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Abstract. Deep models often suffer from severe performance drop due
to the appearance shift in the real clinical setting. Most of the exist-
ing learning-based methods rely on images from multiple sites/vendors
or even corresponding labels. However, collecting enough unknown data
to robustly model segmentation cannot always hold since the complex
appearance shift caused by imaging factors in daily application. In this
paper, we propose a novel style-invariant method for cardiac image seg-
mentation. Based on the zero-shot style transfer to remove appearance
shift and test-time augmentation to explore diverse underlying anatomy,
our proposed method is effective in combating the appearance shift. Our
contribution is three-fold. First, inspired by the spirit of universal style
transfer, we develop a zero-shot stylization for content images to generate
stylized images that appearance similarity to the style images. Second,
we build up a robust cardiac segmentation model based on the U-Net
structure. Our framework mainly consists of two networks during test-
ing: the ST network for removing appearance shift and the segmentation
network. Third, we investigate test-time augmentation to explore trans-
formed versions of the stylized image for prediction and the results are
merged. Notably, our proposed framework is fully test-time adaptation.
Experiment results demonstrate that our methods are promising and
generic for generalizing deep segmentation models.

Keywords: Style transfer + Cardiac image segmentation - Test-time
augmentation

1 Introduction

Delineation of the left ventricular cavity (LV), myocardium (MYO), and right
ventricle (RV) from cardiac magnetic resonance (CMR) images (multi-slice 2D
cine MRI) is a common clinical task to establish the diagnosis. It is of great
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interest to develop an accurate automated segmentation method since manual
segmentation is tedious and likely to suffer from inter-observer variability. Deep
learning cardiac segmentation models have achieved remarkable success based
on a large amount of labeled data. However, as shown in Fig. 1, learning-based
models often subject to severe performance drop due to testing data that has
different distributions from the training data. This is a highly desirable but
challenging task that makes deep models robust against the complex appearance
shift of testing images [1,13] caused by different sites, scanner vendors, imaging
protocols, etc.

Ground
truth

Prediction

Fig. 1. Illustration of segmentation degradation on cardiac images from four vendors
(Vena, ..., Venp). Green, red and yellow curves represent LV, MYO and RV, respec-
tively. Orange digits denote the average Dice index over three structures. The model
trained on the images of Vens performs a notable drop on images of other verdors.
(Color figure online)

To mitigate the performance degradation, one straightforward choice is data
augmentation [10,11]. It can help suppress overfitting but cannot guarantee the
generalization ability of deep models. Recently, Domain Adaptation (DA) [4] and
Domain Generalization (DG) [5] have been common methods for coping with
the appearance shift. As main branches of DA/DG, aligning appearance level
or feature level among different domains via adversarial learning were explored.
Although DA/DG is attractive, it depends heavily on sufficient data from the
target domain or requires enough multiple labeled source data. It is also confined
by its domain mapping and may not extend to images from unknown domains.
By revisiting the basic definition of appearance shift, style transfer [6] (ST)
inspires a new and intuitive way for the problem. ST removes appearance shift
by rendering the appearance of the content image as the style image [3,8,9].
Compared to DA, ST is independent on the target domain, retraining-free and
suitable for images with unknown appearance shifts. In [9], Ma et al. made
the early attempt to exploit an online ST to reduce the appearance variation
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for better cardiac MR segmentation. But such optimization-based ST has high
latency and restrains real-time applications. Liu et al. [8] proposed an Adaptive
Instance Normalization (AdalIN) [7] based ST module for vendor adaption to
achieve real-time arbitrary style transfer. However, it directly utilized the pre-
trained VGG-16 as the ST backbone, which may be unadaptable for the medical
image to retain a more realistic semantic content structure.
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Fig. 2. Schematic view of our proposed framework.

