qB

2 [t] ∈ FB
2 . It

means that the computations (qB
1 [0], at) �∗

B1
(qB

1 [t], ε) and (qB
2 [0], at) �∗

B2

(qB
2 [t], ε) are both accepting and we conclude at ∈ L(B1) ∩ L(B2) as

desired.

Considering the definitions of FB
1 and FB

2 with λ1 | λ and λ2 | λ one can
prove the following claims:

(C1) For all i, j ∈ N such that 0 ≤ i, j < λ1 +kλ and i− j ≡ 0 (mod λ1) it holds

qB
1 [i] ∈ FB

1 ⇐⇒ qB
1 [j] ∈ FB

1

(C2) For all i, j ∈ N such that 0 ≤ i, j < λ2 +kλ and i− j ≡ 0 (mod λ2) it holds

qB
2 [i] ∈ FB

2 ⇐⇒ qB
2 [j] ∈ FB

2

Usefulness of Information and Unary Languages 141

We define the UDFA A1 = (K1, {a}, δ1, q1[0], F1) and the UDFA A2 =
(K2, {a}, δ2, q2[0], F2) of sizes (λ1, 0) and (λ2, 0), where F1 = {qF ∈ K1 | (∃w ∈
L(B1)) (q1[0], w) �∗

A1
(qF , ε)} and F2 = {qF ∈ K2 | (∃w ∈ L(B2)) (q2[0], w) �∗

A2

(qF , ε)}.
The claims (C1) and (C2) show that the automata B1 and B2 fulfill the

assumptions of Roll-in Lemma (Lemma 5) for μ′ = 0. So that from Roll-in
Lemma it follows that L(A1) = L(B1) and L(A2) = L(B2). Therefore L(A) =
L(B1) ∩ L(B2) = L(A1) ∩ L(A2).

Since both λ1 and λ2 are divisors of λ, we have lcm(λ1, λ2) ≤ λ. According to
Theorem 3 the language L(A1) ∩ L(A2) = L(A) can be accepted by a UDFA of
size (lcm(λ1, λ2), 0). Therefore if lcm(λ1, λ2) < λ, then the language L(A) cannot
be properly λ-cyclic, which is a contradiction. Thus it holds that lcm(λ1, λ2) = λ.
Moreover λ1 = sc(A1) < λ = sc(A), λ2 = sc(A2) < λ = sc(A). We have thus
found the decomposition with desired properties. ��

Now we are ready to prove the opposite implication of Lemma 6.

Lemma 9. Let L be a properly λ-cyclic language for some λ ∈ N. If L ∈ Ddet

then there exist λ1, λ2 ∈ N such that λ1, λ2 < λ, lcm(λ1, λ2) = λ and the bipartite
graph GL,λ1,λ2 induced by L, λ1 and λ2 decomposes L.

Proof. Let L ∈ Ddet be a properly λ-cyclic language for some λ ∈ N and
let A be the minimal UDFA such that L(A) = L. Following Lemma 8 there
exists a decomposition of A to UDFAs A1 = (K1, {a}, δ1, q1[0], F1) and A2 =
(K2, {a}, δ2, q2[0], F2) of sizes (λ1, 0) and (λ2, 0), such that lcm(λ1, λ2) = λ. Let
GL,λ1,λ2 = (Zλ1 , Zλ2 , E) be the bipartite graph induced by L, λ1 and λ2 (Defini-
tion 5). We recall that the set of edges E is defined by:

E = {(r1, r2) | r1 ∈ Zλ1 ; r2 ∈ Zλ2 ;
(∃m ∈ N) m ≡ r1 (mod λ1) ∧ m ≡ r2 (mod λ2) ∧ am ∈ L}.

We prove that GL,λ1,λ2 decomposes L according to Definition 5. Let us
assume for the contrary that GL,λ1,λ2 does not decompose L. It means, following
Definition 5, that there exist s1 ∈ Zλ1 and s2 ∈ Zλ2 such that both of them are
not isolated vertices and moreover it holds that:

(1) (s1, s2) /∈ E
(2) (∃m ∈ N) m ≡ s1 (mod λ1) ∧ m ≡ s2 (mod λ2)

Since s1 is not isolated, there exists t2 ∈ Zλ2 such that (s1, t2) ∈ E. Therefore
there exists m1 ∈ N such that m1 ≡ s1 (mod λ1), m1 ≡ t2 (mod λ2) and
am1 ∈ L. The computation of A1 on am1 is (q1[0], am1) �∗

A1
(q1[s1], ε). Following

that L = L(A) = L(A1) ∩ L(A2) and am1 ∈ L we get q1[s1] ∈ F1. Analogously
it also holds that q2[s2] ∈ F2.

Now consider the computations of A1 and A2 on the word am. Following (2)
they are (q1[0], am) �∗

A1
(q1[s1], ε) and (q2[0], am) �∗

A2
(q2[s2], ε). Since q1[s1] ∈

F1 and q2[s2] ∈ F2, we have am ∈ L(A1) ∩ L(A2) = L(A) = L. From (2) and
am ∈ L we obtain that (s1, s2) ∈ E which is a contradiction to (1). Therefore

142 G. Pighizzini et al.

GL,λ1,λ2 decomposes L. Moreover we have that lcm(λ1, λ2) = λ and since A1 and
A2 form the decomposition of A, we also have that λ1 = sc(A1) < sc(A) = λ
and λ2 = sc(A2) < sc(A) = λ as desired. ��

Following Lemma 6 and Lemma 9 we obtain the main results of our paper.

Theorem 4 (Characterization of Properly λ-cyclic Languages upon
Deterministic Decomposability). Let L be a properly λ-cyclic language for
some λ ∈ N. L ∈ Ddet if and only if there exist λ1, λ2 ∈ N such that λ1, λ2 < λ,
lcm(λ1, λ2) = λ and the bipartite graph GL,λ1,λ2 induced by L, λ1 and λ2 decom-
poses L.

References

1. Gaži, P., Rovan, B.: Assisted problem solving and decompositions of finite automata.
In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 292–303. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77566-9 25

2. Jecker, I., Kupferman, O., Mazzocchi, N.: Unary prime languages. In: Esparza, J.,
Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2020, LIPIcs, Prague, Czech Republic, 24–28 August
2020, vol. 170, pp. 51:1–51:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.51

3. Kupferman, O., Mosheiff, J.: Prime languages. Inf. Comput. 240, 90–107 (2015).
https://doi.org/10.1016/j.ic.2014.09.010

4. Labath, P., Rovan, B.: Simplifying DPDA using supplementary information. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 342–353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-
3 27

5. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 21

6. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://doi.org/
10.1142/S012905410200100X

7. Rovan, B., Sádovský, Š.: On usefulness of information: framework and NFA case.
In: Adventures Between Lower Bounds and Higher Altitudes - Essays Dedicated to
Juraj Hromkovič on the Occasion of His 60th Birthday pp. 85–99 (2018). https://
doi.org/10.1007/978-3-319-98355-4 6

8. Rovan, B., Zeman, M.: Modeling time criticality of information. Inf. Process. Lett.
114(3), 147–151 (2014). https://doi.org/10.1016/j.ipl.2013.10.008

https://doi.org/10.1007/978-3-540-77566-9_25
https://doi.org/10.4230/LIPIcs.MFCS.2020.51
https://doi.org/10.1016/j.ic.2014.09.010
https://doi.org/10.1007/978-3-642-21254-3_27
https://doi.org/10.1007/978-3-642-21254-3_27
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1007/978-3-319-98355-4_6
https://doi.org/10.1007/978-3-319-98355-4_6
https://doi.org/10.1016/j.ipl.2013.10.008

Learning

Learnability and Positive Equivalence
Relations

David Belanger1, Ziyuan Gao2(B), Sanjay Jain3, Wei Li2, and Frank Stephan2,3

1 Department of Mathematics, Ghent University,
Krijgslaan 281, 9000 Ghent, Belgium

david.belanger@ugent.be
2 Department of Mathematics, National University of Singapore, 10 Lower Kent

Ridge Road, Singapore 119076, Republic of Singapore
{matgaoz,matliw}@nus.edu.sg

3 School of Computing, National University of Singapore, Singapore 117417,
Republic of Singapore

{sanjay,fstephan}@comp.nus.edu.sg

Abstract. Prior work of Gavryushkin, Khoussainov, Jain and Stephan
investigated what algebraic structures can be realised in worlds given by a
positive (= recursively enumerable) equivalence relation which partitions
the natural numbers into infinitely many equivalence classes. The present
work investigates the infinite one-one numbered recursively enumerable
(r.e.) families realised by such relations and asks how the choice of the
equivalence relation impacts the learnability properties of these classes
when studying learnability in the limit from positive examples, also
known as learning from text. For all choices of such positive equivalence
relations, for each of the following entries, there are one-one numbered
r.e. families which satisfy it: (a) they are behaviourally correctly learn-
able but not vacillatorily learnable; (b) they are explanatorily learnable
but not confidently learnable; (c) they are not behaviourally correctly
learnable. Furthermore, there is a positive equivalence relation which
enforces that (d) every vacillatorily learnable one-one numbered family
of languages closed under this equivalence relation is already explanato-
rily learnable and cannot be confidently learnable.

1 Introduction

Consider a learning scenario where all positive examples of a given target concept
L belonging to a concept class L are shown sequentially to a learner M . After
processing each example, M makes a conjecture as to the identity of the target
concept, based on some fixed representation system of all concepts in L. M is
said to successfully identify L if its sequence of conjectures converges to a correct

D. Belanger (as RF), Z. Gao (as RF) and S. Jain (as Co-PI), F. Stephan (as PI)
have been supported by the Singapore Ministry of Education Academic Research Fund
grant MOE2016-T2-1-019/R146-000-234-112 and MOE2019-T2-2-121/R146-000-304-
112. Furthermore, S. Jain is supported in part by NUS grant C252-000-087-001.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 145–156, 2021.
https://doi.org/10.1007/978-3-030-68195-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_12

146 D. Belanger et al.

hypothesis describing L. This learning paradigm, due to Gold [18], is well-studied
and has inspired the development of a large number of other learning models in
inductive inference1.

In this work, we study how the interrelations between the elements of a
domain X influences the learnability of classes of languages defined over X. The
domain of interest throughout this work is N. We will be concerned with recur-
sively enumerable (r.e.) equivalence relations defined on N that induce infinitely
many equivalence classes. The main motivation for focussing on such relations
comes from the study of r.e. structures. Here, r.e. structures are given by a
domain, recursive functions representing basic operators in the structure, and
some recursively enumerable predicates, among which there is a recursively enu-
merable equivalence relation η with infinitely many equivalence classes which
plays the role of equality in the given structure. Such structures have been stud-
ied for a long time; for example, Novikov [25] constructed a finitely generated
group with undecidable word-problem; in other words, there is a group which can
be represented using an r.e. but nonrecursive equivalence relation (as equality
of the group) but one cannot represent it using a recursive equivalence relation
E. On the other hand, for Noetherian rings [24], Baur [5] showed that every
r.e. Noetherian ring is a recursive ring, implying that the underlying equality
η is always a recursive relation and that its equivalence classes are uniformly
recursive. Another example of an r.e. equivalence relation is the relation of prov-
able equivalence with respect to any formal system, say Peano Arithmetic (PA),
where x ∼PA y holds iff α ↔ β is provable in PA, x and y being the Gödel
numbers of α and β respectively according to some fixed Gödel numbering.

Fokina, Gavryushkin, Jain, Khoussainov, Semukhin, Stephan and Turetsky
[13,16,17] focussed in a sequence of papers on the question of which type of
structures could be realised by an r.e. equivalence relation on N with infinitely
many equivalence classes and how different relations compare with respect to
their ability to realise structures of certain type. Ershov [10,11], and following
him Odifreddi [26], call r.e. equivalence relations positive equivalence relations.
Fokina, Kötzing and San Mauro [14] studied Gold-style learnability of equiva-
lence structures (with no computability restrictions on the learner), and gave a
structural characterisation of families of equivalence structures that are learnable
in the limit from informant.

Now a structure is realised by a positive equivalence relation η iff there is a
bijection between the elements in the domain of the structure and the equiva-
lence classes of η and all relations involved are recursively enumerable and all
functions are realised by recursive functions which respect η. In the simplest
case of functions from the domain to the domain, they respect η if they map
η-equivalent numbers to η-equivalent numbers. This work focusses on the study
of learnability within the framework of families realised by positive equivalence
relations. In particular the topic of the investigations is to which extent separa-
tions between learning criteria known from inductive inference can be witnessed

1 The reader is referred to [19,28] for an introduction to other basic learning notions
in inductive inference and to [1–4,6–9,12,14,15,18,21–23] for further reading

Learnability and Positive Equivalence Relations 147

by η-closed sets, that is, which of the positive equivalence relations witness a sep-
aration of two learning criteria or collapse them. Furthermore one asks, whether
certain learning criteria can be void (non-existent) for certain equivalence rela-
tions η. The study of learning in a world given by some η is similar to that in
complexity relative to an oracle; one wants to know how robust the results from
the non-relativised world are and how much they generalise.

A full version of the paper is available at https://arxiv.org/pdf/2012.01466.
pdf.

2 Preliminaries

Any unexplained recursion-theoretic notation may be found in [26,29,30]. We use
N = {0, 1, 2, . . .} to denote the set of all natural numbers. The set of all partial
recursive functions and of all recursive functions of one, and two arguments
over N is denoted by P, P2, R and R2 respectively. Any function ψ ∈ P2 is
called a numbering of partial-recursive functions—this numbering may or may
not include all partial recursive functions. Moreover, let ψ ∈ P2, then we write
ψe instead of λx.ψ(e, x) and set Pψ = {ψe | e ∈ N}. A numbering ϕ ∈ P2 is
said to be an acceptable numbering or Gödel numbering of all partial recursive
functions if Pϕ = P and for every numbering ψ ∈ P2, there is a c ∈ R such that
ψe = ϕc(e) for all e ∈ N (see [29]). Throughout this paper, ϕ0, ϕ1, ϕ2, . . . is a
fixed acceptable numbering of all partial recursive functions and W0,W1,W2, . . .
is a fixed numbering of all recursively enumerable sets (abbr. r.e. sets) of natural
numbers, where We is the domain of ϕe for all e ∈ N.

Let e, x ∈ N; if ϕe(x) is defined then we say that ϕe(x) converges. Otherwise,
ϕe(x) is said to diverge. Furthermore, if the computation of ϕe(x) halts within s
steps of computation then we write ϕe,s(x)↓= ϕe(x); otherwise ϕe,s(x) diverges.
For all e, s ∈ N the set We,s is defined as the domain of ϕe,s.

Given any set S, S∗ denotes the set of all finite sequences of elements
from S. The symbol K denotes the diagonal halting problem, i.e., K = {e :
e ∈ N, ϕe(e) converges}. For σ ∈ (N ∪ {#})∗ and n ∈ N we write σ(n) to
denote the element in the nth position of σ. For any finite sequence σ we use |σ|
to denote the length of σ. Further, whenever n � |σ|, σ[n] denotes the sequence
σ(0), σ(1), . . . , σ(n − 1). The concatenation of two sequences σ and τ is denoted
by σ ◦ τ ; for convenience, and whenever there is no possibility of confusion, this
is occasionally denoted by στ .

A class L is said to be uniformly r.e. (or just r.e.) if there is an r.e. set S ⊆ N

such that L = {Wi : i ∈ S}. A class is said to be one-one r.e., if the r.e. set S
as above additionally satisfies the condition that for i, j ∈ S, Wi = Wj iff i = j.
An r.e. class L = {B0, B1, . . .} is said to be uniformly recursive or an indexed
family if there exists a recursive function f ∈ R2 such that for all i, x ∈ N, if
x ∈ Bi then f(i, x) = 1 else f(i, x) = 0.

3 Learnability

Background on inductive inference may be found in [19]. Let L be a class of
r.e. languages. Throughout this paper, the mode of data presentation is that of

https://arxiv.org/pdf/2012.01466.pdf
https://arxiv.org/pdf/2012.01466.pdf

148 D. Belanger et al.

a text. A text is any infinite sequence of natural numbers and the # symbol,
where the symbol # indicates a pause in the data presentation. More formally,
a text TL for a language L ∈ L is any total mapping TL : N → N ∪ {#} such
that L = range(TL) − {#}. We use content(T) to denote the set range(T) −
{#}, i.e., the content of a text T contains only the natural numbers appearing
in T . Furthermore, for every n ∈ N we use T [n] to denote the finite sequence
T (0), . . . , T (n − 1), i.e., the initial segment of length n of T . Analogously, for
a finite sequence σ ∈ (N ∪ {#})∗ we use content(σ) to denote the set of all
numbers in the range of σ.

Description 1. Further basic ingredients of the notions considered in this paper
are as follows.

(1) For each positive equivalence relation η, one can define an infinite sequence
a0, a1, . . . of least representatives of the equivalence classes where each an

is the ascending limit of approximations an,t where an,t is the least natural
number which is not ηt-equivalent to any am,t with m < n (where ηt denotes
the tth approximation to η). Alternatively, one can obtain η from a construc-
tion of such a sequence where the an,t approximate the an from below and
whenever an an,t+1
= an,t then an,t+1 = am,t for some m > n and whenever
an,t is not in the list at t+1 then it is put into the equivalence class of some
am,t with m < n. Some algorithms to construct the equivalence relation η
explain on how to update these approximations to a0, a1, . . . and one should
note that (the construction implies) the limit satisfies a0 < a1 < . . . and
that for each n there are only finitely many t with an,t < an,t+1.

(2) The classes whose learnability are considered are given by a uniformly r.e.
one-one numbering of sets B0, B1, . . . where each set Bk is a union of η-
equivalence classes; however, the indices k of Bk are usual natural numbers
and not equivalence-classes of η. Such a family is called an η-family below
and note that η-families are always infinite.

(3) Infinite indexed families as considered by Angluin [1] are too restrictive, as
they might not exist for some η; however, every infinite indexed family has
a one-one numbering and thus using the notion of infinite uniformly r.e.
one-one numberings is the adequate choice for the present work.

(4) The learner sees an infinite sequence x0, x1, . . . of members of one set Bk

(such sequences are called texts and can have pauses represented by a special
pause symbol #) and the learner has to find in the limit an r.e. index for
Bk, which may not be equal to k.

(5) The hypotheses issued by the learners are always indices from a fixed accept-
able numbering of all r.e. sets; without loss of generality one can assume that
they incorporate the closure under the equivalence relation η and are thus
indices for r.e. unions of equivalence classes of η.

(6) The present work focusses on the following learning criteria [3,7,8,12,18,19,
27,28]: Explanatory learning, where the hypotheses of the learner converge
on every text for a set Bk to a single index of Bk; Confident learning, which
is explanatory learning with the additional requirement that the learner
also on texts not belonging to any language in the class has to converge

Learnability and Positive Equivalence Relations 149

to some index; Behaviourally correct learning, which is more general than
explanatory learning and where the learner is only required to output on
any text for Bk almost always an index for Bk but these indices can all
be different; Vacillatory learning, where a learner is vacillatory iff it is a
behaviourally correct learner for the class, with the additional constraint
that on every text for a language Bk in the class, the set of all hypotheses
issued in response to this text is finite (thus, some of these hypotheses are
output infinitely often).

We now provide formal definitions of these criteria as well as the criterion of finite
learning (sometimes known as one-shot learning in the literature; see [18,31]),
which is a more restrictive version of explanatory learning. In the following
definitions, a learner M is a recursive function mapping (N ∪ {#})∗ into N ∪ {?};
the ? symbol permits M to abstain from conjecturing at any stage. If M is
presented with a text T for any η-closed set L, it is enough to assume that
content(T) contains at least one element of each η-equivalence class contained
in L; since η is r.e., M on T could simulate a complete text for L by enumerating
at each stage s the sth approximation of the current input’s η-closure.

Definition 2 (Angluin [1], Bārzdiņš [3], Case and Smith [9], Feldman
[12], Gold [18], Osherson, Stob and Weinstein [28], Trakhtenbrot and
Bārzdiņš [31]). Let L be any class of r.e. languages.

(1) M explanatorily (Ex) learns L if, for every L in L and each text TL for
L, there is a number n for which L = WM(TL[n]) and, for every j � n,
M(TL[j]) = M(TL[n]).

(2) M behaviourally correctly (BC) learns L if, for every L in L and each
text TL for L, there is a number n for which L = WM(TL[j]) whenever
j � n.

(3) M finitely (Fin) learns L if, for every L in L and each text TL for L,
there is a number n for which L = WM(TL[n]) and for every m < n,
M(TL[m]) = ? and for every j � n, M(TL[j]) = M(TL[n]).

(4) M confidently (Conf) learns L if M Ex learns L and M converges on
every text for any language, that is, for every L ⊆ N and text TL for L,
there is a number n such that for every j � n, M(TL[j]) = M(TL[n]).

(5) M vacillatorily (Vac) learns L if M BC learns L and for every L in L
and each text TL for L, {M(TL[n]) : n � 1} is finite.

Throughout this work, we only consider positive equivalence relations that
induce infinitely many equivalence classes. For any positive equivalence rela-
tion η and x ∈ N, let [x] be {y : y η x}. Furthermore, for any D ⊆ N, [D] denotes⋃

x∈D[x]. For any finite {i0, . . . , in} ⊆ N, the set [{ai0 , ai1 , . . . , ain}] will simply
be denoted by [ai0 , ai1 , . . . , ain]. An η-family L is a uniformly r.e. one-one infi-
nite family, each of whose members is a union of η-equivalence classes. Note that
uniformly recursive infinite families might not exist for some η and therefore an
η-family is the nearest notion to a uniformly recursive family which exists for
each positive equivalence relation η. A set is η-infinite (resp. η-finite) if it is equal

150 D. Belanger et al.

to a union of infinitely (resp. finitely) many η-equivalence classes; note that an
η-infinite set may not necessarily be recursively enumerable. A set is η-closed if
it is either η-finite or η-infinite. In this paper, all families are assumed to consist
of only η-closed sets (for some given η). For brevity’s sake, we do not use any
notation to indicate the dependence of an on η; the choice of η will always be
clear from the context. A family A of sets is called a superfamily of another
family B of sets iff A ⊇ B.

A useful notion that captures the idea of the learner converging on a given
text is that of a locking sequence, or more generally that of a stabilising sequence.
A sequence σ ∈ (N ∪ {#})∗ is called a stabilising sequence [15] for a learner M on
some language L if content(σ) ⊆ L and for all τ ∈ (L ∪ {#})∗, M(σ) = M(σ◦τ).
A sequence σ ∈ (N ∪ {#})∗ is called a locking sequence [6] for a learner M on
some language L if σ is a stabilising sequence for M on L and WM(σ) = L. The
following proposition due to Blum and Blum [6] will be occasionally useful.

Proposition 3 (Blum and Blum [6]). If a learner M explanatorily learns
some language L, then there exists a locking sequence for M on L. Furthermore,
all stabilising sequences for M on L are also locking sequences for M on L.

The following theorem due to Kummer [20] will be useful for showing that a
given family of r.e. sets has a one-one numbering.

Theorem 4 (Kummer [20]). Suppose L0, L1, L2, . . . and H0, H1,H2, . . . are
two numberings such that (1) for all i, j ∈ N, Li
= Hj; (2) H0,H1,H2, . . . is a
one-one numbering; (3) for all i ∈ N and all finite D ⊆ Li, there are infinitely
many j such that D ⊆ Hj. Then {Li : i ∈ N} ∪ {Hj : j ∈ N} has a one-one
numbering.

4 Results for All Positive Equivalence Relations: Fin,
Conf, Ex, Vac and BC Learning

In the present section, we investigate the relationship between the main learning
criteria – namely, finite, confident, explanatory, vacillatory and behaviourally
correct learning – with respect to families closed under any given positive equiv-
alence relation. The first part of this section will study, for any general positive
equivalence relation η, the learnability of a particular η-family known as the
ascending family for η. As will be seen later, the ascending family provides a
useful basis for constructing η-families that witness the separation of various
learnability notions.

Definition 5. For all n ∈ N, An denotes the set [a0, a1, ..., an−1]. The family
{An : n ∈ N} will be denoted by Aη, and is called the ascending family for η.

Note that each member of Aη is η-finite; furthermore, Aη is an η-family because η
induces infinitely many equivalence classes and for all n, an can be approximated
from below (c.f. Description 1, item (1)). For brevity’s sake, we do not use any

Learnability and Positive Equivalence Relations 151

notation to indicate the dependence of An on η; the choice of η will always be
clear from the context.

In the second part of this section, we study the question of whether the
learning hierarchy

Fin ⊂ Conf ⊂ Ex ⊂ Vac ⊂ BC.

is strict for the class of η-families (for any given positive equivalence relation η). It
turns out that while the two chains of inclusions Fin ⊂ Conf ⊂ Ex and Vac ⊂ BC
hold for all positive equivalence relations, there is a positive equivalence relation
ϑ for which every vacillatorily learnable ϑ-family is also explanatorily learnable.
The construction of ϑ will be given in the next section. We begin with a few
basic examples of η-families to illustrate some of the notions introduced so far.

Example 6 (Ershov, [10]). If A is a recursive and coinfinite set, then x ηA y ⇔
(x = y ∨ (x ∈ A∧ y ∈ A)) is a positive equivalence relation. F := {A} ∪ {{x} :
x /∈ A} is an ηA-family since (1) every equivalence class of ηA is either A or
a singleton {x} with x /∈ A, which implies that F is infinite and each member
of F is ηA-closed, and (2) there is a uniformly recursive one-one numbering
{Fi}i∈N of F ; for example, one could set F0 = A and Fi+1 = {xi} for all i, where
x1, x2, x3, . . . is a one-one recursive enumeration of N − A. F is also finitely
learnable via a learner that outputs ? until it sees the first number x in the
input; if x ∈ A then A is conjectured, and if x /∈ A then {x} is conjectured.

Example 7 (Ershov, [10]). If R is an r.e. set and D0,D1,D2, . . . is a one-one
numbering of all finite sets, then x ηR y ⇔ Dx�Dy ⊆ R is a positive equivalence
relation (� denotes the symmetric difference). If S ∩ R = ∅, then LS := {x :
Dx ∩ S
= ∅} is ηR-closed. Suppose N − R contains an infinite r.e. set C. Let F
consist of all sets LC′ such that C ′ = C − F for some finite set F . Then F is an
ηR-family that is not behaviourally correctly learnable.

The next theorem shows that for any positive equivalence relation η, the ascend-
ing family witnesses that explanatory learning is strictly more powerful than
confident learning.

Theorem 8. For every positive equivalence relation η, the ascending family Aη

is explanatorily learnable but not confidently learnable. One can add the set N to
Aη and obtain an η-family which is not behaviourally correctly learnable.

The following proposition provides a method for establishing that a given uni-
formly r.e. family is an η-family.

Proposition 9. Every uniformly r.e. superfamily of Aη that consists of η-closed
sets is an η-family; in particular, the families of all η-finite sets and all η-closed
r.e. sets are η-families.

A minor modification of the proof of Proposition 9 reveals a slightly more general
result: for any positive equivalence relation η and any strictly increasing recursive
enumeration e0, e1, e2, . . ., every uniformly r.e. superfamily of {Aei

: i ∈ N} is
an η-family. This variant of Proposition 9 will be occasionally useful for showing
that a given uniformly r.e. class is an η-family.

152 D. Belanger et al.

Proposition 10. Let f be any strictly increasing recursive function. Then, for
any given positive equivalence relation η, every uniformly r.e. superfamily of
{Af(i) : i ∈ N} consisting of η-closed sets is an η-family.

The next result shows that for any given positive equivalence relation η,
behaviourally correct learning is more powerful than explanatory learning with
respect to the class of η-families.

Theorem 11. For every positive equivalence relation η, there is an η-family
which is behaviourally correctly learnable but not explanatorily learnable.

Vacillatory learning, according to which a learner is allowed to switch between
any finite number of correct indices in the limit, is known to be strictly weaker
than behaviourally correct learning for general families of r.e. sets [7]. The next
main result – Theorem 13 – asserts that for any given positive equivalence rela-
tion η, this relation between the two criteria holds even for certain η-families.
We begin with the following proposition, from which the separation result may
be deduced.

Proposition 12. If the class of η-finite sets is vacillatorily learnable then one
can relative to the halting problem K compute a sequence e0, e1, . . . of charac-
teristic indices of η-finite and η-closed sets E0, E1, . . . which form a partition of
N.

Theorem 13. For every positive equivalence relation η, there is an η-family
which is behaviourally correctly learnable but not vacillatorily learnable.

Moving down the learning hierarchy given at the start of the present section, the
following theorem shows that for any positive equivalence relation η, finite learn-
ing can be more restrictive than confident learning with respect to η-families.

Theorem 14. Let η be any given positive equivalence relation such that there
is at least one finitely learnable η-family. Then there is an η-family that is con-
fidently learnable but not finitely learnable.

As Gold [18] observed, the class consisting of N and all finite sets is not learn-
able in any sense considered in the present paper.2 On the other hand, the class
comprising only N and the class of all finite sets are both explanatorily learn-
able. Thus the union of two explanatorily learnable classes of r.e. languages may
not even be behaviourally correctly learnable. Blum and Blum [6] noted that
the family of explanatorily (resp. behaviourally correctly) learnable classes of
recursive functions is also not closed under union. In the rest of this section,
we investigate the question of whether the non-union property of explanatory
(resp. vacillatory, behaviourally correct) learning holds for the class of η-families,

2 However, there are many natural families of languages that are learnable in the limit,
such as the class of non-erasing pattern languages (see [1, Example 1]).

Learnability and Positive Equivalence Relations 153

where η is any given positive equivalence relation. For any learning criterion I
and any positive equivalence relation η, say that I is closed under union with
respect to η iff for any η-families L and H such that L ∪ H is an η-family, if L
and H are I-learnable, then L ∪ H is I-learnable. Somewhat surprisingly, while
explanatory and vacillatory learnability are not closed under union with respect
to any η, the answer for behaviourally correct learning depends on whether or
not there are at least two η-infinite r.e. sets.

Proposition 15. Let η be any given positive equivalence relation. If N is the
only η-infinite r.e. set, then N is not contained in any behaviourally correctly
learnable η-family.

Theorem 16. Let η be any given positive equivalence relation. Then the follow-
ing hold.

(a) There are disjoint, explanatorily (resp. vacillatorily) learnable η-families L1

and L2 for which L1 ∪ L2 is an η-family that is not explanatorily (resp. vac-
illatorily) learnable.

(b) Behaviourally correct learning is closed under union with respect to η iff N

is the only η-infinite r.e. set.

We next establish the non-union theorem for finite learning of η-families, where
η is any positive equivalence relation such that at least one finitely learnable η-
family exists. It may be worth noting that, in contrast to explanatory learnability,
there is a positive equivalence relation ϑ for which no ϑ-family is finitely (or even
confidently) learnable, as will be seen in the subsequent section.

Theorem 17. Let η be any given positive equivalence relation such that at least
one η-family is finitely learnable. Then there are finitely learnable η-families L1

and L2 for which L1 ∪ L2 is an η-family that is not finitely learnable.

5 Learnability of Families Closed Under Special Positive
Equivalence Relations

So the general results were that for every positive equivalence relation η, for
each of the following conditions, there are η-families which satisfy it: (a) the
family is explanatory learnable but not confidently learnable; (b) the family is
behaviourally correctly learnable but not vacillatorily learnable; (c) the family
is not behaviourally correctly learnable. The picture does not provide η-families
which are confidently learnable and also not separate out the notion of vacil-
latory learning from explanatory learning. The first main result of this section
is to construct a positive equivalence relation ϑ such that there is no confi-
dently learnable ϑ-family and furthermore all vacillatorily learnable ϑ-families
are explanatory learnable. Thus one cannot separate for all η the notions of vac-
illatory and explanatory learning and one also cannot show that every η has a
confidently learnable η-family. The second main result shows that there is a pos-
itive equivalence relation ζ for which there are confidently learnable ζ-families
but no finitely learnable ζ-families.

154 D. Belanger et al.

Theorem 18. There is a positive equivalence relation ϑ satisfying:

(1) There is only one ϑ-infinite r.e. set, namely N.
(2) Every ϑ-family contains an infinite ascending chain B0 ⊂ B1 ⊂ · · · of ϑ-

finite sets whose union is N. In particular, no ϑ-family is confidently learn-
able; and every behaviorally-correctly learnable ϑ-family consists only of ϑ-
finite languages.

(3) Every vacillatory learnable ϑ-family is explanatorily learnable.

According to Theorem 14, for every positive equivalence relation η such that
there is at least one finitely learnable η-family, there is also an η-family that is
confidently but not finitely learnable. The next main result complements this
theorem by showing that there is a positive equivalence relation ζ for which
no finitely learnable ζ-family exists even though there are confidently learnable
ζ-families.

Description 19. One defines a positive equivalence relation ζ using a dense
simple set Z with 0 /∈ Z as below; recall for this that a set is dense simple iff it is
recursively enumerable, coinfinite and the sequence a0, a1, . . . of its non-elements
in ascending order grows faster than every recursive function. It is known that
such sets Z exist [26].

Now one defines that x ζ y iff there is an n with an � min{x, y} �
max{x, y} < an+1. This relation is positive, as x ζ y is equivalent to

∀z [min{x, y} < z � max{x, y} ⇒ z ∈ Z]

which is an r.e. condition. Furthermore, in coincidence with the notation used
in this paper, each an is the least element of its equivalence class and the an are
the ascending limits of the approximations an,t which are the non-elements (in
ascending order) of the set Zt of the first t elements enumerated into Z, so that
Z0 = ∅ and an,0 = n. As Z is coinfinite, there are infinitely many an’s and so ζ
induces infinitely many equivalence classes.

Theorem 20. There is a confidently learnable ζ-family but no finitely learnable
ζ-family.

6 Conclusion

The present work studied how the relations between the most basic inference cri-
teria for learning from text are impacted when the only classes to be considered
for learning are uniformly r.e. one-one families of sets which are closed under
a given positive equivalence relation η. One considers the chain of implications
finitely learnable ⇒ confidently learnable ⇒ explanatorily learnable ⇒ vacillato-
rily learnable ⇒ behaviourally correctly learnable which is immediate from the
definitions. When choosing η as the explicitly constructed ϑ from Theorem 18,
the implication from explanatorily learnable to vacillatorily learnable becomes
an equivalence and the criterion of confidently learnable becomes void, that is, no

Learnability and Positive Equivalence Relations 155

ϑ-family satisfies it. For the positive equivalence relation ζ from Description 19,
there is a ζ-family which is confidently learnable, but none which is finitely learn-
able. Furthermore, in the case that a finitely learnable η-family exists for some η,
then there is also a confidently learnable η-family which is not finitely learnable.
For all choices of η, the implications from confident to explanatory learning and
from vacillatory to behaviourally correct learning cannot be reversed and the
class of all η-closed r.e. set is an η-family which cannot be learnt behaviourally
correctly.

Besides investigating the situation for further learning criteria, future work
can investigate to which extent the results generalise to arbitrary uniformly r.e.
families of η-closed sets. Here one would get that the family of all η-singletons is
r.e. and finitely, thus confidently learnable: the learner generates an index of the
η-equivalence class to be learnt from the first data-item observed and keeps this
hypothesis forever. So one has one more level in the learning hierarchy. However,
the collapse of vacillatory learning to explanatory learning for the constructed
equivalence relation ϑ generalises to uniformly r.e. families.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

2. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput.
152(1), 16–43 (1999)

3. Bārzdiņs̆, J.M.: Two theorems on the limiting synthesis of functions. In: Bārzdiņs̆,
J.M. (ed.) Theory of Algorithms and Programs I, Proceedings of the Latvian State
University, vol. 210, pp. 82–88. Latvian State University, Riga (1974). (in Russian)

4. Bārzdiņs̆, J.M.: Inductive inference of automata, functions and programs. In: Amer-
ican Mathematical Society Translations, pp. 107–122, 1977. Appeared Originally
in the Proceedings of the 20-th International Congress of Mathematicians 1974,
vol. 2, pp. 455–460 (1974). (in Russian)

5. Baur, W.: Rekursive Algebren mit Kettenbedingungen. Zeitschrift für mathema-
tische Logik und Grundlagen der Mathematik 20, 37–46 (1974). (in German)

6. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf.
Control 28, 125–155 (1975)

7. Case, J.: The power of vacillation in language learning. SIAM J. Comput. 28(6),
1941–1969 (1999)

8. Case, J., Lynes, C.: Machine inductive inference and language identification. In:
Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115.
Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0012761

9. Case, J., Smith, C.: Comparison of identification criteria for machine inductive
inference. Theoret. Comput. Sci. 25, 193–220 (1983)

10. Ershov, Y.L.: Positive equivalences. Algebra Logic 10(6), 378–394 (1974)
11. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)
12. Feldman, J.A.: Some decidability results on grammatical inference and complexity.

Inf. Control 20(3), 244–262 (1972)
13. Fokina, E., Khoussainov, B., Semukhin, P., Turetsky, D.: Linear orders realized by

c.e. equivalence relations. J. Symbol. Logic 81(2), 463–482 (2016)

https://doi.org/10.1007/BFb0012761

156 D. Belanger et al.

14. Fokina, E.B., Kötzing, T., Mauro, L.S.: Limit learning equivalence structures. In:
Proceedings of the 30th International Conference on Algorithmic Learning Theory
(ALT 2019), pp. 383–403 (2019)

15. Fulk, M.: A study of inductive inference machines. Ph.D. thesis, SUNY/Buffalo
(1985)

16. Gavruskin, A., Jain, S., Khoussainov, B., Stephan, F.: Graphs realised by r.e.
equivalence relations. Ann. Pure Appl. Logic 165, 1263–1290 (2014)

17. Gavryushkin, A., Khoussainov, B., Stephan, F.: Reducibilities among equivalence
relations induced by recursively enumerable structures. Theoret. Comput. Sci. 612,
137–152 (2016)

18. Mark Gold, E.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
19. Jain, S., Osherson, D.N., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn.

MIT Press, Cambridge (1999)
20. Kummer, M.: An easy priority-free proof of a theorem of Friedberg. Theoret. Com-

put. Sci. 74, 249–251 (1990)
21. Lange, S., Zeugmann, T.: Types of monotonic language learning and their charac-

terization. In: Haussler, D. (ed.) Proceedings of the Fifth Annual ACM Workshop
on Computational Learning Theory, Pittsburgh, Pennsylvania, 27–29 July 1992,
pp. 377–390. ACM Press, New York (1992)

22. Lange, S., Zeugmann, T.: Monotonic versus non-monotonic language learning. In:
Brewka, G., Jantke, K.P., Schmitt, P.H. (eds.) NIL 1991. LNCS, vol. 659, pp.
254–269. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0030397

23. Mukouchi, Y.: Characterization of finite identification. In: Jantke, K.P. (ed.) AII
1992. LNCS, vol. 642, pp. 260–267. Springer, Heidelberg (1992). https://doi.org/
10.1007/3-540-56004-1 18

24. Noether, E.: Idealtheorie in Ringbereichen. Mathematische Annalen 83, 24–66
(1921)

25. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group
theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Acad. Sci. USSR
44, 3–143 (1955)

26. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1989)
27. Odifreddi, P.: Classical Recursion Theory, vol. II. Elsevier, Amsterdam (1999)
28. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to

Learning Theory for Cognitive and Computer Scientists. Bradford – The MIT
Press, Cambridge (1986)

29. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967)

30. Soare, R.: Recursively Enumerable Sets and Degrees. A Study of Computable Func-
tions and Computably Generated Sets. Springer, Heidelberg (1987)

31. Trakhtenbrot, B.A., Bārzdiņs̆, J.M.: Konetschnyje awtomaty (powedenie i sinetez).
Nauka, Moscow (1970). in Russian. English Translation: Finite Automata-Behavior
and Synthesis, Fundamental Studies in Computer Science 1, North-Holland, Ams-
terdam (1975)

https://doi.org/10.1007/BFb0030397
https://doi.org/10.1007/3-540-56004-1_18
https://doi.org/10.1007/3-540-56004-1_18

Learning Mealy Machines with One
Timer

Frits Vaandrager1(B), Roderick Bloem2(B), and Masoud Ebrahimi2(B)

1 Radboud University, Nijmegen, Netherlands
f.vaandrager@cs.rul.nl

2 Graz University of Technology, Graz, Austria
{roderick.bloem,masoud.ebrahimi}@iaik.tugraz.at

Abstract. We present Mealy machines with a single timer (MM1Ts), a
class of models that is both sufficiently expressive to describe the real-
time behavior of many realistic applications, and can be learned effi-
ciently. We show how learning algorithms for MM1Ts can be obtained
via a reduction to the problem of learning Mealy machines. We describe
an implementation of an MM1T learner on top of LearnLib, and compare
its performance with recent algorithms proposed by Aichernig et al. and
An et al. on several realistic benchmarks.

1 Introduction

Model learning, also known as active automata learning, is a black-box technique
for constructing state machine models of software and hardware components
from information obtained through testing (i.e., providing inputs and observing
the resulting outputs). Model learning has been successfully used in numerous
applications, for instance for spotting bugs in implementations of major network
protocols. e.g.. in [5–8,20]. We refer to [13,24] for surveys and further references.

Timing plays a crucial role in many applications. A TCP server, for instance,
may retransmit packets if they are not acknowledged within a specified time.
Also, a timeout will occur if a TCP server does not receive an acknowledgment
after a number of retransmissions, or if it remains in certain states too long.
Timing behavior cannot be captured using existing learning tools, which typi-
cally only support learning of deterministic finite automata (DFAs) and related
models. In the case of TCP, previous work only succeeded to learn models of
real implementations by having the network adaptor ignore all retransmissions,
and by completing learning queries before the occurrence of certain timeouts [8].
All timing issues had to be artificially suppressed.

This work was supported by the Austrian Research Promotion Agency (FFG) through
project TRUSTED (867558), Graz University of Technology’s LEAD project “Depend-
able Internet of Things in Adverse Environments” and by Radboud University’s NWO
TOP project 612.001.852 “Grey-box learning of Interfaces for Refactoring Legacy Soft-
ware (GIRLS)”.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 157–170, 2021.
https://doi.org/10.1007/978-3-030-68195-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_13

158 F. Vaandrager et al.

The challenge to extend model learning algorithms to a setting of timed
systems has been addressed by several authors. Most proposals aim to develop
learning algorithms for the popular framework of timed automata [2], which
extends DFAs with clock variables. Transitions of timed automata may contain
both guards that test the values of clocks, and resets that update the clocks.
Since guards and resets are not directly observable in a black-box setting, this
poses major challenges during learning. Grinchtein et al. [9,10] developed learn-
ing algorithms for deterministic event-recording automata (DERAs), which have
a clock for each action in the alphabet, and where each transition resets the clock
corresponding to its input action. This restriction makes resets observable, but
the complexity of the resulting algorithms still appears to be prohibitively high,
due to the difficulties of inferring guards. The restrictions of DERAs also make it
hard to capture the timing behavior of common network protocols. For instance,
a pattern that often occurs is that within t time units after an event a there
should be an event b. (For instance, in TCP a SYN should be followed by a
SYN-ACK within a specified time interval.) In a DERA, upon occurrence of
two consecutive a’s, the automaton no longer remembers when the first a has
occurred, and can thus not ensure the occurrence of a timeout at the required
moment in time. Recently, Henry et al. [11] proposed a learning algorithm for
a slightly larger class of reset-free DERAs, where some transitions may reset no
clocks. Even though this algorithm appears to be more efficient than those of
[9,10], it still suffers from a combinatorial blow up because, for each transition,
it has to guess whether this transition resets a clock. An et al. [3] developed a
learning algorithm for deterministic one-clock timed automata (DOTAs), using
a brute force approach to reset guessing, also leading to a combinatorial blow
up. Entirely different, heuristic algorithms are proposed recently by Aichernig
et al. [1,23], using genetic programming. They succeeded to learn timed
automata models with one clock for several industrial benchmarks.

Given the difficulties to infer the guards and resets of timed automata, the
question arises whether timed automata provide the right modeling framework
to support learning algorithms. As an alternative, we propose to consider the use
of timers instead of clocks. The difference is that the value of a timer decreases
when time advances, whereas the value of a clock increases. In a setting with
clocks, guards and invariants are required to constrain the timing of events, but
a timer simply triggers a timeout whenever its value becomes 0. The absence
of guards and invariants makes model learning much easier in a setting with
timers. A learner still has to figure out which transitions set a timer, but this
also becomes easier and does not create a combinatorial blow-up. If a transition
sets a timer then slight changes in the timing of this transition will trigger cor-
responding changes in the timing of the resulting timeout, allowing a learner to
figure out the exact cause of each timeout event. DFAs with timers are strictly
less expressive than timed automata if we assume that timeout events can be
observed. For many realistic applications, however, this reduced expressivity
causes no problems. Kurose and Ross [15], for instance, use finite state machine
models with timers to explain transport layer protocols. Caldwell et al. [4]

Learning MM1T 159

propose a learning algorithm for a simple class of automata with timers, which
they call time delay Mealy machines. These machines have only a single timer,
which is reset on every transition. As a result, time delay Mealy machines are
not sufficiently expressive to capture the timing behavior of realistic network
protocols.

In this paper, we present Mealy machines with a single timer (MM1Ts),
a class of models that is both sufficiently expressive to describe the real-time
behavior of many realistic applications, and can be learned efficiently. In an
MM1T, the timer can be set to integer values on transitions, and may be stopped
or time out in later transitions. Each timeout triggers an observable output,
allowing a learner to observe the occurrence of timeouts. We show how learn-
ing algorithms for MM1Ts can be obtained via a reduction to the problem of
learning Mealy machines. We describe an implementation of an MM1T learner
on top of LearnLib, a state-of-the-art tool for learning Mealy machines [17], and
compare its performance with the tools of Aichernig et al. [1] and An et al. [3]
on several benchmarks: TCP connection setup, Android’s Authentication and
Key Management (AKM) service, and some industrial benchmarks taken from
[1]. Our implementation outperforms the tool of [1] with several orders of mag-
nitude in terms of the total number of input symbols required to learn a model.
The tool of [3] is only able to learn the benchmarks with a “helpful” teacher
that provides information about resets; without help, it is unable to learn the
benchmarks.

2 Mealy Machines with a Single Timer

In this section, we introduce the notion of Mealy machines with a single timer
(MM1T). We write f : X ⇀ Y to denote that f is a partial function from X to
Y . We write f(x) ↓ to mean that the result is defined for x, that is, ∃y : f(x) = y,
and f(x) ↑ if the result is undefined. We often identify a partial function f with
the set of pairs {(x, y) ∈ X × Y | f(x) = y}.

MM1Ts are just regular (deterministic) Mealy machines, augmented with a
timer that can be switched on and off, a timeout input, and a function that
specifies how transitions affect the timer. We view timeout’s as input events, a
choice that makes sense if we view the hardware clock (or whatever the device
is that triggers timeout interrupts) as part of the environment of the machine.

Definition 1. A Mealy machine with a single timer (MM1T) is defined as a
tuple M = (I,O,Q, q0, δ, λ, τ), where

– I is a finite set of inputs, containing a special element timeout,
– O is a finite set of outputs,
– Q = Qoff ∪ Qon is a finite set of states, partitioned into subsets where the

timer is on and off, respectively; q0 ∈ Qoff is the initial state,
– δ : Q × I ⇀ Q is a transition function, satisfying

δ(q, i) ↑ ⇔ i = timeout ∧ q ∈ Qoff (1)

(inputs are always defined, except for timeout in states where timer is off),

160 F. Vaandrager et al.

– λ : Q × I ⇀ O is an output function, satisfying

λ(q, i) ↓ ⇔ δ(q, i) ↓ (2)

(each transition has both an input and an output),
– τ : Q × I ⇀ N

>0 is a reset function, satisfying

τ(q, i) ↓ ⇒ δ(q, i) ∈ Qon (3)
q ∈ Qoff ∧ δ(q, i) ∈ Qon ⇒ τ(q, i) ↓ (4)

δ(q, timeout) ∈ Qon ⇒ τ(q, timeout) ↓ (5)

(when a transition (re)sets the timer, the timer is on in the target state; when
it moves from a state where the timer is off to a state where the timer on, it
sets the timer; if the timer stays on after a timeout, it is reset).

Let δ(q, i) = q′ and λ(q, i) = o. We write q
i/o,n−−−→ q′ if τ(q, i) = n ∈ N

>0, and

q
i/o,⊥−−−→ q′ or just q

i/o−−→ q′ if τ(q, i) ↑.

Example 1. The MM1T shown in Fig. 1 is a simplified model of the sender
from the alternating-bit protocol, adapted from [15, Figure 3.15]. We write set-
timer(n) on the i-transition from state q to indicate that τ(q, i) = n. The MM1T
has four states, with Qon = {q1, q3} and Qoff = {q0, q2}. In the model, input
in corresponds to a request from the upper layer to transmit data. Initially,
upon receipt of such a request, the sender builds a packet from the data and a
sequence number 0, sends this over the network (output send0), and starts the
timer with timeout value 3. When the sender receives an acknowledgement with
the correct sequence number 0 (input ack0) it stops the timer and jumps to state
q2 without generating visible output (void). Acknowledgement with the incorrect
sequence number (input ack1) are ignored. Likewise, inputs in in state q1 and
acknowledgements in state q0 are ignored (for readability, these transitions are
not shown in the diagram). If no ack0 input arrives within 3 timeunits, a timeout
occurs and the same packet is retransmitted. The behavior in states q2 and state
q3 is symmetric to that in states q0 and q1, respectively, except that the roles of
sequence numbers 0 and 1 is swapped.

Fig. 1. MM1T model of alternating-bit protocol sender.

Learning MM1T 161

Semantics. We give two semantics for MM1Ts, an untimed and a timed one.
In the untimed semantics, we just record the labels of sequences of transitions.
Formally, an untimed word over inputs I and outputs O is a sequence

w = (i0, o0, n0), (i1, o1, n1) · · · (ik, ok, nk),

where each ij ∈ I, each oj ∈ O, and each nj ∈ N
>0 ∪ {⊥} is a timer value. An

untimed run of MM1T M over w is a sequence

α = q0
i0/o0,n0−−−−−→ q1

i1/o1,n1−−−−−→ q2 · · · ik/ok,nk−−−−−→ qk+1

of transitions of M such that all qj are states of M and q0 is the initial state.
Note that, since MM1Ts are deterministic, for each untimed word w there is at
most one untimed run over w. We say that w is an untimed word of M iff M
has an untimed run over w. MM1Ts M and N with the same set of inputs are
untimed equivalent, M ≈untimed N , iff they have the same untimed words.

The timed semantics, which is slightly more involved, describes the real-
time behavior of a MM1T. It associates an infinite state transition system to a
MM1T that describes all possible configurations and transitions between them. A
configuration of a MM1T is a pair (q, t), where q ∈ Q is a state and t ∈ IR≥0∪{∞}
specifies the value of the timer. We require t = ∞ iff q ∈ Qoff . We refer to (q0,∞)
as the initial configuration. Using four rules we define a transition relation that
describes how one configuration may evolve into another. For all q ∈ Q, r ∈ Qoff ,
s, s′ ∈ Qon , i ∈ I, o ∈ O, t ∈ IR≥0 ∪ {∞}, d ∈ IR≥0 and n ∈ N

>0,

d ≤ t

(q, t) d−→ (q, t − d)
(6) q

i/o,n−−−→ s, i = timeout ⇒ t = 0

(q, t)
i/o−−→ (s, n)

(7)

q
i/o−−→ r, i = timeout ⇒ t = 0

(q, t)
i/o−−→ (r,∞)

(8)
s

i/o−−→ s′, i �= timeout

(s, t)
i/o−−→ (s′, t)

(9)

Rule (6) states that the value of the timer decreases proportionally when time
advances, until it becomes 0. Here we use the convention that ∞ − d = ∞, for
any d ∈ IR>0. So when the timer is off, time may advance indefinitely. Rule (7)
describes events where the timer is (re)set; a timeout may occur only when the
timer has expired in the source state. Rule (8) describes events where the timer
is off in the target state; again, a timeout may occur only when the timer has
expired in the source state. Finally, rule (9) describes events where the timer
remains on and is not reset.

A timed word over inputs I and outputs O is a sequence

w = (t0, i0, o0), (t1, i1, o1) · · · (tk, ik, ok),

where each ij ∈ I, each oj ∈ O, and each tj ∈ IR≥0. A timed word w describes
a behavior that an experimenter may observe when interacting with an MM1T:

162 F. Vaandrager et al.

after an initial delay of t0 time units, input i0 is applies which triggers output
o0, after a subsequent delay of t1 time units, input i1 is applied, etc. For such a
timed word w, a timed run of MM1T M over w is a sequence

α = C0
t0−→ C ′

0

i0/o0−−−→ C1
t1−→ C ′

1

i1/o1−−−→ C2 · · · tk−→ C ′
k

ik/ok−−−→ Ck+1

of transitions of M such that all Cj , C
′
j are configurations of M and C0 is the

initial configuration. Since MM1Ts are deterministic, for each timed word w
there exists at most one run over w. We say w is a timed word of M if there
exists a run of M over w. MM1Ts M and N with the same set of inputs are
timed equivalent, M ≈timed N , iff they have the same sets of timed words.

Although the definitions are quite different, it turns out that timed and
untimed equivalence coincide.

Theorem 1. M ≈timed N ⇔ M ≈untimed N

3 Learning MM1Ts

It will be useful to explore this connection between the timed and untimed
semantics in some more detail, because this will allow us to reuse existing active
learning algorithms for untimed systems [18,21] for learning MM1Ts.

3.1 From MM1Ts to Mealy Machines and Back

MM1Ts generalize the classical notion of a Mealy machine: essentially, a Mealy
machine is just an MM1T in which the timer is off in all states. Conversely, each
MM1T can be viewed as a Mealy machine of a special form.

Definition 2. A Mealy machine is a tuple M = (I,O,Q, q0, δ, λ), where I is
a finite set of inputs, O a set of outputs, Q a finite set of states, q0 ∈ Q the
initial state, δ : Q × I → Q a transition function, and λ : Q × I → O an output
function. We generalize the transition function to sequences of inputs as usual.
Function mqM : I+ → O assigns to each sequence of inputs the final output:
mqM(σi) = λ(δ(q0, σ), i). Mealy machines M and N with the same set of inputs
I are equivalent, denoted by M ≈ N , if for all σ ∈ I+, mqM(σ) = mqN (σ).

We associate a Mealy machine Mealy(M) to each MM1T M as follows. We
keep the same states, inputs and transitions, but add timeout self-loops for each
state in Qoff to make the Mealy machine input enabled. We introduce a fresh
output nil and associate this special output to each new timeout self-loop. The
outputs of the other transitions of Mealy(M) are pairs consisting of the output
from M and the timer update.

Learning MM1T 163

Definition 3. Let M = (I,O,Q, q0, δ, λ, τ) be a MM1T. Then Mealy(M) is the
Mealy machine (I, (O × (N>0 ∪ {⊥})) ∪ {nil}, Q, q0, δ

′, λ′), where

δ′(q, i) =
{

δ(q, i) if λ(q, i) ↓
q otherwise

λ′(q, i) =

⎧⎨
⎩

(λ(q, i), τ(q, i)) if τ(q, i) ↓
(λ(q, i),⊥) if λ(q, i) ↓ and τ(q, i) ↑
nil otherwise

Conversely, suppose that N = (I, (O × (N>0 ∪ {⊥})) ∪ {nil}, Q, q0, δ
′, λ′) is a

Mealy machine. Then we may reverse the above construction and define a tuple
MM1T(N) = (I,O,Q, q0, δ, λ, τ) in the obvious way.

The following result, which follows from the definitions and Theorem 1,
asserts that Mealy and MM1T act like adjoint operators.

Theorem 2. Let M be a MM1T and let N be a Mealy machine such that
Mealy(M) ≈ N . Then MM1T(N) is a MM1T and M ≈timed MM1T(N).

Theorem 2 suggests that we can obtain a learner for MM1Ts from a learner for
Mealy machines. To achieve this, we place an adaptor between a Mealy machine
learner and a System Under Learning (SUL) that behaves like MM1T M. From
the perspective of the Mealy machine learner, the adaptor behaves like a teacher
for Mealy(M) that answers membership and equivalence queries. In order to
answer these queries, the adaptor interacts with the SUL and observes timed
words of M. When the learner has succeeded to learn a Mealy machine N that is
equivalent to Mealy(M), we know by Theorem 2 that M ≈timed MM1T(N), and
so we have learned a MM1T that is equivalent to M. Effectively, the combination
of the adaptor and the Mealy machine learner acts as an MM1T learner.

We implemented an adaptor that interacts with LearnLib [18] so we can bene-
fit from all optimizations already integrated into this well maintained automata
learning library. Our adaptor is available online1. Below we describe how to
implement a membership oracle for learning MM1Ts. An equivalence oracle can
be implemented in a similar manner, and is not discussed here for reasons of
space.

3.2 Membership Queries

In order to answer membership queries, the adaptor maintains an observation
tree defined as follows.

Definition 4. Let M be a MM1T. An observation tree for M is a triple T =
(S,mq , timer), where S ⊂ I∗ is a non empty, finite, prefix closed set of input
sequences, referred to as nodes, mq : S\{ε} → O×(N>0∪{⊥}) is a node labeling
function, and timer : S → {on, off } is a function that specifies whether the timer
is on or off in a node. We require that timer(ε) = off and σ · timeout ∈ S ⇒
timer(σ) = on.
1 https://extgit.iaik.tugraz.at/scos/scos.sources/LearningMMTs.

https://extgit.iaik.tugraz.at/scos/scos.sources/LearningMMTs

164 F. Vaandrager et al.

Initially, the adaptor starts with a trivial observation tree with a single node
ε and timer(ε) = off . The observation tree is then extended one node at a time.
For this, the adaptor maintains a maximum timer value Δ. Initially, Δ can be
assigned some arbitrary value in N. Suppose that σ = i1 · · · ik−1 is a leaf node
of observation tree T , ik ∈ I and ik = timeout ⇒ timer(σ) = on. In order to
add node σ · ik to T , the adaptor resets the SUL and then eagerly applies σ · ik.
That is, for each j ∈ [1, k], the adaptor processes input ij as follows:

– if ij �= timeout, the adaptor feeds the input to the SUL without any delay,
– otherwise, the oracle waits for the timeout event.

The immediate response o after feeding ik accounts for the output value that
will be recorded in mq(σ · ik). Next the adaptor waits for Δ time units. If a
timeout occurs after n < Δ time units then the value of timer(σ · ik) is set to
on, otherwise it is set to off . If timer(σ ·ik) = off then we set mq(σ ·ik) = (o,⊥).
Otherwise, the adaptor performs another experiment to decide whether the clock
was set on the last transition or before:

– it resets the SUL and eagerly applies σ,
– it waits for 1/2 time unit and then applies input ik,
– it then waits until a timeout event occurs at time n′ ≤ n.
– If n′ = n it sets mq(σ · ik) = (o, n), otherwise it sets mq(σ · ik) = (o,⊥).

Once the observation tree T is big enough, the adaptor can answer a membership
query σ by computing the sequence σ′ obtained by omitting spurious timeouts
from σ, that is, timeouts from nodes of T where the timer is off. If σ ends with a
spurious timeout then the response of the adaptor is nil, otherwise it is mq(σ′).

Query Complexity. Note that in order to add a new node to the observation
tree, we need one or two experiments (membership queries) on the MM1T
(SUL), depending whether the timer is on in the target node. Thus, starting
from the trivial observation tree, we will need at most 2n membership queries
on the MM1T to implement a single membership query with n input symbols by
LearnLib, with a total number of inputs in O(n2). This way of learning MM1Ts
has a higher query complexity than learning Mealy machines, but the growth of
the total number of input symbols required is still polynomial. If the number of
states where the timer is on is low, the query complexity is comparable.

Learning the Maximum Timer Value. If the maximum timer value Δ is greater
than or equal to the SUL’s maximum timer value, no timeout event will be missed
during learning a hypothesis. Otherwise, the equivalence oracle will at some point
return a counterexample containing a timeout event that is not present in the
observation tree. Based on this counterexample, we then update Δ and start
learning from scratch.

Learning MM1T 165

4 From MM1T to DOTA Learning

In order to compare our approach to those of [1,3], we translate MM1Ts to
Deterministic One-Clock Timed Automata (DOTAS). In the interest of brevity,
we will not formalize this transition, but rather illustrate it with an example.
We will construct a DOTA of the alternating-bit protocol from Fig. 1; the result
can be found in Fig. 2.

Edges of DOTAs are labeled with an action, a clock guard that is an interval
on allowed clock values, and a Boolean that states whether to reset the clock
to zero. The set of actions consists of all input labels of the MM1T (except
timeout) prefixed with ‘?’ and all output labels (except void) prefixed with ‘!’.
In general, DOTAs have accepting and non-accepting states, we will construct
DOTAs with only accepting states.

We split each transition of the MM1T into an input and an output transition.
For instance, we encode the transition q0 → q1 into transitions q′

0 → l0 and
l0 → q′

1. In this case, the input transition can be taken at any time and it resets
the clock, causing the output transition to be taken immediately. For edges with
a void output, we omit the output transition. Thus, the self loop on q1 labeled
ack1/void is represented by a self-loop on q′

1 in the DOTA.
An MM1T transition that sets the timer is replaced by a DOTA transition

that reset the clock and appropriate clock guards on subsequent states. For
instance, the transition q0 → q1 sets the timer to 3; thus, a timeout event will
occur in q1 at time 3, causing a send. In the DOTA, this is reflected by a clock
reset on the transition l0 → q′

1 and a clock guard with value [3,∞) on the self
loop on q′

1 labeled !send.
The rest of the translation follows along the same lines.

5 Case Studies

5.1 Learning Setup

We instantiated L∗
M and TTT using the MM1T membership oracle. For coun-

terexample processing we used Rivest and Shapire’s method [19]. We close tables
using close shortest strategy. Finally, we use a random word equivalence oracle
with 1000 tests and word length of minimum 4 and of maximum 11. For further
details on above terminologies, we refer readers to LearnLib’s documentation.

5.2 Android Authentication and Key Management

To show that our algorithm can learn realistic Mealy machines with timers, we
used our algorithm to learn the Authentication and Key Management of the
WiFi implementation of a Huawei Mate10-lite running Android 8.0.0 (Kernel
4.4.23+) with a security patch dated July 5, 2019. The IEEE 802.11 standard
gives an abstract automaton of an Authentication and Key Management (AKM)
service in [14, p. 1643]. The automaton has a state that encapsulates a 4-way

166 F. Vaandrager et al.

handshake mechanism granting access to the controlled port. Since learning the
4-way handshake mechanisms is already addressed in [22], we focus on learn-
ing the AKM service. We used the following management frames: Auth(Open),
AssoReq, Deauth(leaving), Disas(leaving), ProbeReq, and timeout [14, p. 45–49].

Our learning experiments resulted in the MM1T shown in Fig. 3. The SUL
deviates from the specified standards in the following ways.

Disassociation: The reference prescribes that a disassociation (Disas) terminates
an established association but maintains authentication. In the learned model
(state q2), a disassociation instead drops both the established association and
the authentication. To correct this, the access point should transit to q1 when
disassociating in q2 (red transitions from q2 must go to q1).

Association Timeout: Along the red transition from q1 to q2, SUL does not
include BSS Max Idle Period element in AssoResp frames. Yet, it implements
an association timeout event, which violates the specification. To confirm this,
we manually inspected the Android 8.0.0 (r39) source code, which excludes the
element mentioned above except for access points of Wireless Mesh Networks.

5.3 Performance Comparison

We apply our learning method for MM1Ts to a set of real-world benchmarks.
This demonstrates the expressiveness of MM1Ts, and shows the practicality of
our implementation.

Benchmarks: Our benchmark set consists of the AKM (Sect. 5.2), the TCP
Connection State Diagram ([16, p. 23]), a car alarm system (CAS) [1], and a
particle counter (PC) [1]. For the TCP benchmark, we used the one timeout on
the transmission control block indicated in the diagram in the RFC. See Table 1
for statistics on the size of the benchmarks.

Algorithms: Table 2 shows benchmark results for MM1T and DOTA learning
algorithms. gtalearn represents the learning algorithm by Aichernig et al. [1].
otalearn∗ represents the learning algorithm by An et al. [3] using a “smart”
teacher that provides the clock reset information. Finally, otalearn uses a nor-
mal teacher and timed out on all benchmarks.

Fig. 2. DOTA model of alternating-bit protocol sender.

Learning MM1T 167

Fig. 3. MM1T of a Huawei Mate10-lite that captures granting uncontrolled port. Dou-
ble and triple edges represent a set of transitions. We rounded timer values to the
nearest 500 ms and marked specification violations with the color red.

