
Toolset for Run-Time Dataset Collection
of Deep-Scene Information

Gustav Aaro, Daniel Roos, and Niklas Carlsson(B)

Linköping University, Linköping, Sweden
niklas.carlsson@liu.se

Abstract. Virtual reality (VR) provides many exciting new application
opportunities, but also present new challenges. In contrast to 360◦ videos
that only allow a user to select its viewing direction, in fully immersive
VR, users can also move around and interact with objects in the virtual
world. To most effectively deliver such services it is therefore important
to understand how users move around in relation to such objects. In
this paper, we present a methodology and software tool for generating
run-time datasets capturing a user’s interactions with such 3D environ-
ments, evaluate and compare different object identification methods that
we implement within the tool, and use datasets collected with the tool
to demonstrate example uses. The tool was developed in Unity, easily
integrates with existing Unity applications through the use of periodic
calls that extracts information about the environment using different
ray-casting methods. The software tool and example datasets are made
available with this paper.

Keywords: Deep-scene data collection · Virtual reality · Unity ·
Light-weight ray-casting

1 Introduction

Virtual reality (VR) provides a safe way to explore environments that otherwise
may not be easily accessible or safe for users. For example, VR can be used to
train and prepare people for rare but mission critical situations, explore disas-
ter areas, or simply visit places that otherwise would not be accessible to the
user. With current technological advancements, the potential applications of VR
appear limited only by our imagination. However, to most effectively deliver such
services (e.g., over resource constrained networks and/or by offloading computing
to edge-cloud servers) and to make the most appropriate system optimizations,
it is important to understand how users interact with these environments.

In this paper, we present a methodology and software tool for generating run-
time datasets capturing a user’s interactions with such 3D environments. In par-
ticular, the tool collects time-series information about the user’s movements (head
position and rotation in the 3D environment) together with deep-scene informa-
tion about the objects visible to the user, including each objects’ identifier, the
user’s distance to the object, the angle offset between the center of the user’s field
c© Springer Nature Switzerland AG 2021
M. C. Calzarossa et al. (Eds.): MASCOTS 2020, LNCS 12527, pp. 224–236, 2021.
https://doi.org/10.1007/978-3-030-68110-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68110-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-68110-4_15


Toolset for Run-Time Dataset Collection of Deep-Scene Information 225

of view to the closest recorded point on the object, the volume of the object, and
a ray-based metric that estimates how visible the object is to the user.

The tool was developed in Unity, easily integrates with existing Unity appli-
cations through the use of periodic calls that extracts information about the
environment. To collect deep scene information in a game engine, we implement
different ray-casting methods. First, to provide a close to constant overhead while
prioritizing objects close to the center of the user’s field of view, we implement
an algorithm that uses a Gaussian distribution to carefully distribute the rays
over the user’s field of view. We then implement lightweight refinement meth-
ods to further improve the recall rates of this baseline (at a limited additional
overhead) and provide an extension that allows rays to be cast also in other
directions. The methods are evaluated against a gold standard that uses a dense
grid to capture all objects in static example scenes.

While the tool is developed for the VR context, we note that the data-driven
approach enabled by the tool (and VR) potentially also can be used for both
qualitative and quantitative studies aiming to better understand how people
explore and interact within new environments in general.

To demonstrate how the tool can be used to help understand the user’s
interactions in the environment, we use the tool to collect a few use-case-driven
datasets and use relatively simple methods to illustrate example uses of these
datasets1. While other papers have produced head-movement datasets for 360◦

videos [3,4,7–9,12,13], these works typically only focus on the viewing direction
within a video, do not consider users movement within 3D environments, and
do not collect deep-scene information about the objects visible to the user. This
paper addresses this void and presents a novel toolset to capture how users
explore these exciting new environments.

Outline: Section 2 presents our general framework, Sect. 3 presents the ray-
casting methods used, and Sect. 4 evaluates these methods. We then use datasets
to demonstrate example uses (Sect. 5). Finally, we present related works (Sect. 6)
and our conclusions (Sect. 7).

