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Abstract. Recent advances in deep learning have shown the capability
to accurately segment cardiac structures in magnetic resonance images.
However, while these models provide a good segmentation performance
for the specified datasets, their generalization with respect to unseen data
across different MRI scanners, vendors or clinics is still under investiga-
tion. Previous work that aims to increase the generalization performance
provides proof that emphasizing the model design on a uniform prepro-
cessing step may be more beneficial than searching for a better neural
architecture. In this paper we build upon this idea and show that a care-
fully designed preprocessing pipeline plays an important role in enabling
the neural network to generalize to the large variety in MRI images. We
evaluate our model in the context of the Multi-Centre, Multi-Vendor &
Multi-Disease Cardiac Image (M&Ms) Segmentation Challenge.
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1 Introduction

In recent years, cardiac magnetic resonance imaging (MRI) has increasingly been
used to assess cardiac function. To quantify parameters such as the ejection frac-
tion and stroke volume, an accurate segmentation of the left ventricle, right ven-
tricle and myocardium in both diastolic and systolic phase is necessary. When
manually performed by a medical expert, the segmentation is time-consuming
and subject to intra- and inter-rater variability. Therefore, automated segmen-
tation approaches would help to improve reproducibility of segmentations and
derived parameters, as well as save valuable time. A number automated segmen-
tation approaches have been proposed [2], many of which have shown impressive
performance in terms of typical segmentation performance measures [1,3]. It has
even been discussed whether the problem is solved technically [2].
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Clinically, the diversity in image acquisition parameters, sequences and recon-
struction parameters is much higher than captured by most (public) research
datasets. Therefore, the goal of the Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Image Segmentation Challenge (M&M) was to develop general-
izable models that show consistent performance across institutions and scanner
vendors. As the U-Net [5] still represents the current state-of-the-art method
for medical image segmentation [4] our work is based on that approach. Pre-
vious work has shown that applying such preprocessing techniques can largely
contribute to an improvement of the models’ capability to generalize. The nn-
UNet proposed by Isensee et al. [4] makes use of such a preprocessing pipeline
by introducing a resampling step together with a normalization routine in order
to mitigate the large variability in medical datasets. Additionally, by performing
a quantitative analysis of the training data, important architectural parame-
ters such as the depth and kernel sizes as well as the input patch size can be
extracted automatically. Along with the benefit of providing a way to automati-
cally adapt to the variability of the datasets, this approach also reduces effort put
into manually finding an appropriate set of hyperparameters for each dataset.
In our challenge approach, we particularly focused on appropriate preprocess-
ing to tackle differences between scanner vendors, institutions and acquisition
parameters.

2 Materials

The provided dataset used to train our models consists of 150 annotated images
that originate from two MRI vendors and were scanned in clinical centers across
three different countries (Canada, Germany, Spain). Additionally, the challenge
organizers provided 25 unannotated images from a third vendor. The images are
four dimensional short-axis cardiac MRI images, given in the form (x, y, z, t),
where t denotes the time. The resolution of the in-plane axis across all anno-
tated training samples range from 0.97×0.97mm to 1.625×1.625mm, while the
resolution for the through-plane axis ranges from 5 mm to 10 mm. Besides many
healthy subjects, the dataset includes patients with hypertrophic and dilated
cardiomyopathies. Creation of the respective ground-truth has been performed
by experienced clinicians that were instructed to label the left- (LV) and right
ventricle (RV), as well as the left ventricular myocardium (MYO) for the end-
diastolic (ED) and end-systolic (ES) cardiac phases. The time points between
these two phases were left unlabeled. Along with the three known vendors pro-
vided in the training set, one unseen vendor is included in the test set, resulting
in 50 new studies from each of the vendors. To allow for appropriate model selec-
tion, 20% of this unseen dataset was used for validation purposes, while the rest
is used to rank the challenge participants.

3 Methods

Building up on the premise that data-preprocessing and hyperparameter search
for the training routine and architecture can be automated to a great extent
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by a quantitative analysis of the underlying datasets, we were inspired by the
steps taken by Isensee et al. [4] to build an appropriate preprocessing pipeline
that ensures better generalization performance. In the following, we will briefly
outline the most important steps of the implemented pipeline.

3.1 Preprocessing

Preprocessing is used in our approach to facilitate the learning task for our neural
network. This is achieved by performing basic image transformations that aim at
harmonizing the variability of voxel geometries and intensity distributions in the
training set. The steps listed below are thus incorporated into our preprocessing
pipeline and were carried out in the same order as presented here.