Table 1. Benchmarks in terms of state-space (|S|) and input size (|Σ|).

Model AKM TCP CAS PC

|S| |Σ| |S| |Σ| |S| |Σ| |S| |Σ|
MM1T 4 5 11 8 8 4 8 8

DOTA 15 12 20 13 14 10 26 14

Performance Metrics: Since otalearn∗ implements its own equivalence checker
and gtalearn is not an Angluin style algorithm, we report the total number of
resets (#R), and inputs (#I) performed rather than the number of membership
and equivalence queries. We believe this gives a fair comparison of the algorithms
under the assumption that most time is spent executing the SUL.

AKM has a more sophisticated timed behavior than the other benchmarks,
which explains the higher number of resets for MM1T learners. Meanwhile, if
considering number of inputs, otalearn∗ straggles by an order of magnitude.
gtalearn shows a competitive performance in the number of inputs performed
that indicates the potentials of this novel approach.

TCP has only one timeout transition; thus, the learning algorithms do not
need to reset the SUL as often. (With the exception of otalearn.) L∗

M learns
the MM1T for TCP in one round, while TTT requires 8 rounds, which justifies
the better performance of L∗

M . MM1T learners outperform those for DOTAs by
nearly an order of magnitude when considering the number of inputs performed.

CAS and PC show a slightly more sophisticated timed behavior than TCP.
For both, the MM1T algorithms also significantly outperform the algorithms for
DOTA. Similarly, if considering the inputs performed, otalearn∗ straggles by
three orders of magnitude.

168 F. Vaandrager et al.

Table 2. Benchmark results in terms of total resets and total performed inputs.

Algorithm AKM TCP CAS PC

#R #I #R #I #R #I #R #I

MM1T-L∗
M 5587 35002 413 2401 613 4822 408 2271

MM1T-TTT 5714 35948 640 4773 623 4978 369 2443

GTALEARN 2626 36411 1186 33779 1609 30870 3368 33824

OTALEARN∗ 2103 356762 2924 86880 1448 3791091 10003 3540458

OTALEARN timeout timeout timeout timeout

6 Conclusion and Future Work

Timers are commonly used in software to enforce real-time behavior, and so it
is natural to use them in formal models. We presented a framework of Mealy
machines with a single timer and showed how a learning algorithm can be
obtained via reduction to the problem of learning Mealy machines. Our app-
roach assumes that timers are set when input events occur, and timeouts trigger
instantaneous outputs. While these assumptions do not always hold, there are
many real-time systems for which the delays between timer events and observ-
able inputs and outputs are negligible, and the assumptions are justified. We
evaluated our approach on a number of realistic applications, and showed that
it outperforms the approaches of Aichernig [1] et al. and An et al. [3].

An obvious direction for future research is to extend our work to Mealy
machines with multiple timers. We expect that a learning algorithm can be devel-
oped, but a simple reduction to Mealy machine learning is no longer possible. It
would be interesting to apply the genetic programming approach of [1] in a set-
ting of Mealy machines with timers. Since it no longer needs to learn transition
guards, one may expect that a genetic algorithm will converge faster. Of course,
as noted by [3], we may resort to grey-box techniques for model learning [12] to
obtain efficient learning algorithms for real-time software. However, this forces
us to deal with numerous programming language specific details. Black-box tech-
niques can be applied without knowledge of the underlying hardware/software,
which makes it important to push these techniques to their limits.

Acknowledgement. We would like to thank Andrea Pferscher and Miaomiao Zhang
for help with running the benchmarks on their tools [1,3].

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 1

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1

Learning MM1T 169

2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45190-5 25

4. Caldwell, B., Cardell-Oliver, R., French, T.: Learning time delay mealy machines
from programmable logic controllers. IEEE Trans. Autom. Sci. Eng. 13(2), 1155–
1164 (2015)

5. Fiterău-Broştean, P., Howar, F.: Learning-based testing the sliding window behav-
ior of TCP implementations. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.)
FMICS/AVoCS -2017. LNCS, vol. 10471, pp. 185–200. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67113-0 12

6. Fiterău-Broştean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state fuzzing.
In: USENIX Security Symposium. USENIX Association (2020)

7. Fiterău-Broştean, P., Lenaerts, T., et al.: Model learning and model checking of
SSH implementations. In: SPIN Symposium. ACM (2017)

8. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

9. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theoret. Comput. Sci. 411(47), 4029–4054 (2010)

10. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817949 29

11. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unob-
servable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol.
12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57628-8 9

12. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Comput-
ing and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-91908-9 26

13. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

14. IEEE: Std 802.11-2016 (Revision of IEEE Std 802.11-2012): Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2016)

15. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach, 6th edn.
Pearson, London (2013)

16. Postel, J.E.: Transmission Control Protocol. RFC 793, September 1981
17. Raffelt, H., Steffen, B., Berg, T.: LearnLib: a library for automata learning and

experimentation. In: FMICS 2005. ACM Press (2005)
18. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-

olating behavioral models. STTT 11(5), 393–407 (2009)
19. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences

(extended abstract). In: ACM Symposium on Theory of Computing. ACM (1989)

https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-319-96562-8_5

170 F. Vaandrager et al.

20. Ruiter, J.d., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX
Security Symposium. USENIX (2015)

21. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

22. McMahon Stone, C., Chothia, T., de Ruiter, J.: Extending automated protocol
state learning for the 802.11 4-way handshake. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 325–345. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6 16

23. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9 13

24. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)

https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13

Logics and Languages

Finite-Word Hyperlanguages

Borzoo Bonakdarpour1(B) and Sarai Sheinvald2(B)

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, USA
borzoo@msu.edu

2 Department of Software Engineering, ORT Braude College, Karmiel, Israel
sarai@braude.ac.il

Abstract. Formal languages are in the core of models of computation
and their behavior. A rich family of models for many classes of languages
have been widely studied. Hyperproperties lift conventional trace-based
languages from a set of execution traces to a set of sets of executions.
Hyperproperties have been shown to be a powerful formalism for express-
ing and reasoning about information-flow security policies and important
properties of cyber-physical systems. Although there is an extensive body
of work on formal-language representation of trace properties, we cur-
rently lack such a general characterization for hyperproperties. We intro-
duce hyperlanguages over finite words and models for expressing them.
Essentially, these models express multiple words by using assignments
to quantified word variables. Relying on the standard models for regular
languages, we propose hyperregular expressions and finite-word hyper-
automata (NFH), for modeling the class of regular hyperlanguages. We
demonstrate the ability of regular hyperlanguages to express hyperprop-
erties for finite traces. We explore the closure properties and the com-
plexity of the fundamental decision problems such as nonemptiness, uni-
versality, membership, and containment for various fragments of NFH.

1 Introduction

Formal languages along with the models that express them are in the core of
modeling, specification, and verification of computing systems. Execution traces
are formally described as words, and various families of automata are used for
modeling systems of different types. Regular languages are a classic formalism
for finite traces and when the traces are infinite, ω-regular languages are used.

There are well-known connections between specification logics and formal
languages. For example, LTL [15] formulas can be translated to ω-regular expres-
sions, and CTL∗ [8] formulas can be expressed using tree automata. Accordingly,
many verification techniques that exploit these relations have been developed.
For instance, in the automata-theoretic approach to verification [17,18], the
model-checking problem is reduced to checking the nonemptiness of the product
automaton of the model and the complement of the specification.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 173–186, 2021.
https://doi.org/10.1007/978-3-030-68195-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_17&domain=pdf
http://orcid.org/0000-0003-1800-5419
http://orcid.org/0000-0002-0524-7390
https://doi.org/10.1007/978-3-030-68195-1_17

174 B. Bonakdarpour and S. Sheinvald

Hyperproperties [6] generalize the traditional trace properties [2] to system
properties, i.e., a set of sets of traces. A hyperproperty prescribes how the sys-
tem should behave in its entirety and not just based on its individual executions.
Hyperproperties have been shown to be a powerful tool for expressing and rea-
soning about information-flow security policies [6] and important properties of
cyber-physical systems [19] such as sensitivity and robustness, as well as consis-
tency conditions in distributed computing such as linearizability [4]. While dif-
ferent types of logics have been suggested for expressing hyperproperties, their
formal-language counterparts and the models that express them are currently
missing.

In this paper, we establish a formal-language theoretical framework for hyper-
languages, that are sets of sets of words, which we term hyperwords. Our frame-
work is based on an underlying standard automata model for formal languages,
augmented with quantified word variables that are assigned words from a set of
words in the hyperlanguage. This formalism is in line with logics for hyperproper-
ties (e.g.., HyperLTL [5] and HyperPCTL [1]). These logics express the behavior
of infinite trace systems. However, a basic formal model for expressing general
hyperproperties for finite words has not been defined yet. Hyperlanguages based
on finite words have many practical applications. For instance, path planning
objectives for robotic systems often stipulate the existence of one or more finite
paths that stand out from all other paths.

To begin with the basics, we focus this paper on a regular type of hyperlan-
guages of sets consisting of finite words, which we call regular hyperlanguages.
The models we introduce and study are based on the standard models for regu-
lar languages, namely regular expressions and finite-word automata. We explain
the idea with two examples.

Example 1. Consider the following hyperregular expression (HRE) over the
alphabet {a}.

r1 = ∀x.∃y.
(
{ax, ay}∗{#x, ay}∗

)
︸ ︷︷ ︸

r̂1

The HRE r1 uses two word variables x and y, which are assigned words from
a hyperword. The HRE r1 contains an underlying regular expression r̂1, whose
alphabet is ({a} ∪ {#}){x,y}, and whose (regular) language describes different
word assignments to x and y, where # is used for padding at the end if the
words assigned to x and y are of different lengths. In a word in the language of
r̂1, the i’th letter describes both i’th letters in the words assigned to x and y.
For example, the word {ax, ay}{ax, ay}{#x, ay} describes the assignment x �→
aa, y �→ aaa. The regular expression r̂1 requires that the word assigned to y
be longer than the word assigned to x. The quantification condition ∀x.∃y of
r1 requires that for every word in a hyperword S in the hyperlanguage of r1,
there exists a longer word in S. This holds iff S contains infinitely many words.
Therefore, the hyperlanguage of r1 is the set of all infinite hyperwords over {a}.

��

Finite-Word Hyperlanguages 175

Example 2. Robotics applications are often concerned with finding the shortest
path that reaches a goal g, starting from an initial location i. The shortest path
requirement can be expressed by the following HRE over an alphabet Σ:

r2 = ∃x.∀y.{ix, iy}{ḡx, ḡy}∗
(
{gx, ḡy} | {gx, gy}

)
{#x, $y}∗

where ḡ ∈ Σ −{g} and $ ∈ Σ. That is, there exists a path x that is shorter than
any other path y in reaching g. ��

Although there is an ongoing line of research on model-checking hyperproper-
ties [3,7,11], the work on finite-trace hyperproperties is limited to [9], where the
authors construct a finite-word representation for the class of regular k-safety
hyperproperties. We make the following contributions:

Table 1. Summary of results on properties of hyperregular languages.

Property Result

Closure Complementation, Union, Intersection (Theorem 1)

Nonemptiness ∀∃∃ Undecidable (Theorem 2)

∃∗ / ∀∗ NL-complete (Theorem 2)

∃∗∀∗ PSPACE-complete (Theorem 2)

Universality ∃∀∀ Undecidable (Theorem 3)

∃∗ / ∀∗ PSPACE-complete (Theorem 3)

∀∗∃∗ EXPSPACE (Theorem 3)

Finite membership NFH PSPACE (Theorem 4)

O(log(k)) ∀ NP-complete (Theorem 4)

Regular membership Decidable (Theorem 5)

Containment NFH Undecidable (Theorem 6)

∃∗ ⊆ ∀∗ / ∀∗ ⊆ ∃∗ PSPACE-complete (Theorem 7)

∃∗∀∗ ⊆ ∀∗∃∗ EXPSPACE (Theorem 7)

– Introduce regular hyperlanguages and HREs, and demonstrate the ability of
HREs to express important information-flow security policies such as different
variations of noninterference [13] and observational determinism [20].

– Present nondeterministic finite-word hyperautomata (NFH), an automata-
based model for expressing regular hyperlanguages.

– Conduct a comprehensive study of the properties of regular hyperlanguages
(see Table 1). We show that regular hyperlanguages are closed under union,
intersection, and complementation. We further prove that the nonemptiness
problem is in general undecidable for NFH. However, for the alternation-free
fragments (which only allow one type of quantifier), as well as for the ∃∀
fragment (in which the quantification condition is limited to a sequence of ∃

176 B. Bonakdarpour and S. Sheinvald

quantifiers followed by a sequence of ∀ quantifiers), nonemptiness is decidable.
We also study the universality, membership and containment problems. These
results are aligned with the complexity of HyperLTL model checking for tree-
shaped and general Kripke structures [3]. This shows that the complexity
results in [3] mainly stem from the nature of quantification over finite words
and depend on neither the full power of the temporal operators nor the infinite
nature of HyperLTL semantics.

2 Preliminaries

An alphabet is a nonempty finite set Σ of letters. A word over Σ is a finite
sequence of letters from Σ. The empty word is denoted by ε, and the set of all
words is denoted by Σ∗. A language is a subset of Σ∗. We assume that the
reader is familiar with the syntax and semantics of regular expressions (RE).
We use the standard notations {·, |, ∗} for concatenation, union, and Kleene
star, respectively, and denote the language of an RE r by L(r). A language L is
regular if there exists an RE r such that L(r) = L.

Definition 1. A nondeterministic finite-word automaton (NFA) is a tuple
A = 〈Σ,Q,Q0, δ, F 〉, where Σ is an alphabet, Q is a nonempty finite set of
states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and
δ ⊆ Q × Σ × Q is a transition relation.

Given a word w = σ1σ2 · · · σn over Σ, a run of A on w is a sequence of
states (q0, q1, . . . qn), such that q0 ∈ Q0, and for every 0 < i ≤ n, it holds that
(qi−1, σi, qi) ∈ δ. The run is accepting if qn ∈ F . We say that A accepts w if there
exists an accepting run of A on w. The language of A, denoted L(A), is the set
of all words that A accepts. It holds that a language L is regular iff there exists
an NFA A such that L(A) = L.

3 Hyperregular Expressions

Definition 2. A hyperword over Σ is a set of words over Σ and a hyperlan-
guage over Σ is a set of hyperwords over Σ.

Before formally defining hyperregular expressions, we explain the idea behind
them. A hyperregular expression (HRE) over Σ uses a set of word variables X =
{x1, x2, . . . , xk}. When expressing a hyperword S, these variables are assigned
words from S. An HRE r is composed of a quantification condition α over X, and
an underlying RE r̂, which represents word assignments to X. An HRE r defines
a hyperlanguage L(r). The condition α defines the assignments that should be
in L(r̂). For example, α = ∃x1.∀x2 requires that there exists a word w1 ∈ S
(assigned to x1), such that for every word w2 ∈ S (assigned to x2), the word
that represents the assignment x1 �→ w1, x2 �→ w2, is in L(r̂). The hyperword S
is in L(r) iff S meets these conditions.

Finite-Word Hyperlanguages 177

We represent an assignment v : X → S as a word assignment wv, which
is a word over the alphabet (Σ ∪ {#})X (that is, assignments from X to Σ ∪
{#}), where the i’th letter of wv represents the k i’th letters of the words
v(x1), . . . , v(xk) (in case that the words are not of equal length, we “pad” the
end of the shorter words with # symbols). We represent these k i’th letters
as an assignment denoted {σ1x1 , σ2x2 , . . . , σkxk

}, where xj is assigned σj . For
example, the assignment v(x1) = aa and v(x2) = abb is represented by the word
assignment wv = {ax1 , ax2}{ax1 , bx2}{#x1 , bx2}.

Definition 3. A hyperregular expression is a tuple r = 〈X,Σ,α, r̂〉, where α =
Q1x1 · · ·Qkxk, where Qi ∈ {∃,∀} for every i ∈ [1, k], and where r̂ is an RE
over Σ̂ = (Σ ∪ {#})X .

Let S be a hyperword and let v : X → S be an assignment of the word
variables of r to words in S. We denote by v[x �→ w] the assignment obtained
from v by assigning the word w ∈ S to x ∈ X. We represent v by wv. We now
define the membership condition of a hyperword S in the hyperlanguage of r. We
first define a relation � for S, r̂, a quantification condition α, and an assignment
v : X → S, as follows.

– For α = ε, define S �v (α, r̂) if wv ∈ L(r̂).
– For α = ∃x.α′, define S �v (α, r̂) if there exists w ∈ S s.t. S �v[x�→w] (α′, r̂).
– For α = ∀x.α′, define S �v (α, r̂) if S �v[x�→w] (α′, r̂) for every w ∈ S .1

Since all variables are under the scope of α, membership is independent of v,
and so if S � (α, r̂), we denote S ∈ L(r). The hyperlanguage of r is L(r) = {S |
S ∈ L(r)}.

Definition 4. We call a hyperlanguage L a regular hyperlanguage if there exists
an HRE r such that L(r) = L.

Application of HRE in Information-flow Security

Noninterference [13] requires high-secret commands be removable without affect-
ing observations of users holding low clearances:

ϕni = ∀x.∃y{lx, lλy}∗,

where l denotes a low state and lλ denotes a low state such that all high com-
mands are replaced by a dummy value λ.

Observational determinism [20] requires that if two executions of a system
start with low-security-equivalent events, they should remain low equivalent:

ϕod = ∀x.∀y.
(
{lx, ly}+ | {l̄x, l̄y}{$x, $y}∗ | {lx, l̄y}{$x, $y}∗ | {l̄x, ly}{$x, $y}∗

)

1 In case that α begins with ∀, membership holds vacuously with an empty hyperword.
We restrict the discussion to nonempty hyperwords.

178 B. Bonakdarpour and S. Sheinvald

where l denotes a low event, l̄ ∈ Σ \{l}, and $ ∈ Σ. We note that similar policies
such as Boudol and Castellani’s noninterference [12] can be formulated in the
same fashion.2

Generalized noninterference (GNI) [14] allows nondeterminism in the low-
observable behavior, but requires that low-security outputs may not be altered
by the injection of high-security inputs:

ϕgni = ∀x.∀y.∃z.

(
{hx, ly, hlz} | {h̄x, ly, h̄lz} | {hx, l̄y, hl̄z} | {h̄x, l̄y, h̄l̄z}

)∗

where h denotes the high-security input, l denotes the low-security output, l̄ ∈
Σ \ {l}, and h̄ ∈ Σ \ {h}.

Declassification [16] relaxes noninterference by allowing leaking information
when necessary. Some programs must reveal secret information to fulfill func-
tional requirements. For example, a password checker must reveal whether the
entered password is correct or not:

ϕdc = ∀x.∀y.{lix, liy}{pwx, pwy}{lox, loy}+

where li denotes low-input state, pw denotes that the password is correct, and
lo denotes low-output states. We note that for brevity, ϕdc does not include
behaviors where the first two events are not low or, in the second event, the
password is not valid.

Termination-sensitive noninterference requires that for two executions that
start from low-observable states, information leaks are not permitted by the
termination behavior of the program (here, l denotes a low state and $ ∈ Σ):

ϕtsni = ∀x.∀y.
(
{lx, ly}{$x, $y}∗{lx, ly} | {l̄x, l̄y}{$x, $y}∗ |

{lx, l̄y}{$x, $y}∗ | {l̄x, ly}{$x, $y}∗
)

Fig. 1. The NFH A1 (left) and A2 (right).

4 Nondeterminsitic Finite-Word Hyperautomata

We now present a model for regular hyperlanguages, namely finite-word hyper-
automata. A hyperautomaton is composed of a set X of word variables, a quan-
tification condition, and an underlying finite-word automaton that accepts rep-
resentations of assignments to X.
2 This policy states that every two executions that start from bisimilar states (in terms
of memory low-observability), should remain bisimilarly low-observable.

Finite-Word Hyperlanguages 179

Definition 5. A nondeterministic finite-word hyperautomaton (NFH) is a tuple
A = 〈Σ,X,Q,Q0, F, δ, α〉, where Σ,X and α are as in Definition 3, and where
〈Σ̂,Q,Q0, F, δ〉 forms an underlying NFA over Σ̂ = (Σ ∪ {#})X .

The acceptance condition for NFH, as for HRE, is defined with respect to a
hyperword S, the NFH A, the quantification condition α, and an assignment
v : X → S. For the base case of α = ε, we define S �v (α,A) if Â accepts wv.
The cases where α is of the type ∃x.α′ and ∀x.α′ are defined similarly as for
HRE, and if S � (α,A), we say that A accepts S.

Definition 6. Let A be an NFH. The hyperlanguage of A, denoted L(A), is the
set of all hyperwords that A accepts.

Example 3. Consider the NFH A1 in Fig. 1 (left), whose alphabet is Σ = {a, b},
over two word variables x and y. The NFH A1 contains an underlying standard
NFA Â1. For two words w1, w2 that are assigned to x and y, respectively, Â1

requires that (1) w1, w2 agree on their a (and, consequently, on their b) positions,
and (2) once one of the words has ended (denoted by #), the other must only
contain b letters. Since the quantification condition of A1 is ∀x1.∀x2, in a hyper-
word S that is accepted by A1, every two words agree on their a positions. As
a result, all the words in S must agree on their a positions. The hyperlanguage
of A1 is then all hyperwords in which all words agree on their a positions.

Example 4. The NFH A2 of Fig. 1 (right) depicts the translation of the HRE of
Example 1 to an NFH.

Since regular expressions are equivalent to NFA, we can translate the under-
lying regular expression r̂ of an HRE r to an equivalent NFA, and vice versa –
translate the underlying NFA Â of an NFA A to a regular expression. It is then
easy to see that every HRE has an equivalent NFH over the same set of variables
with the same quantification condition.

We consider several fragments of NFH, which limit the structure of the quan-
tification condition α. HRE∀ is the fragment in which α contains only ∀ quan-
tifiers, and similarly, in HRE∃, α contains only ∃ quantifiers. In the fragment
HRE∃∀, α is of the form ∃x1 · · · ∃xi∀xi+1 · · · ∀xk.

5 Properties of Regular Hyperlanguages

5.1 Closure Properties

We now consider closure properties of regular hyperlanguages. We show, via
constructions on NFH, that regular hyperlanguages are closed under all the
Boolean operations.

Theorem 1. Regular hyperlanguages are closed under union, intersection, and
complementation.

180 B. Bonakdarpour and S. Sheinvald

Proof Sketch. Complementing an NFH A amounts to dualizing its quantification
condition by replacing ∃ with ∀ and vice versa, and complementing Â via the
standard construction for NFA. Since complementing Â is exponential in its
state space, A is exponential in the size of A.

Now, let A1 and A2 be two NFH over Σ, with the variables X and Y , respec-
tively. The NFH A∩ for L(A1) ∩ L(A2) is based on the product construction
of Â1 and Â2. The quantification condition of A∩ is α1 · α2. The underlying
NFA Â∩ advances simultaneously on both A1 and A2: when Â1 and Â2 run
on word assignments w1 and w2, respectively, Â∩ runs on a word assignment
w1 ∪ w2, which represents both assignments w1 and w2, and accepts only if
both Â1 and Â2 accept. To run on both assignments simultaneously, every let-
ter in A∩ is of the type f1 ∪ f2, where f1 : X → (Σ ∪ {#}) is a letter in Σ̂1,
and f2 : Y → (Σ ∪{#}) is a letter in Σ̂2. This construction is polynomial in the
sizes of A1 and A2.

Similarly, the NFH A∪ for L(A1)∪L(A2) is based on the union construction
of Â1 and Â2. The quantification condition of A∪ is again α1 ·α2. The underlying
NFA Â∪ advances either on A1 or A2. For every word assignemt w read by Â1,
the NFH Â∪ reads w ∪ w′, for every w′ ∈ Σ̂∗

2 , and dually, for every word w
read by Â2, the NFH Â∪ reads w′ ∪ w, for every w′ ∈ Σ̂∗

1 . The state space of
A∪ is linear in the state spaces of A1,A2. However, the size of the alphabet of
A∪ may be exponentially larger than that of A1 and A2. ��

5.2 Decision Procedures

We now turn to study several decision problems for the various fragments of
NFH. Throughout this section, A is an NFH 〈Σ,X,Q,Q0, δ, F, α〉, where X =
{x1, . . . xk}.

Nonemptiness. The nonemptiness problem is to decide, given an NFH A,
whether L(A) = ∅. In [10], a reduction from the Post correspondence problem is
used for proving the undecidability of HyperLTL satisfiability. A roughly similar
reduction shows that the nonemptiness problem for NFH is, in general, unde-
cidable. However, nonemptiness is decidable for the fragments we consider, with
varying complexities.

For the alternation-free fragments, we show that a simple reachability test
on their underlying automata suffices to verify nonemptiness.

For NFH∃∀, we show that the problem is decidable, by checking the nonempti-
ness of an exponentially larger equi-empty NFA. To summarize, we have the
following.

Theorem 2. The nonemptiness problem for

1. NFH∃ and NFH∀ is NL-complete,
2. NFH∃∀ is PSPACE-complete, and
3. NFH is undecidable.

Finite-Word Hyperlanguages 181

Proof Sketch. NFH∀ and NFH∃. The lower bound follows from the NL-hardness

of NFA nonemptiness. For the upper bounds, an NFH∃ A∃ is nonempty iff Â∃
accepts some word assignment wv. Indeed, any hyperword that contains the
words in v is accepted by A∃. We can therefore run a restricted reachability test
on Â∃, that considers only consecutive transitions in which for every x ∈ X, a
letter σx never follows #x, which guarantees a run on a legal word assignment.

We can show that an NFH∀ A∀ is nonempty iff A∀ accepts a hyperword
of size 1. Accordingly, A∀ is nonempty iff Â accepts a word that represents
an assignment that assigns all variables the same word. We thus restrict the
transitions of Â∀ to fixed functions, and check the nonemptiness of the restricted
NFA.

NFH∃∀. We begin with a PSPACE upper bound. Let A be an NFH∃∀ with m
existential quantifiers, and let S ∈ L(A). Then, there exist w1, . . . , wm ∈ S, such
that for every assignment v : X → S in which v(xi) = wi for every 1 ≤ i ≤ m, we
have that Â accepts wv. In particular, Â accepts every assignment that agrees
with v on x1, . . . xm, and assigns only words from {w1, . . . , wm}. Therefore, Â
accepts the hyperword {w1, . . . , wm}. That is, A is nonempty iff it accepts a
hyperword of size at most m. We can construct an NFA A based on Â that is
nonempty iff Â accepts all appropriate assignments of a hyperword of size m.
The size of A is exponential in the size of Â, and the result follows from the NL

upper bound for NFA nonemptiness.
Next, we prove the lower-bound for NFH∃∀ by a reduction from a polynomial

version of the corridor tiling problem, defined as follows. We are given a finite
set T of tiles, two relations V ⊆ T × T and H ⊆ T × T , an initial tile t0, a final
tile tf , and a bound n > 0. We have to decide whether there is some m > 0 and
a tiling of a n×m-grid such that (1) The tile t0 is in the bottom left corner and
the tile tf is in the top right corner, (2) Every pair of horizontal neighbors is in
H, and (3) Every pair of vertical neighbors is in V . When n is given in unary
notation, the problem is known to be PSPACE-complete.

Given an instance C of the tiling problem, we construct an NFH∃∀ A that
is nonempty iff C has a solution. We encode a solution to C as a word wsol =
w1 · w2 · wm$ over Σ = T ∪ {1, 2, . . . n, $}, where the word wi, of the form
1 · t1,i ·2 · t2,i, . . . n · tn,i, describes the contents of row i. To check that wsol indeed
encodes a solution, we need to make sure that: (1) w1 begins with t0 and wm

ends with tf$, (2) Every wi is of the correct form, (3) Within every wi, it holds
that (tj,i, tj+1,i) ∈ H, and (4) For wi, wi+1, it holds that (tj,i, tj,i+1) ∈ V for
every j ∈ [1, n].

Verifying conditions (1) − (3) above is easy via an NFA of size O(n|H|).
The main obstacle is condition (4). We describe an NFH∃∀ A = 〈T ∪ {

0, 1, . . .

n, $
}
, {y1, y2, y3, x1, . . . xlog(n)}, Q, {q0}, δ, F, α = ∃y1∃y2∃y3∀x1 . . . ∀xlog(n)〉 that

is nonempty iff there exists a word that satisfies conditions (1) − (4). The NFH
A only proceeds on letters whose assignments to y1, y1, y3 is r, 0, 1, respectively,
where r ∈ T ∪{1, . . . n, $}. Then A requires the existence of the words 0|wsol| and
1|wsol| (the 0 word and 1 word, henceforth). A makes sure that the word assigned
to y1 matches a correct solution w.r.t. conditions (1) − (3) above. Now, we need

182 B. Bonakdarpour and S. Sheinvald

to make sure that for every position j in a row, the tile in position j in the next
row matches the current one w.r.t. V . We can use a state qj to remember the
tile in position j, and compare it to the tile in the next occurrence of j. To avoid
checking all positions simultaneously (which would require exponentially many
states), we use log(n) copies of the 0 and 1 words to encode j. The log(n) ∀
conditions make sure that every position within 1 − n is checked.

We limit the checks to words in which x1, . . . xlog(n) are the 0 or 1 words,
by having Â accept every word in which some x variable is not assigned 0 or 1.
This accepts all cases in which the word assigned to y1 is also assigned to one of
the x variables.

To check that x1, . . . xlog(n) are the 0 or 1 words, Â checks that the letter
assignments to these variables remain constant throughout the run. In these
cases, upon reading the first letter, Â remembers the value j that is encoded by
the assignments to x1, . . . xlog(n) in a state, and makes sure that throughout the
run, the tile that occurs in the assignment to y1 in position j in the current row
matches the tile in position j in the next row.

We construct a similar reduction for the case that the number of ∀ quantifiers
is fixed: instead of encoding the position by log(n) bits, we can directly specify
the position by a word of the form j∗, for every j ∈ [1, n], and we construct a
matching NFH∃∀ over O(n) variables under ∃, and a single variable under ∀. ��

Universality. The universality problem is to decide whether a given NFH A
accepts every hyperword over Σ. Notice that A is universal iff A is empty.
Since complementing an NFH involves an exponential blow-up, we conclude the
following from the results in Sect. 5.2, combined with the PSPACE lower bound
for the universality of NFA.

Theorem 3. The universality problem for

1. NFH is undecidable,
2. NFH∃ and NFH∀ is PSPACE-complete, and
3. NFH∀∃ is in EXPSPACE.

Membership. We turn to study the membership problem for NFH: given an
NFH A and a hyperword S, is S ∈ L(A)? When S is finite, so is the set of
assignments from X to S, and so the problem is decidable. We call this case the
finite membership problem.

Theorem 4. – The finite membership problem for NFH is in PSPACE.
– The finite membership problem for NFH with O(log(k)) ∀ quantifiers is NP-

complete.

Proof. We can decide the membership of a finite hyperword S in L(A) by iter-
ating over all relevant assignments from X to S, and for every such assignment
v, checking on-the-fly whether wv ∈ L()̂A. The space size of this algorithm is
polynomial in k and logarithmic in |A| and in |S|.

Finite-Word Hyperlanguages 183

When the number of ∀ quantifiers in A is |O(log(k))|, we can iterate over all
assignments to the ∀ variables in polynomial time, while guessing assignments
to the variables under ∃. Thus, membership in this case is in NP.

We show NP-hardness for this case by a reduction from the Hamiltonian cycle
problem. Given a graph G = 〈V,E〉 where V = {v1, . . . , vn} and |E| = m, we
construct an NFH∃ A over {0, 1} with n states, n variables, δ of size m, and a
hyperword S of size n, as follows. S = {w1, . . . , wn}, where wi = 0i−1 · 1 · 0n−i.
The structure of Â is identical to that of G, and we set Q0 = F = {v1}. For every
(vi, vj) ∈ E, we have (vi, fi, vj) ∈ δ, where fi(xi) = 1 and fi(xj) = 0 for every
xj �= xi. Intuitively, the i’th letter in an accepting run of Â marks traversing vi.
Assigning wj to xi means that the j’th step of the run traverses vi. Since the
words in w make sure that every v ∈ V is traversed exactly once, and are all of
length n, we have that A accepts S iff there exists some ordering of the words
in S that matches a Hamiltonian cycle in G.

Note: For a hyperword of size ≥ 2, the size of δ must be exponential in the
number k′ of ∀ quantifiers, to account for all the assignments to these variables.
Thus, if k = O(k′), an algorithm that uses a space of size k is in fact logarithmic
in the size of A. ��

When S is infinite, it may still be finitely represented, allowing for algorithmic
membership testing. We now address the problem of deciding whether a regular
language L (given as an NFA) is accepted by an NFH. We call this the regular
membership problem for NFH. We show that this problem is decidable for the
entire class of NFH.

Theorem 5. The regular membership problem for NFH is decidable.

Proof. Let A = 〈Σ,P, P0, ρ, F 〉 be an NFA with n states.
We first extend the alphabet of A to Σ ∪ {#}, and extend its language to

L(A) · {#}∗. We next describe a procedure for deciding whether L(A) ∈ L(A).
For the case that k = 1, if α = ∃x1, then L(A) ∈ L(A) iff L(A) ∩ L(Â) �= ∅.

Otherwise, if α = ∀x1, then L(A) ∈ L(A) iff L(A) /∈ L(A), where A is the NFH
for L(A). The quantification condition for A is ∃x1, conforming to the base case.

For k > 1, we construct a sequence of NFA Ak, Ak−1 . . . , A1 as follows.
Initially, Ak = Â. Let Ai = 〈Σi, Qi, Q

0
i , δi,Fi〉. If Qi = ∃ , then we construct

Ai−1 as follows. The set of states of Ai−1 is Qi × P , and the set of initial states

is Q0
i × P0. The set of accepting states is Fi × F . For every (q

f−→ q′) ∈ δi and

every (p
f(xi)−−−→ p′) ∈ ρ, we have ((q, p)

f\{σixi
}−−−−−−→ (q′, p′)) ∈ δi−1. We denote this

construction by A ∩xi
Ai. Then, Ai−1 accepts a word assignment wv iff there

exists a word u ∈ L(A), such that Ai accepts wv∪{xi �→u}.

If Qi = ∀, then we set Ai−1 = A ∩xi
Ai Notice that Ai−1 accepts a word

assignment wv iff for every u ∈ L(A), it holds that Ai accepts wv∪{xi �→u}.
For i ∈ [1, k], let Ai be the NFH whose quantification condition is αi =

Q1x1 · · ·Qixi, and whose underlying NFA is Ai. Then, according to the con-
struction of Ai−1, we have that L(A) ∈ L(Ai) iff L(A) ∈ L(Ai−1).

184 B. Bonakdarpour and S. Sheinvald

The NFH A1 has a single variable, and we can now apply the base case.
Every ∀ quantifier requires complementation, which is exponential in n.

Therefore, in the worst case, the complexity of this algorithm is O(22
...|Q||A|

),
where the tower is of height k. If the number of ∀ quantifiers is fixed, then the
complexity is O(|Q||A|k).

Containment. The containment problem is to decide, given NFH A1 and A2,
whether L(A1) ⊆ L(A2). Since we can reduce the nonemptiness problem to the
containment problem, we have the following as a result of Theorem 2.

Theorem 6. The containment problem for NFH is undecidable.

However, the containment problem is decidable for various fragments of NFH.

Theorem 7. The containment problem of NFH∃ ⊆ NFH∀ and NFH∀ ⊆ NFH∃
is PSPACE-complete. The containment problem of NFH∃∀ ⊆ NFH∀∃ is in
EXPSPACE.

Proof. A lower bound for all cases follows from the PSPACE-hardness of the con-
tainment problem for NFA. For the upper bound, for two NFH A1 and A2, we
have that L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅. We can compute an NFH
A = A1 ∩ A2 (Theorem 1), and check its nonemptiness. Complementing A2 is
exponential in its number of states, and the intersection construction is polyno-
mial.

If A1 ∈ NFH∃ and A2 ∈ NFH∀ or vice versa, then A is an NFH∃ or NFH∀,
respectively, whose nonemptiness can be decided in space that is logarithmic in
|A|.

The quantification condition of an NFH for the intersection may be any inter-
leaving of the quantification conditions of the two intersected NFH (Theorem 1).
Therefore, for the rest of the fragments, we can construct the intersection such
that A is an NFH∃∀. The exponential blow-up in complementing A2, along with
The PSPACE upper bound of Theorem 2 gives an EXPSPACE upper bound for
the rest of the cases. ��

6 Discussion and Future Work

We have introduced and studied hyperlanguages and a framework for their mod-
eling, focusing on the basic class of regular hyperlanguages, modeled by HRE
and NFH. We have shown that regular hyperlanguages are closed under set oper-
ations and are capable of expressing important hyperproperties for information-
flow security policies over finite traces. We have also investigated fundamental

Finite-Word Hyperlanguages 185

decision procedures for various fragments of NFH. Some gaps, such as the precise
lower bound for the universality and containment problems for NFH∃∀, are left
open.

Since our framework does not limit the type of underlying model, it can
be lifted to handle hyperwords consisting of infinite words, with an underlying
model designed for such languages, such as nondeterministic Büchi automata,
which model ω-regular languages. Just as Büchi automata can express LTL, such
a model can express the entire logic of HyperLTL [5].

As future work, we plan on studying non-regular hyperlanguages (e.g.,
context-free), and object hyperlanguages (e.g., trees). Another direction is
designing learning algorithms for hyperlanguages, by exploiting known canonical
forms for the underlying models, and basing on existing learning algorithms for
them. The main challenge would be handling learning sets and a mechanism for
learning word variables and quantifiers.

References

1. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: QEST, pp. 20–35 (2018)

2. Alpern, B., Schneider, F.: Defining liveness. Inf. Process. Lett. 24, 181–185 (1985)
3. B. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproper-

ties. In: CSF, pp. 162–174 (2018)
4. Bonakdarpour, B., Sánchez, C., Schneider, G.: Monitoring hyperproperties by com-

bining static analysis and runtime verification. In: ISoLA, pp. 8–27 (2018)
5. Clarkson, M., Finkbeiner, B., Koleini, M., Micinski, K., Rabe, M., Sánchez, C.:

Temporal logics for hyperproperties. In: POST, pp. 265–284 (2014)
6. Clarkson, M., Schneider, F.: Hyperproperties. J. Comput. Securi. 18, 1157–1210

(2010)
7. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:

Dillig, I., Tasiran, S. (eds.) CAV 2019, Part I. LNCS, vol. 11561, pp. 121–139.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

8. Emerson, E.A., Halpern, J.: “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33, 151–178 (1986)

9. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyper-
properties. In: CSF 2019, pp. 17–31 (2019)

10. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR, pp. 13:1–13:14
(2016)

11. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking hyperLTL
and hyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

12. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread. In:
TCS 2002, pp. 109–130 (2002)

13. Goguen, J., Meseguer, J.: Security policies and security models. In: IEEE Sympo-
sium on Security and Privacy, pp. 11–20 (1982)

14. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of the 1988 IEEE Symposium on Security and Privacy, pp. 177–186
(1988)

https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3

186 B. Bonakdarpour and S. Sheinvald

15. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
16. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.

In: CSFW, pp. 200–214 (2000)
17. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logic of programs.

J. Comput. Syst. Sci. 32, 183–221 (1986)
18. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115,

1–37 (1994)
19. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-

properties for cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS)
18, 92:1–92:23 (2019)

20. Zdancewic, S., Myers, A.: Observational determinism for concurrent program secu-
rity. In: CSFW, p. 29 (2003)

Temporal Logics with Language
Parameters

Jens Oliver Gutsfeld(B), Markus Müller-Olm, and Christian Dielitz

Institut für Informatik, Westfälische Wilhelms-Universität Münster,
Einsteinstraße 62, 48149 Münster, Germany

{jens.gutsfeld,markus.mueller-olm,christian.dielitz}@wwu.de

Abstract. We develop a generic framework to extend the logics LTL,
CTL+ and CTL∗ by automata-based connectives from formal language
classes and analyse this framework with regard to regular languages,
visibly pushdown languages and (deterministic) context-free languages.
More precisely, we consider how the use of different automata classes
changes the expressive power of the logics and provide algorithms for
the satisfiability and model checking problems induced by the use of
different automata. For the model checking problem, we treat not only
finite Kripke transition systems, but also visibly pushdown systems and
pushdown systems. We provide completeness or undecidability results
in almost all cases and show that the extensions we consider can for-
mulate properties not expressible in classical temporal logics or regular
extensions thereof.

1 Introduction

Temporal logics like LTL, CTL and CTL∗ are widely used for verification pur-
poses through satisfiability checking and model checking. Their usefulness is
based on their simple logical structure, their ability to capture useful safety and
liveness properties and their low (polynomial) model checking complexity for
fixed formulae. However, as noticed already in the seminal paper by Wolper
[15], classical temporal logics are unable to express even basic regular properties
like Every other index fulfills ϕ for a specification ϕ. Several temporal logics
were developed to express (subsets of) ω-regular properties [8,10,15]. Neverthe-
less, these formalisms are not sufficient to specify properties like A sequence
of n requests should be followed by n acknowledgements that are not ω-regular.
While new temporal logics have also been developed for these types of proper-
ties [1], they are usually ad hoc constructions for a single class of languages or
properties in the sense that there is no straightforward way to extend them to
even larger language classes or to alternatively restrict their expressive power
to a fragment related to a smaller language class in order to improve the model
checking complexity (or obtain decidability). In this paper, we study a generic

This work was partially funded by the DFG under project MoNaLog (MU 1508/3).

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 187–199, 2021.
https://doi.org/10.1007/978-3-030-68195-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_14

188 J. O. Gutsfeld et al.

approach for equipping classical temporal logics with automata-based connec-
tives. More precisely, we take the logics LTL, CTL+ and CTL∗ and annotate
the Until- and Release-operator with automata in order to restrict the analy-
sis of the paths under consideration in accordance with the language specified
by the automata. We instantiate this framework with regular languages, visibly
pushdown languages and (deterministic) context-free languages and consider the
satisfiability problem and the differences in expressive power between the differ-
ent instantiations. Furthermore, we study the model checking problem for these
instantiations not only against finite Kripke transition systems, but also against
(Visibly) Pushdown Systems. For both the satisfiability and the model checking
problem, we obtain a fairly complete picture, providing completeness results in
almost all cases. Our approach is inspired by the work of Axelsson et al. [3]
which introduces a similar automata-based framework for the logic CTL named
Extended CTL. While our results and algorithms are largely complementary to
theirs, some decision problems turn out not to be more expensive when switching
from Extended CTL to Extended CTL+ or Extended CTL∗. Thus, we obtain
increased expressivity for free.

The paper is structured as follows: in Sect. 2, we introduce some automata
models. Section 3 introduces our extended variants of LTL, CTL∗ and CTL+

and establishes basic properties of them. Afterwards, we characterise LTL[U]
formulae by alternating automata (Sect. 4). In Sect. 5, we establish inclusion
and separation theorems for several logics. Finally, in Sect. 6 and Sect. 7, we
address the satisfiability and model checking problems for our logics.

2 Preliminaries

Let AP be a finite set of atomic propositions and Γ be a set of actions. A Kripke
Transition System (KTS) is a tuple K = (S,→, λ) where S is a set of states,
→⊆ S × Γ × S is a total transition relation and λ : S → 2AP is a labelling
function. We also write s

a−→ s′ to denote (s, a, s′) ∈→. Every KTS has an initial
state s0 ∈ S. A path is an infinite sequence of alternations of states and actions
π = s0a0s1a1 . . . such that si

ai−→ si+1. We denote the suffix siaisi+1ai+1 . . . by
πi and the state si by π(i). For every state, Paths(s) denotes the paths starting
in s and Paths(K) denotes Paths(s0). For a path π = sa0s1a1 . . . starting in a
state s, we define the corresponding trace to be π̂ = (λ(s)a0)(λ(s1)a1) We
lift Paths(s) to Traces(s) and Paths(K) to Traces(K) in the obvious manner.
We denote the action sequence a0 . . . an by Actions(π, n).

A Pushdown System is a tuple P = (P, Γ,Δ, λ, I) consisting of a finite,
non-empty set of control locations P , a finite, non-empty stack alphabet Γ ,
a transition relation Δ ⊆ (P × Γ) × Σ × (P × Γ ∗), a labelling function λ :
P ×Γ → 2AP , and a non-empty set of initial configurations I ⊆ P ×Γ . We write
(p, γ) σ−→ (p′, ω) for ((p, γ), σ, (p′, ω)) ∈ Δ. We also write (p, γ) σ−→ (p′, ω) ∈ Δ. A
configuration of a pushdown system is an element c ∈ P × Γ+. A rule (p, γ) σ−→
(p′, ω) ∈ Δ is a call rule if |ω| = 2, an internal rule if |ω| = 1 and a return rule if
|ω| = 0. We assume the standard semantics for PDS [3] and identify them with
their configuration graph (as a KTS).

Temporal Logics with Language Parameters 189

A PDS is called a Visibly Pushdown System (VPS) [2] if its input alphabet Σ
can be partitioned into disjoint sets Σcall, Σint and Σret such that every rule for
an input symbol from the set Σcall is a call rule (and analogously for the other
two sets). An alphabet thus partitioned is called a pushdown alphabet. A Büchi
Pushdown System (BPDS) BP is a PDS with an additional set F ⊆ P of accept-
ing control locations. A path of a BPDS BP is accepting if it visits some state
p ∈ F infinitely often. A word is accepted if there is an accepting path for it. We
denote by L(BP) the set of words accepted by BP. Pushdown Automata and
Visibly Pushdown Automata, which we abbreviate by PDA and VPA respec-
tively, are defined analogously, with the difference that we only consider finite
runs over finite input words and a word is accepted if an accepting control loca-
tion is reached after the last input symbol. We call an automaton deterministic
(signified by prepending a D to the model class) if there is a unique transition for
every input symbol, top of stack symbol and control location. We also consider
deterministic and non-deterministic finite automata (DFA and NFA) which we
define as PDA with only internal transitions. For all these models, the size of
an automaton A, denoted |A|, is the sum of its number of states and number of
transitions. For BPDS we make use of the following theorem:

Theorem 1 [13]. It can be checked in time polynomial in |BP| whether a BPDS
BP has an accepting path.

We call the languages accepted by DFA regular languages (REG), those accepted
by VPA visibly pushdown languages (VPL), those accepted by DPDA determin-
istic context-free languages (DCFL) and those accepted by PDA context-free
languages (CFL). Following [3], we call a class U of finite word automata rea-
sonable iff it contains automata recognising the languages Σ and Σ∗ and for any
A ∈ U and B of the same automaton type with L(A) = L(B), B ∈ U (closure
under equivalences). All types of finite word automata considered are reasonable
classes of automata.

Let DIR = {↓, ↓a}. An Alternating Jump Automaton (AJA) [4] is a 5-Tuple
(Q,Σ, δ, q0, Ω) where Q is a finite set of states, Σ is a finite pushdown alphabet,
δ : Q × Σ → B

+(DIR × Q × Q) is a transition function, q0 ∈ Q is an initial
state, and Ω : Q → N is a colouring function. Here B

+(X) denotes the set
of positive boolean formulae over X. Let A = (Q,Σ, δ, q0, Ω) be an AJA and
w = α1α2 · · · ∈ Σω an infinite word. We define two types of successor relations
of indices on w. The direct successor is simply succ(↓, i) = i + 1. The abstract
successor succ(↓a, i) is the index of the next input symbol to be read on the
same recursion level for a call or internal action, if it exists. Otherwise, it is
�. Formally, succ(↓a, i) = min{j > i | |v|Σcall

= |v|Σret
for v = αi . . . αj−1}

if it exists and αi ∈ Σcall ∪ Σint, where |v|X is the number of occurences of
symbols from X in v. Otherwise, succ(↓a, i) = �. An AJA A processes the
input word w by reading it from left to right starting in its initial state q0.
Whenever A is in a state q and reads a symbol αi, it guesses a set of targets T ⊆
(DIR×Q×Q) satisfying δ(q, αi). Then, it creates a copy for each (d, q′, q′′) ∈ T ,
which moves to the state q′ if j =succ(d, αi) �= � and reads the symbol αj next

190 J. O. Gutsfeld et al.

or otherwise moves to state q′′ and reads the next symbol αi+1. Formally, an
execution of A on w is an infinite tree T (A, w) with root ε and the following
properties: 1) each node of T (A, w) is associated with a pair (i, q) ∈ N × Q
which indicates that a copy of A is currently in state q and reads the input
symbol αi next. For a node v, this pair is denoted by p(v) and p(ε) = (1, q0).
2) For each node v in the tree with p(v) = (i, q), there is a set of targets T =
{(d1, q1, q

′
1) . . . (dk, qk, q′

k)} ⊆ DIR× Q × Q satisfying δ(q, αi) such that for each
child node vh of v with 1 ≤ h ≤ k we have p(vh) = (i+1, q′

h) if succ(dh, wi) = �
and p(vh) = (succ(dh, wi), qh) otherwise. A branch β = v0v1... of T (A, w) is an
infinite sequence of nodes such that v0 = ε and vi is the parent of vi+1 for each
i ∈ N0. The set of colours appearing infinitely often in a branch is defined as
C(β) =

{
Ω(q) | for infinitely many j ∈ N0 there is i ∈ N0 with p(vj) = (i, q)}.

The execution tree T (A, w) is accepting iff for each branch β the smallest colour
in C(β) is even (parity condition).

Theorem 2 [4]. For every AJA A, one can construct in exponential time a
BVPS A′ with size exponential in the size of A such that L(A) = L(A′).

As a special case of AJA, we define Alternating Büchi Automaton (ABA) and
non-deterministic Büchi Automaton (BA) in the obvious way [5]. For ABA, we
can compute BA of exponential size and perform a PSPACE emptiness test [5].

3 Logics

3.1 Extended LTL

Let U be a reasonable class of finite word automata and AP be a set of atomic
propositions. For ap ∈ AP and A ∈ U , an LTL[U] formula is given by the gram-
mar ϕ ::= ap | ¬ϕ | ϕ∧ϕ | ϕUA ϕ. The semantics of an LTL[U] formula for a path
π is standard for atomic propositions, negations and boolean connectives. For the
Until-operator, we set π |= ϕ1UAϕ2 iff ∃k : πk |= ϕ2 and ∀j < k : πj |= ϕ1

and Actions(π, k) ∈ L(A). We denote by L(ϕ) the set of traces of paths fulfilling
ϕ. For a KTS K, we define K |= ϕ iff Traces(K) ⊆ L(ϕ). For LTL[U] (and later
logics), we denote by |ϕ| the sum of the number of operators in the syntax tree
of ϕ and the size of the automata A occurring in ϕ. For simplicity, we often
write UL for some language L and use this as an abbreviation for UA where A
is an automaton with L(A) = L of minimal size. We also write LTL[REG] and
LTL[VPL] to emphasise that it is not relevant whether a deterministic or non-
deterministic automaton is used for the respective language class, while we use
the specific class of automata (e.g.. LTL[DVPA] or LTL[NFA]) otherwise. If no
parameter is given for a modality, the language Σ∗ is assumed. We can define ∨,
⇒, true and false in the obvious manner. We define ϕ1RAϕ2 ≡ ¬(¬ϕ1UA¬ϕ2),
Xϕ ≡ true UΣϕ, GAϕ ≡ falseRAϕ and FAϕ ≡ true UAϕ. The explicit seman-
tics of RA is as follows: π |= ϕ1RAϕ2 iff ∀i : Actions(π, i) /∈ L(A) or πi |= ϕ2

or ∃j < i : πj |= ϕ1.
An LTL[U] formula is in Negation Normal Form (NNF) if negations occur

only in front of atomic propositions. In order to convert LTL[U] formulae to

Temporal Logics with Language Parameters 191

NNF, we assume RA to be a first class modality and ∨ to be a first class opera-
tor of LTL[U]. The equivalence ¬(ϕ1 UA ϕ2) ≡ (¬ϕ1) RA(¬ϕ2) and the classical
equivalences for LTL can be used to convert every LTL[U] formula into an equiv-
alent LTL[U] formula in NNF with linear blowup.

In LTL[U], we can express the example properties mentioned in the intro-
duction in a straightforward manner after choosing an appropriate language
class and automaton: given a DFA A accepting all finite words of even length,
the property Every other index fulfills ϕ can be expressed by the LTL[DFA]
formula GAϕ. Likewise, for a VPA A that recognises the language reqngrantn

(if req is marked a call and grant a return symbol), the LTL[VPA] formula
work UAcomplete states that an agent takes n requests and then grants the
same number before completing its work. LTL[U] can also express the classical
fairness property GFq which, using additional automata, can also be refined by
requirements that certain prefixes of a fair path must be contained in a language.

3.2 Extended CTL∗ and CTL+

Let U be a reasonable class of automata. For a set AP of atomic propositions
and automata A ∈ U , a CTL∗[U] formula ϕ is given by the grammar ϕ ::= ap |
¬ϕ | ϕ ∧ ϕ | ϕ UA ϕ | Eϕ. A CTL+[U] formula ψ is given by the grammar
ψ ::= ap | ¬ψ | ψ ∧ ψ | Eϕ where ϕ is constructed according to the grammar
ϕ ::= ψ UA ψ | ¬ϕ | ϕ ∧ ϕ.

The semantics of all operators except existential quantification is inher-
ited from LTL[U] in the obvious manner. For the quantifier, we define:
π |= Eϕ iff ∃π′ ∈ Paths(π(0)) : π′ |= ϕ. We define universal quantifiers by
Aϕ ≡ ¬E¬ϕ. In order to compare our logics to the logics in [3], we define
CTL[V, W] to be the sub-logic of CTL∗[V ∪ W] in which all modalities are
quantified, quantifiers appear only in front of modalities and we have A ∈ V
for UA modalities and B ∈ W for RB modalities. For c ∈ {+, ∗}, we use the
notation CTLc to discuss both logics simultaneously.

4 Automata for LTL[U]

In this section, we show how LTL[REG] formulae can be translated to ABA.
Our translation is inspired by the classical translation of LTL into ABA [5].

Theorem 3. For every LTL[REG] formula ϕ, there is an ABA A with L(A) =
L(ϕ) with size quadratic in |ϕ|.
Proof. Without loss of generality, ϕ is given in NNF. The proof is by structural
induction over ϕ with the induction hypothesis that for every subformula ψ of
ϕ, there is an ABA A with L(A) = L(ψ) and |A| ∈ O(|ψ|). (Negated) Atomic
propositions and logical connectives are handled in the obvious way. We consider
the case ϕ = ψ1UX ψ2 for an automaton X = (Q′,Σ, δ′, q′

0, F
′). By assumption,

we have ABA Ai = (Qi, 2AP × Σ, δi, qi
0, F

i) with L(Ai) = L(ψi) for i ∈ {1, 2}.
Let Q1, Q2 and Q′ be pairwise disjoint. Intuitively, we translate the formula just

192 J. O. Gutsfeld et al.

like an LTL formula, but also run X to guess an accepting path, requiring ϕ1

to hold until an accepting state of X is hit and then forcing ϕ2 to hold. Let
Aϕ = (Q, Σ̂, δ, F) where Q = Q1 ∪ Q2 ∪ Q′, δ = δ1 ∪ δ2 ∪ δ̂′, q0 = q′

0 and
F = F1 ∪ F2. We set δ̂′(q′, (X,σ)) = (δ1(q1

0 , (X,σ)) ∧ ∨
q′′∈δ′(q′,σ) q′′) with an

additional disjunct δ2(q2
0 , (X,σ)) if q′ ∈ F ′ for all q′ ∈ Q′.

Consider finally the case ϕ = ψ1R
X ψ2. Again, the ABA Ai = (Qi, 2AP ×

Σ, δi, qi
0, F

i) with L(Ai) = L(ψi) for i ∈ {1, 2} are given by the induction
hypothesis. Let X = (Q′,Σ, δ′, q′

0, F
′) be the NFA used in the formula and

let Q1, Q2 as well as Q′ be pairwise disjoint. Let Aϕ = (Q, 2AP × Σ, δ, F)
where Q = Q1 ∪ Q2 ∪ Q′, δ = δ1 ∪ δ2 ∪ δ̂′, q0 = q′

0 and F = F1 ∪ F2 ∪ Q′.
Finally, we set δ̂′(q′, (X,σ)) = (δ1(q1

0 , (X,σ)) ∨ ∧
q′′∈δ′(q′,σ) q′′) ∧ δ2(q2

0 , (X,σ)

for final states q′ ∈ F ′. For non-final states q′ /∈ F ′, we set δ̂′(q′, (X,σ)) =
δ1(q1

0 , (X,σ)) ∨ (
∧

q′′∈δ′(q′,σ) q′′). For this modality, we have to distinguish sev-
eral cases: if ϕ1 ∧ ϕ2 is fulfilled at a final state, ϕ is fulfilled there. Likewise, it
suffices to require only ϕ1 to hold if the current state in the NFA is non-final. If
ϕ1 holds, we require ϕ2 to hold unless the current state is non-accepting, in which
case we do not force any formulae to hold. However, unless ϕ2 is released from
holding by one of these cases, we always have to pursue all possible successors in
the NFA lest we miss paths which reach an accepting state and thus require ϕ2

to hold. All accepting states of the automata Ai stay accepting in order to reflect
the semantics of ψi. Moreover, all states of the NFA X are declared accepting
as paths on which ϕ1 never holds, but ϕ2 holds on any accepting state of X are
allowed by the semantics of the RX operator. ��

Using a similar approach and handling the Until-modality similar to [14], we
obtain the following theorem for VPL:

Theorem 4. Every LTL[VPL] formula ϕ can be translated into an AJA A with
L(ϕ)=L(A) and |A| ∈ O(|ϕ|2).

5 Expressivity

In this section, we compare the expressive power of different logics. For two logics
L,L′, we write L ≤ L′ if every formula ϕ in L has a matching formula ϕ′ in L′

such that for all KTS K, K |= ϕ iff K |= ϕ′. The relation < is derived in the
obvious way. Furthermore, we write L ≤lin L′ (resp. L ≤exp L′ or L ≤poly L′)
to denote that the translation of formulae in L to formulae in L′ is possible in
linear (resp. exponential or polynomial) time. By L ≤comp L′, we denote that
there is a computable translation from L to L′. The following is immediate:

Theorem 5

1. LTL[U] ≤lin CTL∗[U]
2. CTL[U, V] ≤lin CTL+[W] if U ⊆ W and V ⊆ W
3. CTL+[U] ≤lin CTL∗[U]

Temporal Logics with Language Parameters 193

It was shown in [3] that CTL[U, V] cannot express the fairness property EGFq
regardless of the automata classes chosen, which implies:

Theorem 6. CTL∗[W] �≤ CTL[U, V] for arbitrary classes U, V,W .

In order to use model theoretic properties needed for further separation results,
we introduce the logic PDL-Δ[U] [3,12]. For a set Π of atomic programs, PDL-
Δ[U] is defined as follows: every atomic proposition ap is a formula and every
atomic program π ∈ Π is a program. If ϕ1 and ϕ2 are formulae, then so are
ϕ1 ∧ ϕ2 and ¬ϕ1. If ϕ is a formula, then ϕ? is a test where the set of tests is
denoted Test. A regular expression over Π ∪Test is a program. If α is a program
and ϕ is a formula, then 〈α〉ϕ is a formula. Finally, a Büchi automaton A of
type U over the alphabet Σ ∪ Test is an ω-program and for every ω-program A,
ΔA is a formula.

A formula of PDL-Δ[U] is evaluated over a structure M = (S,R, v) where
S is a set of states, R : Π → 2S×S is a transition relation that assigns to
atomic programs the enabled state transitions, and v : S → 2AP assigns
atomic propositions to states. We can interpret M as a KTS by interpreting
atomic programs as actions. The relation R is extended to tests as follows:
R(ϕ?) = {(s, s) | M, s |= ϕ}. Moreover, for programs α, R(α) = {(s, s′) | ∃w =
w1 . . . wm ∈ L(α) : ∃s0 . . . sm ∈ S : s = s0 ∧ s′ = sm ∧ (si−1, si) ∈ R(wi) for all
1 ≤ i ≤ m} where wi ∈ Π ∪ Test. For each Büchi automaton A of type U over
the alphabet Π ∪ Test, there is a unary relation Rω(A) such that s ∈ Rω(A) iff
there is an infinite word w = w0w1 · · · ∈ L(A) and a sequence of states s0s1 . . .
such that s0 = s and (si, si+1) ∈ R(wi) for all i ≥ 0. If A is a VPS, we assume
Test ⊆ Σint.

The semantics of PDL-Δ[U] for a structure M and a state s ∈ S is as usual for
the standard connectives. Additionally, we set M, s |= 〈α〉ϕ iff there is s′ ∈ S
such that (s, s′) ∈ R(α) and s′ |= ϕ. We define M, s |= ΔA iff s ∈ Rω(A).

Theorem 7

1. CTLc[REG] ≤exp PDL-Δ[REG].
2. CTLc[VPL] ≤exp PDL-Δ[VPL].

Proof. For the innermost existential formula Eψ of a CTLc[REG] formula ϕ, we
build the ABA Aψ and dealternate it to obtain an equivalent BA A′. We can thus
replace Eψ by the formula ψ′ ≡ ΔA′. Inductively, we always temporarily replace
such a formula by a fresh atomic proposition and then, after the dealternation
(with exponential blowup), replace this proposition by the test (ψ′?) in the new
automaton. We then integrate the BA into each other. For CTLc[VPL], the
proof is analogous, replacing ABA by AJA. ��
For PDL-Δ[U], we make use of the following model-theoretic results:

Theorem 8 [3]

1. Every satisfiable PDL−Δ[REG] has a finite model (finite model property).

194 J. O. Gutsfeld et al.

Fig. 1. The complexity of the satisfiability problem for different logics.

2. Every satisfiable PDL−Δ[VPL] formula has a VPS model (VPS model prop-
erty).

Due to the embedding of Theorem 7 and the fact that there is already a satisfiable
CTL[VPA, VPA] formula with no finite model [3], we obtain:

Corollary 1. 1. CTLc[REG] has the finite model property.
2. There is a satisfiable CTLc[VPL] formula with no finite model. CTLc[VPL]

has the VPS model property.
3. CTLc[REG] < CTLc[VPL]

Theorem 9. LTL < LTL[REG] < LTL[VPL] < LTL[DCFL].

Proof. In every case, the relation ≤ is clear. The inequality LTL < LTL[REG]
follows from Wolper’s argument [15] that LTL cannot express that a proposition
occurs on every other index. For every formula ϕ of LTL[REG], there is an ABA
recognising L(ϕ). Thus, L(ϕ) is ω-regular, while the language of the LTL[DCFL]
formula Fanbn true is not. The last strict inclusion follows from the fact that
languages definable in LTL[VPL] are ω-VPLs, but the language of the formula
F{anban}true is not [2]. ��
By considering the class of linear KTS (which only have one path), we get:

Corollary 2. CTLc[VPL] < CTLc[DCFL].

Finally, we can separate LTL[U] and all variants of extended CTL since LTL[U]
formulae cannot distinguish between non-bisimilar, but trace equivalent KTS
and CTL[V,W— cannot express the property ψ ≡ EGFq [3]:

Theorem 10. LTL[U] and CTL[V,W] have incomparable expressivity for arbi-
trary classes U , V and W .

6 Satisfiability

In this section, we tackle the satisfiability problem for our logics. For this pur-
pose, we call a formula ϕ of a temporal logic satisfiable if there is a KTS K such
that K |= ϕ. We obtain exhaustive decidability and complexity classifications
in all cases. An overview of our results can be found in Fig. 1. Unfortunately,
unlike for Extended CTL, satisfiability is undecidable for all our logics for lan-
guage classes going beyond VPL1 since LTL[DCFL] can express the emptiness
of the intersection of two DCFL:
1 Indeed, as the undecidability results for DCFL carry over to CFL, we do not consider

the latter explicitly in the following.

Temporal Logics with Language Parameters 195

Theorem 11

1. LTL[DCFL] satisfiability checking is undecidable.
2. CTLc[DCFL] satisfiability checking is undecidable.

For regular languages, the complexity of the satisfiability problem for LTL[REG]
does not increase beyond the complexity of the satisfiability problem for LTL
since we can test an automaton of polynomial size for emptiness in PSPACE:

Theorem 12. LTL[REG] satisfiability checking is PSPACE-complete.

For VPL, the problem remains decidable but the complexity increases because
we can express hard problems about VPA.

Theorem 13. LTL[VPL] satisfiability checking is EXPTIME-complete.

