
Rolf Drechsler
Daniel Große Editors

Recent Findings
in Boolean
Techniques
Selected Papers from the
14th International Workshop
on Boolean Problems

Recent Findings in Boolean Techniques

Rolf Drechsler • Daniel Große
Editors

Recent Findings in Boolean
Techniques
Selected Papers from the 14th International
Workshop on Boolean Problems

Editors
Rolf Drechsler
University of Bremen/DFKI
Bremen, Germany

Daniel Große
Johannes Kepler University of Linz
Linz, Austria

ISBN 978-3-030-68070-1 ISBN 978-3-030-68071-8 (eBook)
https://doi.org/10.1007/978-3-030-68071-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-68071-8

Preface

Boolean functions are at the core of computer science and the foundation of today’s
circuits and systems. The International Workshop on Boolean Problems (IWSBP)
is a bi-annually held and a well-established forum to discuss the recent advances on
problems related to Boolean logic and Boolean algebra. In 2020, the 14th edition
of the workshop was held virtually from September 24 to September 25 due to the
worldwide pandemic. The workshop provided a forum for researchers and engineers
from different disciplines to exchange ideas as well as to discuss problems and
solutions. The workshop is devoted to both theoretical discoveries and practical
applications. This edited book contains a selection of best papers presented at the
workshop and one additional paper. The papers in this volume demonstrate new
accomplishments in the theory of Boolean problems. Furthermore, several papers
illustrate how these results find their way into important practical applications.

The first two chapters in the book are contributions that resulted from the
invited keynotes at the workshop. In Chap. 1, Daniela Kaufmann presents Formal
Verification of Integer Multiplier Circuits using Algebraic Reasoning—A Survey.
In Chap. 2, Victor M. van Santen, Florian Klemme, and Hussam Amrouch write
about The Vital Role of Machine Learning in Developing Emerging Technologies.
The following six chapters are extended manuscripts based on the workshop
submissions. In Chap. 3, Bernd Steinbach and Christian Posthoff consider Fast
Optimal Synthesis of Symmetric Index Generation Functions. Felix Weitkämper
targets Axiomatizing Boolean Differentiation in Chap. 4. In Chap. 5, Radomir S.
Stanković, Milena Stanković, Claudio Moraga, and Jaakko Astola investigate bent
functions in Construction of Binary Bent Functions by FFT-Like Permutation
Algorithms. In Chap. 6, Jan Schmidt and Petr Fišer write about Nonlinear Codes for
Test Patterns Compression: The Old School Way. D. Michael Miller and Gerhard W.
Dueck address Translation Techniques for Reversible Circuit Synthesis with Positive
and Negative Controls in Chap. 7. In Chap. 8, Claudio Moraga focuses on Hybrid
Control of Toffoli and Peres Gates. Finally, the book is concluded in Chap. 9 by
Alireza Mahzoon, Daniel Große, and Rolf Drechsler with GenMul: Generating
Architecturally Complex Multipliers to Challenge Formal Verification Tools.

v

vi Preface

We would like to express our thanks to the program committee of the 14th
IWSBP as well as to the organizational team, in particular Alireza Mahzoon,
Lisa Jungmann, and Kristiane Schmitt. Furthermore, we thank all the authors of
contributed chapters who did a great job in submitting their manuscripts of very
high quality. A special thanks goes to the keynote speakers of the workshop,
Dr. Daniela Kaufmann (Johannes Kepler University Linz, Austria) and Junior Pro-
fessor Dr. Hussam Amrouch (University of Stuttgart, Germany). Finally, we would
like to thank Nandhakumar Sundar, Brian Halm, Zoe Kennedy, and Charles Glaser
from Springer. All this would not have been possible without their steady support.

Bremen, Germany Rolf Drechsler

Linz, Austria Daniel Große
December 2020

Contents

Formal Verification of Integer Multiplier Circuits Using
Algebraic Reasoning: A Survey . 1
Daniela Kaufmann

The Vital Role of Machine Learning in Developing Emerging
Technologies . 29
Victor M. van Santen, Florian Klemme, and Hussam Amrouch

Fast Optimal Synthesis of Symmetric Index Generation Functions 59
Bernd Steinbach and Christian Posthoff

Axiomatizing Boolean Differentiation . 83
Felix Weitkämper

Construction of Binary Bent Functions by FFT-Like Permutation
Algorithms . 105
Radomir S. Stanković, Milena Stanković, Claudio Moraga,
and Jaakko Astola

Nonlinear Codes for Test Patterns Compression: The Old School Way . . . 125
Jan Schmidt and Petr Fišer

Translation Techniques for Reversible Circuit Synthesis with
Positive and Negative Controls . 143
D. Michael Miller and Gerhard W. Dueck

Hybrid Control of Toffoli and Peres Gates . 167
Claudio Moraga

GENMUL: Generating Architecturally Complex Multipliers
to Challenge Formal Verification Tools . 177
Alireza Mahzoon, Daniel Große, and Rolf Drechsler

Index . 193

vii

Formal Verification of Integer Multiplier
Circuits Using Algebraic Reasoning: A
Survey

Daniela Kaufmann

1 Introduction

Digital circuits carry out logical operations, which make them an important
component in computers and digital systems, because they represent models for
various digital components and arithmetic operations. The basic function of a digital
circuit is to compute binary digital values for the logical function it implements,
given binary values at the input. The computation is usually realized by logic
gates that represent simple Boolean functions, such as negation (NOT), conjunction
(AND), disjunction (OR), or exclusive disjunction (XOR). These logic gates can be
combined to build more complex logical operations. A subclass of digital circuits
are combinational logic circuits, where the output of the circuit is a function of
the present input only, i.e., the output does not depend on previous input values.
Combinational logic is used in computer circuits to perform Boolean algebra. For
example, the part of an arithmetic logic unit (ALU) in a CPU, which is responsible
for mathematical calculations, is constructed using combinational logic. If a circuit
implements an arithmetic operation, it is called an arithmetic circuit, which can be
further refined to determine specific arithmetic operations such as adder circuits or
multiplier circuits.

Since these circuits are such a crucial part of processors, it is extremely important
to guarantee their correctness in order to prevent issues like the famous Pentium
FDIV bug [49] that was detected in 1994. This bug affected the floating point unit
of early Intel Pentium processors. The division algorithm for floating points used a
lookup table to calculate the intermediate quotients. Due to a programming error,
five entries of the lookup table contained zero instead of +2. Thus the result was

D. Kaufmann (�)
Johannes Kepler University Linz, Linz, Austria
e-mail: daniela.kaufmann@jku.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_1&domain=pdf
mailto:daniela.kaufmann@jku.at
https://doi.org/10.1007/978-3-030-68071-8_1

2 D. Kaufmann

incorrect and in the worst case the error could affect the fourth significant digit of
a decimal number. Even more than 25 years after detecting this bug, automatically
proving the correctness of arithmetic circuits, and especially multiplier circuits, is
still considered to be a challenge.

Formal verification can be used to prove or disprove the correctness of a given
system with respect to a predefined specification. To this end the system is translated
into a mathematical model, and automated decision processes are applied to derive
the desired correctness property. The different formal verification approaches are
distinguished by the mathematical formalism used in the verification process.

Up to now several solving techniques have been developed for multiplier
verification. The first technique that was shown to detect the Pentium bug is based
on binary decision diagrams [10], more precisely on binary moment diagrams
(BMDs) [13] and variants [14], since their size remains linear in the number of
input bits of a multiplier. However, this approach requires structural knowledge of
the multipliers [11, 13]. It is important to determine the order in which BMDs are
built, because it has tremendous influence on the size and thus performance.

A common approach models the problem as a satisfiability (SAT) problem,
where the circuit is translated into a formula in conjunctive normal form (CNF).
A large set of such encodings was submitted to the SAT Competition 2016 [7]. The
results indicated that verifying CNF miters of multipliers needs exponential-sized
resolution proofs [8], which implies exponential run-time of CDCL SAT solvers. For
simple multiplier architectures, this conjecture is neglected in theory in [5], where it
was shown that ring properties do admit polynomial-sized resolution proofs. Recent
work shows that pseudo-Boolean solvers can verify the word-level equivalence of
simple multiplier architectures that consist only of half- and full-adders [32]. This
method is so far not applicable for more complex architectures.

A further approach is based on the usage of theorem provers, such as ACL2 [26].
Theorem provers in combination with SAT are able to certify industrial multipli-
ers [22]. Typically, theorem provers are not fully automated and require domain
knowledge. Recently, progress has been made in the theorem prover ACL2 [52],
which now allows automated verification of a large set of multiplier architectures.
However, the multipliers have to be given as SVL netlists, which rely on the
preservation of hierarchical information of the circuits.

Approaches based on bit-level reverse engineering [45, 50] use arithmetic bit-
level representations, which are extracted from the gate-level netlists. They are able
to verify simple multipliers, but fail to verify non-trivial multipliers. Methods based
on term rewriting [53] require domain knowledge and thus are not fully automated.

The currently most effective technique for automated verification of flattened
multipliers is based on computer algebra, e.g., [16, 24, 40]. In this method, all
gates of the circuit and its specification are represented by polynomials. If the gate
polynomials are ordered according to their topological appearance, they generate
a Gröbner basis [12]. Hence, the question whether a multiplier circuit is correct
can be answered by reducing the specification by the implied Gröbner basis. The
multiplier is correct if and only if the reduction returns zero. The main issue of
the general algebraic approach is that the size of the intermediate reduction results

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 3

increases drastically. Thus, several preprocessing techniques and reduction methods
have been developed in recent years [16, 24, 40], which attempt to overcome this
issue.

Nonetheless, the verification process might not be error-free. Generating and
checking proofs independently increases trust in the results of automated reasoning
tools. Polynomial proofs can be obtained as a by-product of verifying multiplier
circuits [25, 30] and can be checked by independent proof checking tools.

In this chapter, we survey over the current state of the art in verifying integer
multipliers using computer algebra. For verification of Galois field multipliers, we
refer to [33, 34, 58, 59]. In Sect. 2, we introduce the technique of circuit verification
based on algebraic reasoning and present available proof formats. In Sect. 3, we
present recent verification tools and discuss their strategies to overcome the issue
of monomial blow-up in the intermediate reduction results. We show available
benchmark generators in Sect. 4 and conclude with a comprehensive evaluation in
Sect. 5.

2 Circuit Verification Using Computer Algebra

In this section, we introduce multiplier circuits and discuss architectural details.
We present the algebraic concepts that are needed in the technique of automated
circuit verification using computer algebra. Furthermore, we introduce algebraic
proof systems that can be used to validate the correctness of the verification results.

2.1 Multiplier Circuits

A digital circuit implements a logical function and computes binary digital values,
given binary values at the input. The computation of the function is realized by
logic gates, such as NOT, AND, OR, and XOR. The specification of a circuit is
the desired relation between its inputs and outputs. A circuit fulfills a specification
if for all inputs it produces outputs that match this desired relation. The goal of
verification is to formally prove that the circuit fulfills its specification.

In this chapter, we consider gate-level integer multipliers with input bits
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈ {0, 1}.
If the circuit represents multiplication of unsigned integers, the multiplier is correct
if and only if for all possible inputs the specification Un = 0 holds, where:

Un = −
2n−1∑

i=0

2i si +
(

n−1∑

i=0

2iai

)(
n−1∑

i=0

2ibi

)
(1)

4 D. Kaufmann

11011000

123

4

0 1 2 3

2

a[0]

4

b[0]

6

a[1]

8

b[1]

10 1214

1618

20

22

2426

28

s[0]

s[1]

s[2]

s[3]

Fig. 1 Gate-level (left) and AIG (right) representation of a 2-bit multiplier circuit [24]

Example 1 The left side of Fig. 1 shows the gate-level representation of a 2-bit
unsigned integer multiplier. The variables a1, a0, b1, b0 represent the input bits of
the multiplier and s3, s2, s1, s0 are the binary outputs of the multiplier. The word-
level specification of this circuit is−8s3−4s2−2s1−s0+(2b1+b0)(2a1+a0) = 0.

If the circuit represents signed multiplication, we have to take into account that
the integers in the specification Sn are represented using two’s complement.

Sn = −22n−1s2n−1 (2)

+
2n−2∑

i=0

2i si −
(
−2n−1an−1 +

n−2∑

i=0

2iai

)(
−2n−1bn−1 +

n−2∑

i=0

2ibi

)

A common representation of combinational circuits is the encoding as an and-
inverter-graph (AIG) [31]. An AIG is a directed acyclic graph, which consists of
two-input nodes representing logical conjunction. The edges may contain a marking
that indicates logical negation. The AIG representation usually contains more nodes
than the gate-level representation but has an unequivocal syntax and semantics and
is very efficient to manipulate. The right side of Fig. 1 shows the AIG representation
of the gate-level multiplier that is depicted on the left side.

The space and time complexity of a multiplier depends on its architecture.
In general, a multiplier circuit can be divided into three parts [44]. In the first
component, partial product generation (PPG), the partial products aibj for 0 ≤
i < n, 0 ≤ j < n, as contained in the specification, are generated. This can, for
example, be achieved by using simple AND-gates or using a more complex Booth
encoding [44].

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 5

HAFAFAHA

HAFAFAFA

HAFAFAFA

7 6 5 4 3 2 1 0

0001101120213031

02122232

03132333

HAFAFAHA

HAFAFAFA

HAFAFAFA

7 6 5 4 3 2 1 0

000110
02

1120
12

21302231

031323
32

33

Fig. 2 Architecture of array multipliers (left) and diagonal multipliers (right) [24]

In the second component, partial product accumulation (PPA), the partial
products are reduced to two layers by multi-operand addition using half-adders
(HA), full-adders (FA), and compressors. Well-known accumulation structures
are, for example, array or diagonal accumulation, Wallace trees, or compressor
trees [44].

In the final-stage adder (FSA), the output of the circuit is computed using an
adder circuit. Generally, adder circuits can be split into two groups: either the carries
are computed alongside the sum bits or they are calculated before the sums. Adders
of the first group consist of a sequence of half- and full-adders, giving them a simple
but inefficient structure. Examples are ripple-carry or carry-select adders. In order
to decrease the latency of carry computation, the adder circuits of the second group
precompute the carry bits of the adder. They are called generate-and-propagate
(GP) adders. Examples are carry look-ahead adders and Kogge-Stone adders [44].

We call multipliers, that can be fully decomposed into half- and full-adders
simple multipliers, all other architectures are called complex multipliers.

Example 2 We show two simple multiplier architectures with input bit-width 4 in
Fig. 2. In both circuits, the PPG uses AND-gates, i.e., pij = ai ∧ bj . In array
multipliers, which are shown on the left side, the partial products are accumulated
using a grid-like structure. The multiplier on the right side uses a diagonal structure.
In both multipliers, the FSA is a ripple-carry adder, which is highlighted in red.

2.2 Algebra

Let us now briefly summarize algebraic concepts, following [18]. Throughout this
section, let K[X] = K[x1, . . . , xn] denote the ring of polynomials in variables
x1, . . . , xn with coefficients in a field K.

Definition 1 A term τ is a product of the form τ = x
e1
1 · · · xen

n for e1, . . . , en ∈ N.
A monomial m = ατ is a constant multiple of a term, with α ∈ K. A polynomial
p = m1 + · · · +ms is a finite sum of monomials.

6 D. Kaufmann

On the set of terms, an order ≤ is fixed such that for all terms τ, σ1, σ2 we have
1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. A term order is called a lexicographic term
order if for all terms σ1 = x

u1
1 · · · xun

n , σ2 = x
v1
1 · · · xvn

n we have σ1 < σ2 if and only
if there exists an index i with uj = vj for all j < i, and ui < vi . Every polynomial
p �= 0 contains only finitely many terms, the largest of which (with respect to the
chosen order ≤) is called the leading term and denoted by lt(p). If p = ατ + · · ·
and lt(p) = τ , then lc(p) = α is called the leading coefficient and lm(p) = ατ is
called the leading monomial of p. We call p − ατ the tail of p.

Definition 2 A nonempty set I ⊆ K[X] is called an ideal if ∀ p, q ∈ I : p + q ∈
I and ∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I . If I ⊆ K[X] is an ideal, then a set
P = {p1, . . . , pm} ⊆ K[X] is called a basis of I if I = {q1p1 + · · · + qmpm |
q1, . . . , qm ∈ K[X]}. We say I is generated by P and write I = 〈P 〉.

The theory of Gröbner bases offers a decision procedure for the so-called ideal
membership problem, i.e., given q ∈ K[X] and a basis P = {p1, . . . , pm} ⊆ K[X],
decide whether q belongs to the ideal generated by p1, . . . , pm. If {p1, . . . , pm} is
a Gröbner basis, then the question can be answered using a multivariate version of
polynomial division with remainder (cf. Thm. 3 in Chap. 2 §3 of [18]).

Definition 3 A basis P = {p1, . . . , pm} of an ideal I ⊆ K[X] is called a Gröbner
basis (with respect to a fixed order ≤) if and only if ∀q ∈ I∃pi ∈ P : lm(pi) |
lm(q).

Lemma 1 Every ideal I ⊆ K[X] has a Gröbner basis with respect to a fixed
order ≤.
Proof Cor. 6 in Chap. 2 §5 of [18]. �

Given an arbitrary basis of an ideal, Buchberger’s algorithm [12] is able to
compute a Gröbner basis for it in finitely many steps.

Lemma 2 If P = {p1, . . . , pm} is a Gröbner basis, then every f ∈ K[X] has a
unique remainder r with respect to P . Furthermore, it holds that f − r ∈ 〈P 〉.
Proof Prop. 1 in Chap. 2 §6 of [18]. �

Ultimately the following Lemma provides the answer on how we can solve
the ideal membership problem with the help of Gröbner basis and thus can check
whether a polynomial belongs to an ideal or not.

Lemma 3 Let P = {p1, . . . , pm} ⊆ K[X] be a Gröbner basis, and let f ∈ K[X].
Then f is contained in the ideal I = 〈P 〉 if and only if the remainder of f with
respect to P is zero.

Proof Cor. 2 in Chap. 2 §6 of [18]. �

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 7

2.3 Circuit Verification Using Computer Algebra

In this section we introduce the technique of circuit verification using computer
algebra, following [27]. We consider circuits C with inputs a0, . . . , an−1 and
b0, . . . , bn−1, outputs s0, . . . , s2n−1, and a number of logical gates, denoted by
g1, . . . , gk . By R we denote the ring K[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0,

. . . , s2n−1] = K[X].
The semantics of each circuit gate implies a polynomial relation among the input

and output variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v

u = v ∧ w implies 0 = −u+ vw

u = v ∨ w implies 0 = −u+ v + w − vw

u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(3)

We call these polynomials gate polynomials or gate constraints. Let G(C) ⊆ R

denote the set of polynomials, which contains for each gate of the given circuit the
corresponding polynomial of (3).

Example 3 The possible solutions for the gate constraint p00 = a0∧b0 represented
as (p00, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which are all solutions of
the polynomial−p00+a0b0 = 0, when a0, b0 are restricted to the Boolean domain.

All variables x ∈ X are Boolean and we enforce this property by assuming the
set B(X) = {x(1− x) | x ∈ X} ⊆ R of Boolean value constraints.

Since the logical gates are functional, the values of g1, . . . , gk, s0, . . . , s2n−1 in a
circuit are determined as soon as the inputs a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are
fixed. This motivates the following definition of polynomial circuit constraints [27].

Definition 4 Let C be a circuit. A polynomial p ∈ R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and the resulting values g1, . . . , gk, s0, . . . , s2n−1 which are implied by the gates of
the circuit C, the substitution of all these values into the polynomial p gives zero.
The set of all PCCs for C is denoted by I (C).

It is easy to see that I (C) is an ideal of R. Since it contains all PCCs, this ideal
includes all relations that hold among the values at the different points in the circuit.
The circuit fulfills a certain specification L if and only if the polynomial relation
corresponding to the specification of the circuit is contained in the ideal I (C).

Thus, checking whether a given circuit C is a correct multiplier reduces to an
ideal membership test. Definition 4 does not provide any information of a basis
of I (C), hence Gröbner basis technology is not directly applicable. However, we
can deduce at least some elements of I (C) from the semantics of circuit gates.

8 D. Kaufmann

Definition 5 Let C be a circuit and assume G(C) ⊆ R be the set which contains
for each gate of C the corresponding polynomial of (3).

Let B0(G) = B({a0, . . . , an−1, b0, . . . , bn−1}) and J (C) = 〈G(C) ∪ B0(G)〉 ⊂
R.

Assume that we have a verifier which checks for a given circuit C and a given
specification polynomial L ∈ R whether it holds that L ∈ J (C). Because it holds
that J (C) = I (C) [27], such a verifier is sound and complete.

Theorem 1 Let C be a circuit, and let J (C) be as in Definition 5. Furthermore, let
≤ be a reverse topological lexicographic term order where the variables are ordered
such that the variable of a gate output is always greater than the variables attached
to the input edges of that gate. Then G(C) ∪ B0(G) is a Gröbner basis for J (C)

with respect to the ordering ≤.
Proof This theorem is shown for instance in [27, 34, 54].

Hence G(C) ∪ B0(G) is a Gröbner basis for the ideal J (C) and we can decide
membership using Gröbner bases theory, i.e., we reduce the specification L by
elements of G(C) ∪ B0(G) until no further reduction is possible. The circuit is
correct if and only if the final remainder is zero.

In this section we restricted the theory to polynomial rings over a field K.
A generalization for polynomial rings over principal ideal domains (such as Z)
can be found in [28], where it is furthermore discussed how to invoke modular
reasoning, i.e., reasoning in rings R = Zl[X]. Modular reasoning allows to
eliminate monomials that have large coefficients.

As a final remark, in the case when a polynomial g is not contained in an ideal
I = 〈P 〉, i.e., the remainder of dividing g by P is not zero and allows to determine a
concrete choice of input assignments for which g does not vanish. In our application
of multiplier verification, these evaluations provide counter-examples, in case a
circuit is determined not to be a multiplier.

2.4 Algebraic Proof Systems

Although the verification method is sound and complete, it may happen that the
implementation contains errors and the reasoning engine delivers wrong results.
One way to overcome this issue is to verify the implementation, e.g., [52], which
is typically very tedious and requires a lot of effort. Thus, it is common to produce
proof certificates in the reasoning engine to monitor the verification process. These
proofs are generated as by-product of the reasoning technique and are given to
independent (and ideally verified) proof checkers to validate the verification result.

For computer algebra, two algebraic proof systems are used in practice, the
practical algebraic calculus (PAC) [46], which is based on the polynomial calculus
(PC) [17], and the Nullstellensatz proof format (NSS) [4].

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 9

Practical Algebraic Calculus The practical algebraic calculus [46] is an instanti-
ated version of PC [17] which allows efficient proof checking. A PAC proof consists
of three components (i) the given set of polynomials G, i.e., the constraint set, (ii)
the core proof, i.e., a sequence of proof rules P that model the properties of an ideal,
and (iii) the target polynomial f . In a correct proof, it is derived whether the target
polynomial can be derived from the constraint set using the proof rules.

Initially the proof format has been defined for polynomial rings K[X], where K

is a field [17, 46] and all variables represent Boolean values.
The soundness and completeness arguments have been generalized to rings

R[X], where all polynomials in the constraint set have unique leading terms that
contain only a single variable, cf. Thm. 1 and Thm. 2 in [28]. Recently, the PAC
format has been revised to derive a more compact proof representation [30].

Let P be a sequence of polynomials that can be accessed via indices. We write
P(i) = ⊥ to denote that the sequence P at index i does not contain a polynomial,
and P(i �→ p) to determine that P at index i is set to p. The initial state is (X =
Var (G ∪ {f }), P) where P maps indices to polynomials of G.

[ADD (i, j, k, p)] (X, P) �⇒ (X, P (i �→ p))

where P(j) �= ⊥, P(k) �= ⊥, P(i) = ⊥, p ∈ R[X]/〈B(X)〉, and p = P(j) +
P(k).

[MULT (i, j, q, p)] (X, P) �⇒ (X, P (i �→ p))

where P(j) �= ⊥, P(i) = ⊥, p, q ∈ R[X]/〈B(X)〉, and p = q · P(j).

PAC proofs that are defined over Z[X] can be checked by the checkers PACHECK

(implemented in C) [30] and PASTÈQUE (verified in Isabelle/HOL) [30].

Nullstellensatz The Nullstellensatz proof system [4] allows to derive whether a
target polynomial f ∈ R[X] can be represented as a linear combination from a given
set of polynomials G = {g1, . . . , gl} ⊆ R[X] and the Boolean value constraints
B(X). Similar to PAC, the NSS proof system is initially defined for polynomial
rings over fields [4]. By the same arguments given for PAC, the soundness and
completeness arguments can be generalized for rings R[X] where all polynomials
in G have unique leading terms that contain only one variable [25].

Again, we handle the Boolean value constraints implicitly and derive the
following proof format. For a polynomial f ∈ R[X]/〈B(X)〉 and a given set of
polynomials G = {g1, . . . , gl} ⊆ R[X]/〈B(X)〉, an NSS proof is an equality P ,
such that

l∑

i=1

higi = f ∈ R[X]/〈B(X)〉, (4)

with hi ∈ R[X]/〈B(X)〉.
Nullstellensatz proofs over Z[X] can be checked using NUSS-CHECKER [25].

10 D. Kaufmann

3 Verification Tools

In this section we present reasoning tools for verification of flattened gate-level
integer multipliers using computer algebra. We focus on the most recent work
that has been developed in the last 3 years and consider the tools from Yu
et al.: ABC/ARTI [16, 60]; Kaufmann et al.: AMULET [28]; and Mahzoon et
al.: POLYCLEANER [38], REVSCA/REVSCA-2.0 [40], DYPOSUB [42] (sorted
chronologically).

We discuss the scope of application of these tools and present their techniques
that help to overcome the issue of monomial blow-up during reduction. All these
tools are considered in the experimental evaluation in Sect. 5.

3.1 Algebraic RewriTing in ABC [15, 16, 57, 60]

The authors of [15, 57] use a method called function extraction to verify circuits.
Function extraction is a similar algebraic approach to Gröbner basis reduction
as presented in Sect. 2. The difference to Gröbner basis reduction is that it
is not required to provide the complete specification polynomial of the circuit
for reduction. Instead the word-level output of the circuit, i.e., the bit-vector∑2n−1

i=0 2i si for unsigned numbers resp. −22n−1s2n−1 + ∑2n−2
i=0 2i si for signed

number representation, is reduced by the gate constraints of the given circuit.
The Boolean value constraints are reduced implicitly, i.e., every exponent greater
than one is immediately reduced to one. This method returns a unique polynomial
representation of the functionality of the circuit in terms of the circuit inputs. In
order to verify correctness of a circuit, this remainder polynomial needs to be
compared to the desired circuit functionality.

In follow-up works [16, 60], the authors introduced an optimization, where half-
and full-adders are extracted by identifying subcircuits in the given circuit that repre-
sent MAJ3 and XOR3 gates. These XOR3 and MAJ3 gates are essential components
of adder trees that are present in most arithmetic circuits. The polynomial constraints
of all circuit gates that belong to a MAJ3 or XOR3 gate are replaced by a single
polynomial that encodes a MAJ3 or XOR3 gate in order to simplify the polynomial
representation of the circuit. These polynomials are sorted topologically pairwise.

The authors developed a framework called ARTI (Algebraic RewriTing) [56]
that is integrated within the ABC tool [6]. Verification of multipliers that are given
as AIGs is executed using the command &polyn, which can be configured to define
whether signed or unsigned multiplication is considered. The extraction of the adder
trees is invoked by the command &atree [16, 60].

This technique is able to handle very large multipliers that can be fully decom-
posed into half- and full-adders (for instance, the array and diagonal multipliers of
Fig. 2) efficiently, but fails on slightly optimized multiplier architectures, because
invoking the command &atree on these multipliers leads to incompleteness. In

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 11

the experimental evaluation, we use &atree only for those benchmarks where we
know that the circuit can be represented by adder trees, i.e., the experiments of
Sect. 5.5.

3.2 AMULET [28]

In [28], it is presented how the verification approach can be generalized to
polynomial rings that include modular reasoning, i.e., Zl[X] for l = 22n. This allows
to cancel monomials in the intermediate results with coefficients that are multiples
of 22n.

The technique of [28] uses an incremental verification algorithm for circuit
verification. In this method, the multiplier circuit is divided into column-wise slices
and the specification polynomial is split into multiple polynomials. The correctness
of the circuit is shown by incrementally verifying the correctness of each slice.
The main advantage of this approach is that only one small part of the global
specification is used for reduction, which helps to reduce the size of the intermediate
results.

Furthermore, variable elimination is applied before reduction, i.e., after assigning
the gates to slices, all variables that occur in only one other polynomial within the
same slice are eliminated. Structures that implement a Booth encoding are detected
by pattern matching, and their internal gates are eliminated too.

After variable elimination, the column-wise specifications are reduced by the
rewritten Gröbner basis until completion. However, certain parts of the multiplier,
more precisely particular final stage adders, are hard to verify using computer
algebra. These adders usually contain sequences of OR-gates, which lead to an
exponential blow-up of the intermediate reduction results. On the other hand,
equivalence checking of adders is easy for SAT [29].

We will take a quick excursion and introduce the SAT problem following [19]:

• A literal l is either a positive Boolean variable x or its negation x.
• A clause C is a finite disjunction of literals.
• A formula in conjunctive normal form (CNF) F is a finite conjunction of clauses.
• An assignment τ is a function that consistently maps the literals of F to v ∈ {t, f},

such that τ(x) = v ⇔ τ(x) = ¬v, where ¬t = f and ¬f = t.
• A formula evaluates to t if and only if every clause in the formula evaluates to t. A

clause C evaluates to t if ∃l ∈ C with τ(l) = t. Given a CNF formula F , the SAT
problem is to decide if there exists an assignment such that F evaluates to t. If
such an assignment exists, the formula is satisfiable, otherwise it is unsatisfiable.

Based on the observation, the technique of [28] combines SAT and computer
algebra. It is detected whether a multiplier contains a complex final stage adder,
which is then replaced by a simple ripple-carry adder. A bit-level miter, which is
expected to be unsatisfiable, is produced to verify the correctness of the replacement

12 D. Kaufmann

using SAT solvers, and the rewritten multiplier is verified by computer algebra
techniques.

The authors implemented a tool called AMULET [28] that is able to handle
signed and unsigned multipliers given as AIGs. The tool automatically applies
adder substitution and verifies the (rewritten) multiplier using computer algebra.
Furthermore, AMULET is so far the only tool that is able to produce proof
certificates in the PAC and NSS proof formats, cf. Sect. 2.4. In the experiments
of this chapter, we will use the maintained version AMULET 1.5 that is currently
available on GitHub [23].

3.3 POLYCLEANER [38]

The work of [38] provides an extensive analysis why the number of monomials in
the reduction results increases drastically, when no preprocessing is applied. The
reason of the size explosion are certain monomials, called vanishing monomials,
that reduce to zero later in the reduction process. The authors observe that the
vanishing monomials origin from gates where the sum and carry output of a half-
adder converge and the vanishing monomials remain in the intermediate reduction
results until all internal gate polynomials of the half-adders have been substituted.

The work of [38] proposes a method where the converging gates are identified,
and the vanishing monomials are locally removed before the specification is
reduced. First, for each occurring half-adder in the circuit, possible converging
gates are identified and the belonging input cones are determined. A polynomial
is extracted for each converging gate by substituting the gate polynomials of the
associated cone. Since the extracted polynomial contains the product of the sum and
carry output of the corresponding half-adder, it contains the vanishing monomials.
After locally removing these vanishing monomials, the specification polynomial is
reduced by these vanishing-free polynomials to verify the circuit.

This method is implemented in the tool POLYCLEANER [37] that is able to verify
unsigned multipliers that are given as flattened Verilog modules.

3.4 REVSCA/REVSCA-2.0 [40]

The paper [40] is a follow-up work on [38]. The authors elaborate on the disadvan-
tages of the proposed method of [38]. First, the method of [38] highly depends on
the detection of the half-adders that are considered to be implemented as pairs of
XOR and AND gates. The second disadvantage is that the search space for finding
the converging gates is very large. Consequently, the method of [38] only works for
those multipliers where all half-adders can be detected and fails for more complex
multiplier circuits.

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 13

In [40] the authors generalize the detection of converging gates and propose
a technique that identifies so-called atomic blocks of the multiplier, i.e., half-
adders, full-adders, and compressors, using reverse engineering. The detection of
converging gates becomes more independent of the actual design of the atomic
blocks and the search space to identify these gates can be limited. Furthermore, since
not only half-adders are considered as atomic blocks, vanishing-free polynomials
are not only generated for converging gate cones, but also for the outputs of atomic
blocks and lead to a more compact polynomial representation.

The authors implemented a tool called REVSCA [39] that verifies unsigned
multipliers given as AIGs. The implementation has been improved and additionally
verification of signed multipliers is supported in REVSCA-2.0 [39].

3.5 DYPOSUB [42]

In contrast to the already described methods, the technique of [42], a follow-up work
of [40], explicitly tries to tackle the problem of verifying multiplier circuits, where
logic synthesis and technology mapping are applied.

The problem with these optimized multipliers is that the clear boundaries
of certain substructures, such as internal half- and full-adders, may be blurred.
Consequently, the compact representation of these internal substructures are no
longer available. For example, the discussed methods of Sects. 3.1 and 3.2 heavily
rely on these boundaries, either during rewriting or defining the substitution order.

The method described in [42] tries to overcome this issue by using a dynamic
substitution order that allows to keep the size of the intermediate reduction results
on a moderate level. Before reduction is applied, the circuit gates are preprocessed
as described in [40], where atomic blocks and converging gate cones are identified
and vanishing-free polynomials are extracted for these cones and atomic blocks.

After preprocessing, a dynamic backward rewriting approach is applied to
verify the circuit. The core idea is that for each substitution step, a number of
candidate polynomials is available, which maintains the overall topological sorting
and guarantees that the polynomials of atomic blocks are substituted consecutively.
This ensures that the gate polynomials only need to be considered once during
reduction.

At each backward rewriting step, there may be several such possible candidates
available. The dynamic backward rewriting chooses the reduction candidate by
the number of the occurrences of the leading term in the intermediate reduction
result in ascending order. After each substitution step, the increase in the number
of monomials is checked. If the number of monomials grows by more than 10%,
the step is undone and the specification is reduced by the next candidate polynomial
in line. If there is no reduction of any candidate satisfying the threshold limit, the
threshold limit is increased and the process is repeated from the first candidate.

This approach is implemented in the tool DYPOSUB [41] that verifies unsigned
multipliers given as AIGs. The experimental data of [42] shows that this technique

14 D. Kaufmann

is able to verify industrial benchmarks created by Synopsis. Unfortunately, these
benchmarks are not open source and are not considered in Sect. 5.

4 Benchmark Generators

The evaluation of tools heavily relies on reproducible experiments and thus on
publicly available benchmarks that allow to evaluate and compare the performance
of the verification tools. In this section, we present the currently most common
used benchmarks suites, discuss how these benchmarks are processed to AIGs (cf.
Sect. 4.6), and how they can be optimized using technology mapping in Sect. 4.7.
An experimental evaluation of these benchmarks will be given in Sect. 5.

4.1 ARITHMETIC MODULE GENERATOR

To the best of our knowledge, the web-based tool ARITHMETIC MODULE GEN-
ERATOR [20, 21] offers the most comprehensive benchmark suite. The following
components can be combined to gain 192 different multipliers, given as Verilog
modules:

Part. Product Gen. Part. Product Accum. Final-Stage adder

Booth radix-4 Array Block carry look-ahead

Simple (AND gates) Balanced delay tree Brent-Kung

Dadda tree Carry look-ahead

Overturned-stairs tree Carry select

Red. binary addition tree Carry-skip fix size

Wallace tree Carry-skip variable size

(4;2) compressor tree Conditional sum

(7,3) counter tree Han-Carlson

Kogge-Stone

Ladner-Fischer

Ripple carry

Ripple-block carry look-ahead

All architectures can be generated for unsigned and signed number repre-
sentation, thus yielding a total of 384 multiplier architectures. The multipliers
can be generated up to input bit-width 64. In addition to integer multipliers,
the ARITHMETIC MODULE GENERATOR also allows the generation of two- and
multioperand adders and multiply accumulators as well as Mastrovito and Massey-
Omura parallel multipliers.

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 15

4.2 GENMUL

The tool GENMUL is either available as a web-based [35] or as a stand-alone
tool [36] and allows to generate unsigned and signed multiplier circuits in Verilog.
The following components can be combined to gain 24 architectures:

Part. Product Gen. Part. Product Accum. Final-Stage adder

Simple (AND gates) Array Brent-Kung

Counter-based Wallace tree Carry look-ahead

Dadda tree Carry-skip

Wallace tree Kogge-Stone

Ladner-Fischer

Ripple carry

For signed multiplication, only 23 architectures are available, as the combination
“Simple–Array–Carry-skip” yields an error message. The input bit-width can be
set arbitrarily large; However, for input bit-widths that are larger than 128, the
generation process may run for several minutes.

4.3 MULTGEN

MULTGEN is a stand-alone tool [51] and the following components can be combined
to gain 24 architectures in Verilog:

Part. Product Gen. Part. Product Accum. Final-Stage adder

Booth radix-2 Dadda tree Han-Carlson

Booth radix-4 Wallace tree Kogge-Stone

Simple (AND gates) Ladner-Fischer

Ripple carry

All multipliers can be generated for signed and unsigned multiplication and the
input bit-width can be selected arbitrarily large. In addition, MULTGEN is not only
able to generate stand-alone multipliers, but is also able to merge four smaller stand-
alone multipliers to receive a bigger multiplier. Furthermore, MULTGEN provides
access to a fused multiply-add operation and to a generator for the dot product.

16 D. Kaufmann

4.4 EPFL Combinational Benchmark Suite

The EPFL Combinational Benchmark Suite [1–3] has been introduced with the
aim of defining a comparative standard for logic optimization and synthesis.
The benchmark suite encomparates 23 combinational circuits and is divided into
arithmetic, random/control, and MtM (“More than ten Million gates”) parts. The
arithmetic benchmarks cover a variety of arithmetic operations, such as square-
root computation, division, and multiplication. The arithmetic benchmarks come
in different bit-widths to provide diversity in the implementation complexity; the
contained multiplier circuit has an input bit-width of 64. Each circuit is distributed
in Verilog, VHDL, BLIF, and AIG formats.

4.5 ABC/BOOLECTOR

Both tools ABC [6] and BOOLECTOR [43] provide access to a simple array
multiplier that leads to structural equivalent AIGs. The only difference is that
the inputs are sorted in sequence in ABC, whereas they are sorted interleaved in
BOOLECTOR.

A multiplier is generated in ABC using the command gen with option -m, which
receives the input bit-width n as parameter -N. The command gen furthermore
allows the generation of a ripple-carry adder, sorter, mesh, or a random single-output
function. The BLIF format is converted into an AIG by structural hashing (using the
command strash of ABC).

abc -c "gen -N $n -m abc${n}.blif"
abc -c "read abc${n}.blif" -c strash -c "write

abc${n}.aig"

If we generate multipliers using the SMT-solver BOOLECTOR, we have to
provide an SMT encoding of the multiplier circuit (with input bit-width n). The
SMT encoding is then processed by BOOLECTOR to generate the AIG circuit:

m=‘expr 2 * $n‘
btor=btor${n}.btor
echo "1 var $n a" >> $btor
echo "2 var $n b" >> $btor
echo "3 uext $m 1 $n" >> $btor
echo "4 uext $m 2 $n" >> $btor
echo "5 mul $m 3 4" >> $btor
id=6
i=0
while [$i -lt $m]
do

slice=$id
echo "$id slice 1 5 $i $i" >> $btor

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 17

id=‘expr $id + 1‘
echo "$id root 1 $slice" >> $btor
id=‘expr $id + 2‘
i=‘expr $i + 1‘

done

boolector $btor -rwl=1 -dai > btor${n}.aig

4.6 Processing Verilog Benchmarks

The available benchmark generators MULTGEN, GENMUL, and the ARITHMETIC

MODULE GENERATOR output circuits in Verilog. Most of the verification tools rely
on an AIG as input format, because AIGs are easy to handle and have an unequivocal
syntax and semantics. Thus, after generating the multipliers, the Verilog format
needs to be processed to gain the AIG representation. We use the YOSYS OPEN

SYNTHESIS SUITE [55] to convert the circuits from Verilog to BLIF. The command,
which can be seen below, has been thankfully explained to us by Mathias Soeken.

First, the design hierarchy is checked, which is then flattened and a generic
technology mapper is applied, to replace cells in the design. The output is printed in
the BLIF format, which is translated to an AIG using structural hashing in ABC:

yosys -p "hierarchy -auto-top -check"
-p flatten -p techmap -o <output.blif> <input.v>

abc -c "read <output.blif>" -c strash -c "write
<output.aig>"

4.7 Optimizing Benchmarks

The multipliers that are generated using the tools presented in Sects. 4.1–4.5 follow
a general structure, where the boundaries of internal structures, such as half- and
full-adders, can be identified. In industrial benchmarks, these circuits are optimized
to reduce the number of gates and to reduce the delay of the circuits. As already
mentioned in Sect. 3.5, these benchmarks are often not publicly available.

As a compromise, we can optimize the generated circuits, e.g., in ABC, and apply
rewriting and technology mapping. Optimizing the benchmarks has been thankfully
explained to us by Maciej Ciesielski.

Rewriting without technology mapping is applied as follows:

abc -c "read <input.aig>"
-c <syn>
-c "write <output.aig>"

18 D. Kaufmann

where <syn> is for instance replaced by dc2, resyn, resyn2, or resyn3, or
even a combination of them.

The option dc2 applies combinational AIG optimization. The options resyn,
resyn2, and resyn3 are standard scripts that are included in the file “abc.rc” of
the source code of ABC. In these scripts, multiple rounds of technology-independent
rewriting, refactoring, and restructuring of the AIG are performed.