2 Methodology Framework

2.1 Environment and Tools

We use the Oculus Rift2 Head Mounted Display (HMD), consumer version 1,
together with the Unity3 3D game engine that renders the scenes to the user.
Oculus Rift provides a rich open-source SDK, including a specific SDK for Unity.
For the experiments and collection of the datasets, we used a Windows 10 work-
station (Intel Xeon CPU E5-1620 V4 3.50 GHz) with NVIDIA GeForce GTX
1080 graphics card with a dedicated HDMI video output, and 32.0 GB RAM.
1 Scripts and example datasets are made available here: https://www.ida.liu.se/

nikca89/papers/deep-scene-2020.html.
2 https://www.oculus.com.
3 https://unity3d.com/.

https://www.ida.liu.se/nikca89/papers/deep-scene-2020.html
https://www.ida.liu.se/nikca89/papers/deep-scene-2020.html
https://www.oculus.com
https://unity3d.com/


226 G. Aaro et al.

(a) Viewing frustum (b) Yaw, pitch, roll

Fig. 1. Viewing frustum and direction (relative headset).

2.2 High-Level Framework

Our methodology provides light-weight data collection of time-series traces that
for each time instance captures (i) the user’s head position, (ii) the user’s viewing
direction, and (iii) information about the visible objects within the user’s field
of view. For this purpose, we place a Unity player camera4 at the position of
the user’s head location and point it in the user’s viewing direction. From this
location we then use ray-casting5 to determine objects that are visible to the
user (and count how many rays hit each visible object). As the name implies,
ray-casting is a method used in the Unity game engine that casts a ray in a
predetermined direction from a point of origin, and if an object is hit by the
ray it returns detailed information about the object that was hit. While this
is a very useful method to discover object, it comes at a high computational
cost. It is therefore important to limit the number of rays used. In this paper we
implement and test different methods to determine the directions to cast rays.
Of particular interest are the objects within the view frustum, defined as the
region of the 3D world that appears on the screen for the user (Fig. 1(a)). For
the identified objects, we then collect deep-scene information and record them
into a trace file.

Sampling Frequency: While the Oculus headset updates its data at a fre-
quency of 1,000 Hz and has a refresh-rate 90 Hz, through our experiments, we
have determined that a reasonable sweet spot to collect sample data about in-
engine generated content (such as objects visible to the user) is 50 Hz, which we
use for our default settings here. Due to high computational complexity, higher
sample frequency can easily result in performance problems (which slow down
rendering and can result in user sickness [10]) and lower sample frequency may
not be sufficient to track all the objects that a client interacts with.

To trigger all physics-related operations needed for the data collection we
use the hook-in method FixedUpdate6 associated with Unity’s C#-scripting
interface. In particular, we set the fixed timestep variable in Unity’s TimeManager
to 0.02 s; providing us 50 Hz “heartbeat”.

4 https://docs.unity3d.com/ScriptReference/Camera.html.
5 https://docs.unity3d.com/ScriptReference/Physics.Raycast.html.
6 https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html.

https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html


Toolset for Run-Time Dataset Collection of Deep-Scene Information 227

Positional and Rotational Information: We import the Oculus Platform
SDK assets into Unity and use an OVRPlayerController object to gather infor-
mation about the headset’s position (in world coordinates provided by Unity)
and rotation (in yaw, pitch, and roll). Figure 1(b) illustrates these rotations.

2.3 Dataset Structure

Our application saves all sample points in JSON -format [5]. Each such JSON
entry contains the following:

– The timestamp of the sample point.
– Player position, using Unity’s world coordinates.
– Player rotation, using yaw, pitch and roll.
– The collection speed in frames-per-second (fps) possible at that specific sam-

ple point.
– An array (visibleObjects) of visible objects, where each entry contains

detailed object information, including (i) a name descriptor for the object,
(ii) a unique object identifier id, (iii) the distance between the center point
of the player and the object, (iv) the smallest angle between the closest
observed point of the object and the player, (v) the number of rays that
hit the object during the sample point, and (vi) the volume of the object’s
bounding box, as given by the size property of the renderer’s bounds7.

