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Preface

As the study of mathematics competencies becomes an international hot topic in 
mathematics education research, we are fortunate to start a research project to assess 
the mathematical competencies of Chinese students. As the research progresses, we 
gradually have greater interactions with international and domestic scholars. When 
Mathematics curriculum standards for secondary education (2017 version) was 
promulgated by the Ministry of Education of the People’s Republic of China, we 
were turning our research findings into publication. We firmly believe that the con-
clusions drawn from the rigorous research will promote the development of math-
ematics competency–oriented high school mathematics curriculum in China.

With the team members’ joint efforts, the manuscript presents the main findings 
from the mathematics competencies project. We hope that this achievement opens a 
window for relevant parts of the world to the understanding Chinese students’ math-
ematics competencies, and also provides richer data and information to those who 
are interested in Shanghai PISA.

This book consists of 20 chapters. The first chapter aims to explain the cultural 
foundation of Chinese mathematics education by the characteristics of Chinese 
mathematics teaching. Chapter 2 reviews PISA assessment framework followed by 
exploring Chinese students’ mathematics performance in this serial large-scale 
international comparison studies. Chapter 3, based on a theoretical analysis, devel-
ops a mathematics competency framework which reflects the characteristics of 
Chinese mathematics education and also illustrates six components of mathematics 
competency: mathematical problem posing, mathematical problem solving, math-
ematical representation and transformation, mathematical reasoning and argumen-
tation, mathematical modeling, and mathematical communication. Based on this 
competency framework, Chaps. 5, 7, 9, 11, 12, and 14 further develop component- 
specific assessment frameworks followed by assessing and analyzing Chinese 
eighth graders’ corresponding mathematics competencies. In order to assess stu-
dents’ performance, the ways how the national mathematics curriculum documents 
(e.g., mathematics teaching syllabus or mathematics curriculum standards) describe 
and stipulate different components of mathematics competencies were first classi-
fied, counted, analyzed and illuminated from a perspective of the historical develop-
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ment of Chinese mathematics curriculum (see Chaps. 4, 6, 8, 10 and 13) before 
reporting the results of students’ performance in the assessments. As mathematical 
modeling is a relatively new topic in the development of high school mathematics 
curriculum in China, the analysis of the historical development of the notation and 
students’ performance were combined in one chapter (see Chap. 12).

Besides the cognitive aspects of students’ mathematics competencies, the 
Chinese mathematics curriculum also pays great attention to students’ non- cognitive 
performance related to mathematics’ core competencies. Therefore, Chaps. 15 and 
16 mainly report Chinese students’ self-efficacy, self-evaluation, and anxiety related 
to their core competencies using the assessment data.

If Shanghai PISA opens a window for the world to understand Chinese mathe-
matics education, this book hopes to open a door for international and domestic 
scholars. We welcome everyone to come to get know and have discussions. In order 
to stimulate the discussions of Chinese students’ mathematics competencies, this 
book invites three experts, Professor Emeritus Kaye Stacey from the University of 
Melbourne, Professor Frederick K.S. Leung from the University of Hong Kong, and 
Professor Linyuan Gu from the Shanghai Academy of Educational Science, to pro-
vide commentaries on the various conclusions of this project based on their own 
experiences and perspectives.

This book is the final product of a major project of the Humanities and Social 
Science Key Research Base of the Ministry of Education, “Research on Chinese 
Students’ Mathematical Competencies Assessment” (Project Number: 
16JJD880023). The working team firstly appreciates the high trust from Prof. 
Yunhuo Cui, who encouraged us to host the project while providing adequate finan-
cial support. Thanks also go to all students and relevant staff who participated in this 
investigation. For the book writing, the first thanks should be addressed to Dr. Jinfa 
Cai, the editor-in-chief of the book series, for the initiation of the project as well as 
the design of the book. The next thanks goes to Prof. Yong Zhou, whose profes-
sional advice on historical content analysis of curriculum standards inspired us 
greatly. Our thanks shall also extend to Julie-Ann Edwards, Xuhui Li, Wenjuan Li, 
and Xueying Ji who provided their constructive remarks on our early draft. Last but 
not the least, we are indebted to Springer for their editorial help, keen insight, and 
ongoing support along the way.

Shanghai, China  Binyan Xu
Shanghai, China  Yan Zhu
Shanghai, China  Xiaoli Lu

Preface
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Chapter 1
From ‘Two Basics’, to ‘Four Basics’ 
to ‘Core Mathematics Competencies’ 
in Mainland China

Jing Cheng, Jiansheng Bao, and Dianzhou Zhang

Abstract This chapter introduces ‘core mathematics competencies’ emphasised in 
mathematics curriculum standards in mainland China and the ‘Four Basics’ devel-
oped from a tradition of mathematics teaching in mainland China known as ‘Two 
Basics’. ‘Core mathematics competencies’ include mathematical abstraction, logi-
cal reasoning, mathematical modelling, intuitive imagination, mathematical opera-
tion and data analysis. The ‘Four Basics’ advocates attaching importance to basic 
knowledge, basic skills, basic thoughts and basic activity experiences in mathemat-
ics; and it seeks the overall development of students. ‘Four Basics’ can include a 
variety of cognitive modules where knowledge, skills, thoughts and activities are 
closely linked and cannot be separated. ‘Four Basics’ is to core mathematics com-
petencies what cells are to human organs. Chinese students’ outstanding perfor-
mance in international mathematics assessment may attributed to ‘Four Basics’. 
Some questions for further study are raised at the end of the chapter.

Keywords Mathematics curriculum · Curriculum reform · Curriculum standards · 
Mathematics competencies · Two Basics · Four Basics · Mathematical knowledge · 
Mathematical skills · Mathematical thoughts · Mathematical activity experience · 
Mainland China

Nowadays, China is implementing a mathematics curriculum reform oriented by 
subject competency. As intended curricula, the mathematics curriculum standards 
of mainland China have clearly explained mathematics competency. In Mathematics 
Curriculum Standards for Compulsory Education (2011 version) (Ministry of 
Education of the People’s Republic of China [MOE], 2012) and the latest edition 
Mathematics Curriculum Standards for Senior Secondary Schools (2017 version) 
(MOE, 2018), the corresponding requirements and suggestions on ‘core 
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mathematics competencies’ are successively put forward. The formation of these 
curriculum goals can be partly attributed to the global environment of the develop-
ment of mathematics education, and its more important source of attribution is the 
historical development and inheritance of the Chinese mathematics curriculum.

This chapter will first outline the ‘core mathematics competencies’ highlighted 
in the Chinese mathematics curriculum, and it then will focus on introducing ‘Four 
Basics’, which is developed from the ‘Two Basics’ of mathematics education in 
mainland China (Fan, Huang, Cai, & Li, 2004). ‘Four Basics’ is to core mathemat-
ics competencies what cells are to human organs.

1.1  Core Mathematics Competencies in Mainland China

Mathematics Curriculum Standards for Compulsory Education (2011 version) of 
mainland China points out that a mathematics curriculum should focus on the devel-
opment of students’ number sense, symbol sense, spatial concept, geometric intu-
ition, data analysis concept, operation ability, reasoning ability and model thinking 
(MOE, 2012). Mathematics Curriculum Standards for Senior Secondary Schools 
(2017 version) clearly points out that mathematics teaching should help students 
acquire core mathematics competencies, namely, mathematical abstraction, logical 
reasoning, mathematical modelling, intuitive imagination, mathematical operation 
and data analysis (MOE, 2018).

1.1.1  Mathematics Competencies

The word ‘competency’ (素养) in Chinese is composed of two Chinese characters, 
in which ‘素’ means ‘daily’ and ‘养’ represents ‘accomplishment’, i.e. a certain 
level of thought, theory, knowledge and art. Accordingly, ‘competency’ usually 
refers to daily accomplishment. Mathematical competency is ‘a comprehensive 
reflection of the basic characteristics of mathematics in terms of thinking quality, 
key abilities, emotional attitudes and values’ (MOE, 2018, p. 4). Many words in 
English, such as literacy, ability, competence, proficiency, etc., have similar mean-
ings to the term ‘素养’ used in Chinese, but not necessarily the same meaning.

For example, Programme for International Student Assessment (PISA), a large- 
scale international comparative research project, focuses on students’ mathematical 
literacy, which is interpreted as follows:

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret math-
ematics in a variety of contexts. It includes reasoning mathematically and using mathemati-
cal concepts, procedures, facts and tools to describe, explain and predict phenomena. It 
assists individuals to recognize the role that mathematics plays in the world and to make the 
well-founded judgments and decisions needed by constructive, engaged and reflective 
citizens. (OECD, 2013, p. 25)
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As another example, the National Assessment of Educational Progress (NAEP) 
used mathematical abilities and mathematical power to construct its research frame-
work from 1996 to 2003:

The first domain, mathematical abilities, describes three types of knowledge or processes 
required for a student to successfully respond to a question: conceptual understanding; 
procedural knowledge; and problem solving, the ability to synthesize several processes 
when confronting a mathematical situation. The second domain, mathematical power, 
reflects the three processes stressed as major goals of the mathematics curriculum: the abil-
ity to reason, to communicate, and to make connections between concepts and skills either 
across the mathematics content areas, or from mathematics to other curricular areas. 
(Braswell, Dion, Daane, & Jin, 2005, p. 3)

The Denmark KOM project, Competencies and the Learning of Mathematics, 
focuses on ‘mathematical competence’, which includes modelling, reasoning, rep-
resentation, communication, etc.

It indicated that ‘Mathematical competence means the ability to understand, judge, do, and 
use mathematics in a variety of intra- and extra-mathematical contexts and situations in 
which mathematics plays or could play a role. Necessary, but certainly not sufficient, pre-
requisites for mathematical competence are lots of factual knowledge and technical skills, 
in the same way as vocabulary, orthography, and grammar are necessary but not sufficient 
prerequisites for literacy’ (Niss, 2003, pp. 6–7).

For the convenience of expression, this book uses ‘mathematical competency’, 
which is commonly used in international mathematics education research, to refer 
to ‘mathematical literacy’ or ‘critical competence’ which is concerned in the 
mathematics curriculum of mainland China.

1.1.2  Core Mathematics Competencies 
in the Intended Curricula

As intended curricula, the curriculum standards at both compulsory education and 
secondary education stages in mainland China propose requirements on mathemati-
cal competency, such as mathematical abstraction, logical reasoning, mathematical 
modelling, intuitive imagination, mathematical operation and data analysis, while 
providing explanations to their meanings.

Mathematical abstraction refers to the thinking process of ‘getting rid of all the 
physical attributes of things to reach the object of mathematical study’ (MOE, 2018, 
p.  4). It mainly includes abstracting mathematical concepts and the relationship 
between concepts from quantity and quantitative relationship, graphics and graphi-
cal relationship, abstracting general rules and structures from the concrete back-
ground, and using mathematical symbols or mathematical terms to represent them. 
At the stage of compulsory education, ‘number sense’ and ‘symbol sense’ are 
emphasised. Number sense mainly refers to the sense of numbers and quantity, 
quantitative relationship and the estimation of computation results. Symbol sense 
refers to the ability to understand and use symbols to represent numbers, 
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quantitative relationship and the law of changes; symbols can be used for computa-
tion, reasoning, and drawing general conclusions (MOE, 2012, pp. 5–6).

Logical reasoning refers to the thinking process of deducing a proposition from 
some facts and propositions according to logical rules. There are two main types: 
one is inference from propositions held in a small range to those held in a larger 
range, the reasoning forms of which are mainly induction and analogy; and the 
other is inference from propositions held in a large range to those held in a smaller 
range, the reasoning form of which is mainly deductive reasoning (MOE, 2018, 
p. 5). The reasoning ability emphasised at the compulsory education stage generally 
includes plausible reasoning and deductive reasoning. Plausible reasoning infers 
certain results by induction and analogy based on existing facts, experience and 
intuition, while deductive reasoning proves based on the principles of logical rea-
soning from existing facts (including definitions, axioms, theorems, etc.) and deter-
mined rules (including definition, rules, sequence of operations, etc.). The two are 
‘mutually reinforcing’ in the process of solving problems (MOE, 2012, pp. 6–7).

Mathematical modelling is the process of ‘abstracting real problems, represent-
ing and solving them in mathematical language. Specific performance is, in the real 
situation, from the perspective of mathematics, to put forward problems, analyze 
problems, represent problems, build models, draw conclusions, verify results, 
improve models, and ultimately get realistic results’ (MOE, 2018, pp.  5–6). 
Similarly, the process of establishing and solving models emphasised at the compul-
sory education stage includes abstracting mathematical problems from real-life or 
specific situations; using mathematical symbols to establish equations, inequalities, 
functions, etc. to express quantitative relationship and the law of changes in math-
ematical problems; finding results; and discussing the significance of results (MOE, 
2012, p. 7).

Intuitive imagination refers to ‘perceiving the shape and the change of things by 
means of spatial imagination, understanding and solving mathematical problems by 
means of geometric figures. It mainly includes using graphics to describe mathe-
matical problems, establishing the relationship between graphics and symbols, 
building an intuitive model of mathematical problems, and exploring solutions to 
problems’ (MOE, 2018, p.  6). At the compulsory education stage, emphasis is 
placed on developing students’ spatial concept and geometric intuition. Spatial con-
cept refers to ‘abstracting geometric figures according to the characteristics of 
objects, imagining the actual objects described by geometric figures; imagining the 
orientation of objects and the position relationship between them; describing the 
movement and change of figures; drawing graphics according to the description of 
language’. Geometric intuition refers to ‘using graphics to describe and analyze 
problems’ (MOE, 2012, p. 6).

Mathematical operation refers to ‘solving mathematical problems according to 
operation rules on the basis of clarifying operation objects’. It mainly includes 
understanding operation objects, mastering operation rules, exploring operation 
direction, selecting operation methods, designing operation procedures and obtain-
ing operation results’ (MOE, 2018, p. 7). At the compulsory education stage, the 
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emphasis on operational ability mainly refers to the ability to correctly operate 
according to rules and properties. (MOE, 2012, p. 6).

Data analysis refers to ‘the process of obtaining useful information from data and 
forming knowledge. It mainly includes collecting data and extracting information, 
displaying data with charts, constructing a model to analyze data and explaining the 
conclusions contained in data’ (MOE, 2018, p.  7). At the compulsory education 
stage, the formation of the data analysis concept is emphasised: ‘To know that there 
are many problems in real life, we should first do investigation and research, collect 
data, make judgments through analysis, and experience that data contains informa-
tion; to know that there are many methods available for analyzing the same data, 
and we need to choose appropriate methods according to the context of the problem, 
to experience randomness through data analysis. On one hand, the data collected for 
the same thing may be different at each time; on the other hand, as long as there is 
enough data, we may identify rules from it’ (MOE, 2012, p. 6).

1.2  Cells of Core Mathematics Competencies: Four Basics

In the process of doing, learning and using mathematics, students gradually form 
and develop their mathematical competencies. Therefore, daily mathematics teach-
ing plays a significant part in achieving the curriculum goal of mathematical com-
petencies. As the core idea of mathematics education in mainland China, ‘Four 
Basics’ plays an indispensable role in the development of core mathematics compe-
tencies, and its status is comparable to that of cells in human organs. Both 
Mathematics Curriculum Standards for Compulsory Education (2011 version) and 
Mathematics Curriculum Standards for Senior Secondary Schools (2017 version) 
list it as the necessary basis for students to further study and adapt to future develop-
ment (MOE, 2012, 2018).

1.2.1  What Are the Four Basics?

‘Four Basics’ is the abbreviation of basic knowledge, basic skills, basic thoughts 
and basic activity experience (Zhang & Zheng, 2011). Among them, basic knowl-
edge emphasises understanding concepts and principles, basic skills focus on the 
proficiency of procedural knowledge and basic thoughts reflect the methods and 
strategies adopted to solve various problems in the process of mathematics develop-
ment. In addition, mathematics teaching is an activity, and the basic activity 
experience reflects the concern about the activity process.

Four Basics attaches great importance to the foundation, but it does not neglect 
the development. On the contrary, the purpose of laying a good foundation is to 
enable students to seek more practical and efficient comprehensive development on 
the basis of the Four Basics of mathematics.

1 From ‘Two Basics’, to ‘Four Basics’ to ‘Core Mathematics Competencies…
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1.2.2  The Form of Four Basics

Mathematical Four Basics is presented in the form of a cognitive module, which is 
the cube shown in Fig. 1.1 (Zhang & Zheng, 2011).

The first dimension is the accumulation process of basic mathematical knowl-
edge, the second dimension is the practice process of basic mathematical skills and 
the third dimension is the formation process of basic mathematical thoughts.

Mathematical basic activity experiences do not constitute a single dimension, but 
play an adhesive role to bond the other three basics. In fact, students’ experiences 
gained through the ubiquitous basic mathematics activities are interwoven with the 
basic knowledge, skills and thoughts of mathematics, and they permeate the whole 
process of mathematics learning.

In the teaching process of a mathematics class, knowledge acquisition, skill 
training and the refinement of thoughts and methods permeate to each other. There 
is no pure knowledge and also no pure skill without knowledge. The mathematical 
thoughts and methods are built on knowledge and skills, while having their own 
independent value. Students’ mathematical activity experiences run through the 
whole learning process with the above three ‘basics’ as the carrier.

Mathematical Four Basics cannot be separated. For example, to solve a real- 
world problem with an equation, the basic skills of solving equations and the math-
ematical thoughts of modelling are necessary, which come from students’ active 
participation in mathematical activities. Emphasis that ‘Four Basics’ is a cognitive 
module shows that the Four Basics are closely linked and cannot be separated.

1.2.3  From Four Basics to Core Mathematics Competencies

Core mathematics competencies is the goal pursued when teaching the Four Basics 
of mathematics. Each core mathematics competency, which consists of certain 
‘knowledge, skills, thoughts and mathematical activity experience’, is formed grad-
ually during a variety of mathematics lessons.

Basic knowledge 
Basic skills 

Basic thoughts Basic activity 
experience

 

Fig. 1.1 Module diagram 
of four basics (Zhang & 
Zheng, 2011)
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Human cells are the basis of every organ. Like brain cells and heart cells have 
different organ functions, the Four Basics modules in different mathematics lessons 
have various characteristics. Each ‘Four Basics’ module has its own distinct charac-
teristics, serving to form certain core mathematics competencies.

For example, a simple Four Basics module, such as recognising natural numbers 
less than 20, involves both mathematical abstraction (from concrete objects to 
abstract number) and mathematical modelling (counting in real-world problems) 
among core mathematics competencies. Conversely, the core competency of math-
ematical abstraction is developed from a variety of Four Basics modules with 
abstract characteristics, such as recognising numbers and manipulating symbols.

The long-term and comprehensive effect of Four Basics is the core mathematics 
competencies that the school mathematics curriculum hopes students can form.

1.3  Formation of Four Basics

The formation of Four Basics is rooted in the unique social and cultural background 
of China, and it comes from the long-term research, practice and reflection of math-
ematics educators. Its early form in mathematics curriculum is Two Basics and 
Three Abilities, which have gradually developed into Four Basics and Six Core 
Competencies in recent years.

1.3.1  Historical Development of Mathematics Curriculum 
in Mainland China

Mathematics curriculum in Mainland China is influenced by different social back-
grounds and international environments in different historical periods, showing dif-
ferent characteristics which are reflected in the representative curriculum 
programmatic documents of the corresponding period (Curriculum and Teaching 
Materials Research Institute (CTMRI), 2001).

During the period of the Republic of China (before the founding of the People’s 
Republic of China), western mathematics education was introduced, and the ancient 
imperial examination system changed to the modern teaching system. The represen-
tative programmatic documents of the curriculum included the promulgation of 
Middle School Rules Made by Emperor Order in 1902 and New Education System 
Curriculum Standards in 1923.

After the founding of the People’s Republic of China in 1949, the development 
of the Chinese mathematics curriculum entered its second stage. In the early days of 
its founding, Chinese mathematics education was fully learned from the Soviet 
Union’s system. In June 1950, Simplified Mathematics Syllabus for Junior High 
Schools (Draft) was promulgated. In December of the same year, the People’s 
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Education Publishing House was established to implement the national unified sup-
ply system for primary and secondary school textbooks, compiling a unified national 
mathematics curriculum. In 1958, an educational reform took place, where mathe-
matics courses were compiled according to the needs of industrial and agricultural 
production, seriously undermining the systematic nature of mathematics courses. 
Reflecting on the previous lessons, in May 1963, the Ministry of Education promul-
gated Mathematics Syllabus for Full-Time High Schools (Draft), which took basic 
knowledge of mathematics and Three Abilities (correct and rapid computing ability, 
logical reasoning ability and spatial imagination ability) as the goal of mathematics 
teaching in secondary schools, a germination of Two Basics mathematics teaching. 
The Cultural Revolution of 1966 undermined the normal teaching order, and the 
mathematics curriculum also entered anarchy.

Along with the end of the Cultural Revolution in 1976, China entered the histori-
cal period of mind emancipation and reform and opening up, and the mathematics 
curriculum was continuously developed and innovated. In February 1978, the 
Mathematics Syllabus for Full-time Ten-year High Schools (trial version) was pro-
mulgated, and for the first time ‘cultivating students’ ability to analyze problems 
and solve problems’ (CTMRI, 2001, p.  453) was included in the ‘objectives of 
teaching’, where this ability was seen as the result of computing ability, logical 
thinking ability and spatial imagination ability. It was also indicated that the arrange-
ment of mathematics teaching contents should be conducive to students’ ‘learning 
basic knowledge and mastering basic skills’.

In 1986, the Compulsory Education Law of the People’s Republic of China stipu-
lated that the nation should implement nine-year compulsory education, and primary 
and junior secondary education belong to this stage. In December of the same year, 
the Mathematics Syllabus for Full-time Secondary Schools was promulgated, clearly 
stating that the purpose of secondary school mathematics teaching is to enable stu-
dents to learn ‘basic knowledge and basic skills’, to cultivate students’ three major 
abilities and to gradually form the abilities of analysing and solving problems.

At the beginning of the second century, the programmatic documents of the 
Chinese mathematics curriculum changed from the previous ‘syllabus’ to ‘curricu-
lum standard’, emphasising the process goals of mathematics teaching while paying 
attention to the outcome goals, and putting forward new suggestions for teachers’ 
teaching as well as student evaluation. In 2012, in the Mathematics Curriculum 
Standards for Compulsory Education (2011 version), the Four Basics were pro-
posed as the overall goal of the mathematics curriculum.

1.3.2  From Two Basics to Four Basics

The proposal of the Four Basics of mathematics in mainland China has its unique 
cultural background and educational tradition (Zhang, 2006). China’s farming cul-
ture emphasises intensive cultivation and non-violation of agricultural time. 
Confucian culture advocates diligence and hard work, and it believes in classic 
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literature. The imperial examination culture requires learners to be familiar with the 
classic way of writing and to unify the style. Folklore’s educational maxims, such 
as ‘practice makes perfect’, ‘one minute on stage, ten years off stage’, largely reflect 
the values of diligence (Fan et al., 2004).

China’s modern mathematics education was originally influenced by other coun-
tries. Since the Revolution of 1911, the school system and mathematics curriculum 
have largely referred to the United Kingdom and the United States. Meanwhile, the 
educational concept has been greatly influenced by Dewey’s progressive teaching. In 
the early days of the founding of the People’s Republic of China, the local mathematics 
education was influenced by the Soviet’s school and focused on the rigour of mathe-
matics. However, Chinese mathematics education has always adopted an eclectic 
approach to various educational concepts and gradually formed its own characteristics 
(Zhang, 2014). The Mathematics Syllabus for Full-Time High Schools (Draft) in 1963 
summarised the positive and negative aspects of mathematics education experience and 
lessons since the founding of the People’s Republic of China, and made a timely propo-
sition to emphasise the basic knowledge of mathematics and the teaching of basic skills 
(CTMRI, 2001), where the Two Basics began to form. Although experiencing the 
Cultural Revolution from 1966 to 1976, after the reform and opening up, the wrong 
tendency of neglecting the basics was corrected, and the Two Basics in mathematics 
teaching were re-emphasized. In the Mathematics Syllabus for Full-time Secondary 
Schools in 1986, ‘basic knowledge’ and ‘basic skills’ were clearly listed as the purpose 
of mathematics teaching (CTMRI, 2001), which marked the formal establishment of 
the Two Basics mathematical teaching concept in the syllabus (Zhu & Bao, 2017).

In the 1980s, the study of ‘mathematical thoughts and methods’ initiated by Xu 
Lizhi gradually formed the concept of ‘basic thoughts’, focusing on important 
thoughts in mathematics rather than specific operable methods (Xu, 2000). Since 
the beginning of the new century, due to the attention to active participation of stu-
dents, the concept of ‘basic activity experience’ in mathematics has been proposed. 
These two concepts, together with Two Basics, constitute the Four Basics (Zhang & 
Zheng, 2011), which was formally proposed in 2012 in the Mathematics Curriculum 
Standards for Compulsory Education (2011 version) (MOE, 2012).

It can be seen that the Four Basics is not only a product of the historical develop-
ment of Chinese mathematics curriculum, but also a profound reflection on the 
‘China Road’ of mathematics education from a global perspective (Zhang & 
Yu, 2013).

1.3.3  Comprehensive Development Is Inseparable 
from a Solid Foundation

The history of Chinese and foreign mathematics education has repeatedly shown 
that once the foundation is neglected and the necessary balance is lost, school edu-
cation has to pay a heavy price. In the developed countries in Europe and North 
America, a tendency to ignore the ‘foundation’ has long existed in school education.

1 From ‘Two Basics’, to ‘Four Basics’ to ‘Core Mathematics Competencies…



10

After the Second World War, because the Soviet satellite took the lead, there have 
been ‘new mathematics movements’ in some developed countries in Europe and 
North America. At that time, in the reform of mathematics education, in order to 
improve the theoretical level of mathematics curriculum, a large amount of abstract 
and incomprehensible contents, such as ‘terminology of set’, ‘binary’, and ‘mathe-
matical structures like group, ring and field’, were introduced in the primary school 
mathematics curriculum. The result of the trial was a separation from students’ real-
ity and ended in failure. Consequently, in the 1970s, the slogan ‘Back to Basics’ was 
implemented as a retrospective, but there was no careful distinction between return-
ing to the basics and simply returning to the past. By the end of the 1970s, people 
began to realise that ‘Back to Basics’ was another failure. Mechanical exercises 
kept students’ ability to think and solve problems at a low level, and basic skills 
were not developed (Nie, Zheng, Sun, & Cai, 2010). In other words, although the 
abstract content of ‘formalism’ was abandoned in mathematics teaching in primary 
and secondary schools, it has embarked on ‘reducing the difficulty without restric-
tion’ and over-promoting the improper action of ‘mathematics in daily life’. Some 
mathematics educators who were obsessed with ‘progressive education’ re- 
implemented the educational concept of ‘child centrism’, regarding students’ inter-
est and happiness as the starting point, and ‘design tasks with children’s daily life’ 
as the only goal of mathematics teaching. However, having a lot of basic mathemat-
ics knowledge and skill does not stimulate children’s interests, such as the recitation 
of multiplication table, division of large numbers, operations of integers, fractions 
and irrational numbers, etc. Without these key points, many mathematical concepts 
cannot be understood, mathematical operations cannot be done, the mathematical 
foundation cannot be laid and thus the development of mathematics cannot be 
reached (Chen & Huang, 2016). Some developed countries in Europe and North 
America have performed poorly in international mathematics tests, and this may be 
part of the reason.

In contrast, the outstanding performance of Chinese students may be inseparable 
from the Four Basics of mathematics. From the International Assessment of 
Educational Progress (IAEP) of 1990–1991 (Fan et al., 2004) to the late PISA test 
(Gao, 2015), Chinese students have consistently ranked among the top in almost all 
international tests of mathematics. These tests not only reflect the students’ mastery 
of basic knowledge and basic skills, but also examine students’ ability to use math-
ematics knowledge to solve practical problems to a certain extent. Generally speak-
ing, the advantage of Chinese mathematics education lies in students’ solid 
foundation and mathematics competencies developed on the foundation.

American mathematics education had the term ‘Math War’ in the 1990s, and one 
of its debating focuses was on whether the mathematical foundation of American 
students was stable. In 2008, the National Mathematical Teachers’ Committee 
(NCTM) published a document titled Curriculum Focal Points for Pre-Kindergarten 
Through Grade 8 Mathematics: A Quest for Coherence, which identified the key 

J. Cheng et al.



11

mathematical skills and knowledge that students must master, namely ‘Curriculum 
Focal Points’, the purpose of which was to help schools focus their mathematics on 
basic skills (Tong & Song, 2007). In 2006, President Bush appointed a National 
Mathematics Advisory Panel to help the president and the minister of education 
build the best American mathematics education based on scientific research. The 
final report of the committee in 2008 was titled Foundations for Success, where the 
success of future reforms was still relied on the foundation (National Mathematics 
Advisory Panel, 2008). Why repeatedly emphasized foundation? It was because 
foundation had long been ignored by the mainstream education concept, which 
should be concerned now.

The importance of foundation can also be seen in the event that the British 
Ministry of Education planned to learn from Shanghai, China’s system. What the 
United Kingdom has to do is to allow students to do more exercises and improve the 
speed of computation, just like what is done for Chinese primary school students; 
they should also introduce the student practice book One Lesson One Exercise, 
published by East China Normal University Press, as a template. In fact, British 
education authorities hope that British primary school students simply gain a solid 
mathematical foundation (Fan, Ni, & Xu, 2018).

The British understanding of the ‘Chinese mathematics teaching model’ is that 
there is an importance on the foundation. However, it is one-sided to think that the 
‘Chinese teaching model’ does not talk about development. With the continuous 
exchange of Chinese and foreign mathematics education experiences, the Four 
Basics of Chinese mathematics are also constantly developing. The foundation does 
not mean repeated practice, nor does it hope to build a ‘thatched house’ on the basis 
of granite. Instead, it seeks development on a solid foundation and closely combines 
‘laying the foundation’ with ‘seeking development’.

1.4  Questions Worthy of Further Study

Why do Chinese students have a solid foundation? How does this happen? The 
existing research provides some answers, among which the importance of the ‘Four 
Basics’ in mathematics education may be one answer. Excellent mathematics edu-
cation and research results at home and abroad are constantly enriching the Four 
Basics in mathematics teaching. However, there is still a lack of systematic research 
on the connotation, classification and psychological basis of the Four Basics.

With regard to the Four Basics in mathematics teaching, there are a series of 
questions waiting to be answered: how does one deal with the relationship between 
memorising algorithms and understanding arithmetic? How is the speed of compu-
tation related to higher-order thinking? How does one realise mathematical thoughts 
and methods through problem solving? How do the exercises with variation avoid 
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dull repetition? How do mathematics activities serve the formation of the other three 
Basics? What role do teaching methods such as teaching, teacher- student interac-
tion, open-ended question and creation of context play in the Four Basics teaching? 
What is the relationship between foundation and innovation? All of these questions 
need further research and reflection.
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Chapter 2
What Can PISA Tell Us About Students’ 
Mathematics Learning in Shanghai, 
China?

Yan Zhu

Abstract This chapter starts with a review of the development of the concept of 
mathematical literacy proposed by the Programme for International Student 
Assessment (PISA) followed by an analysis of the changes in the mathematics assess-
ment framework across cycles. Along with devoting more attention to noncognitive 
skills in the field of education, PISA developed mathematics-related measures on 
attitudes and emotions that contribute to students using and developing their mathe-
matical capacities. The participation of China Mainland in PISA began with Shanghai 
in 2009 and 2012. During these two appearances, the performance of Shanghai 
topped the mathematics achievement ladder, which produces a global ‘PISA-shock’. 
However, PISA found that Shanghai students’ self-concept and mathematics inten-
tions are relatively low, while both self-belief and dispositions to mathematics show 
significantly positive impacts on mathematics performance. Regarding the rich infor-
mation from the PISA studies, both education officials and the public in China 
Mainland gave generally reflective, measured and self-critical responses.

Keywords PISA · Mathematical literacy · Mathematics performance · 
Mathematical contents · Mathematical processes · Situations and contexts · 
Noncognitive skills · Self-related cognition · Dispositions towards mathematics · 
Subjective norms in mathematics · Intrinsic motivation · Instrumental motivation · 
Shanghai · East Asia · Structural equation model

2.1  About PISA Mathematics

The Programme for International Student Assessment (PISA) is a triennial interna-
tional survey study by the Organization for Economic Cooperation and Development 
(OECD) in member and non-member nations/economies. The programme evaluates 
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educational systems worldwide by measuring 15-year-old students’ skills and 
knowledge as they approach the end of their compulsory education (OECD, 2019). 
In particular, it assesses how students apply what they learn in school to real-life 
situations. PISA has been in place since 1997 and was first implemented in 2000; it 
has been repeated every 3 years. To date, there have been seven cycles. In the most 
recent one (i.e. PISA 2018), over half a million 15-year-olds from 80 countries and 
economies participated.

While reading, mathematics and science are the three major competence fields of 
PISA, the main focus alternates between the three domains. One reason for this 
practice is the infeasibility of testing all students in all fields in every cycle. 
Consequently, mathematical literacy became the ‘major’ domain of PISA 2003 and 
PISA 2012. In the other cycles, mathematics was assessed as a ‘minor’ domain. 
Two-thirds of the testing time is devoted to ‘major’ competence domains, while the 
‘minor’ domains provide a summary profile of skills.

The concept of mathematical literacy was first proposed in PISA 2000, though 
reading was the major competence field that year. In contrast to many other attempts 
to make international comparisons, PISA mathematics is concerned with students’ 
capacity to draw upon their mathematical competencies to meet future challenges 
(Wong, 2003). In particular, PISA 2000 defines mathematical literacy as ‘an indi-
vidual’s capacity to identify and understand the role that mathematics plays in the 
world, to make well-founded mathematical judgements and to engage in mathemat-
ics, in ways that meet the needs of that individual’s current and future life as a con-
structive, concerned and reflective citizen’ (OECD, 1999, p. 41). This suggests that 
the emphasis in PISA mathematics is ‘on mathematical knowledge put into func-
tional use in a multitude of different situations and contexts’ (Blum, 2002, p. 151) 
to allow one to participate in societal activity (OECD, 1999). The same definition 
was used until PISA 2009.

In PISA 2012, mathematics again returned as the major testing field. Its assess-
ment framework was fully revised to introduce three new mathematical processes in 
which students engaged as active problem solvers. In particular, the definition of 
mathematical literacy was renewed with explicit reference to the component pro-
cesses of mathematical modelling (i.e. formulating real-world problems mathemati-
cally, employing mathematics to solve the mathematically formulated problem, and 
interpreting and evaluating the mathematical results in real-world terms; Stacey, 
2015). Stacey remarked that the intention of revising the definition was to clarify the 
ideas underpinning mathematical literacy so that they can be operationalized more 
transparently (Stacey, 2015). As a result, PISA 2012 defined mathematical literacy as

an individual’s capacity to formulate, employ, and interpret mathematics in a variety of 
contexts. It includes reasoning mathematically and using mathematical concepts, proce-
dures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognize the role that mathematics plays in the world and to make the well-founded judg-
ments and decisions needed by constructive, engaged and reflective citizens. 
(OECD, 2013, p. 25)

This new definition was also used in the PISA 2015 and 2018 assessments (OECD, 
2017a, 2019).

Y. Zhu
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Compared to the one-time change in the definition of mathematical literacy, the 
mathematics framework was updated and revised on several occasions. In the first 
PISA assessment, two major aspects (i.e. mathematical competencies and mathe-
matical big ideas) and two minor aspects (i.e. mathematical curricular strands and 
situations and contexts) were used in the assessment of mathematics. That is, the 
major aspects were used for the purpose of describing the scope of the assessment 
and the learners’ proficiency, while the minor aspects were used to ensure adequate 
coverage of the domain and balance in the range of assessment tasks selected 
(OECD, 1999).

The first major aspect, mathematical competencies, includes eight general math-
ematics skills in a non-hierarchical order (e.g. problem posing and solving skills; 
symbolic, formal and technical skills; and modelling skills), which are further orga-
nized into three larger classes of competency to facilitate the operationalization. The 
three classes are reproduction, definitions and computations (class 1); connections 
and integration for problem solving (class 2); and mathematical thinking, general-
ization and insight (class 3). The other major aspect, mathematical big ideas, repre-
sents clusters of relevant, connected mathematical concepts that appear in real 
situations and contexts. While a large number of big ideas can be identified in the 
subject of mathematics, six of them were selected as the focus on the PISA mathe-
matical literacy (e.g. chance, change and growth, and dependency and 
relationships).

The first minor aspect, mathematical curricular strands, represents the content of 
school mathematics as implemented in many school curricula. Nine strands are con-
sequently identified in PISA to ensure a balance in the items and a reasonable spread 
of content in relation to the school mathematics curriculum (e.g. number, measure-
ment and estimation). The other minor aspect, situations and contexts, is about the 
settings in which mathematics tasks are presented. Five situations are identified in 
PISA as being at a certain ‘distance’ from the learners: personal, educational, occu-
pational, public and scientific.

Mainly because mathematical literacy was one minor assessment domain in 
PISA 2000, a less fully articulated framework was developed (OECD, 2009a). In 
2003, the mathematics framework was updated and fully developed to guide a com-
prehensive assessment of mathematics as a major domain. The PISA 2006 Technical 
Report summarized five key changes to the mathematics framework between PISA 
2000 and PISA 2003, including (1) expanding the rationale of the PISA emphasis 
on the use of mathematical knowledge and skills to solve problems, (2) restructur-
ing and expanding domain content (i.e. expanding from two broad content areas to 
four; removing all references to mathematics curricular strands as a separate content 
categorization), (3) a more elaborate rational for the existing balance between ‘real-
istic mathematics’ and more traditional context-free items, (4) a redeveloped dis-
cussion of the relevant mathematical processes, and (5) considerable elaboration 
through the addition of examples (OECD, 2009a). This mathematics framework 
was unchanged in the next two PISA cycles (OECD, 2009a, 2009b).

When mathematics returned as the major test domain in PISA 2012, the existing 
framework received a review and subsequent development work. Besides revising 

2 What Can PISA Tell Us About Students’ Mathematics Learning in Shanghai, China?
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the definition of mathematical literacy, several other changes were highlighted in 
the PISA 2012 Technical Report, including (1) the ways in which mathematical 
content was conceptualized and described, (2) the definition and description of how 
mathematical processes received substantial changes (e.g. processes are used for the 
first time in PISA 2012 as a primary reporting dimension), and (3) the contexts 
within which opportunities for students to express their levels of mathematics lit-
eracy would be provided were revised (OECD, 2014). While mathematics was 
assessed as a minor domain in the next two cycles (PISA 2015 and PISA 2018), the 
corresponding frameworks continued the description and illustration of the one set 
out in PISA 2012 (OECD, 2017a, 2019).

During the first few cycles of PISA, students’ mathematical literacy was assessed 
in the classic paper-and-pencil mode. The computer-based assessment of mathemat-
ics (CBAM) was first offered in PISA 2012, while the paper-based tests remained as 
the main assessment mode (OECD, 2013). Computer-based tests became the main 
mode of assessment in PISA 2015 and PISA 2018, and paper-based alternatives 
were still used in countries and economies that did not have the resources available 
for computer-based testing in schools (OECD, 2017b). In either assessment mode, 
students are asked to respond to approximately 2 hours of test questions in reading, 
mathematics and science, with test items being a mixture of multiple-choice items 
and questions that require students to construct answers.

As PISA alternates its emphasis on reading, mathematics and science literacy in 
different cycles, a combined set of major- and minor-domain item clusters are com-
piled into a set of booklets in a balanced incomplete block (BIB) design. The use of 
the BIB design is to ensure wide coverage of content without burdening individual 
students (Weeks, von Davier, & Yamamoto, 2014). Figure 2.1 illustrates the repre-
sentation of the PISA content area item clusters from 2000 to 2018. It is clear that 
the change in content representation associated with the major/minor domain 
design, while the representation of the minor domain content areas is inconsistent 
over time.
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With the BIB design, ‘major domain’ items occur in all booklets, with ‘minor 
domain’ items in some. This implies that more time is devoted to ‘major domain’ 
items than ‘minor domain’ ones. Consequently, all sampled students responded to 
mathematics items in PISA 2003 and PISA 2012, while in the remaining cycles, 
only some students responded to mathematics items, depending on which particular 
booklet they were randomly assigned from the rotation design (details shown in 
Table 2.1).

2.2  Noncognitive Factors in PISA Mathematics

In addition to assessments, PISA includes Student and School Questionnaires to 
collect data that can be used in constructing indicators pointing to social, cultural, 
economic and education factors that are associated with student achievement 
(OECD, 2002). The student questionnaire is administered after the literacy assess-
ment, which takes students about 30–35  minutes to complete. An overarching 
design is used in the development of the student context questionnaire, including 
both general variables (for all PISA cycles) and domain-specific variables (for 
major domains only, included every 9 years). As a result, when mathematics was the 
major survey domain, the PISA 2003 and PISA 2012 frameworks identified 
mathematics- related aspects of the assessment of attitudes that contributed to stu-
dents using and further developing their mathematical capacities (Stacey & Turner, 
2015). As the PISA 2003 Assessment Framework (OECD, 2003) highlighted, ‘math-
ematics related attitudes and emotions such as self-confidence, curiosity, feelings of 
interest and relevance, and the desire to do or understand things, . . . are important 
contributors’ (p. 26). Similarly, the PISA 2012 Assessment and Analytical Framework 
(OECD, 2013) specified important aspects of the affective domain as ‘information 
about students’ experience with mathematics in and out of school . . ., motivation, 
interest in mathematics and engagement with mathematics’ (p.182).

Student engagement with mathematics is one important measure in the PISA 
2003 survey, which refers to ‘students’ active involvement in learning, . . . students’ 

Table 2.1 Assessment design for mathematics literacy in PISA 2000 to PISA 2015

No. of 
mathematics 
clusters

No. of 
mathematics 
items

Corresponding minutes 
of mathematics material

No. of booklets with 
mathematics items (total 
no. of booklets)

2000 4 32 60 mins 5 (9)
2003 7 85 210 mins 13 (13)
2006 4 48 120 mins 10 (13)
2009 3 34 90 mins 9 (13)
2012 7 110 270 mins 13 (13)
2015 6 81 180 mins 36 (66)

Note. PISA 2018 includes six mathematics clusters representing approximately 180 minutes of 
testing time

2 What Can PISA Tell Us About Students’ Mathematics Learning in Shanghai, China?
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beliefs about their own ability to succeed in a subject, motivation to learn a subjec-
tive and emotional relationship with a subject, as well as their choice of learning 
strategies for a subject’ (OECD, 2005, p. 38). Five constructs are developed in this 
theme: self-efficacy, self-concept, anxiety, interest and enjoyment and instrumental 
motivation. The elaboration in PISA 2003 is listed as follows:

• Mathematics self-efficacy, MATHEFF, derived from students’ responses about 
their perceived ability to solve a range of pure and applied mathematics problems 
(8 items)

• Mathematics self-concept, SCMAT, derived from students’ responses about their 
perceived competence in mathematics (5 items)

• Mathematics anxiety, ANXMAT, derived from students’ responses about feel-
ings of stress and helplessness when dealing with mathematics (5 items)

• Interest in and enjoyment of mathematics, INTMAT, derived from students’ 
responses about whether or not they enjoy mathematics (4 items)

• Instructional motivation to learn mathematics, INSTMOT, derived from stu-
dents’ responses about whether they believe mathematics is important for their 
future studies and careers (4 items)

Similarly, PISA 2012 also considers issues of teaching and learning mathemat-
ics. Its questionnaire design focuses on non-cognitive outcomes, explanation of stu-
dents’ intentions and behaviours related to mathematics and classroom teaching 
(OECD, 2014). In total, nine noncognitive indices are constructed in PISA 2012 
(see Table 2.2).

After a careful re-evaluation of item psychometric qualities, all five constructs in 
PISA 2003 were retained unchanged in the PISA 2012 student questionnaire, except 
the index of interest in and enjoyment of mathematics, which was renamed as the 
index of intrinsic motivation to learn mathematics. As listed in Table 2.2, the other 
four were newly created in PISA 2012:

• Subjective norms in mathematics, SUBNORM, derived from students’ responses 
about whether or not their parents and peers enjoy and value mathematics 
(6 items)

Table 2.2 Mathematics-related themes and constructs in PISA 2003 and PISA 2012 (student level)

Themes Constructs 2003 2012

Self-related cognitions in 
mathematics

Mathematics self-efficacy ✓ ✓
Mathematics self-concept ✓ ✓
Mathematics anxiety ✓ ✓
Interest in and enjoyment of mathematics ✓ ✓
Instrumental motivation to learn 
mathematics

✓ ✓

Dispositions towards mathematics Subjective norms in mathematics ✓
Mathematics intentions ✓
Attributions to failure in mathematics ✓
Mathematics work ethic ✓

Y. Zhu
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• Mathematics intentions, MATINTFC, derived from students’ responses about 
whether or not they intend to use mathematics in their future (5 items)

• Attributions to failure in mathematics, FAILMAT, derived from students’ 
responses about their perceived self-responsibility for failure in mathematics 
(6 items)

• Mathematics work ethic, MATWKETH, derived from students’ responses about 
their ability to dedicate time, hard work and persistence to attain mathematics 
competency (9 items)

2.3  Shanghai and PISA

Since the first implementation in 2000, PISA has received greater attention and 
uptake than many, if not all, international assessment programs (Klinger, DeLuca, 
& Merchant, 2016). In fact, the number of participating countries/economies has 
grown from 43 in the first cycle to 79 in the seventh cycle in 2018 (see Table 2.3). 
Among east Asian countries/economies, Hong Kong SAR, Japan and Korea have 
participated since the first cycle, Macau SAR since 2003, Chinese Taipei since 
2006, and Shanghai-China and Singapore since 2009 (Ho, 2017). Another three 
Chinese regions—Beijing, Jiangsu Province and Guangdong Province—joined 
Shanghai in participating in PISA since 2015.

The desired base PISA target population in each country and economy consists 
of 15-year-old students attending educational institutions in grade 7 and higher. In 
all but the Russian Federation, the PISA assessment adopted a two-stage stratified 
sample design; that is, a sample of schools is selected systematically with probabili-
ties proportional to the school size (PPS); then, the required number of 15-year-old 
students within each selected school is selected at random (35 students in schools 
that had 35 or more eligible students, and all students in schools with a number 
lower than 35; OECD, 2010).

While a minimum of 150 schools were selected in each country and economy 
(where this number existed), participating countries and economies further intro-
duced stratification into their individual school sampling plan to achieve systematic 

Table 2.3 Participation in PISA 2000 to PISA 2018

No. of participating 
OECD countries

No. of partner 
countries/economies

No. of participating 
students

Size of 
population

2000a 29 3 250,000 17 million
2003 30 11 250,000 30 million
2006 30 27 400,000 20 million
2009b 34 31 470,000 26 million
2012 34 31 510,000 28 million
2015 35 37 540,000 29 million
2018 37 42 710,000 31 million

Note. aAn additional 11 countries/economies completed the PISA 2000 assessment in 2002
bAn additional 10 countries/economies completed the PISA 2009 assessment in 2010

2 What Can PISA Tell Us About Students’ Mathematics Learning in Shanghai, China?
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distribution of specific school parameters in the sample (Ho, 2017). Stratification 
consists of classifying schools into like groups according to the selected variables 
(i.e. stratification variables), and two types of them are used (OECD, 2012). In par-
ticular, explicit stratification divides the schools into different strata and draws inde-
pendent sample schools within each stratum (e.g. states or regions), while implicit 
stratification sorts the schools uniquely within each explicit stratum according to a 
set of criteria (e.g. type of school and urbanity). In PISA 2009, Shanghai used seven 
explicit strata based on four variables with three implicit stratification variables. A 
similar stratification was used in PISA 2012 with some modifications made to strati-
fication variables and their corresponding levels (see Table 2.4).

As a result, 5115 Shanghai 15-year-olds from 152 schools participated in PISA 
2009, and 5177 students from 155 schools participated in PISA 2012 (see Table 2.5). 
While a total of 9841 Chinese students in 268 schools from four regions of China 
participated in PISA 2015, the exact information for Shanghai is difficult to identify.

Table 2.4 Stratification variables used in PISA 2009 and PISA 2012 for the Shanghai case

2009 2012

Explicit stratification variables School level (3) ISCED level (4)
Programme (2) ISCED programme orientation (2)
Selectivity (2) Selectivity (3)
Certain selections (1) Certain selections (1)

Number of explicit strata 7 6
Implicit stratification variables Track (2) Vocational school type (4)

Funding (2) Funding (2)
Location (2) Urbanity (2)

Note. For further details, see the PISA technical reports in 2009 and 2012

Table 2.5 Number of schools and number of students in PISA 2009 and PISA 2012 
Shanghai sample

Type of school

2009a 2012b

No. of 
schools

No. of 
students No. of schools

No. of 
students

Junior secondary school 52 1716 60 1899
Mixed senior secondary 
school

27 923 23 779

General senior secondary 
school

20 (key) 689 21 (model or 
experimental)

1412

20 
(non-key)

695 19 (ordinary)

Vocational secondary 
school

29 (key) 975 32 1087
4 (non-key) 117

Total 152 5115 155 5177c

Note. aFrom Ning, van Damme, Liu, Vanlaar, and Gielen (2013)
bFrom Liang, Kidwai, and Zhang (2016)
cSince students taking the CBAM are a sub-sample of students sampled in the PBA, no extra stu-
dent sample is needed for the CBAM, and a total of 2409 students took the CBAM in Shanghai 
(Ho, 2017)
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2.4  Performance of Shanghai Students in Mathematical 
Literacy in PISA

On its first appearance in PISA, the performance of Shanghai students topped the 
achievement ladder, including in mathematics (see Table 2.6). The students in this 
Chinese city continued their impressive performance in PISA 2012, again taking 
first place in mathematics as well as the other two core subjects. In fact, Shanghai 
students are in a class of their own in mathematics, hugely outperforming second-
placed Singapore (Moore, 2010). A comparison of the mathematics performance 
between the two cycles shows a significant improvement of 13 points in Shanghai, 
while the OECD average dropped by 2 points.

In PISA, students’ scores are also described in terms of proficiency levels with 
the aim of providing insights into what students at different levels of ability can do 
(Shiel, Perkins, Close, & Oldham, 2007). Proficiency levels are constructed in such 
a way that all students performing at a particular level are expected to answer cor-
rectly at least half of the items at that level (and less than half of the items at a higher 
level).1 There are six mathematics proficiency levels defined in both the PISA 2009 
and PISA 2012 assessments, which is the same as the corresponding levels of the 
PISA 2003 scale, with some descriptions in 2012 updated to reflect new mathemati-
cal process categories in the PISA 2012 framework (OECD, 2013). Table 2.7 gives 
a brief description of the six levels of proficiency in mathematics.

On average, across OECD countries, 3.1% of students attained Level 6 in math-
ematics in PISA 2009 and 3.3% in PISA 2012. In the two cycles, Shanghai has had 
the highest proportion of students reaching this level in the mathematics assessment 
(26.6% and 30.8%, respectively), 10% higher than the second-highest economy, 
Singapore (15.6% and 19.0%, respectively). Moreover, more than half of the 
Shanghai students are proficient at Level 5 or 6 (regarded as top performers) in both 
PISA 2009 (50.4%) and PISA 2012 (55.4%). In both cycles, about 15% less 

1 More details can be referred to Proficiency Levels in Assessments of Reading and Mathematics, 
from http://www.erc.ie/wp-content/uploads/2017/05/PISA-NAERM-Proficiency-levels.pdf

Table 2.6 Ranks and mean scores in Mathematics Literacy of Top-Ranking East Asian Countries 
and Economies in Mathematics in PISA 2009 and PISA 2012

PISA 2009 PISA 2012

Shanghai, China 1 600 1 613
Singapore 2 562 2 573
Hong Kong SAR 3 555 3 561
South Korea 4 546 5 554
Chinese Taipei 5 543 4 560
Japan 9 529 7 536
Macau SAR 12 525 6 538
OECD average (20) 496 (26) 494

2 What Can PISA Tell Us About Students’ Mathematics Learning in Shanghai, China?
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students in the second-place system (i.e. Singapore) performed at these levels, and 
the OECD average percentages are no more than 13%.

In the two cycles, the share of students scoring at Level 1 or below (regarded as 
the lowest performers) in Shanghai is slightly below 5% (4.8% and 3.7%, respec-
tively), while about one quarter of the OECD students performed at these levels 
(26% and 24.8%, respectively). In another three east Asian economies—Singapore, 
Hong Kong SAR and South Korea—the proportion of the students performing at 
Level 1 or below is between 8% and 10%. Though Shanghai students demonstrated 
overall high achievement levels in the PISA mathematics assessments, there were 
still 1.4% in 2009 and 0.8% in 2012 who scored below Level 1.

Besides students’ overall mathematics scores, PISA 2012 further investigated 
students’ performance on subscales representing different aspects of mathematics. 
In particular, there are three process categories (formulating, employing and inter-
preting) and four content categories (change and relationships, space and shape, 
quantity and uncertainty and data). As a result, Shanghai achieved the highest scores 
on all the subscales, with the scores on interpreting, quantity and uncertainty and 
data being lower than the overall score for mathematics (see Fig. 2.2).

Across all participating countries and economies, the average difference between 
the highest and lowest performance in mathematics processes is around 14 points 
(OECD, 2014). The corresponding difference is largest in Shanghai (46 points), 
which is about 16 points larger than Chinese Taipei, which has the second-highest 
difference. It is interesting to see that all the top-performing east Asian countries/
economies perform best in formulating, while the OECD average score is highest on 
the interpreting subscale.

On the content subscales, Shanghai again shows the largest difference (58 points) 
between its strongest category (space and shape) and its weakest (quantity), fol-
lowed by Chinese Taipei with a 49-point difference. Table 2.8 displays that all the 
top-performing east Asian systems perform the best on space and shape, while 
quantity and uncertainty and data are their weaknesses. In contrast, at the OECD 
average level, the best performance occurs on topics related to quantity and space 
and shape is the weakest area.

Table 2.7 Brief descriptions of the six levels of proficiency in mathematics

Level
Lower 
score limit What students can typically do

6 669 Students can conceptualize, generalize and utilize information based on 
their investigations and modelling of complex problem situations

5 607 Students can develop and work with models for complex situations, 
identifying constraints and specifying assumptions

4 545 Students can work effectively with explicit models for complex concrete 
situations that may involve constraints or call for making assumptions

3 482 Students can execute clearly described procedures, including those that 
require sequential decisions

2 420 Students can interpret and recognize situations in contexts that require no 
more than direct inference

1 358 Students can answer questions involving familiar contexts where all 
relevant information is present and the questions are clearly defined
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Fig. 2.2 Students’ performance on mathematics subscales in PISA 2012

Table 2.8 Correlations among indices of self-related cognition (N = 5177)

Mathematics 
self-efficacy

Mathematics 
self-concept

Mathematics 
interest

Instrumental 
motivation

Mathematics 
anxiety

Mathematics 
self-efficacy

1 0.40*** 0.31*** 0.26*** −0.37***

Mathematics 
self-concept

1 0.62*** 0.43*** −0.72***

Mathematics 
interest

1 0.66*** −0.50***

Instrumental 
motivation

1 −0.32***

Mathematics 
anxiety

1

Note. All correlations are based on weighted data; *** p < 0.001
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2.5  Shanghai Students’ Self-Related Cognition 
in Mathematics

A total of 26 items are incorporated into the PISA 2012 student questionnaire mea-
suring students’ self-related cognition in mathematics. Five indices, as listed in 
Table  2.2, are constructed based on these items and then standardized, with the 
OECD average of zero and a standard deviation of one. A positive value on an index 
means that scores obtained by Shanghai students are higher than the OECD average, 
which indicates that students in Shanghai employ a particular self-related cognition 
generally more often than those from other OECD systems.

Figure 2.3 shows that while Shanghai students’ mathematical self-efficacy is 
well above the OECD average, their mathematical self-concept does not reach the 
OECD average level. In fact, Shanghai students’ mathematical self-efficacy 
(M = 0.94, SD = 1.10) is nearly half a standard deviation higher than that in the 
second highest system (Singapore: M = 0.47, SD = 1.02). This result suggests that 
Shanghai students are more confident when they are facing a mathematics task, 
while having overall low confidence in mathematics. A similar phenomenon is 
observed in the other three Chinese communities (Hong Kong SAR: 0.22 vs. −0.16, 
Macau SAR: 0.18 vs. −0.19, Chinese Taipei: 0.18 vs. −0.45). Singapore is the only 
top-performing east Asian system receiving positive scores on both the indices 
(0.47 vs. 0.22), while Japan (−0.36 vs. −0.38) and South Korea (−0.41 vs. −0.52) 
both have negative scores. In all these east Asian systems, students consistently 
have a higher level of self-efficacy than self-concept. Ho (2007) related such a rela-
tively low level of self-concept to the potential impact of classroom context, paren-
tal expectations and teacher feedback.

Shanghai students show a higher level of intrinsic motivation to learn mathemat-
ics (M = 0.43, SD = 0.92) than instrumental motivation (M = 0.01, SD = 0.90). Such 

Mathematics self-efficacy Mathematics self-concept
-0.05

Mathematics anxiety Intrinsic motivation to learn
mathematics

Instrumental motivation to
learn mathematics

-0.2

0.4

0.6

0.8

1

0.2

0

0.94

0.01

0.43

0.03

Fig. 2.3 Shanghai students’ self-related cognition in PISA 2012
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a pattern can also be observed in all the other top-performing east Asian systems. 
While Shanghai and Singapore both are above the OECD average level on the two 
types of motivations, Singapore scores nearly 0.40 SD higher than Shanghai on both 
indices (INTMAT: 0.84 vs. INSTMOT: 0.40). In contrast, both motivation types in 
Japan and South Korea are below the OECD average.

On the index of mathematics anxiety, all these east Asian systems receive an 
above-OECD-average score, with the highest in Japan (M = 0.36, SD = 1.01) and 
the lowest in Shanghai (M = 0.03, SD = 0.94). This suggests that Shanghai students 
are less anxious towards mathematics learning than their east Asian peers, while 
they are still more anxious than 24 participating systems in PISA 2012.

The relationship between each of the five self-related cognition indices shows a 
generally moderate to high level (see Table  2.8). The strongest relationship is 
observed between mathematics self-concept and mathematics anxiety (r = −0.72), 
which indicates that the more confident about one’s own overall ability in mathe-
matics the more anxious about mathematics. In fact, mathematics anxiety is signifi-
cantly correlated with the other four self-related cognition indices in a negative way, 
ranging from −0.72 to −0.32. This suggests that students’ anxiety hinders self-
belief and the motivation to learn. The relationship between mathematics self-effi-
cacy and the other four indices is weaker overall. In addition, the two types of 
motivation are highly correlated (r = 0.66).

2.6  Shanghai Students’ Disposition Towards Mathematics

The PISA 2012 student questionnaire contains 26 items measuring students’ dispo-
sition towards mathematics. Based on these items, four indices are constructed and 
standardized, with the OECD average of zero and standard deviation of one. 
Similarly, a positive value on an index indicates that students in Shanghai have a 
more positive disposition towards mathematics than those from other OECD 
systems.

As a result, on all indices related to students’ dispositions towards mathematics 
except attributions to failure to mathematics, Shanghai’s level is above the OECD 
average (see Fig. 2.4). In particular, Shanghai receives the second-highest level on 
mathematics work ethic among the top-performing east Asian systems (M = 0.32, 
SD = 0.02) and it scores about one-third standard deviation higher than the OECD 
average. This suggests that Shanghai students have a relatively high ability to dedi-
cate time, hard work and persistence to attain mathematics competency.

Shanghai students’ negative score on attributions to failure to mathematics indi-
cates that the students there are more likely to attribute their failure in mathematics 
to themselves rather than to external factors (e.g. bad luck, bad guess or the teacher). 
The difference from the OECD average is close to one-half standard deviation.

On the index of subjective norms in mathematics, the average score in Shanghai 
is slightly above the OECD average (M = 0.11, SD = 1.03). This suggests that the 
social environment in Shanghai is characterized by a general promotion of 
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mathematics and its study. In this aspect, Singapore has a much higher score 
(M = 0.80, SD = 1.01), while the corresponding scores in the remaining top-per-
forming east Asian systems are all below the OECD average, ranging from −0.58 
(Japan) to −0.02 (Hong Kong SAR). As shown in Fig.  2.4, the extent to which 
Shanghai students intend to use mathematics in their future studies and careers is 
slightly above the OECD average. In fact, the east Asian systems generally score 
low on this measure. It seems that students in this region do not have strong short-
term or long-term mathematics intentions.

The four disposition indices have relatively low correlations with each other (see 
Table 2.9). The strongest relationship occurs between subject norms in mathematics 
and mathematics work ethic (r = 0.43, p < 0.001), which suggests that a positive 
social environment for students’ mathematics learning benefits the development of 
mathematics work ethic in Shanghai. Moreover, the index attributions to failure in 
mathematics is negatively correlated with all other disposition indices, ranging from 

0.4

0.2

0

0.11

0.03

0.32

-0.2

-0.4

-0.6

Subjective norms in mathematics Mathematics intensions Attributions to failure in
mathematics

Mathmatics work ethic

-0.49

Fig. 2.4 Shanghai students’ dispositions towards mathematics in PISA 2012

Table 2.9 Correlations among indices of dispositions to mathematics (N = 5177)

Subjective norms 
in mathematics

Mathematics 
intentions

Mathematics 
work ethic

Attributions to 
failure in 
mathematics

Subjective norms in 
mathematics

1 0.21*** 0.43*** −0.22***

Mathematics 
intentions

1 0.34*** −0.31***

Mathematics work 
ethic

1 −0.33***

Attributions to 
failure in 
mathematics

1

Note. All correlations are based on weighted data; *** p < 0.001
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−0.22 to −0.33. This suggests that attributing their failure in mathematics to inter-
nal factors helps cultivate a positive disposition to mathematics and its learning.

2.7  Self-Related Cognition, Dispositions to Mathematics, 
and Mathematics Performance

In Shanghai, students’ mathematics self-efficacy shows the strongest correlation 
with mathematics performance (r  =  0.56) followed by mathematics self-concept 
(r = 0.32). This result is expected, as both the indices capture students’ confidence 
in their mathematics abilities, with the former related to the specific mathematics 
tasks and the latter in a more general sense.

The weakest correlation is observed with subjective norms in mathematics, while 
it is positive (r = 0.03). This indicates that a social environment promoting mathe-
matics and its learning is beneficial, though subtle, for students’ mathematics per-
formance. Two types of motivations are also found to be positively correlated with 
students’ mathematics performance, and the strength with intrinsic motivation 
(r = 0.16) is nearly twice that with instrumental motivation (r = 0.08).

Among the nine noncognitive indices, mathematics anxiety and attributions to 
failure in mathematics show a negative correlation with students’ mathematics per-
formance. The negative correlation with mathematics anxiety (r = −0.30) suggests 
that a higher anxiety level brings lower performance in mathematics. In contrast, the 
fewer students attributing their failure in mathematics to external factors, the better 
mathematics performance they can achieve (r = −0.23).

Given the moderate-to-high correlations between the noncognitive indices, 
structural equation modelling (SEM) is used to explore the impact of students’ non-
cognitive abilities on their mathematics performance. As a result, the model explain 
63.5% of Shanghai students’ performance in the PISA 2012 mathematics assess-
ment, with an overall acceptable goodness-of-fit (RMSEA  =  0.08, CFI  =  0.96, 
TLI = 0.95; see Fig. 2.5).

It can be seen that students’ self-belief about their mathematics learning, motiva-
tion towards mathematics learning and disposition to mathematics have significant 
contributions to students’ mathematics achievement in the PISA test. In particular, 
students’ self-belief and disposition show a significantly positive impact on their 
performance in mathematics (β  =  0.85, p  <  0.001 and β  =  0.62, p  <  0.001, 
respectively).

In contrast, the model reveals that students’ motivation has a negative direct 
impact on mathematics achievement (β = −0.68, p < 0.001). Meanwhile, motivation 
shows a positive indirect contribution through the other two scales. In particular, it 
positively correlates with self-belief (r = 0.14, p < 0.001) and highly correlates with 
disposition (r = 0.92, p < 0.001). As a result, the total indirect effect of students’ 
motivation on mathematics performance through the two mediator scales is 0.68 
(i.e. 0.11 + 0.57).

2 What Can PISA Tell Us About Students’ Mathematics Learning in Shanghai, China?
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Consistent with the correlation results, the SEM model also clearly verifies the 
negative influence of mathematics anxiety and attributing failure to external factors 
on students’ mathematics performance in Shanghai. In addition, students’ mathe-
matics anxiety and their mathematics self-concept show a significant reciprocal 
relationship (r = −0.63).

2.8  Concluding Remarks

First in 2009 and then in 2012, Shanghai’s 15-year-old students emerged at the top 
in mathematics, reading and science in the PISA assessments. Their performance is 
equivalent to almost 3 years of schooling over most other countries assessed. As 
Moore (2010) remarked, Shanghai students’ mathematics performance is in a class 
of their own, largely outperforming their top-performing east Asian peers. Moreover, 
such astounding success produces a global ‘PISA-shock’, which has repositioned 
Shanghai as a significant new ‘reference society’ and shifted the global gaze in 
education away from Finland (Sellar & Lingard, 2013). Meanwhile, it also engen-
ders some dispute over the extent to which the success is the result of sampling 
(Dronkers, 2015; Tan, 2017).

Whilst students in Shanghai were top-ranked internationally in the mathematics 
assessments, much less is known about Shanghai students’ attitudes towards math-
ematics (Ding, Pepin, & Keith, 2015). The PISA 2012 study gives specific attention 

Fig. 2.5 Effects of noncognitive factors on students’ mathematics achievement. Note. As subjec-
tive norms in mathematics refer to others’ perspectives about the importance of mathematics and 
its learning rather than the perspectives of the students themselves, this index is excluded from the 
SEM model
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to students’ noncognitive abilities in mathematics learning. As a result, Shanghai 
students reported a relatively low level of self-concept, instrumental motivation and 
mathematics intentions, and a relatively high level of self-efficacy, intrinsic motiva-
tion and mathematics work ethic, by international standards. Moreover, Shanghai 
students tend to attribute the failure in mathematics to their personal reasons rather 
than external reasons.

On the whole, Shanghai students’ self-belief about their mathematics learning 
and dispositions to mathematics have significant positive impacts on their perfor-
mance in the mathematics assessment in a direct way. Meanwhile, students’ motiva-
tion shows a positive indirect influence through self-belief and dispositions, though 
its direct influence seems negative.

Regarding the rich information from the PISA studies, both the education offi-
cials and the public in China Mainland tend to give their own interpretations and 
understanding. With an analysis of newspaper articles, official documents and edu-
cation essays published in China, Mainland Tan (2017) concluded that the Chinese 
responses are generally reflective, measured and self-critical with three board views: 
(a) Shanghai’s PISA performance exposes educational weaknesses rather than suc-
cesses, (b) Shanghai’s PISA performance is only a minor success, which does not 
reflect all aspects of holistic education, and (c) there are still areas for improvement 
for Shanghai education. Tan further argues that Confucian knowledge traditions and 
structures in China shape such interpretations, which leads the public to downgrade 
Shanghai’s success.

Similarly, Chinese education officials also turn to PISA data to highlight existing 
problems for the purpose of validating the need for local reforms (Tan, 2019). Two 
recent educational initiatives in Shanghai, Green Indices for the Academic Quality 
of Primary and Secondary Students in Shanghai and the New High Quality School 
project, have been identified as containing elements borrowed from PISA. Further, 
information from PISA is used to garner support for ongoing reform initiatives to 
refine the aims and nature of education in Shanghai. As Tan (2019) suggests, with 
the continual global influence of PISA, Chinese officials will likely persist in utiliz-
ing information from PISA to validate and sustain the reform initiatives in Shanghai 
and further the self-determined realities.
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Chapter 3
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Abstract This study intends to establish a mathematical competence model and 
assessment framework for compulsory education. With reference to international 
research and in consideration of talent development goals in China and the coun-
try’s mathematics education characteristics, the study takes into account three 
phases of mathematical activities, namely, mathematisation of real situations, logi-
cal organisation of mathematical materials, and application of mathematical theo-
ries. The study argues that such mathematical activities are closely related to a 
number of mathematics competencies, including mathematical problem posing, 
solving problems mathematically, mathematical representation and transformation, 
mathematical reasoning and argumentation, mathematical modelling, and mathe-
matical communication. This study divides mathematical core competencies into 
three levels—reproduction, connection, and reflection—and considers specific per-
formance indicators at each of the three levels based on ability. Therefore, we 
include three dimensions in the core mathematics competencies framework: math-
ematical content, core competencies, and ability levels.
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3.1  Background

3.1.1  Studies on Education Quality in China

The reform and development of China’s primary and secondary education entered a 
new stage beginning in 2000. Critical tasks of this stage include achieving educa-
tional equity, improving the quality of education, and promoting the development of 
educational awareness. The Ministry of Education of the People’s Republic of 
China (hereinafter referred to as MOE) emphasises that education administrative 
departments at all levels should gradually establish a standardised, scientific, and 
institutionalised system for assessing teaching quality and instructional guidance in 
compulsory education, and actively explore a comprehensive evaluation system 
with academic level tests and student comprehension as the main indicators (MOE, 
2005). In 2007, the National Assessment Center for Education Quality was estab-
lished under MOE to monitor the quality of study and physical and mental health of 
students in primary and secondary education as well as related factors affecting 
students’ development.

3.1.1.1  Evaluation of Regional Education Quality

One of the most important ways to establish and improve an educational quality 
assurance system is to develop standards which are both consistent with an interna-
tional perspective and conform to China’s educational circumstances (Yang, 2012). 
All provinces and cities in China have been actively exploring and implementing 
education quality monitoring in recent years, driven by comprehensive quality eval-
uation on the part of the national government (Xu, 2012). For example, Shanghai 
has implemented a comprehensive evaluation reform of the green index of academic 
quality, shifting the emphasis from academic knowledge to the overall development 
of the students. The green index of academic quality in Shanghai includes ten key 
aspects: students’ academic level, learning motivation, learning burden, teacher- 
student relationship, teacher’s teaching methods, principal’s curriculum leadership, 
the influence of students’ social and economic background on academic achieve-
ment, students’ moral behaviour, physical and mental health, and progress between 
two school years. The former research group of the National Institute of Education 
Sciences has developed an index system and evaluation tool for the evaluation of 
academic achievement in each of the four core subjects—Chinese, mathematics, 
science, and morality and society—for grade-six students. These tools, which anal-
yse students’ academic achievement, can provide feedback for and promote the 
improvement of subject teaching and student learning (Research Group of Learning 
Achievement on Primary and Middle School Students in the National Institute of 
Education Sciences, 2011). Researchers have also focused on the evaluation of aca-
demic quality and student comprehension, by developing a framework and tools for 
evaluating students’ academic achievement in various disciplines in agreement with 
both international goals and Chinese traditions. Some studies also absorb the latest 
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achievements of the taxonomy of educational objectives in the cognitive domain, 
educational measurement, and evaluation theory to sort out evaluation dimensions 
and design integrated evaluation frameworks (Zhang & Cui, 2012).

3.1.1.2  Evaluations of Regional Academic Achievement in Mathematics

In the study of academic evaluation, research on the evaluation of mathematics aca-
demic achievement is particularly prominent. Researchers take quality education as 
the goal and the national mathematics curriculum standard as the basis to compile 
test questions that measure academic achievement in mathematics and to inform the 
test investigation. Some studies focus on the two basic dimensions of mathematical 
content and mathematical cognitive ability to evaluate the degree to which the three 
curriculum objectives related to mathematics knowledge and skill, mathematics 
process and method, and attitudes toward mathematics have been achieved (Shen, 
Yang, & Song, 2009). In this study, in order to ensure the scientificity and effective-
ness of the mathematics academic evaluation test questions, test questions were 
compiled according to the following process: a comparative analysis of teaching 
materials, the establishment of evaluation criteria, the formulation of the proposi-
tional bi-directional list, compilation of test questions, and a sampling experiment.

Some researchers have also studied the status and influence factors of the math-
ematics academic level of grade-eight students in three regions of China, and found 
that these students have a middle standard rate; the students’ standard rate of ‘apply-
ing’ ability was lower than that of ‘knowing, understanding and mastering’ abilities 
(Qi, Zhang, & Wang, 2015). In addition, the research found that teaching methods, 
knowledge representation, learning evaluation, attention to students, and learning 
habits have an impact on students’ academic performance.

In summary, particular attention has been paid in recent years to education qual-
ity and academic quality in China, from the government level to the local level and 
on to the research level, which is in line with international trends in primary and 
secondary education reform and quality assurance.

3.1.2  International Comparison Studies

The construction of disciplinary competency models has become central to the 
development of academic quality standards internationally.

3.1.2.1  International Projects

The Trends in International Mathematics and Science Study (TIMSS), an interna-
tional scale test sponsored by the International Association for the Evaluation of 
Educational Achievement (IEA) and held every 4 years since 1995, mainly mea-
sures the academic proficiency in mathematics and science of grade-four and 
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grade- eight students and factors that influence their performance. So far, this project 
has been the most influential and popular mathematics education evaluation project 
in the world (Lai, 2008).

For example, the TIMSS 2007 mathematics assessment framework consisted of 
two major dimensions: mathematical content and cognitive ability. In terms of 
mathematical content, the framework asserts that fourth graders need to learn num-
bers, geometric shapes and measures, and data display, while eighth graders need to 
study numbers, algebra, geometry, and data and chance. Each of the content areas 
contains several themes, which are further refined into different sets of objectives by 
many participating countries. Cognitive ability was divided into three levels in both 
grades: knowing, applying, and reasoning. Knowing includes the facts, procedures, 
and concepts that students need to know, involving recall, recognition, computation, 
retrieval, measurement, and classification/ordering. Applying indicates students’ 
ability to solve or answer questions by applying the knowledge and concepts they 
have learned, using selection, representation, modelling, implementation, and rou-
tine problem solving. Reasoning refers to the shift from tackling conventional prob-
lems to tackling unfamiliar, complex, and multi-step problems involving analysis, 
generalisation, synthesis/integration, justification, and non-routine problem solving 
(Mullis et al., 2005).

The Programme for International Student Assessment (PISA), an international 
test sponsored by the Organisation for Economic Co-operation and Development 
(OECD), has been held every 3  years since 2000 to assess the competency of 
15-year-old students in the fields of reading, mathematics, and science, focusing on 
one competency at a time. The evaluations in 2003 and 2012 focused on mathemat-
ics competency.

The PISA defines mathematics competency as ‘an individual’s capacity to recog-
nise the role that mathematics plays in the world and make well-founded mathemati-
cal judgements, and to use and engage with mathematics in ways that meet the needs 
of that individual’s life as a constructive, concerned and reflective citizen’ (OECD, 
2010, p. 122). The PISA assesses three main aspects of mathematics competency: 
mathematical content (including four main concepts—quantity, space and shape, 
change and relationship, and uncertainty—followed by specific content, such as 
numbers, algebra, and geometry); mathematical processes (including eight kinds of 
mathematical abilities—thinking and reasoning, argument, communication, model-
ling, problem presentation and solution, expression, symbols and standard language 
usage, auxiliary tools usage—and three kinds of ability groups, namely, reproducing 
groups, connecting and integrating groups, and reflecting groups); and mathematical 
situations (including five situations: personal situation, educational situation, occu-
pational situation, public situation, and scientific situation) (OECD, 2013).

3.1.2.2  Research Projects of Different Countries/Regions

In addition to the above two cross-country and cross-region mathematics evaluation 
projects, many countries have their own set of relatively mature evaluation systems 
for assessing mathematical ability. The National Assessment of Educational 
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Progress of the United States (NAEP), the only continuous and long-term primary 
and secondary student achievement measure in the United States, assesses fourth-, 
eighth-, and twelfth-grade students with reading and mathematics as compulsory 
subjects (National Assessment Governing Board, 2007). Other such projects 
include: the National Curriculum Test of the UK (NCT), aiming at grades two, six, 
and nine with English and mathematics as compulsory subjects; the General 
Certificate of Secondary Education (GCSE), aiming at 16-year-old students whose 
compulsory education includes math; International Competitions and Assessment 
for Schools of Australia (ICAS), comprehensively assessing school systems with 
mathematics included as one of the subjects; and others (Huang, Wang, & Xu, 2004).

With the aim of improving and assuring the quality of the Germen educational 
system, the Institute for Education Quality Improvement (IQB) in Germany devel-
ops its test question bank based on the educational standards of mathematics adopted 
by the Standing Conference of the Ministers of Education and Cultural Affairs of 
the Land in the Federal Republic of Germany, conducts nationwide tests on all 
grade-three and grade-eight students, and statistically analyses their mathematical 
ability, thus detecting the degree to which the national standard of mathematics 
education has been reached (Granzer, Koeller, & Bremerich-Vos, 2009). It also pro-
vides teachers with test results and open test banks, enabling them to diagnose stu-
dents’ mathematical ability level, and provides resources on how to improve 
classroom teaching (Xu, 2011).

3.1.3  Mathematical Ability in Mathematics 
Curriculum Standards

In the United States, the idea of core mathematics competencies has always accom-
panied mathematics education reforms. The Principles and Standards of School 
Mathematics Education in the United States, published by NCTM in 2000, attached 
great importance to the interrelation between mathematical understanding and 
mathematics capability, and put forward 10 equally weighted standards for mathe-
matical content and ability, five of which are mathematical communication, prob-
lem solving, reasoning, connection, and representation (NCTM, 2000).