If technology mapping should be involved, a standard cell library needs to be
provided, e.g., "mcnc.genlib" of SIS [48] that is available at [47]. The cell library
is parsed, and technology mapping can be applied by the command map. Structural
hashing is applied before the output is printed:

abc -c "read <input.aig>"
-c <syn>
-c "read <genlib>"
-c "map"
-c strash
-c "write <output.aig>"

5 Evaluation

In this chapter, we evaluate the presented tools ABC, AMULET 1.5, DYPOSUB,
POLYCLEANER, REVSCA/REVSCA-2.0 of Sect. 3 using the benchmarks we have
presented in Sect. 4. In our experiments, we use an Intel Xeon E5-2620 v4 CPU at
2.10 GHz (turbo-mode disabled) with a memory limit of 128 GB.

We measure the time from starting a tool until it is finished and the time is listed
in rounded seconds (wall-clock time). For a run of AMULET 1.5, where several tool
applications are used in the verification flow, we measure the time AMULET needs
to apply adder substitution and circuit verification and include the time the SAT
solver KISSAT [9] needs to verify the equivalence of the adders.

5.1 ARITHMETIC MODULE GENERATOR

In our first experiment, we consider the 384 unsigned and signed 64-bit multipliers
that are generated using ARITHMETIC MODULE GENERATOR [20]. We process the
Verilog format to AIG as discussed in Sect. 4.7. The tool POLYCLEANER reads
flattened Verilog modules. We flatten the circuit in YOSYS, using the presented
command in Sect. 4.7. We write the design to a Verilog file by exchanging the suffix
“.blif” to “.v”, i.e., we write the circuit to <output.v>.

We set the time limit in the experiments to 300 s. The results can be seen in the
CDF-plots that are shown in Fig. 3.

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 19

Fig. 3 Verification time (in sec) of unsigned (left) and signed (right) multipliers that are generated
using the ARITHMETIC MODULE GENERATOR. Time limit: 300 s

All presented tools can be applied for verification of unsigned multipliers.
However, only ABC, AMULET 1.5, and REVSCA-2.0 support verification of signed
multipliers. These are the only tools used in the right part of Fig. 3.

It can be seen that AMULET 1.5, DYPOSUB, and REVSCA-2.0 solve the
most benchmarks. More precisely, AMULET 1.5 solves 170 unsigned instances,
DYPOSUB and REVSCA-2.0 solve 165 unsigned benchmarks. In both experiments,
AMULET 1.5 is the fastest tool by an order of magnitude.

As discussed in Sect. 3.1, we do not apply the optimization &atree, which
has the effect that ABC produces an internal error or a segmentation fault for all
benchmarks. Thus there are no results for ABC. The tool POLYCLEANER exceeds
the time limit in all experiments in the left side of Fig. 3.

5.2 GENMUL

In our second experiment, we consider the 24 unsigned and 23 signed benchmarks
of GENMUL. We generated the benchmarks for an input bit-width of 64 and set the
time limit to 300 s. The results are depicted in Fig. 4.

In the left side of Fig. 4, it can be seen that DYPOSUB and REVSCA-2.0 both
solve 21 benchmarks, with REVSCA-2.0 being slightly faster. AMULET 1.5 solves
20 instances. ABC is an order of magnitude faster, but is only able to solve two
instances. Again, POLYCLEANER exceeds the time limit in all experiments.

For the signed multipliers, ABC is again an order of magnitude faster, but only
verifies 6 benchmarks. AMULET 1.5 and REVSCA-2.0 both solve 20 instances.

20 D. Kaufmann

Fig. 4 Verification time (in sec) of unsigned (left) and signed (right) multipliers that are generated
using GENMUL. Time limit: 300 s

Fig. 5 Verification time (in sec) of unsigned (left) and signed (right) multipliers that are generated
using MULTGEN. Time limit: 300 s

5.3 MULTGEN

In this experiment, we consider the 24 unsigned and 24 signed benchmarks of
MULTGEN. We generated the benchmarks for an input bit-width of 64 and set the
time limit to 300 s. The results are shown in Fig. 5.

The left side of Fig. 5 shows that AMULET 1.5, DYPOSUB, and REVSCA-2.0 are
able to verify the complete benchmark set, with AMULET 1.5 being the fastest tool.
Furthermore, AMULET 1.5 is able to verify all signed multipliers, cf. right side of
Fig. 5. ABC and POLYCLEANER produce a segmentation fault or exceed the time
limit for all instances.

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 21

5.4 EPFL Combinational Benchmark Suite

In this experiment, we verify the 64-bit multiplier that is contained in the EPFL
Combinational Benchmark Suite. The time limit is set to 300 s and the results are
shown in Table 1.

It can be seen that only DYPOSUB and REVSCA-2.0 are able to verify this
multiplier circuit. AMULET 1.5 and POLYCLEANER exceed the time limit, ABC
and REVSCA produce a segmentation fault.

5.5 ABC/BOOLECTOR

We generate simple array multipliers with an input bit-width of 128, 256, 512, and
1 024 using ABC and BOOLECTOR. Since both tools directly produce multipliers in
the AIG format, we do not consider the tool POLYCLEANER in this experiment. We
set the time limit to 14 400 s (4 h), and the results can be seen in Fig. 6.

The multipliers generated by ABC/BOOLECTOR can be fully decomposed into
half- and full-adders. Thus, we enable the optimization “&atree” in the verification
tool ABC. As previously mentioned, the benchmarks generated by ABC and
BOOLECTOR are internally equivalent, except the order of the inputs differs. In

Table 1 Verification time (in sec) of the multiplier contained in the EPFL Combinational
Benchmark Suite

Tool ABC AMULET 1.5 DYPOSUB POLYCLEANER REVSCA REVSCA-2.0

CPU time (in sec) segfault TO 59 TO segfault 81

Time limit (TO): 300 s

Fig. 6 Verification time (in sec) of simple array multipliers that are generated using ABC (left)
and BOOLECTOR (right). Time limit: 14,400 s

22 D. Kaufmann

Fig. 7 Verification time of unsigned multipliers which are optimized using “resyn”, without (left)
and with technology mapping (right). Time limit: 300 s

ABC the order of inputs is a0, . . . , an−1, b0, . . . , bn−1. In BOOLECTOR the order
is a0, b0, . . . , an−1, bn−1.

It can be seen that ABC and AMULET 1.5 are able to verify all benchmarks,
and ABC is slightly faster. The tools DYPOSUB and REVSCA-2.0 are only able
to verify the ABC benchmarks, but produce wrong results, i.e., conclude that the
multiplier is buggy, for multipliers generated by BOOLECTOR. REVSCA produces
a segmentation fault for all experiments.

5.6 Optimized Benchmarks

In this experiment, we consider the 192 unsigned multiplier circuits that are
generated by the ARITHMETIC MODULE GENERATOR. The time limit is set to 300
s. We optimize these benchmarks as described in Sect. 4.7 and either apply “resyn,”
“resyn3,” or “dc2” in ABC. In all of these benchmark suites, we furthermore apply
technology mapping using the standard cell library “mcnc.genlib” of SIS [48]. Thus,
we gain six different setups, and the results can be seen in Figs. 7, 8, and 9.

It can be seen that DYPOSUB and REVSCA-2.0 are able to verify more than
half of the benchmarks when only synthesis is applied. If additionally technology
mapping is used to optimize the multipliers, these tools are only able to verify
at most eight circuits. The tools AMULET 1.5 and REVSCA are able to verify a
small amount (less than 10) of synthesized multipliers, but fail when technology
mapping is applied. ABC produces a segmentation fault or an internal error for all
experiments.

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 23

Fig. 8 Verification time of unsigned multipliers which are optimized using “resyn3”, without (left)
and with technology mapping (right). Time limit: 300 s

Fig. 9 Verification time of unsigned multipliers which are optimized using “dc2”, without (left)
and with technology mapping (right). Time limit: 300 s

5.7 Proof Generation

In our last experiment, we present the ability of generating proofs in AMULET 1.5.
Again, we consider the 192 unsigned benchmarks of the ARITHMETIC MODULE

GENERATOR and produce either PAC proofs or NSS proofs, which are then checked
using PACHECK [30], PASTÈQUE [30], and NUSS-CHECKER [25]. The results are
shown in Fig. 10, and it can be seen that generating proof certificates increases the
computation time of AMULET 1.5. Both proof formats need the same amount of
time for generation. In the right side of Fig. 10, we compare the checking time of the
generated proofs. Proofs in the NSS format, which are checked by NUSS-CHECKER,
are faster to check than PAC proofs that can be checked either by PACHECK or by
PASTÈQUE. The verified proof checker PASTÈQUE is around four times slower than
PACHECK.

24 D. Kaufmann

Fig. 10 Certification time of unsigned multipliers (left) and the proof checking time (right). Time
limit: 300 s

6 Conclusion

In this chapter, we presented the current state of the art in verifying flattened gate-
level integer multipliers using computer algebra. We introduced the verification
technique and discussed the most recent work in this area. Tools that have
been developed within the last 3 years were highlighted and publicly available
benchmarks were presented. We concluded with a rigorous evaluation of the tools.
Summarizing, no verification tool is a clear favorite over another. For simple
multipliers, ABC [16, 60] is the fastest tool; however, ABC fails on complex
multipliers. For non-optimized benchmarks, AMULET 1.5 [28], DYPOSUB [42],
and REVSCA-2.0 [40] almost always solve around the same amount of benchmarks,
where AMULET 1.5 is an order of magnitude faster than related work. Additionally
AMULET 1.5 is the only tool which allows to generate proof certificates. DYPOSUB

and REVSCA-2.0 outperform related work on optimized benchmarks, which are
closer to industrial multipliers.

References

1. Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite. In:
International Workshop on Logic and Synthesis (IWLS), pp. 57–61 (2015)

2. Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite
(2020). https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/

3. Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite
(2020). https://github.com/lsils/benchmarks

4. Beame, P., Impagliazzo, R., Krajícek, J., Pitassi, T., Pudlák, P.: Lower Bounds on Hilbert’s
Nullstellensatz and Propositional Proofs. In: Proceedings of the London Mathematical Society,
vol. s3–73, pp. 1–26 (1996)

https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/
https://github.com/lsils/benchmarks

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 25

5. Beame, P., Liew, V.: Towards Verifying Nonlinear Integer Arithmetic. In: Proceedings of the
International Conference on Computer Aided Verification (CAV) 2017. LNCS, vol. 10427, pp.
238–258. Springer, New York (2017)

6. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis
and Verification (2019). http://www.eecs.berkeley.edu/~alanmi/abc/. Bitbucket Version 1.01

7. Biere, A.: Collection of Combinational Arithmetic Miters Submitted to the SAT Competition
2016. In: SAT Competition 2016. Department of Computer Science Report Series B, vol. B-
2016-1, pp. 65–66. University of Helsinki, Helsinki (2016)

8. Biere, A.: Weaknesses of CDCL solvers, August 2016. In: Fields Institute Workshop on The-
oretical Foundations of SAT Solving. http://www.fields.utoronto.ca/talks/weaknesses-cdcl-
solvers

9. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT Competition 2020. In: Proceedings of the SAT Competition
2020—Solver and Benchmark Descriptions. Department of Computer Science Report Series
B, vol. B-2020-1, pp. 51–53. University of Helsinki, Helsinki (2020)

10. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.
Comput. 35(8), 677–691 (1986)

11. Bryant, R.E., Chen, Y.: Verification of arithmetic circuits using binary moment diagrams. STTT
3(2), 137–155 (2001)

12. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal, PhD thesis. University of Innsbruck, Innsbruck (1965)

13. Chen, Y., Bryant, R.E.: Verification of Arithmetic Circuits with Binary Moment Diagrams. In:
Design Automation Conference, DAC 1995, pp. 535–541. ACM, New York (1995)

14. Chen, Y., Clarke, E., Ho, P., Hoskote, Y., Kam, T., Khaira, M., O’Leary, J., Zhao, X.:
Verification of All Circuits in a Floating-Point Unit Using Word-Level Model Checking. In:
FMCAD 1996. LNCS, vol. 1166, pp. 19–33. Springer, Berlin (1996)

15. Ciesielski, M.J., Yu, C., Brown, W., Liu, D., Rossi, A.: Verification of Gate-level Arithmetic
Circuits by Function Extraction. In: Design Automation Conference, DAC 2015, pp. 52:1–
52:6. ACM, New York (2015)

16. Ciesielski, M.J., Su, T., Yasin, A., Yu, C.: Understanding algebraic rewriting for arithmetic
circuit verification: a Bit-Flow model. IEEE TCAD, pp. 1–1 (2019). Early acces

17. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of
unsatisfiability. In: STOC 1996, pp. 174–183. ACM, New York (1996)

18. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (1997)
19. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs, Proofs for All

Workshop, APPA 2014, vol. 55, pp. 1–22. College Publications, Australia (2015)
20. Homma, N., Watanabe, Y., Aoki, T., Higuchi, T.: Formal Design of Arithmetic Circuits Based

on Arithmetic Description Language. IEICE Trans. 89-A(12), 3500–3509 (2006)
21. Homma Laboratory, RIEC, Tohoku University. Arithmetic Module Generator. https://www.

ecsis.riec.tohoku.ac.jp/topics/amg/
22. Hunt, W.A., Jr., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware and software

verification with ACL2. Philos. Trans. Royal Soc. A 375(2104), 20150399 (2017)
23. Kaufmann, D.: AMulet 1.5 (2020). https://github.com/d-kfmnn/amulet
24. Kaufmann, D.: Formal Verification of Multiplier Circuits using Computer Algebra. PhD thesis,

Informatik, Johannes Kepler University Linz (2020)
25. Kaufmann, D., Biere, A.: Nullstellensatz-proofs for multiplier verification. In: CASC. Lecture

Notes in Computer Science. Springer, Berlin (2020, to appear)
26. Kaufmann, M., Moore, J.S.: ACL2 Version 8.2 (2019). http://www.cs.utexas.edu/users/moore/

acl2/
27. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise verification of arithmetic

circuits using computer algebra. In: Formal Methods in System Design (2019). Online first
28. Kaufmann, D., Biere, A., Kauers, M.: Verifying Large Multipliers by Combining SAT and

Computer Algebra. In: FMCAD 2019, pp. 28–36. IEEE, New York (2019)

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers
http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://github.com/d-kfmnn/amulet
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

26 D. Kaufmann

29. Kaufmann, D., Kauers, M., Biere, A., Cok, D.: Arithmetic Verification Problems Submitted to
the SAT Race 2019. In: SAT Race 2019. Department of Computer Science Report Series B,
vol. B-2019-1, p. 49. University of Helsinki, Helsinki (2019)

30. Kaufmann, D., Fleury, M., Biere, A.: Pacheck and Pastèque, Checking Practical Algebraic
Calculus Proofs. In: FMCAD 2020. FMCAD, vol. 1, pp. 264–269. TU Vienna Academic Press,
Austria (2020)

31. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.: Robust Boolean reasoning for equivalence
checking and functional property verification. IEEE TCAD 21(12), 1377–1394 (2002)

32. Liew, V., Beame, P., Devriendt, J., Elffers, J., Nordström, J.: Verifying Properties of Bit-vector
Multiplication Using Cutting Planes Reasoning. In: FMCAD 2020. FMCAD, vol. 1, pp. 194–
204. TU Vienna Academic Press, Austria (2020)

33. Lv, J., Kalla, P.: Formal Verification of Galois Field Multipliers Using Computer Algebra
Techniques. In: International Conference on VLSI Design, VLSID 2012, pp. 388–393. IEEE
Computer Society, New York (2012)

34. Lv, J., Kalla, P., Enescu, F.: Efficient Gröbner basis reductions for formal verification of Galois
field arithmetic circuits. IEEE TCAD 32(9), 1409–1420 (2013)

35. Mahzoon, A., Große, D., Drechsler, R.: GenMul (2018). http://sca-verification.org/genmul
36. Mahzoon, A., Große, D., Drechsler R.: GenMul (2018). https://github.com/amahzoon/genmul
37. Mahzoon, A., Große, D., Drechsler, R.: PolyCleaner (2018). http://sca-verification.org/

polycleaner
38. Mahzoon, A., Große, D., Drechsler, R.: PolyCleaner: clean your polynomials before backward

rewriting to verify Million-gate Multipliers. In: ICCAD 2018, pp. 129:1–129:8. ACM, New
York (2018)

39. Mahzoon, A., Große, D., Drechsler, R.: RevSCA and RevSCA-2.0 (2019). http://sca-
verification.org/revsca

40. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: using reverse engineering to bring light into
backward rewriting for big and dirty multipliers. In: DAC 2019, pp. 185:1–185:6. ACM, New
York (2019)

41. Mahzoon, A., Große, D., Scholl, C., Drechsler, R.: DyPoSub (2020). http://sca-verification.
org/dyposub

42. Mahzoon, A., Große, C. Scholl, D., Drechsler, R.: Towards formal verification of optimized
and industrial multipliers. In: DATE, pp. 544–549. IEEE, New York (2020)

43. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0. In: CAV 2018.
LNCS, vol. 10981, pp. 587–595. Springer, Berlin (2018)

44. Parhami, B.: Computer Arithmetic—Algorithms and Hardware designs. Oxford University,
Oxford (2000)

45. Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Wienand, O., Karibaev, E.: Modeling of
custom-designed arithmetic components for ABL normalization. In: Forum on Specification
and Design Languages, FDL 2008, pp. 124–129. IEEE, New York (2008)

46. Ritirc, D., Biere, A., Kauers, M.: A practical polynomial calculus for arithmetic circuit
verification. In: SC2 2018, pp. 61–76. CEUR-WS (2018)

47. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan,
P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS. https://ptolemy.berkeley.edu/projects/
embedded/pubs/downloads/sis/index.htm

48. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan,
P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: SIS: a system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of California, Berkeley
(1992)

49. Sharangpani, H., Barton, M.L.: Statistical Analysis of Floating Point Flaw in the Pentium
Processor (1994)

50. Stoffel, D., Kunz, W.: Equivalence checking of arithmetic circuits on the arithmetic bit level.
IEEE TCAD 23(5), 586–597 (2004)

51. Temel, M.: MultGen (2020). https://github.com/temelmertcan/multgen

http://sca-verification.org/genmul
https://github.com/amahzoon/genmul
http://sca-verification.org/polycleaner
http://sca-verification.org/polycleaner
http://sca-verification.org/revsca
http://sca-verification.org/revsca
http://sca-verification.org/dyposub
http://sca-verification.org/dyposub
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/sis/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/sis/index.htm
https://github.com/temelmertcan/multgen

Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey 27

52. Temel, M., Slobodová, A., Hunt, W.A.: Automated and scalable verification of integer
multipliers. In: CAV (1). Lecture Notes in Computer Science, vol. 12224, pp. 485–507.
Springer, Berlin (2020)

53. Vasudevan, S., Viswanath, V., Sumners, R.W., Abraham, J.A.: Automatic verification of
arithmetic circuits in RTL using stepwise refinement of term rewriting systems. IEEE Trans.
Comput. 56(10), 1401–1414 (2007)

54. Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, G.: An algebraic approach for proving
data correctness in arithmetic data paths. In: International Conference on Computer Aided
Verification, CAV 2008. LNCS, vol. 5123, pp. 473–486. Springer, Berlin (2008)

55. Wolf, C.: Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/
56. Yu, C.: Algebraic RewriTing in ABC (2018). https://github.com/ycunxi/abc
57. Yu, C., Brown, W., Liu, D., Rossi, A., Ciesielski, M.J.: Formal verification of arithmetic circuits

by function extraction. IEEE TCAD 35(12), 2131–2142 (2016)
58. Yu, C., Ciesielski, M.J.: Efficient parallel verification of galois field multipliers. In: Asia and

South Pacific Design Automation Conference, ASP-DAC 2017, pp. 238–243. IEEE, New York
(2017)

59. Yu, C., Ciesielski, M.J.: Formal analysis of Galois field arithmetic circuits-parallel verification
and reverse engineering. IEEE TCAD 38(2), 354–365 (2019)

60. Yu, C., Ciesielski, M.J., Mishchenko, A.: Fast algebraic rewriting based on and-inverter graphs.
IEEE TCAD 37(9), 1907–1911 (2018)

http://www.clifford.at/yosys/
https://github.com/ycunxi/abc

The Vital Role of Machine Learning in
Developing Emerging Technologies

Victor M. van Santen, Florian Klemme, and Hussam Amrouch

1 Introduction

Circuit simulations are the key to the evaluation of a semiconductor technology
at the circuit level. The performance, power, and efficiency of a specific circuit
design in a specific technology are evaluated in circuit simulators such as SPICE.
The transistors in such circuit simulators are implemented through compact mod-
els such as BSIM-CMG [9, 35]. Transistor compact models are an abstracted
high-performance implementation of the electrical behavior of a transistor. A
semiconductor manufacturer (foundry) can then use a set of parameters called a
model card to calibrate this behavior to the observed behavior (e.g., based on
prototype measurements) of a specific technology (e.g., 22 nm FinFET). However,
this standard approach of circuit simulations faces three key challenges.

Foundry Secrecy First, the foundries are reluctant to share transistor model cards,
as this could allow reverse engineering of their commercial product. For example,
the frequently used arbitrary units (a.u.) across publications [11, 36, 38] and the
Non-Disclosure-Agreements (NDA) guarding Process Design Kits (PDK) access
protect their intellectual property.

Innovation Requires New Models Secondly, with the end of Dennard scaling
and the current age of innovation in semiconductor technologies, transistors are
not just geometrically scaled anymore but instead altered in their fundamental
structure. Innovations in recent times were the introduction of high-k metal gates
in 32 nm technology and 22 nm introducing 3D FinFET. For compact models,
this innovation poses a serious challenge. With each innovation, it requires a new

V. M. van Santen (�) · F. Klemme · H. Amrouch
University of Stuttgart, Stuttgart, Germany
e-mail: van-santen@iti.uni-stuttgart.de; klemme@iti.uni-stuttgart.de;
amrouch@iti.uni-stuttgart.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_2&domain=pdf
mailto:van-santen@iti.uni-stuttgart.de
mailto:klemme@iti.uni-stuttgart.de
mailto:amrouch@iti.uni-stuttgart.de
https://doi.org/10.1007/978-3-030-68071-8_2

30 V. M. van Santen et al.

compact model instead of updated parameters in model cards as the underlying
principles of the transistor change (e.g., introducing BSIM-CMG [9] for FinFET
over BSIMv4 [24] for MOSFET). However, compact model development can take
years. Development can only start once the represented technology is mature and
its physics are understood. This delay in modeling availability hinders the use of
standard EDA tools to evaluate circuit designs in such new technologies, which
hinders market entry and prolongs time to market for the emerging technology.

Early Evaluation of Technology Thirdly, various competing transistor technolo-
gies exist simultaneously. For example, FinFET currently competes against FDSOI,
Nanowire, and Nanosheet transistors in traditional CMOS and NC-FinFET, TFET,
and other transistors in emerging technologies. Currently, each technology has
prototypes that are measured as well as material and physics simulations in TCAD.
However, in order to evaluate if a particular transistor technology is suitable
for a specific circuit currently in the design phase, we need support within the
EDA standard flow (e.g., in circuit simulators). Therefore, traditional evaluation
mandates the development of various compact models and the calibration in various
model cards. This is a complex and thus costly and labor-intensive process, as
transistors are calibrated for different voltages, temperature, variants (high-Vth,
low-Vth, high power, etc.), and geometries to just name a few variables. Therefore,
before a technology can be evaluated to determine commercial or academic interest,
considerable investments are necessary to develop and calibrate compact models.

1.1 Machine Learning Transistor Model

For the transistor modeling in this work, we propose Machine Learning (ML),
specifically Neural Network (NN)-based transistor models to act as an intermediate
between early data from prototypes and complex compact models. Our goal is
to provide NN-based transistor models, tackling the three challenges outlined
above. First, NN-based transistor models are by its very nature black-box modeling
approaches and thus cannot expose manufacturing details about the transistors,
which protects the intellectual property of the foundries. Furthermore, NN-based
transistor models are generic, i.e., a single approach can apply to different transistor
technologies (as we show in Sect. 4.8) and thus do not require continuous devel-
opment of new models. Lastly, NN-based modeling can predict without grasping
the underlying fundamentals (physics, materials, etc.), enabling quick development
of these NN-based models despite transistor innovation. Naturally, an intermediate
NN-based model is trained on limited data sets and thus less accurate than a fully
calibrated and developed compact model (i.e., the model does not replace the end
product).

The Vital Role of Machine Learning in Developing Emerging Technologies 31

1.2 Machine Learning Standard Cell Model

For analogue circuits, SPICE-based circuit simulations, which rely on transistor
models, are used. However, for large-scale digital circuits, standard cells are
the industry standard approach for circuit design. Standard cell libraries are the
established way to share process technology between the foundry and circuit
designers. They provide a description of cells, suitable to be used by other tools
in the Electronic Design Automation (EDA) flow. Hence, for the same three
challenges (secrecy, transistor innovation, and early designs), a transistor-level
model is insufficient.

In this work, we propose a solution that enables the designer to design the
circuit without the need of hard-to-acquire files or time-consuming standard cell
library characterizations. To achieve this, we replace the traditional cell library
depicted in Fig. 1 with a Machine Learning (ML) approach that quickly generates
cell libraries on demand (shown in Fig. 2). Similarly, to transistor modeling per
ML, the ML-based models are not perfectly accurate. Instead, sufficient accuracy
to reveal tendencies and enabling the designer to perform design space exploration
is the goal. Due to the vast increase in generation speed compared to traditional
characterization, we can use established optimization algorithms to search the

Foundry

Cell
Library

Transistor Parameters
(SPICE model card)

Character
ization

Designer

Static Timing
Analysis

Circuit Design
(gate level netlist)

Performance Metric
(critical path delay)

DTCO Design Feedback
(metric → updated parameters)

Standard Cell
(SPICE netlists)

Fig. 1 Traditional DTCO flow. Circuit-dependent performance results are fed back to fine-tune
transistor and characterization parameters

DesignerFoundry

Cell
Library

Static Timing
Analysis

Circuit Design
(gate level netlist)

Performance Metric
(critical path delay)

DTCO Design Feedback
(metric → updated parameters)

Machine
Learning

for Cell Library
generationML Training

DTCO
Parameter
Selection

Fig. 2 Our machine learning approach removes the foundry from the DTCO feedback loop

32 V. M. van Santen et al.

design space. Then, when foundry access is indeed achieved, the results can be
verified with accurate, yet time-consuming SPICE-based library characterization.

Additionally, Design Technology Co-Optimization (DTCO) can be used to
optimize technology and circuit design side by side. As depicted in Fig. 1, DTCO
extends the traditional design flow by adding a feedback loop to the process. The
cell library and the target circuit design are evaluated together, and a corresponding
performance metric, e.g., the critical path delay, is calculated and fed back. This
way, transistor parameters are optimized in each iteration to achieve the best
performance on the circuit.

In practice, DTCO is frequently faced with the three challenges outlined before.
To make the iterative process feasible, all tools and files that are part of the cycle
have to be accessible by one party. However, both transistor and cell data are
confidential. In addition, for emerging technologies, physics-based compact models
may not be available yet. On top of the challenges for transistor models, the process
of cell library characterization is time-consuming, requiring thousands of SPICE
simulations. Due to all these challenges, DTCO can solely be performed by a
select group of circuit designers (e.g., designers with non-disclosure agreements
with foundries).

Instead, our approach takes available transistor and characterization parameters
as input and quickly predicts a corresponding library. Should the transistor pa-
rameters be confidential, then our NN-based model could provide them without
disclosing information. This eliminates the foundry and provides a shortcut in the
design feedback loop, i.e., decoupling foundry and designer.

2 Related Work

ML-Based Transistor Models with Domain Knowledge Early works in ML-
based transistor modeling had limited neurons and layers due to limitations in
computational power and tool support of the time [19, 37]. Therefore, various works
used domain knowledge to augment the NN and improve its accuracy. However, it
cannot be applied to emerging technologies (which are not yet fully understood) and
customize (as well as constraints) the model for a particular technology (removes
generality of the model).

ML-Based Transistor Models Without Prior Knowledge Approaches which do
not rely on prior knowledge can be generic (apply to many technologies) but require
more computational resources.

A combination of NN and genetic algorithms is used in [16]. In addition to
the regular training, the genetic algorithm is used to find the best structure of the
NN. However, only regular planar MOSFET transistors are evaluated and only the
current is inferred. Hence, the work lacks information if this could be applied to
emerging technologies is missing as well as a sufficient validation (see Sect. 4.6 for
details).

The Vital Role of Machine Learning in Developing Emerging Technologies 33

Zhang et al. [38] present an NN-based surrogate model as a compact model
alternative for novel transistors. They demonstrate their framework for FinFET as
an established technology and TFET as an emerging technology with no available
compact model. However, prediction accuracy is not discussed on transistor I–V
curves. Therefore, their validation is lacking (see Sect. 4.6) and we cannot estimate
their achieved modeling accuracy with respect to the transistor parameters (Vth, Ion,
Ioff, etc.).

ML-Based Standard Cell Models In [30], linear regression is used to predict the
delay of a single standard cell. As input features, they consider current and voltage
on cell terminals at switching time as well as some transistor parameters. The paper
is probably the closest to our work in regards to cell prediction; however, their choice
of input features makes their approach unsuitable for our problem. Having voltages
as input features would require further simulations to generate results on circuit
designs. Likewise, the impact on circuit performance is not considered in their work,
instead, they lay focus on a single DFF cell.

An ML-for-DTCO approach is found in [38]. Instead of predicting standard cells,
they use ML to replace the compact model. Although this also helps with long
simulation times, they focus on reducing the overhead of developing a compact
model.

Ceyhan et al. [8] apply ML for design, technology, and ingredient (DTI)
optimization. Although standard cell libraries are considered in their work, they do
not generate them by ML. Instead, they consider different libraries alongside other
inputs to optimize the design in a holistic, zoomed-out view.

3 Background

3.1 Compact Models

Compact models bring a transistor implementation into the SPICE simulator. They
abstract the underlying physical equations to electrical behavior. They provide
high accuracy with the minimum number of equations and parameters (to improve
performance). Actual physical modeling of the transistors materials is done in
TCAD simulators, which are very computational complex and thus time-consuming.
Unfortunately, these TCAD simulation cannot be used for circuit simulations due
to their computational complexity [10]. Typically TCAD simulations (simulated
transfer curves) and selected experimental data sets (measured transfer curves)
are used to calibrate the parameters (the transistor model card) of a particular
transistor (e.g., Intel FinFET) to a particular transistor model (e.g., BSIM-CMG).
BSIM-CMG has over 100 parameters in the model card, spanning geometry, dopant
concentrations, material, and electrical properties [9]. Therefore, a compact model

34 V. M. van Santen et al.

0,E+00

1,E-05

2,E-05

3,E-05

4,E-05

5,E-05

6,E-05

0,
00

-0
,0

4
-0

,0
7

-0
,1

1
-0

,1
4

-0
,1

8
-0

,2
1

-0
,2

5
-0

,2
8

-0
,3

2
-0

,3
5

-0
,3

9
-0

,4
2

-0
,4

6
-0

,4
9

-0
,5

3
-0

,5
6

-0
,6

0
-0

,6
3

-0
,6

7
-0

,7
0

]
A[tnerr uc ni ard rots isna rT

Gate voltage (VG) [V]

baseline TFE1 TFE2 TFE3 TFE4

0,00E+00
2,00E-17
4,00E-17
6,00E-17
8,00E-17
1,00E-16
1,20E-16
1,40E-16
1,60E-16
1,80E-16
2,00E-16

-0,7-0,6-0,5-0,4-0,3-0,2-0,10

Tr
an

si
st

or
 g

at
e

ca
pa

ci
ta

nc
e

[C
]

Gate voltage (VG) [V]

(a) (b)

Fig. 3 (a) Shows the I-V characteristics of Negative Capacitance Transistors. The thicker the
ferroelectric thickness, the higher the on-current. However, this comes at the cost of a noticeable
increase in the gate capacitance CGG

can at its earliest be developed as soon as the physics are fully understood and the
technology reached sufficient maturity and a TCAD model is available.

3.2 Negative Capacitance FinFET

NC-FinFET is an emerging transistor technology with a ferroelectric layer in-
tegrated into the gate stack of a FinFET transistor [28]. The ferroelectric layer
provides a voltage amplification of the gate voltage applied to the transistor, and thus
changes the electrical behavior of the FinFET. For example, its sub-threshold slope
is below 60 mV/decade, making NC-FinFET a promising technology to succeed
FinFET. The sub-threshold slope is an important characteristic to determine the
switching speed of a transistor. A steeper sloped can provide a higher on-currents or
less leakage when the transistor is turned off. Sub-threshold slopes of both FinFET
and NC-FinFET are shown in Fig. 3a along with the resulting increase in the total
gate capacitance of transistor in (b).

Another characteristic of NC-FinFET is reduced short channel effects due
to a low or even negative Drain-Induced Barrier Lowering (DIBL) effect [3].
Additionally, the ferroelectric gate increases overall gate capacitance Cgg. With the
voltage-dependent voltage amplification, negative DIBL, Cgg-increase, and steep
sub-threshold slope, NC-FinFET shows an increased complexity in its behavior
compared to conventional FinFET. Therefore, it is a prime candidate to test if our
approach is applicable to emerging technologies without modifications.

3.3 Transistor Characteristics

Transistor characteristics are used to evaluate and compare the performance of the
transistor with regard to certain properties. Due to their importance in evaluation,

The Vital Role of Machine Learning in Developing Emerging Technologies 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

·10−5

off

on

[V]

[A
]

NN prediction
SPICE baseline
threshold voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10−10

10−9

10−8

10−7

10−6

10−5

off

on

[V]

[A
]

NN prediction
SPICE baseline
threshold voltage

Fig. 4 Id -Vgs curve with Vds = 0.1 V. To determine the sub-threshold slope (SS) visually, the
plot is repeated in logarithmic scale on the right side

we use the following transistor characteristics as additional accuracy metrics in our
ML approach.

Ioff the off-current at Vgs = 0 V,
Ion the on-current at Vgs = VDD ,
Vth the threshold voltage, i.e., voltage at which the transistor turns on or off,
SS the sub-threshold slope, i.e., fast a transistor turns on or off.

These transistor characteristics are also visualized in Figs. 3 and 4.

4 Our Machine Learning Transistor Model

In this work, we propose an NN to learn and reproduce the I–V curve (electrical
response) of a transistor. If the NN-based transistor model can accurately predict
the drain current of a transistor, then it is sufficient to be employed in SPICE
simulations. SPICE model circuit components (resistors, capacitors, transistors,
diodes, etc.) based on their conduction (inverse resistance) from each terminal (gate
G, source S, drain D, bulk B for transistors) to each other terminal (for details on
SPICE solving see our previous work [34]). Since SPICE knows the voltage at the
terminals and the NN-based model provides the currents, the conductances can be
calculated with G = 1

R
= I

V
[34]. Therefore, for the rest of this work, we solely

discuss the I–V curve, also called the transfer curve.

4.1 Experimental Setup

Our NN-based transistor model is a prototype application in C++ using PyTorch
for ML functionality. We use a fully connected feed-forward NN with 2 layers,
500 nodes in each layer, and PReLU as the activation function. The NN is trained

36 V. M. van Santen et al.

using back-propagation with stochastic gradient descent. As established in ML,
input values are normalized before training and inference, so that an adaptation of
the learning rate to the training data is not required. For validation, 30% of the
training data is preserved to be used as the validation data set.

For the generation of training data as well as for validation, existing compact
models are used. BSIM-CMG [9, 35] is used for conventional FinFET. A compact
model [22] based on BSIM-CMG is used for emerging NC-FinFET. Details on
the used NC-FinFET modeling and FinFET device calibration with industrial
measurements are available in [5] and [20], respectively.

The hyperparameters of the NN are optimized based on the training data from
the conventional FinFET model, as commonly done in ML. However, the NN has
been purposely up-scaled slightly (to 2 layers and 500 nodes each), to increase the
chance of better adaptability to different transistors. To allow a comparison of our
work against previous works, we express accuracy in the traditional R2 score, as
well as our own metrics. The R2 score expresses the mean error of the prediction in
relation to the total variance. The R2 score is defined as

R2 = 1−
∑

(Ytrue − Ypred)
2

∑
(Ytrue − Ȳtrue)2

(1)

where Ypred is the predicted value, Ytrue is the actual value (from the test set),
and Ȳtrue is the mean value of the test set. An R2 score of 1 indicates perfect
accuracy, whereas a score around 0 represents randomly guessing a value around
the mean. The interpolation of two individual NNs as described in the next section
is implemented with a custom Python script, first invoking the individual NNs and
interpolating the results afterward.

4.2 Data Scaling

Modeling the transfer curve is a challenge since this I–V curve spans multiple
orders of magnitude in terms of currents (small leakage current, yet million times
stronger drive currents). Therefore, applying standard ML techniques when using
the mean squared error (MSE) as the fitness function during training is problematic.
While this works fine for large current values, smaller values exhibit high relative
errors. The MSE value is dominated by the mismatch in the high-value region
and the errors in small values are not weighted enough. However, key transistor
characteristics like the sub-threshold slope and leakage current Ioff is determined
within this lower-value range. Thus, key transistor parameters are susceptible to
error due to inadequate training. This is a common problem also faced by other
works [19]. Figure 4 illustrates this problem. In the linear representation on the left
side, the I–V curves of SPICE and the NN clearly overlap. In the logarithmic plot
on the right side, the problem becomes apparent: For lower values, the NN curve

The Vital Role of Machine Learning in Developing Emerging Technologies 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

·10−5

visible
inaccuracies

[V]

[A
]

NN prediction
SPICE baseline
threshold voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10−10

10−9

10−8

10−7

10−6

10−5

[V]

[A
]

NN prediction
SPICE baseline
threshold voltage

Fig. 5 With logarithmically scaled training data, the I–V curves show a good match. However, at
linear scale, inaccuracies appear at higher values

diverges from the SPICE baseline, eventually disappearing when negative values are
predicted. The sub-threshold slope and leakage current cannot be derived properly.

Our solution to this problem is to scale the data before training. By applying
a logarithmic scaling to the training data, the range of values is more equally
weighted, i.e., formerly small values are taken more into account. Unfortunately,
errors on formerly large values are less considered. Thus, the linear representation
of the data shows similar high relative errors for the large values, as shown in Fig. 5.

To solve this issue and get acceptable error figures both small and large values, a
first approach is to use logarithmic scaling only for the values below the threshold
voltage and linear (i.e., no) scaling for the rest. To connect the two different ranges,
the normalization is split into two parts, too. The logarithmic part is normalized
in the interval [−1; 0] and the linear part is normalized in the interval [0; 1]. This
split of the normalization range prevents overlapping input ranges (due to different
scaling) and prevents non-determinism in the training data (see Fig. 6). However,
with the two scalings, the NN has problems approximating the function around the
threshold voltage (Vth) where the differently scaled value ranges connect. From the
perspective of the NN, the function features a discontinuity at Vth (connecting the
two data sets), which leads to different values compared to the SPICE baseline right
at Vth.

To make the mixed-scaling work and resolve inaccuracies at the corners, the
NN could be duplicated with an additional node that decides which NN to query,
depending on the input. However, an easier way is to use two different NNs
independently and interpolate the results outside of the NNs. This approach can
be observed in Fig. 7. The interpolation takes place in the green highlighted area
(not Vth) which is at Vgs = 0.4 V with a width of 0.1 V. With this configuration, the
difference between the combined output of the NNs and the baseline output from
SPICE is minimized.

38 V. M. van Santen et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

2.5
·10−5

inaccur.
near th

[V]

[A
]

Split-scaling NN
SPICE baseline
threshold voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10−10

10−9

10−8

10−7

10−6

10−5
inaccur.
near th

[V]

[A
]

Split-scaling NN
SPICE baseline
threshold voltage

Fig. 6 The I–V curve with split-scaling around the threshold voltage. Hard to see: In the lower-
value range, both curves match quite well. However, there are obvious errors around the threshold
voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

·10−5

[V]

[A
]

Interpolated NNs
SPICE baseline
threshold voltage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10−10

10−9

10−8

10−7

10−6

10−5

10−4

[V]

[A
]

Interpolated NNs
SPICE baseline
threshold voltage

Fig. 7 Interpolation of two independently trained NNs

4.3 Advantages of NN-Based Transistor Modeling

Using ML techniques to model the behavior of a transistor has multiple advantages.
First and foremost, only exemplary measurement data is needed to train the NN.
No details about manufacturing or underlying physics are required. This is a core
principle of ML, however, especially helpful for emerging technologies as their
underlying physics are often still investigated and not yet fully understood.

Domain Knowledge Many ML applications incorporate domain knowledge in
their structures and algorithms. Forcing an NN to follow certain assumptions about
the transistor can help improving stability, training time, and correctness. However,
falsely applied assumptions can make it impossible for the NN to fit certain data.
For example, looking at conventional FinFET, one would assume monotonicity in
the Id -Vd curve. However, novel NC-FinFET experiences a negative DIBL effect
that breaks this assumption (shown in Fig. 9). A strictly monotonic NN would not
be able to learn this behavior properly. Therefore, to provide a generic NN-based
transistor model, applicable to multiple technologies, no domain knowledge can be
used to augment the NN.

The Vital Role of Machine Learning in Developing Emerging Technologies 39

Development Time While the development time of sophisticated compact models
is usually in the order of years, ML training can be done within hours. As soon
as early measurements from silicon become available, the NN can be trained.
However, a certain amount of data is required to achieve meaningful accuracy.
TCAD simulations can support measured data, especially when larger data sets
under varying conditions (temperature, voltages, etc.) should be trained for. In this
work, for simplicity but without loss of generality, we take an existing compact
model as the source for training data and validation.

Secrecy of Neural Networks An NN is generally conceived as a black-box
function. Even with the weights at hand, the contribution of individual parts to the
output is often unclear. In fact, comprehending and tracing the decisions of an NN
is a challenge and a research topic in its own [7]. Moreover, the structure of the
NN does not reflect the structure of the mathematical equations of the underlying
physics. Therefore, even if contributions would be understood, all variables are
arbitrary parameters with no traceable relation to the real technology parameters
such as geometries or dopant concentrations. Also, unlike in traditional compact
modeling, there is no separation of technology (compact model) and calibration
(model card) in the NN. The transistor calibration is implicit and indistinguishable
from the fundamental technology. This adds an additional layer of abstraction to
the NN model. With all this complexity and abstractions in the NN, the extraction
of technology details is at least unfeasible, if not impossible. This offers great
advantages in confidentiality and secrecy with regard to emerging and commercial
technologies. NN-based transistor models can be shared without the risk of leaking
confidential information or reverse engineering.

