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1 Introduction

A reversible Boolean function is a multiple-output function that maps each input
assignment to a unique output assignment. Such a function must have the same
number of inputs and outputs and the function always has an inverse. The reversible
circuit synthesis problem is to realize such a function as a cascade of reversible
gates. In this chapter we present function translations that can improve the syn-
thesized circuit making effective use of both positive and negative controls for the
reversible gates.

The first function translation considered negates selected function inputs and
the corresponding function outputs. If we synthesize a circuit for the translated
function, that circuit is easily translated to become a circuit for the original function
by changing the polarity of certain controls in the circuit. For an n-input, n-output
function, there are 2n choices for which input-output pairs to negate, hence a broad
range of potential circuits for the original function. The case where all input-output
pairs are negated translates the original function to its dual.

The second function translation considered permutes input-output pairs. For
an n-input, n-output function, there are n! permutations. Note that as the same
permutation is applied to the inputs and outputs of the function, if we find a circuit
for the translated function, it can be mapped to a circuit for the original function
by a simple relabeling of the inputs and corresponding outputs. Swap gates are not
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needed as is the case in some earlier work where permuting the inputs and outputs
are considered as separate operations.

The two function translations can be combined and it is also possible to
synthesize a circuit for a function from that function or its inverse. This gives a
possibility of 2 × n! × 2n translations for a given function. We use transformation-
based synthesis techniques to demonstrate the effectiveness of the techniques, but
we note that the function translations can be applied with any reversible circuit
synthesis method.

Transformation-based synthesis for reversible functions was introduced in
2003 [9]. It is a simple technique that in its most basic form generates a reversible
circuit by mapping a given function to the identity by considering the rows of a
truth table in order from row 0 to row 2n − 1. Variants to that basic approach
have been developed and are outlined later in this chapter. A bounded search
transformation-based synthesis method is also considered. Results presented show
it can be effective but at high computational cost.

A second facet of this chapter is the consideration of ways to simplify reversible
circuits with positive and negative controls. To that end, we employ simplification
rules presented by Rahman and Rice in [15]. In addition, we consider the use of a
generalized form of Peres and inverse Peres gates [14] that allows for both negative
and positive controls. Once again it is worth noting that the simplification techniques
discussed are applicable to the circuits and are not specifically for transformation-
based synthesis. They can be used in conjunction with any other reversible circuit
synthesis approach.

Often the goal is to map a reversible circuit to a quantum gate implementation.
Here we consider mapping to the NCV gate library [13]. In particular, we present an
approach to dealing with negative control CNOT gates which are often not permitted
in quantum circuit technologies.

This chapter concludes with an assessment of the positives and limitations of
this work with suggestions for ongoing research. The use of negative controls
in reversible and quantum circuits, white dots as they are often called due to
the commonly used graphic, have been considered by a number of researchers
[2, 10, 11, 15, 16, 21]. We refer the interested reader to those works and acknowledge
them as providing motivation for this work.

2 Background

We here present the necessary background on reversible functions, gates, and
circuits as well as necessary detail on NCV quantum circuits. Readers seeking more
detailed information should consult [13].
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Table 1 A 3 × 3 reversible
function

x2 x1 x0 x+
2 x+

1 x+
0

0 0 0 1 1 1

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 0 1 1

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 1 1 0

1 1 1 1 0 1

2.1 Reversible Functions, Gates, and Circuits

Definition 1 An n-input, n-output, totally-specified Boolean function f (X), X =
{x0, x1, . . . , xn−1} is reversible if it maps each input assignment to a unique output
assignment.

A reversible function can be written as a standard truth table as in Table 1
where + denotes output. The function can also be viewed as a bijective mapping
of the set of integers 0, 1, . . . , 2n − 1 onto itself. Hence a reversible function can
be defined as an ordered set of integers corresponding to the right side of the table,
e.g., {7, 1, 4, 3, 0, 2, 6, 5}, for the function in Table 1 where the decimal number
corresponds to the binary sequence in the obvious way. A reversible function is a
permutation and can be expressed as a set of disjoint cycles as done in [19], but we
do not follow that approach here.

Definition 2 Anm-input,m-output gate is a reversible gate if it realizes a reversible
function.

In this work, we use the family of mixed-polarity multiple-control Toffoli gates
described in Definition 3.

Definition 3 An m × m mixed-polarity multiple-control Toffoli (MPMCT) gate has
a single target line and m − 1 control lines. Each control is either positive, i.e.,
activated by a 1, or negative, i.e., activated by a 0. The value on the target line is
inverted if all positive controls have value 1 and all negative controls have value 0.
The controls are always passed through the gate unaltered.

We write anm×mMPMCT gate as T (controls, target)where negative controls
are indicated by an overline. For example, T (x1, x2, x0) denotes an MPMCT gate
which inverts the value of x0 if x1 = 1 and x2 = 0. For drawing gates, ⊕ denotes a
target, denotes a positive control, and denotes a negative control.

An MPMCT gate with no controls always inverts the target and is thus the
well-known NOT gate. An MPMCT gate with a single control is referred to as a
controlled NOT (CNOT) and is also known as a Feynman gate [4] if the control is
positive. An MPMCT gate with two positive controls is the gate originally proposed
by Toffoli [25].
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Peres gates and their inverse [14] are often used in reversible circuit synthesis.
Conventionally, such a gate has two positive controls. Generalizations of Peres gates
have been considered in [11, 24]. In this work we employ mixed-polarity Peres and
inverse Peres gates as described in the following definition.

Definition 4 A mixed-polarity Peres (MPP) gate is a single gate equivalent to a 2-
input mixed-control Toffoli gate followed immediately by a positive-control CNOT
gate whose target and control are the controls of the Toffoli gate. A mixed-polarity
inverse Peres (MPIP) gate is similar except the CNOT immediately precedes the
Toffoli. Note these definitions are extensions to the original Peres and inverse Peres
gates in that the Toffoli gate can have negative as well as positive controls.