In this paper, based on Wavelet Corrected Transfer network (WaveCT) [14]
and WaveCT-AIN [8], we propose an improved ST network to generate style-
invariant images for removing appearance shift and test-time augmentation to
enhance the segmentation results. Our contribution is three-fold. First, inspired
by the spirit of universal style transfer, we develop a zero-shot stylization for
testing (content) images to generate stylized images that appearance similarity
to the source (style) images. Second, we build up a robust model based on the
U-Net structure for cardiac segmentation. Our framework is a two-stage system
during testing: we utilize the ST network to generate the stylized image, then feed
it into the segmentation model. Third, we investigate test-time augmentation to
explore transformed versions of the stylized image for inference, followed by
inverse transformation and predictions mergence to get the final segmentation
result. In particular, we make two experiments to verify our proposed framework.
1) segmentation model trained on the original dataset and 2) segmentation model
trained on the style-unified dataset generated by our zero-shot ST network from
the original dataset.

2 Methodology

Figure 2 is the schematic view of our proposed method. The universal 2D U-
Net and VGG-16 networks serve as the backbones for segmentation and ST,
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respectively. We first train the segmentation model on the source data, then
develop a ST network to generate stylized images that suitable for the segmen-
tation model. Specifically, the proposed framework is a two-stage system for
segmenting images with appearance shifts. In the first stage, the testing image
is transferred into a stylized image refer to the source image appearance. In the
second stage, the segmentation model trained on source data is performed on
the stylized image and get the segmentation result. Moreover, we explore trans-
formed versions of the stylized testing image for prediction by using test-time
augmentation and then perform a majority vote to obtain the final segmentation
result.

2.1 Cardiac Segmentation Network Design

In this work, we modified the U-Net [12] as our baseline model, the state-of-the-
art 2D semantic segmentation network in medical image analysis. Specifically,
we use upsampling instead of deconvolution to avoid the grid effect. The output
stride of the network is cut to 16 to reduce overfitting. The Batch Normalization
layers are inserted after each convolution layer. The segmentation network aims
at predicting four-class pixel-wise probabilistic maps for the three cardiac struc-
tures (i.e., LV, MYO, RV) and the background. To train the network, we use a
composite segmentation loss function L., which consists of two loss terms:

. 2|X°NYe|
Lee = — ZyCZOQ(p )7 Lpice = Z 1- W (1)
C c

Lseg = Lce + )\LDice

The first term L., is a categorical cross entropy loss, where p® denotes the
corresponding predicted probability map of different classes. The second term is
a Dice loss to measure the similarity between probability map X¢ and ground
truth Y¢. We set A = 0.5 to balance the contribution of the two losses.

2.2 Zero-Shot Style Transfer

ST enables us to transfer the style of an image called style image to that of an
image called the content image, rendering the low-level visual style while pre-
serving its high-level semantic content structure. Inspired by the spirit of ST can
remove appearance shift to approach generalize image analysis, we develop a ST
network to generate style-invariant images for generalizing segmentation model.
Different from the optimization-based or feed-forward approximate stylization,
we utilize zero-shot ST to achieve real-time arbitrary stylization without training
on any pre-defined styles.

To meet the requirement of universal and stable transfer between any content-
style pairs, we adopt the WaveCT network recently used in WCT?2 [14] and make
improvements to preserve image structure details and render the style features.
Different from previous online ST methods [9] used to remove appearance shift
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which may distort image details, the WaveCT network replaces vanilla max-
pooling/unpooling with the Haar wavelet pooling/unpooling layers that main-
tain the content structure to the great extent. In particular, WaveCT splits the
features into low-frequency and high-frequency components via Haar wavelet
pooling, then low-frequency information passes the main network and high-
frequency information skips to connect between encoder and decoder.