4.4 Disadvantages of NN-Based Transistor Modeling

Unfortunately, NN-based transistor models also feature some considerable disad-
vantages, i.e., cannot fully replace compact models and only act as an intermediate.

Scalability A noteworthy disadvantage of ML is the prediction accuracy outside of
the range of the training data. Compact models are built on physical equations which
allows them to be scalable beyond available data from silicon [10]. For example,
with calibration between 20 and 50 ◦C, the compact model would provide decent
accuracy at 80 ◦C, while the NN-based approach would struggle severely. Therefore,
NN-based approaches should be trained for wide ranges to ensure that the inference
always occurs within the trained range. Additionally, this highlights why NN-based
transistor modeling is just an intermediate before the availability of actual compact
models for the technology.

Learning Challenges Although the introduction of linear/log mixed-scaling in
Sect. 4.2 improved the accuracy of the NN, the logarithmic scaling also created a
new issue. Comparing the training effort for data on linear and logarithmic scaling,

40 V. M. van Santen et al.

Fig. 8 Learning curves for
different scalings. As soon as
Vds = 0 V is removed from
the logarithmic data set, the
learning curve improves
significantly

0 50 100 150 200 250 300 350 400 450 500

0.2

0.4

0.6

0.8

1

Epochs

2
sc
or
e

linear, [Î 0V, 0.8V]
log, [Î 0V, 0.8V]

log, [Î 0.01V, 0.8V]

a big discrepancy can be observed in Fig. 8. This is caused by troublesome data in
the training set. For Vds = 0 V, SPICE reports a current of exactly 0 A. Since log 0 is
not defined, all values ≤ 10−30 are set to 10−30 during scaling. From a logarithmic
point of view, this creates a gap between values with Vds = 0 V and Vds = 0.01 V
which is perceived as a discontinuity by the NN. As a workaround, all data with
Vds = 0 V could be removed from training and test sets. As we can see in Fig. 8, the
learning curve improves greatly as soon as these data points are removed.

4.5 Inference Accuracy and Training Time

Training data is generated by sweeping input parameters with a certain step size
in SPICE simulations. All input parameter permutations and their corresponding
outputs are collected in CSV files to serve as training and validation data sets for
the NN. After 500 epochs of training, the R2 scores for the training set, test set, and
complete data set validation are 0.999772, 0.999764, and 0.999769, respectively.
The R2 score of the training set is very close to 1, meaning that the NN was
able to match the training data excellently. Likewise, the R2 score of the test set
is only slightly lower than the R2 score of the training set which indicates good
generalization of the NN to the learned function (no overfitting).

Table 1 shows the R2 score of different NNs after 48 h of training. Depending
on the number of input and output parameters, the required training time changes.
Without the number of fins in the FinFET (nfin) configurable, NN 1 reaches an
R2 score of 0.999 for all output parameters with both linear and logarithmic scaling.

But when adding number of fins (nfin) as an additional input parameter, the
precision significantly drops, most notably for Id with the linear scaling and an
R2 score of 0.786 (highlighted in Table 1). The reason behind this is the large
amount of input data, which, in this case, contains 24 different temperatures (20 ◦C–
135 ◦C), 80 different Vds steps (0.01 V–0.8 V), 81 different Vgs steps (0 V–0.8 V),
and 7 different number of fins (1–7). This accumulates to a total number of
1,088,640 data points, resulting in a much longer training time for a single epoch.

The Vital Role of Machine Learning in Developing Emerging Technologies 41

Table 1 R2 scores for different NNs

Num. of steps R2 score of output parameters

Scale T Vds nfin Id cgb cgs cgd

NN 1 lin 24 80 – 0.9999 0.9997 0.9997 0.9993

log 24 80 – 0.9998 0.9993 0.9998 0.9989

NN 2 lin 24 80 7 0.7863 0.9894 0.9626 0.9834

log 24 80 7 0.9856 0.9448 0.9265 0.9072

NN 3 lin 6 12 7 0.9996 0.9997 0.9997 0.9998

log 6 12 7 0.9989 0.9995 0.9996 0.9996

Including nfin increases training effort and thus, R2 score for a given training time

While longer training times can be overcome with more processing power or
just waiting longer, longer training cannot guarantee continuous improvement (i.e.,
converges to a low R2 score). Alternatively, the training data sets can be trimmed. In
our case, there is plenty of training data and a reduction shows no negative impact.
NN 3 in Table 1 shows the results of using only 6 temperature steps and 12 Vds steps
for the training. With this optimization, the NN is capable to learn all 4 output
parameters depending on all 4 input parameters within 48 h of training time.

4.6 Traditional Fitness Compared to Transistor Metric Fitness

The R2 score metric provides an impression of the accuracy of an NN. However,
inaccurate regions (outliers) might be overshadowed by good overall accuracy.
Typically, this is not an issue, as overall accuracy is key. However, for transistors,
certain transistor characteristics are critical for the evaluation of the transistor in
circuit simulation. For example, the leakage current at Vgs = 0V and the on-
current at Vgs = VDD are ends of the I–V curve, but very important since digital
circuits operate a majority of the time in these two extremes. Therefore, inaccurate
modeling at these locations might severely alter the circuit simulation results of
digital circuits and as such an R2 score infers little about circuit simulation accuracy
of a transistor model. For this reason, we propose to determine key transistor
characteristics instead and use this as our metric to decide after how many training
epochs a sufficient accuracy is reached. The comparison between R2 score and
transistor metric fitness is shown in Table 3.

For the training set, temperature ranges from 20 ◦C to 135 ◦C, Vds from 0.01 V to
0.8 V, and Vgs from 0 V to 0.8 V. For the following tests, we use an enlarged test set
with generated data at a smaller step size. As NNs tend to become more inaccurate
at the edges of the training data, we narrow the temperature range slightly. For the
test set, the ranges change for the temperature from 25 ◦C to 130 ◦C, and for Vds

from 0.05 V to 0.8 V. Independent of the number of data points used in the training,
the validation uses a temperature step size of 1 ◦C and a voltage step size of 0.01 V.

42 V. M. van Santen et al.

Table 2 Relative error of transistor characteristic quantiles depending on Vds , Vgs , and tempera-
ture steps

Vds

steps
Vgs

steps
Temp.
steps

Data
points Q5 Ioff Q95 Ioff Q5 Ion Q95 Ion Q5 Vth Q95 Vth Q95 SS

80 12 6 5760 −5.02% 1.63% −0.30% 0.51% −0.50% 0.61% 4.11%

80 9 6 4320 −4.70% 2.07% −0.41% 0.48% −0.45% 0.75% 3.67%

80 7 6 3360 −4.92% 1.77% −0.26% 0.46% −0.06% 1.65% 4.35%

80 5 6 2400 −3.82% 1.86% −0.38% 0.44% −0.31% 2.14% 5.28%

17 17 6 1734 −5.43% 1.68% −0.39% 0.48% −0.73% 0.47% 4.30%

17 12 6 1224 −4.88% 1.67% −0.22% 0.50% −0.58% 0.49% 4.00%

17 9 6 918 −4.60% 1.77% −0.43% 0.49% −0.55% 0.76% 3.46%

12 17 6 1224 −6.62% 1.61% −0.29% 0.62% −0.84% 0.65% 5.11%

12 12 6 864 −6.91% 1.44% −0.29% 0.52% −0.72% 0.62% 5.92%

12 9 6 648 −5.62% 1.99% −0.40% 0.56% −0.63% 0.74% 4.56%

Highlight marks minimum data points satisfying the error limit of 5%

For each metric, the relative errors across the test set are calculated. Then, the
error values are sorted so that a minimum error at the 5%-quantile (Q5) and a
maximum error at the 95%-quantile (Q95) can be determined. This procedure is
slightly different for SS as it can be measured at multiple points below the threshold
voltage. We measure the SS relative error at multiple points and calculate the
average of the absolutes, so that negative and positive relative errors do not cancel
each other out. In consequence, there is only a Q95 error for SS. All metrics as well
as the R2 score are shown in Table 3.

For our evaluation, we define an error of ≤5% at each 5%/95%-quantile to
be acceptable. However, please note that other values could have been chosen and
internal experiments have shown that longer training times or more training data are
sufficient for more stringent accuracy constraints.

All transistor characteristic results in Table 3 are created by using two separate
neural networks with different scaling where the results are interpolated as described
in Sect. 4.2. After 50 epochs, the R2 score is already >0.99; however, Q5 Ioff
and Q95 SS still show an error of more than 11%, violating our tolerance. This
shows that the R2 score of the NN is not sufficient to judge the accuracy of
important transistor characteristics. For the conventional FinFET device, the NN
needs 400 epochs of training to reach the demanded precision.

4.7 Early Evaluation with Limited Data

To be able to reach an error ≤5% for all transistor characteristics, a certain
amount of training data is needed. The required amount depends on the number
of parameters and the number of measurement points for each parameter (i.e., in
our case, sweeping steps in SPICE). Table 2 explores the relative error of each

The Vital Role of Machine Learning in Developing Emerging Technologies 43

Table 3 Comparison of R2 score and transistor-specific characteristics depending on the number
of trained epochs

Epochs 50 100 200 300 400

R2 linear 0.99948 0.99968 0.99981 0.99989 0.99991

R2 log 0.99666 0.99795 0.99896 0.99944 0.99968

Q5 Ioff −1.47% −9.69% −8.20% −6.14% −4.62%

Q95 Ioff 3.01% 2.71% 2.62% 2.59% 2.93%

Q5 Ion −1.93% −1.68% −1.28% −1.14% −0.96%

Q95 Ion 1.95% 1.80% 1.46% 1.30% 1.09%

Q5 Vth −0.64% −0.76% −0.72% −0.61% −0.59%

Q95 Vth 2.12% 1.57% 1.17% 0.92% 0.67%

Q95 SS 1.25% 9.49% 7.78% 5.85% 4.45%

transistor characteristic depending on Vds and Vgs steps. For the sake of space in
this manuscript, a minimum of 6 temperature steps has been chosen as a suitable
minimum based on preceding experiments. Table 2 shows that for a NN transistor
model with temperature dependency, around 900 data points are sufficient to reach
our tolerance. Looking at the step sizes, we can say that around 17 Id − Vgs curves
with 9 data points each are enough to start developing an early model that satisfies
our error constraint. This number of points (measurements) is feasible to acquire
even for early prototypes. With our selection of step sizes and data ranges, we are
able to minimize the training effort to these 900 points.

4.8 Modeling NC-FinFET with NN-Based Transistor Models

To evaluate if our NN can also fit other, previously unseen transistors, we repeat
the experiment in Sect. 4.6 using an NC-FinFET compact model [22] instead of
BSIM-CMG. Comparing conventional FinFET and NC-FinFET, a stark difference
in the behavior becomes apparent when looking at the transfer curves in Fig. 9.
We can observe that compared to FinFET, NC-FinFET shows a clearly different,
non-monotonic response in the Vd axis. This additional complexity is added by
the negative DIBL effect caused by the ferroelectricity of the gate and suggests
an increased difficulty in fitting the behavior. Table 4 shows the progress of learning
NC-FinFET. When comparing these results with the FinFET results in Table 3, we
can see that (especially in the first 200 epochs) almost all metrics show a worse
error. Some stand out, e.g., Q5 Ion, with an error of −5.9% after 50 trained epochs
(highlighted in Table 4). With an increasing number of training epochs, these errors
are getting closer to the errors of the FinFET measurements. The desired precision of
≤5% relative error for each Q5/Q95 metric is reached after 400 epochs. Eventually,
our NN is able to apply to NC-FinFET in a similar quality as to FinFET. This hints
to the possibility that NN-based transistor models are indeed generic and thus that
additional emerging technologies can be modeled with this approach.

44 V. M. van Santen et al.

Fig. 9 Comparison of FinFET and NC-FinFET transfer curves at Vgs = 0.15 V. The negative
DIBL effect in NC-FinFET completely changes the shape of the I–V curve

Table 4 Development of NN accuracy for NC-FinFET

Epochs 50 100 200 300 400

R2 linear 0.99876 0.99956 0.99984 0.99988 0.99992

R2 log 0.99552 0.99743 0.99879 0.99937 0.99960

Q5 Ioff −1.56% −0.86% −7.85% −5.68% −4.69%

Q95 Ioff 4.83% 3.17% 3.22% 2.52% 2.67%

Q5 Ion −5.90% −4.35% −2.31% −1.86% −1.43%

Q95 Ion 3.13% 1.70% 1.79% 1.40% 1.11%

Q5 Vth −1.10% −0.67% −0.79% −0.70% −0.69%

Q95 Vth 3.95% 3.28% 1.94% 1.44% 1.18%

Q95 SS 2.11% 0.55% 7.22% 5.12% 4.44%

Compared to Table 3, NC-FinFET starts with higher errors but eventually converges to a similar
precision of FinFET

5 Our Proposed Machine Learning-Based Approach

Analogously to the DTCO flow shown in Fig. 1, our approach consists of two major
parts, one to be handled by the foundry, the other one by the designer. An overview
is shown in Fig. 10: The first part is denoted by Step 1 and includes the generation
of sample libraries to provide training data, as well as the ML training itself. On the
other side, there is Step 2 which is cell library prediction and parameter optimization
by the designer. The optional Step 3 is comparatively small and its sole purpose is
to make sure that the predicted performance is validated by a traditionally generated
cell library. All details of Fig. 10 are explained in the following sections.

Our prototype implementation is mainly done in Python and C++. ML function-
ality is taken from Scikit-learn [25]. We also adopt their term estimator to refer to
an instance of an ML algorithm. SciPy’s optimize module [14] is used to minimize
the objective function during parameter optimization. Established EDA tools by

The Vital Role of Machine Learning in Developing Emerging Technologies 45

Step 3 (optional)

Step 2Step 1

DTCO Parameters
(including ranges)Sample

Libraries

Training
Sets

Simulation
Success

Ridge
Regressors

Boundary
Classifier

Objective Function
1. Predict Library
2. STA on circuit
3. Calculate metric

Boundary
ConstraintML Training and

Cross-Validation

Extract information

Minimizer
SLSQP

Optimal
Parameters

Validate and characterize

Minimize

Consider

Find (output)

Foundry Designer

Validation Library

Machine Learning
for

Library
Characterization

(includes
DTCO Parameters and

Trained Estimators)

Generation and
Characterization

Fig. 10 Implementation of the DTCO process. Step 1: Data generation and training of the ML
estimators by the foundry. Step 2: Design space exploration by the designer. Step 3: Traditional
generation of cell library with optimized parameters for validation

Synopsys are used for cell library characterization, library compilation, and static
timing analysis (STA).

5.1 ML for Library Characterization

The foundry part of our approach addresses all steps necessary to provide the
designer with all the information they need for the DTCO process. This includes
the generation of training data, as well as the training of estimators.

5.1.1 Generation of Training Data

The first step in our approach is the selection of parameters that should later be
available for optimization, along with their value ranges. In general, a parameter
could be any setting along the library characterization process. For details of the
library characterization process, see our earlier work about reliability in standard
cells [32, 33]. In this work, we chose to select TFE , EC , and PR as parameters related
to NC-FinFET, as well as VDD which is part of the characterization settings. The
boundaries of ferroelectric parameters shown in Table 5 are chosen by investigating
NC-FinFET related papers [1, 2, 6, 12, 17, 18, 21, 23, 27, 29]. The value steps are
not chosen equidistantly but lean towards the areas where more promising results
are expected. By increasing the density of sample points in certain regions, we aim
to reach a better accuracy in those areas.

46 V. M. van Santen et al.

Table 5 DTCO parameters
and ranges

Name Unit Min Max

EC MV/cm 100 200 400 700 1000

PR µC/cm2 5 10 20 30 40

TFE nm 1 2 4 6 8

VDD V 0.3 0.4 0.5 0.6 0.8

With the parameters being selected, appropriate training data can be generated.
This is done by characterizing multiple sample libraries within those parameter
ranges.

As shown in Table 5, we selected five different values for each parameter,
resulting in 54 = 625 permutations. In addition, 250 combinations with random
parameter values are selected. This leads to 875 sample libraries that are created
to provide the training data. Characterizing this amount of libraries takes multiple
weeks. From all libraries, 482 characterizations (55.2%) are finished without errors
and are usable for training (90%), cross-validation (5-fold), and testing (10%).

5.1.2 Training of ML Estimators

For the library prediction, hundreds of estimators are created, one for each data
field in the library. A data field can correspond to a single value (e.g., capacitance
for a certain pin) or a 1D/2D-table (e.g., cell delays for a specific timing arc).
Likewise, the previously generated sample libraries are split up by these fields and
form training sets for the respective estimators.

Each of those estimators is a Ridge Regressor, performing linear regression
with regularization. As well established in ML, the input parameters are extended
with polynomial features so that polynomial functions can be fitted. This is done
automatically for each estimator. The degree of the polynomial function and the
regularization term are chosen by hyperparameter optimization.

Using polynomial functions to match the training sets has up- and downsides:

+ For most parameters, some linear or exponential correlation between input and
output is expected. Thus, a polynomial function usually fits these parameters very
well.

+ Compared to neural networks, a simple estimator fits quickly and well, even if
the training set is rather small. This is helpful in our work as data generation is
very expensive.

– In general, there might be transistor or cell models that cannot be sufficiently
described with a polynomial function.

In addition to the regression estimators for library prediction, we create a
classification estimator to learn parameter boundaries. Although the individual
parameter ranges are manually picked and might be valid on their own, certain
combinations can still lead to an overall invalid combination, i.e., a not properly

The Vital Role of Machine Learning in Developing Emerging Technologies 47

functioning transistor or cell. This leads to a high number of failing characterizations
during the generation of training data. For the inference, we want to ensure that
predicted libraries for similar combinations are considered to be invalid as well.
Otherwise, we risk to predict unrealistic libraries and draw incorrect conclusions.
This classification estimator is a Support Vector Machine (SVM) that predicts the
likelihood of a valid configuration, given a set of parameters. It is called Boundary
Classifier in Fig. 10, and it is later used to guide the boundaries of exploration space
during parameter optimization.

After all estimators are trained, all information can be bundled up and forwarded
to the designer. As shown in the middle of Fig. 10, this collection consists of the
selection of parameters, trained estimators for library prediction, as well as a trained
classifier for boundary limitation. This replaces the single-cell library in the original
DTCO flow.

5.2 Design Technology Co-Optimization for NC-FinFET

With the previously generated information, the designer is able to perform DTCO
as outlined on the right side of Fig. 10.

Prediction of Cell Libraries On the designer’s side, the trained estimators can
be used to build complete cell libraries. Alongside the estimators which predict
values for the individual data fields, a cell library template is used, containing all
constant (i.e., parameter independent) information. In our prototype, a custom tool
merges predicted values and the template to form a complete standardized library
file, compatible with existing EDA tools.

In addition to the library file, the Boundary Classifier tells the designer how likely
this set of parameters would result in a successful library characterization. If the
probability is low, the predicted library is to be considered invalid.

Automatic Parameter Optimization Parameter optimization can be achieved
through established optimization algorithms. All we need is a function that takes
a set of parameters as input and the performance metric of our choice as the output.
In our work, this function implements the following steps:

1. Predict the cell library for the given set of parameters.
2. Run STA on the designer’s circuit using the predicted cell library.
3. Extract the critical path delay from the generated timing report.

In general, the metric could also consider any other available information, such as
leakage, power consumption, or even input parameter values.

Although any optimization algorithm could be used, we chose Sequential Least
Squares Programming (SLSQP) [15] in our approach. It allows the configuration
of arbitrary constraint functions in addition to fixed, absolute parameter boundaries.
This way, we can consider the output of the Boundary Classifier during optimization

48 V. M. van Santen et al.

and ensure that we do not encounter invalid libraries while moving through
parameter space.

6 Evaluation and Experimental Results

As proof of concept, we set our focus on delay related results only. Thus, we will
consider timing and capacitance information in the library evaluation and critical
path delay when looking at STA results. Nevertheless, the same concepts can be
applied for power consumption, leakage, etc. as well.

To verify our work, we have access to data mimicking the foundry as well
as the designer. Hence we have access to an NC-FinFET compact model [22]
calibrated with industrial measurements [13] and 14 nm FinFET cell netlists [31]
for cell library characterization. This allows us to fully implement and evaluate
the proposed DTCO flow. To mitigate the long characterization run-times for
training data, we work with a reduced set of 31 cells in our experiments.
The selection of cells are taken from an adder gate-level netlist: AND2_X1,
AND2_X2, AND3_X2, AOI21_X1, AOI21_X2, AOI22_X1, BUF_X2,
CLKBUF_X4, CLKBUF_X8, INV_X1, INV_X12, INV_X2, INV_X4,
INV_X8, NAND2_X1, NAND2_X2, NAND3_X1, NAND3_X2, NAND4_X1,
NOR2_X1, NOR2_X2, NOR3_X1, NOR3_X2, OAI21_X1, OAI21_X2,
OAI22_X1, OR2_X1, OR2_X2, OR4_X1, XNOR2_X1, XOR2_X1. All
circuits have been synthesized with these cells using the baseline configuration.

6.1 Accuracy of Cell Library Prediction

To get an initial idea, we have a look at the individual estimator predictions that
are performed to build a cell library. In our test set predictions, the estimators
show an overall R2 score of 99.02% and 97.00% for all data fields related to
capacitance and timing, respectively. Figure 11 shows a histogram of the individual
estimators, grouped by data type. The majority achieve an R2 score of well above
95%. But there are also some worse performing estimators, especially for timing-
related information. The few worst performers are annotated in the graph and reach
an R2 score of 74–83%. The estimator names represent the position of the data field
in the hierarchical structure of the library file.

A look at the estimator’s learning curves gives us an insight into the reason for
their performance. For the vast majority of estimators, the learning curve looks very
similar. We picked a representative curve in Fig. 12a. It shows that the estimator
model (after selection of hyperparameters) is suited to fit the training set (red curve)
and that the number of training samples is big enough for the model to generalize
well (green curve). For most of the weaker estimators, the learning curve indicates
that the selected estimator model is not perfectly fitting the training data (Fig. 12b,

The Vital Role of Machine Learning in Developing Emerging Technologies 49

0

10

20

30

40
O
cc
ur
re
nc
es Capacitances (71 estimators)

70% 75% 80% 85% 90% 95% 100%
0

20

40

60

80

OR
2_X

1.Z
.A2

.ris
e_t

ran
siti

on

XO
R2

_X
1.Z

.A1
.fal

l_tr
ans

itio
n

XO
R2

_X
1.Z

.A2
.ris

e_t
ran

siti
on

XN
OR

2_X
1.Z

N.A
1.ri

se_
tran

siti
on

AN
D2

_X
2.Z

.A2
.ris

e_t
ran

siti
on

2 score

O
cc
ur
re
nc
es

Timings (300 estimators)

Fig. 11 Histogram of estimator accuracies. Each estimator is responsible to predict the values for
a certain data field, i.e., combination of cell, pin(s), type, and timing arc. The few worst estimators
and their appearances are annotated in the graph

c). In Fig. 12d, the plot suggests that more training samples could have improved
that estimator slightly.

6.2 Accuracy of Prediction on System Level

After we observed the prediction accuracy for individual estimators, we want to
see how the accuracy scales to the system level. Later, we use STA timing results
to optimize our parameters in DTCO; thus, predicted libraries should perform well
when being used in STA.

To evaluate system-level accuracy, we generate STA timing reports from pre-
dicted libraries, as well as from validation libraries build with the same parameters,
and compare the path delays. With multiple paths per timing report, we can
calculate an R2 score the same way it is done for estimators. To make sure that our
observations are general enough, we evaluate the STA performance on 11 different
circuits. In Fig. 13, 10 path delays are reported for each set of parameters in the test
set and for each circuit. We can see that the prediction accuracy is similar for all
circuits.

The parameter ranges we select in Table 5 are not uniformly distributed; thus, we
expect to experience different accuracies for certain regions in the ML models. In
Fig. 14, we look again at STA accuracies for different circuits but in dependence of
the parameter VDD . We can observe that the accuracy drops at 0.7 V, which is also
a gap in our selection of parameter values. Also smaller circuits are more impacted,
with adder8dw dropping below an R2 score of 80%.

50 V. M. van Santen et al.

1.0

0.5

0.0
100 200 300

Training size

(a) Average learning curve

Training
CV score

R
2
 s

co
re

1.0

0.5

0.0
100 200 300

Training size

(b) OR2_X1.Z.A2.rise_transition

Training
CV score

R
2
 s

co
re

1.0

0.5

0.0
100 200 300

Training size

(c) XOR2_X1.Z.A1.fall_transition (d) AND2_X2.Z.A2.rise_transition

Training
CV score

R
2
 s

co
re

1.0

0.5

0.0
100 200 300

Training size

Training
CV score

R
2
 s

co
re

Fig. 12 Comparison of learning curves for different estimators. Each graph shows the devel-
opment of R2 score for the training set (red) and the cross-validation set (green) after training
with a certain number of samples. Figure 12a shows NAND3_X1.ZN.A3.negative_unate.cell_fall
as an average representative for the vast majority of learning curves among estimators. (a)
Average learning curve. (b) OR2_X1.Z.A2.rise_transition. (c) XOR2_X1.Z.A1.fall_transition. (d)
AND2_X2.Z.A2.rise_transition

add
er8

dw

add
er1

6d
w

div
ide

r16
_8
dw

fp_
add

32
dw

fp_
mu

lt3
2d
w

ma
c16

dw

mu
lt8
dw

mu
lt1
6d
w

sqr
t16

dw

squ
are

8d
w

squ
are

16
dw

96%

98%

100%

99
.1
2%

98
.8
3%

98
.7
2%

98
.1
9%

98
.7
4%

98
.8
9%

98
.9
3%

98
.9
8%

98
.9
6%

98
.9
9%

98
.9
6%

2
sc
or
e

STA critical path delay using predicted libraries

Fig. 13 Accuracy of critical path delay when using predicted libraries in STA. Test set libraries
and prediction have been used here

In general, the prediction accuracy of libraries translates well to the system level.
There is no major degradation in the R2 score for different circuits. However, similar
to the previous section, there are some regions where worse performance is to be
expected.

The Vital Role of Machine Learning in Developing Emerging Technologies 51

0.3 0.4 0.5 0.6 0.7 0.8

60%

70%

80%

90%

100%

Supply voltage [V]

2
sc
or
e

adder8dw adder16dw divider16_8dw fp_add32dw
fp_mult32dw mac16dw mult8dw mult16dw
sqrt16dw square8dw square16dw

Fig. 14 STA accuracy as in Fig. 13 but for different voltages. The impact of skipping 0.7 V in the
training parameters (see Table 5) is easy to observe

6.3 DTCO Parameter Optimization

Finally, we make use of our library prediction in the proposed DTCO workflow for
automatic parameter optimization. We perform the optimization for two different
scenarios and examine the results.

For NC-FinFET, minimizing the critical path delay means maximizing the
amplification AV in the transistor channel. This is achieved by matching the
capacitance of the ferroelectric layer Cfe with the capacitance of the internal
gate Cint as closely as possible [4].

AV = ∂Vint

∂VG

= |Cfe|
|Cfe| − Cint

(2)

The optimization algorithm will implicitly search for the best amplification by
changing the ferroelectric material parameters EC , PR , and TFE in order to
minimize delay. But the gate capacitances are not only influenced by the NC-
FinFET-related parameters but also by voltage. Because of that, we expect different
optimal NC-FinFET parameters depending on VDD . For our evaluation, we consider
two scenarios with different upper limits for VDD: 0.7 V and 0.5 V. As voltage has
a big impact on the circuit delay, VDD always reaches the upper boundary during
optimization.

It is important to note that the ferroelectric parameters EC , PR , and TFE form
a Pareto-optimal space where the same performance can be achieved by multiple
combinations. For example, a doubling of EC can be negated by halving TFE at the
same time, resulting in the same delay. Due to this behavior, there are an arbitrary

52 V. M. van Santen et al.

number of combinations for optimal performance, although not each combination
would result in a valid configuration. This can also be observed directly in the
transistor model implementation [22] and also in other papers investigating NC-
FinFET parameters [26].

Critical path delay ∝ PR

EC × TFE

(3)

To prevent arbitrary looking results and make comparison easier, we want to
lay our focus only on one transistor parameter: TFE . Therefore, we build a custom
objective function for the optimization algorithm that taxes the change in PR and
EC compared to the baseline configuration [13]. So on top of the delay function that
we seek to minimize, we add penalties for two out of three parameters. As a result,
the optimization algorithm will try to express the optimal parameters by changing
TFE rather than EC or PR . Looking back at Fig. 2, our performance metric of the
optimization is implemented through this custom objective function.

For a set of parameters x, the custom objective function for minimization is

Objective(x) = Delay(x)×
(

1+
∑

Penaltyp(x)
)

(4)

with a penalty for each parameter p ∈ {PR,EC} defined as

Penaltyp(x) = α ×
(

T argetp − xp

Maxp −Minp

)2

(5)

where T argetp is the value to match (the calibrated model value), and α controls
how strongly the target value is enforced. The parameter targets are given as
T argetPR

= 14.83 and T argetEC
= 125.59 in the baseline reference.

With this objective function, we perform parameter optimization for each circuit
individually. We set the upper limit for VDD as a constraint function, alongside the
Boundary Classifier constraint that ensures we end up with a result within a well-
defined parameter space. To avoid getting stuck in local minima, each optimization
is repeated 10 times with different, random starting points.

We perform the first optimization with an upper limit for VDD = 0.7 V. The
outcome of the optimization for each circuit is shown in Table 6. The discovered,
optimal parameters are listed in the left columns, whereas the right column shows
the value of the objective function at that point. Since the algorithm tries to keep
the penalties low, this value is close to the predicted critical path delay. As VDD

has a high impact on the circuit delay, we find VDD at the upper boundary for
all circuits. Due to the added penalties, EC and PR are close to the values of the
calibrated baseline. The biggest difference can be observed in TFE (highlighted in
Table 6), changing roughly 0.8 nm between adder16dw and fp_add32dw. Figure 15
shows the critical path delay of the baseline configuration compared to the delay at
the discovered optimal parameters. We can see that we are able to obtain a faster
configuration for each circuit, compared to the baseline. However, we can also see

The Vital Role of Machine Learning in Developing Emerging Technologies 53

Table 6 Optimization results, iteratively searching from 10 random starting points for each circuit

Explored optimal parameters

Circuit EC PR TFE VDD Objective(x)

adder8dw 133.3 14.03 4.548 0.7 0.05761

adder16dw 129.5 14.34 4.870 0.7 0.08224

divider16_8dw 128.9 14.37 4.408 0.7 0.49150

fp_add32dw 128.0 14.40 4.148 0.7 0.84740

fp_mult32dw 128.8 14.33 4.525 0.7 0.42450

mac16dw 129.1 14.34 4.493 0.7 0.26450

mult8dw 126.3 14.41 4.310 0.7 0.18030

mult16dw 126.9 14.45 4.388 0.7 0.29600

sqrt16dw 126.8 14.44 4.509 0.7 0.21340

square8dw 131.0 14.24 4.523 0.7 0.13280

square16dw 126.9 14.43 4.524 0.7 0.21340

Using custom objective function with α = 10 and upper limit of VDD = 0.7 V

0

0.5

1

0.
06
4

0.
09
3

0.
55
2

0.
97
2

0.
48
5

0.
29
8

0.
20
5 0.
33
6

0.
24
3

0.
14
7

0.
24
3

0.
05
7

0.
08
2

0.
49
1

0.
84
6

0.
42
4

0.
26
4

0.
18 0.

29
6

0.
21
3

0.
13

2

0.
21

3

0.
06 0.
08
7

0.
51
2

0.
88
3

0.
44

5

0.
27

7

0.
18

8 0.
30

9

0.
22

3

0.
13
9

0.
22

3

C
ri
tic

al
Pa
th

D
el
ay

[n
s]

7.7 nm baseline
Predicted lib. at optimum
Validation lib. at optimum

add
er8

dw

add
er1

6d
w

div
ide

r16
_8
dw

fp_
add

32
dw

fp_
mu

lt3
2d
w

ma
c16

dw

mu
lt8
dw

mu
lt1
6d
w

sqr
t16

dw

squ
are

8d
w

squ
are

16
dw

−15%

−10%

−5%

0%

−
10

.4
2%

−
11

.3
9%

−
11

.1
9%

−
12

.9
9%

−
12

.6
1%

−
11

.3
2%

−
12

.2
7%

−
12

.0
1%

−
12

.2
4%

−
10

.2
3%

−
12

.2
5%

−
5.
92

%

−
6.
15

%

−
7.
32

%

−
9.
21

%

−
8.
13

%

−
6.
82

%

−
8.
56

%

−
8.
18

%

−
8.
17

%

−
5.
78

%

−
8.
14

%

D
if
fe
re
nc
e
to

ba
se
lin

e

Predicted library Validation library

Fig. 15 Critical path delays for different circuits at 0.7 V. Using predicted libraries, the delay tends
to be always too optimistic

that the predicted delay is always too optimistic when looking at the validation
libraries for the same configuration.

The difference between prediction and validation can be explained by the behav-
ior of the optimization algorithm. Always trying to find the minimal configuration
has two effects. Firstly, from all variations in the accuracy, we always tend to see the
optimistic side. A pessimistic outlier is unlikely to show up because it will always
have a higher output in the objective function. Secondly, the biggest outliers are the

54 V. M. van Santen et al.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Optimistic outlier

Testset Index

C
ri
tic

al
Pa
th

D
el
ay

[n
s]

Validation library Predicted library

Fig. 16 Critical path delay on all configurations in the test set. Although the calculated R2 score
is high, the impact of outliers overshadow the result during automatic parameter optimization

most likely to be picked, if they are close enough to the optimum. Thus, we perceive
a worse accuracy of the prediction compared to the previous section. The problem
is visualized again in Fig. 16. Here, we see the critical path delay for all parameter
configurations from the test set. Although the overall determination looks good at
first glance, and the R2 score is high (see Fig. 13), we can also see outliers that can
become dominant in the parameter optimization.

6.4 Improvement in Performance

Technically, the proposed parameter optimization does not require ML to work.
One could also generate libraries in the traditional way, for each point along the
optimization process. However, ML is needed to make the approach feasible for
extensive explorations.

For each iteration in the optimization algorithm, the gradient of the objective
function is approximated by sampling the function with a small delta in each
dimension. Thus, the total number of function evaluations for one optimization run
is

Nevaluation ≈ Niteration × (1+Nparameter) (6)

In our evaluation scenarios, we observed an average iteration count of 17.82 per
optimization run. With 4 parameters to explore and 10 runs per circuit, we predicted
roughly 900 libraries per circuit. (Note that although the libraries are not circuit-
specific, the search path of the optimization algorithm is different, thus more
libraries need to be generated.)

Looking at the 875 sample libraries that have been generated for training, the
proposed approach pays off right after the first optimization. The generation of
sample libraries took about 2 weeks on a 6th-generation Intel Core i7 with 32 GB

The Vital Role of Machine Learning in Developing Emerging Technologies 55

of memory. For the experiments demonstrated in this work, we predicted roughly
20,000 libraries. The prediction of a single library is done in a split second; however,
library compilation and STA can take up to a minute (depending on the circuit)
which makes one optimization take about a few hours for all circuits.

For many experiments and more thorough investigations, the proposed approach
would become infeasible very quickly, without the use of machine learning.

7 Conclusion

In this work, we presented two ML approaches. The first transistor-level approach
that is able to learn FinFET transfer curves with high accuracy specific to selected
transistor characteristics. Without any changes to the NN, it is also able to learn
emerging NC-FinFET, although extra complexity is added due to the negative DIBL
effect. This hints at the chance that more emerging technologies can be estimated
with ML techniques, serving as an intermediate solution until sophisticated compact
models are developed.

An ML solution can not only be developed in shorter time frames than the
traditional compact model, it is also easier to share with others. Due to the black-box
characteristics of the NN, the extraction of technology details is impractical or even
impossible. With these benefits at hand, ML provides a great opportunity to speed
up technology development, achieving faster time-to-market, and increase customer
acceptance due to easier access.

Additionally, our second cell-level approach for cell library generation enables
thorough design space exploration with increased accessibility for a wider audience
of circuit designers.

Evaluating the timing-related performance, the ML approach reaches an R2 score
of about 98% for individual library values as well as on system level. In the DTCO
flow, the perceived accuracy drops as outliers are more likely to be interpreted as
good configurations. Nevertheless, our approach was able to find a set of parameters
resulting in a faster configuration in all tests.

Acknowledgements We want to thank Yogesh S. Chauhan for the NCFET Model and Jannik
Prinz for the implementation of the ML transistor modeling.