An MPP gate will be denoted P(c, t1, t2) where t1 is the target of the CNOT gate
with control c and t2 is the target of the Toffoli gate with controls c and t1. t1 can
have an overline to indicate it is a negative when used as a control. An MPIP gate is
denoted in the same way with IP instead of P.

Definition 5 An n × n reversible circuit is a cascade of reversible gates with no
fanout or feedback.

For example, the circuit in Fig. 1 realizes the function in Table 1. Note the third
gate T (x2, x1) and the fourth gate T (x1, x2, x0) can be replaced by the inverse Peres
gate IP (x2, x1, x0).

2.2 Quantum Gates and Circuits

Reversible circuits can be realized in a variety of technologies. Here we consider the
NCV quantum library consisting of four elementary gates: NOT, CNOT, controlled-
V , and controlled-V †. We here provide the basic background required to understand
the use of this library for the work in this chapter.

Definition 6 The basic information unit in a quantum circuit is the qubit whose
value is given by α |0〉+β |1〉 where α and β are complex numbers such that |α|2 +
|β|2 = 1 and |0〉 and |1〉 are basis states normally associated to the Boolean values
0 and 1.

The discussion here is greatly simplified by the fact we are implementing
Boolean reversible functions and because the quantum circuits we consider are

Fig. 1 Reversible circuit for
function in Table 1
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semi-classical [29] meaning control values are always 0 or 1 thereby avoiding
entanglement between qubits.

The operation of a NOT can be expressed as a matrix

N =
[
0 1
1 0

]

and applying a NOT to a qubit is given by N

[
α

β

]
. One can see that if the qubit is

in a basis state this operation, as expected, flips it to the other basis state.
The matrices defining the V and V † operations are

V = 1

2

[
1 + i 1 − i

1 − i 1 + i

]
V † = 1

2

[
1 − i 1 + i

1 + i 1 − i

]

It is readily verified that N = V V = V †V †. For that reason, V and V † are called
the square roots of NOT. It is also readily verified that V V † = V †V = I , i.e., V

and V † are the inverses of each other.
V and V † gates always have a single positive control. When used as a quantum

elementary gate, CNOT can also only have a positive control which is different from
our use of CNOT in a reversible circuit where we allow a positive or a negative
control.

Definition 7 An ancillary line is a quantum circuit line used in the realization of an
MPMCT gate that is not a control or target for that gate. The value of the ancillary is
restored to its value, so operation of the gate effectively has no effect on an ancillary,

Quantum circuit cost is discussed in Sect. 6.

3 Function Translations

A number of reversible circuit synthesis methods have been proposed in [17]. Most
employ heuristics and are not guaranteed to find an optimal solution, so it is useful
to explore alternative formulations of the synthesis problem and translation of the
function to be synthesized in particular.

3.1 Function Inverse

Since a reversible function maps each input assignment to a unique output assign-
ment, such a function has an inverse. The following result is well known [9]:
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Theorem 1 Given a reversible circuit g0, g1, . . . , gk−1 realizing the reversible
function f (X), the circuit g−1

k−1, g
−1
k−2, . . . , g

−1
0 realizes the inverse function

f −1(X).

Proof A reversible gate can be represented by a permutation matrix and a reversible
circuit is the product of the matrices for the gates in the circuit. The result follows
from the fact that the inverse of a product of matrices is the product of the inverses
of the matrices in reverse order. ��

This theorem is in fact simpler for circuits composed of MPMCT gates since
those gates are all self-inverse, so one need only reverse the order of the gates. Peres
gates must be replaced by inverse Peres gates and vice versa.

Given this result, one can synthesize circuits for f (X) and for f −1(X) and use
the better of the two as a realization for f (X) where Theorem 1 is applied if the
circuit found for f −1(X) is used.

3.2 Input-Output Negation

The concept of the dual of a Boolean function is readily extended to reversible
functions as per the following definition:

Definition 8 The dual of a reversible function f (X) is given by f D(X) = f (X),
where f denotes negation of each of the outputs of f and X denotes negation of
each of the variables in X.

We now show how employing f D(X) gives a further option for exploring circuits
to realize f (X) when both positive and negative gate controls are used.

Theorem 2 Given an MPMCT circuit G realizing f D(X), a circuit realizing f (X)

is found by changing all 0 controls to 1 controls and all 1 controls to 0 controls for
each gate in G.

Proof Given an MPMCT circuit for f D(X), add an inverter to each input and to
each output. The result is a circuit realizing f (X) since f (X) = f D(X). Now move
the input inverter from each input across the circuit. As it crosses a control, it inverts
that control, and as it crosses a target or passes over a gate not involving the circuit
line, it does nothing. When it has passed all gates, it cancels with the corresponding
output inverter. So in fact, given an MPMCT circuit G realizing f D(X), a circuit
realizing f (X) is found by simply changing all 0 controls to 1 controls and all 1
controls to 0 controls for each gate in G. ��

Definition 8 and Theorem 2 are a special case of a more general translation as
follows:

Definition 9 Consider an n-tuple α = {α0, α1, . . . , αn−1} where each αi is either
the unary function NOT or the unary identity function. The α-translation of a
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reversible function f (X) is given by f̂ (X) = f̃ (X̃) where f̃ denotes application of
each αi to output fi and X̃ denotes application of each αi to input xi .

Theorem 3 Given an MPMCT circuit G realizing f̂ (X), a circuit realizing f (X)

is found by changing all 0 controls to 1 controls and all 1 controls to 0 controls for
each gate on the lines in G corresponding to those αi that are NOTs.