The ST network proposed in this paper is a significant extension of our prior
conference paper proposed WaveCT-AIN [8], regarding the following highlighted
points. As the ST network depicted in Fig. 2, first, we design a multi-scale feature
fusion layer after the encoder, in return mitigate the variation of background area
without information in the image. Second, we keep the ST module in the encoder
and add an extra AdalN after the feature fusion. Besides, we enhance the style-
invariance by introducing the Instance Normalization (IN) layer into the decoder.
In this respect, we focus on rendering the style texture representations in the
low-level features and preserves its invariance in the high-level patterns. Third,
we simplify the case-specific style image selection strategy more concisely and
effectively, which is directly considered selecting the reference style image that
as close as possible to the mean and standard deviation of the testing image.
Especially, the ST network utilizes the pre-trained VGG-16 as backbone while
feature fusion layer and IN layers are embedded, thus it needs to be fine-tuned
with image reconstruction task.

2.3 Test-Time Augmentation

Data augmentation significantly improves robustness to appearance shift and
can be used as a simple strategy for generalizing model performance. Data aug-
mentation at training time has been commonly used to increase the amount of
data for improving performance [11]. Recent works also demonstrated the use-
fulness of data augmentation directly at test time, for achieving more robust
predictions [10]. For the point of data acquisition, a testing image is only one
of many possible observations of the underlying anatomy. Therefore, we explore
multiple transformed versions of the testing image for robust segmentation. Test-
time augmentation includes four procedures: augmentation, prediction, inverse-
augmentation, and merging. We firstly consider different transformations on the
testing image. For our case, we have already remove appearance shift through
the ST network, thus we apply flip and rotation transformations for stylized
cardiac images instead of complicated contrast or brightness change. In partic-
ular, we make three different transformations on the stylized testing image and
inference each version of the testing image, thus four predictions are obtained
by the inverse transformation. Then we perform a majority vote to obtain the
final segmentation result, that is, once the pixel is predicted twice or more, it
will be regarded as the target area.
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3 Experimental Results

3.1 Dataset and Implementation Details

Notably, we make two experiments to verify our proposed framework. Exp.1)
segmentation model trained on the original training dataset, denoted as SegO
and Ezp.2) segmentation model trained on the style-unified dataset generated
by our zero-shot ST network from the original dataset, denoted as SegST.

Table 1. Quantitative comparison results of the Fxp.1.

Metrics SegO STSegO STSegO-TTA

Ven, |Venp |Veng | Venp |Ven, |Venp |Venp |Venp (Veny |Venpg |Veng |Venp
Diceava 80.72|86.82|81.20|62.23 |82.92|89.7285.27 |64.87 |84.70|89.57 |85.56|68.01
Jacava 68.93|77.9869.5349.81 |71.82|82.04 | 75.01 |53.49 |74.29|81.98 |75.45|55.80
HDBava 19.52|14.24 118.30 | 44.88 | 17.54|9.93 13.27 |44.53 |14.88 /9.04 |12.94|38.46
ASSDsve 196 |0.89 |1.84 |12.44|1.85 |0.65 |1.46 |13.17 |1.51 |0.65 | 1.44 |7.38

Dicerv 89.14|93.0785.12|72.97 | 88.71 |92.90 | 86.46 | 78.21 | 89.75 92.45 |86.39 |74.91
Jacpv 81.01|87.56 | 75.56 | 62.83 | 80.27 |87.39|77.34|68.09 |81.95 86.92 |77.26 |64.94
HDB.v 13.589.55 [13.38/33.68 13.28|6.72 |12.05 |28.23/11.59|/6.03 |10.90|31.42
ASSD v 1.53 |0.61 [1.91 |10.86|1.54 |0.63 |1.74 ' 5.76 |1.34 |0.68 |1.76 |8.28

Diceyyo |72.7176.63|73.6051.76 |81.84 |85.6983.83 |60.76 |83.13|85.68 |83.92|63.19
Jacyyo 57.47162.64 |58.7236.92 |169.49|75.19 |72.52 |47.01 |71.32|75.21|72.63|48.53
HDB )\ yo [20.27/21.56[19.15/34.00 |16.54|11.36 |14.77|27.22|14.02|10.74 | 14.85 |30.40
ASSDjyyo|1.92 [1.35 [2.00 |7.13 |1.29 |0.59 1.29 2.67 1.09 |0.55 |1.28 3.04