References

1. Agarwal, H., Kushwaha, P., Duarte, J.P., Lin, Y.K., Sachid, A.B., Chang, H.L., Salahuddin, S.,
Hu, C.: Designing 0.5 v 5-nm hp and 0.23 v 5-nm lp nc-finfets with improved iOFF sensitivity
in presence of parasitic capacitance. IEEE Trans. Electron Devices 65(3), 1211–1216 (2018)

2. Agarwal, H., Kushwaha, P., Lin, Y.K., Kao, M.Y., Liao, Y.H., Duarte, J.P., Salahuddin, S., Hu,
C.: Ncfet design considering maximum interface electric field. IEEE Electron Device Lett.
39(8), 1254–1257 (2018)

56 V. M. van Santen et al.

3. Amrouch, H., Pahwa, G., Gaidhane, A.D., Henkel, J., Chauhan, Y.S.: Negative capacitance
transistor to address the fundamental limitations in technology scaling: processor performance.
IEEE Access 6, 52754–52765 (2018)

4. Amrouch, H., Salamin, S., Pahwa, G., Gaidhane, A.D., Henkel, J., Chauhan, Y.S.: Unveiling
the impact of ir-drop on performance gain in ncfet-based processors. IEEE Trans. Electron
Devices 66(7), 3215–3223 (2019)

5. Amrouch, H., Pahwa, G., Gaidhane, A.D., Dabhi, C.K., Klemme, F., Prakash, O., Chauhan,
Y.S.: Impact of variability on processor performance in negative capacitance finfet technology.
IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3127–3137 (2020)

6. Bansal, M., Kaur, H.: Analysis of negative-capacitance germanium finfet with the presence of
fixed trap charges. IEEE Trans. Electron Devices 66(4), 1979–1984 (2019)

7. Buhrmester, V., Münch, D., Arens, M.: Analysis of explainers of black box deep neural
networks for computer vision: A survey. arXiv preprint arXiv:1911.12116 (2019)

8. Ceyhan, A., Quijas, J., Jain, S., Liu, H.Y., Gifford, W., Chakravarty, S.: Machine learning-
enhanced multi-dimensional co-optimization of sub-10nm technology node options. In:
Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), pp. 36–6.
IEEE, New York (2019)

9. Chauhan, Y.S., Venugopalan, S., Karim, M.A., Khandelwal, S., Paydavosi, N., Thakur,
P., Niknejad, A.M., Hu, C.C.: Bsim–industry standard compact mosfet models. In: 2012
Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 46–
49. IEEE, New York (2012)

10. Dunga, M.V., Lin, C.H., Niknejad, A.M., Hu, C.: BSIM-CMG: A compact model for multi-gate
transistors. In: Proceedings of the FinFETs and Other Multi-Gate Transistors, pp. 113–153.
Springer, Berlin (2008)

11. Ha, D., Yang, C., Lee, J., Lee, S., Lee, S., Seo, K.I., Oh, H., Hwang, E., Do, S., Park, S., et al.:
Highly manufacturable 7nm FinFET technology featuring EUV lithography for low power and
high performance applications. In: Proceedings of the 2017 Symposium on VLSI Technology,
pp. T68–T69. IEEE, New York (2017)

12. Hoffmann, M., Pešić, M., Slesazeck, S., Schroeder, U., Mikolajick, T.: Modeling and design
considerations for negative capacitance field-effect transistors. In: Proceedings of the 2017
Joint International EUROSOI Workshop and International Conference on Ultimate Integration
on Silicon (EUROSOI-ULIS), pp. 1–4. IEEE, New York (2017)

13. Hoffmann, M., Fengler, F.P., Herzig, M., Mittmann, T., Max, B., Schroeder, U., Negrea, R.,
Lucian, P., Slesazeck, S., Mikolajick, T.: Unveiling the double-well energy landscape in a
ferroelectric layer. Nature 565(7740), 464–467 (2019)

14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001).
http://www.scipy.org/

15. Kraft, D., Schnepper, K.: SLSQP—a nonlinear programming method with quadratic program-
ming subproblems. DLR, Oberpfaffenhofen (1989)

16. Lamamra, K., Berrah, S.: Modeling of mosfet transistor by mlp neural networks. In: Proceed-
ings of the International Conference on Electrical Engineering and Control Applications, pp.
407–415. Springer, Berlin (2016)

17. Li, X., Sampson, J., Khan, A., Ma, K., George, S., Aziz, A., Gupta, S.K., Salahuddin, S.,
Chang, M.F., Datta, S., et al.: Enabling energy-efficient nonvolatile computing with negative
capacitance fet. IEEE Trans. Electron Devices 64(8), 3452–3458 (2017)

18. Lin, Y.K., Agarwal, H., Kao, M.Y., Zhou, J., Liao, Y.H., Dasgupta, A., Kushwaha, P.,
Salahuddin, S., Hu, C.: Spacer engineering in negative capacitance finfets. IEEE Electron
Device Letters 40(6), 1009–1012 (2019)

19. Meijer, P.B.L.: Neural Network Applications in Device and Subcircuit Modelling for Circuit
Simulation. Philips Electronics (1996)

20. Mishra, S., Amrouch, H., Joe, J., Dabhi, C.K., Thakor, K., Chauhan, Y.S., Henkel, J.,
Mahapatra, S.: A simulation study of nbti impact on 14-nm node finfet technology for logic
applications: Device degradation to circuit-level interaction. IEEE Trans. Electron Devices
66(1), 271–278 (2018)

http://www.scipy.org/

The Vital Role of Machine Learning in Developing Emerging Technologies 57

21. Pahwa, G., Dutta, T., Agarwal, A., Chauhan, Y.S.: Designing energy efficient and hysteresis
free negative capacitance finfet with negative dibl and 3.5 xi on using compact modeling
approach. In: Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State
Circuits Conference, pp. 49–54. IEEE, New York (2016)

22. Pahwa, G., Dutta, T., Agarwal, A., Khandelwal, S., Salahuddin, S., Hu, C., Chauhan, Y.S.:
Analysis and compact modeling of negative capacitance transistor with high on-current and
negative output differential resistance–part i: Model description. IEEE Trans. Electron Devices
63(12), 4981–4985 (2016). doi:10.1109/TED.2016.2614432

23. Pahwa, G., Dutta, T., Agarwal, A., Chauhan, Y.S.: Physical insights on negative capacitance
transistors in nonhysteresis and hysteresis regimes: Mfmis versus MFIS structures. IEEE Trans.
Electron Devices 65(3), 867–873 (2018)

24. Paydavosi, N., Venugopalan, S., Chauhan, Y.S., Duarte, J.P., Jandhyala, S., Niknejad, A.M.,
Hu, C.C.: BSIM–SPICE models enable FinFET and UTB IC designs. IEEE Access 1, 201–
215 (2013)

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

26. Pentapati, S., Perumal, R., Khandelwal, S., Khan, A.I., Lim, S.K.: Optimal ferroelectric
parameters for negative capacitance field-effect transistors based on full-chip implementations–
part ii: Scaling of the supply voltage. IEEE Trans. Electron Devices 67(1), 371–376 (2019)

27. Saeidi, A., Jazaeri, F., Bellando, F., Stolichnov, I., Enz, C.C., Ionescu, A.M.: Negative
capacitance field effect transistors; capacitance matching and non-hysteretic operation. In:
Proceedings of the 2017 47th European Solid-State Device Research Conference (ESSDERC),
pp. 78–81. IEEE, New York (2017)

28. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low
power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)

29. Sharma, A., Roy, K.: Design space exploration of hysteresis-free HFZRO x-based negative
capacitance fets. IEEE Electron Device Lett. 38(8), 1165–1167 (2017)

30. She, Y.q., Zhang, L.j., Zheng, J.b., Zhang, A.l., Zhu, Y.p., Li, Y.z.: Standard cell library
characterization of 28nm process based on machine learning. In: DEStech Transactions on
Computer Science and Engineering (CST) (2017)

31. Silvaco, Inc: Silvaco and si2 release unique, free 15nm open-source digital cell library (2019).
https://www.silvaco.com/news/pressreleases/2019_05_30_01.html

32. van Santen, V.M., Amrouch, H., Henkel, J.: New worst-case timing for standard cells under
aging effects. IEEE Trans. Device Mater. Reliab. 19(1), 149–158 (2019)

33. van Santen, V.M., Amrouch, H., Henkel, J.: Modeling and mitigating time-dependent variabil-
ity from the physical level to the circuit level. IEEE Transactions on Circuits and Systems I:
Regular Papers. 66(7), 2671–2684 (2019)

34. van Santen, V.M., et al.: Massively parallel circuit setup in GPU-SPICE. IEEE Trans. Comput.
(2020)

35. Venugopalan, S., Paydavosi, N., Duarte, J., Lu, D., Khandelwal, S., Lin, C.H., Dunga, M., Yao,
S., Niknejad, A., Hu, C.: Bsim-cmg 110 (2016). http://bsim.berkeley.edu/models/bsimcmg/

36. Wu, S.Y., Lin, C., Chiang, M., Liaw, J., Cheng, J., Yang, S., Tsai, C., Chen, P., Miyashita, T.,
Chang, C., et al.: A 7nm cmos platform technology featuring 4 th generation finfet transistors
with a 0.027 um 2 high density 6-t sram cell for mobile soc applications. In: Proceedings of the
2016 IEEE International Electron Devices Meeting (IEDM), pp. 2–6. IEEE, New York (2016)

37. Zhang, L., Chan, M.: Artificial neural network design for compact modeling of generic
transistors. J. Comput. Electron. 16(3), 825–832 (2017)

38. Zhang, Z., Wang, R., Chen, C., Huang, Q., Wang, Y., Hu, C., Wu, D., Wang, J., Huang,
R.: New-generation design-technology co-optimization (DTCO): Machine-learning assisted
modeling framework. In: Proceedings of the 2019 Silicon Nanoelectronics Workshop (SNW),
pp. 1–2. IEEE, New York (2019)

http://dx.doi.org/10.1109/TED.2016.2614432
https://www.silvaco.com/news/pressreleases/2019_05_30_01.html
http://bsim.berkeley.edu/models/bsimcmg/

Fast Optimal Synthesis of Symmetric
Index Generation Functions

Bernd Steinbach and Christian Posthoff

1 Introduction

A very basic task consists in finding an algorithm that can be used to solve a well-
specified problem. This task has been solved in [1] for the problem to find a minimal
circuit for the linear decomposition of symmetric index generation functions Sn

1 (x).
This method uses a dynamic programming approach with the target of minimal
general index generation functions. Solutions of pmin outputs yj have been found
for modules L of symmetric index generation functions Sn

1 (x) with n = 10 inputs
xi and gates with 1 ≤ t ≤ 5 inputs. The computation of pmin have been aborted for
n ≥ 10 and t ≥ 2, because the computation time was too long.

Knowing an algorithm for the given problem, a subsequent task consists in
finding improved algorithms that solves the same problem faster and facilitates to
solve larger problems of the same type. This subsequent task has been solved already
twice; first in [2] and thereafter in [3]. These repeated efforts to improve the solution
confirm the importance of the explored problem.

The branch-and-bound approach targeting only on symmetric index generation
functions suggested in [2] shorten the time to compute the known solutions and
found solutions pmin for larger problems up to n = 30 and t = 5. These problems
have been solved several orders of magnitudes faster by an approach that utilizes
symmetric properties of ZDDs in a dynamic programming algorithm suggested in

B. Steinbach (�)
Institute of Computer Science, Freiberg University of Mining and Technology, Freiberg, Germany
e-mail: steinb@informatik.tu-freiberg.de

C. Posthoff
Department of Computing and Information Technology, The University of the West Indies,
St. Augustine, Trinidad & Tobago
e-mail: christian@posthoff.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_3&domain=pdf
mailto:steinb@informatik.tu-freiberg.de
mailto:christian@posthoff.de
https://doi.org/10.1007/978-3-030-68071-8_3

60 B. Steinbach and C. Posthoff

Table 1 Computation time of know methods for Sn
1 (x) (data taken from [3])

Computation time in seconds for the solutions in

Inputs n Gate-inputs t Outputs pmin [1] (2018) [2] (2019) [3] (2020)

10 1 9 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

10 2 6 0.10 ∗ < 0.01 ∗ < 0.01

10 3 5 0.18 ∗ < 0.01 ∗ < 0.01

10 4 4 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

10 5 4 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

20 1 19 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

20 2 13 † 0.03 ∗ < 0.01

20 3 10 † 0.53 ∗ < 0.01

20 4 8 † 1.92 ∗ < 0.01

20 5 7 † 2.78 ∗ < 0.01

30 1 29 ∗ < 0.01 ∗ < 0.01 ∗ < 0.01

30 2 20 † 0.26 ∗ < 0.01

30 3 15 † 9.19 ∗ < 0.01

30 4 12 † 127.85 0.01

30 5 10 † 769.06 0.01

∗ < 0.01 means that the computation time is less than 0.01 s.
† means that the computation has been aborted since it was too long.

[3]. Table 1 summarizes the known results for such small problems; the data shown
in this table have been taken from [3].

Problems up to n = 80 and t = 5 could be solved by the strongly improved
approach of [3]; however, the needed computation time reveals that the computation
time of this algorithm also increases exponentially with both the number n of inputs
x and the number t of inputs of the gates of the module L.

Table 2 summarizes the known results for larger problems; the data shown in this
table have been also taken from [3].

A faster heuristic approach is also provided in [3]; this approach finds in some
case the minimal number pmin of outputs y; but in some cases, up to six additional
outputs are computed. We focus in this chapter to exact minimal results of pmin and
skip therefore any heuristic approach.

The challenge of this chapter is the improvement of the approaches that are
already improved two times; that means, we try to solve the same problems faster
and try to find solutions pmin for larger values n of inputs x and larger values t of
inputs of the gates used in the module L.

The rest of this chapter is structured as follows. Section 2 provides the used
definitions and a fundamental Lemma. Section 3 utilizes the theorem of the
orthogonality to reduce the cost of the circuit by substitutions of the used gates.
Both the task to solve and our used approach are specified in Sect. 4. The core
of this chapter is a detailed analysis of the reverse task to solve in Sect. 5. The
results found in Sect. 5 are used in Sect. 6 to specify algorithms that compute either

Fast Optimal Synthesis of Symmetric Index Generation Functions 61

Table 2 The so far best
method for Sn

1 (x) (data taken
from [3])

Inputs Gate-inputs Outputs
Computation time in
seconds for the

n t pmin Solutions in [3] (2020)

40 1 39 ∗ < 0.01

40 2 26 ∗ < 0.01

40 3 20 0.01

40 4 16 0.07

40 5 13 0.18

50 1 49 ∗ < 0.01

50 2 33 0.01

50 3 25 0.03

50 4 20 0.24

50 5 17 1.01

60 1 59 ∗ < 0.01

60 2 40 0.01

60 3 30 0.06

60 4 24 0.63

60 5 20 3.50

70 1 69 ∗ < 0.01

70 2 46 0.02

70 3 35 0.13

70 4 28 1.39

70 5 23 9.67

80 1 79 ∗ < 0.01

80 2 53 0.02

80 3 40 0.22

80 4 32 2.72

80 5 27 1731.25

∗ < 0.01 means that the computation time is less than 0.01
s.

pmin = hmin(n, t) or nmax = rmax(p, t). Experimental results are provided in Sect. 7
before we conclude the results and specify some future work in Sect. 8.

2 Preliminaries

To be compatible with [1, 3, 5], we provide analogous basic definitions.

Definition 1 (Index Generation Function, Registered Vectors, Indices, Weight)
An index generation function f (x) is a multiple-valued function, where x is a tuple
of n binary variables (x1, x2, . . . , xn), and k assignments of values to these binary
variables map to K = {1, 2, . . . , k}. Hence, the variables of f are binary-valued,
while f is k-valued. There is a one-to-one relationship between the k assignments

62 B. Steinbach and C. Posthoff

of values to (x1, x2, . . . , xn) and K; the other assignments are not specified. The
k assignments of values to (x1, x2, . . . , xn) are called the registered vectors. K

is called the set of indices. k = |K| is called the weight of the index generation
function f .

Definition 2 (Characteristic Function) The characteristic function χ of an index
generation function f (x) is the logic function: {0, 1}n→ {0, 1} defined as

χ(x) =
{

1 if f (x) ∈ K

0 otherwise .

We focus in this chapter to a special subset of index generation function for which
the main definitions are provided next.

Definition 3 (Symmetric Function) A logic function S(x) that satisfies

S(x1, x2, . . . , xi, . . . , xj , . . . xn) = S(x1, x2, . . . , xj , . . . , xi, . . . xn)

∀xi, xj ∈ x is called a symmetric function; hence, the number of assignment of
values 1 to (x1, x2, . . . , xn) decides about the value of this function.

Definition 4 (Elementary Symmetric Function) An elementary symmetric func-
tion Sn

m(x) is a special case of a symmetric function S(x). Sn
m(x) depends on n

variables x = (x1, x2, . . . , xn) and is equal to 1 when values 1 are assigned to m of
these variables.

Definition 5 (Symmetric Index Generation Function) Let χ(x1, x2, . . . , xn) be
a characteristic function of an index generation function f . When χ is symmetric
then f is a symmetric index generation function.

The explored symmetric index generation functions, which are explored in [3],
have been restricted twice:

1. Only index generation functions χ(x1, x2, . . . , xn) of elementary symmetric
function Sn

m(x) are considered.
2. Out of the elementary symmetric function Sn

m(x), only Sn
1 (x) has been explored

in detail.

For comparison we use the same restrictions in this chapter.
The optimal realization of symmetric index generation functions Sn

1 (x) is
strongly related to binomial coefficients. A central role for this synthesis has:

Lemma 1 All integer k ≥ 2 satisfy:

1 ·
(

k

1

)
+ 2 ·

(
k

2

)
= k2 . (1)

Fast Optimal Synthesis of Symmetric Index Generation Functions 63

Proof

1 ·
(

k

1

)
+ 2 ·

(
k

2

)
= 1 · k!

1! · (k − 1)! +
2 · k!

2! · (k − 2)! =
k!

(k − 1)! +
k!

(k − 2)!
= k + (k − 1) · k = k · (1+ k − 1) = k · k = k2 . �

3 Linearity, Orthogonality, and Circuit Structures

The linear decomposition of an index generation function has been suggested in [6].
Figure 1 shows the general circuit structure of such a linear decomposition.

The following definition specifies a linear decomposition used in [3] to realize a
circuit of a symmetric index generation function.

Definition 6 (Linear Decomposition) A linear decomposition of an index genera-
tion function f (x1, x2, . . . , xn) realizes f using a function g(y1, y2, . . . , yp) storing
indices and linear functions yi :

yi(x1, x2, . . . , xn) = ai1x1 ⊕ ai2x2 ⊕ · · · ⊕ ainxn , (2)

where aij ∈ {0, 1}, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n}, and, for all registered
vectors of the index generation function, the following holds:

f (x1, x2, . . . , xn) = g(y1, y2, . . . , yp) .

The module L can be realized using EXOR-gates, because the functions yi(x)

satisfy Eq. (2). A (2p × q)-bit memory has been suggested in [3] as implementation
of the module G.

Example 1 Here we show the very simple example of a symmetric index generation
function that has similarly been provided in [3]. Table 3a depicts the 4-variable
symmetric index generation function S4

1(x) with the weight four. This function can
be decomposed into two linear functions (we differently selected the variables to be
conform with the rest of this chapter):

y1 = x2 ⊕ x4 ,

y2 = x3 ⊕ x4 .

The function g(y1, y2) is shown in Table 3b.

Fig. 1 Linear decomposition
of index generation functions
[6]

L G

x1
x2
...

xn

y1

y2
...

yp

f
q

64 B. Steinbach and C. Posthoff

Table 3 Symmetric index
generation function: (a)
S4

1 (x), (b) function g(y1, y2)

storing the indices of the
linear decomposition of S4

1 (x)

a
Registered vectors Indices of

x1 x2 x3 x4 S4
1 (x)

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 4

b
y2 y1 g

0 0 1

0 1 2

1 0 3

1 1 4

x1 x2 = 0
x1 x3 = 0
x1 x4 = 0
x2 x3 = 0
x2 x4 = 0
x3 x4 = 0b

y1

y2

x2

x1 not used

x3

x4a

y1

y2

x2

x1 not used

x3

x4c

Fig. 2 Utilization of the orthogonality to realize the functions y1(x) and y2(x) of the symmetric
function S4

1 (x) of the module L: (a) circuit using EXOR-gates, (b) restrictions satisfied by S4
1 (x),

(c) circuit using OR-gates

It should be emphasized that in this function input values other than (1000),
(0100), (0010), and (0001) are NOT assigned to any function values.

Each registered vectors of Sn
1 (x) contains only one single value 1; hence, these

vectors satisfy the following:

Theorem 1 (Orthogonality [4]) If the conjunctions Ci satisfy

∀ i �= j : Ci ∧ Cj = 0

then

∨

i

Ci =
⊕

i

Ci .

The linear decomposition used in Example 1 of S4
1(x1, x2, x3, x4) leads to the

circuit structure of the module L shown in Fig. 2a. The variables x1, . . . , x4 satisfy
the condition of Theorem 1 (see Fig. 2b). Hence, the EXOR-gates in the circuit
structure of symmetric index generation functions S4

1(x) can be replaced by OR-
gates as shown in Fig. 2c. These substitutions reduce the cost of the circuit, but do
not change the connection structure of the circuit.

The replacement of EXOR-gates by OR-gates is not restricted to circuits of
S4

1(x1, x2, x3, x4), but can be used for all elementary symmetric functions Sn
1 (x)

in the module L.

Fast Optimal Synthesis of Symmetric Index Generation Functions 65

4 The Task to Solve and the Used Approach

The task to solve is determined by three integers that specify the module L of
Fig. 1:

• n: the number of input variables xi

• p: the number of output variables yj

• t : the number of input variables of the gates in the module L

For easy comparison, we use the same names of variables as introduced in [3] where
t has been defined by the less clear term compound degree.

The task to solve is:

pmin = hmin(n, t) . (3)

That means, we are going to find the minimal number pmin of outputs yj of the
module L for elementary symmetric functions Sn

1 (x) depending on n input variables
xi , where each output yj is created using an EXOR-gate (or better a simpler OR-
gate) that has t inputs.

The efforts to solve this task using heuristics [3], exact solutions based on a
dynamic programming approach [2], a branch-and-bound approach [1], or the much
faster partition based approach [3] show that it is difficult to solve this task directly.
Even the fastest approach of [3] has an exponential complexity.

Therefore, we are going to use a two-step approach:

1. Solve the reverse task:

nmax = rmax(p, t) ; (4)

2. Determine pmin using the results of the first subtask:

pmin = h′min(n, t) . (5)

5 Analysis of the Properties of the Reverse Task

The reverse task consists in finding the maximal number of inputs xi of the module
L such that elementary symmetric functions Sn

1 (x) can be expressed by p outputs
yj using OR-gates (or EXOR-gates) of t inputs. It requires a deep analysis to find
the function nmax = rmax(p, t). In this section, we provide a sequence analysis step
(structured by the following subsections) which result finally in a formula for the
function rmax(p, t).

66 B. Steinbach and C. Posthoff

x2

x1 not used

y1

a

x2

x1 not used

x3

y1

y2

b

x2

x1 not used

x3

x4

y1

y2

y3

c

x2

x1 not used

x3

x4

x5

y1

y2

y3

y4

d

Fig. 3 Circuit structures for the trivial case of t = 1: (a) p = 1, (b) p = 2, (c) p = 3, and
(d) p = 4

5.1 Trivial Solution for t = 1

The value t = 1 determines that the gates of the module L have only a single input;
hence, these gates can be omitted and simply replaced by wires.

The input pattern x1 = 1 and xi = 0 for all i �= 1 can be represented by yj = 0
for all 1 ≤ j ≤ i − 1. The other input patterns have a single value 1 for xi with
i > 1; all other inputs are equal to 0. These patterns can be represented by yj−i = 1
and values 0 for all other yj . Hence, we get

nmax = rmax(p, 1) = p + 1 . (6)

Figure 3 shows the circuits of modules L for p = 1, . . . , 4 outputs yi in which
the OR-gates are replaced by wires due to the restriction of their inputs to t = 1.

5.2 Smallest Optimal Circuits L for a Fixed Value of t

Generally, the input pattern x = (x1, x2, x3, . . . , xn) = (100 . . . 0) can be mapped
to y = (y1, y2, y3, . . . , yp) = (000 . . . 0); hence, no connection between the input
x1 and any input of the gates of the module L is needed for this case. Figure 4 shows
this property by the input x1 that is not connected with any gate of the circuit.

Figure 4 shows furthermore that the inputs x2 to xp+1 can be connected to the
first input of the p gates.

Consequently, p · (t − 1) inputs remain on the gates of the module L which can
be used to uniquely encode further inputs xi with i > p + 1. These inputs must be
connected with inputs of at least two gates, because all output patterns y with exactly
one value 1 have been already used to encode the inputs x2 = 1, . . . , xp+1 = 1. The
number n of all inputs xi is maximal when the inputs xi with i > p+1 are connected
with a minimal number of inputs of the gates in the module L, i.e., these inputs xi

are connected with exactly two inputs of two different gates.

Definition 7 (Smallest Optimal Number pso of Gates in the Module L) A circuit
of the module L with the smallest optimal number pso of gates utilizes all pso · t

Fast Optimal Synthesis of Symmetric Index Generation Functions 67

x2

x1 not used

y1

a

y1

y2

x2

x1 not used

x3

x4

b

y1

y2

y3

x2

x1 not used

x3
x4
x5
x6
x7

c d

y1

y2

y3

y4

x2

x1 not used

x3
x4
x5

x6
x7
x8
x9
x10
x11

Fig. 4 Circuit structures of the smallest optimal number pso of gates with t inputs: (a) pso = t =
1, (b) pso = t = 2, (c) pso = t = 3, and (d) pso = t = 4

inputs of the gates such that pso inputs xi are connected to one input of different
gates (expressed by 1 · (pso

1

)
) and all

(
pso

2

)
combinations of input pairs of the gates

are used for additional inputs xi ; hence, we have:

pso · t = 1 ·
(

pso

1

)
+ 2 ·

(
pso

2

)
. (7)

Theorem 2 The smallest optimal number pso of gates in the module L is equal to
the number of inputs of the used gates:

pso = t . (8)

Proof Using Lemma 1, we get from Definition (7):

pso · t = p2
so , t = pso , pso = t . �

The maximal number of inputs nmax of a circuit L with pso = t gates is the sum
of:

• One input that is not connected with any gate (note: 1 = (pso

0

)
);

•
(
pso

1

)
inputs which are connected with only one input of pso different gates

•
(
pso

2

)
inputs which are connected with two inputs of different gates such that all

possible different combinations of gates are used

Hence, we get:

nmax = rmax(pso, t = pso) = 1+
(

pso

1

)
+
(

pso

2

)
. (9)

68 B. Steinbach and C. Posthoff

Table 4 Maximal number of
inputs nmax for the smallest
optimal number of gates pso

and the special case of t = 1

t \ p 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

2 4

3 7

4 11

5 16

6 22

7 29

8 37

9 46

10 56

Table 4 shows the so far determined maximal numbers nmax of input variables xi

which can be represented using pso gates with t = pso inputs as well as the special
case for t = 1.

Figure 4 shows the circuits for the smallest optimal number of gates pso and
t = 1, . . . , 4.

5.3 Regions of Restrictions

Several effects restrict the maximal number of inputs of the module L. There are
three regions at all:

1. 1 ≤ p ≤ log2(2 · t): the number nmax of inputs of the module L is restricted by
the maximal number of different output patterns y; in this region we have:

nmax = rmax(p, t) = 2p . (10)

2. log2(2 · t) < p < t : at least one input xi must be connected to more than two
gates of the module L; hence, p < pso; such cases occur for t ≥ 5.

3. pso = t ≤ p ≤ ∞: the number t of inputs of the gates of the module L restricts
the number of utilized combinations to

(
p
2

)
so that an optimal circuit can be built;

for that reason, we restrict ourselves to this case usable for unrestricted large
numbers of inputs nmax and realistic small numbers t of inputs of the gates of the
module L.

The limit p = log2(2 · t) that separates the first two regions results from the
binary encoding of maximal 2p code-words of the length p. An arbitrary code-word
0 ≤ i ≤ 2p and its mirrored code-word 0 ≤ (2p− i) ≤ 2p satisfy the properties that
their conjunction is equal to the binary vector 0, and their disjunction is equal to the
binary vector 1; hence, all such pairs of vectors require exactly p inputs of the gates
of the module L. The number of inputs to encode the all 2p different code-words is
therefore

Fast Optimal Synthesis of Symmetric Index Generation Functions 69

Table 5 Already determined values of the maximal number of inputs nmax and regions specified
by the maximal number of connections of any input xi with inputs of the gates of the module L

t \ p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 2 4 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
3 2 4 7 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
4 2 4 8 11 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
5 2 4 8 > 16 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
6 2 4 8 > > 22 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
7 2 4 8 > > > 29 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
8 2 4 8 16 > > > 37 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
9 2 4 8 16 > > > > 46 ≤ ≤ ≤ ≤ ≤ ≤ ≤
10 2 4 8 16 > > > > > 56 ≤ ≤ ≤ ≤ ≤ ≤

>: region 2 determined by log2(2 · t) < p < t ; connections of at least one input xi with more than
two inputs (>2) of the gates of the module L are needed
≤: region 3 determined by pso = t ≤ p ≤ ∞; all inputs xi are connected with maximal two inputs

(≤2) of the gates of the module L

p · 2p

2

and the number of inputs of p gates is equal to p · t . Hence, the explored limit is
determined by

p · 2p

2
= p · t

2p

2
= t

2p = 2 · t
p = log2(2 · t) .

Table 5 shows the determined three regions by:

• Region 1: values 2p on the left-hand side
• Region 2: symbols > which indicate that at least one input xi must be connected

with more than two inputs of the gates of the module L

• Region 3: already determined values nmax and symbols ≤ which indicate that all
inputs xi are connected with not more than two inputs of the gates of the module
L

In the remaining part of this chapter, we are going to explore only the region 3
specified by pso = t ≤ p ≤ ∞.

70 B. Steinbach and C. Posthoff

5.4 Repeated Use of the Smallest Optimal Circuits

The numbers of inputs and outputs of the module L can be increased without any
restrictions when the smallest optimal circuit is used several times. The maximal
number of inputs nmax is:

nmax = rmax(p = k · pso, t = pso) = 1+ k ·
((

pso

1

)
+
(

pso

2

))
, (11)

where k specifies how often the smallest optimal circuit has been used. It does not
exist another circuit with more than nmax inputs xi specified in (11), because all
k · pso · t inputs of the k · pso gates are used.

Figure 5 shows the circuits for t = 1, . . . , 4 in which the circuit with the smallest
optimal number of gates pso has been used k = 2 times.

Table 6 summarizes the maximal numbers nmax determined by (6), (9), and (11).
It remains the task to determine the numbers nmax missing in Table 6 for p > t .

In our detailed exploration, we noticed different results of this task for odd and even
numbers of t ; hence, we split our analysis for these two cases.

x2

x1

x3

not used

y1

y2

a

y1

y2

x2

x3

x4

x1 not used

y3

y4

x5

x6

x7

b

y1

y2

y3

x2
x3
x4
x5
x6
x7

x1 not used

y4

y5

y6

x8

x9
x10
x11
x12
x13

c

y1

y2

y3

y4

x2

x3
x4
x5

x6
x7
x8
x9
x10
x11

x1 not used

y5

y6

y7

y8

x12

x13
x14
x15

x16
x17
x18
x19
x20
x21

d

Fig. 5 Circuit structures that use two times the smallest optimal number pso of gates with t inputs:
(a) pso = t = 1, (b) pso = t = 2, (c) pso = t = 3, and (d) pso = t = 4

Fast Optimal Synthesis of Symmetric Index Generation Functions 71

Table 6 Maximal number of inputs nmax for repeated k smallest optimal circuits

t \ p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2 4 7 10 13 16 19 22 25 28 31 34 37

3 7 13 19 25 31 37 43 49

4 11 21 31 41 51 61

5 16 31 46 61 76

6 22 43 64 85

7 29 57 85

8 37 73 109

9 46 91

10 56 111

5.5 Missing Values nmax for Odd Values of t

An odd integer t > 1 can be expressed by

t = 1+ l · 2 ,

where l is a positive integer that is larger or equal to 1. Adding one gate with an odd
number t of inputs to a smallest optimal circuit of the module L leads to t additional
inputs on this gate which can be used as follows:

• One input of this gate is connected to an input xi that is used only once
• l additional inputs xi can be connected to two inputs of the gates such that

different gates are used

Hence, nmax increases by 1+ l additional inputs xi when p is increased by one gate
with an odd number of inputs. The value 1+l of additional inputs xi can alternatively
be expressed by:

1+ l = 1+ t − 1

2

= t + 1

2

due to the definition of an odd integer given above.
The maximal number nmax of a module L consisting of k · pso + d gates with an

odd number t of inputs is:

nmax = rmax(p = k · pso + d, t = pso)

= 1+ k ·
((

pso

1

)
+
(

pso

2

))
+ d · t + 1

2
, (12)

where 0 < d < t .

72 B. Steinbach and C. Posthoff

y1

y2

y3

y4

x2
x3
x4
x5
x6

x7
x8

x9

x1 not used

a

y1

y2

y3

y4

y5

x2
x3
x4
x5
x6
x7
x8

x9
x10

x11

x1 not used

b

Fig. 6 Circuit structures for modules L of pso < p < 2 · pso gates with t = 3 inputs: (a) p = 4,
nmax = 9, and (b) p = 5, nmax = 11

Figure 6 shows the circuit structure of the two circuits with pso < p < 2 · pso

for gates with three inputs.
The missing values of nmax must be determined only for one interval between two

repeated used smallest optimal circuits; the constructed circuits with p �= k ·pso can
be combined with k circuits of pso inputs.

5.6 Missing Values nmax for Even Values of t

An even integer t > 1 can be expressed by

t = l · 2 ,

where l is a positive integer that is larger or equal to 1. We know from the previous
analysis that odd numbers of t utilize all inputs of each additional gate; hence, for an
even number of t and an odd number of p, one input of the additional gate remains
unused.

Adding one gate with an even number t of inputs to a smallest optimal circuit
(pso is even) or to a larger circuit with an even number of p of the module L leads
to t additional inputs on this gate which can be used as follows:

• One input of this gate is connected to an input xi that is used only once
• l − 1 additional inputs xi can be connected to two inputs of the gates such that

different gates are used

Hence, nmax increases by 1 + (l − 1) = l additional inputs xi when p is increased
by one gate with an even number of inputs to an even number p.

Fast Optimal Synthesis of Symmetric Index Generation Functions 73

The unused input of the gate in the circuit of an odd number p > t and an even
number t of inputs can be utilized when one more gate of t inputs is added; the
available t + 1 inputs can be used as follows:

• One input of this gate is connected to an input xi that is used only once
• l additional inputs xi can be connected to two inputs of the gates such that

different gates are used

Hence, nmax increases by 1 + (l) = l + 1 additional inputs xi when p is increased
by one gate with an even number of inputs to an odd number p.

The maximal number nmax of a module L consisting of p = k · pso + d gates
with an even number t of inputs is:

nmax = rmax(p = k · pso + d, t = pso)

= 1+ k ·
((

pso

1

)
+
(

pso

2

))
+
⌊
d · t + 1

2

⌋
, (13)

where 0 < d < t . The pair of parentheses �v� determines the largest integer that is
smaller than or equal to the enclosed value v.

Figure 7 shows the circuit structure of the three circuits with pso < p < 2 · pso

for gates with four inputs.
As in the case of odd numbers of t , the missing values of nmax must be determined

only for one interval between two repeated used smallest optimal circuits with an

y1

y2

y3

y4

y5

x2

x3
x4
x5

x6
x7
x8
x9
x10

x11

x12
x13

x1 not used

a

y1

y2

y3

y4

y5

y6

x2

x3
x4
x5
x6
x7
x8
x9

x10

x11

x12
x13
x14
x15
x16

x1 not used

b

y1

y2

y3

y4

y5

y6

y7

x2

x3
x4
x5
x6
x7
x8
x9
x10

x11

x12

x13
x14

x15
x16
x17
x18

x1 not used

c

Fig. 7 Circuit structures for modules L of pso < p < 2 · pso gates with t = 4 inputs: (a) p = 5,
nmax = 13, (b) p = 6, nmax = 16, and (c) p = 7, nmax = 18

74 B. Steinbach and C. Posthoff

Table 7 Maximal number of inputs nmax for p ≥ t

t \ p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38

3 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

4 11 13 16 18 21 23 26 28 31 33 36 38 41 43 46 48 51 53 56 58 61 63

5 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

6 22 25 29 32 36 39 43 46 50 53 57 60 64 67 71 74 78 81 85 88

7 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

8 37 41 46 50 55 59 64 68 73 77 82 86 91 95 100 104 109 113

9 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

10 56 61 67 72 78 83 89 94 100 105 111 116 122 127 133 138

even number of t ; the constructed circuits with p �= k · pso can be combined with k

circuits of t = pso inputs.

5.7 Summary of the Analysis

Table 7 summarizes the results of the analysis of the maximal number of inputs nmax
for p ≥ t , 1 ≤ t ≤ 10, and due to the available space 1 ≤ p ≤ 25.

Equation (13) determines nmax for p ≥ t and even numbers t of inputs. This
equation can also be used for odd numbers of t of inputs, because t is an odd number
in (12), so that t+1

2 is an integer v and holds therefore v = �v�.
Using Eq. (8) of Theorem 2, we can simplify Eq. (13) furthermore:

nmax = 1+ k ·
((

pso

1

)
+
(

pso

2

))
+
⌊
d · t + 1

2

⌋

= 1+ k ·
((

t

1

)
+
(

t

2

))
+
⌊
d · t + 1

2

⌋

= 1+ k ·
(

t !
1! · (t − 1)! +

t !
2! · (t − 2)!

)
+
⌊
d · t + 1

2

⌋

= 1+ k ·
(

t + (t − 1) · t
2

)
+
⌊
d · t + 1

2

⌋

= 1+ k · 2 · t + (t − 1) · t
2

+
⌊
d · t + 1

2

⌋

= 1+ k · (t + 1) · t
2

+
⌊
d · t + 1

2

⌋
.

The product (t + 1) · t is an even number for any value of t ; hence, (t+1)·t
2 is an

integer so the whole term k · (t+1)·t
2 can be moved into the parentheses of the last

term. Using furthermore p = k · t + d, we get the universal equation for p ≥ t :

Fast Optimal Synthesis of Symmetric Index Generation Functions 75

nmax = 1+ k · t · (t + 1)

2
+
⌊
d · t + 1

2

⌋

= 1+
⌊
(k · t + d) · t + 1

2

⌋

= 1+
⌊

p · (t + 1)

2

⌋
. (14)

The maximal number nmax of inputs xi of the module L of a symmetric index
generation function Sn

1 (x) can be computed in constant time using Eq. (14) for all
positive integers p ≥ t , where p is the number of gates of the module L and t is the
number of inputs of the gates used in this module.

6 Algorithms to Compute pmin and nmax

Table 7 shows that not all values n of input variables xi belong to the set of maximal
numbers nmax for given values of p gates with t inputs. The minimal number pmin
for given values of n and t is the smallest value of p with n ≤ nmax. Algorithm 1
computes pmin = h′min(n, t) for pmin ≥ t using a simple iteration over the values
nmax determined by (14) starting with pmin = t . No additional operation is needed
to compute the smaller integer larger than or equal to the computed value in these
parentheses, because the integer division by 2 directly computes this result.

Algorithm 1 pmin = h′min(n, t): Complete iteration
Input : n: number of input variables xi of the module L for Sn

1 (x)

Input : t : number of inputs of the gates of the module L for Sn
1 (x)

Output : pmin ≥ t : minimal number of gates needed for the module L

1: pmin ← t

2: while n > ((((t + 1) ∗ pmin)/2)+ 1) do
3: pmin ← pmin + 1
4: end while

Algorithm 1 can be improved using the knowledge that uniquely
⌊

t ·(t+1)
2

⌋

additional inputs xi can be used for pso = t additional gates. This reduces the
number of iterations to a value less than t . Algorithm 2 shows this faster approach.

Algorithms 1 and 2 can be extended such that pmin will be computed for

1+
⌊

t · (t + 1)

2

⌋
≤ n ≤ nlimit and 1 ≤ t ≤ tlimit ,

76 B. Steinbach and C. Posthoff

Algorithm 2 pmin = h′min(n, t): Reduced iteration
Input : n: number of input variables xi of the module L for Sn

1 (x)

Input : t : number of inputs of the gates of the module L for Sn
1 (x)

Output : pmin ≥ t : minimal number of gates needed to realize the module L for Sn
1 (x)

1: pmin ← (n− 1)/(t ∗ (t + 1))/2)

2: while n > ((((t + 1) ∗ pmin)/2)+ 1) do
3: pmin ← pmin + 1
4: end while

where both nlimit and tlimit are arbitrarily chosen positive integers. In this case,
the values of nmax = rmax(p, t) must be computed several times. This repeated
computation of the same values nmax = rmax(p, t) can be avoided when these values
are computed once, stored in a matrix, and reused several times for the computation
of all required values pmin. Algorithm 3 computes all values nmax = rmax(p, t) for
1 ≤ t ≤ tlimit and t ≤ p ≤ plimit, and stores the results in a matrix nmax[p, t].

Algorithm 3 nmax = rmax(p, t): Reverse task
Input : plimit: wanted maximal number of gates of the module L for Sn

1 (x)

Input : tlimit: wanted maximal number of inputs of the gates of the module L for Sn
1 (x)

Output : nmax: maximal number of inputs xi that control modules L for Sn
1 (x) in the ranges 1 ≤

t ≤ tlimit and t ≤ p ≤ plimit

1: for t ← 1 to tlimit do
2: for p← t to plimit do
3: nmax[p, t] ← 1+ ((p ∗ (t + 1))/2)

4: end for
5: end for

Algorithm 4 computes all minimal values pmin of modules L for

1 ≤ t ≤ tlimit and 1+ t · (t + 1)

2
≤ n ≤ nlimit .

In the first two nested for-loop, the matrix nmax[p, t] is computed, plimit is adjusted
in line 2 to the required values of n. This matrix is used in the subsequent two nested
for-loops, where Algorithm 2 evaluates only a subset of values of the matrix.

7 Experimental Results

We implemented all four algorithms of Sect. 6 and executed in the first experiment
Algorithm 3 to solve the reverse task for modules L with 1 ≤ t ≤ tlimit = 100 inputs
of the gates and t ≤ p ≤ plimit = 1000 gates. These 95,050 values nmax have been

Fast Optimal Synthesis of Symmetric Index Generation Functions 77

Algorithm 4 pmin = h′min(n, t): Main task
Input : nlimit: wanted maximal number of inputs xi of modules L for Sn

1 (x)

Input : tlimit: wanted maximal number of inputs of the gates of modules L for Sn
1 (x)

Output : pmin: minimal number of gates of the module L for Sn
1 (x), 1 ≤ t ≤ tlimit, and 1 +⌊

t ·(t+1)
2

⌋
≤ n ≤ nlimit

1: for t ← 1 to tlimit do
2: plimit ← (nlimit − 1)/((t ∗ (t + 1))/2)

3: for p← t to plimit do
4: nmax[p, t] ← 1+ ((p ∗ (t + 1))/2)

5: end for
6: end for
7: for t ← 1 to tlimit do
8: for n← nmax[t, t] to nlimit do
9: pmin ← (n− 1)/(t ∗ (t + 1))/2)

10: while n > nmax[pmin, t] do
11: pmin ← pmin + 1
12: end while
13: end for
14: end for

computed within 0.05 ms on a PC Intel(R) Core(TM) i7-5960X CPU @ 3.00 GHz,
using only 16 MB RAM, OS Windows 10 (64-bit), programming language: C++,
and the execution environment Qt 5.14.1 with MinGW-64-bit. We executed all these
values 10,000 times to measure this short times. Table 8 shows a small part of the
values nmax computed by Algorithm 3.

Next we computed pmin(n = 80, t = 5) = 27 using Algorithms 1 and 2.
We executed each of these algorithms 1,000,000 times to measure a overall time
difference; however, the needed time for these repeated computations was smaller
than smallest measurable time interval of 1 ms. That means, we solved this task in
less than 1µs instead of almost half an hour needed for the solution of the same task
in [3].

Finally, we implemented Algorithm 4 and used this C++ program to compute
pmin = h′min(n, t). For larger values of t (inputs of the gates of the module L), less
gates are needed to encode the active input xi . Therefore, we solved this task for

1 ≤ t ≤ tlimit = 40 and 1+ t · (t + 1)

2
≤ n ≤ nlimit = 1000 .

All these 28,520 minimal numbers pmin have been computed within 1 ms. Table 9
shows a small part of the values pmin computed by Algorithm 4.