Proof. The emptiness test on the AJA for a formula ϕ can be done in EXP-
TIME and thus establishes membership. For showing hardness, we reduce
from the LTL[VPL] model checking problem for a formula φ against a finite
KTS K = (S,→, λ) which is shown to be EXPTIME-complete later in this
paper. For any s ∈ S, we introduce a fresh atomic proposition as and write
ψs ≡ ∨

(s,t,s′)∈δ(X {t}(as′ ∧ ∧
a∈λ(s′) a ∧ ∧

a′ /∈λ(s′) ¬a′)). Then, the formula ϕ′ =
as0 ∧ ∧

a∈λ(s0)
a ∧ ∧

a′ /∈λ(s0)
¬a′ ∧ G(

∧
s∈S(as ⇒ ψs)) ∧ ¬ϕ is satisfiable iff there

is a path in K violating ϕ. ��
For the satisfiability problem of branching time logics, we follow the approach
of [3] and use established results for the satisfiability problem of PDL-Δ[U].

Theorem 14 [7,12]

1. PDL−Δ[REG] satisfiability is EXPTIME-complete.
2. PDL−Δ[VPL] satisfiability is 2EXPTIME-complete.

Using our embeddings into PDL-Δ[U], we then obtain the following result:

Theorem 15

1. CTLc[REG] satisfiability checking is 2EXPTIME-complete.
2. CTLc[VPL] satisfiability checking is 3EXPTIME-complete.

Proof. By Theorem 7, we have an exponential translation of CTLc[U] into PDL-
Δ[U] for U ∈ {REG, VPL}. Furthermore, PDL-Δ[REG] satisfiability checking
is EXPTIME-complete, implying a 2EXPTIME upper bound for CTLc[REG].
The lower bound already holds for ordinary CTL+. Since the satisfiability test
for PDL−Δ[VPL] is possible in 2EXPTIME, we obtain a 3EXPTIME upper
bound and the lower bound follows from the corresponding lower bound for
CTL[DVPA,DVPA∪ NFA] [3]. ��

196 J. O. Gutsfeld et al.

The last theorem shows that parametrisation by regular languages does not
increase the complexity of the satisfiability problem for either CTL∗ or CTL+.
While the use of VPL increases the complexity exponentially, this already holds
for Extended CTL. Finally, the lower bound for CTLc satisfiability and the
complexity of PDL-Δ[U] satisfiability imply that there is no polynomial-time
translation of CTLc[U] into that logic. Since there is a linear translation of
CTL[U,V] into PDL-Δ[U ∪ V], a possible translation of Extended CTL+ into
Extended CTL (if any) must involve an exponential overhead:

Corollary 3. Let U ∈ {REG, VPL}.
1 CTLc[U] �≤poly PDL−Δ[U].
2 CTL+[U] �≤poly CTL[U, U].

Fig. 2. The model checking complexity for different logics and models. (h) indicates
hardness, (i) indicates inclusion and no annotation indicates completeness.

7 Model Checking

We discuss the model checking problem for extended logics and different model
classes. An overview of our results can be found in Fig. 2. We begin with finite
KTS and DCFL. The model checking problem also is undecidable in this case
since LTL[DCFL] formulae can encode the intersection emptiness problem for
DCFL:

Theorem 16. Both LTL[DCFL] and CTLc[DCFL] model checking for KTS are
undecidable.

As a consequence, since CTL[DCFL, DCFL] has a decidable model checking
problem [3], there can be no computable embedding of CTL+ equipped with
DCFL into corresponding CTL variants, which is surprising because the basic
logics CTL+ and CTL have the same expressive power [6]:

Corollary 4. CTL+[DCFL] �<comp CTL[DCFL,DCFL].

The last result shows that there is no generic translation from Extended CTL+

into Extended CTL that is uniform for all types of automata.
As for satisfiability, LTL[REG] model checking is not more costly than LTL

model checking:

Temporal Logics with Language Parameters 197

Theorem 17. LTL[REG] model checking for finite KTS is PSPACE-complete.

Again, switching to VPL increases the complexity to EXPTIME:

Theorem 18. LTL[VPL] model checking for finite KTS is EXPTIME-
complete.

Proof. We reduce the problem of model checking an LTL formula ϕ against a
VPS A = (Q,Γ,Δ, λ) which is EXPTIME-complete [13]. For this, we define a
KTS KA = (Q × Γ,→, λ) as a particular regular overapproximation of A. The
KTS KA follows the evolution of the configuration heads (q, γ) in evolutions of
A. It can do so precisely for call and internal steps but guesses the topmost stack
symbol in the configuration reached after a return step. In order to recover the
actual executions of A, an adequately defined DVPA A′ is used in the formula.
For this purpose, the KTS KA makes visible in the actions the symbol pushed
onto the stack for a call rule in a corresponding call-symbol and the stack symbol
guessed as target of a return step in a corresponding return-symbol. Then, for
ψA′ ≡ GA′

false and ϕ′ ≡ ψA′ ⇒ ϕ, we have KA |= ϕ′ iff A |= ϕ since ψA′

holds iff a path of KA corresponds to a proper path of A. The upper bound
follows from Theorem 2 since we can build an AJA for ¬ϕ′ and test it for
emptiness. ��
Our results for LTL[REG] can be used to derive a model checking algorithm for
CTLc[REG]:

Theorem 19. CTLc[REG] model checking for finite KTS is PSPACE-complete.

Proof. For hardness, a classical result of complexity theory states that the prob-
lem of deciding for n different DFAs whether their intersection is non-empty
is PSPACE-complete [9]. This problem can be reduced to CTLc[DFA] model
checking in polynomial time: for DFA A1 . . . An, the formula E(FA1end ∧ · · · ∧
FAnend) can be checked against a structure generating all finite words fol-
lowed by end markers to test the intersection of the Ai for emptiness. For model
checking, we use the classical CTL∗ [5] algorithm by iteratively applying the
LTL[REG] algorithm and replacing existentially quantified LTL[REG] formulae
by atomic propositions accordingly. ��

Note that CTL∗ model checking against finite KTS is already PSPACE-
complete, in contrast to CTL+ model checking which is Δp

2-complete [11].
For CTLc[VPL], we again make use of our results for the corresponding LTL

variant to derive:

Corollary 5. CTLc[VPL] model checking for finite KTS is EXPTIME-
complete.

Proof. We reduce from the model checking problem for LTL against VPS A
which is EXPTIME complete for the fixed formula ϕ ≡ G(¬fin) if we use check-
points, i.e. DFA accepting configurations of A(q,γ) for every head (q, γ) [13]. Each

198 J. O. Gutsfeld et al.

transition for (q, γ) is conditional on the DFA A(q,γ) accepting the current con-
figuration. We model this restriction by a DVPA representing A(q,γ) and check
it by a G-formula as before, encoding the transitions in the transition labels of
KA. The resulting universally quantified conjunction of GBfalse formulae and
ϕ is a CTL+[DVPA] formula and completes the reduction. ��
It is important to notice that in all cases heretofore discussed, the complexity
becomes polynomial if we fix the formula.

For model checking against VPS, we again make use of our approach based
on alternating automata, but lift it by employing classical results of push-
down model checking. More concretely, we dealternate the ABA/AJA for a
LTL[REG/VPL] formula ϕ, build a product with the VPS and apply an empti-
ness test to obtain EXPTIME-completeness which also holds for LTL [13]:

Theorem 20. LTL[U] model checking against a VPS is EXPTIME-complete
and in P for a fixed formula for U ∈ {REG,VPL}.

Our AJA for LTL[VPL] can be used to extend the classical CTL∗ model
checking algorithm for PDS [13] to CTL∗[VPL]:

Theorem 21. CTL∗[U] model checking for a VPS is 2EXPTIME-complete and
EXPTIME-complete for a fixed formula for U ∈ {REG,VPL}.
Naturally, our algorithm can also be used for our variants of CTL+ to obtain the
same upper bound. However, we do not obtain completeness since the complexity
of CTL+ model checking on VPS (and PDS) - even without language parameters
- is an open question. For PDS, we can use the same argument as for VPS when
it comes to regular languages to obtain the same completeness results. However,
for VPL, we can express the formula EFAtrue for some VPA A and model
checking this formula against a VPS is undecidable [3]:

Theorem 22. Both LTL[VPL] model checking and CTLc[VPL] model checking
for a PDS are undecidable.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 35

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–
211. ACM (2004)

3. Axelsson, R., Hague, M., Kreutzer, S., Lange, M., Latte, M.: Extended computa-
tion tree logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol.
6397, pp. 67–81. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16242-8 6

4. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 476–491. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74407-8 32

https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-642-16242-8_6
https://doi.org/10.1007/978-3-642-16242-8_6
https://doi.org/10.1007/978-3-540-74407-8_32
https://doi.org/10.1007/978-3-540-74407-8_32

Temporal Logics with Language Parameters 199

5. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-
State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge (2016)

6. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: STOC 1982, pp. 169–180 (1982)

7. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999)

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

9. Kozen, D.: Lower bounds for natural proof systems. In: FOCS 1977, pp. 254–266
(1977)

10. Lange, M.: Model checking propositional dynamic logic with all extras. J. Appl.
Logic 4(1), 39–49 (2006)

11. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL+ and FCTL is
hard. In: FOSSACS 2001, pp. 318–331 (2001)

12. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebr. Program. 73(1–2), 51–69 (2007)

13. Schwoon, S. Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

14. Weinert, A., Zimmermann, M.: Visibly linear dynamic logic. Theoret. Comput.
Sci. 747, 100–117 (2018)

15. Wolper, P. Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99
(1983)

Commutative Rational Term Rewriting

Mamoru Ishizuka1, Takahito Aoto1(B) , and Munehiro Iwami2

1 Niigata University, Niigata, Japan
ishizuka@nue.ie.niigata-u.ac.jp, aoto@ie.niigata-u.ac.jp

2 Simane University, Shimane, Japan
munehiro@cis.shimane-u.ac.jp

Abstract. Term rewriting for rational terms, i.e. infinite terms with a
finite number of different subterms, has been considered e.g. in Corradini
& Gadducci (1998) and Aoto & Ketema (2012). In this paper, we con-
sider rational term rewriting by a set of commutativity rules i.e. rules of
the form f(x, y) → f(y, x), based on the framework of Aoto & Ketema
(2012). A rewrite step with a commutativity rule is specified via a regular
set of redex positions, thus via a finite automaton. We present some finite
automata constructions that correspond to (in particular) taking inverse
rewrite steps, merging two branching rewrite steps, and merging two
consecutive rewrite steps. As a corollary, we show that rational rewrite
steps by the commutativity rules are closed under taking equivalence of
the rewrite steps.

Keywords: Rational term rewriting · Commutativity · Finite
automata

1 Introduction

Term rewriting systems (TRSs) is a computational model based on equational
logic [3]. Besides the standard rewriting formalism, many variations and exten-
sions have been considered. One direction of such extensions is towards incorpo-
rating infinitary phenomena for various aspects of computation. In particular,
there is a long history of investigations on infinitary rewriting where (infinitary
long) rewriting of infinite terms is considered, and that on graph rewriting where
rewriting of (cyclic or acyclic) term graphs is considered (see e.g. [2,10,11]). In
this paper, we consider yet another such a formalism of rewriting dealing with
infinitary phenomena, rewriting of rational terms.

Rational terms are infinite terms with a finite number of different subterms
[1,5,6,8]. Unraveling a cyclic term graph into an infinite term yields a term that
is rational, and rational terms are represented finitely [6–8]. In [1], a framework of
rational term rewriting has been considered, and some basic decidability results
concerning computations of the rewriting are given. In this framework, a rewrite
step is specified by a rewrite rule and regular set of redex positions; the reduct
is obtained by simultaneously rewriting at the redex positions. In this paper,

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 200–212, 2021.
https://doi.org/10.1007/978-3-030-68195-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_15&domain=pdf
http://orcid.org/0000-0003-0027-0759
http://orcid.org/0000-0001-9925-450X
https://doi.org/10.1007/978-3-030-68195-1_15

Commutative Rational Term Rewriting 201

we consider (a variant of) rational rewriting by commutativity rules—rewrite
rules of the form f(x, y) → f(y, x). Commutative rewriting is a basis of the
C-unification and AC-unification which have been well-studied in the case of
the standard rewriting [4]. To the best of our knowledge, however, commutative
rewriting has been yet beyond the scope of the study in rational term rewriting.

We present some finite automata constructions that correspond to (in par-
ticular) taking inverse rewrite steps, merging two branching rewrite steps, and
merging two consecutive rewrite steps of rational term rewriting by the commu-
tativity rules. It seems such constructions have not been studied in literature.
As a corollary, we show that rational rewrite steps by the commutativity rules
are closed under taking equivalence of the rewrite steps.

2 Preliminaries

In this section, we explain notions and notations that will be used in this paper.
Our definitions and notation follow [1].

2.1 Finite Automata

Let Σ be a finite set of symbols. An empty sequence is denoted by ε and the
concatenation of finite sequence p, q ∈ Σ∗ is denoted by p.q. A deterministic
finite automaton (DFA for short) is a tuple M = 〈Q,Σ, δ, q0, F 〉 where Q is
a set of states, Σ is a set of input symbols, δ : Q × Σ → Q is a transition
function, q0 ∈ Q is an initial state and F ⊆ Q is a set of final states. The
homomorphic extension of δ is denoted by δ̂ : Q × Σ∗ → Q. Let L(M, qi) ⊆ Σ∗

(qi ∈ Q) be the smallest set such that (i) ε ∈ L(M, q0), and (ii) if p ∈ L(M, q)
and δ(q, a) = qi then p.a ∈ L(M, qi). The language of a DFA M is given by
L(M) =

⋃
qi∈F L(M, qi). Let M1 = 〈Q1, Σ, δ1, q1, F1〉,M2 = 〈Q2, Σ, δ2, q2, F2〉

be DFAs and suppose ≈ ⊆ Q1 × Q2. The relation ≈ is a bisimulation relation if
(i) q1 ≈ q2 (ii) p ≈ q implies δ1(p, a) ≈ δ2(q, a) for any a ∈ Σ and (iii) if p ≈ q,
then p ∈ F1 iff q ∈ F2. Two DFAs M1,M2 are bisimilar (M1 ≈ M2) if there
exists a bisimulation relation. The following property is known (e.g. [9]).

Proposition 1. Let M1,M2 be DFAs. Then, M1 ≈ M2 iff L(M1) = L(M2).

2.2 Rational Terms

We denote a set of arity-fixed function symbols by F and a countably infinite
set of variables by V, where F ∩ V = ∅. The arity of function symbol f ∈ F is
denoted by arity(f). Let Fn = {f ∈ F | arity(f) = n}. Function symbols in F0

are called constants. We assume there exists some n ≥ 0 such that arity(f) ≤ n
for all f ∈ F . We denote the set of positive integers by N+, and the set of finite
sequence of positive integers by N

∗
+. An infinite term t over F and V is a partial

function from N
∗
+ to F ∪ V such that (i) t(ε) is defined, and (ii) t(p.i) (i ∈ N)

is defined iff t(p) ∈ Fn and 1 ≤ i ≤ n for some n. The set of infinite terms is

202 M. Ishizuka et al.

denoted by Tinf (F ,V). Infinite terms are often abbreviated as terms below. The
set Pos(t) of positions of a term t is the domain of the partial function t. In
particular, ε is called the root position. A term t is a finite term if Pos(t) is a
finite set. The symbol t(p) ∈ F ∪ V is called the symbol at the position p. V(t)
is the set of variables appearing in t, that is V(t) = {t(p) ∈ V | p ∈ Pos(t)}. A
subterm t|p of t at the position p ∈ Pos(t) is a mapping given by t|p(q) = t(p.q).
A term t ∈ Tinf (F ,V) is rational if the set of subterms {t|p | p ∈ Pos(t)} of t is
finite. Clearly, finite terms are always rational.

Example 1. Let g, h ∈ F1. Let s be a partial mapping {ε → g, 1 → h, 1.1 → x}.
It is easy to see that s is a term; furthermore, the domain of s is a finite set
{ε, 1, 1.1}, and thus s is a finite term. In usual notation, s = g(h(x)). Let t be
a partial mapping given by t(1n) = g for any n ≥ 0, and undefined otherwise.
Here, 1n is the sequence of 1’s of length n. Intuitively, t is an infinite term
t = g(g(g(· · ·))). In fact, the set of subterm of t is given by {t} (i.e. all subterms
are equal to t), thus t is a rational term. Similarly, if we take u = g(h(g(h(· · ·)))),
then the set of subterms of u equals to {u, h(u)}, and hence u is a rational term.
Clearly, u|12n = u and u|12n+1 = h(u) hold for each n ≥ 0. Now, let f ∈ F2 in
addition, and let v be a mapping v = {1i → f | i ≥ 0} ∪ {1i.2.1j → g | i ≥ 0, j <
i} ∪ {1i.2.1i → x | i ≥ 0}. Then v is an infinite term that is not rational. ��

A substitution is a mapping σ : V → Tinf (F ,V) such that its domain
dom(σ) = {x | σ(x) �= x} is finite. A substitution is identified with its homo-
morphic extension; as usual, σ(t) is rewritten as tσ.

A regular system is a finite set E = {x1 = t1, . . . , xn = tn} of equations such
that the left hand sides x1, . . . , xn are mutually distinct variables and ti is a
finite term for all 1 ≤ i ≤ n. We set its domain as Dom(E) = {x1, . . . , xn} and
its range as Ran(E) = {t1, . . . , tn}. We write E(y) = t if y = t ∈ E. A variable
xi ∈ Dom(E) is looping if the exists 1 ≤ i1, . . . , ik ≤ n such that xi = ti1 ,
and for each 1 ≤ j ≤ k, tij = xi(j mod k)+1 holds. Otherwise, xi ∈ Dom(E) is
non-looping. Let ⊥ be a new constant and F⊥ = F ∪ {⊥}. We define a term
E�(xi) ∈ Tinf (F⊥,V) for each xi ∈ Dom(E) as follows:

E�(xi)(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti(p) if p ∈ Pos(ti) and ti(p) /∈ Dom(E)
⊥ if ti(p) = xj ∈ Dom(E) and xj is looping
E�(xj)(q) if there exists p′ such that p = p′.q

and ti(p′) = xj ∈ Dom(E) and xj is non-looping
undefined otherwise

If E�(x) = t then the pair 〈E, x〉 (Ex in short) is called a representation of t.

Example 2. Let s, u be terms in Example 1. {y = g(z), z = h(x)}y and
{y = g(h(x))}y are representations of s. Let E = {x = g(y), y = h(x)}.
Then u = E�(x) and Ex is a representation of u. If we identify a mapping
E with its homomorphic extension, then we have E0(x) = x, E1(x) = g(y),
E2(x) = E(E(x)) = E(g(y)) = g(E(y)) = g(h(x)), E3(x) = g(h(g(y))), . . .
whose limit will be u. On the other hand, if we set F = {x = y, y = x}, then

Commutative Rational Term Rewriting 203

F 0(x), F 1(x), F 2(x), F 3(x), . . . are x, y, x, y, . . ., which does not converge. Note
we obtain F �(x) = ⊥. Note that a non-looping regular system can be obtained
by replacing every equation x = t with x looping by x = ⊥. ��

Henceforth, we assume F contains the constant ⊥.
The following proposition on regular systems will be used later.

Proposition 2 (Lemma 3.3 of [1]). Let E and F be regular systems and
suppose there exists a surjection δ : Dom(E) → Dom(F) such that δ(y) = δ(s) ∈
F for every y = s ∈ E, where δ is homomorphically extended to a substitution
on terms in the usual way. Then, E�(y) = F �(δ(y)) for every y ∈ Dom(E).

Let E be a regular system and x ∈ Dom(E). Then, define UE(x) as the
smallest set satisfying: (1) x ∈ UE(x), and (2) if y ∈ UE(x) and y = t ∈ E then
V(t) ∩ Dom(E) ⊆ UE(x). We write y �E x if y ∈ UE(x). If E is obvious from
the context, the subscript E may be omitted. Next, for each y � x we define
SPEx

(y) as the smallest set satisfying: (1) ε ∈ SPEx
(x) and (2) if p ∈ SPEx

(z)
and there exists z = t ∈ E such that t|q = y, then p.q ∈ SPEx

(y). We also
define SPEx

(y) = ∅ for y �� x. Intuitively, SPEx
(y) denotes the set of positions

in E�(x) corresponding to y ∈ Dom(E). Finally, we put for any set W ⊆ UE(x),
SPEx

(W) =
⋃

y∈W SPEx
(y); note SPEx

(U ∪ W) = SPEx
(U) ∪ SPEx

(W) and
SPEx

(U \ W) = SPEx
(U) \ SPEx

(W) follow from the definition.

Example 3. Let E = {x = f(y, x), y = g(z), z = h(y)} be a regular system. Then
UE(x) = {x, y, z},UE(y) = UE(z) = {y, z}. If we put E�(y) = g(h(g(h(· · ·)))) =
s, then E�(x) = f(s, f(s, f(· · ·))). Now, SPEx

(x) = {2n | n ≥ 0}, SPEx
(y) =

{2n.12m+1 | n,m ≥ 0} and SPEx
(z) = {2n.12m+2 | n,m ≥ 0}. ��

A regular system E = {x1 = t1, . . . , xn = tn} is canonical if E satisfies the
condition: for each 1 ≤ i ≤ n, either (i) ti ∈ V\Dom(E), or (ii) ti = f(y1, . . . , ym)
for some f ∈ Fm and y1, . . . , ym ∈ Dom(E). We say a representation 〈E, x〉 (or
Ex) is canonical if so is E. It is known that from any regular system E one
can construct a canonical regular system F such that (i) Dom(E) ⊆ Dom(F)
(ii) E�(x) = F �(x) for all x ∈ Dom(E), and (iii) SPEx

(y) = SPFx
(y) for all

x, y ∈ Dom(E) such that y � x.

2.3 Rational Term Rewriting

A pair 〈l, r〉, written also as l → r, of finite terms l and r is a rewrite rule if
l /∈ V and V(l) ⊇ V(r). A term rewriting system (TRS for short) is a finite set of
rewrite rules. A TRS R is said to be orthogonal if l is linear term (any variable
occurs at most once) for any l → r ∈ R, and there is no overlaps between
rules, i.e. l|p and l′ does not unify (w.l.o.g. assuming variables are disjoint) for
rewrite rules l → r, l′ → r′ ∈ R and for each non-variable position p in l (when
l → r = l′ → r′, we moreover assume p �= ε).

204 M. Ishizuka et al.

Definition 1. Let R be an orthogonal TRS and s, t be rational terms. We have
a development rewrite step s −→◦ R t if there exist representations Ex and Fx of
s and t, resp., such that Dom(E) = Dom(F), and a set W ⊆ Dom(E) such that
(1) E(y) = F (y) for any y ∈ Dom(E) \ W and (2) for any y ∈ W , there exist a
rewrite rule l → r ∈ R and a substitution ρ such that E(y) = lρ and F (y) = rρ.

We say that the rewrite step s −→◦ t is specified by 〈Ex, Fx,W 〉, or s −→◦ t is
a rewrite step obtained by applying the rewrite rules on W of Ex. If R is clear
from the context, s −→◦ R t is abbreviated as s −→◦ t. The set of redex positions of
the rewrite step is given by Δ = SPEx

(W), and we write s −→◦ Δ t to make the
redex positions explicit. Note that a rewrite step may be specified by multiple
representations.

Example 4. Let F = {f, g, h,⊥} and R = {f(x, y) → f(y, x), g(x, y) → g(y, x)}.
Let E = {x = f(x, y), y = g(y, y)}, F = {x = f(y, x), y = g(y, y)} be regular
systems. Let W = {x}. Then, we have a rewrite step s −→◦ Δ t, where s =
E�(x), t = F �(x) and Δ = SPEx

(W) = {1n | n ≥ 0}. This rewrite step is
specified by 〈Ex, Fx,W 〉. Let E′ = {x = f(z, y), z = f(x, y), y = g(y, y)}, F ′ =
{x = f(z, y), z = f(y, x), y = g(y, y)} be regular systems. Then we have E′�(x) =
s. Thus, by applying the rewrite rule on W ′ = {z} of E′

x, we obtain a rewrite
step s −→◦ Γ u, where u = F ′�(x) and Γ = SPE′

x
(W ′) = {12n+1 | n ≥ 0}. Lastly,

suppose G = {x = f(z, y), y = g(z, x), z = h(z)} and H = {x = f(y, z), y =
g(x, z), z = h(z)}. Then, we have G�(x) −→◦ H�(x). The step G�(x) −→◦ H�(x)
is specified by 〈Ex, Fx, {x, y}〉. As in the last example, different rewrite rules can
be employed in a single development rewrite step. ��

Remark 1. In [1], a (standard) rewrite step s → t is defined in such a way that a
single rewrite rule is allowed to use in a rewrite step; the restriction is needed to
deal with rewriting of possibly non-orthogonal TRS in general (see Remarks 4.3
and 4.4 in [1]). Contrast to this, in the development rewrite step s −→◦ t, different
rewrite rules l → r ∈ R can be employed depending on y ∈ W . Note, however,
because of the orthogonality, there can not be multiple candidates for such a
rewrite rule for each y ∈ W .

In this paper, we focus on development rewrite steps by a set of commutativity
rewrite rules, i.e. rules of the form f(x, y) → f(y, x). It should be also clear
that any development rewrite step can be specified on canonical representations
because of the form of the commutativity rules. Thus, we will w.l.o.g. specify a
rewrite step via canonical representations.

2.4 Products of Canonical Regular Systems

In this subsection, we present some basic properties of the product construction
of canonical regular systems, which will be used in the subsequent proofs.

Definition 2 (product of canonical regular systems). Let E,F be canon-
ical regular systems. We define the product E × F of E and F as follows.

Commutative Rational Term Rewriting 205

E × F = {〈x, y〉 = f(〈x1, y1〉, . . . , 〈xn, yn〉) | x = f(x1, . . . , xn) ∈ E and
y = f(y1, . . . , yn) ∈ F} ∪ {〈x, y〉 = z | x = z ∈ E, y = z ∈ F and
z /∈ Dom(E) ∪ Dom(F)}. Now, by regarding the pairs of variables as variables,
we treat E × F as a canonical regular system.

The following lemmas characterizes the term represented by (E×F)〈x,y〉 and
the positions in it, in terms of those in Ex.

Lemma 1. Let E,F be canonical regular systems and x ∈ Dom(E), y ∈
Dom(F) such that E�(x) = F �(y). Then, E�(x) = (E × F)�(〈x, y〉).

Lemma 2. Let E,F be canonical regular systems and x ∈ Dom(E), y ∈
Dom(F) such that E�(x) = F �(y). Let W ⊆ Dom(E). Then, SPEx

(W) =
SP(E×F)〈x,y〉(W × Dom(F)).

Using these lemmas, we can characterize rewrite steps of the products.

Lemma 3. Let R be a TRS and Ex a canonical representation of s. Suppose a
rewrite step s −→◦ Γ

R t is obtained by applying the rewrite rules on W ⊆ Dom(E) of
Ex. Let F be a canonical regular system such that s = F �(y). Then, (E ×F)〈x,y〉
is a representation of s, and the rewrite step s −→◦ Γ

R t is obtained by applying
the rewrite rules on W × Dom(F) of (E × F)〈x,y〉.

Proof. By the assumption, s = E�(x) and Γ = SPEx
(W). Then by Lemma 1,

we have s = (E × F)�(〈x, y〉). Moreover, by Lemma 2, Γ = SPEx
(W) =

SP(E×F)〈x,y〉(W × Dom(F)). Thus the claim follows. ��

3 Automata for Inverse Rewrite Steps

In what follows, we consider rewrite steps by commutativity rules and charac-
terize the set of redex positions of rewrite steps via automata. For this, several
conventions, which are going to be introduced now, are useful.

First, we assume n = maxf∈F arity(f) ≥ 2; as, otherwise, one does not have
any rewrite step by commutativity rules. And, for the automata characterizing
the redex positions, we use DFAs over the signature Σ = {1, . . . , n}; we put
them as position automaton.

Definition 3 (position automata). A DFA M = 〈Q,Σ, δ, q0, F 〉 is said to be
a position DFA if Σ = {1, . . . , n}.

Now, to work with position DFAs, it is useful to identify each rational term
as a complete n-tree, i.e., an infinite tree where all nodes have n-children. Let us
assume arity(f) = n for any f ∈ F (including the case f = ⊥). The rationale for
this convention is that we encode t = f(t1, . . . , tl) (l ≤ n) over the original sig-
nature by t◦ = f(t◦1, . . . , t

◦
l , t⊥, . . . , t⊥), where t⊥ = {x⊥ = ⊥(x⊥, . . . , x⊥)}�(x⊥)

and x⊥ is a special variable reserved for this equation. Thus, we assume an

206 M. Ishizuka et al.

equation x⊥ = ⊥(x⊥, . . . , x⊥) is (implicitly1) included to any regular system E.
Moreover, we also identify each equation x = z ∈ E where z ∈ V \ Dom(E) with
the equation x = z(x⊥, . . . , x⊥). Using these conventions, each rational term is
identified with a complete n-tree labelled by f ∈ F or z ∈ V.

Example 5. Let F = {f, g,⊥}, E = {x = f(x, y, z), y = g(y), z = w}. We iden-
tify E with E′ = {x = f(x, y, z), y = g(y, x⊥, x⊥), z = w(x⊥, x⊥, x⊥), x⊥ =
⊥(x⊥, x⊥, x⊥)}. ��

Let FC ⊆ F and C = {f(x1, x2, x3, . . . , xn) → f(x2, x1, x3, . . . , xn) | f ∈
FC}. This C is the TRS that we will consider henceforth.

We now show that a DFA that recognized the set of redex positions of a
rewrite step can be constructed via canonical regular system that specify that
rewrite step.

Definition 4 (canonical DFA). Let E be a canonical regular system and W ⊆
Dom(E), x ∈ Dom(E). Then the canonical DFA for 〈Ex,W 〉 is a position DFA
M(Ex,W) given by 〈Dom(E), Σ, δ, x,W 〉, where δ : Dom(E) × Σ → Dom(E) is
defined as δ(y, i) = E(y)|i.

Example 6. Let F = {f, g}, E = {x = f(y, x), y = g(y, y)} and F = {x =
f(x, y), y = g(y, y)}. By applying commutativity rule f(x, y) → f(y, x) to W =
{x} on Ex we have s →Δ t where Δ = {2n | n ≥ 0}, s = E�(x) and t =
F �(x). Now, the DFA recognizing Δ is obtained as M(Ex,W) = 〈Dom(E)(=
{x, y}), Σ(= {1, 2}), δ, x,W 〉, where δ(z, i) = E(z)|i. ��

Lemma 4 (redex positions and the language of canonical DFAs). Let
s −→◦ Δ t be a rewrite step specified by 〈Ex, Fx,W 〉. Then Δ = L(M(Ex,W)) .

Since commutativity rules are symmetric, the rewrite steps by commutativity
rules are symmetric. From our definition and the previous lemma, the set of redex
positions of the inverse rewrite step also becomes clear.

Lemma 5 (positions of inverse rewrite step). Let s −→◦ t be a rewrite
step specified by 〈Ex, Fx,W 〉. Then we have a rewrite step t −→◦ Λ s specified by
〈Fx, Ex,W 〉, where Λ = L(M(Fx,W)).

Now, what is the relation between the set Δ in s −→◦ Δ t and the set Λ in
t −→◦ Λ s? Since these set Δ and Λ are regular sets, the relation should be also
characterized via automata. This motives us to define an “inverse” automaton.

The following convention is very useful hereafter: for i ∈ Σ, we let 1̄ = 2, 2̄ =
1, ī = i (3 ≤ i ≤ n).

1 To ease the readability, however, we omit below the equation x⊥ = ⊥(x⊥, . . . , x⊥)
if the equation is not necessary, i.e. if there is no equation in E such that its right
hand side is a variable or all f ∈ F originally have the same arity.

Commutative Rational Term Rewriting 207

Definition 5 (inverse automata). Let M = 〈Q,Σ, δ, q0, F 〉 be a position
DFA. Then we define the inverse automaton of M by M−1 = 〈Q,Σ, δ′, q0, F 〉
where

δ′(q, i) =
{

δ(q, ī) if q ∈ F
δ(q, i) otherwise.

We remark that M−1 is a position DFA and (M−1)−1 = M .
First, we consider automata that recognize Δ and Λ of a rewrite step s −→◦ Δ t

and its inverse t −→◦ Λ s obtained by the triple 〈Ex, Fx,W 〉 that specifies these
rewrite step. We show that the automaton for the latter is the inverse of the one
for the former.

Lemma 6 (inverse of canonical DFA). Let s −→◦ t be a rewrite step specified
by 〈Ex, Fx,W 〉. Then we have M(Ex,W)−1 = M(Fx,W).

We now show that the inverse operation preserves the equivalence of the
languages.

Lemma 7 (language preservation of inverse). Let M1,M2 be position
DFAs. If L(M1) = L(M2) then L(M−1

1) = L(M−1
2).

Based on our preparations so far, we are now going to show that regardless
of the specification of rewrite steps, inverse rewrite steps are given by reducing
the redex positions of the inverse automaton.

Theorem 1 (inverse rewrite steps and inverse automaton). Let M be
a position DFA and suppose s −→◦ Δ

C t where Δ = L(M). For Λ = L(M−1), we
have t −→◦ Λ

C s.

Proof. Suppose s −→◦ Δ t is specified by 〈Ex, Fx,W 〉. Then, by Lemma 4, we have
Δ = L(M(Ex,W)). Hence, L(M) = Δ = L(M(Ex,W)) is obtained. Then, by
Lemma 7, L(M−1) = L(M(Ex,W)−1). On the other hand, by Lemma 5, we have
t −→◦ Γ s where Γ = L(M(Fx,W)). Furthermore, by Lemma 6, M(Ex,W)−1 =
M(Fx,W). Thus, Λ = L(M−1) = L(M(Ex,W)−1) = L(M(Fx,W)) = Γ .
Therefore, from t −→◦ Γ s, we obtain t −→◦ Λ s. ��

Before ending this section, we remark that the results in this section hold not
only for the development rewrite step −→◦ but also for the rewrite step →, i.e.
s →Δ

C t implies t →Γ
C s. The situation, however, becomes different in the next

section.

4 Automata for Join of Branching Steps

From this section, we consider automata constructions that arise from branching
development rewrite steps, i.e. rewrite steps of the form t ←−◦ s −→◦ u.

The first operation we consider is called join of branching steps. Let us
explain the intuition of the join of rewrite steps informally. Suppose we have
branching rewrite steps from s as s −→◦ Γ t and s −→◦ Δ u. The join of two

208 M. Ishizuka et al.

rewrite steps expresses the effect of doing these two reductions simultaneously.
However, this does not mean rewriting all the positions in Γ ∪ Δ, that is, for
p ∈ Γ ∩Δ, we consider applying the commutativity rule twice has an effect same
as s|p = f(s1, s2) → f(s2, s1) → f(s1, s2) = s|p. That is, we regard that the one
rewrite step at s|p is cancelled by the other. Thus, the join of the redex positions
is defined as follows.

Definition 6 (join of position sets). Let Γ,Δ ⊆ Pos(s). The join of Γ and
Δ is defined as Γ ⊕ Δ = {p ∈ Γ | p /∈ Δ} ∪ {p ∈ Δ | p /∈ Γ}.

Example 7. Let FC = {f, g} and s = {x = f(y, z), y = g(y, w), z = g(w, z), w =
h(w,w)}�(x). Let Γ = {1n | n ≥ 0} and Δ = {2n | n ≥ 0}. We have s −→◦ Γ⊕Δ t,
where t = {x = f(y, z), y = g(w, y), z = g(z, w), w = h(w,w)}�(x). ��

We now want to achieve the effect of doing reduction at Γ ⊕ Δ on regular
systems. Note that two rewrite steps s −→◦ Γ t and s −→◦ Δ u may be achieved
using different regular systems. To synchronize two regular systems, we use the
product construction.

We now introduce a notation that is used in the lemma below. Let E,E′

be regular systems and W ⊆ Dom(E),W ′ ⊆ Dom(E′). We put W ⊕ W ′ =
(W × W ′c) ∪ (W c × W ′). Here, W c = Dom(E) \ W and W ′c = Dom(E′) \ W ′.

Lemma 8 (join of branching steps). Let Ex, E′
x′ be regular representations

of s. Let s −→◦ Γ t (s −→◦ Δ u) be the rewrite step obtained by applying the
rewrite rules on W ⊆ Dom(E) of Ex (W ′ ⊆ Dom(E′) of E′

x′ , respectively).
Then, (E ×E′)〈x,x′〉 is a regular representation of s, and by applying the rewrite
rules on W ⊕ W ′ of (E × E′)〈x,x′〉, one obtains a rewrite step s −→◦ Γ⊕Δ v for
some v. (Hence, Γ ⊕ Δ = L(M((E × E′)〈x,x′〉,W ⊕ W ′)).)

The previous lemma motivates us to introduce the following automata con-
struction.

Definition 7 (join automata). We define the join automaton M1⊕M2 of two
position DFAs M1 = 〈Q1, Σ, δ1, q1, F1〉 and M2 = 〈Q2, Σ, δ2, q2, F2〉 as follows:
M1 ⊕ M2 = 〈Q1 × Q2, Σ, δ, 〈q1, q2〉, F1 ⊕ F2〉, where

– δ is given like this: δ(〈x, y〉, i) = 〈δ1(x, i), δ2(y, i)〉 and
– F1 ⊕ F2 = {〈x, y〉 | x ∈ F1, y ∈ Q2 \ F2} ∪ {〈x, y〉 | x ∈ Q1 \ F1, y ∈ F2}.

Next lemmas are easily obtained.

Lemma 9 (join of canonical DFAs). Let Ex, E′
x′ be regular representations

of s, W ⊆ Dom(E), and W ′ ⊆ Dom(E′). Then, M(Ex,W) ⊕ M(E′
x,W ′) =

M((E × E′)〈x,x′〉,W ⊕ W ′).

Lemma 10 (language preservation of join). Suppose that M1,M2,M
′
1,M

′
2

are position DFAs. If L(M1) = L(M ′
1) and L(M2) = L(M ′

2) then L(M1⊕M2) =
L(M ′

1 ⊕ M ′
2).

Commutative Rational Term Rewriting 209

We now arrive the main theorem of this section.

Theorem 2 (join rewrite steps and join automata). Let M1,M2 be posi-
tion DFAs. Suppose s −→◦ Γ

C t and s −→◦ Δ
C u, where Γ = L(M1) and Δ = L(M2).

Then, s −→◦ Γ⊕Δ
C v and Γ ⊕ Δ = L(M1 ⊕ M2) for some v.

Proof. Suppose that the rewrite step s −→◦ Γ t (s −→◦ Δ u) is obtained by applying
the rewrite rules on W of Ex (W ′ of E′

x′ , respectively). Then Γ = L(M1) =
L(M(Ex,W)) and Δ = L(M2) = L(M(E′

x′ ,W ′)). Then, by Lemma 10, we have
L(M1 ⊕ M2) = L(M(Ex,W) ⊕ M(E′

x′ ,W ′)). By Lemmas 8 and 9, s −→◦ Γ⊕Δ v
and Γ ⊕ Δ = L(M((E × E′)〈x,x′〉,W ⊕ W ′)) = L(M(Ex,W) ⊕ M(E′

x′ ,W ′)) =
L(M1 ⊕ M2). ��
Remark 2. For branching (standard) steps s →Γ

C t1 and s →Δ
C t2, we obtain

s −→◦ Γ⊕Δ
C v, as s →C ti implies s −→◦ C ti. However, because the employed rules

in s →Γ
C t1 and s →Δ

C t2 may be different, it is not always the case s →Γ⊕Δ
C v.

This is why we had to introduce the development rewrite step −→◦ .

5 Automata for Difference of Branching Steps

Suppose that we have s −→◦ Γ
C t, s −→◦ Δ

C u and s −→◦ Γ⊕Δ
C v. Then, naturally there

would be a rewrite step that will close the gap between t and v (u and v)—we
will call rewrite steps such as t −→◦ v and u −→◦ v ’difference’ of that branching
rewrite steps. Below we present an automata construction that capture taking
the difference of that branching rewrite steps.

Below, we put (f(t1, t2, t3, . . . tn))C = f(t2, t1, t3, . . . , tn).

Lemma 11 (difference of branching steps). Let Ex, E′
x′ be regular repre-

sentations of s. Let s −→◦ Γ t (s −→◦ Δ u) be the rewrite step obtained by applying
the rewrite rules on W ⊆ Dom(E) of Ex (W ′ ⊆ Dom(E′) of E′

x′ , respectively).
Suppose s −→◦ Γ⊕Δ v.

1. Let F = {〈y, y′〉 = wC | 〈y, y′〉 = w ∈ E × E′, y ∈ W} ∪ {〈y, y′〉 = w ∈
E × E′ | y /∈ W}. Then, F〈x,x′〉 is a regular representation of t and one
obtains a rewrite step t −→◦ v by applying the rewrite rules on Dom(E) × W ′

of F〈x,x′〉.
2. Let F ′ = {〈y, y′〉 = wC | 〈y, y′〉 = w ∈ E × E′, y′ ∈ W ′} ∪ {〈y, y′〉 = w ∈

E × E′ | y′ /∈ W ′}. Then, F ′
〈x,x′〉 is a regular representation of u and one

obtains a rewrite step u −→◦ v by applying the rewrite rules on W × Dom(E′)
of F ′

〈x,x′〉.

The characterization of the previous lemma motivates us to define the differ-
ence automata as follows.

Definition 8 (difference automata). Let M1 = 〈Q1, Σ, δ1, q1, F1〉, M2 =
〈Q2, Σ, δ2, q2, F2〉 be position DFAs. We define the difference automaton by
M2 \ M1 = 〈Q1 × Q2, Σ, η, 〈q1, q2〉, Q1 × F2〉, where η is given like this:

η(〈x, y〉, i) =
{

〈δ1(x, ī), δ2(y, ī)〉 if x ∈ F1

〈δ1(x, i), δ2(y, i)〉 otherwise.

210 M. Ishizuka et al.

The next lemma is shown using Lemma 11.

Lemma 12 (difference of canonical DFAs). Let s −→◦ Γ t (s −→◦ Δ u) be
obtained by applying the rewrite rules on W of Ex (on W ′ of E′

x′ , respectively).
Suppose s −→◦ Γ⊕Δ v. Then (1) t −→◦ Λ v where Λ = L(M(E′

x′ ,W ′)\M(Ex,W)),
and (2) u −→◦ Π v where Π = L(M(Ex,W) \ M(E′

x′ ,W ′)).

Lemma 13 (language preservation of difference). Let M1,M
′
1,M2,M

′
2 be

position DFAs such that L(M1) = L(M ′
1) and L(M2) = L(M ′

2). Then, L(M2 \
M1) = L(M ′

2 \ M ′
1).

Thus, we are ready to show that the difference of branching rewrite steps is
characterized by the difference automata.

Theorem 3 (difference rewrite steps and difference automata). Let
M1,M2 be position DFAs. Let s −→◦ Γ

C t and s −→◦ Δ
C u, where Γ = L(M1) and

Δ = L(M2). Suppose s −→◦ Γ⊕Δ
C v. Then, (1) t −→◦ Λ

C v, where Λ = L(M2 \ M1),
and (2) u −→◦ Λ′

C v, where Λ′ = L(M1 \ M2).

Proof. We here only show (1), as (2) can be shown in the symmetric way. Suppose
that the rewrite step s −→◦ Γ t (s −→◦ Δ u) is obtained by applying the rewrite rules
on W of Ex (W ′ of E′

x′ , respectively). Then Γ = L(M1) = L(M(Ex,W)) and
Δ = L(M2) = L(M(E′

x′ ,W ′)). Then, it follows from Lemma 13 that L(M2 \
M1) = L(M(E′

x′ ,W ′) \ M(Ex,W)). By Lemma 12, t −→◦ Λ v by taking Λ =
L(M(E′

x′ ,W ′) \ M(Ex,W)) = L(M2 \ M1). ��

6 Closure Under Equivalence

In this section, we give an application of the results in previous three sections.
Namely, we show that development rewrite step −→◦ C is closed under taking
equivalence. It is clear from the definition that −→◦ C is reflexive, and in Theo-
rem 1 we have already shown that −→◦ C is symmetric. Thus, only transitivity is
yet to be shown.

We need one lemma for this.

Lemma 14. For any position DFAs M1,M2, we have L((M2 \ M1
−1) \ M1) =

L(M2).

Theorem 4 (merging of consecutive steps). Let M1,M2 be position DFAs.
Let s −→◦ Δ

C t and t −→◦ Γ
C u, where Δ = L(M1) and Γ = L(M2). Then, s −→◦ Λ

C u,
where Λ = L((M2 \ M−1

1) ⊕ M1).

Proof. From s −→◦ Δ t and Theorem 1, we have t −→◦ Δ′
s, where Δ′ = L(M−1

1).
Thus, from t −→◦ Δ′

s and t −→◦ Γ u, we obtain by Theorem 2 that t −→◦ Δ′⊕Γ v for
some v. Furthermore, s −→◦ Π v by the Theorem 3, where Π = L(M2 \ M1

−1).
Now we have s −→◦ Π v and s −→◦ Δ t. Thus, from Theorem 2, we have s −→◦ Λ u′

for some u′, where Λ = Π ⊕ Δ = L((M2 \ M−1
1) ⊕ M1). Furthermore, we have

Commutative Rational Term Rewriting 211

t −→◦ Γ ′
u′ by Theorem 3, where Γ ′ = L((M2 \ M1

−1) \ M1). From Lemma 14,
Γ ′ = L((M2 \ M1

−1) \ M1) = L(M2) = Γ . Thus, since we have t −→◦ Γ u by
our assumption, we obtain u = u′ from t −→◦ Γ ′

u′. As we have s −→◦ Λ u′, we
conclude s −→◦ Λ u. ��

The following is an immediate corollary of Theorems 1 and 4.

Corollary 1 (closure under equivalence). Equivalence closure of develop-
ment rewrite steps is identical to a single development rewrite step in rational
term rewriting of commutativity rules, i.e. ←→◦ ∗

C = −→◦ C in rational term rewrit-
ing for any set C of commutativity rules.

7 Conclusion

We have studied development rewrite steps −→◦ C of rational term rewriting by
commutativity rules C, where each rewrite step s −→◦ Γ

C t is specified by a regular
set Γ of positions (hence by a finite automaton) in the rational term s. We
have shown the inverse automata construction ()−1 such that s −→◦ L(M)

C t give

rise to t −→◦ L(M−1)
C s. We have also given the constructions of join M1 ⊕ M2

and difference M1 \ M2 of automata M1 and M2 specifying branching steps
s −→◦ L(M1)

C t1 and s −→◦ L(M2)
C t2. Then, consecutive steps s −→◦ L(M1)

C t −→◦ L(M2)
C u

give rise to s −→◦ L(M ′)
C u with M ′ = (M2\M1

−1)⊕M1. As a corollary, it has been
shown that the equivalence closure ←→◦ ∗

C of development rewrite steps is identical
to a single development rewrite step −→◦ C for any set C of commutativity rules.

A possible future work would be the commutative unification in the setting
of rational term rewriting. It would be also an interesting question how one can
obtain the automata constructions for showing reversibility (i.e. s −→◦ ∗ t implies
t −→◦ ∗ s) of associative-commutative rational term rewriting. Another possible
future work would be to generalize our constructions to deal with any flat rules.

Acknowledgement. Thanks are due to anonymous referees and Akihisa Yamada
for helpful comments. This work was partially supported by a grant from JSPS
No. 18K11158.

References

1. Aoto, T., Ketema, J.: Rational term rewriting revisited: decidability and conflu-
ence. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 172–186. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33654-6 12

2. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundam. Informaticae
26, 207–240 (1996)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning
vol. 1, pp. 445–533. Elsevier (2001)

https://doi.org/10.1007/978-3-642-33654-6_12
https://doi.org/10.1007/978-3-642-33654-6_12

212 M. Ishizuka et al.

5. Corradini, A.: Term rewriting in CTΣ . In: Gaudel, M.-C., Jouannaud, J.-P. (eds.)
CAAP 1993. LNCS, vol. 668, pp. 468–484. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56610-4 83

6. Corradini, A., Gadducci, F.: Rational term rewriting. In: Nivat, M. (ed.) FoSSaCS
1998. LNCS, vol. 1378, pp. 156–171. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053548

7. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983)

8. Inverardi, P., Zilli, M.V.: Rational rewriting. In: Pŕıvara, I., Rovan, B., Ruzička,
P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 433–442. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58338-6 90

9. Kozen, D.C.: Automata and Computability. Springer, New York (1997)
10. Plump, D.: Term graph rewriting. In: Handbook of Graph Grammars and Com-

puting by Graph Transformation Volume 2: Applications, Languages and Tools,
pp. 3–61. World Scientific (1999)

11. Terese (ed.): Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

https://doi.org/10.1007/3-540-56610-4_83
https://doi.org/10.1007/3-540-56610-4_83
https://doi.org/10.1007/BFb0053548
https://doi.org/10.1007/BFb0053548
https://doi.org/10.1007/3-540-58338-6_90

Context-Free Grammars with Lookahead

Takayuki Miyazaki(B) and Yasuhiko Minamide

Tokyo Institute of Technology, Tokyo, Japan
miyazaki.t.af@m.titech.ac.jp, minamide@is.titech.ac.jp

Abstract. We introduce context-free grammars with lookahead. The
grammars are an extension of both context-free grammars and parsing
expression grammars, hence we can handle the two grammars in a uni-
fied way. To accommodate lookahead, we use a language with lookahead,
which is a set of string pairs. We considered the grammar as a system of
equations and give the language with lookahead by the limit of iterations
from the empty set. The language class is closed under union, intersec-
tion, complement, and a weak version of concatenation and Kleene star.

Keywords: Context-free grammars · Parsing expression grammars ·
Lookahead · Syntactic predicates · Regular expressions · Formal
language theory · Parsing · Denotational semantics

1 Introduction

We introduce context-free grammars with lookahead (CFGLa). Lookahead is
used in the traditional theory of parsing and also in other areas of formal lan-
guage theory [8,9,15,17,18]. It is a constraint on the following string. A positive
lookahead &e and a negative lookahead !e indicate that the following string starts
with e and does not start with e, respectively. For example, if the languages of X
and Y are {anbncm | n,m ≥ 1} and {anbmcm | n,m ≥ 1}, respectively, then the
language of (&X)Y is {anbncn | n ≥ 1}. We can represent intersection and com-
plement by lookahead. Besides, lookahead can be used to remove ambiguity and
suppress branching. Parsing expression grammars (PEG) [9] are grammars with
lookahead and the ordered choice instead of the alternation. They are widely
used for parsing and have linear time parser, unambiguity, and expressiveness
beyond deterministic context-free languages. CFGLa are an extension of both
context-free grammars (CFG) and PEG, hence we can handle the two grammars
in a unified way.

We develop the theory of CFGLa. We consider CFGLa as a system of
equations over languages with lookahead [14]. Languages with lookahead are
introduced to develop the theory of regular expressions with lookahead (RELa)
[14,15], which are common in regular expression libraries. They are the set of
pairs of strings, for example, a RELa a(&b) represents a language with looka-
head {(a, bx) | x ∈ Σ∗}. We can naturally define union, concatenation, Kleene
star, and lookahead on the set of languages with lookahead. Next, CFG can be

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 213–225, 2021.
https://doi.org/10.1007/978-3-030-68195-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_16&domain=pdf
http://orcid.org/0000-0002-0380-1247
http://orcid.org/0000-0001-8647-6816
https://doi.org/10.1007/978-3-030-68195-1_16

214 T. Miyazaki and Y. Minamide

regarded as a system of language equations and the language of CFG is the least
solution of the system [2,7]. Similarly, a CFGLa can be regarded as a system of
equations over languages with lookahead. However, since CFGLa have negative
lookahead, some grammars have no solution such as X = !X. Hence, we partially
give the semantics by the naturally reachable solution [16], which is the limit of
iterations from the empty set. This technique is derived from Boolean grammars
[16], which are CFG with intersection and complement. A CFGLa is called valid
if the CFGLa has the naturally reachable solution.

This study is closely related to grammars with one-sided contexts [3]. The
grammars essentially support positive lookahead by intersection and right con-
text. Their semantics is given by two approaches: a deductive system and a
system of language equations. This study differs significantly in its support for
negative lookahead and differs in several points such as the way to give semantics
and simulation of PEG.

In Sect. 2, we define strings with lookahead as pairs of strings and languages
with lookahead as sets of strings with lookahead. In Sect. 3.1, we introduce
CFGLa by the naturally reachable solution on languages with lookahead. We
observe some examples, for k ≥ 1, the language {akn | n ≥ 0} is represented
by CFGLa. In Sect. 3.2, we show some closure properties. The recognition algo-
rithm is omitted due to space limitations. In Sect. 3.3, we introduce operational
semantics and show that CFGLa is an extension of PEG. In Sect. 4, we refer to
related work and discuss the differences of expressiveness between the language
class of CFGLa and other language classes.

2 Languages with Lookahead

In this section, we introduce strings with lookahead and languages with looka-
head [14]. Strings with lookahead are pairs of strings with partial concatenation
and positive lookahead. This is the same concept as strings with contexts [3,4].
Languages with lookahead are sets of pairs of strings with union, concatena-
tion, Kleene star, and negative lookahead. We consider a limit of a sequence of
languages with lookahead and show some basic properties.

Definition 1 (Strings with lookahead). A string with lookahead is a pair of
strings. The concatenation · is the partial function defined as (x, yz) · (y, z) =
(xy, z). The positive lookahead & is defined as &(x, y) = (ε, xy).

A string with lookahead (x, y) is a string x with a constraint that imposes the
following string is y. For concatenation, the first elements of pairs are concate-
nated as usual: x·y = xy. Considering the second elements of pairs, the operation
is defined only when the second operand (y, z) satisfies the condition yz of the
first operand. Positive lookahead creates a constraint. For any string with looka-
head r, we have &r · r = r. The set of strings with lookahead forms a small
category. For (x, yz) : xyz → yz and (y, z) : yz → z, the concatenation of the
two is (xy, z) : xyz → z. A string with lookahead (ε, x) : x → x is the identity
morphism.

Context-Free Grammars with Lookahead 215

Definition 2 (Languages with Lookahead). A language with lookahead R
over an alphabet Σ is a set of strings with lookahead. For two languages with
lookahead R and S, the concatenation R ·S is defined as {r · s | r ∈ R, s ∈ S, r ·
s is defined}. The power of R is defined as R0 = {ε} × Σ∗ and Rn+1 = R · Rn.
The Kleene star R∗ is defined as

⋃

n≥0

Rn and R+ is defined as
⋃

n≥1

Rn. The

positive lookahead &R is defined as {&r | r ∈ R} and the negative lookahead !R
is defined as ({ε} × Σ∗) \ &R.

Positive lookahead &R can be expressed as !(!R) using negative lookahead. The
operations ∪, ·, ∗, and & are monotonically increasing functions. For concatena-
tion, that is if R1 ⊆ R2 and S1 ⊆ S2 then R1·S1 ⊆ R2·S2. The negative lookahead
! is a monotonically decreasing function, i.e. if R1 ⊆ R2 then !R1 ⊇ !R2. The set
of languages with lookahead forms a Kleene algebra with tests [11,14]. The set
of constraints P({ε} × Σ∗) with ∪, ·, and ! forms Boolean algebra.

Let Rn be a sequence over sets. The limit superior lim
n→∞ Rn and the limit

inferior lim
n→∞

Rn are defined as follows.

lim
n→∞ Rn =

⋂

i≥0

⋃

j≥i

Rj lim
n→∞

Rn =
⋃

i≥0

⋂

j≥i

Rj

If the limit superior and the limit inferior coincide, then Rn converges and the
limit lim

n→∞ Rn is equal to the common value.

It is a standard result that union is continuous, i.e. lim
n→∞(Rn∪Sn) = lim

n→∞ Rn∪
lim
n→∞ Sn for convergent sequences Rn and Sn. We show that concatenation and
negative lookahead are also continuous.

Lemma 1. For convergent sequences Rn and Sn, lim
n→∞(Rn · Sn) = lim

n→∞ Rn ·
lim
n→∞ Sn.

Proof. The key is that for a given string with lookahead r, there is a finite number
of combinations of r1 and r2 such that r = r1 · r2. First, if r ∈ lim

n→∞(Rn · Sn),
then there are infinitely many n such that r ∈ Rn · Sn. By the finiteness of
combinations, there are r1, r2 and infinitely many n such that r = r1 ·r2, r1 ∈ Rn,
and r2 ∈ Sn. Therefore, lim

n→∞(Rn ·Sn) ⊆ (lim
n→∞ Rn) · (lim

n→∞ Sn). Easily, lim
n→∞

(Rn ·
Sn) ⊇ (lim

n→∞
Rn) · (lim

n→∞
Sn). Thus, lim

n→∞(Rn · Sn) = (lim
n→∞ Rn) · (lim

n→∞ Sn). �	

Lemma 2. For convergent sequences Rn, lim
n→∞ !Rn = ! lim

n→∞ Rn.

Proof. We can show this using the following equations.

!(
⋃

n∈I

Rn) =
⋂

n∈I

!Rn !(
⋂

n∈I

Rn) =
⋃

n∈I

!Rn

�	

216 T. Miyazaki and Y. Minamide

The following lemma is useful to prove convergence of a sequence over sets.

Lemma 3. Let Rn and Mn be sequences of sets, if Rn ∩ Mn converges and Mn

converges to the universal set, then Rn converges and lim
n→∞ Rn = lim

n→∞(Rn∩Mn).

Proof. In general, lim
n→∞

(Rn ∩ Mn) = lim
n→∞

Rn ∩ lim
n→∞

Mn holds. If Mn converges

to the universal set, then lim
n→∞(Rn ∩ Mn) = lim

n→∞ Rn. Therefore, Rn converges

and lim
n→∞ Rn = lim

n→∞(Rn ∩ Mn). �	

Let Bn be a sequence over functions to sets. If for all X, the limit lim
n→∞ Bn(X)

converges, then Bn converges and the limit (lim
n→∞ Bn)(X) = lim

n→∞ Bn(X).

3 Context-Free Grammars with Lookahead

In this section, we introduce CFGLa and illustrate some examples. We discuss
closure properties and show CFGLa is an extension of PEG [9].

3.1 Definition of CFGLa

First, we introduce RELa including variables and their interpretation. Next, we
introduce CFGLa and define the language with lookahead of CFGLa by the
naturally reachable solution, which is the limit of iterations from the empty set.
This technique is also used in Boolean grammars [16] and partial fixed-point logic
[20]. A CFGLa is called valid if it has the naturally reachable solution. Lastly,
we see that CFGLa is an extension of CFG and illustrate some examples.

Definition 3 (Regular expressions with lookahead). Let Σ be an alpha-
bet and V be a set of variables disjoint from Σ. The regular expressions with
lookahead including variables RELa(Σ,V) are given by the following syntax.

e:: = ∅ | ε | a | X | e|e | ee | !e (a ∈ Σ, X ∈ V)

The lookahead has the highest priority, then concatenation and then alternation.
For example, a RELa !XY | ε is equal to ((!X)Y) | ε. The positive lookahead &e
is an abbreviation for !(!e). Any character “.” is an abbreviation for a1| . . . |an

when Σ = {a1, . . . , an}. The end of a string $ is an abbreviation for “!.”.
A function B : RELa(Σ,V) → P(Σ∗ × Σ∗) is called an interpretation if the

following hold.

B(∅) = ∅, B(ε) = {ε} × Σ∗, B(a) = {a} × Σ∗,
B(e1|e2) = B(e1) ∪ B(e2), B(e1e2) = B(e1) · B(e2), B(!e) = !B(e)

The empty interpretation B∅ is an interpretation generated by B∅(X) = ∅ for all
X ∈ V . For example, B∅(a&b) = {(a, bx) | x ∈ Σ∗} and B∅(!X) = !∅ = {ε}×Σ∗.
For two interpretations B1 and B2, we define B1 ⊆ B2 by B1(X) ⊆ B2(X) for all

Context-Free Grammars with Lookahead 217

X. For an interpretation B and e ∈ RELa(Σ,V), the language LB(e) is defined
as {x | (x, ε) ∈ B(e)}. The language is the set of strings that the end of a string
can follow. We have B(e$) = LB(e)×{ε} and B(&(e$)) = {ε}×LB(e). If e does
not contain lookahead, B∅(e) = LB∅(e) × Σ∗.

Definition 4 (Context-free grammars with lookahead). Let Σ be an
alphabet and V be a set of variables disjoint from Σ. A CFGLa G is a tuple
(V,Σ, P, S) where

– P : V → RELa(Σ,V) is a production function,
– S ∈ V is a start variable.

A production function P is extended to a function from RELa(Σ,V).

P (∅) = ∅, P (ε) = ε, P (a) = a,

P (e1|e2) = P (e1)|P (e2), P (e1e2) = P (e1)P (e2), P (!e) = !P (e)

The power of a production function is defined as P 0(e) = e and Pn+1(e) =
P (Pn(e)). For example, if P (X) = aXb|ε, then P 2(X) = a(aXb|ε)b|ε.

A production function can be regarded as a system of equations. An interpre-
tation B is called a solution of P if B satisfies B = B ◦ P . Note that B = B ◦ P
represents B(X) = B(P (X)) for any X. We write �P �(B) for B ◦ P .

Lemma 4. For an interpretation B, if a sequence B ◦ Pn converges, then the
limit lim

n→∞(B ◦ Pn) is a solution of P .

Proof. First, we show lim
n→∞(B ◦ Pn) is an interpretation. We show the case of

concatenation.

lim
n→∞ B(Pn(e1e2)) = lim

n→∞ B(Pn(e1)Pn(e2)) (induction on n)

= lim
n→∞(B(Pn(e1)) · B(Pn(e2))) (B is an interpretation)

= lim
n→∞ B(Pn(e1)) · lim

n→∞ B(Pn(e2)) (Lemma 1)

Next, we have lim
n→∞(B ◦ Pn) ◦ P = lim

n→∞(B ◦ Pn+1) = lim
n→∞(B ◦ Pn). Thus,

lim
n→∞(B ◦ Pn) is a solution. �	

The naturally reachable solution BP,nat is defined as lim
n→∞(B∅◦Pn). A CFGLa

is called valid if BP,nat exists. A CFGLa is called uniquely convergent if for all
interpretation B, the limit lim

n→∞(B◦Pn) converges to the same value. A uniquely
convergent CFGLa is valid and has a unique solution.

Definition 5 (Language with lookahead). The language with lookahead of
a valid CFGLa G = (V,Σ, P, S) is the set B(G) = BP,nat(S) and the language
of G is the set L(G) = LBP,nat

(S).

218 T. Miyazaki and Y. Minamide

For a CFGLa without lookahead G = (V,Σ, P, S), the function �P � is a mono-
tone function, hence B(G) =

⋃

n≥0

(B∅ ◦ Pn). In addition, B(G) = L(G) × Σ∗

holds. Therefore, the language of CFGLa without lookahead and the language
of CFG coincide. Thus, CFGLa is an extension of CFG.

Example 1 (Valid Grammars).

1. A CFGLa X = aXb | ε is uniquely convergent. The naturally reachable
solution is calculated as follows.

B∅(P 0(X)) = B∅(X) = ∅,

B∅(P 1(X)) = B∅(aXb|ε) = {ε} × Σ∗,

B∅(P 2(X)) = B∅(a(aXb|ε)b|ε) = {ε, ab} × Σ∗,

B∅(P 3(X)) = B∅(a(a(aXb|ε)b|ε)b|ε) = {ε, ab, aabb} × Σ∗.

Therefore, BP,nat(X) = lim
n→∞ B∅(Pn(X)) = {anbn | n ≥ 0} × Σ∗.

2. A CFGLa X = X is valid and BP,nat(X) = ∅. It is the same as CFG.
3. A CFGLa “X = !Y, Y = &Y ” is valid. For any language L, an interpretation

B(X) = {ε} × Lc, B(Y) = {ε} × L is a solution. Unlike in the case of CFG,
there is no least solution. The naturally reachable solution is BP,nat(X) =
{ε} × Σ∗, BP,nat(Y) = ∅ and it is the desired result.

4. A CFGLa X = !(aX) is valid. When Σ = {a}, we have the following.

B∅(Pn(X)) =

{
{ε} × {ai | i < n, i is even} (n is even)
{ε} × ({a}∗ \ {ai | i < n, i is odd}) (n is odd)

Therefore, BP,nat(X) = {(ε, a2n) | n ≥ 0}. A proper right recursion in nega-
tive lookahead is allowed.