Proof The proof is essentially the proof for Theorem 2 restricted to the lines for
which αi is NOT. ��

Given a function f with n variables specified as a truth table, the steps to
synthesize a circuit employing Theorem 3 are as follows:

1. Choose an α = {α0, α1, . . . , αn−1}. The dual is the case where all αi are NOT.
2. Form a new function f̂ (X) as given by Definition 9.
3. Use the chosen synthesis method to find a circuit G for f̂ (X) with no MPP or

MPIP gate substitutions.
4. Invert all controls for all gates in G on lines for which αi is NOT.
5. Do any possible MPP and MPIP gate substitutions. The result is a circuit for f .

It is important to note that MPP and MPIP gate substitutions are not performed
when finding a circuit for f̂ (X) since inverting the controls in that circuit does not
properly handle the control polarity associated with the CNOT that was used to form
the MPP or MPIP gate.

3.3 Input-Output Permutation

Definition 10 An input-output permutation is a single permutation σ applied to
both the inputs and outputs of a reversible function f (X) yielding a new function
f̊ = σf (σX). ��

Note that as the same permutation is applied to the inputs and outputs of the
function, if we find a circuit for f̊ (X), it can be mapped to a circuit for f (X) by
simply reordering the lines in the circuit using σ−1. Swap gates are not needed as is
the case in some earlier work where permuting the inputs and outputs are considered
as separate operations.

Combining function inverse, input-output negation, and input-output permu-
tation, there are 2 × 2n × n! translations of a given reversible function. It is
straightforward to translate a circuit for any one of those translations to a circuit
for the original function.
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4 Transformation-Based Synthesis

As noted earlier, we will use transformation-based synthesis as a means to evaluate
the effectiveness of the function translations introduced in the previous section.
For ease of description, we present transformation-based synthesis in terms of the
truth table representation of a reversible function. Note that transformation-based
methods can be implemented using alternate more efficient representations such as
decision diagrams [23, 27].

The procedure Map(y, x) described in Algorithm 1 is taken from [22]. It is
central to all the transformation-based synthesis algorithms described below. Map
identifies a sequence of positive control MCT gates to map the bit pattern y to x

where y > x. The gates are selected so that they have no effect on any bit pattern
z < x.

Algorithm 1 begins by setting the control specification c to have as few 1’s as
possible from y such that c ≥ x. The latter condition is required to be sure the gates
will not affect earlier rows in the truth table. The first for loop generates MCT gates
with controls c with one gate for each variable outside c that has to be flipped to
make y match x. The second for loop then uses x as the control and generates one
gate for each variable in c that has to be made 0 to match x. In both loops, each gate
generated has as its target one of the variables whose value needs to be changed.

Algorithm 1 MCT gate selection to map y to x where y ≥ x

1: procedure MAP(y, x)
2: glist = empty

3: if x ≡ y then
4: return glist

5: end if
6: c = y

7: remove 1 bits from right of c while c ≥ x

8: p = (x ⊕ y)&(∼ c)

9: for each bit position j = 1 in p do
10: g=T(c,j )
11: append g to the end of glist

12: end for
13: q = c&(∼ x)

14: c = x

15: for each bit position j = 1 in q do
16: g=T(c,j )
17: append g to the end of glist

18: end for
19: return glist

20: end procedure
Note: T(c,j ) denotes a Toffoli gate with positive controls corresponding to 1 bits in c and target j

Basic Algorithm [9] Given a truth table representing a reversible function f , the
basic transformation-based synthesis algorithm [9] proceeds through the truth table
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rows in order 0 ≤ i < 2n − 1. At each row i, if f (i) 
= i MCT gates are selected
to map f (i) to i. These gates are chosen such that they do not affect any row j for
j < i, i.e., those that have already been considered. The gates are added to the circuit
being constructed from the output towards the input and the reversible specification
is updated by applying the gates to the output side of the specification. When all
rows 0 ≤ i < 2n − 1 have been considered, the resulting truth table is the identity
function and the gates chosen represent an implementation of the original reversible
function. Note that row 2n −1 does not have to be considered as f (2n −1) = 2n −1
when all previous rows match.

Bidirectional Algorithm [9] The bidirectional transformation-based synthesis is
a straightforward extension of the basic algorithm. For each row i, the gates G0
required to transform the output pattern f (i) to i are determined as in the basic
algorithm. In addition, there must be a row j later in the table where f (j) = i.
MCT gates G1 that transform j to i are determined. The less expensive of G0 and
G1 is determined and those gates are added to the circuit and used to update f .
Note that if G1 is chosen, the gates apply from the input toward the output of the
circuit and are used to update the input side of the specification. The cost of a set
of gates can be simply the MCT gate count or can be based on the quantum cost of
implementing the MCT gates.

Multi-directional Algorithm [22] In the multi-directional algorithm for each row
i every row k, i ≤ k ≤ 2n−1, is considered by mapping both the input and the output
patterns to i thereby potentially adding gates to both the input and the output side
of the circuit. The algorithm chooses the row k where the mapping has the lowest
quantum cost and in the case of a tie the first row k where the mapping results in
a function closest to the identity. To see that this algorithm subsumes the previous
two note that the basic algorithm is simply the case of only considering row i, while
the bidirectional algorithm is the case of only considering two cases: row i and row
j where f (j) = i.

Search Algorithm It is interesting to consider whether searching can improve upon
the above methods. The method given in Algorithm 2 is a simple branch-and-bound
search based on the idea behind the multi-directional algorithm.

Search is a recursive procedure with parameters: f the function under consider-
ation, k the row in the truth table of f under consideration, and glist the circuit (list
of gates) so far. For the initial call to Search, f should be the function to be realized,
k = 0, and glist should be empty. The cost of a circuit can be the number of gates or
its quantum cost as discussed in Sect. 6. The cost of the best circuit found to date is
used to bound the search. BestCircuit and BestCost are globals. Before starting
a search, we use the multi-directional algorithm to find the initial BestCircuit and
BestCost . This is more efficient than setting the initial cost estimate to∞. Note that
the algorithm is presented with some obviously redundant computation for clarity.
The actual implementation is more efficient.