The mathematics education standards for grade-10 students promulgated by 
Germany in 2003 also represent a typical competence-oriented approach. The stan-
dards address three dimensions, namely, mathematical process, content, and com-
petence level. The ‘process’ dimension describes six major mathematical 
competencies, including mathematical argumentation, solving problems mathemat-
ically, mathematical modelling, using mathematical representation, the mastery of 
mathematical symbols, formulas, and techniques, and mathematical communica-
tion (Kultusministerkonferenz, 2004).

Since 2000, Singapore has issued mathematical syllabi centred on the develop-
ment of students’ ability to solve mathematical problems and has outlined mathe-
matical process skills, such as thinking skills and mathematical reasoning, 
communication, and relations (Ministry of Education Singapore, 2011). The course 
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of study for mathematics for junior high schools in Japan established in 2009 aban-
doned the curriculum targets focused on learning with pleasure and relaxation that 
had a negative effect on mathematics courses, and raised the content of teaching and 
the number of teaching hours to facilitate students’ assimilation of basic knowledge 
and skills. On this basis, the revised principles emphasise the cultivation of three 
abilities: thinking, judgement, and expression (Chen, 2010).

The concepts of ‘mathematical thinking’ and ‘problem solving’ were first used 
in the Mathematics Curriculum Standards for Full-time Compulsory Education 
(Experimental Version) (MOE, 2001) in China, which extended the three traditional 
major mathematical abilities (calculation ability, spatial imagination ability, logical 
thinking ability), and the newly promulgated Mathematics Curriculum Standards 
for Compulsory Education (2011 version) (MOE, 2012) retained these concepts. 
The descriptions of core competencies in mathematics curricula or education stan-
dards in different countries show that the reform of mathematics education not only 
stresses the cultivation of mathematical ability in the strict mathematical sense, but 
also emphasises the development of the mathematical abilities of process and 
application.

Research in China and all over the world shows that the evaluation of core com-
petence in various disciplines is key to capturing students’ mathematics achieve-
ments, and thus provides a reference for improving teaching and student learning.

3.2  Theoretical Perspective

Research on mathematical competence has become an important topic in interna-
tional mathematics education research. Niss (2011) believes that ‘to master mathe-
matics means to process mathematical competence’, and that mathematical 
competence ‘means the ability to understand, judge, and use mathematics in a vari-
ety of intra- and extra-mathematical contexts and situations in which mathematics 
plays or could play a role’ (pp. 6–7). Eight competencies that are recognised to be 
constituents of mathematical competence have been widely cited in recent litera-
ture: (1) mathematical thinking, (2) problem posing and solving, (3) mathematical 
modelling, (4) mathematical reasoning, (5) mathematical representation, (6) math-
ematical symbolisation and formalisation, (7) mathematical communication, and 
(8) tools usage. Yu emphasises that the core competence of mathematics should 
include the individual’s ability to apply mathematical knowledge in practice. Yu, 
therefore, proposes that individual ability includes mathematical communication, 
mathematisation, mathematical representation, mathematical reasoning and argu-
mentation, mathematical strategic thinking, and the use of symbols, formulas, and 
technical language (Yu, 2010, pp. 316–318).

In order to provide a meaningful and operable reference for the evaluation of 
mathematics education in China, this study intends to establish a mathematical 
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competence model which takes into account not only the essential characteristics of 
mathematics as an academic subject, but also the new requirements for the mathe-
matics education brought about by social development. Such a model involves the 
following two theoretical perspectives.

3.2.1  The Process of Mathematisation 
and Mathematical Competencies

Although mathematics, as a science which studies the relation of quality and the 
form of space in reality, has demonstrated a strong deductive system, Stoliar points 
out that, like any other human knowledge system, when mathematics is developing, 
we may discover the theorem before we can prove it; and we should guess the way 
to prove it before we succeed in proving it. In this sense, to reflect the creation pro-
cess of mathematics in mathematical teaching, we must not only teach students to 
‘prove’, but also teach students to ‘guess’ (Stoliar, 1984).

Freudenthal (1994) believed that mathematics is rooted in such common sense 
that could be organised by people through their own practice and reflection, sys-
tematising mathematics horizontally and longitudinally. Therefore, he regarded 
mathematical learning as an activity of ‘recreation’ or ‘mathematisation’, an experi-
ence which must be had by learners themselves rather than anyone else. In mathe-
matics education, special attention should be paid to this process of mathematisation, 
and to cultivating students’ attitude toward acquiring and building their own math-
ematics. A very important aspect of mathematisation is self-reflection. Cao (1990) 
advocated that mathematical competence is a personal psychological feature which 
is necessary for the successful completion of mathematics activities and has a direct 
impact on activities’ efficiency, and that mathematical competence is also a rela-
tively stable psychological feature which is shaped, developed, and demonstrated in 
mathematics activities.

Thus, we can conclude that mathematical competencies should be developed 
through the exploration and creation of mathematical knowledge in mathematical 
activities. The teaching of mathematics should be the instruction of mathematical 
activities, where not only the acquisition of basic mathematical knowledge, skills, 
and thinking methods in the strict mathematical sense are achieved, but also the 
accumulation of experience in mathematical activities, such as exploring, inventing, 
creating, and communicating, as the newly issued Compulsory Education 
Mathematics Curriculum Standards has advocated (MOE, 2012). Therefore, math-
ematical competencies are closely associated with the essence of mathematical 
activities, which is the focus of our study. The requirements of modern society for 
mathematical activities will be considered in our study as well.
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3.2.2  The Nature of Mathematical Activities 
and Mathematical Competencies

Previous studies show that mathematical activities can be basically divided into 
three phases: mathematisation of real situations, logical organisation of mathemati-
cal materials, and application of mathematical theories, which also reflect the for-
mation and development of mathematics (Kruchevskii, 1983). As a mathematical 
activity, the teaching of mathematics is not a matter of conveying ready-made con-
tent printed in textbooks, but rather the chance for students to detect what has been 
discovered in science on their own, to logically organise the mathematical materials 
gained from experience, and in the end to apply mathematical theories to various 
real situations.

3.2.2.1  Organising Empirical Materials Mathematically

In the teaching of mathematics, students will encounter plenty of empirical materi-
als, including various situations or problems from their daily life experience, objects 
that they own or encounter, and relationships with other subject domains (such as 
physics, chemistry, biology, geography, etc.), in addition to objects prepared pur-
posely for instruction (such as teaching materials, teaching aids, etc.) and mathe-
matical materials (objects) that need further generalisation and abstraction.

Students need to process the empirical materials by means of observation, exper-
iment, induction, analogy, and summarisation to find factual bases or information 
which can easily be understood from a mathematical point of view. For example, 
with the mathematical material ‘the sum of degrees of interior angles of a triangle is 
180’, students can conduct observations and experiments such as protractor mea-
surement or clipping to obtain a better understanding of it. Although these activities 
do not constitute proof, they help students accumulate experience for finding the 
proof. In mathematical activities, familiar daily experience can be selected to pro-
mote discussion. For example, as there are many lines from the classroom to the 
canteen on large campuses, it is useful to ask students to discuss optimal routes and 
the reasons behind them from a mathematical point of view. Learning mathematics 
through activity is quite beneficial to students as it helps them develop the abilities 
of problem posing from a mathematical perspective, mathematical communication, 
mathematical representation, mathematical modelling, and so on.

3.2.2.2 Organising Mathematical Materials Logically

After organising or accumulating empirical materials from a mathematical perspec-
tive, students need to extract the original concepts and axiomatic system which can 
be further used as a base for formulating theories in a deductive way. The deductive 
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structure of a theory is an important feature in the mathematical concept system. In 
the course of teaching, teachers can and should set up instruction situations that help 
reveal this characteristic to students.

Take the following illustration as an example. A square is a diamond with a right 
angle; a diamond is a parallelogram with equal adjacent edges; a parallelogram is a 
quadrangle with two pairs of parallel sides; a quadrangle is a polygon with four 
edges; a polygon is a figure enclosed by closed fold lines; a figure is a set of points. 
By leading from one concept to another, we can finally reach the original concepts 
of ‘set’ and ‘point’. Logical organisation also includes propositions which are 
proved and formulated via induction and presented in a hypothetical form. In this 
process, special attention should be paid to the role of induction and general plau-
sible reasoning in mathematics activities, including what to prove, where to prove 
it, and how to prove it. Hence, supported by the process of mathematics teaching, 
students’ various abilities can be cultivated.

3.2.2.3  The Application of Mathematical Theory

No matter how abstract modern mathematics is, its root is always deeply grounded 
in practices, which is true from land measurement and commercial trades in the past 
to modern physics, biology, and economics, etc. Mathematical methods are often 
valuable in solving problems arising in the fields of science, technology, sociology, 
or even history. To solve problems in non-mathematical fields, translation into a 
mathematical language is the first step, followed by transforming these problems 
into abstract mathematical ones which can be solved in the strict mathematical 
world. Students’ capacity to abstract mathematical problems from specific contents 
via problem observation and active thinking is emphasised in this stage; this ability 
is fostered and consolidated through long-term practice, and which in turn contrib-
utes to enhancement of problem-solving ability, mathematical communication abil-
ity, mathematical reasoning ability, mathematical modelling ability, and so on.

Based on the above analysis, mathematical activities are closely related to a 
number of mathematics competencies, including mathematical problem posing, 
mathematical representation and transformation, mathematical reasoning and argu-
mentation, solving problems mathematically, mathematical communication, math-
ematical modelling, and so on. Thus, mathematics instruction of this type will help 
students form and develop these six core competencies. Figure 3.1 shows the rela-
tionship between the three mathematical activity stages and mathematical compe-
tencies (Xu, 2013).
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3.3  The Meaning of Core Mathematical Competencies

The composition of students’ core mathematical competencies is determined by the 
nature of mathematical activities. In mathematics instruction which focuses on 
mathematical activities, students will form and develop these abilities. The follow-
ing is a detailed analysis of these abilities.

3.3.1  Mathematical Problem Posing

Researchers explore the meaning of problem posing ability from different perspec-
tives. Silver identifies two kinds of problem posing: (1) problem formulation or re- 
formulation occurring within the process of problem solving and (2) recreation of a 
given problem in different ways to make it more accessible for solution (Silver, 
1994). Moreover, posing can occur before, during, or after the solution of a prob-
lem, but this does not override the importance of reformulating a problem as one 
attempts to solve it (English, 1997). In problem posing contexts, students are stimu-
lated to make observations, experiment by varying some of the data and analysing 
the results, and devise their own new problems that can be solved by using similar 
or different patterns (Singer, Ellerton, Cai, & Leung, 2011). Based on the above 
analysis, this study defines the ability to pose problems from a mathematical per-
spective as: to be able to propose new mathematical problems based on a certain 
contexts or problems, or come up with new sub-problems during or after the process 
of problem solving, and use mathematical language to present these proposed, cre-
ative, and independent new mathematical problems.

Fig. 3.1 The relationships between mathematical activity stages and core mathematics 
competencies
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3.3.2  Solving Problems Mathematically

There is currently no unified definition in the field for the ability to solve problems 
mathematically. For example, in the standards promulgated by NCTM in 2000, the 
United States described solving problems mathematically as: to build new mathe-
matical knowledge through problem solving; to solve problems that arise in math-
ematics and in other contexts; to apply and adapt a variety of appropriate strategies 
to solve problems; and to monitor and reflect on the process of mathematical prob-
lem solving (National Council of Teachers of Mathematics, 2000). In the mathemat-
ics curriculum standards promulgated in 2003, Germany defined solving problems 
mathematically as: to have appropriate mathematical strategies to find and rethink 
the ideas or methods for solving problems (KMK, 2004). Chinese mathematics edu-
cation has always attached great importance to the ability of solving problems math-
ematically, and the Compulsory Education Mathematics Curriculum Standards 
promulgated in 2011 give a detailed explanation of mathematical problem solving, 
emphasising that middle school students should learn how to solve mathematics 
problems in their mathematics courses (MOE, 2011). Through text analysis, this 
study defines the ability of mathematically solving problems as: to be able to solve 
problems occurring in mathematics or other situations by using various kinds of 
appropriate mathematical knowledge, methods, and strategies, and to verify and 
reflect on the process of mathematical problem solving.

3.3.3  Mathematical Representation and Transformation

The above analysis of the existing research shows that mathematical representation 
and transformation are central to mathematics education reform in various coun-
tries. As is illustrated in related researches, mathematical representation refers to 
expressing mathematical concepts or relations in some form and contributes to stu-
dents’ understanding of concepts, relationships, correlations, and the mathematical 
knowledge used in the process of problem solving (Cai, Frank, & Lester, 2005). If 
a learner wants to understand a mathematical problem, it is necessary to establish a 
mapping between this mathematical problem and a more comprehensible mathe-
matical problem, and representation is the mapping process. Comparing existing 
research results, we define the ability of mathematical representation as: to be able 
to express the mathematical concepts or relationships to be learned or handled in 
some form, such as written symbols, graphs (tables), scenarios, manipulative mod-
els, texts (including oral communications), etc., so as to eventually solve the 
problem.

Mathematical transformation means changing the format of information in the 
process of mathematical problem solving; that is, transforming the problems to be 
solved in a mathematical way while maintaining their invariant properties, thus con-
verting complex, unknown, and unfamiliar problems to simple, known, and familiar 
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ones. Therefore, mathematical transformation ability means to be able to use math-
ematical transformation strategies that can change the format of information in 
order to simplify or successfully solve a problem.

3.3.4  Mathematical Reasoning and Argumentation

Reasoning is the basic way of thinking in mathematics as well as a common way of 
thinking in people’s learning and daily life. Mathematical reasoning refers to formu-
lating certain judgments about mathematical objects under the function of the math-
ematical concept system by combining certain mathematical conditions, knowledge, 
and methods. As one kind of reasoning, it has its own characteristics: first, the object 
of mathematical reasoning is neither common sense nor a social phenomenon, but 
mathematical symbols representing quantitative relations and spatial forms; second, 
in a certain process of thinking, mathematical reasoning is more coherent than gen-
eral reasoning; third, mathematical reasoning is mainly based on the mathematical 
system where questions are located. The high abstractness of mathematics and the 
strictness of logic result in the relative difficulty of mathematical reasoning.

Argumentation is inseparable from reasoning. In the process of argumentation, 
the fact that the judgment as to whether the statement is true or false can be made 
based on known judgments is thanks to the establishment of logical connection 
between known judgments and the statement to be judged, while the latter is derived 
from the former via reasoning. So, one or a series of reasoning must be applied in the 
process of argumentation, which means this process is the application of reasoning 
and reasoning is the tool of argumentation. Based on the above analysis, the concrete 
definition of the ‘mathematical ability of reasoning and argumentation’ is: to be able 
to draw inferences via logical thinking (observation, experimentation, induction, 
analogy, deduction) about mathematical objects (mathematical concepts, relation-
ships, properties, rules, propositions), and to illustrate the reasonableness of the given 
inferences by seeking further evidence, or providing proofs or counterexamples.

3.3.5  Mathematical Modelling

Although always associated with mathematical application, mathematical model-
ling is actually different from mathematical application, as modelling focuses on the 
establishment of a reversible connection between the real world and the mathemati-
cal world, and the process of abstracting mathematical problems and solving practi-
cal problems. While doing mathematical application, people will be informed which 
mathematics should be used to solve problems.

Since mathematical modelling is not a linear process, it is necessary to con-
stantly return from the mathematical world to the real world to test the results and 
improve the model. Blum (Blum, Galbraith, Henn, & Niss, 2007) proposed that 
mathematical modelling is a nonlinear, cyclical process consisting of seven steps: 
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(1) establishing a ‘situation model’ to understand the real-world problem, (2) devel-
oping the situation model into a ‘real model’, (3) mathematising the real model to 
construct a ‘mathematical model’, (4) carrying out mathematical procedures to 
obtain a mathematical solution, (5) interpreting the mathematical solution in terms 
of the real-world problem, (6) validating the real-world solution, and (7) presenting 
the real-world solution.

Therefore, the ability of mathematical modelling means: to be able to compre-
hend and construct a real situation model when confronted with a comprehensive 
situation, to translate the model into a mathematical problem, to establish a mathe-
matical model, to use mathematical methods to solve the mathematical problem, 
and then to interpret and test the mathematical solution according to the specific 
situation as well as to test the reasonableness of the model.

3.3.6  Mathematical Communication

With the development of science and technology, mathematics has penetrated dif-
ferent aspects of society. Students who are future citizens need to have a certain 
level of mathematical communication ability. Mathematical communication is a 
way for students to learn mathematics and also one of the ways to apply mathemat-
ics. Students learn mathematical language in communication and use specific sym-
bols, vocabulary, and syntax in mathematical language to communicate, understand 
the world, and gradually gain the accumulation of common sense.

At present, many countries have explicitly put forward the requirement of devel-
oping students’ mathematical communication ability in their mathematics curricu-
lum standards. For example, in the ‘key concept’ section of the British national 
curriculum, ‘effective mathematical communication ability’ occupies one of the 
three major abilities (Department for Education of UK, 2007), which requires stu-
dents to understand and explain mathematics presented in various forms and to 
communicate confidently in the most appropriate way. The PISA also regards math-
ematical communication ability as a requisite part of mathematical ability assess-
ment and describes it as ‘the mathematical reading and writing ability accompanying 
the process of communication’ (OECD, 2012, p. 18). The Mathematics Curriculum 
Standards for Compulsory Education (MOE, 2012) in China also explicitly require 
students to communicate with others about their own algorithms and processes, and 
to express their own ideas. Mathematics curriculum standards in each country pro-
vide us with explanations of mathematical communication ability.

This study defines the ability of mathematical communication as: to be able to 
recognise, understand, and comprehend mathematical thoughts and mathematical 
facts at different levels by reading, listening, and so on; to explain the solution, 
process, and results of their problems by writing, explaining, and so on; and to anal-
yse and evaluate the mathematical ideas and facts presented by others.

In summary, a core mathematical competency model consisting of six competen-
cies and their related meanings are obtained in our study, which is summarised in 
Table 3.1.
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3.4  An Assessment Framework of Core 
Mathematical Competencies

3.4.1  Levels of Core Mathematical Competencies

The construction of the core mathematics competencies model in this study will 
provide a theoretical framework for the practice of academic quality measurement 
in China. In order to enhance the practical guiding significance of the core math-
ematics competencies model, the study combed the representative content of 
mathematics both internationally and in China, and refined the six core mathemat-
ics competencies into observable student performance behaviours. Due to 

Table 3.1 Meaning of core mathematical competencies

Components of core 
competence The meaning of core competence

Mathematical 
problem posing

To be able to propose new mathematical problems based on certain 
contexts or problems, or come up with new sub-problems during or after 
the process of problem solving, and use mathematical language to present 
these proposed, creative, and independent new mathematical problems

Solving problems 
mathematically

To be able to solve problems occurring in mathematics or other situations 
by using various kinds of appropriate mathematical knowledge, methods, 
and strategies, and to verify and reflect on the process of mathematical 
problem solving

Mathematical 
representation and 
transformation

To be able to express the mathematical concepts or relationships to be 
learned or handled in some form, such as written symbols, graphs (tables), 
scenarios, operational models, words (including oral words), etc., so as to 
eventually solve the problem
To be able to use mathematical transformation strategies that can change 
the format of information in order to simplify or successfully solve a 
problem

Mathematical 
reasoning and 
argumentation

To be able to draw inferences via logical thinking (observation, 
experimentation, induction, analogy, deduction) about mathematical 
objects (mathematical concepts, relationships, properties, rules, 
propositions), and to illustrate the reasonableness of the given inferences 
by seeking further evidence, providing proofs or counterexamples

Mathematical 
modelling

To be able to comprehend and construct a real situation model when 
confronted with a comprehensive situation, to translate the model into a 
mathematical problem, to establish a mathematical model, to use 
mathematical methods to solve the mathematical problem, and then to 
interpret and test the mathematical solution according to the specific 
situation as well as to test the reasonableness of the model

Mathematical 
communication

To be able to recognise, understand, and comprehend mathematical 
thoughts and mathematical facts at different levels by reading, listening, 
etc.; to explain the solution, process, and results of their problems by 
writing, explaining, etc.; to analyse and evaluate the mathematical ideas 
and facts of others
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different cognitive levels, students will have different behaviours related to core 
mathematics competencies, and these behavioural differences will reflect the dif-
ferences of their ability level. The present study attempts to research the stratifica-
tion of ability levels as well. By referring to a series of international evaluation 
projects on the classification of ability or cognitive levels, this study divides the 
mathematical core competencies into three levels: reproduction, connection, and 
reflection.

Level one, reproduction, refers to the ability to memorise basic mathematical con-
cepts, theorems, and methods, and to apply these contents by imitation.

Level two, connection, refers to the ability to process familiar content by using 
acquired knowledge, skills, and techniques, meanwhile drawing connections 
between different mathematical content strands.

Level three, reflection, refers to being adept in processing complex content and 
obtaining solutions, meanwhile proving, reasoning, interpreting, or evaluating 
solutions.

In view of the different fields of mathematical content, the core mathematics 
competencies have specific performance at three levels. Therefore, we include three 
dimensions in the core mathematics competencies framework: mathematical con-
tent, core competencies, and ability levels, as shown in Fig. 3.2 (Xu, Zhu, Bao, & 
Kong, 2015).

For instance, A represents the level of connection related to mathematical repre-
sentation and transformation ability in the field of figures and geometry; B repre-
sents the level of reflection on mathematical communication ability in the field of 
statistics and probability.

Fig. 3.2 Assessment framework of core mathematical competencies
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3.4.2  Behavioural Performance of Core Competencies 
at Different Levels

With reference to comparative international results and in consideration of talent 
development goals in China and the country’s mathematics education characteris-
tics, this study puts forward the meaning and level stratification of core mathematics 
competencies during the compulsory education period. In order to examine and 
develop specific testing tasks to measure students’ core mathematics competencies 
and an analysis tool for assessing such tests, it is necessary to describe the behav-
iours of core mathematics competencies at different levels. We have worked out 
practical behavioural indicators for different levels of competencies, which are 
presented in Table 3.2.

Table 3.2 Behaviours of mathematical core competencies at different levels

Competencies
Levels
Level one: reproduction Level two: connection Level three: reflection

Mathematical 
problem posing

To be able to recognise 
the structure of a given 
mathematical problem
To be able to imitate or 
modify a given problem 
and pose a similar 
mathematical problem
To be able to make 
appropriate supplements 
to a mathematical 
problem based upon the 
missing elements, turning 
it to a complete 
mathematical problem

To be able to find or 
pose more important 
mathematical problems 
(for accomplishing 
tasks) in real-world 
situations or tasks
To be able to expand 
and select information 
according to one’s own 
mathematical 
knowledge and 
experience, establish 
mathematical links, and 
put forward different 
mathematical problems

To be able to classify 
various mathematical 
problems raised by 
oneself and explain their 
bases and processes
To be able to evaluate 
mathematical problems 
raised by peers
To be able to put 
forward more complex 
and extended 
mathematical problems

Solving 
problems 
mathematically

To be able to recognise 
and select familiar 
mathematical information 
when faced with simple 
problem contexts, and 
solve simple 
mathematical problems 
according to known 
mathematical methods 
and strategies
To be able to express the 
simple process of 
mathematical problem 
solving

To be able to connect 
with knowledge and 
expressions (tables, 
words, symbols, etc.) 
of different 
mathematical domains
To be able to express 
thinking procedures, 
solutions, and results 
briefly and logically
To be able to explain 
the meaning of one’s 
own mathematical 
results

To be able to solve 
complex mathematical 
problems by integrated 
use of mathematical 
knowledge, methods, 
and strategies, and 
explain the consistency 
of mathematical models, 
results, and reality
To be able to reflect on 
one’s own problems, 
solutions, and strategies
To be able to compare, 
evaluate, and correct 
others’ understanding
To be able to select the 
optimal strategy 
according to the specific 
situation

(continued)
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Table 3.2 (continued)

Competencies
Levels
Level one: reproduction Level two: connection Level three: reflection

Mathematical 
representation 
and 
transformation

To be able to directly 
process and utilise 
familiar representations 
in a standardised context, 
such as translating 
familiar word expressions 
into symbols, figures, or 
charts

To be able to clearly 
interpret and convert 
two or more 
representation formats 
into relatively familiar 
situations
To be able to design a 
certain representation 
format for the problem 
situation

To be able to understand 
and apply nonstandard 
forms of representation
To be able to design 
specific representations 
for key steps in a 
complex problem 
context
To be able to compare 
and weigh different 
forms of representation

Mathematical 
reasoning and 
argumentation

To be able to put forward 
certain reasonable 
conjectures
To be able to express the 
reasoning process of the 
conjecture
To be able to verify the 
correctness of 
propositions in simple 
situations
To be able to express in 
relatively appropriate and 
correct mathematical 
language

To be able to make 
higher-level 
conjectures in 
relatively complicated 
problem contexts by 
relating to connected 
knowledge
To be able to clearly 
express the process of 
thinking
To be able to conduct 
argumentation of 
complex propositions 
by relating to other 
people’s reasoning and 
previous experience 
with a concise and 
complete process

To be able to make more 
conjectures, reflect on 
and test the conclusions, 
and then systematise the 
mathematical objects
To be able to express 
reasonably and logically
To be able to expand 
thinking and choose the 
proper reasoning 
method according to the 
specific situation in 
order to make strict 
argumentation
To be able to express 
clearly and precisely

Mathematical 
modelling

To be able to recognise 
the standard model in a 
simple and familiar 
situation, directly 
translate the real situation 
into a mathematical 
model, and try to solve 
the mathematical 
problem without testing 
the reasonableness of the 
model

To be able to put 
forward a 
corresponding realistic 
model in a relatively 
familiar yet complex 
irregular problem 
situation by comparing 
with familiar models, 
then translate it into a 
mathematical model 
and attempt to solve the 
mathematical problem 
and test the 
reasonableness of the 
model even though the 
process is not complete

To be able to recognise 
a reasonable realistic 
model in a complex and 
unfamiliar situation, 
then create a 
mathematical model to 
solve the mathematical 
problem, and attempt to 
test and evaluate the 
model

(continued)
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Chapter 4
The Development of Problem-Posing 
in Chinese Mathematics Curriculum

Muhui Li and Binyan Xu

Abstract This chapter is intended to examine the mathematics curriculum docu-
ments from 1902 to 2018 that focused on the requirement of mathematical problem- 
posing. The research question addressed in this study is as follows: What are the 
characteristics of the conceptual development that mathematical problem-posing 
has gone through in China’s mathematics curriculum since 1902? A content analy-
sis was conducted to answer this research question. The results showed that the 
development of mathematical problem-posing in the mathematics curriculum docu-
ments of Chinese schools can be divided into three phases: From 1902 to 1977, the 
curriculum documents paid little attention to problem–posing; from 1978 to 2000, 
the development of problem-posing abilities was emphasised to some extent in the 
mathematics curriculum (syllabi) and was linked to the cultivation of students’ 
independent thinking and self-learning abilities. Since 2001, mathematical problem- 
posing in the curriculum standards has penetrated into the curriculum objectives, 
contents, suggestions, assessment, etc. It has been explicitly pointed out that creat-
ing problems is the basis of innovation.

Keywords Mathematical problem-posing · Mathematics curriculum standards · 
Syllabus · Conceptual development · Content analysis · Independent thinking · 
Self-learning ability · Create problems · Innovation

4.1  Introduction

Over the years, China has greatly benefited from good traditional education. The 
training of students’ mathematical thinking and the development of students’ abili-
ties have always been the focus of mathematics education. With the increase of 
grade levels, on the one hand, students’ problem-solving ability improves progres-
sively; on the other hand, their problem-posing ability emerges as well. However, 
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their ability to pose good questions is relatively weak (Cai, 1998; Nie, Wang, & Lv, 
2003; Wang, 2009). In the era of information explosion, the expansion of mathemat-
ical knowledge and skills should not imply the reduction of problems. On the con-
trary, it becomes even more critical for students to identify good problems in the 
knowledge reserves. When examining the real-world circumstances, it is found that 
teachers are unqualified to fulfil the role of the guider. It seems that the teaching 
method of ‘preparing everything for the students’ results in a comprehensive and 
refined summary of the mathematics learning process. However, over time, it inhib-
its students’ abilities to innovate and pose problems (Ning & Wang, 2012; Xu, 2013, 
2015). This forces us to rethink the strategy of how to ‘teach students to ask’. In fact, 
as early on as more than 2000 years ago, our sages wrote a summary in the Record 
on the Subject of Education (Dai, 1989), which was the skilful problem-poser is like 
a carpenter cutting hard wood, starting with the smoother texture and, then, moving 
to the knotted. Over a long time, students understand with practice. The unskilled 
problem-poser takes the opposite course. The master who skilfully waits to be ques-
tioned may be compared to a bell when it is struck. When struck with a small ham-
mer, it produces a soft sound. When struck with a big hammer, it produces a loud 
sound. But if it is struck leisurely and properly, it gives out all the sound of which it 
is capable. This text likens posing and answering questions to cutting down trees 
and striking a bell. It reveals the inner laws of teaching the arts of posing and 
answering questions between teachers and students. It points out that teachers can 
only reveal the answers when students really do not understand them, so that the 
students’ problem consciousness and problem-posing abilities can be developed 
(Yue & Feng, 2009). Therefore, discovering and posing problems is helpful for 
thinking, and it is also one of the footholds of mathematics teaching. If students 
focus solely on how to memorise knowledge, they will lose their opportunity to 
expand their ability to explore and think. It makes sense to consider the manner in 
which problem-posing can be integrated as an effective element of mathematics 
instruction. In China, as the intended curriculum, the mathematics curriculum stan-
dards play a central role in implementing said curriculum. It is important to investi-
gate how curriculum standards have incorporated mathematical problem-posing in 
the past 100 years and to provide a window into the development of problem-posing 
in the Chinese mathematics curriculum.

4.2  Connotation of Mathematical Problem-Posing

More than 30 years of research on mathematics teaching and learning has prompted 
mathematics educators to pay an increasing amount of attention to the value of 
problem-posing in the mathematics curriculum as well as to integrate problem- 
posing into the daily mathematics teaching, which has in turn led to discussions on 
mathematical problem-posing ability and associated issues.

Some scholars also used ‘problem sensing’, ‘problem formulation’, ‘problem 
finding’, and ‘creative problem discovering’ (Yuan & Sriraman, 2011). Shulman 

M. Li and B. Xu



55

(1965) presented a model that recognised four components of human inquiry: prob-
lem sensitivity, problem formulation, search behaviour, and resolution. Allender 
(1969) said, ‘For Shulman, problem formulation is reflected in the number of differ-
ent information sources used by a subject, but the measure is confounded with 
search behavior scores’ (p.  544). Dillon (1982) concluded, ‘The theme of these 
comments is that finding (discovering, formulating, posing) a problem represents a 
distinct and creative act, equal to or more valuable than finding a solution’ (p. 98). 
The above verbs’ etymology reflects the importance of the process and innovation 
of problem-posing. The word ‘BianTi’ used in the early Chinese education docu-
ments (Curriculum and Teaching Materials Research Institute (CTMRI), 2001) and 
the words for ‘proposing problems’ or ‘organising problems’ put forward by schol-
ars (Leung, 1993) are generally consistent with the definition of problem-posing in 
English.

Since researchers explore the connotation of problem-posing from different per-
spectives, the definitions or concepts defined by the researchers are not the same. In 
previous research, several scholars started from the perspective of the problem- 
solving process and regarded the problem-posing as a part of problem-solving. 
Duncker (1945) proposed that a problem-solving process included a restatement of 
the original problem. Since then, numerous scholars have been attracted towards 
studying the refinement and retelling in the process of solving complex problems 
(Silver, Mamona-Downs, Leung, & Kenney, 1996). The first step in most strategies 
of problem-solving is, simply, a given problem. That step may accordingly be 
viewed as the last step of problem-finding, the process which eventuates in a prob-
lem to be solved (Dillon, 1982). Moreover, Polya (1957) explained the concept of 
‘problem’ from two aspects: One is that it refers to a way of solving the problem, 
while the other states that it is a new problem conceived after one problem is solved. 
‘Re-recognition’ of problem-solving activities refers to reviewing the knowledge 
and methods involved in the solution process. Similarly, other researchers believed 
that for good problem-solvers, the process of solving problems often produces new 
problems (Nie et  al., 2003; Xia, 2005). They proposed a ‘problem chain’ model 
with problems as the nodes, i.e. posing problems  – solving problems  – raising 
higher-level problems  – solving higher-level problems  – raising highest-level 
problems.

There are also researchers who consider problem-posing as an independent 
mathematical activity to illustrate concepts. For example, Stoyanova and Ellerton 
(1996) consider problem-posing as students providing their own understanding of 
specific contexts based on their own mathematical experience and constructing 
meaningful and well-structured mathematical problems. In this definition, the situ-
ation can be divided into three categories: free context, semi-structured context, and 
structured context (Si, 2014; Stoyanova & Ellerton, 1996). Leung (1993) also 
defined problem-posing as thinking about a mathematical problem from one’s own 
perspective. In the process of proposing the problem, the problem-posers use their 
own mathematical knowledge and life experience to establish and organise relation-
ships between characters, events, figures, and graphics to propose a mathematical 
problem.

4 The Development of Problem-Posing in Chinese Mathematics Curriculum



56

As research progressed, Silver (1994) defined problem-posing in two manners: 
(1) creating new problems from a situation or experience and (2) forming a mathe-
matical problem by the formulation and reformulation of the original problem in the 
process of problem-solving, which may occur before, during, or after the problem 
is solved (Silver, 1994). In addition, posing problems mathematically is included as 
one of the six core mathematics competencies proposed by Xu (2013), which refers 
to (1) producing new mathematical problems based on certain contexts or problems 
or producing new sub-questions in or after the process of problem-solving and (2) 
expressing these generated, creative, and independent mathematical problems in 
mathematical language (Xu, 2013).

Based on the researchers’ definitions of problem-posing mentioned above, in this 
study, the term ‘mathematical problem-posing’ is defined as follows: posing new 
mathematical problems based on certain contexts or problems or creating new sub- 
problems in or after the process of problem-solving and, then, expressing these 
newly generated, creative, and independent mathematical problems in mathematic 
language.

There has not been a substantial amount of research examining whether the cur-
ricula themselves incorporate problem-posing and, if so, then how they do it (Cai, 
Hwang, Jiang, & Silber, 2015). This chapter is intended to examine the mathematics 
curriculum documents from 1902 to 2018 that focused on the requirement of math-
ematical problem-posing. The research questions addressed in this study are as fol-
lows: (1) What are the characteristics of the conceptual development that 
mathematical problem-posing has gone through in China’s mathematics curriculum 
since 1902? (2) How does the connotation of mathematical problem-posing change 
in the middle school mathematics curriculum?

This study will provide researchers, curriculum developers, and textbook writers 
with rich information about how to incorporate problem-posing into school 
mathematics.

4.3  Research Design

4.3.1  Research Subjects

To answer the research questions, we examined the mathematics syllabus or cur-
riculum standards at the elementary schools, junior high schools, and high schools 
in China in the past 100 years. The documents from 1902 to 2000 were selected 
from the Collection of Primary and Secondary School Curriculum Standards and 
Syllabus of the Twentieth China-Mathematics volume (hereinafter referred to as 
Collection-Mathematics), which is compiled by the Curriculum and Teaching 
Materials Research Institute (hereinafter referred to as CTMRI) of the People’s 
Education Press. The Collection-Mathematics contains 67 separate curriculum doc-
uments. The Curriculum Standards after the year 2000 include four standards issued 
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by the Ministry of Education of the People’s Republic of China. Table 4.1 presents 
information about the research subjects that we analysed.

4.3.2  Research Methods

A content analysis was conducted to answer the research questions. Generally, the 
process of a content analysis includes the summarising and reporting of written 
materials, i.e. extracting the core content of written materials and information. 
Strictly speaking, it is a rigorous and systematic process of analysing, examining, 
and verifying the content of written materials (Mayring, 2000). The content analysis 
can not only be used to describe the relative frequency and relative importance of 
certain topics but also be used to assess the errors, biases, and religious tendencies 
in textual material (Anderson & Arsenault, 1998). When conducting a content anal-
ysis of written documents, it is necessary to simplify the problems into manageable 
and understandable material. In this study, we will follow the principles of content 
analysis and examine the content of various documents. The general structure of 
curriculum documents comprises four parts: (a) curriculum objectives, which 
include general objective and stage objective, (b) curriculum content (mathematics 
content), (c) suggestions for curriculum implementation, which include suggestions 
for teaching and textbook-writing, and (d) learning and teaching assessment.

Table 4.1 Research subjects

Publishing 
year Curriculum documents

1902–2000 Sixty-seven separate documents from Collection of primary and secondary school 
curriculum standards and syllabus of the twentieth China-Mathematics volume, 
such as:
Rules on Implementation of Secondary School Decree issued in 1912; Curriculum 
Standards for Secondary Schools issued in 1913; Interim Arithmetic Curriculum 
Standards for Junior Secondary Schools of 1929; Mathematics Syllabus for 
Full-Time Ordinary Senior High Schools (trial) issued in 1996

2001 Mathematics curriculum standards for full-time compulsory education 
(Experimental version)

2003 Mathematics curriculum standards for ordinary high schools (Experimental 
version)

2012 Mathematics curriculum standards for compulsory education (2011 version)

2018 Mathematics curriculum standards for ordinary high schools (2017 version)

4 The Development of Problem-Posing in Chinese Mathematics Curriculum



58

4.3.3  Data Processing and Analysis

We (both authors) first checked every sentence that exhibited semantic integrity in 
the curriculum documents that we will analyse and, then, identified sentences that 
were associated with the definition of problem-posing under study.

For example, we checked the sentence ‘In addition, children should be trained 
gradually to draw up application word problems that are similar to problems solved 
already in classrooms’ (CTMRI, 2001, p. 74), which appeared in a section of the 
teaching implementation of the Arithmetic Syllabus for Primary School (Revised 
Draft) issued in 1956. We recognised that this sentence implied that students were 
required to construct problems similar to the ones they solved in classrooms. 
According to the definition of problem-posing, this sentence expressed a type of 
requirement of mathematical problem-posing. Another example was taken from the 
Mathematics Syllabus for Ten-Year Full-Time High Schools (trial version) issued in 
1978, from the section of suggestions for teaching implementation, the syllabus 
emphasised, ‘It is necessary to inspire students to continuously recognise, raise, and 
solve problems’ (CTMRI, 2001, p. 455). We determined that this sentence indicated 
a requirement of problem-posing.

When there was a disagreement between both authors regarding the identifica-
tion of sentences, a third expert would be invited to participate in our work and 
analyse sentences with us until a consensus was reached. In total, we obtained 113 
sentences that indicate mathematical problem-posing.

4.4  Results on Conceptual Development

4.4.1  The Summary of the Conceptual Development 
of Problem-Posing

4.4.1.1  General Information on Conceptual Development 
of Problem- Posing over Time

By examining the mathematics curriculum documents that focused on expressions 
of mathematical problem-posing, a total of 113 valid sentences (expressions) were 
identified. The problem-posing expressions were distributed in syllabi or curricu-
lum standards over time as follows (Fig. 4.1).

Figure 4.1 shows that before 1978, the problem-posing expression appeared only 
once in the mathematics curriculum documents, which was in the Arithmetic 
Syllabus for Primary School (Revised Draft) published in 1956. From 1978 to 1999, 
problem-posing expression has more appearances in the syllabi. For secondary edu-
cation, the problem-posing was mentioned once or twice in every document. 
However, the expression was used without further clarifications. For example, the 
Mathematics Syllabus for Ten-year Full-time High Schools (trial version) issued in 

M. Li and B. Xu



59

1980 emphasised the ‘need to inspire students to find out problems, propose prob-
lems and solve problems’ only once (CTMRI, 2001, p.  473). The syllabi of the 
subsequent year were similar to each other in terms of the layout and writing of the 
texts, and there was no major change.

In 2000, the Mathematics Syllabus for Nine-Year Full-Time Compulsory 
Education in secondary school (Revised Trial) and Mathematics Syllabus for Full- 
time Ordinary Senior High Schools (Revised Trial Edition) were issued but not actu-
ally implemented. In these documents, the appearance of expressions regarding 
problem-posing increased dramatically, in that 21 sentences were identified, with 
special attention given to students’ ability of determining problems in real life and 
expressing them. In the same year, however, many investigative works related to the 
mathematics curriculum reform were completed. The Ministry of Education of the 
People’s Republic of China issued the Mathematics Curriculum Standards for Full- 
Time Compulsory Education (experimental version) in 2001 (MOE, 2001), and this 
marked a turning point in the development of mathematics curriculum.

Since 2001, four curriculum standards have been issued by the MOE. There have 
been more than 67 appearances of sentences related to problem-posing in these four 
curriculum standards. When we considered the standards for senior secondary 
school, we found 14 problem-posing expressions in the standards issued in 2003. In 
2018, the Mathematics Curriculum Standards for Ordinary High Schools (2017 
version) (MOE, 2018) issued by MOE contained 20 sentences that referred to 
problem- posing. It seemed that the standards had increased the emphasis on 
problem-posing.
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Fig. 4.1 Expressions of problem-posing distributed over time and by schools
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4.4.1.2  Distribution of Problem-Posing

We observed that the requirement of problem-posing was expressed in different sec-
tions of the curriculum documents. We already mentioned that the standards com-
prised four parts: objectives, content, suggestions, and assessment. The distribution 
of problem-posing is illustrated in Figs. 4.2 and 4.3.

In the 1902–1977 syllabi, problem-posing only appeared once, which was in the 
teaching suggestions of Arithmetic Syllabus for Primary School (Revised Draft) in 
1956. The distribution of problem-posing in the syllabi or curriculum standards in 
the latter two periods of time is presented in Figs. 4.2 and 4.3. It was found that, in 
the syllabi from 1978 to 2000, the three sections of ‘objectives, content, and teach-
ing suggestions’ involve the cultivation of students’ problem-posing ability. Most of 
the expressions were presented in the ‘curriculum content’ and ‘teaching sugges-
tions’, accounting for 48.6% and 40.5% of all statements of problem-posing from 
1978 to 2000, respectively. For example, in the syllabus issued in 1986, it was stated 

10.80%
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content
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Fig. 4.2 Distribution of problem-posing in standards from 1978 to 2000
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Fig. 4.3 Distribution of problem-posing in standards from 2001 to 2018
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in the ‘algebraic content’ that ‘students should be cultivated to be able to transform 
simple real problems into mathematics problems by solving triangle word prob-
lems’ (CTMRI, 2001, p.  535); it was also stated in the ‘geometric content’ that 
‘students need to know how to explore and find new problems using analogy meth-
ods by learning about similar figures’ (CTMRI, 2001, p.  539). In the section of 
teaching suggestions, problem-posing was also heeded to. For example, in the syl-
labus issued in 2000, the section of teaching implementation suggested that ‘teach-
ing should encourage students to think independently, to pursue new knowledge, 
and to find, pose, and analyse problems’ (CTMRI, 2001, p. 650).

The standards of 2001–2018 incorporate the problem-posing from the content 
into the objectives. As can be seen from Fig. 4.3, during this period of time, prob-
lem-posing was included in the different sections of the curriculum standard, such 
as ‘objectives, content, teaching implementation, and assessment’. The proportion 
accounted for 36%, 21%, 22%, and 21% of all statements of problem- posing from 
2001 to 2018, respectively. The curriculum objectives were clearly stated as 
‘improving the ability to mathematically pose, analyse and solve problems (includ-
ing simple practical problems), the ability to express and communicate in mathe-
matics, and develop the ability to acquire mathematical knowledge independently’. 
In the curriculum content setting, the task of cultivating students’ problem-posing 
ability was mostly placed in comprehensive content, such as mathematical inquiry 
and mathematical modelling by the curriculum standards. In the suggestions sec-
tion, the curriculum standards did not only stress the teaching methods but also 
offered certain suggestions for textbook writing, which required that textbooks 
should pay attention to the setting of situations and present the process of occur-
rence and development of mathematics knowledge using real examples to help 

1956

1978, 1980, 1982, 1986, 1988,

2001, 2003, 2012, 2018,1990, 1992, 1996, 2000

teaching suggestions
objectives; objectives;

content;content;
teaching suggestions teaching suggestions; textbook

writing; learning assessment

• draw up application word
problems

• Find and pose problems;

• Discover new problems by analogy;

• Form problem consciousness;

• Use mathematical language to express
problems, exchange ideas

• Transform and abstract real problems;
• Pose mathematical problems from
situations;
• Pose meaningful mathematical problems
related to subjects, production
and life;

• Pose problems from the mathematical
viewpoint;
• Express the real word by using mathematical
language;
• Find and pose problems are the foundation
of innovation;
• Improve the ability to find and pose
problems;
• Cultivate problem consciousness;
• Guide students to experience and find
problems;
•  Teaching becomes a process of rediscovery

Fig. 4.4 Development of specific expression of problem-posing
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students identify and raise problems. More importantly, the curriculum standards 
also provided assessment suggestions for students’ problem-posing ability. In par-
ticular, teachers were required to actively pay attention to whether students are able 
to find and ask questions from life experience while dealing with comprehensive 
content.

The study explored the development of meaning and requirements related to 
problem-posing from the syllabi or curriculum standards during different periods. 
Some results are summarised in Fig. 4.4.

4.4.2  The Connotation Change of Problem-Posing 
in the Middle School Curriculum

In the next chapter, we focus on the assessment of middle school students’ problem- 
posing ability. In order to understand the assessment results of problem-posing here, 
we have analysed the development of problem-posing in middle school in more 
depth. The development of the connotation expressions of problem-posing in the 
curriculum standards needs to be categorised.

• Beginning to attach importance to posing questions while solving problems

Before 1978, the curriculum documents for middle schools ignored problem- 
posing in mathematics education. In 1978, China’s Mathematics Syllabus for Full- 
Time Ten-Year High Schools (trial version) suggested that teachers should 
continuously inspire students to find, pose, and solve problems. Further, teachers 
should also cultivate students’ ability to think independently and learn by them-
selves, which is considered to be cultivating students’ mathematical problem- 
solving ability. In 1980, the syllabus explained the teaching instructions regarding 
problem-posing and problem-solving again. It can be seen that since the 1970s, 
China has formed a chain on training students’ learning, such as ‘finding prob-
lems – posing questions – solving problems’.

• Paying attention to problem-posing while students learn specific knowledge

Growing up: In 1982, the Full-Time Six-Year Key Middle School Mathematics 
Syllabus (Draft for Comment) pointed out that ‘Based on the basic requirements of 
strengthening students’ basic mathematics knowledge and basic skills, it was also 
necessary to train students how to turn practical problems into mathematical prob-
lems and solve them’ (p. 486). Since then, the ‘mathematicalisation’ of practical 
problems has become an important interpretation indicator for the cultivation of 
students’ mathematical problem-posing ability in the syllabus. Based on this, the 
subsequent syllabi added some regulations regarding the cultivation of students’ 
problem-posing ability regarding the study of certain specific mathematics content. 
For example, the Mathematics Syllabus for Full-Time Secondary Schools in 1986 
and its revised version in 1990 both required teachers to further develop students’ 
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ability to convert simple practical problems into mathematical problems to help 
students understand how to use the analogy method to explore, discover new prob-
lems, and gradually develop the habit of researching problems. At the same time, 
the formulation of the mathematics syllabus for junior high schools was also in 
full swing.

• Regarding problem-posing as bridge between theory and practice

From 1988 to 2000, the three syllabi followed the idea of ‘persisting with linking 
the theory with practice’, and emphasized that the teaching should stem from stu-
dents’ life, relate to social situation and other disciplines to carry out scientific 
abstraction and logical reasoning, so that students could be trained to abstract prac-
tical problems into mathematical problems. After that, students’ ability to analyse 
and solve problems should be cultivated before their mathematical awareness would 
be shaped.

In 2000, the syllabus linked the practical mathematics problems with innovative 
consciousness and practical ability for the first time, pointing out that ‘In teaching, 
students’ curiosity to learn mathematics should be inspired. Through independent 
thinking, they could constantly pursue new knowledge, discover, propose, analyse 
and solve problems creatively and make mathematics learning a process of redis-
covery and re-creation.’ (CTMRI, 2001, p. 650)

In general, during this period, the syllabus paid increasing attention to problem- 
posing. Cultivating the mathematical problem-posing ability of students was estab-
lished in the teaching objectives of the syllabus issued in 2000. The requirement for 
problem-posing became niche, targeting specific mathematics content.

• Cultivating problem-posing ability became explicit in curriculum objectives

After 11  years, the Mathematics Curriculum Standards for Compulsory 
Education (2011 version) (MOE, 2012) re-emphasised that the basis of innovation 
lies in students’ finding and asking about problems on their own. Students in the 
third stage of schooling (Grades 7–9) were required to ‘preliminarily learn to find 
problems and ask questions from the perspective of mathematics in specific situa-
tions’ (MOE, 2012, p. 9) in terms of problem-solving. As per the curriculum con-
tent, it is also a requirement to attempt to find and pose problems while designing 
and implementing solutions to specific problems based on actual situations. Further, 
the curriculum standards also provide suggestions for teaching, assessment, and the 
textbook writing process. For example, when assessing students’ ability of posing 
and analysing problems, one should adopt a flexible method for recording, retain-
ing, and analysing the students’ performance in different aspects. It is a pity that 
despite the several objectives and suggestions, the curriculum standards do not pro-
vide good examples of how to guide students to find and pose mathematical prob-
lems. In addition, the guidance for practical operations needs to be improved.
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4.5  Summary and Discussion

The connotation development of mathematical problem-posing in Chinese school 
mathematics curriculum documents can be divided into three stages: shedding of 
light on the teaching component, objective-oriented initiatory guidance, and going 
from intended to implemented requirements.

1902–1977: A shedding of light on the teaching component
Among all the mathematics syllabi or standards issued during this period, only the 
1956 Elementary School Arithmetic Syllabus (Revised Draft) stated in the teaching 
instructions that students should learn to raise problems imitatively. Although the 
instruction limited children’s problems to the simple level of imitative compiling, it 
had begun to heed to the multi-transformation of the subject from teachers to stu-
dents. Unfortunately, in the following 30 years, this small but enlightening instruc-
tion was not valued and developed.

1978–2000: Objective-oriented initiatory guidance
Influenced by the education philosophy of pragmatism, the mathematics syllabi in 
this period were objective-oriented and implicitly guided the development of 
problem- posing ability. Before 1990, the related content about problem-posing 
started from ‘a few points/problems that should be paid attention to in teaching’, 
and advocated teachers to inspire students to ‘find and ask problems’ and ‘transform 
practical problems into mathematical problems’ (CTMRI, 2001, p. 555). Although 
it stood out of the narrow connotation of the compiling question, the expression was 
too general and, thus, lacked practical guidance. However, it is worth mentioning 
that mathematical problem-posing at this time was linked to the cultivation of stu-
dents’ independent thinking and self-learning abilities, and the expressions reflected 
the significance of problem-posing. The syllabi issued after 1990 clarified the teach-
ing purposes, such as guiding students to ‘abstract practical problems into mathe-
matical problems’ and ‘using mathematical language to express problems and to 
communicate’ (CTMRI, 2001, p. 649). Since then, problem-posing have risen to a 
new heights. At the same time, the syllabus also stated requirements for the source 
and quality of the problems, providing teachers with guidance regarding the imple-
mentation of the teaching, which was in combination with the specific content and 
knowledge that is closely related to daily life.

2001–Present: Going from intended to implemented requirements
Since 2001, the mathematical problem-posing in the standards has penetrated into 
the curriculum objectives, contents, suggestions, assessment, etc. This indicates its 
ability to serve as the benchmark, as it required to improve students’ ability of find-
ing and posing problems in multiple aspects, such as mathematics and life. In addi-
tion, it is explicitly highlighted in the Mathematics Curriculum Standards that 
creating problems is the basis of innovation, and it is necessary to develop students’ 
problem awareness beyond the operational level. The standards also include the 
requirement that teachers should guide students to experience problems-finding and 
lead them to a process of re-finding by creating appropriate situations.
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In the next chapter, we will investigate whether the inclusion of problem-posing 
in curriculum documents reflects a systematic approach to the development of 
problem- posing abilities in students.
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Chapter 5
Chinese Eighth Graders’ Competencies 
in Mathematical Problem-Posing

Binyan Xu and Muhui Li

Abstract This chapter focuses on the research question ‘How do eighth-grade 
Chinese students perform in an assessment of mathematical problem-posing abil-
ity?’ To answer this question, a set of indicators and frameworks for evaluating 
students’ mathematical problem-posing abilities as well as instruments for testing 
mathematical problem-posing ability were developed. In this study, 1210 eighth 
graders were selected as research subjects using two-staged cluster sampling 
method. The results indicated that the overall performance of students’ mathemati-
cal problem-posing abilities was not significantly good. Most students were able to 
imitate given problem structures and generate problems. Few students had the 
capacity of dealing with problem-posing tasks in free situations and integrating 
other knowledge or experience into creating mathematical problems. The study also 
examined the differences in problem-posing abilities in terms of region and gender 
and stated certain implications.

Keywords Mathematical problem-posing · Ability · Framework for evaluating 
abilities · Instrument for testing · Staged cluster sampling · Overall performance · 
Imitate given structure · Integrate knowledge into creating problems · Region 
difference · Gender difference

5.1  Introduction

The posing of problems plays an important role in the development of science and 
technology as well as in social development. The formulation of a problem is more 
essential than its solution. To pose new problems, to raise new possibilities, and to 
perceive old questions from a new angle all require a creative imagination and 
indicate a real advance in science (Einstein & Infeld, 1938). Due to the advance-
ment of mathematics education and the need for talent cultivation in innovative 
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societies, researchers began to explore certain issues associated with mathematical 
problem- posing ability and its teaching in school mathematics in the early 1980s 
(Xia, 2005). It was acknowledged that problem-posing not only develops students’ 
mathematical reasoning abilities in general but also enhances their mathematical 
creativity and interest in mathematics learning. Further, it improves students’ math-
ematical communication abilities and cultivates their cooperative learning abilities 
(Barlow & Cates, 2006; English, 1997; Lavya & Shriki, 2010; Ponte & Henriques, 
2013; Van Harpen & Sriraman, 2013). For decades, numerous countries have stated 
explicit requirements for problem-posing in their mathematics curriculum stan-
dards. Problem-posing is a significant component of the mathematics curriculum. 
For example, Principles and Standards for School Mathematics published by 
National Council of Teachers of Mathematics (NCTM) of the United States have 
recommended that students should be able to formulate interesting problems based 
on a wide variety of situations both within and outside of mathematics (National 
Council of Teachers of Mathematics [NCTM], 2000). China has also advocated the 
ability of students to discover and pose problems in the Mathematics Curriculum 
Standards for Compulsory Education (2011 version). The curriculum objectives of 
the standards require that students learn to identify problems, pose problems math-
ematically and apply mathematics knowledge to solve practical problems (MOE, 
2012). The changes in curriculum have the potential to alter classroom instruction 
and student learning (Cai & Howson, 2013). We hoped that students would be able 
to meet the requirements of the intended curriculum while observing classroom 
teaching. In order to examine the effectiveness of the implementation of the curricu-
lum, this chapter presents an empirical study that is aimed to assess eighth-grade 
Chinese students’ performance in mathematical problem-posing.

5.2  Literature Review

The assessment of problem-posing ability has been a perennial challenge for the 
mathematics education researchers. Different studies provide various perspectives 
and thoughtful results.

In early studies, researchers analysed the characteristics of the problems gener-
ated by students and examined students’ problem-posing performances. Silver 
(1994) pointed out that the difficulty and novelty of the mathematical problems 
posed by students were both considered when determining the level of students’ 
problem-posing performance. Silver and Cai (1996) investigated the mathematical 
problems generated by 509 middle school students and examined the parameters of 
solvability, linguistic and mathematical complexity, and relationships within the 
sets of the posed problems. The results illustrated that the students constructed a 
large number of solvable mathematical problems, many of which were syntactically 
and semantically complex. In the study conducted by English (1997), a framework 
was developed for studying fifth-grade children’s abilities with regard to problem- 
posing and development of diverse mathematical thinking. The mathematical 
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problem- posing ability in this study was related to the recognition and utilisation of 
problem structures and the perceptions as well as preferences associated with differ-
ent problem types. Studies from this period have a special focus on the relationship 
between problem-posing and problem-solving abilities. The second aim of the study 
carried out by English (1997) was to investigate the extent to which children’s sense 
of numbers and novel problem-solving skills govern their problem-posing abilities 
in routine and unique situations. Cai (1998) explored the mathematical problem- 
posing and problem-solving abilities of American and Chinese sixth-grade students. 
The study analysed the students’ responses to mathematical problem-posing and 
problem-solving tasks and found that Chinese students outperformed American stu-
dents in computational tasks, but there were differences between the two when per-
forming relatively novel tasks.

In the twenty-first century, researchers have gained new insights into the evalua-
tion of problem-posing, and these evaluations have drawn on the multidimensional 
analysis around indicators such as quantity of the problems being raised and the 
creativity and complexity of problems. While certain analyses include multiple lev-
els within each dimension (e.g. quantity, speed, and quality) to gauge students’ 
problem-posing abilities (Zheng, Wang, & Lv, 2007), some contain nested dimen-
sions, i.e. each main indicator (e.g. quantity, category, and novelty) contains sub- 
dimensions. In such cases, the ability scores were derived by synthesising weighted 
assignments (Silver & Cai, 2005; Xia, Wang, & Lv, 2008).

Some studies applied mathematical problem-posing as an intermediary tool in 
measuring the effectiveness of mathematics curriculum implementation instead of 
evaluating mathematical problem-posing directly. Cai et al. (2013) used problem- 
posing as a measure of the effect of the middle school curriculum on students’ learn-
ing. In the study, a qualitative rubric was developed to assess the different 
characteristics of students’ responses to the tasks posed. The results bolster the fea-
sibility and validity of problem-posing as a measure of the curriculum’s effect on 
student learning. Problem-posing is also used as a formative assessment tool. Kwek 
(2015) examined students’ thinking processes, understandings, and competencies 
using problem-posing tasks. The study analysed the problems posed by high-ability 
secondary school students. Then, the students’ performances were analysed and 
evaluated with respect to the complexity of the problems. Recently, researchers 
have studied creativity in the context of problem-posing (Pelczer, Singer, & Voica, 
2013; Voica & Singer, 2014). Problem-posing was considered a parameter of math-
ematical creativity. Singer, Voica, and Pelczer (2016) and colleagues provided stu-
dents who were prospective teachers with geometry-problem-posing tasks. Students 
were asked to propose different mathematical problems that were related to either 
geometry or conceptual dispersion. After analysing the students’ responses (i.e. the 
posed problems), the results could be used to gauge cognitive flexibility, which is a 
basic indicator of creativity.

In summary, the research on the evaluation of problem-posing ability has grown 
increasingly comprehensive, and the characteristics of problem-posing have become 
abundant. The assessment of problem-posing abilities is valuable with regard to 
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the understanding and further promotion of students’ mathematical competencies. 
In this chapter, students’ problem-posing abilities were assessed in order to under-
stand how their performance is related to the curriculum standards. The research 
question is “How do eighth-grade Chinese students perform in an assessment of 
mathematical problem-posing ability?” To answer this question, a set of indicators 
and frameworks for evaluating students’ mathematical problem-posing abilities as well 
as instruments for testing mathematical problem-posing ability were developed. 
The different performances of students and the differences in their mathematical 
problem- posing abilities were compared.

5.3  Methodology

5.3.1  Research Participants

The research participants comprise eighth-grade students recruited from Mainland 
China. In order to obtain results that could portray students’ mathematical abilities 
in this region, two-staged cluster sampling method was adopted for selecting par-
ticipants. First, the study identified eight representative provinces according to the 
geographical location of regions (including East China, Central China, North 
China, South China, Northwest China, and Southwest China). For each province, 
the provincial capital city was selected as the research sample. Normally, there is a 
teaching research instructor for mathematics in each city. These individuals are 
responsible for the mathematics teacher training and scientific events related to 
mathematics teaching in schools. Second, we invited them to support our selection 
of participants. In the eight cities, each instructor selected three schools based on 
senior high school entrance examination performance. All schools exhibited above-
average performance. Third, in each selected school, one or two classes were 
selected, and the students from the selected classes were asked whether they wanted 
to be research participants. Most of them agreed to participate in the study. The 
number of the participants is shown in Table 5.1. With reference to the Chinese 
Statistics Yearbook 2017, cities were divided into three categories based on their 
corresponding economic development levels: developed, moderately developed, 
and less developed.

Table 5.1 Research participants

Developed region
Moderately 
developed region Less developed region Total number of research 

participantsBJ(4) SH(3) GZ(3) CD(3) DL(3) XA(3) ZZ(6) XJ(3)

174 121 80 153 114 145 247 176 1210

Note: Each city is indicated by two letters, and the numbers in the parentheses indicate the number 
of schools participating in the investigation from these cities
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5.3.2  Framework and Instruments

In order to investigate the aforementioned research question, a mathematical 
problem- posing test was administered for the research participants. For this process, 
six tasks were developed based on the framework mentioned in Chap. 3 and other 
literature. In the framework, mathematical problem-posing ability was defined as 
the ability to propose new mathematical problems based on certain contexts or 
problems or to formulate new sub-problems during or after the process of problem- 
solving and use mathematical language to present these proposed, creative and 
independent new mathematical problems. The framework described problem- 
posing abilities at three different levels, which are presented in Table 5.2.

Mathematical problem-posing abilities will be measured by means of a mathe-
matical problem-posing test. While developing the tasks for this test, the present 
study considered the problem-posing task classification proposed by Stoyanova and 
Ellerton (1996). They classified a problem-posing situation as either free, semi- 
structured, or structured. The present study applied this classification model to the 
development of assessment tasks related to the three levels of problem-posing abili-
ties. Table 5.3 presents the developmental criteria of tasks.

According to this classification, a problem-posing situation is referred to as 
structured when the problem-posing activities are based on a specific problem. 
Students were asked to generate mathematics problems that align with a given prob-
lem situation or that have a similar structure as the given structure. In the present 
study, two tasks with structured situation were developed.

Task 1 (Structured problem-posing situation) Please propose a mathematics 

word problem according to the given binary linear equations {
y x

x y

� �
� �

1

2 16
 using 

graphic representation or word representation.

Table 5.2 Framework of mathematical problem-posing abilities at three levels

Competency
Levels
Level I: Reproduction Level II: Connection Level III: Reflection

Mathematical 
problem- 
posing

To be able to recognise 
the structure of a given 
mathematical problem
To be able to imitate or 
modify a given problem 
and pose a similar 
mathematical problem
To be able to make 
appropriate supplements 
to a mathematical 
problem based on the 
missing elements, thus 
turning it to a complete 
mathematical problem

To be able to find or pose 
more important 
mathematical problems (for 
accomplishing tasks) in 
real-world situations or tasks
To be able to expand and 
select information according 
to one’s own mathematical 
knowledge and experience, 
establish mathematical links, 
and put forward different 
mathematical problems

To be able to classify 
various mathematical 
problems raised by 
oneself and explain 
their bases and 
processes
To be able to evaluate 
mathematical 
problems raised by 
peers
To be able to put 
forward more 
complex and 
extended 
mathematical 
problems
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This task situation provides a structured mathematical symbolic representation 
that is familiar for students. Based on the binary linear equation, students were 
required to generate another form of mathematics problem, called a word problem. 
This was used to predict whether the students found it easy to begin the task based 
on their learning experiences. Level I abilities are required to formulate new 
problems.

Task 2 (Structured problem-posing situation) Imitate the following problem to 
propose another practical mathematical problem (no need to answer.)

The figure below shows a pair of symmetrical stepladders. The distance between 
the upper and lower step is 40 cm. The length of the upper step is 5 cm shorter than 
that of the lower step. The length of the lowest step is 50 cm. If the ladder is 480 cm 
long, what is the length of the step on the top?

 

Table 5.3 The development criteria of tasks for assessing mathematical problem-posing abilities

Content
Level
Level I Level II Level III

Mathematical 
problem-posing

In a well-structured 
context, the proponent 
is able to identify the 
mathematical structure 
of the situation and 
propose a complete 
mathematical problem 
that has a consistent or 
similar structure

In a semi-structured 
situation or a real-life 
situation, it is possible to 
screen and organise 
information from the 
context and pose 
mathematical problems, 
conjectures or propositions 
related to the original 
situation

In the free setting, it is 
possible to supplement 
the necessary conditions 
or conclusions with the 
actual needs of the 
situation, complete the 
mathematical structure of 
the situation, and pose 
different mathematical 
problems that are 
complex and difficult

Characteristics 
of task 
situations

Well-structured 
situations: 
mathematical 
symbolic operations, 
mathematical 
formulas, graphics and 
text, or well-structured 
mathematical 
problems

Semi-structured or 
realistic situations: The 
amount of information is 
sufficient, but the 
mathematical structure is 
not clear, and it is 
necessary for the 
proponent to screen and 
organise it by himself/
herself

Free situations: The 
amount of information is 
not sufficient, and the 
proponent needs to grasp 
from the whole, expand, 
and supplement the 
reasonable and non- 
overlapping information
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This task provides a well-structured problem in which the situation is based on 
students’ real life. The problem contains some numerical relationships that need to 
be identified. Students were asked to imitate the problem structure and propose a 
mathematical problem with a similar structure. This was carried out to predict 
whether Level I abilities are required for posing new problems.

The present study considered a semi-structured situation. A problem-posing situ-
ation is referred to as semi-structured when students are given an open situation and 
are invited to explore the structure of that situation and complete it by applying the 
knowledge, skills, concepts, and relationships they have learned from their previous 
mathematical experiences. In the present study, two tasks with semi-structured situ-
ations were developed.

Task 3 (Semi-structured problem-posing situation) A story about selling crabs.

Wang is selling crabs in a market. The sale price is 100 RMB per 500 g. Two 
customers are talking to Wang. One customer says, ‘The crabs are of good quality. 
But I just want to buy crab bodies.’ The other customer says, ‘I just want to buy crab 
pincers and legs.’ They say to Wang, ‘We will buy all the crabs. One needs the 
crabs’ bodies, while the other needs pincers and legs. Now, your sale price is 100 
RMB per 500 g. We suggest that the sale price of crab bodies is 70 RMB per 500 g, 
and the sale price of crab pincers and legs is 30 RMB per 500 g. Further, 70 plus 30 
is 100. We haven’t bargained with you. Could you please divide the crabs into bod-
ies and pincers and legs and, then, weigh them separately. What do you think?’ 
Wang considered it and thought that it seemed to be right. He agreed with the sug-
gestion and weighed the different parts of the crabs separately. The crab pincers and 
legs weighed 500 g, while the crab bodies weighed 1500 g. Then, one customer paid 
30 RMB, and the other paid 210 RMB. Wang received 240 EMB in total.

Please read the story and pose problems mathematically. Write down your math-
ematical problems.

This task was designed for assessing mathematical problem-posing abilities at 
Level II. The situation came from real life and provided some information about the 
mathematical variables and relations instead of presenting a structured problem. 
The students were required to screen and organise the information related to math-
ematical aspects based on the situation.

Task 4 (Semi-structured problem-posing situation) The following number array 
is called a ‘Pythagorean triple’.

3 4 5

6 8 10

9 12 15

2 2 2

2 2 2

2 2 2

� �
� �
� �

�  

Please generate a mathematical proposition around this Pythagorean triple.
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This task was also designed for assessing mathematical problem-posing abilities 
at Level II. Certain mathematical laws govern the mathematical situations, but the 
situation did not provide structured proposition conditions and conclusions. The 
students were asked to search for the mathematical laws and generate the mathemat-
ical propositions that reflect these laws.

The present study also considered a free situation. A problem-posing situation is 
referred to as free when students are asked to generate a problem from either a 
given, contrived, or naturalistic situation. There were two such tasks designed in the 
present study.

Task 5 (Free problem-posing situation) As shown in Figure a, fold the vertex B 
of a square to the midpoint E of the edge AD to obtain one crease FG. As shown in 
Figure b, fold the vertex C of a square to the midpoint E of the edge AD to obtain 
one crease LM. Please put forward at least two complicated mathematical problems 
according to the given conditions.

 

This task was designed for assessing mathematical problem-posing abilities at 
Level II. The situation contains certain mathematical conditions and information 
but no complete structure. In order to formulate mathematical problems, students 
were required to integrate mathematical information within the situation.

Task 6 (Free problem-posing situation) Given that the two triangles are both 
equilateral triangles (figure c), please formulate certain conditions and pose at least 
two complicated mathematical problems

Figure c  

This task was designed for assessing mathematical problem-posing abilities at 
Level II. In this situation, the mathematical information is incomplete, and students 
needed to expand or supplement some conditions. This situation is open with regard 
to problem-posing, and students have opportunities to exhibit their thinking.
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5.3.3  Coding Approach

All responses were collected. In order to analyse participants’ responses, the 
responses for the six tasks were coded as per the corresponding coding criteria. The 
coding criteria were constructed based on Tables 5.2 and 5.3. First, the problems 
posed by participants were judged based on whether they met the coding criteria. 
When a response met the coding criteria, it was coded as 1, and if it did not meet the 
criteria, it was coded as 0. Thus, the first code referred to the performance of 
problem- posing. Second, the problems posed by participants were analysed to iden-
tify what forms or features they contained. While completing the analysis of the 
performance for every response, a second code was used to represent the features of 
the response. Let’s take Task 2 as an example. Table 5.4 presents the coding criteria 
for Task 2.

The following are typical examples of responses:
Response coded as 11: As shown in the figure, it is a symmetrical stepladder. It is 

known that the distance between the upper and lower step is 40 cm. The length of 
the upper step is 3 cm shorter than that of the lower step, and the length of the top 
step is 30 cm long. If the total length of the ladder is 420 cm, what is the length of 
the lowest step?

This response, posed by one student, retained the same situation and imitated the 
original problem structure. However, it changed the condition and asked a different 
question. Therefore, the response is coded as 11.

Response coded as 12: As shown in the figure, it is a small symmetrical water 
channel. It is known that the distance between the upper and lower scales is 40 cm. 

Table 5.4 Coding criteria and explanation for Task 2

Explanation of Task 2 (coding criteria)
Task 2 requires students to master the structure of the original problems and the relation 
between their variables. The posed mathematical problems contain complete conditions and 
conclusions; or the posed problems exhibit certain similarity and relevance to the original 
problems in terms of mathematical structure
First code Second code and explanation
1: meet the coding criteria 11: A response retains the background 

situation of the original problem and 
imitates the original problem structure 
but changes the condition or question
12: A response has a similar background 
situation as the original problem and 
imitates the original problem structure

0: didn’t meet the coding criteria 01: No problems are posed
02: No changes in the original problem 
or only quantity was changed within 
original problem
03: Situation or structure of a response 
has nothing to do with the original 
problem
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The width at the lower scale is 5 cm narrower than that at the upper scale, and the 
width at the uppermost scale is 50 cm. If one hypotenuse of the water channel is 
480 cm long, what is the bottom width of the water channel?

This response changed the problem situation but had a similar problem structure, 
so it was coded as 12.

Response coded with 02: The figure on the right shows a pair of symmetrical 
stepladders. The distance between the upper and lower step is 30 cm. The length of 
the upper step is 4 cm shorter than that of the lower step. The length of the lowest 
step is 40 cm. If the ladder is 450 cm long, what is the length of the step on the top?

This response, posed by one of the students, duplicated the original problem and 
only changed certain quantities within the original. Hence, it was coded as 02.

Response coded with 03: It is known that the mid-section of a right-angled isos-
celes triangle is 2 cm smaller than the bottom edge, and it is known that the length 
of the hypotenuse is 6 cm. What is the length of the side?

The response mentioned some mathematics elements but did not imitate any 
situations or structures of the original problem. Thus, it was coded as 03.

5.4  Results

By analysing the problems generated by the eighth-grade students, the present study 
obtained results while focusing on the following aspects: (1) the overall perfor-
mance of students’ mathematical problem-posing ability, including the ability level 
classification and the specific performance in tasks of different ability levels; (2) 
differences in the performance of students’ mathematical problem-posing ability 
based on regional and gender differences.

5.4.1  The Overall Performance of Students’ Mathematical 
Problem-Posing Ability

5.4.1.1  Students’ Performance of Problem Posing Abilities for Six Tasks

In total, 1210 participants attempted the mathematical problem-posing test, which 
included six tasks. After coding the six tasks based on the corresponding criteria, all 
the data were managed and analysed using Microsoft Excel. As mentioned above, 
when responses met coding criteria, they were coded as 1 and were referred to as 
‘accurate responses’ in the present study. Whereas, if responses did not meet the 
coding criteria, they were coded as 0 and were called ‘inaccurate responses’. First, 
the accuracy of the responses was calculated. These results are presented in Fig. 5.1.

This figure indicates that 8.1% of all participants generated accurate problems 
for all six tasks, 8.8% of all participants posed accurate problems for five tasks, and 
18.10% for four tasks. If we consider that students could generate accurate 
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problems for more than three tasks, it can be said that these students displayed good 
performance in terms of problem-posing abilities. It was found that 35.8% of stu-
dents performed well. If we consider that students could generate accurate problems 
for less than three tasks, it can be said that these students exhibited poor problem- 
posing abilities. Thus, 40.3% of students were found to have performed poorly. 
Finally, 23.8% of students displayed moderate performance of problem-posing 
abilities.

5.4.1.2  Students’ Performance in Tasks at Different Ability Levels

The results also revealed the specific performance of students for different task situ-
ations and different levels of abilities. Task 1 (T1) and Task 2 (T2) gauged Level I 
abilities, Task 3 (T3) and Task 4 (T4) gauged Level II abilities, and Task 5 (T5) and 
Task 6 (T6) gauged Level III abilities. Figure 5.2 illustrates the percentage of stu-
dents who provided accurate responses for different tasks.

As can be seen from the above figure, the students’ performance varied depending 
on the task level. The percentage of students who posed accurate problems decreased 
as the task became more complicated. The percentage of students who provided 
accurate responses for the first and second tasks are 73.2% and 60.4%, respectively, 
while the percentage of students who provided accurate responses for the third and 
fourth tasks declined by about 20% each compared with that of the second task. 
There is little difference between the accuracy of the fifth take and the fourth task. 
Further, the percentage of students who generated accurate responses for the sixth 
task dropped to about 21.4%. The above data revealed that the students’ problem-
posing abilities are essentially consistent with the setting of the task situation and 
structure. For structured problem-posing situations, students performed much better 
than in free situations. Students displayed a strong ability to imitate problem 

3.10%

13.90%

24.20%

23.80%

18.10%

8.80%

8.10%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

all inaccurate

one accurate

two accurate

three accurate

four accurate

five accurate

all accurate

Fig. 5.1 Percentage of students with accurate responses to tasks
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structures while posing mathematical problems. However, as task situations became 
more open and free, the students’ problem-posing abilities became weaker.

5.4.1.3  Characteristics of the Problems Posed by Students

The present study analysed the different forms and features of the problems posed 
by students in cases where they posed accurate problems. As previously mentioned, 
the characteristics of problem were also represented by a code (second code). The 
results for the characteristics are illustrated in Table 5.5.

Table 5.5 illustrates that most students followed the original task structure and 
made slight changes in the situation or mathematical condition when generating 
accurate problems. For Tasks 1, 2, and 3, 94%, 76%, and 95% of the accurate 
responses, respectively, had a similar problem structure to that of the original tasks. 
Thus, it can be assumed that students primarily imitated the given problem structure 
when they were asked to pose mathematical problems. They lacked the ability to 
integrate comprehensive knowledge and thinking into the process of posing prob-
lems. However, when analysing the tasks for Level III (T5 and T6), it was found that 
nearly half of the accurate responses were novel and exploratory, although only few 
of the students could formulate accurate problems while dealing with a free problem- 
posing situation.

73.20%

60.40%

43.40%
39.50% 37.60%

21.40%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0
100
200
300
400
500
600
700
800
900
1000

T1 T2 T3 T4 T5 T6

percentage

Fig. 5.2 Percentage of students who posed accurate problems for tasks

B. Xu and M. Li



79

Table 5.5 Characteristics of the accurate problems posed by students for the six tasks

Level Task Percentage
Second code
Characteristic of problem Example of responses

I T1 94% 1: Word problems based 
on daily life situations

Xiao Ming went to buy fruit. If a catty of 
peaches costs 1 yuan more than a catty of 
apples, and Xiao Ming bought two catties 
of apples and a catty of peaches for a 
total of 16 yuan, then how much is a catty 
of peaches and apples?

6% 2: Problems posed while 
using expressions 
(equations) as a whole

A given rectangle has side lengths xy and 
x/y, and they fit in the equations of Task 1. 
Calculate the area of the rectangle

T2 76% 1: The response retains the 
background situation of 
the original problem and 
imitates the original 
problem structure but 
alters the condition or 
question

Mentioned in Sect. 5.3.3

24% 2: The response has a 
similar background 
situation as the original 
problem and imitates the 
original problem structure

II T3 95% 1: Structured mathematical 
problem based on the 
story’s context

The total weight of crabs should be 
1500 + 500 = 2000 g. If they are sold 
whole at 100 yuan per 500 g, the total 
should be 400 yuan. Why did the two 
customers only pay 240 yuan for buying 
them separately?