5. A CFGLa G defined by

S = a&(Y (a|$))XSb | ab, X = bX | b, Y = bY b | a

is valid and L(G) = {(abn)n | n ≥ 1}. If you ignore the lookahead part,
the language is {ax1 . . . axn−1abn | n ≥ 1, x1, . . . , xn−1 ∈ {b}∗}. Lookahead
requires that all lengths of xi be equal.

6. For k ≥ 1, let G be ({X}, {a}, P,X), where P (X) = a$|&(X$)|ak−1Xa. The
CFGLa G is valid, B(G) = {(an, am) | ∃l. n + km = kl}, and L(G) = {akn |
n ≥ 0}. This grammar takes advantage of the property of lookahead and
contains only positive lookahead without the end of a string. This example is
essentially the same as Example 4 in [4].

Example 2 (Invalid Grammars).

1. A CFGLa X = !X has no solution, hence it is invalid. Substitutions are
correct for valid grammars. Contrary, substitutions do not preserve invalidity
because a substitution yields a valid grammar X = !(!X).

Context-Free Grammars with Lookahead 219

2. A CFGLa X = !(Xx) has no solution because (ε, x) ∈ B(X) if and only if
(ε, x) �∈ B(!(Xx)). A left recursion in negative lookahead is not allowed.

3. A CFGLa “S = !X!S, X = &X” is invalid but has a unique solution B(S) =
∅, B(X) = {ε}×Σ∗. Thus, validity and the existence of solutions are different.
Also, uniquely convergence and the existence of a unique solution are different.

4. A CFGLa “X = !Y, Y = !X” is invalid. For any language L, an interpretation
B(X) = {ε} × Lc, B(Y) = {ε} × L is a solution. However, iterations from
the empty set oscillate between ∅ and {ε} × Σ∗ and do not converge. This
invalid CFGLa is obtained by introducing a variable Y from a valid grammar
X = !(!X). The introduction of new variables does not change the set of
solutions but change the convergence. This is one of the reasons we do not
discuss normal forms of CFGLa in this paper.

What kind of grammars are valid? We conjecture that a CFGLa is valid if there
is no left recursion through negative lookahead. Intuitively, there are no such
patterns X = !(Xx) or “X = !Y, Y = !X”. It is easy to see that a CFGLa with
only positive lookahead is valid because the function �P � is a monotone function.

3.2 Closure Properties

We write B(CFGLa) for the class of languages with lookahead of CFGLa and
L(CFGLa) for the class of languages of CFGLa. First, we show that B(CFGLa)
is closed under union, concatenation, lookahead, and Kleene star. Next, we show
that L(CFGLa) is closed under union, intersection, complement, and the weak
version of concatenation and Kleene star. Lastly, we show undecidability of
emptiness checking.

Lemma 5. For two valid CFGLa G1 = (V1, Σ, P1, S1) and G2 = (V2, Σ, P2, S2),
if V1 ⊆ V2 and P1(X) = P2(X) for all X ∈ V1, then BP1,nat(X) = BP2,nat(X)
for any X ∈ V1.

Proof. For any e ∈ RELa(Σ,V1), P1(e) = P2(e) by induction on e. For any
X ∈ V1, Pn

1 (X) = Pn
2 (X) by induction on n, thus BP1,nat(X) = BP2,nat(X). �	

Corollary 6. B(CFGLa) is closed under union, concatenation, and lookahead.

For Kleene star, we first show a restricted version.

Proposition 7. If R ⊆ Σ+ × Σ∗ is a language with lookahead of CFGLa, then
R∗ is a language with lookahead of CFGLa.

Proof. Let G1 be (V,Σ, P1,X) where B(G1) = R and G2 be (V ∪ {Y }, Σ, P1 ∪
P2, Y) where Y �∈ V and P2(Y) = XY |ε. Let Rn be B∅(Pn

1 (X)) and Sn

be
⋃

0≤k≤n

Rn · · · Rn−k. Since B(G2) = lim
n→∞ Sn ∪ ({ε} × Σ∗), it is sufficient

that we show lim
n→∞ Sn = R+. First, for any k, Rk+1 = lim

n→∞(Rn · · · Rn−k) =

lim
n→∞

(Rn · · · Rn−k) by Lemma 1. Therefore Rk+1 ⊆ lim
n→∞

Sn, thus R+ ⊆ lim
n→∞

Sn.

220 T. Miyazaki and Y. Minamide

Second, if r ∈ lim
n→∞ Sn, then there exists infinitely many ni and ki such that

r ∈ Rni
· · · Rni−ki

. There exists ri0, . . . , riki
such that r = ri0 · · · riki

, ri0 ∈ Rni
,

. . . , riki
∈ Rni−ki

. By assumption, for x ∈ Σ∗, there are only finitely many
n such that (ε, x) ∈ Rn. Therefore, the set {ki | i ≥ 1} is finite. Hence,
there exists k ≥ 0 and infinitely many n′

i such that r ∈ Rn′
i
· · · Rn′

i−k. That
is r ∈ lim

n→∞(Rn · · · Rn−k) = Rk+1. Thus, lim
n→∞ Sn ⊆ R+. �	

Proposition 8. If R is a language with lookahead of CFGLa, then R\({ε}×Σ∗)
is a language with lookahead of CFGLa.

Proof. Let V ′ be a copy of V . A function f : RELa(Σ,V) → RELa(Σ,V ′) is
defined as follows.

f(∅) = ∅, f(ε) = ∅, f(a) = a, f(X) = X ′

f(e1|e2) = f(e1)|f(e2), f(e1e2) = f(e1)e2|e1f(e2), f(!e) = ∅
We have B∅(f(e)) = B∅(e) \ ({ε} × Σ∗) by induction on e ∈ RELa(Σ,V). For a
given valid CFGLa G1 = (V,Σ, P, S), we consider G2 = (V ∪V ′, Σ, P2, S

′) where
P2(X) = P (X) for any X ∈ V and P2(X ′) = f(P (X)) for any X ′ ∈ V ′. For
any e ∈ RELa(Σ,V), we have P2(f(e)) = f(P (e)), hence Pn

2 (f(e)) = f(Pn(e)).
Thus, B∅(Pn

2 (S′)) = B∅(Pn
2 (f(S))) = B∅(f(Pn(S))) = B∅(Pn(S)) \ ({ε} × Σ∗).

Therefore, G2 is valid and B(G2) = B(G1) \ ({ε} × Σ∗). �	
By two propositions, we obtain the following result.

Corollary 9. B(CFGLa) is closed under Kleene star.

It is open whether B(CFGLa) is closed under intersection, complement.
Next, we show closure properties of L(CFGLa).

Proposition 10. L(CFGLa) is closed under union, intersection, and comple-
ment.

Proof. For two variables X and Y , B(&(X$)Y $) = (LB(X) ∩ LB(Y)) × {ε}. If
B(Y) = Σ∗ ×Σ∗, then B(!(X$)Y $) = (Σ∗ \LB(X))×{ε}. Thus, the statement
holds by Lemma 5. �	
Hence, CFGLa can represent {anbncn | n ≥ 0} and {xx | x ∈ Σ∗}. It is open
whether L(CFGLa) is closed under concatenation and Kleene star. However, a
weak version holds.

Lemma 11. Let L ⊆ Σ∗ be a language of CFGLa and # �∈ Σ be a letter.
L# × (Σ ∪ {#})∗ is a language with lookahead of CFGLa.

Proof. Let G1 be (V,Σ, P1,X) where L(G1) = L. Let G2 = (V ∪ {Y }, Σ ∪
{#}, P2, Y) where P1 ⊆ P2 and P2(Y) = X#. We define a predicate p(R) as
“∀x, y ∈ Σ∗, w ∈ (Σ ∪ {#})∗. (x, y) ∈ R ⇐⇒ (x, y#w) ∈ R”. If p(BP2,nat(X))
holds, then B(G2) = L# × (Σ ∪ {#})∗. For e ∈ RELa(Σ,V), p(B∅(e)) holds by
induction on e. Since Pn

2 (X) ∈ RELa(Σ,V), p(BP2,nat(X)) holds. �	

Context-Free Grammars with Lookahead 221

Corollary 12. Let L1, L2 ⊆ Σ∗ be languages of CFGLa and # �∈ Σ be a letter.
L1#L2 and (L1#)∗ are languages of CFGLa.

Lastly, it is undecidable whether the intersection of two context-free lan-
guages is empty. For two context-free languages L1 and L2, (L1 ∩ L2) × {ε} is a
language with lookahead of CFGLa. Therefore, the following holds.

Proposition 13. For a valid CFGLa G, emptiness B(G) = ∅ and L(G) = ∅ are
also undecidable.

For a given valid CFGLa G1 = (V,Σ, P1,X), we consider a CFGLa G2 = (V ∪
{Y }, Σ, P1 ∪ P2, Y) with P2(Y) = &(X$)!Y . The CFGLa G2 is valid if and only
if L(G1) = ∅. Therefore, validity is undecidable.

For a valid CFGLa G, membership (x, y) ∈ B(G) is decidable. A recognition
algorithm is obtained by Brzozowski derivatives [5,13,14]. However, it is omitted
in this paper due to space limitations.

3.3 Operational Semantics and Parsing Expression Grammars

The semantics by the naturally reachable solution can be considered denotational
semantics. We introduce operational semantics of CFGLa and show that two
semantics are consistent for a limited range of valid CFGLa. The results show
that PEG can be regarded as a subclass of CFGLa.

For an expression e ∈ RELa(Σ,V), we define the derivation (e, x) ⇒ O where
x is an input string and O is a set of the rest of the input string.

(∅, x) ⇒ ∅ (ε, x) ⇒ {x} (a, ax) ⇒ {x} (a, bx) ⇒ ∅ (a, ε) ⇒ ∅

(e1, x) ⇒ O1 (e2, x) ⇒ O2

(e1|e2, xy) ⇒ O1 ∪ O2

(e1, x) ⇒ {y1, . . . , yn} (e2, y1) ⇒ O1 . . . (e2, yn) ⇒ On

(e1e2, x) ⇒ O1 ∪ · · · ∪ On

(e, x) ⇒ ∅
(!e, x) ⇒ {x}

(e, x) ⇒ {y} ∪ O

(!e, x) ⇒ ∅
(P (X), x) ⇒ O

(X,x) ⇒ O

For example, (a|ab, abc) ⇒ {bc, c}.
For e ∈ RELa(Σ,V), the operational semantics BP,op(e) is defined as {(x, y) |

(e, xy) ⇒ O, y ∈ O}. A CFGLa G is operationally complete if, for any string x
and any variable X, there exists O such that (X,x) ⇒ O. We consider that the
semantics is given only if G is operationally complete. In general, (e, x) ⇒ O
if and only if (P (e), x) ⇒ O, hence BP,op = BP,op ◦ P . For an operationally
complete CFGLa, BP,op is an interpretation and a solution of P .

We show if a CFGLa is operationally complete then the CFGLa is uniquely
convergent. The converse does not hold. We write (e, x) ⇒0 O for a derivation
that the rule of variables is not used. We can define ⇒0 inductively as ⇒.

222 T. Miyazaki and Y. Minamide

Lemma 14. If (e, x) ⇒0 O, then BP,op(e) ∩ Mx = B(e) ∩ Mx for all interpre-
tation B where Mx = {(y, z) | x = yz}.
Proof. By induction on ⇒0. We show the case of concatenation. First, we have
(e1, x) ⇒0 {y1, . . . , yn}, (e2, y1) ⇒0 O1, . . . , (e2, yn) ⇒0 On. By the induction
hypothesis, BP,op(e1) ∩ Mx = B(e1) ∩ Mx, BP,op(e2) ∩ My1 = B(e2) ∩ My1 , . . . ,
BP,op(e2) ∩ Myn

= B(e2) ∩ Myn
. Thus, BP,op(e1e2) ∩ Mx = B(e1e2) ∩ Mx. �	

Lemma 15. If (e, x) ⇒ O, then there exists n such that (Pm(e), x) ⇒0 O for
any m ≥ n.

Proof. By induction on ⇒. We show the case of union. We have (e1, x) ⇒0 O1,
(e2, x) ⇒0 O2, and O = O1∪O2. By the induction hypothesis, there exist n1 and
n2 such that for all m1 ≥ n1,m2 ≥ n2, (Pm1(e1), x) ⇒0 O1, (Pm2(e2), x) ⇒0 O2.
Let n = max(n1, n2), for all m ≥ n, (Pm(e1), x) ⇒0 O1, (Pm(e2), x) ⇒0 O2. We
have Pm(e1e2) = Pm(e1)Pm(e2). Therefore, (Pm(e1e2), x) ⇒0 O. �	
Proposition 16. An operationally complete CFGLa is uniquely convergent.

Proof. Let M(e) = {(x, y) | (e, xy) ⇒0 O}. By Lemma 15 and operational com-
pleteness, we have lim

n→∞ M(Pn(X)) = Σ∗ × Σ∗.

BP,op(X) = lim
n→∞(BP,op(X) ∩ M(Pn(X)))

= lim
n→∞(BP,op(Pn(X)) ∩ M(Pn(X))) (BP,op is a solution)

= lim
n→∞(B(Pn(X)) ∩ M(Pn(X))) (Lemma 14)

= lim
n→∞ B(Pn(X)) (Lemma 3)

�	
Two semantics coincide for an operationally complete CFGLa, i.e. BP,nat =

BP,op. The result shows that PEG can be regarded as a subclass of CFGLa.

Definition 6 (Parsing expression grammars). We define an ordered choice
e1/e2 is an abbreviation for e1|!e1e2. An expression e ∈ RELa(Σ,V) is called
a parsing expression if e can be written using only / without using |. A PEG
G = (V,Σ, P, S) is a CFGLa that P (X) is a parsing expression for any X.

The original definition of the language of PEG [9] is the set of successful
input strings and for the derivation (e, x) ⇒ o, o is a consumed string or fail.
We can easily show the language of PEG coincides with our definition.

PEG can represent all deterministic context-free languages and L(PEG)
is closed under union, intersection, and complement [9]. For PEG’s deriva-
tion (e, x) ⇒ O, there exists y such that O = {y} or O = ∅. That is if
(x1, y1), (x2, y2) ∈ BP,op(e) and x1y1 = x2y2, then y1 = y2. Hence, the class
B(CFGLa) is a proper superset of B(PEG).

Context-Free Grammars with Lookahead 223

Example 3.

1. A CFGLa X = Xa | ε is valid and uniquely convergent but is not opera-
tionally complete.

2. A PEG X = Xa/ε is equivalent to X = Xa | !(Xa) and it is invalid. The
reason is the same as Example 2.2.

3. A PEG X = aXa | !(aXa) is uniquely convergent. B(X) = {(a2n, am) |
n + m = 2k − 1} is the solution and L(G) = {a2n−2 | n ≥ 1}.

Let Σ = {a, b}. We conjecture that the languages {xy | y is reverse of x}
and {xay | y has the same length as x} cannot be represented by PEG because
X = aXa/bXb/ε and Y = .Y./a do not represent them. It is an open problem
whether there are context-free languages that cannot be represented by PEG.

4 Related Work and Discussion

Finite lookahead is used in the traditional theory of parsing. Regular lookahead
is used in various domains of formal language theory, e.g.. RELa [14,15], LL(*)
[17], transducers with lookahead [18], and tree transducers with lookahead [8].
A language with lookahead of RELa is a finite union of the form A × B where
A and B are regular languages [14], hence it is expected that a language with
lookahead of CFG with regular lookahead is a finite union of the form A × B
where A is a context-free language and B is a regular language.

PEG [9] have non-regular lookahead. For the relationship between PEG and
CFG, it is shown how to convert subclasses of CFG, such as LL, into PEG
[12]. PEG with unordered choices [6] are an extension of PEG and can handle
grammars without left recursion. Grammars with one-sided contexts [3] are an
extension of CFG and have non-regular positive lookahead.

Regular expressions with complement and CFG with complement are called
extended regular expressions (ERE) [5,19] and Boolean grammars [16], respec-
tively. Lookahead differs from complement in the scope of influence and non-
consumption of letters. RELa are more suitable for parsing than ERE [15].

The relationships of the language class are summarized below where an arrow
means proper inclusion, a dashed arrow means inclusion.

Deterministic CFL CFL L(TAG) [10]

Boolean closure of CFL [21] L(Boolean grammars)

L(PEG) L(CFGLa)

The class L(CFGLa) is a proper superset of Boolean closure of context-free
languages [21]. A context-free language over one letter alphabet is regular, hence
the Boolean closure of unary context-free languages is also regular. On the other
hand, a non-regular unary language {a2n | n ≥ 1} is represented by CFGLa.

224 T. Miyazaki and Y. Minamide

The class L(CFGLa) is not a subset of L(TAG) because of the decidability of
emptiness. It is expected that L(CFGLa) is not a superset of L(TAG) because
the complexity of recognition of TAG is relatively large. A similar argument
applies to some supersets of L(TAG) such as indexed languages [1].

We consider it is difficult to prove of inclusion between L(CFGLa) and
L(Boolean grammars). It is because of the difference in the properties between
lookahead and complement. For example, the class L(Boolean grammars) is
closed under concatenation and Kleene star.

Acknowledgment. We are grateful to anonymous reviewers for introducing us to
the important references of the grammars with one-sided contexts. This work was
supported by JSPS KAKENHI Grant Number 20J23184 and 19K11899.

References

1. Aho, A.V.: Indexed grammars—an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

2. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Lan-
guages, pp. 111–174. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59136-5 3

3. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided
context specifications. Inf. Comput. 237, 268–293 (2014)

4. Barash, M., Okhotin, A.: Linear grammars with one-sided contexts and their
automaton representation. RAIRO Theor. Inf. Appl. 49(2), 153–178 (2015)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
6. Chida, N., Kuramitsu, K.: Parsing expression grammars with unordered choices.

J. Inf. Process. 25, 975–982 (2017)
7. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.

In: Computer Programming and Formal Systems, vol. 35, pp. 118–161. Elsevier
(1963)

8. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst.
Theory 10(1), 289–303 (1977)

9. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 111–122. ACM (2004)

10. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst.
Sci. 10(1), 136–163 (1975)

11. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

12. Mascarenhas, F., Medeiros, S., Ierusalimschy, R.: On the relation between context-
free grammars and parsing expression grammars. Sci. Comput. Program. 89, 235–
250 (2014)

13. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl. In:
Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming, pp. 189–195. ACM (2011)

14. Miyazaki, T., Minamide, Y.: Derivatives of regular expressions with lookahead. J.
Inf. Process. 27, 422–430 (2019)

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3

Context-Free Grammars with Lookahead 225

15. Morihata, A.: Translation of regular expression with lookahead into finite state
automaton. Comput. Softw. 29(1), 147–158 (2012)

16. Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004)
17. Parr, T., Fisher, K.: LL(*) the foundation of the ANTLR parser generator. In:

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 425–436 (2011)

18. Sakuma, Y., Minamide, Y., Voronkov, A.: Translating regular expression matching
into transducers. J. Appl. Logic 10(1), 32–51 (2012)

19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proceedings of the 5th Annual ACM Symposium on Theory
of Computing, pp. 1–9. ACM (1973)

20. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing, pp. 137–146. ACM (1982)

21. Wotschke, D.: The Boolean closures of the deterministic and nondeterministic
context-free languages. In: Brauer, W. (ed.) GI Gesellschaft für Informatik e. V.
LNCS, pp. 113–121. Springer, Heidelberg (1973). https://doi.org/10.1007/978-3-
662-41148-3 11

https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11

Tree-Like Unit Refutations in Horn
Constraint Systems

K. Subramani(B) and Piotr Wojciechowski

LDCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu, pwojciec@mail.wvu.edu

Abstract. In this paper, we examine the problem of finding unit refuta-
tions of Horn constraint systems (HCSs). Recall that a Horn constraint is
a linear constraint in which every coefficient belongs to the set {0, 1,−1}
and in which at most one coefficient is positive. In the current work,
we extend the notion of unit refutations from CNF formulas to systems
of linear constraints. Recall that for CNF formulas a unit resolution
refutation is one in which every resolution step uses a one-literal (unit)
clause. The equivalent notion in linear systems requires every inference
step to use a one-variable (absolute) constraint. We analyze two prob-
lems associated with unit refutations of Horn constraint systems. In the
length-bounded tree-like unit refutation (TLURD) problem, we ask if a
given Horn constraint system has a tree-like unit refutation using at most
L inference steps. In the optimal tree-like unit refutation (TLUROpt)
problem, we ask for a tree-like unit refutation with the fewest inference
steps. We show that the former problem is NP-complete and the latter
is NPO-complete. We also show that the TLURD problem does not
admit a polynomial size kernel with respect to a natural output param-
eter under some well-accepted complexity theoretic assumptions.

1 Introduction

This paper analyzes the problem of finding unit refutations of Horn constraint
systems (HCSs). Recall that a Horn constraint is a linear constraint such that
every coefficient belongs to the set {0, 1,−1} with at most one positive coefficient.
That is, a Horn constraint is a constraint of the form xi − ∑

xj ≥ b or of the
form −∑

xj ≥ b.
Unit refutations have been extensively studied for CNF formulas. In CNF

formulas, unit resolution is a restricted form of resolution in which each resolu-
tion step must use a one-literal (unit) clause. Note that in general CNF formulas
unit resolution is an incomplete proof system. However, unit resolution is com-
plete for Horn formulas. In this paper, we extend the concept of unit resolution
to systems of linear constraints, in particular to HCSs. Thus, a unit refutation

K. Subramani—This research was supported in part by the Air-Force Office of Scien-
tific Research through Grant FA9550-19-1-0177 and in part by the Air-Force Research
Laboratory, Rome through Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 226–237, 2021.
https://doi.org/10.1007/978-3-030-68195-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_18

Tree-Like Unit Refutations in Horn Constraint Systems 227

of a system of linear constraints is one in which each inference step must use a
one-variable (absolute) constraint.

Note that unit refutation is incomplete for HCSs. That is, not every HCS has
a unit refutation (see Example 1). This is in stark contrast to unit resolution,
which is complete for Horn formulas. Recently, we showed that the problem of
checking whether a Horn constraint system has a unit tree-like refutation is in
P [19].

In this paper, we analyze the length-bounded tree-like unit refutation
(TLURD) problem and the optimal tree-like unit-refutation (TLUROpt) prob-
lem. Let H be an HCS and let L be a positive integer. The TLURD problem asks
if H has a tree-like unit refutation with at most L inference steps. The TLUROpt

problem asks for a tree-like unit refutation of H with the fewest inference steps.
The principal contributions of this paper are as follows:

1. Establishing that the TLURD problem for HCSs is NP-complete (see
Sect. 4).

2. Establishing that the TLUROpt problem for HCSs is NPO-complete (see
Sect. 5).

3. Establishing that the TLURD problem for HCSs does not have a kernel whose
size is polynomial in the length of the shortest tree-like unit refutation (see
Sect. 6).

The rest of this paper is organized as follows: In Sect. 2, we introduce the
problems being studied. Section 3 provides motivation for studying these prob-
lems as well as related work in the literature. In Sect. 4, we study the TLURD

problem for HCSs. Section 5 examines the TLUROpt problem for HCSs. In
Sect. 6, we prove our kernelization result for the TLURD problem. We conclude
in Sect. 7 by summarizing our contributions.

2 Statement of Problems

In this section, we define the problems under consideration in this paper.

Definition 1. A system of constraints A · x ≥ b is a Horn Constraint System
(HCS) if: 1. The entries in A belong to the set {0, 1,−1}. 2. Each row of A
contains at most one positive entry. 3. x is a real valued vector. 4. b is an
integral vector.

In a Horn constraint lk : a · x ≥ bk, bk is called the defining constant. For a
Horn constraint lk, let P (lk) denote the number of positive coefficients in lk.

If a Horn constraint has only one non-zero coefficient, then it is called an
absolute constraint. If that coefficient is 1, then it is called a positive absolute
constraint.

We are interested in certificates of infeasibility. Such certificates are called
refutations. A refutation consists of a sequence of inference steps that results in
a contradiction. Each inference step in a refutation consists of an application of

228 K. Subramani and P. Wojciechowski

an inference rule. One such inference rule, used for refuting the linear feasibility
of systems of linear constraints, is known as the ADD rule. This inference
rule derives a new constraint by summing a pair of constraints (either from the
original system or derived by previous inference steps) and is defined as follows:

ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′
i · xi ≥ b2∑n

i=1(ai + a′
i) · xi ≥ b1 + b2

(1)

This inference rule plays a role similar to the role played by resolution in
clausal formulas.

Using Rule (1), we can now define a linear refutation.

Definition 2. A linear refutation is a sequence of applications of the ADD rule
that results in a contradiction of the form 0 ≥ b, b > 0.

The form of refutation defined in Definition 2 is both sound and com-
plete when used as a proof system for linear feasibility. It is sound since any
assignment that satisfies the constraints used by an application of the ADD rule
also satisfies the constraint derived by that application. It is complete since
repeated application of the ADD rule will eventually result in a contradiction
of the form: 0 ≥ b, b > 0 for any linearly infeasible system. The completeness
of ADD rule based linear refutations was established by Farkas [7], in a lemma
that is famously known as Farkas’ Lemma for systems of linear inequalities [15].

We now formally define the type of refutation discussed in this paper.

Definition 3. A tree-like refutation is a refutation in which each derived con-
straint can be used at most once.

Note that if a derived constraint needs to be reused, then it can be re-derived.
In proof theory, there are many ways to measure the length of a refutation.

In this paper, we define the length of a refutation as the number of inference
steps in that refutation.

Definition 4. The length of a refutation is the number of inference steps
(applications of the ADD rule) in the refutation. The length of a refutation R is
denoted as |R|.

Let H : A · x ≥ b be an HCS with m constraints over n variables. Using
Farkas’ Lemma [7], we can represent a tree-like refutation R of H using a vec-
tor y ∈ Z

m, y ≥ 0 such that y · A = 0 and y · b > 0. We now show that y
corresponds to a tree-like linear refutation of H of length (

∑m
k=1 yk − 1).

Theorem 1. Let H : A · x ≥ b be an HCS with m constraints over n variables.
If there exists a vector y ∈ Z

m, y ≥ 0 such that y · A = 0 and y · b > 0, then
H has a tree-like linear refutation of length (

∑m
k=1 yk − 1).

Tree-Like Unit Refutations in Horn Constraint Systems 229

Proof. Let H : A · x ≥ b be an HCS with m constraints over n variables. Let
y ∈ Z

m, y ≥ 0 be a vector such that y · A = 0 and y · b > 0.
Note that y represents a weighted sum of the constraints in H where each

constraint lk is used yk times. This weighted sum results in the constraint 0 ≥
y · b. Since y · b > 0, this is a contradiction.

Constraint summation is associative and commutative. Thus, the weighted
sum corresponding to y can be expressed as a sequence of applications of the
ADD rule that does not reuse derived constraints. This is a tree-like refutation
R of H.

Note that each application of the ADD rule derives one constraint from a
pair of constraints. Initially, the weighted sum has

∑m
k=1 yk constraints which

are used to derive a single contradiction. Thus, R has (
∑m

k=1 yk −1) applications
of the ADD rule. Consequently |R| = (

∑m
k=1 yk − 1). ��

In this paper, we study a restricted version of the ADD rule, known as the
unit-ADD rule. In the unit-ADD rule, at least one of the constraints must be
an absolute constraint. In HCSs, this rule has the following form:

unit-ADD :
ai · xi ≥ b1 aj · xj − ∑

k∈S xk ≥ b2

aj · xj + ai · xi − ∑
k∈S xk ≥ b1 + b2

(2)

A linear refutation using only the unit-ADD rule is called a unit refutation.
Note that unit refutation is not a complete proof system. This can be seen in
the following example.

Example 1. Consider the HCS H in System (3).

x1 ≥ −1 x1 − x2 ≥ 1 x2 − x1 ≥ 1 (3)

System (3) has the following refutation:

1. ADD x1 − x2 ≥ 1 and x2 − x1 ≥ 1 to get 0 ≥ 2.

However, HCS H does not have a unit refutation. Observe that x1 ≥ −1 is the
only absolute constraint in H, thus it must be used in any unit refutation of
H. It is easy to see that a unit refutation of H, if one existed, would have the
following form:

1. ADD x1 ≥ −1 and x2 − x1 ≥ 1 to get x2 ≥ 0.
2. ADD x2 ≥ 0 and x1 − x2 ≥ −1 to get x1 ≥ 1.

3.
...

H does not have any unit constraints which cancel either x1 from the con-
straint x1 ≥ 1 or which cancel x2 from the constraint x2 ≥ 0. Thus, there is no
way to complete this unit refutation.

Since unit refutation is a restriction of linear refutation, it is clearly a sound
proof system. However, as just demonstrated, it is not a complete proof system.

As shown in Theorem 1, a tree-like linear refutation can be represented by a
vector y. We now prove a similar result for tree-like unit refutations.

230 K. Subramani and P. Wojciechowski

Theorem 2. Let H : A · x ≥ b be an HCS with m constraints over n variables.
If there exists a vector y ∈ Z

m, y ≥ 0 such that y · A = 0, y · b > 0, and∑m
k=1 yk · P (lk) =

∑m
k=1 yk − 1, then H has a tree-like unit refutation of length

(
∑m

k=1 yk − 1).

Proof. Let H : A · x ≥ b be an HCS with m constraints over n variables. Let
y ∈ Z

m, y ≥ 0 be a vector such that y · A = 0, y · b > 0 and
∑m

k=1 yk · P (lk) =∑m
k=1 yk − 1. Recall that P (lk) is the number of positive coefficients in the

constraint lk.
From Theorem 1, we know that y corresponds to a tree-like linear refutation

of H. We now show that the additional restriction,
∑m

k=1 yk ·P (lk) =
∑m

k=1 yk−1
ensures that y corresponds to a tree-like unit refutation of H.

Since constraint summation is both associative and commutative, we can
assume without loss of generality that each application of the ADD results in
the cancellation of at least one variable. Initially, there are

∑m
k=1 yk ·P (lk) total

variables with a coefficient of 1 in the constraints in the weighted sum corre-
sponding to yk. From Theorem 1, y corresponds to a tree-like linear refutation
with

∑m
k=1 yk − 1 =

∑l
k=1 yk · P (lk) applications of the ADD rule. Thus, each

application of the ADD rule cancels exactly one variable.
Consider the ADD rule applied to constraints lk1 and lk2 . Assume without

loss of generality that this summation cancels a variable xi that appears with
positive coefficient in lk1 and negative coefficient in lk2 . No other variable can be
canceled. Thus, no variable with positive coefficient in lk2 appears with negative
coefficient in lk1 . It follows that all variables with negative coefficient in lk1 must
be canceled by other applications of the ADD rule.

Recall that constraint summation is both associative and commutative, thus
we can assume without loss of generality that all the applications of the ADD
rule which canceled variables with negative coefficient from lk1 occurred earlier
in the refutation. This means that, lk1 is a constraint of the form xi ≥ bk1 .
Consequently, this is a unit refutation of H. ��

This paper examines tree-like refutations using only the unit-ADD rule. We
refer to these refutations as tree-like unit refutations. For these refutations, we
are also interested in the problem of finding the length of the shortest refutation.

Thus, we focus on the following problems:

1. TLURD: Given an HCS H and an integer L, does H have a tree-like unit
refutation with at most than L inference steps?

2. TLUROpt: Given an HCS H, what is the number of inference steps in a
shortest tree-like unit refutation of H?

3 Motivation and Related Work

Horn constraint systems are a more general form of Difference Constraint Sys-
tems (DCSs), since each constraint in an HCS is allowed to have multiple vari-
ables with coefficient −1. As in difference constraint systems, the linear feasibility

Tree-Like Unit Refutations in Horn Constraint Systems 231

and integer feasibility problems coincide for Horn constraint systems [3]. Veinott
devised a non-polynomial algorithm for the linear feasibility problem for Horn
type programs where the positive and negative elements can take any value [18].

Horn constraint systems have been used as domains in abstract interpretation
[4]. They are also used in Satisfiability Modulo Theory (SMT) solvers, which in
turn are being increasingly used in program verification procedures [5,9]. These
solvers are also part of procedures for bounded model checking, infinite-state
systems, and test-case generation [6]. Additionally, Horn systems find applica-
tions in declarative programming [10]. The applications of Horn constraints to
program verification have been discussed extensively [12].

In this paper, we focus on a restriction to general linear refutation. Specif-
ically, we examine refutations in which each application of the ADD rule must
use an absolute constraint. Note that such a restriction can cause the original
refutation system to become incomplete. However, it is still necessary to study
this type of restricted proof system. Observe that:

1. Restricted proofs tend to be compact (polynomial in the size of the input).
For instance, read-once unit refutations are at most linear in the size of the
input.

2. For specific constraint systems, the existence of these restricted refutations
can be checked efficiently. For example, [16] showed that every infeasible DCS
has a read-once refutation and that such a refutation can be found in poly-
nomial time. While systems of Unit Two Variable per Inequality (UTVPI)
constraints do not always have read-once refutations, these refutations can
still be found in polynomial time [17].

The focus on unit refutations in this paper stems from a fundamental differ-
ence between absolute constraints and non-absolute constraints in HCSs. Since
absolute constraints bound only a single variable, they can be used to define the
domain over which feasibility is considered. Meanwhile, non-absolute constraints
define the relationship between variables and can be considered domain agnostic.
This difference in the two types of constraints carries over to create a difference
between unit and non-unit refutations.

A unit refutation relies on the absolute constraints in the underlying HCS.
Thus, a unit refutation serves as a domain specific refutation. This is in contrast
to an unrestricted refutation which may be domain agnostic. It follows that
a study of unit refutations is important since it reveals the structure of such
domain specific refutations.

Several papers have studied unit refutations of Horn clauses [2,14].

4 Length-Bounded Tree-Like Unit Refutations

In this section, we study the computational complexity of the TLURD problem
for HCSs.

We show that the problem of checking if an HCS has a tree-like unit refutation
of length at most L is NP-complete. This is done by a reduction from the
Integer Knapsack problem.

232 K. Subramani and P. Wojciechowski

Definition 5. The Integer Knapsack problem: Given n items i = 1 . . . n, each
with weight wi and profit pi, maximum capacity W , and target profit P , can you
select items with total weight at most W such that the total profit is at least P .

Note that items can be selected more than once.
This variant of knapsack is known to be NP-complete [13].
Consider an instance K of the Integer Knapsack problem as described above.

We construct the HCS HK as follows:

1. For each item i = 1 . . . n, create the variables xi and zi. Additionally create
the constraint xi+1 − xi ≥ 0 for each i = 1 . . . n − 1.

2. Create the constraints x1 ≥ −P + 1 and −xn ≥ 0.
3. Let wmax be the largest weight of any item and let l = �log wmax�. Create

the variables y0 through yl and the constraint yj − ∑j−1
i=0 yi ≥ 0 for each

j = 0 . . . l.
4. For each item i, let Si be a set of integers such that

∑
j∈Si

2j = wi−1. Create
the constraints xi − zi − ∑

j∈Si
yj ≥ pi and zi − xi − ∑

j∈Si
yj ≥ 0.

Using this reduction we have the following theorem.

Theorem 3. Let K be an instance of integer knapsack and let HK be the cor-
responding HCS. A total profit of at least P can be obtained from the items in K
if and only if H has a tree-like unit refutation of length at most L = (2 · W + n)

Proof. Let R be a tree-like unit refutation of HK . Observe the following prop-
erties of R:

1. R uses the constraint xi−zi−
∑

j∈Si
yj ≥ pi if and only if it uses the constraint

zi − xi − ∑
j∈Si

yj ≥ 0 – By construction, these are the only constraints with
the variable zi. Thus, any refutation which uses one must use the other. In
fact, these two constraints must be used an equal number of times.

2. For each j, deriving the constraint yj ≥ 0 takes (2j − 1) applications of the
ADD rule – This is obviously true for y0 ≥ 0. To derive yj ≥ 0, the constraint
yj − ∑j−1

i=0 yi ≥ 0 must be used. The cancellation of each −yi from this
constraint takes 2i applications of the ADD rule, (2i −1) to derive yi ≥ 0 and
an additional application to perform the cancellation. Thus, the derivation of
yj ≥ 0 takes a total of

∑j−1
i=1 2i = 2j − 1 inference steps as desired.

3. The cancellation of the yjs from the constraint xi − zi − ∑
j∈Si

yj ≥ pi takes
a total of (wi − 1) inference steps – As before, the cancellation of each −yj
from this constraint takes a total of 2j inference steps. Thus the cancellation
of all −yjs from this constraint takes a total of

∑
j∈Si

2j = wi − 1 inference
steps as desired. The same is true for the constraint zi − xi − ∑

j∈Si
yj ≥ 0.

4. Using the constraint xi − zi − ∑
j∈Si

yj ≥ pi adds 2 · wi inference steps to R
– Using this constraint adds the following inference steps to R: The inference
step using xi−zi−

∑
j∈Si

yj ≥ pi, the inference step using zi−xi−
∑

j∈Si
yj ≥

0, and the 2·(wi−1) inference steps canceling the −yjs from both constraints.
This is a total of 2 · wi inference steps as desired.

Tree-Like Unit Refutations in Horn Constraint Systems 233

Consider the constraints x1 ≥ −P + 1, x2 − x1 ≥ 0, . . ., xn − xn−1 ≥ 0,
and −xn ≥ 0. Recall that R is a unit refutation. Thus, for each i = 1 . . . n, the
variable zi cannot be canceled by summing the constraints xi−zi−

∑
j∈Si

yj ≥ pi
and zi − xi − ∑

j∈Si
yj ≥ 0 unless the variable xi is canceled from one of these

constraints. It follows that R must use the constraint xi+1 −xi ≥ 0 (or −xn ≥ 0
if i = n) or the constraint xi − xi−1 ≥ 0 (or x1 ≥ −P + 1 if i = 1). Since R
uses the constraints xi − zi − ∑

j∈Si
yj ≥ pi and zi − xi − ∑

j∈Si
yj ≥ 0 an

equal number of times, R must use both of the constraints xi+1 − xi ≥ 0 and
xi −xi−1 ≥ 0. Thus, R must use all of the constraints x1 ≥ −P +1, x2 −x1 ≥ 0,
. . ., xn − xn−1 ≥ 0.

Note that the sum of the defining constants in these constraints is (−P + 1).
For the defining constant of the final constraint derived by R to be positive, the
sum of the defining constants of the remaining constraints in R must be least P .

Observe that this is possible using at most (2 · W + n) inference steps if and
only if a total profit of at least P is obtainable from K with total weight at most
W . ��

From Theorem 3, we have the following result.

Theorem 4. The TLURD problem for HCSs is NP-complete.

The complete proof will be in the journal version of this paper.

5 Optimal Length Tree-Like Unit Refutations

In this section, we study the approximation complexity of the TLUROpt problem
for HCSs.

We show that the TLUROpt problem for HCSs is NPO-complete. Any
problem that is NPO-complete cannot be approximated to within a polynomial
factor of the optimum unless P = NP [11].

We establish NPO-completeness by a reduction from the Weighted Mini-
mum Ones problem.

Definition 6. Weighted Minimum Ones: Given a 3CNF formula Φ and non-
negative variable weight function w, what is the minimum weight of variables
assigned to true in any satisfying assignment to Φ?

The Weighted Minimum Ones problem is known to be NPO-complete [1].
Let Φ be a 3CNF formula with n variables and m clauses and let w be a

weight function on the variables of Φ. From Φ, we construct the HCS H as
follows:

1. Let wmax be the largest weight of any variable and let l = �log wmax�. Create
the variables w0 through wl and the constraint wj − ∑j−1

i=0 wi ≥ 0 for each
j = 0 . . . l.

2. For each variable xi in Φ:
(a) let Wi be a set of integers such that

∑
j∈Wi

2j = w(i) − 1.

234 K. Subramani and P. Wojciechowski

(b) Create the variables p0 through p�logm�.
(c) Let di be the number of clauses in which xi appears.
(d) Create the variables xi, yi,0 through yi,�log di�, and zi,0 through zi,�log di�.
(e) For each subset S of {0, . . . , �log di�}, create the constraints

xi − ∑
j∈S yi,j − ∑

j∈Wi
wj ≥ 0 and xi − ∑

j∈S zi,j ≥ 0.
(f) For each j = 1 . . . �log di�, create the constraints

yi,j − ∑�log di�
k=j+1 yi,k ≥ 0 and zi,j − ∑�log di�

k=j+1 zi,k ≥ 0.
3. For each clause φl in Φ:

(a) Let Sl ⊆ {0, . . . , �log m�} be such that
∑

j∈Sl
2j = l.

(b) If φl contains the literal xi, create the constraint yi,�log di�−∑
j∈Sl

pj ≥ 1.
(c) If φl contains the literal ¬xi, create the constraint zi,�log di� −∑

j∈Sl
pj ≥

1.
4. For each j ∈ {0, . . . , �log m�}, create the constraint pj ≥ 1.
5. Create the constraint −∑n

i=1 xi ≥ 1 − m − ∑m
l=1 |Sl|.

We now show that H has a tree-like unit refutation of length m · (W + 1) if
and only if Φ has a satisfying assignment for which the weights of the variables
set to true sum to W .

Lemma 1. H has a tree-like unit refutation of length m · (W + 1) if and only if
Φ has a satisfying assignment for which the weights of the variables set to true
sum to W .

Proof. Let x∗ be a satisfying assignment for Φ. We can construct a tree-like unit
refutation R of H as follows:

1. Add the constraint −∑n
i=1 xi ≥ 1 − m − ∑m

l=1 |Sl| to R.
2. For each clause φl, at least one literal in φ1 is assigned true. Let Lit(φl) be

this literal. If Lit(φl) = xi, then add the constraint yi,�log di� ≥ 1 to R. If
Lit(φl) = ¬xi, then add the constraint zi,�log di� ≥ 1 to R.

3. For each variable xi:
(a) Let d+i be the number of clauses φl such that Lit(φl) = xi and let d−

i be
the number of clauses such that Lit(φl) = ¬xi.

(b) Note that if x∗ assigns true to xi, then d−
i = 0 and if x∗ assigns false to

xi, then d+i = 0. Thus, at most one of d+i and d−
i is non-zero.

(c) If d+i is non-zero, let Si ⊆ {0, . . . , �log di�} be such that
∑

j∈Si 2j = d+i .
Then add the constraint xi − ∑

j∈Si
yi,j − ∑

j∈Wi
wj ≥ 0. Additionally,

add enough constraints of the form yi,j − ∑�log di�
k=j+1 yi,k ≥ 0 to derive

xi − d+i · yi,�log di� ≥ 0.
(d) As in the proof of Theorem 3, cancellation of the wjs from this constraint

takes a total of (w(i) − 1) inference steps.
(e) If d−

i is non-zero, let Si ⊆ {0, . . . , �log di�} be such that
∑

j∈Si 2j = d−
i .

Then add the constraint xi − ∑
j∈Si

zi,j ≥ 0. Additionally, add enough

constraints of the form yi,j−
∑�log di�

k=j+1 yi,k ≥ 0 to derive xi−d−
i ·zi,�log di� ≥

0.
(f) If d+i = d−

i = 0, then add the constraint xi ≥ 0 to R.

Tree-Like Unit Refutations in Horn Constraint Systems 235

Note that for each xi, R can derive either xi − d+i · yi,�log di� ≥ 0 or xi − d−
i ·

zi,�log di� ≥ 0.
For each clause φl, we can derive a constraint of the form yi,�log di� ≥ 1+ |Sl|.

Namely we can derive this constraint for xi = Lit(φl). Similarly, we can derive
the constraint zi,�log di� ≥ 1 + |Sl| for ¬xi = Lit(φl).

Thus, R can derive the constraint
∑n

i=1 xi ≥ m +
∑m

l=1 |Sl|. Together with
the constraint −∑m

i=1 xi ≥ 1−m−∑m
l=1 |Sl|, R derives the contradiction 0 ≥ 1.

It follows that R is a tree-like unit refutation.
Let R be a tree-like unit refutation of H such that |R| ≤ m · (W + 1). We

construct a satisfying assignment x∗ to Φ as follows: For each xi, if R uses a
constraint with the variable yi,�log di� then set xi to true. Otherwise set xi to
false.

Note that without the constraint −∑n
i=1 xi ≥ 1−m−∑m

l=1 |Sl|, H is feasible.
Thus, this constraint must be in R. Since R derives a contradiction, the right
hand side of the constraint derived by R must be positive. It follows that R must
use at least

∑m
l=1 |Sl| constraints of the form pj ≥ 1 and at least m constraints

of the form yi,�log di� − ∑
j∈Sl

pj ≥ 1 or zi,�log di� − ∑
j∈Sl

pj ≥ 1. Each of these
constraints corresponds to a clause satisfied by the assignment x∗. Note that the
pjs ensure that at most one constraint per clause is used. Thus, x∗ must satisfy
at least m clauses of Φ. Consequently x∗ satisfies Φ.

If R uses a constraint with the variable yi,�log di�, then R must use the con-
straint xi − ∑

j∈S yi,j − ∑
j∈Wi

wj ≥ 0. As before, to cancel the wj variables
from this constraint, R must use (w(i) − 1) inference steps. Since the length of
R is at most m · (W +1) the total weight of variables set to true cannot be more
than W . ��

From Lemma 1, we have the following result.

Theorem 5. The TLUROpt problem for HCSs is NPO-complete.

The complete proof will be in the journal version of this paper.

6 Lower Bounds on Kernel Size for TLURD

In this section, we provide a lower bound on the size of the kernel for the TLURD

problem for HCSs.
We now show that that the TLURD problem for HCSs does not have a kernel

whose size is polynomial in L, the length of the refutation. This is done through
the use of a t-bounded OR-distillation [8].

Definition 7. Let P and Q be a pair of problems and let t : N → N \ {0} be
a polynomially bounded function. Then a t-bounded OR-distillation from P
into Q is an algorithm that for every s, given as input t(s) strings x1, . . . , xt(s)

with |xj | = s for all j:

1. Runs in polynomial time, and

236 K. Subramani and P. Wojciechowski

2. Outputs a string y of length at most t(s) · log s such that y is a yes instance
of Q if and only if xj is a yes instance of P for some j ∈ {1, . . . , t(s)}.
If any NP-hard problem has a t-bounded OR-distillation, then coNP ⊆

NP/poly [8]. If coNP ⊆ NP/poly, then ΣP
3 = ΠP

3 [20]. Thus, the polynomial
hierarchy would collapse to the third level.

Theorem 6. The TLURD problem for HCSs does not have a kernel, whose size
is polynomial in the length of the refutation, unless coNP ⊆ NP/poly.

Proof. We will prove this by showing that if the TLURD problem for HCSs has
a polynomial sized kernel, then there exists a t-bounded OR-distillation from
the TLURD problem for HCSs into itself.

For each j, let Hj be an HCS with m constraints over n variables such that,
for each constraint lk ∈ Hj , the defining constant bk satisfies |bk| ≤ bmax for a
fixed integer bmax. We can encode Hj as an m × (n + 1) matrix where each row
of the matrix corresponds to a constraint. In each row, the first n values store
the coefficients of the constraint and the last value stores the defining constant.
Using this representation, we have that s = |Hj | = m · (n + �log bmax�).

From Lemma 1, we have that the problem of determining if an HCS has a
tree-like unit refutation of length at most L is still NP-hard when L ≤ m·(n+1).
Thus, we can assume without loss of generality that L ≤ s.

Assume that for some constant c, the TLURD problem has a kernel of size
Lc. Let t(s) = sc. Note that t(s) is a polynomial.

For each j = 1 . . . t(s), let Hj be an HCS with m constraints over n variables
such that |Hj | = s. From, these instances we can create a new HCS H with t(s)·m
constraints over t(s) · n variables such that: For each j = 1 . . . t(s) constraints
l1+m·(j−1) through lm·j use variables x1+n·(j+1) through xn·j and correspond to
the constraints in HCS Hj .

Note that no constraint in H corresponding to a constraint in Hj shares
variables with a constraint in H corresponding to a constraint in Hj′ , j′ = j.
Thus, any refutation of H corresponds to a refutation of the HCS Hj for some j ∈
{1, . . . , t(s)}. Consequently, H has a tree-like unit refutation of length L if and
only if Hj has a tree-like unit refutation of length L for some j ∈ {1, . . . , t(s)}.

Let H′ be a kernel of H such that |H′| ≤ Lc. Since we can assume that
L ≤ s, we have that |H′| ≤ t(s). Additionally, H′ has a tree-like unit refutation
of length L if and only if Hj has a tree-like unit refutation of length L for some
j ∈ {1, . . . , t(s)}. Thus, we have a t-bounded OR-distillation from the TLURD

problem for HCSs to itself. This cannot happen unless coNP ⊆ NP/poly. ��

7 Conclusion

In this paper, we examined the problem of finding unit refutations of HCSs.
This extends the study of unit refutations from CNF formulas to linear systems.
In particular, we analyzed the tree-like unit refutation problem for HCSs. This
paper establishes that the TLURD problem for HCSs is NP-hard. Furthermore,

Tree-Like Unit Refutations in Horn Constraint Systems 237

the TLUROpt problem for HCSs is NPO-complete. We also showed that the
TLURD problem for HCSs cannot (under current complexity theoretic assump-
tions) admit a kernel whose size is polynomial in the length of the refutation.

References

1. Ausiello, G., D’Atri, A., Protasi, M.: Lattice theoretic ordering properties for NP-
complete optimization problems. Fundam. Informaticae 4(1), 83–94 (1981)

2. Baumgartner, P.: Linear and unit-resulting refutations for horn theories. J. Autom.
Reason. 16(3), 241–319 (1996)

3. Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for Horn programs.
Discrete Optim. 10, 85–101 (2013)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

5. de Moura,L., Owre, S., Ruess, H., Rushby, J.M., Shankar, N.: The ICS decision
procedures for embedded deduction. In: IJCAR, pp. 218–222 (2004)

6. Duterre, B., de Moura, L.: The yices SMT solver. Technical report, SRI Interna-
tional (2006)

7. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. Journal für die Reine
und Angewandte Mathematik 124(124), 1–27 (1902)

8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Theory of Parameterized
Preprocessing. Cambridge University Press, Kernelization (2019)

9. Ford, J., Shankar, N.: Formal verification of a combination decision procedure. In:
CADE, pp. 347–362 (2002)

10. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Log. Program.
19–20581, 503–581 (1994)

11. Kann, V.: On the Approximability of NP-complete Optimization Problems. Ph.D.
thesis, Royal Institute of Technology Stockholm (1992)

12. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using Horn clauses over integers and arrays. In:
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
27–30 September 2015, pp. 89–96 (2015)

13. Lueker, G.S.: Two NP-complete Problems in Nonnegative Integer Programming.
Princeton University, Department of Electrical Engineering (1975)

14. Neiman, V.S.: Refutation search for horn sets by a subgoal-extraction method. J.
Log. Program. 9(2&3), 267–284 (1990)

15. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons,
New York (1987)

16. Subramani, K.: Optimal length resolution refutations of difference constraint sys-
tems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009)

17. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certi-
fication of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794
(2019)

18. Veinott, A.F., LiCalzi, M.: Subextremal functions and lattice programming, July
1992. Unpublished Manuscript

19. Wojciechowski, P., Subramani, K.: A certifying algorithm for checking for the pres-
ence of unit refutations in horn constraint systems. European Symposium on Pro-
gramming (Submitted)

20. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci. 26(3), 287–300 (1983)

Trees and Graphs

Homomorphic Characterization of Tree
Languages Based on Comma-Free

Encoding

Stefano Crespi Reghizzi and Pierluigi San Pietro(B)

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy

{stefano.crespireghizzi,pierluigi.sanpietro}@polimi.it

Abstract. A classic result in language theory is Medvedev’s theorem
for trees, stating that any regular tree language can be defined by the
projection of a local tree language, i.e., of a language defined by its tiles
of height 2, a.k.a. di-grams. The simple proof of the statement is based
on a local alphabet whose size (linearly) depends on the number of states
of the tree automaton recognizing the original language. We prove a new
extended version of Medvedev’s theorem for trees, by using a k-locally
testable tree language defined by tiles of height k ≥ 2 (k-grams). The
size of the local alphabet is just the double of the original one, hence it is
independent from the complexity of the tree automaton. This result relies
on an encoding of the states traversed by a tree automaton, by means of
binary comma-free codes carefully laid on tree paths. We thus generalize
from words to trees our recent extended Medvedev’s theorem for word
languages that was based on strictly locally testable word languages.
By applying the result to the syntax trees of context-free grammars, we
characterize them by k-locally testable, binary-labeled trees.

1 Introduction

This study is about the theory of (regular) tree languages, a well-known domain
(see, e.g., [3,6,7]) that keeps attracting much attention for fundamental research
and application in many sectors. Early studies have shown that many formal
properties generalize from finite-state, i.e., regular, word languages, to tree lan-
guages. Thus, tree languages admit equivalent characterizations based on finite
tree automata (TA), on tree grammars (closely related to the context-free ones
for words), on logic formulas, and, what is more relevant for us, on homomor-
phism of local tree languages.

The latter characterization is also called Medvedev’s theorem [10]. In fact, in
the case of words, Medvedev’s original theorem asserts that a language R over
a finite terminal alphabet Σ is regular if, and only if, there exists another finite
alphabet Λ, a local word language L over Λ and a letter-to-letter homomorphism
h from Λ∗ to Σ∗ such that R is the image h(L). The reformulation of Medvedev’s
theorem for tree languages (available in the references cited above), uses a local
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 241–254, 2021.
https://doi.org/10.1007/978-3-030-68195-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_19

242 S. Crespi Reghizzi and P. San Pietro

tree language. Intuitively, a local word language is defined by the set of substrings
of length two (2-factors) occurring in language sentences. Similarly, a local tree
language is defined by the set of subtrees of height two (also called 2-grams)
that occur in the valid trees. Local languages have a local testability property,
in the sense that membership of a word/tree can be checked by repeated local
tests: respectively, on a word by means of a sliding window of width two, and
on a tree by a sliding frame of height two and width sufficient to enclose the
subtree.

The size of Medvedev’s local word language alphabet Λ depends on the size
of the original alphabet Σ and on the complexity of the language, measured
by the number of states, |Q|, of the recognizer. More precisely, the size of the
local alphabet in the original statement of the theorem is |Σ| · |Q|2, but is easily
lowered to |Σ| · |Q|. We may say that the alphabetic ratio of the original theorem
is |Q|. A corresponding alphabetic ratio holds in the analogous theorem for tree
languages.

Local word languages are at the lowest level of an infinite language hierarchy
called k-strictly locally testable (slt) [9], each level k ≥ 2 being characterized by
the use of a sliding window of width k. Such a hierarchy has been extended to
tree languages, see (see, e.g., [12]), using k-grams instead of k-factors.

The question we address is: if in Medvedev’s theorem for trees we allow slt
languages of order greater then 2, can we reduce the alphabetic ratio, and how
much? In the case of word languages, our answer, referred to as the Extended
Medvedev’s Th. [5], says that the minimal alphabetic ratio is 2 and can be always
achieved by using an slt language with slt constant of the order of the logarithm
of the recognizer size. We hint to its proof that is the starting point of the present
development for trees. Given a finite automaton (FA), the technique samples in
each computation the sub-sequences made by k state-transitions, where k is in
O(lg |Q|), so that a binary code of length k suffices to encode all the states of
the FA. To prevent mistakes, we resort to codes that can be decoded without
synchronisation, using a 2k-slt DFA as decoder. The family of comma-free codes
[2] has such a property and is the one we use also here. A similar approach was
used in the proof of Theorem 5.2 of [13], to give a logical characterization of
regular languages, which could be used as the starting point for an alternative
proof of the Extended Medveded Theorem.

Moving from word to tree languages often complicates matters, and we had
to examine and discard several possible ways of encoding the computation of a
TA by means of comma-free codes laid on a tree, before we found a successful
one. The result is an exact extension of the Extended Medvedev’s Th. from
word languages to regular tree languages, and says that any tree language is the
projection, by means of a letter-to-letter homomorphism, of an slt tree language
over an alphabet with size double of the original alphabet size. The alphabetic
ratio 2 is the minimal possible.

Since the syntax trees of context free grammars are regular (indeed, local)
trees, the Extended Medvedev’s Th. is easily transposed as follows. A word
language is generated by a context-free grammar G if, and only if, the language

Homomorphic Characterization of Tree Languages 243

is the yield (a.k.a. frontier) of an slt tree language having the internal nodes
labels in {0, 1} and such that its trees are structurally identical to the syntax
trees of G.

Section 2 introduces the notation and preliminary facts. Section 3 defines the
tree transformation that encodes on tree paths the states traversed by sampled
TA computations. Then, it shows that the encoding trees have the slt property
and proves the Extended Medvedev’s Th. for trees. It ends with a corollary for
the syntax trees of context-free grammars.

2 Basic Definitions

Tree languages. We refer to [6] for the notions and notations not defined below.
A ranked alphabet is a finite alphabet Δ with the property that there is a finite
number of integers k ≥ 0 such that a nonempty subset Δk ⊆ Δ is given. If
a ∈ Δk then k is one of the ranks of a ∈ Δ. The Δk sets need not be disjoint.

A tree over a ranked alphabet Δ is an element of the set TΔ defined by
induction as:

• if a ∈ Δ0 then a ∈ TΔ;
• for all k ≥ 1, if a ∈ Δk and t1, t2, . . . , tk ∈ TΔ then a[t1, t2, . . . , tk] ∈ TΔ.

A tree language T over Δ is a subset of TΔ.
Such a tree can be represented by a (root to leaf) directed (left to right)

oriented acyclic graph with node labels: each node has a distinct identifier x, and
has a label in Δ. We can assume for convenience that the identifier x depends
only on the structure of the tree and not on its labels, so that the same identifier
permits to individuate two nodes located in the same position, but belonging to
different superposable trees.

The label of a path x1 . . . xm is the concatenation of the labels of nodes
x1, . . . , xm. Let t be a tree and x, y be two of its nodes. We denote by t|x the
subtree of t at node x. The distance between nodes x and y is the length of the
path x → y. The height of t is the maximal distance from the root to a leaf
(hence, a tree with one node has height 0). The yield (a.k.a. frontier) of a tree
is a mapping from TΔ into Δ0

∗ returning the leaf labels in left to right order.
Let Λ,Δ be two ranked alphabets and let η : Λ → Δ be a mapping. A

projection η : TΛ → TΔ, is a map associating every tree t ∈ TΛ with the tree
η(t) ∈ TΔ such that η(t) = η(a) if t is a single node labeled a ∈ Λ0, and
η(t) = η(a)[η(t1), . . . , η(tn)] if t is a[t1, . . . , tk], k ≥ 1.
Let N be a symbol. Two trees t ∈ TΛ, t′ ∈ TΔ are structurally equivalent if there
exist two projections η : TΛ → {N}, η′ : TΔ → {N} such that η(t) = η′(t′).
A tree transformation from TΔ into TΛ is any subset of TΔ × TΛ.

The family of regular tree languages, henceforth tree languages, is character-
ized by their recognizer, the bottom-up tree automaton which may be assumed
to be deterministic; the latter is equivalent to the nondeterministic top-down
tree automaton. Moreover, the bottom-up version admits an equivalent nonde-
terministic top-down version that is associated (e.g., see Theorem 2.2.10 of [7]);

244 S. Crespi Reghizzi and P. San Pietro

the associated automata have identical states, with starting and final states
interchanged. Since we only need nondeterministic top-down tree automata, for
brevity we just call them tree automata (TA).

Definition 1 (tree automaton). A tree automaton is a 5-tuple M =
(Q,Δ, δ, S, F) where Q is the set of states, S ⊆ Q is the set of starting states, F
is a family {Fa}a∈Δ0 of sets Fa ⊆ Q of final states and δ is a family {δk

a}k≥1,a∈Δk

of mappings δk
a : Q → P(Q)k.

The mapping δ̃ : TΔ → P(Q) is defined recursively as follows:
⎧
⎪⎨

⎪⎩

for a ∈ Δ0, δ̃(a) = Fa;
for k ≥ 1, a ∈ Δk, and t1, . . . , tk ∈ TΔ,

δ̃(a[t1, . . . , tk]) =
{

q | ∃(q1, . . . , qk) ∈ δk
a(q) : qi ∈ δ̃(ti) for all 1 ≤ i ≤ k

}
.

Define the tree language recognized by M as T (M) = {t ∈ TΔ | δ̃(t) ∩ S 	= ∅}.

Given a computation by a TA on a tree t ∈ T (M), to represent it, it is cus-
tomary to additionally label each tree node with the TA state, to the effect
that the tree thus obtained is in TΔ×Q, and it is called a state-labeled tree
(S-tree). When useful to prevent confusion, we denote an S-tree by t̂; also,
̂T (M) = {t̂ | t̂ is an S-tree computed by M for some t ∈ T (M)} denotes the
set of all S-trees for T (M). See Example 1 below.

Example 1 (a counting language). Consider the tree language (from [6])
T ⊆ TΔ with Δ0 = {0, 1, . . . , 9} and Δ2 = {+, ∗}, that includes the arith-
metic expressions such that their result modulo 3 is 1. T is defined by
the top-down TA M = ({q0, q1, q2},Δ, δ, {q1}, F) where for 0 ≤ h ≤ 2,{

δ+(qh) = {(qi, qj) | i + j mod 3 = h}
δ∗(qh) = {(qi, qj) | i ∗ j mod 3 = h}

and F0 = F3 = F6 = F9 = {q0}, F1 = F4 = F7 = {q1}, F2 = F5 = F8 = {q2}.
A tree t ∈ T (M) is shown in Fig. 1 as well as its S-tree t̂.

Tree Languages Defined by Local Tests. We introduce our notation and ter-
minology for strictly locally testable tree languages. The following definition of
h-grams corresponds to the definition of (h − 1)-type of [12].

Definition 2. (h-gram). Let h ≥ 2, let t ∈ TΔ and x a node of t. The restric-
tion of the subtree t|x to the set of nodes at distance less than h from x is called
a h-gram of t with root x; if x is the root of t, it is called a root h-gram. The
set of h-grams of t is denoted by ⟪t⟫h; such a definition is naturally extended to
the h-grams ⟪T⟫h of a language T .

Notice that the yield of a h-gram, unlike the one of a tree, may include symbols
not belonging to Δ0.

Homomorphic Characterization of Tree Languages 245

Fig. 1. The tree (labels in Δ0 ∪ Δ2) and the corresponding S-tree (labels in (Δ0 ∪
Δ2) × {q0, q1, q2}) for Example 1.

Definition 3 (strictly locally testable (tree) language). Let h ≥ 2, let
Γh be a set of h-grams over the alphabet Δ and let Θh ⊆ Γh be the set of root h-
grams. The two sets jointly define the h-strictly locally testable (h- slt) language,
denoted by T = T (Γh, Θh) ⊆ TΔ, such that the inclusions hold:

⟪T⟫h ⊆ Γh and {y | y is a root h-gram of T} ⊆ Θh.

A language is called strictly locally testable (slt) if it is h-slt for some h; in
particular, if h = 2 it is also called local.

A well-known example of local language are the S-trees ̂T (M) of a language
T (M) ⊆ TΔ. See for instance the S-trees of language T (M) in Example 1. Notice
also that the language T (M) is not slt since it clearly violates the noncounting
property [4].

The next known proposition follows by taking as the local-language ranked
alphabet Λ the product Δ × Q.

Proposition 1 (Medvedev’s theorem for trees). A tree language T ⊆ TΔ

is regular if, and only if, there exists a ranked alphabet Λ, a local tree language
T ′ ⊆ TΛ and a projection η : Λ → Δ such that T = η(T ′). Moreover, if there is
a tree automaton recognizing T with a state set Q, then the alphabetic ratio |Λ|

|Δ|
is less or equal to |Q|.

Comma-free codes. Let Λ be an alphabet. A finite set X ⊂ Λ+ is a code [2] if
every word in Λ+ has at most one factorization in words (a.k.a codewords) of
X, more precisely: for any u1u2 . . . um and v1v2 . . . vn in X, where the u and v
are codewords, the identity u1u2 . . . um = v1v2 . . . vn holds only if m = n and
ui = vi for 1 ≤ i ≤ n.

246 S. Crespi Reghizzi and P. San Pietro

We use a code X to represent a finite alphabet Γ by means of a one-to-
one homomorphism, denoted by � �X : Γ ∗ → Λ∗, called encoding, such that
�α�X ∈ X for every α ∈ Γ .

Let k ≥ 1. A set X ⊂ Λk is a comma-free code of length k, if, intuitively,
no codeword overlaps the concatenation of two codewords: more precisely, for
any t, u, v, w ∈ Λ∗, if tu, uv, vw are in X, then u = w = ε, or t = v = ε. This
condition can equivalently be restated as X2 ∩ Λ+XΛ+ = ∅.

We need the following result (see [11] and its references) on the number of
codewords in a comma-free code of length k over an alphabet with cardinality
|Λ| = n.