3 Object Detection Methods

Determining all objects visible to a user is highly computationally expensive. We
therefore design and use relatively light-weight sampling methods that may miss
some objects within the user’s field of view, but that allows us to sample at a
much higher frequency. In this section we describe some key tradeoffs considered
(Sect. 3.1), a constant-ray baseline heuristic that prioritizes finding objects closer
to the center of the users’ viewing direction (Sect. 3.2), and a few refinement
methods (Sect. 3.3) that help improve the results.

3.1 Per-Object Vs Constant-Ray Approaches

Two fundamental approaches to identify visible objects are (i) to go through the
list of all objects and check whether they appear visible, and (ii) to cast rays
within the viewer’s viewing frustum and record the objects hit by such rays.

Basic Implementations: Our simplest implementation of the first approach
(called per-object ray-casting) first performs frustum culling, followed by ray-
casting in the center direction of each of the remaining objects. If an object is
hit by at least one such a ray, the object is included in the list of visible objects;
otherwise it is assumed hidden. We have also considered extensions that cast

7 https://docs.unity3d.com/ScriptReference/Bounds.html.

https://docs.unity3d.com/ScriptReference/Bounds.html


228 G. Aaro et al.

(a) Uniform grid (b) Gaussian function (c) Gaussian-based grid

Fig. 2. Per-view ray grid examples using 1700 rays.

additional rays towards different locations within the object’s bounding box. In
contrast, our implementation of the second approach (called per-view ray grid)
uses the ScreenPointToRay method built into Unity to map rays within the
user’s view field according to some distribution. Through experiments, we have
found that the second approach typically performs and scales better.

Scaling Problem with Per-Object Rays: Clearly, even a small object can
obstruct a ray cast towards a much bigger object, and there may be many objects
hidden behind a big object. With the first approach, an important tradeoff there-
fore arises when determining how many rays should be cast before considering
an object hidden. However, in scenes with many objects, the time casting just
one ray per object can be substantial and have typically been all that the system
can handle 50 Hz for the basic scenes considered here.

In general, this method is not scalable to scenes with many objects (many of
which may be hidden). Clearly, in the ideal case, the sampling method should
not depend on the number objects in the scene. Therefore, in the following, we
focus on the second baseline approach (that uses a constant number of rays,
regardless of the number of objects) and optional refinement methods that limit
the number of additional objects to consider based on the findings from this
baseline approach.

3.2 Baseline Approach: Per-View Ray Grid

To ensure that the number of rays that are cast is independent of the number of
objects in the scene, we distribute rays across the user’s current view. Figure 2(a)
presents a simple example in which we have used a uniform grid of 1,700 rays.

While the uniform distribution is good at detecting objects within the field
of view, it does not account for users being more likely to see (and interact with)
objects closer to their viewing center. To increase the likelihood that objects
closer to the center of the field of view (e.g., the mug in the center of Fig. 2(a)) are
not missed, while keeping the same budget of rays fixed, we therefore selected to
use a two-dimensional Gaussian distribution function to adjust the grid points. In
particular, we use the general expression of a multivariate Gaussian distribution
function:

f(x, y) = A · e
−(

(x − x0)2

2 · σ2
x

+
(y − y0)2

2 · σ2
y

)
, (1)



Toolset for Run-Time Dataset Collection of Deep-Scene Information 229

where A is the amplitude of the function, (x0, y0) are the median coordinates, and
σx and σy represent the deviations in the x and y dimensions, respectively. First,
we empirically searched for good parameters choices, resulting in the following
parameter choices: A = 0.8, x0 = W/2, y0 = H/2, σx = W/8, and σy = H/8,
where W and H represent the width and height of the screen. Second, we used
this perturbation function to move all points in the grid towards the center of
the screen by a distance proportional to the Gaussian value (Fig. 2(b)) of each
coordinate. Figure 2(c) shows the result using the same scene and number of rays
as before. We note that the mug that earlier was missed is now hit by multiple
rays, illustrating the higher weight given to trying to find objects close to the
user’s viewing center. Of course, this comes at the cost of potentially missing
some objects in the periphery of the viewing field.