Inside of Algorithm 4, we used Algorithm 2 that needs less sweeps in the while
loop than Algorithm 1. The same results can be computed with Algorithm 4 in
which line 9 (this is also the first line of Algorithm 2) is replaced by the simpler line:
pmin ← t, taken from the first line of Algorithm 1. We noticed in this experiment
that both versions of Algorithm 4 require approximately the same time for the

78 B. Steinbach and C. Posthoff
Ta

bl
e

8
Su

bs
et

of
th

e
co

m
pu

te
d

so
lu

tio
ns

of
th

e
re

ve
rs

e
ta

sk
:n

m
ax
=

r m
ax

(p
,
t)

t
\

p
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

2
4

5
7

8
10

11
13

14
16

17
19

20
22

23
25

26
28

29
31

32
34

35
37

38
40

41
43

44
46

3
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61

4
11

13
16

18
21

23
26

28
31

33
36

38
41

43
46

48
51

53
56

58
61

63
66

68
71

73
76

5
16

19
22

25
28

31
34

37
40

43
46

49
52

55
58

61
64

67
70

73
76

79
82

85
88

91

6
22

25
29

32
36

39
43

46
50

53
57

60
64

67
71

74
78

81
85

88
92

95
99

10
2

10
6

7
29

33
37

41
45

49
53

57
61

65
69

73
77

81
85

89
93

97
10

1
10

5
10

9
11

3
11

7
12

1

8
37

41
46

50
55

59
64

68
73

77
82

86
91

95
10

0
10

4
10

9
11

3
11

8
12

2
12

7
13

1
13

6

9
46

51
56

61
66

71
76

81
86

91
96

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

10
56

61
67

72
78

83
89

94
10

0
10

5
11

1
11

6
12

2
12

7
13

3
13

8
14

4
14

9
15

5
16

0
16

6

11
67

73
79

85
91

97
10

3
10

9
11

5
12

1
12

7
13

3
13

9
14

5
15

1
15

7
16

3
16

9
17

5
18

1

12
79

85
92

98
10

5
11

1
11

8
12

4
13

1
13

7
14

4
15

0
15

7
16

3
17

0
17

6
18

3
18

9
19

6

13
92

99
10

6
11

3
12

0
12

7
13

4
14

1
14

8
15

5
16

2
16

9
17

6
18

3
19

0
19

7
20

4
21

1

14
10

6
11

3
12

1
12

8
13

6
14

3
15

1
15

8
16

6
17

3
18

1
18

8
19

6
20

3
21

1
21

8
22

6

15
12

1
12

9
13

7
14

5
15

3
16

1
16

9
17

7
18

5
19

3
20

1
20

9
21

7
22

5
23

3
24

1

16
13

7
14

5
15

4
16

2
17

1
17

9
18

8
19

6
20

5
21

3
22

2
23

0
23

9
24

7
25

6

17
15

4
16

3
17

2
18

1
19

0
19

9
20

8
21

7
22

6
23

5
24

4
25

3
26

2
27

1

18
17

2
18

1
19

1
20

0
21

0
21

9
22

9
23

8
24

8
25

7
26

7
27

6
28

6

19
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

1
30

1

20
21

1
22

1
23

2
24

2
25

3
26

3
27

4
28

4
29

5
30

5
31

6

21
23

2
24

3
25

4
26

5
27

6
28

7
29

8
30

9
32

0
33

1

22
25

4
26

5
27

7
28

8
30

0
31

1
32

3
33

4
34

6

23
27

7
28

9
30

1
31

3
32

5
33

7
34

9
36

1

24
30

1
31

3
32

6
33

8
35

1
36

3
37

6

25
32

6
33

9
35

2
36

5
37

8
39

1

26
35

2
36

5
37

9
39

2
40

6

27
37

9
39

3
40

7
42

1

28
40

7
42

1
43

6

29
43

6
45

1

30
46

6

29
43

6
45

1

30
46

6

30
46

6

Table 9 Subset of the computed solutions of the main task: pmin = h′min(n, t)

n \ t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2 1
3 2
4 3 2
5 4 3
6 5 4
7 6 4 3
8 7 5 4
9 8 6 4
10 9 6 5
11 10 7 5 4
12 11 8 6 5
13 12 8 6 5
14 13 9 7 6
15 14 10 7 6
16 15 10 8 6 5
17 16 11 8 7 6
18 17 12 9 7 6
19 18 12 9 8 6
20 19 13 10 8 7
21 20 14 10 8 7
22 21 14 11 9 7 6
23 22 15 11 9 8 7
24 23 16 12 10 8 7
25 24 16 12 10 8 7
26 25 17 13 10 9 8
27 26 18 13 11 9 8
28 27 18 14 11 9 8
29 28 19 14 12 10 8 7
30 29 20 15 12 10 9 8
31 30 20 15 12 10 9 8
32 31 21 16 13 11 9 8
33 32 22 16 13 11 10 8
34 33 22 17 14 11 10 9
35 34 23 17 14 12 10 9
36 35 24 18 14 12 10 9
37 36 24 18 15 12 11 9 8
38 37 25 19 15 13 11 10 9
39 38 26 19 16 13 11 10 9
40 39 26 20 16 13 12 10 9
41 40 27 20 16 14 12 10 9
42 41 28 21 17 14 12 11 10
43 42 28 21 17 14 12 11 10
44 43 29 22 18 15 13 11 10
45 44 30 22 18 15 13 11 10
46 45 30 23 18 15 13 12 10 9
47 46 31 23 19 16 14 12 11 10
48 47 32 24 19 16 14 12 11 10
49 48 32 24 20 16 14 12 11 10
50 49 33 25 20 17 14 13 11 10
51 50 34 25 20 17 15 13 12 10
52 51 34 26 21 17 15 13 12 11
53 52 35 26 21 18 15 13 12 11
54 53 36 27 22 18 16 14 12 11
55 54 36 27 22 18 16 14 12 11
56 55 37 28 22 19 16 14 13 11 10
57 56 38 28 23 19 16 14 13 12 11
58 57 38 29 23 19 17 15 13 12 11
59 58 39 29 24 20 17 15 13 12 11
60 59 40 30 24 20 17 15 14 12 11
61 60 40 30 24 20 18 15 14 12 11
62 61 41 31 25 21 18 16 14 13 12
63 62 42 31 25 21 18 16 14 13 12
64 63 42 32 26 21 18 16 14 13 12
65 64 43 32 26 22 19 16 15 13 12
66 65 44 33 26 22 19 17 15 13 12
67 66 44 33 27 22 19 17 15 14 12 11
68 67 45 34 27 23 20 17 15 14 13 12
69 68 46 34 28 23 20 17 16 14 13 12
70 69 46 35 28 23 20 18 16 14 13 12
71 70 47 35 28 24 20 18 16 14 13 12
72 71 48 36 29 24 21 18 16 15 13 12
73 72 48 36 29 24 21 18 16 15 14 12
74 73 49 37 30 25 21 19 17 15 14 13
75 74 50 37 30 25 22 19 17 15 14 13
76 75 50 38 30 25 22 19 17 15 14 13
77 76 51 38 31 26 22 19 17 16 14 13
78 77 52 39 31 26 22 20 18 16 14 13
79 78 52 39 32 26 23 20 18 16 15 13 12
80 79 53 40 32 27 23 20 18 16 15 14 13
81 80 54 40 32 27 23 20 18 16 15 14 13
82 81 54 41 33 27 24 21 18 17 15 14 13
83 82 55 41 33 28 24 21 19 17 15 14 13
84 83 56 42 34 28 24 21 19 17 16 14 13
85 84 56 42 34 28 24 21 19 17 16 14 13
86 85 57 43 34 29 25 22 19 17 16 15 14
87 86 58 43 35 29 25 22 20 18 16 15 14
88 87 58 44 35 29 25 22 20 18 16 15 14
89 88 59 44 36 30 26 22 20 18 16 15 14
90 89 60 45 36 30 26 23 20 18 17 15 14

n \ t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
91 90 60 45 36 30 26 23 20 18 17 15 14
92 91 61 46 37 31 26 23 21 19 17 16 14 13
93 92 62 46 37 31 27 23 21 19 17 16 15 14
94 93 62 47 38 31 27 24 21 19 17 16 15 14
95 94 63 47 38 32 27 24 21 19 18 16 15 14
96 95 64 48 38 32 28 24 22 19 18 16 15 14
97 96 64 48 39 32 28 24 22 20 18 16 15 14
98 97 65 49 39 33 28 25 22 20 18 17 15 14
99 98 66 49 40 33 28 25 22 20 18 17 16 14
100 99 66 50 40 33 29 25 22 20 18 17 16 15
101 100 67 50 40 34 29 25 23 20 19 17 16 15
102 101 68 51 41 34 29 26 23 21 19 17 16 15
103 102 68 51 41 34 30 26 23 21 19 17 16 15
104 103 69 52 42 35 30 26 23 21 19 18 16 15
105 104 70 52 42 35 30 26 24 21 19 18 16 15
106 105 70 53 42 35 30 27 24 21 20 18 17 15 14
107 106 71 53 43 36 31 27 24 22 20 18 17 16 15
108 107 72 54 43 36 31 27 24 22 20 18 17 16 15
109 108 72 54 44 36 31 27 24 22 20 18 17 16 15
110 109 73 55 44 37 32 28 25 22 20 19 17 16 15
111 110 74 55 44 37 32 28 25 22 20 19 17 16 15
112 111 74 56 45 37 32 28 25 23 21 19 18 16 15
113 112 75 56 45 38 32 28 25 23 21 19 18 16 15
114 113 76 57 46 38 33 29 26 23 21 19 18 17 16
115 114 76 57 46 38 33 29 26 23 21 19 18 17 16
116 115 77 58 46 39 33 29 26 23 21 20 18 17 16
117 116 78 58 47 39 34 29 26 24 22 20 18 17 16
118 117 78 59 47 39 34 30 26 24 22 20 18 17 16
119 118 79 59 48 40 34 30 27 24 22 20 19 17 16
120 119 80 60 48 40 34 30 27 24 22 20 19 17 16
121 120 80 60 48 40 35 30 27 24 22 20 19 18 16 15
122 121 81 61 49 41 35 31 27 25 22 21 19 18 17 16
123 122 82 61 49 41 35 31 28 25 23 21 19 18 17 16
124 123 82 62 50 41 36 31 28 25 23 21 19 18 17 16
125 124 83 62 50 42 36 31 28 25 23 21 20 18 17 16
126 125 84 63 50 42 36 32 28 25 23 21 20 18 17 16
127 126 84 63 51 42 36 32 28 26 23 21 20 18 17 16
128 127 85 64 51 43 37 32 29 26 24 22 20 19 17 16
129 128 86 64 52 43 37 32 29 26 24 22 20 19 18 16
130 129 86 65 52 43 37 33 29 26 24 22 20 19 18 17
131 130 87 65 52 44 38 33 29 26 24 22 20 19 18 17
132 131 88 66 53 44 38 33 30 27 24 22 21 19 18 17
133 132 88 66 53 44 38 33 30 27 24 22 21 19 18 17
134 133 89 67 54 45 38 34 30 27 25 23 21 19 18 17
135 134 90 67 54 45 39 34 30 27 25 23 21 20 18 17
136 135 90 68 54 45 39 34 30 27 25 23 21 20 18 17
137 136 91 68 55 46 39 34 31 28 25 23 21 20 19 17
138 137 92 69 55 46 40 35 31 28 25 23 22 20 19 18
139 138 92 69 56 46 40 35 31 28 26 23 22 20 19 18
140 139 93 70 56 47 40 35 31 28 26 24 22 20 19 18
141 140 94 70 56 47 40 35 32 28 26 24 22 20 19 18
142 141 94 71 57 47 41 36 32 29 26 24 22 21 19 18
143 142 95 71 57 48 41 36 32 29 26 24 22 21 19 18
144 143 96 72 58 48 41 36 32 29 26 24 22 21 20 18
145 144 96 72 58 48 42 36 32 29 27 24 23 21 20 18
146 145 97 73 58 49 42 37 33 29 27 25 23 21 20 19
147 146 98 73 59 49 42 37 33 30 27 25 23 21 20 19
148 147 98 74 59 49 42 37 33 30 27 25 23 21 20 19
149 148 99 74 60 50 43 37 33 30 27 25 23 22 20 19
150 149 100 75 60 50 43 38 34 30 28 25 23 22 20 19
151 150 100 75 60 50 43 38 34 30 28 25 24 22 20 19
152 151 101 76 61 51 44 38 34 31 28 26 24 22 21 19
153 152 102 76 61 51 44 38 34 31 28 26 24 22 21 19
154 153 102 77 62 51 44 39 34 31 28 26 24 22 21 20
155 154 103 77 62 52 44 39 35 31 28 26 24 22 21 20
156 155 104 78 62 52 45 39 35 31 29 26 24 23 21 20
157 156 104 78 63 52 45 39 35 32 29 26 24 23 21 20
158 157 105 79 63 53 45 40 35 32 29 27 25 23 21 20
159 158 106 79 64 53 46 40 36 32 29 27 25 23 22 20
160 159 106 80 64 53 46 40 36 32 29 27 25 23 22 20
161 160 107 80 64 54 46 40 36 32 30 27 25 23 22 20
162 161 108 81 65 54 46 41 36 33 30 27 25 23 22 21
163 162 108 81 65 54 47 41 36 33 30 27 25 24 22 21
164 163 109 82 66 55 47 41 37 33 30 28 26 24 22 21
165 164 110 82 66 55 47 41 37 33 30 28 26 24 22 21
166 165 110 83 66 55 48 42 37 33 30 28 26 24 22 21
167 166 111 83 67 56 48 42 37 34 31 28 26 24 23 21
168 167 112 84 67 56 48 42 38 34 31 28 26 24 23 21
169 168 112 84 68 56 48 42 38 34 31 28 26 24 23 21
170 169 113 85 68 57 49 43 38 34 31 29 26 25 23 22
171 170 114 85 68 57 49 43 38 34 31 29 27 25 23 22
172 171 114 86 69 57 49 43 38 35 32 29 27 25 23 22
173 172 115 86 69 58 50 43 39 35 32 29 27 25 23 22
174 173 116 87 70 58 50 44 39 35 32 29 27 25 24 22
175 174 116 87 70 58 50 44 39 35 32 29 27 25 24 22
176 175 117 88 70 59 50 44 39 35 32 30 27 25 24 22
177 176 118 88 71 59 51 44 40 36 32 30 28 26 24 22
178 177 118 89 71 59 51 45 40 36 33 30 28 26 24 23
179 178 119 89 72 60 51 45 40 36 33 30 28 26 24 23
180 179 120 90 72 60 52 45 40 36 33 30 28 26 24 23

80 B. Steinbach and C. Posthoff

same values of nlimit and tlimit. Obviously, the time to compute the division to get a
larger starting value of pmin is nearly equal to the saved number of increments and
comparisons n > nmax[pmin, t] in the while loop.

8 Conclusion and Future Work

We solved in this chapter the task to find the minimal number of gates pmin of the
modules L with n inputs xi and t inputs of the used gates of the explored module L

for n ≥ 1+ t ·(t+1)
2 , where L realizes the symmetric index generation function Sn

1 (x).
As result of a comprehensive analysis according to [7], we found Eq. (14) that solves
the reverse task nmax = rmax(p, t) in constant time. Using this intermediate result,
we provided Algorithms 1 and 2 which solve the basic task pmin = h′min(n, t) in
a time complexity O(n/t) that linearly increases with the number of inputs n and
even linearly decreases with the number t of inputs of the gates of the module L.

Our solution strongly improves the so far known best approach of [3] that have
an exponential complexity. Instead of 1731.25 s (that is almost half an hour) to solve
the task for n = 80 and t = 5, our program computed this solution in less than 1µs.

Arbitrarily we have chosen the limits nlimit = 1000 and tlimit = 40 and have
computed all pmin = h′min(n, t) with

1 ≤ t ≤ tlimit = 40 and 1+ t · (t + 1)

2
≤ n ≤ nlimit = 1000

within 1 ms. Larger values of nlimit and fitting values of tlimit are possible and
increase the computation time only slightly; e.g., we increased nlimit to 10, 000 and
computed all 388,520 solutions pmin with 1 ≤ t ≤ tlimit = 40 within 0.21 s.

Our approach utilizes the one-hot encoding of Sn
1 (x). Arbitrary elementary

symmetric functions Sn
m(x) with m > 1 can be expressed by such a one-hot

encoding using AND-gates; hence, using such an additional circuit, our approach
can also be used for other elementary symmetric functions Sn

m(x) with m > 1.
We excluded in this chapter the analysis of modules L for log2(2 · t) < p < t

(this is the region 2, introduced in Sect. 5.3) which occur for combinations of small
values n and relatively large values t . In such circuits, at least one input xi must be
connected with more than two inputs of the gates of the module L. Closing this gap
can be the topic of future work when results for these special cases are needed for
any application.

References

1. Nagayama, S., Sasao, T., Butler, J.T.: An exact optimization method using ZDDs for linear
decomposition of symmetric index generation functions. Int. Fed. Comput. Logic J. Logic Appl.
5(9), 1849–1866 (2018)

Fast Optimal Synthesis of Symmetric Index Generation Functions 81

2. Nagayama, S., Sasao, T., Butler, J.T.: A dynamic programming based method for optimum
linear decomposition of index generation functions. In: Proceedings of the 49th International
Symposium on Multiple-Valued Logic, pp. 144–149. IEEE, New York (2019)

3. Nagayama, S., Sasao, T., Butler, J.T.: On optimum linear decomposition of symmetric index
generation functions. In: Proceedings of the 50th International Symposium on Multiple-
Valued Logic. http://dx.doi.org/10.1109/ISMVL49045.2020.00-17, pp. 130–136. IEEE, New
York (2020)

4. Posthoff, C., Steinbach, B.: Logic Functions and Equations—Binary Models for Computer
Science, 2nd edn. ISBN 978-3-030-02419-2. Springer, Cham (2019)

5. Sasao, T.: Index generation functions: recent developments (invited paper). In: Proceedings of
the 41st International Symposium on Multiple-Valued Logic, 2011, pp. 1–9. IEEE, New York
(2011)

6. Sasao, T.: Linear decomposition of index generation functions. In: Proceedings of the 17th Asia
and South Pacific Design Automation Conference, pp. 781–788 (2012)

7. Steinbach, B., Posthoff, C.: The last unsolved four-colored rectangle-free grid: the solution
of extremely complex multiple-valued problems. In: Journal of Multiple-Valued Logic and
Soft Computing, Old City Publishing, vol. 25(4–5). ISSN 1542-3980 (print), ISSN 1542-3999
(online), pp. 461–490. Philadelphia (PA), USA, (2015)

http://dx.doi.org/10.1109/ISMVL49045.2020.00-17

Axiomatizing Boolean Differentiation

Felix Weitkämper

1 Introduction

1.1 Our Approach

Derivative operations on Boolean algebras have been much studied since they were
first described as such in the 1950s. An up-to-date textbook focused on the calculus
as well as on the numerous applications of Boolean differential operations is [12],
while a concise systematic treatment of the calculus can be found in Chapter 10 of
[11]. However, while algebraic and numeric aspects of differentiation on Boolean
algebras have been widely studied, and various fields of application have been
explored, to the best of our knowledge there has been no axiomatic investigation
of Boolean differentiation since [6]. We will provide an axiomatic treatment that
characterizes Boolean derivatives up to isomorphism. We will discuss how this can
be adapted to an axiomatization of the first-order theory and outline some potential
routes for further investigation and application. We will also see how the known
notions of derviative fit into the framework we propose and clarify the relationship
between our axioms and those of [6].

Another major motivation of this work comes from modern model theory, where
over the last decades, two areas pertinent to this research have been explored in great
depth.

Firstly, there is a model theory of difference fields, which are fields equipped
with an automorphism. This has been developed extensively using cutting-edge
model-theoretic analysis such as the calculus of simple theories and has found deep
applications in number theory and algebraic dynamics (see [1] for an introduction).

F. Weitkämper (�)
Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
e-mail: felix.weitkaemper@lmu.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_4

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_4&domain=pdf
mailto:felix.weitkaemper@lmu.de
https://doi.org/10.1007/978-3-030-68071-8_4

84 F. Weitkämper

We will see later that, in fact, our setting is more aligned to that of difference algebra
than to the setting of differential algebra that it is often compared with.

Secondly, there has been an upsurge in research on the connection between
infinite models and their finite substructures, with conference volumes such as
[4] dedicated to the topic and the monograph [2] summing up a whole line of
research. This is particularly relevant here since most of the application interest
lies in differentiation on finite rather than infinite Boolean algebras, while the power
of model theoretic methods will be felt on the infinite level.

However, while we are inspired by the work on difference fields, our setting is
quite different, since firstly we are entirely concerned with characteristic 2 (since
x + x = 0 for the symmetric difference in a Boolean algebra) and secondly the
automorphisms we study are involutions rather than free automorphisms. We will
see that this combination will allow us to use a very small set of axioms compared to
the axiomatizations of algebraically closed fields with an automorphism in [1]. This
remains true even when we move towards several derivations, while the situation for
several commuting automorphisms of fields is rather complicated.

One model-theoretic advantage of the field setting over that of Boolean algebras
is that algebraically closed fields are uncountably categorical, while Boolean
algebras are unstable. These classifications, which we will discuss briefly in
Sect. 2, mean that the most powerful tools of contemporary model theory, those
from stability theory, do not apply to Boolean algebras. Therefore, we will also
present an axiomatization of the reduct to a language that contains purely the
symmetric difference and the derivation(s). We will show that the theory of Boolean
differentiation considered in this language is in fact totally categorical, a very strong
model-theoretic property that means that it has a unique model up to isomorphism
in every infinite cardinality. This allows the direct application of methods from [2],
say, to our structures.

1.2 Applications of Axiomatizing Boolean Differentiation

We will briefly outline some potential ramifications of our different levels of
axiomatization. Firstly, an immediate consequence of having an axiomatization up
to isomorphism that applies to several known notions of derivative is that those
notions are indeed isomorphic. This means that any property that is preserved under
isomorphism transfers immediately from one derivative to another. For instance,
we will see in Theorem 5 that both vectorial and simple derivatives of switching
functions in the sense of [12] fall under our axiomatization. Therefore, in order to
prove something for all vectorial derivatives, it suffices to prove it for the simple
derivative with respect to the first coordinate only, and it immediately generalizes to
all the other notions of derivative.

From a structural point of view, a complete axiomatization lists essential
properties of Boolean differentiation, since all properties of Boolean differentiation

Axiomatizing Boolean Differentiation 85

are bound to follow from the axioms. We will see that the axioms only need to pose
a small number of algebraic conditions on the derivatives, which should sharpen the
focus of further investigations into Boolean differentiation.

Having established an axiomatization up to isomorphism, what can be gained
from an axiomatization of merely the first-order theory? One key advantage is that
the first-order theory makes a connection between a single theory of derivatives on
infinite Boolean algebras and the infinitely many theories of large finite Boolean
Algebras with derivatives. The beginnings of this are developed in Sect. 4.

Beyond that, the connections to model theory and the work of [2] outlined
above require a first-order axiomatization of the additive theory with derivatives.
Exploiting this deeper connection of finite and infinite Boolean differentiation
remains further work.

1.3 Outline

In the section following this introduction, we will be giving an overview of the terms
and the results from model theory that we will be using in this chapter.

In the main section, we will introduce Boolean differentiation and specifically our
framework for derivatives. We will provide the axiom systems for the full language
and the additive reduct and prove their completeness.

In Sect. 4, we will discuss the relationship to finite algebras of logic functions
equipped with derivatives, and prove elimination of quantifiers for the theories with
a single derivation.

In the final section, we will discuss connections to the existing literature on
Boolean differentiation. We will also highlight possible consequences of our results
and point out some other putative areas for further research.

2 Model-Theoretic Fundamentals

In this section, we will rehearse the elements of classical model theory that we
will need in the course of the paper. However, we will assume familiarity with
the basic principles of first-order logic, such as its syntax and semantics, as well
as fundamental concepts such as completeness of a theory and isomorphism of
structures, which should be explained in any first textbook on logic.

Due to their traditional connection to propositional logic, Boolean algebras were
among the first algebraic structures whose model theory was studied. In this work,
we will refer to two classical complete theories of Boolean algebras: infinite atomic
and infinite atomless Boolean algebras.

Proposition 1 The following classes of Boolean algebras are axiomatizable by a
complete first-order theory:

86 F. Weitkämper

1. The theory of infinite atomless Boolean algebras
2. The theory of infinite atomic Boolean algebras

We will continue with some additional definitions:

Definition 1 A first-order theory is called categorical in a cardinal κ if all its
models of cardinality κ are isomorphic.

It is well known that the theory of infinite atomless Boolean algebras is ω-
categorical, while the theory of infinite atomic Boolean algebras is not.

Categoricity is a central concept in model theory, as it implies both completeness
and good model-theoretic behavior:

Proposition 2 (Vaught’s Test, Theorem 2.2.6 of [8]) If a satisfiable first-order
theory with no finite models is categorical in an infinite cardinal κ , then it is
complete.

The most common measure of well-behavedness used in modern model theory is
stability and the many variants of this concept, all of which have their root in
Saharon Shelah’s groundbreaking work on classification theory. We will refer to
several steps on this scale, which we will briefly introduce here. We first need the
concept of a type.

Definition 2 Let T be a complete theory, M a model of T , A a subset of M, and
n ∈ N. Then a (complete) n-type p of T over A is a set of formulas with n free
variables and parameters in A such that p is satisfiable, and for every such formula
φ, either φ or ¬φ lies in p.

The number of types that are realized in a certain model is at the basis of one of a
number of equivalent definitions of stability. However, since we will need a different
formulation later, we will give that here:

Definition 3 Let T be a complete theory in a countable language.
T is called stable if no formula has the order property: that is, there is no model

M of T and formula φ(x; y) such that for a sequence of pairs of tuples (ai; bi)i<ω

in M, φ(ai; bj) holds if and only if i < j .
T is called ω-stable if there are only countably many types over any countable

subset of a model of T .
T is called strongly minimal if every definable subset of any model of T is either

finite or cofinite (i.e., its complement is finite).

These categories of stability are related to another in a strictly descending scale as
follows:

Proposition 3 For complete theories T in a countable language, the following
strict implications hold: (i)⇒(ii)⇒(iii)⇒(iv), where

(i) T is strongly minimal.
(ii) T is categorical in one (equivalently all) uncountable cardinal(s).

Axiomatizing Boolean Differentiation 87

(iii) T is ω-stable.
(iv) T is stable.

Proof (i) implies (ii) by Proposition 6.1.12, (ii) implies (iii) by Theorem 5.2.10,
(iii) implies (iv) by Proposition 6.2.11 with Theorem 6.2.14, all from [8]. �

One of the prime reasons for the usefulness of stability theory is its connection
to the existence of a good dimension notion on all models of the theory. The most
commonly used and strongest dimension notion is known as Morley Rank (alongside
the associated notion of a Morley Degree) and is usually abbreviated as RM. While
one can find a rigorous introduction of the notion in Chapter 6 of [8], we will here
just note the relationship between the existence of a well-defined Morley Rank and
the stability hierarchy given above:

Proposition 4 Let T be a complete theory in a countable language.
Then T is strongly minimal if and only if every model of T has Morley Rank 1

and Morley Degree 1.
If T is uncountably categorical, every model has finite Morley Rank.
T is ω-stable if and only if (every definable subset of) every model has well-

defined Morley Rank.

Remark 1 T being just stable is characterized by a different, but less well-behaved
rank notion being well-defined.

We will conclude our excursion to stability theory by applying the stability
hierarchy to Boolean algebras.

Proposition 5 Let T be a theory that interprets an infinite Boolean algebra. Then
T is unstable.

Proof The canonical order relation of any infinite Boolean algebra, given by a ≤ b

iff a = a ∧ b, has the order property in the sense of Definition 3. �
Therefore, we will not just study the full theory of the differential Boolean

calculus, but also its reduct to the additive group of the associated Boolean ring.
That is an abelian group with x+ x = 0 for all x, and thus an F2-vector-space. This
reduct is on the opposite end of the stability spectrum:

Proposition 6 The theory of infinite abelian groups with x + x = 0 for all x is
strongly minimal.

Proof Classical result of model theory; see, e.g., Section 4.5 of [5]. �
We will now continue to those concepts that help to characterize the relationship

between finite and infinite structures.
First, we will introduce the concept of a generic theory, specialized to a context

appropriate for our investigations:

Definition 4 Let L be a language and let (Mn)n∈N be a sequence of L-structures.
Let T be a complete L-theory.

88 F. Weitkämper

T is called the generic theory of (Mn)n∈N if for all ϕ ∈ T there is an N ∈ N such
that Mn |� ϕ for all n > N .

Since all finite Boolean algebras are atomic, the generic theory of the cardinality-
ascending sequence of finite Boolean algebras is the theory of infinite atomic
Boolean algebras.

A generic theory can be considered as a limit of the individual theories of a
sequence of structures.

A different notion which may or may not coincide with a generic theory can be
obtained by turning this around and considering instead the first-order theory of the
limit of the structures.

The notion of limit used here is the Fraisse limit of structures, for which there are
different formalizations in slightly different settings. For our purposes, we will need
one that can accommodate functions as well as relations, and we find it in Section 7
of [5].

Definition 5 Let M be an L-structure. Then:
M is called locally finite if any finitely generated substructure of M is finite.
A locally finite structure is called uniformly locally finite if there is a function

f : N→ N such that the substructure generated by any subset of cardinality n has
cardinality at most f (n).

A locally finite M is called ultrahomogeneous if every isomorphism between
finite substructures extends to an isomorphism of M.

If M is countably infinite, ultrahomogeneous and locally finite, it is referred to as
a Fraisse structure.

Such a Fraisse structure is considered the Fraisse limit of the class of its finite
substructures.

Proposition 7 (Theorem 7.1.2 of [5]) A non-empty class of finite structures K is the
class of finite substructures of a Fraisse structure (i.e., has a Fraisse limit) if the
following are satisfied:

1. K is closed under isomorphism.

(a) K is closed under taking substructures.
(b) K contains structures of arbitrarily large cardinalities.
(c) Whenever A and B are in K, there is a C in K such that both A and B can be

embedded in C (Joint embedding property).
(d) Whenever A, B1, and B2 are in K, f1 : A → B1 and f2 : A → B2, there

are a C ∈ K and embeddings g1 : B1 → C and g2 : B2 → C such that
g1 ◦ f1 = g2 ◦ f2 (Amalgamation property).

Sometimes the generic theory of a class K and the theory of the Fraisse limit
coincide. For instance, the theory of infinite F2-vector-spaces is both the generic
theory and the theory of the Fraisse limit of the class of finite F2-vector-spaces. For
Boolean algebras, however, both notions of limit exist, but they do not coincide:
While the generic theory of the class of finite Boolean algebras is the theory of

Axiomatizing Boolean Differentiation 89

infinite atomic Boolean algebras, their Fraisse limit is atomless (Classical, see
Example 6.5.25 of [9]).

A very useful consequence of ultrahomogeneity is that the theory of a Fraisse
structure will often be ω-categorical and admit quantifier elimination:

Proposition 8 (Theorem 7.4.1 of [5]) Let M be a uniformly locally finite Fraisse
structure. Then the theory of M is ω-categorical and admits quantifier elimination.

As both abelian groups with x+x = 0 for all x and Boolean algebras are uniformly
locally finite, the theory of atomless Boolean algebras and the theory of infinite
abelian groups with x + x = 0 are ω-categorical and admit quantifier elimination.

3 Axiomatizing Boolean Differentiation

3.1 Boolean Functions, Rings, and Derivations

The first prerequisite for a study of structures endowed with derivative operations is
to recognize the underlying algebraic nature of those structures.

We will formulate this chapter entirely in the context of Boolean rings, which is
equivalent to that of Boolean algebras.

Definition 6 A Boolean ring (B,+, ·, 0, 1) is a commutative ring with unit that
satisfies the following properties.

1. Idempotency: For any x ∈ B, x · x = x.
2. Characteristic 2: For any x ∈ B, x + x = 0.

Any Boolean algebra can be made into a Boolean ring by treating+ as the symmet-
ric difference (sometimes written ⊕ to avoid ambiguity) and · as the conjunction.
Conversely, any Boolean ring defines a Boolean algebra, with conjunction taken as
·, disjunction as x + y + xy, and negation as x + 1. See [10] for the details.

This representation suits our purposes very well, since derivations are usually
defined using the symmetric difference.

The most used derivations arise in the study of switching functions, that is,
functions from {0, 1}n → {0, 1} for an n ∈ N. We will now formally introduce
these derivations:

Definition 7 Let n ∈ N, and let f : {0, 1}n→ {0, 1}.
Then the derivative of f with respect to the ith coordinate δi(f) is given by the

function

δi(f) : {0, 1}n→ {0, 1} ,
δi(f)(a1, . . . , ai, . . . , an) :=f (a1, . . . , ai, . . . , an)+ f (a1, . . . , a

′
i , . . . , an).

The global derivative D(f) is given by D(f)(x) = D(f)(x′).

90 F. Weitkämper

These derivatives have been extensively studied, and are the topic of the recent
monograph [12]. In that and other work, a generalized notion of derivative that the
authors call vectorial derivative is also introduced.

Definition 8 Let n ∈ N, f : {0, 1}n → {0, 1} and let S ⊆ {1, . . . , n}. Then the
vectorial derivative of f with respect to S, δS(f), is given by the function

δS(f) : {0, 1}n→ {0, 1} , δS(f)(a1, . . . , an) := f (a1, . . . , an)+ f (b1, . . . , bn),

where bi =
{

a′i i ∈ S

ai i /∈ S
.

In the literature, Boolean differentiation is studied mainly as an analogue to real
or complex differentiation, and its algebraic properties are usually considered
analogues to real or complex differential algebra (a remarkable exception to this
being [13]).

However, while the above-mentioned derivatives are additive and factor over
constants (i.e., functions whose derivative is 0), they do not satisfy the Leibniz
rule of differentiation, that is, δ(xy) = xδ(y) + yδ(x) + δ(x)δ(y) rather than
δ(xy) = xδ(y) + yδ(x), and indeed no possible notion of derivative could satisfy
the classical definition of a derivation (cf. [11], Ch. 10).

In this chapter, we will instead consider Boolean differentiation as an analogue
of classical difference algebra, which studies automorphisms of the real or complex
field. This possibility arises from the following observation:

Proposition 9 In all of the cases above, the map f → σ(f), σ(f)(a1, . . . , an) :=
f (b1, . . . , bn) is an involution of the Boolean ring of functions from {0, 1}n →
{0, 1}.
Proof We need to show that σ respects addition and multiplication and that σ 2 =
σ .

1. σ(f+g)(a1, . . . , an) = (f+g)(b1, . . . , bn) = f (b1, . . . , bn)+g(b1, . . . , bn) =
σ(f)(a1, . . . , an)+ σ(b)(a1, . . . , an).

2. Similarly for multiplication.

3. σ 2(f)(a1, . . . , an) = f (b1, . . . , bn), where bi =
{

a′′i i ∈ S

ai i /∈ S
.

But as a′′i = ai , bi = ai for all i.
�

As δ(f) = f + σ(f), σ(f) = f + δ(f) and we can (and will) therefore study
derivations and their associated involutions interchangeably.

Axiomatizing Boolean Differentiation 91

3.2 A Complete Axiomatization

In the light of Proposition 9, we can choose between using a derivation δ or
an involution σ in our language, and whether to include the operations of a
Boolean algebra or the ring operations. For the sake of consistency with the notion
of Boolean differentiation, we will officially present our axiomatization in the
following languages:

Definition 9 For n ∈ N, let Ln be the language consisting of the binary operations
+ and ·, the constant symbols 0 and 1 and the unary functions δ1, . . . , δn.

Let L+n be the reduct of this language, where the conjunction · and the constant
1 are omitted.

Whenever R is an Ln or L+n structure, let σn := δn + id.
In L1 and L+1 , we usually write δ and σ for δ1 and σ1.

For clarity of exposition, we will begin by providing a complete axiomatization of
the Boolean derivative on L+n and then extending it to a complete axiomatization on
Ln.

Definition 10 Let T +1 be the following L+1 theory:

1. V is an abelian group of characteristic 2, that is, an abelian group with the
property that ∀x(x + x = 0).

2. σ is an involution of groups.
3. δ is complete, that is, ∀y(δ(y) = 0⇒ ∃x(δ(x) = y)).

We will not only show that T +1 is complete when restricted to infinite models, but
moreover, we will show that it is categorical in every infinite cardinal:

Theorem 1 T +1 is categorical in all infinite cardinals. Its infinite models form a
complete ω-stable elementary class.

The proof of Theorem 1 will go through two Lemmas. First, though, a simple
observation that we will use throughout and which justifies the formulation of the
completeness axiom:

Remark 2 Let V be an abelian group of characteristic 2 and σ an involution of
groups. Then ∀x ∈ V : δ(δ(x)) = 0.

Proof δ(δ(x)) = δ(x+σ(x)) = (x+σ(x))+σ(x+σ(x)) = x+σ(x)+σ(x)+x =
0. �
Lemma 1 Let V, V ′ be free finite-dimensional k-modules over a ring k and let
F : V → V ′ be a linear isomorphism. Let f : V → V and f ′ : V ′ → V ′ be linear
endomorphisms. Let a be a basis for V and M a matrix representing f with respect
to a. Then F is an isomorphism of the structures enriched by a function symbol for

f on V and f ′ on V ′ iff M is the matrix representation of f ′ with respect to −−→F(a).

92 F. Weitkämper

Proof It suffices to show that ∀x(F (f (x)) = f ′(F (x))). So let x ∈ V and let v be
the k-vector representing x with respect to a. Then v is also the k-vector representing

F(x) with respect to
−−→
F(a). Thus

F(f (x)) = F(Mva) = Mv
−−→
F(a) = f ′(v−−→F(a)) = f ′(F (va)) = f ′(F (x)).

�
In order to apply Lemma 1 to our structures, we will prove another lemma.

Lemma 2 Let (V ,+, 0, δ) be a model of T +1 . Then (V ,+, 0) is an F2 vector space
and the following holds:

1. V =
κ⊕

i=1
Ui for a cardinal κ , where each Ui is a 2-dimensional δ-invariant

subspace on which δ can be represented by the matrix

(
0 0
1 0

)
.

2. V has cardinality 22n for an n ∈ N or infinite cardinality.

Proof The proof will proceed in steps.
First, as V is an abelian group, being of characteristic 2 is equivalent to being an

F2 vector space.
Let K be the kernel of the group and thus F2-vector-space-homomorphism δ. Let

(bi |i ∈ I) be an F2-basis for K and let (ai |i ∈ I) be such that δ(ai) = bi . We claim
that V = ⊕

i∈I
〈ai, bi〉 is a decomposition as required in the statement of the lemma.

So, we have to show (a) that V = ∑
i∈I
〈ai, bi〉, (b) that the sum is direct, and (c) that

each〈ai, bi〉 satisfies the requirements of the lemma.
(a): Let x ∈ V . Then by Remark 2 δ(x) ∈ K and thus δ(x) = ∑

j∈J
bj . Observe

that δ(x + ∑
j∈J

aj) = ∑
j∈J

bj + ∑
j∈J

bj = 0 and thus that x + ∑
j∈J

aj ∈ K . But as by

definition K ⊆ ∑
i∈I
〈ai, bi〉 and

∑
j∈J

aj ∈ ∑
i∈I
〈ai, bi〉, we also obtain x ∈ ∑

i∈I
〈ai, bi〉.

(b): We need to show that
∑
j∈J

uj = 0⇒ uj = 0 for all j ∈ J . But by definition
∑
j∈J

uj = ∑
k∈K

ak+∑
l∈L

bl . We see that δ(
∑
k∈K

ak+∑
l∈L

bl) = ∑
k∈K

bk and since (bi |i ∈ I)

is a basis for K , this implies that K = ∅. Then
∑
l∈L

bl = 0, which however implies

that L = ∅ by the same argument.
(c): We have already seen that each 〈ai, bi〉 is 2-dimensional, so it remains to

show that δ(ai) = bi and that δ(bi) = 0. But that is just the definition of the ai

and bi .
This shows the first clause of the Lemma; the second clause follows from the first

clause together with additivity of dimension in free sums and the fact that |V | =
2dimF2 (V). �

Axiomatizing Boolean Differentiation 93

Remark 3 In fact, one can extend any linearly independent system wi in the kernel
together with any vi with δ(vi) = wi into a representation with respect to which the
lemma holds.

We can now proceed to prove Theorem 1.

Proof Let (V ,+, δ) and (V ′,+, δ′) be two models of T +1 of cardinality κ ≥ ω.

Then by Lemma 2, V =
κ⊕

i=1
Ui and V ′ =

κ⊕
i=1

U ′i with the properties mentioned

there. We define a linear bijection F : V → V ′ by defining linear bijections Fi :
Ui → U ′i for each i. Let (ai, bi) and (a′i , b′i) be bases for Ui and U ′i , respectively, for

which δ has the matrix representation

(
0 0
1 0

)
. Then let Fi(ai) = a′i and Fi(bi) = b′i .

Clearly, Fi defines an isomorphism of vector spaces, and by Lemma 1, Fi(δ(x)) =
δ′(F (x)). We will now define F(x) = F(

∑
uj) := ∑

Fj (uj). This is clearly a
well-defined linear bijection. It thus only remains to show that F(δ(x)) = δ′(F (x)):

F(δ(x)) =
∑

Fj (δ(uj)) =
∑

δ′(Fj (uj)) = δ′(
∑

Fj (uj)) = δ′(F (x)).

Therefore, T +1 is categorical in all infinite cardinals. By the discussion in Sect. 2,
this implies that the first-order theory of the infinite models of T +1 is both complete
and ω-stable (since it is uncountably categorical).

This categoricity result unlocks powerful model-theoretic tools for Boolean
differential groups, which we will briefly discuss in the final section. Here we
will now adapt our axiomatization to give a complete first-order theory of Boolean
differentiation which takes full account of the ring structure. �
Definition 11 Let K be a Boolean ring, and TK a complete first-order theory of
Boolean algebras expressed in the language of Boolean rings. Then T K

1 is the
following theory in the language L1:

1. σ is an involution of Boolean rings.
2. ker(δ) |� TK .
3. δ is complete, i.e., there is a z ∈ V such that δ(z) = 1.

Remark 4 We remark that we found it rather surprising that one could obtain a
complete axiomatization by just adding a finite number of axioms to the ones
regarding K . This seems to be entirely due to the fact that one can define the ring
structure on V from the ring structure on the constants (see below).

We will adopt a different and possibly more straightforward strategy to proving
completeness of the first-order theory here, extending isomorphisms between
kernels to isomorphisms between the models of T K

1 . First, we give a more concrete
characterization of δ being complete:

94 F. Weitkämper

Proposition 10 Let V be a model of T K
1 for a Boolean ring K . Then V is a free

ker(δ)-algebra on two generators (1, z) and δ is a ker(δ)-algebra-morphism given
by δ(z) = 1 and δ(1) = 0.

Proof Let z be as in the definition of T K
1 .

(a) (1, z) generate V . Indeed, let x ∈ V be arbitrary. Then δ(x) ∈ ker(δ) and
δ(x) = δ(δ(x)z) by ker(δ)-linearity. Thus, x + δ(x)z ∈ ker(δ) and therefore
x = (x + δ(x)z)+ δ(x)z is the required representation.

(b) (1, z) generate V freely. Indeed, if a + bz = 0 for some a, b ∈ K , then δ(a +
bz) = b = 0 and thus also a = 0.

�
Now we can prove the extension of isomorphisms.

Proposition 11 There is a one-to-one correspondence between isomorphism
classes of Boolean algebras K and isomorphism classes of models of T K

1 .

Proof Let K be a Boolean algebra and V a free K-algebra on 2 generators. Then
by Lemma 1, the condition δ(z) = 1 and δ(1) = 0 uniquely determines V as a
K-algebra up to isomorphism.