Lines 2–4 skip rows in the truth table of f that are already in identity form, i.e.,
fk = k. Lines 5–8 check if k has reached the end of f which must thus be the
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Algorithm 2 Transformation-based search method
1: procedure SEARCH(f, k, glist)
2: while k < N − 1 and fk = k do
3: k ← k + 1
4: end while
5: if k = 2n − 1 then
6: if cost of glist < BestCost then
7: record glist as BestCircuit and its cost as BestCost

8: end if
9: else
10: for k ≤ j ≤ 2n − 1 do
11: Gin ← map(j, k)

12: Gout ← map(fj , k)

13: apply Gin and Gout to map f to g

14: dist[j ] ← Δ(g)

15: end for
16: min ← minimum value in dist

17: if cost (glist) + min ∗ α0 < BestCost then
18: for k ≤ j ≤ 2n − 1 do
19: if dist[j ] ≤ min ∗ α1 then
20: Gin ← map(j, k)

21: Gout ← map(fj , k)

22: apply Gin and Gout to map f to g

23: Search(g, k + 1,Gin||glist ||reverse(Gout ))
24: end if
25: end for
26: end if
27: end if
28: end procedure

identity and glist is a completed circuit for the original function. If it is less costly
than the best circuit found to date, it is recorded as the best circuit.

Lines 10–16 consider each of the rows j from k through 2n − 1 where n is the
number of function variables. In each case, the input side j and output side fj are
mapped to k and the gates are applied to map f to a resulting function g. Gates in
Gin are applied to the input side of f and gates in Gout are applied to the output
side of f . The idea of trying all j , k ≤ j ≤ 2n − 1, is carried over from the multi-
directional method. For each g, the operator Δ computes the Hamming distance
from g to the identity function which is the sum of the Hamming distances between
r and gr for each row of g. The minimum distance is recorded in min.

Line 17 selects whether to continue based on the formula cost (glist) + min ∗
α0 < BestCost which is estimating the cost of finishing the current circuit based
on its cost to date and the minimum Hamming distance found. The factor α0 is
discussed below.

If line 17 determines continuation, lines 18–25 go back through the rows from k

to 2n − 1. For each, if dist[j ] ≤ min ∗α1, g is computed (the factor α1 is discussed
below) and a recursive call is made to Search with parameters g, k +1 (the next row
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to consider) and the circuit to date which is glist with the gates from Gin prepended
to the front and the gates from Gout reversed and appended to the end. The latter set
of gates are reversed because procedure map generates gates from output towards
the input when considering mapping an output pattern.

The factor α0 controls the weight min is giving in estimating the cost of the final
circuit. By experiment using NCV quantum cost, we have found 1.33 to be a good
value. α1 in line 19 determines how far dist[j ] can be above the minimum for row
j to be considered as a basis for further searching. Again by experiment, we have
determined that α1 = 2 is effective. More experiments with the search procedure
may well lead to a better understanding of the best values for α0 and α1 and their
interaction.

5 Simplifying a Reversible Circuit

We employ the following simplification rules for MPMCT gates developed by
Rahman and Rice [15]. Note that these rules are referred to as templates in [15],
but we choose not to call them that to avoid confusion with other formulations of
templates in the reversible and quantum circuit literature. Note that rule 1 is the
special case of rule 3 with C = φ.

Rahman and Rice Simplification Rules

1. T (xc, xt )T (xc, xt ) = T (xt ) = NOT (xt )

2. T (C, xt )T (C, xt ) = I

3. T (C ∪ xi, xt )T (C ∪ xi, xt ) = T (C, xt )

4. (a) T (C ∪ xi ∪ xj , xt )T (C ∪ xi ∪ xj , xt ) = T (xi, xj )T (C ∪ xj , xt )T (xi, xj )

(b) T (C ∪ xi ∪ xj , xt )T (C ∪ xi ∪ xj , xt ) = T (xi, xj )T (C ∪ xj , xt )T (xi, xj )

5. (a) T (C ∪ xi, xt )T (C ∪ xj , xt ) = T (xi, xj )T (C ∪ xj , xt )T (xi, xj )

(b) T (C ∪ xi, xt )T (C ∪ xj , xt ) = T (xi, xj )T (C ∪ xj , xt )T (xi, xj )

(c) T (C ∪ xi, xt )T (C ∪ xj , xt ) = T (xi, xj )T (C ∪ xj , xt )T (xi, xj )

6. (a) T (C, xt )T (C ∪ xi, xt ) = T (C ∪ xi, xt )

(b) T (C, xt )T (C ∪ xi, xt ) = T (C ∪ xi, xt )

7. (a) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xk)

(b) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xk)

(c) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xt )

(d) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xk)

(e) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xk)

(f) T (C ∪xi ∪xj , xt )T (C ∪xk, xt ) = T (xi ∪xj , xk)T (C ∪xk, xt )T (xi ∪xj , xk)

For each of the above rules, the substitution holds even if the order of the gates
on the left hand side is reversed because they have a common target.

To apply the above simplification rules, we need to be able to determine if two
gates can be moved to be adjacent if they are not already. Since a reversible circuit
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is a cascade of gates, the key operation is to determine if two adjacent gates can
be interchanged since moving gates is in fact a sequence of gate interchanges.
Since our circuits have both positive and negative controls, checking whether two
adjacent gates can be interchanged is more involved then the commonly used so-
called moving rule [9].

Moving Rule for MPMCT Gates
Given two adjacent gates the following checks are applied in order:

1. If the two gates have a common control which is positive for one gate and
negative for the other, the gates can be interchanged.