3.3 Ray-Casting Refinement Methods

While we have found the per-view ray grid method desirable over the per-object
ray method, in some instances, it clearly misses some objects that a per-object
method would find. To reduce the chance of (mis)labeling visible objects as
hidden, we developed and tested different enhancement algorithms. Here, we
describe two light-weight algorithms and a more computationally expensive algo-
rithm to select a set of objects to perform additional per-object ray castings on.

All three methods are designed to enhance the results of the per-view ray grid
method and the combination can be seen as a hybrid approach. In particular,
they all identify a small subset of additional objects, which has not yet been
found (using the per-view ray grid method), and then (similar to the per-object
ray method) check the objects in this subset one by one, to see if their center
points are visible to the user. We also briefly discuss how the low-cost algorithms
can be modified to require a constant number of ray castings.

Delaunay Surface (DS): This method leverages the 3D point cloud defined
by the coordinates where each of the original rays cast by the per-view ray grid
method first hit an object to delimit the set of candidate objects to consider. In
particular, the method only considers objects that (i) have not yet been deemed
visible, (ii) are within the viewing frustum, and (iii) have a center point closer
to the camera than the Delaunay surface defined by these points. The Delaunay
3D surface (exemplified in Fig. 3(a)) is made up by triangles from a Delaunay
triangulation with the points in the point cloud making up the vertices on the
surface. A Delaunay triangulation maximizes the minimum angle in each triangle
and allows us to loop trough all objects meeting the first two criteria above to
check whether the intersection between the line passing through the camera
and the object’s center point would intersect this surface before or after passing
through the objects center point. To do so, we first determine the intersection
triangle, and then calculate the point where the projection line intersects the
plane defined by this triangle. If this point is further away from the user then
the candidate object’s center point (i.e. the object is between the 3D surface
and the user), the object is included in the candidate set of objects to check



230 G. Aaro et al.

(a) 3D Delaunay surface (b) RoI using DT, P = 0.5

Fig. 3. Example boundaries for region of interest (RoI). (Color figure online)

further. While this method nicely can prune the search space of objects, it is
computationally expensive.

Percentile-Based Distance Threshold (DT): To reduce the complexity and
allow users to tune the number of rays that need to be cast, we implemented a
percentile-based distance threshold (DT) method. First, all distances between the
camera and the points in the point cloud are sorted. Second, a distance threshold
DP is determined that corresponds to a specific percentile P of these distances.
Third, we only include the objects that (i) have not yet been deemed visible, (ii)
are within the viewing frustum, and (iii) have a distance d < DP to its center
point. Figure 3(b) shows the point cloud (red line) and region of interest (blue
area) when using P = 0.5, for a simple 2D example. It is important to note that
in comparison to ray-casting, determining which objects fall within the viewing
frustum is inexpensive.

Finally, we note that DT easily can be modified to return no more than a
constant number of objects. For example, simply sort the distances to the center
points of all objects that satisfy the first two (or three) criteria and select the
K closest such objects. In this paper, we focus on the hybrid version of DT,
described more carefully above.

Angular Threshold (AT): This method is similar to DT, but uses a threshold
α on the angle offset θi of object i to determine which objects to consider further.
In particular, the method selects the set of objects that (i) have not yet been
deemed visible, (ii) are within the viewing frustum, and (iii) have an angular
offset θi < α. We note that many hidden objects may be included by this method,
and that a maximum distance (as used with DT, for example) therefore ideally
also should be used. As with DT, this method can also easily be modified to
bound the number of objects to (at most) K, using the offset angle θi to rank
candidates.

4 Methodology Evaluation

While our system is designed to capture the objects within the user’s view also
in dynamic environments with lots of movement, for our ground-truth-based



Toolset for Run-Time Dataset Collection of Deep-Scene Information 231

Fig. 4. Number of visible objects in each direction using the gold standard approach.

Fig. 5. Average number of objects detected as a function of the number of rays used
by per-view ray grid. (Courtyard)

validation we used two scenes supplied by a third party8: Courtyard and Beach.
The Courtyard scene (e.g., Fig. 3(b)) is densely populated with objects close
to the user, whereas the objects in the Beach scene are significantly further
away and more clustered. For each scene, we placed the player in the center of
the scene, spun the player 360◦ at a constant speed, and recorded the objects
identified under different parameter settings.