So let f : V → V ′ be an isomorphism of K-algebras respecting δ. We claim that
f is in fact an isomorphism of Boolean rings. So let (k1 + k2z) and (k′1 + k′2z) be
elements of V . Then

f
(
(k1 + k2z) ·

(
k′1 + k′2z

)) = f
(
k1k
′
1 +

(
k2k
′
1 + k1k

′
2 + k2k

′
2

)
z
)

= f (k1)f
(
k′1
)+ (f (k2)f

(
k′1
)+ f (k1)f

(
k′2
)+ f (k2)f

(
k′2
))

f (z)

= f (k1 + k2z)f
(
k′1 + k′2z

)

Therefore f is actually an isomorphism of Boolean rings as required. �
We can reformulate this as a complete axiomatization result in its own right:

Corollary 1 For any Boolean algebra K , the following three axioms characterize
a Boolean derivative with kernel K up to isomorphism:

1. σ is an involution of Boolean rings.
2. ker(δ) ∼= K .
3. δ is complete, i.e., there is a z ∈ V such that δ(z) = 1.

It follows from the above that whenever the theory of K is ω-categorical, then so
is T K

1 . In particular, when K is an infinite atomless Boolean algebra, then T K
1 is

ω-categorical and therefore complete. In fact, T K
1 is complete regardless of K , and

this can be seen using any of a number of classical model-theoretic techniques.

Theorem 2 Let TK be any complete theory of Boolean rings. Then the theory T K
1

is complete.

Axiomatizing Boolean Differentiation 95

Proof We sketch a proof using ultraproducts (see Section 9.5 of [5] for an
introduction), since that most easily generalizes to several derivations. Let A and
B be models of T K

1 , and let KA and KB be their respective kernels. Then KA ≡ KB

and we want to show that A ≡ B also. By the Keisler-Shelah Theorem, KA and KB

have isomorphic ultrapowers U(KA) % U(KB). Using the same index set and the
same ultrafilter, we can take the ultrapowers of U(A) of A and U(B) of B. Then the
kernel of U(A) is isomorphic to U(KA) and the kernel of U(B) is isomorphic to
U(KB). Thus, the kernels are isomorphic to each other and by Proposition 11 U(A)

and U(B) are also. Therefore, A and B must have been elementarily equivalent. �
We will now extend the characterizations above to several derivatives.
In the following, we will use the shorthand δ

|J |
J to mean the |J |-fold derivative

with respect to all δj , j ∈ J ; for instance, δn
{1,...,n}(x) = δ1δ2 . . . δn(x) and δ1{j} = δj .

(We add the cardinality superscript to avoid confusion with the vectorial derivative
from Definition 8.)

Definition 12 Let T +n be the following L+n theory:

1. V is an abelian group of characteristic 2, that is, an abelian group with the
property that ∀x(x + x = 0).

2. σ1, . . . , σn are commuting involutions of groups.
3. {δ1, . . . , δn} is complete, that is,

∀y(δ1(y) = 0 ∧ δ2(y) = 0 ∧ . . . ∧ δn(y) = 0⇒ ∃x(δ1δ2 . . . δn(x) = y)).

We will now provide an analogue to Lemma 2 to prove the categoricity of T +n in
each uncountable cardinal.

Lemma 3 Let (V ,+, 0, δ1, . . . , δn) be a model of T +n . Then (V ,+, 0) is an F2
vector space and the following holds:

1. V =
κ⊕

i=1
Ui for a cardinal κ , where each Ui is a 2n-dimensional δ-invariant

subspace which has a basis (ai,J |J ⊆ {1, . . . , n}) such that the following holds:
{〈{ai,J , aJ∪{j}}

〉 |j /∈ J } is a decomposition of Ui in the sense of Lemma 2 with
respect to δj .

2. V has cardinality 22nm for an m ∈ N or infinite cardinality.

Proof The proof will proceed in steps.
First, as V is an abelian group, being of characteristic 2 is equivalent to being an

F2 vector space.

Let (bi) be a basis for
n⋂

j=1
Ki , where Kj := ker(δj). Then choose (ai) such

that δ1δ2 . . . δn(ai) = bi . Let ai,J := δ
|J |
J (ai). We claim that this satisfies the

requirements, and we will prove this by induction. The case n = 1 has been shown
in Lemma 2. So assume true for n. It is easy to see that Kn+1 is a model of T +n .
Therefore, by the induction hypothesis, (ai,J |J ⊆ {1, . . . , n + 1}, n + 1 ∈ J) is a

96 F. Weitkämper

basis for Kn+1 as required. But then by Lemma 2, (ai,J |J ⊆ {1, . . . , n}) is a basis
of V with exactly the properties described in clause 1.

This shows the first clause of the Lemma; the second clause follows from the first
clause together with additivity of dimension in free sums and the fact that |V | =
2dimF2 (V). �

We can now deduce the completeness and indeed the total categoricity of T +n just
as we did for T +1 :

Theorem 3 T +n is categorical in all infinite cardinals. Its infinite models form a
complete ω-stable elementary class.

Proof Just as in the proof of Theorem 1, the linear bijection induced by the bases
given by Lemma 3 is an Ln-isomorphism by Lemma 1. �

We will now finally provide an axiomatization of the complete theory of several
derivations on Boolean rings:

Definition 13 Let K be a Boolean ring, and TK a complete first-order theory of
Boolean algebras expressed in the language of Boolean rings. Then T K

n is the
following theory in the language Ln:

1. σ1, . . . , σn are commuting involutions of Boolean rings.

2.
n⋂

i=1
ker(δi) |� TK .

3. {δ1, . . . , δn} is complete, that is,

∃x(δ1δ2 . . . δn(x) = 1)).

The proof will again be preceded by a proposition giving a more concrete represen-
tation.

Proposition 12 Let V be a model of T K
n for a Boolean ring K . Then V is a free

n⋂
i=1

ker(δi)-algebra on 2n generators given by {aJ := δ
|J |
J (a)|J ⊆ {1, . . . , n}} for

any a ∈ V with δ1δ2 . . . δn(a) = 1.

Proof By induction on n. The case n = 1 is part of Proposition 10. So assume it true
for n and choose any model V of T K

n+1 and any a ∈ V with δ1δ2 . . . δn+1(a) = 1.
We will now show that it is a generating system for V . So let x ∈ V . We will

proceed by induction on the smallest number m such that the m-fold derivative

δm
{1,...,m}(x) ∈

n⋂
i=1

ker(δi). If m = 0 then x ∈
n⋂

i=1
ker(δi) itself. So assume true for

m. Then if δm
{1,...,m+1}x ∈

n⋂
i=1

ker(δi), x = (δm
{1,...,m+1}x) · δn−(m+1)

{1,...,n}\{1,...,m+1}a + y,

y := ((δm
{1,...,m+1}x)δ

n−(m+1)
{1,...,n}\{1,...,m+1}a + x). Here δm

{1,...,m+1}y = 0 and thus

δm
{1,...,m}y ∈

m+1⋂
i=1

ker(δi). �

Axiomatizing Boolean Differentiation 97

Proposition 13 Let K be a Boolean ring. Then there is exactly one model of T n
K up

to isomorphism with
n⋂

i=1
ker(δi) = K .

Proof We will prove the theorem by induction on n. The case n = 1 is exactly
Proposition 11. So assume it true for T n

K . We will now show it for T n+1
K . Let a

be the witness of clause 3 of the definition and let aJ := δ
|J |
J (a). Then we claim

that the isomorphism of K-modules induced by aJ is an Ln+1-isomorphism. By
the induction hypothesis, it is an isomorphism of the obvious Ln-structures on
Ki := ker(δi) for each derivation δi . However, since δi(a{1,...,i−1,i+1,...,n}) = 1,
another application of Proposition 11 shows that we actually have an isomorphism
of Boolean rings which also respects δi . Since i was arbitrarily chosen, this finishes
the proof. �

Just as for T K
1 , we can reformulate this as an explicit axiomatization result and

deduce completeness of the first-order theory:

Corollary 2 For any Boolean algebra K , the following three axioms characterize
Boolean derivatives with kernel K up to isomorphism:

1. σ1, . . . , σn are commuting involutions of Boolean rings.

2.
n⋂

i=1
ker(δi) ∼= K .

3. {δ1, . . . , δn} is complete, that is,

∃x(δ1δ2 . . . δn(x) = 1)).

Theorem 4 Let TK be any complete theory of Boolean rings, and let n ∈ N. Then
the theory T K

n is complete.

4 Relationship to Finite Models and Immediate
Consequences

In this section, we will be connecting the complete theories from Sect. 3.2 with the
examples of Boolean differentiation studied in the literature.

In particular, we will show that the theories we have introduced can be naturally
characterized as the generic or as the limit theories of groups or rings of switching
functions equipped with the derivatives introduced in Sect. 3.1.

To facilitate notation, we introduce

Definition 14 Let Sn be the Boolean ring of switching functions in n variables, that
is, the Boolean ring made up of all mappings f : {0, 1}n → {0, 1}, equipped with
the ring structure from Sect. 3.1. Let S+n be the additive group reduct of Sn.

98 F. Weitkämper

Theorem 5 The theory of infinite models of T +1 is the generic theory of the class
{S+n |n ∈ N} , where each switching algebra is equipped with any of the derivatives
of Sect. 3.1.

Proof By the results at the end of Sect. 3.1, each of the structures mentioned is
a model of T +1 . Clearly, |Sn| ≥ n and thus the additional infinity axioms are
generically true in the class too. So, the theory of infinite models of T +1 is a subset
of the generic theory. However, as the theory is complete by Theorem 1, it is the
generic theory. �

The equivalent result for the theory of Boolean rings is obtained in a very similar
way; however, one has to choose a Boolean algebra that models the generic theory
of finite Boolean algebras.

Theorem 6 The theory T K
1 , where K is an infinite atomic Boolean algebra, is the

generic theory of the class {Sn|n ∈ N} , where each switching algebra is equipped
with any of the derivatives of Sect. 3.1.

Proof By the discussion following Definition 4, the theory of K is the generic
theory of the class {Sn|n ∈ N} as Boolean rings. Since | ker(δ)| = √|Sn| for all
derivations mentioned in Sect. 3.1, the theory of ker(δ) will indeed be generically
TK . The remainder of the axioms are clear. As T K

1 is complete by Theorem 11, we
can conclude that T K

1 is the generic theory. �
The theorems above show that we have indeed given a characterization of the

asymptotic theory of switching functions—so although our results and methods
have focused on infinite models, they can be used to study the derivations on
arbitrarily large finite switching algebras that have spawned such a large literature.

They also generalize to the theories with several derivations, when one considers
derivations that are linearly independent in the sense of [12], but we will omit
the generalization of the proofs here for brevity. One example of such linearly
independent derivations are the single derivations δ1, . . . , δn on Sn. We have

Theorem 7 The theory of infinite models of T +n is the generic theory of the class
{S+i |i ≥ n}, where each switching algebra is equipped with the single derivatives δ1
to δn.

The theory T K
n , where K is an infinite atomic Boolean algebra, is the generic

theory of the class {Si |i ≥ n} , where each switching algebra is equipped with the
single derivatives δ1 to δn.

We will now move on to characterize the theories we have constructed as the
complete theories of limit structures. This gives us more information about their
model theory and provides a concrete structure into which the finite switching
algebras can be uniquely embedded up to isomorphism. We can take the limit over
the same classes we have considered above. In the additive case, we will obtain
exactly the same theory, as the underlying theory of infinite F2-vector spaces is both

Axiomatizing Boolean Differentiation 99

generic and limit theory of the finite F2-vector spaces. In the full Boolean ring case,
however, we will have to change the Boolean ring K under consideration since the
limit structure of finite Boolean rings is the countable atomless Boolean algebra and
not a countable atomic Boolean algebra.

Theorem 8 Let C be the class of all substructures of a member of the class {S+i |i ∈
N}, where each switching algebra is equipped with any of the derivatives of Sect. 3.1.
Then C is a Fraisse class and its limit structure is the unique countably infinite model
of T +1 .

Proof We will go through the requirements of a Fraisse class one by one.

1. Closure under isomorphisms is clear.
2. Closure under substructure is guaranteed by our definition as being substructures

of a certain other class of structures.
3. It contains arbitrarily large structures, as Sn lies in C.
4. We can always consider the larger of the two indices of the structures that they

embed into.
5. Consider the situation of the amalgamation condition. As we can embed B1 and

B2 into Si and Sj respectively, we can assume without loss of generality that B1
and B2 are in {S+i |i ∈ N}. Let δ denote the derivations. Without loss of generality,
let the index of B1 be at most the index of B2. We will first build a basis for A,
which we will then extend to bases for B1 and B2 in such a way that a natural
embedding between the bases defines an embedding from B1 into B2. Start with
a basis for δ(A) ⊆ A. This can be extended to a basis for kerA(δ), and that in
turn to bases (k) and (k′) of B1 and B2, respectively. By (the proof of) Lemma 2,
k and k′ together with any choice of preimages of k and k′ define bases for B1
and B2. We can therefore choose the preimages in such a way that the preimage
will be chosen from A wherever A contains such a preimage. We argue that the
bases b and b′ obtained in that way contain a basis for A. Indeed, by the standard
kernel-image decomposition in linear algebra, the dimension of A is equal to
the dimension of the image plus the dimension of the kernel, and the number of
preimage elements that could be chosen from A is exactly the dimension of the
image. So consider the embedding from B1 into B2 that is induced by mapping
b to b′ in an appropriate way. Then by Lemma 1, this is an isomorphism onto its
image, i.e., an embedding, and it respects A as required by clause 5.

�
Thus, we could also define the theory of infinite models of T +1 as the theory of

the Fraisse limit of all finite switching algebras equipped with a derivation.
The analysis also yields quantifier elimination as a consequence:

Corollary 3 The theory of infinite models of T 1+ has quantifier elimination.

Proof The substructure generated by a subset A of a differential group is the group
generated by A ∪ σ(A). Thus, since the group reduct is uniformly locally finite, so
is the Boolean differential group.

100 F. Weitkämper

Thus, the result follows from Theorem 8 by Proposition 8. �
Considering the theory with the full Boolean algebra structure, we obtain a

representation for T K
1 , where K is the countable atomless Boolean algebra.

Theorem 9 Let C be the class of all substructures of a member of the class {Si |i ∈
N}, where each switching algebra is equipped with any of the derivatives of Sect. 3.1.
Then C is a Fraisse class and its limit structure is the unique countably infinite model
of T K

1 , where K is the countable atomless Boolean algebra.

Proof As in the proof of Theorem 8, Clauses 1–4 are easily verified. We therefore
consider the situation of the amalgamation property, and again we can assume
without loss of generality that B1 and B2 are in {Si |i ∈ N} and that the index
of B1 is at most the index of B2. Due to the corresponding property for pure
Boolean algebras, we can furthermore assume that ker(δ)B1 ⊆ ker(δ)B2 and that
(ker(δ)∩A)B1 = (ker(δ)∩A)B2 . By the analysis in Chapter 3 of [12], δ(A) is itself
a lattice of functions. In particular, δ(A) has a maximum, say α ∈ A. Let x ∈ A

be chosen with δ(x) = α. Choose z1 and z2 in B1 and B2, respectively, such that
δ(z1) = 1 and δ(z2) = 1. We will define an embedding ι : B1 → B2 by setting
ι to be the identity on ker(δ) and choosing a value of ι(z1). If δ(ι(z1)) = 1, then ι

is an embedding of Boolean differential algebras. So consider x = αz1 + a in B1
and x = αz2 + b in B2, where δ(a) = δ(b) = 0. Then we set ι(z1) := z2 + a + b.
This defines an embedding of Boolean differential algebras since δ(z2 + a + b) =
1+ 0+ 0 = 1. We thus have to show that for all y ∈ A, ι(yB1) = ι(yB2). First, we
will see that this holds for x, and we will derive an auxiliary result:

xα = αz1 + aα = x + (α + 1)a

= αz2 + bα = x + (α + 1)b

⇒ (α + 1)a = (α + 1)b

⇒ (α + 1)(a + b) = 0

⇒ α(a + b) = a + b

So ι(x) = α(z2+a+b)+a = αz2+b as required. So now consider y ∈ A arbitrary.
Then y = βz1 + c = βαz1 + c = β(αz1 + a) + βa + c = βx + βa + c. Since ι

is the identity on the kernel elements β, a, and c and ι(xB1) = ι(xB2) it follows that
ι(yB1) = ι(yB2) as required.

Therefore the theory has a Fraisse limit.
Since ultrahomogeneity of the whole structure also implies ultrahomogeneity of

the kernel, the kernel must be the countable atomless Boolean algebra. �
Just as for the additive theory, we can now conclude a quantifier elimination

result:

Axiomatizing Boolean Differentiation 101

Corollary 4 Let K be an atomless Boolean algebra. Then the theory T K
1 admits

quantifier elimination.

Proof Just as Corollary 3 follows from Theorem 8. �
We will conclude this section by outlining how such results might be combined

to investigate Boolean differentiation in large switching algebras. We will focus on
the simplest case, T 1+, for which Fraisse theory and generic theory coincide.

The approach rests on three results: By Theorem 5, the theory of infinite models
of T 1+ is the generic theory of finite switching algebras. By Corollary 3, this theory
also eliminates quantifiers. Finally, since T 1+ is finitely axiomatizable and the theory
of its infinite models is complete, it is also decidable. We can put these results
together and arrive at the following two-step procedure to decide whether a given
tuple of switching functions in a large switching algebra satisfies any L+1 -formula
ϕ(x):

1. Find a a quantifier-free formula ϕ0(x) such that ϕ0(x) is equivalent to ϕ(x) on all
infinite models of T 1+. Since their theory is decidable, ϕ0(x) can be determined
effectively.

2. Check whether the given tuple of switching functions f satisfies ϕ0(x). Since the
theory of infinite models of T 1+ is generic, ϕ0(f) iff ϕ(f) whenever f is from a
sufficiently large switching algebra.

Since quantifier-free formulas do not reference any other objects of the algebra, it
can be checked without regard to the switching algebra from which f is taken but
merely by inspecting f itself.

5 Future Applications and Perspectives

In this section, we will briefly discuss the connection between the first-order theory
as presented here and Kühnrich’s abstract notion of a Boolean derivative (see
Chapter 10 of [11]). We will then explore potential applications and directions for
further research.

While this is to the best of our knowledge the first analysis of the first-order
theory of Boolean differentiation or of axioms complete up to isomorphism, there
has certainly been some work on a more general framework for the different
notions of derivative suggested in the literature. One such framework, which has
been proposed by Martin Kühnrich [6], is presented in the chapter on Boolean
differentiation in [11]:

Definition 15 Let B be a Boolean ring and let d : B → B. Then d is called a
(Kühnrich) differential operator if the following hold:

1. For all x ∈ B, d(d(x)) = 0.
2. For all x ∈ B, d(x + 1) = dx.

102 F. Weitkämper

3. For all x, y ∈ B, d(xy) = xd(y)+ yd(x)+ d(x)d(y).

Since Kühnrich’s axioms do not include any notion of completeness, they are
essentially weaker than the theory presented here. In fact, Kühnrich’s differential
operator has a simple characterization in terms of involutions:

Proposition 14 LetB be a Boolean ring and let d : B → B. Then d is a (Kühnrich)
differential operator if and only if σ : B → B, σ(x) = x+ d(x), is an involution of
Boolean rings.

Proof “⇒”: We will verify that σ respects addition, multiplication, 0 and 1.

1. d respects addition by Proposition 10.2.1 of [11]. Thus σ(x + y) = x + y +
d(x + y) = x + d(x)+ y + d(y) = σ(x)+ σ(y).

2. σ(xy) = xy+(xd(y)+yd(x)+d(x)d(y)) = (x+d(x))(y+d(y)) = σ(x)σ (y).
3. d(0) = d(1) = 0 by Proposition 10.2.1 of [11]. Thus σ(0) = 0 + 0 = 1 and

σ(1) = 0+ 1 = 1.

“⇐”: Let σ be an involution and d(x) := x + σ(x). We will verify Kühnrich’s
axioms for d.

1.

d(d(x))=d(x)+σ(d(x))=x+σ(x)+σ(x)+σ(σ(x)) = x+σ(x)+σ(x)+x = 0.

2.

d(x + 1) = x + 1+ σ(x)+ σ(1) = x + σ(x) = d(x).

3.

xd(y)+ yd(x)+ d(x)d(y)

= x(y + σ(y))+ y(x + σ(x))+ (x + σ(x))(y + σ(y))

= xy + xσ(y)+ xy + yσ(x)+ xy + xσ(y)+ yσ(x)+ σ(x)σ (y)

= xy + σ(x)σ (y) = d(xy).

�
This holds completely analogously for the “Boolean differential algebras of order

k” that are introduced in Definition 10.2.2 of [11]; they are exactly characterized by
inducing k commuting involutions of B.

This characterization suggests the question of the exact relationship between
Kühnrich’s operators and the models of the theories introduced here. In particular,
it is clear that every substructure of a model of T K

1 (T K
n) is a differential operator

(algebra) in this sense. But does the converse hold? By Corollary 6.5.3 of [5], this
is equivalent to the question of whether Kühnrich’s axioms axiomatize the universal
theory of T K

1 (T K
n).

Axiomatizing Boolean Differentiation 103

A particular interest lies in the connections between the finite structures that are
studied in the literature and the complete theories of infinite structures expounded
here. For the particular case of the additive reduct, this is especially alluring, since
their infinite models form a totally categorical theory. The connection between
totally categorical theories and their finite substructures is the subject of a deep
model-theoretic analysis around so-called smoothly approximable structures as
discussed for instance in [7] and [2]. In particular, the Morley rank of a definable set
in the theory of infinite models determines the approximate size of the respective
definable subset of a finite model in a precise and uniform manner.

Of course, stability theory brings a host of interrelated concepts in its own right
too, and investigating these notions with respect to additive Boolean differentiation
would be an important contribution towards bringing the theory of difference
algebra in the Boolean case to a similar level as the more widely studied difference
algebra over fields.

Furthermore, it would be very interesting to extend T K
n and T +n to countably

infinitely many derivations. Then, one would have one single theory encompassing
switching functions of arbitrary sizes and their derivatives. Using more sophisticated
model-theoretic techniques, one might also be able to extend the stability hierarchy
in order to adequately cover this case.

The quantifier elimination results in Sect. 4 beg the question to what extent they
can be extended to the theories with several derivatives. It would also be interesting
to consider how quantifier elimination results for other theories of Boolean algebras,
that might require additional predicates, can be extended to quantifier elimination
results for the corresponding theory T K

1 . One example is the theory of infinite
atomic Boolean algebras, which admits quantifier elimination if one adds predicates
for “n atoms lie below x” (see [3] for details and further examples).

References

1. Chatzidakis, Z.: Model theory of difference fields. In: The Notre Dame lectures, vol. 18.
Lecture of Notes Logic Association Symbol. Logic, Urbana, pp. 45–96 (2005)

2. Cherlin, G.L., Hrushovski, E.: Finite Structures with Few types, vol. 152. Annals of Mathe-
matics Studies, Princeton (2003)

3. Derakhshan, J., Macintyre, A.: Enrichments of Boolean algebras by Presburger predicates.
Fund. Math. 239(1), 1–17 (2017). ISSN: 0016-2736

4. Esparza, J., Michaux, C., Steinhorn, C. (eds.): Finite and algorithmic model theory. In: London
Mathematical Society Lecture Note Series, vol. 379. Cambridge University, Cambridge, pp.
xii+341 (2011). ISBN: 978-0-521-71820-2

5. Hodges, W.: Model theory. In: Encyclopedia of Mathematics and its Applications, vol. 42.
Cambridge University, Cambridge, pp. xiv+772 (1993). ISBN: 0-521-30442-3

6. Kühnrich, M.: Differentialoperatoren über Booleschen Algebren. Z. Math. Logik Grundlag.
Math. 32(3), 271–288 (1986). ISSN: 0044-3050

7. Macpherson, D., Steinhorn, C.: Definability in classes of finite structures. In: Finite and
algorithmic model theory, vol. 379. London Mathematical Society Lecture Note Series.
Cambridge University, Cambridge, pp. 140–176 (2011)

104 F. Weitkämper

8. Marker, D.:Model theory. In: Graduate Texts in Mathematics. An introduction, vol. 217.
Springer, New York, pp. viii+342 (2002). ISBN: 0-387-98760-6

9. Pestov, V.: Dynamics of infinite-dimensional groups. In: University Lecture Series, vol. 40.
American Mathematical Society, Providence, pp. viii+192 (2006). ISBN: 978-0-8218-4137-2;
0-8218-4137-8

10. Rudeanu, S.: Boolean Functions and Equations. North Holland Publishing Company, Amster-
dam (1974)

11. Rudeanu, S.: Lattice Function and Equations. Springer, Berlin (2001)
12. Steinbach, B., Posthoff, C.: Boolean differential calculus. In: Syn- thesis Lectures on Digital

Circuits and Systems, vol. 52. Morgan and Claypool, New York (2017)
13. Thayse, A.: Boolean calculus of differences. In: Akers, S.B. (eds.) Lecture Notes in Computer

Science, vol. 101. Springer, Berlin, pp. vii+144 (1981). ISBN: 3-540-10286-8

Construction of Binary Bent Functions
by FFT-Like Permutation Algorithms

Radomir S. Stanković, Milena Stanković, Claudio Moraga,
and Jaakko Astola

1 Introduction

Binary bent functions are Boolean functions which achieve maximal non-linearity
of 2n−1 − 2n/2−1, where n is the number of variables and has to be an even natural
number. It means that bent functions are at the highest possible distance from all
affine functions. Recall that the affine functions are defined as linear functions and
their complements. An important characteristic of bent functions is that they must
have exactly specified Hamming weight, i.e., the number of non-zero values in the
truth-vector, which can be either w1 = 2n−1 − 2n/2−1 or w2 = 2n−1 + 2n/2−1. In
that respect, the set of all bent functions for a given n can be split into two subsets
Sw1 and Sw2 of equal cardinality consisting of functions with the same number w1
or w2 of non-zero values. Each function in Sw1 has a counterpart in Sw2 , which is
its logic complement, and vice versa.

Another characteristic of bent functions is their degree d defined as the largest
number of variables in a product term in their functional expressions. Under the
term functional expression for a binary function, we assume the positive-polarity
Reed-Muller expressions [13, 14], initially introduced as Zhegalkin polynomials
[18, 19], which in cryptographic and related communities are often called the

R. S. Stanković (�)
Mathematical Institute of SASA, Belgrade, Serbia

M. Stanković
Department of Computer Science, Faculty of Electronic Engineering, Niš, Serbia

C. Moraga
Faculty of Computer Science, Technical University of Dortmund, Dortmund, Germany

Department of Informatics, Technical University “Federico Santa María”, Valparaíso, Chile

J. Astola
Department of Signal Processing, Tampere University of Technology, Tampere, Finland

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-68071-8_5

106 R. S. Stanković et al.

algebraic normal form (ANF) [8, 17]. Fast computing algorithms for determining
Reed-Muller coefficients corresponding directly to the Cooley-Tukey algorithms for
the fast Fourier transform (FFT), which is a fast algorithm for computing the discrete
Fourier transform (DFT) [7], have been proposed by Ph. W. Besslich [3–6]. It is
usually assumed that the product terms, equivalently, the Reed-Muller coefficients,
are arranged in the Hadamard order. The value of the degree d of a bent function
determines possible non-zero Reed-Muller coefficients, since it defines product
terms to which they can be assigned.

In spectral domain, bent functions are defined in terms of a specific requirement
that should be satisfied by the spectral coefficients of a bent function with respect
to the discrete Walsh transform that is the Fourier transform on the group on which
Boolean functions are defined. The discrete Walsh transform can be computed by the
fast Walsh transform (FWT) directly derived from FFT [1, 2]. This is a feature that
will be used in this chapter where we refer to a particular FWT corresponding to the
Cooley-Tukey FFT based on the Good-Thomas factorization of the DFT transform
matrix.

A classical theorem in the theory of bent functions states that functions derived
from a bent function by adding to it affine functions are also bent [8]. In other
words, adding a linear combination of variables and the constant 1 to a binary bent
function preserves the bentness [16]. From the spectral transform point of view,
preserving the bentness is viewed as performing the so-called spectral invariant
operations meaning that these operations preserve the absolute values of Walsh
spectral coefficients. In the spectral domain, these operations are performed as
particular permutations of strictly determined subsets of Walsh coefficients and
possibly change of their signs. This feature will be used later.

For a given bent function, its non-zero Reed-Muller coefficients uniquely deter-
mine in terms of which variables spectral invariant operations, in particular, spectral
translation and disjoint spectral translation defined bellow, can be interpreted as
adding linear terms to produce new bent functions. For example, if the non-zero
Reed-Muller coefficient is assigned to the product term xixj , the substitution xi →
xi ⊕ xj , which is a spectral invariant operation, will produce a new function with
the terms xixj ⊕ xj . Thus, it can be viewed as adding the variable xj to the initial
function, and the new function is also bent. In the same way, for such a function,
the substitution xj → xj ⊕ xi can be viewed as adding the variable xi . In the
spectral domain, both these substitutions are performed as particular permutations
of precisely defined subsets of Walsh coefficients.

In this chapter, we point out the following.

1. Bent functions of the same Hamming weight are mutually related by permuta-
tions of their function values.

2. Since bentness should be preserved, meaning that spectra of bent functions
should remain flat, allowed permutations correspond to spectral invariant opera-
tions.

3. In the spectral domain, spectral invariant operations require permutations of
certain precisely determined subsets of Walsh spectral coefficients.

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 107

4. In the functional domain, permutations of spectral coefficients can be equiva-
lently expressed as permutations of function values involved in computing the
spectral coefficients to be permuted.

5. When spectral coefficients are computed by the FWT, the function values which
should be permuted due to spectral invariant operations are directly and uniquely
determined by the factor matrices describing the corresponding steps of the FWT.

6. The structure of the factor matrices in the FWT determines the structure of the
permutation matrices mutually relating bent functions with the same Hamming
weight.

This leads to an algorithm for constructing bent functions by permutation
matrices, which we call the FFT-like in the general case, or FWT-like permutation
matrices in the binary case.

In what follows, we first briefly present the basic concepts that will be used, and
then introduce the FWT-like matrices and explain their application to construct bent
functions.

2 Walsh Transform

The Walsh transform is the Fourier transform on the finite dyadic group which is
the natural domain for Boolean functions. Recall that this is a group consisting of
binary n-tuples and the group operation is the addition modulo 2. In matrix notation,
The Walsh transform can be defined by the transform matrix

W(n) =
n⊗

i=1

W(1), W(1) =
[

1 1
1 −1

]
,

where ⊗ denotes the Kronecker product. This product determines the so-called
Hadamard ordering of Walsh functions used in the transform. Emphasizing their
ordering here is important, since it determines the position of spectral coefficients
assigned to particular Walsh functions within the vector representing the Walsh
spectrum Sf = [Sf (0), Sf (1), . . . , Sf (2n − 1)]T determined for a function
f (x1, x2, . . . , xn) specified by the function vector F = [f (0), f (1), . . . , f (2n −
1)]T as

Sf =W(n)F(n).

This feature will be used later when we refer to particular subsets of Walsh
coefficients.

When the Walsh transform is applied to a Boolean function, the encoding
(0, 1) → (1,−1) is usually applied to the function values. In this case, the
Walsh coefficients, i.e., elements of the vector representing Walsh spectrum, are
even integers between −2n and 2n, where n is the number of variables. Further,

108 R. S. Stanković et al.

not all possible combinations of integers in this range are allowed as values of
Walsh coefficients of Boolean functions. Certain restrictions are imposed in order to
ensure that the inverse transform will produce a Boolean function out of the Walsh
spectrum.

3 Spectral Invariant Operations in the Walsh Domain

Any operation over the function values which preserves absolute values of spectral
coefficients can be viewed as a spectral invariant operation for a particular spectral
transform. In spectral techniques based on the discrete Walsh transform for process-
ing Boolean functions, there are five classical spectral invariant operations, which
in the terminology introduced in [11], also used in [12] and elsewhere, are defined
as follows:

1. Polarization of the function f

f (x1, x2, . . . , xn) → g(x1, x2, . . . , xn) = f (x1, x2, . . . , xn) ⊕ 1, which is the
logical complement of f x1, x2, . . . , xn).

2. Polarization of an input variable xi

xi → xi ⊕ 1, i = 1, 2, . . . , n.
3. Adding a variable to the function f

f (x1, x2, . . . , xn)→ g(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)⊕ xi .
4. Permutation of input variables, xi ↔ xj . Thus,

f (x1, . . . , xi, . . . xj , . . . , xn)→ g(x1, x2, . . . , xn)=f (x1, . . . , xj , . . . xi, . . . , xn).

5. Substitution of an input variable by a sum of variables containing the replaced
variable xi → xi ⊕ xr , i.e.,

f (x1, . . . , xi , . . . , xn)→ g(x1, x2, . . . , xn) = f (x1, . . . , xi ⊕ xr , . . . , xn).

Restriction is that the replacing sum must contain the replaced variable xi .

The operations 3 and 5 are called the disjoint spectral translation and spectral
translation, respectively.

In the spectral domain, if indices of spectral coefficients are written in their binary
representations, spectral invariant operations can be expressed in the following
way:

1. Multiplication of spectral coefficients with −1.
2. Componentwise multiplication of the spectrum with the truth-vector of xi .
3. Permutation of subsets of spectral coefficients with the index i of the variable xi

added to f ,

Sgl1,...,li⊕1,...,ln
↔ Sfl1,...,li ,...,ln

,

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 109

where li are binary representations of indices of spectral coefficients. Thus, the
spectral coefficients with complemented values of the ith coordinate in the binary
representation of indices are permuted.

4. Permutation of subsets of spectral coefficients

Sfl1,...,li ,...lr ,...,ln
↔ Sfl1,...,lr ,...li ,...,ln

.

5. Interchange of pairs of spectral coefficients

Sgl1,...,li ,lr⊕li ,...,ln
↔ Sfl1,...,li ,lr ,...,ln

.

From the Hadamard ordering of Walsh functions, determined by the Kronecker
product structure of the Walsh transform matrix, it follows that subsets of 2k ,
k = 1, 2, . . . n/2, Walsh coefficients can be simultaneously permuted or their signs
changed, or both, depending on the performed spectral invariant transformations.
These subsets of 2k elements result in a block structure of permutation matrices
expressing the permutations due to spectral invariant operations.

4 Bent Functions and Walsh Transform

In the (1,−1) encoding, the sum of values of all Walsh coefficients of a Boolean
function is either−2n or 2n. Thus, the maximal absolute value of a Walsh coefficient
is 2n in which case all other Walsh coefficients are equal to 0. For example, this is the
case for the Walsh coefficient of the index 0, Sf (0) for the constant function 1. The
Walsh spectra of Walsh functions exhibit the same property due to the orthogonality
of this transform. It means that the ith Walsh coefficient has the value 2n for the ith
Walsh function, while all other coefficients are 0. Recall that the Walsh functions
can be viewed as (1,−1) encoding of all possible linear Boolean functions for a
given number of variables. For other Boolean functions, the Walsh coefficients are
certain combinations of even integers and 0 under the above-mentioned restriction
to their sum.

The Walsh coefficients reach the smallest value of the maximum absolute value
when all the values of squares of Walsh spectral coefficients are equal mutually
[17]. In this case, the Walsh spectrum is flat, and this feature is used as an alternative
definition of bent functions. In other words, a Boolean function is bent if the absolute
values of all its coefficients Sf (w), w = 0, 1, . . . , 2n − 1 are |Sf (w)| = 2n/2.
This illustrates the difference with respect to the linear functions, where a single
coefficient takes the maximal absolute value and all others are 0. For bent functions,
which are most non-linear functions, all the Walsh coefficients have equal values,
and this is the smallest value of the maximum absolute value in the Walsh spectrum
of Boolean functions [17].

Spectral invariant operations preserve the flatness of the Walsh spectrum and
therefore can be used to derive new bent functions from a given bent function

110 R. S. Stanković et al.

by manipulating with its Walsh spectrum. Notice that spectral invariant operations
enumerated above as items 1 and 3, i.e., polarization of the function, and spectral
translation actually perform operations allowed by the theorem about adding affine
functions to bent functions. Permutation of variables is also not very interesting,
since in constructing new bent functions we can start from any bent function,
and it is in general irrelevant if we start from a function f or another function
derived from it by some permutation of variables. Therefore, the most interesting
for considerations in the present considerations are polarization of variables defined
as xi → xi ⊕ 1, and disjoint spectral translation of variables xi → xi ⊕ xj . From
the implementation point of view, the question arises how they can be efficiently
implemented, since dealing with functional expressions is impractical especially
in the case of functions with a large number of product terms. In this context,
establishing links to fast computing algorithms for spectral transforms has sense,
since besides being efficient, such algorithms can be performed over either vectors
or decision diagrams as underlying data structures to represent functions to be
processed. In what follows, we show that these operations can be performed by
using permutation matrices derived from fast computing algorithms for the discrete
Walsh transform in Hadamard ordering.

5 Essence of FFT

For the completeness of the presentation, in this section we briefly recall the basic
ideas of a fast computing algorithm to which we refer in defining permutations used
for constructing bent functions.

The fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier
transform (DFT). In this chapter, we refer to the so-called Cooley-Tukey FFT that
is based on the Good-Thomas decomposition of the DFT transform matrix [7, 9],
[10], [15]. The reason for the selection is that this algorithm is usually applied when
computing the discrete Walsh transform which is viewed as the Fourier transform
on the finite dyadic group of order 2n, Cn

2 , where C2 = ({0, 1},⊕), and the group
operation is the addition modulo 2. The main idea behind this algorithm, which is
called the fast Walsh transform (FWT) [1, 2], is to convert computing a 2n length
transform into performing n transforms of length 2. This means that the transform is
performed in n steps, with computations in each step determined by the (2×2) basic
Walsh transform matrix W(1). The (2n × 2n) Walsh matrix W(n) is decomposed
into n factor matrices

W(n) =
n∏

i=1

Ci (n), Ci (n) =
n⊗

j=1

Dj ,

where

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 111

Dj =
{

W(1) j = i,

I(1), j �= i,
W(1) =

[
1 1
1 −1

]
, I(1) =

[
1 0
0 1

]
.

The factor matrices are sparse, and it is known that FFT is the algorithm with the
smallest number of operations required to compute a DFT. From there comes the
efficiency of FFT.

6 Permutation Matrices

Spectral invariant operations perform permutation of subsets of Walsh coefficients,
which in the original domain corresponds to a permutation of function values
involved in computing these spectral coefficients to be permuted. These values
are determined by the addresses of locations from which the data are fetched in
FFT to compute the spectral coefficients. These addresses are determined by the
flow-graphs of steps of FFT, equivalently, the factor matrices describing the steps.
By referring to them, we define the permutation matrices, which we call FFT-like
permutation matrices, to construct from a given bent function other bent functions
with the same number of non-zero values. Since spectral invariant operations
preserve flat spectra, it follows that permutation matrices in the original domain
related to the spectral invariant operations also preserve bentness. Thus, functions
constructed by the application of these permutation matrices do not need to be
checked for bentness which is a good feature of the approach proposed.

Different combinations of these FFT-like matrices will produce different new
bent functions. Further, their application in different order will also produce differ-
ent new bent functions. A successive application of the same FFT-like permutation
matrix twice does not have sense, since they are involutions, i.e., P2(n) = I(n).

Recall that a permutation can be expressed in terms of other permutations
in different ways. Therefore, it should be noticed that some combinations of
permutation matrices as well as some combinations of the order in which they
are applied might produce identical bent functions. This can be viewed as a
disadvantage of the proposed method on the one hand; however, on the other hand,
this means that a small library of FFT-like permutation matrices is sufficient to
produce from a given initial function a considerable number of new bent functions.

We define two basic matrices

P(1) =
[

0 1
1 0

]
, I(1) =

[
1 0
0 1

]
.

By using these basic matrices, we define (2n × 2n) permutation matrices with
respect to the ith variable in a function in n variables as

112 R. S. Stanković et al.

Pi (n) =
n⊗

j=1

Dj , Dj =
{

P(1), j = i,

I(1), otherwise.

It can be observed a strong resemblance in the structure of this matrix Pi (n) to
the factor matrices Ci (n) in FFT, which gives a justification for the term FFT-like
permutation matrix for Pi (n). This resemblance consists in the replacement of the
basic transform matrix W(1) by the basic permutation matrix P(1).

From the definition of the spectral invariant operation of polarization of a variable
xi → xi ⊕ 1 by referring to its expression in the spectral domain, it follows that it
is performed by application of the permutation matrix Pi to the truth-vector F of
a given function f . A recursive application of the permutation matrices assigned
to different variables will produce various bent functions. Notice that the recursive
application of permutation matrices Pi and Pj assigned to the variables xi and xj ,
respectively, to perform their polarization, is equivalent to the multiplication with a
permutation matrix Pi,j obtained as the product of the corresponding permutation
matrices assigned to variables. Example 1 in Sect. 7 illustrates this procedure over
FFT-like permutation matrices.

Now, we define permutation matrices involving basic matrices at the positions
of two variables in steps of FFT. To determine these matrices, we use auxiliary
symbolic matrices as follows.

Consider two symbolic (2× 2) matrices L(1) =
[

a b

b a

]
and T(1) =

[
a 0
0 b

]
. An

(2n × 2n) auxiliary symbolic matrix is defined as

Ai,k(n) =
n⊗

j=1

Aj , Aj =
⎧
⎨

⎩

L(1), j = i,

T(1), j = k,

I(1), otherwise.

The permutation matrix Qi,k(n) is defined as a matrix derived from Ai,k(n) by
replacement of symbols a2 and b2 by 1, while symbols with mixed letters ab and
ba are replaced by 0. Again, from definition of spectral invariant operations in
the spectral domain, if follows that the permutation matrix Qi,k(n) performs the
substitution of a variable xi by xi⊕xk . Example 2 in Sect. 7 illustrates the application
of this permutation matrix.

7 Illustrative Examples

In this section, we present examples which illustrate the definition and the applica-
tion of FFT-like permutation matrices Pi (n), Pi,j (n), and Qi,k(n).