5% 2: Enlightening or 
reflective mathematical 
problems related to the 
story context

Is the money paid by the two people 
right? If so, please explain the reason; if 
not, please state how much each person 
should have paid? Also, explain why the 
payment made was incorrect

T4 57% 1: Mathematics 
propositions posed by 
students that summarised 
or improved the given 
propositions

If a2 + b2 = c2, then
(xa)2 + (xb)2 = (xc)2

43% 2: Mathematics 
propositions posed by 
students that combined 
given propositions and 
other knowledge

For a Pythagorean triple, if each of its 
elements is expanded or reduced by the 
same multiple, the three numbers 
obtained would still form a Pythagorean 
triple

III T5 56% 1: Well-structured 
problems related to proof 
or judgment with a certain 
degree of difficulty and 
based on the conditions

Prove that ⊿FMN ≌ ⊿NLG; connect FL 
and MG, and prove that the quadrilateral 
MGLF is a rectangle

(continued)
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5.4.2  Differences in the Performance of Students’ 
Mathematical Problem-Posing Ability Based on Region 
and Gender

The impacts of regional and gender differences on students’ mathematical perfor-
mance has been a topic of interest in the field of mathematics for a long time. 
International comparative studies have found that students’ mathematical problem- 
proposing abilities vary with cultural backgrounds or mathematics curriculum (Cai 
et al., 2013). In this study, the effects of regional and gender differences on students’ 
mathematical problem-proposing ability were also examined.

5.4.2.1  Regional Differences

By analysing the accurate problems posed by students from the three regions, which 
are developed, moderately developed, and less developed, the overall performance 
for the different regions was found. These results are shown in Fig. 5.3.

The data has already illustrated that only less than 10% of the students were able 
to pose accurate problems for all six tasks for the three levels. The overall perfor-
mance of the problem-posing abilities was relatively weak. In order to identify the 
effects of regional differences on problem-posing ability, we analysed the perfor-
mance on three different levels, respectively. Figure  5.3 shows that the students 
from the developed regions performed better than those from the other two regions 
when dealing with problem-posing tasks. For tasks for Level I, Level II, and Level 
III, 55.2%, 25.1%, and 11.5% of the students from developed regions, respectively, 
generated accurate mathematical problems. For tasks for Level I, the students from 
less developed regions performed slightly better than those from moderately devel-
oped regions. However, for tasks for Level II and Level III, 22.1% and 9.0% of the 

Table 5.5 (continued)

Level Task Percentage
Second code
Characteristic of problem Example of responses

44% 2: Mathematical problems 
with a certain difficulty in 
terms of solvability (such 
as finding angles, line 
lengths, etc.)

If AD = m, find the value of MB; find the 
value of NP

T6 52% 1: Compilation of some 
conditions and their use to 
pose relevant well- 
structured mathematical 
problems

Given that ∠DAC = ∠BEC, AC = 4, 
CE = 6, find the ratio of BE to AD

48% 2: Posing exploratory 
mathematical problems 
based on added conditions

If the area of ⊿DCE is 2 and the area of 
⊿ABC is 1, can the areas of ⊿BCF and 
⊿CDG be obtained? If not, explain the 
reason, and, if so, calculate it
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students from moderately developed regions, respectively, posed accurate problems, 
while the lowest percentage of students who could generate accurate problems were 
from less developed regions. The economical situation seemed to have an impact on 
the development of students’ problem-posing abilities.

5.4.2.2  Gender Differences

In this study, 51% of the total 1210 participants were boys, 47% were girls, and 2% 
did not indicate their gender. In the same manner as previously described, the accu-
rate problems generated by boys and girls were examined. Figure 5.4 illustrates the 
percentage of boys and girls who posed accurate problems for the tasks for 
three levels.

The above figure reveals that the girls performed better than the boys. For the 
tasks for Levels I, II, and III, 51.8%, 22.8%, and 9.0% of the girls, respectively, 
generated accurate problems. However, the effects of gender difference on problem- 
posing abilities reduced as the posing task situations become increasingly open and 
free. When faced with a free context of posing tasks, boys and girls were challenged 
to a similar degree and displayed weak capabilities of posing mathematical 
problems.

5.5  Summary and Discussion

5.5.1  A General Description of Students’ Mathematical 
Problem-Posing Ability

The present study developed three kinds of test tasks with structured problem- 
posing situations, semi-structured problem-posing  situations, and free problem- 
posing situations. As previously described, the tasks with structured situations 
aimed at examining mathematical problem-posing abilities at Level I, those with 

Fig. 5.3 Percentage of students in different regions who posed accurate problems for the six tasks
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semi-structured situations were associated with problem-posing abilities of Level 
II, and those with free situations were aimed at investigating abilities for Level 
III. The results of the study revealed that the students’ problem-posing abilities for 
tasks of Level I were much better than those for tasks for Level II and Level III. For 
tasks of Level III, only a few of the students were able to formulate accurate math-
ematical problems.

For tasks for Level I, students were asked to generate problems that had the same 
or similar structures as those provided in the task situations. It was not difficult for 
students to imitate the mathematical situation structure and pose problems, so their 
problem-posing performance was much better at this level. For tasks for Level II, 
students were asked to integrate their knowledge or experiences with posing prob-
lems mathematically. They were required to recognise and sum up the mathematical 
structure based on ill-structured situations and generate mathematical problems or 
propositions. The results indicated that only less than half of the students were able 
to determine and formulate accurate mathematical problems. They lacked the abil-
ity to generate reasonable problems when dealing with ill-structured situations. The 
tasks for Level III provided the students with open situations, and some situations 
contained redundant mathematical information. Students were required to select 
information and pose difficult problems accordingly. However, certain situations 
included insufficient information, and students needed to add some mathematical 
conditions or conclusions before posing the problems. The results indicated that 
most students were unable to complete these problem-posing tasks.

Although students’ performance of problem-posing was generally consistent 
with the task levels, some findings indicate that certain students performed ‘abnor-
mally’. These students did not generate accurate problems with structured or ill- 
structured situations but were able to create interesting mathematical problems 

45.70%

20.40%

6.90%

51.80%

22.80%

9.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

all accurate at level 1 all accurate at level 2 all accurate at level 3

Boys

girls

Fig. 5.4 Percentage of boys and girls who posed accurate problems for the tasks for three levels
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when given free situations. It was observed that such students could engage with 
creating and combining conditions and posing mathematical problems. The results 
indicated that these students could be good problem-posers, although they could not 
imitate situation structures. The cultivation of students’ problem-posing abilities 
may not always begin with an easy situation.

5.5.2  Analysis of the Characteristics of Students’ 
Mathematical Problem-Posing Ability

The present study also analysed the characteristics of the problems posed by the 
students and marked them using a second code. An in-depth explanation of these 
second codes has been previously provided, and the characteristics of the problems 
have been summarised. Primarily, the second code indicates the context the students 
used while posing problems. The situations of the mathematical problems posed by 
students were similar to their current life experiences. These situations fall under 
four categories: First is family life experiences, such as daily life with parents and 
siblings. There are quite a lot of mathematical problems that use daily life as mate-
rial and background. Second is school life experience. As students are familiar with 
the academic life and interpersonal processes at school, there are a considerable 
number of mathematical problems that use school life as their background. The 
third category is social life experiences. These mainly consist of certain knowledge 
and experiences about social production and operation, which is also important 
background information used by students to pose mathematical problems. Finally, 
the fourth category is existing mathematics knowledge. Mathematics knowledge 
itself also contains a lot of material that can be used to pose questions. Several stu-
dents associate it with other mathematical concepts and principles that they have 
learned, such as those in algebra and geometry, and pose mathematical application 
problems.

Further, the second code indicates how the mathematical problem should be 
organised. Students generated the mathematical problems in different ways even 
though they used the same type of information. In this study, two such ways can be 
identified. Some students directly selected the relevant mathematical information in 
the task situation and integrated it while creating problems. For example, in Task 3, 
there are multiple relationships between the two quantities in mathematics, and stu-
dents directly used these relationships to express a mathematical problem. Whereas, 
for some tasks, they directly imitated the mathematical structures and generated 
mathematical problems. Other students were able to identify the mathematical rela-
tionships and structures that were embedded in the tasks and used them to pose 
problems in a relatively implicit and indirect manner. These students were also able 
to make certain changes to the original mathematical relationships and indirectly 
use the mathematical structure to create mathematical problems.

Last, the second code indicates the characteristics of the problems formulated by 
the students. It was found that the mathematical problems raised by the same 
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student in a certain task situation have the following characteristics: (1) Similarity. 
Mathematical problems posed based on the same task situation share the homoge-
neous structure, organisation of the problem, and even conclusions of different 
problems. These similarities were also found in the mathematical problems posed 
for different task situations. (2) Chaining. After posing certain types of mathemati-
cal problems, the students tended to pose the same type of mathematical problems 
continuously. There was a certain degree of linkage between the problems that they 
posed for different task situations. (3) Solvability. Most students tended to only 
raise mathematical problems that they could solve, even though they were encour-
aged to raise difficult mathematical problems for the task situation.

5.5.3  Analysis of the Effects of Regional and Gender 
Differences on Students’ Mathematical 
Problem-Posing Ability

In terms of regions of origin, it was found that the students from developed regions 
performed better than those from moderately developed regions, but the perfor-
mance gap between the two was not notable. There is no significant difference 
between the performance of the students from underdeveloped regions and that of 
students from moderately developed regions. This means that the development of 
problem-posing abilities does not always depend on the economic situation of stu-
dents. The result showed that students from less developed regions performed better 
than those from moderately developed regions while dealing with the tasks for 
Level I. The study revealed that most of students did not have enough capacity to 
generate problems, especially for the tasks with open situations, for which students 
had no idea about how to pose accurate mathematical problems. This implicated 
that mathematics teaching needs to play a role in improving students’ problem- 
posing abilities.

Further, the differences in the mathematical problem-posing ability between 
boys and girls were also observed, and it was found that the girls performed better 
than the boys. The study did not analyse the effects of gender difference on problem- 
posing in depth, which inspired us to consider what the specific characteristics of 
the problems posed by girls and boys are and what the relationship between math-
ematics learning and mathematical problem posing is with regard to gender 
differences.

The study implicated a certain gap between the intended mathematics curricu-
lum and the implemented curriculum. The development of mathematical problem- 
posing abilities required by the current mathematics curriculum is reflected in 
mathematics textbooks (Zeng et al., 2006). Certain textbooks organise structured 
content and provide suggestions for how problem-posing can be taught to students. 
It is anticipated that the curriculum objective of developing mathematical 
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problem- posing ability will be implemented in the mathematics classroom, and fur-
ther evidence can be collected to explore students’ mathematical problem-posing 
abilities.
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Chapter 6
The Development of Problem Solving 
in Chinese Mathematics Curricula

Xiang Gao

Abstract This chapter opens with a review of the concept of mathematical problem- 
solving competency and defines it based on three aspects: different mathematics 
content, contexts and cognitive demands. By combing the content about mathemati-
cal problem-solving competency from syllabi and curriculum standards in China 
since 1902, this chapter explores the conceptual development of mathematical 
problem- solving competency in China. It concludes that the connotation of mathe-
matical problem-solving competency in Chinese mathematics texts has changed 
greatly over five time phases: 1902–1922, 1923–1951, 1952–1977, 1978–2000 and 
2001–present. Meanwhile, a longitudinal analysis of the changes in the require-
ments of mathematical problem-solving competency is also discussed, focusing on 
three developments: (1) from ‘independence’ to ‘integration’, from ‘unbalanced’ to 
‘gradual balance’; (2) from ‘general’ to ‘concrete’, from ‘adapting to national con-
ditions’ to ‘close to life’; and (3) from ‘low level’ to ‘high level’.

Keywords Mathematical problem solving · Mathematics content · Contexts · 
Cognitive demands · Syllabus · Curriculum standards · Conceptual development · 
Content analysis · Analytical framework · PISA · TIMSS · China

6.1  Introduction

In September 2016, the Core Literacy Research Group in China released a report on 
developing Chinese students’ core literacy, and ‘problem-solving competency’ was 
put forward as one of the fundamental literacy concerns (Core Literacy Research 
Group, 2016). In the field of mathematics, China’s Mathematics Curriculum 
Standards for Compulsory Education (2011 version) explicitly included ‘problem 
solving’ as one of the overall goals of the mathematics curriculum (Ministry of 
Education of China, 2012). In 2018, the Ministry of Education of China released the 
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Mathematics curriculum standard for Ordinary High Schools (2017 version), which 
integrated the development of mathematical problem-solving competency into the 
cultivation of students’ mathematical abstraction, logic reasoning, mathematical 
modelling, intuitive imagination, mathematical operation and data analysing liter-
acy, and bringing students’ mathematical problem-solving competency to a new 
level (Ministry of Education of China, 2018).

As the programmatic text guiding teaching and learning, mathematics curricu-
lum documents play an important part in mathematics curriculum areas in China. It 
is necessary to analyse the changes in the requirements for mathematical problem- 
solving competency in Chinese mathematics curriculum documents to improve 
understanding of the topic in Chinese mathematical education and to discover the 
reasons for the changes in students’ mathematical problem-solving competency.

6.2  Literature Review of Research on Mathematical 
Problem Solving

6.2.1  The Concept of Mathematical Problem Solving

In the 1980s, ‘An Agenda for Action: Recommendations for School Mathematics of 
the 1980s’ was issued by the National Council of Teachers of Mathematics (NCTM) 
in the United States; the document stated that ‘problem solving must be the focus of 
school mathematics in the 1980s’ (NCTM, 1980, p. i), which quickly received a 
positive response from educators in many countries around the world. For example, 
the 1982 Cockcroft Report in the UK pointed out that mathematics teaching should 
provide students with the opportunity for ‘problem solving, including the applica-
tion of mathematics to everyday situations’ (Cockcroft, 1982). Furthermore, some 
countries have begun to pay more attention to ‘mathematical problem solving’ in 
mathematics curriculum standards (Clarke, Goos, & Morony, 2007; Fan & 
Zhu, 2007).

At present, there is no unified definition of ‘mathematical problem solving’, and 
researchers have explored the topic based on different approaches. The first focuses 
on the definition of ‘mathematical problem’. Before the 1980s, problem solving 
usually referred to solving the routine one- or two-step word problem (Schoenfeld, 
2007); after the 1980s, the more generally accepted understanding of ‘mathematical 
problem’ in problem solving was that ‘mathematical problems should be solved in 
a certain situation, but the problem solvers have no ready-made solutions to get the 
answers to the problems’ (Reiss & Törner, 2007). This kind of question is usually 
not closed, but is instead a non-routine mathematical problem.

The second focus has been to define mathematical problem solving as a kind of 
competency. The 2000 report ‘Principles and Standards for School Mathematics’ by 
the NCTM required K–12 students to ‘build new mathematical knowledge through 
problem solving’, ‘solve problems that arise in mathematics and in other contexts’, 
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‘apply and adapt a variety of appropriate strategies to solve problems’, and ‘monitor 
and reflect on the process of mathematical problem solving’ (NCTM, 2000). In the 
mathematics curriculum standard issued by Germany in 2003, the competency of 
‘solving problems mathematically’ was defined as: having appropriate mathemati-
cal strategies to discover and reflect on the ideas or methods of solving problems 
(Xu, 2007). In the eight standards for mathematical practice from the Common 
Core State Standards for Mathematics (CCSSM), it is noted that students should be 
able to ‘make sense of problems and persevere in solving them’ (Common Core 
State Standards Initiative, 2010). In the process of solving mathematical problems, 
students should analyse the givens, constraints, relationships and goals, plan the 
solution pathway, do self-monitoring and evaluation, use various forms of represen-
tation to seek relations and patterns and reflect on the results (Common Core State 
Standards Initiative, 2010).

The curriculum standard of China (2011 version) defines mathematical problem- 
solving competency from four aspects: the application of mathematical knowledge, 
the methods of solving mathematical problems, the communication with others and 
the consciousness of reflection. It requires students to ‘initially learn to find and 
pose problems from a mathematical point of view, comprehensively use mathemati-
cal knowledge to solve simple practical problems, enhance application awareness, 
and improve practical ability’. It also expects students to ‘get some basic methods 
of analysing and solving problems, experience the diversity of methods of solving 
problems, and develop innovative consciousness’; ‘learn to cooperate and commu-
nicate with others’; and ‘initially form a sense of evaluation and reflection’ (Ministry 
of Education of China, 2012). Danish scholar Niss (2003) has proposed eight math-
ematical abilities. Among them, ‘the ability to mathematically solve problems’ is 
defined as the ability to solve different kinds of mathematical problems (pure or 
applied, open-ended or closed), whether posed by others or by oneself, and, if 
appropriate, in different ways (Niss, 2003).

PISA 2012 considers ‘devising strategies for solving problems’ as a manifesta-
tion of students’ mathematical literacy and explains it along three dimensions: (1) 
formulating, employing and interpreting, and requiring students to select or devise 
a plan or strategy to mathematically reframe contextualized problems; (2) activating 
effective and sustained control mechanisms across a multi-step procedure leading to 
a mathematical solution, conclusion or generalization; and (3) devising and imple-
menting a strategy to interpret, evaluate and validate a mathematical solution to a 
contextualized problem (OECD, 2013). At the same time, PISA 2015 points out that 
choosing appropriate mathematical strategies and representation forms for different 
contexts puts forward additional requirements for problem solvers. Therefore, PISA 
2015 constructs personal, occupational, societal and scientific contexts to test stu-
dents’ problem-solving competency (OECD, 2016). Finally, TIMSS reflects three 
levels of mathematical problem-solving competency from cognitive demands: 
knowing, applying and reasoning (Mullis & Martin, 2017).

To sum up, mathematical problem solving focuses on three aspects: first, how 
students solve problems in different mathematics content and build new mathemat-
ics knowledge; second, how to solve problems in various contexts, such as giving a 

6 The Development of Problem Solving in Chinese Mathematics Curricula



90

mathematical solution to a contextualized problem; and third, how to solve prob-
lems related to different cognitive demands, including problems that may require 
students to choose appropriate mathematical strategies and representation forms, 
interpreting, evaluating and validating a mathematical solution.

6.2.2  Problem Solving in Mathematics Curriculum

At present, the trend of globalization and internationalization of mathematics cur-
riculum is becoming increasingly prominent. The development of mathematics cur-
riculum in many countries focuses on the cultivation of mathematical problem-solving 
competency. Some countries also put mathematical problem-solving competency at 
the core of mathematics curriculum. For example, Singapore’s mathematics curric-
ulum has formed a pentagonal framework cantered by mathematical problem solv-
ing and with five unique components: concepts, skills, processes, attitudes and 
metacognition (Fan & Zhu, 2007).

From the perspective of international mathematics curriculum, the development 
of problem solving presents the following characteristics, for which problem solv-
ing is considered the overall goal, or learning goals, of mathematics curriculum. 
Curriculum reform in the compulsory education stage of 2001 in China presented 
the characteristic of ‘shifting from overemphasizing knowledge transmission to 
placing more emphasis on students’ active participation and to developing such 
mathematical abilities as collecting and processing new information, gaining new 
knowledge independently, analysing and solving problems, and communicating and 
cooperating with others’ (Cai & Howson, 2012). Researchers have analysed the 
recent mathematics curriculum standards of China and found that the overall goal 
covers helping students acquire important knowledge and the basic problem- solving 
skills in mathematics that are important for their lifelong learning (Ni, Li, Cai, & 
Hau, 2015).

The Curriculum and Evaluation Standards for School Mathematics issued by 
NCTM regards ‘becoming a mathematical problem solver’ as one of the five basic 
objectives of students’ mathematics learning (NCTM, 1989). NCTM has also made 
significant adjustments in mathematics teaching to achieve this goal, requiring con-
jecturing, inventing and problem solving, and moving away from an emphasis on 
mechanistic answer-finding (Cai & Howson, 2012). Subsequently, NCTM 2000 
standards and recent CCSSM guidelines put mathematical problem-solving compe-
tency in the important position of teaching and practice objectives in curriculum 
standards. The Cockcroft Report (1982) emphasized the importance of mathemati-
cal problem solving; thus, subsequent mathematics curriculum standards also grad-
ually stressed their importance. In the latest national curriculum framework 
document of 2014 in the United Kingdom, in the area of ‘numeracy and mathemat-
ics’, it was proposed that teachers should teach students to apply their mathematics 
to both routine and non-routine problems, including breaking down more complex 
problems into a series of simpler steps (UK Department for Education, 2014). 
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Under the influence of Realistic Mathematics Education, problem solving in the 
mathematics curriculum of the Netherlands requires students to ‘develop informal, 
highly context-specific solution strategies’ to support the construction of mathemat-
ical concepts, and ‘strengthen the concepts that have been developed and integrate 
them into mathematical problem solving activities to develop and deepen the use of 
strategies’ (Gravemeijer & Doorman, 1999).

To sum up, the mainstream definition of mathematical problem solving in math-
ematics curriculum starts from the perspective of competency and mainly focuses 
on how students transfer information in specific contexts to mathematical problems; 
apply appropriate mathematical knowledge, methods and strategies to find solutions 
to mathematical problems; and check and reflect on the process of problem solving. 
During the process of problem solving, students must use appropriate and reason-
able forms of representation and express the whole thinking process effectively and 
smoothly. These characteristics of mathematical problem-solving competency can 
also be categorized as how students solve different problems with different mathe-
matics content, contexts and cognitive demands.

6.3  Research Questions and Methodology

6.3.1  Research Questions

By reviewing the literature, we have shown that mathematical problem-solving 
competency focuses on three aspects: how students solve different problems with 
different mathematics content, contexts and cognitive demands. Specifically, math-
ematical problem-solving competency mainly focuses on how students transfer 
problems in specific contexts to mathematical problems; how they apply appropri-
ate mathematical knowledge, methods and strategies to reach solutions; and how 
they check and reflect on the process of problem solving. During this process, they 
should use appropriate and reasonable forms of representation and express the 
whole thinking process effectively and smoothly. It is clear that these characteristics 
are also present in China’s latest curriculum standards. However, what remains 
unanswered is: What was the connotation of mathematical problem-solving compe-
tency in China’s programmatic texts (syllabus and curriculum standards) of mathe-
matics curriculum 100 years ago? What has been the conceptual development of 
mathematical problem-solving competency during the last 100 years in China?

By combing the content about mathematical problem-solving competency from 
syllabus and curriculum standards in China since 1902, this chapter explores the 
conceptual development of mathematical problem-solving competency. At the same 
time, it identifies clues in the historical context of the development of the concept of 
mathematical problem-solving competency. As a result, the reasons why our under-
standing of Chinese mathematical problem-solving competency has developed this 
way, and changes in students’ competency requirements can be better understood.
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Taking junior middle school as an example, the specific research questions in this 
chapter are as follows:

• What are the characteristics of the evolution of the meaning of mathematical 
problem-solving competency across Chinese history?

• What changes have occurred in mathematical problem-solving competency 
requirements in Chinese mathematics curriculum?

6.3.2  Research Design

6.3.2.1  Subjects

The research subject in this chapter is the syllabus and curriculum standards of 
mathematics curriculum in junior middle schools from 1902 to the present. The 
texts of mathematics curriculum from 1902 to 2000 were selected from the 
Collection of Primary and Secondary School Curriculum Standards and Syllabus of 
the Twentieth Century China. Mathematics Volume, compiled by the Curriculum 
and Teaching Materials Research Institute (CTMRI, 2001). The texts after 2000 
were selected from the ‘Mathematics Curriculum Standards for Full-time 
Compulsory Education (Experimental version)’ (Ministry of Education of China, 
2001), and ‘Mathematics Curriculum Standards for Compulsory Education (2011 
version)’ (Ministry of Education of China, 2012).

6.3.2.2  Methodology: Content Analysis

The primary method used in this chapter is content analysis. Mayring (2015) simpli-
fies the process into three steps: (1) Reducing procedures: reduce the material such 
that the essential content remains; (2) Explicating procedures: provide additional 
material on individual doubtful text components (terms, sentences, etc.); and (3) 
Structuring procedures: filter out particular aspects of the material and assess the 
material according to certain criteria, usually using the categories of ‘inductive’ and 
‘deductive’ to encode the content and count the frequency of keywords, finishing by 
reanalysing the material (Mayring, 2015). Based on these guidelines, we first 
deleted and filtered the content in the mathematics curriculum texts according to the 
definition and characteristics of mathematical problem-solving competency; sec-
ond, we determined the text analysis framework to code the texts; finally, we anal-
ysed the results of the coding process.

This chapter defines the analytical framework of mathematical problem-solving 
competency as three categories: (1) the content domains of mathematical problems, 
(2) the situational background of mathematical problems and (3) the cognitive 
demands of mathematical problem solving. Among them, the first includes indistin-
guishable (comprehensive requirements), arithmetic, algebra, geometry and 
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probability statistics; the second adds ‘no context’ on the basis of personal, occupa-
tional, societal and scientific contexts proposed by PISA in 2015 (OECD, 2016); 
and the third originated from the cognitive domains of TIMSS 2019, including 
knowing, applying and reasoning (Mullis & Martin, 2017). The specific analytical 
framework is shown in Table 6.1.

The encoding unit is based on a sentence. For example, ‘Use the locus method to 
solve geometric construction problems’. The problem belongs to the content domain 
of ‘geometry’, so it is coded as A3; the situational background of the mathematical 
problem belongs to ‘no situation’, so it is coded as B0; and in the cognitive demand 
domain, it belongs to ‘implement strategies and operations to solve problems involv-
ing familiar mathematical concepts and procedures’, so it is coded as C23. Thus, the 
code of this sentence is A3B0C23. If the expression of a sentence involves multiple 
mathematical content domains, situational backgrounds and cognitive domains, it is 
given multiple codes. The encoding process was divided into two stages: in the first 
stage, three coders independently encoded 20 randomly sampled sentences accord-
ing to the analytical framework, discussing and negotiating the divergent parts; the 
consistency of the initial encoding was 85%. In the second stage, two coders sepa-
rately encoded 398 units of all curriculum texts, and the consistency was 95.7%. 
After negotiating the inconsistent parts, final agreement was reached.

6.4  Research Results on Conceptual Development

6.4.1  The Connotation Evolution of Mathematical 
Problem-Solving Competency

According to the content analysis framework of mathematical problem-solving 
competency, this research involved content screening, coding, keyword frequency 
counting and analysis of mathematics curriculum texts from 1902 to the present. 
The results indicate that, over time, the meaning of problem-solving competency in 
mathematics curriculum texts has changed greatly, and these developments can be 
divided into five time phases: (1) 1902–1922: mathematical problem-solving com-
petency as a ‘plan for making a living’; (2) 1923–1951: the ability to solve applica-
tion problems with ‘operation’ as the kernel; (3) 1952–1977: emphasis on ‘linking 
with reality’, based on solving application problems; (4) 1978–2000: comprehen-
sive use of knowledge and skills to solve problems based on the ‘three basic abili-
ties’; and (5) 2001–present: components that cover ‘key abilities’. The specific 
connotation of mathematical problem-solving competency in each historical stage 
is described in the following sections.
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Table 6.1 Content analytical framework and corresponding coding for mathematical problem- 
solving competency

Dimension Coding Description

Content domains A0 Indistinguishable (comprehensive requirements)
A1 Arithmetic
A2 Algebra
A3 Geometry
A4 Probability statistics

Situational background B0 No contexts (problems are directly expressed by 
mathematical forms)

B1 Personal context (problems focus on activities of one’s self, 
one’s family or one’s peer group)

B2 Occupational context (problems are centred on the world of 
work)

B3 Societal context (problems focus on one’s community 
perspective, such as voting systems, public transport, 
government, public policies, demographics, advertising, 
national statistics and economics)

B4 Scientific context (problems relate to the application of 
mathematics to the natural world and issues and topics 
related to science and technology)

Cognitive 
domains

Knowing
(C1)

C11 Recall
Recall definitions, terminology, number properties, units of 
measurement, geometric properties and notation

C12 Recognize
Recognize numbers, expressions, quantities, and shapes. 
Recognize entities that are mathematically equivalent

C13 Classify/order
Classify numbers, expressions, quantities and shapes by 
common properties

C14 Compute
Carry out algorithmic procedures, or a combination of these 
with whole numbers, fractions, decimals and integers. Carry 
out straightforward algebraic procedures

C15 Retrieve
Retrieve information from graphs, tables, texts or other 
sources

C16 Measure
Use measuring instruments and choose appropriate units of 
measurement

Applying 
(C2)

C21 Determine
Determine efficient/appropriate operations, strategies and 
tools for solving problems for which there are commonly 
used methods of solution

(continued)
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6.4.1.1  1902–1922: Mathematical Problem-Solving Competency as ‘A 
Plan for Making a Living’

In 1902, the first statutory school system in the history of modern Chinese educa-
tion, ‘School Rules Made by Emperor Order in 1902’, was promulgated but not 
implemented. In 1904, the guidelines imitated the Japanese school system and laid 
the foundation for the establishment of a modern school system in China, which 
continued until the founding of the Republic of China (Dai, 2015).

Although there is no direct expression of mathematical problem-solving compe-
tency in the texts of the mathematics curriculum at this stage, the standard can be 
inferred from some expressions that the competency requirement at that time aimed 
to enable students to ‘master the basic skills of earning a living’. For example, in 
1904, the ‘General Constitution of the School’ of the ‘Approved School Articles of 
1904’ emphasized that ‘those who are not official after graduation are engaged in 
various industries’. It dictated that education by middle schools should focus on 
teaching ‘bookkeeping’ so that students could learn ‘the usage of bookkeeping’ and 
‘the format of various calculating tables’. In specific areas of learning, students 
were expected to grasp the principle of operation, be familiar with quick calculation 
and apply measurement and quadrature (CTMRI, 2001, p. 206). That is, for the vast 

Table 6.1 (continued)

Dimension Coding Description

C22 Represent/model
Display data in tables or graphs; create equations, 
inequalities, geometric figures or diagrams that model 
problem situations; and generate equivalent representations 
for a given mathematical entity or relationship

C23 Implement
Implement strategies and operations to solve problems 
involving familiar mathematical concepts and procedures

Reasoning 
(C3)

C31 Analyse
Determine, describe or use relationships among numbers, 
expressions, quantities and shapes

C32 Integrate/synthesize
Link different elements of knowledge, related 
representations and procedures to solve problems

C33 Evaluate
Evaluate alternative problem-solving strategies and solutions

C34 Draw conclusions
Make valid inferences on the basis of information and 
evidence

C35 Generalize
Make statements that represent relationships in more general 
and more widely applicable terms

C36 Justify
Provide mathematical arguments to support a strategy or 
solution
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majority of students who did not work as public officials in the future, they only 
needed to ascertain the knowledge of arithmetic, geometry and other basic liv-
ing skills.

6.4.1.2  1923–1951: The Ability to Solve Application Problems 
with ‘Operation’ as the Kernel

At this stage, the expression of mathematical problem-solving competency clearly 
reflects the requirement to be able to solve application problems in various fields 
based on students’ ‘operation’ ability. Figure 6.1 shows the percentage of cognitive 
demands in 103 coding units from 1923 to 1951.

It is clear that, in the coding of this stage: the percentages of the three cognitive 
requirements of ‘Compute’ in Level 1 and ‘Determine’ and ‘Implement’ in Level 2 
are much higher than other cognitive demands. The mathematical problem-solving 
competency at this stage is based on ‘operation’ as the kernel, and has students 
solve familiar mathematics application problems using familiar problem-solving 
methods.

In different fields of mathematics content, the curriculum texts at this stage are 
more consistent in the requirements of solving the mathematics application prob-
lems, which is shown in the following: in arithmetic, students are required to solve 
application problems related to fractions, decimals, proportions and percentages; in 
algebra, students are required to create and solve application problems related to 
linear equations with one unknown, quadratic equations with one unknown, and 
binary quadratic equations; in geometry, students are required to solve basic con-
struction problems related to triangles, quadrilaterals and simple measurement 
problems; finally, in statistical probability, students are required to solve application 
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problems related to the average and price index, and to understand statistical 
charts, etc.

6.4.1.3  1952–1977: Emphasis on ‘Linking With Reality’, Based 
on Solving Application Problems

In 1952, under the guidance of ‘taking Russia as a teacher’ and ‘the one-sided’ 
policy, the Ministry of Education compiled the first mathematics syllabus of New 
China, ‘Mathematics teaching syllabus for middle schools (Draft)’, based on the 
10-year high school mathematics teaching syllabus of the Soviet Union. However, 
since 1958, China has begun to reflect on the limitations of copying the educational 
experience of the Soviet Union, rethink the phenomenon of ‘achieve less but cost 
more’ in the field of mathematics curriculum, and enter the stage of exploring the 
independent development path of Chinese mathematics curriculum. At the same 
time, Chinese researchers began to reflect on the problems brought about by blindly 
copying the Soviet Union’s syllabus and ignoring the specific realities of China, 
such as the narrow scope of knowledge and low degree of teaching content, which 
cannot meet the needs of students for future production and labour (Zhang & 
Dai, 2017).

When encoding the 86 units of mathematics curriculum texts at this stage, we 
found that the percentages of the three cognitive demands of ‘Compute’, ‘Determine’ 
and ‘Implement’ remained high compared with 1923–1951 (32%, 4% and 43%, 
respectively). This indicates that the requirements in curriculum texts from 1952 to 
1977 for solving mathematics application problems have not decreased, but the per-
centage of ‘Integrate/Synthesize’ in Level 3 has increased from 3% to 7%; likewise, 
‘Evaluate’ increased from 1% to 2%. This shows that the curriculum texts during 
1952–1977 began to emphasize the comprehensive application of mathematical 
knowledge and skills. Specifically, the preface of the curriculum texts at this stage 
clearly pointed out that students should apply the mathematical knowledge and 
skills comprehensively, based on mastering basic knowledge and skills, so as to 
solve practical problems.

In addition, the mathematical problem-solving competency at this stage also 
requires students to evaluate the results of problem solving according to the actual 
situation. For example, the 1956 syllabus clearly states that ‘when solving applica-
tion and compute problems, students must learn how to write calculation procedures 
reasonably and acquire the skills of checking answers’ (CTMRI, 2001, p. 400). At 
the same time, in the specific requirements of the mathematics learning field, the 
curriculum texts at this stage point out that students should be ‘linking with reality’. 
For example, in algebra, students are required to ‘apply algebraic knowledge to 
solve simple problems related to physics, chemistry, astronomy, technology, and 
agriculture’; in geometry, they are expected to ‘apply the knowledge they have 
learned to solve practical problems: to measure the surface area and volume of vari-
ous buildings, and do simple measurement of military aspects’. During the Cultural 
Revolution from 1966 to 1976, China’s education system suffered a heavy blow, 
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which led to the disappearance of the national unified mathematics curriculum and 
the stagnation of the compilation and revision of the syllabus.

To summarise, mathematical problem-solving competency of 1952–1977 
emphasized that students should be linked with practical problems in reality, based 
on solving application problems.

6.4.1.4  1978–2000: Based on the ‘Three Basic Abilities’, Comprehensive 
Use of Knowledge and Skills to Solve Problems

With the end of the Cultural Revolution, China entered a new era of re-exploring the 
development path of Chinese mathematics curriculum. Since September 1977, the 
mathematics compiling group composed of primary and secondary school mathe-
matics experts, such as Buqing Su, began to draft mathematics syllabi for primary 
and secondary school teaching. In February 1978, the ‘Mathematics Syllabus for 
Full-time Ten-year High Schools (trial version)’ was promulgated and proposed that 
the purpose of middle school mathematics teaching was to ‘enable students to have 
correct and rapid operation ability, certain logical thinking ability and certain spatial 
imagination ability (three basic abilities), so as to gradually cultivate students’ abil-
ity to analyse and solve problems step by step’. For the first time, the ‘three basic 
abilities’ are regarded as the basis of students’ mathematical problem-solving skills. 
The syllabus for the middle school stage adopted similar expressions ‘to train stu-
dents’ ability to analyse and solve practical problems, based on the training of stu-
dents’ ability of operation, logical thinking and spatial imagination’.

In 1992, the ‘Mathematics Syllabus for Nine-year Full-time Compulsory 
Education in Secondary School (Trial)’ offered a definition of ‘can solve practical 
problems’ for the first time: ‘can solve mathematical problems which are of practi-
cal significance and related to relevant disciplines, and solve practical problems 
about production and daily life’ (CTMRI, 2001, p.  605). It emphasizes training 
students to abstract practical problems into mathematical problems, gradually 
developing students’ ability to analyse and solve problems, and helping them form 
a sense of using mathematics while also highlighting thinking ability as the core of 
cultivating ability.

By analysing 107 coding units at this stage, it was found that, compared with the 
percentages for 1952–1977, the percentage of Represent/Model in Level 2 of cogni-
tive demands increased from 1% to 10%, and the percentage of Integrate/Synthesize 
in Level 3 increased from 7% to 21%. These data, to a certain extent, can reflect that 
the connotation of mathematical problem-solving competency for 1978–2000 
focused on students’ possession of ‘three basic abilities’, and on this basis, they 
could make comprehensive use of relevant knowledge and skills.
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6.4.1.5  2001–Present: Components that Cover ‘Key Abilities’

In June 1999, the CPC Central Committee and the State Council promulgated the 
‘Decision of the CPC Central Committee and the State Council on Deepening 
Educational Reform and Promoting Quality Education in an All-Around Way’, aim-
ing at cultivating talents from many aspects of comprehensive quality, innovative 
spirit and practical ability. At the same time, many countries have begun to attach 
importance to multi-component mathematical core competence or mathematical 
core literacy (Si & Zhu, 2013). In this context, ‘Mathematics Curriculum Standards 
for Full-time Compulsory Education (Experimental version)’, promulgated in 2001 
(Ministry of Education of China, 2001), clearly regarded problem solving as the 
overall goal of the curriculum, requiring students to ‘preliminarily learn to use 
mathematical thinking to observe and analyse the real society, to solve problems in 
daily life and other disciplines, and to enhance the awareness of applying mathe-
matics’. At the same time, four specific requirements were put forward:

To preliminarily learn to pose and understand problems from a mathematical point of view, 
and to comprehensively use the knowledge and skills learned to solve problems, develop 
the awareness of application; to form some basic strategies to solve problems, experience 
the diversity of problem-solving strategies, develop practical ability and innovation spirit; 
to learn to cooperate with others, and be able to communicate with others about the process 
and the result of thinking; to initially form the consciousness of evaluation and reflection. 
(Ministry of Education of China, 2001).

These reflect that mathematical problem-solving competency covers the key ability 
components, such as posing mathematical problems and mathematical communica-
tion, and the goal of problem solving is similarly stated in the ‘Mathematics 
Curriculum Standards for Compulsory Education (2011 version)’.

At the same time, the 2001 curriculum standard designed the content field of 
‘practice and comprehensive application’, and the 2011 curriculum standard 
designed ‘integration and practice’, both aiming at strengthening students’ compre-
hensive use of the knowledge of arithmetic, algebra, geometry and probability sta-
tistics. They also sought to mobilize the key abilities of posing mathematics 
problems, reasoning and argumentation, representation and transformation, mathe-
matical communication, and the ability of solving problems comprehensively.

6.4.2  The Change in Requirements of Mathematical 
Problem-Solving Competency

After encoding the texts of the mathematics curriculum according to the content 
analysis framework of mathematical problem-solving competency, a longitudinal 
analysis of the changes in the requirements was conducted. Since there is no expres-
sion of mathematical problem-solving competency in the texts of mathematics cur-
riculum from 1902 to 1922, this section only encodes the texts of the four historical 
stages from 1923 to the present (1923–1951; 1952–1977; 1978–2000; 
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2001–present). The analysis indicates that, in the curriculum text, the requirements 
for students’ mathematical problem-solving competency have changed in the fol-
lowing three ways: (1) from ‘independence’ to ‘integration’, from “unbalanced’ to 
‘gradual balance’, including changes in the requirements of mathematical content 
domains; (2) from ‘general’ to ‘concrete’, from ‘adapting to national conditions’ to 
‘close to life’, including changes in the requirements of the context of mathematical 
problems; and (3) from ‘low level’ to ‘high level’, or changes in cognitive demands. 
The specific changes are described below.

6.4.2.1  From ‘Independence’ to ‘Integration’, from ‘Unbalanced’ 
to ‘Gradual Balance’: Changes in the Requirements 
of Mathematical Content Domains

By encoding the mathematical content domains using 398 codes and counting the 
percentage of each category during the four historical stages (as shown in Fig. 6.2), 
the results indicate that mathematical problem-solving competency in the field of 
mathematical content domain has changed from ‘independence’ to ‘gradual integra-
tion’, and the internal requirements of each content field have changed from ‘unbal-
anced’ to ‘gradually balanced’.

First, in terms of mathematics curriculum content, when encoding the category 
‘the indistinguishable (comprehensive requirements)’ for the comprehensive use of 
mathematical knowledge, skills and methods for solving mathematical problems in 
the fields of arithmetic, algebra, geometry and probability statistics, the findings 
suggest that the percentage has gradually increased from 1% in 1923–1951 to 9% in 
1952–1977, to 20% in 1978–2000, and to 58% from 2001 to the present, indicating 
that requirements for students’ mathematical problem-solving competency have 
gradually moved from the focus of independent requirements within each content 
field to cross-content topics, and finally to integration.
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Fig. 6.2 Changes in requirements for mathematical content domains in four historical stages
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Second, the proportion of the requirements in each content domain has gradually 
become more balanced. The demand for solving problems in arithmetic has declined 
from about 40% before 1978 to less than 10% today. Although the algebra and 
geometry fields have shown some fluctuations, the proportions since 2001 have 
dropped to the lowest points among the four historical levels, while the require-
ments for probability statistics have increased slightly. Until 2001, the proportions 
of the requirements of arithmetic, algebra, geometry and probability statistics had 
been balanced, each accounting for about 10%. At the same time, even within the 
various content domains, the requirements for mathematical problem- solving com-
petency have gradually increased. In the field of arithmetic, previous mathematics 
curriculum texts emphasised computing problems about fractions, decimals, pro-
portions, percentages and applications. However, the curriculum standards since 
2001 proposed, ‘When solving practical problems, students can use calculators for 
approximate calculation and approximate the results as required by the problem’ 
(Ministry of Education of China, 2001, 2012). In probability statistics, the previous 
curriculum texts required students to understand statistical charts and some issues 
related to the average, price index, etc., but the standards from the most recent 
period suggest that students ‘have the statistical concept to think over problems 
related to data information from a statistical perspective’ (Ministry of Education of 
China, 2001); they should ‘experience the process of collecting and processing data, 
using data to analyse problems, and accessing information in solving practical prob-
lems’ (Ministry of Education of China, 2012).

These changes confirm that, in China, the focus of mathematical problem- solving 
competency has transformed from students’ operation ability to solving application 
problems, and then to the connection with practical problems on the basis of solving 
application problems—from ‘three basic abilities’ to the cultivation of students’ 
‘key ability’.

6.4.2.2  From ‘General’ to ‘Concrete’, from ‘Adapting to National 
Conditions’ to ‘Close to Life’: Changes in the Context 
Requirements of Mathematical Problems

By analysing the percentages of students’ mathematical problem-solving compe-
tency required in different problem contexts (i.e. non-context, or directly presented 
as mathematical form; personal contexts; occupational contexts; societal contexts; 
and scientific contexts) in China’s four historical stages, the results show that the 
problem situation without context accounts for approximately 90% of the cases 
(87% in 1923–1951; 89% in 1952–1977; 83% in 1978–2000; and 89% since 2001). 
The percentage of the other four contexts is very small.

Despite this, we also note that the relevant expressions on mathematical problem 
contexts in curriculum texts have changed from ‘general’ to ‘concrete’, and from 
‘adapting to national conditions’ to ‘close to life’. In the curriculum texts before 
2001, students were often required to ‘solve mathematical problems with practical 
meaning or related to disciplines’, ‘solve practical problems in production and life’, 
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or solve problems related to ‘price index’ and ‘field measurement’. Although these 
expressions exemplify the requirements for students to solve problems involving 
‘personal context’, ‘societal context’ and ‘scientific context’, more specific expres-
sions are not given; the expressions in the context of specific mathematical prob-
lems are more concrete in the curriculum standards after 2001. For example, in 
2001, mathematical problem-solving competency in students’ ‘personal contexts’ is 
expressed as ‘observing and understanding similarity of objects by typical exam-
ples, and solving some practical problems by similarity of graphics (such as mea-
suring the height of the flagpole with similarity)’. Likewise, in the ‘scientific 
context’, competency is expressed as ‘creating contexts by mining resources that 
can be utilized from other disciplines (such as natural phenomena, social phenom-
ena, and human heritage), and solving problems in other disciplines’.

At the same time, in the early days of the founding of the People’s Republic of 
China (after 1949), curriculum texts emphasized that mathematical problems should 
reflect China’s national conditions. For example, the 1952 syllabus indicates that 
problems should reflect the new democratic and socialist constructions when receiv-
ing training in application problems (CTMRI, 2001, p.  359). The 1956 syllabus 
states that teachers should ‘adopt a wide range of technical and agricultural materi-
als when selecting and compiling application problems, and that they should com-
bine the content of the application with the situation and achievements of socialist 
construction’ (CTMRI, 2001, p. 400). The guidelines since 2001 have been more 
closely related to the lives of students. For instance, in the 2011 curriculum stan-
dards, teachers are advised to choose meaningful topics from newspapers, maga-
zines, TV broadcasts and online media, which should be closely related to current 
events as well as to students’ lives; this is to aid in exploring materials suitable for 
students’ learning, and to improve students’ ability to apply mathematical concepts 
in solving problems (Ministry of Education of China, 2012).
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6.4.2.3  From ‘Low Level’ to ‘High Level’: Changes 
in Cognitive Demands

By encoding the cognitive demands and counting the percentages of the codes of 
knowing, applying and reasoning (as shown in Fig. 6.3), we find that the cognitive 
demands for mathematical problem-solving competency have gradually improved 
over the four historical stages since 1923.

Since 1923, the proportion requiring ‘reasoning’ has gradually increased, from 
8% in 1923–1951 to 15% in 1952–1977, to 39% in 1978–2000, and to 60% in 2001, 
while the proportion of ‘knowing’ has declined, reaching its lowest point (9%) in 
2001 to the present.

Looking at the various sub-components of cognition demands, the proportion of 
‘compute’ under Level 1 ‘knowing’ dropped from 27% in 1923–1951 to 32% in 
1952–1977, to 21% in 1978–2000, and to 5% after 2001. The corresponding values 
for ‘analyse’ under Level 3 ‘reasoning’ remained at 2% during the first two periods, 
increased to 16% in 1978–2000, and declined slightly to 13% during the last phase. 
At the same time, ‘integrate/synthesize’ under Level 3 ‘reasoning’ also increased 
substantially, from 3% to 7%, 21%, and 34%, respectively. Clearly, China’s expec-
tations for students’ cognitive ability to solve mathematical problems have gradu-
ally increased from the low-level cognitive demands of applying computing skills in 
solving application problems to the high-level cognitive demands of comprehen-
sively adopting mathematical knowledge and mathematical skills, and selecting rea-
sonable representation forms and methods in solving more complex problems in 
mathematical and other contexts.

After 1980, Chinese scholars analysed and reflected on problem-solving theories 
abroad and suggested higher requirements for students’ cognition in teaching based 
on teaching practices in China. These were mainly reflected in two aspects. First, 
they emphasized the practical application of mathematical knowledge while paying 
attention to traditional problem-solving techniques. Second, as indicated by the 
International Assessment of Educational Progress (IAEP), organized by the US 
Educational Testing Service in 1991, Chinese students’ performance in the applica-
tion problems was only at the middle level. Yan, Zhang, and Su (1993) argued that, 
in recent years, the college entrance mathematics exam ‘is all about pure mathemat-
ics skills without applying mathematics knowledge’; ‘Chinese students lack the 
ability to apply mathematics, and the ability to use mathematical knowledge cre-
atively is declining’. Thus, the following curriculum standard emphasized the 
understanding and comprehensive application of mathematical knowledge in the 
process of solving mathematical problems. It also expanded the types of mathemati-
cal problems, and focused more on open-ended and mathematical modelling prob-
lems. In 1992, at the invitation of the National Institute for Educational Policy 
Research (NIER), Dianzhou Zhang and colleagues attended the Sino-Japanese 
Mathematical Education Joint Research Association meetings in Tokyo, where the 
teaching of open-ended problems was discussed. They gradually promoted open- 
ended problems in China, and the teaching requirements were written into the 
national curriculum standards. Cases on open-ended problems appeared in the 2001 
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curriculum standards (Dai, 2012, p.  2), and expectations for cognitive demands 
were raised in mathematical problem-solving competency.

6.5  Conclusion and Discussion

6.5.1  Relevant Conclusions on the Evolution of Mathematical 
Problem-Solving Competency in China

Through the analysis of China’s mathematics curriculum since 1902, this study 
finds that a profound change has occurred in the connotation of mathematical 
problem- solving competency at each historical stage. This is shown in the following 
changes during each historical period:

 1. 1902–1922: the ability to solve mathematical problems as ‘a plan for making a 
living’.

 2. 1923–1951: the ability to solve problems with ‘operation’ as the kernel.
 3. 1952–1977: emphasis on the ‘link with reality’ on the basis of solving applica-

tion problems.
 4. 1978–2000: comprehensive use of knowledge and skills to solve problems based 

on the ‘three basic abilities’.
 5. 2001 to the present: components covering most parts of the ‘key abilities’.

The requirements for students’ mathematical problem-solving competency also 
have the following three characteristics: (1) the content areas involved in mathemat-
ical problems change from ‘independence’ to ‘integration’, from ‘unbalance’ to 
‘gradual balance’; (2) the mathematical problem context changes from ‘general’ to 
‘concrete’, from ‘adapting to national conditions’ to ‘close to life’; and (3) the cog-
nitive demands of mathematical problem-solving competency gradually develop 
from ‘low level’ to ‘high level’.

Based on China’s national conditions, we can identify three characteristics of the 
evolution of China’s mathematical problem-solving competency: (1) being rooted 
in Chinese historical tradition (before the 1950s); (2) adapting to China’s national 
conditions (from the 1950s to the beginning of the twenty-first century); and (3) 
integrating into the world (from the twenty-first century to the present).

Two basic characteristics are present in the content of traditional Chinese math-
ematics teaching, namely, ‘practicality-based’ and ‘algorithm-centred’ (Cao & 
Leung, 2018, p.  28). Capturing these two characteristics, the ‘Nine Chapters of 
Arithmetic’ covers 246 questions and their corresponding solutions, with problems 
embedded in the real-life context of the time and exerting a profound impact on the 
formulation of future mathematics education in China (Cai & Nie, 2007). As an 
important part of mathematics education, mathematical problem-solving compe-
tency is also deeply branded with an emphasis on practicality and basic algorithms. 
Before the 1950s, mathematical problem-solving competency in the curriculum 
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emphasized that students should master ‘bookkeeping’ to solve the basic problems 
related to making a living, or that students should become ‘familiar with arithmetic 
representation and be able to apply them to daily life’. It focused on the basic algo-
rithm (CTMRI, 2001), which gradually evolved into the ability to solve the relevant 
application problems, with ‘operation’ at its core. Before the 1950s, the cultivation 
of students’ mathematical problem-solving competency was consistent with the 
basic purpose of traditional mathematics education—‘serving for reality’. That is, at 
that time, students mastered basic mathematics to meet the basic needs of society 
and life with no ambition for meeting higher requirements for advanced mathemat-
ics; this is completely different from the ancient Greek approach to mathematics, 
which was characterized by the pursuit of a deductive system (Cao & Leung, 
2018, p. 30).

From 1949 to 1957, after learning from the model of mathematics education in 
the Soviet Union, China focused on teaching students practical knowledge—basic 
mathematical ideas and skills—thus cultivating students’ ability to solve practical 
problems. However, disadvantages gradually came to light, such as failing to meet 
the needs of students’ future production labour and achieving only a weak under-
standing of what they had learned (Zhang & Dai, 2017). After recognizing this 
problem, in view of China’s national conditions and the real situation of mathemat-
ics education, Chinese mathematics education researchers suggested that the math-
ematics knowledge learned by students should be related to ‘actual life’ and to 
‘actual industrial and agricultural production’. They further emphasised the require-
ments of cultivating students’ ‘three basic abilities’—computing, logical thinking 
and spatial imagination. These requirements aimed to improve students’ mathemat-
ical problem-solving competency, and required students to ‘pose, analyse and solve 
problems of practical significance or related to disciplines, production, and daily 
life; be able to express problems and communicate in mathematical languages, and 
form mathematics-application awareness’ (CTMRI, 2001). These changes in con-
notation reflect the fact that China’s mathematics education—combined with the 
national situation and adhering to the tradition of cultivating students’ basic knowl-
edge and skills—now pays more attention to students’ mathematical abstraction, 
mathematical communication and expression, and awareness of mathematics appli-
cation, as is the case with other countries in the ‘Confucian cultural circle’, such as 
Singapore (Fan & Zhu, 2007).

NCTM first proposed the core competence of mathematics in 1989 and promul-
gated ‘Principles and Standards for School Mathematics’ in 2000, in which mathe-
matical abilities, including problem solving, were put forward from the perspective 
of the relationship between mathematical understanding and mathematical ability 
(NCTM, 2000). Later, countries like Germany, Singapore, and Japan proposed 
mathematics curriculum standards that were incorporated with mathematical 
problem- solving competency and oriented by mathematical core competence (Xu, 
2013). Since 2000, the status of mathematical problem-solving competency in 
Chinese mathematics curriculum standards has been continuously improved. It was 
even juxtaposed with the traditional ‘three basic abilities’, emphasizing students’ 
mathematical problem-solving competency by a comprehensive application of 
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problem-proposing ability, mathematical abstract ability, mathematical representa-
tion and transformation ability, and mathematical communication ability. It has also 
been gradually connecting with international guidance on mathematics education, 
with discipline core competence as its orientation.

In 2001, ‘solving problems’ was established as the overall goal in the curriculum 
standards of China’s compulsory education. Then, the 2011 compulsory education 
curriculum standards continued to emphasize that, in the process of solving mathe-
matical problems, students should experience a series of thinking processes that 
embody several mathematical core competencies. In 2018, six core competencies 
were proposed in the curriculum guidelines, including mathematical abstraction, 
logical reasoning, mathematical modelling, intuitive imagination, mathematical 
operations, and data analysis. The whole process of solving mathematical problems 
is carried into the cultivation of these six core competencies, and the importance of 
mathematical problem-solving competency has been raised to an unprecedented 
height (Ministry of Education of China, 2018). At the same time, this change is in 
line with the basic trend of international mathematics education to require teachers 
to pay attention to students’ higher-order mathematics thinking and the application 
of information technology while cultivating their problem-solving competency.

6.5.2  Discussion: Mathematical Curriculum Texts Need 
an Operative Description of Some of the Requirements

By combing the curriculum since 1902, we find that there is no specific and opera-
ble expression of the requirements of mathematical problem-solving competency in 
the mathematics curriculum in China, and most have been highly summarized. For 
example, ‘when solving practical problems, students should be trained to abstract 
practical problems into mathematical problems, to gradually develop the ability to 
analyse and solve problems, and to form an awareness of using mathematics’. 
However, how can students abstract practical problems into mathematical prob-
lems? How do they gradually develop the ability to analyse and solve problems, or 
form an awareness of using mathematics? There are no detailed operational instruc-
tions for these questions in the curriculum text, which causes some uncertainty in 
teachers’ instruction of mathematical problem solving.

At the same time, the mathematics curriculum does not provide a clear evalua-
tion index of the ability to solve mathematical problems; thus, it is difficult to quan-
tify and evaluate students’ levels or progress in different learning phases and grades. 
Even though there is an attempt to divide the six core competencies in the curricu-
lum promulgated in 2018 in China, no mathematical problem-solving competency 
is included, so evaluation of the ability to solve mathematical problems is still 
not clear.
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Chapter 7
Chinese Eighth Graders’ Competencies 
in Mathematical Problem Solving

Xiang Gao and Yingkang Wu

Abstract This chapter begins with a review of the assessment of mathematical 
problem-solving competency and the construction of the assessment framework 
through three levels: memory and reproduction, connection and variation, and 
reflection and expansion. The analysis included 1185 Chinese Grade-8 students 
selected based on the geographic location of the city in which they live (including 
east, central, north, south, northwest, southwest and northeast China) and the cor-
responding level of economic development (including developed, medium- 
developed, less-developed, etc.). The student participants completed the 
mathematical problem-solving competency test, and the results indicate that nearly 
80% of the eighth-grade Chinese students have reached the medium level. This 
chapter also summarizes some characteristics and problems of students’ mathemati-
cal problem-solving competency in China.

Keywords Mathematical problem solving · Assessment framework · PISA · 
TIMSS · Large-scale student assessments · Open-ended problems · Grade 8 · 
Mathematical materials · Problem solving strategies

7.1  Introduction

China has a long history and rich experience in cultivating students’ mathematical 
problem-solving competency, but the current situation is still not optimistic. 
Lingyuan Gu, a famous mathematics educator, conducted two-level tests in 1990 
and 2007 on mathematics teaching objectives of Grade-8 students. The findings 
indicated that the level of ‘analysis-inquiry understanding’, which embodies stu-
dents’ ability to analyse and solve problems, has not significantly improved, and has 
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even declined to some extent (Qingpu Experimental Research Institute, 2007). 
Considering the international assessment project, PISA, the proportion of Chinese 
students who can achieve the highest level of mathematics problem-solving abil-
ity—‘mathematical proficiency’ level 6—dropped from 30.8% in 2012 to 9.0% in 
2015 (OECD, 2014, 2017). Scholars must focus urgently on students’ mathematical 
problem-solving competency.

What is the current situation of Chinese eighth graders’ mathematical problem- 
solving competency? Through the analysis of empirical data, this chapter explains 
to what extent the present situation of Chinese eighth graders’ mathematical 
problem- solving competency reflects the requirements of the mathematics curricu-
lum and what shortcomings exist. It then reflects on the advantages that need to be 
maintained and the sections that still need to be improved in the development of 
mathematics curriculum in China.

7.2  Assessment of Mathematical 
Problem-Solving Competency

Chinese students are outstanding in the large-scale international evaluation of math-
ematics, showing strong mathematical problem-solving competency. Whether they 
come from mainland China or from Hong Kong, Macao or Taiwan, their perfor-
mance in TIMSS and PISA is eye-catching. Many researchers study Chinese stu-
dents’ mathematical problem-solving competency by means of assessment (see, for 
example, Cai, 2000, 2004; Stevenson et  al., 1990), and research has shown that 
Chinese students perform better than their international competitors in problem 
solving in almost all grades and in different fields of mathematics (Cai & Nie, 
2007). However, Chinese students are not as strong in complex, open-ended tasks 
that test creativity, problem-posing competency and unconventional problem- 
solving competency (Cai & Hwang, 2002; Chen et al., 2002). They may be better at 
solving computational tasks and simple problem-solving tasks (Cai & Cifarelli, 
2004), and their mathematical problem-solving competency has the following six 
characteristics (Cai & Cifarelli, 2004). Chinese students:

 1. Perform unevenly on various tasks—better on tasks assessing computation skills 
and basic knowledge than on tasks assessing open-ended, complex prob-
lem solving

 2. Are more likely to use generalized strategies and symbolic representations
 3. Usually provide more conventional solutions
 4. Can generate more solutions if they are asked for them
 5. Frequently commit errors involving unjustified symbol manipulations
 6. Are less willing to take risks in problem solving.

Some large-scale student assessments in China also explore students’ mathemat-
ical problem-solving competency. When Binyan Xu, Yan, Bao, and Kong (2015) 
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evaluated the core competence of the eighth-grade students in China, they examined 
the identification of information, strategy application, mathematical communica-
tion, reflection and evaluation in the process of problem solving. They found that 
the students’ mathematical problem-solving competency is below average, and that 
boys’ problem-solving competency is significantly better than that of girls (Xu 
et al., 2015). In the investigation of mathematical ability of students from Grades 
8–12, Yiming Cao, Xiaoting, and Kan (2016) found that students can express con-
cepts with appropriate representations in the process of solving mathematical prob-
lems, identify and solve specific problems in simple problem contexts, and interpret 
the meaning of the results.

The assessment of students’ mathematical problem-solving competency mainly 
focuses on different grades’ problem-solving behaviour in different content areas of 
mathematics. It also evaluates their mathematical problem-solving competency by 
analysing problem-solving strategies, representation forms and mathematical com-
munication. From the perspective of students doing mathematical activities, the 
evaluation of students’ mathematical problem-solving competency focuses on three 
processes that students experience: organizing empirical materials mathematically, 
organizing mathematical materials logically and applying mathematical theories 
(Kruteskii, 1983). From the perspective of cross-national comparisons, these assess-
ments around the world also explore the strategies used by students in solving math-
ematical problems, the forms of representation and students’ practice of mathematical 
thinking (Doorman et al., 2007; Fan & Zhu, 2007; Hino, 2007).

7.3  Research Question and Methodology

7.3.1  Research Question

By constructing the assessment framework of students’ competency in mathemati-
cal problem solving, and using this framework to analyse Chinese eighth graders’ 
performance on the mathematical problem-solving competency test, the research 
question in this chapter is:

• What is the current performance of Grade-8 students in China in terms of their 
mathematical problem-solving competency?
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7.3.2  Research Design

7.3.2.1  Subjects

The study participants are Grade-8 students in China. Considering that the unbal-
anced level of economic development in different regions may cause differences in 
the evaluation results, this study adopted the method of stratified cluster sampling 
when selecting the samples. First, based on the geographical location of cities 
(including east, central, north, south, northwest, southwest and northeast China) and 
their corresponding level of economic development (including developed, medium- 
developed, less-developed, etc.), eight representative cities were identified. Second, 
in each city, one high-performing school, one general-performing school and one 
low-performing school were selected. Third, in each sample school, 2–3 classes of 
students were randomly selected to participate in the test. The relevant information 
on the participants is shown in Table 7.1.

7.3.2.2  Methodology: Assessment Research Method

This research adopts the assessment research method by constructing the assess-
ment framework of mathematical problem-solving competency, designing test 
items, implementing assessment and encoding and analysing students’ responses. 
The assessment framework is the ‘mathematical problem-solving competency’ part 
of the mathematical core competence evaluation model constructed in Chap. 3 of 
this book. The performance of mathematical problem-solving competency at differ-
ent levels is shown in Table 7.2.

According to the three levels of mathematical problem-solving competency, an 
overview of the designed test items in this research is shown in Table 7.3.

The analyses of test items are mainly based on the 0–1 dichotomy, which means 
that the correct answer is scored 1 point, and 0 points otherwise. When analysing the 
performance of the subjects in the mathematical problem-solving competency 
assessment, this study refers to the double scoring system of TIMSS, and gives 
diagnostic codes for the responses of the subjects to determine specific representa-
tion methods, problem-solving strategies and routine errors. The relevant scoring 
rules and student response codes for Test Item 1 are given in Fig. 7.1.

Table 7.1 The subjects of this research

Developed area
Medium-developed 
area Less-developed area

TotalA(4) D(3) E(3) B(3) C(3) F(3) G(3) H(6)

159 86 109 147 118 177 131 258 1185

Note: The city codes are in alphabetical order, and the numbers in parentheses indicate the number 
of schools participating in the test in their cities
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If the student’s answer is correct, the code is 1 for the correctness dimension, and 
0 otherwise. On the student’s problem-solving strategy dimension, 1, 2, 3 and so on 
are used, respectively, to label the different strategies, and a brief description of the 
student’s specific problem-solving behaviour is given, as shown in Table 7.4.

Table 7.2 The performance of mathematical problem-solving competency

Level 1:
Memory and reproduction

Level 2:
Connection and variation

Level 3:
Reflection and expansion

When facing simple 
problem situations, to be 
able to identify and select 
familiar mathematical 
information and solve 
simple mathematical 
problems according to the 
mathematical methods 
and strategies learned 
before
To be able to express 
simple mathematical 
problem-solving 
processes
(To be able to select 
strategies that can be 
easily thought of, and to 
solve well-structured 
mathematical problems.)

To be able to relate knowledge 
and expressions in different 
mathematical fields (such as 
charts, words, symbols, etc.)
To be able to briefly and 
logically express the process 
of thinking, solutions and 
results
To be able to explain the 
meaning of one’s own 
mathematical results on the 
basis of judgment
(Through the analysis of the 
problem, to be able to identify 
proper strategies and solve 
well-structured mathematical 
problems; to use various 
unambiguous methods to 
solve well-structured 
mathematical problems; and 
to test the reasonableness of 
the problem-solving plans.)

To be able to comprehensively 
apply mathematical knowledge, 
methods and strategies to solve 
complex mathematical problems 
and explain the consistency of 
mathematical models, model results 
and reality
To be able to reflect on solutions 
and strategies
To be able to compare, evaluate and 
correct other people’s understanding
To be able to choose the best 
solution strategy according to the 
specific situation
(Through the analysis and 
investigation of the problems, to be 
able to identify proper strategies 
and solve ill-structured problems, 
and to test the reasonableness of 
problem-solving plans.)

Table 7.3 Overview of test items of mathematical problem-solving competency

Item 
number Content

Level of target 
competency

Situation 
type Item type

1 Numbers and algebra: 
Pythagorean theorem

Level 1 Life 
situation

Problem solving

2(1) Numbers and algebra: 
equation

Level 1 Life 
situation

Blank filling and 
problem solving

2(2) Numbers and algebra: 
equation

Level 2 Life 
situation

Problem solving

3 Graphics and geometry: 
circumference and height

Level 2 Life 
situation

Open-ended 
question

4 Graphics and geometry: 
parallel

Level 3 Life 
situation

Problem solving

7 Chinese Eighth Graders’ Competencies in Mathematical Problem Solving



114

7.4  Research Results for the Empirical Investigation

7.4.1  The Overall Level of Students’ Mathematical 
Problem-Solving Competency

Mathematical problem-solving competency is the ability to analyse and extract 
problems in the materials that have been given, transform them into mathematical 
language, and then logically organize and reason, calculate and so on to find the 
solutions to the problems. The overall ability of participants is shown in Table 7.5. 
The number of students in target competency level 2 accounts for 76.0% of all par-
ticipating students, while the number of students in target competency levels 1 and 
3 accounts for 13.6% and 10.4%, respectively. Students’ mathematical problem- 
solving competency reaches a medium level; that is, the majority of students are in 
level 2. In other words, most students can understand the meaning of the identified 
and selected mathematical information; relate knowledge and expressions in differ-
ent mathematical fields (such as charts, words, symbols, etc.); briefly and logically 
express the process of thinking, solutions and results; and explain the meaning of 
their mathematical results to the situation on the basis of judgment.

A small percentage of students (10.4%) reach level 3, ‘reflection and expansion’. 
This indicates that these students can use appropriate methods and strategies to 
solve problems based on understanding the relationship between general informa-
tion and information in the problem, and can evaluate and explain the results of their 
own problem solving, showing the rationality, integrity, indirectness and harmony 
of the entire mathematical problem-solving process. A small number of students 
(13.6%) are at the level of ‘memory and reproduction’; these students can only 
transfer specific situations into mathematical form, identify and select mathematical 
information from the description of mathematical problems, organize existing 

Fig. 7.1 Test item 1 The 
size of a door frame is as 
shown in the figure. Can a 
thin board with a length of 
6 m and a width of 4.4 m 
pass through the door 
frame? Why?
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Table 7.4 Scoring rules and coding examples

Score and code

Correctness Categories Problem-solving 
strategies

Students’ answers

1 1 Compare the diagonal 
of the door frame with 
the width of the thin 
board

The length of the diagonal of the door 
frame is 3 4 52 2� � � �m . Because the 
width of the thin board is 4.4 m, and 
4.4 m < 5 m, the board can pass through 
the door frame.

0 0 Blank
1 No key problem- 

solving steps
Only a final answer, such as ‘It can pass 
through the door frame’ or ‘It cannot pass 
through the door frame’.

2 Compare the length of 
the thin board with the 
diagonal of the door 
frame

The length of the diagonal of the door 
frame is 3 4 52 2� � � �m . Because the 
length of the thin board is 6 m, and 
6 m > 5 m, the board cannot pass through 
the door frame.

3 Compare the diagonal 
of the thin board with 
the diagonal of the 
door frame

The length of the diagonal of the thin 

board is 6 4 4 7 42 2� � � �. . m  and that of 

the door frame is 3 4 52 2� � � �m

4 Compare the length 
and the width of the 
thin board with those 
of the door frame

Impossible, because both the length and 
the width of the board are longer than the 
length of the door frame.

5 Compare the width of 
the thin board with the 
length of the door 
frame

Impossible, because the width of the 
board is 4.4 m, and 4.4 m >4 m.

6 Compare the area of 
the thin board with the 
area of the door frame

Because 4 × 3 = 12 cm2, 
6 × 4.4 = 26.4 cm2, position the board 
horizontally and it can pass through the 
door frame.

7 Make the thin board 
pass by cutting or 
deforming it

For example, cut the board into small 
squares with a side length of 0.2 m, or 
bend the board into a certain arc so that 
the thin board can pass through the door 
frame.

Table 7.5 Percentage of 
participants’ overall 
competency

Level 1 Level 2 Level 3

13.6% 76.0% 10.4%
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mathematical information, and express some simple mathematical facts in a 
clear way.

Next, there is a need to examine, in depth, the differences and existing problems 
of students at these three levels of competency to further analyse students’ level of 
mathematical problem-solving competency and provide targeted advice and sug-
gestions for mathematics education instructors and researchers.

7.4.1.1  Analysis of the Overall Correct Rate of Test Questions

As shown in Table 7.6, the average correct rates of students in target ability level 1 
and level 2 is 64.4% and 54.5%, respectively, which are higher than the average cor-
rect rate of those in target ability level 3 (40.8%). In other words, as the target ability 
level increases, the rate of correct answers decreases.

The specific correct rate of each item is shown in Fig. 7.2.
In the 2(2) item of target level 2, students’ correct rate (76.30%) is higher than 

for target levels 1 (68.00%) and 2(1) (60.80%). It is possible that the problem situ-
ation of the 2(2) item is more closely related to students’ actual lives and is more 
likely to appear in daily homework and practice. Moreover, the setting of the ques-
tion is relatively open, so students can try a variety of methods to get answers. 
Problem 2(1) requires the use of more stringent algebraic operations; thus the cor-
rect rate of student answers declines to some extent.

In addition, the correct rate of the fourth item in target ability level 3 (40.8%) is 
slightly higher than the correct rate for the third item (32.7%), which is lower than 
the target ability level. The explanation is similar to item 2(2). Students often 
encounter similar questions in their daily practice, so they are familiar with the 

Table 7.6 Average correct 
rate of student responses in 
the three target competency 
level tasks

Level 1 Level 2 Level 3

64.4% 54.5% 40.8%

68.00%
60.80%

76.30%

32.70%
40.80%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

1 2(1) 2(2) 3 4

Fig. 7.2 Students’ specific correct rate of each item
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methods to solve such problems, and the problem context is also similar to stu-
dents’ lives.

7.4.1.2  Overall Analysis of Students’ Problem-Solving Characteristics

The code of each test item consists of two digits. The first digit indicates whether 
students answer correctly or not, and the second represents the diagnostic code of 
students’ problem-solving characteristics (including problem-solving strategy, 
mathematical representation, error type, etc.). By analysing the diagnostic codes of 
each item, the characteristics of students’ mathematical problem-solving compe-
tency can be obtained. The following four characteristics are presented in the whole 
process of students’ mathematical problem solving.

• Lack of mathematical organization ability of empirical materials.

Level 1 of mathematical problem-solving competency, ‘memory and reproduc-
tion’, requires students to organize and reproduce real-life materials, solve simple 
mathematical problems with learned mathematical methods and strategies, and 
express simple mathematical problem-solving processes. The source of the test 
items selected is not only the empirical materials, but also test items that offer obvi-
ous mathematical information with relatively low difficulty. The results show that 
the situation is not optimistic.

For example, the 2(1) item involves shopping point redemption: ‘Xiaohua has a 
total of 8,200 points, and 7,000, 2,000 and 500 points are required for the exchange 
of electric teapots, mugs and toothpaste, respectively. Xiaohua exchanges two kinds 
of gifts in the end. Which two gifts does he exchange and why?’ The following 
answers emerged:

Student A: ‘It may be a mug and toothpaste, because it will use as much points as 
possible.’

Student B: ‘It may be four mugs, because four mugs are 8,000 points, so you can 
try to use up the points.’

Student C: ‘Option 1, seven things are exchanged—three mugs and four tooth-
pastes: 3 × 2000 + 4 × 500 = 8,000; Option 2, three things are exchanged—one 
electric teapot, two toothpaste: 2 × 500 + 7000 = 8000.’

In an open-ended question like this, students are more likely to estimate and 
guess than to solve problems mathematically. All three students considered using as 
much of the 8200 points as possible, but they only offered their own guesses without 
giving all possible exchange options in a rigorous mathematical argument. The stu-
dents simply organized their empirical materials based on their own life experiences 
and certain consumption concepts, whereas a more rigorous mathematical organiza-
tion is lacking.

• The logical organization ability of mathematical materials needs to be improved.

Students often encounter three types of problems when they perform mathemati-
cal problem-solving activities. One is the problem presented by the actual situation, 
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one is the combination of situational and mathematical descriptions and another is 
pure mathematical problems. Students will go through the same process when solv-
ing these three types of problems—logical organization of mathematical materials, 
which is also a very important requirement in the second level, ‘connection and 
variation’, of this test target level. After students organize or accumulate empirical 
materials from a mathematical perspective, they also need to abstract the original 
concepts and axiom systems and deductively establish theories based on these con-
cepts and systems (Xu, 2013). Digging into the relationship between problem infor-
mation and disorganized mathematical information or materials and then clarifying 
the solution to the problem is the ultimate goal of organizing mathematical materi-
als. The results here suggest that some students are unable to clarify the relationship 
between different quantities and the amount of change in the face of extensive math-
ematical information; thus, their thinking is not clear enough in solving mathemati-
cal problems.

For example, in the first test item (see Fig. 7.1), ‘Can a thin board with a length 
of 6 m and a width of 4.4 m pass through a door frame with a height of 4 m and a 
width of 3 m?’, some students gave the following answers:

Student A: ‘The diagonal length of the door frame is 3 4 52 2� � m. Since the 
length of the thin board is 6 m, which is longer than the diagonal length of the 
door frame, the board cannot pass through the door frame.’

Student B: ‘The diagonal length of the thin board is 6 4 4 7 42 2� �. . m, and the 
diagonal length of the door frame is 3 4 52 2� � m. As 7.4 m > 5 m, the board 
cannot pass through the door frame.’

Student C: ‘No, because the length and the width of the thin board are longer than 
the door frame.’

Student D: ‘No, because the width of the board is 4.4 m, and 4.4 m > 4 m.’
Student E: ‘Because 4 × 3 = 12 cm2, and 6 × 4.4 = 26.4 cm2, you can pass the board 

horizontally.’

All of the above students use the mathematical information given in the item, but 
there is a problem in their logical organization. They do not figure out which two 
key quantities must be compared, resulting in the final mathematical problem being 
answered incorrectly.

The same problem also appears in the third test item: ‘Wrap a neon hose around 
a tree, four rounds on each tree. The cross-section perimeter of the tree is about 0.6 
m, and the winding height is 2.5 m. Please calculate the length of neon hose needed 
for each tree, and write down the specific calculation process.’ It appears that stu-
dents only consider the number of windings regardless of the height of the tree, or 
simply process mathematical information without logic, as they cannot figure out 
the related properties of the planar graphics after the three-dimensional graphics are 
expanded.

• The application level of mathematical theory is not high.

Mathematics is a discipline that requires a high degree of abstraction. This plays 
a decisive role when there are practical problems to be solved. In solving some 
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seemingly non-mathematical problems, we need to first translate them into mathe-
matical language and turn the problem into mathematical problems, thus solving the 
problem in the mathematical world. At this stage, students need to use mathematical 
theory to think, analyse and solve complex and ever-changing problems in real life. 
The third level of mathematical problem-solving competency—‘reflection and 
expansion’—puts high demands on students solving complex mathematical prob-
lems under the guidance of mathematical knowledge, methods and strategies, and 
requires students to reflect, compare, evaluate and correct others’ understanding, 
and to choose the best solution according to the specific situation.

In this study, students’ application level of mathematical theory is not high, as is 
shown in the following aspects.

First, students tend to use arithmetic methods when they haven’t reached a deep 
understanding of mathematical problems. In this study, students mainly adopted 
algebraic methods to solve these four real-life problems. This is especially true of 
the fourth item, in which only a small number of students used arithmetic methods. 
This is because students have transformed their focus from arithmetic thinking to 
algebraic thinking since the fifth grade; thus, the eighth-grade students are already 
very familiar with using algebraic methods to solve problems. At the same time, we 
find that, when students cannot solve the problem because they do not understand 
the meaning of the test item, they rarely choose the algebraic method, but use the 
arithmetic method to simply add, subtract, multiply or divide the numbers appear-
ing in the test item—see, for example, the third test item. Because students cannot 
sort out the relationship between the various quantities in the item, they operate 
without understanding the meaning of the operation at hand.

Second, the selection effectiveness of students’ mathematical problem-solving 
strategies is insufficient. The third test item is more abstract, requiring students to 
calculate the length of the neon hose around the cylinder. This question requires 
students to translate the three-dimensional graphics problem into a more intuitive 
problem. Most of the students use the problem-solving strategy of finding the length 
of one circle plus the height of the circle, and finally multiplying by 4, as shown in 
Fig. 7.3.

Solution: It can be obtained from the side view of the trunk.

The length of the neon hose is

m)(47.3
10

1201
6.0

4

5.2
4 22）（

Answer: A neon hose of approximately 3.47 m is required for the tree.

0.6m
+ = ≈

Fig. 7.3 Test item 3
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Although this method is rated as correct, the result is not accurate. It does not 
consider that each circle around the cylinder is not a straight line, but a diagonal 
line, so it can only be regarded as an estimate. This shows that the selection effec-
tiveness of students’ mathematical problem-solving strategies is not enough.