2. If the target and controls for one gate all serve as controls for the second gate,
in which case the common controls must have equal polarities or (1) would
have applied, the gates can be interchanged with the control for the second gate
corresponding to the target of the first gate having negated polarity.

3. If the target of one gate is a control for the second, the gates cannot be
interchanged, otherwise they can be interchanged.

6 Mapping a Reversible Circuit to a Quantum Circuit

The first step in mapping a reversible circuit to a quantum circuit is to replace each
reversible gate by an implementation of that gate comprised of elementary quantum
gates, NCV gates in this work. A NOT gate is both a reversible and an elementary
quantum gate, so no substitution is required. The same is true for a CNOT with a
positive control.

6.1 Negative Control CNOTs

A CNOT with a negative control is not an elementary quantum gate. Two possible
substitutions are shown in Fig. 2. Substitution (a) has been used in earlier work. Here
we use substitution (b) as only a single NOT needs to be added and it can in fact be
placed on either side of the CNOT giving more flexibility for later simplification.

The situation here is complicated by the use of Theorem 3. If a circuit is being
synthesized with the intent that the polarity for all gate controls will be flipped, then
we want to avoid CNOTs with positive controls. We thus have the notion of a target
CNOT control polarity when doing a circuit simplification.

Our procedure for dealing with a CNOT with incorrect control polarity is
straightforward. The following steps are applied for each CNOT gi with incorrect
polarity control xj .

1. We scan from gi back towards the input to find a NOT (xj ).
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Fig. 2 Mapping a CNOT with a negative control to NCV gates

Fig. 3 NCV realization of Toffoli gates dependant on number and placement of negative controls

2. If none is found, we scan from gi towards the output to find the required
NOT (xj ).

3. If a NOT (xj ) is found, in either direction, it is moved across the circuit towards
gi inverting all controls it crosses until it has crossed over gi .

4. If no NOT (xj ) was found in 1 or 2, a NOT is inserted on the target line of gi

just before gi and the polarity of the control for gi is flipped.

6.2 NCV Realization of MPMCT Gates

For an MPMCT gate with two controls, the quantum implementation depends on
the number and placement of negative controls as shown in Fig. 3. The difference
between (b) and (c) is which of the controls is negative. Note that this only affects
the assignment of V and V † to the first two gates. For two negative controls, a sixth
gate, a NOT, is required on the target line (t) as shown in (d).

Quantum realizations of MPMCT gates have been extensively studied beginning
with the seminal paper by Barenco et al. [1]. To estimate quantum costs during our
synthesis procedures, we use results from [18], which are given in Table 2. Each
entry in the table is the number of elementary NCV quantum operations required to
realize a gate with the associated number of controls.

The first three rows of the table for gates with 0, 1, and 2 controls are costed
as described above. We are using substitution (b) for negative control CNOT gates.
For three or more controls, a decomposition method is given in [18] which basically
expresses a MPMCT gate as a network of gates with fewer controls. It is important
to note that for three or more controls, the cost figures given in Table 2 assume
one ancillary line is available. Reference [18] includes less expensive realizations if
more ancillaries are available.
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Table 2 NCV costs of
MPMCT gates assuming one
ancillary is available if
needed

Negative controls

Controls 0 1 2 3 4 5 6 7 8

0 1

1 1 2

2 5 5 6

3 14 14 16 18

4 20 20 20 22 24

5 32 32 32 34 36 38

6 44 44 44 44 46 48 50

7 64 64 64 64 66 68 70 72

8 76 76 76 76 76 78 80 82 84

6.3 MPP and MPIP Gate Cost and Substitution

Consider Fig. 3 again. The control lines to a two-control MPMCT gate can be
interchanged. Furthermore, since an MPMCT gate is self-inverse, the quantum
circuit realization can be reversed. Now, since each of the circuits in Fig. 3 has a
CNOT between the two MPMCT gate controls, it is clear that that gate will cancel a
CNOT between c1 and c2 that follows it. The same is also true if the CNOT comes
first. This is the basis for substituting the gate pair with an MPP or MPIP gate. One
can see that an MPP or MPIP gate formed from an MPMCT with 0 or 1 negative
controls thus has a cost of 4. If the MPMCT gate has two negative controls, the cost
is 5.

MPP and MPIP gate substitution is straightforward. One need only scan the
circuit to find an appropriate two input MPMCT and CNOT gate pair that can be
moved together using the procedure described above. The two gates are replaced by
a MPP or MPIP gate depending on which side the CNOT lies.

6.4 Overall Simplification and Mapping Strategy

The process applied to simplify a circuit has the following steps:

1. Apply Rahman and Rice MPMCT simplifications.
2. Apply the CNOT correction procedure to deal with any CNOTs that have the

wrong control polarity.
3. Apply Rahman and Rice MPMCT simplifications.
4. If any changes to the circuit were made in 1–3, reverse the circuit and apply 1–3

to the result.
5. After iterating 1–4 until there are no changes, if the circuit is in reverse

orientation, reverse it.
6. If MPP and MPIP gates are to be used, make all possible MPP and MPIP gate

substitutions.



Translations for Reversible Circuit Synthesis with Positive and Negative Controls 157

7 Experimental Results

We have implemented the methods described above in C and run our experiments on
a x64-based PC with an Intel i5 650 processor and 3GB RAM. Tables 3 and 5 show
the results for the 8! = 40,320 3-variable reversible functions for nine scenarios.
The average quantum cost is shown for each scenario as well as the cpu seconds
required.

Two versions of the search method are used. Search A has α0 = α1 = 1 and
Search B has α0 = 1.33 and α1 = 2. Raising the α broadens the scope of the
search, i.e., more potential circuits are considered, but that of course incurs increased
computational cost.