Gold Standard: To generate a type of ground-truth, called the gold stan-
dard here, we slowly moved the camera around its z-axis while casting vertically
spaced rays. By slow rotation of these even spaced rays we created a 9,000 ×
2,000 grid of rays, spanning the full 360◦ view, giving us higher than per-pixel
granularity of the objects in the scene. Through post-processing we then recre-
ated exactly which objects are visible within the field of view of each viewing
direction. Figure 4 shows the number of objects possible to observe using this
approach for each viewing direction.

4.1 Impact of Grid Density

Figure 5 shows the average number of objects detected over all (sample) direc-
tions as a function of the number of rays used with the per-view ray grid

8 Mega Fantasy Props Pack: https://assetstore.unity.com/packages/3d/environments/
fantasy/mega-fantasy-props-pack-87811.

https://assetstore.unity.com/packages/3d/environments/fantasy/mega-fantasy-props-pack-87811
https://assetstore.unity.com/packages/3d/environments/fantasy/mega-fantasy-props-pack-87811


232 G. Aaro et al.

Fig. 6. FPS and recall scores for each
method, with points grouped based on the
number of rays by the original baseline.

Fig. 7. Recall-FPS tradeoff frontiers.

approach. As a comparison, we also include the average number of visible objects
as determined by the gold standard. We note that the per-view ray grid baseline
performs well and achieve within 7% of the gold standard when using a grid with
3,200 rays. However, we also observe diminishing recall returns, motivating the
use of refinement methods such as those considered here.

4.2 Refinement Method Comparison

To compare the different refinement algorithms, we started with using the per-
view ray grid method with grids of 800, 1600, 2400 and 3200 rays. For DT we
used percentile thresholds of P = 0.5, 0.7, and 0.9, and for AT we used the
angular thresholds: α = 20◦, 30◦, and 40◦. Figure 6 shows a scatter plot of
the average recall rate versus the average frames per seconds (FPS) across the
samples of each of these methods and settings. Here, the recall rate (of each
sample) is equal to the fraction of objects identified by the gold standard that
the method tagged correctly, and we group the data points based on the number
of rays used in the original grid.

The baseline and refinement methods did not discover any object that the
gold standard did not discover. The precision is therefore always 100% and the
F1-score is always 2r/(1 + r), where r is the recall. Of this reason, throughout,
we only use recall (not precision or F1 scores).

Significant variations in the FPS metric caused some anomalies. For example,
there are instances where the refinement methods have higher FPS than the cor-
responding baseline alone. These cases can be explained by unrelated background
processes (running on the same Windows-PC). Some caution should hence be
taken when interpreting the FPS values. However, in general we clearly see that
additional rays tends to increase the recall and decrease the FPS. Therefore, it
is perhaps not surprising that DS typically have the lowest FPS and among the
highest recall. The simplicity of both DT and AT provide more attractive trade-
offs, with DT typically giving slightly better recall scores. This is most apparent
with increased ray counts. Finally, we note that the gap in recall between the
best methods in the 800 ray cluster and the baseline in the 1,600 ray cluster is



Toolset for Run-Time Dataset Collection of Deep-Scene Information 233

Fig. 8. Six-minute example path. Fig. 9. Example scores of the top-3
objects over time.

due to many of the missed objects having hidden centers, showing that addi-
tional rays (e.g., with a denser grid or with more per-object rays) are needed to
find these objects. Overall, we have found that the hybrid approaches analyzed
here provides a nice tradeoff, pushing up the recall at a very limit overhead.

In general, the beach scene is much more challenging than the courtyard
scene. Figure 7 plots the recall-FPS tradeoff frontiers (using the analogy of a
Pareto frontier) for the two scenes. We note a substantial shift of the trade-
off curve, with the maximum recall differing by 14%. To put the frontiers in
perspective, we also include markers for the four baseline experiments, again
demonstrating the improvements provided by the lightweight refinement meth-
ods.