Third, students have a negative transfer of mathematical knowledge in the pro-
cess of solving mathematical problems. The first item of this test involves the appli-
cation of the Pythagorean Theorem, and the third item needs to be transformed and 
then applied to the Pythagorean Theorem. Many students use the problem-solving 
strategy shown in Fig. 7.4.

This problem-solving strategy requires a high level of cognition. It involves two 
transformations to make the mathematical problem intuitive to use the Pythagorean 
Theorem more accurately. However, the study finds that, due to the negative transfer 
of the knowledge of Pythagorean Theorem, students make mistakes in the process 
of solving mathematical problems. After the students simply convert the cylindrical 
model into a flat figure, they do not find the correct right-angled triangle, so the 
Pythagorean Theorem is used incorrectly.

• The awareness of rethinking and reusing after solving mathematical problems 
is weak.

An important indicator of mathematical problem-solving competency is that stu-
dents have the awareness of rethinking and reusing. From the point of view of stu-
dents’ mistakes in solving problems, the problem that most students have in common 
is the lack of reflection on the results of their work. Reflection allows students to 

Test item 3:

Wrap a neon hose 

around a tree, four 

rounds on each tree. 

The cross-section 

perimeter of the tree 

is about 0.6 m, and 

the winding height is 

2.5 m. Please calculate the 

length of neon hose needed for 

each tree, and write down the 

specific calculation process.

Re-splicing the side view

)(47.3
10

1201
5.2)6.04( 22 mAB

Solution: From the meaning of the title, AB is the request

)(47.3
10

1201
5.2)6.04( 22 mAB

Answer: A neon hose of approximately 3.47 m is required 

for the tree.

A

B
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Fig. 7.4 Problem-solving strategy for test item 3
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find out whether the problem-solving strategies and calculations they used are cor-
rect. If, in the reflection stage, students understand that they cannot explain the 
meaning of the equations or expressions listed, they will find errors in their problem- 
solving process. For example, in the first item of the test, many students consider the 
thickness, length and width of the door, which are not factors that determine whether 
the thin board can pass through the door frame. If students can reflect on the mean-
ing of their listed expressions and item requirements after solving the problem—
and by analysing and comparing the methods used, reveal the ideas and methods 
contained in them, as well as their respective characteristics and scope of applica-
tion (Zhang, 2008)—such errors can be easily avoided.

In addition, the accumulation of mathematical problem-solving methods and the 
re-use or transfer in other situations are the most direct purposes of students’ prob-
lem solving. The purpose of problem-solving instruction is not only for students to 
solve problems, but also to cultivate their way of thinking in doing so. This way of 
thinking enables students to use the existing problem-solving strategies and ways of 
thinking to process and transform problems in different situations and problem pre-
sentations, from unknown to known. The four test items used in the study involved 
the knowledge that the students had already learned, but from the perspective of 
problem solving, the students’ use of existing knowledge is not ideal. For example, 
the fourth item in the test is shown in Fig. 7.5.

The students’ problem-solving errors are shown in the following three aspects: 
(1) students cannot apply the mathematical knowledge of ‘parallel projection’; (2) 
students can only use the relevant knowledge of similarity to calculate the complete 
length of the tree shadow of the entire tree, and cannot reuse the existing mathemati-
cal knowledge; and (3) students incorrectly use mathematical knowledge and 
problem- solving strategies they assume are ‘right’, but that are actually far from the 
requirements of the test item.

Test item 4:
Someone wants to use the shadow of a tree to measure its 
height. He measures the shadow length of a 1.2-meter-long 
bamboo pole as 0.9 m at a certain time of the day. 
However, when he tries to calculate the height of the tree, 
the tree’s shadow is not all on the ground, as the tree is 
close to a building and part of its shadow projects on the 
wall. He measures the tree’s shadow’s length on the ground 
as 2.7 m, while the one on the wall is 1.2 m. How tall is the 
tree?

Fig. 7.5 Test item 4
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7.5  Conclusion

7.5.1  Overall Description of Students’ Mathematical 
Problem-Solving Competency

The results of the research show that nearly 80% of the eighth-grade Chinese stu-
dents participating in the study have reached level 2; that is, students can relate 
knowledge and expressions in different mathematical fields (such as charts, texts, 
symbols, etc.); they can express the thinking process, the solution and the result in 
a brief and logical way; and they can explain the meaning of their own mathematical 
results on the basis of judgment.

From the perspective of the rate of correct responses, as the level of target ability 
rises, the correct rate of students’ answers gradually decreases. However, in some 
test items, the pattern is reversed; this is likely because the contexts of the test items 
and students’ daily lives are similar, due to students encountering these issues in 
daily work and practice, and the open-ended nature of the problems is high. Students 
perform noticeably well in problems emphasizing basic mathematical knowledge 
and skills, and they perform well in problems that need to be calculated in arithme-
tic methods; nevertheless, they perform poorly in open-ended and unconventional 
problems. These results are similar to those of relevant international mathematics 
education research (Cai, 2000; Cai & Cifarelli, 2004; Cai & Hwang, 2002; Chen 
et al., 2002).

7.5.2  Analysis of the Characteristics of Students’ 
Mathematical Problem-Solving Competency

Chinese students perform well in international large-scale evaluation projects, such 
as PISA and TIMSS, which have received attention from mathematics educators 
around the world, but their performance in problem solving is slightly worse. In 
PISA 2012 and PISA 2015, Chinese students outperformed their international coun-
terparts in terms of scores in mathematics achievement, but they lagged behind 
students from other East Asian countries in problem solving, with scores at least 12 
points lower (Cao & Leung, 2018). Some researchers (Leung, 2005) pointed out 
that, in the mathematics classroom in Hong Kong, the problems that teachers ask 
students to solve are complicated. Students are expected to use problem-solving 
methods to answer questions that are not related to life—questions that are mainly 
about procedural applications. This reflects that there is a certain degree of defi-
ciency in the classroom teaching of mathematics problems in China when it comes 
to solving complex, open-ended and unconventional problems.

This study also reflects on some of the problems of the eighth-grade students in 
China in mathematical problem-solving competency. First, very few students 
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participating in the assessment lacked the mathematical organization ability of the 
empirical materials when answering target level 1 test items, as they merely relied 
on life experience to guess and organize related materials in mathematics problems; 
thus, a more rigorous mathematical organization was lost. Some scholars point out 
that ‘partial empirical understanding often restricts people’s general understanding 
of meaning’ (Hu, 2011). Barely relying on partial life experience will restrict stu-
dents’ more general and comprehensive understanding of mathematics problems.

Second, some students’ logical organization ability of mathematical materials 
needs to be improved, as they only have a shallow understanding of the constants, 
variables and relationships between them, and some even make mistakes. Lester 
(1994) points out that good mathematical problem solvers’ knowledge is well con-
nected and composed of rich schemata, and they can notice the structural features of 
mathematical problems rather than only their surface features. Students participat-
ing in the assessment had problems with the logical organization of mathematical 
materials, as there was a deficiency in students’ mathematical knowledge, a loose 
relationship among mathematical knowledge, and a shallow understanding of the 
essential structural features of mathematical problems.

Third, students’ application level of mathematics theory is not high, which is 
manifested in the following three aspects: (a) students tend to use arithmetic meth-
ods when they cannot fully understand mathematical problems; (b) students are not 
effective in choosing mathematical problem-solving strategies; and (c) students 
have a negative transfer of mathematical knowledge in the process of solving math-
ematical problems. These problems reflect Grade-8 Chinese students’ lack higher- 
order thinking ability. In the transition from arithmetic thinking to algebraic 
thinking, students’ ability of identifying and selecting mathematical problem- 
solving strategies needs to be guided and cultivated, while their basic mathematical 
knowledge and skills need to be further consolidated.

Fourth, students’ awareness of rethinking and reusing after solving mathemati-
cal problems needs to be strengthened. Most of the students involved in the assess-
ment failed to reflect on the results of the problem. If students can reflect on the 
meaning of their expressions and the requirements of mathematical problems after 
solving them by analysing and comparing the methods used, they can find errors 
and correct them before the problem-solving process is completed. In addition, 
students also lack the ability to transfer and reuse mathematical problem-solving 
methods in other situations, which is manifested in mistakenly using the mathemat-
ics knowledge and problem-solving strategies that they assume are correct and the 
inability to flexibly use different effective problem-solving strategies and ways of 
thinking in different problem situations. As is pointed out by some researchers, 
‘promoting learners to develop a deeper understanding in mathematical contexts’ is 
a feature of students’ mathematical thinking (Kieren & Pirie, 1991). Students can 
promote the development of mathematical higher-order thinking by rethinking after 
solving problems and reusing problem-solving methods and strategies in different 
situations.

7 Chinese Eighth Graders’ Competencies in Mathematical Problem Solving
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7.6  Discussion

The findings presented in this chapter indicate that there is still a gap between the 
current status of students’ mathematics problem-solving competency and the cur-
riculum text requirements in China. With the development of mathematical problem- 
solving competency in the curriculum, the requirements of students are also 
gradually improving, from the initial simple acquisition of mathematics knowledge 
for basic life skills; to the ability to comprehensively apply mathematical knowl-
edge and skills based on operation ability, logical thinking ability and spatial imagi-
nation; to the current multifaceted ability containing many key competencies. In 
2012, the Ministry of Education of China released the ‘Mathematics curriculum 
standards for compulsory education (2011 version)’; students are required to ‘pre-
liminarily learn to find problems and pose questions from the perspective of math-
ematics, comprehensively apply mathematical knowledge to solve simple practical 
problems, enhance application awareness, improve practical ability’; they also are 
expected to ‘acquire some basic ways to analyse and solve problems, experience the 
diversity of problem-solving methods, develop innovative consciousness’, ‘learn to 
communicate with others’, and ‘preliminarily form the consciousness of evaluation 
and reflection’ (Ministry of Education of China, 2012). The results of this assess-
ment show that the vast majority (nearly 80%) of the Grade-8 students in China are 
at level 2; that is, they can ‘relate knowledge and expressions in different fields of 
mathematics’; ‘simply and logically express thinking processes, solutions, and 
results’; and ‘explain the meaning of their own mathematical results to the situation 
on the basis of judgment’. However, problems also exist, such as a poor ability to 
abstract practical problems into mathematical problems, a low level and poor feasi-
bility of strategies in the comprehensive use of problem-solving strategies, and a 
weak ability to compare, evaluate and reflect on problem-solving results.

In the future, in the relevant expressions of mathematical problem-solving ability 
in the mathematics curriculum in China, we need to further clarify the connotation 
of mathematical problem-solving competency, determine the development require-
ments of mathematical problem-solving competency of students in different learn-
ing phases and grades, and come up with an operational evaluation indicator and 
framework that identifies mathematical problem-solving competency.
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Chapter 8
The Development of Representation 
in Chinese Mathematics Curriculum

Jinyu Zhang, Yang Shen, and Jiansheng Bao

Abstract Representation is an important concept in cognitive psychology and is 
the way in which knowledge is presented and expressed in the learner’s mind. 
Mathematical representations help students understand concepts, relate the mathe-
matics used in their own problem-solving processes, and grasp connections between 
mathematical concepts. The purpose of this study is to investigate how the three 
functions of mathematical representations have changed in the mathematics syllabi 
of Chinese primary and secondary schools since 1902. Content analysis was the 
primary approach used in the study. Results show that the functions of mathematical 
representations change with the syllabi to suit the needs of the times. The focus and 
interrelatedness of the three representational functions also vary across school 
years. The representational communication function relies on the model application 
function at the elementary school level and on the operation transformation function 
at the middle school level, but the model application function does not receive much 
attention at the elementary and middle school levels. Therefore, future curricula 
should pay more attention to the balance of the three functions across school years.

Keywords Functions of Mathematical Representation · Chinese Syllabus · 
Content Analysis · Representation Categories · Expressive Communication · 
Operational Transformation · Model Applications

8.1  Introduction

Abstraction is a core feature of mathematics. A single mathematical concept often 
has multiple possible representations. As a part of mathematical processes, it is 
important for learners to deepen their understanding of mathematical concepts 
through the interpretation and transformation of external representations (mathe-
matical symbols, tables, images, models, etc.) of the same structure (isomorphisms), 
developing and establishing connections between the abstract mathematical world 
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and their real, experienced lives (Even, 1998). An Action Plan for Mathematics 
Education in Primary and Secondary Schools in the twenty-first Century (Gu et al., 
1997) further expands the requirements for basic mathematical skills for schools in 
China. These skills are no longer confined to what are commonly referred to as 
computational skills, logical reasoning skills, and spatial imagination skills. They 
also include the abilities to make mathematical abstractions, symbolic transforma-
tions, and mathematical applications. Specifically, the ability to make mathematical 
symbolic transformations includes quantitative computations, logical deductions, 
empirical inductions, and even spatial associations, all of which are the basic meth-
ods used in mathematics.

By synthesizing related research on mathematical representation and transfor-
mation abilities and based on Collection of primary and secondary school curricu-
lum standards and syllabus of the twentieth century China (Mathematics volume) 
(Curriculum and Teaching Materials Research Institute (CTMRI), 2001), this study 
explores the historical evolution of mathematical representations along with math-
ematics curriculum reforms, identifying patterns and implications for future 
practice.

8.2  Literature Review

Thanks to the efforts of mathematics education researchers and practitioners, 
research on the concept of mathematical representations has been successfully com-
pleted, resulting in theoretical and practical breakthroughs. Markman and Dietrich 
(2000) argues that cognitive science employs so many different kinds of representa-
tions that it would be nearly impossible to provide a complete overview of all of 
them. Therefore, this paper does not attempt to provide a complete overview of 
mathematical representations, but rather a systematic account of what mathematical 
representations mean in relation to mathematical representational abilities.

Representation is a central concept in the development of cognitive psychology. 
Since the “cognitive revolution” in the 1950s, researchers in cognitive science have 
attempted to describe the nature of information processing in the brain in terms of 
the processes by which representations occur. According to Ralmer (1978), repre-
sentation is a process of cognitive activity: how people construct, combine, and 
represent in the brain what they have learned. Representation is also the result of 
cognitive activity: the form in which knowledge or information is stored in the 
brain. Thus, representations are the combination of process and outcome. Hiebert 
and Carpenter (1992) divided representations into internal and external representa-
tions from a cognitive psychology perspective. Internal representations refer to 
mental representations that exist in the learner’s mind that cannot be directly 
observed or mental structures that the learner possesses, such as knowledge net-
works and objects that the individual constructs in the mind; external representa-
tions refer to observable presentations of objects in the form of words, symbols, 
graphics, concrete operations, or actual situations. Eysenck and Keane (2005) 
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describe representation as “a form (physical or mental) of a symbol or a set of sym-
bols that can repeatedly refer to an object; the re-presentation of things, objects, 
ideas, knowledge in a new form, which essentially establishes a mapping between 
the domain of ‘representation’ and some feature or element of the domain of 
‘represented’.”

Around the same time as the beginning of the cognitive revolution, many 
researchers began to slowly shift their attention to the meaning of mathematical 
representations. Greeno and Hall (1997) analyzed the representational behavior in 
mathematical problem-solving activities from the perspective that cognitive indi-
viduals or learning groups draw graphs, take notes, construct tables or equations in 
the process of solving problems. These representations help learners understand 
mathematical concepts and theorems, draw valid conclusions, and optimize ongo-
ing logical thinking processes. Goldin and Shteingold (2001), through a review of 
research on representations in the field of mathematics education, argue that extra 
mathematical representations are external forms that reflect the objects of mathe-
matical learning. These include mathematical symbol systems as well as specific 
structured learning contexts. Internal representations of mathematics are conceptual 
processes that make connections between different external forms of mathematical 
objects, and it is this conceptual process that is the true meaning of representation 
in mathematics. Cai and his colleagues (2005) summarized the meaning of mathe-
matical representations in their study of problem solving and pedagogy. They found 
that mathematical representations exist in the process of expressing mathematical 
objects or relationships, and that the use of appropriate forms of mathematical rep-
resentations helps students understand the concepts, relationships, and mathemati-
cal knowledge used in problem solving. To gain a deep understanding of a new 
mathematical object, a student must establish a mapping between the structure in 
which the object appears and another more understandable structure, and mathe-
matical representations are such mapping processes. A mathematical representation 
is neither the object of the representation (the mathematical structure being repre-
sented) nor the purpose of the representation (the more comprehensible mathemati-
cal structure); it exists within this mapping activity as a “component” that contains 
the transformation of objects into other objects.

Although the above definitions of mathematical representations are different, 
each includes a mapping process from what is represented to what is used to repre-
sent it. Based on the essential elements common to these definitions, we character-
ize representation as the process of expressing mathematical concepts or relations in 
some way, and as the process by which an individual establishes a mapping between 
the structure of the problem to be learned or dealt with and another more under-
standable structure of the problem.

8 The Development of Representation in Chinese Mathematics Curriculum
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8.3  Research Questions and Methodology

8.3.1  Research Questions

This chapter is primarily a study of the following questions: What are the changing 
trends in mathematical representations in primary and secondary school mathemat-
ics curriculum standards in China in the 20th and 21st centuries, and what are the 
main causes of such changes?

The main research method used for this study is “historical research.” The goal 
of a historical research is to systematically search and organize data to better under-
stand historical phenomena and their possible causal relationships (Gower, Gower, 
Borg, & Hou, 2016). The process of a general historical research includes three 
steps: screening historical sources, examining historical evidence, and interpreting 
historical data. Because China is a centralized state, the mathematics syllabus pro-
mulgated by the state and the test syllabus that it adapts to enjoy are viewed as hav-
ing a high degree of authority. As the historical sources for this paper are Collection 
of primary and secondary school curriculum standards and syllabus of the twenti-
eth China (Mathematics volume) and the curriculum standards implemented after 
the year 2000, all of which are unified standards issued by the state, the sources 
were deemed to have a considerably high level of relevance and reliability. Therefore, 
only the third step in the general historical research process was performed, the 
interpretation of historical data. A combination of qualitative and quantitative 
approaches was used during this step. The quantitative aspect included the interpre-
tation of data based on a coding framework, while the qualitative aspect included 
the explanation of quantitative research results. This method is called sequential- 
explanatory research design (Manion, Cohen, & Morrison, 2011). Through this 
research, we hope to identify patterns in the development of mathematical represen-
tation in the school curricula in China during different eras and in different subject 
areas and to promote a better understanding of the new curriculum standards and 
subsequent revisions.

8.3.2  Research Design

8.3.2.1  Research Objects

The main objects of this research include middle school mathematics curriculum 
standards and syllabi used in China from 1902 to the present. The mathematics cur-
riculum documents from 1902 to 2000 were selected from Collection of primary 
and secondary school curriculum standards and syllabus of the twentieth China 
(Mathematics volume), which was edited by the Curriculum and Teaching Material 
Research Institute of People’s Education Press, while the curriculum documents for 
after 2000 were selected from the Mathematics curriculum standards for full-time 
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compulsory education (Experimental version) (MOE, 2001) promulgated in 2001, 
as well as the Mathematics curriculum standards for compulsory education (2011 
version) (MOE, 2012).

8.3.2.2  Framework of Representation

Principles and Standards for School Mathematics (NCTM, 2000) of the United 
States characterizes competency in mathematical representation into three core 
abilities: “to create and use various mathematical representations to organize, 
record, and communicate mathematical concepts”; “to select, apply, and inter-
change various mathematical representation methods to solve problems”; and “to 
apply representations to simulate and explain phenomena in physics, society, and 
mathematics.” Niss (2003) identifies mathematical representation as one of eight 
mathematical competencies and enumerates three required abilities for representing 
mathematical entities (objects and situations): to understand and use (decode, inter-
pret, distinguish) mathematical objects, different kinds of phenomena-based and 
situations-based representations; to understand and use the relationships between 
different representations of the same entity, including understanding their relative 
advantages and limitations; and to select and switch representation as appropriate. 
The mathematical evaluation framework of PISA 2018 describes various aspects of 
representation as part of the fundamental mathematical capabilities underlying 
three basic mathematical processes, specifically, mathematically expressing the 
situation; using mathematical concepts, facts, procedures and reasoning; and 
explaining, applying and evaluating mathematical results (OECD, 2019).

Mathematical representations have rich and complex connotations (Brachman & 
Levesque, 2004) and are generally defined from two perspectives: the cognitive 
perspective of mathematical knowledge and the functional perspective of mathe-
matical representation. The cognitive perspective mostly focuses on three aspects: 
internal representation, external representation, and representation transformation 
(Zhang, Jiang, & Xie, 2016). Internal representation refers to psychological struc-
ture of an individual’s knowledge learned, which is generally not easily observed 
(Bao & Zhou, 2009). For example, psychologists believe that information is stored, 
represented, and reproduced in a person’s working memory and long-term memory 
through knowledge representation (Yu, 2004). External representations are physical 
and observable behaviors or objects. The mathematical education encyclopedia 
describes mathematical representations as visible and tangible products, such as 
charts, numbers, graphs, concrete objects or aids, physical models, mathematical 
expressions, descriptions on computer screens or computer coding, etc., which rep-
resents mathematical ideas and mathematical relationships (Lerman, 2014). The 
notion of representation transformation was first introduced by Lesh, Post, and Behr 
(1987). Niss (2003) later emphasized its role, noting that mathematical representa-
tion ability refers to the understanding, interpretation, and identification of multiple 
representations of mathematical objects, phenomena, and situations; the ability to 
understand and use the relationships of representations and the grasp of advantages 

8 The Development of Representation in Chinese Mathematics Curriculum



132

and limitations of those different representations; as well as the ability to select and 
transform various representations. Xu (2013) and other researchers (Zhang et al., 
2016) define mathematical representation and transformation abilities separately. 
They suggest that the goal of mathematical representation is to express mathemati-
cal concepts or relationships so that they can be learned or processed in some form, 
such as written symbols, graphics (tables), situations, operational models, and 
words (including spoken words), etc. The ultimate goal is to solve the problem in 
hand. Mathematical transformation ability refers to maintaining some invariant 
nature of a mathematical problem while changing the information form in the pro-
cess of solving mathematical problems, mathematically transforming the problem 
to be solved.

From a functional point of view, the most inclusive definition for mathematical 
representation comes from NCTM in the United States, which added the standard of 
representation for the first time in the Principles and Standards for School 
Mathematics published in 2000. Bao and others (Bao & Zhou, 2009) summarized 
two functions for representation: communication tools and materials for thinking. 
As a communication tool, a specific form of representation is used to describe expe-
riences in an activity; as a material for thinking, a representation can be used to 
denote the mathematical concept of materialization or the inherent activity type and 
perform thinking operations on the meanings manifested by the representations.

“Pragmatism” is not only a great tradition of Chinese mathematics, but also an 
important value choice for the study of mathematics teaching in China (Cao & 
Leung, 2018). Due to the requirements of the subject, this chapter needs a compila-
tion of all school stages and content sections (here only for arithmetic and algebra) 
in the Collection of primary and secondary school curriculum standards and syl-
labus of the twentieth China (Mathematics volume) (primary school, junior high 
school are included in the first and 11th editions). From the perspective of represen-
tation functions, we analyzed the contents for teaching and explored the develop-
ment of arithmetic, algebraic, and geometric representations in primary and 
secondary schools in the twentieth century, with the hope that the results could shed 
light on the current status and future development of mathematics representations. 
The functions of the two representations summarized by Bao in the above literature 
include expressive communication and operational transformation. The functions of 
the model applications are also described in NCTM (2000) publications. Combining 
these perspectives, this paper differentiates among three aspects of representations 
based on their functions: expressive communication, operational transformation, 
and modeling applications. Expressive communication refers to the use of symbols 
(written symbols, oral expression, etc.) and graphical charts for communication. 
Operational transformation refers to calculations (measures) and logical thinking 
such as reasoning or model operations on physical devices (e.g., an abacus, com-
puter, or calculator). Model application refers to the use of mathematical knowledge 
to solve problems in real life situations.

Table 8.1 is a framework for the functions of mathematical representations which 
encompasses three levels of indicators. The first level is the functions of representa-
tions, including expressive communication, operational transformation, and model 
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applications. The second level shows subcategories of the functions of representa-
tions: expressive communication includes symbolic expression and graphical dia-
gram, operational transformation refers to thinking operation and model operation, 
and model application is situation application. The third level is a more detailed 
description of keywords based on Collection of primary and secondary school cur-
riculum standards and syllabus of the twentieth China (Mathematics volume) as 
well as indicators at the second level.

8.3.2.3  Content Analysis Method

This research adopted the content analysis method, and its coding process can be 
divided into three stages: (1) preliminary formation of coding table, (2) validity test, 
and (3) use of coding table and reliability analysis. In the first stage, researchers 
established the three-level indicators of representation and their corresponding con-
notations by reviewing literature and formed a coding table using the analysis 
framework. Then two members of the research team used the same set of content 
from 3 years of geometry syllabi to analyze the content of teaching, find the corre-
sponding keywords in the text, review the connotation to make further adjustments 
to the keyword sample, and establish a preliminary yet consistent coding table and 
keyword selection principle (e.g., select the most appropriate classification accord-
ing to the connotation and examples of the analysis framework. If a keyword has 
multiple meanings, assign at most two sample classifications). In the second stage, 
a third member of the team who had not participated in the first stage checked the 
validity of the coding table previously established by the two members by randomly 
selecting and analyzing a content that had already been coded. If the coding accu-
racy for the same content is less than 80%, indicators at the third level in the analy-
sis framework were further revised and coded by the first two members, and the 
table was checked by the third member until the coding was validated. Once the 

Table 8.1 A framework for the functions of mathematical representations

Functions of 
representations Connotations Samples of representations

Expressive 
communication

Symbolic 
expressions

Written symbols (scores, decimals, notation), spoken 
expressions (reading, numbering)

Graphical 
charts

Graphic (function image, floor plan) chart (multiplication 
ninety-nine table, prime number table, anti-log table)

Operational 
transformation

Thinking 
operations

Computation/metrics (four operations, solving equations, 
time calculation, currency calculation), logical reasoning 
(cosine theorem, mathematical induction, Newton’s 
formulas)

Model 
operations

Physical devices (abacus and logarithmic slide rule, 
computers, calculators, computer simulations)

Model 
applications

Situation 
application

Situational problems (taxation problems, interest 
problems), practical applications (internship assignments, 
research topics)
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table was deemed valid, data analysis entered the second stage. In the third stage, 
one researcher used the coding table to search, classify, and count keywords 
throughout the geometry content. Another researcher randomly selected more than 
three course standards, performed word frequency statistics on the arithmetic, alge-
bra, plane geometry, and solid geometry coding tables, and conducted reliability 
analyses based on these tables.

The left half of Fig. 8.1 is a flow chart for designing the coding framework for 
the functions of representations. First, three members of the research team each 
individually read and coded the text. After several rounds of discussion, the first- 
level indicators were unified, the members re-encoded based on the determined 
first-level indicators, and the codes were ultimately determined after further discus-
sions. The right half of Fig. 8.1 is a flow chart of the coding process. First, the fourth 
indicator in the coding framework was determined, and part of the content of the file 
was coded, then re-coded after multiple discussions. Finally, some of the year codes 
were randomly selected and a reliability analysis was performed. The fourth indica-
tor was a keyword extracted from Collection of primary and secondary school cur-
riculum standards and syllabus of the twentieth China (Mathematics volume) based 
on the third indicator and varied according to the grade and knowledge content 
(Arithmetic and Algebra, Planar Geometry and Solid Geometry). The data derived 
from coding was the number of times that the fourth indicator keyword was men-
tioned in the text. During the coding process, in order to fully demonstrate the math-
ematical representations in each year, the following principles were followed: if 
there were multiple schemes in a certain year, first scheme was followed; if the 
syllabus for a certain year included content for both five-year systems and six-year 
systems, the content for six-year system was used. If there was a division between 
liberal arts and sciences in a certain year, sciences were used. If there was a division 
between advanced standard and lower level standards, the syllabus for the advanced 
standard was used. The minimum unit of coding was an independent phrase, which 
typically ended with a comma; if a word in the coding standard reference table had 
two meanings, the code was counted twice, but not more than twice.

Fig. 8.1 Flow charts for designing the coding framework for representation function
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The final step of the coding process was to perform a differential test on primary 
and middle school standards to determine whether the coding was valid. First, 
6 years were randomly selected from different school sections to be re-coded, and 
SPSS was used to perform paired sample t-test between the obtained data and the 
data corresponding to the original codes. The correlation coefficients for primary 
and middle are shown in Table 8.2:

Table 8.2 shows that the correlation coefficient between the randomly selected 
codes and the original codes in the two school levels is relatively high, and the sig-
nificance level is less than 0.05, which means the two sets of coded data are signifi-
cantly correlated, and the significance levels of the t-test values are both greater than 
0.05, which means no difference was considered to exist between the two coding 
processes. Therefore, the coded data is trustworthy.

8.4  Research Results on Conceptual Development

8.4.1  Primary and Junior High School (Arithmetic 
and Algebra)

As shown in Figs. 8.2 and 8.3, the line charts for representation in primary school 
and junior high school arithmetic demonstrate very similar trends. On the whole, the 
measure of expressive communication functions at the primary school level changed 
along with the measure of model application functions and tended to change along 
with the measure of operational transformation at junior high school level. This 
indicates that the training of students’ communication skills relied more on practical 
applications in primary schools and relied more on thinking operations and model 
operations in junior high schools. The time periods can be roughly divided into 
three stages. (1) Before 1923, education in China witnessed the introduction of 
moral education and Dewey pragmatism, the functions of representation remained 
almost unchanged. (2) Between 1923 and 1978, foreign educational concepts were 
introduced, the educational system in Soviet Union was studied and adapted, and 
“the two basics” (basic knowledge and basic skills) became the center of attention. 
This period saw two relatively strong fluctuations, especially in the operation trans-
formation function. (3) After 1978, basic education reform with Chinese character-
istics was steadily implemented, and the representation function gradually stabilized.

8.4.1.1  The First Stage (Before 1923)

Modern history in China before 1923 can be divided into two periods: the Qing 
Dynasty (before the Revolution of 1911) and the Republic of China established in 
1912. During the first period, only the School Education System in the Year of 
Renyin (1902) and the School Education System in the Year of Kuimao (1903) were 
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enacted, and representation was not significantly present in the mathematics cur-
riculum. At the beginning of the second period, in the years immediately following 
1912, the Ministry of Education was established with the aim of “paying attention 
to moral education, supplemented by practical education, military national educa-
tion, and aesthetic education to complete its morality” (Wei, 1987). During the First 
World War, in 1914–1918, imperialist forces temporarily relaxed their economic 
aggression against China. The “May 4th” Movement broke out in 1919, leading to 
an unprecedented educational reform movement in the country, contributing to the 
development of education nationwide (Wei, 1987). During this period, the educa-
tional philosophy of the great American educator J. Dewey (1859–1952) were intro-
duced to China through the efforts of Yuanpei Cai and Yanpei Huang, and many 

Fig. 8.2 Line chart showing functions of representation in primary school arithmetic

Fig. 8.3 Line chart showing functions of representation in junior high school arithmetic
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Chinese scholars such as Xingzhi Tao, Xiaotong Zheng, and Shi Hu actively pro-
moted Dewey’s theories. During his visit in 1919, Dewey gave lectures all around 
China, and his pragmatic education theory was widely known in China (Wang, 
2009; Zhang, 2018). For example, Dewey’s pragmatism was the guiding ideology 
of School Education System in the Year of Renxu announced by the Ministry of 
Education of the Republic of China in 1922. It was a modern school system based 
on the American school infrastructure, also known as the “six-three-three” school 
system. Before 1923, although there were no changes in the three functions of math-
ematical representations, these other developments paved the way for changes in the 
latter periods.

8.4.1.2  The Second Stage (1923–1978)

The events of 1952 were critical for both primary and junior high schools in China, 
with significant changes occurring both before and after. Hence, we divide this stage 
into two periods. In the first period (1923–1952), various teaching theories from 
abroad and new development from international mathematics education reforms in 
the early twentieth century were first introduced. In the second period (1952–1978), 
the education system in the Soviet Union was comprehensively and systematically 
studied, beginning in 1952. It was proposed that China should “learn from the 
advanced experiences of the Soviet Union, first moving it over and then re- Sinicizing 
it” (Cao & Leung, 2018), and the importance of basic knowledge and basic skills 
was emphasized in the national syllabus in 1963.

At the beginning of the first period (1923–1952), the 1923 syllabus was formu-
lated on the basis of the School System Reform Order (Curriculum and Teaching 
Materials Research Institute, 2001), in which expressive communication, opera-
tional transformation, and model application functions of mathematical representa-
tion began to be valued. The War of Resistance Against Japan broke out in 1936, a 
year after the publication of the revised curriculum standards, and educators in 
China had to adjust the content to meet wartime needs. The document Design of the 
Main Items of the Various Subjects in the War of Resistance Against Japan indicated 
that problems unrelated to students’ lives should be omitted; this change was mainly 
based on the practicality of national defense, using digital and military calculations 
on national defense as the context for problems. For example, the “engineering 
problem” in the mathematics application section was changed to “digging trenches” 
and “ship power” (Wei, 1987). Therefore, all three functions were seriously consid-
ered at the time, but the operational transformation function was more significant. It 
is possible that, because the level of knowledge required at that time was low, the 
operational transformation function increased significantly in 1941 for primary and 
secondary schools, while for junior high schools, it only increased slightly. After the 
People’s Republic of China was founded in 1949, the country began to learn from 
all aspects of the Soviet Union’s education system. The national curriculum sylla-
bus was written based on the Soviet Union’s ten-year school education system (Lv, 
Wu, & Chen, 2009). China adopted a teaching system that was 
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“knowledge-centered,” “classroom-centered,” and “teacher-centered.” Chinese stu-
dents became overburdened, in part because physics, chemistry, and mathematics 
textbooks included too many topics, and the arrangement was not consistent with 
the students’ perceptions (Wei & Zhang, 1996). To resolve the issue, the Ministry of 
Education organized a symposium and developed the following principles: (1) the 
purpose of streamlining contents is to pursue effective teaching, rather than to lower 
expectations on student learning; (2) mathematics textbooks should be related to the 
real world as much as possible and combined first with the learning of physics and 
chemistry, and then with the scientific knowledge required for economic develop-
ment (Wei & Zhang, 1996). The three functions represented in the “1952 Outline” 
of elementary and junior high school education reduced requirements and, for the 
first time, mentioned improving students’ basic knowledge and skills through train-
ing and practice, emphasizing the systematic and logical characteristics of 
mathematics.

In the second period (1952–1978), China underwent the “great leap forward” 
movement, after which the Central Committee of the Communist Party issued the 
“Guidelines for Educational Endeavors” and launched a national educational reform 
movement that focused on the academic system and content for teaching and learn-
ing. Due to excessive reforms of the course content, the burden on students and the 
quality of education declined (Liu, Xu, & Zhao, 2006). At that time, a “Part Work 
(Agricultural) and Part Study” movement was proposed, as political education and 
productive labor education were highly regarded. For example, the curriculum plan 
included basic knowledge of industry and agriculture, improving operational trans-
formations. In 1962, the Ministry of Education issued the Notice on the Textbooks 
for Primary and Secondary Schools of 1962–1963, and all “Middle School 
Arithmetic” was reallocated to become part of primary school content (Wei & 
Zhang, 1996). When the People’s Education Press published a set of primary and 
secondary school mathematics textbooks in 1963, the guiding ideology was “to 
strive to avoid one-sided emphasis on getting in contact with the reality so much so 
that basic knowledge is weakened to pay attention to the enrichment of basic knowl-
edge and the strengthening of basic training” (Zhang, 2006). As the result, all arith-
metic courses were completed in primary school, and more attention was given to 
basic knowledge and skills. In the “1963 Outline,” the functional transformation, 
expressive communication, and model application functions of representation were 
strengthened, while they were reduced at the junior high school level. During the 
period of the “Cultural Revolution” (1966–1976), there was no unified mathematics 
syllabus. Provinces and municipalities created their own outlines and compiled their 
own teaching materials (Lv et  al., 2009) that did not emphasize the two basics, 
resulting in a significant decline in the quality of teaching in the country 
(Zhang, 2006).
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8.4.1.3  The Third Stage (After 1978)

After 1976, the country entered a period of comprehensive rectification, summing 
up the lessons learned from the reform of mathematics teaching materials at home 
and from abroad. For example, in the 1970s, after the failure of the “New Math” 
movement, the United States advocated “Back to Basics” (Zhang, 2018), and the 
“1978 Outline” in China was updated based on the “1963 Outline,” emphasizing the 
strengthening of the two basics. In 1985, when the Ministry of Education examined 
junior high school education, it determined that students’ burden of study had 
increased, so in the “1988 Outline,” the function of each type of representation was 
downplayed. In the twenty-first century, the “2001 Standard” emphasized “indepen-
dence, cooperation, exploration, and innovation,” and the theme of “practice and 
synthesis” was added to the content. It focused on creating learning situations in 
mathematics and de-emphasized the two basics, reducing the importance of basic 
knowledge and basic skills in the curriculum (Zhang, 2018). In the meantime, the 
model application function received more attention, whereas the operation conver-
sion function was de-emphasized. An investigation of the implementation status of 
the “2001 standard” found that the new teaching method made students’ achieve-
ment polarization in the lower grades of primary schools. Therefore, the “2011 stan-
dard” returned to the “two basics” and expanded on them by proposing an emphasis 
on the “four basics”: mathematical learning in the compulsory education stage 
enables students to acquire the basic knowledge, basic skills, basic ideas, and basic 
experiences of mathematical activities which are necessary for students’ adapta-
tions to social life and further development. This meant the operational transforma-
tion function was picked up again, and emphasis on the model application function 
decreased. However, in general, the three functions gradually became balanced.

8.4.2  Junior High School (Planar Geometry)

As shown in Fig. 8.4, levels of expressive communication and operational transfor-
mation fluctuated greatly, and the trends of changes in these two areas are generally 
consistent, with both gradually increasing, while the level of model application fluc-
tuated only slightly. Quantitatively speaking, keywords related to operational trans-
formation were found most frequently, followed by keywords related to expressive 
communication. Keywords associated with model applications appeared least 
frequently.

8.4.2.1  The First Stage (1923–1951)

In the first stage, the instructional content described in the curriculum standards put 
emphasis on expressive communication. It was not further enriched possibly 
because these specific instructional contents had only recently been added to the 
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curriculum standards. Beginning in 1932, experimental geometry was included in 
the curriculum standards, and intuition in geometry was emphasized; “developing 
students’ skills in calculating and constructing, cultivating the habit of calculating 
skillfully and accurately, constructing neatly and precisely” was included among 
the course objectives (Curriculum and Teaching Materials Research Institute, 2001). 
These objectives reflect the greater importance attached to learning at the level of 
operational transformation. After China’s victory in the War of Resistance Against 
Japan, the Ministry of Education revised the curriculum standards in 1948 to adapt 
mathematics education to the needs of rebuilding the country, and the instructional 
content was made more specific. After the founding of the People’s Republic of 
China in 1949, the Ministry of Education found that topics in mathematics text-
books were not arranged logically and that students were burdened by frequent 
symposia. In 1950, a draft briefing was issued to streamline unnecessary and repeti-
tive content in textbooks, resulting in a reduction of knowledge included.

Although the instructional content section in the curriculum standards did not 
involve knowledge and skills at the level of model application, these skills were 
included in other sections. Due to the War of Resistance, specific applications in 
national defense and military were proposed as part of the implementation methods, 
including measurement, construction, and so on. The instructional objectives also 
emphasize the connection between mathematics and daily life.

8.4.2.2  The Second Stage (1952–2000)

Generally speaking, the instructional content in the curriculum standards gradually 
matured through the process of adapting to national conditions in China. The “1952 
Outline” was different from previous syllabi of China and was based on the math-
ematics syllabi of the Soviet Union over the previous 10  years. It adopted the 

Fig. 8.4 Line chart showing geometry teaching content in junior high school mathematics cur-
riculum standards
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principle of “moving over first and then sinicizing” and only modified and supple-
mented content that did not conform to China’s situation. As a result, the quantity of 
the instructional content was not consistent with the previous standards. The outline 
also focused on the systematic study of the nature of geometric figures so that stu-
dents could answer computational and construction questions. As the result, content 
at the level of operational transformation was greatly enhanced. While the Chinese 
curriculum was based on the Soviet Unions’, requirements for geometry teaching in 
the three syllabi mentioned the need to “use the knowledge learned to solve practi-
cal problems.” However, only the “1956 Outline” added content related to produc-
tion techniques, corresponding to the level of model application.

In 1960, the Report on the Revision of the Mathematics Syllabus for Primary and 
Secondary Schools and the Compilation of General Mathematics Textbooks for 
Primary and Secondary Schools, submitted by the Ministry of Education, pointed 
out that “according to the experiences of teachers in China and her allies, it is pos-
sible to finish plane geometry in junior high school stage.” In 1963, the instructional 
content of geometry in high school curricula in China was transferred to the junior 
high school curriculum, greatly increasing the number of topics in the syllabus. At 
the same time, the teaching standards required that basic knowledge of plane geom-
etry must be taught, and learners must be able “to construct proofs in plane geom-
etry, answer computational questions, complete drawing problems, and make simple 
measurements to adapt to the needs of participating in productive labor and further 
studying in high school mathematics, physics, chemistry, etc.,” which corresponded 
to the three levels of representation.

Since 1986, in order to improve the quality of compulsory education, China has 
pursued reducing the academic burden on students in the transitional period and 
during the implementation of the compulsory education curriculum. For example, 
the 1986 syllabus adjusted the instructional content of the 1978 syllabus following 
the principle of “appropriately reducing difficulty, reducing students’ burden, and 
making teaching requirements as clear and as specific as possible” (Ministry of 
Education, 1989). The 1990 revision of the “1986 Outline” recommended “remov-
ing excessive content and relaxing high requirements” (Curriculum and Teaching 
Materials Research Institute, 2001).

8.4.2.3  The Third Stage (2001–Present)

The third stage is the period of curriculum reform in the new century. In comparison 
to the previous stage, this period of reform is characterized by the presentation of 
instructional content and requirements that further refine the instructional content, 
and expectations for both the expressive communication and operational transfor-
mation levels have grown significantly. In particular, the instructional content is 
expressed more in the form of operational requirements. New applications were 
added to the instructional content, and the level of model applications has increased 
slightly.
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In the “2001 Curriculum Standards,” Euclidean geometry was replaced by 
“Space and Graphics.” Content and requirement related to deductive geometry were 
reduced, whereas those for experimental geometry were greatly increased, and a 
significant amount of content related to transformational geometry was added, cor-
responding more to the operational transformation level. Although the curriculum 
standards are more closely related to real life, and require students to explore, feel, 
and recognize the graphics from the examples (Kong, Liu, & Sun, 2001), the 
requirements for solving practical application problems are still minimal. In other 
words, the instructional content is less focused on model application.

Compared to the “2001 Curriculum Standards,” the 2011 edition changed the 
theme “Space and Graphics” to “Graphics and Geometry.” The number of topics for 
learning also increased, with the number of topics related to expressive communica-
tion seeing the largest increase. In relation to student development, the 2011 
Standards removed some content that was repetitive, unrelated to students’ real-life 
experiences, or difficult to learn (such as trapezoids) and added related content sup-
plements that further refined concepts, and highlighted topics at the corresponding 
communication level (Shi, Ma, & Liu, 2012). The curriculum standards also added 
content related to the graphic proof in order to provide students with more opportu-
nities to learn geometry in depth, strengthening content related to operational 
transformation.

8.4.3  Junior High School (Solid Geometry)

As shown in Fig. 8.5, since 1932, the junior high school mathematics curriculum 
has included a limited number of topics related to solid geometry. Except for in 
1948, expressive communication topics were included in the mathematics curricu-
lum in each period. In contrast, curricular content corresponding to the operational 

Fig. 8.5 Line chart showing solid geometry instructional content in the junior high school math-
ematics curriculum standard
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transformation level was entirely omitted from standards issued between1963 and 
2000; content at the level of model application appears only in the curriculum stan-
dards published in the twenty-first century.

8.4.3.1  The First Stage (1923–1949)

Before the founding of People’s Republic of China in 1949, solid geometry content 
included in the junior high school curriculum was in its infancy, and was repre-
sented only by experimental geometry, including themes such as “spatial geometry” 
and “measurement of solid area and volume,” which corresponded to one of the 
graphics at the communication level and two of the calculations at the operational 
transformation level. After the victory of the War Against Japan in 1945, only “sim-
ple three-dimensional area and volume calculations” remained in the revised 1948 
curriculum standards.

8.4.3.2  The Second Stage (1950–2000)

In the early days of the newly founded People’s Republic of China, content around 
expressive communication and operational transformation broke their previous bal-
ance, with keywords related to both appearing significantly more frequently. In the 
1950–1956 syllabi, experimental geometric was included in the arithmetic disci-
pline, and solid geometry mainly focused on the formulas for calculating volume 
and area, and other basic geometry. Later when China began modeling its education 
system after the Soviet Union’s, calculation of the surface area of several simple 
objects was added to the curriculum. Additionally, the “1956 Outline” further 
required the production of a cube model, a cuboid model as well as a corresponding 
expanded view, which corresponded to the geometry teaching method of “using 
graphics, models, and common physics to help students intuitively recognize vari-
ous geometric figures” in the arithmetic course of the curriculum. From 1963 to 
2000, the junior high school mathematics curriculum had only included content at 
the level of expressive communication. In 1963, mathematics courses in junior high 
schools were almost all cancelled, with only plane geometry taught, and the corre-
spondence of “volume” and “area” with solid geometry appeared only in the geo-
metric introduction of the outline. In 1978, “a preliminary understanding of the 
views of simple objects” was newly added to the teaching requirements, whose 
corresponding teaching content was “preliminary knowledge of the view” and 
“view of simple objects,” focusing on cultivating students’ spatial imagination abili-
ties, and the geometric introduction was deleted. The “1986 Outline” complemented 
the “two views” and “three views,” further expanding the knowledge content. In 
1992, China officially launched the Full-time Junior High School Mathematics 
Syllabus of Nine-year Compulsory Education (Trial). The development of students’ 
spatial concepts became more prominent and was distributed across three parts, 
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namely, geometric introduction, spatial straight lines and positional relationships, 
and views on a plane.

8.4.3.3  The Third Stage (2001–Present)

In the “2001 Outline,” teaching content related to solid geometry focused on view 
and projection. Since the teaching content was mixed with the specific require-
ments, content related to “views” was described from the perspective of operation, 
so the prevalence of operational transformation was drastically increased, and the 
expressive communication was correspondingly reduced. This may also have been 
related to prominence of the concept of space at the time that the standard was 
changed from traditional geometry to “Space and Graphics.” In the “2011 Outline,” 
the previous theme “Views and Projections” was changed to “Graphic Projections.” 
The requirements of the three views were not changed, and content related to shad-
ows, viewpoints, and blind spots were deleted, so the coverage of expressive com-
munication declined again. Content related to model application was introduced for 
the first time, which both reflected the real-life applications of the views and 
expanded views of basic geometry.

8.5  Discussion

In this chapter, we summarize our analysis of mathematical content areas in elemen-
tary and junior high school, including arithmetic, algebra, plane geometry, and solid 
geometry, in the Collection of primary and secondary school curriculum standards 
and syllabus of the twentieth China (Mathematics volume), from the perspective of 
the functions of the mathematical representations. In addition, we reviewed some 
related literature and historical materials to provide context for the results revealed 
in the analysis. Results show that the functions of mathematical representations 
changed as curriculum standards changed. Emphasis on and correlations among the 
three representation functions (expressive communication, operational transforma-
tion, and model applications) exhibited different features during different stages of 
mathematics curriculum development.

In terms of arithmetic and algebra content, elementary school students develop 
their expressive communication ability mainly through solving contextual questions 
and practical applications. Junior high school students’ expressive communication 
ability is cultivated through operational transformations and model applications that 
are more abstract. The operation conversion function is emphasized in both elemen-
tary school and junior high school. However, the model application function of 
mathematical representations is not considered seriously. The various functions of 
mathematical representations played different roles during different periods. For 
example, between 1923 and 1978, there were two dramatic fluctuations. The first 
instance of volatility occurred when China adopted Soviet teaching theory after 
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1949 and basic knowledge received attentions. These changes resulted in the line of 
operation conversion and expression rising quickly. They were later rapidly reduced 
after the Ministry of Education requested schools and teachers ease students’ aca-
demic burdens. The second wave arrived when the requirements for student learning 
were raised as a reflection of the country’s growing political ambitions, but expecta-
tions on students’ representation ability were reduced again as the quality of teach-
ing decreased.

In terms of plane geometry, junior high school mathematics curriculum always 
focused on two mathematical representation abilities: expression communication 
and operational transformation. In particular, due to the importance of mapping and 
calculation, operational transformation function was increasingly valued in plane 
geometry. Requirements related to expressing communication functions were rela-
tively stable. However, the mathematics curriculum standards rarely focused on the 
model application function of mathematical representations before the twenty-first 
century, and this function was not directly mentioned until the twenty-first century.

Solid geometry is an important subject for developing students’ reasoning abili-
ties and spatial imaginations but is the subject of constant debates in China because 
of its complexity and difficulty. Content related to solid geometry is often added to 
or removed from the curriculum standards. The operational transformation function 
was not mentioned for a long time, until it was added and emphasized in the twenty- 
first century, when the content related to “view” was added. Logical reasoning and 
expressive abilities are significant in three-dimensional geometry, so the expression 
communication function has always maintained a dominant position. The balance 
between the model application function and the operation transformation function 
stabilized after the beginning of the twenty-first century.

Outside of algebra or geometry, requirements placed on students in the curricu-
lum standards are closely related to the context of the times. The knowledge content 
and systems changed in order to adapt to the societal changes and personal develop-
ment. For example, before 1923, China gradually shifted from moral education to 
pragmatic education with the introduction of Dewey’s theory. In the 1950s, The 
Chinese education system entered a stage of comprehensive study of the Soviet 
Union. In the 1980s, education in China began to fully recover and develop. The 
current revision process for course standards is based on China’s national status and 
continuously draws on experiences in practice. The curriculum standards emphasize 
basic knowledge and basic skills. The mathematics curriculum standards issued in 
the twenty-first century gradually increased attention to three representation 
functions.
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Chapter 9
Chinese Eighth Graders’ Competencies 
in Mathematical Representation

Jinyu Zhang and Na Li

Abstract Mathematical representation as a core competency in mathematics has 
been the focus of research in mathematics education, and it is used by many inter-
national educational organizations and educators as an indicator of students’ math-
ematical ability. The intent of this study was to use literature analysis as the basis for 
an evaluation framework for the mathematical representation competencies of stu-
dents at certain stages of compulsory education. A set of test questions was devel-
oped to test the mathematical representation competencies of 1197 eighth-grade 
students in eight regions of China, and the results showed the following: (1) the 
overall mathematical representational competencies of Chinese students were at the 
transition stage from the second level (connection) to the third level (reflection); (2) 
intra-system representations were better than inter-system representations, and 
these two were highly correlated; (3) the average level of mathematical representa-
tional competencies was lower for boys than for girls and varied considerably; and 
(4) there was greater variability in the performance of different regions on some 
items than on others.

Keywords Mathematical Representational Competencies · Assessment 
Framework · Intra-system Representation · Inter-system Representation · 
Reflection Level · Connection Level · Reproduction Level

9.1  Introduction

In mathematics classrooms, students are often asked to prove that two parts that 
were previously considered to be completely separate are actually two parallel yet 
different examples of a more abstract expression. This requires that students are 
able to understand mathematical representations. Some researchers emphasize the 
importance of the ability to understand mathematical representations, as it plays a 
significant role in understanding concepts and problem solving (Gagatsis & 
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Shiakalli, 2004). In the evaluation framework for mathematical literacy from the 
Program for International Student Assessment (PISA), the ability to represent and 
transform mathematical expressions has always been considered an important indi-
cator of mathematical competence (OECD, 2013). Other studies have shown that 
mathematical representation and transformation abilities play important roles in the 
processes of mathematics learning and problem solving and are among the factors 
that ensure students’ smooth entry into higher level learning such as algebra and 
geometry (Goldin, 1998a).

Through the synthesis of related research on mathematical representation and 
transformation abilities, in this chapter, we aim to use the synthesis of related 
research to construct an evaluation framework and an indicator system suitable for 
assessing students’ competencies in mathematical representation and transforma-
tion in the compulsory education system in China. It is the researchers’ hope that, 
through the preparation of the tasks, students’ mathematical representation and 
transformation ability levels can be categorized using different evaluation dimen-
sions and indicators, providing ideas for a more in-depth study of the developmental 
characteristics of mathematical representation and transformation abilities of pri-
mary and secondary school students in China.

9.2  Literature Review

In 1973, Bruner (1973) introduced the concept of “representational systems” in 
order to study the ways in which diversity is represented and the interactions 
between them. He argued that there are three systems of representation at work dur-
ing the growth of human intelligence: “gestural representation,” “pictorial represen-
tation,” and “symbolic representation,” which is the general term used to refer to the 
representation of the human mind. The interplay of these three systems of represen-
tation is central to cognitive and intellectual growth. In his view, these three types of 
representation are essentially the three systems of information processing by which 
humans make sense of the world.

Most researchers have built on this foundation to further create and refine repre-
sentational systems, and most of the goals of mathematics instruction and assess-
ment have focused on students learning to understand these representations and use 
them as tools to solve mathematical problems. Lesh and Landau (1983) classify 
representations as written symbolic representations, graphical representations, situ-
ational representations, operational representations, and linguistic representations. 
Together they form a system of representations. There is not necessarily a sequential 
order in which competency in each must be developed; rather, it is the transitions 
and interactions between them that require attention and that are important for stu-
dents’ concept formation and understanding. Hitt (2002) found that translating 
between and within representational systems is not an easy task for learners. It is 
necessary for educators to teach learners how to translate between and within repre-
sentational systems in order to help learners establish the relationships between 

J. Zhang and N. Li



151

representational forms in their minds and to make use of the functions of representa-
tions. In recent years, with the in-depth study of the mathematical representations in 
mathematical teaching and problem solving, the concept of “representation and 
transformation” has gradually developed. Its definition is derived from a variety of 
sources: mathematics, mathematics teaching psychology, problem solving psychol-
ogy, classroom teaching, and research on teaching integrated with technology.

The importance of mathematical representation in overall mathematical pro-
cesses has led a number of scholars to focus on the nature of representational com-
petence as one of the key indicators of students’ ability in mathematics, and to 
explore ways of improving students’ competence.

National Council of Teachers of Mathematics’ NCTM Standards for the 
Mathematics Curriculum (2000) identify representational skills as an important 
stage in the problem solving process and elaborate on what is expected of students 
in grades 9–12: (1) the ability to create and use representations to organize, record, 
and communicate mathematical concepts in problem solving and (2) the ability to 
select, apply, and transform mathematical representations to solve problems and use 
representations to construct models and explain natural, social, and mathematical 
phenomena. In the Atlas of Science Literacy (American Association for the 
Advancement of Science, 2001), after summarizing the characteristics of disci-
plines like “statistical reasoning,” “computer,” and “design system,” the United 
States’ Project 2061 presents designs and proposals for teaching objectives of learn-
ing and using symbolic systems and image systems in K − 12 curricula. Danish 
mathematician Niss (2003) believes that competence in mathematical representa-
tion includes the following abilities: to understand, interpret, and identify various 
representations of mathematical objects, phenomena, and situations; to understand 
the relationship between different representations of the same mathematical object, 
and grasp the advantages and limitations of different representations; and to select 
and transform representations.

Based on Niss’ framework, the definition of representation has gradually devel-
oped from that presented in Programme for International Student Assessment 
(PISA) 2000 to that in PISA 2012. PISA (OECD, 2013) stated that the development 
of mathematical competency is inseparable from the individual’s representation of 
mathematical objects and situations and various transformation among representa-
tions. Representation involves all aspects of the modeling and problem-solving pro-
cesses. For example, in the face of mathematical situations and objects, an individual 
grasps the mathematical essence of the question by selecting, representing, and 
transforming various representations to solve problems. Mathematical representa-
tion includes images, diagrams, graphs, and the specifics of the problem.

In 2005, the German Council of Ministers of Culture (KMK) has issued new 
educational standards for tenth-grade graduates in German, mathematics, and 
English and requires German states to measure the competencies of their pupils 
against the corresponding educational standards. Core competencies in the stan-
dards for mathematics education include the “Application of mathematical repre-
sentations.” The KMK states that to have the ability to make mathematical 
representations is “to be able not only to formulate one’s own representations of 
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mathematical objects, but also to apply the given mathematical representations 
comprehensively,” and the standards include different forms of mathematical repre-
sentations, such as pictorial, symbolic, and verbal representations. (Xu, 2007).

Cai and Lester (2005) designed open-ended mathematical questions to examine 
students’ representational behavior in problem solving in order to obtain the types 
of representations and levels of competence used in problem solving by sixth grad-
ers in China and the United States. Using this as a reference to determine students’ 
cognitive level, the study noted that “mathematical representational competence 
exists in the use and transformation of mathematical concepts or relationships.”

Although there are different approaches to assessing representational mathemati-
cal skills, the current assessment processes focus on students’ external representa-
tions of mathematics; i.e., they use external representations to assess students’ 
representational mathematical skills. At the same time, the definition of representa-
tional competence varies, but the requirement to be able to identify, interpret, select, 
apply, and transform different forms of representation to solve problems in a given 
situation is always included in assessments of representational competence. Through 
analysis of related research literature, we found that the consensus of representation 
and transformation abilities is concentrated on three aspects: external representa-
tion, internal representation, and representation transformation.

9.2.1  External and Internal Representation

The development of cognitive science has contributed to the study of the internal 
cognitive rules of individuals. Researchers (Arcavi, 2003) started with visual repre-
sentation and found that diversity in and concreteness of representations were con-
ducive to promoting students’ understanding of mathematical concepts and 
improving students’ problem solving and reasoning abilities (Pape & Tchoshanov, 
2001). As computers enter people’s lives and study, computer-assisted instruction 
has also become a popular research area (Ainsworth, 1992). From the perspective of 
cognitive sciences, computers can present abstract mathematical concepts and prin-
ciples in intuitive and dynamic ways, injecting new elements into the diversity of 
representation (Ainsworth, Bibby, & Wood, 1997).

However, the diversification and concreteness of representation does not always 
promote individuals’ understanding of mathematical concepts. Some may not be 
able to recognize the same mathematical structure across different backgrounds and 
representations, and exhibit “non-conservation of operations” behavior (Greer, 
1998). Research shows that the diversification and concreteness of external repre-
sentations have different effects on individual learners. Therefore, it is necessary to 
explore the reasons for the formation of individual differences from an internal cog-
nition perspective.

Exploring the differences in individuals’ representation abilities is another topic 
of increasing interest in representation research, with studies focusing on how indi-
viduals manipulate different representations in their minds. Perkins and Unger 

J. Zhang and N. Li



153

(1994) argued that the act of characterization is the process of representing the 
entire symbolic system with representative mathematical notations, mathematical 
definitions, mathematical languages, diagrams, etc. From a cognitive psychology 
perspective, representation can reduce cognitive load, help individuals quickly sort 
out problem spaces, and aid in explaining, forecasting, and correcting steps in the 
problem-solving process.

Goldin (1998b) further classified representation into internal representations and 
external representations. External representations include traditional mathematical 
symbol systems (such as decimal systems, formal algebraic symbols, real-numbered 
axes, Cartesian coordinate systems) and structured learning environments (such as 
mathematical learning situations with specific operational materials, computer- 
based micro learning environments). Internal representations include individuals’ 
constructions of symbolic meanings, the meaning-giving of mathematical symbols, 
and students’ natural language, visual imagination and spatial representation, 
problem- solving strategies, heuristic method, and emotions about mathematics.

At the same time, related research has discussed the role of analogy, imagery, 
and metaphor in the construction of individuals’ external representations, conclud-
ing that because the various representations of mathematical concepts are not as 
accurate as mathematical definitions, they are highly likely to hinder individuals’ 
accurate understanding of mathematical concepts (Bagni, 2006). An in-depth dis-
cussion of the construction of internal representations would bridge the gap between 
behaviorism and cognitivism (Augusto, 2014).

9.2.2  Representation Transformation

Lesh and Landau (1983) discussed five types of knowledge representation: written 
symbol representation, graphical representation, situation representation, opera-
tional representation, and linguistic representation. Together, these representations 
constitute the representation system. Different representations are transformed into 
and from each other, and they promote students’ understanding of mathematical 
concepts (Mcintosh, 1984).

Representation transformations occur mostly in the problem-solving process. In 
other words, it is easier to observe individuals’ representation transformation behav-
iors in problem-solving activities. The mathematics curriculum standards from 
NCTM (2000) emphasize the importance of mathematical representation ability in 
the mathematical problem solving process, stating that in the problem solving pro-
cess, students can organize, record, and communicate mathematical concepts by 
creating and using representation, can solve problems by choosing, applying, and 
transforming mathematical representations, and can construct models and explain 
phenomena of nature, society, and mathematics by using representation. Research 
on representation based on problem solving has developed rapidly in recent years. 
In the process of problem solving, the characteristic behavior is not static, but a 
dynamic process in which the individual’s cognitive level of mathematical concepts 
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influences his or her success in mathematically representing problem backgrounds 
and real situations (Gérard, 1998). In the transformation between different represen-
tations, the individual’s recognition of “correspondence“in different representations 
is very important. Identifying the same structures and relationships in different situ-
ations without being affected by surface information is an important stage in the 
development of mathematical cognition (Greer, 1998).

Based on the above analysis of the understanding of representation in the exist-
ing literature, we developed a definition of mathematical representation and trans-
formation abilities; mathematical representation ability is the ability to express a 
mathematical concept or relationship to be learned or dealt with in some way, such 
as written symbols, figures (tables), situations, operational models, words (includ-
ing spoken words), etc., so as to ultimately solve problems. Mathematical transfor-
mation refers to the process of, in the course of solving mathematical problems, 
maintaining certain invariant properties of mathematical problems while changing 
the forms of information and mathematically transforming the problems to be 
solved, so as to reach the purpose of changing from complicated to simple, from 
unknown to known, from unfamiliar to familiar (Xu, 2013).

9.3  Research Questions and Methodology

9.3.1  Research Questions

Research described in this chapter mainly focuses on the following question: How 
well do eighth grade students in China perform on evaluations of mathematical 
representation ability?

The development of test items was based on a framework for evaluating the 
mathematical representation abilities of Chinese students. This framework is orga-
nized into three dimensions, namely the contextual dimension, the content dimen-
sion, and the competency dimension (Fig. 9.1). The contextual dimension is divided 
into four categories: personal life situation, educational situation, social situation, 
and natural science situation. The content dimension includes specific mathematical 
topics that are consistent with the content requirements of Mathematics Curriculum 
Standards for Compulsory Mathematics in China, including (1) Numbers and 
Algebra, (2) Graphs and Geometry, (3) Statistics and Probability, and (4) Synthesis 
and Practice. The competency dimension divides the test questions into task types 
and representations to determine which of the three levels of competency best 
describes students’ representational abilities.

Task types are divided into standard solution questions and open-ended ques-
tions (open conclusion or open strategy). The forms in which representation ability 
manifests are divided into inter-system representation and intra-system representa-
tion. (See Sect. 9.3.2.2 for explanations and examples of these two types of 
presentation.)
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9.3.2  Research Design

9.3.2.1  Research Subjects

Considering that imbalances in the economic development across various regions of 
China may influence the results of the evaluation, the study adopted the method of 
staged cluster sampling for sampling. First, eight representative cities were identi-
fied based on the geographic location of the city (including East China, Central 
China, North China, South China, Northwest China, Southwest China, and Northeast 
China) and corresponding levels of economic development (including developed, 
medium, underdeveloped, etc.); second, three schools were selected in each city; 
third, 2 to 3 classes of students at each participating school were randomly selected 
for inclusion in the test. We recruited 1197 eighth grade students in China as partici-
pants of this study.

The relevant information of the participants is shown in Table 9.1.

9.3.2.2  Evaluation Research Method

The intent of this study was to use literature analysis as the basis to construct an 
evaluation framework for the mathematical representation abilities of students at 
compulsory education stage. This framework is shown in Fig. 9.1.

The study was designed to use test tasks to evaluate students’ mathematical rep-
resentation abilities. Mathematical representation ability and its level dimension 
also determine different types of tasks required. The test tasks evaluated students’ 
mathematical representation and transformation ability against five indicators: 

Fig. 9.1 Evaluation framework for students’ mathematical representation ability. Note. Inter- 
system representation refers to mapping processes across different representation systems. Intra- 
system representation refers to transformation processes within the same representation system
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dominant content, problem situation, task type, manifestation of ability, and abil-
ity level.

In terms of the dominant content dimension, as the study was aimed at abilities 
of students in various stages of compulsory education. The four major strands 
(Numbers and Algebra, Graphs and Geometry, Statistics and Probability, and 
Synthesis and Practice) specified in the mathematics curriculum standards for com-
pulsory education were used as the main content components to guide the design of 
evaluation tasks. The processes of gaining knowledge and ability are intertwined. 
Knowledge acquisition and ability development are especially important for teach-
ing mathematics with abstract symbols as the carriers and the training of high-level 
thinking ability as the objective.

The study divides problem into four categories based on the situation involved: 
(1) personal life situations–the immediate, personal living environment and behav-
iors related to, such as behaviors related to specific personal operations like origami; 
(2) educational situations–the individual’s school education environment, such as 
subject-related knowledge; (3) societal situations–issues related to the markets or 
certain elements of society, such as issues involving stock market fluctuations or 
supermarket promotions; (4) natural science situations–scientific issues related to 
nature, such as the use of sound to measure distance (OECD, 2013). The problem 
situations involved in the evaluation tasks included in this chapter are mainly per-
sonal life situations and educational situations.

In the problem-solving process, behavioral patterns and ability levels of mathe-
matical representation vary with the situation and content of the problem. Therefore, 
the study design uses standard tasks and open tasks to comprehensively assess stu-
dents’ representation and transformation abilities. The two types of tasks require 
different levels of ability for representation and transformation. Open tasks are 
based on realistic problems, so individuals must analyze the essence of the situation, 
and map the mathematical content within the situation, taking problem situations in 
a mathematical way and applying mathematical knowledge and methods to problem 
solving. Open tasks are aimed at ability level 2 and level 3 (Fig. 9.1). Standard tasks 
require general answers, covering four major strands of mathematical content, and 
include two types corresponding to the different forms of individual representa-
tions. One type of test tasks is aimed at intra-system representation; that is, students 
need to solve problems through mapping activities between different mathematical 
symbol systems, geometric representation systems, linguistic systems, and opera-
tional representation systems. The other type of test tasks is focused on evaluating 
transforming problems by applying constant deformation and elementary geometric 
transformation to mathematical problems in the same representation system so as to 
solve the problem. Standard tasks point to inter-system and intra-system 

Table 9.1 Information of the participants in mathematical problem-solving ability test

Region A B C D E F G H Total

Number of schools 4 3 3 3 3 3 3 6 28
Number of students 167 146 119 92 158 109 153 253 1197
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transformations (Fig. 9.1), with a focus on evaluating representation and transfor-
mation abilities levels 1 and level 2.

Inter-system representation Inter-system representation is a mapping process, 
that is, the mathematical transformations of actual life situations and the multi- 
transformations among the four mathematical representation systems with the same 
mathematical structure, including the written mathematical representation system, 
the geometrical (table) representation system, the linguistic (verbal) representation 
system, and the operational representation system. Inter-system representations 
reflect the individual’s ability and level of competency in representations involving 
complex problems and real-life situations. Take the following task as an example:

[Example] A circle with a radius of 1 unit is in the center of a square with sides 
3 units long. Xiao Ming throws a bean into the square. If the bean will definitely fall 
into the square, is the center of the bean (area not considered) more likely to fall 
inside the circle or outside the circle? Explain why this is true and the thought pro-
cess that brought you to this conclusion.

This task is an open-ended task with a real-life experiences as the problem situ-
ation and probability, statistics, and geometry as the main testing content. As tasks 
are presented in text form, individuals must transform the problem through models, 
images, etc., treating the bean as a single point, reflecting positional relationships of 
the square and circle, and assess their relative size relationship in order to solve the 
problem. Students must then calculate the probability that the beans fall inside the 
circle by applying their knowledge of area. The specific behaviors required of stu-
dents are described in Table 9.2. In the process of solving the problem, the individ-
ual must perform transformations across the four aforementioned representation 
systems.

Intra-system representation Intra-system representation is a mathematical trans-
formation process. Within the same representation system, through mathematic 
transformation, understanding of situations can be changed from complex to sim-

Table 9.2 Description of specific behaviors of inter-system representation abilities

Inter-system 
representation

Description of specific behaviors
Solve problems that arise in other systems by directly or indirectly 
transforming them into written mathematical representations such as 
numbers, algebraic symbols, operators, etc.
Solve problems that arise in other systems by directly or indirectly 
transforming them into geometric representations such as line segment 
distance, graphs, etc.
Describe the structural nature of original problems or solve problems that 
arise in other systems by directly or indirectly transforming them into 
operational representations such as specific gesture expression, physical 
enumeration, etc.
Express, explain, or solve problems that arise in other systems by directly or 
indirectly transforming them into linguistic (verbal) representations such as 
spoken language, words, etc.
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ple, from unknown to known, and from strange to familiar. Intra-system representa-
tions commonly found in mathematics at the basic education level include 
trigonometric transformation, constant deformation, elementary geometric transfor-
mation, segmentation transformation, and parameter transformation. Based on sub-
ject content analysis and teacher interviews, we adopted four areas of intra-system 
representation to serve as the task design indicators for the evaluation framework: 
variable substitution, elementary geometric transformation, identity transformation, 
and mapping transformation. Variable substitution and constant deformation are 
related to the Numbers and Algebra section, elementary geometric transformation is 
related to the Graphs and Geometry sections, and mapping transformation is cov-
ered in all four content sections.

Among the above four mathematical transformation methods, mapping transfor-
mation is especially important for transforming unfamiliar problem situations and 
simplifying corresponding problems. In relation to of sets and correspondence, 
mapping is the establishment of a special correspondence between two sets. The 
following task addresses mapping transformation:

[Example] Given an equation about x: 2x2− (3 m + n)x + mn = 0, where m and n 
are real numbers and m > n > 0, prove that for the two roots of the equation, one 
root must be greater than n, and the other must be less than n.

This task is a standard task, with content related to the Numbers and Algebra 
section. Students need to prove that the two roots of the quadratic equation belong 
to certain ranges of values. If the two roots are directly expressed using the root 
formula and proved by inequalities, the process is complicated. Therefore, by using 
the mapping transformation method, according to the relationship between the root 
and the coefficient, the problem of finding the ranges of two values is transformed 
into finding the ranges of the coefficients, and the original problem is simplified. 
The specific behaviors necessary to the process of solving such problems are 
described in Table 9.3.

In order to assess the different levels of representation and transformation ability 
that individuals exhibit in the problem-solving process, the context and content on 

Table 9.3 Description of specific behaviors in intra-system representation

Intra-system 
representation

Description of specific behaviors
In the numbers and algebra system, replace the original variable with 
another, for instance, using the replacement parameter to solve problems, 
in order to simplify the mathematical problem.
In the Graphs and Geometry system, the original conditions are more 
concentrated or directly used for problem solving by rotating, moving, 
balancing, or adding auxiliary lines on the basis of the original geometry.
In the Numbers and Algebra system, elements of the original algebraic 
equation are converted or flexibly interpreted to equivalent, simplified 
expressions, such as transforming fractions to decimals.
In each of the systems, the original proposition is constancy transposed or 
the original problem is transformed into another one that makes it easier to 
solve the problem.
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which the task design is based are very important. Due to the importance of func-
tional concepts for algebraic learning, many researchers have evaluated the level of 
individuals’ representation abilities based on function. Based on observations of 
how 14 university freshmen solved a series of similar algebraic text representation 
problems, Cifarelli (1998) summarized three levels of conceptual structure develop-
ment in the problem-solving process, including recognition, reinterpretation, and 
structural abstraction.

Based on relevant literature analysis, the framework we developed for this study 
differentiates representation ability into three levels corresponding to students’ cog-
nitive abilities:

Usage of standard mathematical representations (level 1: reproduction). This 
level involves the most basic elements of the mathematical learning: mathematical 
processes, mathematical knowledge, and mathematical skills. The corresponding 
tasks contain basic mathematical representations (formulas, charts, etc.) that are 
commonly used in the daily learning and practice of the individual. The problem 
situation contains hints to help guide students to recall and reproduce commonly 
used representations.

[Example] Given that a, b and c represent the three sides of a triangle where a 
< c and b < c, please devise a mathematical expression containing a, b and c to 
show “this triangle is a right triangle.”

The design of the task focuses primarily on leading students to recall relevant 
knowledge, in this case, the Pythagorean theorem. The content is related to the sec-
tions Graphs and Geometry. The knowledge point examined is the three-sided rela-
tionship of right triangle, and the symbolic representation belongs to representational 
representation.

Application of diversified mathematical representations (level 2: connec-
tion) This level reflects a higher degree of ability in mathematical representation: 
individuals can solve problems in situations that are unconventional but contain 
familiar information. The corresponding test tasks might integrate content knowl-
edge that students are familiar with into an unconventional problem situation, and 
the individual student needs to identify and transform unfamiliar elements of the 
problem into familiar representations.

[Example] A piece of paper has the shape of a regular triangle. How can it be cut 
and assembled into a parallelogram? Please describe at least two different paral-
lelograms and the processes used to create them.

The content of the task is related to the Graphs and Geometry section. Knowledge 
points examined include regular triangles, parallelograms, etc. The problem is based 
on personal life situations, and students need to transform operational representa-
tion into graphic representation, produce solutions with existing mathematical 
knowledge, and then verify them.

Transfer and construction of mathematical representation (level 3: reflec-
tion) This level of cognition represents a high level of mathematical ability, at 
which the student can extract and transform representations that are conducive to 
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problem solving in relatively complex problem situations. The corresponding evalu-
ation tasks are highly abstract, and individuals need to construct and creatively 
transfer different representation methods to solve problems through analysis, cod-
ing, decoding, and other processes.

[Example] A number plus 168 produces the square of a positive integer, and the 
original number plus 100 produces the square of another positive integer. what is 
the original number?

The basis of the task is relatively abstract. There is no clear information to guide 
students to identify and apply familiar representation methods, so it is necessary to 
construct appropriate representation methods to transform the problems based on 
analysis. The problem is gradually simplified by means of intra-system mathemati-
cal representation, and the unknown is transformed into the known as the problem 
is solved.

Specific behaviors associated with the three problem-solving competency levels 
are described in Table 9.4:

This study compiled and optimized the test tasks based on the mathematical 
representation ability levels and used the tasks to evaluate the mathematical repre-
sentation ability of eighth grade students in China.

The students’ collected answers were coded based on four elements designated 
in the framework: the task number; the form of ability expression, with inter-system 
representation recorded as R and intra-system representation recorded as T; pro-
posed ability level, coded from 1 to 3; and the score of students’ answer, with a 
correct answer recorded as 1 and an incorrect or missing answer recorded as 0. For 
example: 4_R_2_1 indicates that the data was derived from the fourth task, which 
evaluated inter-system representation abilities, was designed as level-2 task, and 
was answered correctly.

The third element in the coding system, level coding, was assigned through the 
researchers’ subjective evaluations. In order to judge the rationality of the proposed 

Table 9.4 Descriptions of specific behaviors associated with levels of mathematical representation 
and transformation ability

Level 3
(reflection)

Can understand and apply non-standard forms of representation (i.e., 
extensive decoding and transformation needed to create a familiar 
representation); can produce specific representations for critical steps in 
relatively complex problem situations; can compare and evaluate different 
forms of representation.

Level 2
(connection)

Can clearly interpret and transform two or more different representations in 
an unconventional problem setting given some familiar information, such as 
adjusting a certain representation, or autonomously choosing to use a more 
familiar representation.

Level 1
(reproduction)

Can directly process and use relatively familiar representations in relatively 
familiar and standard situations; can transform mathematical representations 
when given hints, such as changing familiar expressions into numbers, 
algebraic equations, graphs, and charts, or completing familiar mathematical 
transformation processes specified by the question design.
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test level, test results were analyzed using IRT (item response theory). When used 
to analyze achievement tests, traditional CTT (Classical Test Theory) can only clas-
sify the corresponding level of the test item at the proposed level of the test task. 
However, the IRT method can objectively determine the corresponding level of the 
test task based on the performance of the test subjects on the test task.

After summarizing the test results with SPSS (Statistical Product and Service 
Solutions) and analyzing the difference between the objective level and the pro-
posed level of each task using the IRT measurement method, the research team 
came up with the results shown in Table 9.5:

The objective levels of most tasks were shown to be consistent with the proposed 
levels, and the degree of discrimination was mostly moderate and high. However, 
there were three tasks for which the objective levels differed slightly from the pro-
posed levels: task 3, 4, and 2.1. The differences between their objective difficulty 
coefficients and proposed difficulty coefficients were 0.648, 0.241, and 0.693, 
respectively, all of which are less than one-half of each difficulty interval. Therefore, 
we concluded that the mathematical representation ability evaluation tool is rela-
tively reasonable in the horizontal dimension.