Scenario (a) in Table 3 is presented to serve as a base line. The methods are
applied with no function translations and none of the simplifications discussed in
Sects. 5 and 6 including no use of MPP or MPIP gates. Results are then shown for
(b) adding function inversion, (c) adding circuit simplification, and (d) adding the
use of MPP and MPIP gates.

Table 4 shows the incremental improvements of scenarios (b), (c), and (d)
compared to the base case (a). It is interesting to note that adding the use of the
function inverse, scenario (b), has marginal effect on the search methods whereas
adding the use of MPP and MPIP gates, scenario (d), significantly improves both
search methods.

The scenarios in Table 5 all use the function inverse, circuit simplification, and
MPP and MPIP gates. Scenarios (e), (f), and (g) show the results for adding use of
the dual, input-output negation and input-output permutation separately. Scenarios
(h) and (i) show the results for using the dual with permutation and input-output
negation with permutation. Scenario (i) gives the best results across Tables 3 and 5.

Table 6 shows the improvements offered by each of scenarios (e) to (i) for each
of the synthesis methods. For all methods, scenario (i) using input-output negation
and input-output permutation gives the most improvement. This is not surprising as
that scenario provides the most function translations to explore for each function.
It is interesting that the improvement is not as high for the search methods as for
the other three methods. That is because the search methods already explore an
extensive solution space.

Table 7 is an analysis of scenario (e) in Table 5 and shows the number of functions
for which each method gives the best result among the five synthesis methods.
Search B exhibits the best performance but there are exceptions. Separate analysis
shows that Search A finds a cheaper result than Search B for 5.1% of the functions.
There are even 354 functions for which the Basic method finds the cheapest circuit.
These anomalies are due to the heuristic nature of the five methods. Similar results
are found for analyses of scenarios (f) to (i).

For the Search B method under scenario (e), 45.96% of the best circuits were
found by synthesizing a circuit for f (X), 32.22% by synthesizing a circuit for
f −1(X), 11.71% by synthesizing a circuit for the dual of f (X), and 10.11% by
synthesizing a circuit for the dual of f −1(X). In total, the 40,320 circuits used
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Table 3 Average quantum costs for three variable reversible functions: scenarios (a)–(d)

(a) No inverse (b) Inverse (c) Inverse (d) Inverse simplify
or simplification no simplification simplification MPP MPIP gates

Synthesis method cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s)

Basic 17.87 0.05 15.99 0.08 14.59 0.33 13.50 0.38

Bidirectional 16.55 0.06 15.55 0.09 14.58 0.29 13.28 0.32

Multi-direct. 16.51 0.30 15.35 0.59 14.41 0.77 13.09 0.82

Search A 14.77 4.92 14.51 9.87 13.60 21.55 11.66 12.66

Search B 14.32 34.55 14.25 68.10 13.40 105.42 11.28 43.00

Table 4 Improvements
compared to scenario (a)

Incremental improvement

Synthesis method (b) (c) (d) Total

Basic 10.53% 7.83% 6.10% 24.46%

Bidirectional 6.04% 5.86% 7.85% 19.76%

Multi-direct. 7.03% 5.72% 7.97% 20.71%

Search A 1.76% 6.16% 13.13% 21.06%

Search B 0.49% 5.94% 14.80% 21.23%

Table 5 Average quantum costs for three variable reversible functions: scenarios (e)–(i)

(e) (f) Input-output (g) (h) Dual and (i) Input-output
Synthesis Dual negation Permutation permutation neg. and permutation

methoda cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s)

Basic 13.01 1.14 12.37 4.31 12.04 2.10 11.88 5.76 11.60 26.12

Bidirectional 12.63 1.00 11.97 3.65 11.84 1.76 11.65 4.82 11.31 21.68

Multi-direct. 12.48 1.86 11.85 7.75 11.72 4.78 11.54 10.97 11.21 46.15

Search A 11.49 37.78 11.33 135.16 10.94 74.40 10.90 181.84 10.84 819.35

Search B 11.16 160.04 11.07 648.62 10.76 261.93 10.73 762.61 10.69 3802.06
aFunction inverse, circuit simplification and MPP and MPIP gates used in all scenarios.

Table 6 Improvements compared to scenario (d)

Improvements

Synthesis method (e) (f) (g) (h) (i)

Basic 3.63% 8.39% 10.81% 12.00% 14.07%

Bidirectional 4.89% 9.89% 10.84% 12.27% 14.85%

Multi-direct. 4.66% 9.50% 10.47% 11.84% 14.39%

Search A 1.46% 2.84% 6.17% 6.52% 7.08%

Search B 1.06% 1.86% 4.61% 4.88% 5.23%

14,396 MPP and 13,275 MPIP gates. It is interesting to note that of those 27,671
gates, 33.15% had two positive controls, 10.7% had two negative controls, and
56.16% had one positive and one negative control. This demonstrates the usefulness
of allowing MPP and MPIP gates rather than just Peres and inverse Peres gates.
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Table 7 Best results for scenario (e) in Table 5