5 Example Use Case

The tool has many use cases and can be used for both qualitative and quan-
titative studies. For example, consider a crime scene analysis. Using a 3D map
of a city, for example, an investigator can use test users to better understand
what witnesses or victims are more or less likely to have seen. For example, a
test user may be asked to walk the path of an actual witness or victim (poten-
tially recreated using GPS, base station IDs, and/or other network operator
related data). Qualitatively, example paths such as the one in Fig. 8 (in which
we walked through a Viking village9 looking for swords) of multiple test users
can corroborate witness statements.

To aid in better understanding what objects a person is more likely to have
seen, per-object ray counts and other scoring criteria can be used. Figure 9
shows the cumulative score associated with the top-three objects on a second-per-
second basis. Here, we use a basic scoring function

∑
t∈T (wd

1
dt

+wα
1
αt

+wnnt),
where T is a time interval of interest, wd, wα, wn are weights, dt is the distance to
the object at time t, αt is the smallest angle to the object at time t, and nt is the
number of rays that hit the object at time t. For our example results, we set the
weights so that the three factors are roughly equally weighted. First, without loss
of generality, we chose wd = 1. Second, we express the other weights relative to

9 https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-
29140.

https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-29140


234 G. Aaro et al.

Fig. 10. Objects observed over time.

Fig. 11. Example CDFs.

this: wα =
∑

t,i
1
dt

/
∑

t,i
1
αt

and wn =
∑

t,i
1
dt

/
∑

t,i nt, where the sums are over
all observed samples (i.e., both over time t and visible objects i). Furthermore,
for the first 200 s we use colors to indicate when the identity of the highest scored
object changes.

Finally, note that various distribution statistics may be useful to better
understand the rate that new objects appear (Fig. 10), the objects relative
locations (Figs. 11(a) and 11(b)), or the number of rays that hits the objects
(Fig. 11(c)). Comparing these statistics with the corresponding values (and
scores) for specific objects may provide insight into the relative presence certain
objects have. Of course, this does not account for color differences, contrast,
and other aspects that may cause certain objects to stick out to an observer.
Furthermore, the tool we use does not capture eye gaze [2], which could further
improve the use of this type of tool.

6 Related Work

While there is a significant amount of use-case-driven research leveraging VR,
there is a lack of generic tools to collect deep-scene information. In early work
(2004), Chittaro and Ieronutti [6] present a tool for analyzing users’ interactions
with virtual environments through tracking of their position and orientation.
However, they focus on the visualization aspects and do not collect any deep-
scene information about the objects. Others have collected avatar traces and
similar for virtual worlds [15] and games [11]. Since the official Oculus Rift release
in March 2016, there have been many dataset papers and research studies using
head movement [3,4,7–9,12,13] or eye gaze [2] data for 360◦ video. However,
these works typically only focus on the viewing direction, as these videos do not



Toolset for Run-Time Dataset Collection of Deep-Scene Information 235

(a) View from above (b) Side view

Fig. 12. Third-person example of 360 peripheral: forward-facing rays (magenta),
backward-facing rays (green). (Color figure online)

allow users to move around within the environment. In contrast, in our context,
users can move around and their interactions can change the scene itself (e.g.,
as both objects and users move). None of the prior works collect deep-scene
information about the objects visible to the user.

Finally, we note that the data link between the HMD and the computer has
extremely high data rate requirement and delay constraints. This complicates
creating an untethered experience [1] and how to best deliver remote service [14].
Such important efforts to provide improved VR experiences are orthogonal to
the work presented here.

7 Conclusions

This paper presents a methodology and software tool for generating run-time
datasets capturing user movements and visible objects in immersive 3D envi-
ronments. Collecting deep-scene information in a game engine such as Unity is
non-trivial and requires careful ray casting. Our tool implements baseline meth-
ods to carefully distribute the rays over the user’s field of view and refinement
methods that improves the recall rates at limited additional processing overhead.
The methods are evaluated against a gold standard.

Our tool collects information about the users’ movements (position, rotation)
at a tunable time granularity together with information about the objects visible
to the user, including each object’s identifier, distance, angle offset, volume, and
how many rays hit the object at each time instance. While our validation is done
with two static environments, our tool also works for dynamic environments with
moving objects.