9.4  Empirical Investigations

9.4.1  An Overview of the Representation Levels of Eighth 
Grade Students in China

Figure 9.2 roughly depicts the levels of mathematics representation abilities of 
Chinese eighth grade students. The graph indicates that 13.1% of students have not 
reached level 1 and that 15.4% have, at most, answered all the questions of level 1 

Table 9.5 IRT measurement results

Original task code Objective level of tasks Task difficulty (B) Task discrimination (A)

1_R_1 −1.846_L1 Easy 0.988-Moderate
3_R_2 −1.398_L1 Easy* 0.585-Low
4_R_2 −0.991_L1 Easy* 0.844-Moderate
5_R_3 1.476_L3 Hard 0.726-Moderate
6.1_R_2 0.185_L2 Medium 0.776-Moderate
7.2_R_2 0.278_L2 Medium 0.772-Moderate
2.1_T_1 −0.057_L2 Medium* 1.145-Moderate
2.2_T_2 0.692_L2 Medium 1.567-High
6.2_T_3 1.515_L3 Hard 1.569-High
7.1_T_2 0.224_L2 Medium 0.806-Moderate

Note: aDifficulty division: B: <−2.25 very easy; −2.25  ~ −0.76 easy; −0.75  ~  0.75 medium; 
0.75 ~ 2.25 hard; >2.25 very hard
bDiscrimination division: A: 0 none; 0.01 ~ 0.34 very low; 0.35 ~ 0.64 low; 0.65 ~ 1.34 moderate; 
1.34 ~ 1.69 high; >1.70 very high; +infinity perfect
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but failed to complete level 2 or level 3 tasks. A majority of students, 51.2%, were 
assessed at level 2, indicating they had failed to correctly answer all the level 3 ques-
tions but had correctly responses to most of the questions at level 1 and level 2; 
20.4% of students had not only answered the level 1 and level 2 tasks correctly, but 
had also successfully completed all level 3 tasks.

Test results show that most students’ mathematical representation abilities were 
at level 2, which is the “connection” level, defined in this study as the ability to 
“clearly interpret and transform two or more different representations in an uncon-
ventional problem setting, given some familiar information.” For example, test task 
4: The lengths of two line segments are 6 cm and 12 cm. How long is the third line 
segment when the three line segments form a right triangle? This is a level 2 task. 
The trilateral relationship of right triangles is familiar information for students, but 
the task does not clearly indicate whether the third line segment is a leg or the hypot-
enuse, as a conventional problem would. Students needed to consider the two pos-
sible situations separately according to geometric representation and associate them 
with algebraic representation to solve the problem. In this study, 78.7% of students 
solved the problem correctly, indicating that most students could successfully iden-
tify the unconventional information and understood the geometric representation in 
the trilateral relationship and the “isomorphic” nature of algebraic representation. 
This suggests most students can link unconventional situations with familiar infor-
mation and easily solve problems by transforming between graphical systems and 
symbolic systems.

The proportion of students who reached level 3, the level of reflection, was 
higher than the proportion of students at levels 0 and 1. This chapter defines the 
“reflection” level as the ability to “understand and apply non-standard forms of 
representation, produce specific representations for critical steps in relatively com-
plex problem situations, and compare and evaluate different forms of representa-
tion.” For example, test task 6: a number plus 168 produces the square of a positive 
integer, and the original number plus 100 produces the square of another positive 
integer. What is the number? There are two elements to this problem. The first is at 
level 2: transform the verbal representation into a symbol representation expressing 
the unknown relationship. The second task is at level 3: determine the value of the 

Level 0
13.1%

Level 1
15.4%

Level 2
51.2%

Level 3
20.4%

Fig. 9.2 Overview of 
representation ability levels 
of eighth grade students 
in China
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unknown integer. There are three unknowns in the problem, a condition students 
have rarely encountered, and the process of using two equations to find three 
unknowns is difficult, as students must be familiar with various intra-system repre-
sentations in order to identity and map the necessary transformations. In total, 
50.5% of students correctly expressed a2 = x + 168, b2 = x + 100, or other equivalent 
forms, while only 15.7% of students correctly solved for x. Overall, the average 
mathematical representation ability of the tested students was in the transition from 
level 2 to level 3, in other words, in the process of upgrading from the “connection” 
to the “reflection” level.

9.4.2  Distribution of Ability Levels for Inter-system 
and Intra- system Representation in Chinese Eighth 
Grade Students

As indicated in Fig. 9.3, the correct response rate for inter-system representation 
test tasks was higher than for intra-system representation test tasks at both level 2 
and level 3; level 1 cannot be compared as no intra-system representation test tasks 
were included. Take task 6 as an example. Its first element involves inter-system 
transformation between the language system and the symbolic system, and the rate 
of correct answers was high. Its second element involves intra-system transforma-
tion, which requires higher level techniques, so the correct response rate was 
reduced.

As seen in Fig. 9.3, as the task ability level increased and the correct response 
rate for inter-system problems decreased, the correct response rate for intra-system 
problems also decreased. Therefore, we suspected that inter-system representation 

Fig. 9.3 Correct responses rates for test questions by level and type of expression
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ability might be related to intra-system representation ability. In order to verify this 
correlation, we set the ability value calculated by IRT as a continuous order numeri-
cal variable, and the value interval was defined as (−1, 1). Greater ability values 
indicate stronger student abilities. The following analysis (Table 9.6) was based on 
a Spearman (rho) level correlation test:

Table 9.6 shows that the correlation coefficient between the students’ inter- 
system representation ability value and the intra-system representation ability value 
is 0.523, P = 0.000 < 0.01, indicating inter-system representation ability is highly 
correlated with intra-system representation ability, which means if a student per-
formed well on the inter-system representation test, they were likely to perform well 
on the intra-system representation test.

9.4.2.1  Gender Differences (Table 9.7)

Students were classified according to gender. Statistical analysis showed that the 
average level of male students’ overall representation abilities (M = −0.038) was 
lower than that of female students’ abilities (M = 0.021), and the average level of 
male students’ inter-system representation abilities (M = −0.058) was also lower 
than that of females students’ abilities (M = 0.037), while the average level of male 
students’ intra-system representation abilities (M = 0.006) was higher than that of 
females students’ abilities (M = −0.020). In addition, for both inter-system repre-
sentation and intra-system representation, variability in performance level was 
higher among female students than among male students.

Table 9.6 Inter-system and intra-system representation ability value correlation

Ability_R Ability_T

Spearman’s rho Ability_R Correlation coefficient 1.000 0.523**
Sig. (2-tailed) 0.000
N 1191 1190

Ability_T Correlation coefficient 0.523** 1.000
Sig. (2-tailed) 0.000
N 1190 1190

Note: **Correlation is significant at the 0.01 level (2-tailed)

Table 9.7 Average ability values of male and female students and their standard deviation

Male (N = 543) Female (N = 560)

Ability _R M −0.058 0.037
Std. 0.818 0.766

Ability _T M 0.006 −0.020
Std. 0.880 0.839

Ability_RT M −0.038 0.021
Std. 0.932 0.838
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9.4.2.2  Regional Differences

As indicated in the Table 9.8, students’ mathematical representation ability varied 
significantly by region for each item (see Table 9.8, p < 0.01). This is in line with 
China’s vast territory and different characteristics of local education environments, 
school settings, teacher resources, and management. Students in Shanghai had 
slightly stronger representational skills and the highest percentages of correct 
answers on almost all levels of the test. They also led in proficiency values among 
the eight regions. Students in Guangzhou had slightly weaker mathematical repre-
sentation skills and had the lowest percentage of correct answers on all levels of the 
test among the eight regions. It also ranked at the bottom of the IRT mathematical 
representation ability value rankings.

9.5  Discussion

Results show that the majority of students were at the second highest level of math-
ematical representation ability and were able to perform on problems with uncon-
ventional elements containing some familiar information and interpret and transform 
two or more different representations in a given context. At the same time, the pro-
portion of students who achieved level 3 was higher than the proportion of students 
who achieved levels 1 and 0, so more students were able to interpret and transform 
two or more different representations in non-standard settings or even more com-
plex problem situations, to understand and translate different forms of representa-
tions, or to design some form of representation for use in solving problems. Thus, 
overall, the students tested were slightly above level 2, in the transition stage from 
level 2 to level 3, i.e. from the “connection” to the “reflection” level.

This chapter characterizes representation and transformation abilities as encom-
passing three main aspects: external representation, internal representation, and 
transformation between representations. On this basis, the different transformations 
were further divided into inter- and intra-system representation transformations 
(Fig. 9.1). Differences and correlations in students’ ability to perform the two forms 

Table 9.8 Statistical table for regional test differences

1_R_1 3_R_1 4_R_1 6.1_R_2 7.2_R_2 5_R_3

Chi square 67.074 55.306 59.824 104.277 31.939 92.868
df 7 7 7 7 7 7
Asymptotic significance 0.000 0.000 0.000 0.000 0.000 0.000

2.1_T_2 2.2_T_2 6.2_T_3 7.1_T_2
Chi square 227.955 192.905 77.877 44.243
df 7 7 7 7
Asymptotic significance 0.000 0.000 0.000 0.000

Note: Kruskal Wallis Test
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of representations were assessed. Students’ answers were better on items that 
appeared in the form of inter-system representations. In contrast, students’ perfor-
mance was more variable on items presented in the form of intra-system representa-
tions, and the two forms of representational ability were highly related. There were 
some differences in inter- and intra-system representation abilities across regions. 
Students in Shanghai, Beijing, and Guangzhou were more consistent in their inter- 
and intra-system representation abilities, while students in Hanzhong and the Dalian 
performed more variably on the inter- and intra-system representations test items. 
Differences in students’ mathematical representational skills by gender were 
assessed. Female students had slightly higher overall mathematical representational 
ability than male students and showed better stability than male students. Male stu-
dents had lower representational ability in inter-system forms than girls, but higher 
representational ability in high level intra-system forms than girls.

At the K-12 educational level, inter-system representation has been the focus of 
the research community in recent years. The whole process of mathematical model-
ing can be distilled (Fig. 9.4) into the following stages: a given real-world situation 
is simplified or structured to produce a real-world model. The real-world model is 
then mathematized to produce a mathematical model. The mathematical model is 
analyzed, mathematical results are obtained, and the results are returned to the real 
situation for examination, i.e. validation. If the results are not satisfactory, the pro-
cess must be repeated (Kaiser, Schwarz, & Tiedemann, 2010, p. 435). From a rep-
resentational point of view, the process can be divided into inter-system representation 
(from the real world to the mathematical world and from the mathematical world to 
the representational world) and intra-system representation (analyzing the mathe-
matical model to get mathematical results). The results show (Fig. 9.3) that as the 
difficulty level of the task increases, inter-system representation ability decreases as 
intra-system representation ability decreases, so we speculate that there may be a 
correlation between competency in inter-system representations and intra-system 
representations. To verify this correlation, we set the IRT-calculated proficiency val-
ues as continuous sequential numerical variables with the interval defined as (−1,1), 
where larger proficiency values indicate stronger student proficiency. The test 

mathematisation

re-interpretation validation

real world
model

real world
situation

mathematical
model

mathematical
results

mathematicsreal world

mathematical
considerations

idealisation

Fig. 9.4 Description of modelling process (from Kaiser, Schwarz, & Tiedermann, 2010, p. 435)
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correlation coefficient table (Table  9.6) shows that the correlation coefficient 
between inter-system and intra-system performance values is 0.523 
(P = 0.000 < 0.01), which means that students who perform better on the intra-sys-
tem performance test are likely to perform better on the inter-system perfor-
mance test.

The above results suggest that stronger mathematical modeling performance is 
dependent on better mathematical knowledge and skills (and vice versa). Traditional 
mathematics problem tends to emphasize the transformation between mathematical 
representations within the system, and the information students receive during the 
learning process is mostly mathematical concepts and definitions. Therefore, math-
ematics teaching should focus on both modeling problem situations and traditional 
mathematical problem situations, and students who do not perform well in model-
ing problems should pay attention to their proficiency in mathematical knowledge 
and skills.

From the results of the study, there were significant differences in the mathemati-
cal representational competence for students from different regions (Table  9.8, 
p < 0.01). Differences in educational environment, teachers, and management levels 
may be responsible for the variability, which needs to be investigated in further 
research.
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Chapter 10
The Development of Reasoning in Chinese 
Mathematics Curriculum

Xin Zheng and Jing Cheng

Abstract Reasoning-and-proving competency is indispensable for not only doing 
mathematics but also for solving real-world problems. In order to gain insights into 
the changing trend of reasoning-and-proving competency in the Chinese mathemat-
ics curriculum, the mathematics curricular programmatic documents for junior sec-
ondary education in mainland China since 1923 were selected and reviewed. From 
the content analysis and the review of historical documents, we found that reasoning 
has always been one of the most important goals of the mathematics curriculum. 
Moreover, we divided the development of mathematical reasoning-and-proving 
competency in the Chinese mathematical curriculum into four stages and revealed 
the pendulum phenomenon between plausible reasoning and deductive reasoning 
over the past 100 years. Reflecting on the development of reasoning in the Chinese 
mathematical curriculum, we may need to seek a balance between plausible reason-
ing and deductive reasoning in mathematical curriculum.

Keywords Mathematical reasoning · Reasoning-and-proving competency · 
Proving · Plausible reasoning · Deductive reasoning · Curriculum reform · 
Mathematics curriculum standards · Content analysis · Word frequency · Pendulum 
phenomenon

10.1  Introduction

Mathematical reasoning helps us develop lines of thinking or argument about and 
with the objects of mathematics (Brodie, 2010). Proving is often considered as the 
final stage of developing new knowledge in mathematics learning (Stylianides, 
2008). Firstly, mathematical reasoning is essential to understanding mathematical 
concepts, the use of mathematical ideas, the flexibility of procedures and the 
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reconstruction of some already understood but forgotten mathematical knowledge 
(Ball & Bass, 2003). Secondly, mathematical proving contributes to verifying and 
explaining why a statement is correct, exchanging mathematical knowledge, dis-
covering or creating new mathematics (Knuth, 2002) and systematising the state-
ment into an axiomatic system (e.g., Bell, 1976; de Villiers, 1999; Hanna, 1983, 
1990; Schoenfeld, 1994).

Therefore, mathematics curricula in different countries all regard reasoning and 
proving as important ability goals (Si & Zhu, 2013). Meanwhile, international 
large-scale research into tests of students’ mathematical abilities, such as TIMSS 
and PISA, also consider reasoning as an important dimension of its evaluation. 
Given that most literature on mathematics education defines this ability as ‘reason-
ing and proof’ (Hanna, 2014, p. 404–408), the terminology ‘mathematical reason-
ing and proving’ is employed to describe the capability discussed in this chapter.

In China, the school mathematics curriculum has long focused on the develop-
ment of students’ reasoning and proving abilities. In recent years, the standards of 
the mathematics curriculum particularly emphasise the advancement of students’ 
abilities of plausible reasoning and deductive reasoning. The purpose of this chapter 
is to examine the development of the mathematical ability of reasoning and proving 
in the programmatic documents of junior high school mathematics in China.

10.2  Literature Review

10.2.1  Definition of Mathematical Reasoning

At present, researchers have different opinions on the definition of mathematical 
reasoning and proving ability. They carry out research from different perspectives. 
Broadly speaking, we can regard reasoning as the ability to make inferences or 
deductions. However, reasoning in a general sense is significantly different from 
mathematical reasoning in terms of process and result (Fischbein, 1999). In math-
ematics, the essence of mathematical reasoning lies in the generation, proving and 
application of mathematical generalization (Russell, 1999). We need clear proof to 
ensure the accuracy of the conclusion, and this series of proof which leads to the 
conclusion can help us construct mathematical proving. Explanatory and convinc-
ing proof provides us with the knowledge of mathematical truth (Weber, 2002). 
Therefore, proving is not separate from mathematics. It is a basic component of 
mathematical operation, communication and recording. Proving can be embedded 
in all levels of our curriculum (Schoenfeld, 1994).

Researchers led by Piaget, from the perspective of students’ cognitive develop-
ment, believe that human reasoning, based on propositions, applies logical rules or 
mental logic according to the form of argument rather than the content of it (Bao & 
Zhou, 2009). Therefore, mathematical proving is a logical derivation of a given 
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proposition, starting from an axiom and deducing through an explicit chain of rea-
soning that follows accepted rules of reasoning (Hanna, 2014).

Lithner derives the definition of mathematical reasoning through empirical 
research on how students participate in various mathematical activities. He believes 
that mathematical reasoning is a thinking process during which the reasoner gener-
ates ideas or conclusions based upon mathematical experience when solving prob-
lems. This thinking process only needs to be reasonable for the reasoner, not 
necessarily to be precisely logical (Lithner, 2000, 2008). Olsson further points out 
that students’ reasoning is the student’s thinking route, that is, the thinking process 
in which the students attempt to handle the task regardless if it ends in success or 
failure. Students’ reasoning is generated in a social and cultural environment and is 
limited and guided by the students’ own abilities (Olsson, 2018). Johansson also 
proposes the definition of mathematical reasoning on the basis of Lithner’s research. 
He holds the idea that mathematical reasoning is an extension of the rigorous math-
ematical proving used to prove a condition. It is regarded as the product of an inde-
pendent sequence of reasoning (Johansson, 2016).

From the perspective of mathematical ability, Ball and Bass (2003) think that 
reasoning is the basic skill of mathematics. Xu (2013) states that mathematical rea-
soning is a comprehensive ability to make inferences by means of logically thinking 
(observation, experiment, induction, analogy and deduction) over mathematical 
objects (mathematical concepts, relations, properties, rules, propositions, etc.), 
which is furthered through seeking evidence, giving proof or a counterexample to 
illustrate the rationality of the given inferences.

In any case, though there is no unified conclusion about the specific definition of 
mathematical reasoning and proving, the researchers’ views are roughly similar. 
Mathematical reasoning must be applied in the field of mathematics, and it is the 
inference or connection between mathematical objects. The process of inferring or 
connecting can be either rigorous proving or reasonable conjecture. Based on that, 
this study draws on the definition of mathematical reasoning and proving ability 
from Xu’s research.

10.2.2  Classification of Mathematical Reasoning

Similar to the definition of mathematical reasoning and proving, different perspec-
tives and different classification criteria bring different types of mathematical 
reasoning.

Based on the differences in students’ cognitive processes and many years of 
teaching experience, Sternberg proposes three forms of mathematical reasoning: 
analytical reasoning, creative reasoning and practical reasoning (Sternberg, 1999). 
Analytical reasoning tends to be deductive logic analysis; creative reasoning is the 
activity of guessing and discovering; and practical reasoning means inferring and 
working out solutions to the problems in specific and real-life question contexts. He 
believes that analytical reasoning is the basic element of mathematical reasoning, 
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for it has obvious promotion and restriction to creative reasoning and practical rea-
soning to a certain extent (Sternberg, 1999). Similarly, the Mathematics Curriculum 
Standards for Compulsory Education divides reasoning into plausible reasoning 
and deductive reasoning (MOE, 2012). When it comes to plausible reasoning, it is 
necessary to mention Polya (1954), who divided reasoning as plausible reasoning 
and deductive reasoning. The achievement of the mathematician’s creative work is 
deductive reasoning, or proving. But the proof is discovered through plausible rea-
soning and guessing. On this basis, Cheng, Sun, and Bao (2016) divided plausible 
reasoning into observation and experiment, intuition and association and induction 
and analogy, while dividing deductive reasoning into syllogism reasoning, rela-
tional reasoning, mathematical induction, etc., according to different operational 
methods of reasoning.

The mathematical basis of reasoning can be either superficial or intrinsic, and 
one object has different recognised mathematical properties under different condi-
tions (Johansson, 2016), which gives rise to the surface property and intrinsic prop-
erty of reasoning. Therefore, based on Schoenfeld’s research on mathematical 
problem-solving, Lithner (2000, 2008) divides mathematical reasoning into imita-
tive reasoning and creative reasoning, while imitative reasoning can be further 
divided into memorised reasoning and algorithmic reasoning.

There are also other classifications from different scholars. For example, accord-
ing to the different inductive reasoning processes, reasoning is divided into three 
categories: similarity, dissimilarity and integration (Christou & Papageorgiou, 
2007). In accordance with the language of mathematical logic, deductive reasoning 
is divided into two categories: immediate inference and proof by contradiction; and 
there are nine basic types of reasoning (Bell, 1990). According to the purpose of 
mathematical proofs, they can be distinguished as proofs that convince, proofs that 
explain, proofs that justify the use of a definition or axiomatic structure and proofs 
that illustrate technique (Weber, 2002).

10.2.3  Reasoning in the Mathematics Curriculum

The mathematics curriculum standards promulgated in various regions have invari-
ably taken reasoning ability as an important aspect of cultivating students’ mathe-
matical abilities. In the United States, Virginia takes mathematical reasoning as one 
of the five criteria for mathematics learning. Singapore’s Ministry of Education 
regards reasoning as an important process in mathematical problem-solving; 
International Baccalaureate Assessment Objectives and Australian F-10 Mathematics 
Curriculum Key Ideas used reasoning as a key word (Hattie et al., 2016).

The United States’ Common Core State Standards Initiative for the mathematics 
curriculum does not directly expound the definition of reasoning and proving but 
puts forward the requirements for reasoning and proving ability at the same time. 
The first requirement is reasoning by abstraction and quantification (Common Core 
State Standards Initiative [CCSSI], 2010). Reasoning by abstraction emphasises 
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students’ ability to de-contextualize and contextualize, while reasoning by quantifi-
cation stresses the cultivation of habitually symbolising questions in a coherent 
manner. The second requirement is to construct viable proving and judge the rea-
soning of others (CCSSI, 2010). It is highlighted that students understand and use 
the given assumptions, definitions and the known conclusions to construct their own 
proving and actively respond to the questions of others when communicating.

The mathematics curriculum standards of California in the United States empha-
sise the significance of logical reasoning skills: mathematics teaching from kinder-
garten to seventh grade should make students recognise the importance of logical 
reasoning in mathematics; from the eighth grade, students should understand that 
logical reasoning is the backbone of all mathematics (California State Board of 
Education, 2005). In other words, any assertion in mathematics can be confirmed by 
logical deduction based on known facts. Students must learn to prove each judg-
ment they make.

The mathematics curriculum standards of China’s compulsory education elabo-
rate on the definition of the ability of reasoning and proving from both the aspects 
of plausible reasoning and deductive reasoning. Plausible reasoning starts from the 
existing facts and, based on experience and intuition, some results are inferred by 
means of induction and analogy. Deductive reasoning, based on existing facts and 
established rules, is to prove and calculate according to the rules of logical reason-
ing (MOE, 2012).

Although the competence of reasoning plays an important role in the mathemat-
ics intended curriculum in almost every country, there is little research focusing on 
the changes of the demands of reasoning in the mathematics curriculum standards 
during different historical periods.

10.3  Research Question

The research question of this chapter is the following:
Since the twentieth century, how has the goal of ‘mathematical ability of reason-

ing and proving’ changed in the programmatic document of the junior high school 
mathematics curriculum in China?

The sub-questions are the following:

 (a) In the objectives of the mathematics curriculum, how has the interpretation of 
the mathematical abilities of reasoning and proving changed?

 (b) In the objectives of the mathematics curriculum, what change has taken place in 
terms of the proportions of mathematical plausible reasoning and of deductive 
reasoning?
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10.4  Methods

10.4.1  Objects of Content Analysis

The research object selected for the research question was 23 programmatic docu-
ments of the junior high school mathematics curriculum in China since the twenti-
eth century, including 2 curriculum guidelines, 12 syllabuses and 9 curriculum 
standards. This is because, during different periods, the names of the programmatic 
documents of the mathematics curriculum are different, but their core function is 
invariably to point out the expectation courses for junior high school mathematics 
in the corresponding period. For the convenience of expression, the following sec-
tion will refer to all of the documents as the programmatic documents of the cur-
riculum. Other labelling will be expressly stated if necessary.

The programmatic documents of the curriculum before 2000 are from Collection 
of Primary and Secondary School Curriculum Standards and Syllabus of the 
Twentieth Century China (Mathematics Volume), compiled by Curriculum and 
Teaching Materials Research Institute of People’s Education Press. The curriculum 
standards after 2000 are separate editions published respectively in 2002 and 2012.

10.4.2  Procedures of Content Analysis

The analysis of all the research objects went through the following process: Firstly, 
based on the literature, the content related to the mathematical abilities of reasoning 
and proving in the programmatic documents was extracted and interpreted; then, the 
text analysis framework of mathematical reasoning and proving ability was con-
structed and the text was encoded; finally, the results of the encoding were analysed.

As far as each of the programmatic documents of the mathematics curriculum 
was concerned, among the overall goals of the curriculum, the descriptions related 
to the abilities of reasoning and proving were mainly extracted, while in the objec-
tives of the curriculum content, attention was paid to the frequency of plausible 
reasoning and deductive reasoning in different domains of content (arithmetic, alge-
bra, geometry, probability and statistics), for such frequency statistics can reflect, to 
a certain extent, the degree of emphasis on the two types of reasoning in the math-
ematics curriculum of junior high schools during a certain period.

Table 10.1 shows the index system of coding and corresponding examples. The 
first-level index includes the mathematical abilities of reasoning and proving, and 
the second-level index includes plausible reasoning and deductive reasoning, on 
which the research focuses. Since these two types of reasoning are decomposed into 
specific behaviours in the content objectives of the mathematics curriculum, the 
three-level indexes were formulated corresponding to the viewpoints of literature 
and the characteristics of the text. Under the three-level indexes, plausible reasoning 
includes observation, experimentation, induction and analogy, while deductive 
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reasoning consists of analysis, deductive reasoning, relational reasoning, counterex-
amples and proof by contradiction. The smallest unit of coding is a specific teaching 
objective.

In order to verify the reliability of the coding, a double consistency test was con-
ducted on the coding framework obtained from the last revision. After the research-
ers explained the analysis framework to them, the two coders separately encoded 
the six curriculum standards which were randomly drawn. Through testing, the con-
sistency between the two was 90.9%. Regarding the divergences, the two coders 
reached an agreement after negotiation.

10.5  Results

10.5.1  Changes in the Statements of Mathematical Reasoning 
and Proving

In November 1922, the Beiyang Government stipulated a new educational system. 
The system did not change until the founding of the People’s Republic of China in 
1949. In 1922, the Outline of New Educational Curriculum Standards was issued, 
which included arithmetic courses in primary and secondary schools. Among them, 
the Outline of Junior High School Arithmetic Curriculum added ‘develop students’ 
reasoning ability by mathematical methods’ (Hu, 1923, p.7) into the course 

Table 10.1 Coding framework for the mathematical ability of reasoning and proving

First-level index
Second-level 
index Third-level index Examples

Mathematical 
reasoning and 
proving

Plausible 
reasoning

Observation ‘Find the functional relation between 
the corresponding values of these 
words’

Experimentation ‘Participate in experiments and 
develop the ability of plausible 
reasoning’

Induction ‘Inform students of discovering 
formulas by induction’

Analogy ‘Able to reason by analogy’
Deductive 
reasoning

Analysis ‘Able to find the proof of geometry 
theorems by analysis methods’

Deductive 
reasoning

‘Able to reason by deduction’

Relational 
reasoning

‘Analyse the relations between 
different quantities’

Counterexamples ‘Know that a proposition can be 
proved false by counterexamples’

Proof by 
contradiction

‘Realize the definition of proof by 
contradiction by means of instances’
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objectives. This is the first time since modern times that the ability of reasoning and 
proving has appeared in the syllabus of China. The Outline of Primary School 
Arithmetic Curriculum drafted by Yu (1922) put forward that the teaching of meth-
ods and principles should be constructed with induction instead of the promotion of 
deduction. Afterwards, the programmatic documents of the primary, junior high and 
senior high school curriculum were revised simultaneously. A total of five versions 
have come into being. The programmatic documents of the first four editions of 
primary school (respectively 1929, 1932, 1936, and 1941) and the first three edi-
tions of junior high school (1929, 1932 and 1936) absorbed the essence of the 1922 
edition. According to those documents, for the students of primary and junior high 
schools, the teaching of new methods and principles should be practised step-by-
step through induction and avoiding deduction. In 1941, the programmatic docu-
ments of the junior high school curriculum were revised, and the cultivation of 
students’ ability of induction (Ministry of Education of the Republic of China, 
1941) was written into the curriculum goals. In 1948, it was modified into ‘cultivate 
students’ ability to infer the unknown based on the known’ (Curriculum and 
Teaching Materials Research Institute [CTMRI], 2001, p. 275).

After the founding of the People’s Republic of China, the Syllabus for Middle 
School Mathematics drafted in 1952 was revised based on the then Soviet outline at 
that time, which considered ‘developing students’ ability of logical thinking and 
judging’ (CTMRI, 2001, p. 356) as an objective of preventing formalistic teaching. 
Meanwhile, the draft also pointed out that ‘developing students’ logical thinking 
and imagination of space’ (CTMRI, 2001, p. 361) is the goal of geometric teaching 
in the guidance instructions for geometry. Since then, the programmatic documents 
of the two versions in 1954 and 1956 have been amended on the basis of the 1952 
draft, using the expression of ‘logical thinking ability’. Although the full-time ten- 
year schooling was adjusted as a transitional period from 1978 to 1986, there was 
no change in the expression of reasoning and proving ability. It still put ‘making 
students foster certain logical thinking ability’ (CTMRI, 2001, p. 453) as one of the 
purposes of mathematics teaching in middle schools and so did the later four edi-
tions for the programmatic documents of secondary school curriculum.

China has implemented compulsory education since 1986, including primary 
and secondary schooling in the scope of compulsory education, and it separately 
laid down mathematics curriculum standards. In 1988, China’s first mathematics 
curriculum standard of compulsory education came into being. On the basis of cul-
tivating students’ preliminary ability of logical thinking in primary school, it inter-
preted ‘further developing students’ logical thinking ability’ (CTMRI, 2001, p. 553) 
as one of the teaching objectives of junior high school mathematics. Afterwards, the 
1992 edition of the junior high school curriculum standard was the same as the 1988 
edition. After the reform of the compulsory education system, the programmatic 
documents of China’s mathematics curriculum stated the requirements for different 
levels of logical thinking ability for students at different stages in contrast with the 
past. However, these documents were interpreted merely by ambiguous vocabulary 
such as ‘preliminary’ and ‘further’, without any clearer explanation.
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In 1996, the Mathematics Syllabus for Full-time General Senior High Schools 
(for trial only) divided the reasoning and proving abilities into two aspects. First, the 
basic skills that students need to develop include simple reasoning (CTMRI, 2001). 
Second, students also need to further develop thinking ability including reasoning 
by induction, deduction and analogy (CTMRI, 2001). The curriculum standard for 
junior high school, revised 4 years later, retained the expression of ‘thinking ability’ 
and defined it more clearly: ‘able to observe, experiment, compare, conjecture, ana-
lyze, synthesize, abstract and generalize; to reason by induction, deduction and 
analogy; to logically and accurately articulate their own thoughts and opinions; to 
distinguish between mathematical relations based on mathematical concepts, prin-
ciples, ideas and methods’ (CTMRI, 2001, p. 648).

At the beginning of the twenty-first century, the programmatic documents of cur-
riculum at the compulsory education stage in China no longer distinguished between 
primary school and junior high school and the two were uniformly revised. The 
Mathematics Curriculum Standard of Compulsory Education in 2011 proposed ten 
mathematical abilities, including reasoning ability. This version of the curriculum 
standards pointed out that reasoning generally includes plausible reasoning and 
deductive reasoning. Plausible reasoning is to infer certain results through induc-
tion, analogy, etc., by means of experience and intuition based on existing facts. 
Deductive reasoning is the calculation and proving of rules based on logical reason-
ing, which starts from existing facts (including definitions, axioms, theorems, etc.) 
and determined principles (including the definition, rules, orders, etc., of opera-
tions) (MOE, 2012).

10.5.2  Change of Word Frequency in Terms of Different 
Index Levels

From the angle of the first-level index of reasoning and proving, there have been 
four major fluctuations in word frequency. As Fig. 10.1 reveals, in the complete 23 
programmatic documents between 1923 and 2011, word frequency of mathematical 
reasoning and proving in junior high school reached periodic peaks in 1941, 1963, 
1988 and 2001, respectively 24, 45, 118 and 194 times. After the peaks, sharp falls 
occurred.

Figure 10.2 further compared the word frequency of plausible reasoning and 
deductive reasoning. It is not difficult to find that the proportions of the two have 
also undergone many changes. In the 1929 tentative standard, the word frequency of 
plausible reasoning was only 25%, compared to deductive reasoning. Since then, in 
the six editions of programmatic documents of curriculum from 1932 to 1950, the 
proportion of plausible reasoning has been larger than that of deductive reasoning 
and has been increasing. In 1950, it reached the historical maximum, accounting for 
80%. After that, it dropped to 47.37% in the 1951 standard draft. Since then, the 
word frequency ratio of plausible reasoning was generally on the decline until 1982. 
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In 1980, it reached the lowest level in history, at only 11.76%. After 1990, the pro-
portion of plausible reasoning shows a steady increase, reaching 45.45% in 2011.

We can find some similar changing trends between plausible reasoning and 
deductive reasoning in mathematics curricula by observing the third-level indexes. 
As Figs. 10.3 and 10.4 show, the frequency of all the third-level indexes in the pro-
grammatic documents did not exceed 5 between 1929 and 1986. Particularly 
between 1963 and 1986, all indexes touched the lowest point. In the 1988 edition, 
attention to observation, induction, analogy and relational reasoning was enhanced. 
In 1990, there existed a fall after a rise. Since then, all the indexes have been con-
tinuously strengthened in the programmatic documents of curriculum, especially 

Fig. 10.1 Word frequency of mathematical reasoning and proving in the programmatic documents 
of junior high school curriculum

Fig. 10.2 Comparison between word frequency of plausible reasoning and deductive reasoning in 
the programmatic documents of curriculum over the years
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observation. It is worth mentioning that the teaching requirements for experiment 
teaching were seen in the programmatic documents of curriculum before the found-
ing of the People’s Republic of China. However, during the 50 years from 1950 to 
2000, the documents mentioned nothing about the requirements of experiment. It 
was reintroduced in the 2000 syllabus.

Fig. 10.3 Word frequency of the second-level index of plausible reasoning in the programmatic 
documents of curriculum over the years

Fig. 10.4 Word frequency of the second-level index of deductive reasoning in the programmatic 
documents of curriculum over the years
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10.6  Discussion

China’s mathematics curriculum has exhibited different characteristics in different 
historical periods. From 1923 to 2012, it has generally gone through four stages. 
The first stage is the period of the Republic of China before the founding of the 
People’s Republic of China; the second stage is from the founding of the People’s 
Republic of China to its early period before the reform and opening up; the third 
stage is from the reform and opening up to the promulgation of China’s Compulsory 
Education Law; the fourth stage is after the implementation of the compulsory edu-
cation system in China. In these four different historical periods, the objectives of 
reasoning and proving ability in the China’s mathematics curriculum also present 
different features. The corresponding historical documents confirm the results of the 
word frequency analysis in this research to a certain extent.

10.6.1  Stage 1: Paying Attention to Induction

Before 1941, mathematics was called the science of calculation. The science of 
calculation, based on the axioms and definitions that do not contradict daily experi-
ence, deduces theorems, formulas and rules with strict reasoning methods, in order 
to study the application and theories of numbers and shapes (Wang, 1932). 
‘Reasoning’ refers to ‘logic’, as we say today. Most of the scholars at that time did 
not use transliteration. They thought that transliteration was appropriate in English, 
but it was not appropriate in German and French (Peng, 1931). Therefore, they 
translated the word ‘logic’ to ‘lunli’, which means ‘reasoning’ in Chinese. At that 
time, logic was set up as a course in general high schools. Logic, to put it simply, is 
the science of thinking. If further explained in detail, it is the science to study the 
patterns and rules of thinking and to decide what norms should be observed (Wang, 
1928). The teaching content of logic included the analysis of human thoughts, the 
gist of scientific methods, induction, deduction and so on. The methods of reasoning 
contained various ways introduced in logic courses such as observation, experimen-
tation, analysis, hypothesis, deduction, etc. The science of calculation gradually 
developed, relying on rigorous reliance reasoning methods; that is to make use of 
the major premise and the minor premise to derive the conclusion or to employ the 
axiom and definition as the premise and derive formulas and theorems. The proved 
formulas and theorems are then used as the basis of reasoning according to the rules. 
Students’ logical ability is the ability to use the methods above, which has a lot in 
common with the ability of mathematical reasoning and proving as this chapter 
defines. So, the ability of logical reasoning can be regarded as the origin of the abil-
ity of mathematical reasoning and proving. Influenced by Dewey’s educational 
thought of pragmatism, at this stage, China’s mathematics curriculum paid more 
attention to induction and experimental operation. In the programmatic documents 
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of curriculum, the proportion of plausible reasoning was greater than that of deduc-
tive reasoning.

10.6.2  Stage 2: Emphasizing Deductive Reasoning

In 1949, the People’s Republic of China was founded. The development of China’s 
mathematics curriculum faced two routes: one was to inherit and develop the origi-
nal system of the mathematics curriculum; the other was to find another way to 
establish a new curriculum system. After the Communist Party of China determined 
the ‘one-sided’ policy, announcing ‘taking Russia as the teacher and relying on the 
help of the Soviet Union to carry out various aspects of construction’ (Fang, Li, Bi, 
et al., 2002, p. 71), the junior high school mathematics curriculum experienced a 
short transitional period. Then, the original mathematics curriculum was abandoned 
and turned to the comprehensive study of the Soviet mode of mathematics curricu-
lum. Therefore, influenced by Soviet mode of mathematics curriculum, mathemat-
ics teaching pursued formalised interpretation for a long time (Ke & Liu, 2017). So, 
in the programmatic documents of this stage, the importance of plausible reasoning 
was in decline.

From 1958 to 1961, China’s mathematics educational world reflected on the con-
sequences of studying the Soviet Union (Lv, 2013) and conducted a short-term 
exploration of the development of the Chinese mathematics curriculum. In March, 
1963, after the Central Committee of the Communist Party of China summarised 
the lessons from the previous period, three major abilities, including logical reason-
ing ability, were clearly put forward in the Full-time Middle School Mathematics 
Syllabus (Draft) promulgated in May. In the promulgated syllabus, the word fre-
quency of reasoning and proving ability reached the maximum at this stage.

It is worth mentioning that the 1963 version of the outline reaches a peak. The 
plane geometry textbooks adapted to this version formed a complete system, clearly 
bringing up the idea of cultivating students’ logical reasoning ability at different 
stages: stage 1: develop judging ability; stage 2: cultivate the ability to simply rea-
son and demonstrate; stage 3: foster the ability to analyse more complex proof ques-
tions, thereby improving the logical reasoning ability; stage 4: continue to enhance 
the logical reasoning ability through the learning of various proof methods (Zhang, 
2014). In this system, deductive reasoning was particularly prominent.

10.6.3  Stage 3: Developing Logical Thinking

After the Cultural Revolution, the Ministry of Education organised a revision of 
mathematics syllabus. As a result, The Mathematics Syllabus of Full-time Ten-year 
Middle Schools (tentative draft), promulgated in 1978 and based on the 1963 out-
line, changed the logical reasoning ability to logical thinking ability. The possible 
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reason for this modification was that logical reasoning ability in Chinese context 
was usually thought as deductive reasoning, while logical thinking ability including 
not only deductive reasoning, but also plausible reasoning (Lv & Ye, 2012). In other 
words, the focus on plausible reasoning began to increase gradually at this stage.

Influenced by the mathematics education of the Soviet Union, China’s mathe-
matics education respected the scientificity of mathematics and pursued the for-
malised definition of mathematics. The formalised logic of mathematics, emphasised 
since the 1980s, required students to recite the formalised definitions and rules of 
mathematics. The background of exam-oriented education led students to learn 
knowledge points mechanically and ignore the cultivation of abilities (Studio of 
New Young Mathematics Teachers, 2015). In this context, the cultivation of reason-
ing and proving ability encountered obstacles at all levels, which laid the ground-
work for China to try to explore the Chinese mathematics curriculum system in 
the 1990s.

In 1986, the National People’s Congress passed the Compulsory Education Law 
of the People’s Republic of China, which stipulated that China implemented a nine- 
year compulsory education and that primary and junior high schooling were com-
pulsory. The Full-time Junior High School Mathematics Syllabus of Nine-year 
Compulsory Education (preliminary draft) issued in 1988 emphasised the cultiva-
tion of students’ proper personalities. In terms of value orientation, its focus shifted 
from social standards to student standards. This explains the culmination of the 
1988 outline that paid attention to the ability to reason and prove.

10.6.4  Stage 4: Attaching Equal Importance to Plausible 
Reasoning and Deductive Reasoning

After the enactment of the compulsory education law, China entered the period of 
trying to establish a Chinese mathematics curriculum system (Lv, 2014). At this 
stage, many advanced ideas of mathematics education in the West had gradually 
been recognised by people. Among them, the concept of ‘non-formalisation of 
mathematics’ emerged, which led to the controversy of ‘formalisation and non- 
formalisation’ in research of mathematics education in the 1990s (Ke & Liu, 2017). 
The Full-time Junior High School Mathematics Syllabus of Nine-Year Compulsory 
Education (tentative edition) promulgated in 1992 embodied the spirit of diluting 
the form and focusing on the essence (Chen & Song, 1993). For the first time, the 
1992 outline specifically explained the requirements of logical thinking ability, 
emphasising plausible reasoning to a certain extent and pointing out that bias should 
be prevented in teaching. It avoided being only satisfied with a certain method 
(including observation, experimentation and conjecture) in the process of teaching 
and learning and failed to further investigate the corresponding explanation, let 
alone contemplating other solutions and whether further deduction could be carried 
out (Zheng, 1994).
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The Mathematics Curriculum Standard of Full-time Compulsory Education 
(experimental draft), promulgated in 2001, changed the logical thinking ability into 
reasoning ability and proposed it as a mathematical idea. At the same time, it trig-
gered a debate in China’s mathematics educational community on real-life applica-
tion and reasoning and proving (Ke & Liu, 2017). The debate led to two sharply 
opposite views: one party believed that the 2001 version of the curriculum standard 
was lower in level than the previous programmatic documents, which was mani-
fested by replacing reasoning and proving with life experience, making mathemat-
ics lose its soul (Cai, Zhou, & Jiang, 2005); the other side believed that formalised 
deductive proof was diluted compared to the old curriculum, but plausible reasoning 
used for scientific discovery was emphasised, which resulted in the enhancement of 
the level (He, 2006). Figure 10.1 shows that the word frequency of the content con-
cerning plausible reasoning and deductive reasoning both reached a peak in the 
2001 curriculum standard. As can be seen from Fig. 10.2, since 1992, the proportion 
of plausible reasoning has steadily increased, and both plausible reasoning and 
deductive reasoning have tended to balance.

10.6.5  Enlightenment from the Evolution of Objectives

Throughout the programmatic documents of curriculum over 100 years, the goal of 
reasoning and proving has always been one of the most important goals of the math-
ematics curriculum. However, whether it is the overall developmental trend of rea-
soning and proving or the relationship between plausible reasoning and deductive 
reasoning, the phenomenon of a ‘pendulum’ in curriculum development is pre-
sented. Curriculum designers are always seeking a balance between plausible rea-
soning and deductive reasoning. Polya (1954) pointed out that the study of 
mathematics must include both proof and guess at the same time. According to this, 
in terms of cultivating students’ ability of mathematical reasoning and proving, it is 
necessary to pay attention to both plausible reasoning and deductive reasoning, both 
of which cannot be emphasised or neglected.
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Chapter 11
Chinese Eighth Graders’ Competencies 
in Mathematical Reasoning
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Abstract Mathematics curricula around the world have attached great importance 
to the development of mathematical reasoning ability, but many studies have 
reported that students have difficulties in mathematical reasoning. The purpose of 
this chapter is to show Chinese students’ performance of mathematical reasoning in 
junior secondary schools. A total of 1464 eighth graders from five regions in main-
land China were selected as participants in the study. The findings reveal that the 
distribution of students’ plausible reasoning competency is concentrated, while the 
distribution of their deductive reasoning competency is relatively dispersed. The 
two competencies show a significant positive correlation. Moreover, students dem-
onstrated significant regional and gender differences in the two types of reasoning. 
Students’ rigorousness in reasoning related to arithmetic, algebra and geometry is 
also depicted via case analysis.

Keywords Mathematical reasoning · Proving · Mathematical competency · 
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11.1  Introduction

Mathematical reasoning is a comprehensive ability to make inferences by means of 
logical thinking (such as observation, experiment, induction, analogy and deduction) 
over mathematical objects (such as mathematical concepts, relations, properties, 
rules and propositions). Reasoning is furthered through seeking evidence, giving 
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proof or offering a counterexample to illustrate the rationality of the given inferences 
(Cheng, Sun, & Bao, 2016; Xu, 2013).

In the mathematics curriculum standard for compulsory education in mainland 
China, reasoning is classified into plausible reasoning and deductive reasoning. 
Plausible reasoning starts from the existing facts and, based on experience and intu-
ition, some results are inferred by means of induction and analogy. Deductive 
reasoning, based on existing facts and established rules, is used to prove and calcu-
late according to the rules of logical reasoning (MOE, 2012, p. 6). Although math-
ematics curricula around the world attach importance to reasoning and proving, a 
majority of studies reveal that students have great difficulty in logical reasoning.

The purpose of this chapter is to present the status quo of the mathematical 
reasoning competence of Grade 8 students from different regions of mainland 
China based on a paper-and-pencil test, as well as students’ performance of rigour 
during the process of proving.

11.2  Related Literature

Moshman (1997, pp. 947–978) found that children aged 7–8 years can logically 
reason from specific facts; at the age of 11–12, they can make deductions and apply 
rules systematically. However, after conducting in-depth interviews with 17 high 
school students, Chazan (1993) concluded that students think of empirical evidence 
as proof. Healy and Hoyles (2000) reached similar conclusions after investigating 
students who did well in algebraic proving around the age of 15. Although most 
students were aware of the limitations of the empirical argument, it dominated the 
students’ structure of proof. Moreover, in the evaluation of students’ proof struc-
tures and given arguments, research has found that it is difficult for students to judge 
the certainty and necessity of a conclusion (Morris, 2002).

In addition, other researchers have examined mathematical reasoning. Senk’s 
study (1989) is known for its large sample, and it required 1520 middle school stu-
dents to prove four geometric theorems, two of which only needed to go beyond one 
deduction of the hypothesis. It turned out that only 30% of the students were able to 
prove at least three theorems, and 29% could not even construct one proof.

International comparative research has also examined students’ mathematical 
reasoning abilities, including Trends in International Mathematics and Science 
Study (TIMSS) and the Programme for International Student Assessment (PISA).

TIMSS, initiated by the International Education Association (IEA), proposes the 
concept of TIMSS Numeracy, which is divided into numeracy content domains and 
numeracy cognitive domains. The former contain three cognitive skills: recognition, 
application and reasoning. These are progressive, in which the field of reasoning 
goes beyond conventional problem solving and incorporates unfamiliar situations, 
complex backgrounds and multi-step problems. Specifically, reasoning includes 
analysis, synthesis, evaluation, conclusion, induction, proof, etc. (Mullis & Martin, 
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2013), as shown in Fig.  11.1. According to the 2015 TIMSS assessment report, 
students at the eighth grade in 13 of the 39 countries involved in the survey were 
relatively strong in mathematical reasoning, while those from 16 countries were 
relatively weak; compared with 2011, 18 countries showed an upward trend, while 
4 countries moved downwards (Mullis, Martin, Foy, & Hooper, 2016).

Meanwhile, PISA was developed and launched by the OECD in 2000. It pro-
poses the concept of mathematical literacy, which refers to an individual’s capacity 
for making mathematical deductions and applying mathematical concepts, proce-
dures, facts and tools to describe, explain and predict phenomena (OECD, 2017). 
PISA divides mathematical literacy into basic mathematical abilities and processes, 
including mathematical reasoning and proving. Reasoning and proving refer to the 
process of logical thinking in which question elements are explored and connec-
tions are established between them to make inferences, examine a given argument, 
and provide arguments for propositions or offer solutions to the problems 
(OECD, 2017).

The results of research on international mathematical achievement reflect a phe-
nomenon labelled the “Chinese learner paradox” (Huang, 2008). Mathematical 
teaching in most East Asian countries is described as exam-driven teaching based 
on rules and factual memories. In contrast, math classes in Western countries aim to 
achieve meaningful and personalized learning. However, different studies on inter-
national mathematical achievement show that East Asian students are often better 
than Western students at dealing with routine questions, complicated mathematical 

Fig. 11.1 TIMSS 2015 Cognitive Domains framework
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problems and proving tasks. Therefore, researchers conducted a series of surveys of 
students in Taiwan and Germany, as typical representatives of East and West Europe, 
and supported the research results of TIMSS and PISA in terms of their reasoning 
and proving projects (Heinze, Cheng, & Yang, 2004).

Although in China there is also some research on students’ competence in math-
ematical reasoning (Cheng et al., 2016), what has not been systematically analysed 
is the contrast between the students’ attained mathematical reasoning and proving 
ability and the ability requirements of intended curricula.

11.3  Research Question

The research question of this chapter is: What is the present performance of China’s 
Grade 8 students in the test of mathematical reasoning and proving?

The mathematical ability of reasoning and proving refers to the comprehensive 
capacity to think logically (observation, experiment, induction, analogy and 
deduction) over mathematical objects (mathematical concepts, relations, proper-
ties, rules, propositions, etc.), thereby making inferences, followed by seeking 
evidence, giving proof or giving counterexamples to justify the given inferences 
(Xu, 2013).

This ability can be divided into plausible reasoning and deductive reasoning. 
Plausible reasoning is used for guessing and discovering, which means the reason-
ing process involves speculating about certain results based on existing facts and 
correct conclusions (definitions, axioms, theorems, etc.), experimental and practical 
results, and personal experience and intuition. Deductive reasoning is applied to 
rigorous proving. It is based on existing facts and correct conclusions (definitions, 
axioms, theorems, etc.) to arrive at new conclusions in accordance with strict rules 
of logic (MOE, 2012, p. 6).

11.4  Methods

11.4.1  Participants

Grade 8 students from different regions of China were chosen as research partici-
pants. Details about the participants are shown in Table 11.1. First, according to the 
economic and educational development levels of different geographical locations, 
five regions were selected nationwide: East China, Central China, South China, 
Southwest China and Northwest China. One core city was selected from each 
region. Then, in each city, three or more schools were randomly chosen. Finally, 
two or more classes were selected at random for the purpose of conducting the tests 
of mathematical reasoning and proving ability.
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The formal test time was at the beginning of the student’s entry into the eighth 
grade. At that time, the students had a foundation in algebra and were studying 
proofs of plane geometry. The final number of effective test papers collected 
was 1464.

To eliminate the interference of any external unrelated factors, the test was car-
ried out in class. The time available was 45 minutes. Teachers and researchers moni-
tored the testing, but they did not explain the content of the exam.

11.4.2  Instrument

In a large-scale proficiency test, single-question exams will reduce the validity of 
the test. Therefore, to ensure the reliability and validity of the test and the statistical 
analysis of large-scale test results, multi-question exams and framework-oriented 
test questions were used to evaluate the students’ mathematical levels of reasoning 
and proving.

Based on the overall design of the major project, Research on the Core 
Competence Model and Evaluation Framework of Mathematics at the Stage of 
Compulsory Education, launched by the Key Research Institute of Humanities and 
Social Sciences of the Ministry of Education of the PRC, this study built a frame-
work for assessing the ability of mathematical reasoning and proving along three 
dimensions: mathematical content, mathematical reasoning types and the ability 
level of reasoning and proving.

Given the limitations of the present grade of the tested students, as for the math-
ematical content dimension, this evaluation only took arithmetical, algebraic and 
geometric content into account, regardless of statistical and probabilistic content. 
The dimension of mathematical reasoning types was divided into two categories: 
plausible reasoning and deductive reasoning. Concerning the dimension of the abil-
ity level of reasoning and proving, it was divided into three levels, from low to high: 
reproduction, connection and reflection. Specific descriptions are shown in 
Table 11.2.

The test paper contained six questions altogether, each of which provided stu-
dents with an opportunity to reason plausibly, and asked the students to demonstrate 
while giving the answers. Table 11.3 shows the content areas to which different test 
questions belong, as well as the ability level, pre-set based on experts’ proof and 
pre-tests.

Table 11.1 Regional backgrounds of the tested students

Region
Central 
China

East 
China

South 
China

Southwest 
China

Northwest 
China Total

City A B C D E 5
Number of 
schools

3 4 3 3 3 16

Number of 
students

365 295 216 325 263 1464
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The complete test is as follows:

Question 1:
As shown in the following figure, there are a series of beads arranged in white and 

black. What colour should the 36th bead be if arranged continuously in this way? 
Please write down the reason.

 

Table 11.2 Evaluation indexes of the ability of mathematical reasoning and proving

Plausible reasoning Deductive reasoning

Level 1
(reproduction)

By the methods of observation, 
operation, comparison and contrast, 
induction, analogy, etc., some 
reasonable guesses can be made; the 
reasoning process of guessing can be 
expressed.

Able to demonstrate the correctness of a 
proposition in a simple situation and give 
expressions in a relatively standardized 
symbolic language.

Level 2
(connection)

Able to connect relevant knowledge, 
garner useful information, obtain 
higher-level conjectures and clearly 
articulate the thinking process in 
relatively complex problem 
situations.

Able to connect others’ reasoning and 
existing experience to demonstrate 
complex propositions, with the reasoning 
process being concise and complete.

Level 3
(reflection)

Able to get more conjectures, reflect 
on and examine the conclusions, and 
further systematize mathematical 
knowledge; the reasoning is 
sufficient and logical.

Able to flexibly change the train of 
thought and select appropriate methods 
of reasoning and proving according to 
specific problem situations for strict 
demonstration; the statements are clear 
and rigorous.

Table 11.3 Distribution of test questions

Question 
number

Mathematical 
content

Target ability 
level

Intended ability of reasoning and 
proving

1 Arithmetic Level 1 Plausible reasoning/ deductive 
reasoning

2 Algebra Level 1 Plausible reasoning/ deductive 
reasoning

3 Algebra Level 2 Plausible reasoning/ deductive 
reasoning

4 Geometry Level 2 Plausible reasoning/ deductive 
reasoning

5 Geometry Level 3 Plausible reasoning/ deductive 
reasoning

6 Arithmetic Level 3 Plausible reasoning/ deductive 
reasoning
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Question 2:
True or False: Is the product of two consecutive natural numbers odd or even?
Please give the process of proof.
Question 3:
Observe the following equations:

 ① 2
2

3
2

2

3
=  ② 3

3

8
3

3

8
=  ③ 4

4

15
4

4

15
=

Can you draw any conclusion? Please prove it.

Question 4:
Please write down the inverse proposition of the proposition, ‘The median on the 

hypotenuse of the right triangle is equal to half of the hypotenuse’, and judge 
whether it is true or false. Please give the proving process.

Question 5:
As shown in the following figure, please choose two appropriate relations as condi-

tions in the following four relations to deduce that the quadrilateral, ABCD, is a 
parallelogram and prove it (list all the possible conditions).

Relations: ① AD ∥ BC, ② AB = CD, ③ ∠A =  ∠ C, ④ ∠B +  ∠ C = 180∘.
Given: In the quadrilateral ABCD, ___, ___ ;
Prove: The quadrilateral ABCD is a parallelogram.

Question 6:
There are five scoring areas on the dart target, which are 2, 3, 5, 11 and 13. Xiaoming 

just got 150 points. How many darts did he cast, at minimum?

11.4.3  Data Analysis

The study used a multiple coding system to encode the students’ answers. The stu-
dents’ performance code for each question consists of two parts. The first part of the 
code contains two digits, where the first digit represents whether the answer is cor-
rect, and the second digit represents whether the proof is right. The second part is a 
multi-digit diagnostic code, which is used to distinguish between different perfor-
mances of reasoning and proving. The results of a code consistency test for each 
question all exceed 85%. As regards inconsistent coding, a consensus was reached 
after discussion.

For the 0–1 scoring of the first part of the coding, this research exploited the 
Item Response Theory model, the BILOGMG3.0 software and the two-parameter 
logistic model to calculate separately each question’s difficulty coefficient and 
discrimination coefficient, and the estimated value for the ability of the subjects. 
Then the study analysed the distribution of the subjects’ ability and used MANOVA 
to analyse regional and gender differences.
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With respect to the diagnostic codes that reflect the answer types of the tested 
students, primarily qualitative analysis was conducted.

11.5  Results

11.5.1  Distribution of Students’ Abilities of Plausible 
Reasoning and Deductive Reasoning

Figures 11.2 and 11.3 show the overall distribution of students’ reasoning ability, with 
0 in the horizontal axis representing the average level. In Fig. 11.2, the ability values 
were calculated based on the correctness of students’ reasoning results, which to some 
extent represent their ability of plausible reasoning. In Fig. 11.3, the ability values 
were calculated based on the correctness of the student’s reasoning processes to reflect 
their ability of deductive reasoning. It is worth noting that the majority of students 
whose performance of plausible reasoning is below average have ability values at 
−0.25 (similar to the average), and the students whose ability values are much lower 
than the average are few. In contrast, the distribution of students’ deductive reasoning 
ability is more discrete, with the ability estimates not lower than +1. The number of 
students whose ability estimates are not higher than −1 exceeds 15% of the total sam-
ple. The results of further correlation analysis reveal that there is a significant positive 
correlation between students’ plausible and deductive reasoning abilities (Pearson 
correlation = 0.67, p < 0.01), with no significant difference between the mean values.

Fig. 11.2 Distribution of estimates of plausible reasoning ability
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Fig. 11.3 Distribution of estimates of deductive reasoning ability

Fig. 11.4 Regional and gender differences in plausible reasoning ability
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11.5.2  Regional and Gender Differences in Students’ Abilities 
of Plausible and Deductive Reasoning

It can be observed from Figs. 11.4 and 11.5 that students in city A and city B have 
better reasoning and proving abilities while students in city E perform worse. 
Further statistical analysis displays that there are significant regional differences in 
students’ plausible and deductive reasoning abilities (see Tables 11.4 and 11.5). In 
the meantime, Figs. 11.4 and 11.5 show the differences between male and female 
students in the abilities of mathematical reasoning and proving. Whether it relates 
to plausible reasoning or deductive reasoning, the average ability value of boys is 
higher than that of girls, and the difference is statistically significant (see Tables 
11.4 and 11.5).

Fig. 11.5 Regional and gender differences in deductive reasoning ability

Table 11.4 Multivariate tests with regional and gender effects in plausible and deductive reasoning

Effect Value F Hypothesis df Error df p

City Wilks’ lambda 0.845 31.738 8 2894 0.000
Gender Wilks’ lambda 0.990 7.054 2 1446 0.001
City*gender Wilks’ lambda 0.992 1.477 8 2892 0.160
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Table 11.5 Regional and gender differences in plausible and deductive reasoning

Source Dependent variable df1 df2 F p

City Plausible reasoning 4 1456 22.489 0.000
Deductive reasoning 4 1456 65.007 0.000

Gender Plausible reasoning 1 1456 11.628 0.001
Deductive reasoning 1 1456 11.566 0.001

Fig. 11.6 Distribution of arithmetic reasoning ability

Fig. 11.7 Distribution of algebraic reasoning ability
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11.5.3  Distribution of Students’ Abilities of Arithmetic, 
Algebraic and Geometric Reasoning

After investigating the reasoning performance of students based on different subject 
content, ability distribution diagrams can be drawn as Figs. 11.6, 11.7 and 11.8. 
According to these figures, more students performed slightly above average in arith-
metic reasoning, and most students are at the average level for algebraic reasoning. 
The performance of geometric reasoning is the most dispersed. More than one-fifth 
of the students’ ability estimates are not less than 0.75, some of which can reach 1.5. 
The specific performance of these students can be seen in the analysis of the rigour 
of students’ reasoning later in this chapter.

Fig. 11.8 Distribution of geometric reasoning ability

Table 11.6 Correlation analysis of different reasoning abilities (N = 1464)

Plausible 
reasoning

Deductive 
reasoning

Arithmetic 
reasoning

Algebraic 
reasoning

Geometric 
reasoning

Plausible 
reasoning

1 0.673*** 0.412*** 0.732*** 0.546***

Deductive 
reasoning

1 0.445*** 0.503*** 0.928***

Arithmetic 
reasoning

1 0.313*** 0.234***

Algebraic 
reasoning

1 0.351***

Geometric 
reasoning

1

Note. ***p < 0.001
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The results of the correlation analysis indicate that students’ abilities of arithme-
tic, algebraic and geometric reasoning are significantly and positively correlated 
(see Table 11.6), and there are no significant differences among the means of the 
three. It is noted that students’ geometric and deductive reasoning abilities are not 
only significantly and positively correlated, but the correlation coefficient is as high 
as 0.93, which may reflect the important role played by plane geometry courses in 
junior high school in the cultivation of deductive reasoning ability.

11.5.4  Regional and Gender Differences in Students’ Abilities 
of Arithmetic, Algebraic and Geometric Reasoning

Further concentration on students’ regional and gender differences in reasoning 
abilities in different learning contents leads to the following findings (see Figs. 11.9, 
11.10 and 11.11).

First, there was a statistically significant regional difference in students’ arithme-
tic, algebraic and geometric reasoning abilities (see Tables 11.7 and 11.8). In city A 

Fig. 11.9 Regional and gender differences in arithmetic reasoning ability
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Fig. 11.10 Regional and gender differences in algebraic reasoning ability

Fig. 11.11 Regional and gender differences in geometric reasoning ability

J. Cheng et al.



201

and city B, as cities with students of relatively strong reasoning ability, students’ 
performances in different content areas differ: students in city A perform better than 
those in city B in numbers and algebra, while students’ performances in geometric 
reasoning in the two regions are exactly the opposite. This may be occurring because 
the mathematics curriculum in city B somehow differs from that in other regions of 
mainland China.

Besides, comparing Figs. 11.9, 11.10 and 11.11, it can be seen that the gender 
difference between males and females in reasoning ability lies primarily in geomet-
ric reasoning, while gender differences in arithmetic reasoning and algebraic rea-
soning are not significantly different (see Tables 11.7 and 11.8).

11.5.5  Students’ Performance in the Rigour of Reasoning 
and Proving

11.5.5.1  Students’ Performance in the Rigour of Algebraic Reasoning 
and Proving

The test results for Questions 2 and 3 reflect to some extent the rigorous perfor-
mance of students when solving algebraic problems. Most students (over 70%) 
were aware of the need to demonstrate mathematical propositions in a general sense. 
However, there are still some students who employed the special cases as proof.

Take Question 2 as an example. Here, 28.1% of the students justified their results 
solely by giving examples rather than by providing general proof. For instance:

Table 11.7 Multivariate tests with regional and gender effect in arithmetic, algebraic and 
geometric reasoning abilities

Effect Value F Hypothesis df Error df p

City Wilks’ lambda 0.821 24.656 12 3823 0.000
Gender Wilks’ lambda 0.997 1.248 3 1445 0.291
City*gender Wilks’ lambda 0.987 1.569 12 3823 0.093

Table 11.8 Regional and gender difference in arithmetic, algebraic and geometric reasoning 
abilities

Source Dependent variable df1 df2 F p

City Arithmetic reasoning 4 1456 5.916 0.000
Algebraic reasoning 4 1456 12.945 0.000
Geometric reasoning 4 1456 65.023 0.000

Gender Arithmetic reasoning 1 1456 0.474 0.491
Algebraic reasoning 1 1456 0.422 0.516
Geometric reasoning 1 1456 3.700 0.055
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Answer: It is even.

 E g. . , ,1 2 3 3 4 12 5 6 30× = × = × =  

They are all even.
So the product of two consecutive natural numbers is even.
However, in Question 3, the proportion of giving special examples drops to 

14.0%. For instance:

 
Answer ,: n

n

n
n

n

n
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−
=

−2 21 1  

 
If ,n = = =5 5

5

24

125

24
5

5

24
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If .n = =6 6

6

35
6

6

35
,

 

The reason for the differences above may be related to the presentation of the 
proposition. Compared with Question 2, Question 3 has more obvious symbolic 
features, and students are more inclined to demonstrate propositions in the general 
sense of symbolic operations. The proposition to be proved in Question 2, ‘The 
product of two consecutive natural numbers is even’, appears in the form of charac-
ter representation. Therefore, students also exhibit multiple choices in their proofs.

Many students (about 20.5%) used character representation in this question to 
demonstrate that: two consecutive natural numbers must be an odd number and an 
even number; because the product of an odd number and an even number is even, 
the product of two consecutive natural numbers is even. Nearly half of the students 
employed different representations in their proving. Interestingly, 6.3% of them 
consciously used symbolic operation to prove the proposition. Among them, a few 
students were able to use the idea of classified discussion and symbolization to 
make their proofs rigourous, as in the following example.

Answer:

 1. If the first one in the two consecutive natural numbers is even, presume that the 
two numbers are 2n and 2n + 1, then 2n(2n + 1) = 2[n(2n + 1)] is even;

 2. If the first one in the two consecutive natural numbers is odd, presume that the 
two numbers are 2n + 1 and 2n + 2, then (2n + 1)(2n + 2) = 2[(n + 1)(2n + 1)] 
is even.

Based on (1) and (2), the product of two consecutive natural numbers is even.
In addition, from students’ performance in Question 3, the proper method of 

symbolic representation is another aspect that needs to be considered for the strict-

ness of algebraic reasoning. Several students used n
n

n2 1−
 to refer to n

n

n
+

−2 1
, 
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without realizing the difference between the number representation 2
2

3
 and the 

letter representation n
n

n
+

−2 1
.

Meanwhile, inductive reasoning from special to general needs to consider the 
value range of n that can make the proposition true. Some students were aware of 

this point and noted that n
n

n
n

n

n
+

−
=

−2 21 1
, in which n is a natural number no 

less than 2, showing a rather strong consciousness of rigour.

11.5.5.2  Students’ Performance in the Rigour of Geometric Reasoning 
and Proving

The test results for Questions 4 and 5 reflect, to some extent, the rigourous perfor-
mance of students in geometric reasoning. Considering that students needed intui-
tive figures in the proving of plane geometry, researchers combined the figures 
drawn by students and their proof to judge whether their demonstrations were con-
ducted in a general sense. It was found that less than 10% of students mistook the 
proving of special circumstances for a general one.

Question 5 required students to complete the proposition and prove it. More than 
60% of the students were able to find at least one reasonable condition and complete 
the proof. Furthermore, 13.9% were able to combine the four given conditions in 
pairs (six combinations in total) and identify all the conditions that make the propo-
sition true (four in total). Some students not only demonstrated the four true propo-
sitions, but also used the counterexamples to illustrate that the other two propositions 
are not true (see Fig. 11.12).

Fig. 11.12 Counterexamples shown in question 5
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In contrast, students encountered greater obstacles in Question 4. Here, 13.1% of 
the students mistakenly believed that the inverse proposition of the proposition in 
Question 4 is, ‘Half of the hypotenuse of the right triangle is equal to the median of 
the hypotenuse’, and nearly one in four students did not give any answer. Of the 
students who gave an answer, one-third were able to complete the demonstration. 
Although these students could find the inverse proposition of the original proposi-
tion and complete the proving, nearly half of them expressed the inverse proposition 
in an unstrict way.

For instance:

If the median on the hypotenuse of a triangle is equal to half the hypotenuse, the triangle is 
a right triangle.

In the example above, the student misused the term ‘hypotenuse’, unaware that 
this term only applies to right triangle instead of all triangles. In terms of this ques-
tion, students who were able to rigorously state the inverse proposition account for 
13.9% of the students tested.

11.5.5.3  Students’ Performance in the Rigour of Arithmetic Reasoning 
and Proving

Questions 1 and 6 examined students’ performance in arithmetic reasoning and 
proving. Here, 93.4% of the students chose to take five beads as a group in the first 
question. Three students chose to treat 13 beads as a group. There may be different 
answers if no students asked questions. In the process of demonstration, more than 
70% of the students only listed the formula and directly gave the answer about the 
colour of the bead. Other students tried to explain the meaning of the formula in 
words, and 7.8% of the students were able to solve the problem with clear and com-
plete word expressions.

For instance:

 Answer ,: 36 5 7 1÷ =   
In every 5 beads, the first 3 are white and the last 2 are black. The 36th one is the one 

more bead after 7 times’ repetition according to this rule. And in every 5 beads, the first one 
is white. So the 36th bead is white.

In the proving of Question 6, students needed to use specific formulas to explain 
that casting 12 darts is a possible situation and it is necessary to demonstrate that 12 
darts is the minimum number. This means that, when casting fewer than 12 darts, it 
is impossible to reach 150 points. It is worth mentioning that 64.9% of the students 
consciously attempted to argue that fewer than 12 darts is impossible, but only 6.8% 
were able to complete the proof rigourously (see the example below).

For instance:

Cast at least 12 darts: 13 × 9 + 11 × 3 = 150.
If casting 11 darts only, at most get 11 × 13 = 143 points, which is less than 150.
So at least cast 12 darts.

J. Cheng et al.
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11.6  Discussion

11.6.1  Balanced Development of Plausible and Deductive 
Reasoning Abilities

This chapter finds that most eighth-grade students can conduct simple plausible 
reasoning and demonstrate propositions in the general sense. The results of this 
study are consistent with the goals of the current mathematics curriculum standards 
in China. However, within the country, there are significant regional differences in 
students’ abilities of reasoning and proving. Under the unified national expectation 
curriculum, do the regional differences in students’ reasoning and proving abilities 
stem from the teachers or from the family environment? Further research is needed 
on this question. In addition, in terms of different mathematical content, students 
only exhibit gender differences in geometric proofs. This may be related to the 
greater degree of discrimination among the geometric questions of this test and the 
content characteristics of the geometric problems.

It is necessary to draw attention to the fact that there is a more obvious individual 
difference in students’ ability of deductive reasoning than in plausible reasoning, 
especially when the proposition that needs to be proved does not contain symbolic 
information itself. For instance, in Question 2, about one-quarter of the students 
used special cases instead of a generalized proof. This phenomenon is similar to 
Morris’s findings (2002, 2007), where students were empirically proven to use 
experience as a general proof. Students seem to lack an effective understanding of 
the proof strategy, or lack the ability to discern what is an invalid demonstration. 
Although the ability to construct proofs in the field of mathematics is important 
(Weber, 2001), it is of equal significance for students to judge whether the proof is 
correct or not (Selden & Selden, 2003).

Interestingly, when faced with symbolic propositions (such as Question 3), the 
proportion of students with similar performance drops significantly. Similarly, work 
by Knuth et al. (2009, pp. 153–170) found that, when the quantity of proof carried 
by different problems is different, it will in turn affect the proof produced by stu-
dents. Therefore, in the teaching and evaluation of mathematical demonstrative 
ability, what are the roles of different questions in promoting or reflecting the degree 
of students’ understanding and mastery? That is a question worth further research.

Additionally, the ability of students to discover new propositions with the help of 
plausible and deductive reasoning needs to be improved. When there are multiple 
conjectures in plausible reasoning, further trials are needed to overturn the false con-
jectures so that the correct propositions can be proved by demonstration; here, many 
students still have obvious difficulties. For example, when answering Question 3, 
one in five students got the false proposition through inductive conjecture, but failed 
to further overthrow it with a counterexample. Only one in ten students succeeded in 
guessing the true proposition, and almost all of these students were able to demon-
strate the correctness of their guess. This also shows that the high-level plausible 
reasoning ability is inseparable from the ability of deductive reasoning. School 
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instruction needs to provide students with the opportunity to feel that ‘examples’ can 
be used to overturn propositions, which can be employed to reinforce confidence in 
a conjecture, but cannot serve as an argument for generalized outcomes.

11.6.2  Students’ Performance in the Rigour of Mathematical 
Reasoning and Proving

Although this chapter finds that some students did not achieve the expected goals of 
the mathematics curriculum in terms of the abilities of reasoning and proving, some 
top students showed a rigorous pursuit in the process of deductive reasoning, which 
makes educators more confident in providing high-class opportunities to learn 
mathematical reasoning and proving for the junior high school students, especially 
the gifted ones.

Previous studies have pointed out that the reason why students cannot distin-
guish between deductive and inductive reasoning in high school and even university 
may be the lack of corresponding learning opportunities in junior high school. It is 
feasible to develop students’ plausible and deductive reasoning abilities in junior 
high school as long as appropriate teaching methods are used (Stylianides, 2009).

The study also finds that there are some eighth-grade students who can explain 
the meaning of the formulas in clear wording, demonstrate the propositions in a 
rigourous symbolic language, carry out an unbiased classified discussion in the 
proving process, pay attention to the value range of alphabetic symbols from the 
special to the general reasoning process, use accurate terminology in expressing the 
propositions, overturn false conjectures with counterexamples and employ proof by 
contradiction in the proving process, among other abilities. If the teacher con-
sciously develops students’ abilities mentioned above, it is reasonable to expect an 
increase in the proportion of these types of students.
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Chapter 12
Mathematical Modelling in China:  
How It Is Described and Required 
in Mathematical Curricula  
and What Is the Status of Students’ 
Performance on Modelling Tasks
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12.1  Introduction

Mathematical modelling has gained considerable influence in mathematics educa-
tion worldwide. It is believed that mathematical modelling has the potential to facil-
itate critical citizenship with the key skills to face the complex and rapidly changing 
world, due to its aims at promoting young people’s competencies to solve real- 
world problems via mathematics (Kaiser, 2017). Because of its increasing impor-
tance, mathematical modelling has become a hot topic among mathematics curricula, 
especially in Western countries, such as Australia, Finland, France, Germany, the 
United States (US), and the United Kingdom (UK). Recently, mathematical model-
ling has also been increasingly emphasised in China’s centralised mathematics cur-
ricula, especially since 2003, when it published Mathematics curriculum standards 
for senior secondary schools (experimental version) (MOE, 2003).

In the mathematics curricular standards for Shanghai’s primary and secondary 
schools (Shanghai Municipal Education Commission, 2004), it has emphasised the 
importance of the mathematical thinking of mathematical modelling in the curricu-
lar objectives during the phase of grade 6 to 9, and specifically claimed that grade 
10 to 12 students should be ‘conducting mathematical modelling, solving [the prob-
lems from the real-world] and interpreting [the real-world situations]’ (p.38, trans-
lated by the authors). Furthermore, viewing modelling as an essential component of 
mathematical competence was included in the 2010 version of China’s mathemati-
cal curricular standards for students in grades 1–9 (Zhang, 2011). More recently, 
mathematics modelling was recognised as one of the six core mathematical compe-
tencies for students to develop in the Mathematics curriculum standards for senior 
secondary schools (2017 version) (MOE, 2018). Due to these developments, 
addressing the question of how mathematical modelling can be integrated into the 
teaching and learning of mathematics with the aim of promoting students’ model-
ling competence has become the focus of many studies in mathematics education.

Although its importance has been well recognised, a consensus regarding the 
most effective approaches to integrating modelling into mathematics education has 
not been reached, especially as the approaches relate to cultural differences. Cultural 
influences have been considered an essential factor of East Asian students’ consis-
tently outstanding performance on large-scale international assessments (e.g. 
Programme for International Student Assessment [PISA]) when compared to their 
Western counterparts. Shanghai’s students ranked highest on the first PISA they 
participated in, which drew the international community’s attention to China’s 
approaches to mathematics education. China has consistently emphasised the cur-
ricular idea of ‘two basics’ (i.e. basic knowledge and skills in mathematics) for a 
long time, which may have contributed to Chinese students’ mathematics achieve-
ment. However, it is unclear whether this strength also impacts Chinese students’ 
mathematical modelling knowledge as it has only recently been focused on in the 
mathematics curriculum. Very little information regarding the historical develop-
ment and state-of-the-art of mathematical modelling in the Chinese mathematics 
curriculum is available.
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This chapter investigates how mathematical modelling has been described or 
required in China’s mathematics curriculum over the past 100  years, as well as 
Chinese students’ performance in mathematical modelling activities. By doing so, 
this study aims to promote effective practices and empirical studies of the teaching 
and learning of mathematical modelling in China. It also seeks to provide insights 
into modelling practices and theories in the international community by focusing on 
the case of China.

12.2  Literature Review

To situate our study within the international community, we review the literature on 
modelling cycles, which is considered a key feature of modelling activities and is 
related to recent perspectives of the teaching and learning of mathematical model-
ling (Kaiser, 2017), mathematical modelling in different countries’ curricula, and 
students’ mathematical modelling competencies.

12.2.1  Modelling Cycles

According to different goals of learning and teaching mathematics at various educa-
tional levels, a classification of theoretical perspectives of mathematical modelling 
in schools was developed by Kaiser and Sriraman (2006): realistic or applied mod-
elling, epistemological or theoretical modelling, educational modelling, contextual 
modelling or model-eliciting perspective, socio-critical and sociocultural model-
ling, and cognitive modelling as a meta-perspective. These various perspectives 
show different characterisations of the modelling process as idealised in different 
modelling cycles. Therefore, theoretical and empirical studies of these cycles have 
become a central part of the teaching and learning of mathematical modelling 
(Borromeo Ferri, 2006). Five prevalent types of modelling cycles addressed in the 
literature are listed below and briefly introduced.

The modelling cycle of applied mathematics. Mathematical modelling is consid-
ered a cycle between the mathematics world and the rest of the world (Pollak, 1979). 
The cycle begins in ‘the rest of the world’, moves on to classical applied mathemat-
ics, followed by ‘applicable mathematics’ and, finally, back to ‘the rest of the world’ 
(p. 256). The cycle has a long-term, significant impact on the teaching and learning 
of mathematics.

The didactical or pedagogical modelling cycle. In this type of modelling cycle, 
mathematical modelling is emphasised, along with its process- and content-
related goals. Pedagogical modelling not only encourages the learning process of 
modelling but also deals with modelling examples used to introduce and practise 
mathematical methods, through which modelling is incorporated into the teach-
ing and learning of mathematics (Greefrath & Vorhölter, 2016). Blum (1996) and 
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Kaiser (1995) described a modelling cycle from this perspective (Fig. 12.1) in 
German publications. Their proposed cycle includes four important steps in 
modelling: idealising, mathematising, investigating the model, and interpreting 
the results (cited in Borromeo Ferri, 2018).