Resampling. When dealing with medical images and especially MRI images,
different scanners and protocols typically result in an anisotropic voxel spac-
ing across the dataset. This can negatively affect the learning process of CNNs
due to inconsistent voxel geometries across the dataset. Thus, in order to allow
our architecture to learn about the spatial dimensions of anatomical struc-
tures, we resample our images and ground-truth segmentation masks to the
median voxel spacing of the used training dataset. Resampling is performed as
a nearest-neighbor interpolation for the one-hot encoded segmentation mask,
while third-order spline interpolation is carried out for the images. Additionally,
when resampling the plane constructed by the high resolution axis separately,
bicubic interpolation is used.

Resizing. In order to provide as much context as possible to the CNN, we did
not process the images patch-based but as a whole. To allow batch-processing
in the training routine, the images were resampled to a common shape. This
is necessary because, similar to the voxel spacings, the original shape of the
images varies across different MRI scanners. Furthermore, the difference in voxel
spacings may also lead to a different shape after resampling, even when the
original shape is equal. Therefore, we have decided to resize all the inputs to the
median shape of the dataset that is acquired after resampling the images to the
median voxel spacing. Resizing is performed by cropping and padding operations
to ensure that the voxel spacing across all images remains consistent.

Intensity Normalization. The intensity ranges of the acquired images typ-
ically vary across MRI scans from different scanners and protocols. Therefore,
we normalized our input images by performing a z-score normalization using the
standard deviation and the mean of the respective images. However, as proposed
in [4], normalization was performed only on the non-zero part if one quarter of
the image is non-zero.
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3.2 Augmentation

Augmentation techniques are applied to the input image and the corresponding
one-hot encoded segmentation mask to increase the robustness of our model
to unseen data. These include mirroring along the image plane and an elastic
deformation to simulate the contraction and relaxation of the respective left-
and right ventricle as well as the left ventricular myocardium. Following the
proposed method for performing the elastic deformation by Simard et al. [6],
we first create random displacement fields Δx(x, y) and Δy(x, y) in the range
between -1 and +1. Subsequent convolution with a Gaussian filter then allows a
conform displacement of adjacent pixels by choice of a sufficiently large standard
deviation σ. In this case, σ has been chosen to equal 30. In order to control
the intensity of the deformation, the resulting displacement field is additionally
multiplied by a factor α, whose value has been chosen to equal 1550 in our
experiments.

3.3 Architecture

Similarly to the network architecture chosen by Iseensee et al. [4] we have decided
to base our architecture on the U-Net [5]. In order to allow our model to appro-
priately adjust to dataset-specific features, the number of pooling layers and
the corresponding kernels are chosen automatically. This was done by defining
a minimal edge length for the feature map in the bottleneck that should not be
undershot when downsampling the image by means of a max-pooling operation.
As a result, every axis may be subject to a different number of pooling layers.
To ensure that axes with a relatively small dimensionality don’t fall below the
minimal edge length in the bottleneck, while still enforcing the previously com-
puted number of pooling steps, no max-pooling was performed on these axes in
the first layers of the network. This was achieved by assigning a value of 1 to
the corresponding kernel dimension of the max-pooling layer.

On the other hand, the kernel dimension corresponding to the longest axis is
set to 2, starting at the first layer of the encoder network. Throughout the course
of our experiments, two different U-Net architectures have been implemented to
deal with the three-dimensional input data: The first one consists of a simple 2D
U-Net, where the input to the network is chosen to be the image plane, formed by
the two axes with the highest resolution. The second architecture replaces every
2D layer in the 2D U-Net by a corresponding 3D layer, in order to construct a
3D network.

3.4 Hyperparameters

While most hyperparameters are set automatically by the dataset analysis
explained above, we still had to tune few parameters manually. Given that we
have trained our models on a GTX 1080 TI and have chosen the median size
after resampling as the common size for all inputs, the batch size has been tuned
to consume the remaining GPU memory. This adjustment results in a batch size
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of 2 in the case of our 3D U-Net and a batch size of 23 in the case of the 2D
U-Net. Training has been performed using the Adam optimizer with a learning
rate of 1 · 10−3. The loss function used throughout our training routine is the
soft dice loss.

3.5 TTA and Ensembling

In order to increase the accuracy of our model we incorporated test time aug-
mentation (TTA) into our post-processing pipeline TTA is applied by performing
horizontal flips and rotations in 90 degree steps from 0 to 270. The final model
output is then a result of taking the mean over the predictions for each aug-
mentation step. To further boost the performance, we also built an ensemble
of models by means of a majority voting over the predicted labels. The models
used in the ensembling are acquired by performing a 5-fold cross-validation for
the 2D and 3D U-Net.