Example 1 Consider the function f (x1, x2, x3, x4) = x1x2 ⊕ x3x4 ⊕ x1x3 ⊕ x2. Its
truth-vector is

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 113

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (4)

f (5)

f (6)

f (7)

f (0)

f (1)

f (2)

f (3)

f (12)

f (13)

f (14)

f (15)

f (8)

f (9)

f (10)

f (11)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (2)

f (3)

f (0)

f (1)

f (6)

f (7)

f (4)

f (5)

f (10)

f (11)

f (8)

f (9)

f (14)

f (15)

f (12)

f (13)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (1)

f (0)

f (3)

f (2)

f (5)

f (4)

f (7)

f (6)

f (9)

f (8)

f (11)

f (10)

f (13)

f (12)

f (15)

f (14)

P1 P2 P3 P4

Fig. 1 Flow-graph for computing with P1, P2, P3, P4

F = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0]T .

The Walsh spectrum after encoding (0, 1)→ (1,−1) is computed as

Sf = [4,−4, 4, 4, 4, 4, 4,−4,−4, 4,−4,−4, 4, 4, 4,−4]T .

We apply different permutation matrices derived from steps of the fast Walsh
transform and produce 15 different bent functions. For each permutation matrix, we
show the truth-vector of the produced function, the Walsh spectrum computed in the
(0, 1)→ (1,−1) encoding of Boolean values, and the functional expression for the
new bent function produced in this way. Table 1 and its continuation Table 2 show
the performed spectral invariant operations, the corresponding permutation matrices
used in computing, the truth-vectors of the produced new bent functions, their Walsh
spectra, and functional expressions. Figure 1 shows the flow-graph for computing
with permutation matrices P1, P2, P3, and P4. The black lines corresponds to the
flow-graph of the FWT, while thicker green lines over them show the performed
permutations. Figures 2 and 3 show the flow-graph for computing with the matrices
Q4 and R5. We see that the steps of the FWT are selected depending on the position
of the basic permutation matrices in the Kronecker product defining these matrices.

The following example illustrates the construction of a new bent function
by application of the permutation matrix corresponding to the spectral invariant
operation called the disjoint translation xi → xi ⊕ xj .

114 R. S. Stanković et al.

Table 1 Spectral invariant operations, permutation matrices, truth-vectors of new functions, their
Walsh spectra, and functional expressions for produced bent functions from the function f in
Example 1

Case 1 x1 → x1 ⊕ 1

P1 = P(1)⊗ I(1)⊗ I(1)⊗ I(1)

F1 = P1F = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0]T
Sf 1 = [4,−4, 4, 4, 4, 4, 4,−4, 4,−4, 4, 4,−4,−4,−4, 4]T
f1 = x3 ⊕ x3x4 ⊕ x1x3 ⊕ x1x2

Case 2 x2 → x2 ⊕ 1

P2 = I(1)⊗ P(1)⊗ I(1)⊗ I(1)

F2 = P2F = [1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]T
Sf 2 = [4,−4, 4, 4,−4,−4,−4, 4,−4, 4,−4,−4,−4,−4,−4, 4]T
f2 = 1⊕ x3x4 ⊕ x1 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 3 x3 → x3 ⊕ 1

P3 = I(1)⊗ I(1)⊗ P(1)⊗ I(1)

F3 = P3F = [0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0]T
Sf 3 = [4,−4,−4,−4, 4, 4,−4, 4,−4, 4, 4, 4, 4, 4,−4, 4]T
f3 = x4 ⊕ x3x4 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 4 x4 → x4 ⊕ 1

P4 = I(1)⊗ I(1)⊗ I(1)⊗ P(1)

F4 = P4F = [0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]T
Sf 4 = [4, 4, 4,−4, 4,−4, 4, 4,−4,−4,−4, 4, 4,−4, 4, 4]T
f4 = x3 ⊕ x3x4 ⊕ x2 ⊕ x1x3 ⊕ x1x2

Case 5 x2 → x2 ⊕ 1 to (x1 → x1 ⊕ 1)

Q1 = P(1)⊗ P(1)⊗ I(1)⊗ I(1)

F5 = Q1F = [0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1]T
Sf 5 = [4,−4, 4, 4,−4,−4,−4, 4, 4,−4, 4, 4, 4, 4, 4,−4]T
f5 = x3 ⊕ x3x4 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 6 x3 → x3 ⊕ 1 to (x2 → x2 ⊕ 1)

Q2 = I(1)⊗ P(1)⊗ P(1)⊗ I(1)

F6 = Q2F = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]T
Sf 6 = [4,−4,−4,−4,−4,−4, 4,−4,−4, 4, 4, 4,−4,−4, 4,−4]T
f6 = 1⊕ x4 ⊕ x3x4 ⊕ x2 ⊕ x1x3 ⊕ x1x2

Case 7 x4 → x4 ⊕ 1 to (x3 → x3 ⊕ 1)

Q3 = I(1)⊗ I(1)⊗ P(1)⊗ P(1)

F7 = Q3F = [1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0]T
Sf 7 = [4, 4,−4, 4, 4,−4,−4,−4,−4,−4, 4,−4, 4,−4,−4,−4]T
f7 = 1⊕ x4 ⊕ x3 ⊕ x3x4 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 8 x3 → x3 ⊕ 1 to (x1 → x1 ⊕ 1)

Q4 = P(1)⊗ I(1)⊗ P(1)⊗ I(1)

F8 = Q4F = [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1]T
Sf 8 = [4,−4,−4,−4, 4, 4,−4, 4, 4,−4,−4,−4,−4,−4, 4,−4]T
f8 = 1⊕ x4 ⊕ x3 ⊕ x3x4 ⊕ x1 ⊕ x1x3 ⊕ x1x2

(continued)

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 115

Table 1 (continued)

Case 9 x4 → x4 ⊕ 1 to (x2 → x2 ⊕ 1)

Q5 = I(1)⊗ P(1)⊗ I(1)⊗ P(1)

F9 = Q5F = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]T
Sf 9 = [4, 4, 4,−4,−4, 4,−4,−4,−4,−4,−4, 4,−4, 4,−4,−4]T
f9 = 1⊕ x3 ⊕ x3x4 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 10 x4 → x4 ⊕ 1 to (x1 → x1 ⊕ 1)

Q6 = P(1)⊗ I(1)⊗ I(1)⊗ P(1)

F10 = Q6F = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]T
Sf 10 = [4, 4, 4,−4, 4,−4, 4, 4, 4, 4, 4,−4,−4, 4,−4,−4]T
f10 = x3x4 ⊕ x1x3 ⊕ x1x2

Table 2 Substitution, permutation matrix, truth-vector of new function f , its Walsh spectrum, and
functional expression for it

Case 11 x3 → x3 ⊕ 1 to (x2 → x2 ⊕ 1) to (x1 → x1 ⊕ 1)

R1 = P(1)⊗ P(1)⊗ P(1)⊗ I(1)

F11 = R1F = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0]T
Sf 11 = [4,−4,−4,−4,−4,−4, 4,−4, 4,−4,−4,−4, 4, 4,−4, 4]T
f11 = 1⊕ x4 ⊕ x3 ⊕ x3x4 ⊕ x1x3 ⊕ x1x2

Case 12 x4 → x4 ⊕ 1 to (x2 → x2 ⊕ 1) to (x1 → x1 ⊕ 1)

R2 = P(1)⊗ P(1)⊗ I(1)⊗ P(1)

F12 = R2F = [0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0]T
Sf 12 = [4, 4, 4,−4,−4, 4,−4,−4, 4, 4, 4,−4, 4,−4, 4, 4]T
f12 = x1 ⊕ x3x4 ⊕ x1x3 ⊕ x1x2

Case 13 x4 → x4 ⊕ 1 to (x3 → x3 ⊕ 1) to (x1 → x1 ⊕ 1)

R3 = P(1)⊗ I(1)⊗ P(1)⊗ P(1)

F13 = R3F = [0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1]T
Sf 13 = [4, 4,−4, 4, 4,−4,−4,−4, 4, 4,−4, 4,−4, 4, 4, 4]T
f13 = x4 ⊕ x3x4 ⊕ x1 ⊕ x1x3 ⊕ x1x2

Case 14 x4 → x4 ⊕ 1 to (x3 → x3 ⊕ 1) to (x2 → x2 ⊕ 1)

R4 = I(1)⊗ P(1)⊗ P(1)⊗ P(1)

F14 = R4F = [0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]T
Sf 14 = [4, 4,−4, 4,−4, 4, 4, 4,−4,−4, 4,−4,−4, 4, 4, 4]T
f14 = x4 ⊕ x3 ⊕ x2 ⊕ x3x4 ⊕ x1x3 ⊕ x1x2

Case 15 x4 → x4 ⊕ 1 to (x3 → x3 ⊕ 1) to (x2 → x2 ⊕ 1) to (x1 → x1 ⊕ 1)

R5 = P(1)⊗ P(1)⊗ P(1)⊗ P(1)

F15 = R5F = [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0]T
Sf 15 = [4, 4,−4, 4,−4, 4, 4, 4, 4, 4,−4, 4, 4,−4,−4,−4]T
f15 = x4 ⊕ x3x4 ⊕ x1x3 ⊕ x1x2

Example 2 We determine a symbolic matrix as

A1,2 = L(1)⊗ T(1)⊗ I(1)⊗ I(1).

116 R. S. Stanković et al.

Fig. 2 Flow-graph for
computing with Q4

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (10)

f (11)

f (8)

f (9)

f (14)

f (15)

f (12)

f (13)

f (2)

f (3)

f (0)

f (1)

f (6)

f (7)

f (4)

f (5)

Q4

After performing a symbolic computation and replacement of elements a2 and
b2 by 1 and all other elements by 0, we get the permutation matrix which can be
written in a condensed form as

Q1,2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) I(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1)

0(1) 0(1) I(1) 0(1) 0(1) 0(1) I(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1)

0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1)

0(1) I(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1)

0(1) 0(1) I(1) 0(1) 0(1) 0(1) I(1) 0(1)

0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where I(1) and 0(1) are the (2× 2) identity and the zero matrices.
Figure 4 shows the flow-graph for computing with this matrix.
The matrix Q1,2 applied to the truth-vector F of the initial function in Example 1

produces the truth vector F1,2 of a function f1,2(x1, x2, x3, x4) as

F1,2 = [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0]T
Sf 1,2 = [4,−4, 4, 4, 4, 4, 4,−4, 4, 4, 4,−4,−4, 4,−4,−4]T
f1,2(x1, x2, x3, x4) = x3x4 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2.

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 117

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (12) f (14)

f (13) f (15)

f (14) f (12)

f (15) f (13)

f (8) f (10)

f (9) f (11)

f (10) f (8)

f (11) f (9)

f (4) f (6)

f (5) f (7)

f (6) f (4)

f (7) f (5)

f (0) f (2)

f (1) f (3)

f (2) f (0)

f (3) f (1)

f (15)

f (14)

f (13)

f (12)

f (11)

f (10)

f (9)

f (8)

f (7)

f (6)

f (5)

f (4)

f (3)

f (2)

f (1)

f (0)

R5

Fig. 3 Flow-graph for computing with R5

The same function can be derived from f by the substitution x1 → x1 ⊕ x2.
Define a symbolic matrix

A1,3 = L(1)⊗ I(1)⊗ T(1)⊗ I(1).

From this matrix, we produce that permutation matrix, which can be written as

Q1,3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1)

0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1)

0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1)

0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1)

0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 5 shows the flow-graph for computing with this matrix.

118 R. S. Stanković et al.

Fig. 4 Flow-graph for
computing with Q1,2

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (2)

f (3)

f (12)

f (13)

f (14)

f (15)

f (8)

f (9)

f (10)

f (11)

f (4)

f (5)

f (6)

f (7)

Q1,2

Application of this permutation matrix to the truth-vector of the considered initial
function f produces the truth-vector of the function f1,3 as

F1,3 = [0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0]T
Sf 1,3 = [4,−4, 4, 4, 4, 4, 4,−4,−4,−4,−4, 4, 4,−4, 4, 4]T
f1,3(x1, x2, x3, x4) = x3 ⊕ x3x4 ⊕ x2 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2

The same function can be obtained from the functional expression for the initial
function f by the spectral invariant operation x1 → x1 ⊕ x3.

Define a symbolic matrix

A1,4 = L(1)⊗ I(1)⊗ I(1)⊗ T(1),

which results in the permutation matrix

Q1,4 =

⎡

⎢⎢⎣

C 0 D 0
0 C 0 D
D 0 C 0
0 D 0 C

⎤

⎥⎥⎦ , where C =

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎥⎦ , and D =

⎡

⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥⎥⎦ .

Thus,

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 119

Fig. 5 Flow-graph for
computing with Q1,3

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (10)

f (11)

f (4)

f (5)

f (14)

f (15)

f (8)

f (9)

f (2)

f (3)

f (12)

f (13)

f (6)

f (7)

Q1,3

Q1,4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(1) 0(1) 0(1) 0(1) D(1) 0(1) 0(1) 0(1)

0(1) C(1) 0(1) 0(1) 0(1) D(1) 0(1) 0(1)

0(1) 0(1) C(1) 0(1) 0(1) 0(1) D(1) 0(1)

0(1) 0(1) 0(1) C(1) 0(1) 0(1) 0(1) D(1)

D(1) 0(1) 0(1) 0(1) C(1) 0(1) 0(1) 0(1)

0(1) D(1) 0(1) 0(1) 0(1) C(1) 0(1) 0(1)

0(1) 0(1) D(1) 0(1) 0(1) 0(1) C(1) 0(1)

0(1) 0(1) 0(1) D(1) 0(1) 0(1) 0(1) C(1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Figure 6 shows the flow-graph for computing with this matrix.
This matrix produces a new bent function f1,4 specified as

F1,4 = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0]T
Sf 1,4 = [4,−4, 4, 4, 4, 4, 4,−4, 4,−4,−4,−4, 4, 4,−4, 4]T
f1,4(x1, x2, x3, x4) = x2 ⊕ x2x4 ⊕ x1x3 ⊕ x1x2

The same function can be obtained by the substitution of the variable x1 →
x1 ⊕ x4.

Define a symbolic matrix

A2,3 = I(1)⊗ L(1)⊗ T(1)⊗ I(1),

120 R. S. Stanković et al.

Fig. 6 Flow-graph for
computing with Q1,4

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

f(9)

f(10)

f(11)

f(12)

f(13)

f(14)

f(15)

f(0)

f(9)

f(2)

f(11)

f(4)

f(13)

f(6)

f(15)

f(8)

f(1)

f(10)

f(3)

f(12)

f(5)

f(14)

f(7)

Q1,4

which produces the permutation matrix

Q2,3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 7 shows the flow-graph for computing with this matrix.
This matrix converts the initial function f into a function f2,3 specified by the

truth-vector.

F2,3 = [0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]T
Sf 2,3 = [4,−4, 4, 4, 4,−4, 4, 4,−4, 4,−4,−4, 4,−4, 4, 4]T
f2,3(x1, x2, x3, x4) = x3 ⊕ x3x4 ⊕ x2 ⊕ x1x2

The same function can be obtained by the substitution of variable x2 → x2⊕ x3.

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 121

Fig. 7 Flow-graph for
computing with Q2,3

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

f(9)

f(10)

f(11)

f(12)

f(13)

f(14)

f(15)

f(0)

f(1)

f(6)

f(7)

f(4)

f(5)

f(2)

f(3)

f(8)

f(9)

f(14)

f(15)

f(12)

f(13)

f(10)

f(11)

Q2,3

Consider a matrix obtained as the product of two permutation matrices perform-
ing disjoint spectral translation with respect to two different variables

Q1,2,2,3 = Q1,2 ·Q2,3.

It can be written in condensed notation as

Q1,2,2,3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) I(1) 0(1) 0(1) 0(1)

0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) I(1)

0(1) 0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1)

0(1) I(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 8 shows the flow-graph for computing with this matrix.
The application of this matrix to the initial function f produces a function with

the truth-vector

F1,2,2,3 = [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1]T
Sf 1,2,2,3 = [4,−4, 4, 4, 4,−4, 4, 4, 4,−4, 4, 4,−4, 4,−4,−4]T
f1,2,2,3(x1, x2, x3, x4) = x3 ⊕ x3x4 ⊕ x1x2

122 R. S. Stanković et al.

Fig. 8 Flow-graph for
computing with Q1,2,2,3

f (0)

f (1)

f (2)

f (3)

f (4)

f (5)

f (6)

f (7)

f (8)

f (9)

f (10)

f (11)

f (12)

f (13)

f (14)

f (15)

f (0)

f (1)

f (10)

f (11)

f (12)

f (13)

f (6)

f (7)

f (8)

f (9)

f (2)

f (3)

f (4)

f (5)

f (14)

f (15)

f (0)

f (1)

f (6)

f (7)

f (12)

f (13)

f (10)

f (11)

f (8)

f (9)

f (14)

f (15)

f (4)

f (5)

f (2)

f (3)

Q1,2,2,3

The same function can be obtained by the spectral invariant operation x2 → x3⊕x3
followed by x1 → x1 ⊕ x2. �

8 Algorithm for Constructing Bent Functions

From the proposed approach, an algorithm for constructing bent functions with
selected number of variables and specified number of non-zero values in the function
vector can be directly formulated.

Determine a library L of FFT-like permutation matrices for specified values of
the number of variables n.

1. Given an arbitrary bent function f with the selected number of non-zero values.
2. Apply an FFT-like permutation matrix to f and write the result in a list.
3. Repeat the Step 2 for different permutation matrices from L.
4. Check if each of the produced new bent functions is already contained in the list.

If yes skip it and return to Step 2.

Features of the proposed method can be briefly summarized as follows. Referring
to spectral invariant operations guaranties that new bent functions are bent and
there is no need to check them for bentness, which simplifies the procedure.

Construction of Binary Bent Functions by FFT-Like Permutation Algorithms 123

Direct implementation of spectral invariant operations requires computing the
Walsh spectrum, performing spectral invariant operations over subsets of spectral
coefficients, and finally computing the inverse Walsh transform to get the function
obtained. Alternative is to deal with functional expressions and perform symbolic
computations. By relating permutations determined by spectral invariant operations
to factor matrices describing steps of FFT allows their implementation directly in
the functional domain avoiding computing the spectrum and the inverse transform.
Implementation of the permutation matrices should be simple, since they are derived
from fast computing algorithms.

9 Closing Remarks

Bent functions are an interesting mathematical object due to their peculiar proper-
ties. At the same time, there are important applications where bent functions are
used. The fast Fourier transform (FFT) is also a very important concept, since
by ensuring computation efficiency in both space and time, this algorithm made
possible application of powerful mathematical method based on the Fourier analysis
and various generalizations in scientific and engineering practice. In this chapter, we
established a link between these two concepts by pointing out the following:

1. Various bent functions in n variables, a selected degree d, and the specified
number of non-zero values w1 or w2 can be constructed from a given bent
function with the same parameters n, d, and wi by permutation matrices
expressing a structure equal to the structure of factor matrices describing steps
in the Cooley-Tukey FFT based on the Good-Thomas factorization of the Walsh
transform matrix, which is the FWT for the Hadamard ordering.

2. The basic transform matrix W(1) is replaced by the basic permutation matrix
P(1).

3. These permutation matrices correspond to the disjoint spectral translation which
is a guarantee that their application preserves the flat spectrum, i.e., the bentness.

4. Permutation matrices corresponding to spectral translation in terms of different
combinations of variables are obtained through an auxiliary symbolic matrix
sharing the same structure as the factor matrices in the FFT, and a suitable
replacement of elements of this matrix by 0 and 1 to get the permutation matrices.

In this way, by using different permutation matrices derived from the FFT and
their combinations, both applied in various order, all bent functions for a given n,
degree d, and the number of non-zero values wi can be constructed by starting from
an arbitrary bent function with the same n, d, and wi . This follows from the spectral
invariant operations related to the used permutation matrices, since no other known
transformations preserve the bentness.

124 R. S. Stanković et al.

References

1. Beauchamp, K.G.: Walsh Functions and Their Applications. Academic Press, New York (1975)
2. Beauchamp, K.G.: Applications of Walsh and Related Functions with an Introduction to

Sequency Theory. Academic Press, Bristol (1984)
3. Besslich, Ph.W.: Determination of the irredundant forms of a Boolean function using Walsh-

Hadamard analysis and dyadic groups. IEE J. Comput. Dig. Technol. 1, 143–151 (1978)
4. Besslich, Ph.W.: Efficient computer method for XOR logic design. IEE Proc. E 129, 15–20

(1982)
5. Besslich, Ph.W.: Spectral processing of switching functions using signal flow transformations.

In: Karpovsky, M.G. (ed.) Spectral Techniques and Fault Detection. Academic Press, Orlando
(1985)

6. Besslich, Ph.W., Lu, T.: Diskrete Orthogonaltransformationen. Springer, Berlin (1990)
7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series.

Math. Comput. 19, 297–301 (1965)
8. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications. Academic Press,

San Diego (2009)
9. Good, I.J.: The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. B 20, 361–

372 (1958). Addendum, Vol. 22, 1960, 372–375.
10. Good, I.J.: The relationship between two fast Fourier transforms. IEEE Trans. Comput. C-20,

310–317 (1971)
11. Hurst, S.L.: Logical Processing of Digital Signals. Crane Russak and Edward Arnold, London

and Basel (1978)
12. Hurst, S.L., Miller, D.M., Muzio, J.C.: Spectral Techniques for Digital Logic. Academic Press

(1985)
13. Muller, D.E.: Application of Boolean algebra to switching circuits design and to error

detection. IRE Trans. Electron. Comput. EC-3, 6–12 (1954)
14. Reed, S.M.: A class of multiple error correcting codes and their decoding scheme. IRE Trans.

Inf. Theory PGIT-4, 38–49 (1954)
15. Thomas, L.H.: Using a computer to solve problems in physics. In: Application of Digital

Computers, Boston, Mass., Ginn (1963)
16. Tokareva, N.: Bent Functions - Results and Applications to Cryptography. Elsevier, Amsterdam

(2015)
17. Wu, Ch.-K., Feng, D.: Boolean Functions and Their Applications in Cryptography. Advances

in Computer Science and Technology. Springer, Berlin (2016), ISBN 987-3-662-48863-8,
ISBN eBook 978-3-662-48865-2

18. Zhegalkin, I.I.: O tekhnyke vychyslenyi predlozhenyi v symbolytscheskoi logykye. Math. Sb.
34, 9–28 (1927), in Russian

19. Zhegalkin, I.I.: Arifmetizatiya symbolytscheskoi logyky. Math. Sb. 35, 311–377 (1928), in
Russian

Nonlinear Codes for Test Patterns
Compression: The Old School Way

Jan Schmidt and Petr Fišer

1 Introduction

When a digital device is tested, one of the problems is to deliver test stimuli
economically. Suppose the device is equipped with n scan chains. Then, the n-bit
test vectors must be delivered from outside (from a tester), or generated internally.

A substantial help comes from the fact that test stimuli have large redundancy
(don’t care bits) [1], and can be efficiently compressed. Two major test delivery
architectures employ this fact.

The first approach uses a vector stream with the same number of vectors but
with minimum redundancy (and therefore with minimum width). The stream is
then processed by a combinational circuit often called combinational expander or
combinational decompressor. Generally, there are no additional requirements on the
Boolean functions the expander performs, except to deliver the required vectors.

Another approach is to let an FSM generate the required vectors or their superset.
For this to work, the set of vectors must have certain properties, e.g., to be a subset
of a linear space. Many FSM classes have been used for this purpose, mostly
an LSFR, but also Cellular Automata (CA) [10], or Registers with Non-Linear
Update (RNLUs) [7]. Such methods are characteristic for Built-In Self-Test (BIST)
applications. In all these cases, the properties of the FSM transition function are of
concern.

These two approaches are just extremes of a broad spectrum; combined methods
such as reseeding [6], bit-flipping [17], bit-fixing [15, 16], Embedded Deterministic
Test [13], etc., are numerous. As they have state, they are commonly called
sequential decoders.

J. Schmidt (�) · P. Fišer
Czech Technical University in Prague, Prague 6, Czech Republic
e-mail: jan.schmidt@fit.cvut.cz; petr.fiser@fit.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_6&domain=pdf
mailto:jan.schmidt@fit.cvut.cz
mailto:petr.fiser@fit.cvut.cz
https://doi.org/10.1007/978-3-030-68071-8_6

126 J. Schmidt and P. Fišer

Fig. 1 An example test scenario for three ATE channels and six scan-chains

The compression scheme can be either application dependent or universal for a
class of applications with the same number of scan chains and (approximately) the
same redundancy in their test sets. The former is undesirable, as the construction of
a good compression scheme can be demanding.

Kim and Mitra [9] abstracted the test vector redundancy and required that the
expander must be able to set any r-tuple of the produced vector to arbitrary values.
Then, the expander is specified only by the number n of scan chains (test vectors
width) and the number r . This abstraction has been used by other authors afterward
[11, 12].

In this contribution, we will limit ourselves to combinational expanders specified
by the above requirements. An example test scenario is shown in Fig. 1. Here
compressed test patterns are stored in the tester device (ATE) with i channels. These
patterns are then decompressed on-chip to be fed to n (n > i) scan chains of the
Circuit-under-Test (CUT). Responses to these patterns are then evaluated (typically
also on-chip).

Kim and Mitra [9] also brought the idea that introducing redundancy corresponds
to encoding a symbol in an error-correcting code. They showed that linear codes,
such as BCH codes, are effective for this purpose, and that the r-bit requirement
can be translated to a Hamming distance requirement for the dual code. This way,
expanders can be easily constructed using existing code tables. They list compressed
vector lengths i that can satisfy the r-bit requirement in n scan chains, using an
undisclosed linear code for r = 3 or BCH codes for 4 ≤ r ≤ 8, or Reed-Solomon
codes for large n in the case of identified clusters in the test vectors.

An extension to codes other than linear is obvious. It gives much more freedom
to choose the expander function, but such freedom also translates to a much bigger
search space. Moreover, there is not such a wealth of existing knowledge as in the
case of linear codes. And, last but not least, nonlinear codes that are efficient for
error corrections are not guaranteed to be efficient for test vector expansion.

Many efforts come from the BIST domain. Dutta and Touba [4] limit the search
space by considering only a limited class of circuits. Novák [11] extends linear
codes by nonlinear expander outputs. The stochastic search over the complete search

Nonlinear Codes for Test Patterns Compression 127

space in [12] brought functions that are remarkably efficient. The authors generate a
truth table randomly under certain stochastic requirements and then check the r-bit
requirement. Functions for larger r are then composed.

These researches seem to state that “with i tester channels and the r-bit
requirement, my code can accommodate up to n scan chains.” We believe that the
question in design time is rather “with n scan chains and the r-bit requirement, what
is the minimum number i of tester channels?”. While the optimization task is the
same, the difference must be regarded when comparing.

Definition 1 (Expander Function) Given integers i, n, r , where r < n and i < n,
an expander function is a function fi,n,r : {0, 1}i → {0, 1}n such that for all ordered
r-tuples P of positions from [0, n − 1] and for all valuations V ∈ {0, 1}r of these
positions, there exists a vector x ∈ {0, 1}i such that the vector fi,n,r (x) has the
values V at positions P .

Definition 2 (Expander Minimization) Given integers n, r , r < n, find the
smallest integer i such that there exists an expander function fi,n,r .

In the proposed approach, we formulate all requirements to the expander function
first. Any function that satisfies the requirements is therefore a correct solution.
Then, we use synthesis tools to get an optimized implementation of the expander.

The chapter is organized as follows. In Sect. 2 we formulate the problem as a
clique cover problem, followed by multi-valued (MV) variable encoding and logic
synthesis. We analyze instance properties in Sect. 2.2 and outline a simple heuristic
in Sect. 2.3. The concrete methods used and their results are described in Sect. 3. We
outline results we hope for in Sect. 4.

2 Proposed Approach

We specify all outputs the expander must produce as the output part of its
(incompletely specified) function. Then, we are free to construct any input part
to optimize the circuit without affecting the correctness of function. Last, we
synthesize the circuit.

2.1 Expander Outputs as a Clique Cover Problem

We construct requirements (or constraints) on the expander first. The r-bit require-
ment tells us that, for every r-tuple of the n expander outputs, all 2r combinations
of binary values must be present for at least one input value. Such constraint can be
expressed as 2r cubes of dimension n− r , called requirement cubes. The collection
of all such cubes completely specifies the output of the expander as the set of output
cubes of its expander function. Formally,

128 J. Schmidt and P. Fišer

Definition 3 (Requirements Cube) Given integers n, r , where r < n, an ordered
r-tuple P of positions from [0, n − 1], valuations V ∈ {0, 1}r of these positions,
a requirement cube ρP,V for P and V is a subset ρP,V ⊂ {0, 1,−}n, obtained
by setting values from V in dimensions given by P , and don’t-cares (DC, ’-’)
otherwise. It is therefore a cube of dimension n− r .

Definition 4 (Requirements Set) Given integers n, r , where r < n, we call the set
Rn

r of all requirement cubes ρP,V for all P r-tuple and all valuations V ∈ {0, 1}r a
requirement set for n and r .

During the operation of the expander, we do not need to distinguish between all
requirement cubes. For every valuation of every r-tuple, there must be an input to
the expander that produces those values at the output. Therefore, cubes that intersect
can be replaced by their intersection. The reduced number of distinguished outputs
saves the resulting expander width.

Understanding the intersection as compatibility, we can construct a compatibility
graph and then treat it as a covering problem. All compatible cubes form a clique.
As the intersection of two cubes is a cube, each clique also corresponds to a cube.

Definition 5 (Clique Characterization) Let Rn
r be a requirements set, and P a

set of mutually compatible requirement cubes, a clique. Then we say that a cube c

constructed as the intersection of all cubes in P denotes the clique P .

Any clique cover of the graph is a valid set of all output vectors of the expander
function. The input width i is the logarithm of the number of output vectors and
does not depend on further optimizations. Therefore, we seek a minimum cover.

Figures 2 and 3 show a rather small example. There are NR = 24 requirement
cubes. Each of the cubes is compatible with 12 other cubes. There are 16 distinct
minimum covers of size 5, hence their cliques are identified with i = 3 bits. No
clique in the covers can be replaced by a smaller clique. The solutions form one
class of equivalence, as defined below.

Fig. 2 Description of the n = 4, r = 2 example: (a) the set R2
4 of requirement cubes, (b)

cubes denoting all cliques, (c) cubes denoting a minimum clique cover, (d) a possible multi-
valued specification of the expander function (undefined at the points not in the table), (e) possible
encoding of the MV specification

Nonlinear Codes for Test Patterns Compression 129

00--

0-0-

0-1-

0--0

0--1

-00-

-01-

-0-0

-0-1

--00

--01

--10

--11

01--

-10-

-11-

-1-0

-1-1

10--

1-0-1-1-

1--0

1--1

11--

Fig. 3 The compatibility graph for n = 4 and r = 2

To obtain the Boolean function of the expander, it is sufficient to number the
cubes and encode the numbers in any way. Then, the encoded numbers will form the
input part of incomplete function specification, and the cubes the output part. Tech-
nically, this is a PLA-format specification, as defined by two-level minimizers [14].

2.2 Compatibility Graph Properties

By construction, the compatibility graph has

NR =
(

n

r

)
.2r (1)

nodes. In the example in Figs. 2 and 3, NR =
(4

2

)
.22 = 24.

130 J. Schmidt and P. Fišer

Let Rn
r be a requirements set and let ρ ∈ Rn

r be a requirement cube. Now let us
count other compatible requirement cubes. By construction, ρ contains r care bits.
To be compatible, a cube must contain either the same values or don’t cares at those
places. Let us choose j places of ρ. We have

(
n
r

)
possibilities. As the compatible

cube must have r care places, there are
(
n−r
r−j

)
possibilities for the positions of the

remaining r − j care bits. As each of them may be 0 or 1, we finally get the number
NCOMPAT of cubes compatible with any given cube as

NCOMPAT =
r−1∑

j=0

(
r

j

)(
n− r

r − j

)
2r−j (2)

In the example in Figs. 2 and 3, NCOMPAT =
(2

0

)(2
2

)
.22 + (21

)(2
1

)
.2 = 12.

Theorem 1 Let c be any cube of dimension k ≤ n − r . Then c denotes a clique of
size SC(k) = (n−k

r

)
. The number of such cliques is NC(k) = (n

n−k

)
2n−k .

Proof By construction, any cube c of dimension k ≤ n−r denotes a clique, as there
are requirement cubes compatible with c. The number of specified variables in c is
n − k. there are SC(k) = (n−k

r

)
r-tuples having the same specified variables as c.

There are
(

n
n−k

)
combinations of variables in c, each of which can have two values,

hence NC(k) = (n
n−k

)
2n−k . �

Let us note that especially NC(0) = 2n. In the example in Figs. 2 and 3, NC(0) =
24 = 16.

Theorem 2 Let Rn
r be a requirements set and let C be a clique cover of R. Then,

any clique denoted by a cube of dimension k, n − r ≥ k > 0 can be replaced by a
clique denoted by a cube of dimension 0, without changing the size of C.

The proof follows from Theorem 1. Reducing the dimension of a cube means
enlarging the corresponding clique, which is permissible because the problem is
unate covering in the sense of Brayton et al. [3].

From Theorem 2, it follows that among minimum size covers, at least one is
composed of cliques denoted by dimension-0 cubes. It may happen that we need to
go the other way round: Given a clique cover denoted by a set of dimension-0 cubes,
can the dimensions of some cubes be enlarged?

Definition 6 (Clique-Reducibility) Let Rn
r be a requirements set and let C be a

clique cover of R. If any clique in the cover can be replaced by a clique denoted by
a cube of a larger dimension, such cover is called clique-reducible, otherwise it is
clique-irreducible.

The solution presented in Fig. 2 is an example of a clique-irreducible cover.

Theorem 3 LetRn
r be a requirements set for any n and r ≤ n. Let T : {0, 1,−}n →

{0, 1,−}n be a function with the following properties:

• T is a bijection on R.

Nonlinear Codes for Test Patterns Compression 131

Fig. 4 Example transformation of the n = 4, r = 2 example, with all values’ negation as T : (a)
the set R2

4 of requirement cubes, (b) cubes denoting all cliques, (c) cubes denoting a minimum
clique cover

• T preserves intersection: ∀c1, c2 ∈ {0, 1,−}n, T (c1) ∩ T (c2) = T (c1 ∩ c2).

Then, if the set C = {c1, c2, . . . , cm} denotes a clique cover, then the set T (C) =
{T (c1), T (c2), . . . , T (cm)} also denotes a set cover.
Proof Because T is a bijection (permutation) on R, T (Rn

r) = Rn
r . Because it

preserves intersection, also the clique sets are the same. If some cubes c1 and c2
intersect (are compatible), then so do T (c1) and T (c2). By construction, T is also a
bijection on {0, 1,−}n. Therefore, T (C) is also a clique cover on Rn

r . �
Figure 4 illustrates the role of T .

Theorem 4 A function T : {0, 1,−}n → {0, 1,−}n, which satisfies the antecedent
of Theorem 3, also preserves clique-reducibility.

Definition 7 (Cube Position Inversion) Let c be a cube in {0, 1,−}n, and k an
integer, 1 ≤ k ≤ n. Then inv(c, k) is a cube obtained from c by inverting a care
value at position k, or c if there is a don’t care value at position k.

Definition 8 (Cover Column Inversion) Let C be a set of cubes in {0, 1,−}n, and
k an integer, 1 ≤ k ≤ n. Then inv(C, k) is a set of cubes {∀c ∈ C : inv(c)}.
Definition 9 (Cube Permutation) Let c be a cube in {0, 1,−}n and let P be a
permutation of the sequence 1 . . . n. Then perm(c, P) is a cube obtained from c by
permuting all positions of c according to P .

Definition 10 (Cover Column Permutation) Let C be a set of cubes in {0, 1,−}n
and let P be a permutation of the sequence 1 . . . n. Then perm(C, P) is a set of
cubes {∀c ∈ C : perm(c, P)}.
Theorem 5 The transformation inv(C, k) satisfies the requirements of Theorem 3
for 1 ≤ k ≤ n.

132 J. Schmidt and P. Fišer

Proof If the literal at position k in a cube c is a don’t care, c transforms to itself.
If it is a care value, then there is exactly one cube in Rn

r with inverted value and
those two cubes map to each other. Therefore, inv(C, k) is a bijection. If the cubes
c1 and c2 are compatible, then so are inv(c1, k) and inv(c2, k). Because inv(c, k) is
an inverse to itself, an equivalence takes place and inv(C, k) preserves intersection.

�
Theorem 6 The transformation perm(C, P) satisfies the antecedent of Theorem 3,
for all P .

Proof The antecedent of Theorem 3 does not depend on position ordering, as long
as it is consistent over Rn

r and therefore over all cliques. �
Theorem 7 ∀C, 1 ≤ k ≤ n : inv(perm(C, P)) = perm(inv(C, k), P).

Therefore,

Theorem 8 Let R be a set of all requirement cubes for given n and r . Then,
for any set of cubes C, 1 ≤ k ≤ n, {C, inv(C),∀P : perm(C, P),∀P :
perm(inv(C, k), P)} is an equivalence class with respect to covering Rn

r .

Equation (2) and Theorem 8 state that the problem is highly regular and
symmetric, which gives some hope to find either the minimum clique cover size
NOPT analytically in the future, or to use Theorem 8 to prune a search efficiently.

2.3 Techniques for Minimum Clique Cover

Very small instances can be solved by brute force, which can give some insight into
the problem. Because we know that the covers are not large for small instances,
we constructed Algorithm 1, which tries to construct a cover of a given size s.
Furthermore, it uses only cubes of dimension 0 (that is, completely defined) for
the cover.

As (1) shows, compatibility graphs tend to be large even for small n and r .
Therefore, we sought a way to get the clique cover without storing requirement
cubes explicitly, in an on-line fashion. This, of course, does not guarantee optimality,
as it is a sort of greedy technique. The procedure can be outlined as Algorithm 2.

Notice that this is still a kind of meta-algorithm: the order of tuple selection in
Line 2 and values selection in Line 3 is not defined. Also, the algorithm is satisfied
with the first candidate clique that covers a given cube (Line 7).

2.4 Expander Input as an MV-Encoding Problem

With a given cover C, the construction of the expander function still has a great
degree of freedom. Only |C| values out of the 2i are used. By the construction of i,

Nonlinear Codes for Test Patterns Compression 133

Algorithm 1 Cube generation and exact clique cover
Input: n, r , s * s is the tried cover size
Output: A set {C} of all clique covers C

1: Let R be an empty set of requirement cubes.
2: for all ordered r-tuples PR from 1 . . . n do
3: for all V ∈ {0, 1}n do
4: construct a cube q having values from V at places PR and don’t cares otherwise.
5: insert q into R.
6: end for
7: end for
8: Let {C} be an empty set of covers.
9: for all ordered s-tuples PC from 1 . . . 2n do

10: let C be an empty cover.
11: for all members p of PC do
12: construct a cube c from the binary representation of p

13: insert c into C

14: end for
15: if C covers R then
16: insert C into {C}.
17: end if
18: end for

Algorithm 2 Cube generation and greedy clique cover
Input: n, r

Output: A clique cover C.
1: Let C be empty.
2: for all ordered r-tuples P from 1 . . . n do * in some order
3: for all V ∈ {0, 1}n do * in some order
4: construct a cube q having values from V at places P and don’t cares otherwise
5: for all cubes c ∈ C do
6: if c is compatible with q then
7: replace c with c ∩ q

8: break
9: end if

10: end for
11: if q still uncovered then
12: insert q into C

13: end if
14: end for
15: end for

2i−1 < |C| ≤ 2i . It means that up to half of the values are unused, and therefore
belong to the DC set of the expander function.

More importantly, once we have the output part of the two-level specification of
the expander function, we are free to choose a distinct input pattern for each of the
output cubes. We can treat the expander inputs as a multi-valued (MV), symbolic
variable. Then the problem is how to encode it to produce a minimum circuit. At a
first glance, this is similar to the opcode encoding or FSM state encoding problem
[14]. The difference, especially from the state encoding problem, is that here the

134 J. Schmidt and P. Fišer

variable is an external input variable. Available encoding algorithms cannot benefit
from the degree of freedom. Nevertheless, the constraints from such encoders can
be used in a specialized algorithm.

2.5 Method Summary

Given the encoder specification, the expander can be synthesized. Starting the syn-
thesis by a two-level description, which does not suggest circuit structure, is unusual
in contemporary practice (cf. [5]). In this situation, the classical minimization-
decomposition approach, e.g., using BDS [18], seems worth consideration. How-
ever, any contemporary logic optimization tool accepting such a description at its
input can be used, e.g., ABC [2].

Our method can be outlined as Algorithm 3. An example description obtained in
Steps 10 and 11 is in Fig. 5. Note that Fig. 5a describes an incompletely specified
function; the on-set and off-set are specified explicitly, while minterms that are not
listed are assigned don’t cares. Figure 5b shows a minimized, completely specified
function description. Here the “∼” symbols in the output have no value meaning;
only “1”s indicate the on-set. The complement to this on-set is the off-set. These two
descriptions indeed correspond to the Espresso PLA formats fr and fd, respectively
[14].

Algorithm 3 Method overview
1: For every value of every r-tuple in an n bit vector, construct a requirement cube ρ stating that

those values are output, and nothing else.
2: Construct a compatibility graph G(R,E), such that R is the set of all requirement cubes and

there is an edge between requirements cubes ρ1 and ρ2 iff they intersect.
3: Solve Minimum Clique Cover on G. Let the number of cliques be NOPT .
4: The necessary input width is i = ,log2 NOPT -.
5: Collect all clique cubes as the output part of the two-level description.
6: if MV optimization is available: then

7:
Choose NOPT distinct symbolic values for the left-hand side, providing an MV
description.

8: Perform MV minimization and encoding on the MV description.
9: else

10:
Choose NOPT distinct binary combinations for the input part, providing a two-level
description.

11: Perform minimization of the two-level description.
12: end if
13: Synthesize the resulting two-level description by any method, possibly technology-dependent.

Nonlinear Codes for Test Patterns Compression 135

Fig. 5 Two-level description of an n = 10, r = 2 expander, (a) as generated by Algorithm 2
(undefined at the points not in the table), (b) after minimization (e.g., by Espresso)

Fig. 6 NSUB frequencies in
500 runs of Algorithm 2 for
n = 20 and r = 4

 0
 20
 40
 60
 80

 100
 120
 140

 70 72 74 76 78 80 82 84 86

N
um

be
r o

f c
as

es

Resulting cover size

3 Results

With the techniques described above, we solved instances up to n = 32 and r = 6.
Besides the comparison of the resulting widths, we also investigated the importance
of good MV encoding, synthesis approaches, and expander circuits properties.