The psychological modelling cycle. Historically, based on psychological research, 
the psychological modelling cycle emphasises a ‘situation model’ that connects 
real-world problems with a mathematical model. The situation model is integrated 
into the modelling cycle as an additional step between the real situation and the 
model (Blum & Leiß, 2007).

The mathematical modelling cycle from a cognitive perspective. With the inclu-
sion of situation modelling in the modelling cycle, individuals’ cognitive processes 
during modelling activities became the focus of modelling research. The cognitive 
perspective of modelling cycles emphasises the situation model and the mental rep-
resentation of a situation for diagnostic purposes (e.g. Borromeo Ferri, 2007).

The mathematical modelling cycle integrated with specific aspects (e.g. meta-
cognitive strategies). Stillman (2011) proposed the application of metacognitive 
knowledge and strategies in modelling tasks at the secondary school level.

These five types of modelling cycles show the common features of mathematical 
modelling: a real-world situation is incorporated into mathematical modelling, and 
interpreting the mathematical models to gain real-world results also needs to be 
validated (as characterised in Fig.  12.2). Differences between modelling cycles 
reflect the theoretical perspectives underlying them and the characteristics of the 
teaching and learning of mathematical modelling they support.

12.2.2  Mathematical Modelling in Curricula

Modelling competencies play an essential role in many countries’ national curri-
cula, such as Australia, Germany, the US, and China, which supports the relevance 
of mathematical modelling at the international level (Kaiser, 2017).

Fig. 12.1 A modelling cycle proposed by Blum (1996) and Kaiser (1995)
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12.2.2.1  Australian Curriculum

Real-world problem-solving expertise is an espoused goal for all students according 
to the Australian curriculum. Specifically, the country’s mathematics curriculum 
focuses on the development of increasingly sophisticated and refined mathematical 
understanding, fluency, reasoning, and problem-solving skills (ACARA, 2019). 
Mathematical modelling has been advocated for in Australian mathematics curricu-
lum since 1990 when A National Statement on Mathematics for Australian Schools 
(Australian Education Council, 1990) was published. In the curriculum, mathemati-
cal modelling is often described as a cycle processed from a real situation problem 
to its mathematical representation and solution through the application of mathe-
matics (p. 61).

Despite its long-term promotion in the national curriculum, mathematical mod-
elling uptake has ranged from minimal or none to mandatory inclusion in the teach-
ing, learning, and assessment practices of mathematics. The regions of Australia 
have experienced varying levels of uptake due to cultural differences. For example, 
the teaching and learning of mathematical modelling have attracted less attention in 
New South Wales than in Queensland because it emphasises rigorous mathematics 
learning in schools (Geiger, 2005).

12.2.2.2  German Curriculum

Mathematical modelling has been advocated for in the teaching and learning of 
mathematics in Germany since the 1980s. The country’s mandatory mathematical 
standards for mathematical modelling were introduced in 2003 and have developed 
into one of the six general mathematics competencies in school mathematics in 
Germany. Many empirical studies have been performed and international coopera-
tive initiatives were undertaken in Germany regarding the teaching and learning of 
mathematical modelling. These have paid particular attention to students’ 

Fig. 12.2 Mathematical modelling cycle (Kaiser & Stender, 2013)
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modelling competencies, which will be introduced in more detail in the next sec-
tion. Due to the important role teachers play in delivering effective teaching and 
learning activities, empirical studies have increasingly focused on teacher compe-
tencies in teaching modelling and constructing the learning environment (Greefrath 
& Vorhölter, 2016).

12.2.2.3  The US’ Common Core Curriculum

Modelling with mathematics is one of the eight standards for mathematical practice 
in the US’ Common Core State Standards for Mathematics. It is also one of the six 
categories of mathematical content and has strong connections to the other catego-
ries: number and quantity, algebra, functions, geometry, and statistics and proba-
bility. Lu, Cheng, Xu, and Wang (2019) reviewed these standards and identified 
connections between modelling and other mathematical contents. They found that 
modelling is connected to all of the content in statistics and probability, 1/9 of the 
content in number and quantity, 8/27 of the content in algebra, 3/7 of the function 
content, and 6/43 of the geometry content. Modelling appears to be an essential 
component of the curriculum, which requires independent development and is pro-
moted via the teaching and learning of other mathematical content.

There has been a long history of ‘modelling eliciting activities’ in mathematics 
education in North America (Kaiser, 2017). These activities are problem-solving 
activities constructed using instructional design principles so that students can make 
sense of meaningful situations and invent, extend, and refine their own mathemati-
cal constructs during the activities (Lesh & Doerr, 2003). In this sense, American 
students may have more opportunities to practice mathematical modelling and 
applications than Chinese students. From Lu’s (2011) analysis of the mathematical 
examples and exercises in mathematics textbooks used in high schools in China and 
the US, she found more mathematical problems with real-world situations in 
American textbooks than in the Chinese ones.

12.2.2.4  China’s Curriculum

In its long-term historical development, China’s curriculum has focused on sound 
mathematical knowledge in the teaching and learning of mathematics. Like New 
South Wales in Australia, mathematical modelling has not been emphasised until 
recently. Due to the increasing needs of prompting responsible and qualified citizen-
ship in such a rapidly changing world, mathematical modelling, as well as five other 
key competencies, has become the focus of mathematics education in China, with 
the newly promulgated national curricular standards of high school mathematics 
(MOE, 2018) as a landmark. However, compared to Western countries, such as 
Germany and the US, there is little information available on the state-of-the-art of 
teaching mathematical modelling in China. Hence, theoretical and empirical studies 
are needed in this context.
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12.2.2.5  Summary

In the past, in some contexts, such as China and New South Wales in Australia, 
which emphasised ensuring mathematics teaching maintained a certain level of rig-
orousness and that students had a sound mathematical foundation, little attention 
was paid to modelling in the teaching and learning of mathematics. Due to globali-
sation and rapid societal and technological changes, mathematical modelling has 
become a central topic worldwide. Western countries, such as Germany and the US, 
have promoted mathematical modelling in their curricula for a much longer time. 
Attention should be paid to making use of the advantages of Western experiences in 
promoting mathematical modelling and the combination of the Eastern strengths in 
mathematical foundations to develop students’ mathematical modelling competen-
cies. Therefore, mathematical modelling in Eastern countries’ curricula needs to be 
explored.

12.2.3  Students’ Mathematical Modelling Competencies

Although there has been a widespread consensus on the necessity of promoting the 
teaching and learning of mathematical modelling, researchers still have not reached 
agreement on the measurement of mathematical modelling competencies. In recent 
decades, many efforts have been made to define or describe the construct of model-
ling skills, abilities, and competencies, and several aspects of modelling competen-
cies have been recognised: the global modelling competency referring to abilities 
for one to successfully perform the entire modelling process, sub- competencies refer-
ring to competencies necessary to individual phases of modelling cycle, and addi-
tional competencies such as metacognitive strategies, and non-cognitive aspects.

A holistic approach has, typically, been employed to measure the global model-
ling competency involved in performing a modelling process. The measures used 
are students’ written work and audio/video recordings of students’ working pro-
cesses. Data analyses have focused on categorising the levels of modelling compe-
tency. Stillman (2019) presented five levels of modelling competency according to 
the nature of the real-world situation and the complexity of modelling:

• Level 0: No constructive solution approach and no reasonable solution.
• Level 1: Implementing a representational change between a context and mathe-

matical representation. Using familiar and directly recognisable standard models 
for describing a given situation with an appropriate decision.

• Level 2: Describing the given situation by mathematical standard models and 
mathematical relationships. Recognising and setting general conditions for the 
use of mathematical standard models.

• Level 3: Applying standard models to novel situations, finding a suitable fit 
between mathematical modelling and real situations.
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• Level 4: Complex modelling of a given situation; reflecting on solution variants 
or model choice and assessing the accuracy or adequacy of underlying solution 
methods.

Ludwig and Xu (2010) also described students’ modelling competency from a 
holistic perspective. They assumed that how far students go in the modelling cycle 
when performing mathematical tasks will determine to what extent the students 
overcame cognitive obstacles. They, therefore, categorised six types of student per-
formance according to the modelling process (p. 79):

• The student has not understood the situation and is not able to sketch or write 
anything concrete about the problem.

• The student understands the given real situation but is not able to structure and 
simplify the situation or cannot find connections to any mathematical ideas.

• After investigating the given real situation, the student finds a real model through 
structuring and simplifying but does not know how to transfer this into a mathe-
matical problem (i.e. the student creates a kind of world problem about a real 
situation).

• The student is able to not only find a real model but also translate it into a proper 
mathematical problem, but cannot work with it clearly in the mathematical world.

• The student is able to develop a mathematical problem from the real situation, 
work with this mathematical problem in the mathematical world, and achieve 
mathematical results.

• The student is able to experience the mathematical modelling process and vali-
date the solution of a mathematical problem in relation to the given situation.

This kind of holistic approach describes, in general, students’ performance of 
modelling tasks but may miss some important aspects of the complex modelling 
process. Moreover, completing a modelling task is usually time-consuming and, 
sometimes, requires teamwork. Hence, the holistic approach is not quite suitable for 
large-scale assessments.

Atomistic approaches, such as multiple-choice items, are employed to assess the 
sub-competencies of mathematical modelling, e.g. simplifying real-world prob-
lems. These approaches are more quantitative and use various psychometrical mod-
els, such as one-factor-model and multi-dimension models (Stillman, 2019).

Many studies have focused on the atomistic approaches. Two of the four well- 
known strands of international discussions on modelling competencies (Kaiser & 
Brand, 2015) focus on sub-competencies. A British and Australian assessment 
research group worked on developing assessment instruments for modelling com-
petencies (e.g. Haines & Izard, 1995); they identified various sub-competencies and 
developed multiple-choice items to evaluate them. This allowed a pre- and post- 
design in many studies. German researchers have also focused on the study of mod-
elling sub-competencies. Kaiser (2007) proposed five sub-competencies developed 
during the various phases of the modelling cycle (p. 111):

• Competency to understand real-world problems and construct a reality model
• Competency to create a mathematical model out of a real-world model
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• Competency to solve mathematical problems within a mathematical model
• Competency to interpret mathematical results in a real-world model or a real 

situation
• Competency to challenge solutions and, if necessary, perform an additional mod-

elling process

In the development of modelling competencies, metacognition is recognised as 
an important influencing factor, and it ‘describes thinking about one’s own thinking 
and controlling one’s own thought processes’ (Maaß, 2006, p. 118). Metacognition 
is also emphasised by an Australian modelling group that employs reflective meta-
cognitive approaches during modelling activities. More recently, the integration of 
metacognition into the teaching and learning of mathematical modelling has also 
been promoted in German classes (Vorhölter, 2018).

Atomistic approaches allow researchers to investigate specific aspects of math-
ematical modelling in-depth, but these approaches are not readily applicable to 
demonstrating a student’s global modelling competency. In future studies of math-
ematical modelling, combining holistic and atomistic approaches will probably 
become the focus to obtain comprehensive measurements.

Various methods have been used in many countries to measure students’ mathe-
matical modelling competencies. However, few studies have evaluated Chinese stu-
dents’ modelling competencies, and little is known about which methods are 
suitable for Chinese students.

12.3  Research Questions

To capture a comprehensive picture of the state-of-the-art of the teaching and learn-
ing of mathematical modelling in China, we analysed the content of mathematical 
modelling in the curricular syllabi/standards of mathematics from 1902 to 2018 to 
determine the trajectory of its development in the curriculum. We also conducted a 
general exploration of current Chinese students’ modelling competencies by assign-
ing modelling tasks to grade 8 students. In this study, the following research ques-
tions were addressed:

 1. How is mathematical modelling described or required in the curricular syllabi/
standards of mathematics in China from 1902 to 2018?

How many textual references to mathematical modelling are in the different 
curricular syllabi/standards?

Do the texts reflect a kind of evolution of mathematical modelling in China’s 
mathematics curriculum? If yes, what is it?

 2. What is the status of current students’ mathematics competency in China?
Which stage of the modelling process can the students achieve while perform-

ing each modelling task?
Are there gender, regional, school, or individual differences in the students’ 

modelling competency?
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12.4  Research Methods

To answer the research questions, we carefully examined the past 100  years of 
China’s mathematics curricular documents. An investigation was also conducted to 
explore Chinese students’ modelling competency by administering a test to 1359 
grade 8 students (ages 13–14) in 2017.

12.4.1  Text Analysis: Mathematical Modelling 
in Mathematics Curricula

The curricular documents analysed in the study are mathematics curricular syllabi 
and standards published in China from 1902 to 2018. During 1902–2000, 24 pri-
mary mathematics syllabi and 43 secondary mathematics syllabi were published in 
the Collection of primary and secondary curriculum standards and syllabus of the 
twentieth century in China (Mathematics volume) (Curriculum and Teaching 
Materials Research Institute, 2001). After 2000, four national mathematics curri-
cula were published: two for grade 1–9 students (in 2001 and 2011) and two for 
grade 10–12 students (in 2003 and 2017). A total of 71 mathematics curricular syl-
labi and standards were analysed; for the number of pages analysed, see Table 12.1.

We searched for the terms ‘model’ (mo-xing) and ‘modelling’ (jian-mo) in the 71 
syllabi/standards to identify content in the text related to mathematical modelling. 
Some were excluded because they referred to geometric or physical objects instead 
of mathematical modelling. For instance, text referring to a ‘geometric object model 
(cube or cuboid)’ in the 1952 syllabus was not analysed.

The textual analysis was both data- and theory-driven. In the initial reading and 
coding of the texts, we identified text related to two aspects of modelling cycles (i.e. 

Table 12.1 The number of pages of curricular documents analysed

Year Publication
Number of 
Pages

1902–
2000

Mathematics Volume of the Collection of Primary and Secondary 
Curriculum Standards and Syllabus of the twentieth century in China

685

2001 Mathematics Curriculum Standards for Full-Time Compulsory 
Education (experimental version)

102

2003 Mathematics Curriculum Standards for Senior Secondary 
Schools (experimental version)

122

2012 Mathematics Curriculum Standards For Compulsory Education (2011 
version)

132

2018 Mathematics Curriculum Standards for Senior Secondary Schools (2017 
version)

180
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mathematics and modelling and reality and modelling), as well as a third category 
of affective aspects. Qualitative text analysis was used to produce descriptive codes 
(Kuckartz, 2014), as shown in Table 12.2. Using these codes, the texts were coded 
and categorised and, thus, were quantified to answer the first sub-question of the 
first research question. Then, by examining the texts repeatedly, we identified what 
the concepts, meanings, or processes/cycles of mathematical modelling were 
described to determine whether there was an evolution of mathematical modelling 
in the curricula (i.e. the second sub-question).

Using the analytic framework, we gained a comprehensive understanding of how 
mathematical modelling is described or required in the curricular documents in 
China from 1902 to 2018 according to the curriculum phases described in Chap. 1 
of this book (see Table 12.6).

12.4.2  An Investigation of Students’ Modelling Competency

To investigate the teaching and learning of mathematical modelling, which has 
been advocated for in China’s recent national mathematics curricular standards, a 
study of grade 8 students’ performance on modelling tasks was conducted in 2017. 
A total of 1359 students participated. These students were selected via stratified 
sampling (Cohen, Manion, & Morrison, 2000) from 15 schools in five cities (i.e. 
Cities A–E) located in the south-western, south-eastern, eastern, north-western, 
and midland regions of China, respectively; for the distribution of this sample, see 
Table 12.3.

The students were asked to complete a paper-based test consisting of three mod-
elling tasks involving different contexts, mathematical content, and difficulty levels. 
Additional details regarding these tasks are presented in Table 12.4. Based on Blum 
and Kaiser’s (1997, cited in Maaß, 2006) five modelling sub-competencies and a 
qualitative text analysis of some of the students’ written work (about 300 of the 
1359 students who participated), a coding scheme for the modelling stage students 
achieved in performing each task was constructed (see Table 12.5). Examples in 
Table 12.5 are from the students’ written work on the first modelling task, ‘Lanzhou 
noodles’.

With the students’ written work coded, we can present which stages of compe-
tency the students have demonstrated in performing each modelling task. To sum-
marise the students’ achievement in performing the modelling tasks, we generated 
modelling competency scores scaled with the graded response model, one of the 
three polytomous item response theory models (Nerling & Ostini, 2010). Next, 
we determined whether the students’ demographic characteristics (e.g. gender, 
school, or region) were related to their demonstrated level of modelling 
competency.
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Table 12.2 Analytic framework for the description or requirements of mathematical modelling in 
the curricular content

Category Code Description Example (translated texts)

C1
Mathematics 
and modelling

C11: 
Mathematical 
models

Using mathematical 
models or mathematical 
knowledge to construct 
mathematical models

Using these functions to develop 
models; selecting proper 
functional models; constructing 
probability models; using 
mathematical methods to 
construct models; establishing 
mathematical relations

C12: Solving 
problems 
mathematically

Using mathematical 
knowledge to obtain a 
solution

Solving the model; calculating 
and obtaining the solution

C13:
Promoting 
mathematical 
learning

Enhancing the 
understanding of 
mathematical 
knowledge, acquiring 
skills, etc.

Developing mathematical 
knowledge; learning mathematical 
concepts and rules; strengthening 
the student’s understanding of 
related knowledge; acquiring 
necessary knowledge and skills 
(through modelling)

C2
Reality and 
modelling

C21:
Understanding 
real situations

Understanding the 
relationship between the 
real situation and 
mathematics

Posing mathematical problems; 
identifying mathematical 
relationships; finding proper 
objects to study from a 
mathematical perspective

C22:
Mathematising

Proposing mathematical 
problems based on a real 
situation; mathematising 
the quantity and 
relationships in the real 
situation

Expressing the problem using 
mathematical language; 
translating problems into 
mathematical problems; 
mathematising

C23:
Verifying the 
model

Verifying and improving 
the model

Improving the model; justifying 
the rationale of the model; 
verifying the solutions (in a real 
situation); reflecting on the 
modelling process

C24:
Applying it to 
the real world

Applying the result of 
modelling or models to 
the real world

Interpreting and applying; 
explaining economic phenomena

C25:
Solving 
real-world 
problems

Applying modelling to 
solve real-world 
problems

Dealing with realistic problems; 
solving real-world problems; 
solving simple real-world 
problems

(continued)
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12.5  Results

12.5.1  Mathematical Modelling in the Mathematics Curricula

We identified 310 codes related to mathematical modelling in the texts, and the 
distribution of the codes in the analysed curricular documents are presented in 
Table 12.6.

Based on the results presented in Table 12.6, it is clear that mathematical model-
ling is a fairly new concept in China’s mathematical curriculum. The terms ‘model’ 
or ‘modelling’ first appeared in the 1996 mathematical curriculum for high school 

Table 12.2 (continued)

Category Code Description Example (translated texts)

C3
Affective 
aspects

C31:
Increasing 
interest

Stating the importance 
of modelling in 
increasing students’ 
interest

Inspiring students’ interest in 
learning mathematics

C32:
Improving 
attitude

Stating the importance 
of modelling in 
improving students’ 
attitudes towards 
mathematics

Acquiring a relatively 
comprehensive understanding of 
mathematics; feeling familiar with 
mathematics; gaining emotional 
feeling improved when 
experiencing modelling; 
appreciating the value of applying 
mathematical theory

Table 12.3 Distribution of student sample by city

Cities A B C D E

Schools S101 93 0 0 0 0
S102 93 0 0 0 0
S201 0 60 0 0 0
S202 0 86 0 0 0
S203 0 88 0 0 0
S301 0 0 64 0 0
S302 0 0 71 0 0
S303 0 0 70 0 0
S304 0 0 104 0 0
S401 0 0 0 84 0
S402 0 0 0 97 0
S403 0 0 0 86 0
S501 0 0 0 0 40
S502 0 0 0 0 242
S503 0 0 0 0 81

Total 186 234 309 267 363 1359

12 Mathematical Modelling in China: How It Is Described and Required…



222

mathematics and involved four codes (i.e. C11, C22, C24, and C25), which reflect a 
simple modelling process. Then, the terms appeared in both the junior and high 
middle mathematics curricula, which contained 9 codes that reflect a simple model-
ling process. The remaining 288 codes were found in four curricular standards: the 
2001 and 2011 versions for grade 1–9 students and the 2003 and 2017 versions for 
grade 10–12 students.

In the 1996 syllabus, modelling was referred to as ‘. . . [letting] students acquire 
the basic knowledge, enhance mathematical awareness, and initially use mathemati-
cal modelling to solve some problems in the real world’ (p. 644). It appears that the 
concept of modelling in Chinese mathematics curricula was stemmed from the con-
cept of real-world problem-solving, which has been advocated for in mathematical 
curricula for a long time, as stated in Chap. 5.

Since the beginning of the twenty-first century, mathematical modelling has been 
strongly advocated for in the curricular documents. It is also evident in the distribu-
tion of codes in the curricular documents in Table 12.6. The 2001 version of the 
standards for grade 1–9 students made a rather complete statement on the process of 
modelling: ‘abstracting mathematical problems from a real problem situation using 
various types of mathematical language to express the problem, establish mathe-
matical relationships, obtain proper solutions, and understand and acquire the 
meaning of corresponding mathematical knowledge and skills’ (MOE, 2001, p. 61), 
which is a four-stage process (Fig.  12.3). The standards also require allowing 

Table 12.4 Description of the three modelling tasks

Simple description
Mathematical 
content Difficulty level

Task 1 The Lanzhou noodle problem: Lanzhou 
noodles are a well-known dish in China and 
originated in the north-western region of China. 
To make noodles, a chef kneads dough into a 
long strip, stretches it, folds it, and repeats the 
stretching and folding process 7–8 times until 
the noodles become thin and long. Please 
estimate how long the noodles would be if they 
are folded and stretched 4 times?

Numbers and 
algebra

Level 1
The easiest level.
It is easy to use a 
mathematical model 
learned in class to 
solve the problem

Task 2 Big shoes problem: To estimate the size of big 
shoes

Space and 
graphs;
Numbers and 
algebra

Level 2
It is not difficult to 
find a similar model 
learned in class, but it 
needs to be modified

Task 3 Gas station problem: Gas prices at a nearby 
station are more expensive than prices at a 
station located far away from you. Decide 
whether it is worth driving a further distance to 
buy gas based on the conditions provided

Numbers and 
algebra

Level 3
The most difficult 
level.
Students may not be 
familiar with the 
problem since there 
are no similar 
ready-made models 
available to them
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Table 12.5 Coding scheme used to analyse the modelling stage the students demonstrated in 
performing the assigned tasks

Code Description Examples (translated texts from task 1)

Stage 0 The student cannot identify any 
quantities or relationships in the real 
situation, does not attempt the task, 
or uses unrelated/nonsensical 
numbers in the response

Blank
‘14’

Stage 1 The student attempts to structuralise 
the real situation and presents ideas 
but is unable to develop a 
mathematical model (e.g. only lists 
some variables or identifies some 
relationships between the variables)

‘About 1.7 meters’.
‘As an adult is about 1.7 m tall, which is similar 
to the length he opens his arm’.

Stage 2 The student proposes some 
reasonable hypotheses and develops 
a mathematical model, but the model 
is not properly developed

‘2 × 7 × 2 = 28 (m)’

Stage 3 The student develops a realistic 
model and converts it into a 
mathematical model but is unable to 
reach an accurate mathematical 
solution or solves the model 
incorrectly

‘When a person opens his arm, the length is 
more than 1 meter. As shown in the picture, the 
person did not completely open his arm, so we 
hypothesise it was 1 meter. Folding and 
stretching 7 times:
1: 1 + 1 = 2 (m), 2: 2 + 2 = 4(m), 3: 4 + 4 = 8 
(m)
4: 8 + 8 = 16 (m), 5: 16 + 16 = 32 (m), 6: 
32 + 32 = 74 (m),
7: 74 + 74 = 148 (m)
So, it is about 148 m’

Stage 4 The student proposes a proper 
mathematical model and obtains the 
correct solution but does not 
interpret the solution using the real 
situation

‘The length of an adult’s arms when he opens 
the arms is about his height, about 1.8 m.
So, 1.8 × 27 = 1.8 × 128 = 230.4
Answer: the total length is about 230.4 m’

Stage 5 The student develops a realistic 
model, converts it into a 
mathematical model, and solves it 
correctly. The student also interprets 
and verifies the model in the real 
situation and assesses the rationale 
of the model

[No examples provided]

Table 12.6 Number of codes identified in the curricular documents

Phasesa Before 1949 1949–1975 1976–1985 1986–1999 2000–2018 Total

No. of paragraphs 0 0 0 4 306 310
aAccording to the phases of mathematics curricula development in China, which are described 
in Chap. 1
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students to experience, by themselves, the procedure of abstracting a real problem 
to mathematical models, as well as interpretation and application procedures 
(MOE, 2001).

The modelling process was then visualised in the 2003 standard for grade 10–12 
students, and it was added to two stages of posing problems and verifying (Fig. 12.4), 
which is much more similar with the modelling cycle proposed by Blum (1996) and 
Kaiser (1995; see Fig. 12.1). Moreover, the standard placed more emphasis on the 
importance of ‘cultivating [students’] mathematical modelling ability’ (MOE, 
2003, p. 89).

The 2011 version of China’s standards for grade 1–9 students followed the same 
modelling process described in the 2003 version. Furthermore, ‘modelling think-
ing’ became one of the ten keywords; the other nine are number sense, symbol 
sense, space conception, geometric visualisation, data analysis sense, the skill of 
mathematical operations, reasoning ability, application, and creativity.

In the newest released standards for grade 10–12 students, the 2017 version, 
mathematical modelling is considered one of the six core mathematical competen-
cies. The modelling process includes seven stages: ‘discovering problems in realis-
tic situations from a mathematical perspective, posing problems, analysing 
problems, constructing models, determining parameters, calculating and solving, 
verifying results, improving models, and finally, solving realistic problems’ (MOE, 
2018, p.35).

To summarise, mathematical modelling in China’s mathematics curricula stems 
from problem-solving and has been significantly and increasingly emphasised since 
2001. The modelling process is described from a four-stage cycle (Fig. 12.3) to a 
seven-stage cycle (Fig. 12.4). To gain a comprehensive understanding of the con-
cept of modelling in China’s mathematics curricula, we performed an in-depth com-
parison of the codes of content in text identified in the four versions of standards 
published in the twenty-first century.

As shown in Table 12.7, there are, generally, far more modelling codes in the 
mathematics curricula for grade 10–12 students than for grade 1–9 students. Thus, 
modelling is emphasised much more heavily in the high school curricula. 

Fig. 12.3 A four-stage modelling cycle in China’s mathematics curriculum
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Specifically, the cognitive level for modelling required by the grade 1–9 curricula, 
using the 2011 version as an example, is described by terms such as ‘experiencing’ 
and ‘realising’ (MOE, 2012, p.  14). Comparatively, the high school ones have 
higher requirements. For instance, the 2003 version requires that students can select 
‘effective ways and strategies to collect information, connect with relative knowl-
edge, propose how to solve the problem, establish proper mathematical models, and 
then try to solve the problems’ (MOE, 2003, p. 89). The 2017 version specifically 
points out that the teaching objectives of mathematical modelling are ‘through 
learning high school mathematics, students can use mathematical language to 
express the real world consciously, discover and propose problems, make sense of 
the connections between mathematics and the reality, and learn how to use mathe-
matical models to solve real problems’ (MOE, 2018, pp. 5–6).

Fig. 12.4 The modelling cycle presented in the 2003 version of China’s mathematical standards
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By examining the codes in the high school curricula, it is apparent that the codes 
on affective aspects are the minority. Specifically, the number of affective codes in 
the two curricula decreased from 23 to 8, probably because ‘affects and attitudes’ is 
one of the three basic curricular ideas of the 2003 version, and thus, almost every 
curricular requirement is connected to it. The 2017 version promotes six core math-
ematical competencies that do not specifically emphasise ‘affects’, but the construct 
of competencies per se contains affeactive aspects. It is reflected in the statements 
of the curicular standards that there are fewer descriptions of the affective aspects; 
instead, the focus is on modelling competencies, especially ‘reality and modelling’. 
The number of reality and modelling (C2) codes increased significantly in the 2017 
version when compared to the 2003 version, from 40 to 89, which is consistent with 
the curricular idea that emphasises connections between mathematics and reality.

In addition to the differences discussed above, there are also similarities in the 
descriptions related to modelling in these curricular documents. As shown in 
Table 12.7, the 2001 and the 2011 versions of the curricular standards for grade 1–9 
students are quite similar, both in the total number of codes and the distribution of 
codes in the three categories, and there were no significant changes in the numbers 
of the first category, ‘mathematics and modelling’, in the two versions of high 
school mathematics curricula.

To summarise, mathematical modelling in China’s mathematics curricula 
stemmed from problem-solving and was not emphasised until the twenty-first cen-
tury. In the curricular standards published after 2000, modelling is much more 
strongly emphasised in high school mathematics than in the lower grades. In high 
school mathematics, the importance of modelling seems to be increasingly recog-
nised. Therefore, more research on the teaching and learning of mathematical mod-
elling to promote effective practices in China are needed.

Table 12.7 The distribution of codes in the four versions of standards by year of publication

Categories Codes 2001 2003 2011 2017 Total

Mathematics and modelling C11 3 38 4 38 87 121
C12 2 7 2 7 18
C13 1 6 1 5 16

Reality and modelling C21 3 11 2 34 50 156
C22 3 9 4 17 36
C23 1 1 1 4 7
C24 3 3 0 9 16
C25 1 16 3 25 47

Affective aspects C31 1 21 1 7 30 33
C32 0 2 0 1 3

Total 18 114 18 147 310

Note: The 2001 and 2011 versions are for grade 1–9 students, and the 2003 and 2017 versions are 
for grade 10–12 students
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12.5.2  Grade Eight Students’ Modelling Competency

12.5.2.1  An Overview

Figure 12.5 presents the distribution of stages achieved by the 1359 students who 
completed the three assigned modelling tasks. In this figure, it is clear that on tasks 
1 and 2, almost half of the students achieved the fourth stage of the modelling pro-
cess (i.e. they proposed proper mathematical models and obtained the correct solu-
tions but did not interpret the solutions using the real-world problem or assess/verify 
their models). On task 3, most of the students were unable to develop a proper model, 
much less obtain the correct answers or modify the model used. Generally, it seems 
that the students treated these tasks as mathematical word problems rather than real-
world problems to solve and, thus, did not assess or critique the models they pro-
posed. This made them stop at obtaining a mathematical solution on the easier tasks 
(i.e. tasks 1 and 2) or propose incorrect models on the difficult task (i.e. task 3).

The students’ level of performance on each task has a statistically significant 
correlation with the other two tasks (see Table 12.8).

Using the graded response model, we assigned the students modelling compe-
tency scores on all three of the modelling tasks. Since two students’ performance 
data were missing, modelling competency scores were assigned for 1357 students. 
As shown in Table 12.9, the students’ mean score was 0.0009, and the highest score 
was 1.75.

12.5.2.2  Gender Differences and Individual, School, and City Differences

The girls had lower modelling competency scores (M = −0.059, SD = 0.781) than 
the boys (M = 0.056, SD = 0.833), with t (1350) = −2.617, p < 0.01. But the magni-
tude of the difference is quite small with Cohen’s d = 0.14.

Fig. 12.5 Stages of the modelling process the students achieved while performing the three tasks
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The students’ individual performance on each modelling task is significantly dif-
ferent; and the differences in schools are significant but not so significant at the 
individual level. More than 70% of the variance in attainment can be attributed to 
differences between individual students, and around 20% of the variance can be 
attributed to differences between schools. There are insignificant differences 
between cities (see Table 12.10).

12.6  Summary, Discussion, and Conclusion

12.6.1  Mathematical Modelling in China’s 
Mathematics Curriculum

In the findings presented in Sect. 12.5.1, we showed that in China’s mathematics 
curriculum, mathematical modelling was not specifically advocated for until 2000. 
The country’s curriculum does have a long history of emphasising mathematical 
problem-solving and the application of mathematics, which may promote the devel-
opment of mathematical modelling in the teaching and learning of mathematics. 
However, the focus on problem-solving, as well as China’s long history of placing 
a heavy emphasis on foundational mathematical knowledge, may also constrain the 

Table 12.8 Correlations among the students’ level of performance on each of the three tasks 
(N = 1357)

Task 1 Task 2 Task 3

Task 1 1 0.425*** 0.414***
Task 2 1 0.383***
Task 3 1

Note. All correlations are based on weighted data; *** p < 0.001

Table 12.9 Descriptive statistics of the students’ modelling competency scores

No. of 
students Range Minimum Maximum Mean

Std. 
Deviation

Students’ assessed modelling 
competency

1357 3.59 −1.84 1.75 0.0009 0.81065

Table 12.10 Variances of Graded Response at different level

Task 1 Task 2 Task 3

Individual level 1.40 1.94 0.57
School level 0.34 0.54 0.20
City level 0.00 0.00 0.00
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promotion of mathematical modelling competency, especially in dealing with real- 
world situations which usually contain a rich source of information.

In the textual analysis findings, it is fairly obvious that the concept of mathemati-
cal modelling developed from a four-stage modelling cycle (i.e. beginning with a 
real-world problem, followed by creating and finding a solution to a mathematical 
model, and then applying the solution to the real-world problem) to more precise 
modelling that places greater emphasis on translating a real situation into a mathe-
matical model, as well as validating and evaluating the modelling process. This 
developmental trajectory is also consistent with the conceptual development of the 
mathematical modelling cycle in international research focused on the teaching and 
learning of mathematical modelling. The four-stage modelling cycle mentioned in 
the 2001 version of the standards for grade 1–9 students (Fig. 12.3) is almost the 
same as the modelling cycle proposed by Blum (1996) and Kaiser (1995; Fig. 12.1). 
The newly developed modelling cycle (Fig. 12.4) is closer to the dominate model-
ling cycles in the current literature (e.g. the model presented in Fig. 12.2). However, 
unlike most of the cycles, it does not emphasise the situation model and simply 
mentions ‘posing problems’. It appears that minimal attention has been paid to 
translating real-world problems into the mathematical world, which is probably the 
biggest challenge in the promotion of mathematical modelling in China’s mathe-
matics curriculum, considering the characteristics of its development, as dis-
cussed above.

Specifically, we analysed, in great detail, three categories of texts related to 
mathematical modelling in curricular documents: ‘mathematics and modelling’, 
‘reality and modelling’, and ‘affective aspects’. It was found that the connection 
between reality and modelling is much more frequently mentioned in the most 
recent promulgated curricular standards for high school mathematics, published in 
2017. Mathematical foundations are more heavily emphasised in the curricular 
standards for high school mathematics than those for middle school mathematics, 
and affective aspects seem to be mentioned less frequently in the curricular stan-
dards for both high school and middle school mathematics education. These find-
ings provide implications for understanding mathematical modelling in the intended 
mathematical curriculum in China: (1) mathematical modelling seems to be more 
heavily emphasised in the curriculum of high school mathematics; (2) the character-
istics of connections between reality and mathematical modelling have been recog-
nised, and mathematical foundations have been emphasised in the promotion of 
mathematical modelling; and (3) affective aspects, such as students’ interest in 
mathematics, seem to be less important than other aspects, such as mathematical 
foundations. These characteristics are consistent with the common understanding of 
mathematics education in China, which is widely known for heavily emphasising 
the learning of mathematical content and students’ performance instead of stimulat-
ing students’ interest in learning (e.g. Leung, 2001).
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12.6.2  From Curricular Standards to Student Performance

Mathematical modelling has not been strongly advocated for in China’s mathemat-
ics curriculum standards for very long. Mathematical modelling tasks have not been 
included in mathematics textbooks until the 2017 version curricular standards 
released, and it is considered as a challenge for textbook developers to compile 
modelling tasks for teachers to conduct related teaching (Zhang, Zhang, & Jin, 
2020); although mathematical  textbooks in China have emphasised  solving real- 
world problems with mathematical means for a long time, which provided bases for 
the promotion of modelling (Du, 1998). Assessing Chinese students’ mathematical 
modelling performance is an important step toward promoting this competency in 
the future, for example, providing insights for textbook developers and for teachers 
to develop or use modelling tasks to conduct related teaching practices. By assign-
ing 1359 students with three modelling tasks involving different real-world situa-
tions and mathematical content, we found  that they appear to be accustomed to 
solving regular word problems rather than real-world problems. Thus, they usually 
stopped after obtaining a mathematical solution and did not recognise the necessity 
of validating their mathematical solutions and critiquing the mathematical means 
they used according to the complex requirements of real-world problems.

Regarding gender differences, the boys seemed to have performed better than the 
girls, which is not consistent with the results of traditional examinations. Currently, 
girls commonly perform better than boys on routine examinations, perhaps because 
girls tend to be much more diligent. However, from our analyses, it seems that the 
boys seemed to go further in the modelling process, possibly because they tend to 
be more brave and open-minded in solving real-world problems. Concerning the 
individual, school, or city differences, it was found that students’ performance on 
mathematical modelling is more individualised, and there were no significant city 
differences in our results, which may be because the promotion of mathematical 
modelling has not been well implemented in the teaching and learning of mathemat-
ics in China, and the students relied much more heavily on their daily experiences 
while performing the tasks. From another perspective, it may also imply that the 
promotion of mathematical modelling could contribute to students’ individual 
development and, furthermore, achieve the educational goal of cultivating profes-
sional citizenship in all walks of life.

12.6.3  Conclusion

To more effectively promote mathematical modelling in the teaching and learning 
of mathematics (i.e. the implemented curriculum) in China, this study investigated 
the historical development of mathematical modelling by focusing on the use of 
related terms and requirements in curricular documents, as well as the state-of-the- 
art through in-depth analyses of content related to mathematical modelling in the 
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current curricular standards (i.e. the intended curriculum). We also assessed and 
analysed students’ performance on three mathematical modelling tasks (i.e. attained 
curriculum). The findings are consistent with the common knowledge of the charac-
teristics of mathematics education in China. Thus, the mathematical modelling in 
China’s intended curriculum places greater emphasis on mathematical foundations 
and pays minimal attention to students’ non-cognitive aspects and additional com-
petencies, such as communicative and metacognitive aspects. The students seemed 
to have little knowledge about mathematical modelling and, therefore, lacked the 
awareness and skills required to critique and validate their work on the tasks, which 
are very important in mathematical modelling competency. These findings could 
provide insights for the research and practical design of teaching and learning math-
ematical modelling in China in the future.

As previously mentioned, few studies have focused on the teaching and learning 
of mathematical modelling in China, probably because it has not been emphasised 
in the country’s centralised curriculum until recent years. Our investigation may 
stimulate further research focused on the theoretical and practical exploration of 
mathematical modelling in similar contexts as China in which there is a long history 
of the curriculum heavily emphasising mathematical foundations. However, there 
are some limitations in our study. For example, we did not conduct an in-depth 
exploration of students’ modelling competencies, including sub-competencies and 
additional competencies, such as metacognition. However, we believe that more 
significant theoretical and practical contributions could be made in further analyses 
of the study’s results and in future research on the topic of mathematical modelling 
competencies, especially in the context of East Asian countries.
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Chapter 13
The Development of Communication 
in Chinese Mathematics Curricula

Yuelan Chen, Xiaoyan He, and Binyan Xu

Abstract This chapter examines the development related to mathematical com-
munication abilities in math syllabus and curriculum standards at the junior high 
level in China since 1902. This chapter analyses curriculum documents in China 
from 1902 to 2011 using keyword frequency analysis and text analysis. The study 
found that mathematical communication abilities in curriculum standards over the 
past hundred years are defined in four ways: teacher-student communication, 
student- self communication, student-student communication, and student-text com-
munication. The analysis of the changes to the curriculum requirements provides a 
better understanding of mathematical communication abilities in China and offers 
insights on the key factors that affect the development of students’ mathematical 
communication abilities.

Keywords Mathematical communication abilities · Math syllabus · Curriculum 
standards · Types of communication · Teacher-student communication · Student- 
self communication · Student-student communication · Student-text 
communication · Keyword frequency analysis · Text analysis

13.1  Introduction

With the growing usage of mathematics in modern society, mathematical communi-
cation ability has become an important part of math competency. Niss (2015) 
explained the following:
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Considering the fact that anyone who is learning or practising mathematics has to be 
engaged, in some way or another, in receptive or constructive communication about matters 
mathematical, either by attempting to grasp others’ written, oral, figurative or gestural 
mathematical communication or by actively expressing oneself to others through various 
means, a mathematical communication competency is important to include. (p. 40)

Mathematical communication is the process in which students learn and use 
mathematical language to communicate and understand the world, such as using 
specific mathematical symbols and terminologies. With mathematical communica-
tion abilities, students are expected to build common sense regarding mathematics 
(Shi, 1998; Niss, 2003; Xu, 2013). As future citizens, students need to achieve cer-
tain levels of mathematical communication abilities. However, such abilities are not 
innate. The higher a student’s grade level is, the more complicated and instructive 
his or her mathematical communication abilities are. It is imperative for educators 
to establish a set of explicit, detailed and measurable mathematical communication 
abilities to evaluate students’ current communication ability levels and to promote 
their mathematical communication abilities.

In China, syllabus and curriculum standards play an important role in guiding 
curriculum writing, teaching and learning. The latest mathematics standards contain 
modified requirements of mathematical communication abilities for students. The 
analysis of the changes in the requirements provides a better understanding of math-
ematical communication abilities in China and offers us insights on the key factors 
that affect the development of students’ mathematical communication abilities.

13.2  Literature Review

13.2.1  Definition of Mathematical Communication

Communication is a process of receiving and communicating through language, 
symbols, diagrams and artistic forms, which requires listening, speaking, reading 
and writing as the main means. In many curriculum standards, mathematical com-
munication abilities entail the processes of receiving and expressing. For example, 
the German mathematics standards state that mathematical communication abilities 
include the understanding of mathematical text or expression as well as the written 
or verbal communication of mathematical thinking and solutions. Reading and 
understanding mathematical texts is a process of receiving, while interpreting and 
presenting mathematical ideas in written or oral form belongs to the expressing 
process (Kultusministerkonferenz, 2004). The German standards require that stu-
dents be able to receive, understand and evaluate mathematical facts as well as pres-
ent one’s own mathematical ideas and assess and correct others’ ideas (Xu, 2007). 
The United Kingdom’s national curriculum guide requires students to understand 
and interpret mathematics in multiple representations and to communicate mathe-
matics with confidence in the most appropriate way (U.K. Department of Education, 
2007). Students should be able to choose the most effective way to communicate in 
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different contexts. Students are also required to provide explanations and assess the 
correctness of expressing. Such processes involve an understanding of mathemati-
cal information and help develop students’ mathematical thinking.

Some standards define mathematical communication abilities with a focus on 
either the process of receiving or the process of expressing. For example, the 
Curriculum and Evaluation Standards for School Mathematics in the United States 
has a focus on the process of expressing. It requires students to “reflect upon and 
clarify their thinking about mathematical ideas and relationships, and formulate 
mathematical definitions and express generalisations discovered through investiga-
tion, and to express mathematical ideas orally and in writing” (National Council of 
Teachers of Mathematics, 1989, p. 140). Singapore’s secondary school syllabus also 
focuses on the expressing process. It states that a critical skill in education is the 
ability to use mathematical language to express the process of mathematical think-
ing and argumentation accurately, concisely and logically (Singapore Ministry of 
Education, 2011). Recently, Singapore has paid more attention to mathematical 
communication and has mentioned that “communication of mathematics is neces-
sary for the understanding and dissemination of knowledge within the community 
of practitioners as well as general public” (Singapore Ministry of Education, 2019, 
p. 6). The Mathematics Curriculum Standards for Compulsory Education in China 
(Ministry of Education of the People’s Republic of China, 2012) lists four require-
ments as mathematical communication abilities:

 1. Students will be able to communicate about their own algorithms and processes 
to solve the problem and to express their own ideas.

 2. Under the guidance of teachers, students will be able to choose the appropriate 
strategy to solve the problem through communicating with others.

 3. Students will be able to explain and communicate the statistical results and make 
simple assessments and predictions based on the results.

 4. Students will be able to rethink the whole process of mathematical participation, 
to write a report or short paper about the research process and results, and to 
communicate so as to further obtain mathematical practice experience.

The sequence of the four requirements implies the assumption that a good receiv-
ing process serves as the basis for the improvement of the expressing skill.

13.2.2  Classification of Mathematical Communication

Students with strong mathematical communication abilities can explain a large 
amount of quantitative data encountered in daily life and make reasonable evalua-
tions of the data. They can also fully reflect on their own problems and understand 
arguments from others. Niss (2003) defined mathematical communication as involv-
ing two processes. The first process is to understand the mathematical meaning of 
the texts presented in various representations, including written, visual or verbal. 
The second process is to present one’s own mathematical ideas in multiple represen-
tations at different levels of precision.

13 The Development of Communication in Chinese Mathematics Curricula
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The Common Core State Standards for Mathematical Practice (National 
Governors Association and Council of Chief State School Officers, 2010) include 
eight standards that apply to students from kindergarten to 12th grade. Students 
should be able to perform the following important tasks: make sense of problems, 
reason abstractly, construct arguments and critique the reasoning of others, con-
struct mathematical models, use appropriate tools, attend to precision, make use of 
structure and look for and express regularity in repeated reasoning. Communication 
is key to many of these tasks. To construct mathematical models, students must 
construct representations of mathematical thinking—a crucial element of communi-
cation. To construct arguments, critique the reasoning of others, attend to precision 
or express regularity in repeated reasoning, students must be able to clearly com-
municate their mathematical thinking. Mathematical communication skills include 
mathematical dialogue, writing and reading.

Mathematical dialogue is the conversation of mathematics between two or more 
persons. It is a two-way process involving listening and speaking. For example, a 
teacher-student dialogue and dialogue among students in the classroom are mathe-
matical dialogues. Regarding the purpose of student dialogue in mathematics class-
rooms, Pimm (1987) categorised mathematical dialogue as mathematical dialogue 
with others and mathematical dialogue of self-reflection. Students use mathematical 
dialogue with others to convey their own mathematical ideas. Through self- reflective 
mathematical dialogue, students can effectively organise their own thinking and 
clarify mathematical meanings and ideas, thus gaining further understanding of 
mathematics. For example, when solving a mathematical problem, students read the 
mathematical questions repeatedly to clarify or correct the problem-solving model. 
The repeated reading method indicates that self-reflective dialogue can promote 
student reflection on mathematical thinking. Self-reflective dialogue is implicit and 
serves as the basis of conversations with others.

Mathematical writing is an important complement to verbal communication. When 
students write in mathematics, they are actively involved in the process of absorbing 
mathematical knowledge, developing mathematical understanding, and improving 
math-learning attitudes. Common mathematical writing in classes includes diary writ-
ing and explanatory writing. One type of diary writing asks students to reflect on the 
entire learning process by debriefing the math they have learned. Clarke et al. (1993) 
conducted a study on diary writing for 4 years with a focus on mathematical debriefing. 
They asked seventh-grade students to write a math diary with three prompts at the end 
of each math class. The three prompts were as follows: What did you do in class? What 
did you learn? What were the examples and questions? The purpose of explanatory 
writing is to describe and explain the process of solving a mathematical problem or the 
validation of a mathematical solution to a given question. Shield and Galbraith (1998) 
studied two explanatory writing tasks: (1) writing a letter to a classmate who’d missed 
the class to explain what was learned in the class and (2) writing to help a student who 
had difficulties with the math in class.

Mathematical reading involves reading and understanding texts containing 
words, forms, figures, illustrations, timetables, etc. (Organisation for Economic 
Co-operation and Development, 2009). In mathematical reading, students need to 
process and transition among multiple representations, including symbols, 
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diagrams, graphics and forms. It is a nonlinear process and is the main difference 
between mathematical reading and other reading (Bosse & Faulconer, 2008).

13.3  Research Question

This chapter examines the requirements related to mathematical communication 
abilities in math syllabus and curriculum standards at the junior high level since 
1902. Two research questions are explored:

 1. What are the definitions of mathematical communication abilities in math syl-
labus and curriculum standards used throughout the past 100 years in China?

 2. What are the changes in requirements for mathematical communication abilities 
in math syllabus and curriculum standards?

To answer the two research questions, we reviewed literature and analysed cur-
riculum documents in China from 1902 to 2011. Findings illustrate the changes in 
defining mathematical communication abilities and the requirements for student 
mathematical communication abilities in China.

13.4  Research Methods

13.4.1  Objects of Content Analysis

The data for this study are math syllabus and curriculum standards at the junior high 
level in China from 1902 to 2011. In particular, the documents from 1902 to 2000 
were selected from the Collection of primary and secondary curriculum standards 
and syllabus of the twentieth century in China (Mathematics volume), published by 
People’s Education Press and edited by Curriculum and Teaching Materials 
Research Institute. The curriculum documents after 2000 were selected from 
Mathematics Curriculum Standards for Full-Time Compulsory Education 
(Experimental version) (Ministry of Education of the People’s Republic of China, 
2001) and Mathematics Curriculum Standards for Full-Time Compulsory Education 
(2011 version) (Ministry of Education of the People’s Republic of China, 2012).

13.4.2  Procedures of Content Analysis

13.4.2.1  Content Analysis

The content analysis method was used to analyse documents. Mayring (2015) sim-
plified content analysis into three steps: deletion, interpretation and structuring. 
Texts were assessed with predetermined criteria and were coded in both inductive 
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and deductive classifications. Frequency of the keywords was counted. In this study, 
we first filtered documents with the keyword expression. An analysis framework 
was then developed to code the filtered documents.

13.4.2.2  Analysis Framework of Mathematical Communication

Mathematical communication abilities are a set of abilities revolving around receiv-
ing mathematical information through reading and understanding of mathematical 
texts and expressing mathematical ideas in written or verbal form (including math-
ematical thinking processes, problem-solving strategies and mathematical answers).

There are three types of mathematical communication: teacher-student commu-
nication, student-student communication and student-text communication 
(Nührenbörger & Steinbring, 2009). Teacher-student communication is a conversa-
tion led by the teacher, usually with a rapid introduction, and passively received by 
the students. In such a conversation, the teacher dominates the delivery of mathe-
matical concepts and mathematical thinking. Student-student communication 
entails conversations involving various levels of mathematical understandings and 
practices. Participating students are open to communicate their mathematical ideas, 
no matter the correctness or completion of the mathematical idea. Student-text com-
munication is the communication with mathematical texts, such as solving mathe-
matical problems, reading textbooks and learning mathematical concepts 
(Nührenbörger & Steinbring, 2009). In addition, students’ self-communication and 
reflection is becoming more and more important, and should be an important part of 
mathematical communication ability. In the present study, four types of communi-
cation were investigated (see Fig. 13.1).

Based on the information processing theory, mathematical communication is a 
process of receiving, processing and expressing (Zeng & Lian, 2017). Figure 13.2 
shows the various activities involved in the three phrases of the mathematical 
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communication process. Receiving exists in all three types of mathematical com-
munication: teacher-student, student-student and student-text. Processing is mainly 
implicit self-reflective thinking and communication within an individual student. 
Expressing is the process of a student presenting mathematical ideas in verbal or 
written form after receiving and processing mathematical information.

13.4.2.3 Coding Framework for Mathematical Communication

As discussed in Chap. 3, the cognitive requirements in the process of mathematical 
communication include three levels: reproduction, connection and reflection. 
Reproduction is when students express or present simple mathematical content and 
recognise information embedded in short mathematical texts. Connection is the 
transfer of others’ mathematical thinking from one carrier to another and students’ 
explanations of their thinking processes, solutions and results briefly and logically. 
Reflection is the process of understanding the meaning of complex mathematical 
texts, comparing and judging others’ mathematical thinking, and expressing one’s 
own inspection and reflection on the learning process. The coding system of math-
ematical communication was developed using the following analysis framework 
(Table 13.1).

Every single sentence from the curriculum documents was a coding unit. For 
example, the sentence “using the trajectory method to solve the drawing problem” 
was one coding unit. The content area mentioned in this sentence is geometry, coded 
as A3. The context of mathematical communication was coded as B2, since it is an 
educational context. The communication form was coded as C3, which is student- 
based communication. The cognitive requirement is a conversion (D21). Thus, the 
code for this sentence is A3B2C3D21. In a case where a sentence involved multiple 
mathematical contexts or cognitive requirements, all suitable codes were applied to 
the sentence. Two researchers who had background knowledge and experience in 
curriculum content analysis independently coded the same 20 sentences randomly 
selected from the curriculum documents. Comparison revealed that 90.7% of the 
coding results were consistent. The researchers discussed and reconciled the 
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Table 13.1 The coding framework for mathematical communication

Dimension Code Description

(A)
Content domains

A0 Comprehensive requirements

A1 Arithmetic
A2 Algebra
A3 Geometry
A4 Probability and statistics

(B)
Communication 
context

B1 Personal context

B2 Educational context
B3 Social context

(C)
Communication types

C1 Student-teacher: The teacher asks students to answer questions 
and discuss the process of mathematics, mathematical thinking 
and mathematical methods with other students. It is mainly 
about the process by which students receive and understand 
information

C2 Student-self: Students answer questions and give results by 
accepting information and carefully thinking and expressing 
mathematical conjectures or feelings about the speech of 
mathematical topics

C3 Student-text: Communication occurs between students and texts 
when students do mathematical problems, review textbooks and 
learn mathematical concepts

C4 Student-student: Students express their opinions to the 
communication objects (teachers, peers or texts) and use 
relevant mathematical knowledge and concepts to prove their 
ideas, convince and understand the objects of communication, 
listen to the mathematical ideas and strategies of 
communication objects, understand their methods of thinking, 
analyse the mathematical views expressed by others and judge 
others’ abilities to express, listen and absorb others’ ideas. It 
includes processes of acceptance, processing and expression

(D)
Cognitive 
domains

(D1)
Recognise 
& imitate

D11 Recognise: Be able to identify and select information from short 
mathematical texts

D12 Imitate: Be able to clearly express simple mathematical facts, 
such as understanding of simple mathematical content

(D2)
Connect & 
transform

D21 Transform: Recognise and select information from 
mathematical texts and understand its significance and be able 
to convert the mathematical ideas of others from one carrier 
(chart, text, symbol, object or action, etc.) to another, so as to 
facilitate further understanding

D22 Connect: Be able to express the thinking process, the solution 
and the result in a brief and logical way and be able to explain 
the explanation (correct or wrong) of the mathematical text 
made by others

(continued)
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remaining 9.3% of the coding results and reached an agreement in the end. Then all 
relevant sentences (N = 306) were coded by both researchers.

13.5  Results

We analysed curriculum and syllabus standards from 1902 to 2011 using keyword 
frequency analysis and text analysis. Findings were categorised into five time peri-
ods: 1902–1922, 1923–1951, 1952–1977, 1978–2000 and 2001–2011. The division 
of the time periods was based on the year when one curriculum reform started (see 
Chap. 1).

13.5.1  The Emergence of Mathematical Communication 
Abilities: 1902 to 1922

From 1902 to 1922, China reformed school curricula, mirroring academic systems 
in Japan, Germany, and America (Curriculum and Teaching Materials Research 
Institute, 2001). The phrase mathematical communication ability was not used in 
the syllabi or standards during this period of time (Fig. 13.3). However, some of the 
statements in these texts imply that the required mathematical communication abili-
ties at that time were abilities regarding teacher-student communication and student- 
self communication. For example, Middle School Rules Approved by Emperor, 
published in 1904, pointed out that teachers should “teach the bookkeeping . . . and 
then teach plane geometry and three-dimensional geometry, and also teach algebra” 
(Curriculum and Teaching Materials Research Institute, 2001, p. 206) so that stu-
dents could “know the application of knowledge of bookkeeping” and “the format 
of the calculation table” (Curriculum and Teaching Materials Research Institute, 
2001, p. 206). Although the term communication was not used, the statement “teach-
ers should teach” indirectly indicated that students needed to receive mathematical 

Table 13.1 (continued)

Dimension Code Description

(D3)
Reflect & 
extend

D31 Reflect: Comprehend the meaning of complex mathematical 
texts and compare and judge other people’s mathematical ideas

D32 Extend: Be able to fully present the process of a complex 
solution and argumentation; be able to compare, evaluate and 
correct the understandings of others; be able to flexibly 
transform the carrier of mathematical ideas and select the 
optimal expression carrier according to the specific situation; 
and be able to express the examination and reflection of the 
learning process so that the problem-solving process is rational, 
complete, concise and harmonious
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information and study it. After that, students needed to talk with themselves to grasp 
mathematical knowledge and understanding.

13.5.2  The Rise of Mathematical Communication Abilities: 
1923 to 1951

In 1923, the Ministry of Education of China released revised curriculum standards 
for primary, middle and high schools. The new curriculum standards listed require-
ments for mathematical communication abilities, such as requiring a teacher to 
guide, question, and teach mathematics to students. After that point, mathematical 
communication abilities started to become explicitly required in curriculum 
standards.

From 1923 to 1951, the keywords related to mathematical communication abili-
ties in curriculum standards included oral answering, asking, discussion, critical 
questioning and explanation. The different types of communication  – including 
teacher-student communication, student-self communication, student-student com-
munication and student-text communication – appeared in the documents. Among 
these, teacher-student communication had the largest percentage (70.31%) of 
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relevant sentences coded using the coding framework for mathematical communi-
cation. Student-text communication accounted for 17.15%. The percentages of 
student-self communication and student-student communication were less than 
10% (9.38% and 3.13%, respectively).

The percentages show that during this period of time, the curriculum standards 
emphasised the importance of teacher-student communication in mathematics 
teaching. Students were expected to receive mathematical information from the 
guidance of teachers. The standards required students to process mathematical 
information and express mathematical ideas according to the way trained by teach-
ers. There was little emphasis on student-self communication and student-student 
communication.

13.5.3  Student-Oriented Mathematical Communication 
Requirement: 1952 to 1977

From 1952 to 1977, the keywords that reflected mathematics communication in the 
curriculum standards were posing mathematics questions and Q&A lectures. The 
requirement of expressing one’s ideas in mathematical language was listed in the 
standards for the first time.

The percentages of relevant sentences which focused on student-self communi-
cation, student-student communication and student-text communication increased. 
As Fig. 13.3 shows, student-self communication increased from 9.38% during 1923 
to 1952 to 30.77% during 1952 to 1977. Student-text communication increased 
gradually. Student-text communication consists of students’ interactions with text-
books, mathematical problems and other written mathematical texts. At this stage, 
mathematical communication requirements were oriented around students’ behav-
iours; they emphasised that students should deal with written mathematical infor-
mation and express their ideas to others.

13.5.4  The Emphasis of Student-Student Communication: 
1978 to 2000

Since 1978, curriculum standards increased the emphasis on communication among 
students, stating that students should be able to express their views in mathematical 
language to others and discuss with each other. The proportion of student-student 
communication in curriculum standards increased from 7.69% to 20.49% (Fig. 13.3). 
For example, in 1988, the mathematical syllabus listed “expressing one’s thoughts 
and opinions concisely” as one of the purposes of schooling (Curriculum and 
Teaching Materials Research Institute, 2001, p. 553). In 1992, the syllabus put for-
ward that “students have the ability to expound their thoughts and conceptions using 
mathematical language correctly” (Curriculum and Teaching Materials Research 
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Institute, 2001, p. 605). In 2000, teacher-student interactions and student-student 
interactions were prioritised in the curriculum standards.

The shift from teacher-student communication to student-oriented communica-
tion in curriculum standards shows the increasing recognition of student-centred 
learning in mathematics. Students are expected to express their mathematical ideas 
to teachers or classmates. They should use relevant mathematical knowledge and 
abilities to prove their ideas and convince others. At the same time, students are 
required to listen to others to understand their mathematical ideas, strategies and 
ways of thinking.

Some examples of the keywords related to mathematical communication abili-
ties during this period included explanation using examples, heuristic teaching, 
and explaining mathematical ideas. The frequency of keywords focused on math-
ematical communication abilities in curriculum standards offered us some insights 
on the emphasis of student-student communication from 1978 to 2000 (Fig. 13.4). 
All three phases of the mathematical communication process can be found in the cur-
riculum standards. Teacher-student communication is found in teachers’ under-
standing, guiding, and conducting heuristic teaching as students receive 
mathematical information. Student-self communication is found in students reflect-
ing and thinking on the information they received. Student-student communication 
is found in students questioning, expressing, and communicating their mathemati-
cal ideas to others.

11

45

8

44

23

11

70

12

0 20 40 60 80

heuristic teaching

guiding

understanding

reflecting thinking

collaboration and communication

questioning

communication

expression

Fig. 13.4 Frequency of requirements for mathematical communication abilities in curriculum 
standards

Y. Chen et al.



247

13.5.5  Collaboration-Oriented Mathematical Communication: 
2001 to 2011

From 2001 to 2011, attention to the phases of mathematical communication 
changed. The requirement for expressing mathematical ideas increased from 
34.48% to 43.48%, while attention given to receiving mathematical information 
decreased from 53.45% to 31.06% (Fig. 13.5). Some examples of the keywords on 
mathematical communication in curriculum standards included inspirational teach-
ing, communication and interaction, communicating with mathematical languages, 
collaboration and questioning.

The focus on collaboration and communication was one significant feature dur-
ing this period of time. The terms collaboration and communication appeared 23 
times in the curriculum standards. The Mathematics Curriculum Standards for 
Compulsory Education (2011 version), published in 2012 (Ministry of Education of 
the People’s Republic of China, 2012), highlighted that the goal of mathematical 
communication is to learn to communicate with others.

13.5.6  Other Changes in Requirements for Mathematical 
Communication Abilities

Since there was no clear expression on mathematical communication abilities in 
curriculum standards from 1902 to 1922, the changes in requirements on mathemat-
ical communication abilities presented here are from 1923 to 2011. We looked at the 
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changes from three perspectives: mathematical content areas, cognitive require-
ments and communication contexts.

13.5.6.1  Changes in Terms of Mathematical Content Areas

Throughout nearly 100 years, the requirements for mathematical communication 
abilities in different mathematical content areas have changed dramatically. Some 
mathematical content received almost 15 times more attention in 2011 as compared 
to 1923, while the emphasis on some math content dropped 20% (Fig. 13.6).

As shown in Fig. 13.6, the comprehensive requirements content area received the 
most attention from 1923 to 2011. This illustrates that mathematical communica-
tion skills are a set of comprehensive abilities, such as mathematical reasoning and 
mathematical representation, which cannot be achieved overnight (Cai & Xu, 2016). 
The content areas that increased the most in attention were probability and statistics. 
The percentage of requirements for mathematical communication abilities in prob-
ability and statistics increased from 2% (in the period from 1923 to 1951) to 31% 
(in the period from 2001 to 2011). Such a huge increase reflected the changes of 
requirements for the teaching and learning of probability and statistics in curricu-
lum standards. With the rapid development of economy in China, people likely 
realised the importance of attaining certain probability knowledge, such as the dif-
ference between uncertainty thinking and mathematical certainty thinking, 
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statistical thinking and inductive inference in probability statistics (Ministry of 
Education of the People’s Republic of China, 2018). The standards also stated that 
teachers should let students experience simple data collection and organising pro-
cesses. Student would then understand some data collection methods such as sur-
veys and assessments and could present the results in various representations, such 
as texts, pictures and tables. Students would engage in activities such as collecting, 
describing and analysing data; evaluating and communicating; understanding the 
necessity of sampling; and experiencing the use of samples to make estimations or 
predictions. Students would accumulate relevant mathematical-activity experience 
in collaborating and communicating with others.

In mathematical content areas such as algebra, arithmetic and geometry, there 
were few changes in the requirements. When examined in detail, most of the changes 
were to requirements for basic abilities such as reading tables, performing calcula-
tions, and validating solutions. China issued a series of notices and notifications to 
adjust the teaching requirements on various content areas between 1952 and 1977. 
Although more than 70% of the teaching requirements focused on algebra, arithme-
tic and geometry, there were few requirements on mathematical communication 
abilities. For instance, when solving fraction equations, students were required to 
test whether there was an extraneous root. No discussion was needed (Curriculum 
and Teaching Materials Research Institute, 2001, p. 360).

13.5.6.2  Changes in Cognitive Demands

A total of 306 coding units with a focus on cognitive demands were analysed. As 
mentioned in the methods section, we categorised three levels of cognitive demands: 
recognise and imitate (level 1), connect and transform (level 2), and reflect and 
extend (level 3). In general, there was an increased requirement for the high-level 
cognitive demands throughout the past 80 years (Fig. 13.7).

The percentage that referred to the highest-level cognitive demands for mathe-
matical communication increased almost 20% over the past 80 years. In the period 
from 1923 to 1951, only 27% of the 306 units in curriculum documents related to 
the level 3 cognitive demands, but in 2001, the percentage of level 3 reached 43%, 
which was the highest among all three levels. The percentage of level 1 cognitive 
demands decreased from 35% to 18% over the past 80 years, except for an unex-
pected rise to 59% in the period of 1952 to 1977. Similar changes happened to level 
2. From 1923 to 2011, the percentage of connect and transform related to mathe-
matical communication remained fairly stable at about 40%, except for a dramatic 
drop to 12% during the period of 1952 to 1977. Further studies could be conducted 
to explore the potential reasons for the substantial changes during that period.

After coding and classifying the 306 units in curriculum documents, we com-
piled the results in Fig. 13.8.
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The majority of the mathematical communication context in curriculum stan-
dards is the educational context (95%). The personal and social contexts mainly 
appeared after 2001. Within the educational context, almost half of contexts require 
teacher-student communication (48.80%). 21.31%, 11%, and 18.9% of educational 
contexts initiate student-text communication, student-student communication, and 
student-self communication respectively. Since teacher-student communication 
plays a dominant role in mathematical communication, it is vital to promote teacher- 
student communication to support students’ mathematical learning.
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13.6  Conclusion

In general, we found that mathematical communication abilities in curriculum stan-
dards over the past hundred years were defined in four types: teacher-student com-
munication, student-self communication, student-student communication, and 
student-text communication. The development of the definitions and requirements 
of mathematical communication abilities in China went through five phases: the 
emergence of mathematical communication abilities from 1902 to 1922; the rise of 
mathematical communication abilities from 1923 to 1951; student-oriented mathe-
matical communication abilities from 1952 to 1977; the emphasis of student- student 
communication from 1978 to 2000; and collaboration-oriented mathematical com-
munication from 2001 to 2011.

Mathematical communication is defined as a process of receiving, processing 
and expressing mathematical information and ideas. Among all four types of math-
ematical communication abilities, teacher-student communication plays a dominant 
role in curriculum documents in China. Starting from the curriculum reform in 
1952, there was a shift from teacher-student communication to student-oriented 
communication in the curriculum standards requirements. More emphasis was 
placed on student-student, student-self, and student-text communication.

In thinking of the research question regarding changes to the requirements for 
mathematical communication abilities, we found considerable changes to the 
requirements in terms of mathematical content areas, cognitive demands, and com-
munication contexts. Over the past hundred years, there has been a substantial 
increase in the requirements for mathematical communication abilities in probabil-
ity and statistics and high-level cognitive demands (e.g., level 3, reflect and extend). 
The percentages of mathematical communication abilities requirements for the 
comprehensive requirements content area and educational context remain at half 
or above.

With the development of mathematics curricula, the standards have put emphasis 
on the requirements of mathematical communication abilities comprehensively. 
The four objectives of the current mathematics curriculum for compulsory educa-
tion all have a focus on mathematical communication abilities. For example, in 
relation to objectives of problem-solving, students “should experience problem- 
solving collaboratively with others and explain their own thinking ways . . . and 
communicate with others and can understand others’ thinking ways and conclu-
sions” (Ministry of Education of People’s Republic of China, 2012, p. 14). In addi-
tion, the objectives of emotion, attitudes and values include requirements for 
mathematical communication abilities – namely, students should “dare to express 
their own ideas. . . develop habit for collaborative communication” (p. 15).

The current curriculum standards place high demands on mathematical commu-
nication. After implementing the mathematics curriculum, the development of stu-
dents’ mathematics communication ability has reached the curriculum goal to a 
certain extent. The next chapter will investigate and analyse the students’ mathe-
matical communication ability.
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14.1  Introduction

Chapter 13 traced the history and the development of mathematical communication 
abilities in mathematical curriculum standards in China. Since mathematical com-
munication ability is listed as a core requirement in curriculum standards in China 
and other countries, it is reasonable and necessary to examine the status quo of 
students’ mathematical communication abilities. In this chapter, we present a study 
of a group of eighth-grade students’ mathematical communication abilities in 
China. The purpose of the study was to investigate the level of mathematical com-
munication abilities among this group of middle school students in China and 
explain the implementation of the intended curriculum in regard to mathematical 
communication abilities.

14.2  Literature Review

Mathematical communication abilities are included in mathematics curricula in dif-
ferent countries. On one hand, mathematics curriculum standards clarified connota-
tions of mathematical communication abilities, on the other hand, have paid 
attention to the assessments of such abilities.

Mathematics curriculum standards for middle schools in Germany propose one 
mathematical competencies assessment model which includes mathematical core 
ideas and three requirement dimensions (Kultusministerkonferenz, 2004). They 
propose that in the dimension of reproduction, students should express simple math-
ematical facts orally and in written form; in the dimension of relationship construc-
tion, students should understand and formulate mathematical consideration, solving 
processes and solutions; and in the dimension of generalisation and reflection, stu-
dents should represent complex mathematical facts orally and in written form. 
Curriculum and Evaluation Standards for School Mathematics states that students’ 
mathematical communication abilities should be assessed in three aspects: (1) 
expression of mathematical ideas orally or through mathematical writing, proof, 
and visual description; (2) understanding and commentary on mathematical ideas 
presented in words, verbal communication or visual presentations; and (3) use of 
mathematical language to present mathematical ideas, describe relationships and 
build models (National Council of Teachers of Mathematics [NCTM], 1989). All 
three aspects in the standards emphasise the way students are expected to commu-
nicate mathematical ideas. Teachers should pay attention not only to how students 
communicate their own mathematical ideas, but also to how students understand 
others’ mathematical ideas (NCTM, 1989).

International comparative programs have also provided assessments of mathe-
matical communication. For example, PISA identified three levels of mathematical 
communication abilities focused on cognitive development. The first level is 
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reproduction, in which students present their understanding of basic mathematical 
content in oral or written form. The second level is connection, referring to students 
interpreting the connection between mathematical facts and understanding others’ 
oral or written narratives of the mathematical facts. The third level is reflection, 
meaning students read mathematical materials and then present their mathematical 
ideas about these mathematical materials in oral or written form (Organisation for 
Economic Co-operation and Development, 2009). Students’ mathematical commu-
nication abilities could be assessed with these three levels.

Researchers have also focused on assessments of mathematical communication 
abilities. Cai et al. (1996) pointed out that from the perspective of assessment instru-
ments, open-ended questions could provide students with the opportunity to demon-
strate their thinking processes, interpretations and argumentation. Open-ended 
questions could also be used to investigate the mathematical communication abili-
ties of students. Cai et al.’s study identified five levels of student performance. Cai 
et al. defined the quality of students’ mathematical communication in terms such as 
accuracy and clarity. Representation was also examined to study the way students 
communicated mathematics (e.g., mapping, mathematical representation). Santos 
and Semana (2015) focused on concrete components of mathematical communica-
tion abilities. Their study concerned expository writing in mathematics and investi-
gated how four eighth-grade students performed three expository writing tasks. The 
four students worked in a group and were assisted by feedback and the use of sup-
porting assessment documents. The study found that the assessment strategies con-
tributed to development in the students’ expository writing, particularly regarding 
interpretation and justifications.

Technology has also played an important role by investigating and assessing 
mathematical communication abilities. Herheim (2015) investigated students’ 
mathematical communication while students worked with geometry at a computer 
and especially focused on identifying and characterising good communication prac-
tices. The study was concerned with how to communicate mathematics through 
joint reflections between students and teachers while they shared a stand-alone 
computer with Geoboard software.

Studies on mathematical communication abilities implemented by Chinese 
scholars were reviewed. There were few studies focused on assessing communica-
tion abilities. Su (2003) examined the status of mathematical communication among 
middle school students. He mainly developed one questionnaire and implemented it 
in one school. Results showed that students had not attached importance to mathe-
matical communication in the classroom. Outside the classroom, students’ commu-
nication aimed at asking questions instead of talking and discussing interactively. 
Hu and Zhao (2007) explored assessments of mathematical communication abili-
ties. They concluded that there were five elements of mathematical communica-
tion  – which were application of mathematical language, application of 
mathematical basic knowledge, visualisation of mathematics, problem-solving 
aspect and attitude of communication of mathematics – then suggested that every 
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element could be assessed from three different cognitive levels. They proposed one 
assessment framework but did not examine it.

Recently, some case studies on developing mathematical communication have 
been published. Zhang et al. (2019) were concerned with students’ communication 
while posing mathematical problems. They developed teaching cases for mathemat-
ical communication in problem-posing. Deng and Xia (2019) explored a teaching 
model for mathematical expression. They explained that the mathematics curricula 
in China paid more and more attention to communication in mathematics. In order 
to make the intended curriculum realistic, on the one hand, corresponding teaching 
cases should be developed and analysed; on the other hand, the status quo of stu-
dents’ mathematical communication abilities need to be investigated. It is important 
for teachers to try to understand students first.

This chapter examines students’ mathematical communication abilities and 
explores their performance in mathematics communication. The research questions 
include the following: Which level of mathematical communication abilities have 
eighth-grade students reached? Are there gender differences in mathematical 
communication?

14.3  Methods

14.3.1  Participants

In this study, a stratified sampling method was adopted to select eighth-grade 
students as participants. First, based on the geographical location and economic 
development status (including developed, medium-developed, and less-developed), 
eight regions were identified nationwide. One city (capital city of province) was 
selected from each region. Then in each city, three or more schools were randomly 
chosen. Finally, at each selected school, one or two classes were selected for the 
purpose of participating in the test of mathematical communication. All students 
from the selected classes were asked whether they would like to participate in the 
test. A few students went to attend activities because they did not want to participate 
in the math test. Details about participants are shown in Table 14.1.

Table 14.1 Information of participants

Developed 
area

Medium- 
developed area

Less-developed 
area Total

Cities A D E B C F G H 8
Number of participating schools 4 3 3 3 3 3 3 6 26
Total number of participating 
students

171 80 107 137 119 180 154 244 1192
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14.3.2  Instrument

14.3.2.1  Framework for Developing Test Items

We first reviewed literature about investigating and assessing mathematical com-
munication abilities. Then we analysed the characteristics of Chinese mathematics 
curricula and determined three mathematical communication ability levels: namely, 
recognition and imitation (level 1), connection and transformation (level 2), and 
reflection and extension (level 3). At each level, there were particular associated 
ability performances. All these are shown in Table 14.2.

According to the descriptions of the ability performances, we developed four test 
tasks which corresponded to each level respectively. When students finished one 
task at a certain level correctly, it revealed that students’ communication abilities 
reached the given level.

Table 14.2 Mathematical communication ability levels and corresponding performance

Ability level Connotation Ability performance

Level I: 
recognition and 
imitation

Be able to understand the 
meaning of simple texts 
and express simple 
mathematical facts and the 
process of simple 
mathematical 
communication

(a) Be able to recognise and select information 
from short mathematical texts
(b) Be able to clearly express simple 
mathematical facts, such as understanding of 
simple mathematical content

Level II: 
connection and 
transformation

Be able to understand the 
meaning of complex texts, 
express complex 
mathematical 
understanding and explain 
the mathematical ideas of 
others

(a) Be able to recognise and select information 
from mathematical texts and understand its 
significance and be able to transform the 
mathematical ideas of others from one carrier 
(chart, text, symbol, object, action, etc.) to 
another, which is convenient for further 
understanding
(b) Be able to express the thinking process, the 
solution and the result in a brief and logical way 
and be able to explain the description of the text 
of the mathematical class (correct or incorrect) 
on the basis of judgment

Level III: 
reflection and 
extension

Be able to understand the 
meaning of complex texts, 
express one’s own solution 
with an appropriate carrier, 
and evaluate others’ and 
their own mathematical 
ideas

(a) Be able to grasp the meaning of complex 
texts and compare and judge others’ 
mathematical thoughts
(b) Be able to design a program that completely 
presents a complex solution and be able to 
compare, evaluate and correct the understanding 
of others; flexibly transform the carrier of 
mathematical thought; choose the optimal 
expression carrier according to the specific 
situation; and express the inspection and 
reflection of the learning process so that the 
problem-solving process is reasonable, 
complete, concise and harmonious
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Situations Used in Items

Three kinds of situations were considered while developing test items – namely, 
individual situations, educational situations and social situations. Individual situa-
tions referred to the daily behaviour of students–for example, watching TV or play-
ing computer games. Educational situations related to school life – for example, 
subject knowledge or examinations. Social situations referred to community or 
economic development – for example, financial problems or census of population.

Type of Test Items

Fill-in questions and open-ended questions were developed for this study. Open- 
ended questions could provide students with opportunities for developing their 
higher-order thinking. The questions were related to real complex problems. While 
solving such problems, students should identify problems using mathematical lan-
guage. Open-ended questions were intended to investigate and assess mathematical 
communication abilities at higher levels (Shepard, 2000). The fill-in questions were 
developed for assessing whether students could understand the text and explain 
their ideas briefly. So fill-in questions were used for assessing communication abili-
ties at the lower level.

Type of Communication

This study adopted three types of mathematical communication: mathematical dia-
logue, writing and reading. Different types of communication could provide oppor-
tunities for students to perform at different levels of communication abilities. For 
instance, the task 2 and 3 used in the study stimulated different mathematical 
dialogues.