Dicery 80.31{90.77 |84.8861.96 | 78.21 |90.58 |85.51 |55.66 |81.22|90.60|86.39|65.94
Jacrvy 68.32|83.74|74.3049.69 |65.71 |83.55 | 75.18 |45.38 |69.60|83.79|76.47|53.94
HDBRrv 24.72]11.61|22.3866.95 |22.79|11.71 |12.98|78.14 |19.03|10.35|13.07 |53.55
ASSDRgryv 2.43 |0.70 |1.61 |19.34|2.72 |0.74 1.35 31.08 [2.09 |0.72 |1.27 |10.83

Dataset. The framework was trained and evaluated on the Multi-Centre, Multi-
Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms 2020)
dataset [2]. Two subsets of 75 CMR images from vendor A and vendor B (denoted
as Veny and Venp) with only ES & ED annotated are provided as training data,
respectively. Additionally, 25 unannotated images are also given from Venc.
However, our methods do not use it because we are concentrate on generalizing
the model to other more unknown data, not just Vene. For evaluation, the results
are evaluated on not only 50 new studies from each of Veny g ¢, but also 50 else
studies from Venp.

Implementation Details. We obtain 3284 training slices along the anatomical
plane from the ES & ED images of Veny and Venpg. All slices are resized to
256 x 256. For training the SegO, we apply elastic deformations to the available
training slices (i.e., random expand, flip, rotation, mirror, contrast change, and
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brightness change). Whereas the training of SegST is not necessary to make
contrast or brightness change because its training data already have a particular
appearance distribution. We use 3000 cardiac slices to fine-tune the ST Network
as the extra feature fusion layer and IN layers are embedded into the pre-trained
VGG-16. For the segmentation network, it was trained for 60k iterations with a
batch size of 24 and was optimized using the composite loss L., where Adam
optimizer with a learning rate of 1073 initially then decreased to 107°. We
implement all experiments with PyTorch on two GeForce® RTX 2080 Ti GPU.

SegO STSegO STSegO-TTA Ground Truth

Fig. 3. Visualization of our better 3D segmentation results. From left to right are cases
from Veng, Venc, Venp and Venp, respectively. Green, red and yellow areas represent
LV, MYO and RV, respectively. (Color figure online)

3.2 Quantitative and Qualitative Evaluation

Metrics. To evaluate the accuracy of segmentation performance, we adopt
in total 4 indicators including the Dice similarity index (Dice, %), Jaccard
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Fig. 4. Visualization of the 2D segmentation results of our proposed methods. Green,
red and yellow curves represent the boundary of LV, MYO and RV, respectively. Orange
digits denote the average Dice index. The performance is gradually improved from left
to right methods, especially in the boundaries of RV. (Color figure online)

similarity index (Jac, %), Hausdorff Distance of Boundaries (HDB, pixel), and
Average Symmetric Surface Distance (ASSD, pixel). For ease of comparison, we
calculate the average (AVG) per indicator over the three structures (LV, MYO,
RV).

Quantitative Results of the Exp.1. We first train the segmentation model
SegO based on the available labeled images from Ven4 and Venpg. Then we set
up a style image library from the training data, which contains 221 slices from
the top-20 images via computing the Dice index. Therefore, the testing (content)
slice selects the reference style slice from the library through our simple style
selection strategy. Subsequently, the content-style pairs feed into our zero-shot
ST network to generate the stylized slice for segmentation. This two-stage system
is denoted as STSegO. Likewise, STSegO with test-time augmentation is denoted
as STSegO-TTA. Table 1 shows the quantitative results based on the 200 test
cases correspond to four different vendors. We compare three versions of our
proposed SegO, STSegO and STSegO-TTA, respectively. The numbers in bold
indicate the best results of multiple vendors among different methods. Both
STSegO and STSeqgO-TTA get consistent improvements over the pure SegO, in
which the best results are achieved by the STSegO-TTA. It almost improves
the Dice index by 5% and the Jaccard index by 6% on average for each vendor.
The HDB and ASSD also improve about 5.5 pixels and 1.5 pixels, respectively.
Obviously, the segmentation model can be well generalized to the images of
Veng, but the performance on the Venp shows relatively poor. This may be due
to the large difference in the data distribution and anatomical structure between
images of Venp and the source data. Figure 4 visualizes the 2D segmentation
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results of our proposed methods on unseen cases from four vendors. STSegO-TTA
produces more anatomically plausible results on the images. Figure 3 visualizes
the 3D segmentation results of the ST'SegO-TTA on four unseen cases.