Let �k(n) = 1
k

∑
μ(d)nk/d, where the summation ranges over all divisors d of

k, and μ is the Möbius function: μ(d) =

⎧
⎨

⎩

1 if d = 1

0 if d has any square factor

(−1)r if d = p1 p2 . . . pr

where p1 p2 . . . pr are distinct primes.

It is well-known that �k(n) counts the number of primitive cyclic words of
length k.

Proposition 2. For every alphabet with n letters and for every odd integer k >
1 there is a comma-free code of length k with �k(n) words.

The definition of the Möbius function is such that, if k is a prime number, the
preceding summation is equal to nk − n, and we may use the simpler formula:
for all prime numbers k, �k(n) = nk−n

k . We always use comma-free codes with
n = 2 over the binary alphabet {0, 1}. An example of codes is in Example 2,
below.

3 Main Results

In this section we present a constructive proof that any regular tree language
T in TΔ, defined by a TA with state set Q, is the projection of an slt tree
language in TΔ ×{0, 1}. Preliminarily, we encode the states of Q with a (binary)
comma-free code X of length k. Then, we present a tree transformation τ from
the S-trees in T̂ = ̂T (M) to the slt trees, denoted by T̃ , that we call encoding
trees (E-trees) since they encode on their path labels the states traversed by
M ’s computations. The mapping from S-trees to E-trees preserves the structure
of trees. E-tree labels are couples of the form 〈a, b〉 with a ∈ Δ, b ∈ {0, 1}.
Clearly, the bits b needed to encode all states traversed by M would exceed the
number of E-tree nodes by a factor k, therefore we can only encode a sampled
subset of the states. Then, we analyze and prove in a series of propositions
the properties of E-trees needed to state in Lemma 1 the slt property for the
language of E-trees. From this the main Theorem 1 easily follows. The theorem
is accompanied by two corollaries, one stating the minimality of the alphabetic
ratio 2 = |Δ×{0, 1}|/|Δ|, the other applying the main result to the context-free
syntax trees.

Homomorphic Characterization of Tree Languages 247

From Trees to Encoding Trees. Let M = (Q,Δ, δ, S, F) be a tree automaton
as in Definition 1. Let X ⊂ {0, 1}k, k ≥ 2 be a binary code for Q, so that each
q ∈ Q has the encoding �q�X . Using Proposition 2, we compute the value of k: let
h = |Q| and let k be such that �k(2) > h, i.e., 2k−2

2 = 2k−1 − 1 ≥ h. Therefore,
the value of k is in O(lg |Q|).

A tree from T (M) is input to a tree transformation that nondeterministically
produces a structurally equivalent E-tree. In the latter, each node label carries a
bit, which is used to encode the states traversed by M ’s computation on the tree,
sampled at distances multiple of k from the root (where computation starts).

We need some definitions and conventions to prepare for the main one. Let
t ∈ T (M) ⊆ TΔ be a tree. Consider the accepting computations of the TA M over
t. As said, each computation may be described as an S-tree t̂ ∈ ̂T (M) ⊆ TΔ×Q.
Given an S-tree t̂, its state-root sr is defined as the state component of
its root label. More formally, sr (〈a, q〉) = q for a ∈ Δ0, q ∈ Fa, and
sr (〈a, q〉[t1, . . . , tk]) = q with k ≥ 1, a ∈ Δk, q ∈ Q.
In the following, we denote by ̂T (M, q) the S-trees of computations that start in
a given state q ∈ Q (i.e., those t̂ such that sr(t̂) = q), regardless of state q being
starting.

Next, for every S-tree t̂, we define its encoding tree (E-tree), denoted by t̃.

Definition 4 (translation from S- to E-trees). We define a tree transfor-
mation by means of a partial map τ : TΔ×Q → TΔ×{0,1} from state-labeled trees
to structurally equivalent encoding trees.
Let SX = {w ∈ {0, 1}+ | yw ∈ X, y ∈ {0, 1}∗}, i.e., w is in SX if it is a codeword
or a suffix thereof.
To define τ , we introduce a family of mappings {ρw}w∈SX

with each ρw :
TΔ×Q → TΔ×{0,1}. For all t̂ ∈ TΔ×Q, ρw(t̂) is recursively defined as follows,
for all b ∈ {0, 1}, w ∈ {0, 1}∗ such that bw ∈ SX :

1. if t̂ = 〈a, q〉, with a ∈ Δ0, q ∈ Fa, then let ρbw(t̂) = 〈a, b〉;
2. if t̂ = 〈a, q〉[t1, . . . , tn], n ≥ 1, a ∈ Δn, q ∈ Q, then let

ρbw(t̂) = 〈a, b〉[t′1, . . . , t′n] where

⎧
⎨

⎩

t′i = ρw(ti) if w 	= ε
t′i = ρ�qi�X (ti) otherwise,

where qi = sr(ti), 1 ≤ i ≤ k.

Then τ is defined for every t̂ ∈ TΔ×Q of height at least k as τ(t̂) = ρ�sr(̂t)�X (t̂).
The E-tree language T̃ is defined as {τ(t̂) | t̂ ∈ ̂T (M)}. ��

Properties of E-trees. Consider a path of t̃ ∈ TΔ×{0,1}; its binary label is the
projection on {0, 1} of the path label.
Given a node x of a tree t and a value j > 0, define dist(x, j) as the set of nodes
of t|x at distance j from x.

Definition 5 (profile). Let t̃ ∈ TΔ×{0,1} be a tree of height at least k, such
that the binary label of any path of length h ≤ k from the root agrees with the

248 S. Crespi Reghizzi and P. San Pietro

binary label of every other path of length h from the root. The unique binary
label of every path of length k (from the root) is called the profile of length k of
t̃, denoted prk(t̃).

For instance, in Fig. 2, the subtree whose root is labeled with
〈 code-gram +, 1©q2〉 has profile 1110.

The next two propositions assert that when t̃ is τ(t̂) for some t̂ ∈ TΔ×Q, the
profile of length k of t̃ is always defined and it is a codeword.

Proposition 3 (identity of binary path labels). Given a state q ∈ Q and
a tree t̂ ∈ ̂T (M, q) ⊆ TΔ×Q, for every i ≥ 0, for all 0 < j < k, if t̂ has height at
least k ∗ i + j and x is a node in dist(root(t), k ∗ i), then for all nodes of τ(t̂) in
dist(x, j) the projections of their labels to {0, 1} are identical.

In any E-tree τ(t̂), the codewords are regularly spaced from the root, as stated
next.

Proposition 4 (position of codewords). For i ≥ 0, let t̂ be an S-tree of
height at least k ∗ (i+1), and let the E-tree t̃ be τ(t̂). For all nodes x at distance
k ∗ i from the root of t̂, if x has label 〈a, p〉 for some a ∈ Δ, p ∈ Q, then prk(t̃|x)
is defined and it is equal to the codeword �p�X .

This proposition allows us to single out the notion of code-gram: a k-gram whose
profile of length k is a codeword in X.

We define the test sets to be used later to prove that the language of E-trees
is slt.

Definition 6 (test sets). Given the S-tree language ̂T (M) ⊆ TΔ×Q, let k be
the length of the binary code X that encodes the states Q of the TA M . We
associate with ̂T (M) the following set of 2k-grams (computed on the encoding
trees using Definition 2):

Γ2k =
⋃

q∈Q

⋃

̂t∈ ̂T (M,q)

⟪τ(t̂)⟫2k

and, for all q ∈ Q, the following sets of root 2k-grams:

Θ2k(q) =
⋃

̂t∈ ̂T (M,q)

{2k-grams at the root of τ(t̂)}.

The set of all root 2k-grams is defined as Θ2k =
⋃

q∈Q Θ2k(q). Clearly, Θ2k ⊆
Γ2k.
The above sets define by Definition 3 the 2k-slt language T (Γ2k, Θ2k) and, for
every q ∈ Q, the languages T (Γ2k, Θ2k(q)).

For convenience, in the following proposition we gather some properties of
root 2k-grams, following immediately from the definitions of τ and Θ2k(q).

Homomorphic Characterization of Tree Languages 249

Proposition 5. (properties of Θ2k). Given the S-tree language T̂ ⊆ TΔ×Q,
let Γ2k and Θ2k(q) be as in Definition 6. For all q ∈ Q and for all 2k-grams
ỹ ∈ Θ2k(q) of height at least k:

1. ỹ ∈ Γ2k and its profile prk(ỹ) is �q�X

2. every k-gram of ỹ of height k with root in dist(root(ỹ), k) has profile in X

3. there exists an S-tree t̂ ∈ T̂ with state-root q such that ỹ is the 2k-gram at the
root of τ(t̂).

Proposition 6 (codeword-state agreement in root). Given the S-tree lan-
guage T̂ ⊆ TΔ×Q, let Γ2k, Θ2k(q), for all q ∈ Q, be as in Definition 6. Let ỹ ∈ Γ2k

be a 2k-gram of height at least k.
If the profile prk(ỹ) is a codeword �q�X for some q ∈ Q, then ỹ ∈ Θ2k(q).

Proof. If ỹ has height less than 2k, then the statement is obvious. If ỹ has height
2k, it is a (possibly non-root) 2k-gram of an E-tree t̃ = τ(t̂) associated with an
S-tree t̂ ∈ T (M). Let x be one of the nodes in t̃ (and in t̂) corresponding to the
root of ỹ.
By contradiction, suppose that in t̂ the node x does not correspond to a node
with a state label q ∈ Q. Then, by Proposition 4, x is not at a distance multiple
of k from the root of t̃, i.e., there exist i ≥ 0 and j, 0 < j ≤ k − 1, such that x is
at distance k ∗ i + j from the root. Let xi, xi+1 and xi+2 be nodes at distance,
respectively k ∗ i, k ∗ (i + 1) and k ∗ (i + 2) from the root, such that there is a
path from xi to x to xi+1 to xi+2. These nodes must exist since ỹ has height 2k,
hence the tree t̃ has height at least k ∗ i + j + 2k > k ∗ (i + 2).
By Proposition 4, the profiles of length k of the subtrees t̃|xi

and t̃|xi+1 are
codewords, say, �p�X and �r�X , respectively, for some p, r ∈ Q. Consider the
path from xi to xi+2, which includes nodes x and xi+1: its binary label is �p�X

�r�X . However, this label also contains by hypothesis �q�X as a (proper) factor,
i.e., it is of the form u�q�Xv, for some u, v ∈ {0, 1}+, a contradiction with the
comma-free property of code X.

��

We prove that an E-tree language is an slt language of order 2k.

Lemma 1 (slt property of encoding trees). Let T̂ be the S-tree language
recognized by TA M = (Q,Δ, δ, q0, F). There is k > 1 such that the E-tree
language τ(T̂) is the 2k-slt language defined by the test sets in Definition 6, i.e.,
τ(T̂) = T (Γ2k, Θ2k(q0)).

Proof. We prove the more general statement
⋃

q∈Q τ(̂T (M, q)) = T (Γ2k, Θ2k).

The inclusion τ(̂T (M, q)) ⊆ T (Γ2k, Θ2k(q)) is obvious by Definition 6, since every
t̃ ∈ τ(̂T (M, q)) comprises only 2k-grams in Γ2k, with the one at the root being
in Θ2k(q).
The proof of the converse inclusion is by induction on the height n ≥ 1 of a tree
in T (Γ2k, Θ2k). More precisely, the induction hypothesis is that for every n > 1,

250 S. Crespi Reghizzi and P. San Pietro

if a tree t̃ of height less than n is in T (Γ2k, Θ2k), then there exists q ∈ Q such
that t̃ has the form τ(t̂) for some t̂ ∈ ̂T (M, q) and t̃ ∈ T (Γ2k, Θ2k(q)).
Base case: The base case includes all trees of height up to 2k. Let t̃ be a tree of
height up to 2k in T (Γ2k, Θ2k). Then, there exists q ∈ Q such that t̃ ∈ Θ2k(q).
Therefore, there exists an S-tree ŝ ∈ ̂T (M, q) such that t̃ is the 2k-gram at the
root of τ(ŝ). Since the 2k-gram at the root of ŝ is structurally equivalent to t̃
and the yield of t̃ is in (Δ0 × {0, 1})+, the S-tree ŝ must also be of same height
as t̃. Therefore, t̃ = τ(ŝ).
Induction step: let t̃ ∈ T (Γ2k, Θ2k) be a tree of height n > 2k. Hence, the 2k-
gram ỹ at the root of t̃ is in Θ2k(q), for some q ∈ Q. By Proposition 5, Part (1),
the profile of length k of ỹ is �q�X .
By Proposition 4, every node z at distance k from the root of t̃ is such that
the profile of length k of the subtree t̃|z (rooted at z) is a codeword, say, �qz�X ,
where qz ∈ Q.
All 2k-grams of the subtree t̃|z are obviously in Γ2k and, by Proposition 6, the
2k-gram at the root z of t̃|z is in Θ2k(qz). Hence, t̃|z is in T (Γ2k, Θ2k(qz)) ⊆
T (Γ2k, Θ2k).
The induction hypothesis thus applies to t̃|z: there exists a (structurally equiv-

alent) tree t̂z in ̂T (M, qz) such that t̃|z = τ(t̂z).
The tree t̃ is completely defined by the root 2k-gram ỹ and by all those subtrees
t̃|z; in fact, let x be a node of t̃; if x is at distance less than 2k +1 from the root,
then x is in ỹ; otherwise, there exists a node z at distance k from the root such
that x is a node of t̃|z.
By Proposition 5, Part (3), the 2k-gram ỹ is the 2k-gram at the root of an E-tree
τ(t̂′), where t̂′ is an S-tree in ̂T (M, q); moreover, qz as above is the state label
of the node z of t̂′.
For each node z as above, replace the subtree t̂′|z in the S-tree t̂′ with the S-tree
t̂z found by the induction hypothesis. The resulting S-tree t̂ is thus such that
the 2k-gram at the root of τ(t̂) is still ỹ and every subtree t̂|z, with z as above,
is structurally equivalent to t̃|z. Therefore, t̃ = τ(t̂). ��

The following result descends immediately from Lemma 1, since T (M) is the
projection on alphabet Δ of the E-tree language τ(̂T (M)).

Theorem 1. For every finite ranked alphabet Δ, there exist k ≥ 2, a finite
ranked alphabet Λ, with alphabetic ratio |Λ|

|Δ| ≤ 2, and a projection η : TΛ →
TΔ, such that for every regular tree language T ⊆ TΔ there exists a 2k-slt tree
language T̃ ⊆ TΛ such that T = η(T̃).

Example 2 (a counting language - Part 2). Consider again the tree language
defined by the TA in Example 1, with the tree and the corresponding S-tree
in Fig. 1. A code X of length k = 4 for the state set Q is the following:
�q0�X = 0010, �q1�X = 0011, �q2�X = 1110. Applying the transformation of
Definition 4 to the S-tree we obtain the E-tree in Fig. 2. Observe the presence of

Homomorphic Characterization of Tree Languages 251

Fig. 2. E-tree with codewords �q0�X = 0010 (blue), �q1�X = 0011 (black), �q2�X =
1110 (red). For readability, we report also the states at distance multiple of k from the
root. (Color figure online)

three code-grams having their roots as shown. The E-tree language has the 8- slt
property. ��

The next statement combines Theorem 1 with a result in [5] for regular word
languages.

Corollary 1 (minimality). For every n ≥ 1 there exist a finite ranked alphabet
Δ, with |Δ| = n, and a regular tree language in TΔ such that the alphabetic ratio
of Theorem 1 cannot be less than 2.

Proof. In Theorem 5 of [5], we proved that for every n ≥ 1, the word lan-
guage L = {(aiai)+ | 1 ≤ i ≤ n} over the alphabet Δ = {a1, . . . , an}, can be
expressed as the image under a letter-to-letter homomorphism h : Λ → Δ of
a (word) slt language R over an alphabet Λ, only if |Λ| ≥ 2|Δ|. Consider the
TA M = (Q,Δ, δ, S, F) where Δ0 = Δ1 = Δ, Q = {q0, q1, . . . , qn, q′

1, . . . , q
′
n},

S = {q0} is the set of starting states, and for all 1 ≤ i ≤ n we let
Fai

= {q′
i}. Let the transition relation δ be defined as the family of mappings

δ1ai
= {(qi, q

′
i), (q

′
i, qi), (q0, qi)}, 1 ≤ i ≤ n. The language defined by M is the set

of trees of the form ai[ai[ai[. . . [ai] . . .]]], for all 1 ≤ i ≤ n, having the (only) path
from root to leaf of even length. Therefore, T (M) has a linear structure and can
be viewed also as the word language W (M) = L.
By contradiction, suppose to define T (M) as T (M) = η(T ′), where T ′ is an slt
tree language over an alphabet Λ such that |Λ| < 2|Δ|, and η : TΛ → TΔ is
a projection. Language T ′ is structurally equivalent to T (M), therefore it can
also be regarded as a word language W ′ ⊆ Λ+, hence the projection η can be
regarded as a letter-to-letter homomorphism η : Λ∗ → Δ∗ such that L = η(W ′),
violating Theorem 5 of [5]. ��

252 S. Crespi Reghizzi and P. San Pietro

Application to Context-Free Grammars. It is interesting to apply Theorem1 to
the syntax trees of context-free grammars. Let G = (VN , Σ, P, S) be a grammar.
It is known [3,6,7] that the syntax trees of L(G) make a local tree language,
denoted by T (G), over the ranked alphabet Δ = Σ ∪ VN with the ranks defined
as Δ0 = Σ and Δi ⊆ VN , i ≥ 1 such that A ∈ Δi if, and only if, P contains a
production A → α with α ∈ (Σ∪VN)i. Since Σ is disjoint from VN by hypothesis,
a terminal symbol may not label an internal node of a syntax tree. By a slight
modification of Definition 4 and of the proof of Lemma 1, it is possible to restate
Theorem 1 by assigning symbols in Δ0, rather than in Δ0 × {0, 1}. as labels of
the leaves of the E-trees used in the proof. This leads to the following more
expressive version of Theorem 1.

Corollary 2 (syntax trees). Let L = L(G) be a word language over the
alphabet Σ generated by a context-free grammar G.
The tree language T (G) is structurally equivalent to a strictly locally testable
tree language T̆ over the alphabet Δ, with Δ0 = Σ and, for every rank i > 0,
Δi = {0, 1}.

Fig. 3. A representation of both a syntax tree of the grammar G of Example 3 and
of its encoding tree. The frontier of both trees are the same; the labels of the syntax
tree are the nonterminal symbols of G; the labels of the encoding tree are the encircled
symbols.

Example 3 (context-free language defined by code-grams). Given the grammar
G = {E → E + T | T, T → T ∗ F | F, F → (E) | c}, a code for the nonterminal
symbols is: �E�X = 0010, �T �X = 0011, �F �X = 1110. By Corollary 2, the
language of syntax trees T (G) is structurally equivalent to an slt language T̆ ,
that we still call an encoding tree language since its differences from the E-trees
in the proof of Lemma 1 are minor: the internal nodes carry bits without TA
states as labels and the leaves carry terminal symbols without bits. We show one
E-tree in Fig. 3. Notice that the nonterminal names can be viewed as the states
of a (top-down) TA.

Homomorphic Characterization of Tree Languages 253

There is only one 4-code-gram in this tree, comprising the root and the nodes
at distance up to 3:

0 [0 [1[0 + 0] + 1[0]] + 0 [1 [0 ∗ 0] ∗ 1[c]]]

The whole E-tree (disregarding nonterminal labels) in Fig. 3 is one of the many
8-grams (omitted for brevity) that define the 8-slt language T̆ . The set of such
8-grams, with the ones located at the root marked as such, acts as a structurally
equivalent definition of language L(G). ��

4 Conclusion

We see some natural continuations for the present research. Theorem 1 has gen-
eralized to regular trees of the ranked type, the extended Medvedev’s theorem
proved in [5] for regular word languages, i.e., for trees generated by right-linear
grammars. It would be of some interest to examine the case of unranked trees.

The new possibility offered by Corollary 2 for defining context-free languages,
not by means of grammars or push-down automata, but by means of encoding
trees, suggests to reexamine some classical properties, in particular the Chomsky-
Schützenberger theorem.

At last, the successful lifting of the Extended Medvedev’s Th. from words
to the more complex mathematical object, namely trees, invites to investigate
whether other generalizations to objects of different nature may be possible.
A natural candidate is the family of the two-dimensional picture languages [8]
whose definition by tiling systems is essentially a Medvedev’s theorem using
local tiles; recent work on two-dimensional comma-free codes [1] may bridge the
conceptual distance from our work.

Acknowledgment. We thank an anonymous reviewer for pointing out the relevance
of reference [13].

References

1. Anselmo, M., Madonia, M.: Two-dimensional comma-free and cylindric codes.
Theor. Comput. Sci. 658, 4–17 (2017)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, volume 129 of Ency-
clopedia of Mathematics and its Applications. CUP (2009)

3. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata

4. Crespi-Reghizzi, S., Guida, G., Mandrioli, D.: Noncounting context-free languages.
J. ACM 25(4), 571–580 (1978)

5. Crespi-Reghizzi, S., San Pietro, P.: From regular to strictly locally testable lan-
guages. Int. J. Found. Comput. Sci. 23(8), 1711–1728 (2012)

6. Engelfriet, J.: Tree automata and tree grammars. CoRR, abs/1510.02036 (2015)
7. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, pp. 1–68. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59126-6 1

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-3-642-59126-6_1
https://doi.org/10.1007/978-3-642-59126-6_1

254 S. Crespi Reghizzi and P. San Pietro

8. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidel-
berg (1997). https://doi.org/10.1007/978-3-642-59126-6 4

9. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

10. Medvedev, Y.T.: On the class of events representable in a finite automaton. In:
Moore, E.F. (ed.) Sequential Machines - Selected Papers, pp. 215–227. Addison-
Wesley (1964)

11. Perrin, D., Reutenauer, C.: Hall sets, Lazard sets and comma-free codes. Discret.
Math. 341(1), 232–243 (2018)

12. Place, T., Segoufin, L.: A decidable characterization of locally testable tree
lan guages. Log. Methods Comput. Sci. 7(4), 1–25 (2011)

13. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25(3), 360–376 (1982)

https://doi.org/10.1007/978-3-642-59126-6_4

Approximated Determinisation
of Weighted Tree Automata

Frederic Dörband1(B) , Thomas Feller1 , and Kevin Stier2

1 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{frederic.doerband,thomas.feller}@tu-dresden.de

2 Institute of Computer Science, Universität Leipzig, Leipzig, Germany
stier@informatik.uni-leipzig.de

Abstract. We introduce the notion of t-approximated determinisation
and the t-twinning property of weighted tree automata (WTA) over
the tropical semiring. We provide an algorithm that accomplishes t-
approximated determinisation of an input automaton A , whenever it
terminates. Moreover, we prove that the t-twinning property of A is a
sufficient condition for the termination of our algorithm. Ultimately, we
show decidability of the t-twinning property for WTA.

Keywords: Weighted automata · Approximation · Approximated
determinisation · Tree automata · Twinning property

1 Introduction

In theoretical computer science, automata theory arose as a very potent field
of research. Besides having manifold applications in areas like natural language
processing, model checking, and computational biology, automata are studied
in a vast number of syntactical variations. The most prominent case of finite
string automata has been extended to handle more complex input structures
like pictures, trees, and forests (cf. [14,15]). Another direction of generalisa-
tion is to allow quantitative calculations rather than simple binary acceptance.
Well-studied examples of such automata are weighted string automata and
weighted tree automata over some weight structure S (cf. [8] for exhaustive
references). Prominent weight structures include commutative semirings [1], and
strong bimonoids [9].

One of the major research fields in automata theory is the determinisa-
tion of automata. While this problem has a well-known solution for unweighted
automata, very little results are known in the weighted setting. In fact, not
every weighted automaton can be determinised [5, Example 5.9]. One endeavour

Research of the first and third author was supported by the DFG through the Research
Training Group QuantLA (GRK 1763). The second author was supported by the
European Research Council (ERC) through the ERC Consolidator Grant No. 771779
(DeciGUT).

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 255–266, 2021.
https://doi.org/10.1007/978-3-030-68195-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_20&domain=pdf
http://orcid.org/0000-0003-2942-0896
http://orcid.org/0000-0001-8420-6118
http://orcid.org/0000-0002-0564-8688
https://doi.org/10.1007/978-3-030-68195-1_20

256 F. Dörband et al.

to simplify automata that cannot be determinised is to aim for approximated
determinisation. Different approaches to this paradigm have been proposed, see
e.g. [2,3], and [4]. The main idea of these papers is to take an automaton A and
construct a deterministic automaton that recognizes a “similar” language to the
one of A . The notions of similarity differ in the literature. As the present paper
aims to generalise [2] from the string case to the tree case, we subsequently focus
on [2].

In [2], the weight structure is the tropical semiring (R∞,min,+,∞, 0). The
notion of approximation is given as follows. Let t ≥ 1 be a real number, called
the approximation factor. A weighted automaton A ′ t-approximates A , if for
every input string w ∈ Σ∗ it holds that [[A]](w) ≤ [[A ′]](w) ≤ t · [[A]](w), where
[[A]] denotes the weighted language recognised by A .

Aminof et al. [2] give an algorithm, called tDet, that takes as input a weighted
string automaton A and an approximation factor t and (if the algorithm ter-
minates) outputs a deterministic weighted string automaton A ′ such that A ′

t-approximates A . The algorithm tDet executes a weighted powerset construc-
tion (with a fixed factorisation) similar to the one given by Kirsten and Mäurer
[11]. That is, the states of A ′ are essentially subsets of the state set of A ,
where each state of A gets assigned a residual weight. These residual weights
keep track of the difference between the weights of runs of A ′ and runs of A .
For approximated determinisation however, tDet keeps track of two bounds for
every state of A rather than a single residual weight. Namely, a lower bound
and an upper bound. These bounds describe intervals of residual weights in order
to ensure t-approximation.

Next, Aminof et al. [2] prove that tDet terminates if A satisfies the so-called
t-twinning property. The t-twinning property is a generalisation of the classical
twinning property (see [12]). Ultimately, it is proven in [2] that the t-twinning
property is decidable.

The approach of the present paper closely follows the approach by Aminof
et al. [2]. In Sect. 2 we introduce some elementary technical machinery and our
automaton model. Next, in Sect. 3 we define t-approximation for weighted tree
automata, give an algorithm for t-approximate determinisation, and prove its
partial correctness. In Sect. 4 we introduce the t-twinning property for weighted
tree automata and show that it is a sufficient condition for the termination of
our algorithm. In Sect. 5 we prove that our t-twinning property is decidable and
in Sect. 6 we conclude the paper by posing some open questions.

2 Preliminaries

We denote the set of integers by Z, the set of nonnegative integers by N, and the
set of positive integers by N+. Moreover, we denote the set of real numbers by R

and define the set R∞ := {x ∈ R | x ≥ 0}∪{∞}. Analogously, we denote the set
of rational numbers by Q and define the set Q∞ := {x ∈ Q | x ≥ 0} ∪ {∞}. For
every x, y ∈ R, we define the interval [x, y] := {z ∈ R | x ≤ z ≤ y} and denote
the set [∞,∞] := {∞}. For every k ∈ N, we denote the set {i ∈ N | 1 ≤ i ≤ k}

Approximated Determinisation of Weighted Tree Automata 257

by [k]. Note that [0] = ∅. For a set A we denote the size of A by #A and for
every k ∈ N+ we denote by Ak the k-fold cartesian power of A.

An alphabet is a finite and non-empty set A and A∗ =
⋃

k∈N
Ak is the set

of all (finite) words over A, where A0 = {ε} contains solely the empty word ε.
We denote by |w| the length of the word w ∈ A∗. Given words v, w ∈ A∗, their
concatenation is written v.w or simply vw. We write v � w provided that there
exists u ∈ A∗ such that vu = w. The relation � is in fact a partial order, called
the prefix order.

A ranked alphabet is a pair (Σ, rk) consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We refer to the ranked
alphabet (Σ, rk) by the set Σ whenever the map rk is clear from the context.
Furthermore, for every k ∈ N, we let Σ(k) = {σ ∈ Σ | rk(σ) = k} and we write
σ(k) to indicate that rk(σ) = k.

Throughout the rest of this paper, we assume Σ to be a ranked alphabet
and Σ(0)
= ∅.

Given a set Z, the set of Σ-trees indexed by Z, denoted by TΣ(Z), is the
smallest set T such that Z ⊆ T and σ(ξ1, . . . , ξr) ∈ T for every r ∈ N, σ ∈ Σ(r),
and ξ1, . . . , ξr ∈ T. We abbreviate TΣ = TΣ(∅) and call every subset L ⊆ TΣ a
tree language.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let ξ ∈ TΣ(Z). The set pos(ξ) of positions of ξ is defined inductively
by pos(z) = {ε} for all z ∈ Z, and pos(σ(ξ1, . . . , ξr)) = {ε} ∪ {i.w | i ∈
[r], w ∈ pos(ξi)} for every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z). The height
of ξ is defined by height(ξ) = maxw∈pos(ξ) |w|, and the size of ξ is defined by
size(ξ) = #pos(ξ). A leaf is a position w ∈ pos(ξ) such that w.1 /∈ pos(ξ). We
denote the set of leaves of ξ by leaf(ξ). Given a position w ∈ pos(ξ), the label
of ξ at w is denoted by ξ(w). The subtree of ξ at w, denoted ξ|w, is defined for
every z ∈ Z by z|ε = z and for every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z)
by

σ(ξ1, . . . , ξr)|w =

{
σ(ξ1, . . . , ξr) if w = ε

ξi|w′ if w = i.w′ with i ∈ N and w′ ∈ pos(ξi).

Let Y be a set. The set of positions of ξ labeled by elements in Y , denoted by
posY (ξ), is the set {w ∈ pos(ξ) | ξ(w) ∈ Y }. Moreover, the replacement of the
leaf w ∈ leaf(ξ) by the tree η ∈ TΣ(Z), denoted ξ[η]w, is given for every z ∈ Z
by z[η]ε = η and for every r ∈ N, i ∈ [r], σ ∈ Σ(r), ξ1, . . . , ξr ∈ TΣ(Z),
and w′ ∈ pos(ξi) by σ(ξ1, . . . , ξr)[η]i.w′ = σ(ξ1, . . . , ξi−1, ξi[η]w′ , ξi+1, . . . , ξr).

The set path(ξ) ⊆ (Σ ∪ Z)∗ of paths of ξ is defined inductively by path(z) =
{z} for all z ∈ Z, and path(σ(ξ1, . . . , ξr)) = {σw | i ∈ [r], w ∈ path(ξi)} for
every r ∈ N, σ ∈ Σ(r), and ξ1, . . . , ξr ∈ TΣ(Z).

We fix the set X = {x1, x2, . . . } of variables (which we impose to be disjoint
from any other set we consider), and Xn = {x1, . . . , xn} for every n ∈ N+. A
tree ξ ∈ TΣ(X1) is a context, if #posx1

(ξ) = 1. The set of all contexts is denoted
by CΣ .

258 F. Dörband et al.

Given a context ζ ∈ CΣ and a tree ξ ∈ TΣ(Z), the substitution of ξ into ζ,
denoted by ζ[ξ], is the tree ζ[ξ]w, where w is the unique position in posX(ζ).
Note that, given ζ, ζ ′ ∈ CΣ , also ζ[ζ ′] ∈ CΣ . We write ζk for ζ[ζ[· · · ζ[ζ] · · ·]]
containing the context ζ a total of k times.

We recall the tropical semiring (R∞,min,+,∞, 0), where min and + are
binary operations on R∞ and are the natural extensions of the respective real-
valued operations.

Definition 1 (WTA). A weighted tree automaton (short: WTA) is a tuple
(Q,Σ,R∞,final, T), where Q is an alphabet of states, final : Q → R∞ is a map
of final weights, and T is a family (Tσ : Qr × Q → R∞ | r ≥ 0, σ ∈ Σ(r)) of
maps of transition weights.

We call a tuple t = (q1, . . . , qr, σ, x, q) ∈ Qr × Σ × R∞ × Q a transition if
rk(σ) = r and Tσ(q1, . . . , qr, q) = x. We sometimes denote t by σ(q1, . . . , qr)

x→ q.

Definition 2 (run). Let A = (Q,Σ, S,final, T) be a WTA and ξ ∈ TΣ ∪ CΣ

be a tree or a context. A run of A on ξ is a map ρ : pos(ξ) → Q.
Let w ∈ pos(ξ). The weight of ρ at position w, denoted wt(ρ,w), is an

element of R∞ defined inductively as follows. If label(ξ, w) ∈ X, then we define
wt(ρ,w) := 0 and if label(ξ, w) = σ is in Σ(r), then we define wt(ρ,w) :=
wt(ρ,w1)+· · ·+wt(ρ,wr)+Tσ(ρ(w1), . . . , ρ(wr), ρ(w)). Furthermore, the weight
of ρ, denoted wt(ρ), is defined by wt(ρ) := wt(ρ, ε).

We say that ρ contains a state q ∈ Q if there exists w ∈ pos(ξ) such that
q = ρ(w). We say that ρ is non-vanishing if wt(ρ)
= ∞.

Remark 3. We use the following notation for a run ρ of A on a tree or context

ξ. Let q := ρ(ε) and x := wt(ρ). If ξ ∈ TΣ , then we write
ξ|ρ|x−→ q. If ξ ∈ CΣ ,

then we write p
ξ|ρ|x−→ q, where p := ρ(w) for the unique w ∈ posX(ξ). Whenever

we do not care about the name of the run, we simply write
ξ|x−→ q and p

ξ|x−→ q,

respectively. Furthermore, if
ξ|x−→ q for some tree ξ and x
= ∞, then we call the

state q reachable.

Definition 4 (sets of runs). Let A = (Q,Σ, S,final, T) be a WTA and
ξ ∈ TΣ ∪ CΣ be a tree or a context. The set of runs of A on ξ is denoted
by RunA (ξ). For every q ∈ Q and ξ ∈ TΣ we define the set RunA (ξ, q) := {ρ ∈
RunA (ξ) |

ξ|ρ|wt(ρ)
−−−→ q} and the run weight of ξ into q as θA (ξ, q) := min

{
wt(ρ) |

ρ ∈ RunA (ξ, q)
}
. Analogously, for every p, q ∈ Q and ξ ∈ CΣ we define the set

RunA (p, ξ, q) := {ρ ∈ RunA (ξ) | p
ξ|ρ|wt(ρ)
−−−→ q} and the run weight of ξ from p

into q as θA (p, ξ, q) := min
{
wt(ρ) | ρ ∈ RunA (p, ξ, q)

}
.

Definition 5 (semantics of WTA). Let A = (Q,Σ,R∞,final, T) be a WTA.
The weighted tree language accepted by A is the map [[A]] : TΣ → R∞, where
for every ξ ∈ TΣ we define

[[A]](ξ) := min
q∈Q

(
θA (ξ, q) + final(q)

)
.

Approximated Determinisation of Weighted Tree Automata 259

Two WTA A and B are called equivalent if they accept the same weighted
tree language, that is, if [[A]] = [[B]].

Note that our weighted tree automata are classical semiring-weighted tree
automata (cf. [10]) where we fix the semiring S = R∞.

Definition 6 (deterministic). Let A = (Q,Σ,R∞,final, T) be a WTA. We
call A deterministic if for all r ≥ 0, σ ∈ Σ(r), and q1, . . . , qr ∈ Q there exist at
most one q ∈ Q such that Tσ(q1, . . . , qr, q)
= ∞. Moreover, we call A unambigu-
ous if for every ξ ∈ TΣ there exists at most one non-vanishing run of A on ξ.
If A is unambiguous, then we define for every ξ ∈ TΣ the value θA (ξ) := wt(ρ)
as the weight of the unique non-vanishing run ρ of A on ξ (if such a run exists,
and as ∞ otherwise).

A map f : TΣ → R∞ is called deterministically recognizable if there exists a
deterministic WTA A such that [[A]] = f .

Example 7. Let Σ = {α(0), β(0), σ(2)} and consider A := (Q,Σ,R∞,final, T)
where Q := {q1, q2}, final := 0, and T is ∞ except in the cases

α
1→ q1, α

2→ q2, σ(q1, q1)
0→ q1,

β
0→ q1, σ(q2, q2)

0→ q2.

We depict WTA by hypergraphs (see Figs. 1 and 2) which are read in the
following way. Each state of the WTA is represented by a circle labeled by the
name of the state. A transition of the form σ(q1, . . . , qr)

x→ q with x
= ∞ is
represented by a box labeled by σ and having r incoming edges and a single
outgoing edge. The outgoing edge includes the weight of the transition, x, and
is indicated by an arrow. The incoming edges are ordered by counter-clockwise
traversal starting to the left of the outgoing edge. A depiction of the automaton
A can be found in Fig. 1.

Let ξ ∈ TΣ . One easily verifies the following statements using the definition
of A . If ξ contains at least one β, then there exists a unique non-vanishing
run ρ of A on ξ and it holds that wt(ρ) = #posα(ξ). If ξ contains no β, then
there exist exactly two non-vanishing runs ρ1 and ρ2 of A on ξ and it holds
that wt(ρ1) = #posα(ξ) and wt(ρ2) = 2 · #posα(ξ). In total, we obtain that
[[A]](ξ) = #posα(ξ).

Clearly, A is not deterministic, as T contains the transitions α
1→ q1 and

α
2→ q2. Furthermore A is not unambiguous, as there exist two non-vanishing

runs of A on α.

3 Approximated Determinisation

In this section we present an algorithm that takes a weighted tree automaton
A as input and generates a tuple A ′. Under certain conditions, this tuple is
a deterministic weighted tree automaton that approximates A . After applying

260 F. Dörband et al.

Fig. 1. Non-deterministic WTA A from Example 7.

the algorithm to the automaton from Example 7, we show the partial correct-
ness of the algorithm. That is, if the algorithm terminates, the tuple A ′ is in
fact a deterministic weighted tree automaton that approximates A . Our app-
roach closely follows [2] and we start by defining approximation of weighted tree
automata.

Throughout the rest of this section, we assume A = (Q,Σ,R∞,final, T)
to be an arbitrary WTA.

Definition 8 (t-approximation [2]). Let t ∈ R be a real number such that
t ≥ 1 and let B = (Q′, Σ,R∞,final′, T ′) be a WTA.

We say that B t-approximates A if for every ξ ∈ TΣ it holds that

[[A]](ξ) ≤ [[B]](ξ) ≤ t · [[A]](ξ).

Moreover, we call A t-approximate deterministic (or t-determinisable) if there
exists a deterministic WTA B such that B t-approximates A .

Remark 9. Note that if B t-approximates A , then supp([[A]]) = supp([[B]]).
Moreover, B 1-approximates A if and only if [[A]] = [[B]].

Throughout the rest of this section, we assume that t ∈ R such that t ≥ 1.

Remark 10. Note that, in general, A is not t-determinisable. In fact, for every
Σ containing two distinct symbols σ(r) and τ (s) (where r, s > 0), there exists a
WTA B such that B is not t′-determinisable for any t′ ≥ 1.

In [2, Theorem 1], this is proven for strings and the constructions can easily
be adapted to the tree case by considering so-called comb trees over σ and τ ,
which behave similarly to strings.

Next we introduce our approximate determinisation algorithm. For a sum-
mary of the conceptional details of our approach and how it fits into the existing
literature, we refer to Sect. 1. Recall that our algorithm executes a weighted pow-
erset construction with a fixed factorisation (see [11]). In this intermediate text,
we present the intuitive idea of our algorithm and the relevant technicalities.

Approximated Determinisation of Weighted Tree Automata 261

Given the automaton A and the approximation factor t, the algorithm builds
up a deterministic automaton A ′ = (Q′, Σ,R∞,final′, T ′) by iteratively adding
new states and transitions to A ′ (which is initially empty). The states of A ′ are
subsets of (R∞ × R∞)Q, which we think about as follows. Each state P ∈ Q′

maps every state q ∈ Q to a lower bound lPq and an upper bound uP
q . Thus, we

denote (lPq , uP
q) := P (q). These bounds represent an interval in R∞ and will be

determined by the algorithm such that the following holds.
Let ρ be the (unique) non-vanishing run of A ′ on a tree ξ and let ρ(ε) = P .

For every q ∈ Q it holds that the interval [θA (ξ, q), t · θA (ξ, q)] contains the
interval [lPq +wt(ρ), uP

q +wt(ρ)] (see Lemma 14). Note that [θA (ξ, q), t ·θA (ξ, q)]
is the interval which t-approximates θA (ξ, q). Therefore, A ′ t-approximates A
as long as the final weight map of A ′ respects the lower and upper bounds.

Moreover, we use of the following concept. Given two states P, P ′ : Q → R∞×
R∞, we say that P ′ refines P if for every q ∈ Q it holds that [lP

′
q , uP ′

q] ⊆ [lPq , uP
q].

Refinement plays a major role in ensuring the termination of Algorithm 1.
The overall structure of Algorithm 1 is the following. We initialise A ′ as an

empty WTA (line 1). Next, we iteratively generate non-vanishing transitions for
A ′, which in some cases add new states to the state set of A ′. The family of
sets (Stack(σ) | σ ∈ Σ) is used to keep track of transitions that have already
been processed. Given a left-hand side σ(P1, . . . , Pr) of a transition that has not
been processed (lines 4 and 5), we calculate an intermediate successor state P
by accumulating the lower bounds and the upper bounds respectively with the
transition weights (lines 7–9). Next, we determine the new transition weight c′

as the minimal resulting upper bound in P (line 8). If c′ is not ∞, then we define
P ′ as P − c′ (lines 11 and 12). We check if P ′ is refined by some already existing
state P ′′ (line 13). If this is the case, we add a red transition to A ′ by letting
T ′

σ(P1, . . . , Pr, P
′′) = c′ (line 14). Otherwise, we add P ′ as a new state and add

a green transition to A ′ by letting T ′
σ(P1, . . . , Pr, P

′) = c′ (lines 16 and 18). We
ultimately define the new final weights (line 17).

We distinguish between red and green transitions for the following reason.
A transition t = (P1, . . . , Pr, σ, c, P) is green if and only if it was the first non-
vanishing transition with successor state P which was generated by Algorithm 1.
Otherwise, t is either vanishing or a red transition. This defines a green subgraph
of A ′ (viewed as a hypergraph). The proofs of our main theorems rely on the
green subgraph of A ′ in order to use induction over the set of states of A ′.

Note that we define states of A ′ using a relational notation (see lines 7 and
12) rather than a functional notation, for better readability. Moreover, note that
line 3 is merely a technical requirement that forces the second execution of the
outermost while-loop (line 2) to happen immediately after each symbol from
Σ(0) has been processed.

262 F. Dörband et al.

Algorithm 1: Procedure ttDet with input A and t

1 Q′ := ∅, final′ := ∞, (Stack(σ) := ∅ | σ ∈ Σ), T ′ := (T ′
σ | σ ∈ Σ) where

T ′
σ := ∞

2 while ∃σ ∈ Σ : (Q′)rk(σ) \ Stack(σ)
= ∅ do
3 Q′′ := Q′

4 foreach r ∈ N, σ ∈ Σ(r) do
5 foreach ((P1, . . . , Pr) ∈ (Q′′)r \ Stack(σ)) do
6 Stack(σ) := Stack(σ) ∪ {(P1, . . . , Pr)}
7 P :=

{(
q, (lq, uq)

) | q ∈ Q
}

where
8 lq := min{lP1

q1 + · · · + lPr
qr + Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q}

9

uq := min{uP1
q1 + · · · + uPr

qr + t · Tσ(q1, . . . , qr, q) | q1, . . . , qr ∈ Q}
10 c′ := minq∈Q uP

q

11 if c′ < ∞ then
12 P ′ :=

{(
q, (lPq − c′, uP

q − c′)
) | q ∈ Q

}

13 if ∃P ′′ ∈ Q′ such that P ′′ refines P ′ then
14 T ′

σ(P1, . . . , Pr, P
′′) := c′ // red transition

15 else
16 Q′ := Q′ ∪ {P ′}
17 final′(P ′) := minq∈Q(uP ′

q + t · final(q))
18 T ′

σ(P1, . . . , Pr, P
′) := c′ // green transition

19 return (Q′, Σ,R∞,final′, T ′)

Definition 11. We define A ′ as the tuple returned1 by ttDet applied to A and
t and denote its components by A ′ = (Q′, Σ,R∞,final′, T ′).

Example 12. We continue Example 7 by applying ttDet to A and t for t ≥ 2.
First consider α ∈ Σ(0). Via lines 7–10 we calculate

P =
{(

q1, (1, t)
)
,
(
q2, (2, 2t)

)}
and c′ = t.

By line 12 we obtain P ′ =
{(

q1, (1 − t, 0)
)
,
(
q2, (2 − t, t)

)}
. As Q′ is still empty,

P ′ is not refined by some other state and we enter the else-case (lines 16–18).
We denote P ′

1 := P ′ and execute lines 16, 17, and 18 to update

Q′ = {P ′
1}, final′(P ′

1) = 0, and T ′
α(P ′

1) = t.

Note that this transition is a green transition.
Next consider β ∈ Σ(0). We calculate P = {(q1, (0, 0)), (q2, (∞,∞))} (lines

7–9) and c′ = 0 (line 10). By line 12 we obtain P ′ = P . As P ′
1 does not refine

1 We denote by A ′
i the tuple (Q′, Σ,R∞, final′, T ′) during the i-th execution of line

2. If ttDet does not terminate on the input A and t, the limit of these tuples for
i → ∞ is their componentwise union and we say that ttDet returns this limit.

Approximated Determinisation of Weighted Tree Automata 263

Fig. 2. Deterministic WTA A ′ t-approximating the WTA A from Example 7.

P ′, we again enter the else-case (lines 16–18). We denote P ′
2 := P ′ and execute

lines 16, 17, and 18 to update

Q′ = {P ′
1, P

′
2}, final′(P ′

2) = 0, and T ′
β(P ′

2) = 0.

Note that this transition is a green transition.
Next consider σ ∈ Σ(2). As Stack(σ) is still empty, we consider (P ′

1, P
′
1) ∈

(Q′)2 \ Stack(σ) (line 5). By lines 7–12 we obtain P = {(q1, (2 − 2t, 0)), (q2, (4 −
2t, 2t))}, c′ = 0, and P ′ = P . Note that P ′

2 does not refine P ′ and that P ′
1 refines

P ′ if and only if

2−2t ≤ 1−t, 0 ≤ 0, 4−2t ≤ 2−t, and t ≤ 2t.

Therefore, P ′ is refined by P ′
1 if and only if t ≥ 2, which is true by assumption.

Hence, we enter the if-case (line 14) and add the red transition T ′
σ(P ′

1, P
′
1, P

′
1) = 0

to T ′.
By continuing to execute the algorithm, we add more red transitions to T ′

σ

and arrive at the automaton A ′ = (Q′, Σ,R∞,final′, T ′), where Q′ = {P ′
1, P

′
2},

final′ = 0, and T ′ is ∞ except in the cases

α
t→ P ′

1, σ(P ′
1, P

′
1)

0→ P ′
1, σ(P ′

1, P
′
2)

0→ P ′
2,

β
0→ P ′

2, σ(P ′
2, P

′
1)

0→ P ′
2, σ(P ′

2, P
′
2)

0→ P ′
2.

A depiction of A ′ can be found in Fig. 2. Note that green transitions are depicted
by continuous lines and red transitions are depicted by dotted lines.

Remark 13. Note that ttDet does not preserve the weighted language of A , even
if A is itself deterministic. This is due to the fact that the state normalisation
(lines 10 and 12) is done with respect to the upper bounds uP

q . Therefore, A ′

realises t · [[A]] rather than [[A]] in many basic examples.

A straightforward induction on the depth of states in the green subgraph of
A ′ shows that if ttDet terminates, then A ′ is a deterministic WTA. Similarly,
the following lemma can be proven.

264 F. Dörband et al.

Lemma 14. Let ξ ∈ TΣ and P ∈ Q′ such that
ξ|θA ′ (ξ)−−−→ P . For every q ∈ Q it

holds that

θA (ξ, q) − θA ′(ξ) ≤ lPq ≤ uP
q ≤ t · θA (ξ, q) − θA ′(ξ).

The following theorem states the partial correctness of Algorithm 1 and follows
from Lemma 14 and the definition of final′.

Theorem 15. If ttDet terminates on input A and t, then A ′ is a deterministic
WTA that t-approximates A . In this case, A is in particular t-determinisable.

4 Approximated Twinning Property

In this section, we prove a sufficient condition for the termination of the algo-
rithm, namely the t-twinning property. Our proof closely follows [2]. We start by
defining the t-twinning property of weighted tree automata, which is a natural
extension of both, the string case [2] and the tree case without approximation
(that is, t = 1) [6] and [13].

Definition 16 (t-twinning property). Let A = (Q,Σ,R∞,final, T) be a
WTA.

Let p, q ∈ Q. We call p and q siblings if there exists a tree ξ ∈ TΣ and non-
vanishing runs ρ1 ∈ RunA (ξ, p) and ρ2 ∈ RunA (ξ, q). Siblings p and q are called
t-twins if for every ζ ∈ CΣ it holds that either θ(p, ζ, p) = ∞, θ(q, ζ, q) = ∞, or
1
t · θ(q, ζ, q) ≤ θ(p, ζ, p) ≤ t · θ(q, ζ, q).

We say that A has the t-twinning property if for all siblings p, q ∈ Q it holds
that p and q are t-twins.

Throughout the rest of this section, we assume A = (Q,Σ,Q∞,final, T)
to be a WTA with rational weights in Q∞ and t ∈ R such that t ≥ 1.

Theorem 17. If A satisfies the t-twinning property, ttDet terminates on input
A and t.

The proof of Theorem 17 is very similar to the proof of [2, Theorem 8]. The
main difference is that, in the tree case, we apply a version of König’s Lemma
that can handle the hypergraph structure of A ′. Note that in [2, Theorem 8],
t is a rational number, whereas we allow for t to be a real number. This can
be resolved by multiplying t and all weights occurring in A by 1

t . Because of
the fact that (1t · N,+) is isomorphic to (N,+), we can follow the proof of [2,
Theorem 8].

Corollary 18. If A satisfies the t-twinning property, A is t-determinisable.

Proof of Corollary 18. This follows immediately from Theorems 15 and 17. �

Approximated Determinisation of Weighted Tree Automata 265

Example 19. We continue Example 7 by showing that A satisfies the 2-twinning
property but not the 1-twinning property. First note that q1 and q2 are siblings
as there are two runs ρ1 and ρ2 on ξ = α ending in q1 and q2, respectively.

Let ζ ∈ CΣ and ρ be a non-vanishing run of A on ζ. If ζ contains a β,
we have that θ(q2, ζ, q2) = ∞ and hence we only have to check the 2-twinning
property for the case that ζ does not contain a β. One easily sees that ρ either
maps each position to q1 (in this case wt(ρ) = #posα(ζ)) or to q2 (in this case
wt(ρ) = 2 · #posα(ζ)). In particular, θ(q2, ζ, q2) = 2 · θ(q1, ζ, q1). This proves
that A satisfies the 2-twinning property.

Moreover, A does not satisfy the 1-twinning property, as q1 and q2 are sib-
lings but ζ = σ(α, x1) does not satisfy θ(q1, ζ, q1) = θ(q2, ζ, q2).

Note that ttDet does not terminate on input A and 1. In Example 12,
we generated the state P ′ = {(q1, (2 − 2t, 0)), (q2, (4 − 2t, 2t))} by consider-
ing the input σ(P ′

1, P
′
1). If t = 2, P ′ is refined by P ′

1. For t = 1, however,
P ′ = {(q1, (0, 0)), (q2, (2, 2))} is not refined and therefore added to the state
space. Next, considering σ(P ′, P ′), we obtain another unrefineable state, namely
P ′′ = {(q1, (0, 0)), (q2, (4, 4))}. One easily sees that the construction continues
to generate every state of the form {(q1, (0, 0)), (q2, (2k, 2k))} and hence ttDet
does not terminate on input A and 1.

5 Decidability of the Twinning Property

In the following theorem we prove the decidability of the t−twinning property.
This is due to the fact, that if a WTA A does not satisfy the t-twinning property,
then this non-satisfaction is already witnessed by a small context tree.

Theorem 20. The t-twinning property is decidable for every WTA A and
t ≥ 1.

6 Outlook

In this paper we generalised [2] from the string case to the tree case. First we
provided an algorithm for t-determinisation and proved its correctness, assuming
termination of the algorithm. Next, we introduced the t-twinning property for
trees and showed that, for WTA with weights in Q∞, the t-twinning property
implies the termination of our algorithm. We ultimately showed that our t-
twinning property is decidable.

We conclude this paper by listing future research directions. Recent work has
shown that the twinning property is equivalent to determinisability in some cases
(e.g. [7]). It would be worthwhile to determine whether in our case the t-twinning
property is necessary for t-determinisability. Another interesting research direc-
tion is to introduce approximated determinisation for general classes of semirings
rather than only considering the tropical semiring. Moreover, it seems rather
arbitrary to say x ∈ R is approximated exactly by the values in the interval
[x, t · x]. It would be interesting to introduce more general notions of “approx-
imation” and find sufficient conditions for this general approximated determin-
isability.

266 F. Dörband et al.

References

1. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf.
Process. Lett. 24(1), 1–4 (1987)

2. Aminof, B., Kupferman, O., Lampert, R.: Rigorous approximated determinization
of weighted automata. Theor. Comput. Sci. 480, 104–117 (2013)

3. Boker, U., Henzinger, T.: Exact and approximate determinization of dis-counted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.2168/
LMCS-10(1:10)2014

4. Boker, U., Henzinger, T.A.: Approximate determinization of quantitative
automata. In: IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2012)

5. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybern. 16(4), 509–544 (2004)

6. Büchse, M., May, J., Vogler, H.: Determinization of weighted tree automata using
factorizations. J. Autom. Lang. Comb. 15(3/4), 229–254 (2010)

7. Daviaud, L., Jecker, I., Reynier, P.-A., Villevalois, D.: Degree of sequentiality of
weighted automata. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 215–230. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54458-7 13

8. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.EATCS
Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

9. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids.
Inf. Sci. 180, 156–166 (2010)

10. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 9

11. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. J. Autom.
Lang. Comb. 10, 287–312 (2005)

12. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

13. Paul, E.: Finite sequentiality of unambiguous max-plus tree automata. In: 36th
International Symposium on Theoretical Aspects of Computer Science (STACS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

14. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1 Word,
Language, Grammar. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59136-5

15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3 Beyond-
Words. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6

https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59126-6

Sequentiality of Group-Weighted Tree
Automata

Frederic Dörband1(B) , Thomas Feller1 , and Kevin Stier2

1 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{frederic.doerband,thomas.feller}@tu-dresden.de

2 Institute of Computer Science, Universität Leipzig, Leipzig, Germany
stier@informatik.uni-leipzig.de

Abstract. We introduce the notion of group-weighted tree automata
over commutative groups and characterise sequentialisability of such
automata. In particular, we introduce a fitting notion for tree distance
and prove the equivalence between sequentialisability, the so-called Lip-
schitz property, and the so-called twinning property.

Keywords: Weighted automata · Deterministic automata · Tree
automata · Twinning property

1 Introduction

In theoretical computer science, automata theory arose as a very potent field
of research. Besides having manifold applications in areas like natural language
processing, model checking, and computational biology, automata are studied
in a vast number of syntactical variations. The most prominent case of finite
string automata has been extended to handle more complex input structures
like pictures, trees, and forests (cf. [17,18]). Another direction of generalisa-
tion is to allow quantitative calculations rather than simple binary acceptance.
Well-studied examples of such automata are weighted string automata and
weighted tree automata over some weight structure S (cf. [8] for exhaustive
references). Prominent weight structures include commutative semirings [1] and
strong bimonoids [9]. In the present paper we consider so-called group-weighted
tree automata (short: group-WTA), which are particular semiring-weighted tree
automata. We have adapted the notion of group-weighted tree automata from
[7], where group-weighted string automata are studied.

One of the major research fields in automata theory is the determinisation of
automata. While this problem has a well-known solution for unweighted string
automata, very little results are known in the weighted setting. In fact, not

Research of the first and third author was supported by the DFG through the Research
Training Group QuantLA (GRK 1763). The second author was supported by the
European Research Council (ERC) through the ERC Consolidator Grant No. 771779
(DeciGUT).

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 267–278, 2021.
https://doi.org/10.1007/978-3-030-68195-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_21&domain=pdf
http://orcid.org/0000-0003-2942-0896
http://orcid.org/0000-0001-8420-6118
http://orcid.org/0000-0002-0564-8688
https://doi.org/10.1007/978-3-030-68195-1_21

268 F. Dörband et al.

every weighted automaton can be determinised [3, Example 5.9] and hence, the
problem has shifted towards the question of a characterisation of determinisable
weighted automata. Two recent approaches to this question involve maximal
factorisations [5] and automata with set semantics [2,7]. Note however, that [2,7]
deal with sequentiality rather than determinism, which makes a subtle difference
(Remark 10).

The main goal of the present paper is to characterise sequential weighted tree
languages (i.e. weighted tree languages accepted by sequential group-WTA) by
the so-called Lipschitz property and the so-called twinning property, namely

Theorem 1. For every group-WTA A it holds that

[[A]] is sequential ⇐⇒ [[A]] satisfies the Lipschitz property
⇐⇒ A satisfies the twinning property .

Hereby, our paper generalises [2,6] from the string case to the tree case.
Note however, that [2,6] are proven for free monoids rather than (infinitary
commutative) groups as in our case. The idea for the proof of Theorem 1 is based
on [2] and our proof applies the terminology and proof techniques given in [7].
Note that [2] provides merely an implication of the form “twinning property =⇒
sequential”, whereas [7] provides a full characterisation of sequentiality. In fact,
[7] proves a more general theorem for unions of k sequential automata and the
present paper only covers the case k = 1. Moreover, [7] is based on [6], which
first introduced an equivalence similar to Theorem 1.

The present paper executes the proof of Theorem 1 in the following way. In
Sect. 2, we introduce some elementary technical machinery and our automaton
model.

In Sect. 3, we first introduce the Lipschitz property of weighted tree languages,
which essentially says that close trees have close values in G (with respect to a
metric on the set of trees and the Cayley distance on G). Second, we introduce
the twinning property of group-WTA, which states that if the automaton can
loop1 on a context tree in two different states, then the weights of these loops
are equal. Next, we prove two implications of Theorem 1, namely “sequential
=⇒ Lipschitz” and “Lipschitz =⇒ twinning”.

In Sect. 4, we prove the implication “twinning =⇒ sequential” by applying
a construction similar to the well-known weighted power set construction.

In Sect. 5, we give a brief presentation of our endeavours to lift the cases
k > 1 from [7]. Most importantly we show where the approach from [7] fails in
the tree case.

We conclude this introductory section by comparing our results to the exist-
ing sequentialisation/determinisation results from the literature. The major ref-
erences for our proofs are [2,6,7]. As stated above, our results generalise [2,6] to
the case of group-weighted tree automata. Furthermore, we lift [7, case k = 1]
from the string case to the tree case. Another major result in the theory of
1 A loop is a run on a context tree such that the state at the context variable is the

same as the state at the root of the context.

Sequentiality of Group-Weighted Tree Automata 269

determinisation is given in [5, Theorem 5.2], which subsumes the determinisa-
tion results from [3,4,13–15]. Besides the fact that our paper is concerned with
sequentiality rather than determinism, our class of weight structures is not sub-
sumed by [5]. In particular, [5] provides a determinisation result only if either A
is nonrecursive, the semiring S is locally finite, or S is extremal, none of which
apply to our semirings of the form Pfin(G). Similarly, the determinisation result
given in [16, Section 6] deals only with locally finite strong bimonoids and hence
again does not subsume our results.

2 Preliminaries

We denote the set of nonnegative integers by N and the set of positive integers
by N+. For every k ∈ N, we denote the set {i ∈ N | 1 ≤ i ≤ k} by [k]. Note that
[0] = ∅. For a set A we denote the size of A by #A and for every k ∈ N+ we
denote by Ak the k-fold cartesian power of A.

An alphabet is a finite and non-empty set A and A∗ =
⋃

k∈N
Ak is the set

of all (finite) words over A, where A0 = {ε} contains solely the empty word ε.
We denote by |w| the length of the word w ∈ A∗. Given words v, w ∈ A∗, their
concatenation is written v.w or simply vw. We write v � w provided that there
exists u ∈ A∗ such that vu = w. The relation � is in fact a partial order, called
the prefix order.

A ranked alphabet is a pair (Σ, rk) consisting of an alphabet Σ and a map-
ping rk: Σ → N that assigns a rank to each symbol of Σ. We refer to the ranked
alphabet (Σ, rk) by the set Σ whenever the map rk is clear from the context.
Furthermore, for every k ∈ N, we let Σ(k) = {σ ∈ Σ | rk(σ) = k} and we write
σ(k) to indicate that rk(σ) = k. Moreover we define maxrk(Σ) := max(rk(Σ)).

Throughout the rest of this paper, we assume Σ to be an arbitrary ranked
alphabet.

Given a set Z, the set of Σ-trees indexed by Z, denoted by TΣ(Z), is the
smallest set T such that Z ⊆ T and σ(ξ1, . . . , ξs) ∈ T for every s ∈ N, σ ∈ Σ(s),
and ξ1, . . . , ξs ∈ T. We abbreviate TΣ = TΣ(∅) and call every subset L ⊆ TΣ a
tree language.

Next, we recall some common notions and notations for trees. In the fol-
lowing, let ξ ∈ TΣ(Z). The set pos(ξ) of positions of ξ is defined inductively
by pos(z) = {ε} for all z ∈ Z, and pos(σ(ξ1, . . . , ξs)) = {ε} ∪ {i.w | i ∈
[s], w ∈ pos(ξi)} for every s ∈ N, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ TΣ(Z). The height
of ξ is defined by height(ξ) = maxw∈pos(ξ) |w|, and the size of ξ is defined by
size(ξ) = #pos(ξ). A leaf is a position w ∈ pos(ξ) such that w.1 /∈ pos(ξ). We
denote the set of leaves of ξ by leaf(ξ). Given a position w ∈ pos(ξ), the label
of ξ at w is denoted by ξ(w). The subtree of ξ at w, denoted ξ|w, is defined for
every z ∈ Z by z|ε = z and for every s ∈ N, σ ∈ Σ(s), and ξ1, . . . , ξs ∈ TΣ(Z)
by

σ(ξ1, . . . , ξs)|w =

{
σ(ξ1, . . . , ξs) if w = ε

ξi|w′ if w = i.w′ with i ∈ N and w′ ∈ pos(ξi).

270 F. Dörband et al.

Let Y be a set. The set of positions of ξ labeled by elements in Y , denoted by
posY (ξ), is the set {w ∈ pos(ξ) | ξ(w) ∈ Y }. Moreover, the replacement of the
leaf w ∈ leaf(ξ) by the tree η ∈ TΣ(Z), denoted ξ[η]w, is given for every z ∈ Z
by z[η]ε = η and for every s ∈ N, i ∈ [s], σ ∈ Σ(s), ξ1, . . . , ξs ∈ TΣ(Z),
and w′ ∈ pos(ξi) by σ(ξ1, . . . , ξs)[η]i.w′ = σ(ξ1, . . . , ξi−1, ξi[η]w′ , ξi+1, . . . , ξs).

We fix the set X = {x1, x2, . . . } of variables (which we impose to be disjoint
from any other set we consider), and Xn = {x1, . . . , xn} for every n ∈ N+. A
tree ξ ∈ TΣ(X1) is a context, if #posx1

(ξ) = 1. The set of all contexts is denoted
by CΣ .

Given a context ζ ∈ CΣ and a tree ξ ∈ TΣ(Z), the substitution of ξ into ζ,
denoted by ζ[ξ], is the tree ζ[ξ]w, where w is the unique position in posX(ζ).
Note that, given ζ, ζ ′ ∈ CΣ , also ζ[ζ ′] ∈ CΣ . We write ζk for ζ[ζ[· · · ζ[ζ] · · ·]]
containing the context ζ a total of k times.

Let ξ1, ξ2 ∈ TΣ be two trees. A pair-cut between ξ1 and ξ2 is a triple
(ζ1, ζ2, η) ∈ CΣ × CΣ × TΣ such that ζi[η] = ξi for i ∈ [2]. In this case, we
call η an overlap of ξ1 and ξ2. The set of pair-cuts between ξ1 and ξ2 is denoted
PairCut(ξ1, ξ2). We moreover define the distance between ξ1 and ξ2 as

dist(ξ1, ξ2) := size(ξ1) + size(ξ2) − 2 · maxoverlap(ξ1, ξ2),

where maxoverlap(ξ1, ξ2) is the maximal size of an overlap of ξ1 and ξ2.
A group (G,⊗, 1) is a set G with an associative operation ⊗ : G2 → G, a

neutral element 1 ∈ G such that for all α ∈ G there exists β ∈ G satisfying
α ⊗ β = β ⊗ α = 1. We refer to β as the inverse element of α and denote it by
α−1. We simply write αβ for α⊗β. A group is commutative if ⊗ is commutative.
We call a group infinitary if for every α, β, γ ∈ G with αβγ �= β, the set {αnβγn |
n ∈ N} is infinite (cf. [7,10]). We define the delay of α ∈ G and β ∈ G, denoted
delay(α, β), by α−1β.