[Task 2] Number transformation
In a mathematics transformation game, we call the integers 0, 1, 2 . . . 100 “old 
numbers”. The game’s transformation rule is: the old number is squared first and 
then divided by 100; the resulting number is called the “new number”.

 1. How do you transform the old number 80 into a new number according to the 
above rules? Please describe the transformation process.

 2. After the above rule transformation, we found that many new numbers have 
become smaller. Xiao Min asserted: “According to the above transformation 
rules, all new numbers are not equal to its old numbers.” But Xiaoping disagrees 
with Xiao Min’s statement. She believes: “There must be situations where the 
new numbers equal the old numbers.” You support whose opinion? Please give 
further reasons.
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This task invited students to have dialogue with each other mathematically. For 
the first question, students could directly use the rules to get a result. It was a simple 
process that students could explain. This item reflected level 1 of mathematical 
communication abilities. For the second question, students needed to propose their 
conclusions and argue them. This required students to make a judgement based on 
dialogue instead of recognising results directly.

[Task 3] Donation for students
The number of scholars who donated funds in 2010 and 2011 is shown in Fig. 14.1. 
Xiaonan said: “This picture reflects the dramatic increase in the number of dona-
tions to schools from 2010 to 2011.” Do you think this picture does reflect Xiaonan’s 
so-called dramatic increase? Please give a specific explanation.

This task described a public event from a social situation. The opinion of Xiaonan 
could initiate students to think and explain their viewpoint. The task simulated a 
mathematical dialogue between Xiaonan and the students. Students needed to eval-
uate and correct Xiaonan’s mathematical understanding on the basis of compre-
hending the diagrams and Xiaonan’s views. From the perspective of calculating the 
growth rate or the amount of growth, students could point out that the diagram 
showed a “slight increase” situation. So they could deny Xiaonan’s view. Or they 
could explain the irrationality of the drawing. This task was aimed at assessing stu-
dents’ mathematical communication abilities at the level of reflection and extension.

The task 4 in this study presented a social situation which would be discussed 
through mathematical writing.

[Task 4] Two views that are contradicting
The education expenditure and public finance expenditure of the government of a 
certain place for two consecutive years are shown in Table 14.3 (Note: Public 
finance expenditure includes education expenditure; at the same time, the inflation 
rate during the 2 years is not considered).

520

515

510

505

N
um

ber of scholars w
ho donated funds

2010 2011

Fig. 14.1 The number of 
scholars who 
donated funds
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Some people say that from the above table, it can be seen that from 2010 to 2011, 
education expenditure increased, but some people say it decreased. Please use the 
above data to explain the perspective from which these two seemingly contradictory 
views were put forward. Please give further explanation.

The two mathematical viewpoints in the task seem to be contradictory, but they 
are actually caused by different perspectives: absolute expenditure and relative 
expenditure. This task requires students to flexibly combine data according to their 
needs and explore the source of contradictory views, which is a requirement for 
reflection and expansion. Students needed to write text using mathematical lan-
guage to explain different viewpoints. For example, in order to explain the “decrease” 
viewpoint, it could be stated that “education expenditures account for a decrease in 
the proportion of public finance expenditures”. It could also be stated that “the 
growth rate of education expenditures is smaller than that of public finance expen-
ditures”, and it could also be stated that “for every 100 million yuan of public 
finance expenditure, the proportion of education expenditure has decreased”. This 
required a high level of mathematical communication abilities.

The task 1 in this study required students to read and understand mathematics 
information in the situation.

[Task 1] Meeting a cat during an outing
Xiaolin drove out for an outing. A cat rushed to his car on the way. Xiaolin braked 
hard, and the cat slipped away. Xiaolin was frightened and decided to drive back 
and take a shorter way. Figure 14.2 is a partial image of the speed change during 
this period.

 1. According to Fig. 14.2 (speed-time image), the fastest speed driven by Xiaolin 
was ______________; to avoid the cat, Xiaolin hit the brake at the time of 
______ (fill in the time).

 2. Use the following description to complete the speed-time image:
When Xiaolin hit the brake, the car’s speed was reduced to 12 km/h. Then, he 

started to step on the accelerator, and the speed reached 36 km/h at 9:09. He 
slowed down gradually and arrived home at 9:12.

 3. From 9:00 to 9:12, during which period of time do you think Xiaolin’s driving 
speed increased the fastest? ______________

The task required students to read the text and graph and identify mathematical 
information to solve problems. The first question required students to directly 
extract information from the speed-time graph, which is a requirement for recogni-
tion and imitation. In order to complete the second and third questions, students 
needed to establish the connection between the text and graph, convert the text 
information into graph information, and convert the graph information into text 
information. This is a requirement for connection and transformation.

Table 14.3 Education expenditure and public finance expenditure

2010 2011

Education expenditure 75 million yuan 80 million yuan

Public finance expenditure 500 million yuan 600 million yuan
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14.3.2.2  Information of Test Items

The test comprised four tasks that referred to seven mathematical items, which cov-
ered different mathematical content  – namely, numbers, algebra, probability and 
statistics. Table 14.4 lists the information of the test items.

14.3.3  Data Analysis

A total of 1192 students from eight cities attended the test on mathematical com-
munication abilities. Each response made by participating students was coded using 
a double coding system. The students’ responses to each item corresponded to a 
two-digit number. The first number represented the correctness of solving tasks: 1 
for a correct result, 0 for an incorrect result. The second number represented a diag-
nostic code to identify the form of representation (word, number, or graphic repre-
sentation) and the problem-solving strategy (solving equations or conjecture).

Task 1 consisted of three question items. The first question included two blanks 
which were to be filled in. The first blank asked students to read the graph and find 
out the quickest speed from Fig. 14.2; students needed to fill in the value and unit. 
So the coding framework distinguished the correctness of the value or unit. The 
second blank asked students to identify the moment when the brake was used. 
Table 14.5 shows the coding framework for the first question of task 1.

The second question of task 1 required students to make graphs based on the 
situation. There were two correct solving strategies. Some students determined the 
speed at turning point 9:09 and the final speed at 9:12, the two speeds were 
connected by the line segment (#1). Some students determined the speeds at 9:09 

Fig. 14.2 Speed change during Xiaolin’s outing
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and 9:12, and the two speeds were connected by a curve (#2). Table 14.6 shows the 
coding framework for the second question of task 1.

To solve the third question of task 1, students needed to consider the ratio of 
speed increment and the time interval. There were two correct solutions. Some stu-
dents calculated the slope of each line segment and then found that the second seg-
ment had the largest slope, so the result was 9:01–9:03 (#1). Some students treated 
the first two segments as a whole and compared the acceleration with the 

Table 14.4 Information of test items

Task/
item

Mathematical 
content

Mathematical 
communication 
ability level

Type of 
situation Type of test item

Type of 
communication

1(1) Numbers and 
algebra

Level 1 Individual 
situation

Fill-in question Mathematical 
reading

1(2) Numbers and 
algebra

Level 2 Individual 
situation

Open- ended 
question

Mathematical 
reading

1(3) Numbers and 
algebra

Level 2 Individual 
situation

Fill-in question Mathematical 
reading

2(1) Numbers and 
algebra

Level 1 Educational 
situation

Open- ended 
question

Mathematical 
dialogue

2(2) Numbers and 
algebra

Level 2 Educational 
situation

Open- ended 
question

Mathematical 
dialogue

3 Probability and 
statistics

Level 3 Social 
situation

Open- ended 
question

Mathematical 
dialogue

4 Number and 
algebra

Level 3 Social 
situation

Open- ended 
question

Mathematical 
writing

Table 14.5 The coding framework for the first question of task 1

Task (item)
1(1) The first code The second code

The first 
blank

Code Code
1 Correct 

result
11 Both the values and units are correct, such as 

60 km/h
12 The value is correct, while the unit is missing
13 The value is correct. The unit is in both Chinese and 

English, such as 60 km/小时
0 Incorrect 

result
01 The value is correct, but the unit is incorrect, such as 

60 km/t.
02 The value is incorrect./。
03 Irrelevant content
04 Blank

The second 
blank

1 Correct 
result

11 Correct result, 9:07

0 Incorrect 
result

01 Wrong time
02 Wrong time interval, such as 9:03–9:06
03 Blank
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acceleration after braking; then they found that the former acceleration was larger, 
so the result was 9:00–9:03 (#2). Table 14.7 shows the coding framework for the 
third question of task 1.

In the study, seven items from the four tasks corresponded to the coding frame-
work. All responses made by participating students were coded based on such 
frameworks. All data driven by coding approaches were analysed with reference to 
performance of mathematical communication abilities.

14.4  Findings

14.4.1  The Status Quo of Participating Students’ Mathematical 
Communication Abilities

Students’ performances on each task or item were analysed. The data showed that 
the average rates for students correctly solving the items at level 1 and level 2 were 
86.3% and 83.3%, respectively. The average rates for correctly solving the items at 
level 3 was 37.6%. The students performed very well while solving the second task 

Table 14.6 The coding framework for the second question of task 1

Task 
(item)
1(2) The first code The second code

Code Code
1 Correct result 11 Solving strategy #1

12 Solving strategy #2
0 Incorrect 

result
01 Half drawing correctly (correct speed at 9:09)
02 Only showing the trend on “add first and then 

subtract”
03 Irrelevant drawing
04 Blank

Table 14.7 The coding framework for the third question of task 1

Task (item)
1(3) The first code The second code

Code Code
1 Correct result 11 Solving strategy #1

12 Solving strategy #2
0 Incorrect result 01 Irrelevant period of acceleration, such as 9:08–9:09

02 No period of acceleration
03 No time period
04 Blank
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(number transformation), which referred to level 2 of mathematical communication 
abilities. The average rates of correctly solving the first and second questions of the 
second task were 96.0% and 89.8%. The problem setting of the second task was a 
pure mathematical situation in the educational context, which was similar to daily 
mathematical exercises experienced by students. It can be speculated that the stu-
dents performed well because they were more familiar with the situation. However, 
the accuracy rate of the second fill-in for the first question of task 1, which referred 
to level 1 of mathematical communication abilities, was only 67.8%, which was far 
from the other two items at the same target level (95.1%, 96.0%). The overall per-
formance was shown in Fig. 14.3.

Further, we found that the majority of participating students (71.2%) solved 
mathematical communication tasks at level 1 and level 2 correctly. In other words, 
most students can understand the meaning of relatively complex mathematical texts, 
can express relatively complex mathematical understanding, and can explain other 
people’s (correct or incorrect) mathematical thoughts. A small number of students 
(15.4%) solved all tasks correctly. Such students can understand the meaning of 
complex mathematical texts, can express their own solutions with appropriate carri-
ers, and can evaluate other people’s and their own mathematical ideas, especially 
via the inspection and reflection of the learning process, which strengthens the ratio-
nality, integrity, simplicity, and harmony of the problem-solving process. There 
were also a small number of students (13.4%) who could only understand the mean-
ing of simple texts, organise existing mathematical information, and express simple 
mathematical facts in a relatively clear way.

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

1(1)1 1(1)2 2(1) 1(2) 1(3) 2(2) 3 4

95.1%

67.8%

96.0%

74.3%

85.7%
89.8%

30.9%

44.3%

Fig. 14.3 The rates for students correctly solving tasks at three different levels
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14.4.2  Characteristics of Solving Mathematical 
Communication Tasks

As mentioned above, the students’ performances on each item corresponded to a 
two-digit code. The first digit indicated the correctness, and the second code repre-
sented students’ problem-solving strategies, forms of mathematical communica-
tion, etc. Through the analysis of the second code of each item, we can investigate 
the characteristics of students’ mathematical communication.

The data indicated that if the questions of the tasks contained numbers, students 
were more inclined to choose the operations of these numbers to express mathemat-
ical information. For example, the first question of task 2 (number transformation) 
asked students to describe the process of transforming the number 80 into a new 
number (see the original question mentioned under Sect. 14.3.2.2). 85.9% of stu-
dents used numerical formulas to perform operations to express the transformation 
process. The second question of task 2 described a dialogue situation and required 
students to make a judgement. The question was as follows:

After the above rule transformation, we found that many new numbers have 
become smaller. Xiao Min asserted: “According to the above transformation rules, 
all new numbers are not equal to its old numbers.” But Xiao Ping disagrees with 
Xiao Min’s statement. She believes: “There must be situations where the new num-
bers equal the old numbers.” You support whose opinion? Please give further reasons

Earlier in the task, it was mentioned that the integer contained 0, 1, 2 . . . 100. 
66.6% of the students selected one or two concrete numbers and calculated results, 
then made a judgement about “there must be situations where the new numbers 
equal the old numbers”. The following is one example of a student’s solution.

 

We observed that 15.5% of students set unknowns, formulated equations and 
solved them, then made a judgement. One example of such a solution is as 
follows.

I supported Xiao Ping’s statement.

 

0

100
0

100

100
100

2 2

= =,
 

So there are situations where the new number is equal to the old number.

14 Chinese Eighth Graders’ Competencies in Mathematical Communication



268

 

 

By solving other mathematical communication tasks, the students identified sim-
ilar characteristics. Task 4 was about two views that were contradicting. This task 
gave two sets of determined data from 2010 and 2011. Students tended to choose 
different combinations of the data to solve problems. The data analysis found that 
62.3% of students focused on number calculations to analyse the clues behind the 
two views. Among them, 51.1% of the students correctly used numbers to illustrate 
the two seemingly contradictory views. One example is shown in the following:

 

Let the old number be x

Tested, while x = 0, 
x

x
2

100
0= = ; while x = 100, 

x
x

2

100
100= =

Answer: I supported Xiao Ping’s opinion, because the new numbers of 0 and 
100 are equal to the old numbers.
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However, when students explained their opinion using pure word expression, only 
33.2% of them could explain their statements correctly. For example, they explained, 
“The increase in education expenditure is based on the amount of expenditure; the 
reduction in education expenditure is based on the ratio of education expenditure to 
public financial expenditure.” Most students could not clarify their opinions using 
word expression; for example, they provided unclear explanations such as the fol-
lowing: “The first opinion considered education expenditures, and the second con-
sidered education expenditures and public financial expenditures together.”

The analysis showed that students seemed to be unfamiliar with social situations 
in a mathematical context. When they dealt with task 3 and task 4, students did not 
realise how to translate social situation into relevant mathematical problems. They 
could not find mathematical information behind situations; they used explicit social 
information or life experiences that they could read to explain statements or make 
judgements. Facing task 3 and task 4, students could not perform mathematical 
communication abilities to some extent.

14.4.3  Gender Differences in Mathematical Communication 
Problem-Solving Strategies

14.4.3.1  Gender Difference in Performance 
of Mathematical Communication

The gender difference in mathematical learning is a hot topic in mathematics educa-
tion research. One view is that girls’ language expression ability is better than boys’, 
but that they are inferior to boys in terms of spatial ability. Some studies showed that 
compared with boys’ tendencies to use abstract problem-solving strategies, girls 
prefer specific strategies (Liu & Sha, 2012); that is, boys are more inclined to choose 
simple and concise mathematical expressions than girls. However, with the devel-
opment and implementation of large-scale international evaluation projects, such 
conclusions have been refuted by researchers, who pointed out that gender differ-
ences are gradually decreasing and are far from being as big as imagined (Spelke, 
2005). Actually, the debates driven by different researchers raised attention for gen-
der research on mathematics teaching and learning.

The increase is proposed from the perspective of the amount of expenditure, 
namely 75 million yuan <80 million yuan.
The reduction is proposed from the perspective of the ratio of education 
expenditure to public financial expenditure, namely
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In this study, we paid more attention to characteristics of problem-solving strate-
gies of mathematical communication tasks from the gender perspective. Of the 
1192 students, 51 did not indicate gender, so 1141 students were analysed. Among 
them, 564 students are girls.

The data analysis showed that in the tasks at level 2 (task 1[2], 1[3], 2[2]) the 
correctness rate of girls was higher than that of boys. For performance of the tasks 
at level 3 (tasks 3, 4), the correctness rate of boys was higher than that of girls. The 
overall correctness rate of girls and boys is shown in Fig. 14.4.

From the analysis of the correctness rate of each item, we found that the perfor-
mance gap between boys and girls in the second fill-in of the first question of task 1 
is the largest, with a difference of 10.6%. From the perspective of situation, girls 
performed better than boys in educational situation tasks. For example, in task 2, 
girls’ correctness rates for the two questions were 96.8% and 90.1%, respectively, 
slightly higher than the boys’ 95.5% and 89.8%. But in social situation tasks, girls’ 
performances were inferior to boys. For example, in tasks 3 and 4, the gap between 
boys and girls was larger than that in the educational situation tasks, with a differ-
ence of 8.9% and 3.9%, respectively.

14.4.3.2  Gender Differences in Mathematical Communication 
Problem-Solving Strategies

We found that compared with boys’ tendencies to use abstract problem-solving 
strategies, girls preferred specific strategies. Boys are more inclined to choose sim-
ple and capable mathematical expressions than girls. This feature was mainly 
reflected in task 2.

Take the first question of task 2 as an example. More than half the students set a 
column formula and found a solution, such as the following:
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Fig. 14.4 Correctness rate of girls and boys in different tasks
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This is a simple and clear strategy, and 65.4% of boys and 54.7% of girls used 
this strategy.

Alternatively, 18.9% of the girls chose to use a word-expression strategy, which 
was slightly higher than the ratio of boys (14.8%). Following is an example:

 

The third strategy is to combine the methods of setting column formula and 
using word expression. Girls were more inclined to choose words expressions than 
boys and even supplement words in the column formula, such as the following:

 

Take the second question of task 2 as an example. Of the boys, 67.5% just 
guessed the counterexample directly without formulating the equation, but 43.1% 
of girls formulated equation and express their solution. For the strategy of formulat-
ing and solving an equation, 49% of girls supposed an unknown number and set an 
equation, but only 27.5% of boys used such a strategy. Since task 2 did not stipulate 
that students must choose a certain strategy or exhaustive counterexamples – that is, 
as long as they could express the correct counterexamples – it can be judged that 
students met the question’s requirements for mathematical communication. Boys 
tended to choose a relatively simple strategy, which only required guessing the 
counterexample and then verifying it, but this strategy may lead to the inability to 
exhaust all counterexamples; the solving equation strategy that girls tended to 
choose required relatively lengthy writing.

In solving task 4, students did not perform very well and made different kinds of 
mistakes. Among the boys, 43.3% described the two perspectives in a reasonable 
way, but the descriptions were too general and the correspondence was not clear – 
37.5% of the girls made such mistakes, slightly lower than that of the boys. 
Mathematical communication pursues simple and accurate mathematical 

Because 80 is an old number, according to the transformation rules, first 
square 80, and then divide by 100 to get the new number.

First square 80, 

then 6400 is divided by 100, . 
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expression, but too much pursuit of simplicity will bring the risk of reducing accu-
racy. Therefore, students need to learn how to keep the balance in communication.

14.5  Conclusion and Discussion

The results of this study found that eighth-grade students in China performed well 
in the mathematical communication tasks at level 1 and level 2. That is, students can 
understand the meaning of complicated mathematical texts, can express compli-
cated mathematical understandings, and can explain other people’s (correct or 
incorrect) mathematical thoughts, but there is a lack of reflective thinking, and there 
are obstacles to evaluating and correcting others’ opinions.

Mathematics provides powerful, concise and accurate tools to exchange infor-
mation. Students should be given the opportunity to read, write and talk about math-
ematics in a variety of ways (Cockcroft, 1982). However, traditional mathematics 
teaching styles tend to neglect the descriptiveness and transitivity of mathematics. 
Students have few chances to reflect on mathematics as a way of communication 
(Xu, 2006). Reflective thinking is high-level thinking. It is not just memorisation, 
repetition, or simple application. Reflective thinking is a complex thinking process 
that involves specific goals, sustained psychological efforts and cognitive activities, 
including divergence and reflection (Liu, 2002). Other studies have shown that the 
memory and comprehension skills of Chinese students are developed; the analytical 
and application skills are average, and the reflective and creative skills need to be 
improved (Liu, 2008). The above analysis can partially explain why the eighth- 
grade students did not perform well in the mathematical communication tasks at 
level 3.

On the other hand, mathematics education in China has the tradition of variation 
teaching. Teachers emphasise the connection and sequence of different mathemati-
cal concepts. With the new math curriculum reform, there is an increased amount of 
high-cognitive-level mathematical tasks in curriculum materials. Students are 
expected to describe processes and provide explanations. This study found that the 
participating students’ mathematical communication abilities reflected that students 
are good at connection and transformation of mathematical information. This aligns 
with the expectations in the math curriculum reform.

The text used for communication includes continuous text and discontinuous 
text. The latter specifically refers to text that contains not only words but also graphics 
and other formats (Wang & Tian, 2007). The text used for task 1 and task 3 belonged 
to a kind of discontinuous text. Task 1 and task 3 provided word information and 
graphic information. When students dealt with these tasks, they needed to read and 
understand mathematical information within words or graphs and connect different 
forms of texts. Communication with discontinuous text is more complicated than 
with continuous text. In this study, students performed weaker in task 3 and task 4 
because different forms of text in the tasks may interfere with students’ mathemati-
cal communication. Students are accustomed to grabbing mathematical information 
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(data, formulas, etc.) in texts to express mathematical opinions. However, when 
there is no direct mathematical expression in the text, students may not be able to 
accurately express their mathematical opinions.

This study showed that there are no significant gender differences in mathemati-
cal communication abilities. But there is a gender difference in problem-solving 
strategies of mathematical communication tasks. The boys tended to express their 
statements using concise and clear mathematical language, while the girls were 
good at using word expressions or combining words and mathematical symbols to 
express their own opinions. Girls performed better while solving tasks in the educa-
tional situation than boys, but boys were better at mining mathematical information 
from social situations. Different situational problems will affect the performances 
of girls’ or boys’ mathematical communication abilities.

Mathematical communication abilities involve both written and oral communi-
cation. Considering the convenience of the written test in the large-scale study, this 
study did not collect any data on oral communication. Therefore, the study pre-
sented here offers part of the picture of students’ mathematical communication 
abilities. Future research could study students’ mathematical communication abili-
ties in oral form.

With the development of mathematics curricula, more and more attention has 
been paid to mathematical communication abilities in China. How to cultivate stu-
dents’ mathematical communication abilities in mathematics education – and how 
to let students observe the world from the mathematical perspective, analyse the 
world with mathematical thinking, and express the world with mathematical lan-
guage – are the research and practice issues. Some researchers have explored struc-
tures of classroom teaching focused on instilling mathematical communication 
abilities (Xu, 2012; Zha, 2001; Qiao & Gao, 2005). Some common teaching aspects 
were emphasised – namely, collaboration, interaction, coexisting, looking for tech-
nical support, and communicative dialogue. We look forward to a win-win situation 
for the evaluative research of mathematical communication and communication 
teaching practices.
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Chapter 15
Chinese Eighth Graders’ Self-Related 
Beliefs During Mathematical Modelling

Yan Zhu

Abstract It is suggested that belief in one’s ability to complete a mathematics task 
is an important predictor of one’s subsequent performance in the task. Paradoxically, 
students in high-achieving East Asian educational systems generally exhibit a low 
level of self-related beliefs in mathematics. However, interestingly, PISA reported 
that such a phenomenon does not appear in Shanghai. Given these inconsistent find-
ings, an investigation of a total of 1359 Chinese eighth graders was conducted to 
examine their self-judgements about their modelling performance before and after 
they work with three modelling tasks of varying difficulty. The results showed that 
students’ self-efficacy is consistently higher than their self-evaluation for the mod-
elling task, and both beliefs have a positive correlation with students’ actual perfor-
mance. A hierarchical analysis reveals that the variances in students’ beliefs are 
mainly based on differences between individual students and that gender and actual 
modelling performance have important impacts.

Keywords Self-related beliefs · Self-efficacy · Self-evaluation · PISA · 
Mathematics performance · East Asia · Chinese students · Mathematical modelling 
· Eighth grade · Gender gap · One-child status · ANOVA · Effect size · Hierarchical 
analysis · Collective culture

15.1  Self-Related Beliefs

How students think and feel about themselves is an important predictor of how they 
act and make decisions when they are challenged by tasks and situations (Bandura, 
1997). When it comes to learning and teaching mathematics, Henry Ford suggested 
that there is a two-way relationship between belief in one’s ability to complete a 
mathematics task and subsequent performance in the task (Champion, 2010). From 
the social cognitive perspective of learning, Albert Bandura addressed this potential 
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relationship as perceived self-efficacy or self-evaluation of one’s ability to achieve 
certain performance under specific constraints (Champion, 2010). Self-efficacy was 
developed by Bandura as part of a larger theory, social learning theory (Ashford & 
LeCroy, 2010), which in turn evolved into social cognitive theory (Levin et  al., 
2001). Social cognitive theory was developed in response to the lack of attention 
paid to the role of cognition in motivation and the role of situation in behaviourism 
and psychoanalysis (Redmond, 2010). The theory is composed of four processes of 
goal realisation: self-observation, self-evaluation, self-reaction and self-efficacy. 
These four components are interrelated, and all have effects on motivation and goal 
attainment (Redmond, 2010).

Self-observation refers to learners’ systematic monitoring of their own perfor-
mance (Walter, 2012). It can be used to assess one’s progress toward goal attainment 
as well as motivate behavioural changes. Self-evaluation refers to the act of ‘com-
paring self-monitoring information with a standard or goal’ (Zimmerman, 2000, 
p. 21). It is affected by set standards and the importance of goals; thus, the goals 
must be specific and important. Self-reaction refers to one’s cognitive, affective and 
tangible responses to performance evaluations, which may involve self-corrections 
and affective and motivational self-inducements (Zimmerman & Schunk, 2003). 
According to Bandura (1991), a person becomes more motivated when a positive 
self-reaction is anticipated as a result of achieving a given goal. Therefore, the 
behaviour or performance producing a positive self-reaction is more likely to create 
a future incentive to repeat the action (Thompson, 2007). Self-efficacy refers to an 
individual’s belief in his or her capacity to execute the behaviours that are necessary 
to attain specific performance goals (Bandura, 1997). In other words, it reflects 
individuals’ capacity to take measures to achieve targeted goals. Axtell and Parker 
(2003) remarked that self-efficacy increases one’s effort and persistence for chal-
lenging tasks, thus increasing the likelihood that the tasks will be accomplished.

According to Chen (2003), self-efficacy is distinct from other self-related beliefs 
due to its specificity and close relation to overt performance. Zimmerman (1995) 
remarked that the predictability of self-efficacy depends on its specificity and rela-
tion to actual tasks. Some researchers suggest that self-efficacy actually influences 
one’s academic performance in addition to their prior knowledge and skills (e.g. 
Pajares, 2008; Zimmerman, 2002). Furthermore, Pajares (1996) remarked that self- 
efficacy is a better predictor of one’s performance than self-concept. Similarly, 
Bandura (1997) commented that a reasonable agreement between one’s self- efficacy 
and action is desirable.

While self-efficacy concerns pre-performance judgement, self-evaluation con-
cerns post-performance judgement. It is not unusual for students to make inaccurate 
self-evaluations. In particular, low-achieving students are often less accurate and 
more overconfident (Bol & Hacker, 2001; Kruger & Dunning, 1999). Overconfident 
students are more prone to select difficult problems to solve and are more likely to 
fail, which can undermine their subsequent self-efficacy and desire to continue 
learning (Bandura, 1986; Schunk & Parjares, 2004). Schunk (1996) argued that 
when one self-evaluates his/her capabilities or progress toward learning a particular 
task, he/she develops a higher level of competence, which in turn strengthens his/
her perceived self-efficacy.
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The main purpose of the present study is to investigate Chinese eighth graders’ 
self-judgements about their modelling performance before and after they work on 
modelling tasks with different levels of difficulty. Three research questions are 
addressed in this study:

 1. What are Chinese eighth graders’ levels of self-efficacy and self-evaluation dur-
ing a mathematical modelling task?

 2. How do Chinese eighth graders’ self-efficacy and self-evaluation relate to their 
actual modelling performance?

 3. How do Chinese eighth graders’ self-efficacy and self-evaluation, as well as the 
relations of these to their modelling performance, vary across cities, schools and 
students with different demographic characteristics?

15.2  Findings About Students’ Mathematics Self-Related 
Beliefs from PISA 2003 and PISA 20121

PISA 2003 and PISA 2012 are the two mathematics-focused studies that have been 
conducted so far in the PISA cycles. Both studies look at students’ beliefs about 
mathematics learning in terms of students’ self-concept (i.e. confidence in mathe-
matics ability, which is constructed based on students’ responses regarding their 
perceived competence in mathematics) and self-efficacy (i.e. belief in the capacity 
to tackle difficult mathematics tasks, which is constructed based on students’ 
responses regarding their perceived ability to solve a range of pure and applied 
mathematical problems).

According to PISA 2003, across OECD educational systems, on average, 67% of 
students claimed that they do not understand the most difficult work in their math-
ematics class. The percentages range from 84% or more in Japan and Korea to 57% 
or less in Canada, Mexico, Sweden and the United States. Similarly, roughly half of 
the students across OECD systems do not think that they learn mathematics quickly. 
More than 62% of students report this self-concept in Japan and Korea, while only 
40% do so in Denmark and Sweden. There is a comparatively large gender differ-
ence in students’ self-concept. For instance, while one-third of boys do not think 
they are good at mathematics, the average for girls is 47%. In Japan, Korea, Hong 
Kong SAR and Macao SAR, 50–70% of girls agree with this statement. Regarding 
students’ self-concept, PISA 2003 found that students in Canada, Denmark, 
Germany, Mexico, New Zealand, the United States and Tunisia have great confi-
dence in their mathematics abilities, while students in Japan, Korea and Hong Kong 
have the lowest self-concept. In all the systems, boys tend to show a statistically 
higher level of mathematics self-concept than girls.

1 This section is mainly based on Learning for Tomorrow’s World: First Results from PISA 2003 
(OECD, 2004) and Ready to Learn: Students’ Engagement, Drive and Self-belief (OECD, 2013).

15 Chinese Eighth Graders’ Self-Related Beliefs During Mathematical Modelling



278

Students’ mathematics self-efficacy goes beyond how good they think they are in 
mathematics; instead, it relates to the kind of confidence students need to success-
fully resolve specific mathematics tasks. PISA 2003 reports that, on average, stu-
dents in Greece, Japan, Korea, Mexico, Brazil, Indonesia, Thailand and Tunisia 
express the least mathematics self-efficacy, while students in Canada, Hungary, the 
Slovak Republic, Switzerland and the United States express much higher self- 
efficacy. PISA 2003 also shows that students’ mathematics self-efficacy is more 
closely related to their performance on a mathematics assessment than their math-
ematics self-concept. In fact, within OECD countries, an average increase of one 
index point in mathematics self-efficacy corresponds to an increase of 47 points in 
mathematics performance, which is nearly equivalent to one school year.

Compared to PISA 2003, students’ mathematics self-concept is slightly improved 
in PISA 2012. In particular, the students in PISA 2012 are four percentage points 
more likely to believe they can understand the most difficult work and three percent-
age points more likely to think that mathematics is one of their best subjects. 
Eighteen educational systems observed significant improvements in mathematics 
self-concept, including Iceland, Spain, Hong Kong SAR, Indonesia, Portugal, 
Norway, the Netherlands and the United States. The magnitude of gender differ-
ences in mathematics self-concept remained stable between PISA 2003 and PISA 
2012. In eight educational systems, including Uruguay, Mexico and Hong Kong 
SAR, the gender gap widened in favour of boys.

Between 2003 and 2012, students’ mathematics self-efficacy increased slightly 
across OECD systems, particularly in Portugal, Germany, Thailand, Turkey and 
Spain. However, decreases are observed in New Zealand, Hungary, the Slovak 
Republic and Uruguay. PISA 2012 reports that girls are more likely to have lower 
levels of self-efficacy than boys, although both boys and girls showed some improve-
ment in their mathematics self-efficacy between 2003 and 2012. The gender gap in 
mathematics self-efficacy in 2012 is, on average, in favour of boys by over 0.3 
points. This gap widened in favour of boys in France, Hong Kong SAR, Iceland and 
Australia. However, the gender gap in this self-related belief narrowed in Macao 
SAR, the Slovak Republic, Greece and Finland.

Reflecting on students’ self-related beliefs and mathematics performance, Lee 
(2009) highlights a paradox among students in East Asia systems: while Japan and 
Korea are top-performing educational systems, their students exhibited some of the 
lowest scores for mathematics self-efficacy (see also Han et al., 2015). Chiu and 
Klassen (2010) attributed this phenomenon to the collectivist culture of East Asia, 
in which family members and the community assume some of the responsibility for 
students’ success. To a certain extent, students are less concerned about their self- 
efficacy and self-concept and more about their mastery of skills and academic 
achievement. Some researchers pointed out that students who overestimate their 
self-efficacy tend to show less effort and poor performance, while students who 
underestimate their self-efficacy are more likely to show more effort and better per-
formance (Chen, 2003; Chen & Zimmerman, 2007). Chiu and Klassen (2010) sug-
gested that high-achieving East Asian students may have underestimated their 
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self-efficacy, and low-achieving students abroad may have overestimated their self- 
efficacy, leading to the result that East Asian students exhibit low self-efficacy.

The trend of lower self-efficacy in East Asia does not appear in Mainland China. 
In fact, PISA 2012 reports that the mathematics self-efficacy of Shanghai students 
is above the OECD average, and their achievement is the highest among all the 
participating systems (OECD, 2014). Wu (2016) argued that the high self-efficacy 
found with Shanghai students may be attributed to the specific educational system 
of Shanghai and other demographic factors. Ma (1999) related this difference to 
different understandings of the measurement items. In particular, Ma commented 
that Shanghai students may have treated the self-efficacy items more as mathemat-
ics problems than psychological traits. Another possible explanation suggested by 
Wu (2016) is that Shanghai is the most developed region in China which may ben-
efit students to get higher self-efficacy. More in-depth investigations in Shanghai 
and other cities in China are needed.

15.3  Research Methods

15.3.1  Participants

A total of 1359 eighth graders from five Chinese cities were invited to work on three 
mathematical modelling tasks with different levels of difficulty. Each task was 
accompanied by one self-efficacy item and one self-evaluation item. The students 
were selected using a stratified sampling method. They were enrolled in 15 schools 
in five cities, which were located in the east (309), south (234), middle (363), south-
west (186) and northwest (267) of China. For the majority of the schools, two 
classes of students participated in the study, and the average class size was 48 stu-
dents. The gender distribution is similar across the five cities, and the proportion of 
boys ranges from 45.3% (northwest) to 57.8% (south). Interestingly, a high percent-
age of students in cities from the east (81.8%) and northwest (78.9%) come from a 
one-child family, while the percentages of such students from the other three cities 
are low (middle: 59.6%, southwest: 58.6%, south: 45.7%).

15.3.2  Measures of Self-Efficacy and Self-Evaluation During 
Mathematical Modelling

Mathematical modelling performance The research team designed three mathe-
matical modelling tasks. All the tasks are rooted in the context of real-life situations 
and cover different mathematical content (i.e. numbers and algebra and space and 
graphs). Moreover, the three tasks have different levels of difficulty: easy (i.e. a 
learnt model), moderate (i.e. a modified learnt model) and difficult (i.e. an unfamil-
iar model). More details can be found in Chap. 8.
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Mathematical self-efficacy Students’ mathematics self-efficacy was measured 
based on students’ ratings of their confidence in solving each modelling task indi-
vidually. The self-efficacy item was ‘I believe I can solve this task’, and it was rated 
on a four-point Likert scale ranging from 1 (totally agree) to 4 (totally disagree).

Mathematical self-evaluation Students’ self-evaluative judgement was measured 
after they attempt to solve each mathematical modelling task. The self-evaluation 
item was ‘I believe I solved this task’, and it was rated on a four-point Likert scale 
ranging from 1 (totally agree) to 4 (totally disagree).

Gender and one-child status All the students were asked to provide their demo-
graphic information, such as gender and one-child family status. In the data analy-
sis, boys were coded as 1 and girls were coded as 0. Additionally, students from 
one-child families were coded as 1 and those from multi-children families were 
coded as 0.

15.3.3  Data Processing and Analysis

For each modelling task, students’ performance was first evaluated based on a six- 
point rating scale, which is mainly aligned with Blum and Kaiser’s (1984) model-
ling process-oriented cycle. A descriptive data analysis was conducted to summarise 
students’ modelling performance and related self-efficacy and self-evaluation. A 
one-way repeated-measures ANOVA was then used to examine whether students’ 
performance and two self-related beliefs about their performance differ across the 
three tasks. When overall significant differences were detected, planned contrasts 
were carried out. Third, a two-way repeated ANOVA was conducted to compare 
students’ self-efficacy and self-evaluation across different modelling tasks. After 
this, a series of one-way repeated measures ANCOVA were performed to replicate 
the earlier comparison with a control representing students’ actual performance on 
the respective modelling tasks.

A two-way mixed ANOVA was used to examine students’ modelling perfor-
mance, self-efficacy and self-evaluation across the three tasks in relation to stu-
dents’ demographic characteristics (i.e. gender and one-child status). When students 
with different demographic characteristics had significantly different self- 
judgements, ANCOVA was performed to explore the influence of the demographic 
characteristics on students’ self-judgements when their modelling performance is 
taken into account.

After that, a three-way mixed ANOVA was performed using students’ self- 
judgements at different time points related to different modelling tasks as the 
within-subjects factors and their demographic characteristics as the between- 
subjects factors. This was followed by a three-way mixed ANCOVA using students’ 

Y. Zhu



281

modelling performance as the covariance. Separate analyses were conducted for 
gender and one-child status. When significant differences were detected, effect sizes 
were calculated.2

Given the hierarchical nature of the data (i.e. students nested within schools and 
schools nested within cities), a random effects ANOVA model, also known as the 
fully unconditional model, was used to examine the heterogeneity of students’ self- 
efficacy and self-evaluation across individuals, schools and cities. Such an analysis 
is generally used to partition subjects’ variances in measures into three components: 
among students at level 1, among schools at level 2 and among cities at level 3 
(Raudenbush & Bryk, 2002). Further, students’ gender (girls = 1 vs. boys = 0), one- 
child status (one-child = 1 vs. multiple-children = 0) and actual modelling perfor-
mance were used as predictors in the analysis with an intercepts- and 
slopes-as-outcomes model.

15.4  Results

15.4.1  Students’ Overall Self-Efficacy and Self-Evaluation

Table 15.1 presents the means and standard deviations of students’ modelling per-
formance as well as their corresponding self-efficacy and self-evaluation for each 
modelling task. The results of the one-way repeated measures ANOVA show that 
students have significantly different performance across the three modelling tasks 
(F [1.883, 2553.477] = 777.336, p < 0.001, ηp

2 = 0.364). Planned contrasts reveal 
that students’ performance on Task 1 is considerably better than that on Task 2 
(p = 0.060) and significantly better than that on Task 3 (p < 0.001, ηp

2 = 0.544). It is 
understandable that students showed higher self-efficacy and self-evaluation for 
Task 1 than the other, more difficult tasks. Students have higher self-efficacy before 
Task 3 than before Task 2, but they show a similar level of self-evaluation for the 
two tasks. Students performed significantly better on Task 2 than Task 3 (p < 0.001, 
ηp

2 = 0.435).

2 The rules of thumb for magnitudes of effect sizes can be seen at http://imaging.mrc-cbu.cam.
ac.uk/statswiki/FAQ/effectSize

Table 15.1 Means and standard deviations of students’ modelling performance, self-efficacy and 
self-evaluation by task

Performance Self-efficacy Self-evaluation

Task 1 (easy) 3.74 (1.33) 3.12 (0.76) 2.88 (0.91)
Task 2 (moderate) 3.66 (1.57) 2.91 (0.85) 2.71 (0.94)
Task 3 (difficult) 2.37 (0.89) 3.03 (0.79) 2.70 (0.95)

Note. As the Likert scale for self-efficacy and self-evaluation is designed in descending order, 
students’ responses were reverse-scored before all the analyses in this study for easier interpreta-
tion
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The results of the one-way repeated measures ANOVA show that which task 
students read has a significant effect on their self-efficacy (F [1.972, 
2596.920] = 54.240, p < 0.001, ηp

2 = 0.072). Planned contrasts reveal that students’ 
self-efficacy is significantly higher for Task 1 than the other two tasks at the 0.001 
level. The difference in students’ self-efficacy for Task 2 and Task 3 also reached 
significance (p < 0.001). A smaller difference is observed for students’  self- evaluation 
across the three tasks, although it still reaches significance (F [1.976, 
2550.506] = 39.408, p < 0.001, ηp

2 = 0.030). In particular, the significant differences 
between Task 1 and the other two tasks exist at the 0.001 level.

The two-way repeated measures ANOVA compared students’ self-efficacy and 
self-evaluation across the three modelling tasks. The results show that students dis-
play significantly different self-judgements before and after they actually perform 
the tasks (F [1, 1260] = 204.113, p < 0.001, ηp

2 = 0.139). Such differences demon-
strate significantly different, though trivial in terms of effect size, patterns across the 
tasks (F [2, 2520] = 9.487, p < 0.001, ηp

2 = 0.007). An inconsistent pattern appears 
for Task 3; students have the largest drop from self-efficacy to self-evaluation for 
this task (Δ = 0.33).

Correlation analysis confirms an important relation between students’ self- 
related beliefs and modelling performance. The correlation between students’ self- 
evaluation and their actual performance is higher than that between self-efficacy 
and actual performance. It will be interesting to compare students’ self-judgements 
when controlling for their modelling performance. Thus, a one-way repeated mea-
sures ANCOVA was conducted using students’ performance on the modelling tasks 
as a covariance. The results show that the difference between self-efficacy and self- 
evaluation for Task 1 and Task 3 becomes smaller in terms of their effect sizes (ηp

2; 
Task 1: 0.088 to 0.044; Task 3: 0.120 to 0.049), but it nearly maintains for Task 2 
(0.055 to 0.068). This verifies the important influence of students’ cognitive ability 
to perform modelling tasks on their self-judgements.

15.4.2  Demographic-Related Differences in Students’ 
Self- Efficacy and Self-Evaluation

Not only do students’ actual abilities have an important influence on their self- 
efficacy and self-evaluation but also their demographic characteristics may have an 
effect on their beliefs. This study looks into two such characteristics: gender and 
one-child status. The results of the two-way mixed ANOVA reveal that boys consis-
tently performed significantly better than girls on all three modelling tasks, although 
the magnitude of the significant difference is trivial (p = 0.013, ηp

2 = 0.005). A sig-
nificant difference is also revealed between students with different one-child status 
(p = 0.001, ηp

2 = 0.008) in favour of students from one-child families.
On the two self-related beliefs, boys consistently reported significantly higher 

levels than girls (self-efficacy: p < 0.001, ηp
2 = 0.017; self-evaluation: p < 0.001, 
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ηp
2 = 0.028). Further analyses with a control for students’ actual performance on the 

modelling tasks again reveal that boys had a significantly higher level of self- 
efficacy than girls, although the magnitude of this difference is small (ηp

2 ≈ 0.01). 
The gender differences in self-evaluation after controlling for modelling perfor-
mance are larger than the differences in self-efficacy, with the largest difference 
observed for Task 3 (ηp

2  =  0.022), followed by Task 1 (ηp
2  =  0.018) and Task 2 

(ηp
2 = 0.014). Although the self-efficacy and self-evaluation of students from one- 

child families are consistently higher than those from multiple-children families, 
both differences are insignificant (self-efficacy: p  =  0.121; self-evaluation: 
p = 0.133).

The three-way mixed ANOVA, which used students’ self-judgements at different 
time points for different modelling tasks as the within-subjects factors and students’ 
gender as the between-subjects factor, reveals significant main effects for tasks (F 
[1.987, 2495.192] = 62.857, p < 0.001, ηp

2 = 0.048), self-judgements at different 
time points (F [1, 1256]  =  207.369, p  <  0.001, ηp

2  =  0.142) and gender (F [1, 
1256] = 35.163, p < 0.001, ηp

2 = 0.027). The interactions between the three main 
effects are either insignificant or trivially significant (ηp

2 ≈ 0.01). In fact, the differ-
ences between self-efficacy and self-evaluation for all three tasks are larger among 
girls than boys. Moreover, the magnitudes of the differences are nearly the same 
across the three tasks, and all the differences are significant at the 0.001 level (Task 
1: ηp

2 = 0.022; Task 2: ηp
2 = 0.019; Task 3: ηp

2 = 0.023). The gender-related differ-
ences become slightly smaller after controlling for students’ performance on the 
three modelling tasks (Task 1: ηp

2 = 0.019; Task 2: ηp
2 = 0.014; Task 3: ηp

2 = 0.021).
Similar analyses were conducted to examine whether students with different 

one-child status have different self-judgements before and after they perform the 
modelling tasks. While the main effects of task and self-judgement at different time 
points remained significant, the main effect of one-child status is insignificant 
(p  =  0.094). Moreover, all the interactions are insignificant, which suggests that 
students’ self-efficacy, self-evaluation and the relationship among these factors are 
similar for students from both types of families. The findings are consistent even 
after controlling for students’ actual modelling performance.

15.4.3  Variances of Students’ Self-Efficacy 
and Self-Evaluation

Given the hierarchical nature of the data (i.e. students nested within schools and 
schools nested within cities), a hierarchical linear model was employed to examine 
the differences among students in terms of self-efficacy and self-evaluation at the 
student, school and city levels. Further, students’ gender (girls = 1 vs. boys = 0), 
one-child status (one-child = 1 vs. multiple-children = 0) and actual modelling per-
formance were used as predictors in the analysis.
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Table 15.2 displays the variances in self-efficacy and self-evaluation related to 
the modelling tasks at the student, school and city levels. More than 90% of the 
 differences occur at the student level, and the proportions of variance in self-effi-
cacy are consistently larger than those for self-evaluation. The school-level vari-
ances in the two types of self-judgement are much smaller than those at the student 
level. However, it is interesting to observe that the proportions of school-level vari-
ance in self-evaluation for all the three tasks are larger than those for self-efficacy. 
Such differences become smaller for the more challenging tasks. Some significant 
 variances are found at the city level, but they are only related to self-efficacy. In 
other words, students from different cities do not have great differences in their 
performance judgements after they actually work on the modelling tasks.

An intercepts- and slopes-as-outcomes model was used to explore how students’ 
individual characteristics (i.e. gender, one-child status and modelling performance) 
at the student level and school mean performance on modelling tasks at the school 
level contribute to the variances in students’ self-efficacy and self-evaluation. 
Table 15.3 presents the detailed results.

Consistent with the results reported earlier, students’ one-child status does not 
show a significant influence on their levels of self-efficacy and self-evaluation, 
while being a boy and having better modelling performance have significantly posi-
tive impacts. Moreover, school mean modelling performance significantly posi-
tively contributes to students’ high levels of self-efficacy and self-evaluation. The 
magnitudes of the influences of school mean performances are generally greater 
than those of students’ individual performance. That indicates that students’ self- 
related beliefs related to mathematics modelling increase more within a school with 
higher average modelling performance and that this increase is greater than the 
increase caused by students’ own high performance.

15.5  Summary and Conclusions

According to Bandura (1977), the way students think and feel about themselves 
shapes their behaviour, especially when they face challenging scenarios. In the case 
of mathematics learning, students’ self-related beliefs could determine how well 
they motivate themselves and persevere in the face of challenging tasks, influence 

Table 15.2 Sources of variance in students’ self-efficacy and self-evaluation by modelling task

% of variances Student level School level City level

Task 1 Self-efficacy 95.1*** 2.2** 2.7**
Self-evaluation 92.3*** 7.7*** 0.0

Task 2 Self-efficacy 94.5*** 3.9*** 1.6*
Self-evaluation 90.9*** 9.1*** 0.0

Task 3 Self-efficacy 95.9*** 2.1*** 2.0*
Self-evaluation 95.4*** 4.6*** 0.0

Note. *p < 0.05, **p < 0.01, ***p < 0.001
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their emotional lives and affect their coursework choices and further educational 
and career paths (Bandura, 1997; Wigfield & Eccles, 2000; see also OCED, 2013). 
In the two mathematics-focused PISA studies (i.e. PISA 2003 and PISA 2012), 
students’ mathematics self-related beliefs are measured in terms of self-efficacy and 
self-concept. It is found that both types of self-related beliefs are generally posi-
tively correlated with mathematics performance and that the association with per-
formance is stronger for self-efficacy than for self-concept. However, some East 
Asian systems (e.g. Japan and Korea) exhibit a paradox; that is, their students per-
formed well in mathematics but had a low level of belief in their own mathematics 
abilities, both in general (self-concept) and specifically (self-efficacy). Researchers 
have attempted to interpret this observation as linked to the collectivist culture of 
East Asia. While Shanghai students in PISA 2012 also report a low level of mathe-
matics self-concept, their self-efficacy is nearly one standard deviation higher than 
the OECD average. Ma (1999) associates Shanghai students’ high self-efficacy with 
their different understandings of the measurement items, suggesting that Shanghai 
students may have treated the self-efficacy items more as mathematics problems 
than as psychological traits and that the problems displayed in the PISA measures 
are relatively easier for Shanghai 15-year-olds.

Given these inconclusive findings and interpretations, this study is designed to 
examine students’ self-related beliefs about their mathematical modelling, a more 
challenging type of mathematical task. As PISA only measures students’ 
 self- efficacy, it is unclear whether students can actually resolve related tasks and 
how they will evaluate their actual performance afterwards. Using a stratified 

Table 15.3 Multilevel model with student-level and school-level factors affecting students’ self- 
efficacy and self-evaluation during mathematical modelling

Task 1 Task 2 Task 3
Self- 
efficacy

Self- 
evaluation

Self- 
efficacy

Self- 
evaluation

Self- 
efficacy

Self- 
evaluation

Fixed
  Intercept 3.183*** 2.946*** 2.930*** 2.825*** 3.074*** 2.807***
Student level
  Girl −0.166*** −0.212*** −0.131** −0.200*** −0.154*** −0.260***
  One-child 

status
−0.029 0.00570 0.0285 −0.0380 0.00210 −0.0139

  Performance 0.146*** 0.195*** 0.126*** 0.214*** 0.197*** 0.313***
School level
  Performance_S 0.125*** 0.360*** 0.168*** 0.345*** 0.236** 0.364***
Random (Variance, SD)
  Student level 0.505

(0.711)
0.691
(0.831)

0.645
(0.803)

0.710
(0.842)

0.566
(0.752)

0.789
(0.888)

  School level 0.00374
(0.0612)

0.0133
(0.115)

0.0116
(0.108)

0.0106
(0.103)

0.00280
(0.0529)

0.00852
(0.0923)

  City level 0.0150
(0.122)

0.00007
(0.00812)

0.00621
(0.0788)

0.00134
(0.0367)

0.00785
(0.0886)

0.00013
(0.0115)

Note. *p < 0.05, **p < 0.01, ***p < 0.001
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sampling method, a total of 1359 eighth graders were selected from five Chinese 
cities in a variety of locations. All the students were given three modelling tasks of 
different difficulty levels. They were asked to pre-judge their future performance, 
solve the tasks and then post-judge about their performance.

It was found that students’ level of self-efficacy is consistently higher than their 
self-evaluation for the modelling tasks. The lowest level is observed on  self- evaluation 
for the most challenging task (i.e., Task 3). For both self-related beliefs, students 
generally show higher levels for easier modelling tasks. Consistent with the findings 
of the PISA studies, this study reveals that students’ self-related beliefs have a posi-
tive correlation with their actual performance and that this association is stronger 
with self-evaluation. This is verified by the shrinking gap between self- efficacy and 
self-evaluation when students’ actual modelling performance is taken into account.

Two demographic characteristics are investigated in this study to determine their 
impact on students’ self-judgements of their mathematical modelling performance. 
It is revealed that boys not only perform significantly better than girls but also have 
a significantly higher level of self-related beliefs. Interestingly, the gender gaps are 
larger for self-evaluation than self-efficacy, regardless of whether one controls for 
students’ modelling performance. Meanwhile, the differences between the two 
types of self-related beliefs on all three tasks are larger for girls than boys. One- 
child status, the other demographic characteristic, does not show a significant influ-
ence on students’ self-judgements, though students from one-child families appear 
to have a slightly higher level of both self-related beliefs.

Further hierarchical analysis revealed that the between-city differences in the 
two self-related beliefs account for no more than 3% of the total variance, while 
between-school variances in self-evaluations are much larger than those for self- 
efficacy. Meanwhile, the variances in differences still mainly come from individual 
students. A full model analysis again shows that students’ gender and actual model-
ling performance have an important impact on their self-efficacy and self- evaluation. 
This impact appears greater for self-evaluation than for self-efficacy. Moreover, the 
school’s average modelling performance generally has a larger influence on stu-
dents’ self-related beliefs than individual students’ performance.
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Chapter 16
Math Anxiety in the Context of Solving 
Mathematical Modeling Tasks in China

Xiaorui Huang

Abstract In this study, cluster analysis and hierarchical regression were used to 
analyze the relationship between math anxiety (MA) and mathematical modeling 
ability in a sample of 1359 eighth-grade students from five places in China. Our 
results showed students tended to worry more about having difficulty in mathemat-
ics class (58%) than reported by the Shanghai PISA 2012 (53%); our finding is 
closer to the PISA 2012 global average (59%). Our analysis also revealed students 
were less nervous when solving mathematics problems (20%), felt less helpless 
when faced with a mathematical problem (14%), and were less worried about get-
ting poor math grades (32%) than the PISA 2012 Shanghai average (27%, 28%, and 
71%, respectively) and global average (31%, 30%, and 61%, respectively). Female 
students reported higher MA than male students; cluster analysis showed substan-
tial gaps in mathematical modeling between high and low MA students. After con-
trolling for family SES, gender, and task difficulty, MA explained an additional 
3.5% of the variance of mathematical modeling ability, with task difficulty account-
ing for 19% of the variance. The relationship between MA and mathematical mod-
eling depended on the difficulty of the tasks. The applications of the results are 
further discussed in the study.
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16.1  Introduction

Math anxiety (MA) is commonly defined as “a feeling of tension, apprehension, or 
fear that interferes with math performance” (Ashcraft, 2002). It undermines an indi-
vidual’s math performance by influencing their learning motivation, confidence, 
and cognitive mechanisms (Eysenck, Derakshan, Santos, & Calvo, 2007; Pekrun, 
Goetz, Frenzel, Barchfeld, & Perry, 2011). It has also been shown to have detrimen-
tal effects on students’ mental health, learning behaviors, and self-regulation 
(Diener, 2000; Pekrun, Goetz, Titz, & Perry, 2002; Zeidner, 1998). MA can also 
lead students to avoid math-related contexts, for example, they intentionally do not 
select math-related courses or math-related careers (Hembree, 1990).

MA is common in both eastern and western countries, and it affects a large pro-
portion of people. Ashcraft and Kirk (2001) found that about one-fifth of the US 
population suffers from some degree of MA when confronting a task related to the 
manipulation of numerical information. In China, 87.05% of 224 secondary stu-
dents in rural areas have high or moderate MA (Han, Zhang, & Zhang, 2016). 
Among 315 Chinese pre-service math teachers, 5% and 50% suffered from high and 
moderate MA, respectively (Wang, 2009). The evidence described above suggests 
that understanding and resolving MA in China calls for the attention of researchers.

Since joining the Programme for International Student Assessment (PISA), 
which is used in the evaluation of education systems worldwide, Shanghai has twice 
achieved the best math scores compared to all PISA countries and regions, in 2009 
and 2012. Due to these results, China’s math education, especially in Shanghai, has 
attracted attention from all over the world. In particular, Shanghai students achieved 
the top math scores, and their MA ranked in the middle, at 28th among 68 countries 
(ranked from the lowest rate of MA to the highest). Finland, previously the reigning 
champion for the highest math achievement scores, ranked 12th in 2009. For MA, 
the Finnish students ranked fifth (ranked from lowest to highest) among all of the 
participating countries and regions. Shanghai students’ MA seemed higher than 
expected, which suggested further examination of MA was required in China.

16.1.1  Gender Difference in MA

Gender differences have been reported in most of the literature regarding MA; how-
ever, the results reported by various studies are mixed. Many studies showed that 
female students reported higher MA than male students (e.g., Ashcraft & Faust, 
1994; Hembree, 1990; Wigfield & Meece, 1988). Ashcraft and Faust (1994) found 
that female college students scored significantly higher for MA than male students. 
After analyzing data from two major international surveys (TIMSS 2003 and PISA 
2003), Else-Quest, Hyde, and Linn (2010) showed that, among 13- to 15-year-old 
students, the male students reported a more positive attitude toward math than the 
females despite having similar levels of mathematics achievement. After reviewing 
70 studies which included 126 samples, Hyde, Fennema, Ryan, Frost, and Hopp 
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(1990) also concluded that female students hold more negative attitudes toward 
math than male students. However, a few studies have shown that there is no gender 
difference in MA. For example, Meece, Wigfield, and Eccles (1990) examined gen-
der differences in a sample of 250 7th-, 8th-, and 9th-grade students and found no 
gender difference in MA. Birgin, Baloğlu, Çatlıoğlu, and Gürbüz (2010) also 
showed no gender difference for 6th- to 8th-grade students, and a longitudinal study 
using LSAY data (Ma & Xu, 2004) also failed to indicate gender differences in MA 
for 7th- to 12th-graders. However, there have been a few studies wherein male stu-
dents reported higher MA than female students (Abed & Alkhateeb, 2001; Reavis, 
1989; Sandman, 1979). These examples illustrate that reports of gender differences 
in MA are inconsistent in the literature.

16.1.2  Relations Between MA and Math Performance

MA had been consistently demonstrated to be related to poor math performance 
(Hembree, 1990; Ma, 1999; Namkung, Peng, & Lin, 2019; Ramirez, Gunderson, 
Levine, & Beilock, 2013; Vukovic, Kieffer, Bailey, & Harari, 2013; Wigfield & 
Meece, 1988). Cognitive interference theory, as related to math performance, sug-
gests that MA undermines three aspects of students’ math performance: preprocess-
ing, processing, and retrieval of information (Carey, Hill, Devine, & Szücs, 2016; 
Deutsch & Tobias, 1980; Namkung et al., 2019; Tobias, 1986). Students with MA 
avoid participating in math-related tasks; consequently, they have fewer math learn-
ing opportunities. Ashcraft (2002) demonstrated that while working on math tasks, 
students with MA are interrupted by intrusive thoughts and worries. These students 
have to spare part of their working memory capacity to conquer those worries and 
intrusive thoughts. Working memory, which is responsible for storing and process-
ing information when solving math problems, is a limited-capacity system. 
Therefore, when overcoming intrusive thoughts created by MA, a student has less 
available working memory for solving the math problems, leading to longer 
response times and higher error rates. Thereby, students with MA often perform 
poorly in math.

The relationship between MA and math performance might depend on the diffi-
culty or complexity of a math task. For example, in contrast to a simple arithmetic 
problem, Ching (2017) found complex math problems elicited higher MA among 
2nd- and 3rd-grade students with high working memory capacity. Beilock and 
Willingham (2014) found a strong link between MA and mathematical problem 
solving (complex math problems) while Harari, Vukovic, and Bailey (2013) demon-
strate a weak link between MA and digital calculation (simple math problems). 
Namkung et  al. (2019) analyzed 131 studies with 478 effect sizes using meta- 
analysis. They compared the relationship between MA and foundational math skills 
(e.g., number sense and computation) to the relationship between MA and advanced 
mathematics domains (e.g., algebra, measurement, geometry). They found a stron-
ger link (r = 0.35) between MA and advanced math domains than between MA and 
foundational domains (r = −0.20). Zhang, Zhao, and Kong (2019) also compared 

16 Math Anxiety in the Context of Solving Mathematical Modeling Tasks in China



292

computation to problem solving, finding a stronger link between MA and problem 
solving (r = −0.33) than between MA and computation (r = −0.21). As complex 
math problems require more cognitive processing and information retrieval than 
simple math problems, they require more working memory. Thus, MA might influ-
ence difficult math tasks more than simple tasks. However, scant research is avail-
able comparing the relationship between MA and levels of math performance in the 
same domain.

Furthermore, the relationship between MA and math performance might differ 
depending on the type of math performance or, as Harari et al. (2013) suggest, on 
the measurement of math performance. Vukovic et  al. (2013) found that MA 
uniquely explained the variance of children’s calculation skills and math applica-
tions but did not explain variances in children’s geometric reasoning. In a meta-
analysis of 84 studies from 2000 to 2019, Zhang et  al. (2019) found that the 
relationship between MA and math performance varies across different types of 
math performance. Zhang’s findings were consistent with those of Namkung et al. 
(2019) which also indicate that differences in MA occur depending on the type of 
math task. Therefore, MA might have a stronger impact on some types of math 
performance than others.

However, few, if any, studies have examined the relationship between MA and 
mathematical modeling. According to the meta-analysis mentioned above, 47% of 
the 84 studies assessed general skills of math performance, 35% assessed computa-
tion, and 8% assessed problem solving (Zhang et al., 2019). None of the included 
studies examined MA in the context of solving mathematical modeling tasks. 
Mathematical modeling can consider as a creative mathematical activity. It employs 
abstract, conceptualize, and math language to simplify a real situation or natural 
phenomenon into a proposed mathematical model, and uses mathematical methods 
to solve the proposed model. The results are then applied to interpret the examined 
phenomenon (Kaiser, 2014). More simply, it is a process for converting a real-world 
problem into a math problem and then using the math results to interpret the real- 
world condition. Thus, it requires students to use math knowledge to solve a real- 
world problem. Mathematical modeling is widely used in science, technology, 
engineering, and mathematics education (STEM). Mathematical modeling is rec-
ommended for use in math curricula to provide students a real-world situation that 
connects personal experience and math knowledge; this connection to real life 
improves student’s interest in math and increases their math-learning motivation 
(Mogens, 2012). To maximize student instruction in the use of mathematical model-
ing, further research is needed to clarify the relationship between MA and mathe-
matical modeling.

16.1.3 The present study

The present study aimed to examine MA in regard to four aspects of mathematical 
performance: the MA level of students in China and how it differs from the PISA 
2012 results; gender differences in MA; the relationship between MA and math 
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performance; and whether the relationship between MA and mathematical model-
ing performance is dependent upon the difficulty of mathematical modeling tasks.

16.2  Methods

16.2.1  Sample

We collected data from five places in China that represent the country’s southwest, 
southeast, east, northeast, and midland regions. They also represent differences in 
economic status in China. The total participant sample included 1359 eighth-grade 
students in 33 classes from 14 schools. The students’ mean age was 14  years. 
Participants included 46.7% females, 53.3% males, and 0.4% who did not indicate 
a gender; 65.7% of the students were the only child in the family, 34.0% were not 
from single-child families, and 0.3% of students did not provide this information. 
The rate of missing data ranged from 0.1% to 4.9%.

16.2.2  Procedures and Instrument

Three modeling tasks and questionnaires were administered by trained math teach-
ers. First, they assigned modeling tasks to the students. Next, MA questionnaire was 
assigned after students finished solving the modeling tasks.

Students’ MA was measured using items on a four-point scale. The items 
included, “I often worry that it will be difficult for me in mathematics classes,” “I 
get very nervous doing mathematics problems,” “I feel helpless when doing a math-
ematics problem,” and “I worry that I will get poor grades in mathematics.” These 
items were the same as those included in the PISA (OECD, 2015). However, we did 
not include the PISA item “feeling worrisome about doing homework,” as it was not 
relevant. The Cronbach’s alpha, based on standardized items, was 0.850.

Family demographic indicators included family economic status (SES) and gen-
der; family SES was measured by parents’ highest education level. The correlation 
between mothers’ and fathers’ highest level of education level was 0.70 (p < 0.001). 
Gender information was also collected.

Mathematical modeling ability was measured by three modeling tasks (Q1, Q2, 
and Q3, for details, please refer to Chap. 12, Table 12.4). Q1 was about the “Lanzhou 
noodle problem.” The question read, “Lanzhou noodles are a famous and well- 
known kind of noodle that originated in the northwest of China. To make the noo-
dles, the chef needs to knead the paste into a long strip, stretch it, fold it and stretch, 
and fold and stretch it again and again, seven or eight times in total. Then the noo-
dles become thin and long. Please estimate how long the noodles would be if the 
paste were folded and stretched four times.” Q1 was expected to be the easiest ques-
tion in that students could easily find a mathematical model learned in class to solve 
the problem. Q2 was the “big shoes” problem for which students were asked to 
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estimate the size of big shoes. Q2 was designed to be more difficult than Q1, as stu-
dents were expected to indicate, “It is not hard to find a similar problem strategy 
learned in class, but I need to modify it to answer this question.” Q3 was the “gas 
station problem,” which read, “Gas at a nearby station is more expensive than it is 
at a station further away. How do you decide whether it is worth it to drive far away 
to buy gas, according to conditions provided?” It was the most difficult one among 
the three tasks because students may not be familiar with the problem and there is 
no ready-made mode or strategy.

A coding scheme was developed to evaluate students’ mathematical modeling 
tasks (for details, please refer to Chap. 12, Table 12.5), and six stages were defined. 
For example, 0 was used when no part of an answer was correct or when the student 
left it blank; 1 stands for “the student tried to structuralize the real situation but was 
not able to find an appropriate mathematical strategy”; 2 stands for “the student 
proposed a reasonable hypothesis and figured out a mathematical strategy, but did 
not use the proper method.” A code score of 3 stands for “the student could find the 
realistic strategy and transfer it to this mathematical problem, but they were not able 
to reach an accurate mathematical solution or it was incorrectly solved”; 4 stands 
for “the student proposed the proper mathematical strategy and got right solution, 
but their interpretation of the solution was not appropriate to a real situation”; and 5 
stands for “the student found the realistic model, transferred it to the mathematical 
problem and solved it, interpreted and verified the model according to a real situa-
tion, and assessed the rationale of the model.”

16.2.3  Data Analysis

We first described the MA level using frequencies, means, and standard deviations. 
Gender differences and task difficulty were examined using t-test, ANOVA, and 
MANOVA.  Effect sizes were also calculated. Second, two-step cluster analysis, 
which was primarily designed for analyzing large datasets, was used to cluster the 
students based on the four items of mathematics anxiety, identifying different 
groups of students by MA. ANOVA paired with effect size was used to compare the 
differences in math achievement in each category with levels of MA. Third, we used 
hierarchical multiple regression to analyze the relations between difficulty and MA, 
their interaction effects, and mathematical modeling abilities. All analyses were 
performed in SPSS 23.0.

16.3  Results

Mean scores and standard deviations of the three questions are presented in 
Table 16.1. Their mean scores were compared using ANOVA. Results showed sig-
nificant differences in mean scores across the three questions, F(4070, 2) = 480.00, 
p  <  0.001. Post hoc tests showed that the mean score for Q1 had no significant 
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difference with that of Q2 (mean difference (MD) = 0.80, p = 0.239). Q3 had signifi-
cant lower mean score than Q1 (MDQ1 - Q3 = 1.37, p < 0.001) and Q2 (MDQ2 - Q3 = 1.29, 
p < 0.001). Mean scores’ differences suggested that Q1 and Q2 might present the 
same difficulty level for students; Q3 was the one they found the most difficult.

16.3.1  MA in the Context of Solving Modeling Tasks

Figure 16.1 presents students’ MA in the context of solving modeling tasks. The 
majority of the students (57.5%) indicated that they often worried that mathematics 
class would be difficult for them, and one-third (32.4%) worried that they would get 
poor grades in mathematics. About one-fifth of the students (19.6%) get very ner-
vous while some (13.9%) feel helpless when solving mathematics problems. Results 
showed that difficulty in mathematics class is what students worry about most.

Means and standard deviations of mathematical modeling questions (Q1–Q3), 
MA, gender, and family SES; their correlation coefficients are presented in 
Table 16.1. MA was negatively correlated with mathematical modeling abilities (r 
ranged from −0.21 to −0.27, p < 0.001). Male students had slightly higher perfor-
mance in mathematical modeling abilities than female students (r = 0.06, p < 0.05). 
Female students reported higher MA than male students on average (r  =  0.15, 
p  <  0.001). SES had positive correlation with mathematical modeling abilities 
(r = 0.21, p < 0.001) and it had negatively correlation with MA (r = −0.14, p < 0.001).

The correlation matrix is presented on the right-hand side of the table.

16.3.2  Gender Difference in MA

We examined gender differences relating to MA. Female students showed higher 
MA in general than male students, F(1317, 4) = 9.32, p < 0.001; partial η2 = 0.028 
(Table 16.1). Female students showed substantially higher MA in each indicator 
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Fig. 16.1 The percentage of degree of anxiety in each item
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than male students, the effect sizes were ranging from 0.21 to 0.32. Among the four 
indicators, female showed much higher anxiety than male students in “worrying 
that it will be difficult for me in mathematics classes” (57% vs 53%), the effect size 
was 0.32. The degree of MA for each indicator was presented in Fig. 16.2.

We also examined gender differences in mathematical modeling abilities using 
MANOVA. Results showed that there was no significant gender difference in math-
ematical modeling abilities, F(1348, 3) = 2.37, p = 0.069; partial η2 = 0.005. Effect 
sizes of the three questions (Q1 to Q3) were 0.07 to 0.14.

16.3.3  Mathematical Modeling Abilities Gap Between High 
and Low MA

Cluster analysis resulted in two clusters: high MA (36%) and low MA (64%). The 
four indicators showed substantial differences between the high and low MA groups. 
Effect sizes ranged from 1.31 to 2.39. The profiles of the four indicators between 
low and high MA are presented in Figs. 16.3 and 16.4.

MANOVA was used to examine the differences in three mathematical modeling 
questions between the low and high MA groups, F(3,1320) = 33.19, p < 0.001; par-
tial η2 = 0.07. The effect sizes between high and low MA for Q1, Q2, and Q3 were 
0.46, 0.34, and 0.48, respectively. Results seemed to reveal that the gap between 
high and low MA was related to the difficulty of the mathematical modeling tasks. 
That is, the more difficult the mathematical modeling question, the larger the gap 
between the high and low MA groups. Further examination was conducted with 
multiple regression.
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16.3.4  Linking MA and Difficulty to Mathematical 
Modeling Abilities

We applied four-stage hierarchical multiple regression with mathematical modeling 
abilities as the dependent variable. Gender and parental highest education level 
were entered at stage one of regression, labeled as M0, MA (M1), to control for 
demographic characteristics. The difficulty of mathematical modeling (M2) and 
interaction effects (M3) were entered successively at stage two, stage three, and 
stage four, labeled as M1, M2, and M3, respectively.

Hierarchical multiple regression revealed that at stage one, parents’ highest edu-
cation level and gender contributed significantly to the regression model, F(2, 
3983) = 44.06, p < 0.001, and accounted for 2.2% of the variance in mathematical 
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modeling abilities. MA explained an additional 3.5% of the variance in mathemati-
cal modeling abilities; the change in R2 was significant, F(1, 3982)  =  146.76, 
p < 0.001. The difficulty of mathematical modeling questions explained an addi-
tional 19.2% of the variance in mathematical modeling abilities, and the change in 
R2 was significant, F(1, 3981) = 1016.79, p < 0.001. The interaction between the 
difficulty of mathematical modeling questions and MA explains the extra 0.1% of 
the variance in mathematical modeling abilities; the change in R2 was significant, 
F(1, 3980) = 4.37, p = 0.037.

Table 16.2 presents the unstandardized (B) and standardized (β) regression coef-
ficients for stage one through stage four. Students with a parent having a higher 
education level obtained higher mathematical modeling abilities scores (β = 0.14, 
p < 0.001). Male students had slightly higher mathematical modeling abilities score 
than female students (β = 0.05, p < 0.01). MA was negatively related to students’ 
mathematical modeling abilities score (β = −0.19, p < 0.001) after controlling for 
parents’ highest education levels and gender. The more difficult the mathematical 
modeling question, the lower the mathematical modeling scores (β  =  −0.44, 
p < 0.001) after controlling for MA, parents’ highest education levels, and gender. 
A significantly positive but trivial interaction effect was found between the diffi-
culty of mathematical modeling and MA (β = 0.04, p = 0.037).

Table 16.2 Mathematical modeling abilities regressed by gender, SES, MA, and question 
difficulty

Mathematical modeling abilities
M0 M1 M2 M3

B (SE) β B (SE) β B (SE) β B (SE) β
Constant 2.37*** / 2.62*** / 3.07*** / 3.07*** /

(0.106) (0.106) (0.096) (0.096)
SES 0.16*** 0.14 0.12*** 0.11 0.13*** 0.11 0.13*** 0.11

(0.018) (0.017) (0.016) (0.016)
Male 0.15** 0.05 0.06 0.02 0.06 0.02 0.06 0.02

(0.045) (0.045) (0.040) (0.040)
MA −0.38*** −0.19 −0.38*** −0.19 −0.29*** −0.15

(0.032) (0.028) (0.027)
Difficulty −1.34*** −0.44 −1.34*** −0.44

(0.042) (0.042)
Difficulty *Anxiety 0.12* 0.04

(0.035)
R2 2.20% 5.60% 24.80% 24.9%
ΔR2 3.50% 19.20% 0.10%

Note. *p < 0.05; *** p < 0.01; *** p < 0.001
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16.4  Discussions

This study examined the relationship between MA and mathematical modeling 
abilities in eighth-grade students in China. Results showed that female students had 
substantially higher MA than male students, but no gender difference was found in 
mathematical modeling ability. Substantial gaps in mathematical modeling abilities 
were found between high- and low-MA students. After controlling for family SES 
and gender, MA significantly explained the variance of mathematical modeling 
abilities. The gap between high and low MA seems to relate to the difficulty of the 
mathematical modeling questions. Hierarchical multiple regression further demon-
strated that the relationship between MA and mathematical modeling was depen-
dent on the difficulty of the modeling tasks.

In the context of solving modeling tasks, students’ worrying about the difficulty 
in mathematics class was consistent with that shown for students in Shanghai and 
the global average score in PISA 2012. Results showed that 58% of students wor-
ried about the difficulty of their mathematics class. This result was a bit higher than 
seen in the Shanghai PISA 2012 results (53%), but it is close to the results of the 
average percentage in PISA 2012 (59%) (OECD, 2015).

However, the scores for other items of MA were generally lower than the 
Shanghai average and the global average level in PISA 2012 (OECD, 2015). Results 
showed that 20% of students were nervous when solving mathematics problems. 
This result was lower than that for Shanghai students (27%) and even lower than the 
world average (31%). Results showed that 14% of students felt helpless when faced 
with a mathematics problem. This result was also lower than for Shanghai students 
(28%) and the global average (30%). Notably, our results only showed 32% of stu-
dents worried about getting poor grades in math, which is much lower than that of 
Shanghai students (71%) and the global average (61%). Our results generally indi-
cate a lower level of MA for the students in this study than those in Shanghai and 
the global average indicated by PISA 2012. This might be because we used a cus-
tomized test specially designed for measuring mathematical modeling abilities and 
because it is not a high-stakes test. We stated clearly before the test that we would 
not release any individual student’s information about the test or students’ rank 
according to this test, and, therefore, students felt less anxiety in this context. PISA 
also did not rank specific students, but it is well-known by students and teachers. 
Additionally, PISA tested general math abilities. When compared, the differences 
are consistent with the findings that MA was higher in school-like math tasks than 
verbally mediated tasks (Ashkenazi & Danan, 2017).

In our study, female students reported substantially higher MA than male stu-
dents. This result might not be surprising, as this result is consistent with most of the 
literature (e.g., Birgin et al., 2010; Devine, Fawcett, Szucs, & Dowker, 2012). The 
sex-role socialization hypothesis argues that math is traditionally viewed as a male 
domain subject (e.g., Duckworth & Seligman, 2006). Females may be socialized to 
think of themselves as mathematically incompetent; therefore, females may avoid 
mathematics and experience more anxiety when participating in math-related 
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activities (Bander & Betz, 1981). Another explanation is that females may be more 
willing to express their emotions whereas males may not, because expressing nega-
tive emotions is viewed as immature or less acceptable for males (Flessati & 
Jamieson, 1991; Hunsley & Flessati, 1988). Fear suppression is more desirable for 
males than females in most cultures (Diener & Lucas, 2004; Peterson, 2006). Future 
studies should further explore gender differences in MA expression in China or 
Eastern culture.

MA was negatively related to students’ mathematical modeling. Students with 
high and low MA showed substantial gaps in mathematical modeling abilities in all 
three modeling tasks, which is consistent with hierarchical multiple regression 
results. This result is consistent with the literature (Hembree, 1990; Ma, 
1999;Namkung et al., 2019; Zhang et al., 2019) and supports the cognitive interfer-
ence theory. The cognitive interference theory points out that MA taps an individu-
al’s working memory, therefore, undermines the individual’s math performance 
(Ashcraft, 2002). We also provide a different perspective by our use of cluster anal-
ysis to support this theory. However, there are two competing theories: deficit theory 
(Carey et  al., 2016; Tobias, 1986) and bidirectional theory (Ashcraft & Krause, 
2007; Carey et al., 2016). The deficit theory explains that the negative experience 
triggers students’ MA. The bidirectional theory combines deficit theory and cogni-
tive interference theory. Because of the limitations of our data, we cannot examine 
the bidirectional theory. Further longitudinal studies are needed to examine these 
three theories together in the context of solving modeling tasks.