4 Results

In order to evaluate our approach and tune hyperparmeters such as early stop-
ping, we performed a 5-fold cross validation over the 150 labelled training images.
Splitting between training, validation and test set was performed at patient level
to prevent information leakage. For each split, we assigned 64% of the data to
the training set, 16% to the validation set and the remaining 20% to the test
set for performance assessment. The results for 2D and 3D U-Nets with various
combinations of post-processing are depicted in Table 1. With a 3D network

Table 1. Result metrics for all models. All values refer to medians and interquartile
ranges based on the 5 folds on the annotated training data.

Predictor Dice LV Dice RV Dice MYO Hausdorff LV Hausdorff RV Hausdorff MYO

2D noTTA

noEnsem-

bling

0.69 [0.52,

0.77]

0.78 [0.66,

0.84]

0.43 [0.29,

0.52]

50.33 [27.57, 78.91] 29.50 [15.14, 44.84]110.43 [92.25, 133.1]

2D TTA

ensembling

0.72 [0.60,

0.80]

0.83 [0.78,

0.88]

0.60 [0.50,

0.69]

21.2 [16.37, 27.44] 13.94 [10.57, 15.42]17.31 [14.50, 23.75]

3D+2D

TTA

ensembling

0.82 [0.73,

0.87]

0.90 [0.86,

0.93]

0.79 [0.73,

0.82]

15.32 [12.15, 20.04] 9.96 [8.47, 11.53]12.98 [10.72, 17.19]

3D noTTA

noEnsem-

bling

0.83 [0.75,

0.88]

0.90 [0.86,

0.93]

0.81 [0.76,

0.84]

19.36 [13.64, 49.93] 10.40 [8.55, 12.63] 13.30 [10.35, 17.78]

3D TTA

noEnsem-

bling

0.83 [0.76,

0.89]

0.90 [0.85,

0.93]

0.81 [0.76,

0.85]

14.64 [12.0, 19.3] 10.04 [8.25, 11.3] 12.46 [10.27, 16.31]

3D noTTA

ensembling

0.85

[0.79,

0.89]

0.91

[0.87,

0.94]

0.81 [0.77,

0.85]

14.20 [11.83, 18.46] 10.03 [7.87, 11.9] 12.43 [10.39, 15.91]

3D TTA

ensembling

0.85

[0.79,

0.89]

0.91

[0.87,

0.94]

0.82

[0.77,

0.85]

13.72 [11.51, 18.39]9.98 [7.2, 10.87] 12.35 [10.2, 15.83]
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employing TTA and ensembling, the best performance is achieved. The 2D app-
roach performs considerable worse than the 3D approach. In Fig. 1 we can see
that the performance depends on the imaging centre. Example segmentations
are provided in Fig. 2.

Fig. 1. Dice score (left) and Hausdorff distance (right) performance for the three imag-
ing centres. The evaluation has been performed across the whole training set using the
3D U-Net with TTA and ensembling over all five folds.

5 Discussion

We have described an approach for automated segmentation of left ventricle,
right ventricle and myocardium in cardiac MR images. Our results show that
generally, a good performance is achieved for a variety of imaging protocols. The
3D segmentation approach is clearly superior to the 2D variant. Interestingly,
even when 2D and 3D are combined in an ensemble, the 3D-only approach is
superior. Furthermore we found that especially for the left ventricle that tends
to be rather challenging to segment, TTA and ensembling strongly improve the
performance in terms of both median and interquartile ranges. This indicates
that TTA and ensembling are an effective tool for improving generalization.
Manually inspecting the segmentations of our approach, we found that most
segmentation errors arise at the boundaries of the cardiac structures along the
long axis. In this area, we assume that even the ground truth is ambiguous and
subject to high intra- and inter-rater variability, especially across institutions
and acquisition protocols.

Moreover, the performance is still dependent on the imaging center. Baum-
gartner et al. achieved a higher segmentation performance on a different dataset
using a 2D U-Net [1]. The same applies for [3] using an ensemble of 2D and 3D
U-Nets.

In future work, our approach will be refined by further morphological
postprocessing. In addition, more thorough evaluations should assess to what
extends certain sequences lead to segmentations with high and low performance,
respectively.
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Fig. 2. Ground truth segmentations (left column) and segmentations provided by the
3D U-Net with TTA and ensembling (right column). The first and second row show
poorly performing cases, whereas the third and fourth row show examples for cases
with good performance.
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6 Conclusion

We have shown an approach for automated segmentation of left ventricle, right
ventricle and myocardium on cardiac MRI images. Our method is based on an
adaptive preprocessing that takes voxel geometry and acquisition parameters
for the parametrization of the U-Net architecture and preprocessing pipeline.
Furthermore, we have shown that TTA and ensembling improve the performance
and generalization.

Acknowledgements. The authors declare that the segmentation method imple-
mented for participation in the M&Ms challenge has not used any pre-trained models
nor additional MRI datasets other than those provided by the organizers.
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