Throughout the rest of this paper, we assume G to be a finitely generated,
infinitary, commutative2 group, 1 to be its neutral element and Γ to be a
finite generating set of G.

The undirected Cayley graph for G and Γ is the graph (V,E), where V = G is the
set of vertices and for every α ∈ G and β ∈ Γ , we have that (α, αβ), (αβ, α) ∈ E.
The Cayley distance d(α, β) between α ∈ G and β ∈ G is defined as the length of
the shortest path between α and β in the undirected Cayley Graph. For α ∈ G

we define the Γ -length of α as the Cayley distance between 1 and α and denote
it by |α|Γ .

2.1 Weighted Tree Automata

Definition 2. A (group-)weighted tree automaton over Σ and G (short: group-
WTA or simply WTA) is a tuple (Q,Σ,G,final, T), where Q is a finite set of
2 In fact, we do not require commutativity for the proof our results. However, in

order to limit the notational complexity of the present paper, we require G to be
commutative.

Sequentiality of Group-Weighted Tree Automata 271

states, final ⊆ Q × G is the finite final relation, and T is a family (Tσ ⊆ Qs ×
G × Q | s ≥ 0, σ ∈ Σ(s)) of finite sets of transitions.

We call q ∈ Q final if there exists α ∈ G such that (q, α) ∈ final, which we
depict as q

α→. For every σ ∈ Σ(s) and t = (q1, . . . , qs, α, q) ∈ Tσ, we denote
out(t) := q, in(t) := (q1, . . . , qs), and wt(t) := α. For notational convenience, we
use the notation out(q) := q and wt(q) := 1. To aid readability, we denote the
fact that (q1, . . . , qs, α, q) ∈ Tσ by σ(q1, . . . , qs)

α→ q.

Definition 3. Let A = (Q,Σ,G,final, T) be a WTA and let ξ ∈ TΣ ∪ CΣ be a
tree or a context. A run of A on ξ is a map ρ : pos(ξ) → T ∪ Q such that

– for every w ∈ posΣ(ξ) we have ρ(w) ∈ Tσ where σ = ξ(w) and in(ρ(w)) =
(out(ρ(w1)), . . . , out(ρ(ws))) where s = rk(σ), and

– for every w ∈ posX(ξ) we have ρ(w) ∈ Q.

We denote by out(ρ) the state out(ρ(ε)) and if ξ ∈ CΣ we denote by in(ρ)
the state ρ(w) where w is the unique position in posX(ξ). The weight of such a
run ρ is wt(ρ) :=

∏
w∈pos(ξ) wt(ρ(w)). Moreover, we say that ρ contains a state

q ∈ Q if there exists w ∈ pos(ξ) such that q = out(ρ(w)). A run ρ is called
accepting if out(ρ) is final.

Remark 4. We use the following notation for a run ρ of A on a tree or context

ξ. Let q := out(ρ) and α := wt(ρ). If ξ ∈ TΣ , then we write
ξ|ρ|α−→ q. If ξ ∈ CΣ ,

then we write p
ξ|ρ|α−→ q, where p := in(ρ). Whenever we do not care about the

name of the run, we simply write
ξ|α−→ q and p

ξ|α−→ q, respectively. Furthermore,

if
ξ|α−→ q for some tree ξ and some weight α, then we call the state q reachable.

Remark 5. Throughout this paper, we assume that all considered WTA are trim.
For a WTA A , this condition means that every state appears in some accepting
run. In particular, for every state p, there exists a context ξ ∈ CΣ , a final state

q, a weight α ∈ G, and a run p
ξ|α−→ q.

Note moreover that, without loss of generality, the size of ξ is bounded. If the
run on ξ contains a single state q′ multiple times on a single branch (excluding
the root of the tree), then we can replace the subtree at the topmost occurrence
of q′ with the subtree at the bottommost occurrence of q′. Therefore, we can
assume height(ξ) ≤ #Q + 1 and hence size(ξ) ≤ maxrk(Σ)#Q+2.

Definition 6. Let A = (Q,Σ,G,final, T) be a WTA. The weighted tree lan-
guage accepted by A is the relation [[A]] ⊆ TΣ × G containing the pairs (ξ, βγ)

such that
ξ|β−→ q

γ→ for some q ∈ Q.
Two WTA A and B are called equivalent if they accept the same weighted

tree language, that is, [[A]] = [[B]].
Moreover, we define the constant

MA := max{|α|Γ | (q1, . . . , qk, α, q) ∈
⋃

σ∈Σ

Tσ or (q, α) ∈ final}.

That is, MA is the maximal Γ -length of weights occurring in T or final.

272 F. Dörband et al.

We will now briefly compare group-WTA to semiring-WTA3.

Remark 7. Consider the tuple S = (Pfin(G),∪, ·, ∅, {1}), where Pfin(G) is the set
of finite subsets of G, 1 ∈ G is the neutral group element, and · is the group
operation lifted to finite sets. It is immediate that S is a semiring.

Let A = (Q,Σ,G,final, T) be a group-WTA. In order to syntactically match
the definition of group-WTA over G with the definition of semiring-WTA over S,
we replace Tσ by the map T sr

σ : Qs ×Q → Pfin(G) such that (q1, . . . , qs, q) �→ {α |
(q1, . . . , qs, α, q) ∈ Tσ}. Furthermore we replace the final relation by finalsr : Q →
Pfin(G) such that q �→ {β | (q, β) ∈ final}. Denote the semiring-WTA A sr =
(Q,T sr,finalsr) and note that [[A sr]](ξ) = {α | (ξ, α) ∈ [[A]]}. Therefore, up to
this identification of maps and relations, group-WTA are particular semiring-
WTA. However, the important difference is that each run of A calculates a
single group element, whereas each run of A sr calculates multiple aggregated
group elements at once.

Definition 8. Let Ai = (Qi, Σ,G,finali, Ti) be WTA for i ∈ [2].
The direct product of A1 and A2, denoted A1 × A2, is the WTA (Q1 ×

Q2, Σ,G,final, T), where final := {((q, p), αβ) | (q, α) ∈ final1 ∧ (p, β) ∈ final2}
and

Tσ := {((q1, p1), . . . , (qs, ps), αβ, (q, p))
| (q1, . . . , qs, α, q) ∈ (T1)σ ∧ (p1, . . . , ps, β, p) ∈ (T2)σ}.

Again, without loss of generality, we assume that Q1 ∩ Q2 = ∅. This definition
naturally extends to finitely many WTA.

Definition 9. Let A = (Q,Σ,G,final, T) be a WTA. We call A sequential if
for all s ≥ 0, σ ∈ Σ(s), and q1, . . . , qs ∈ Q there exist at most one α ∈ G and
q ∈ Q such that (q1, . . . , qs, α, q) ∈ Tσ.

A relation R ⊆ TΣ × G is called sequential if there exists a sequential WTA
A such that [[A]] = R.

Remark 10. Note that Definition 9 is highly similar to the definition of determin-
istic semiring-WTA [5, preceeding Example 3.1]. However, sequentiality forces
the weight of transitions to be at most one single group element, whereas deter-
minism merely forces the weight of transitions to be at most one set of group
elements. This difference results in sequentiality being a properly more restrictive
condition on the automaton than determinism.

Example 11. Let Σ = {σ(2), α(0)} and G = (Z,+, 0). Note that G is a commu-
tative, finitely generated, infinitary group with finite generating set Γ = {1}.

3 As a reference, we use the definition of semiring-weighted tree automata from [5].
For a more thorough introduction to semirings confer [12] and for semiring-WTA we
refer to [11].

Sequentiality of Group-Weighted Tree Automata 273

Define the WTA A := (Q,Σ,G,final, T) where Q := {qα, q0, q1}, final :=
{(q0, 0)} and T is defined by

Tα ∪ Tσ = {α
0→ qα, σ(qα, qα) 1→ q1, σ(qα, qα) 3→ q0,

σ(qα, q1)
1→ q0, σ(qα, q0)

1→ q1}.

Consider the context η = σ(α, x1) ∈ CΣ . One easily sees that all trees ξ ∈ TΣ

occurring in [[A]] are of the form ξ = η�[α] for some ≥ 1. In this case, if
#pos{σ}(ξ) = 2n for some n ∈ N we have (ξ, 2n) ∈ [[A]] and if #pos{σ}(ξ) =
2n + 1 we have (ξ, 2n + 3) ∈ [[A]]. Clearly, A is not sequential.

3 Lipschitz and Twinning Property

In this section we formally introduce the two characterisations of sequentiality
from Theorem 1, and prove the implications “sequential =⇒ Lipschitz” in
Theorem 13 and “Lipschitz =⇒ twinning” in Theorem 16.

3.1 The Lipschitz Property

Definition 12. A relation R ⊆ TΣ × G satisfies the Lipschitz property if there
exists L ∈ N such that for all pairs (ξ0, α0), (ξ1, α1) ∈ R it holds that d(α0, α1) ≤
L · (dist(ξ0, ξ1) + 1).

Theorem 13. Let R ⊆ TΣ × G be a sequential relation. Then R satisfies the
Lipschitz property.

The proof of Theorem 13 primarily uses the fact that a sequential WTA has
a unique non-vanishing run weight on every overlap of two input trees ξ1 and ξ2.

3.2 The Twinning Property

Throughout the rest of this paper, we assume A = (Q,Σ,G,final, T) to
be a WTA.

Definition 14. We say that A satisfies the twinning property if for all runs ρ0
and ρ1 of A , states q0, q1 ∈ Q, a tree ξ ∈ TΣ , a context ζ ∈ CΣ , and weights
α0, α1, β0, β1 ∈ G, such that ρj (j = 0, 1) equals

ξ|αj−→ qj
ζ|βj−→ qj ,

it holds that β0 = β1.

Example 15. We continue Example 11 by showing that A satisfies the twinning
property. Let ρ0 and ρ1 be runs of A quantified as in Definition 14. Recall that
ζ[ξ] has the form η�[α]. Moreover, non-empty runs cannot loop in the state qα

by definition of the transition relation. Therefore, we have that ξ �= α, whence

274 F. Dörband et al.

ξ = ηj [α] for some 1 ≤ j < . However, in this case the single non-deterministic
choice already occurs in ξ and hence β0 = β1 = #pos{σ}(ζ). In particular, this
proves the twinning property.

Next we provide a WTA B over Δ = {σ(2), α(0), β(0)} and G = (Z,+, 0)
which does not satisfy the twinning property. Define B = (Q̃,Δ,G, fĩnal, T̃),
where Q̃ = {qα, qβ}, fĩnal = {(qα, 0), (qβ , 0)}, and

T̃α ∪ T̃β ∪ T̃σ = {α
1→ qα, β

0→ qα, σ(qα, qα) 0→ qα, (counting α)

α
0→ qβ , β

1→ qβ , σ(qβ , qβ) 0→ qβ}. (counting β)

One easily verifies the fact that for every ξ ∈ TΣ there are exactly two runs of
B on ξ and we obtain (ξ,#pos{α}(ξ)), (ξ,#pos{β}(ξ)) ∈ [[B]]. Clearly, B is not
sequential. Consider the tree ξ = σ(α, β), the context ζ = σ(α, x1), and the two
runs of B on ζ[ξ]

ξ|α0−→ qα
ζ|β0−→ qα and

ξ|α1−→ qβ
ζ|β1−→ qβ .

By the definition of T̃ we calculate the values β0 = 0 + 1 + 0 and β1 = 0 + 0 + 0.
This proves β0 �= β1, whence we obtain that B does not satisfy the twinning
property.

Theorem 16. If [[A]] satisfies the Lipschitz property, then A satisfies the twin-
ning property.

The proof of Theorem 16 is done by contradiction. We take a witness of the
non-satisfaction of the twinning property and pump the occurring loops. This
makes the run weights diverge in G (using the fact that G is infinitary), which
contradicts the Lipschitz property.

Remark 17. Note that Theorem 16 implies that, whenever A does not satisfy the
twinning property, no equivalent automaton can satisfy the twinning property .

4 Sequentiality of the Twinning Property

This section executes the proof of the implication “twinning =⇒ sequential” of
Theorem 1. Given a WTA A , we apply a construction similar to the well-known
power set construction to A . This yields a (not necessarily finite) sequential
WTA DA . However, we prove that DA is indeed finite if A satisfies the twinning
property (see Corollary 25). The proof of Corollary 25 can be outlined as follows.
First we show that all runs of A on a fixed input tree generate close weights
with respect to the Cayley-distance (see Lemma 23). Next, the definition of DA

implies that every (reachable) state of DA contains only weights that are close
to the neutral element 1 ∈ G (see Lemma 24), which implies that the set of
reachable states of DA is finite. We derive the fact that DA is equivalent to
A from the definition of DA (see Theorem 26). We conclude this chapter by
applying our construction to the automata from Examples 11 and 15.

Sequentiality of Group-Weighted Tree Automata 275

Theorem 18. If A satisfies the twinning property, then [[A]] is sequential.

Throughout this section, we assume A to satisfy the twinning property.

Definition 19. We define the infinite WTA4 DA = (Q′, Σ,G,final′, T ′) as fol-
lows. The states of DA are Q′ := P(Q × G), the final relation is

final′ := {(S, αβ) | S ∈ Q′,∃q ∈ Q : (q, α) ∈ S and (q, β) ∈ final},

and the transitions are constructed as follows. For every σ ∈ Σ(s) and every
S1, . . . , Ss ∈ Q′, consider the set

S := {(q, α1 · · · αsβ) | ∃p1, . . . , ps ∈ Q :
(∀i ∈ [s] : (pi, αi) ∈ Si) and (p1, . . . , ps, β, q) ∈ Tσ}

and fix an arbitrary element5 (p, α) ∈ S. We define the set

S′ := {(q, α−1γ) | (q, γ) ∈ S}

and ultimately add (S1, . . . , Ss, α, S′) to T ′
σ.

Remark 20. Note that DA is indeed sequential. This follows directly from the
construction. Moreover, in Definition 19 we first calculate an intermediate suc-
cessor state S, which is then shifted by a fixed value α occurring in some pair
(p, α) ∈ S. We call this shifting process the factorisation of S.

We will show in Corollary 25 that every reachable state S of DA satisfies
#S ≤ K for a global constant K and hence after trimming DA , also the final
relation final′ is finite.

Lemma 21. Let ξ ∈ TΣ and consider the (unique) run of DA on ξ,
ξ|α−→ S′. It

holds that
S′ = {(q, β) | ∃ run

ξ|δ−→ q of A : αβ = δ}.

Definition 22. We define the constant NA := 2MA maxrk(Σ)(#Q2+2).

Lemma 23. For every tree ξ ∈ TΣ and every two runs
ξ|α−→ q and

ξ|β−→ p of A
on ξ it holds that

d(α, β) < NA .

Note that the proof of Lemma 23 uses the fact that A satisfies the twinning
property.

Lemma 24. Let S be a reachable state of DA and let (q, α) ∈ S. It holds that
|α|Γ ≤ NA .

4 That is, a tuple satisfying the conditions of a WTA, except for finiteness.
5 Formally, we have a globally fixed choice function f : P(Q × G) → Q × G and then

simply define (p, α) := f(S).

276 F. Dörband et al.

Proof. The reachability of S implies the existence of a tree ξ ∈ TΣ such that

there exists a run
ξ|δ−→ S. If α = 1, then we are done. Therefore, we assume

that α �= 1 and hence there exists (p, β) ∈ S such that β = 1. Therefore by

Lemma 21, there are two runs of A on ξ,
ξ|δα−→ q and

ξ|δ−→ p. By Lemma 23
it holds that d(δα, δ) < NA . The fact that d(δα, δ) = |α|Γ implies that
|α|Γ < NA . ��
Corollary 25. The set of states of DA is finite and hence DA is a WTA.

Proof. Denote for every N ∈ N the (finite) set GN := {g ∈ G | |g|Γ ≤ N}.
By Lemma 24 every reachable state of DA is an element of the finite set

P(Q × GNA
), which proves the claim. ��

Theorem 26. DA is equivalent to A .

Proof. We first show that [[DA]] ⊆ [[A]]. Let (ξ, α) ∈ [[DA]] and let
ξ|β−→ S be a

run of DA on ξ and (S, γ) ∈ final′ such that α = βγ. Note that by the definition
of final′ there exist q ∈ Q, (q, β′) ∈ S and (q, γ′) ∈ final such that γ = β′γ′.

By Lemma 21 there exists a run
ξ|δ−→ q of A such that ββ′ = δ. Hence,

α = βγ = ββ′γ′ = δγ′ and therefore (ξ, α) = (ξ, δγ′) ∈ [[A]].
To prove the fact that [[A]] ⊆ [[DA]], we apply a similar argument. Let (ξ, α) ∈

[[A]]. There is a unique run
ξ|β−→ S of DA on ξ. By definition of [[A]], there exist

a run
ξ|δ−→ q of A on ξ and a pair (q, γ′) ∈ final such that δγ′ = α.

By Lemma 21 there exists an element (q, β′) ∈ S such that ββ′ = δ and hence
by the definition of final′ we obtain (S, β′γ′) ∈ final′. We obtain α = δγ′ = ββ′γ′

and hence (ξ, α) ∈ [[DA]]. ��
Proof of Theorem 18. We have seen that DA is a sequential (Remark 20) WTA
(Corollary 25) which is equivalent to A (Theorem 26). This proves the claim. ��
Example 27. Recall the WTA A and B from Examples 11 and 15. We apply
the construction from Definition 19 to both, A and B, and obtain that DA has
a finite trim state space, whereas DB has an infinite trim state space.

First we consider DA . Clearly, T ′
α = {(0, S0)}, where S0 = {(qα, 0)}. By

pointwise application of Tσ to (S0, S0) we obtain {(q1, 1), (q0, 3)}. We chose
(q1, 1) for the factorisation, which yields the new state S1 = {(q1, 0), (q0, 2)}
and therefore we have constructed the transition (S0, S0, 1, S1) ∈ T ′

σ. By contin-
uing this process we arrive at

T ′
σ = {(S0, S0, 1, S1), (S0, S1, 1, S2), (S0, S2, 1, S1)},

where S2 = {(q0, 0), (q1, 2)}. The trim state space of DA is Q′ = {S0, S1, S2}
and the final relation is final′ = {(S1, 2), (S2, 0)}.

Next we consider DB . Define R1 = {(qα, 1), (qβ , 0)} and note that T̃ ′
α =

{(0, R1)}. Pointwise application of T̃σ to (R1, R1) yields R2 = {(qα, 2), (qβ , 0)},

Sequentiality of Group-Weighted Tree Automata 277

which is already normalised. Another pointwise application of T̃σ to (R1, R2)
results in R3 = {(qα, 3), (qβ , 0)}, which is again normalised. One easily sees
that repeatedly generating transitions of DB like this yields an infinite set of
reachable states of DB and hence DB is not a WTA.

In Sect. 5 we will discuss the approach given in [7, case k > 1], which describes
how to handle DB in order to generate a finite union of sequential WTA which
is equivalent to B.

5 Outlook

In the present paper, we have successfully lifted the result from [7, case k = 1]
to weighted tree automata. Recall that [7] characterises unions of k sequential
automata. The natural next step is to lift the remaining cases k > 1. This section
is designed to briefly demonstrate why a straightforward lift of [7, cases k > 1]
to weighted tree automata fails.

The outline of the proof given in [7] goes as follows. Let k ∈ N. The notions
of k-sequential WTA, the k-Lipschitz property, and the k-branching twinning
property are introduced and the directions “sequential =⇒ Lipschitz” and
“Lipschitz =⇒ twinning” are proven similarly to our Theorems 13 and 16. For
the direction “twinning =⇒ sequential”, the automaton DA is introduced and
its properties are studied. As we have seen in the second part of Example 27, DA

is in general infinite. However, if A satisfies the k-branching twinning property,
[7] describes the following construction on DA , yielding a k-sequential automa-
ton which is equivalent to A . First, the set of states Q′ of DA is restricted to
a finite set. In fact, the set of reachable states S of DA containing only “small”
weights |α|Γ < NA is denoted U and the set of states reachable from U in one
step is denoted U ′. Note that U and U ′ are finite. DA is restricted to U ∪ U ′

and each state S in U ′ \ U (i.e. the outer border of U) is replaced by a union
of k sequential WTA. These sequential WTA are constructed by induction on k
and depend on the state S. The resulting automaton D̄A can easily be divided
into k sequential automata, which concludes the proof.

The tree case differs in the following way. Consider a symbol σ ∈ Σ(2) and
consider two different states S, S′ ∈ U ′\U . Surely, in DA we can find a transition
of the form σ(S, S′) → S′′. However, the states S and S′ are replaced by different
automata in D̄A . Therefore, a run ρ of DA on a tree ξ ending in S (resp. S′)
translates into a run of D̄A on ξ ending in some state qS /∈ Q′ (resp. qS′ /∈ Q′).
Moreover, qS and qS′ are taken from disjoint sets. We have not been able to find
the proper way to construct a transition of the form σ(qS , qS′) → q.

Therefore, we leave the lift of [7, cases k > 1] as an open research question.

References

1. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf.
Process. Lett. 24(1), 1–4 (1987)

278 F. Dörband et al.

2. Béal, M.P., Carton, O.: Determinization of transducers over finite and infinite
words. Theor. Comput. Sci. 289(1), 225–251 (2002)

3. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybern. 16(4), 509–544 (2004)

4. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Comb. 8(3), 417–463 (2003)

5. Büchse, M., May, J., Vogler, H.: Determinization of weighted tree automata using
factorizations. J. Autom. Lang. Comb. 15(3/4), 229–254 (2010)

6. Choffrut, C.: Une Caracterisation des Fonctions Sequentielles et des Fonctions
Sous-Sequentielles en tant que Relations Rationnelles. Theor. Comput. Sci. 5(3),
325–337 (1977). https://doi.org/10.1016/0304-3975(77)90049-4

7. Daviaud, L., Jecker, I., Reynier, P.-A., Villevalois, D.: Degree of sequentiality of
weighted automata. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 215–230. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54458-7 13

8. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01492-5

9. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids.
Inf. Sci. 180, 156–166 (2010)

10. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 11

11. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. An EATCS Series., pp. 313–403. (2009). https://
doi.org/10.1007/978-3-642-01492-5

12. Golan, J.: Semirings and Their Applications. Kluwer Academic Publishers, Dor-
drecht (1999)

13. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. J. Autom.
Lang. Comb. 10, 287–312 (2005)

14. May, J., Knight, K.: A Better N-Best List: practical determinization of weighted
finite tree automata. In: Proceedings of the Human Language Technology Confer-
ence of the NAACL, Main Conference, pp. 351–358. Association for Computational
Linguistics, New York City, USA, June 2006

15. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

16. Radovanovic, D.: Weighted tree automata over strong bimonoids. Novi Sad J.
Math. 40(3), 89–108 (2010)

17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1 Word,
Language, Grammar. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59136-5

18. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3 Beyond
Words. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6

https://doi.org/10.1016/0304-3975(77)90049-4
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-662-54458-7_13
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-01492-5_
https://doi.org/10.1007/978-3-642-01492-5_
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59126-6

An Algorithm for Single-Source Shortest
Paths Enumeration in Parameterized

Weighted Graphs

Bastien Sérée1,3, Löıg Jezequel2,3, and Didier Lime1,3(B)

1 École Centrale de Nantes, Nantes, France
2 Université de Nantes, Nantes, France

3 LS2N, UMR CNRS 6004, Nantes, France
{bastien.seree,loig.jezequel,didier.lime}@ls2n.fr

Abstract. We consider weighted graphs with parameterized weights
and we propose an algorithm that, given such a graph and a source
node, builds a collection of trees, each one describing the shortest paths
from the source to all the other nodes of the graph for a particular zone
of the parameter space. Moreover, the union of these zones covers the
full parameter space: given any valuation of the parameters, one of the
trees gives the shortest paths from the source to all the other nodes of
the graph when the weights are computed using this valuation.

Keywords: Shortest paths · Weighted graphs · Parameterized graphs

1 Introduction

For many real-world systems and problems there are natural discrete-event
abstractions, which can be modelled by a graph or a derived formalism. In many
cases, we can also identify resources that need to be optimized (distance, mem-
ory, energy, time, etc.) and then (extensions of) weighted graphs are a formalism
of choice.

One of the most basic problems is to find optimal paths, for which the accu-
mulated weight (also often called cost) is minimal.

When addressing systems that are not well-known, maybe because we are
in the early phases of a design process, one way to cope with this uncertainty
is to use parameters for the weights. The interesting problems are parameter
synthesis problems, in which one tries to find the values of parameters such that
some path is optimal, or such that a target vertex can be reached within a given
bound on the accumulated weight, etc.

Surprisingly, those problems have not been studied in detail for the setting
for which cost themselves are parameters. Parametric timed automata (PTA) [1]
allow clocks to be tested against parameters, which may allow simulation of
parametric weights to some extent. The optimal time reachability problem has

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 279–290, 2021.
https://doi.org/10.1007/978-3-030-68195-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_22

280 B. Sérée et al.

recently been studied for PTA [2]. Similarly, the bounded-cost reachability prob-
lem has been addressed for a formalism related to PTA called parametric time
Petri nets in [7]. In [3], the authors do extend PTA with parametric weights on
edges, but the topology of the systems considered is always that of a tree.

Much differently, the parametric one-counter machines of [4] should allow
one to model a parametric cost, however, the parameter synthesis problems are
not addressed in that article.

Finally, in [6] the authors consider graphs in which weights are expressed as
a function of a single parameter. They partition the real numbers in a finite way,
such that for two parameter values in a given partition, the optimal paths from a
given source vertex to all other vertices are the same, and exhibit the correspond-
ing trees those paths form. Such parametric graphs, with a single parameter, were
later studied in [8] (directly improving [6]), and in [5] for example. Extending
the results of [6] to parameterized graphs with multiple parameters makes the
problem more complex since one needs to partition the n-dimensional real space
(where n is the number of parameters). This is the subject of our work. To the
best of our knowledge, this has not been done prior to this paper. The algorithm
that we propose is exponential in the number of vertices and is polynomial in
the number of edges, and in the number of parameters of the considered graph.

This article is organised as follows: in Sect. 2 we introduce the basic notations
and definitions; in Sect. 3 we informally present our algorithm on a comprehen-
sive example; in Sect. 4, we give the algorithm together with the associated
proofs of correctness, completeness, and termination, as well as the complexity;
in Sect. 5 we conclude.

2 Definitions

For all (a, b, i) ∈ N, we denote by i ∈ [[a, b]] any integer i such that a � i � b.

2.1 Parametric Graphs

Definition 1 (Parametric graph). A parametric graph with n parameters is
a tuple G = (V,E, f, (λi)n

1 , (Λi)n
1) where V is a set of vertices, E ⊆ V × V is

a set of edges, f : E → R is a non-parametric cost function, and for every
i ∈ [[1, n]], λi is a parameter, and Λi : E → {0, 1} is a parametric cost function.

The parameters can take any value in R. With a slight abuse of notations,
we denote by λi not only the parameters but also their values. We also write−→
λ = (λ1 . . . λn). All the following definitions are written for a parametric graph
G = (V,E, f, (λi)n

1 , (Λi)n
1).

Definition 2 (Edge cost). The cost of an edge e ∈ E is:

c(e) = f(e) −
n∑

i=1

λiΛi(e).

Single-Source Shortest Paths Enumeration in Parameterized Graphs 281

A Path p in G is a sequence of edges p = e0e1e2 . . . ek such that ∀i ∈
[[0, k]], ei = (vi, vi+1). In such a path v0 is the initial vertex and vk+1 is the
terminal vertex. The integer k is called the length of p.

Definition 3 (Path cost). Let p = e0e1 . . . ek be a path of G, the cost of p is:

c(p,
−→
λ) =

k∑

j=0

c(ej) =
k∑

j=0

(
f(ej) −

n∑

i=1

λiΛi(ej)

)
=

k∑

j=0

f(ej)−
n∑

i=1

λi

k∑

j=0

Λi(ej).

We call path of minimal cost for
−→
λ ∈ R

n a path of G such that there is no
other path of G with the same initial and terminal vertices, and with a strictly
lower path cost for

−→
λ .

Finally, we call a cycle a path where the initial vertex and the terminal vertex
are the same. And we call a negative cycle for

−→
λ ∈ R

n a cycle with a negative
cost for

−→
λ .

2.2 Trees over Parametric Graphs

In the following we suppose that there is a distinguished vertex s in the graph
G, from which we will search for paths of minimal cost toward all other vertices.
As we are interested in paths from s to each vertex, in the following we assume
that the graphs we consider are such that these paths exist.

Definition 4 (Tree). We define a tree of G rooted at s (or with source s) as
any tuple T = (VT , ET , fT , (λT,i)n

1 , (ΛT,i)n
1) such that VT = V , ET ⊆ E is such

that for all v ∈ V \ {s}, |{(u, v) : (u, v) ∈ ET }| = 1, {(u, s) : (u, s) ∈ ET } = ∅
and there is no cycle in T , fT = f|ET

, ∀i, λT,i = λi, and ∀i, ΛT,i = ΛT,i|ET
.

Notice that, in such a tree, there are always |V | − 1 edges. Moreover, there
is exactly one path from s to each vertex.

Fig. 1. A graph G and an example of a tree T of G.

282 B. Sérée et al.

In Fig. 1, we have represented an example of a graph with one parameter,
λ1 (a) and a tree T of G rooted at s (b).

In all the following definitions T is a tree rooted at s.

Definition 5 (Distance). Let v be a vertex of G, the distance d(T, v,
−→
λ) is

the cost of the unique path from s to v in T .

Definition 6 (Partial distances). Let v be a vertex of G and let e0e1 · · · ek be
the unique path from s to v in T . The partial non-parametric distance between
s and v in T is

df (T, v) =
k∑

j=0

f(ej).

The partial parametric distances between s and v are the

dΛi
(T, v) =

k∑

j=0

Λi(ej),

for all i ∈ [[1, n]].

Notice that d(T, v,
−→
λ) = df (T, v) −

n∑
i=1

λidΛi
(T, v).

Definition 7 (Tree of minimal distances). We say that T is a tree of min-
imal distances for

−→
λ ∈ R

n if for all v ∈ V , the unique path from s to v in T is
a path of minimal cost

−→
λ from s to v in G.

Moreover, if S ⊆ R
n, T is a tree of minimal distances for all

−→
λ ∈ S, we say

that T is a tree of minimal distances on S.

Definition 8 (Neighbour). Let e = (u, v) be an edge in E, the neighbour of
T generated by e is the tuple N(T, e) = (VN , EN , fN , (λN,i)n

1 , (ΛN,i)n
1) where:

– VN = V
– EN = (ET \ {(u′, v) : (u′, v) ∈ ET }) ∪ {e}, fN = f|EN

– ∀i, λN,i = λi

– ∀i, ΛN,i = Λi|EN

In other words, N(T, e) is obtained from T by deleting the only edge e′ =
(u′, v′) such that v′ = v and adding e.

Notice that for all e ∈ ET , N(T, e) = T and that, for (u, v) ∈ E \ET , an edge
(u′, v) does not necessarily exist in T , since T is rooted at s. Indeed an edge e
such that e = (u, s) will not be in T (as T is a tree rooted at s) and can generate
neighbours as any edge. In particular, this means that the neighbour of a tree is
not necessarily a tree.

As an example, consider G from Fig. 1 and let e = (s, u3), e1 = (u1, u3) and
e2 = (u4, u3). Figure 1 (b) represents a tree T rooted at s, Fig. 2 (a) represents

Single-Source Shortest Paths Enumeration in Parameterized Graphs 283

Fig. 2. Some neighbours of the tree T of Fig. 1.

N(T, e1), which is also a tree, and Fig. 2 (b) represents N(T, e2), illustrating the
fact that a neighbour of a tree is not necessarily a tree itself.

The following proposition specifies in which case a neighbour of a tree is
actually a tree. Its proof is omitted due to space constraints

Proposition 1. Let e = (u, v) ∈ E be an edge, N(T, e) is a tree if and only if
v is not on the unique path from s to u in T .

Before giving other properties of trees and their neighbours, we have to take
a few notations. For an edge e = (u, v) ∈ E we note:

Δf (T, e) = df (T, u) + f(e) − df (T, v),
∀i ∈ [[1, n]],ΔΛi

(T, e) = dΛi
(T, u) + Λi(e) − dΛi

(T, v).

These deltas represent the differences in distance from s to v between T and
its neighbour generated by e. Δf is the difference in the non-parametric part of
the distance. Each ΔΛi

represents the difference of the number of occurrences
of the corresponding parameter λi. Notice that for any e ∈ ET , one always has
ΔΛi

(T, e) = 0.
For example in Fig. 1, with the same notations as before, Δf (T, e1) =

df (T, u1) + f(e1) − df (T, u3) = 1 + 3 − 2 = 2, and ΔΛ1(T, e1) = dΛ1(T, u1) +
Λ1(e1) − dΛ1(T, u3) = 1 + 1 − 1.

Proposition 2. Let e = (u, v) be an edge not in T . If N(T, e) is a tree then ∀w ∈
V, d(T,w,

−→
λ) = d(N(T, e), w,

−→
λ) if and only if Δf (T, e) −

n∑
i=1

λiΔΛi
(T, e) = 0.

Proposition 3. Let e = (u, v) be an edge. If N(T, e) is not a tree then N(T, e)

has a cycle of cost 0 if and only if
−→
λ is such that Δf (T, e)−

n∑
i=1

λiΔΛi
(T, e) = 0.

The proofs of these propositions are omitted due to space constraints.

284 B. Sérée et al.

2.3 Constraints and Zones Associated to Trees

Definition 9 (Constraint). Let e ∈ E \ ET be an edge, the constraint associ-
ated with e is

CT,e = Δf (T, e) −
n∑

i=1

λiΔΛi
(T, e).

Definition 10 (Zone). Let Ec ⊆ E \ ET be a set of edges such that ∀ec ∈
Ec,∃i ∈ [[1, n]],ΔΛi

(T, ec) > 0. The zone defined by the constraints associated to
the edges in Ec is the set S such that:

−→
λ ∈ S if and only if ∀ec ∈ Ec,Δf (T, ec)−

n∑
i=1

λiΔΛi
(T, ec) ≥ 0.

We can notice that zones are convex by construction.

Definition 11 (Active constraint). Let Ec ⊆ E \ ET be a set of edges such
that ∀ec ∈ Ec,∃i ∈ [[1, n]],ΔΛi

(T, ec) > 0. Let ec ∈ Ec be an edge. Let S be the
zone defined by the constraints associated to the edges in Ec. Let S/ec

be the zone
defined by the constraints associated to the edges in Ec \ {ec}. The constraint
CT,ec

is said to be active if and only if S/ec

= S.

3 Presentation of Our Algorithm for Minimal Distances

In Sect. 3, we propose an algorithm which, given a graph G returns a list of trees
and a list of disjoint zones. Each tree T is associated with one zone S, such
that T is a tree of minimal distances on S. Moreover, the union of the returned
zones is the zone of R

n for which there is no negative cycle in G. In this section,
we demonstrate how this algorithm works on the example of Gex, a parametric
graph with two parameters presented in Fig. 3.

Fig. 3. Graph Gex

The first step of the algorithm consists in finding the zone ZnoCycle for which
the concept of minimal distances makes sense, that is the values of λ1 and λ2

for which there is no negative cycle. Here, the only cycle is e5e5e5 So, the

Single-Source Shortest Paths Enumeration in Parameterized Graphs 285

only possible negative cycle is when the cost of e5 is negative, therefore, when
10 − λ1 − λ2 < 0. Hence, we have ZnoCycle = {(λ1, λ2) ∈ R

2 : λ1 + λ2 � 10}.
The goal will be to cover ZnoCycle with zones associated to trees of minimal

distances. For that the algorithm enumerates zones, associated with trees, going
from one zone to another by considering the neighbours of the associated tree.
The algorithm begins by computing a first tree T0. This tree is a tree of minimal
distances for a particular pair (λ1,init, λ2,init), where −λ1,init = −λ2,init = 1 +∑
e∈E

|f(e)|. Here we have (λ1,init, λ2,init) = (−20,−20) and T0 is represented in

Fig. 4.

Fig. 4. T0 Fig. 5. (λ1,init, λ2,init) and S0

Now look at the constraints associated with the neighbours of T0 to charac-
terize the associated zone S0. The active constraints also tell which trees will be
considered next. Here, the edges that generate neighbours are e0, e3, e4 and e5.
So, one has to look at the constraints C0, C3, C4 and C5 associated respectively
with N(T0, e0), N(T0, e3), N(T0, e4) and N(T0, e5).

We have C0 : 1 + λ1 − λ2 = 0, C3 : 6 − λ1 = 0, C4 : 7 − λ1 = 0 and
C5 : 10−λ1 −λ2 = 0. Among these constraints, C0, C3 and C5 are active. Thus,
we take S0 = {(λ1, λ2) ∈ R

2 : 1 + λ1 − λ2 � 0, 6 − λ1 � 0, 10 − λ1 − λ2 � 0},
as represented in Figure 5.

As N(T0, e0) and N(T0, e3) are associated with active constraints and have
not been considered yet, they are added in a list of trees to be considered later,
called listToDo. N(T0, e5) is not added to listToDo because it is not a tree. The
pair (T0, S0) is added to a list called listExplored. This list will be returned by
the algorithm at the end of its computation.

From now on, the algorithm iteratively considers the trees of listToDo.
Assume, for example, that it begins with N(T0, e0) = T1, represented in Fig. 6.
The edges that generate neighbours are e1, e3, e4 and e5. The associated con-
straints are C1 : −1 − λ1 + λ2 = 0, C3 : 7 − λ2 = 0, C4 : 8 − λ2 = 0 and
C5 : 10 − λ1 − λ2 = 0. Among them, C1, C3, and C5 are active. From that we

286 B. Sérée et al.

can define S1, represented in Fig. 7. As N(T1, e1) = T0 has already been consid-
ered, only N(T1, e3) is added to listToDo (recall that N(T1, e5) is not a tree).
(T1, S1) is added to listExplored.

Fig. 6. T1 Fig. 7. S0 and S1

At the moment, listToDo = {N(T0, e3), N(T1, e3)} and listExplored =
{(T0, S0), (T1, S1)}. Assume that the algorithm considers N(T0, e3) = T2 next.
This tree is represented in Fig. 8. The constraints used to define S2 are the
ones associated with e0, e2 and e5. e4 is not considered because ΔΛ1T2, e4 =
ΔΛ2T2, e4 = 0. All constraints are active. The zone S2 is represented in Fig. 9.
No tree is added to listToDo as N(T2, e0) = N(T1, e3), which is already in
listToDo and N(T2, e2) = T0, which has already been considered. (T2, S2) is
added to listExplored.

Fig. 8. T2 Fig. 9. S0, S1 and S2

Then, it remains to consider N(T1, e3) = T3, represented in Fig. 10. Three
constraints are considered, this time associated with e1, e2 and e5. All these
constraints are active. The obtained S3 is represented in Fig. 11. No tree is

Single-Source Shortest Paths Enumeration in Parameterized Graphs 287

added to listToDo because all neighbours either have already been considered
or are not trees. (T3, S3) is added to listExplored.

At that point, the algorithm terminates because S0∪S1∪S2∪S3 = ZnoCycle.
It returns listExplored. Note that listToDo is empty.

4 Formal Presentation of Our Algorithm

In this section, we formalize the algorithm that has been presented on the exam-
ple in the previous section. We then prove that this algorithm is correct.

Fig. 10. T3 Fig. 11. S0, S1, S2, and S3

4.1 The Algorithm

Algorithm 1 is an algorithm that, given a parametric graph G and a vertex s,
returns a list of pairs (T, S) such that every T is a tree of minimal distances on
S and that the union of all S in the list is equal to the zone such that there is
no negative cycle in G. In this algorithm,

−→
λ init is the n-components vector so

that each component is equal to −
(

1 +
∑

e∈E

|f(e)|
)

.

In the following, we will refer to the zone where there are no negative cycles
as ZnoCycle and the union of the zones in listExplored as Zexplored.

Algorithm 1 starts by computing T0 (the tree from which the space will be
explored) as a tree of minimal distances for

−→
λ init. This initial tree is chosen to

ensure that the algorithm will cover ZnoCycle by only exploring toward greater
λi, i ∈ [[1, n]] as proven in the next section. T0 is added to listToDo which is the
list of the trees the algorithm needs to consider.

288 B. Sérée et al.

Algorithm 1. Trees of minimal distances of G = (V,E, f, (λi)n
1 , (Λi)n

1)
1: let listExplored = ∅.

2: let T0 be a tree of minimal distances for
−→
λ init

3: let listToDo = {T0}
4: while listToDo �= ∅ do
5: choose a tree T in listToDo (and delete it from listToDo)
6: let Neighbours be the set of all possible edges e such that ∃i ∈ [[1, n]],

ΔΛi(T, e) > 0.
7: let S be the zone defined by the constraints associated to the edges of

Neighbours
8: let Active be the subset of Neighbours containing the edges giving active con-

straints
9: for each edge e in Active such that N(T, e) is a tree do

10: let TN = N(T, e)
11: if TN /∈ listToDo and TN /∈ listExplored then
12: add TN to listToDo
13: end if
14: end for
15: add (T, S) to listExplored
16: end while
17: return listExplored

For each tree T , the algorithm begins by enumerating all the edges e that
can generate a neighbour. From the associated constraints it characterizes S, a
zone where T is a tree of minimal distances. Then the algorithm does two things:
(1) it adds to listToDo all the neighbour trees that have not been considered
yet (those that are not already in listToDo or in listExplored) and (2) it adds
the new result to the returned list by adding T and S to listExplored. We can
notice that the zones in listExplored are disjoint by construction.

When listToDo is empty the algorithm returns listExplored.
Notice that when there is only one parameter this algorithm is equivalent

to the algorithm presented in [6] as constraints have a better form that make
computing active constraints equivalent to look for a maximum. So it is possible
to do a more efficient exploration because of the fact that there is only one
dimension.

4.2 Proof of the Algorithm

A first Lemma expresses that – with the value that has been chosen for
−−→
λinit –

it is not necessary to consider all the neighbours of each tree in the main loop
of the algorithm. It is sufficient to consider neighbours with increasing number
of occurrences of (at least) one parameter, as enforced by line 6 of Algorithm 1.

Lemma 1. Let S0 be the first zone computed by the algorithm. ∀−→
λ ∈ ZnoCycle,

∃−→
λ′ ∈ R

n and
−→
λS0 ∈ S0 such that (1) ∃i ∈ [[1, n]], λ′

i � λi,S0 and (2) for all trees
T of minimal distances for

−→
λ′ , T is also a tree of minimal distances for

−→
λ .

Single-Source Shortest Paths Enumeration in Parameterized Graphs 289

Proof is omitted due to space constraints
A second lemma exhibits a loop invariant that will be instrumental in showing

the correctness of the results of the algorithm.

Lemma 2 (loop invariant). Let ZnotExplored = ZnoCycle \ Zexplored, at each
loop of the while loop we have:

1: Zexplored ∪ ZnotExplored = ZnoCycle (in particular there is no
−→
λ ∈ Zexplored

such that there is a negative cycle in G for
−→
λ)

2: for all (T, S) ∈ ListExplored, T is a tree of minimal distances for all
−→
λ ∈ S.

Proof is omitted due to space constraints
Building on the two above lemmas, we give our main theorem, that states

that the proposed algorithm terminates and returns correct results.

Theorem 1. The algorithm terminates and returns ListReturned such that
for all (T, S) ∈ ListReturned, T is a tree of minimal length for all

−→
λ ∈ S,⋃

(T,S)∈ListReturned

S = ZnoCycle and for all (T, S) and (T ′, S′) in ListReturned

such that S
= S′, S ∩ S′ = ∅.
Proof. If the algorithm does not terminate it means that there is an infinite loop.

As we consider a new tree in each loop and there is a finite number of (pos-
sible) trees it is impossible to have an infinite loop so the algorithm does ter-
minate. We also need that Zexplored = ZnoCycle at the end of the algorithm,
i.e. when listToDo is empty. If it is not the case it means that the algorithm
has missed one or more zones and this is only possible if there is some zones
such that

−→
λ ∈ R

n, �
−→
λ′ ∈ R

n and
−→
λS0 ∈ S0 such that ∃i ∈ [[1, n]], λ′

i � λi,S0 .
Which is impossible by Lemma 1 so the algorithm terminates and we have⋃
(T,S)∈ListReturned

S = ZnoCycle.

For each (T, S) ∈ ListReturned we also have that T is a tree of minimal
length for all

−→
λ ∈ S and

⋃
(T,S)∈ListReturned

S = ZnoCycle by the loop invariant.

4.3 Complexity

We conclude the presentation of Algorithm 1 by giving its worst-case complexity.

Theorem 2. The worst case complexity of Algorithm 1 is exponential in the
number |V | of vertices and is polynomial in the number |E| of edges and in the
number n of parameters. Moreover it is logarithmic in the largest constant value
M appearing in the constraints.

The proof of this theorem is omitted due to space constraints and shows that
this complexity is O(|V ||V |−1(|E| − |V |)3n3 log(M)).

290 B. Sérée et al.

5 Conclusion

We have proposed an algorithm to find the optimal paths from a single source
to all other vertices in a weighted graph in which weights involve an arbitrary
number of real-valued parameters. Since those paths change with the values of
the parameters, the result of our algorithm is a finite set of trees, each with a zone
of the parameter space on which it is optimal. Those zones cover the parameter
space for which there are no negative cost cycles in the graph. This algorithm
generalizes a previous work by Karp and Orlin in which only one parameter was
considered [6].

Further work includes implementing the algorithm, and evaluating its effi-
ciency on real-world case-studies.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM
Symposium on Theory of Computing, pp. 592–601 (1993)

2. André, É., Bloemen, V., Petrucci, L., van de Pol, J.: Minimal-time synthesis for
parametric timed automata. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 211–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17465-1 12

3. André, É., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-
fault trees. In: Keller, J., Penczek, W. (eds.) 19th International Conference on Appli-
cation of Concurrency to System Design (ACSD 2019), Aachen, Germany. IEEE
Computer Society, June 2019

4. Bundala, D., Ouaknine, J.: On parametric timed automata and one-counter
machines. Inf. Comput. 253, 272–303 (2017)

5. Chakraborty, S., Fischer, E., Lachish, O., Yuster, R.: Two-phase algorithms for the
parametric shortest path problem. In: Marion, J.-Y., Schwentick, T. (eds.) 27th
International Symposium on Theoretical Aspects of Computer Science, STACS
2010, Nancy, France, 4–6 March 2010, vol. 5 of LIPIcs, pp. 167–178. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2010)

6. Karp, R.M., Orlin, J.B.: Parametric shortest path algorithms with an application
to cyclic staffing. Discrete Appl. Math. 3(1), 37–45 (1981)

7. Lime, D., Roux, O.H., Seidner, C.: Parameter synthesis for bounded cost reachability
in time petri nets. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS,
vol. 11522, pp. 406–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21571-2 22

8. Young, N., Tarjan, R., Orlin, J.: Faster parametric shortest path and minimum
balance algorithms. Networks 21(2), 205–221 (1991)

https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-21571-2_22
https://doi.org/10.1007/978-3-030-21571-2_22

Words and Strings

On Balanced Sequences and Their
Asymptotic Critical Exponent

Francesco Dolce(B), L’ubomı́ra Dvořáková, and Edita Pelantová

FNSPE, Czech Technical University in Prague, Prague, Czech Republic
{francesco.dolce,lubomira.dvorakova,edita.pelantova}@fjfi.cvut.cz

Abstract. We study aperiodic balanced sequences over finite alphabets.
A sequence v of this type is fully characterised by a Sturmian sequence
u and two constant gap sequences y and y′. We study the language
of v, with focus on return words to its factors. We provide a uniform
lower bound on the asymptotic critical exponent of all sequences v aris-
ing by y and y′. It is a counterpart to the upper bound on the least
critical exponent of v conjectured and partially proved recently in works
of Baranwal, Rampersad, Shallit and Vandomme. We deduce a method
computing the exact value of the asymptotic critical exponent of v pro-
vided the associated Sturmian sequence u has a quadratic slope. The
method is used to compare the critical and the asymptotic critical expo-
nent of balanced sequences over an alphabet of size d ≤ 10 which are
conjectured by Rampersad et al. to have the least critical exponent.

Keywords: Balanced sequence · Critical exponent · Sturmian
sequence · Return word · Bispecial factors

1 Introduction

An infinite sequence over a finite alphabet is balanced if, for any two of its factors
u and v of the same length, the number of occurrences of each letter in u and v
differs by at most 1. Over a binary alphabet aperiodic balanced sequences coin-
cide with Sturmian sequences, as shown by Hedlund and Morse [13]. Hubert [14]
provided a construction of balanced sequences. It consists in colouring of entries
of a Sturmian sequence u by two constant gap sequences y and y′. In this paper
we study combinatorial properties of balanced sequences. We first show that
such sequences belong to the class of eventually dendric sequences introduced in
[5]. We give formulæ for the factor complexity and the number of return words
to each factor. The main goal of this paper is to develop a method computing
the asymptotic critical exponent of a given balanced sequence. Our work can
be understood as a continuation of research on balanced sequences with the

The research received funding from the project CZ.02.1.01/0.0/0.0/16 019/0000778.
We would like to thank Daniela Opočenská for her careful and readily usable imple-
mentation of our program computing the asymptotic critical exponent.

c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 293–304, 2021.
https://doi.org/10.1007/978-3-030-68195-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-68195-1_23

294 F. Dolce et al.

least critical exponent initiated by Rampersad, Shallit and Vandomme [18]. The
relation between factor complexity and critical exponent for binary and ternary
sequences was studied as well in [19]

Finding the least critical exponent of sequences is a classical problem. The
answer is known as Dejean’s conjecture [8], and the proof was provided step
by step by many people. The least critical exponent was determined also for
some particular classes of sequences: by Carpi and de Luca [6] for Sturmian
sequences, and by Currie, Mol and Rampersad [7] for binary rich sequences.
Recently, Rampersad, Shallit and Vandomme [18] found balanced sequences with
the least critical exponent over alphabets of size 3 and 4 and also conjectured
that the least critical exponent of balanced sequences over a d-letter alphabet
with d ≥ 5 is d−2

d−3 . Their conjecture was confirmed for d ≤ 8 [3,4].
Here we focus on the asymptotic critical exponent of balanced sequences. We

show that the asymptotic critical exponent depends on the slope of the associated
Sturmian sequence and, unlike the critical exponent, on the length of the minimal
periods of y and y′, but not on y and y′ themselves. We also give a lower bound
on the asymptotic critical exponent. We provide an algorithm computing the
exact value of the asymptotic critical exponent for balanced sequences originated
in Sturmian sequences with a quadratic slope (in this case the continued fraction
of the slope is eventually periodic).

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A word over A of length
n is a string u = u0u1 · · · un−1, where ui ∈ A for all i ∈ {0, 1, . . . , n − 1}. The
length of u is denoted by |u|. The set of all finite words over A together with the
operation of concatenation forms a monoid, denoted A∗. Its neutral element is
the empty word ε and we denote A+ = A∗\{ε}. If u = xyz for some x, y, z ∈ A∗,
then x is a prefix of u, z is a suffix of u and y is a factor of u. We sometimes
use the notation yz = x−1u. To any word u over A with cardinality #A = d,
we assign its Parikh vector V (u) ∈ N

d defined as (V (u))a = |u|a for all a ∈ A,
where |u|a is the number of letters a occurring in u.

A sequence over A is an infinite string u = u0u1u2 · · · , where ui ∈ A for
all i ∈ N. A sequence u is eventually periodic if u = vwww · · · = v(w)ω for
some v ∈ A∗ and w ∈ A+. It is periodic if u = wω. If u is not eventually
periodic, then it is aperiodic. A factor of u = u0u1u2 · · · is a word y such that
y = uiui+1ui+2 · · · uj−1 for some i, j ∈ N, i ≤ j. We usually denote y = u[i,j).
The number i is called an occurrence of the factor y in u. In particular, if i = j,
the factor y is the empty word ε and any index i is its occurrence. If i = 0, the
factor y is a prefix of u. If each factor of u has infinitely many occurrences in u,
the sequence u is recurrent. Moreover, if for each factor the distances between
its consecutive occurrences are bounded, u is uniformly recurrent.

The language L(u) of a sequence u is the set of all its factors. We also define
L(u)+ = L(u) \ {ε}. A factor w of u is right special if wa,wb are in L(u) for at
least two distinct letters a, b ∈ A. Analogously, we define a left special factor. A

On Balanced Sequences and Their Asymptotic Critical Exponent 295

factor is bispecial if it is both left and right special. The factor complexity of a
sequence u is the mapping Cu : N → N defined by Cu(n) = #{w ∈ L(u) : |w| =
n}. The first difference of the factor complexity is su(n) = Cu(n + 1) − Cu(n).
Aperiodic sequences with the lowest possible factor complexity, i.e., such that
Cu(n) = n + 1 for all n ∈ N, are called Sturmian sequences (for other equivalent
definitions see [2]). Clearly, all Sturmian sequences are defined over a binary
alphabet, e.g., {a, b}. If both sequences au and bu are Sturmian, then u is called
a standard Sturmian sequence. It is well-known that for any Sturmian sequence
there exists a unique standard Sturmian sequence with the same language. For
other facts about Sturmian sequences see [17].

A sequence u over the alphabet A is balanced if for every letter a ∈ A and
every pair of factors u, v ∈ L(u) with |u| = |v|, we have ||u|a − |v|a| ≤ 1.
The class of Sturmian sequences and the class of aperiodic balanced sequences
coincide over a binary alphabet (see [13]). Vuillon [21] provides a survey on some
previous work on balanced sequences.

A morphism over A is a mapping ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v)
for all u, v ∈ A∗. The morphism ψ can be naturally extended to sequences by
setting ψ(u0u1u2 · · ·) = ψ(u0)ψ(u1)ψ(u2) · · · .

Consider a factor w of a recurrent sequence u = u0u1u2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · · uj−1 is a
return word to w in u. The set of all return words to w in u is denoted by
Ru(w). If u is uniformly recurrent, the set Ru(w) is finite for each prefix w. The
opposite is true if u is recurrent. In this case u can be written as a concatenation
u = rd0rd1rd2 · · · of return words to w. The derived sequence of u to w is the
sequence du(w) = d0d1d2 · · · over the alphabet of cardinality #Ru(w). The
concept of derived sequences was introduced by Durand [11].

Given a sequence u over an alphabet A and w ∈ L(u), we define the sets
of left extensions, right extensions and bi-extensions of w in L(u) respectively
as Lu(w) = {a ∈ A : aw ∈ L(u)}, Ru(w) = {b ∈ A : wb ∈ L(u)} and
Bu(w) = {(a, b) ∈ A × A : awb ∈ L(u)}. The extension graph of w in L(u),
denoted Eu(w), is the undirected bipartite graph whose set of vertices is the
disjoint union of Lu(w) and Ru(w) and with edges the elements of Bu(w). A
sequence u (resp. a language L(u)) is said to be eventually dendric with threshold
m ≥ 0 if Eu(w) is a tree for every word w ∈ L(u) of length at least m. It is said
to be dendric if we can choose m = 0. Dendric languages were introduced in [5]
under the name of tree sets. It is known that Sturmian sequences are dendric.

Example 1. It is known that the sequence uf = abaababaabaababaababaa · · · ,
obtained as fixed point of the morphism f : a �→ ab, b �→ a, is Sturmian (see [17]).

3 Languages of Balanced Sequences

In 2000, Hubert [14] characterised balanced sequences over alphabets of higher
cardinality. A suitable tool for their description is the notion of constant gap.

296 F. Dolce et al.

Definition 1. A sequence y over an alphabet A is a constant gap sequence if
for each letter a ∈ A appearing in y there is a positive integer d such that the
distance between successive occurrences of a in y is always d.

Obviously, any constant gap sequence is periodic. Given a constant gap
sequence y, we denote its minimal period length by Per(y).

Example 2. The sequence y = (0102)ω is a constant gap sequence because the
distance between consecutive 0s is always 2, while the distance between consec-
utive 1s (resp. 2s) is always 4. Its minimal period is Per(y) = 4.

The sequence (011)ω is periodic but it is not a constant gap sequence.

The i-th shift of a constant gap sequence y = (y0y1 · · · yk−1)ω with minimal
period k ≥ 1 (and 0 ≤ i < k) is the sequence σi(y) = (yi · · · yk−1y0 · · · yi−1)ω.

Example 3. Let y be the sequence seen in Example 2. Then we have σ0(y) = y,
σ(y) = (1020)ω, σ2(y) = (0201)ω and σ3(y) = (2010)ω.

Theorem 1 ([14]). A recurrent aperiodic sequence v is balanced if and only if
v is obtained from a Sturmian sequence u over {a, b} by replacing the as in u
by a constant gap sequence y over some alphabet A, and replacing the bs in u
by a constant gap sequence y′ over some alphabet B disjoint from A.

Definition 2. Let u be a Sturmian sequence over the alphabet {a, b}, and y,y′

be two constant gap sequences over two disjoint alphabets A and B. The colouring
of u by y and y′, denoted v = colour(u,y,y′), is the sequence over A∪B obtained
by the procedure described in Theorem 1.

For v = colour(u,y,y′) we use the notation π(v) = u and π(v) = u for
any v ∈ L(v) and the corresponding u ∈ L(u). Symmetrically, given a word
u ∈ L(u), we denote by π−1(u) = {v ∈ L(v) : π(v) = u}. We say that u (resp.
u) is a projection of v (resp. v). The map π : L(v) → L(u) is clearly a morphism.

Example 4. Let uf be as in Example 1. Let us take the constant gap
sequences y = (0102)ω and y′ = (34)ω over the alphabets A = {0, 1, 2}
and B = {3, 4} respectively. The sequence vf = colour(uf ,y,y′) =
0310423014023041032401 · · · is balanced according to Theorem 1. One has
π(vf) = uf . Moreover, π(031) = π(041) = aba, and π−1(aba) =
{031, 032, 041, 042, 130, 140, 230, 240}.

Definition 3. An aperiodic sequence u over {a, b} has well distributed occur-
rences, or has the WDO property, if for every m ∈ N and for every w ∈ L(u)
one has {V (p) mod m : pw is a prefix of u} = Z

2
m.

It is known that Sturmian sequences have the WDO property (see [1]).

Example 5. Let uf be as in Example 1 and let us consider m = 2 and w =
ab ∈ L(uf). Then it is easy to check that V (ε) ≡ (0

0) mod 2, V (aba) ≡
(0
1) mod 2, V (abaab) ≡ (1

0) mod 2 and V (abaababa) ≡ (1
1) mod 2, where

w, abaw, abaabw and abaababaw are prefixes of uf .

On Balanced Sequences and Their Asymptotic Critical Exponent 297

Using the WDO property we can prove that, to study the language of ape-
riodic recurrent balanced sequences, it is enough to study standard Sturmian
sequences.

Proposition 1. Let u,u′ be two Sturmian sequences such that L(u) = L(u′),
y and y′ two constant gap sequences over disjoint alphabets and i, j ∈ N. Let
v = colour(u,y,y′), v′ = colour(u′,y,y′) and v′′ = colour(u, σi(y), σj(y′)).
Then L(v) = L(v′) = L(v′′).

Proof. Let v ∈ L(v) and w such that wv is a prefix of v. Then π(w)π(v) is a
prefix of u and |π(w)| is an occurrence of π(v) in u. Since π(v) ∈ L(u′), using
the WDO property, we can find p ∈ L(u′) such that pπ(v) is a prefix of u′ and
V (π(w)) = V (p) mod Per(y)Per(y′) . Thus v appears both in v at occurrence
|π(w)| and in v′ at occurrence |p|. Hence L(v) ⊂ L(v′). Using the same argument
we can prove the opposite inclusion.

Let p be a prefix of u such that V (p) =
(

i
j

)
mod Per(y)Per(y′). Denote

u′′ = p−1u. Then colour(u′′, σi(y), σj(y′)) gives the same sequence as the one
obtained by erasing the prefix of length |p| from v. Since L(u) = L(u′′), using
the same argument as before we have L(v′′) = L(v).

Corollary 1. Let v = colour(u,y,y′) and v ∈ L(v). For any i, j such that
0 ≤ i < Per(y) and 0 ≤ j < Per(y′), the word v′ obtained from π(v) by replacing
the as by σi(y) and the bs by σj(y′) is in π−1(π(v)), and thus in L(v).

Example 6. Let uf ,vf ,y and y′ be as in Example 4. Let v = 03104 ∈ L(vf) and
let us denote u = π(v) = abaab. One can easily check that the word v′ = 24013
obtained from u by replacing the as by σ3(y) and the bs by σ(y′) is in L(vf).

Note that, if v = colour(u,y,y′), there exists an m ∈ N such that every
factor v ∈ L(v) longer than m contains at least Per(y) letters in A and at least
Per(y′) letters in B. Indeed, it is enough to find m such that all factors of length
m in L(u) contain at least Per(y) as and at least Per(y′) bs.

Example 7. Let uf ,vf ,y and y′ be as in Example 4. Then, it easy to check that
all factors of length 7 in L(uf) contain at least 4 as and 2 bs. Thus, all factors
of length 7 in L(vf) contain at least four letters in A and at least two letters in
B. On the other hand, babaab ∈ L(uf) has length 6 and contains only three as.

As we saw in Example 4, the set π−1(u), for a word u ∈ L(u), is not in general
a singleton. However, it is not difficult to prove that any long enough factor in
v is uniquely determined, between the words having the same projection in u,
by the first Per(y) letters in A and the first Per(y′) letters in B (the number of
needed letters can be reduced by studying the bispecial factors in y and y′).

Lemma 1. Let v = colour(u,y,y′) and u ∈ L(u) such that |u|a ≥ Per(y) and
|u|b ≥ Per(y′). Let a0, a1, . . . , aPer(y)−1 ∈ A, and b0, b1, . . . , bPer(y′)−1 ∈ B. There
exists at most one word in π−1(u) having a0, a1, . . . , aPer(y) − 1 (in this order)
as first letters in A and b0, b1, . . . , bPer(y′) (in this order) as first letters in B.

298 F. Dolce et al.

Example 8. Let uf ,vf ,y and y′ be as in Example 4 and u = abaabaaba ∈
L(uf). One has |u|a = 6 > Per(y) and |u|b = 3 > Per(y′). One can check that
the only word in π−1(u) having 0, 2, 0, 1 as first letters in A and 4, 3 as first
letters in B is 042031042, that is the word obtained from u by σ2(y) and σ(y′).
On the other hand, no word in L(v) can have 0, 0, 1, 2 (in this order) as first
letters in A or 3, 3 as first letters in B.

Putting together Corollary 1 and Lemma 1, we obtain the following result.

Lemma 2. Let v = colour(u,y,y′) and u ∈ L(u) be such that |u|a ≥ Per(y)
and |u|b ≥ Per(y′). Then #(π−1(u)) = Per(y)Per(y′).

Example 9. Let uf ,vf ,y,y′ be as in Example 4 and u = abaabaab ∈
L(uf). The set π−1(u) =

{
03104203, 03204103, 04103204, 04203104, 13024013,

14023014, 23014023, 24013024
}

has exactly 8 elements, according to Lemma 2.

The following result easily follows from Lemma 1 and the WDO property.

Lemma 3. Let v = colour(u,y,y′) and u ∈ L(u) be such that |u|a ≥ Per(y)
and |u|b ≥ Per(y′). Let v ∈ π−1(u). Then v is right special (resp. left special) if
and only if u is right special (resp. left special). Moreover, in this case the unique
two right (resp. left) extensions of v belong to different alphabets A and B.

Proposition 2. The language L(v) is eventually dendric.

Proof. Let m be a positive integer such that for every word w ∈ L(u) of length
at least m one has |w|a ≥ Per(y) and |w|b ≥ Per(y′). Let v ∈ L(v) and u = π(v),
and suppose that |v| ≥ m. It easily follows from Lemmata 1 and 3 that Ev(u)
is isomorphic to Eu(u) via the projection π. Since u is Sturmian, then L(u) is
dendric. Thus Ev(v) is a tree. Hence L(v) is eventually dendric of threshold m.