Best result Unique best result

Synthesis No. of No. of
method functions % of total functions % of total

Basic 13,968 34.64% 354 0.88%

Bidirectional 17,135 42.50% 122 0.30%

Multi-directional 18,349 45.51% 34 0.08%

Search A 30,082 74.61% 1744 4.33%

Search B 37,678 93.45% 8975 22.26%

Table 8 Search B for scenario (i)—distribution by function translation

Permutation index

Negation 0 1 2 3 4 No perm. Subtotal % of total

No function inversion

No neg. 332 376 726 1913 2870 19,514 25,731 63.82%

1 17 18 20 56 65 137 313 0.78%

2 16 21 21 63 67 153 341 0.85%

3 14 15 17 65 67 223 401 0.99%

4 11 14 24 72 67 224 412 1.02%

5 15 21 26 86 88 355 591 1.47%

6 17 20 31 94 96 441 699 1.73%

Dual 19 22 33 131 135 1083 1423 3.53%

Subtotal 441 507 898 2480 3455 22,130 29,911 74.18%

% of total 1.09% 1.26% 2.23% 6.15% 8.57% 54.89%

With function inversion

No neg. 234 260 368 921 1248 4416 7447 18.47%

1 16 17 19 50 55 112 269 0.67%

2 14 15 19 43 49 115 255 0.63%

3 14 15 17 50 53 184 333 0.83%

4 9 12 19 63 58 174 335 0.83%

5 11 17 17 64 63 245 417 1.03%

6 15 18 25 79 73 284 494 1.23%

Dual 16 19 28 103 93 600 859 2.13%

Subtotal 329 373 512 1373 1692 6130 10,409 25.82%

% of total 0.82% 0.93% 1.27% 3.41% 4.20% 15.20%

Table 8 shows the distribution of the best circuits found for the 40,320 three
variable functions using method Search B for scenario (i) in Table 5.

To place the above results in some context, the authors of [2] considered the
realization of three variable reversible function using mixed-polarity Toffoli gates
and positive polarity Reed-Muller techniques. The best results they report have an
average quantum cost of 13.36 which is better than our base line but higher than our
best results. This illustrates further the advantage of using MPP and MPIP gates and
the circuit simplification results discussed in this chapter.
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Table 9 Selected worst case functions

Synthesis
method costa costb costc code cpu(s) costa costb costc code cpu(s)

3_17 4_49

Basic 15 15 11 P3-I 0.00 80 68 43 P6-N5 0.06

Bidirectional 15 12 11 P3 0.00 101 87 31 P6-N11-I 0.04

Multi-direct. 15 12 11 P3 0.00 69 70 32 P6-N11 0.08

Search A 15 12 11 N3 0.01 55 52 32 P6-N11 3.55

Search B 15 12 11 P4-I 0.06 36 32 28 P17-N11 476.90

Best known cost 10 [28] 32 [28]

hwb4 hwb5

Basic 71 53 32 P22-D 0.05 352 294 199 P119-N3-I 4.24

Bidirectional 64 52 21 P22-I 0.04 323 301 171 P116-N20-I 2.84

Multi-direct. 58 55 21 P22-I 0.07 313 282 172 P115-N3-I 5.35

Search A 49 41 21 P22-I 3.39 280 230 101 P110-N16-I 6909.33

Search B 27 21 20 P20-I 12.97 see note d

Best known cost 19 [8] 71 [8]
aUsing inverse translation, no circuit simplification or MPP/MPIP gates
bUsing inverse translation, circuit simplification and MPP/MPIP gates
cUsing inverse, input-output negation, input-output permutation, circuit simplification and
MPP/MPIP gates
dSearch B for hwb5 is computationally prohibitive

De Vos and Van Rentergem [3] have presented a reversible circuit synthesis
approach using Young-based subgroups. They consider circuits with positive and
negative controls. A difference from the work here is that the control function
for a gate can be any Boolean function not just the conjunction of controls. They
allow CNOT gates with a negative control. They did not use Peres type gates. For
3-variable reversible functions, they report average gate counts of 5.88 for their
Algorithm A, 4.21 for their Algorithm B and 3.73 as the optimal average. When
we apply our methods allowing negative control CNOT gates, using MPP or MPIP
gates and using the dual and choice of a circuit for f or f −1, we find gate averages
of 4.73 (Basic), 4.57 (Bidirectional), 4.50 (Multi-directional), 4.49 (Search A), and
4.50 (Search B). Note that this is a very rough comparison as we are using Peres
type gates and all our gates use a conjunctive control function.

Table 9 shows the results for four functions which have been described as worst
cases for several synthesis methods [28]. They are certainly known to be difficult for
transformation-based synthesis. Note that the results show the cost of the best circuit
when considering the synthesis of f and f −1 and using input-output negation and
input-output permutation. All simplification techniques discussed in Sects. 5 and 6
are applied including the use of MPP and MPIP gates.

In Table 9, the function translation resulting in the best circuit found for each
case is shown in column trans. P-x indicates input-output permutation has been
applied where x denotes the permutation index as defined in [12]. N-x indicates
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Table 10 Search B applied
to hwb5 for four function
translations

Solution Total
Translation cost cpu(s) cpu(s)

Function 120 2538.43 3600.00

Inverse 85 2444.29 2565.57

Dual 144 1503.20 3600.00

Inverse dual 152 614.17 3600.00

Fig. 4 hwb5 circuit found using Search B: 30 gates, quantum cost 85

input-output negation has been applied, after possible permutation, with the 1’s in
the binary expansion of x indicating which input-output positions are negated. D is
used to indicate all input-output pairs are negated, i.e., the dual is used. Lastly, I
indicates the function is inverted following any permutation and negation.

Method Search B is computationally much more expensive than the other
methods. For that reason, applying Search B to hwb5 is omitted in Table 9. Instead,
Table 10 gives the results for applying Search B to hwb5 for four scenarios: the
function, the inverse of the function, the dual of the function, and the dual of the
inverse of the function. For each scenario, a limit of 1 h CPU time was imposed.

The best circuit was found using the inverse function. Interestingly that scenario
did not hit the 1 h time limit which means the full search was completed. The circuit
found using the inverse of hwb_5 is shown in Fig. 4. Note that it uses MPMCT gates
with negative controls as well as an MPP and an MPIP gate. This circuit is far better
than the results reported for hwb_5 in Table 9 but finding it required very lengthy
computation time.

This result is reasonably close to the best circuit found to date, cost 71, which is
listed on Maslov’s benchmark web site [8]. That circuit was posted by the authors
of [26] which presented a variable-length chromosome evolutionary algorithm for
reversible circuit synthesis. The cpu usage required to find the circuit is not reported.
It is interesting that a relatively simplistic transformation-based synthesis approach
can produce so good a circuit especially compared to other techniques (see [8, 28]
for examples of circuits for hwb5).