Finally, we use example datasets and relatively simple methods to illustrate
example use cases. Interesting future work include user studies (using the tool)
to be better understand users’ interactions with selected example objects, but
also the development of methods (based on extensions of the tool) for improving
user experiences and system performance. For example, while the algorithms
used here focus on objects within the viewing frustum, our tool also includes an
extension that collects information about peripheral objects. Figure 12 illustrates
the rays cast when operating in this extended mode. Future work will evaluate
the use of such extensions for predicting objects that are likely to appear for the
user.



236 G. Aaro et al.

Acknowledgments. This work was funded in part by the Swedish Research Council
(VR).

References

1. Abari, O.: Enabling high-quality untethered virtual reality. In: Proceedings ACM
Workshop on Millimeter-Wave Networks and Sensing Systems (2017)

2. Agtzidis, I., Startsev, M., Dorr, M.: 360◦ video gaze behaviour: a ground-truth
data set and a classification algorithm for eye movements. In: Proceedings ACM
Multimedia (2019)

3. Almquist, M., Almquist, V., Krishnamoorthi, V., Carlsson, N., Eager, D.: The
prefetch aggressiveness tradeoff in 360◦ video streaming. In: Proceedings ACM
MMSys (2018)

4. Bao, Y., Wu, H., Zhang, T., Ramli, A., Liu, X.: Shooting a moving target: motion-
prediction-based transmission for 360◦ videos. In: Proceedings IEEE Big Data
(2016)

5. Bray, T.: The JavaScript object notation (JSON) data interchange format. RFC
8259, Internet standard, IETF (2017)

6. Chittaro, L., Ieronutti, L.: A visual tool for tracing users’ behavior in virtual envi-
ronments. In: Proceedings AVI (2004)

7. Corbillon, X., Simone, F.D., Simon, G.: 360◦ video head movement dataset. In:
Proceedings ACM MMSys (2017)

8. David, E.J., Gutiérrez, J., Coutrot, A., Da Silva, M.P., Callet, P.L.: A dataset of
head and eye movements for 360◦ videos. In: Proceedings ACM MMSys (2018)

9. Fremerey, S., Singla, A., Meseberg, K., Raake, A.: AVtrack360: an open dataset
and software recording people’s head rotations watching 360◦ videos on an HMD.
In: Proceedings ACM MMSys (2018)

10. LaViola Jr, J.J.: A discussion of cyber sickness in virtual environments. ACM
SIGCHI Bull. (2000)

11. Lee, Y.T., Chen, K.T., Cheng, Y.M., Lei, C.L.: World of Warcraft avatar history
dataset. In: Proceedings ACM MMSys (2011)

12. Lo, W., Fan, C., Lee, J., Huang, C., Chen, K., Hsu, C.: 360◦ video viewing dataset
in head-mounted virtual reality. In: Proceedings ACM MMSys (2017)

13. Qian, F., Han, B., Xiao, Q., Gopalakrishnan, V.: Flare: Practical viewport-adaptive
360◦ video streaming for mobile devices. In: Proceedings ACM MobiCom (2018)

14. Tan, Z., Li, Y., Li, Q., Zhang, Z., Li, Z., Lu, S.: Supporting mobile VR in LTE
networks: How close are we? In: Proceedings of ACM SIGMETRICS (2018)

15. Varvello, M., Ferrari, S., Biersack, E., Diot, C.: Exploring second life. IEEE/ACM
Trans. Networking (2010)


	Toolset for Run-Time Dataset Collection of Deep-Scene Information
	1 Introduction
	2 Methodology Framework
	2.1 Environment and Tools
	2.2 High-Level Framework
	2.3 Dataset Structure

	3 Object Detection Methods
	3.1 Per-Object Vs Constant-Ray Approaches
	3.2 Baseline Approach: Per-View Ray Grid
	3.3 Ray-Casting Refinement Methods

	4 Methodology Evaluation
	4.1 Impact of Grid Density
	4.2 Refinement Method Comparison

	5 Example Use Case
	6 Related Work
	7 Conclusions
	References