The gap between high and low MA seems to be related to the difficulty of model-
ing tasks. A significant interaction effect between the difficulty of modeling tasks 
and MA further shows that the relationship between mathematical modeling and 
MA depends on the difficulty of the modeling tasks. Our results are consistent with 
previous studies in that the relationship between MA and math performance was 
dependent on the complexity of math problems. For example, complex math prob-
lems elicited higher MA than simple arithmetic problems (Ching, 2017). Also, 
MA-problem-solving skill links are stronger than MA-digital calculation links 
(Beilock & Willingham, 2014; Harari et al., 2013). Also, there are stronger links 
between MA and advanced mathematics domains than between MA and the funda-
mental domain (Namkung et al., 2019; Zhang et al., 2019). Unlike the above stud-
ies, our study compared the different complexities of tasks in the same domain of 
mathematical modeling. Our results revealed that the relationship between MA and 
mathematical modeling depends on the difficulty of the modeling tasks.

In summary, this is the first study about the MA in the context of solving math-
ematical modeling tasks. Our results are consistent with the studies of MA and math 
performance. Therefore, the suggestions from intervention studies for relieving MA 
can also be applied to mathematical modeling areas. This finding adds to the grow-
ing empirical evidence of the relationship between math anxiety and math perfor-
mance. We provided evidence that the relationship between MA and math 
performance depends on the difficulty of the math problems in the mathematical 
modeling domain.
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Mathematical Competencies of Chinese 
Students: An International Perspective
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Abstract This chapter identifies aspects of the study of mathematical competen-
cies of Chinese students that are likely to be of special interest to international read-
ers. Perhaps the most striking feature is the scale of the work. Within an overarching 
framework for conceptualizing mathematical competencies, there are detailed 
reviews of the treatment of each of these cognitive and non-cognitive competencies 
in the Chinese curriculum since 1902, and a comprehensive set of snapshots of the 
current performance of Grade 8 students on each. The assessment tools provide 
powerful base-line data for monitoring students’ mathematical competencies into 
the future. The detail in the studies will assist international researchers to more 
deeply understand some of the paradoxes in PISA results, such as Chinese students 
reporting low classroom exposure to “applied problems” while also demonstrating 
outstanding performance on items emphasizing PISA’s formulate process. The book 
gives insight into the strong Chinese tradition of mathematics education, changing 
over time in response to dramatic social and economic forces but retaining unique 
features and also becoming increasingly well integrated with international thought.
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17.1  Introduction

For an international audience, this book provides a valuable summary of the evolu-
tion of thinking about mathematical competencies in China, and how these ideas 
have developed over time and are presented in curriculum documents. In addition, 
it provides an overall framework for conceptualizing mathematical competencies 
and reports a comprehensive set of snapshots of the performance of Grade 8 stu-
dents. There is a unity within the book, as the early chapters set the scene, and the 
later chapters present similarly structured studies of each of the mathematical 
competencies.

The international interest in the book is very likely to be stimulated by the out-
standing results that Chinese students have achieved in international assessments. 
The authors draw significantly on the conceptual framework of PISA and to some 
extent TIMSS, and the empirical approaches that these studies use. In a report of the 
influence of PISA on thought and action in mathematics in ten countries, Stacey 
et al. (2015) noted that, as expected, the mean scores of students and their distribu-
tions have been an important stimulus for change or confirmation of direction in 
many countries. However, that article clearly demonstrated that the mathematics 
framework for PISA 2012 and earlier (OECD, 2013) has been equally or even more 
influential on thought and action across the world. This influence has been espe-
cially through PISA’s emphasis on mathematical literacy as its goal, the embedded 
modeling processes of formulate, employ and interpret and the theoretical founda-
tion of the underlying mathematical competencies (the fundamental mathematical 
capabilities of PISA 2012). The identification of PISA processes and capabilities 
aims to move the understanding of what students should learn in mathematics 
beyond knowing specific content and being able to solve closely defined classes of 
problems towards being able to use mathematics in their lives outside and beyond 
school. Although the PISA assessment has focused on using mathematics, the 
PISA capabilities also apply to mathematics as a discipline in its own right. This 
book demonstrates that China has also been influenced in these ways.

International readers will be impressed with many features of the book. There are 
detailed reviews of specific mathematical competencies that draw on research from 
around the world. While embedding the arguments within Chinese scholarship, the 
book demonstrates that these Chinese authors are well connected to international 
scholarship. The frameworks developed for the specific competencies deserve con-
sideration for work elsewhere; in developing practical assessment tools to monitor 
progress in teaching for mathematical competencies. Readers will also be impressed 
by the scale and co-ordination of this set of studies, undertaken to support the inten-
tion of new aspects of the curriculum and standards. The studies have direct impli-
cations for curriculum implementation across China. They are designed to show the 
extent to which Chinese students achieve the intended Chinese curriculum. As 
Chap. 2 stresses in its careful review of the findings from China’s participation in 
PISA, in China, the PISA success is understood not just as a cause for celebration, 
but also as a call to action to improve on identified weaknesses.
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The fundamental ideas that underlie Chinese mathematics education are dis-
cussed in Chap. 1 by Jing Chen and colleagues. It discusses the evolution of the 
“four basics” principle, an expansion of the “two basics” (knowledge and skills) of 
earlier years. This transition corresponds to the underlying concern of educators 
around the world to expand the narrow view of school mathematics that is too fre-
quently held by teachers, students, and the wider community. This concern has 
motivated progressive thought about mathematics education for at least 50 years, 
naturally with variation over time and place.

The expansion from two basics to four basics demonstrates the place that math-
ematical thinking processes take alongside the development of knowledge and skill, 
and it also emphasizes how mathematical activity is the glue that holds the other 
three basics together. Knowledge, skills, and thinking processes are used together in 
mathematical activity. Included in this message is the observation that students learn 
mathematics by engaging in mathematical activity at an appropriate level of chal-
lenge, not just by being told facts and practicing copied skills. The aim of the four 
basics is to create students with broad mathematical competence. This sets the scene 
for the following chapters which present a detailed account of how the thinking 
processes can be conceptualized, assessed and achievement monitored.

The central contribution of the book is to lay out a comprehensive framework for 
mathematical competence and its assessment. The framework is introduced in Chap. 
3 by Binyan Xu and colleagues. Subsequent chapters address each of the compo-
nents in turn, tracing their rising importance within Chinese curriculum documents 
over a century and reporting empirical results using a consistent set of levels. The 
motivation for this work is related to the policy decision to use evaluation and moni-
toring as a way to improve the quality and equity of education. Many other countries 
have also adopted policies of monitoring educational achievement in recent decades. 
It is clear that if mathematical competence beyond just knowledge and skills is to be 
valued and taught in all schools, then it must feature in the high-stakes assessments 
that are used. However, assessing more than knowledge and skills is a complex task, 
and hence the task is often put aside in national programs. Providing a well- 
researched, practical way for such assessment of broad mathematical competence 
can therefore be of national, possibly international, importance.

17.2  Evolution of Chinese Mathematics Education

Every chapter includes a discussion of the changes that have occurred in Chinese 
mathematics education since 1902. Together, these well-documented accounts show 
how the mathematics curriculum and goals of China have been influenced by the 
social, economic, and political environment within China and also by the interna-
tional environment. For an international audience, the dramatic economic, social, 
and political changes that China has undergone in the last 100 years serve to high-
light how school mathematics changes in response to social needs and the capacity 
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of a society to provide education. Because of the strong unified national curriculum, 
the changes can be tracked very clearly.

The chapters document the shift from the ancient classics-focused imperial 
examination system to a more modern system under the influence of Western and 
Japanese ideas, the adoption of mathematics from the Soviet Union after the Second 
World War until 1958, and then a change (until 1963) where mathematics was 
focused narrowly on the needs of industrial and agricultural work. After the turmoil 
of the Cultural Revolution, from 1976 the curriculum gradually began to emphasize 
students’ ability to analyze and solve problems as the goal of learning knowledge 
and skills. In this way, developing “basic ideas” was added to the two basics. This 
trend continued and accelerated to today, as the economy supported a rise in the 
school leaving age and increasingly ambitious goals for schooling. Concurrently, 
international trends, such as the shift from syllabus to curriculum standards, have 
been more influential. The “four basics” became the overall goal for compulsory 
education in 2011.

Chapter 1 identifies the unique characteristics of Chinese mathematics, and the 
key to its success, as a focus on the basics (attributed to China’s farming tradition 
and Confucian culture) and the deliberate choice of ideas from other countries. The 
extensive international literature reviews in Chaps. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, and 16 demonstrate the care taken in selecting perspectives and approaches 
from other traditions. There is no one dominant set of research studies, but a selec-
tion of the most appropriate from around the world. Because these literature reviews 
are very clearly focused on specific competencies, they can be valuable to beginning 
scholars from many countries. These later chapters make the ideas behind the four 
basics very concrete, and illustrate the mathematical depth intended.

Chapter 1 also provides an explicit contrast between Chinese and Western math-
ematics education from a Chinese point of view. It discusses a tendency for Western 
countries to ignore the foundation for mathematics and points out that building 
strong “basics” in Chinese mathematics is not simply reducing difficulty and focus-
ing on mathematics in daily life. The chapter also identifies a tendency of Western 
child-centric education to give excessive priority to the students’ interests and hap-
piness, avoiding the fact that a strong foundation requires “basic mathematics 
knowledge and skill [that] is quite boring content and does not stimulate children’s 
interest” (page 11 of Chap. 1). It is pointed out that attempts to adopt Chinese ideas 
in Western mathematics education are often based on a misunderstanding of the 
foundation as repetition only, ignoring the need to combine “laying the foundation 
with seeking development” (page 12 of Chap. 1). This book may contribute to dis-
pelling this misconception by showing readers from other countries a bigger picture 
of how Chinese teachers attend to both foundation and development. Perhaps future 
books by this team will provide a deeper understanding for audiences outside China 
by explaining with examples how teaching sequences can fully develop the four 
basics and mathematical competencies.
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17.3  Describing and Organizing Core 
Mathematical Competencies

Chapter 3 is the key chapter of the book. Drawing on Chinese and international lit-
erature, it describes the model that features throughout the book, identifying core 
mathematical competencies that contribute to three fundamental mathematical 
activities (organizing empirical materials mathematically, organizing mathematical 
materials logically, and applying mathematical theory). Six core competencies have 
been selected for the model: mathematical problem posing, mathematical represen-
tation and transformation, mathematical reasoning and argumentation, solving 
problems mathematically, mathematical communication, and mathematical model-
ing. A unifying aspect of the model is that each competency is described in terms of 
three levels, always labeled reproduction, connection, and reflection. By choosing 
these labels, the levels are implicitly linked to other descriptions of increasing cog-
nitive depth, right back to Bloom’s taxonomy as well as current TIMSS and pre-2012 
PISA names for cognitive levels. Describing competencies in terms of levels is 
essential for assessment, but the general labels are insufficient and so specific 
descriptions are given for each competency (and further developed in subsequent 
chapters). This set of six bears a strong resemblance to other sets of mathematical 
competencies (e.g., Niss, 2015; Turner, Blum, & Niss, 2015), although each set has 
its own unique characteristics to meet its own purpose. Turner et  al. (2015), for 
example, created a scheme to predict the difficulty of PISA items and hence describe 
what students who perform at different levels of the PISA assessment can do. They 
refined a larger set of competencies (derived from Niss) to the empirically demon-
strated six best predictors of item difficulty and described four levels for each com-
petency. The specific descriptors were selected to describe the competency and how 
students progress through it, but also to best match the assessment purpose (the 
PISA pen-and-paper written test, with relatively short items set in real-world con-
texts). Other descriptions of exactly the same competency but written for a different 
purpose may sensibly include other things.

Chapters 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 examine each of the com-
petencies in turn, following a standard pattern. A content analysis of the major cur-
riculum documents from 1902 to the present-day maps changes in the treatment of 
the competencies over time. In each case, the general pattern of the data indicates 
there has been an increase in attention to the competency, reflecting an increasingly 
deeper set of goals for schooling. It is likely that most countries would exhibit a 
similar general trend, although the timelines for change and development would be 
very varied. I wondered if the content analysis, mainly based on the incidence of 
particular words in the documents, gave a really reliable picture. Words come in and 
out of fashion (influencing frequency) and can change their meaning and connota-
tion over time. A deeper analysis might have gone beyond the documents to show 
how the ideas were operationalized in the mathematics that students were asked to 
do at each stage.
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More generally, across the book, I wanted to see more examples of mathematical 
tasks to get a better idea of how I should interpret the words written on the page. As 
an international reader, I found it very instructive to carefully examine the relatively 
few mathematical tasks that were given. They reveal large differences in the inten-
tions of the Chinese curriculum compared to the Australian curriculum (the one 
with which I am most familiar). Tasks with sample student responses were even 
more illuminating. For example, Chap. 11 presented six questions used to assess 
reasoning; two at each of the three levels and two involving each of arithmetic, 
algebraic and geometric reasoning. Were these questions posed to Australian stu-
dents, I expect that only the two arithmetic reasoning questions would be answered 
correctly by more than a tiny percentage of students. Interestingly, one of these 
questions has been placed at level 1 and the other at level 3. The other items (at 
levels 1, 2, and 3) required an understanding of two aspects of reasoning of which 
Australian Year 8 students have very little experience: proving with algebra and 
identifying the logical relationships between statements. This interesting case made 
me reconsider what I mean by mathematical reasoning; a valuable experience. Since 
looking at these problems, I am less sure than before that I have a clear conception 
of a general mathematical reasoning competence independent of the content being 
taught. Mathematics has its own techniques to learn (and teach) for both plausible 
and deductive reasoning.

Throughout the book, the authors share their challenge of trying to understand 
the precise definitions of key terms that other mathematics educators have used. 
What a difference from mathematics itself, where the definition is central and names 
are used consistently with due regard to formal definition! The words describing the 
various aspects of “working mathematically” are a hot spot of confusion. Perhaps 
mathematics education literature in English is particularly difficult because, in addi-
tion to the challenges of clear definition, the English literature includes the very 
significant contributions from people from many cultural and linguistic back-
grounds, drawing on additional connotations of each word from their own language 
and didactical traditions.

The use of the word “reasoning” in PISA is an informative example. The PISA 
2012 framework used the word “reasoning” in two senses. One is a carefully defined 
meaning, naming the “fundamental mathematical capability” (competency) of “rea-
soning and argument”. The definition, later refined by Turner et al. (2015, p. 114), 
is “Drawing inferences by using logically rooted thought processes that explore and 
connect problem elements to form, scrutinize or justify arguments and conclusions.” 
The second use is conversational. “Reasoning” is used as a synonym for general 
thinking about anything mathematical. An example is “Aspects of quantitative rea-
soning – such as number sense, multiple representations of numbers, elegance in 
computation, mental calculation, estimation and assessment of reasonableness of 
results  – are the essence of mathematical literacy relative to quantity.” (OECD, 
2013, p.  35). In the (second draft) framework for PISA 2021/2022 reasoning is 
again used in this overarching conversational sense: “Having an appreciation of 
abstraction and symbolic representation supports reasoning in the real-world appli-
cations of mathematics….” (OECD, 2018, p.  17). However, in a new initiative, 
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mathematical literacy is to be assessed in four domains (rather than three), now 
including “mathematical reasoning” weighted at 25% (p.  33) which is a much 
broader concept than the “reasoning and argument’ competency of PISA 2012. 
“Mathematical literacy therefore comprises two related aspects: mathematical rea-
soning and problem solving” (OECD, 2018, p.  9) and “Mathematical reasoning 
(both deductive and inductive) involves evaluating situations, selecting strategies, 
drawing logical conclusions, developing and describing solutions, and recognizing 
how those solutions can be applied” (OECD, 2018, p. 14). The example items on the 
website give the impression that mathematical reasoning will be assessed through 
intra-mathematical items without a real-world context. One of the example ques-
tions on the website (https://pisa2021- maths.oecd.org/) asks students to calculate 
(−5)43 + (−1)43 + (5)43.

The example of the word “reasoning” in PISA has been discussed to show how 
even within one project, words relating to the process aspects of mathematics are 
used with substantially different meanings. The consequences of this are (i) that 
reading the international literature for meaning is very difficult; (ii) the progress of 
mathematics education as a disciplined study is held back by this; (iii) individual 
groups need to make or choose their own clear definitions, and explain them with 
examples so that others can understand their work. The work put into defining the 
competencies in this book can be used as a strong basis for future research on com-
petencies in China.

17.4  Empirical Studies of Cognitive 
Mathematical Competencies

The central section of the book (Chaps. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 
16) reports a series of empirical studies of students’ performance related to the cog-
nitive and non-cognitive competencies. Each of the studies devised a set of relevant 
items, which were administered to some Grade 8 students. Samples varied, but were 
generally large (e.g., over a thousand students in intact classes in about 3 schools in 
each of 5 regions selected to represent schools of different standards in developed, 
medium-developed, and less-developed areas of China). The results are analyzed in 
various ways (e.g., using item response theory) so that the ability distribution of 
students can be reported numerically and against the defined levels. In some cases, 
“double-digit coding” reveals students’ common errors and strategies. Further anal-
ysis of the results in some chapters reveals differences between geographical areas 
and gender differences.

This comprehensive and unified approach to the assessment of mathematical 
competencies is impressive. While it is clear that these representative samples can-
not provide statistically solid data for the huge population of China, the studies 
provide a valuable set of items for future monitoring of students’ mathematical 
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competencies, directions for future research and curriculum development, and 
information about how and where to target future support for teachers.

There is something of interest to international audiences in every chapter, espe-
cially for researchers interested in the theorization and assessment of mathematical 
competencies. Perhaps the main international interest will be in better understand-
ing some of the puzzling results of international assessments. One relates to the 
affective dimensions of mathematics. The PISA 2012 survey reported on five 
aspects of self-related cognition related to mathematics: self-efficacy, self-concept, 
anxiety, intrinsic motivation, and instrumental motivation. Implicit behind these 
choices is the common-sense proposition that achievement is promoted if students 
are low on mathematics anxiety and high on the other four factors. Given the “top 
of the class” achievement scores of students in China, it was therefore surprising to 
see that Shanghai PISA 2012 students were very close to the OECD average on 
three of the five self-related cognition measures (self-concept, anxiety, instrumental 
motivation). The other two measures (self-efficacy and intrinsic motivation) were 
high, as would be predicted. Chapters 2, 15, and 16 provide a theoretical analysis 
and further data for a detailed exploration of these unexpected results with a wider 
Chinese sample. International readers will see a well-document example of how 
measures of self-related cognition of anxiety and self-concept are strongly related 
to the local, classroom, and family situation in which students find themselves.

Another paradox in the PISA 2012 data relates to national scores on the 
formulate- employ-interpret processes of solving real problems with mathematics. 
This is described by Stacey in Cai, Mok, Reddy, and Stacey (2017). Stereotypes of 
East Asian education assume an emphasis on routine procedures, so it would have 
been predicted that they would perform best on the intra-mathematical “employ” 
process. However, those countries tended to achieve their own best score on the 
formulate process (translating from the real world to the mathematical world), 
which was internationally the hardest process. East Asian students achieved their 
own lowest score on the interpret process, which was the easiest process in many 
Western countries and for the OECD average. This result was even more surprising 
in conjunction with the accompanying survey of students’ confidence in solving a 
selection of problems and how frequently they had encountered similar problems in 
class. The selected problems included some “formal” items lacking any real-world 
context (e.g., find the volume of a prism) and “applied” items set in a real-world 
context like almost every PISA 2012 item. Students in Asian countries on average 
reported low classroom exposure to the applied problems. Despite this low expo-
sure, they excelled in the formulate process, translating a real-world problem into 
mathematical terms. The studies of mathematical modeling, problem solving, and 
reasoning in this book begin to provide the depth of data needed to understand puz-
zling  phenomena like this, and hence to reveal what type of school experiences 
produce students who can use the mathematics they have learned in all spheres of 
their lives.
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17.5  Conclusion

As the sections above have illustrated, this book has much to interest an interna-
tional reader. First, it provides international readers with insiders’ views of the 
famous Chinese PISA performances. One of the clear messages is that there is a 
definite intention to improve, despite this success. The book also provides interna-
tional readers with insight into Chinese mathematics education and the history of 
curriculum over a momentous century. It shows how the mathematics curriculum is 
tied to the goals and the educational and economic conditions of society. It also 
shows a capacity to maintain a strong national tradition, while adopting trends from 
countries around the world. For researchers, the book documents a comprehensive 
and unified attempt to establish theoretically sound tools and some base-line data to 
monitor Chinese students’ cognitive and non-cognitive mathematical competencies. 
Beyond the monitoring progress, these tools and the data that result can inform 
future curriculum development and identify the professional learning needs of 
teachers to make even more mathematically competent students.
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Chapter 18
Mathematics Core Competencies 
of Chinese Students – What Are They?

Frederick K. S. Leung

Abstract China has been implementing mathematics curriculum reform driven by 
“subject competencies,” and the Chinese term used for competencies is he-xin-su- 
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18.1  Introduction

The spectacular performance of Shanghai students in mathematics (and science and 
reading) in Programme for International Student Assessment (PISA) 2009 caught 
the attention of educators, policy makers, and the general public around the world 
(see Table 2.6) (Tan, 2017; Yang & Fan, 2019). Many people are asking: what is 
happening in Shanghai that makes it apparently so successful in education? In par-
ticular, how is mathematics taught and learned in Shanghai that produces such 
remarkable results of their students in PISA? Shanghai is of course not the whole of 
China, it is a very special city in China (some refer to Shanghai as the Paris of the 
Orient, the New York of China, or the Great Athens of China, see, for example, 
Cumming, 1899). The PISA results thus prompt us to ask what (mathematics) edu-
cation in China is like beyond Shanghai and PISA. This book intends to “open a 
window for relevant parts from the world to understand Chinese students’ mathe-
matics competencies” (Preface), and so provides at least a partial answer to the 
important question of what education in China is like.

Are Chinese students on the whole highly competent in mathematics, like what 
the PISA results show for the Shanghai students? Various books and papers have 
been written on the mathematics achievements of Chinese students (Leung, 2001, 
2005; Stevenson et al., 1990; Stevenson, Chen, & Lee, 1993) and students of the 
Confucian Heritage Culture (CHC) more generally (Leung, Graf, & Lopez-Real, 
2006; Stankov, 2010; Watkins & Biggs, 2001; Wong, 2004). But this book is about 
mathematics competencies of Chinese students, not their mathematics achievement 
in general. To understand mathematics education in China, it is important and illu-
minating to go beyond simply learning about mathematics achievements as mea-
sured by international studies such as PISA (or even worse, merely focusing on the 
ranking of the country in such studies) and look at different aspects of students’ 
mathematics competencies, in order to gain an insight into the strengths of the 
Chinese students. That is, if Chinese students are really strong in mathematics 
achievement, how do they flair in different aspects of their mathematics competen-
cies? And why are they strong in particular aspects of competencies?

“The study of mathematics competencies (is) an internationally hot topic in 
mathematics education research” (Preface), and the term “competencies” has 
become a catchword in recent literature (Enderson & Ritz, 2016; Lee, 2016; Leung 
et  al., 2006; Niss, Bruder, Planas, Turner, & Villa-Ochoa, 2016; Pettersen & 
Braeken, 2019; Wintermute, Betts, Ferris, Fincham, & Anderson, 2012). Many 
countries and studies are advocating the development of competencies and their 
assessment, and China has been implementing mathematics curriculum reform 
driven by “subject competency” (see Chap. 1). As with most catchwords, the term 
“competencies” is so pervasively used that sometimes we do not have a clear sense 
of what it means. In the case of China, there is a further complication in the concept 
of “competencies” because of the Chinese language used to describe this concept, 
as will be seen below.
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Chapter 1 of this book described the history of how this advocacy of competen-
cies in China has evolved from the advocation of “the two basics” and “the three 
abilities”, to “the four basics” and then finally “the six core competencies” in recent 
years. This historical perspective lays the foundation for readers to understand 
Chaps. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 on the various aspects of competencies 
of Chinese students.

18.2  The Concept of Competencies

Various conceptions of the idea of competencies in the international literature were 
discussed in Chap. 1 in the context of justifying the advocacy of mathematics com-
petencies in China against the “overall environment of the development of interna-
tional mathematics education” (Chap. 1). And Chap. 3, in establishing “a framework 
of mathematical competencies in China” for the purpose of this book, also reviewed 
the various ideas of competencies and its definitions, connotations, and usage 
adopted in different international studies of mathematics achievement or mathemat-
ics curricula around the world.

Different terms akin to the idea of “competencies” were used in these interna-
tional studies and mathematics curricula. PISA, for example, used the term (math-
ematics) “literacy” as the core concept underlying its assessment of student 
achievement. Chapter 2 presented the mathematics achievement of Shanghai stu-
dents in PISA, and as background information, the idea of mathematics literacy was 
discussed. There it was pointed out that “PISA 2000 defines mathematical literacy 
as ‘an individual’s capacity to identify and understand the role that mathematics 
plays in the world, to make well-founded mathematical judgments and to engage in 
mathematics, in ways that meet the needs of that individual’s current and future life 
as a constructive, concerned and reflective citizen’” (OECD, 1999, p.41, quoted in 
Chapter 2). The assessment framework in the first PISA consisted of two major 
aspects, namely, mathematical competencies and mathematical big ideas (OECD, 
1999). “Mathematical competencies includes eight general mathematics skills in a 
non-hierarchical order (e.g., problem posing and solving skills, symbolic, formal 
and technical skills, and modeling skills), which are further organized into three 
larger classes of competency: … reproduction, definitions and computations (class 
1), connections and integration for problem solving (class 2), and mathematical 
thinking, generalization and insight (class 3)” (Chap. 2). So how is the idea of com-
petencies related to other concepts such as literacy? Is competencies a kind of lit-
eracy, as seemed to be implied in the assessment framework of PISA?
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18.2.1  Core Competencies or he xin su yang?

The Chinese term denoting the concept or attribute akin to competencies being 
advocated in China is he xin su yang, which is often translated as “core competen-
cies”. The first official appearance of the term was in 2013, in a project on “A study 
on the overall framework of students’ core literacy in basic education and higher 
education in China”1 commissioned by the Ministry of Education to a research team 
headed by Professor Lin Chongde of Beijing Normal University. Subsequently in 
2014, a document entitled “Opinions on Comprehensively Deepening Curriculum 
Reform and implementing the Fundamental Task of Developing Student’s Moral 
Values”2 issued by the Ministry of Education explicitly introduced the concept of he 
xin su yang and promoted its use in the country.

In introducing or promoting a new measure or initiative, the term adopted to 
describe the measure is important. Usually, either a new term is coined to denote the 
new measure, or an existing term that best captures the meaning of the measure is 
picked as the official term for the measure. An important issue is how this newly 
coined term, roughly translated as Core Competencies in English, is related to the 
various terminology related to the idea of core competencies in the international 
literature.

As mentioned above, the Chinese term he xin su yang is translated as “core com-
petencies”. The translation of he xin as core poses not controversy. The contentious 
issue here is not the translation but which competencies are considered as core in 
mathematics. I will return to this point below. On the other hand, the translation of 
su yang as competencies is controversial.

Chapter 1 explicitly discussed the translation of the term su yang, and argued that 
“‘养’ (or yang) represents ‘accomplishment’, i.e., a certain level of thought, theory, 
knowledge and art”. The authors further pointed out that the Chinese official cur-
riculum document defines Mathematical Competency as “a comprehensive reflec-
tion of the basic characteristics of mathematics in terms of thinking quality, key 
abilities, emotional attitudes and values” (Ministry of Education of the People’s 
Republic of China, 2018). This translation of the character yang as an accomplish-
ment is however not uncontroversial. The origin of the term su yang is from a 
Chinese classic, “Li Xun Zhuan, the Book of Han”.3 There, su yang refers to a qual-
ity acquired or developed through sustained training and practice over time. It often 
refers to moral character, and it is more an internal or internalized attribute than an 
external “accomplishment”. The term su yang implies something of high quality 
being developed deep inside human being, while accomplishment is often 

1 “我国基础教育和高等教育阶段学生核心素养总体框架研究”, headed by Professor Lin 
Chongde (林崇德)
2 《 关于全面深化课程改革落实立德树人根本任务的意见 》
3 《汉书·李寻传》:“马不伏历, 不可以趋道; 士不素养, 不可以重国”, roughly translated as 
“They need to feed the horses every day, otherwise the horses cannot run, and if they do not train 
the people’s su yang, they cannot hold the country strong.”.
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understood as a person’s attributes observable externally. Accomplishment may be 
considered as an external manifestation of competencies or su yang, but it should 
not be equated with su yang.

18.2.2  “Adequate” Competencies for a Certain Purpose or 
High-level Qualities?

Moreover, the term competencies often convey a sense of being adequate or suffi-
cient for a certain purpose (e.g., someone who has computer programming compe-
tencies, or a competent computer programmer, is someone who has sufficient 
knowledge and skills to do the job of a computer programmer well). This is similar 
to the idea of Literacy as used in PISA, where, as pointed out above, it is defined as 
“an individual’s capacity … (to) meet the needs of that individual’s current and 
future life as a constructive, concerned and reflective citizen” (OCED, 1999, p.41). 
So literacy, like the word competencies, conveys a sense of being adequate for a 
certain purpose (in the case of PISA, to meet the needs of an individual to live as a 
citizen). But su yang is an attribute at a higher level. The idea embodied in the 
Chinese character yang is something that is beyond being merely adequate, some-
thing that is desirable but not essential or necessary. The authors of Chap. 1 tried to 
capture this aspect of the character yang by using the words “a certain level of 
(thought, theory, knowledge and art)”, but I personally think that yang conveys the 
meaning of being at a high level, not just at “a certain level” (which could be a rather 
low level!).

As far as mathematics su yang is concerned, it would of course be good if an 
individual acquires the su yang of mathematics in addition to being literate or hav-
ing competencies, but we should not expect all individuals to have acquired su yang 
(e.g., to be able to appreciate the beauty of mathematics). To draw an analogy with 
language, I think everyone will agree that an individual will need certain language 
competencies (as demonstrated by accomplishment?) in order to live meaningfully 
in this modern world, competencies including reading, listening (and understand-
ing), speaking, and writing  – this is exactly what is meant by being literate. Of 
course, it would even be better if the individual knows some literature too, but this 
is something which is desirable and not essential or necessary. I don’t think many 
people will argue seriously for everyone learning Shakespeare! For the more gen-
eral idea of su yang in ancient China, the arts4 of music, chess, calligraphy, and 
painting were considered as typical su yang. Clearly, these are good examples of 
something which are desirable but not necessarily essential (Han, Li, & Fu, 2005; 
Liu & Zhu, 2012; Su, 2010).

4 In ancient China, music, chess, calligraphy and painting were known as the Four Arts or four su 
yang, originated from Lanting Ji, in the book Fashu Yaolu by Zhang Yanyuan of the Tang Dynasty 
(唐張彥遠《法書要錄》載唐玄宗朝何延之〈蘭亭記〉) (Cheung, 2011).
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18.2.3  Competencies and Related Concepts

So when talking about competencies, are we referring to the minimum capacity or 
accomplishments of a child that enable him or her to survive or live effectively and 
meaningfully in the modern world, or are we looking for qualities beyond being 
adequate or sufficient? More importantly, how does this concept of he xin su yang 
relate to the variously relevant concepts in the international literature, terms such as 
literacy, accomplishment, attainment, ability, capability, competence, competency, 
proficiency, skill, knowledge, and standards. NCTM, for example, used the term 
Standards or Process Standards, rather than competencies (National Councils of 
Teachers of Mathematics [NCTM], 2000); and in Singapore, the term “skills” is 
used (American Institutes for Research [AIR], 2005; Kaur, 2010). Denmark seems 
to be one of the few countries where the term competency or competencies is explic-
itly used (Niss & Højgaard, 2019). But how are these terms or concepts related to 
the Chinese term he xin su yang?

Clarification of the meaning of the term he xin su yang in the Chinese context is 
crucial. Jan de Lang argued that different conceptions of “mathematics literacy 
(ML) will lead to different curricula in different cultures. ML will need to be cultur-
ally attuned and defined by the needs of the particular country. This should be kept 
in mind as we attempt to further determine what mathematics is needed for ML” 
(De Lange, 2001). Although Jan de Lang used the term Mathematics Literacy 
instead of Mathematics Competencies, the idea he expressed is clear. Conceptions 
of mathematics competencies in different cultures, and indeed the very terms used 
in different languages to denote the concept, will lead to different mathematics cur-
ricula and different ways mathematics is conceptualized, taught, and assessed. It is 
in the context of the different conceptions of the term he xin su yang in China versus 
the conceptions of mathematics competencies in different cultures as found in the 
international literature that we could and should understand the mathematics 
“accomplishment” of Chinese students. I hope a “by-product” of this book is to 
initiate discussion of and research into this conceptual aspect of mathematics com-
petencies across different cultures, enriching the understanding of the people around 
the world on what are the essential things to learn in mathematics, and indeed what 
does it mean by learning mathematics in different cultural contexts.

18.2.4  What Are “Core” Competencies?

The problem becomes even more complicated when we consider the adjective 
“core” that qualifies “competencies”, because we need to address not only the issue 
of “what mathematics competencies are”, we also need to deal with the very impor-
tant question of “among the mathematics competencies, which are core competen-
cies and which are just peripheral competencies?” As far as I know, this important 
question has not really been addressed in China, as all the relevant literature merely 
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dealt with the issue of what are core competencies in mathematics but never 
addressed the issues of what non-core mathematics competencies are. If there are no 
non-core competencies, then using the adjective “core” to qualify competencies is 
pointless.

This discussion on the conceptual understanding of he xin su yang, or core com-
petencies, is essential to this book which is on the (cognitive and non-cognitive) 
competencies of Chinese students in mathematics, and as can be seen from the sec-
tions above the discussion is of paramount importance to mathematics education in 
China more generally as well. Since the current curriculum reform in China is 
driven by the idea of developing “competencies” or he xin su yang in our students, 
an elucidation of the conceptual understanding of mathematics competencies clari-
fies our understanding of the nature of school mathematics (as opposed to other 
school subjects such as Physics, for example); and clarifying what core competen-
cies direct us to understand what features among the various characteristics of math-
ematics are essential for our students to learn, and thus how such mathematics 
features should be taught or inculcated. Such clarification of concept obviously is 
extremely important for research into this important area in mathematics educa-
tion too.

18.3  Strengths of the Book

Chapter 3 is pivotal to the book, as it proposes a theoretical framework of mathe-
matical competencies for the rest of the chapters in the book. Based on an extensive 
review of the international literature on the idea of competencies and related con-
cepts, the chapter discussed the different conceptualizations and components of 
mathematics competencies adopted in international studies and national curricula 
around the world, and came up with a comprehensive model of mathematics com-
petencies. As the author claimed, “to provide a meaningful and operable reference 
for the evaluation of mathematics education in China, this study intended to estab-
lish a mathematical competence model which take into account not only the essen-
tial characteristics of the mathematics subject, but also the new requirements for the 
mathematics education brought by social development” (Chap. 3). In addition to 
providing the conceptual underpinnings for the book, the framework presented in 
Chap. 3 is making a substantial contribution to the literature, especially the litera-
ture on mathematics education in China. The chapter however did not tackle the 
issue of the equivalence between the Chinese concept of he xin su yang and the core 
competencies as discussed above, nor was the intricate relationship between the 
concept of competencies and the variously related concepts in the international lit-
erature discussed at length. The author of the chapter also did not touch on the issue 
of what “core”, as opposed to peripheral, competencies are.

This book provides rich and comprehensive information on both the curriculum 
development and the achievements of Chinese students in the area of mathematics 
competencies, and offers a lens for understanding the superior achievement of 
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Chinese students in international studies of mathematics achievements more gener-
ally. Seven aspects of “competencies” are studied in this book: problem posing, 
problem solving, representation, reasoning, mathematical modeling, and communi-
cation, and self-efficacy. Although core competencies or he xin su yang is the pre-
vailing concept of curriculum reform in China today, the adjective “core” is not used 
to describe the competencies in this book, and so the authors do not explicitly claim 
that these competencies are “core” ones. Suffice to say is that through the inclusion 
of these seven competencies in this book, they are considered important competen-
cies, and the authors took pain to argue for their importance in the literature review 
or theory part of the chapters. In this regard, this book may constitute a contribution 
to the promotion of students’ core mathematics competencies development in 
China, and trigger a discussion or debate on whether the competencies included in 
this book are the core ones, or indeed whether there is such a concept of “core” 
competencies at all, or that the adjective “core” should be dropped in future discus-
sions of competencies in the country. For example, do these seven aspects rightly 
belong to the realm of “competencies”? Have the seven aspects covered the most 
important or the “core” competencies in mathematics? Are there any important or 
core competencies missing from the coverage? These are important and interesting 
issues that are worthy of further exploration.

Each of the main chapters included a section analyzing the development of the 
curriculum from the early twentieth century to date. This is highly informative, as 
well as important for understanding the second section of the chapters in reporting 
the performance of Chinese students in the respective competencies. As pointed out 
in the beginning of this chapter, in contrast to most international literature on the 
mathematics achievements of Chinese students or students of CHC, this book 
focuses on mathematics competencies, providing readers with rich information 
based on rigorous analysis of curriculum documents from the beginning of the 
twentieth century till now and results of empirical studies on different aspects of 
competencies conducted in the country. As far as I know, this is the most compre-
hensive treatment of Chinese students’ mathematics competencies in the interna-
tional literature.

18.4  How Well Do Chinese Students Perform 
in Mathematics Competencies?

As pointed out above, the second section of each of the main chapters reported the 
performance of Chinese students in the respective competencies. Students’ perfor-
mances were assessed according to a set of scoring rubrics described in each chap-
ter. Many chapters provided a comparison of achievements of students in different 
regions of China (e.g., sampling students according to how developed the region 
they are from, or according to geographic location (eastern China, central China, 
southern China, southwest China, etc.) – although the classifications of regions are 
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not the same in the chapters), and between boys and girls. These give an idea of the 
distribution of the performance within the country and hence a better understanding 
of Chinese students’ mathematics competencies. But since the reported studies 
were national studies and not designed as comparative studies with students from 
other parts of the world or against any international standards, it is not possible to 
tell how competent Chinese students are in these competencies compared to their 
counterparts elsewhere. Given the absence of an international comparison group, 
the within country comparisons are perhaps the best the authors could do in provid-
ing a more nuanced picture of the achievement of Chinese students in these compe-
tencies. Actually, given the structure of the chapters which all started with an 
analysis of the historical development of the curriculum and ending with the speci-
fications of expectations in the latest curriculum in that particular aspect of mathe-
matics competencies, a very instructive comparison would be between student 
achievement and the curriculum intention (or using the terminology of the IEA 
studies, alignment study between the intended and the attained curricula). That is, 
the results of the second parts of the main chapters should inform readers on the 
achievement of Chinese students in these areas of mathematics competencies as 
measured against what the national curriculum intends the students to achieve. This 
was done more explicitly in some chapters than others, and I look forward to more 
studies, analysis, and reports on such alignment studies on mathematics 
competencies.

18.4.1  Non-cognitive Competencies

Although the sub-title of this book is “Cognitive and non-cognitive competencies of 
Chinese students in mathematics”, there is a clear lop-sidedness in the book in the 
sense that there are many more chapters on the cognitive aspects than the non- 
cognitive aspects of mathematics competencies. This is probably due to the differ-
ent amount of research done in these two different domains in China, but could this 
also reflect the bias of the Chinese mathematics education community toward the 
cognitive aspects of mathematics competencies at the possible expense of relative 
negligence of the non-cognitive aspects of mathematics competencies? If this is 
indeed the case, then the chapters of this book may constitute a rectifying pointer to 
increased attention to the non-cognitive aspects of mathematics competencies.

18.4.2  Attitudes of Chinese Students

One important non-cognitive competency is the attitudes of students toward math-
ematics and mathematics teaching and learning, a competency which is not covered 
in this book. One may of course argue that attitudes are not a competency. Although 
I do not share this view (I do think that attitudes are a kind of competency), it is not 
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my intention to defend my view here. Suffice to say is that attitudes are definitely an 
important part of su yang, the internal attributes associated with a certain area 
(mathematics su yang in this case). If we think of PISA’s goal of Literacy as being 
to “meet the needs of that individual’s current and future life as a constructive, con-
cerned and reflective citizen” (OCED, 1999, p.41), attitudes are clearly an extremely 
important aspect of literacy or competency or su yang. Students’ attitudes are also 
an important component of the attained curriculum, since in all school systems, 
students’ positive attitudes are invariably one of the goals of education. Indeed, as 
argued elsewhere, “in this era when life-long learning is so much stressed, some 
people think that a positive attitude is even more important than attaining high test 
scores. A positive attitude will motivate students to continue to learn even after they 
have left school” (Leung, 2014, p.603).

Attitudes of Chinese students toward mathematics and mathematics learning 
were only touched upon slightly in Chap. 2 when the PISA results of Shanghai stu-
dents were discussed. There, in discussing the Shanghai students’ self-related cog-
nition in mathematics, it was pointed out that consistent with their stellar performance 
in mathematics, Shanghai students had very high mathematical self-efficacy (see 
Fig. 2.3). In big contrast, their mathematical self-concept was rather low, even lower 
than the OECD average. These findings are consistent with the results of the Trends 
in International Mathematics and Science Study (TIMSS), where students of 
Chinese origin or under the influence of CHC performed extremely well in the 
mathematics test, and yet had rather negative attitudes toward mathematics and 
mathematics learning (including liking of mathematics, valuing of mathematics and 
confidence in mathematics) (Callingham, 2013; Leung, 2006, 2014). In particular, 
their confidence in mathematics was exceptionally low, in sharp contrast to their 
high mathematics achievement. (Note however that the anxiety of Shanghai stu-
dents in PISA 2012 toward mathematics was not particularly high, see Chap. 2.)

The author of Chap. 2 went on to discuss Shanghai students’ disposition toward 
mathematics in PISA 2012. The salient findings here are that Shanghai students had 
a very high level of “mathematics work ethic, … (which) suggests that Shanghai 
students have relatively high ability to dedicate time, hard work and persistence to 
attain mathematics competency”. However, Shanghai students were much “more 
likely to attribute their failure in mathematics to themselves rather than external fac-
tors (e.g., bad luck, bad guess or the teacher)”. This is consistent with the observa-
tions of Leung (2006), who commented that Chinese or CHC students are more 
likely to attribute success and failure in mathematics to external rather than internal 
factors.

The findings of Chap. 2 on the PISA 2012 results are largely consistent with find-
ings in previous studies, except for the finding that Shanghai students had much 
“higher level of intrinsic motivation to learn mathematics … than instrumental 
motivation, … a pattern … also observed in all the other top-performing East Asian 
systems”. This seems to contradict results of the analysis by Zhu and Leung on the 
TIMSS 2003 results, where they found that for students in Hong Kong (and Korea), 
their product-oriented motivation (a kind of instrumental motivation) was exerting 
a greater influence on their mathematics achievement than their pleasure-oriented 
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motivation (a kind of intrinsic motivation), compared to their western counterparts. 
Zhu and Leung attributed this finding to the fact that while “educators in the West 
advocate more of the role of internally oriented motivation in students’ learning but 
deemphasize that of externally oriented motivation … educators in East Asia … 
highly promoted extrinsic motivation” (Zhu & Leung, 2011, p.1206). Note however 
that Zhu and Leung were analyzing the TIMSS 2003 results of students from Hong 
Kong, Chinese Taipei, Japan, Korea, and Singapore; whereas the PISA 2012 results 
were obtained 9 years later, and were for Shanghai students only. As argued earlier 
in this chapter, Shanghai is a very exceptional city in China in many regards, and it 
should not be held as representative of the rest of China. Given these consistent and 
inconsistent findings, it is all the more important for the non-cognitive aspects of 
competencies of Chinese students from different parts of the country to be investi-
gated, to see how well or how badly the Shanghai students represent their fellow 
countrymen, and hence arrive at a comprehensive picture of this non-cognitive 
aspect of competencies – the attitudes of Chinese students toward mathematics and 
mathematics learning.

Figures 18.1, 18.2, 18.3, 18.4, and 18.5 show the attitudes of Chinese students or 
students of Chinese origin (Hong Kong and Chinese Taipei) in the latest cycle of 
TIMSS, as compared to a number of western countries. Together with the PISA 
results presented in Chap. 2, it is clear from even a cursory look of the data that in 
contrast to Chinese students’ high achievement in mathematics, their attitudes 
toward mathematics and mathematics learning are rather negative. In the literature, 
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student achievement is usually positively related to student attitudes (Papanastasiou, 
2000). While this is true at the individual student level, even for students of Chinese 
origin, the relation is not found at the national level. Why is it the case?

18.5  Culture

18.5.1 CHC Cultural Values

Elsewhere I have argued that both the high achievements of CHC students and their 
negative attitudes could be explained by the common cultural values that they share 
(Leung, 2006). In fact one observation I have for this book is that although it is a 
book about (the mathematics competencies of) Chinese students, no reference at all 
has been made to the cultural values held by students (and their teachers) when 
discussing either the historical development of the curriculum in China or the 
achievements of the Chinese students. Chapter 1 merely provided the historical con-
text for the understanding of Chinese students’ (cognitive and non-cognitive) com-
petencies in mathematics without any reference to culture. Chapter 10 on self-related 
beliefs did touch on the collectivist culture in East Asia slightly when discussing the 
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Grade 8 : Students Value Mathematics
(international average= 42%)
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Grade 4 : Students’ Confidence in Mathematics
(international average= 32%)
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“paradox” of the high achievement and negative attitudes of East Asian students, a 
paradox which is sometimes referred to as “the Chinese Learners’ Paradox” or 
“East Asian Learners’ Paradox”. But the Chinese cultural values have not be 
explored in explaining the negative self-related beliefs. Nor has the cultural per-
spective been utilized in discussing the findings on the cognitive and non-cognitive 
competencies of Chinese students in the other chapters of the book.

From the literature, we may summarize the relevant CHC cultural values for 
explaining achievement as follows (Lai & Leung, 2012; Leung, 2001, 2006; Leung 
& Park, 2009; Leung, Park, Shimizu, & Xu, 2012):

 1. Strong emphasis on the importance of education and high expectation to achieve
 2. Examination culture
 3. Belief in effort
 4. The role of practice and memorization in learning
 5. Pragmatic philosophy
 6. Reflection
 7. The Chinese language

The first six items in this list apply to all subject disciplines of learning, not just 
to mathematics. However, there is a widespread belief in the universality of mathe-
matics, that is, of all academic subject disciplines, mathematics is the most culture 
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free (although there are scholars such as Bishop (1988) who strongly opposed this 
view), so the cultural beliefs or elements listed above should apply to mathematics 
learning the least. Elsewhere the author has argued against this assertion (Leung, 
2006) and the arguments will not be repeated here. If cultural values, as the author 
argued, do affect students’ mathematics competencies, then they will surely affect 
students’ achievement in other “less universal” subject disciplines as well.

18.5.2  Language

The last item in the list above, language, may be the most relevant as far as the 
impact of culture on mathematics learning is concerned. Language is of course an 
important element of culture, and all experience, including that of mathematics 
learning, is mediated by language (Gadamer, 1979). As Laborde remarked, “the 
semantics of an expression are constructed by the student by means of his or her 
mental representations and of linguistic features of the expression. The role that 
natural language plays in these processes appears to be very strong” (Laborde, 
1990, p.61).

Ng and Rao (2010) argued that the simplicity of Chinese mathematical language 
and Chinese number system contributes to more efficient learning of mathematics, 
especially in learning “number structure, counting, and arithmetic operations” (Ng 
& Rao, 2010, p.190), which are important basic “competencies” for further devel-
opment and learning in mathematics. There is also emerging evidence from neuro-
science research that language is influencing the learning of mathematics. For 
example, Ge et al. (2015) found that there are commonality and specificity in how 
language is processed in the brain by native speakers of Chinese and English lan-
guages, and Tang et al. (2006) used fMRI to demonstrate a differential cortical rep-
resentation of numbers between native Chinese and English speakers. Could these 
differences contribute to the difference between Chinese students and their western 
counterparts in their mathematics competencies, and in their mathematics achieve-
ment more generally?

Of course, the discussion above is not meant to be a substantial treatment on the 
issue of the influence of culture on Chinese students’ (cognitive and non-cognitive) 
mathematics competencies, but it is the contention of the author that without an 
appreciation of the Chinese cultural values, and how they differ from values in the 
West, understanding of the competencies of Chinese students cannot be complete. 
This cultural lens in interpreting both the development of the Chinese curriculum 
and the achievement of Chinese students in various kind of mathematics competen-
cies (and in mathematics more generally) is something that needs to be explored 
further based on the findings of this book so as to arrive at a deeper level of under-
standing of the mathematics competencies of Chinese students.

18 Mathematics Core Competencies of Chinese Students – What Are They?
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18.6  Conclusion and Further Research

This informative book provides a comprehensive introduction and analysis on the 
mathematics competencies of Chinese students, especially the cognitive competen-
cies. It fills an important research gap in the literature, and should prove to secure a 
significant place in the literature on mathematics competencies. Based on the find-
ings of the book, further research is suggested, including a more thorough inquiry 
into the non-cognitive aspect of competencies, something implied by the title of the 
book but yet not fully actualized.

Another further line of inquiry is to explore into the deep-rooted reasons in 
explanation of the competencies of Chinese students, something that is touched 
upon in some chapters in the book, but not fully examined. In particular, since this 
is a book on the achievements of students in China, naturally we should look into 
the historical and socio-cultural setting of the Chinese students and the curriculum 
they follow in order to gain a deep understanding of factors that impact their com-
petencies. While the book provided an informative and systematic introduction to 
the historical context of Chinese students’ mathematics competencies, the socio- 
cultural background or factors are not given due attention. Hopefully, the content of 
this book will prompt further research into this interesting and important aspect in 
seeking an explanation of the mathematics competencies of Chinese students.
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Chapter 19
From “Qingpu Experience” 
to Investigating Chinese Students’ 
Mathematical Competencies

Lingyuan Gu

Abstract The chapter illustrates the influential mathematics teaching and learning 
reform in China called the “Qingpu Experiment” which focused on guiding teachers 
to “learn to teach” and improve the quality of mathematics teaching since the 1970s. 
Entering the twenty-first century, Qingpu experiment’s main contribution is to 
develop an innovative paradigm for teachers’ professional development  – action 
education. In addition, “Qingpu Experiment” created a typical Chinese mathemat-
ics teaching model: teaching with variation. The experiment reveals the cultural 
foundation of "two basics" and "four basics" in Chinese mathematics education. 
International scholars have shown interests in China’s basic education and basic 
mathematics education through the PISA results since 2009. The chapter addresses 
that more scientific data should be needed to report the more complete mathemati-
cal competencies of Chinese students, and the project in this book helps interna-
tional scholars to understand Chinese students’ mathematical performance.

Keywords Mathematics teaching and learning · Qingpu Experiment · Learn to 
teach · Quality of mathematics teaching · Professional development · Action 
education · Teaching with variation · Two basics · Four basics · Scientific data · 
Mathematical competencies · Chinese students

19.1  Starting from “Qingpu Experiment”

Since 2009, Shanghai students have participated in the PISA tests and ranked the 
first in mathematics. As a result, Chinese students’ mathematics learning and their 
performance have again received world attention (OECD, 2010). In fact, Chinese 
students’ outstanding performance in mathematics learning is inseparable from 
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society, schools, teachers, education administrators, parents, and researchers, who 
care about mathematics learning in all aspects.

In the 1970s, I worked as a mathematics teaching-research-staff in Qingpu 
County, Shanghai. At that time, we assessed the basic level of mathematics knowl-
edge for all the regional secondary school graduates. The results showed that for 
more than 4300 graduates, their average score is only about 11.1%, while the per-
centage of graduates who scored zero was as high as 23.5% (Gu, 1997). That is the 
bleakest period in the history of Chinese mathematics education, while the case of 
Qingpu County can be viewed as a microcosm of the whole China. In order to 
change such a lagging education situation, we must turn to educational scientific 
research and carry out reformatory experiments. My research team and I then started 
an experimental study called the Qingpu Experiment.

After 3 years of investigation, 1 year of screening experience, 3 years of experi-
mentation, and 8 years of promotion, our research team has finally improved the 
quality of regional mathematics teaching. In 1996, the experience of “Qingpu 
Experiment” got on the international platform. In particular, at the eighth 
International Congress on Mathematics Education (ICME-8) which was held in 
Spain, we reported this reformatory experience of Chinese mathematics education 
to the scholars from all over the world. In the next 20 years (1977–1997), the math-
ematics education experiment focused on guiding teachers to “learn to teach” and 
improve the quality of mathematics teaching. The “Qingpu Experiment” also pro-
vides a model for Chinese educational experimental research.

Entering the twenty-first century, under the overall background of Chinese math-
ematics curriculum reform, Qingpu experiment continues its exploration in practice 
and launched an experiment entitled “New Century Action of Qingpu Experiment”. 
Its main contribution is to develop an innovative paradigm for teachers’ profes-
sional development – action education, which intends to help a group of ordinary 
teachers to reach the professional level of “learning to learn”. This achievement has 
been promoted through the project on the development of Chinese school-based 
teaching research system and has become an effective way of teacher action learn-
ing (Yang & He, 2007). “Action Education” uses lessons as one carrier to stimulate 
teachers’ learning, design, and reflection at different stages. Many cases have shown 
that the action education practice model can really promote teachers’ professional 
development, and teachers will actively adjust their teaching behaviors from the 
perspective of students (Yang & He, 2007).

“Qingpu Experiment” created a typical Chinese mathematics teaching model: 
teaching with variation, which contains a series of effective strategies: (1) using 
conceptual variation to help students understand mathematical concepts from mul-
tiple perspectives, (2) using variation foreshadowing to set up suitable steps in the 
zone of students’ proximal development, (3) using procedural variation to provide a 
way to resolve mathematical problems, and (4) using the variation expansion of 
typical examples to construct a hierarchical experience system (Wu & Bao, 2017). 
The discussion of the Shanghai experience triggered by Shanghai PISA again 
acknowledged the significance of teaching with variation.
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In addition, I also gave a brief description of the experimental research of math-
ematics education which has been persisted for more than 40  years, aiming at 
explaining the development of mathematics education in China, accompanied by 
scholars’ variety of research as well as practitioners’ efforts  (Gu,  2014). The 
research results presented in this book provide another new perspective for the rec-
ognition and understanding of Chinese mathematics education.

19.2  Chinese Students’ Mathematics Competencies 
Need Research

The research team of this book, in the continuous research of more than 10 years, 
systematically analyzes the traditional characteristics of Chinese mathematics edu-
cation by using scientific and reasonable research tools, and reveals the cultural 
foundation of “two basics” and “four basics” in Chinese mathematics education. 
The “two basics” refer to basic knowledge and basic skills. The “four basics” 
include basic knowledge, basic skills, basic mathematical thoughts, and methods, as 
well as basic activity experience. The first chapter of the book points out that the 
“four basics” in mathematics education in China mainland plays an indispensable 
role in the development of mathematical core competencies, and its importance may 
be equivalent to that of cells in humans’ organs. I also strongly agree with the status 
of the mathematical basic activity experiences discussed in this chapter. The math-
ematical activity experience that students acquire is based on their basic knowledge, 
basic skills, and basic thoughts and methods throughout the entire learning process.

Today’s Chinese mathematics curriculum aims to develop the “four basics” 
while emphasizing the implementation of goals through the development of core 
competencies. Therefore, how do the current Chinese students perform on the core 
competencies? PISA tells us the results which we are proud of. However, we believe 
that Chinese students’ competencies are far more than that. Based on our experi-
ence, Chinese students should have special performance on mathematical reasoning 
and argumentation as well as mathematical problem solving. The research team of 
this book, based on Chinese unique characteristics, the international development 
trend, as well as the instructional perspective of mathematical activities, proposes 
six mathematical competency components: problem posing from a mathematical 
perspective, mathematical representation and transformation, mathematical reason-
ing and argumentation, solving problems mathematically, mathematical communi-
cation, and mathematical modeling. Although the expressions of these six 
competencies are not the same as those documented in “Ordinary High School 
Mathematics Curriculum Standards (2017 version)” issued in 2018, we shall be able 
to make a good match between the two by a comparison analysis.

Based on the mathematical competencies framework generated by the research, 
this book conducted a qualitative analysis of the evolution of each competence com-
ponent from a perspective of historical development, and presents the readers with 
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the development of each competence in the Chinese curricula, which could help to 
understand the specific connotation of current mathematical competences. For 
example, the qualitative study of the mathematical reasoning and argumentation in 
the curriculum documents makes us realize that in the development of Chinese 
mathematics curriculum, due to the influence of Eastern and Western educational 
thoughts, inductive methods and logical thinking play an important role in the 
development of mathematical reasoning and argumentation.

While analyzing the contents of curriculum documents, the research team devel-
oped assessment tasks to evaluate the six competencies components based on the 
constructed mathematical competencies framework. Through stratified sampling, 
more than 7000 students across the country were tested. It can be seen from the test 
results that there is a long way to go to achieve the goals of the intended curriculum. 
For example, based on the experience, we believe that Chinese students’ mathemat-
ics problem solving ability should be at a relatively high level, but the test results 
show that Chinese students’ ability to solve mathematical problems is as follows: 
they can connect knowledge and representation (such as charts, texts, symbols, etc.) 
in different mathematical domains; they can express their thinking processes, the 
solutions and the results in a brief and logical way; they can explain the meaning of 
mathematical results corresponding to the situation based on their judgments. 
However, students are not effective enough to have strategic choices when solving 
complex problems and they also lack higher-order thinking abilities. These findings 
are similar to those obtained from the “New Century Action of Qingpu Experiment”.

Since the twenty-first century, with the reform of the Chinese mathematics cur-
riculum, students have also shown new features in their ability. The data in this book 
show that Chinese students have great development in mathematics communica-
tion, can understand the meaning of more complex mathematical texts, can express 
more complex mathematical understandings, can explain others’ (correct or wrong) 
mathematical thoughts and methods, and can make appropriate evaluations.

19.3  The Modern Significance of the Study of Chinese 
Students’ Mathematical Competencies

Based on the characteristics of Chinese mathematics teaching and learning, this 
book draws on the ideas and methods of international mathematical competencies 
research and develops an analytical and evaluation framework of mathematical 
competencies that reflects the characteristics of Chinese mathematics education. 
The research processes and methods have made some contributions to the research 
field of students’ mathematical competencies. In recent years, most research on 
mathematical competencies focuses on the connotation and educational value of 
competencies, while there is no much empirical research on students’ performance 
of mathematical competencies.
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In classroom teaching, Chinese teachers pay attention to the development of all 
students and teach in accordance with students’ abilities. They also expect to have a 
set of tools to understand the level of students’ mathematical competencies, so that 
they can have a better organization of their teaching based on students’ cognitive 
characteristics. The research tools developed by the research team of this book will 
provide advanced resources for teachers’ school-based training. Although the results 
here are more of academic-oriented, I believe that the frontline teachers have the 
ability to understand these research results because of the system of teaching 
research developed in China as well as the existing “action education” mode.

International scholars have shown interests in China’s basic education and basic 
mathematics education through the PISA results since 2009. We should have more 
scientific data to report the more complete mathematical competencies of Chinese 
students. This research helps international scholars to understand Chinese students’ 
mathematical performance. I am also honored to receive an invitation from the IPC 
of ICME-14 to give a plenary lecture about a 40-year reform experiment on math-
ematics teaching at the 14th International Congress of Mathematics Education held 
in Shanghai in July 2020, which covers the early Qingpu experiment (1977–1992) 
and the subsequent measurement of students’ mathematical cognitive ability 
(1990–2018). The measurements of student’s cognitive abilities have accumulated 
more than 800,000 standardized data and related micro-experimental materials. The 
technique of big data factor analysis is used to draw conclusions followed by a dis-
cussion of the experience and challenges of Chinese mathematics education. Let us 
look forward to the gathering in 2021, in Shanghai, at ICME-14.
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Chapter 20
Summary and Conclusion

Binyan Xu

Abstract The chapter points out that the main goal for China to attend PISA test is 
not to evaluate the quality of education but to better understand present educational 
situations and questions that deserve the attention. If PISA opens a window for 
people to access math education in China, the study in this book invites all people 
to experience another authentic situation about the math educational progress in 
China and some major achievements of the effort in improving students’ core com-
petencies in math. On the one hand, grade 8 students’ math competencies were 
investigated; on the other hand, math-modeling competence was used as an example 
to first try to investigate students’ performance in non-cognitive aspects, including 
self-related belief or math anxiety and so on. The further study will be focused on 
non-cognitive factors that raise few people’s attention. The conclusion of the inves-
tigation of the two aspects reflects the relationships between students’ math compe-
tence performance and intended curriculum demands.

Keywords Quality of education · Core competencies in math · Math-modeling 
competence · Students’ performance · Non-cognitive aspect · Self-related belief · 
Math anxiety · Intended curriculum demands · PISA · Grade 8 students

20.1  PISA 2018 and Math Curriculum Reform in China

20.1.1  Chinese Students’ Outstanding Math 
Performance in PISA

Before the draft of the book was finished, we are astonished to learn that PISA 2018 
results published by OECD show that the performance of reading, math, science 
(three core areas of students’ competences) of students from two major cities 
(Beijing and Shanghai) and two provinces (Jiangsu and Zhejiang) ranked the first 
within all countries and regions involved. The results of PISA show that Chinese 
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students who won excellent scores in math also outperformed many other students 
from other participant regions and nations. Referring to figures of tests of founda-
tional competence, the average math score of students from the four major cities and 
provinces was 591, ranking the first among all the countries and regions involved.

OECD (2019) reported:“Around one in six  15-year-old students in Beijing, 
Shanghai, Jiangsu and Zhejiang (China) (16.5%), and about one in seven students 
in Singapore (13.8%), scored at Level 6 in mathematics, the highest level of profi-
ciency that PISA describes. These students are capable of advanced mathematical 
thinking and reasoning. On average across OECD countries, only 2.4% of students 
scored at this level.” (p.15)

Chinese students’ math performance was outstanding because of comprehensive 
reasons, including their school teaching and management, their learning input, and 
family support (Xin et al., 2020).

Despite the outstanding PISA 2018 performance of Chinese students, we also 
found some distinct problems especially regarding the figures of students’ school 
belonging and the extent of their satisfactions that ranked No. 51 and No. 61 among 
all the nations involved. Furthermore, the data also reported that those students with 
lower scores in tests had the least sense of belonging. Albeit, such a result, to some 
extent, reflected that more effort should be made in supporting students’ emotional 
wellbeing.

The main goal for China to attend PISA test is not to evaluate the quality of edu-
cation, but to better understand present educational situations and questions that 
deserve our attention. For example, by taking reference to PISA test experience, we 
reflected on how to further diagnose and improve the quality of education. We diag-
nosed students’ comprehensive competencies, including their creative thinking and 
collaborative problem-solving skills that could be applied to interdisciplinary sub-
jects and fields. We also tracked multiple family, school, and personal factors that 
affect students’ performances. Last but not the least, we diagnosed and will further 
our long-term track on key factors influencing students’ study burdens and low 
sense of happiness.

20.1.2  Key Points of 2018 Math Curriculum Reform

If PISA opens a window for people to access math education in China, this study 
invites all people caring about math education in China to enter another door. After 
entering the door, we welcome all of you to experience another authentic situation 
about the math educational progress in our nation and some major achievements of 
our effort in improving students’ key competencies in math.

Through the literature review, the first chapter introduces the latest characteris-
tics of math curriculum reform and its cultural foundation. Accompanied with the 
publishing of The “Mathematics Curriculum Standard for Senior Secondary Schools 
(2017 Edition)” (hereinafter High School Curriculum), innovations and inherited 
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characteristics coexist in Chinese math curriculum reform (Shi, 2018). “Innovation” 
refers to six math core competences in math high school curriculum that include 
mathematical abstraction, logical reasoning, mathematical modeling, intuitive 
imagination, mathematical operation, and data analysis, all of which have become 
the core goals for the present curriculum.

Another innovation emphasizes test evaluation based on core competences, 
which raises the evaluation system including “the principle of satisfaction” and “the 
principle of bonus point”. The biggest characteristic of the new math curriculum 
reform is “inherence”, which concerns about the relation between math core com-
petences and traditional math education. Chapter 1 systematically analyses the 
characteristic that relates to the “Four  Basic Teaching” cultural characteristics 
(hereinafter Four Basic) involving the highlight of basic knowledge, basic skills, 
basic thoughts, and basic activity experience. “Four Basic” accentuates the process 
of accumulating foundational math knowledge, the practice of math basic skills, 
and the formation of basic math ideas. Through ubiquitous activities, students gain 
experiences interwoven with math foundational knowledge, basic skills, and basic 
ideas, permeating through the whole math learning process.

The cultivation of core math competences is the goal of “Four Basic” teaching. 
In typical Chinese math classrooms, students struggle in practices for solid founda-
tion and abundant math variations and exploration in which students’ math learning 
is no longer a fixed, but as a solid and flexible process. Accordingly, students pos-
sess huge flexible knowledge and skills to solve new math tasks. Hence, Chinese 
students (e.g., students in Shanghai) performed outstandingly in math tests (such 
as PISA).

Indeed, the success of Chinese students’ math learning is also attributed to their 
hard work and endeavor as non-cognitive factors in PISA Mathematics. Chapter 2 
also summarized multiple factors including self-related cognitions in mathematics 
and dispositions toward mathematics based on the investigation of PISA 2012. The 
data reported that Shanghai students’ mathematical self-efficacy (M  =  0.94, 
SD = 1.10) is nearly one-half standard deviation higher than that in the second high-
est system (Singapore: M = 0.47, SD = 1.02). This result suggests that students in 
Shanghai are more confident when they are facing a mathematics task. The second 
conclusion of this chapter is that Shanghai works for the second highest level on 
mathematics work ethic among the top-performing East Asian systems (M = 0.32, 
SD = 0.02) and it scores about one-third standard deviation higher than the OECD 
average. It suggests that Shanghai students have relatively high ability in devoting 
time, hard work, and persistence to attaining mathematics competences. As the 
whole, Shanghai students’ self-belief about their mathematics learning and disposi-
tions to mathematics has significantly positive impacts on their performance in the 
mathematics assessment in a direct way.

In addition to these data and Chinese students’ rankings from PISA, we also 
learn from empirical studies on students’ math performance and competence, which 
reported students’ math competences from different dimensions. Some relevant 
chapters in this book make a deep literature review on these empirical studies.
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20.2  Chinese Students’ Competences and Performance 
in Math Curriculum Development in China

20.2.1  Reference to Math Competences by High 
School Curriculum

Studies of this book concur with the ideologies and cores in math curriculum reform 
in China, focusing on students’ math competences. The data of this book and con-
clusions critically illuminate math curriculum reform in China.

Research of this book raises math competence framework, including math prob-
lem posing and solving, mathematical representation and transformation, math rea-
soning and argumentation, math modeling, and math communication. On one hand, 
this book took reference to international comparative studies and experience. On the 
other hand, this book also reflects characteristics of Chinese math teaching prac-
tices, i.e., how some math activities are emphasized in Chinese class learning. These 
activities highly accentuate students’ access to basic knowledge, basic skills, and 
mathematics ways of thinking and simultaneously facilitate students’ accumulation 
of experience in exploration, creation, innovation, and communication in math 
activities. Chapter 3 gives a detailed narration of the math competence framework.

By taking reference to the connation of core math competences of High School 
Curriculum, we found connections between two math competence frameworks. 
First, both frameworks emphasize logic reasoning and math modeling. Shi (2018) 
argues that the essence of math thinking is logical reasoning, through which math 
conclusion could be made. In other words, logical reasoning is a process in which 
students start from premises or fact and follow certain rules to achieve or verify 
questions. In addition, the essence of math language is math modeling, which 
applies math competence to real-life situations, thereby constructing the bridge 
between math and the real world. Hence, in high school, logical reasoning and math 
modeling are two important components of math competences as well as two 
frameworks.

Furthermore, High School Curriculum math competences include math abstrac-
tion, which demands students to draw connections between different math concepts 
through studying the relationships within different quantities and graphs, raise gen-
eral laws and structure via specific contexts and then use math language to express 
the characterization (MOE, 2018, p.4). Therefore, the cultivation of math abstrac-
tion could not go without the grasp of such competences as math problem solving, 
math representation, and math communication.

High School Curriculum also highlights intuitve imagination competence, which 
refers to problem-inquiry and solving thinking modes employing the forms of 
spaces to understand the relationship of object positions, changes in pattern, and 
laws of motions. It also uses the descriptions of graph to analyze math problems and 
form the relationships between patterns and figures. It helps to construct the intui-
tive models of math problems to explore how to solve problems (MOE, 2018, p.6). 
This competence not only accentuates the use of intuitive models to solve math 
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problems, but also stresses the conversions between forms of math representations. 
Furthermore, High School Curriculum raises the competence of data analysis which 
refers to collecting data from research subjects, use math methods to organize, ana-
lyze data, make deduction, and form the competence of understanding the knowl-
edge of research subjects (MOE, 2018, p.7). The main embodiments of data analysis 
are: collecting and organizing data, understanding and analyzing data, gaining and 
explaining conclusion, summarizing, and forming knowledge. This competence is 
related to how to raise math problems, math representation, and math communica-
tion. Based on the interrelationships between math core competences raised in this 
book and High School Curriculum, we hereby explain the implications of our 
studies.

20.2.2  Relationship Between Chinese Students’ Math 
Competence and Expected Curriculum Demands

This book reviews guidelines of math curriculum documents (math curriculum 
standard or math curriculum outline) in the past one hundred years, summarizing 
different historical evolutions of math competence connotations in the expected cur-
riculum. On one hand, we tested and investigated grade 8 students’ math compe-
tence (cognitive) level. On the other hand, we used math-modeling competence as 
an example to first try to investigate students’ performance in non-cognitive aspects, 
including self-cognition or math anxiety, and so on. Our further study will be 
focused on non-cognitive factors that raise few people’s attention. The conclusion 
of the investigation of the two aspects reflects the relationships between students’ 
math competence performance and expected curriculum demands. Now we will 
present the conclusion of our study.

Regarding the competence in posing math problems (see Chaps. 4 and 5), we 
found that there were not any expected curricula demanding raising questions 
before twenty-first century. We seldom found the demands for raising question in 
math abstraction and math expression and communication. Since the Math 
Curriculum enacted in 2001, more emphasis has been gradually put on students’ 
raising questions from math and life contexts. According to the present math cur-
riculum standard, discovering problems is the foundation of innovation, and there-
fore, students’ initiative in posing problems should be encouraged. Referring to the 
test data, grade 8 students were weak at posing math problems. For their familiar 
scenarios, students were more capable of raising questions based on the math con-
cepts and theories that they had grasped but the patterns of their questions were still 
monotonous. The data illustrate that more effort has been made in cultivating stu-
dents’ awareness in posing problems. However, in the meantime, we also argue that 
raising less complex questions does not promote students’ abilities in innovation.

Regarding math problem-solving competence (see Chaps. 6 and 7), the evolution 
of hundreds of years curriculum expectations illustrates there has always been 
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definite demand for math problem-solving competence in Chinese math curriculum. 
From the beginning of twentieth century, the expected curriculum highly regarded 
students’ abilities in solving practical problems or math application questions. Until 
the end of twentieth century, math curricula began to highlight students’ compre-
hensive knowledge application skills and math problem-solving competence, which 
reflected the emphasis of “Two Basic” in Chinese math curriculum. The results 
revealed in the large-scale international comparative studies (IAEP1, IAEP2) 
showed us that Chinese students were overall among the top performers by interna-
tional standards (Fan & Zhu, 2004). Since the twenty-first century, the expected 
curriculum has accentuated the cultivation of high cognitive math problem solving 
competence, whose cultivation demands are integrated with the formation of math 
thinking strategies and innovative competence. According to test data, nearly 80% 
of research participants were capable of connecting and employing math knowledge 
in different fields and various forms of expression (e.g., diagrams, characters, and 
symbols) to solve problems and logically expressing their thinking process, ways of 
solving problems, and results. Nevertheless, the data also show that when facing 
different problems in different settings, students were easily to mistakenly use the 
strategies to solve problems that they believed correct. Participant students did not 
understand strategies in solving problems thoroughly, and therefore the application 
abilities that math curriculum demands should also be further improved.

Regarding math representation and transformation competences (see Chaps. 8 
and 9), the evolution of Chinese expected curricula shows the close integration 
between the demands of math  representation and math transformation, requiring 
students to employ their math representation and transformation competences to 
solve relevant math problems. Of all 21st math curriculum requirements after 
twenty-first century, students not only have been required to face different settings 
and be capable of using specific forms of math representation (figure, graph, dia-
gram, and symbols, etc.) to express, but also have been demanded to transform 
unknown/unfamiliar math expressions to known/familiar ones so as to effectively 
solve math problems. According to the test data, when facing complicated but com-
mon problem settings, most students were capable of recognizing familiar math 
representation form and turning it to another familiar one. Nevertheless, only tiny 
portions of students are able to construct novel representation form or flexibly 
change ways of representation and efficiently solve problems.

Regarding the competence of math reasoning and argumentation (see Chaps. 10 
and 11), hundreds of years of math curriculum guideline have specific requirements. 
Math curricula of the beginning of twentieth century emphasized ways of induction, 
the cultivation of reasoning strategies, and the practicality of argumentation. In the 
later twentieth century, math curricula accentuated the development of students’ 
logical thinking skills, and the cultivation of logical reasoning and argumentation 
competence in the process of deduction. After twenty-first century, math curricula 
highlight innovation and exploration, demanding the cultivation of math reasoning 
and argumentation competences that combine rational inference and deductive 
inference. Test data reported that even though students were capable of bravely 
employing logical inference, concluding supposition, or raising hypotheses, and 
then further testing hypotheses or opposing hypotheses, they were still hard to get 

B. Xu



345

the conclusion. The data demonstrate the match between the cultivation of students’ 
reasoning and argumentation competence and the demand of expected curriculum.

With regard to math communication competence (see Chaps.  13 and 14), it did 
not appear in the hundreds of years of Chinese math curriculum goal and content. 
Albeit, since the twenty-first century, the math curricula put more emphasis on stu-
dents’ math expression and communication, aiming at students’ more opportunities 
to express, reflect, and revise math concepts and their capability in using math to 
communicate and fluently express their reflection on the learning process. The test 
data show that grade 8 students were competent at math communication, able to 
recognize and choose information from math texts and interpret the meanings. In 
the meantime, they were also able to transfer other people’s math ideas from one 
modality to another. The data also indicated that students’ math communication 
competence should be enhanced according to the demands of expected curricula.

Concerning math modeling competence (see Chap. 12), the expected math cur-
riculum of the mid twentieth century demanded that students were able to use math 
models to solve practical problems given the goal of cultivating students’ math 
knowledge application competence. At that time, the requirements for math model-
ing focused on the application of known math models. Since the enactment of the 
math curriculum requirements of the twenty-first century, a new concept on math 
modeling was raised, requiring students to discover problems and construct models 
according to authentic settings. Students were demanded to build, examine, and 
revise models to solve problems in real-life situations. However, the math curricu-
lum requirement did not explain the connections between math modeling and other 
math content.

In 2018, the issued high school math curriculum requirement firstly made math 
modeling as the compulsory math curriculum content. All the participants did not 
experience systematic math modeling training. The data reported that most of the 
students experienced barriers in the initial stages of math modeling, which means 
that they were not capable of modeling in authentic scenarios, based on which they 
felt challenged to raise relevant questions, make assumption, and seek parameters. 
Therefore, they were unable to construct and examine models and enter the follow-
ing- up stages of modeling. These data offered reference for us to take appropriate 
strategies to implement math-modeling teaching.

This study investigated students’ non-cognitive dimension of math competence, 
enabling us to gain more complete understanding of students’ math competences.

Chapter 15 looks into students’ self-related beliefs about their mathematical 
modeling, particularly regarding self-efficacy and self-evaluation. The results 
showed that students’ self-efficacy level is consistently higher than their self- 
evaluation level on the respective modeling task with the largest decrement on the 
most challenging modeling task. In general, students had a higher level of the two 
self-related beliefs with easier tasks. Boys did better than girls on modeling tasks 
and they also held a significantly higher level of self-related beliefs. Compared to 
between-city differences, students’ self-related beliefs varied greater between 
schools, while the majority of the differences occurred at the individual student 
level. Moreover, school average modeling performance illustrates a generally larger 
influence on students’ self-related beliefs than students’ individual performance.
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Chapter 16 looks into students’ math anxiety in mathematical modeling ability in 
China. Results showed that more than half of students worried about the difficulty 
of the math problems. Girls had slightly higher math anxiety than male students; 
however, no gender difference was found in mathematical modeling ability. Low 
and high math anxiety students showed substantial difference in mathematical 
modeling ability. Moreover, after controlling family socioeconomic status and 
gender difference, math anxiety also significantly explains the variance of mathe-
matical modeling ability.

20.3  Future Research Project for Chinese Math 
Curriculum Reform

Our ongoing and nearly completed project has brought us new ideas, which contrib-
ute to solutions for present Chinese math curriculum reform. We will proceed with 
our research in the following aspects:

We will conduct more in-depth research on the historical development of Chinese 
math curriculum, which may give insights to the transformations in the characteris-
tics of Chinese math curriculum in different historical periods. What factors led to 
the changes?

Regarding these math competences, how about the performance of primary 
school and high school children? Whether amendments should be made in these test 
assignments that were used to investigate the performance of primary school and 
high school children? If yes, how to make amendments?

The research above discovered students’ weakness in posing problems and mod-
eling, all of which are heatedly discussed issues in math education since twenty-first 
century. These problems have been realized and corresponding requirements have 
been put forward in the expected math curricula. We also need to ponder about how 
to turn test accomplishments into practical teaching experience, as a way to improve 
students’ competences in posing problems and math modeling.

Although students performed well in math problem solving, mathematical repre-
sentation, and math reasoning, how much effort have they made? How to evaluate 
their effort? What are the influences of non-cognitive factors?
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