8 Heuristic Selection of Function Translations

The results presented in the previous section show that the use of input-output nega-
tion and input-output permutation can significantly reduce circuit cost. However it
is clear that searching through all possible translations quickly becomes impractical
as n, the number of variables, increases since there are 2n input-output negations
and n! input-output permutations. The ideal would be able to pick a small number
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Table 11 Selected translation scenarios for 3-variable functions using the basic method

% Impr.
Translations Cost over (a) cpu(s)

1 Inverse (a) 13.50 0.37

2 Inverse, dual 13.04 3.47% 0.98

3 Inverse, HION 12.80 5.23% 1.42

4 Inverse, full I-O negation 12.37 8.41% 4.24

5 Inverse, HIOP 12.52 7.29% 0.73

6 Inverse, all I-O perm. 12.04 10.86% 2.05

7 Inverse, HION, HIOP 12.11 10.32% 2.91

8 Inverse, all I-O neg., all I-O perm. 11.60 14.09% 25.17

of translations to consider based on properties of the function to be synthesized. As
a start toward that goal, we here present two heuristic methods for choosing which
translations to consider.

Heuristic Input-Output Negation (HION) We use the following:

1. No input-output negations applied.
2. All input-output pairs negated, i.e., the dual.
3. The α-translation, see Definition 9, where αi is the identity if xi = 0 and

αi is NOT if xi = 1 in the earliest assignment to (x0, x1, . . . , xn−1) where
the Hamming distance between that assignment and the corresponding output
assignment (x+

0 , x+
1 , . . . , x+

n−1) is minimal where earliest refers to considering
input assignments starting from (0, 0, . . . , 0) in truth table order.

Heuristic Input-Output Permutation (HIOP) We employ two permutations:

1. The inputs and outputs in the order given, i.e., the null permutation.
2. The reverse permutation where the inputs and outputs are in the reverse of the

order given, e.g., x0, x1, x2 is permuted to x2, x1, x0.

Table 11 presents results of applying the basic transformation-based synthesis
method to the 40,320 3-variable reversible functions for a variety of function
translation scenarios. Circuit simplification and MPP and MPIP gates are used in
all cases.

The top row of Table 11 uses only the function inverse translation and is intended
as a baseline for measuring the improvement offered by the other scenarios. The
function inverse translation is employed in all the other scenarios.

Lines 2–4 show the results for using the dual, heuristic input-output negation,
and for comparison using all eight possible input-output negations. Lines 5 and
6 compare using heuristic input-output permutation and all six possible input-
output permutations. Lastly, rows 7 and 8 compare using both heuristic translation
approaches with using all function translations. In all cases, improvement is
measured relative to just using the function inversion translation and shows the
percentage reduction in the circuit quantum cost.
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The results indicate that while our heuristic methods show quite good im-
provement, they, as one would expect for such simple approaches, fall well
short of employing all function translations. Applying the basic synthesis method
and heuristic translation approaches to the worst case function 3_17 reduces the
quantum cost from 15 down to 11 for the function inverse, reverse permutation,
and no input-output negation. However, applying the techniques to the other three
worst case functions offers no improvement over just using only the function inverse
translation. That is simply the nature of those functions but does suggest that the
heuristic techniques described in this section can likely be improved upon.

9 Discussion and Future Work

This chapter has considered a number of aspects of the synthesis and simplification
of reversible circuits with positive and negative controls. The main contributions
are the function translation techniques of input-output negation and input-output
permutation introduced in Sect. 4, the employment of mixed control Peres gates, and
various circuit simplifications discussed in Sects. 5 and 6 which combine well with
Rahnan and Rice’s MPMCT techniques. We plan to investigate whether the circuit
rewriting rules proposed in [21] can improve our circuit simplification procedures.

The experimental results presented in this chapter demonstrate that the input-
output negation and input-output permutation function translations introduced
here have significant potential for improving the synthesis of reversible circuits.
However, the approach of searching all possible translations is clearly limited. We
have suggested some initial heuristic techniques to choose translations to consider
by examining the function to be synthesized. The results show some promise, but it
is very likely that incorporating the choice of function translations into the synthesis
process will be more effective than making a pre-synthesis choice. This is an area
requiring further research.

The transformation-based search method is of potential interest but is truly
a work in progress. More work is needed to determine how best to bound the
search in order to make it computationally feasible. In addition, the authors of
[6, 20] have incorporated Fredkin gates [5], which are controlled swap gates, into
transformation-based synthesis. It would be interesting to see how their approaches
might be incorporated into our work and how Fredkin gates might be extended to
be mixed-polarity multiple control gates.

The work thus far has been limited to considering transformation-based synthesis
methods. It would be very interesting to see how effective the function transla-
tions input-output negation and input-output permutation are when combined or
integrated into other reversible circuit synthesis methods.

This work has shown that mixed polarity Peres and inverse Peres gates can
be quite effective in reducing quantum circuit cost. The approach here has been
to consider the introduction of such gates into a circuit as part of the circuit
simplification process. It would be interesting to consider integration of these gate
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types into the synthesis process itself both for transformation-based and other
synthesis methods.

The comparison of the methods presented in this chapter to the work of De Vos
and Van Rentergem [3], despite the differences in gate types permitted, suggests
there is room for further improvement of our methods.

The quantum cost used in this chapter is based on the NCV gate library. Future
work should consider cost metrics for fault-tolerant quantum circuits using the
Clifford+T quantum gate library [13]. Another area to consider would use Qiskit
or ProjectQ [7] to map an MCMPT circuit into an NISQ compatible circuit and then
count gates after performing optimizations at the quantum gate level.
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