Quantitative Results of the Exzp.2. Different from the SegO trained on the
original dataset, SegST utilized the style-unified dataset for training, which is
generated by our zero-shot ST network from the original dataset. Notably, we
randomly select a slice serve as the style slice to generate stylized data, thus
the style-unified training data has a particular appearance distribution. Con-
sequently, the ST network only takes over this style slice to achieve styliza-
tion during testing. Likewise, SegST with test-time augmentation is denoted as
SegST-TTA. As can be seen from Table 2, ST'Seg-TTA shows improvements over
STSeg, the Dice index and Jaccard index are both raised about 2% on average
for each vendor, and the HDB is improved about 1 pixel. However, the perfor-
mance of Venp shows worse compared with Ezp.1, which may be caused by the
target style slice is not suitable for the images of Venp. Thus it is crucial to
choose a universal style slice to generate the style-unified dataset, which will be
our further study.

Table 2. Quantitative comparison results of the Fxp.2.

Metrics SegST SegST-TTA

Ven, | Venp | Veng | Venp | Veny | Venp | Veno | Venp

Diceava 84.19 | 89.63 | 85.74 | 53.84 | 85.99 | 90.28 | 85.23 | 58.86
Jacava 73.31 | 82.06 | 75.71 | 42.64 | 76.03 | 82.74 | 74.96 | 47.90
HDBava 16.89 | 15.46 |20.22 | 35.56 | 13.62 | 9.28 | 13.39 | 47.86
ASSDvg | 1.71 |0.73 1.44 14.55 | 1.34 |0.58 |1.37 |17.52

Dicerv 87.82192.54 | 87.04 |63.71 | 89.64 | 93.83 | 87.50 | 68.34
Jacrv 78.84 | 86.95 | 78.23 |52.92 | 81.85 | 88.68 | 78.87 | 58.54
HDB.v 16.78 | 14.45 | 17.34 | 48.96 | 10.96 | 6.22 | 11.52 | 49.84
ASSD v 1.90 |0.76 1.74 20.87|1.33 | 0.47 |1.49 |21.27

Dicenyo 81.04 | 86.61 | 84.81 | 53.49 | 82.92 | 86.54 | 84.70 | 56.97
Jacuyo 68.37 | 76.81 | 73.96 | 40.61 | 71.00 | 76.44 | 73.74 | 44.49
HDByyo |16.42]20.60 | 22.42 | 24.78 | 13.46 | 10.11 | 14.08 | 30.12
ASSDuyyo | 1.39 | 0.59 1.28 12.26 |1.07 |0.49 |1.01 |7.68

Diceryv 83.70 | 89.73 | 85.37 | 44.31 | 85.41 | 90.46 | 83.49 | 51.26
Jacrv 72.71 | 82.42 | 74.94 | 34.40 | 75.25 | 83.09 | 72.28 | 40.66
HDBRrv 17.4511.32 | 20.90 | 32.93 | 16.45 | 11.49 | 14.57 | 63.62
ASSDrv 1.85 | 0.84 1.30 |10.52|1.64 |0.79 | 1.62 23.62
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4 Conclusion

In this paper, we proposed a zero-shot ST network to generate style-invariant
images for removing appearance shift and test-time augmentation to enhance the
segmentation results. By investigating the two experiments Ezp.1 and Ezp.2, we
showed that SegO and STSeg with their variants present promising performance
in segmenting cardiac images across the multi-vendor and multi-cencre dataset.
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