The following result easily follows from Lemma 2.

Proposition 3. Let v = colour(u,y,y′) and m be a positive integer such that
every word in L(u) of length m has at least Per(y) as and at least Per(y′) bs.
Then for any n ≥ m one has Cv(n) = Per(y)Per(y′)(n + 1).

Example 10. Let uf ,vf ,y and y′ be as in Example 4. The language L(vf) is
eventually dendric with threshold 7. The factor complexity of vf is defined by
Cvf

(n) = 8(n + 1) for every n ≥ 7, according to Proposition 3.

Proposition 4. Let v = colour(u,y,y′) and v ∈ L(v) such that |π(v)|a ≥
Per(y) and |π(v)|b ≥ Per(y′). Then #(Rv(v)) = 1 + Per(y)Per(y′).

Proof. From Proposition 3 we have sv(n) = Per(y)Per(y′) for every n large
enough. The result thus follows from Proposition 2 and [10, Theorem 7.3].

Corollary 2. A recurrent aperiodic balanced sequence is uniformly recurrent.

On Balanced Sequences and Their Asymptotic Critical Exponent 299

Proof. A recurrent language is uniformly recurrent if and only if the number
of return words to a given word in the language is finite. The result then just
follows from Proposition 4 and [10, Theorem 7.3].

Given a vector b =
(

b1
b2

) ∈ N
2 and two periodic sequences y,y′, we use the

notation b mod Per(y,y′) :=
(

b1 mod Per(y)

b2 mod Per(y′)

)
.

Lemma 4. Let v = colour(u,y,y′), u ∈ L(u) with |u|a ≥ Per(y), |u|b ≥
Per(y′) and v, w ∈ L(v) such that π(v) = π(w) = u. Let i, j be occurrences
of v and w in v respectively and let us assume that i < j. Then v = w if and
only if V (u[i,j)) = (0

0) mod Per(y,y′).

Proof. By Lemma 1, v = w if and only if there exist 0 ≤ s < Per(y) and 0 ≤ t <
Per(y′) such that both v and w are obtained from u by replacing the as by σs(y)
and the bs by σt(y′). Furthermore, in this case we have V (u[0,i)) = V (u[0,j))
mod Per(y,y′), that is V (u[i,j)) = (0

0) mod Per(y,y′).

Lemma 5. Let v = colour(u,y,y′), u ∈ L(u) with |u|a ≥ Per(y), |u|b ≥
Per(y′) and v, w ∈ L(v) with π(v) = π(w) = u. Then π(Rv(v)) = π(Rv(w)).

Proof. Let r ∈ Rv(v). Then u is both a prefix and a suffix of π(rv). By Lemma 1
there exist a unique 0 ≤ s < Per(y) and a unique 0 ≤ t < Per(y′) such that
w is obtained from u by replacing the as by σs(y) and the bs by σt(y′). By
Corollary 1 the word obtained from π(rv) by replacing the as by σs(y) and the
bs by σt(y′) is in L(v) and has w as a prefix. This factor is equal to r′w and
it contains only two occurrences of w. Indeed, it follows from Lemma 4 that
π(r′) = π(r) is the unique non-empty prefix of π(rv) satisfying V (π(r)) = (0

0)
mod Per(y,y′). Thus, r′ is a return word to w with π(r′) = π(r), which implies
π(Rv(v)) ⊂ π(Rv(w)). The opposite inclusion can be proved symmetrically.

4 Critical Exponent and Its Relation to Return Words

Let z ∈ A+ be a prefix of a periodic sequence uω with u ∈ A+. We say that z
has fractional root u and the exponent e = |z|/|u|. We usually write z = ue. Let
us emphasise that a word z can have multiple exponents and fractional roots.

Definition 4. Given a sequence u and u ∈ L(u)+, we define the index of u in
u as indu(u) = sup{e ∈ Q : ue ∈ L(u)} . The critical exponent of a sequence u
is defined as E(u) = sup {indu(u) : u ∈ L(u)+}. Its asymptotic critical exponent
is defined as E∗(u) = lim

n→∞(sup {indu(u) : u ∈ L(u), |u| ≥ n}).

Clearly, E(u) ≥ E∗(u). If u is eventually periodic, then both E(u) and E∗(u)
are infinite. If u is aperiodic and uniformly recurrent, then each factor of u has
finite index. Nevertheless, E∗(u) may be infinite. An example of such a sequence
is given by Sturmian sequences whose continued fraction expansions of their
slope have unbounded partial quotients (see [9]).

300 F. Dolce et al.

Lemma 6. Let u,w be non-empty factors of a recurrent sequence u. If u ∈
Ru(w), then w = ue for some e ∈ Q. Moreover, if u is aperiodic and uniformly
recurrent, then u is a return word to a finite number of factors in u.

Proof. Since u ∈ Ru(w), w is a prefix of uw. Hence there exists z ∈ L(u) such
that uw = wz. A known result from equations on words implies that there
exist x, y ∈ L(u) and a non-negative integer i such that u = xy, z = yx and
w = (xy)ix. Thus, w is a prefix of uω = (xy)ω.

Let us now suppose that u is a return word to infinitely many factors. By the
previous argument, u is a fractional root of all those factors. This implies that
un ∈ L(u) for all n ∈ N. Thus, u is either periodic or not uniformly recurrent.

Lemma 7 ([12]). Let u be a uniformly recurrent aperiodic sequence and f ∈
L(u)+ such that indu(f) > 1. Then there exist a factor u ∈ L(u) and a bispecial
factor w in u such that |f | = |u|, indu(f) ≤ indu(u) = 1+ |w|

|u| and u ∈ Ru(w)+.

Proposition 5. Let u be a uniformly recurrent aperiodic sequence. Let (wn)n∈N

be a sequence of all bispecial factors ordered by their length. For every n ∈ N, let
vn be a shortest return word to wn in u. Then

E(u) = 1 + sup
n∈N

{ |wn|
|vn|

}
and E∗(u) = 1 + lim sup

n→∞
|wn|
|vn| .

Proof. By Lemma 6, vnwn = ven
n for some exponent en ∈ Q and thus indu(vn) ≥

en = |vnwn|
|vn| = 1+ |wn|

|vn| . Hence E(u) ≥ 1+sup{ |wn|
|vn| } > 1. By the second statement

of the same lemma, lim
n→∞ |vn| = ∞. Therefore, E∗(u) ≥ 1 + lim sup |wn|

|vn| ≥ 1.

To show the opposite inequality, let δ > 0 be such that E(u) − δ > 1. Thus
there exists f ∈ L(u) satisfying E(u) − δ < indu(f). Using Lemma 7, we find
u ∈ L(u) and a bispecial factor w such that indu(f) ≤ indu(u) = 1 + |w|

|u| , where
u ∈ Ru(w)+. Therefore, for some index m ∈ N, one has w = wm and |u| ≥ |vm|.
Altogether, for arbitrarily positive δ we have

E(u) − δ < indu(f) ≤ indu(u) = 1 +
|w|
|u| ≤ 1 +

|wm|
|vm| ≤ 1 + sup

{ |wn|
|vn|

}
.

Consequently, E(u) ≤ 1 + sup
{

|wn|
|vn|

}
.

If E∗(u) = 1, then the above proven inequality E∗(u) ≥ 1 + lim sup |wn|
|vn| ≥ 1

implies the second statement of the proposition. If E∗(u) > 1, then there exists
a sequence of factors f (n) ∈ L(u) with indu(f (n)) > 1 such that |f (n)| → ∞
and indu(f (n)) → E∗(u). For each n, we find the factor u(n) and the bispecial
factor w(n) with the properties given in Lemma 7 and we proceed analogously
as before.

5 Asymptotic Critical Exponent of Balanced Sequences

To describe the asymptotic critical exponent of a balanced sequence, we first list
important facts on Sturmian sequences. They are partially taken from [12], where

On Balanced Sequences and Their Asymptotic Critical Exponent 301

they are used to compute the critical exponent of complementary symmetric Rote
sequences.

In the sequel, we use the characterisation of standard Sturmian sequences by
their directive sequences. To introduce them, we define two morphisms G : a →
ba, b → b and D : a → a, b → ab.

Proposition 6 ([15]). For every standard Sturmian sequence u there exists
a unique sequence Δ = Δ0Δ1Δ2 · · · ∈ {G,D}N of morphisms and a sequence
(u(n))n≥0 of standard Sturmian sequences such that u = Δ0Δ1 · · · Δn−1(u(n))
for every n ∈ N. Moreover, the sequence Δ contains infinitely many letters G
and infinitely many letters D, i.e., for some sequence (ai)i≥1 of positive integers
we can write Δ = Ga1Da2Ga3Da4 · · · or Δ = Da1Ga2Da3Ga4 · · · .

We call the sequence Δ in Proposition 6 the directive sequence of u.
Let us fix the notation by adopting the following convention: To a stan-

dard Sturmian sequence u with directive sequence Δ = Ga1Da2Ga3Da4 · · · , we
assign an irrational number θ ∈ (0, 1) having the continued fraction expansion
θ = [a0, a1, a2, a3, . . .] with a0 = 0. The frequencies of the letters in the Sturmian
sequence u are θ

1+θ (for the least frequent letter) and 1
1+θ (for the most frequent

letter). For every N ∈ N, we define the N th convergent to θ as pN

qN
and the N th

convergent to θ
1+θ as PN

QN
, where pN , qN , QN satisfy the following recurrence rela-

tion for all N ≥ 1: XN = aNXN−1+XN−2, but they differ in their initial values:
p−1 = 1, p0 = 0; q−1 = 0, q0 = 1; Q−1 = Q0 = 1. This implies pN + qN = QN for
all N ∈ N. Note that u has directive sequence Ga1Da2Ga3Da4 · · · if and only if
u after exchange of letters a ↔ b has directive sequence Da1Ga2Da3Ga4 · · · .

By Vuillon’s result [20], every factor of any Sturmian sequence has exactly two
return words and its derived sequence is Sturmian as well. The Parikh vectors
of the bispecial factors in u and the corresponding return words can be easily
expressed using the convergents pN

qN
to θ. In the following proposition we order

the bispecial factors in the Sturmian sequence by their length.

Proposition 7 ([12]). Let θ = [a0, a1, a2, a3, . . .] be the irrational number asso-
ciated with a Sturmian sequence u and let us suppose that b is the most frequent
letter. Let b be the nth bispecial factor of u. Then there exists a unique pair
(N,m) ∈ N

2 with 0 ≤ m < aN+1 such that n = m + a0 + a1 + a2 + · · · + aN .
The Parikh vectors of the most frequent return word r to b, of the least frequent
return word s to b and of b itself are V (r) = (pN

qN) , V (s) =
(

m pN+pN−1
m qN+qN−1

)
and

V (b) = V (r) + V (s) − (1
1). The irrational number associated with the derived

sequence du(b) to b in u is θ′ = [0, aN+1 − m,aN+2, aN+3, . . .].

We will describe how to compute the asymptotic critical exponent of the
balanced sequence v = colour(u,y,y′) associated with a standard Sturmian
sequence u with θ having an eventually periodic continued fraction expansion.
Our main tool for computing E∗(v) is Proposition 5. Thus we need to find for
any bispecial factor of length |b| in v the length |v| of its shortest return word.

As stated in Lemma 2, if w is a bispecial factor of v and w is long enough,
then there exist Per(y)Per(y′) bispecial factors of the same length in v, all of

302 F. Dolce et al.

them having the same projection in u, and this projection is bispecial in u. By
Lemma 5, the shortest return words to these bispecial factors of v have the
same length. Therefore, we can consider only one representative. In the sequel,
we denote by wn a bispecial factor of v such that bn = π(wn) is the nth bispecial
factor in the Sturmian sequence u, when these are ordered by length. We want to
compute E∗(v) = 1+lim sup |wn|

|vn| , where vn is a shortest return word to wn in v.
The fact that the continued fraction expansion of θ is eventually periodic enables
us to split the sequence (|wn|/|vn|) into a finite number of subsequences such
that each of them has a finite limit. The largest limit of these subsequences is the
searched E∗(v). To find a suitable partition of the index set N into a finite number
of subsets of indices describing subsequences, we define an equivalence on N. First
we fix our notation: θ = [a0, a1, a2, a3, . . .] = [0, a1a2 . . . ah(z0z1 . . . zM−1)ω]. In
particular, ai = zj , if i > h and i − 1 − h = j mod M .

Definition 5. To any n ∈ N we assign a unique pair (N,m) ∈ N
2 as in Propo-

sition 7. Let (N1,m1) and (N2,m2) be assigned to the integers n1 and n2 respec-
tively. We say that n1 is equivalent to n2 and write n1 ∼ n2 if

m1 = m2, N1 = N2 mod M,
(pN1−1

qN1−1

)
=

(pN2−1
qN2−1

)
mod Per(y,y′),

(pN1
qN1

)
=

(pN2
qN2

)
mod Per(y,y′).

Obviously, the above defined relation on N is an equivalence and there are
only finitely many equivalence classes, say C1, C2, . . . , CT . Now we can define
subsequences of the sequence (|wn|/|vn|): if #Ct = ∞, then we insert |wn|/|vn|
into the tth subsequence for each n ∈ Ct. For each n ∈ N, up to a finite number
of exceptions, |wn|/|vn| belongs to a subsequence. The number of subsequences
is at most Z Per(y)2 Per(y′)2, where Z = z0 + z1 + · · · + zM−1. We obtain thus
the following algorithm computing the asymptotic critical exponent.

Algorithm for determining E∗(v), where v = colour(u,y,y′):
Input: θ = [0, a1a2 · · · ah(z0z1 · · · zM−1)ω], Per(y) and Per(y′).

Step 1. Find all infinite equivalence classes Ct introduced in Definition 5.
Step 2. For each class Ct

• insert |wn|/|vn| into the tth subsequence for each n ∈ Ct;
• find the limit et of the tth subsequence.

Output: E∗(v) = 1+ the maximum value among all limits et.

Proposition 5 and a thorough study of short return words provide a lower
bound on the asymptotic critical exponent.

Theorem 2. Let u be a Sturmian sequence, y,y′ two constant gap sequences
and v = colour(u,y,y′). Then E(v) ≥ E∗(v) ≥ 1 + 1

Per(y)Per(y′) . Moreover,
E∗(v) depends only on Per(y) and Per(y′) (not on the structure of y and y′).

On Balanced Sequences and Their Asymptotic Critical Exponent 303

On one hand, the asymptotic critical exponent depends only on the length
of the periods of y and y′ and it does not depend on their structure, in contrast
to the critical exponent. On the other hand, the asymptotic critical exponent
depends on the preperiod of the continued fraction of θ, in contrast to the asymp-
totic critical exponent of the associated Sturmian sequence (see [16]).

Example 11. Let v be the balanced sequence given by the parameters θ =
[0, 2], Per(y) = 1 and Per(y′) = 2. One can check that E∗(v) = 3 +

√
2 .= 4.41.

For the balanced sequence v′ given by the parameters θ = [0, 1, 2], Per(y) = 1
and Per(y′) = 2, one has E∗(v′) = 2 +

√
2
2

.= 2.7.

Table 1. The balanced sequences with the least critical exponent over alphabets of
size d. We denote by question mark the conjectures that are not yet proved.

d θ y y′ E(v) E∗(v)

3 [0, 1, 2] 0ω (12)ω 2 + 1√
2

2 + 1√
2

4 [0, 1] (01)ω (23)ω 1 + 1+
√

5
4 1 + 1+

√
5

4

5 [0, 1, 2] (01)ω (2324)ω 3
2

3
2

6 [0, 2, 1, 1, 1, 1, 1, 2] 0ω (123415321435)ω 4
3

4
3

7 [0, 1, 3, 1, 2, 1] (01)ω (234526432546)ω 5
4

5
4

8 [0, 3, 1, 2] (01)ω (234526732546237526432576)ω 6
5 = 1.2 12+3

√
2

14
.
= 1.16

9 [0, 2, 3, 2] (01)ω (234567284365274863254768)ω ? 7
6

.
= 1.167 1 + 2

√
2−1
14

.
= 1.13

10 [0, 4, 2, 3] (01)ω (34567284963254768294365274869)ω ? 8
7

.
= 1.14 1 +

√
13

26
.
= 1.139

We used a program implemented by our student Daniela Opočenská comput-
ing the asymptotic critical exponent of balanced sequences xd defined in [18] for
d ∈ {3, 4, . . . , 10}. The authors of [18] conjectured that the least critical expo-
nent over an alphabet of cardinality d equals d−2

d−3 and this is achieved on the
sequences xd. This conjecture was proved for d = 3 and d = 4 in [18]. 1 Later,
in [3,4] it is shown that xd are indeed the sequences with the least critical expo-
nent over alphabets of size 5 to 8. The balanced sequences xd and their critical
exponent are listed in Table 1.

The table is taken from [18] (instead of the slope α of a Sturmian sequence,
used in the original table, we use the parameter θ corresponding to the directive
sequence). We also added to the table a column containing the asymptotic critical
exponent. We see that E∗(xd) = E(xd) for d = 3, 4, 5, 6, 7. However E∗(x8) <
E(x8). Moreover, using the table we can deduce that there exists a balanced
sequence x over an 8-letter alphabet with E∗(x) < E∗(x8). The sequence x
uses the same pair y and y′ as x8. The parameter θ corresponding to x is
θ = [0, 2, 3, 2]. Since x8 and x9 have same θ and same lengths of constant gap
sequences, we have E∗(x) = E∗(x9) < E∗(x8). The method used for finding the
candidates with the least critical exponent cannot be applied to find a suitable
1 More precisely, the minimality in the case d = 4 was proved by Peltomäki in a
private communication to Rampersad.

304 F. Dolce et al.

xd for a general d. The same is true for the least asymptotic critical exponent.
Indeed, even a proof that the candidates should be given by θ with an eventually
periodic continued fraction expansion is still missing.

References

1. Balková, L., Bucci, M., De Luca, A., Hladký, J., Puzynina, S.: Aperiodic pseudo-
random number generators based on infinite words. Theoret. Comput. Sci. 647,
85–100 (2016)

2. Balková, L., Pelantová, E., Starosta, Š.: Sturmian jungle (or garden?) on multilit-
eral alphabets. RAIRO-Theoret. Inf. Appl. 44, 443–470 (2010)

3. Baranwal, A.R.: Decision algorithms for Ostrowski-automatic sequences, the mas-
ter thesis, University of Waterloo (2020). http://hdl.handle.net/10012/15845

4. Baranwal, A.R., Shallit, J.: Critical exponent of infinite balanced words via the
Pell number system. In: Mercaş, R., Reidenbach, D. (eds.) WORDS 2019. LNCS,
vol. 11682, pp. 80–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28796-2 6

5. Berthé, V., et al.: Acyclic, connected and tree sets. Monatshefte für Mathematik
176(4), 521–550 (2014). https://doi.org/10.1007/s00605-014-0721-4

6. Carpi, A., de Luca, A.: Special factors, periodicity, and an application to Sturmian
words. Acta Inform. 36, 983–1006 (2000). https://doi.org/10.1007/PL00013299

7. Currie, J.D., Mol, L., Rampersad, N.: The repetition threshold for binary rich
words. Discrete Math. Theoret. Comput. Sci. 22(1) (2020). https://doi.org/10.
23638/DMTCS-22-1-6. no. 6

8. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory Ser. A 13, 90–99 (1972)
9. Damanik, D., Lenz, D.: The index of Sturmian sequences. Eur. J. Comb. 23, 23–29

(2002)
10. Dolce, F., Perrin, D.: Eventually dendric shift spaces. In: Ergodic Theory and

Dynamical Systems, pp. 1–26 (2020)
11. Durand, F.: A characterization of substitutive sequences using return words. Dis-

crete Math. 179, 89–101 (1998)
12. Dvořáková, L., Medková, K., Pelantová, E.: Complementary symmetric Rote

sequences: the critical exponent and the recurrence function. Discrete Math. The-
oret. Comput. Sci. 20(1) (2020). https://doi.org/10.23638/DMTCS-22-1-20. #20.

13. Hedlund, G.A., Morse, M.: Symbolic dynamics II - Sturmian trajectories. Am. J.
Math. 62, 1–42 (1940)

14. Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242, 91–108 (2000)
15. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.

Comput. Sci. 276, 281–313 (2002)
16. Justin, J., Pirillo, G.: Fractional powers in Sturmian words. Theoret. Comput. Sci.

223, 363–376 (2001)
17. Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lec-

ture Notes in Mathematics, vol. 313. Springer, Heidelberg (2002). Edited by Berthé,
V., Ferenczi, S., Mauduit, C., Siegel, A

18. Rampersad, N., Shallit, J., Vandomme, É.: Critical exponents of infinite balanced
words. Theoret. Comput. Sci. 777, 454–463 (2019)

19. Shallit, J., Shur, A.: Subword complexity and power avoidance. Theoret. Comput.
Sci. 792, 96–116 (2019)

20. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Comb.
22, 263–275 (2001)

21. Vuillon, L.: Balanced words. Bull. Belgian Math. Soc. 10, 787–805 (2003)

http://hdl.handle.net/10012/15845
https://doi.org/10.1007/978-3-030-28796-2_6
https://doi.org/10.1007/978-3-030-28796-2_6
https://doi.org/10.1007/s00605-014-0721-4
https://doi.org/10.1007/PL00013299
https://doi.org/10.23638/DMTCS-22-1-6
https://doi.org/10.23638/DMTCS-22-1-6
https://doi.org/10.23638/DMTCS-22-1-20

Completely Reachable Automata,
Primitive Groups and the State

Complexity of the Set of Synchronizing
Words

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Universitätsring 15,
54296 Trier, Germany

hoffmanns@informatik.uni-trier.de

Abstract. We give a new characterization of primitive permutation
groups tied to the notion of completely reachable automata. Also, we
introduce sync-maximal permutation groups tied to the state complex-
ity of the set of synchronizing words of certain associated automata and
show that they are contained between the 2-homogeneous and the prim-
itive groups. Lastly, we define k-reachable groups in analogy with syn-
chronizing groups and motivated by our characterization of primitive
permutation groups. But the results show that a k-reachable permuta-
tion group of degree n with 6 ď k ď n−6 is either the alternating or the
symmetric group.

Keywords: Finite automata · Synchronization · Completely reachable
automata · Primitive permutation groups · State complexity

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e.,
a word which leads to some definite state, regardless of the starting state. This
notion has a wide range of applications, from software testing, circuit synthesis,
communication engineering and the like, see [20,23]. The famous Černý con-
jecture [8] states that a minimal length synchronizing word has length at most
(n− 1)2 for an n state automaton. We refer to the mentioned survey articles for
details [20,23]. An automaton is completely reachable, if for each subset of states
we can find a word which maps the whole state set onto this subset. This is a
generalization of synchronizability, as a synchronizing word maps the whole state
set to a singleton set. The class of completely reachable automata was formally
introduced in [5], but already in [9,15] such automata appear in the results.
The time complexity of deciding if a given automaton is completely reachable is
unknown. A sufficient and necessary criterion for complete reachability of a given
automaton in terms of graphs and their connectivity is known [6], but it is not
known if these graphs could be constructed in polynomial time. A special case
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 305–317, 2021.
https://doi.org/10.1007/978-3-030-68195-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_24&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-030-68195-1_24

306 S. Hoffmann

of the general graph construction, which gives a sufficient criterion for complete
reachability [5], is known to be constructible in polynomial time [10].

The size of a minimal automaton accepting a given regular language is called
the state complexity of that language. The set of synchronizing words of a
given automaton is a regular ideal language whose state complexity is at most
exponential in the size of the original automaton [15,16]. The Černý family of
automata [8,23], the first given family yielding the lower bound (n− 1)2 for the
length of synchronizing words, is completely reachable and the corresponding
sets of synchronizing words have maximal state complexity [15,16].

The notion of primitive permutation groups could be traced back to work
by Galois [17] on the solubility of equations by radicals. Nowadays, it is a core
notion of the theory of permutation groups [7].

Outline and Contribution: In Sect. 2, we give definitions and state known
results. Then, in Sect. 3, for completely reachable automata, we state a sufficient
and necessary condition for the set of synchronizing words to have maximal state
complexity, which yields a polynomial time decision procedure.

In Sect. 4, we introduce a new characterization of primitive permutation
groups, motivated by work on synchronizing and completely reachable automata
and on detecting properties of permutation groups by functions [3–5,9]. We relate
this to the notion of the state complexity of the set of synchronizing words. Beside
the Černý family [8,23], the properties that a minimal length synchronizing word
has quadratic length and that the set of synchronizing words has maximal state
complexity are shared by a wealth of different slowly synchronizing automata [1,
2,15,16]. Motivated by this, we introduce the class of sync-maximal permutation
groups and show that they fit between the 2-homogeneous and the primitive
groups.

Lastly, in Sect. 5 we introduce k-reachable groups motivated by our investi-
gations and the definition of synchronizing groups [4]. We show that for almost
all k, only the symmetric and alternating groups are k-reachable.

2 Preliminaries and Definitions

General Notions: Let Σ = {a1, . . . , ak} be a finite set of symbols, called an
alphabet. By Σ∗, we denote the set of all finite sequences, i.e., of all words or
strings. The empty word, i.e., the finite sequence of length zero, is denoted by ε.
We set Σ+ = Σ∗ \ {ε}. For a given word w P Σ∗, we denote by |w| its length.
The subsets of Σ∗ are called languages.

For n ą 0, we set [n] = {0, . . . , n − 1} and [0] = H. For a set X, we denote
the power set of X by P(X), i.e, the set of all subsets of X.

Any function f : X → Y induces a function f̂ : P(X) → P(Y) by setting
f̂(Z) – {f(z) | z P Z}. Here, we will denote this extension also by f .

Let k ě 1. A k-subset Y Ď X is a finite set of cardinality k. A 1-set is also
called a singleton set. For functions f : A → B and g : B → C, the functional

Completely Reachable Automata, Primitive Groups and State Complexity 307

composition gf : A → C is the function (gf)(x) = g(f(x)), i.e., the function on
the right is applied first1.

Automata-Theoretic Notions: A finite, deterministic and complete automa-
ton will be denoted by A = (Σ,Q, δ, s0, F) with δ : Q × Σ → Q the state tran-
sition function, Q a finite set of states, s0 P Q the start state and F Ď Q the set
of final states. The properties of being deterministic and complete are implied
by the definition of δ as a total function.

The transition function δ : Q × Σ → Q could be extended to a transition
function on words δ∗ : Q × Σ∗ → Q by setting δ∗(s, ε) – s and δ∗(s, wa) –
δ(δ∗(s, w), a) for s P Q, a P Σ and w P Σ∗. In the remainder we drop the
distinction between both functions and will also denote this extension by δ. For
S Ď Q and w P Σ∗, we write δ(S,w) = {δ(s, w) | s P S} and δ−1(S,w) = {q P
Q | δ(q, w) P S}.

The language accepted, or recognized, by A = (Σ,S, δ, s0, F) is L(A) = {w P
Σ∗ | δ(s0, w) P F}. A language L Ď Σ∗ is called regular if L = L(A) for some
finite automaton A .

For a language L Ď Σ∗ and u, v P Σ∗ we define the Nerode right-congruence
with respect to L by u ≡L v if and only if ∀x P Σ : ux P L ↔ vx P L.
The equivalence class for some w P Σ∗ is denoted by [w]≡L – {x P Σ∗ |
x ≡L w}. A language is regular if and only if the above right-congruence has
finite index, and it could be used to define the minimal deterministic automaton
AL = (Σ,Q, δ, [ε]≡L

, F) with Q – {[w]≡L
| w P Σ∗}, δ([w]≡L

, a) – [wa]≡L
for

a P Σ, w P Σ∗ and F – {[w]≡L
| w P L}. It is indeed the smallest automaton

accepting L in terms of states, and we will refer to this construction as the
minimal automaton [11] of L. The state complexity of a regular language is
defined as the number of Nerode right-congruence classes. We will denote this
number by sc(L).

Let A = (Σ,Q, δ, s0, F) be an automaton. A state q P Q is reachable, if
q = δ(s0, u) for some u P Σ∗. We also say that a state q is reachable from a state
q′ if q = δ(q′, u) for some u P Σ∗. Two states q, q′ are distinguishable, if there
exists u P Σ∗ such that either δ(q, u) P F and δ(q′, u) /P F or δ(q, u) /P F and
δ(q′, u) P F . An automaton for a regular language is isomorphic to the minimal
automaton if and only if all states are reachable and distinguishable [11].

A semi-automaton A = (Σ,Q, δ) is like an ordinary automaton, but without
a designated start state and without a set of final states. Sometimes, we will also
call a semi-automaton simply an automaton if the context makes it clear what
is meant. Also, definitions without explicit reference to a start state and a set of
final states are also valid for semi-automata.

Let A = (Σ,Q, δ) be a finite semi-automaton. A word w P Σ∗ is called
synchronizing, if δ(q, w) = δ(q′, w) for all q, q′ P Q, or equivalently |δ(Q,w)| = 1.
Set Syn(A) = {w P Σ∗ | |δ(Q,w)| = 1}.

1 In group theory, usually the other convention is adopted, but we stick to the con-
vention most often seen in formal language theory.

308 S. Hoffmann

The power automaton (for synchronizing words) associated to A is PA =
(Σ,P(Q), δ,Q, F) with start state Q, final states F = {{q} | q P Q} and the
transition function of PA is the transition function of A , but applied to subsets
of states. Then, as observed in [22], the automaton PA accepts the set of synchro-
nizing words, i.e., L(PA) = Syn(A). As for {q} P F , we also have δ({q}, x) P F
for each x P Σ∗, the states in F could all be merged to a single state to get an
accepting automaton for Syn(A). Also, the empty set is not reachable from Q.
Hence sc(Syn(A)) ď 2|Q| − |Q| and this bound is sharp [15,16].

We call A completely reachable, if for any non-empty S Ď Q, there exists
a word w P Σ∗ with δ(Q,w) = S, i.e., in the power automaton, every state is
reachable from the start state. When we say a subset of states in A is reachable,
we mean reachability in PA . The state complexity of Syn(A) is maximal, i.e.,
sc(Syn(A)) = 2|Q| − |Q|, if and only if all subsets S Ď Q with |S| ě 2 are
reachable and at least one singleton subset of Q, and all these states are distin-
guishable in PA . For strongly connected automata, i.e., those for which all states
are reachable from each other, the state complexity of Syn(A) is maximal iff A
is completely reachable and all S Ď Q with |S| ě 2 are distinguishable in PA .

Transformations and Permutation Groups: Let n ě 0. Denote by Sn the
symmetric group on [n], i.e., the group of all permutations of [n]. A permutation
group (of degree n) is a subgroup of Sn. For n ą 1, the alternating group is the
unique subgroup of size n!/2 in Sn, see [7]. The orbit of an element i P [n] for
a permutation group G is the set {g(i) | g P G}. A permutation group G over
[n] is primitive, if it preserves no non-trivial equivalence relation2 on [n], i.e.,
for no non-trivial equivalence relation ∼Ď [n] × [n] we have p ∼ q if and only
if g(p) ∼ g(q) for all g P G and p, q P [n]. A permutation group G over [n] is
called k -homogeneous for some k ě 1, if for any two k-subsets S, T of Q, there
exists g P G such that g(S) = T . A transitive permutation group is the same
as a 1-homogeneous permutation group. Note that here, all permutation groups
with n ď 2 are primitive, and for n ą 2 every primitive group is transitive.
Because of this, some authors exclude the trivial group for n = 2 from being
primitive. A permutation group G over [n] is called k-transitive for some k ě 1,
if for any two tuples (p1, . . . , pk), (q1, . . . , qk) P [n]k, there exists g P G such that
(g(p1), . . . , g(pk)) = (q1, . . . , gk).

By Tn, we denote the set of all maps on [n]. A submonoid of Tn for some n
is called a transformation monoid. If the set U is a submonoid (or a subgroup)
of Tn (or Sn) we denote this by U ď Tn (or U ď Sn). For a set A Ď Tn (or
A Ď Sn), we denote by 〈A〉 the submonoid (or the subgroup) generated by A.
Let A = (Σ,Q, δ) be an semi-automaton and for w P Σ∗ define δw : Q → Q by
δw(q) = δ(q, w) for all q P Q. Then, we can associate with A the transformation
monoid of the automaton TA = {δw | w P Σ∗}, where we can identify Q with
[n] for n = |Q|. We have TA = 〈{δx | x P Σ}〉. The rank of a map f : [n] → [n]
is the cardinality of its image. For a given semi-automaton A = (Σ,Q, δ), the
rank of a word w P Σ∗ is the rank of δw.
2 The trivial equivalence relations on [n] are [n] × [n] and {(x, x) | x P [n]}.

Completely Reachable Automata, Primitive Groups and State Complexity 309

Known Results: The next result appears in [3] and despite it was never clearly
spelled out by Rystsov himself, it is implicitly present in arguments used in [19].

Theorem 2.1 (Rystsov [3,19]). A permutation group G on [n] is primitive if
and only if, for any map f : [n] → [n] of rank n− 1, the transformation monoid
〈G Y {f}〉 contains a constant map.

In [5] a sufficient criterion for complete reachability was given. It is based on
the following graph construction associated to a semi-automaton.

Definition 2.2 (Bondar & Volkov [5]). Let A = (Σ,Q, δ). Then, we define
the graph Γ1(A) = (Q,E) with vertex set Q and edge set E = {(p, q) | ∃w P Σ∗ :
p /P δ(Q,w), |δ−1(q, w)| = 2, w has rank |Q| − 1}. For transformation monoids
M ď Tn, a similar definition Γ1(M) applies.

The construction was extended in [6] to give a sufficient and necessary crite-
rion. The graph Γ1(A) could be computed in polynomial time [10].

Theorem 2.3 (Bondar & Volkov [5]). Let A = (Σ,Q, δ). If Γ1(A) = (Q,E)
is strongly connected, then A is completely reachable.

3 General Results on the State Complexity of Syn(A)

The first result of this section will be needed later when we investigate the
properties of the sync-maximal groups introduced in Sect. 4.2. But it could
also be used for a polynomial time decision procedure to decide if, for a given
completely reachable automaton, the set of synchronizing words has maximal
state complexity.

Lemma 3.1. Let A be completely reachable with n states. Then, sc(Syn(A)) =
2n − n if and only if all 2-sets of states are pairwise distinguishable in PA .

Hence, we only need to check for all pair states {p, q} with p
= q in the power
automaton if they are all distinguishable to each other. This could be done in
polynomial time.

Corollary 3.2. Let A = (Σ,Q, δ) be a completely reachable semi-automaton
with n states. Then, we can decide in polynomial time if sc(Syn(A)) = 2n − n.

Next, we state a simple observation.

Lemma 3.3. Let A = (Σ,Q, δ) be a strongly connected semi-automaton. If
Syn(A) has maximal state complexity, then A is completely reachable.

310 S. Hoffmann

4 Permutation Groups and State Complexity of Syn(A)

In Sect. 4.1, we state characterizations of the k-homogeneous and of primitive
permutation groups by inspection of the resulting transformation monoid when
non-permutations are added. This is in the spirit of “detecting properties of
(permutation groups) with functions” as presented in [3]. In Sect. 4.2, we intro-
duce the sync-max permutation groups, defined by stipulating that the resulting
semi-automaton, given by the generators of the permutation group and a non-
permutation, is synchronizing and its set of synchronizing words has maximal
state complexity. This definition is independent of the choice of generators for the
group and we will show that the resulting class of groups is contained between
the 2-homogeneous and the primitive groups.

4.1 Primitive and k-Homogeneous Permutation Groups

First, as a warm-up, we state two equivalent conditions to k-homogeneity. They
are not hard to see, but seem to be unnoticed or at least never stated in the
literature before.

Lemma 4.1. Let G ď Sn. The following conditions are equivalent:

1. G is k-homogeneous,
2. for any map of rank n−k, in 〈GY{f}〉 every subset of size n−k is reachable,
3. there exists a map of rank n − k such that in 〈G Y {f}〉 every subset of size

n − k is reachable.

Remark 1. As a group is k-homogeneous if and only if it is (n−k)-homogeneous,
we could also add that k-homogeneity is equivalent to the property that adding
any (or some) function whose image contains precisely k elements gives a trans-
formation monoid in which every k-subset is reachable.

An automaton is synchronizing precisely if its transformation monoid con-
tains a constant map. Hence, the next result is a strengthening of Theorem 2.1.

Theorem 4.2. A finite permutation group G ď Sn with n ě 3 is primitive if and
only if, for any transformation f : [n] → [n] of rank n− 1, in the transformation
semigroup 〈G Y {f}〉 we find, for each non-empty S Ď [n], an element g P
〈G Y {f}〉 such that g([n]) = S.

Proof. Suppose G is a permutation group on [n] that is not primitive. Then,
n ě 3 and by Theorem 2.1, for some f : [n] → [n] of rank n − 1 the group
〈G Y {f}〉 does not contain a constant map. So, no element in 〈G Y {f}〉 can
map [n] to a singleton subset of [n].

Conversely, let G be a primitive permutation group on Ω. Take any transfor-
mation monoid M generated by G and a transformation of rank n−1. If (p, q) is
an edge of the graph Γ1(M), then for each g P G, the pair (g(p), g(q)) also con-
stitutes an edge of Γ1(M). Since G is transitive, we see that every element in [n]

Completely Reachable Automata, Primitive Groups and State Complexity 311

has an outgoing edge in Γ1(M). This clearly implies that Γ1(M) has a directed
cycle, and by the definition of Γ1(M) this cycle is not a loop. Assume Γ1(M) is
not strongly connected. The partition of Γ1(M) into strongly connected compo-
nents induces a partition π of [n] which is nontrivial, since Γ1(M) has a directed
cycle which is not a loop. As G preserves the edges of Γ1(M), if we have a path
between any two vertices, we also have a path between their images. Hence G
respects π, which is not possible as G is primitive by assumption. So Γ1(M) must
be strongly connected. Then M is completely reachable by Theorem 2.3. [\
Remark 2. For finite permutation groups, Theorem 2.1, Theorem 2.3, Higman’s
orbital graph characterization of primitivity and the fact that, for finite orbital
graphs, connectedness implies strongly connectedness (please see [7] for these
notions) could be used to give another proof of Theorem 4.2.

Remark 3. Theorem 4.2 could actually be strengthened3 by assuming f : [n] →
[n] to be idempotent. For let G ď Sn be primitive and suppose the statement is
valid for idempotent transformations only. Then, let f : [n] → [n] be any trans-
formation. Assume f(a) = f(b) with a, b P [n]. By Lemma 4.1, G is transitive.
Hence, there exists g P G such that a /P g(f([n])) and gf permutes [n] \ {a}.
Then, some power of gf acts as the identity on [n] \ {a}, i.e., is idempotent.

Because our main motivation comes from the theory of automata, let us state
a variant of Theorem 4.2 formulated in terms of automata.

Corollary 4.3. Let n ě 0. Suppose G = 〈g1, . . . , gk〉 ď Sn. Then G is primitive
if and only if for every transformation f : [n] → [n] of rank n − 1, the semi-
automaton A = (Σ,Q, δ) with4 Σ = {g1, . . . , gk, f}, Q = [n] and δ(i, g) = g(i)
for i P Q and g P Σ is completely reachable.

As a last consideration in this subsection, and in view of Theorem 4.2, let
us derive a sufficient condition for “almost complete” reachability of all subsets
of size strictly smaller than n − 1 when adding any function of rank n − 2. By
Lemma 4.1, any such condition must imply 2-homogeneity.

Proposition 4.4. Let G ď Sn and n ě 3. Suppose the following holds true:

For any 2-subset {a, b} Ď [n] and any A Ď [n] with 1 ď |A| ď n − 2 and
c P [n] \ {a, b} we find g P G such that {c} Ď g(A) Ď [n] \ {a, b}.

Then, for any function f : [n] → [n] of rank n−2, in 〈GY{f}〉 every non-empty
subset of size at most n − 2 is reachable. In particular, by Lemma 4.1, G is
2-homogenous.

3 I am thankful to an anonymous referee for this observation.
4 The elements of Σ are meant to be abstract symbols.

312 S. Hoffmann

4.2 Sync-Maximal Permutation Groups

Here, we introduce the sync-maximal permutation groups. For their definition,
we associate to a given group and a non-permutation a semi-automaton whose
letters are generators of the group and the non-permutation. This definition is
actually independent of the choice of generators of the group. But before giving
the definition of sync-maximal groups, let us first state a result linking the notion
of complete reachability to the state complexity of the set of synchronizing words.

Proposition 4.5. Let G = 〈g1, . . . , gk〉 ď Sn be a permutation group and
f : [n] → [n] be a non-permutation. Set Σ = {g1, . . . , gk, f} and A = (Σ, [n], δ)
with δ(m, g) = g(m) for m P [n] and g P Σ. If n ą 2 and sc(Syn(A)) = 2n − n,
then G is transitive and A completely reachable.

Proof. Suppose n ą 2. As sc(Syn(A)) = 2n − n, in PA sets of size n − 1 are
reachable5. Hence, f must have rank n − 1. Then, by Lemma 4.1, the group G
is transitive, which implies the semi-automaton A is strongly connected. So, by
Lemma 3.3, the semi-automaton is completely reachable. [\
Remark 4. For n = 2, if G only contains the identity transformation, then adding
any non-permutation gives an automaton such that the set of synchronizing
words has state complexity two, but it is not completely reachable nor is G
transitive. Also, note that the assumption sc(Syn(A)) = 2n − n implies that f
must have rank n − 1, for otherwise sets of size n − 1 are not reachable.

Definition 4.6. A permutation group G = 〈g1, . . . , gk〉 ď Sn is called sync-
maximal, if for any map f : [n] → [n] of rank n − 1, for the automaton A =
(Σ, [n], δ) with Σ = {g1, . . . , gk, f} and δ(m, g) = g(m) for m P [n] and g P Σ,
we have sc(Syn(A)) = 2n − n,

As written, the definition involves a specific set of generators for G. But the
resulting transformation monoids are equal for different generators and we can
write one set of generators in terms of another. So reachability of subsets and
distinguishability of subsets is preserved by a change of generators. Hence, the
definition is actually independent of the specific choice of generators for G. This
might be different if we are concerned with the length of shortest words to reach
certain subsets, but that is not part of the definition.

Proposition 4.7. Every sync-maximal permutation group is primitive.

Remark 5. By case analysis, note that for n ď 2 every group is sync-maximal.
But also for n ď 2, by our definition of primitivity, every permutation group is
primitive. See the explanations in Sect. 2.

5 This argument only works for n ą 2. If n = 2, as singletons sets are not distinguish-
able, if the state complexity is maximal, not all singleton sets need to be reachable
from Q. Also, see Remark 4.

Completely Reachable Automata, Primitive Groups and State Complexity 313

Next, we relate the condition that the set of synchronizing words has maximal
state complexity to the notion of 2-homogeneity. However, as shown in Exam-
ple 1, we do not get a characterization of 2-homogeneity similar to Theorem 4.2
for primitivity.

Proposition 4.8. If G ď Sn is 2-homogeneous, then G is sync-maximal.

The next example shows that the converse of Proposition 4.8 does not hold.

Example 1. Let g : [5] → [5] be given by g(i) = i + 1 for i P {0, . . . , 3} and
g(4) = 0. Set G = 〈{g}〉. Then, as it is a cycle of prime length, G is primitive. So,
by Theorem 4.2, for any f : [n] → [n] of rank n−1 the transformation semigroup
〈G Y {f}〉 is completely reachable. Also, we show sc(Syn(A)) = 2n − n. But
G is not 2-homogeneous. We have the following two orbits on the 2-sets: A =
{{1, 2}, {2, 3}, {3, 4}, {4, 0}, {0, 1}}, B = {{0, 2}, {1, 3}, {2, 4}, {3, 0}, {4, 1}}. Let
f : [n] → [n] be any map of rank n − 1. Without loss of generality, we can
assume f(0) = f(1). Then, two distinct 2-sets are distinguishable, if one could
be mapped to {0, 1}, but not the other, as a final application of f gives that
one is mapped to a singleton, but not the other. First, note that all 2-sets in
A are distinguishable, as for each {x, y} P A we find a unique 0 ď k ă |A|
such that gk({z, v}) = {0, 1} if and only if {z, v} = {x, y} for each {z, v} P A,
as g permutes A. If we have any {x, y} P B such that f({x, y}) P A, then
all sets in B are distinguishable. For if {z, u} P B there exists a unique gk

with 0 ď k ă |B|, gk({z, u}) = {x, y} and gk({z′, u′})
= {x, y} for each other
{z′, u′} P B \ {{z, u}}. As {0, 1} /P B and f is injective on {1, 2, 3, 4} and on
{0, 2, 3, 4}, f is injective on B. Hence f(gk({z′, u′})
= f(gk({z, u})) for the
previously chosen {z, u} P B and {z′, u′} P B \ {{z, u}}. Now, choose gl such
that gl(f(gk({z, u}))) = {0, 1}. In any case, i.e., whether f(gk({z′, u′})) is in B or
in A, we have gl(f(gk({z′, u′})))
= {0, 1}. So, all 2-sets in A are distinguishable
and all 2-sets in B. That a 2-set from A is distinguishable from any 2-set in
B is clear, as we can map the 2-set from A to {0, 1} by a power of g, and the
one from B would not be mapped to {0, 1}. Lastly, we show that we must have
some {x, y} P B with f({x, y}) P A, which gives the claim. Consider the sets
{0, 2}, {0, 3}, {1, 4} and {1, 3} from B and suppose their images are all contained
in B, i.e., {{f(0), f(2)}, {f(0), f(3)}, {f(0), f(4)}} Ď B. But in B at most two
sets share an element, hence |{f(2), f(3), f(4)}| ď 2, which is not possible as f
has rank n − 1 and we already have f(0) = f(1). So, some image of these three
sets must be in A. [\

5 k-Reachable Permutation Groups

A permutation group G ď Sn is called synchronizing, if for any non-permutation
the transformation monoid 〈G Y {f}〉 contains a constant map. This notion was
introduced in [4]. For further information on synchronizing groups and its rela-
tion to the Černý conjecture, see the survey [3]. In [3], the question was asked to
detect properties of permutation groups by functions. Theorem 4.2 and Theo-
rem 2.1 are in this vain. Note that every synchronizing group is primitive [4], but

314 S. Hoffmann

not conversely [18]. By Theorem 4.2, primitive groups have the property that if
we add any function of rank n − 1 every non-empty subset is reachable. Moti-
vated by this, we introduce k-reachable groups, which generalize the condition
of complete reachability mentioned in Theorem 4.2.

Definition 5.1. A permutation group over the finite set [n] with n ą 1 is called
k-reachable, if for any map f : [n] → [n] of rank n − k all subsets of cardinality

n − k, n − 2k, . . . , n − (�n/k� − 1) · k

are reachable, i.e., we have some transformation in the transformation monoid
generated by G and f which maps [n] to any such set.

By Theorem 4.2, the 1-reachable group are precisely the primitive groups.
Also note that (n − 1)-reachable is the same as transitivity.

Proposition 5.2. A k-reachable permutation group is k-homogeneous.

Proof. This is implied by Lemma 4.1 and the definition of k-reachability. [\
The reverse implication does not hold in the previous proposition. For exam-

ple, we find 1-homogeneous, i.e., transitive groups, which are not 1-reachable,
i.e., primitive by Theorem 4.2. By a result of Livingstone and Wagner [12,14], for
5 ď k ď n/2 a k-homogeneous permutation group of degree n is k-transitive, and
for k ď n/2 a k-homogeneous permutation group is also (k − 1)-homogeneous.
As 2-homogeneity implies synchronizability [3], combined with the fact that k-
homogeneity is equivalent with (n−k)-homogeneity, a k-reachable group for any
1 ă k ă n − 1 is synchronizable and we get the next statement together with
our previous results.

Proposition 5.3. A k-reachable permutation group of degree n for 1 ă k ă n−1
is synchronizable. For k = 1 we have precisely the primitive permutation groups,
and for k = n − 1 precisely the permutation groups which are transitive in their
action.

For k P {2, 3, 4} the non-k-transitive but k-homogeneous groups where deter-
mined by Kantor [13]. A list of all possible k-transitive groups of finite degree
for k ě 2 could be found in [7]. For k ě 6 the only cases are the symmetric
group or the alternating group. So, if we want to formulate a stronger version
of Theorem 4.2 by assuming k-reachability for all 1 ď k ď n, for n ě 6 only the
symmetric and the alternating group fulfill this condition.

Proposition 5.4. If a permutation group of degree n ě 6 is k-reachable for all
1 ď k ď n − 1, then it is either the symmetric group or the alternating group.

Or to be more specific.

Proposition 5.5. If a permutation group of degree n is k-reachable for 6 ď k ď
n − 6, then it is either the symmetric or the alternating group.

Note that the classification of the k-transitive groups of finite degree for k ą 1
cited above relies on the classification of the finite simple groups, see [21] for an
account of this important and highly non-trivial result.

Completely Reachable Automata, Primitive Groups and State Complexity 315

6 Conclusion

We have given a new characterization for primitive permutation groups. In an
analogous way, with the property that the set of synchronizing words has maxi-
mal state complexity, we have introduced the class of sync-maximal permutation
groups. We have shown that the sync-maximal permutation groups are primitive
and that 2-homogeneous groups are sync-maximal. Example 1 shows that not
every sync-maximal permutation group is 2-homogeneous. However, we do not
know if the converse of Proposition 4.7 is true, i.e., does there exist a primitive
permutation group that is not sync-maximal? More results on the structure of
the sync-maximal permutation groups would be highly interesting and might be
the goal of future investigations. Also, for future investigations, their relation
to the synchronizing groups, as introduced in [4], is of interest, as synchroniz-
ing groups lie strictly between the 2-homogenous and primitive groups [3,4,18].
More specifically, let us mention that in [3] a whole hierarchy of permutation
groups was surveyed. The hierarchy is the following, stated without formally
introducing every term:

2-transitive Ĺ 2-homogeneous Ĺ QI Ď spreading Ĺ separating
Ĺ synchronizing Ĺ primitive Ĺ transitive.

Note that it is unknown if the inclusion between the QI-groups and the spreading
groups is proper. The question of fitting the sync-maximal groups more precisely
into this hierarchy arises naturally. Lastly, we introduced k-reachable permuta-
tion groups. But for most k these do not give any groups beside the symmetric
and alternating groups. A more close investigation and characterization of these
groups for k P {2, 3, 4} is still open.

Acknowledgement. I thank my supervisor, Prof. Dr. Henning Fernau, for giving
valuable feedback, discussions and research suggestions concerning the content of this
article. I also thank Prof. Dr. Mikhail V. Volkov for introducing our working group to
the idea of completely reachable automata at a joint workshop in Trier in the spring
of 2019, from which the present work draws inspiration. Lastly, the argument in the
proof of Theorem 4.2, which closely resembles a proof from [4], was communicated
to me by an anonymous referee of a considerable premature version of this work. I
thereby sincerely thank the referee for this and other remarks. I also thank another
anonymous referee for Remark 3 and other suggestions related to the content of this
work. In case a referee is wondering why an example from the submitted version is
missing, it contained a subtle error I was unable to fix in due time for the final version.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 7

2. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013).
https://doi.org/10.1007/s10958-013-1392-8

https://doi.org/10.1007/978-3-642-15155-2_7
https://doi.org/10.1007/s10958-013-1392-8

316 S. Hoffmann

3. Araújo, J., Cameron, P.J., Steinberg, B.: Between primitive and 2-transitive: syn-
chronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017). http://
www.ems-ph.org/doi/10.4171/EMSS/4-2-1

4. Arnold, F., Steinberg, B.: Synchronizing groups and automata. Theor. Comput.
Sci. 359(1–3), 101–110 (2006). https://doi.org/10.1016/j.tcs.2006.02.003

5. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C.,
Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1–17. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41114-9 1

6. Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata.
In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 145–155. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 12

7. Cameron, P.J.: Permutation Groups. London Mathematical Society Student
Texts. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/
CBO9780511623677

8. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

9. Don, H.: The Černý conjecture and 1-contracting automata. Electron. J. Comb.
23(3), P3.12 (2016). http://www.combinatorics.org/ojs/index.php/eljc/article/
view/v23i3p12

10. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable
automata with 1-deficient words. J. Automata Lang. Comb. 24(2–4), 321–342
(2019). https://doi.org/10.25596/jalc-2019-321

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

12. Huppert, B., Blackburn, S.: Finite Groups III. Grundlehren der mathematischen
Wissenschaften, vol. 243. Springer, Heidelberg (1982). https://doi.org/10.1007/
978-3-642-67997-1

13. Kantor, W.M.: k-homogeneous groups. Math. Z. 124(4), 261–265 (1972). https://
doi.org/10.1007/BF01113919

14. Livingstone, D., Wagner, A.: Transitivity of finite permutation groups on unordered
sets. Math. Z. 90(5), 393–403 (1965). https://doi.org/10.1007/BF01112361

15. Maslennikova, M.I.: Reset complexity of ideal languages. CoRR abs/1404.2816
(2014). http://arxiv.org/abs/1404.2816

16. Maslennikova, M.I.: Reset complexity of ideal languages over a binary alphabet.
Int. J. Found. Comput. Sci. 30(6–7), 1177–1196 (2019). https://doi.org/10.1142/
S0129054119400343

17. Neumann, P.M.: The Mathematical Writings of Évariste Galois. European Math-
ematical Society, Heritage of European Mathematics (2011). Doi: https://doi.org/
10.4171/104

18. Neumann, P.M.: Primitive permutation groups and their section-regular partitions.
Michigan Math. J. 58, 309–322 (2009)

19. Rystsov, I.K.: Estimation of the length of reset words for automata with simple
idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000). https://doi.org/10.1007/
BF02732984

20. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

21. Solomon, R.: A brief history of the classification of the finite simple groups. Bull.
Am. Math. Soc. 38(3), 315–352 (2001)

http://www.ems-ph.org/doi/10.4171/EMSS/4-2-1
http://www.ems-ph.org/doi/10.4171/EMSS/4-2-1
https://doi.org/10.1016/j.tcs.2006.02.003
https://doi.org/10.1007/978-3-319-41114-9_1
https://doi.org/10.1007/978-3-319-98654-8_12
https://doi.org/10.1017/CBO9780511623677
https://doi.org/10.1017/CBO9780511623677
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i3p12
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i3p12
https://doi.org/10.25596/jalc-2019-321
https://doi.org/10.1007/978-3-642-67997-1
https://doi.org/10.1007/978-3-642-67997-1
https://doi.org/10.1007/BF01113919
https://doi.org/10.1007/BF01113919
https://doi.org/10.1007/BF01112361
http://arxiv.org/abs/1404.2816
https://doi.org/10.1142/S0129054119400343
https://doi.org/10.1142/S0129054119400343
https://doi.org/10.4171/104
https://doi.org/10.4171/104
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2

Completely Reachable Automata, Primitive Groups and State Complexity 317

22. Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Infor-
mationsverarbeitung und Kybernetik (later J. Inf. Process. Cybern.) 2(4), 257–259
(1966)

23. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1007/978-3-540-88282-4_4

State Complexity of the Set
of Synchronizing Words for Circular
Automata and Automata over Binary

Alphabets

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Universitätsring 15,
54296 Trier, Germany

hoffmanns@informatik.uni-trier.de

Abstract. Most slowly synchronizing automata over binary alphabets
are circular, i.e., containing a letter permuting the states in a single cycle,
and their set of synchronizing words has maximal state complexity, which
also implies complete reachability. Here, we take a closer look at gener-
alized circular and completely reachable automata. We derive that over
a binary alphabet every completely reachable automaton must be circu-
lar, a consequence of a structural result stating that completely reachable
automata over strictly less letters than states always contain permuta-
tional letters. We state sufficient conditions for the state complexity of
the set of synchronizing words of a generalized circular automaton to be
maximal. We apply our main criteria to the family Kn of automata that
was previously only conjectured to have this property.

Keywords: Finite automata · Synchronization · Completely reachable
automata · State complexity · Set of synchronizing words

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e.,
a word which leads to some definite state, regardless of the starting state. This
notion has a wide range of applications, from software testing, circuit synthesis,
communication engineering and the like, see [15,17]. The famous Černý conjec-
ture [5] states that a minimal synchronizing word has length at most (n − 1)2

for an n state automaton. We refer to the mentioned survey articles [15,17] for
details. An automaton is completely reachable, if for each subset of states we
can find a word which maps the whole state set onto this subset. This is a gen-
eralization of synchronizability, as a synchronizing word maps the whole state
set to a singleton set. The class of completely reachable automata was formally
introduced in [3], but already in [6,12] such automata appear in the results.
The time complexity of deciding if a given automaton is completely reachable is
unknown. A sufficient and necessary criterion for complete reachability of a given
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 318–330, 2021.
https://doi.org/10.1007/978-3-030-68195-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_25&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-030-68195-1_25

The Set of Synchronizing Words for Circular and Binary Alphabets 319

automaton in terms of graphs and their connectivity is known [4], but it is not
known if these graphs could be constructed in polynomial time. A special case
of the general graph construction, which gives a sufficient criterion for complete
reachability [3], is known to be constructible in polynomial time [9]. The size
of a minimal automaton accepting a given regular language is called the state
complexity of that language. The set of synchronizing words of a given automa-
ton is a regular ideal language whose state complexity is at most exponential in
the size of the original automaton [12,13]. The Černý family of automata [5], a
family of automata yielding the lower bound (n − 1)2 for the length of shortest
synchronizing words, is completely reachable, but also the set of synchronizing
words has maximal state complexity [12,13]. These properties are shared by
many families of automata that are also slowly synchronizing [1,2,12,13], i.e.,
those for which a shortest reset word is close to the Černý bound.

Outline and Contribution: In Sect. 2 we give definitions and state known
results. Then, in Sect. 3, we give a general criterion for completely reachable
automata to deduce that the set of synchronizing words has maximal state com-
plexity. We also state a structural result by which we can deduce that in com-
pletely reachable automata, where the number of letters is strictly less than the
number of states, we must have permutational letters generating a non-trivial
permutation group. In Sect. 4, we state sufficient conditions for generalized cir-
cular automata to deduce that their set of synchronizing words has maximal
state complexity. In Sect. 5, we apply the results from Sect. 3 to deduce that
completely reachable automata over binary alphabets must be circular and must
have a letter mapping precisely two states to a single state. Also, with the results
from Sect. 4, we show that the family Kn, n ą 5 odd, from [13] gives completely
reachable automata such that the set of synchronizing words has maximal state
complexity. This solves an open problem from [13], where this was only conjec-
tured. The Černý family of automata [5,17], the first given family yielding the
lower bound (n− 1)2 for the length of synchronizing words, is completely reach-
able and its set of synchronizing words has maximal state complexity [12,13].
These properties are also shared by a wealth of different slowly synchronizing
automata [1,2,12,13]. Our criteria apply to all the automata mentioned in this
previous work. However, we give an example showing that our stated conditions
are only sufficient, but not necessary.

2 Preliminaries and Definitions

General Notions: Let Σ = {a1, . . . , ak} be a finite set of symbols (also called
letters), called an alphabet. The set Σ∗ denotes the set of all finite sequences,
i.e., of all words or strings. The finite sequence of length zero, or the empty
word, is denoted by ε. We set Σ+ = Σ∗ \ {ε}. For a given word w P Σ∗, we
denote by |w| its length. The subsets of Σ∗ are called languages. For n ą 0 we
set [n] = {0, . . . , n − 1} and [0] = H. If a, b P Z and b �= 0, by a mod b we
denote the unique number 0 ď r ă |b| with a = qb + r for some q P Z. For some

320 S. Hoffmann

set X by P(X) we denote the power set of X, i.e, the set of all subsets of X.
Every function f : X → Y induces a function f̂ : P(X) → P(Y) by setting
f̂(Z) := {f(z) | z P Z}. Here, we will denote this extension also by f . Let k ě 1.
A k-subset Y Ď X is a finite set of cardinality k.

Automata-Theoretic Notions: A finite, deterministic and complete automa-
ton will be denoted by A = (Σ,Q, δ, s0, F) with δ : Q × Σ → Q the state tran-
sition function, Q a finite set of states, s0 P Q the start state and F Ď Q the set
of final states. The properties of being deterministic and complete are implied
by the definition of δ as a total function. The transition function δ : Q×Σ → Q
could be extended to a transition function on words δ∗ : Q × Σ∗ → Q by
setting δ∗(s, ε) := s and δ∗(s, wa) := δ(δ∗(s, w), a) for s P Q, a P Σ and
w P Σ∗. In the remainder we drop the distinction between both functions
and will also denote this extension by δ. For S Ď Q and w P Σ∗, we write
δ(S,w) = {δ(s, w) | s P S} and δ−1(S,w) = {q P Q | δ(q, w) P S}. The language
accepted by A = (Σ,S, δ, s0, F) is L(A) = {w P Σ∗ | δ(s0, w) P F}. A language
L Ď Σ∗ is called regular if L = L(A) for some finite automaton A . For a lan-
guage L Ď Σ∗ and u, v P Σ∗ we define the Nerode right-congruence with respect
to L by u ≡L v if and only if ∀x P Σ : ux P L ↔ vx P L. The equivalence class
for some w P Σ∗ is denoted by [w]≡L := {x P Σ∗ | x ≡L w}. A language is
regular if and only if the above right-congruence has finite index, and it could
be used to define the minimal deterministic automaton AL = (Σ,Q, δ, [ε]≡L

, F)
with Q := {[w]≡L

| w P Σ∗}, δ([w]≡L
, a) := [wa]≡L

for a P Σ, w P Σ∗ and
F := {[w]≡L

| w P L}. It is indeed the smallest automaton accepting L in terms
of the number of states, and we will refer to this construction as the minimal
automaton [11] of L. The state complexity of a regular language is defined as
the number of Nerode right-congruence classes. We will denote this number by
sc(L). Let A = (Σ,Q, δ, s0, F) be an automaton. A state q P Q is reachable,
if q = δ(s0, u) for some u P Σ∗. We also say that a state q is reachable from
a state q′ if q = δ(q′, u) for some u P Σ∗. Two states q, q′ are distinguish-
able, if there exists u P Σ∗ such that either δ(q, u) P F and δ(q′, u) /P F or
δ(q, u) /P F and δ(q′, u) P F . An automaton for a regular language is isomorphic
to the minimal automaton if and only if all states are reachable and distin-
guishable [11]. A semi-automaton A = (Σ,Q, δ) is like an ordinary automa-
ton, but without a distinguished start state and without a set of final states.
Sometimes we will also call a semi-automaton simply an automaton if the con-
text makes it clear what is meant. Also, definitions without explicit reference
to a start state and a set of final states are also valid for semi-automata. Let
A = (Σ,Q, δ) be a finite semi-automaton. A word w P Σ∗ is called synchro-
nizing if δ(q, w) = δ(q′, w) for all q, q′ P Q, or equivalently |δ(Q,w)| = 1. Set
Syn(A) = {w P Σ∗ | |δ(Q,w)| = 1}. The power automaton (for synchronizing
words) associated to A is PA = (Σ,P(Q), δ,Q, F) with start state Q, final states
F = {{q} | q P Q} and the transition function of PA is the transition function of
A , but applied to subsets of states. Then, as observed in [16], the automaton PA

accepts the set of synchronizing words, i.e., L(PA) = Syn(A). As for {q} P F ,

The Set of Synchronizing Words for Circular and Binary Alphabets 321

we also have δ({q}, x) P F for each x P Σ∗, the states in F could all be merged
to a single state to get an accepting automaton for Syn(A). Also, the empty
set is not reachable from Q. Hence sc(Syn(A)) ď 2|Q| − |Q| and this bound is
sharp [12,13]. We call A completely reachable if for any non-empty S Ď Q there
exists a word w P Σ∗ with δ(Q,w) = S, i.e., in the power automaton, every state
is reachable from the start state. When we say a subset of states in A is reach-
able, we mean reachability in PA . The state complexity of Syn(A) is maximal,
i.e., sc(Syn(A)) = 2|Q| − |Q|, if and only if at least one singleton subset of Q
and all subsets S Ď Q with |S| ě 2 are reachable, and all non-singleton subsets
are distinguishable in PA . For strongly connected automata, i.e., those for which
every state is reachable from every other state, is maximal iff A is completely
reachable and all S Ď Q with |S| ě 2 are distinguishable in PA . A permutation
on a finite set Q (which here will always be the set of states of some automaton)
is a bijective function, a subset of permutations closed under concatenation (and
function inversion, but this is implied in the finite case) is called a permutation
group. The orbit of an element from Q under a given permutation group on Q
is the sets of all elements to which this element could be mapped by elements
from the permutation group. A permutation group with a single orbit, i.e., every
element could be mapped to any other, is called transitive. A semi-automaton
A = (Σ,Q, δ) is called circular, if some letter acts as a cyclic permutation on
all states. This family of automata was one of the first inspected with respect
to the Černý-conjecture [14], and the conjecture was finally confirmed for this
family [7,8]. A semi-automaton A = (Σ,Q, δ) is called generalized circular, if
some word acts as a cyclic permutation on all states1. Let A = (Σ,Q, δ) be an
automaton and for w P Σ∗ define δw : Q → Q by δw(q) = δ(q, w) for all q P Q.
Then, we can associate with A the transformation monoid of the automaton
TA = {δw | w P Σ∗}. The rank of a map f : Q → Q on a finite set Q is the
cardinality of its image. For a given automaton, seeing a word as a transforma-
tion of its state set, the rank of the word is the rank of this transformation. A
permutational letter is a letter of full rank, i.e., a letter inducing a permutation
on the states.

Known Results: We will need the following result from [6] to deduce complete
reachability of some automata families we consider.

Proposition 1 (Don [6]). Let A = (Σ,Q, δ) be a finite circular automaton
with n states, where b induces a cyclic permutation of the states. Suppose we
have another letter a P Σ of rank n−1 and choose s, t P Q and 0 ă d ă |Q| such
that δ(Q, a) = Q \ {s}, |δ−1(t, a)| = 2 and δ(s, bd) = t. If d and n are coprime,
then for every non-empty set S Ď Q of size k, there exists a word wS of length
at most n(n − k) such that δ(Q,wS) = S.

1 The circular automata are a proper subfamily of the generalized circular automata,
as shown by A = ({a, b}, [3], δ) with δ(0, a) = 1, δ(1, a) = 0, δ(2, a) = 2 and δ(0, b) =
0, δ(1, b) = 2, δ(2, b) = 1. The word ba cyclically permutes the states.

322 S. Hoffmann

3 General Results on the State Complexity of Syn(A)

Our first result states that for completely reachable automata, to deduce that
the set of synchronizing words has maximal state complexity, we only need to
show distinguishability for those subsets of states with precisely two elements.

Lemma 2 (Hoffmann [10]). Let A = (Σ,Q, δ) be a completely reachable
semi-automaton with n states. Then, sc(Syn(A)) = 2n − n if and only if all
2-sets of states are pairwise distinguishable in PA .

With the next result we can deduce information about the structure of com-
pletely reachable automata when the alphabet, or more precisely only the num-
ber of letters of rank n − 1, is strictly smaller than the number of states. Later,
for completely reachable automata over binary alphabet, we can deduce that
they must be circular and have to contain a letter of rank n − 1. Note that we
formulate it with a weaker condition than full complete reachability, merely only
with reachability of subsets of size n − 1.

Proposition 3. Let A = (Σ,Q, δ) be a semi-automaton with n states, m letters
of rank n − 1 and n ą m. Then, the following conditions are equivalent:

1. every subset of size n − 1 is reachable,
2. there exists at least one letter of rank n − 1 and a subset of letters generating

a non-trivial permutation group such that every state is in the same orbit as
some state not in the image of a rank n − 1 letter. In particular, we have at
most m orbits.

Remark 1. The condition m ă n cannot be omitted in Proposition 3. For exam-
ple, let A = (Σ,Q, δ) with Q = [n] and Σ = {a1, . . . , an, b1, . . . , bn} be such
that for i P {1, . . . , n} we have Q \ {i} = δ(Q, ai) and ai cyclically permutes
Q \ {i}. Furthermore, let bi map some fixed state qi P Q \ {i} to δ(qi, ai) and act
as the identity transformation on the rest. Then, in A , even when only using the
alphabet a1, . . . , an we reach every subset of size n − 1. But with the additional
letters, A is also completely reachable, as the subautomaton given by Q \ {i}
and only the letters ai and bi equals the Černý-automaton, which is completely
reachable [13]. Hence, combining these facts gives complete reachability of A ,
but we have no permutational letters at all.

With this result, we can derive that a completely reachable automaton whose
alphabet is small enough has to contain a non-trivial permutation group as part
of its transformation monoid. Or more specifically, if we only have a single letter
of rank n − 1, this permutation group must be transitive.

Corollary 4. If A = (Σ,Q, δ) is completely reachable with only a single non-
permutational letter and |Q| ą 2, then TA contains a transitive permutation
group as a submonoid.

If we find a transitive permutation group in the transformation monoid of
some given automaton, then this automaton is strongly connected. Hence, let us
state the following observation concerning strongly connected automata.

The Set of Synchronizing Words for Circular and Binary Alphabets 323

Lemma 5 (Hoffmann [10]). Let A = (Σ,Q, δ) be strongly connected. If
Syn(A) has maximal state complexity, then A is completely reachable.

Combining Corollary 4 and Lemma 5 gives the next lemma.

Lemma 6. Let A = (Σ,Q, δ) be completely reachable with only a single non-
permutational letter and |Q| ą 2. Then, if Syn(A) has maximal state complexity,
the semi-automaton is completely reachable.

As circular automata are strongly connected, the next follows by Lemma 5.

Corollary 7. Let A = (Σ,Q, δ) be a circular semi-automaton. If sc(Syn(A)) =
2n − n, then A is completely reachable.

4 Generalized Circular Automata

Here, Theorem 8 and Proposition 10 give sufficient conditions to deduce, for
completely reachable circular automata, that the set of synchronizing words has
maximal state complexity. Both conditions entail all known cases of automata
over a binary alphabets for which the set of synchronizing words has maximal
state complexity [12,13]. However, at the end of this section, we will show that
the stated conditions are not necessary. In Theorem 8, we do not assume the
automaton to be completely reachable, but only to be circular and to have a
letter of rank n − 1 fulfilling a certain condition. If we also suppose complete
reachability, then the theorem gives that the set of synchronizing words has max-
imal state complexity. Also, note that instead of a letter, any word fulfilling the
mentioned condition in Theorem 8 will work to give the conclusion. Most of the
time, we formulate our results for letters, but in all statements the assumptions
could be formulated with words instead, as the notions of distinguishablity do
not depend on the length, but only on the existence of certain words2.

However, we have a slight focus on automata over binary alphabets later on,
and the results of Sect. 5 will show that completely reachable automata over
binary alphabets with at least three states are always circular and every word
that cyclically permutes the states is a power of the cyclic permutation. So, we
formulate our result with letters instead of words for simplicity. Intuitively, in
Theorem 8, Eq. (1) says that we can apply the letter a to reduce the distance
modulo n on the cycle given by b, or, by Eq. (2), that we can map to a state
having a specific distance, from which we can then reduce it. Please see Fig. 1
for a graphical depiction.

2 For, if we choose a finite number of words and build the automaton by identifying
these words with new letters, distinguishability or reachability of states (or subsets
of states) of this new automaton is inherited to the original automaton. Hence, all
results are also valid when stated with words instead of letters, but otherwise the
same conditions.

324 S. Hoffmann

Fig. 1. Illustration of the conditions stated in Theorem 8 for an instance with d = 2.
Shown are the first twelve states and the state n − 1 for a circular automaton with n
states. Note that in Theorem 8, we suppose 0 ă m ă n, and indeed, for m P {0, n}
Eq. (1) does not apply in general.

Theorem 8. Suppose A = (Σ,Q, δ) has n states. Let {a, b} Ď Σ (or any two
words in Σ∗). Assume the letter b cyclically permutes the states and the letter a
has rank n − 1. Then all 2-sets are distinguishable in PA , if we can find a state
q P Q and a number d ą 0 coprime to n such that for each 0 ă m ă n we3 either
have

δ(q, bma) = δ(q, abn+m−d) (1)

or, but only in case m is not divisible by d,

δ(q, abr) = δ(q, bma) or δ(q, bmabr) = δ(q, a) (2)

for some number 0 ď r ă n divisible by d.

In the formulation of Theorem 8, we have r ą 0, as in this case m �= 0. Also, note
that δ(q, bmabr) = δ(q, a) is equivalent with δ(q, abn−r) = δ(q, bma), as for any
states s, t P Q and 0 ď k ă n we have δ(s, bk) = t if any only if δ(t, bn−k) = s, as
δ(s, bn) = s. The conditions mentioned in Theorem 8 are the most general ones
3 Note that 0 ă m ă n implies δ(q, bm) �= q. Also note that we added n on the right

hand side to account for values d ą 1. In Proposition 10 we only subtract one from
the exponent of b, which is always non-zero and strictly smaller than n, and so we do
not needed this “correction for the b-cycle” in case of resulting negative exponents.

The Set of Synchronizing Words for Circular and Binary Alphabets 325

in this paper, but let us state next, as a corollary, a more relaxed formulation,
stating that we can reduce the distance on the cycle by one for each application
of some word of rank n − 1.

Corollary 9. Let A = (Σ,Q, δ) be a circular automaton with n states where the
letter b permutes the states with a single orbit. Suppose we find a word w P Σ∗

and state q P Q such that, for4 0 ď m ă n,

δ(q, bm+1w) = δ(q, wbm) (3)

Then all 2-sets are distinguishable in PA . In particular, if A is completely reach-
able, then sc(Syn(A)) = 2n − n.

Proof. Set s = δ(q, b) and t = δ(q, w). Then, δ(s, w) = t = δ(q, w) and s �= q.
For m P {1, . . . , n − 1} we have δ(q, bmw) = δ(t, bm−1) and

{δ(q, b), δ(q, b2), . . . , δ(q, bn−1)} = Q \ {q}.

So, as b is a permutation, w acts injective on Q \ {q} and has rank n − 1. Now,
apply Theorem 8, interpreting w as the letter a of rank n − 1. [\

Actually, for the relaxed condition mentioned in Corollary 9 we can give a
small strengthening by only requiring that we can reduce the “cyclic distance”
for all states which are no more than �n/2� + 1 steps, or applications of b, away
from some specific state.

Proposition 10. Let Σ = {a, b} and suppose A = (Σ,Q, δ) has n states and is
completely reachable with the letter a having rank n−1 and the letter b permuting
the states with a single orbit. Then sc(Syn(A)) = 2n − n if we can find a state
q P Q such that for all 0 ď m ď �n/2� − 1 we have

δ(q, bm+1a) = δ(q, abm). (4)

Finally, we show that the mentioned sufficient conditions are not necessary.
In Example 1 we will give a circular automaton whose set of synchronizing words
has maximal state complexity but for which this could not be derived with any
of the results stated here.

Example 1. Let A = (Σ, [4], δ) with Σ = {a, b}, δ(i, b) = (i + 1) mod 4 and
δ(0, a) = 1, δ(1, a) = 2, δ(2, a) = 1, δ(3, a) = 3. Please see Fig. 2 for a graphical
depiction of A and PA . Then, all words of rank 3 are listed in Table 1.

In each word w of rank 3 the distance of the two distinct states mapped to
one state is 2. So, in Eq. (1), for each such word of rank 3 (in place of a), we
would have d = 2. But 2 is not coprime to 4, hence Theorem 8 does not apply
here. However, we have sc(Syn(A)) = 24 − 4 = 12. We see in Fig. 2 that every
subset is reachable. We also see that a distinguishes {0, 2} from every other 2-
set of states, ba distinguishes {1, 3} from every other, baba distinguishes {2, 3}
from {0, 3}, {1, 2} and {0, 1} and these latter three 2-sets are easily seen to be
distinguishable by words in b∗aba. So, by Lemma 2, all non-empty subsets of
states are distinguishable.
4 Note that here, even if the bounds for m from Theorem 8 do not include this case,

δ(q, w) = δ(q, bnw) = δ(q, wbn−1), which is equivalent with δ(q, w) = δ(q, b).

326 S. Hoffmann

5 Automata over Binary Alphabets

Here, we take a closer look at automata over a binary alphabet. We apply our
results and solve an open problem posed in [13]. In general, if a letter has rank
k and some subset is mapped to a subset of size k, we must hit the full image of
this letter. This gives, if we only have two letters but more than two states and
no letter has full rank, that we can only reach at most two subsets of size n − 1.
So, if more (n − 1)-sets are reachable, we must have precisely one letter of rank
n − 1 and Corollary 4 gives the next result.

Lemma 11. Let Σ = {a, b} be a binary alphabet and A = (Σ,Q, δ) a finite
semi-automaton with n ą 2 states. Then, the following conditions are equivalent:

1. every subset of size n − 1 is reachable,
2. exactly one letter acts as a cyclic permutation with a single orbit and the

other letter has rank n − 1.

In particular, over a binary alphabets, completely reachable automata and those
whose set of synchronizing words has maximal state complexity are circular.

Table 1. All rank 3 words for the automaton from Example 1. To the right of each
word the induced transformation on the states is written, where j P [4] written at
position i P [4] means the word maps the state i to state j. The entries are ordered
such that for two words u, v in the same row we have δ(i, u) = δ(j, u) iff δ(i, v) = δ(j, v)
for i P [4] and the images of words in the same column are equal.

Word Mapping Word Mapping Word Mapping Word Mapping

b2a2b2 [0, 1, 0, 3] a [1,2,1,3] ab3 [0,1,0,2] ab2ab [0,2,0,3]

a2b2 [0, 3, 0, 1] b2a [1,3,1,2] b2ab3 [0,2,0,1] ab2a2b [0,3,0,2]

ab2a2b2 [1, 0, 1, 3] a2 [2,1,2,3] a2b3 [1,0,1,2] b2ab [2,0,2,3]

ab2ab2 [1, 3, 1, 0] b2a2 [2,3,2,1] b2a2b3 [1,2,1,0] ab [2,3,2,0]

ab2 [3, 0, 3, 1] ab2a [3,1,3,2] ab2ab2 [2,0,2,1] b2a2b [3,0,3,2]

b2ab2 [3, 1, 3, 0] ab2a2 [2,2,3,1] ab2a2b3 [2,1,2,0] a2b [3,2,3,0]

bab2a2b2 [0,1,3,1] ba2 [1,2,3,2] ba2b3 [0,1,2,1] b3ab [0,2,3,2]

bab2 [0,3,1,3] bab2a [1,2,3,2] bab2ab3 [0,2,1,2] b3a2b [0,3,2,3]

b3a2b2 [1,0,3,0] ba [2,1,3,1] bab3 [1,0,2,0] bab2ab [2,0,3,1]

b3ab2 [1,3,0,3] bab2a2 [2,3,1,3] bab2a2b3 [1,2,0,2] ba2b [2,3,0,3]

ba2b2 [3,0,1,0] b3a [3,1,2,1] b3ab3 [2,0,1,0] bab2a2b [3,0,2,1]

bab2ab2 [3,1,0,1] b3a2 [3,2,1,3] b3a2b3 [2,1,0,2] bab [3,2,0,2]

Remark 2. In Lemma 11, we need n ą 2. For let A = ({a, b}, {p, q}, δ) with δ(p, a) =
δ(q, a) = q and δ(p, b) = δ(q, b) = p. Then A is completely reachable, but no letter
acts as a non-trivial permutation.

The Set of Synchronizing Words for Circular and Binary Alphabets 327

With Theorem 8, we can solve an open problem from [13]. For n ą 5, define
the automata5 Kn = (Σ, [n], δ), introduced in [13], with

δ(i, b) = i + 1 for i P {0, . . . , n − 2}, and δ(n − 1, b) = 0;
δ(i, a) = i + 1 for i P {1, . . . , n − 3}, δ(n − 1, a) = 0, δ(n − 2, a) = 1, δ(0, a) = 3.

Please see Example 2 for an illustration of this automata family. In [13], it was
conjectured that sc(Syn(Kn)) = 2n − n for every odd n ą 5. With Theorem 8,
together with Proposition 1 and Lemma 2, we can confirm this.

Proposition 12. Let n ą 5 be odd. Then we have sc(Syn(Kn)) = 2n − n.

Proof. First, we will show, using Proposition 1, that the automata Kn, for odd
n ą 5, are completely reachable. Then, we will show, using Proposition 8, that
all 2-subsets of states are distinguishable in the power automaton PKn

. With
Lemma 2, this would then give sc(Syn(Kn)) = 2n − n.

Fig. 2. The automaton from Example 1 and its power automaton. An example of an
automaton whose set of synchronizing words has maximal state complexity but for
which Theorem 8 or Proposition 10 do not apply, not for a and not for any word of
rank 3. The final states in the power automaton are marked with double circles.

1. For n ą 5 odd, the automata Kn are completely reachable: We have two
letters, the letter a has rank n−1 and the letter b is a cyclic permutation of all
the states. Also δ(Q, a) = Q \ {n− 1}, δ−1(3, a) = {0, 2} and δ(n− 1, b4) = 3.
If n is odd, then n and 4 are coprime. We have listed the prerequisites of
Proposition 1, hence applying it gives that Kn is completely reachable.

5 I slightly changed the numbering of the states with respect to the action of the letter
a compared to [13].

328 S. Hoffmann

2. For n ą 5 odd, in Kn all 2-sets are distinguishable in PKn
: Let q = 0. Then

δ(q, ba) = 2 = δ(q, abn−1) = δ(q, abn+1−2).

For m P {2, . . . , n − 3}, we have δ(0, bm) = m and

δ(q, bma) = m + 1 = δ(3, bm−2) = δ(q, abm−2) = δ(q, abn+m−2).

The value m = n − 2 does not follow the above pattern, but we have
δ(q, bn−2ab2) = δ(1, b2) = 3 = δ(q, a). And lastly, for m = n − 1, we have

δ(q, bn−1a) = q = δ(q, abn−1−2).

So, with d = 2 and r = 2, for odd n, as then n − 2 is not divisible by d, and
with q = 0, the prerequisites of Theorem 8 are fulfilled and give the claim.

So, both statements together with Lemma 2 yield sc(Syn(Kn)) = 2n − n. [\
Lastly, let us give some additional examples from the literature [1,2,12,13]

for which our results apply.

Example 2. Please see Fig. 3 for the automata families. The automata Cn gives the
Černý family, the automata Ln, Vn, Fn and Kn were introduced in [1,12,13]. There,
except for Kn, it was established that in each case (for Fn only if n is odd and n ą 3)
the set of synchronizing words has maximal state complexity. Note that our results,
namely Theorem 8, together with Proposition 1 and Lemma 2 also give these results.

Fig. 3. Families of automata whose sets of synchronizing words have maximal state
complexity. Please see Example 2 for explanation.

The Set of Synchronizing Words for Circular and Binary Alphabets 329

6 Conclusion

We have stated sufficient criteria for completely reachable generalized circular
automata with a letter of rank n − 1 to deduce that their set of synchronizing
words has maximal state complexity. Note that by our results, every completely
reachable automaton over a binary alphabet must have this form. It is natural
to ask if we can generalize this to obtain a sufficient and necessary criterion. As
a step in this direction, another family for which this might be tackled first is the
family of circular automata A = (Σ,Q, δ) over a binary alphabet with a rank
n − 1 letter a such that δ(Q, aa) = δ(Q, a), i.e., the set δ(Q, a) is permuted by
a. For these automata, we can find a power of a such that a acts as the identity
on δ(Q, a) and the single state in Q \ δ(Q, a) is mapped into δ(Q, a). Note that
these automata closely resemble those of the Černý family. Hence, we can find
easy sufficient criteria for these automata by applying our obtained results to
the resulting automaton, where the power of a is considered as the new rank
n−1 letter. However, as Example 1 shows, such a criterion is also not necessary.
But a more finer analysis might give sufficient and necessary criteria.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 7

2. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

3. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C.,
Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1–17. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41114-9 1

4. Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata.
In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 145–155. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 12

5. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

6. Don, H.: The Černý conjecture and 1-contracting automata. Electron. J. Comb.
23(3), P3.12 (2016)

7. Dubuc, L.: Les automates circulaires biaisés vérifient la conjecture de Cerný. ITA
30(6), 495–505 (1996)

8. Dubuc, L.: Sur les automates circulaires et la conjecture de Cerný. ITA 32(1–3),
21–34 (1998)

9. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable
automata with 1-deficient words. J. Automata Lang. Comb. 24(2–4), 321–342
(2019)

10. Hoffmann, S.: Completely reachable automata, primitive groups and the state com-
plexity of the set of synchronizing words. In: Leporati, A., et al. (eds.) LATA 2021.
LNCS, vol. 12638, pp. 305–317. Springer, Cham (2021)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

https://doi.org/10.1007/978-3-642-15155-2_7
https://doi.org/10.1007/978-3-319-41114-9_1
https://doi.org/10.1007/978-3-319-98654-8_12

330 S. Hoffmann

12. Maslennikova, M.I.: Reset complexity of ideal languages. CoRR abs/1404.2816
(2014)

13. Maslennikova, M.I.: Reset complexity of ideal languages over a binary alphabet.
Int. J. Found. Comput. Sci. 30(6–7), 1177–1196 (2019)

14. Pin, J.E.: Sur un cas particulier de la conjecture de Cerny. In: Ausiello, G., Böhm,
C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978).
https://doi.org/10.1007/3-540-08860-1 25

15. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

16. Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Infor-
mationsverarbeitung und Kybernetik (later J. Inf. Process. Cybern.) 2(4), 257–259
(1966)

17. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1007/3-540-08860-1_25
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/978-3-540-88282-4_4

Cadences in Grammar-Compressed
Strings

Julian Pape-Lange(B)

Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
julian.pape-lange@informatik.tu-chemnitz.de

Abstract. Cadences are structurally maximal arithmetic progressions
of indices corresponding to equal characters in an underlying string.

This paper provides a detection algorithm for 3-cadences in binary
strings which runs in linear time on uncompressed strings and in polyno-
mial time on grammar-compressed strings.

Furthermore, this paper proves that several variants of the cadence
detection problem are NP-complete on grammar-compressed strings and
that the equidistant subsequence matching problem with patterns of
length three is NP-complete on grammar-compressed ternary strings.

Keywords: String-cadences · String algorithms · Compressed pattern
matching

1 Introduction

A sub-cadence in a string is an arithmetic progression of indices corresponding
to equal characters. Van der Waerden shows in [12] that for each k and each
alphabet size |Σ|, there is a natural number m(k, |Σ|), such that each sequence
of characters in Σ with length greater than or equal to m(k, |Σ|) has a sub-
cadence consisting of k indices. However, the term cadence in the context of
strings was first used by Gardelle in [5] in the year 1964.

In this paper, we use the notation of Amir et al. in [1] and say that a cadence
is a sub-cadence which is structurally maximal in the sense that the extension of
the arithmetic progression to the left or to the right would not result in a valid
index of the string.

For example, in the string S = 10101, the three indices 1, 3, 5 form a cadence,
since the indices −1 and 7 are both outside of the string. On the other hand, in
the string S = 01110, the three indices 2, 3, 4 do not form a cadence, since, for
example, the index 1 is inside the string.

Funakoshi and Pape-Lange prove in [4] that if the underlying alphabet has
a constant size, the number of 3-cadences in an uncompressed string of length n
can be counted in O(n(log n)2) time using fast Fourier transform.

Furthermore, Funakoshi et al. present in [3] the more general problem of
equidistant subsequence matching which extends the sub-cadences to arbitrary
arithmetic factors, and showed that techniques for cadence-detection can be
adopted to solve equidistant subsequence matching with similar time complexity.
c© Springer Nature Switzerland AG 2021
A. Leporati et al. (Eds.): LATA 2021, LNCS 12638, pp. 331–342, 2021.
https://doi.org/10.1007/978-3-030-68195-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68195-1_26&domain=pdf
http://orcid.org/0000-0001-6621-8369
https://doi.org/10.1007/978-3-030-68195-1_26

332 J. Pape-Lange

Strings can be compressed by straight-line programs, which are context-free
grammars whose languages contain exactly one string each. Since this grammar-
based compression is able to compress some strings to logarithmic size, we are
interested which polynomial time problems on uncompressed strings can also
be solved in polynomial time with respect to the compressed size of the string.
For example, grammar-based compression allows for fast algorithms as the fully
compressed pattern matching by Jeż presented in [6]. Also, the size of the smallest
grammar is comparable to other strong string compression algorithms as LZ77
(as proven simultaneously by Rytter in [11] and by Charikar et al. in [2]) and
hence as the run-length encoded Burrows-Wheeler transform (as recently proven
independently by Kempa and Kociumaka in [7] and by Pape-Lange in [10]).

In this paper, we will consider several variants of the k-cadence detection
problem. I.e. the decision problem on whether such a k-cadence occurs in a
given string.

We prove that the 3-cadence detection problem can be solved in linear time on
an uncompressed binary string and in polynomial time on a grammar-compressed
binary string.

Furthermore, on grammar-compressed strings, the cadence detection problem
becomes NP-complete for longer cadences or 3-cadences over a ternary alphabet.

In order to obtain these algorithms, this paper introduces two new special
cases of the sub-cadence, the L-R-cadence, which starts and ends in given inter-
vals, and the even/odd 3-sub-cadence, which starts at even/odd indices.

2 Preliminaries

A string S of length n is the concatenation S = S[1]S[2]S[3] . . . S[n] of characters
from an alphabet Σ. Strings naturally split into runs of equal characters. For
example, the string 00010101100 splits into 000 · 1 · 0 · 1 · 0 · 11 · 00. In this paper,
these runs of equal characters are just called runs for the sake of simplicity.

For the sub-cadences and cadences, this paper uses the definitions of Amir
et al. in [1]. These definitions are slightly different from the definition by Gardelle
in [5] and by Lothaire in [9]. Funakoshi and Pape-Lange present a comparison
of these definitions in [4].

Definition 1. A k-sub-cadence is an arithmetic progression

(i, i + d, . . . , i + (k − 1)d)

of indices given by the triple (i, d, k) of integers with d, k > 0 such that

S[i] = S[i + d] = · · · = S[i + (k − 1)d]

holds.

As a special case, cadences additionally have to be structurally maximal in
the sense that neither of the extensions of the underlying arithmetic progression
is contained in the integer interval {1, 2, 3, . . . , n} anymore. More formally:

Cadences in Grammar-Compressed Strings 333

Definition 2. A k-cadence is a k-sub-cadence (i, d, k) such that the inequalities
i − d ≤ 0 and n < i + kd hold.

In this paper, we will also consider a new special case of the sub-cadence, in
which the first element and the last element of the sub-cadence are contained in
given intervals:

Definition 3. For two disjoint intervals L and R, an L-R-k-cadence is a k-
sub-cadence (i, d, k) which starts in the interval L and ends in the interval R.
I.e. i ∈ L and i + (k − 1)d ∈ R hold.

Since the first element and the third element of each 3-sub-cadence have the
same parity, it is useful to divide the L-R-3-cadences and 3-cadences according
to this parity. Without loss of generality, we will only consider the even sub-
cadences.

Definition 4. An L-R-3-cadence/3-cadence is even if its first element is an
even number and odd otherwise.

For each set M , we define Meven := M ∩ 2Z and Modd := M ∩ (2Z + 1)
and for each M = {a1, a2, . . . , al} ⊂ Z with 1 ≤ a1 < a2 < a3 < · · · < al ≤ n,
we define the string S[M] = S[a1]S[a2] . . . S[al] as the subsequence of characters
with indices given by M .

The string Seven is defined by Seven := S
[{

2, 4, 6, . . . , 2
⌊

|S|
2

⌋}]
.

For the compressed problems, we consider the strings to be given by straight-
line grammars.

Definition 5. A straight-line grammar is a context-free grammar (V,Σ,R, S)
with variables V = {v1, v2, . . . , vi} such that for each variable vi there is exactly
one rule vi → u1u2 . . . uj and each uk on the right-hand side is either a character
in Σ or a variable vk′ in V with a smaller index than vi. I.e. k′ < i.

The size of a straight-line grammar is given by the total length of the right-
hand sides of the rules.

These straight-line grammars allow on the one hand compression to logarith-
mic size and on the other hand fully compressed pattern matching in polynomial
time with respect to the compressed sizes of the string and the pattern.

3 NP-Complete Cadence Problems

In this section, we will prove the following theorem:

Theorem 1. If at least one of the following conditions holds, the k-cadence
detection problem on compressed strings is NP-complete:

– k ≥ 3 and |Σ| ≥ 2 and we only consider k-cadences with a given character,
– k ≥ 3 and |Σ| ≥ 3 or
– k ≥ 4 and |Σ| ≥ 2.

334 J. Pape-Lange

Since we can test for a given candidate (i, d, k) of a k-cadence in polynomial
time, whether (i, d, k) forms indeed a k-cadence, all three problems mentioned
above belong to NP and it is left to show that they are NP-hard.

To show the NP-hardness, we will reduce the following problem, which
Lohrey proves in Theorem 3.13 of [8] to be NP-complete, to the problems above:

input: Two compressed strings P and P ′ over the alphabet {0, 1}.
output: Is there an index l with P [l] = P ′[l] = 1?

Let P and P ′ be compressed strings over the alphabet {0, 1}. Without loss
of generality, the inequality |P ′| ≤ |P | holds. Define P ′′ = (P ′0|P |−|P ′|)rev.

In this setting, for every index l, the equation P [l] = P ′[l] = 1 holds if and
only if the equation P [l] = P ′′[|P | + 1 − l] = 1 holds as well.

Consider the string

S =
(
0(k−1)|P | ·P ·0·0k|P |

)(
0k|P | ·1·0k|P |

)(
0k|P | ·0·P ′′ ·0(k−1)|P |

)(
12k|P |+1

)k−3

,

A grammar of this string can be built by the grammars of P and P ′ and
O (

log(k2|P |)) additional nonterminals. Since the compression of a string P
needs at least Ω(log |P |) nonterminals, the compressed size of S is, for fixed
k, polynomial in the compressed size of the inputs.

If there is an index l with P [l] = P ′′[|P | + 1 − l] = 1, the corresponding
indices are contained in the arithmetic progression starting at i = (k − 1)|P | + l
with distance d = 2k|P | + 1 + (|P | + 1 − l) and length k.

For each −1 ≤ j ≤ k the inequality j(2k|P |+1) < i+ jd ≤ (j +1)(2k|P |+1)
holds. Therefore, the indices of the arithmetic progression starting at the index
i = (k − 1)|P | + l with distance d = 2k|P | + 1 + (|P | + 1 − l) and length k
correspond to 1s in S and the inequalities i − d ≤ 0, i > 0, i + (k − 1)d ≤ n and
i + kd > n hold. Therefore, this arithmetic progression is a k-cadence.

Conversely, if the triple (i, d, k) defines a k-cadence with character 1 in S,
the inequalities i − d ≤ 0 < i and i + (k − 1)d ≤ n < i + kd of the cadence imply

j

k
n <

k − j

k
i+

j

k
(i+kd) = i+jd =

k − j − 1
k

(i−d)+
j + 1

k
(i+(k−1)d) ≤ j + 1

k
n.

In particular, the index i + d has to be the single 1 in the second bracket which
has the index (2k|P | + 1) + (k|P |) + 1. Furthermore, the first element of the
k-cadence has to be a 1 in P in the first bracket and the third element of the
k-cadence has to be a 1 in P ′′ in the third bracket.

By construction, the two indices of these characters have the same distance
to the index (2k|P | + 1) + (k|P |) + 1, and the two strings P and P ′′ have the
same distance to the index (2k|P | + 1) + (k|P |) + 1 as well. Therefore, the first
element of the k-cadence and the third element of the k-cadence define an index
l with P [l] = P ′′[|P | + 1 − l] = 1.

Therefore, the string S has a k-cadence with character 1 if and only if there
is an index l such that P [l] = P ′[l] = 1 holds.

If k > 3 holds, the requirement that the underlying character has to be 1 can
be dropped since there is at least one bracket in S containing only 1s.

Cadences in Grammar-Compressed Strings 335

For 3-cadences on a ternary alphabet we consider the string

S =
(
0(k−1)|P | · P · 0 · 0k|P |

)(
2k|P | · 1 · 2k|P |

)(
0k|P | · 0 · P ′′ · 0(k−1)|P |

)

which similarly has a 3-cadence if and only if there is an index l such that
P [l] = P ′[l] = 1 holds.

This concludes the proof of Theorem 1.

4 L-R-Cadences

The algorithm of Funakoshi and Pape-Lange in [4] counts the 3-cadences of an
uncompressed string of length n in O (

n(log n)2
)

time. This is done by counting
the L-R-3-cadences in O ((|L| + |R|)(log(|L| + |R|))) time. It therefore seems
reasonable to understand the L-R-cadences to be a simplification of cadences.

Nevertheless, in this section, we will show that all detection problems on
compressed strings discussed in the last section are also NP-complete for the
L-R-cadences, even if k = 3 and |Σ| = 2 hold.

However, for k = 3 and |Σ| = 2, we will provide a detection algorithm for L-
R-3-cadences which needs on uncompressed strings only O (|L| + |R|) time and
on compressed strings polynomial time with respect to the compressed size of
the string and the additional variable max

(
|L|
|R| ,

|R|
|L|

)
.

Theorem 2. For k ≥ 3 and |Σ| ≥ 2, the L-R-k-cadence detection problem is
NP-complete on compressed strings.

Proof. If either k > 3 or |Σ| > 2 hold or if we only consider L-R-k-cadences with
a given character, the proof is essentially equal to the corresponding proof in the
last section, since for L =

{
1, 2, . . . , 1

kn
}

and R =
{

k−1
k n + 1, k−1

k n + 2, . . . , n
}
,

all k-cadences in the discussed string S are L-R-k-cadences and vice versa.
Otherwise, we have k = 3, |Σ| = 2 and we consider L-R-3-cadences with any

character. Since we can test for every triple (i, d, k), whether this triple forms
an L-R-3-cadence, this problem belongs to NP and it is left to show that even
this special case is NP-hard.

Let P and P ′ be compressed strings over the alphabet {0, 1}. Without loss
of generality, the inequality |P ′| ≤ |P | holds. Define P ′′ to be the string which
results from duplicating all characters of P ′. For example, for P ′ = 011, we define
P ′′ = 001111. This can be done by introducing two additional nonterminals.

Consider the string S = 1(0|P |)(P)(P ′′) as well as the intervals L = {1} and
R = {1 + 2|P | + 1, 1 + 2|P | + 2, . . . 1 + 2|P | + |P ′′|}. In this setting S[L] = 1
and S[R] = P ′′ holds. Furthermore, for each index 1 ≤ l ≤ |P |, the equations
P [l] = S[1 + (|P | + l)] and P ′[l] = P ′′[2l] = S[1 + 2|P | + 2l] = S[1 + 2(|P | + l)]
hold.

Therefore, for each index l, the equation P [l] = 1 = P ′[l] holds if and only
if the equation S[1] = S[1 + (|P | + l)] = S[1 + 2(|P | + l)] holds. This equation,
however, defines an L-R-3-cadence.

This concludes the proof of Theorem 2.

336 J. Pape-Lange

Similarly, for two compressed strings P over {0, 1} and P ′ over {0, 2}, we
can define P ′′ as above and the string S = 2(0|P |)(P)(P ′′) has an equidistant
occurrence of the pattern 212 if and only if there is an index i with P [i] = 1 and
P ′[i] = 2. Therefore, equidistant subsequence matching with patterns of length
3 on compressed ternary strings is also NP-complete.

All reductions above used that we could force all cadences to use a fixed
character of the string. However, surprisingly, if L and R have similar length,
we can detect in polynomial time, whether a compressed binary string has an
L-R-3-cadence. Furthermore, with the same idea we can detect in O (|L| + |R|)
time, whether an uncompressed binary string has an L-R-3-cadence.

The remainder of this section will prove the following theorem:

Theorem 3. The problem of L-R-3-cadence detection can be done on uncom-
pressed binary strings in O (|L| + |R|) time and on compressed binary strings in
polynomial time with respect to the compressed size of the string and the addi-
tional variable max

(
|L|
|R| ,

|R|
|L|

)
.

The key insight for the detection algorithm for L-R-3-cadences is that if
the string does not contain L-R-3-cadences, either S[Leven] or S[Reven] is very
structured. The following lemma implies that if S[Leven] has the substring 01
and S[Reven] has the substring 10 or vice versa, then S has an L-R-3-cadence:

Lemma 1. Let S be a binary string and L and R be two intervals.
If there are indices i and j with

– S[i] = S[j] �= S[i + 2] = S[j − 2],
– i, i + 2 ∈ L,
– j, j − 2 ∈ R and
– i ≡ j (mod 2),

then S has an L-R-3-cadence.

Proof. Since i ≡ j (mod 2) holds, the number i+j
2 is an integer. Furthermore,

since S is binary and S[i] = S[j] �= S[i + 2] = S[j − 2] holds, we either have
S[i] = S[i+j

2] = S[j] or S[i + 2] = S[i+j
2] = S[j − 2]. Therefore, there is at least

one L-R-3-cadence.

This implies that if S does not contain L-R-3-cadences, then there are only
few possibilities for the subsequences S[Leven] and S[Reven]:

Corollary 1. Let S be a binary string and L and R be two intervals such that
S has no L-R-3-cadences.

Then, either

– S[Leven] or S[Reven] is of the form 0j or 1j,
– both S[Leven] or S[Reven] are of the form 0i1j or
– both S[Leven] or S[Reven] are of the form 1i0j.

Cadences in Grammar-Compressed Strings 337

If both S[Leven] and S[Reven] are of the form 0i1j or 1i0j , we can divide L and
R into intervals L′, L′′, R′ and R′′ such that S[L′

even] and S[R′
even] are of the form

0i and S[L′′
even] and S[R′′

even] are of the form 1i. This can be done in O (|L| + |R|)
time on uncompressed strings and in polynomial time on compressed strings.

By construction, all even L-R-3-cadences are either even L′-R′-3-cadences or
even L′′-R′′-3-cadences. The following lemma, which holds by definition of the
even L-R-3-cadence, shows that they can be detected in O (|L| + |R|) time in
uncompressed strings and in polynomial time in compressed strings.

Lemma 2. Let S be a binary string and L and R be two intervals such that
S[Leven] = 0i and S[Reven] = 0j hold. Let further lmin, lmax, rmin and rmax be
the minimal and maximal indices of Leven and Reven, respectively.

Then, the string S
[{

lmin+rmin
2 , lmin+rmin

2 + 1, . . . , lmax+rmax
2

}]
contains a 0 if

and only if S has an even L-R-3-cadence.

Fig. 1. A string with 48 characters. For L = {2} and R = {33, 34, . . . , 48}, for each
index of Reven, there is only one candidate (i, d, k) for forming an L-R-3-cadence.

The more difficult case is that one of the two subsequences contains the
substrings 01 and 10 while the other subsequence contains neither of these two
substrings. Figure 1 shows that if L is a short interval, we may have to check
linearly many pairs with respect to the length of the string in order to find an L-
R-3-cadence. This case occurred, for example, in the string S = 1(0|P |)(P)(P ′′)
in which the L-R-3-cadence detection was NP-hard. However, it turns out that
even in this case, the detection of L-R-3-cadences can be done in O (|L| + |R|)
time on uncompressed strings and using the additional variable max

(
|L|
|R| ,

|R|
|L|

)
,

the detection can also be done in polynomial time on compressed strings.
By definition of the L-R-3-cadence we get the following lemma:

Lemma 3. Let S be a string and L and R be two intervals. Let further S[Leven]
be of the form 0i and lmin, lmax, rmin and rmax be the minimal and maximal
indices of Leven and Reven, respectively.

Then, for any r0 ∈ Reven with S[r0] = 0, there is an even L-R-3-cadence
which uses r0 as last element if and only if S

[{
lmin+r0

2 , lmin+r0
2 + 1, . . . , lmax+r0

2

}]
contains a 0.

338 J. Pape-Lange

Also, for any m0 ∈ {
lmin+rmin

2 , lmin+rmin
2 + 1, . . . , lmax+rmax

2

}
with S[m0] = 0,

define r′
min = max (2m0 − lmax, rmin) and r′

max = min (2m0 − lmin, rmax). There
is an even L-R-3-cadence which uses this 0 as middle element if and only if
S [{r′

min, r
′
min + 2, . . . , r′

max}] contains a 0.

With Corollary 1, Lemma 2 and Lemma 3, it is possible to efficiently either
find an L-R-3-cadence or to shorten R without removing any L-R-3-cadences.
The resulting algorithm is also presented in Fig. 2.

Corollary 2. Let S be a binary string and L and R be two intervals. Let further
S[Leven] be of the form 0i and lmin, lmax, rmin and rmax be the minimal and
maximal indices of Leven and Reven, respectively.

If S[Reven] is of the form 1j, there is no even L-R-3-cadence.
Otherwise, define r0 = min {r ∈ Reven|S[r] = 0} and use Lemma 3 to check

whether there is an L-R-3-cadence using an index of Leven and r0.
If such an L-R-3-cadence does not exist, define mmin = lmax+r0

2 + 1 and
mmax = lmax+rmax

2 . If the substring S [{mmin,mmin + 1, . . . , mmax}] of S is of
the form 1j, then there is no even L-R-3-cadence.

Otherwise, define m0 = min {m ∈ {mmin,mmin + 1, . . . , mmax} |S[m] = 0}.
Then use Lemma 3 to check whether there is an L-R-3-cadence using an index
of Leven and m0.

If such an L-R-3-cadence does not exist, define R′ = R ∩ Z>2m0−lmin . There
is an even L-R-3-cadence if and only if there is an even L-R′-3-cadence.

Fig. 2. A string with 48 characters after one application of Corollary 2. Let the intervals
L = {2, 3, . . . , 10} and R = {33, 34, . . . , 48} be given. First, the index r0 = 34 is found.
The minimal and maximal candidates for 3-cadences with r0 are given by the black
lines. Then, the index m0 = 23 is found. The minimal and maximal candidates for
3-cadences with m0 are given by the gray lines. Afterwards, the gray characters are
guaranteed not to form an L-R-3-cadence with characters from the first run of the
string.

In the uncompressed case, iterated application of Corollary 2 reads each char-
acter of S[

{
lmin+rmin

2 , lmin+rmin
2 + 1, . . . , lmax+rmax

2

}
] and S[Reven] at most once.

It is therefore easy to see that iterated application of this corollary only uses
O (|L| + |R|) time to decide, whether an L-R-3-cadence exists.

Cadences in Grammar-Compressed Strings 339

On the other hand, after the application of Corollary 2 either R′ is empty or
it contains at least |L| elements less than R. Therefore, the algorithm described
in Corollary 2 has to be used at most O

(
|R|
|L|

)
times. Since each application of

Corollary 2 only takes polynomial time on compressed strings, the L-R-3-cadence
detection on compressed strings can be done in polynomial time with respect to
the compressed size of the string and the additional variable max

(
|L|
|R| ,

|R|
|L|

)
.

Since by symmetry, the detection of odd L-R-3-cadences can also be done as
the detection of even L-R-3-cadences, this concludes the proof of Theorem 3.

5 3-Cadences in Binary Strings

In this section, we will show that the results of Theorem 3 also hold for the
corresponding 3-cadence problems:

Theorem 4. The 3-cadence detection problem can be solved in linear time
on uncompressed binary strings and in polynomial time on compressed binary
strings.

Let i, d be two integers such that i − d ≤ 0 and i + 3d > n hold. Let L =
{1, 2, . . . , i} and R = {i + 2d, i + 2d + 1, . . . , n} be two intervals. Then each
L-R-3-cadence is also a 3-cadence. On the other hand, each 3-cadence defines
integers i and d such that i − d ≤ 0 and i + 3d > n hold. Therefore, Lemma 1
implies that if S has an even 3-cadence, it also has a 3-cadence that either starts
in one of the first two runs of Seven or ends in one of the last two runs of Seven.

The main challenge for the adaption of the detection algorithm for L-R-3-
cadences to an detection algorithm for 3-cadences is that while each character
in the first/last third of the string can be the first/last index in a 3-cadence, not
all 3-sub-cadences which start in the first third and end in the last third are
3-cadences. For example, in the string 001001001 the three 1s form a 3-cadence
while the in the string 001010100 the three 1s do not form a 3-cadence. Therefore,
Lemma 3 does not quite work on 3-cadences and we have to restrict the strings
in Lemma 3 to those indices such that the corresponding 3-sub-cadences are
structurally maximal.

The following lemma restricts the bound of Lemma 3 to the allowed indices
for 3-cadences with i − d ≤ 0 and i + kd > n and therefore holds by definition
of the 3-cadence:

Lemma 4. Let S be a string. Let further Seven be of the form 0iS′ and let
lmin = 2 and lmax = max

(
2i, 2

⌊
1
6n

⌋)
be the first and the last indices of the first

run of Seven which can be the first index of a 3-cadence, respectively.
Then, for any r0 ∈ Seven define l′max = min

(
lmax, 2

⌊
r0
6

⌋
, 2(

⌈
3r0−2n

2

⌉ − 1)
)
.

There is an even 3-cadence which uses this r0 as last element and any of the
first i 0s of S[Leven] as first element if and only if S[r0] = 0 holds and the string
S

[{
lmin+r0

2 , lmin+r0
2 + 1, . . . ,

l′max+r0
2

}]
contains a 0.

340 J. Pape-Lange

Conversely, for any m0 ∈
{

lmin+2
n
3 �+2

2 ,
lmin+2
n

3 �+2

2 + 1, . . . ,
lmax+2
n

2 �
2

}

with S[m0] = 0 define r′
min = 2m0 − min

(
lmax, 2

⌊
m0
4

⌋
, 2

(⌈
3m0−n

4

⌉ − 1
))

and
r′
max = 2m0 − max

(
lmin, 2

(
m0 − ⌊

n
2

⌋))
. There is an even 3-cadence which uses

m0 as middle element if and only if S [{r′
min, r

′
min + 2, . . . , r′

max}] contains a 0.

Similarly to the case of the L-R-3-cadence, we can use this lemma to shrink
the interval in which the last element of the arithmetic progression can be.

Corollary 3. Let S be a binary string. Define R = {rmin, rmin + 1, . . . , n} for
an rmin ≥ ⌊

2
3n

⌋
+ 1. Let further Seven be of the form 0iS′ and let lmin = 2

and lmax = max
(
2i, 2

⌊
1
6n

⌋)
be the first and the last indices of the first run of

Seven which can be the first index of a 3-cadence, respectively. Define the interval
L = {lmin, lmin + 1, . . . , lmax}.

If S[Reven] is of the form 1j, there is no even 3-cadence starting in L.
Otherwise, define r0 = min {r ∈ Reven|S[r] = 0} and use Lemma 4 to check

whether there is a 3-cadence starting in L and ending with r0.
If such a 3-cadence does not exist, define mmin = l′max+r0

2 +1 with the variable
l′max = min

(
lmax, 2

⌊
r0
6

⌋
, 2(

⌈
3r0−2n

2

⌉ − 1)
)
as defined in Lemma 4 and define

mmax = lmax+n
2 . If S [{mmin,mmin + 1, . . . , mmax}] is of the form 1j, then there

is no even 3-cadence starting in L.
Otherwise, define m0 = min {m ∈ {mmin,mmin + 1, . . . , mmax} |S[m] = 0}.

Then use Lemma 4 to check whether there is a 3-cadence starting in L with
m0 as second element.

If such a 3-cadence does not exist, define R′ = R ∩ Z>r′
max

with the variable
r′
max = 2m0−max

(
lmin, 2

(
m0 − ⌊

n
2

⌋))
as defined in Lemma 4. There is an even

3-cadence starting in L if and only if there is an even 3-cadence starting in L
and ending in R′.

An application of this corollary can be seen in Fig. 3.

Fig. 3. A string with 48 characters after one application of Corollary 3. First, the
index r0 = 34 is found. The minimal and maximal candidates for 3-cadences with r0
are given by the black lines. Then, the index m0 = 20 is found. The minimal and
maximal candidates for 3-cadences with m0 are given by the gray lines. Afterwards,
the gray characters are guaranteed not to form a 3-cadence with characters from the
first run of Seven.

Cadences in Grammar-Compressed Strings 341

In the uncompressed case, each element of the middle third and the last third
has to be read at most once in order to decide whether there is a 3-cadence which
starts in the first run of Seven. Furthermore, we can modify this algorithm to
detect the existence of a 3-cadence which start in the second run of Seven. By
symmetry, we can also decide in linear time, whether there exists a 3-cadence
which ends in one of the two last runs of Seven. Similarly, we can decide in linear
time, whether there is an odd 3-cadence.

In the compressed case, a problem can arise if the first run of Seven is short.
Let Seven be of the form 0i1S′. Then the 1 has index 2i + 2. Let r1 be the
smallest even index such that (2i+2)− r1−(2i+2)

2 ≤ 0 and (2i+2)+3 r1−(2i+2)
2 >

n hold. Since S[{2, 4, 6, . . . , 2i + 2}] contains 01, we can use Corollary 1 and
Lemma 2 to check in polynomial time, whether there is a 3-sub-cadence starting
in {2, 4, 6, . . . , 2i + 2} and ending with an index greater than or equal to r1. By
construction, such a 3-sub-cadence would be a 3-cadence.

If such a 3-cadence exists, we are done. Therefore, it is only left to show that
even in the compressed case, the application of Corollary 3 is fast enough to find a
3-cadence which start in the first run of Seven and end at an index smaller than r1
in polynomial time if such a cadence exists. Since each application of Corollary 3
can be done in polynomial time, it is left to show that after a polynomial number
of applications, the value r′

max is greater than r1.
In the worst case, each r0 is rmin. Since each 3-sub-cadences with distance

of at least 1
3n is a 3-cadence, we can assume r0 < r1 ≤ 2i + 2 + 2

3n holds and
therefore lmax ≥ r0 − 2

3n holds as well. Also, both 2
⌊
r0
6

⌋
and 2(

⌈
3r0−2n

2

⌉−1) are
greater than or equal to r0 − 2

3n. Therefore l′max ≥ r0 − 2
3n holds.

Similarly, in the worst case, each m0 is directly behind l′max+r0
2 ≥ r0 − 1

3n.
Hence, we can assume m0 = 2r0− 1

3n+1. With l′′min = max
(
lmin, 2

(
m0 − ⌊

n
2

⌋))
,

this implies that the inequality 2m0 − l′′min ≥ min
(
r0 + (r0 − 2

3n), n − 1
)

holds.
Therefore, for r0 < r1, one application of Corollary 3 checks for an interval of

size r0 − 2
3n, whether there is 3-cadence which starts in the first run and ends in

this interval. Therefore, we only need at most log n applications of this corollary.
This implies that it can be decided in polynomial time whether a compressed

binary string contains any 3-cadences.

6 Conclusion

This paper shows that we can decide in linear time whether an uncompressed
binary string contains a 3-cadence. While we should expect that it is more dif-
ficult to avoid 3-cadences in binary strings than to include 3-cadences, it is
surprising that it is strictly easier to decide whether there is any 3-cadence at
all than to decide whether there is a 3-cadence with a given character.

For the compressed case, we have shown that we can decide in polynomial
time whether a compressed binary string contains a 3-cadence. However, all even
slightly harder problems have been shown to be NP-complete. These hardness-
results seem to indicate that cadences may not be very useful in compressed
pattern matching.

342 J. Pape-Lange

Regarding k-sub-cadences, there are no known nontrivial bounds on the bit
complexity of the detection of k-sub-cadences with a given character. Closely
related, it is unknown whether equidistant subsequence matching is NP-hard
on compressed binary strings.

Finally, in terms of uncompressed cadence detection, it is still unknown
whether we can decide with sub-quadratic bit complexity whether a given string
contains a 4-cadence. The currently best result is by Funakoshi et al., who pre-
sented in [3] a detection algorithm with sub-quadratic time complexity in the
word RAM model.

References

1. Amir, A., Apostolico, A., Gagie, T., Landau, G.M.: String cadences. Theor. Com-
put. Sci. 698, 4–8 (2017). https://doi.org/10.1016/j.tcs.2017.04.019

2. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7),
2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

3. Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M., Shinohara,
A.: Detecting k-(Sub-)cadences and equidistant subsequence occurrences. In: Gørtz,
I.L., Weimann, O. (eds.) 31st Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol.
161, pp. 12:1–12:11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.CPM.2020.12

4. Funakoshi, M., Pape-Lange, J.: Non-rectangular convolutions and (Sub-)cadences
with three elements. In: Paul, C., Bläser, M. (eds.) 37th International Symposium
on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 154, pp. 30:1–30:16. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2020). https://doi.org/10.
4230/LIPIcs.STACS.2020.30

5. Gardelle, J.: Cadences. Mathématiques et Sci. Humaines 9, 31–38 (1964). http://
www.numdam.org/item/MSH 1964 9 31 0

6. Jeż, A.: Faster fully compressed pattern matching by recompression. ACM Trans-
actions on Algorithms 11(3), Jan 2015. https://doi.org/10.1145/2631920

7. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. CoRR abs/1910.10631. Accepted to the 61st Annual Symposium Foundations
of Computer Science (FOCS 2020) (2019). http://arxiv.org/abs/1910.10631

8. Lohrey, M.: Algorithms on compressed words. The Compressed Word Problem for
Groups. SM, pp. 43–65. Springer, New York (2014). https://doi.org/10.1007/978-
1-4939-0748-9 3

9. Lothaire,M.:CombinatoricsonWords.CambridgeMathematicalLibrary,Cambridge
University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511566097

10. Pape-Lange, J.: On extensions of maximal repeats in compressed strings. In: Gørtz,
I.L., Weimann, O. (eds.) 31st Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2020, June 17–19, 2020, Copenhagen, Denmark. LIPIcs, vol. 161, pp.
27:1–27:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.CPM.2020.27

11. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

12. Beweis einer Baudet’schen Vermutung: Waerden, B.L.v.d. Nieuw Archief voor
Wiskunde 15, 212–216 (1927)

https://doi.org/10.1016/j.tcs.2017.04.019
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.4230/LIPIcs.CPM.2020.12
https://doi.org/10.4230/LIPIcs.STACS.2020.30
https://doi.org/10.4230/LIPIcs.STACS.2020.30
http://www.numdam.org/item/MSH_1964__9__31_0
http://www.numdam.org/item/MSH_1964__9__31_0
https://doi.org/10.1145/2631920
http://arxiv.org/abs/1910.10631
https://doi.org/10.1007/978-1-4939-0748-9_3
https://doi.org/10.1007/978-1-4939-0748-9_3
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.4230/LIPIcs.CPM.2020.27
https://doi.org/10.4230/LIPIcs.CPM.2020.27
https://doi.org/10.1016/S0304-3975(02)00777-6

Author Index

Aoto, Takahito 213

Belanger, David 145
Birkmann, Fabian 3
Bloem, Roderick 157
Bonakdarpour, Borzoo 187
Broda, Sabine 43

Chakraborty, Sankardeep 55
Crespi Reghizzi, Stefano 241

Dielitz, Christian 200
Dolce, Francesco 293
Dörband, Frederic 255, 267
Dorigatti, Valentina 16
Dvořáková, L’ubomíra 293

Ebrahimi, Masoud 157

Feller, Thomas 255, 267

Gao, Ziyuan 145
Grossi, Roberto 55
Gutsfeld, Jens Oliver 200

Hoffmann, Stefan 305, 318

Ishizuka, Mamoru 213
Iwami, Munehiro 213

Jain, Sanjay 145
Jezequel, Loïg 279

Kulkarni, Manasi S. 29

Li, Wei 145
Lime, Didier 279
Lye, Aaron 97

Machiavelo, António 43
Massazza, Paolo 16
Milius, Stefan 3
Minamide, Yasuhiko 173
Miyazaki, Takayuki 173
Moreira, Nelma 43
Morizumi, Hiroki 109
Mrykhin, Mikhail 118
Müller-Olm, Markus 200

Okhotin, Alexander 81, 118

Pape-Lange, Julian 331
Pelantová, Edita 293
Perrot, Kévin 68
Perrotin, Pacôme 68
Petrov, Semyon 81
Pighizzini, Giovanni 131

Reis, Rogério 43
Rovan, Branislav 131

Sadakane, Kunihiko 55
Sádovský, Šimon 131
San Pietro, Pierluigi 241
Sarma, Jayalal 29
Satti, Srinivasa Rao 55
Sené, Sylvain 68
Sérée, Bastien 279
Sheinvald, Sarai 187
Stephan, Frank 145
Stier, Kevin 255, 267
Subramani, K. 226
Sundaresan, Janani 29

Urbat, Henning 3

Vaandrager, Frits 157

Wojciechowski, Piotr 226

	Preface
	Organization
	Contents
	Algebraic Structures
	On Language Varieties Without Boolean Operations
	1 Introduction
	2 Lattice Bimodules
	3 Pseudovarieties of Reduced Lattice Bimodules
	4 Basic Varieties of Regular Languages
	5 Duality and the Basic Variety Theorem
	6 Quantum Finite Automata
	7 Conclusion and Future Work
	References

	Partially Directed Animals with a Bounded Number of Holes
	1 Introduction
	2 Notation and Preliminaries
	3 A Dynamical System for HPDAk
	4 Exhaustive Generation
	4.1 Data Structure
	4.2 Complexity

	5 Conclusion and Future Works
	References

	On the Computational Power of Programs over BA2 Monoid
	1 Introduction
	2 Preliminaries
	3 PLP for (Restricted) Programs over BA2
	3.1 PLP for Non-nullable Programs
	3.2 PLP for (Restricted) Nullable Programs

	4 Limitations of Programs over BA2 Monoid
	References

	Automata
	Location Based Automata for Expressions with Shuffle
	1 Introduction
	2 Preliminaries
	3 A Location Based Position Automaton
	4 APD() as a Quotient of APOS()
	5 APOS() Vs. Apos()
	6 Relation with Other Constructions
	References

	Succinct Representations for (Non)Deterministic Finite Automata
	1 Introduction
	1.1 Our Main Results and Paper Organization

	2 Succinct Representations for DFA and NFA
	2.1 Succinct Encoding of DFA
	2.2 Reducing the Space Further
	2.3 Succinct Data Structure for DFA

	3 Concluding Remarks
	References

	Optimising Attractor Computation in Boolean Automata Networks
	1 Introduction
	2 Definitions
	2.1 Boolean Functions
	2.2 Boolean Automata Networks and Acyclic Modules
	2.3 Promise Problems and Classes of Function Problems

	3 From BANs to AMs
	4 Output Functions
	5 Optimal Acyclic Module Synthesis
	6 Final Wiring and Analysis
	7 Conclusion
	References

	On the Transformation of Two-Way Deterministic Finite Automata to Unambiguous Finite Automata
	1 Introduction
	2 Definitions
	3 Upper Bound
	4 Lower Bound
	5 Estimating the Rank of the Matrix for Permutations
	6 Conclusion
	References

	Complexity
	Deciding Non-emptiness of Hypergraph Languages Generated by Connection-preserving Fusion Grammars is NP-complete
	1 Introduction
	2 Preliminaries
	3 Fusion Grammars
	4 A Linear-Time Reduction of the Non-emptiness Problem of Connection-preserving Fusion Grammars to the Non-emptiness Problem of Vector Fusion Grammars
	5 A Polynomial-Time Equivalence of the Non-emptiness Problem for Vector Fusion Grammars and Solvability of a Variant of Integer Linear Programming
	6 Complexity-Theoretic Implications of the Reductions
	7 Conclusion
	References

	On the Power of Nondeterministic Circuits and Co-Nondeterministic Circuits
	1 Introduction
	2 Preliminaries
	2.1 Circuits
	2.2 The Gate Elimination Method

	3 Proof of Theorem 2
	4 Nondeterministic Selecting
	5 Proof of Theorem 1
	5.1 The Nondeterministic Circuit Complexity
	5.2 The Deterministic Circuit Complexity
	5.3 The Co-Nondeterministic Circuit Complexity

	6 Concluding Remarks
	References

	On Hardest Languages for One-Dimensional Cellular Automata
	1 Introduction
	2 Definitions
	3 No Hardest Language for Trellis Automata
	4 The Hardest Language for Linear-Time Cellular Automata
	5 On Real-Time vs Linear-Time Cellular Automata
	References

	Usefulness of Information and Unary Languages
	1 Introduction
	2 Preliminaries, Notations and Definition of Problem
	2.1 Number Theory
	2.2 Usefulness of Information

	3 Unary Deterministic Finite Automata
	3.1 Rolling Cycle of UDFA

	4 Deterministic Decomposability of -cyclic Languages
	References

	Learning
	Learnability and Positive Equivalence Relations
	1 Introduction
	2 Preliminaries
	3 Learnability
	4 Results for All Positive Equivalence Relations: Fin, Conf, Ex, Vac and BC Learning
	5 Learnability of Families Closed Under Special Positive Equivalence Relations
	6 Conclusion
	References

	Learning Mealy Machines with One Timer
	1 Introduction
	2 Mealy Machines with a Single Timer
	3 Learning MM1Ts
	3.1 From MM1Ts to Mealy Machines and Back
	3.2 Membership Queries

	4 From MM1T to DOTA Learning
	5 Case Studies
	5.1 Learning Setup
	5.2 Android Authentication and Key Management
	5.3 Performance Comparison

	6 Conclusion and Future Work
	References

	Logics and Languages
	Finite-Word Hyperlanguages
	1 Introduction
	2 Preliminaries
	3 Hyperregular Expressions
	4 Nondeterminsitic Finite-Word Hyperautomata
	5 Properties of Regular Hyperlanguages
	5.1 Closure Properties
	5.2 Decision Procedures

	6 Discussion and Future Work
	References

	Temporal Logics with Language Parameters
	1 Introduction
	2 Preliminaries
	3 Logics
	3.1 Extended LTL
	3.2 Extended CTL* and CTL+

	4 Automata for LTL[U]
	5 Expressivity
	6 Satisfiability
	7 Model Checking
	References

	Commutative Rational Term Rewriting
	1 Introduction
	2 Preliminaries
	2.1 Finite Automata
	2.2 Rational Terms
	2.3 Rational Term Rewriting
	2.4 Products of Canonical Regular Systems

	3 Automata for Inverse Rewrite Steps
	4 Automata for Join of Branching Steps
	5 Automata for Difference of Branching Steps
	6 Closure Under Equivalence
	7 Conclusion
	References

	Context-Free Grammars with Lookahead
	1 Introduction
	2 Languages with Lookahead
	3 Context-Free Grammars with Lookahead
	3.1 Definition of CFGLa
	3.2 Closure Properties
	3.3 Operational Semantics and Parsing Expression Grammars

	4 Related Work and Discussion
	References

	Tree-Like Unit Refutations in Horn Constraint Systems
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 Length-Bounded Tree-Like Unit Refutations
	5 Optimal Length Tree-Like Unit Refutations
	6 Lower Bounds on Kernel Size for TLURD
	7 Conclusion
	References

	Trees and Graphs
	Homomorphic Characterization of Tree Languages Based on Comma-Free Encoding
	1 Introduction
	2 Basic Definitions
	3 Main Results
	4 Conclusion
	References

	Approximated Determinisation of Weighted Tree Automata
	1 Introduction
	2 Preliminaries
	3 Approximated Determinisation
	4 Approximated Twinning Property
	5 Decidability of the Twinning Property
	6 Outlook
	References

	Sequentiality of Group-Weighted Tree Automata
	1 Introduction
	2 Preliminaries
	2.1 Weighted Tree Automata

	3 Lipschitz and Twinning Property
	3.1 The Lipschitz Property
	3.2 The Twinning Property

	4 Sequentiality of the Twinning Property
	5 Outlook
	References

	An Algorithm for Single-Source Shortest Paths Enumeration in Parameterized Weighted Graphs
	1 Introduction
	2 Definitions
	2.1 Parametric Graphs
	2.2 Trees over Parametric Graphs
	2.3 Constraints and Zones Associated to Trees

	3 Presentation of Our Algorithm for Minimal Distances
	4 Formal Presentation of Our Algorithm
	4.1 The Algorithm
	4.2 Proof of the Algorithm
	4.3 Complexity

	5 Conclusion
	References

	Words and Strings
	On Balanced Sequences and Their Asymptotic Critical Exponent
	1 Introduction
	2 Preliminaries
	3 Languages of Balanced Sequences
	4 Critical Exponent and Its Relation to Return Words
	5 Asymptotic Critical Exponent of Balanced Sequences
	References

	Completely Reachable Automata, Primitive Groups and the State Complexity of the Set of Synchronizing Words
	1 Introduction
	2 Preliminaries and Definitions
	3 General Results on the State Complexity of Syn(A)
	4 Permutation Groups and State Complexity of Syn(A)
	4.1 Primitive and k-Homogeneous Permutation Groups
	4.2 Sync-Maximal Permutation Groups

	5 k-Reachable Permutation Groups
	6 Conclusion
	References

	State Complexity of the Set of Synchronizing Words for Circular Automata and Automata over Binary Alphabets
	1 Introduction
	2 Preliminaries and Definitions
	3 General Results on the State Complexity of Syn(A)
	4 Generalized Circular Automata
	5 Automata over Binary Alphabets
	6 Conclusion
	References

	Cadences in Grammar-Compressed Strings
	1 Introduction
	2 Preliminaries
	3 NP-Complete Cadence Problems
	4 L-R-Cadences
	5 3-Cadences in Binary Strings
	6 Conclusion
	References

	Author Index