3.1 Implementation

Algorithms 2 and 1 have been implemented as a sequential C++ program and run on
an office machine (Intel i7, 8 cores at 3GHz, SUSE Linux). The ordering in Line 2
of Algorithm 2 has been implemented as ordered random sampling [8, p. 166]. The
ordering in Line 3 is systematic. A variant of the algorithm, which found a cube c

maximally intersecting p (Line 7) has been tested with no improvement.
To illustrate the influence of randomization, Algorithm 2 has been run 500 times

for n = 20 and r = 4. The resulting histogram is in Fig. 6. Random selection
does have an influence on the obtained suboptimum cover size NSUB ; however, it is
unlikely that the differences cause a difference in i.

136 J. Schmidt and P. Fišer

Table 1 Exact and heuristic solutions of small instances

Exact Heuristic

Number of Number of

n r i NOPT solutions classes i NSUB NSUB/NOPT

4 2 3 5 16 1 3 6 1.20

4 3 3 8 2 1 4 12 1.50

5 2 3 6 2896 7 3 8 1.33

5 3 4 10 16 1 4 15 1.50

6 2 3 7 2,080,192 4 3 8 1.14

7 2 3 8 2,845,462 – 3 8 1.00

3.2 Resulting Codes

Table 1 compares Algorithms 1 and 2. We can see that the heuristic operates within
150% of the optimum cover size. The number of solutions and classes differ wildly,
indicating that the characters of the instances also differ. It seems that the gap
between greedy and exact solutions closes with larger instances.

Table 2 summarizes instances and results obtained from Algorithm 2. Although
instance parameters show that the element counts grow rapidly, clique cover sizes
remain relatively small.

Table 3 contains expander widths i reported by various authors in comparison to
results of Algorithm 2. The table is limited to comparable values of n and r , so that
results in the practical range of n in the hundreds are not included. The presented
algorithms, due to combinatorial explosion, will never be able to work in that range.

The results in [12] seem to form two groups: one with n above 40, and the other
group below. The proposed algorithm is able to match the second group. It also
outperforms linear BCH codes and optimum linear codes for larger n.

3.3 Is Optimum MV Encoding Important?

We have found no way to use MV optimizers to design compressed test encoding,
that is, the input part of the two-level description. For the optimizers, the symbolic
input part is an external, given information. To estimate how important the encoding
is, we arranged the following experiment.

For every code obtained by Algorithm 2, 500 input parts were generated
randomly. Each two-level description was optimized by Espresso [14]. The resulting
minimized descriptions were characterized by the total number of literals. Statistical
characterization of the result is in Table 4.

The expected result is that the size of the encoder depends on input encoding.
This happens at least in some cases—in the case of n = 10 and r = 2, the difference
between the worst and the best result spans 66% of the median. The surprising fact is

Nonlinear Codes for Test Patterns Compression 137

Table 2 Instance properties, resulting widths i and achieved cover sizes NSUB from Algo-
rithm 2

n r NR SC i NSUB n r NR SC i NSUB

10 2 180 45 4 10 28 2 1512 378 4 14

10 3 960 120 5 21 28 3 26,208 3276 6 35

10 4 3360 210 6 52 28 4 327,600 20,475 7 92

10 5 8064 252 7 118 28 5 3,144,960 98,280 8 231

10 6 13,440 210 8 215 28 6 24,111,360 376,740 10 569

16 2 480 120 4 12 30 2 1740 435 4 14

16 3 4480 560 5 27 30 3 32,480 4060 6 37

16 4 29,120 1820 7 69 30 4 438,480 27,405 7 97

16 5 139,776 4368 8 165 30 5 4,560,192 142,506 8 244

16 6 512,512 8008 9 365 30 6 38,001,600 593,775 10 596

20 2 760 190 4 12 32 2 1984 496 4 14

20 3 9120 1140 5 30 32 3 39,680 4960 6 37

20 4 77,520 4845 7 74 32 4 575,360 35,960 7 98

20 5 496,128 15,504 8 194 32 5 6,444,032 201,376 8 248

20 6 2,480,640 38,760 9 443

24 2 1104 276 4 14

24 3 16,192 2024 6 34

24 4 170,016 10,626 7 84

24 5 1,360,128 42,504 8 211

24 6 8,614,144 134,596 10 513

Table 3 Expander widths comparison

Width (i) for code Width (i) for code

Linear BCH NBC1 NBC2 Linear BCH NBC1 NBC2
n r [9, 12] [9] [12] [12] Proposed n r [9, 12] [9] [12] [12] Proposed

8 3 4 5 12 5 8 8

12 3 4 5 13 5 7 8

16 3 5 5 18 5 8 8

32 3 6 6 24 5 10 8 8

8 4 6 5 11 6 9 8

10 4 7 6 13 6 9 9

13 4 8 6 16 6 9 9

14 4 6 6 6 17 6 10 9

18 4 6 6 7 32 4 12 7

9 5 7 7 32 5 18 8

10 5 7 7 32 6 18 15

138 J. Schmidt and P. Fišer

Table 4 Number of literals after minimization, random encodings. m is the median of the
distribution, and Δ is the difference between max and min

n r min m max σ/m Δ/m n r min m max σ/m Δ/m

10 2 35 57 73 0.07 0.667 28 2 134 182 216 0.047 0.451

10 3 114 153 178 0.052 0.418 28 3 508 564 606 0.013 0.174

10 4 339 412 501 0.041 0.393 28 4 1637 1738 1773 0.009 0.078

10 5 946 1063 1272 0.026 0.307 28 5 4747 4851 4892 0.003 0.03

10 6 1870 2040 2408 0.017 0.264 28 6 12,169 12,293 12,390 0.002 0.018

16 2 68 100 119 0.05 0.51 30 2 132 193 228 0.028 0.497

16 3 247 298 325 0.023 0.262 30 3 579 662 697 0.021 0.178

16 4 723 845 889 0.017 0.196 30 4 1834 1951 2002 0.009 0.086

16 5 1987 2251 2323 0.009 0.149 30 5 5244 5398 5465 0.004 0.041

16 6 5333 5474 5594 0.005 0.048 30 6 13,331 13,474 13,574 0.002 0.018

20 3 329 385 413 0.019 0.218 32 3 620 704 738 0.015 0.168

20 4 1018 1090 1112 0.008 0.086 32 4 1988 2090 2128 0.007 0.067

20 5 3043 3176 3242 0.006 0.063 32 5 5666 5787 5850 0.003 0.032

20 6 7748 7882 7970 0.003 0.028

24 3 428 497 529 0.025 0.203

24 4 1314 1412 1452 0.009 0.098

24 5 3852 3954 4002 0.004 0.038

24 6 9791 9929 10,004 0.002 0.021

that this influence rapidly diminishes with increasing r . There is a strong correlation
of −0.9. No other such correlation has been found. It is true that the cover does not
use all 2i values, and that the number of unused values differs from instance to
instance. Yet the spread does not correlate with that at all (less than 0.1).

3.4 Expander Synthesis

The starting point of the synthesis is a two-level description, which is unusual. We
therefore chose two alternative approaches to synthesis. The first one is classical;
minimization with Espresso [14] followed by decomposition with BDS [18].
The other approach uses only ABC [2] with a rather high effort. The script in
Algorithm 4 is iterative as recommended by the authors of ABC. Nevertheless, we
tried to combine both approaches and use ABC with the same script as a post-
optimizer for Espresso/BDS. The output of all three approaches is a network of
2-input gates of arbitrary type.

The comparison of the two synthesis approaches shows that although the
decomposition approach performance is acceptable, iterated synthesis can provide
yet better results. It does not suffer from the absence of structure, which means that
it is able to discover the circuit structure independently. ABC as a post-optimizer

Nonlinear Codes for Test Patterns Compression 139

Algorithm 4 Expander synthesis using ABC
Input: in.pla: a two-level description of the expander
Output: out.blif: Optimized BLIF description of the expander
1: read_pla in.pla; &get -n * convert into the GIA structure
2: for 20 times do
3: &st; &synch2; &if -m -a -K 2; &mfs -W 10;
4: &st; &dch; &if -m -a -K 2; &mfs -W 10
5: end for
6: &put; write_blif out.blif

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.8 1 1.2 1.4

r=2
r=3
r=6

a = 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.8 1 1.2 1.4

r=2
r=3
r=6

b = 20

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.8 1 1.2 1.4

r=2
r=3
r=6

c = 30

Fig. 7 Gate counts frequencies with random encoding, normalized to median. (a) n = 10.
(b) n = 20. (c) n = 30

improves the results of the classical approach considerably, achieving the best
results from the three alternatives.

The synthesis results obtained with random encoding corroborate Sect. 3.3 in the
sense that the influence of encoding decreases with growing r . As Fig. 7 illustrates,
this holds also for increasing n to some degree.

The resulting gate counts in Table 5 indicate that, with current methods, the
improved expander width is paid for by expander size. To illustrate, a small
experiment for n = 15 and r = 4 is presented in Table 6. A linear expander using the
BCH(4,2) code has been synthesized with Espresso and BDS. A nonlinear expander
has been generated using Algorithm 2 and binary input encoding. The synthesis
flow was the same. Although the BCH(4,2) code is not optimal, the expander is
considerably smaller.

140 J. Schmidt and P. Fišer

Table 5 Expander implementations, gate counts with random encoding

ABC Espresso, BDS Espresso, BDS, ABC

n r min median max min median max min median max

10 2 22 33 49 16 40 69 15 28 48

10 3 69 94 126 74 111 145 59 84 115

10 4 188 228 276 212 260 307 167 207 244

10 5 441 492 552 488 550 610 403 448 495

10 6 889 972 1046 978 1071 1171 792 876 952

16 2 36 50 73 35 69 101 30 48 70

16 3 128 159 194 149 189 232 119 148 177

16 4 498 588 662 643 735 823 497 576 655

16 5 1214 1309 1403 1472 1568 1690 1180 1267 1361

16 6 2625 2770 2907 3057 3201 3374 2471 2592 2726

20 2 39 58 82 45 84 122 36 58 83

20 3 168 198 239 194 234 276 151 183 213

20 4 650 738 817 823 924 1014 654 726 808

20 5 1612 1736 1830 1883 1989 2125 1533 1614 1708

20 6 3572 3700 3854 3888 4044 4226 3168 3276 3419

24 2 52 72 101 56 102 138 47 72 96

24 3 290 355 431 401 492 572 305 360 428

24 4 816 917 1010 1041 1127 1223 815 894 976

24 5 1984 2104 2220 2277 2376 2506 1841 1939 2028

24 6 6427 6645 6848 8065 8360 8702 6335 6570 6866

28 2 58 88 113 77 123 158 59 88 115

28 3 340 408 493 458 567 667 334 414 490

28 4 1001 1092 1195 1234 1323 1420 971 1062 1136

28 5 2387 2512 2615 2659 2772 2904 2154 2256 2372

28 6 7837 8109 8335 9623 9900 10,206 7587 7848 8103

30 2 64 92 122 82 132 168 64 92 120

30 3 386 462 541 530 623 717 366 462 549

30 4 1098 1197 1291 1326 1421 1522 1066 1140 1220

30 5 2604 2718 2852 2842 2970 3127 2310 2408 2517

30 6 8602 8848 9074 10,404 10,700 11,003 8136 8480 8729

32 2 65 94 122 88 138 173 61 96 123

32 3 399 486 574 538 656 748 401 486 559

32 4 1172 1274 1368 1412 1520 1625 1136 1212 1306

32 5 2811 2912 3028 3029 3150 3280 2457 2552 2668

Nonlinear Codes for Test Patterns Compression 141

Table 6 A comparison of a
linear and a nonlinear
expander for n = 15 and
r = 4

BCH (4,2) Proposed

Width i 8 7

Literals 108 807

Gates 27 329

4 Future Directions

The main hope of this work is to gain knowledge about the problem. As (2) and
Theorem 8 indicate high degree of symmetry in all instances, we hope that the
problem is not so difficult as the numbers in Table 2 indicate. Any NSUB gives
a lower bound for encoder width. To find NOPT analytically would enable us to
judge optimality of any code. Another potential benefit of the high symmetry could
result in better construction algorithm.

5 Conclusions

The problem to design a nonlinear code for a test vectors expander, with the
requirement of all r-tuples possible in the output, has been formulated as a clique
cover problem. The instances of the problem are large but have a high degree
of symmetry, which seems to offer the possibility of analytical solution or better
heuristic construction. To benefit from the degrees of freedom in the problem,
assigning expander inputs to the produced vectors has been identified as a multi-
valued (MV) variable encoding problem.

Experimental evaluation shows that good MV encoding is important for small r .
For small instances up to n = 6 and r = 2, the sets of all minimum size covers
were obtained using brute force. Instances up to n = 32 and r = 6 were solved
heuristically, with the resulting expander widths i mostly equal to, and sometimes
better than, existing solutions. For the synthesis of the expanders, both the classical
minimization-decomposition and resynthesis approaches can be used. The produced
circuits were larger than corresponding linear expanders.

Acknowledgements Computational resources were supplied by the project “e-Infrastruktura CZ”
(e-INFRA LM2018140) provided within the program Projects of Large Research, Development
and Innovations Infrastructures. The authors acknowledge the support of the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics.”

142 J. Schmidt and P. Fišer

References

1. Agrawal, V.D., Kime, C.R., Saluja, K.K.: A tutorial on built-in self-test. 2. Applications. IEEE
Des. Test Comput. 10(2), 69–77 (1993)

2. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and
Verification. Software System. UC, Berkeley (2000). http://www.eecs.berkeley.edu/~alanmi/
abc/

3. Brayton, R.K., et al.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, Boston (1984), p. 192

4. Dutta, A., Touba, N.A.: Using limited dependence sequential expansion for decompressing test
vectors. In: 2006 IEEE International Test Conference (2006), pp. 1–9

5. Fišer, P., Schmidt, J.: A difficult example or a badly represented one? In: Proceedings of 10th
International Workshop on Boolean Problems. Technische Universität Bergakademie, Freiberg
(2012), pp. 115–122. ISBN: 978-3-86012-438-3

6. Hellebrand, S., et al.: Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers. IEEE Trans. Comput. 44(2), 223–233 (1995)

7. Li, N., Dubrova, E.: Area-efficient high-coverage LBIST. Microprocessors Microsyst. 38(5),
368–374 (2014). ISSN: 0141-9331. https://doi.org/10.1016/j.micpro.2014.05.002. http://www.
sciencedirect.com/science/article/pii/S0141933114000738

8. McGeoch, C.C.: A Guide to Experimental Algorithmics. Cambridge University Press, Cam-
bridge (2012), p. 261

9. Mitra, S., Kim, K.S.: XPAND: an efficient test stimulus compression technique. IEEE Trans.
Comput. 55(2), 163–173 (2006)

10. Novák, O.: Pseudorandom, weighted random and pseudoexhaustive test patterns generated
in universal cellular automata. In: Lecture Notes in Computer Science 1667 – Dependable
Computing – EDCC-3. Springer, Berlin (1999), pp. 303–320

11. Novák, O.: Extended binary nonlinear codes and their application in testing and compression.
In: 2017 22nd IEEE European Test Symposium (ETS) (2017), pp. 1–2

12. Novák, O., Rozkovec, M., Plíva, J.: Decompressors using non-linear codes. Microproces-
sors Microsyst. 76, 103076 (2020). ISSN: 0141-9331. https://doi.org/10.1016/j.micpro.2020.
103076. http://www.sciencedirectcom/science/article/pii/S0141933119306441

13. Rajski, J., et al.: Embedded deterministic test. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 23(5), 776–792 (2004)

14. Rudell, R.L.: MultipleValued logic minimization for PLA synthesis. Tech. rep. M86/65.
University of California in Berkeley ERL, June 1986

15. Touba, N.A., McCluskey, E.J.: Synthesis of mapping logic for generating transformed pseudo-
random patterns for BIST. In: Proceedings of 1995 IEEE International Test Conference (ITC)
(1995), pp. 674–682

16. Touba, N.A., McCluskey, E.J.: Bit-fixing in pseudorandom sequences for scan BIST. IEEE
Trans. Comput. Aided Des. Integr. Circ. Syst. 20(4), 545–555 (2001)

17. Wunderlich, H.-J., Kiefer, G.: Bit-flipping BIST. In: Proceedings of International Conference
on Computer Aided Design (1996), pp. 337–343

18. Yang, C., Ciesielski, M.: BDS: A BDD-Based Logic Optimization System. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 21(7), 866–876 (2002)

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1016/j.micpro.2014.05.002
http://www.sciencedirect.com/science/article/pii/S0141933114000738
http://www.sciencedirect.com/science/article/pii/S0141933114000738
https://doi.org/10.1016/j.micpro.2020.103076
https://doi.org/10.1016/j.micpro.2020.103076
http://www.sciencedirectcom/science/article/pii/S0141933119306441

Translation Techniques for Reversible
Circuit Synthesis with Positive and
Negative Controls

D. Michael Miller and Gerhard W. Dueck

1 Introduction

A reversible Boolean function is a multiple-output function that maps each input
assignment to a unique output assignment. Such a function must have the same
number of inputs and outputs and the function always has an inverse. The reversible
circuit synthesis problem is to realize such a function as a cascade of reversible
gates. In this chapter we present function translations that can improve the syn-
thesized circuit making effective use of both positive and negative controls for the
reversible gates.

The first function translation considered negates selected function inputs and
the corresponding function outputs. If we synthesize a circuit for the translated
function, that circuit is easily translated to become a circuit for the original function
by changing the polarity of certain controls in the circuit. For an n-input, n-output
function, there are 2n choices for which input-output pairs to negate, hence a broad
range of potential circuits for the original function. The case where all input-output
pairs are negated translates the original function to its dual.

The second function translation considered permutes input-output pairs. For
an n-input, n-output function, there are n! permutations. Note that as the same
permutation is applied to the inputs and outputs of the function, if we find a circuit
for the translated function, it can be mapped to a circuit for the original function
by a simple relabeling of the inputs and corresponding outputs. Swap gates are not

D. M. Miller (�)
University of Victoria, Victoria, BC, Canada
e-mail: mmiller@uvic.ca

G. W. Dueck
University of New Brunswick, Fredericton, NB, Canada
e-mail: gdueck@unb.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_7&domain=pdf
mailto:mmiller@uvic.ca
mailto:gdueck@unb.ca
https://doi.org/10.1007/978-3-030-68071-8_7

144 D. M. Miller and G. W. Dueck

needed as is the case in some earlier work where permuting the inputs and outputs
are considered as separate operations.

The two function translations can be combined and it is also possible to
synthesize a circuit for a function from that function or its inverse. This gives a
possibility of 2× n! × 2n translations for a given function. We use transformation-
based synthesis techniques to demonstrate the effectiveness of the techniques, but
we note that the function translations can be applied with any reversible circuit
synthesis method.

Transformation-based synthesis for reversible functions was introduced in
2003 [9]. It is a simple technique that in its most basic form generates a reversible
circuit by mapping a given function to the identity by considering the rows of a
truth table in order from row 0 to row 2n − 1. Variants to that basic approach
have been developed and are outlined later in this chapter. A bounded search
transformation-based synthesis method is also considered. Results presented show
it can be effective but at high computational cost.

A second facet of this chapter is the consideration of ways to simplify reversible
circuits with positive and negative controls. To that end, we employ simplification
rules presented by Rahman and Rice in [15]. In addition, we consider the use of a
generalized form of Peres and inverse Peres gates [14] that allows for both negative
and positive controls. Once again it is worth noting that the simplification techniques
discussed are applicable to the circuits and are not specifically for transformation-
based synthesis. They can be used in conjunction with any other reversible circuit
synthesis approach.

Often the goal is to map a reversible circuit to a quantum gate implementation.
Here we consider mapping to the NCV gate library [13]. In particular, we present an
approach to dealing with negative control CNOT gates which are often not permitted
in quantum circuit technologies.

This chapter concludes with an assessment of the positives and limitations of
this work with suggestions for ongoing research. The use of negative controls
in reversible and quantum circuits, white dots as they are often called due to
the commonly used graphic, have been considered by a number of researchers
[2, 10, 11, 15, 16, 21]. We refer the interested reader to those works and acknowledge
them as providing motivation for this work.

2 Background

We here present the necessary background on reversible functions, gates, and
circuits as well as necessary detail on NCV quantum circuits. Readers seeking more
detailed information should consult [13].

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 145

Table 1 A 3× 3 reversible
function

x2 x1 x0 x+2 x+1 x+0
0 0 0 1 1 1

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 0 1 1

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 1 1 0

1 1 1 1 0 1

2.1 Reversible Functions, Gates, and Circuits

Definition 1 An n-input, n-output, totally-specified Boolean function f (X), X =
{x0, x1, . . . , xn−1} is reversible if it maps each input assignment to a unique output
assignment.

A reversible function can be written as a standard truth table as in Table 1
where + denotes output. The function can also be viewed as a bijective mapping
of the set of integers 0, 1, . . . , 2n − 1 onto itself. Hence a reversible function can
be defined as an ordered set of integers corresponding to the right side of the table,
e.g., {7, 1, 4, 3, 0, 2, 6, 5}, for the function in Table 1 where the decimal number
corresponds to the binary sequence in the obvious way. A reversible function is a
permutation and can be expressed as a set of disjoint cycles as done in [19], but we
do not follow that approach here.

Definition 2 An m-input, m-output gate is a reversible gate if it realizes a reversible
function.

In this work, we use the family of mixed-polarity multiple-control Toffoli gates
described in Definition 3.

Definition 3 An m×m mixed-polarity multiple-control Toffoli (MPMCT) gate has
a single target line and m − 1 control lines. Each control is either positive, i.e.,
activated by a 1, or negative, i.e., activated by a 0. The value on the target line is
inverted if all positive controls have value 1 and all negative controls have value 0.
The controls are always passed through the gate unaltered.

We write an m×m MPMCT gate as T (controls, target) where negative controls
are indicated by an overline. For example, T (x1, x2, x0) denotes an MPMCT gate
which inverts the value of x0 if x1 = 1 and x2 = 0. For drawing gates, ⊕ denotes a
target, denotes a positive control, and denotes a negative control.

An MPMCT gate with no controls always inverts the target and is thus the
well-known NOT gate. An MPMCT gate with a single control is referred to as a
controlled NOT (CNOT) and is also known as a Feynman gate [4] if the control is
positive. An MPMCT gate with two positive controls is the gate originally proposed
by Toffoli [25].

146 D. M. Miller and G. W. Dueck

Peres gates and their inverse [14] are often used in reversible circuit synthesis.
Conventionally, such a gate has two positive controls. Generalizations of Peres gates
have been considered in [11, 24]. In this work we employ mixed-polarity Peres and
inverse Peres gates as described in the following definition.

Definition 4 A mixed-polarity Peres (MPP) gate is a single gate equivalent to a 2-
input mixed-control Toffoli gate followed immediately by a positive-control CNOT
gate whose target and control are the controls of the Toffoli gate. A mixed-polarity
inverse Peres (MPIP) gate is similar except the CNOT immediately precedes the
Toffoli. Note these definitions are extensions to the original Peres and inverse Peres
gates in that the Toffoli gate can have negative as well as positive controls.

An MPP gate will be denoted P(c, t1, t2) where t1 is the target of the CNOT gate
with control c and t2 is the target of the Toffoli gate with controls c and t1. t1 can
have an overline to indicate it is a negative when used as a control. An MPIP gate is
denoted in the same way with IP instead of P.

Definition 5 An n × n reversible circuit is a cascade of reversible gates with no
fanout or feedback.

For example, the circuit in Fig. 1 realizes the function in Table 1. Note the third
gate T (x2, x1) and the fourth gate T (x1, x2, x0) can be replaced by the inverse Peres
gate IP (x2, x1, x0).

2.2 Quantum Gates and Circuits

Reversible circuits can be realized in a variety of technologies. Here we consider the
NCV quantum library consisting of four elementary gates: NOT, CNOT, controlled-
V , and controlled-V †. We here provide the basic background required to understand
the use of this library for the work in this chapter.

Definition 6 The basic information unit in a quantum circuit is the qubit whose
value is given by α |0〉+β |1〉 where α and β are complex numbers such that |α|2+
|β|2 = 1 and |0〉 and |1〉 are basis states normally associated to the Boolean values
0 and 1.

The discussion here is greatly simplified by the fact we are implementing
Boolean reversible functions and because the quantum circuits we consider are

Fig. 1 Reversible circuit for
function in Table 1

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 147

semi-classical [29] meaning control values are always 0 or 1 thereby avoiding
entanglement between qubits.

The operation of a NOT can be expressed as a matrix

N =
[

0 1
1 0

]

and applying a NOT to a qubit is given by N

[
α

β

]
. One can see that if the qubit is

in a basis state this operation, as expected, flips it to the other basis state.
The matrices defining the V and V † operations are

V = 1

2

[
1+ i 1− i

1− i 1+ i

]
V † = 1

2

[
1− i 1+ i

1+ i 1− i

]

It is readily verified that N = V V = V †V †. For that reason, V and V † are called
the square roots of NOT. It is also readily verified that V V † = V †V = I , i.e., V

and V † are the inverses of each other.
V and V † gates always have a single positive control. When used as a quantum

elementary gate, CNOT can also only have a positive control which is different from
our use of CNOT in a reversible circuit where we allow a positive or a negative
control.

Definition 7 An ancillary line is a quantum circuit line used in the realization of an
MPMCT gate that is not a control or target for that gate. The value of the ancillary is
restored to its value, so operation of the gate effectively has no effect on an ancillary,

Quantum circuit cost is discussed in Sect. 6.

3 Function Translations

A number of reversible circuit synthesis methods have been proposed in [17]. Most
employ heuristics and are not guaranteed to find an optimal solution, so it is useful
to explore alternative formulations of the synthesis problem and translation of the
function to be synthesized in particular.

3.1 Function Inverse

Since a reversible function maps each input assignment to a unique output assign-
ment, such a function has an inverse. The following result is well known [9]:

148 D. M. Miller and G. W. Dueck

Theorem 1 Given a reversible circuit g0, g1, . . . , gk−1 realizing the reversible
function f (X), the circuit g−1

k−1, g
−1
k−2, . . . , g

−1
0 realizes the inverse function

f−1(X).

Proof A reversible gate can be represented by a permutation matrix and a reversible
circuit is the product of the matrices for the gates in the circuit. The result follows
from the fact that the inverse of a product of matrices is the product of the inverses
of the matrices in reverse order. �

This theorem is in fact simpler for circuits composed of MPMCT gates since
those gates are all self-inverse, so one need only reverse the order of the gates. Peres
gates must be replaced by inverse Peres gates and vice versa.

Given this result, one can synthesize circuits for f (X) and for f−1(X) and use
the better of the two as a realization for f (X) where Theorem 1 is applied if the
circuit found for f−1(X) is used.

3.2 Input-Output Negation

The concept of the dual of a Boolean function is readily extended to reversible
functions as per the following definition:

Definition 8 The dual of a reversible function f (X) is given by f D(X) = f (X),
where f denotes negation of each of the outputs of f and X denotes negation of
each of the variables in X.

We now show how employing f D(X) gives a further option for exploring circuits
to realize f (X) when both positive and negative gate controls are used.

Theorem 2 Given an MPMCT circuit G realizing f D(X), a circuit realizing f (X)

is found by changing all 0 controls to 1 controls and all 1 controls to 0 controls for
each gate in G.

Proof Given an MPMCT circuit for f D(X), add an inverter to each input and to
each output. The result is a circuit realizing f (X) since f (X) = f D(X). Now move
the input inverter from each input across the circuit. As it crosses a control, it inverts
that control, and as it crosses a target or passes over a gate not involving the circuit
line, it does nothing. When it has passed all gates, it cancels with the corresponding
output inverter. So in fact, given an MPMCT circuit G realizing f D(X), a circuit
realizing f (X) is found by simply changing all 0 controls to 1 controls and all 1
controls to 0 controls for each gate in G. �

Definition 8 and Theorem 2 are a special case of a more general translation as
follows:

Definition 9 Consider an n-tuple α = {α0, α1, . . . , αn−1} where each αi is either
the unary function NOT or the unary identity function. The α-translation of a

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 149

reversible function f (X) is given by f̂ (X) = f̃ (X̃) where f̃ denotes application of
each αi to output fi and X̃ denotes application of each αi to input xi .

Theorem 3 Given an MPMCT circuit G realizing f̂ (X), a circuit realizing f (X)

is found by changing all 0 controls to 1 controls and all 1 controls to 0 controls for
each gate on the lines in G corresponding to those αi that are NOTs.

Proof The proof is essentially the proof for Theorem 2 restricted to the lines for
which αi is NOT. �

Given a function f with n variables specified as a truth table, the steps to
synthesize a circuit employing Theorem 3 are as follows:

1. Choose an α = {α0, α1, . . . , αn−1}. The dual is the case where all αi are NOT.
2. Form a new function f̂ (X) as given by Definition 9.
3. Use the chosen synthesis method to find a circuit G for f̂ (X) with no MPP or

MPIP gate substitutions.
4. Invert all controls for all gates in G on lines for which αi is NOT.
5. Do any possible MPP and MPIP gate substitutions. The result is a circuit for f .

It is important to note that MPP and MPIP gate substitutions are not performed
when finding a circuit for f̂ (X) since inverting the controls in that circuit does not
properly handle the control polarity associated with the CNOT that was used to form
the MPP or MPIP gate.

3.3 Input-Output Permutation

Definition 10 An input-output permutation is a single permutation σ applied to
both the inputs and outputs of a reversible function f (X) yielding a new function
f̊ = σf (σX). �

Note that as the same permutation is applied to the inputs and outputs of the
function, if we find a circuit for f̊ (X), it can be mapped to a circuit for f (X) by
simply reordering the lines in the circuit using σ−1. Swap gates are not needed as is
the case in some earlier work where permuting the inputs and outputs are considered
as separate operations.

Combining function inverse, input-output negation, and input-output permu-
tation, there are 2 × 2n × n! translations of a given reversible function. It is
straightforward to translate a circuit for any one of those translations to a circuit
for the original function.

150 D. M. Miller and G. W. Dueck

4 Transformation-Based Synthesis

As noted earlier, we will use transformation-based synthesis as a means to evaluate
the effectiveness of the function translations introduced in the previous section.
For ease of description, we present transformation-based synthesis in terms of the
truth table representation of a reversible function. Note that transformation-based
methods can be implemented using alternate more efficient representations such as
decision diagrams [23, 27].

The procedure Map(y, x) described in Algorithm 1 is taken from [22]. It is
central to all the transformation-based synthesis algorithms described below. Map
identifies a sequence of positive control MCT gates to map the bit pattern y to x

where y > x. The gates are selected so that they have no effect on any bit pattern
z < x.

Algorithm 1 begins by setting the control specification c to have as few 1’s as
possible from y such that c ≥ x. The latter condition is required to be sure the gates
will not affect earlier rows in the truth table. The first for loop generates MCT gates
with controls c with one gate for each variable outside c that has to be flipped to
make y match x. The second for loop then uses x as the control and generates one
gate for each variable in c that has to be made 0 to match x. In both loops, each gate
generated has as its target one of the variables whose value needs to be changed.

Algorithm 1 MCT gate selection to map y to x where y ≥ x

1: procedure MAP(y, x)
2: glist = empty

3: if x ≡ y then
4: return glist

5: end if
6: c = y

7: remove 1 bits from right of c while c ≥ x

8: p = (x ⊕ y)&(∼ c)

9: for each bit position j = 1 in p do
10: g=T(c,j)
11: append g to the end of glist

12: end for
13: q = c&(∼ x)

14: c = x

15: for each bit position j = 1 in q do
16: g=T(c,j)
17: append g to the end of glist

18: end for
19: return glist

20: end procedure
Note: T(c,j) denotes a Toffoli gate with positive controls corresponding to 1 bits in c and target j

Basic Algorithm [9] Given a truth table representing a reversible function f , the
basic transformation-based synthesis algorithm [9] proceeds through the truth table

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 151

rows in order 0 ≤ i < 2n − 1. At each row i, if f (i) �= i MCT gates are selected
to map f (i) to i. These gates are chosen such that they do not affect any row j for
j < i, i.e., those that have already been considered. The gates are added to the circuit
being constructed from the output towards the input and the reversible specification
is updated by applying the gates to the output side of the specification. When all
rows 0 ≤ i < 2n − 1 have been considered, the resulting truth table is the identity
function and the gates chosen represent an implementation of the original reversible
function. Note that row 2n−1 does not have to be considered as f (2n−1) = 2n−1
when all previous rows match.

Bidirectional Algorithm [9] The bidirectional transformation-based synthesis is
a straightforward extension of the basic algorithm. For each row i, the gates G0
required to transform the output pattern f (i) to i are determined as in the basic
algorithm. In addition, there must be a row j later in the table where f (j) = i.
MCT gates G1 that transform j to i are determined. The less expensive of G0 and
G1 is determined and those gates are added to the circuit and used to update f .
Note that if G1 is chosen, the gates apply from the input toward the output of the
circuit and are used to update the input side of the specification. The cost of a set
of gates can be simply the MCT gate count or can be based on the quantum cost of
implementing the MCT gates.

Multi-directional Algorithm [22] In the multi-directional algorithm for each row
i every row k, i ≤ k ≤ 2n−1, is considered by mapping both the input and the output
patterns to i thereby potentially adding gates to both the input and the output side
of the circuit. The algorithm chooses the row k where the mapping has the lowest
quantum cost and in the case of a tie the first row k where the mapping results in
a function closest to the identity. To see that this algorithm subsumes the previous
two note that the basic algorithm is simply the case of only considering row i, while
the bidirectional algorithm is the case of only considering two cases: row i and row
j where f (j) = i.

Search Algorithm It is interesting to consider whether searching can improve upon
the above methods. The method given in Algorithm 2 is a simple branch-and-bound
search based on the idea behind the multi-directional algorithm.

Search is a recursive procedure with parameters: f the function under consider-
ation, k the row in the truth table of f under consideration, and glist the circuit (list
of gates) so far. For the initial call to Search, f should be the function to be realized,
k = 0, and glist should be empty. The cost of a circuit can be the number of gates or
its quantum cost as discussed in Sect. 6. The cost of the best circuit found to date is
used to bound the search. BestCircuit and BestCost are globals. Before starting
a search, we use the multi-directional algorithm to find the initial BestCircuit and
BestCost . This is more efficient than setting the initial cost estimate to∞. Note that
the algorithm is presented with some obviously redundant computation for clarity.
The actual implementation is more efficient.

Lines 2–4 skip rows in the truth table of f that are already in identity form, i.e.,
fk = k. Lines 5–8 check if k has reached the end of f which must thus be the

152 D. M. Miller and G. W. Dueck

Algorithm 2 Transformation-based search method
1: procedure SEARCH(f, k, glist)
2: while k < N − 1 and fk = k do
3: k← k + 1
4: end while
5: if k = 2n − 1 then
6: if cost of glist < BestCost then
7: record glist as BestCircuit and its cost as BestCost

8: end if
9: else

10: for k ≤ j ≤ 2n − 1 do
11: Gin ← map(j, k)

12: Gout ← map(fj , k)

13: apply Gin and Gout to map f to g

14: dist[j] ← Δ(g)

15: end for
16: min← minimum value in dist

17: if cost (glist)+min ∗ α0 < BestCost then
18: for k ≤ j ≤ 2n − 1 do
19: if dist[j] ≤ min ∗ α1 then
20: Gin ← map(j, k)

21: Gout ← map(fj , k)

22: apply Gin and Gout to map f to g

23: Search(g, k + 1,Gin||glist ||reverse(Gout))
24: end if
25: end for
26: end if
27: end if
28: end procedure

identity and glist is a completed circuit for the original function. If it is less costly
than the best circuit found to date, it is recorded as the best circuit.

Lines 10–16 consider each of the rows j from k through 2n − 1 where n is the
number of function variables. In each case, the input side j and output side fj are
mapped to k and the gates are applied to map f to a resulting function g. Gates in
Gin are applied to the input side of f and gates in Gout are applied to the output
side of f . The idea of trying all j , k ≤ j ≤ 2n − 1, is carried over from the multi-
directional method. For each g, the operator Δ computes the Hamming distance
from g to the identity function which is the sum of the Hamming distances between
r and gr for each row of g. The minimum distance is recorded in min.

Line 17 selects whether to continue based on the formula cost (glist) + min ∗
α0 < BestCost which is estimating the cost of finishing the current circuit based
on its cost to date and the minimum Hamming distance found. The factor α0 is
discussed below.

If line 17 determines continuation, lines 18–25 go back through the rows from k

to 2n− 1. For each, if dist[j] ≤ min ∗α1, g is computed (the factor α1 is discussed
below) and a recursive call is made to Search with parameters g, k+1 (the next row

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 153

to consider) and the circuit to date which is glist with the gates from Gin prepended
to the front and the gates from Gout reversed and appended to the end. The latter set
of gates are reversed because procedure map generates gates from output towards
the input when considering mapping an output pattern.

The factor α0 controls the weight min is giving in estimating the cost of the final
circuit. By experiment using NCV quantum cost, we have found 1.33 to be a good
value. α1 in line 19 determines how far dist[j] can be above the minimum for row
j to be considered as a basis for further searching. Again by experiment, we have
determined that α1 = 2 is effective. More experiments with the search procedure
may well lead to a better understanding of the best values for α0 and α1 and their
interaction.

5 Simplifying a Reversible Circuit

We employ the following simplification rules for MPMCT gates developed by
Rahman and Rice [15]. Note that these rules are referred to as templates in [15],
but we choose not to call them that to avoid confusion with other formulations of
templates in the reversible and quantum circuit literature. Note that rule 1 is the
special case of rule 3 with C = φ.

Rahman and Rice Simplification Rules

1. T (xc, xt)T (xc, xt) = T (xt) = NOT (xt)

2. T (C, xt)T (C, xt) = I

3. T (C ∪ xi, xt)T (C ∪ xi, xt) = T (C, xt)

4. (a) T (C ∪ xi ∪ xj , xt)T (C ∪ xi ∪ xj , xt) = T (xi, xj)T (C ∪ xj , xt)T (xi, xj)

(b) T (C ∪ xi ∪ xj , xt)T (C ∪ xi ∪ xj , xt) = T (xi, xj)T (C ∪ xj , xt)T (xi, xj)

5. (a) T (C ∪ xi, xt)T (C ∪ xj , xt) = T (xi, xj)T (C ∪ xj , xt)T (xi, xj)

(b) T (C ∪ xi, xt)T (C ∪ xj , xt) = T (xi, xj)T (C ∪ xj , xt)T (xi, xj)

(c) T (C ∪ xi, xt)T (C ∪ xj , xt) = T (xi, xj)T (C ∪ xj , xt)T (xi, xj)

6. (a) T (C, xt)T (C ∪ xi, xt) = T (C ∪ xi, xt)

(b) T (C, xt)T (C ∪ xi, xt) = T (C ∪ xi, xt)

7. (a) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xk)

(b) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xk)

(c) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xt)

(d) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xk)

(e) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xk)

(f) T (C∪xi ∪xj , xt)T (C∪xk, xt) = T (xi ∪xj , xk)T (C∪xk, xt)T (xi ∪xj , xk)

For each of the above rules, the substitution holds even if the order of the gates
on the left hand side is reversed because they have a common target.

To apply the above simplification rules, we need to be able to determine if two
gates can be moved to be adjacent if they are not already. Since a reversible circuit

154 D. M. Miller and G. W. Dueck

is a cascade of gates, the key operation is to determine if two adjacent gates can
be interchanged since moving gates is in fact a sequence of gate interchanges.
Since our circuits have both positive and negative controls, checking whether two
adjacent gates can be interchanged is more involved then the commonly used so-
called moving rule [9].

Moving Rule for MPMCT Gates
Given two adjacent gates the following checks are applied in order:

1. If the two gates have a common control which is positive for one gate and
negative for the other, the gates can be interchanged.

2. If the target and controls for one gate all serve as controls for the second gate,
in which case the common controls must have equal polarities or (1) would
have applied, the gates can be interchanged with the control for the second gate
corresponding to the target of the first gate having negated polarity.

3. If the target of one gate is a control for the second, the gates cannot be
interchanged, otherwise they can be interchanged.

6 Mapping a Reversible Circuit to a Quantum Circuit

The first step in mapping a reversible circuit to a quantum circuit is to replace each
reversible gate by an implementation of that gate comprised of elementary quantum
gates, NCV gates in this work. A NOT gate is both a reversible and an elementary
quantum gate, so no substitution is required. The same is true for a CNOT with a
positive control.

6.1 Negative Control CNOTs

A CNOT with a negative control is not an elementary quantum gate. Two possible
substitutions are shown in Fig. 2. Substitution (a) has been used in earlier work. Here
we use substitution (b) as only a single NOT needs to be added and it can in fact be
placed on either side of the CNOT giving more flexibility for later simplification.

The situation here is complicated by the use of Theorem 3. If a circuit is being
synthesized with the intent that the polarity for all gate controls will be flipped, then
we want to avoid CNOTs with positive controls. We thus have the notion of a target
CNOT control polarity when doing a circuit simplification.

Our procedure for dealing with a CNOT with incorrect control polarity is
straightforward. The following steps are applied for each CNOT gi with incorrect
polarity control xj .

1. We scan from gi back towards the input to find a NOT (xj).

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 155

Fig. 2 Mapping a CNOT with a negative control to NCV gates

Fig. 3 NCV realization of Toffoli gates dependant on number and placement of negative controls

2. If none is found, we scan from gi towards the output to find the required
NOT (xj).

3. If a NOT (xj) is found, in either direction, it is moved across the circuit towards
gi inverting all controls it crosses until it has crossed over gi .

4. If no NOT (xj) was found in 1 or 2, a NOT is inserted on the target line of gi

just before gi and the polarity of the control for gi is flipped.

6.2 NCV Realization of MPMCT Gates

For an MPMCT gate with two controls, the quantum implementation depends on
the number and placement of negative controls as shown in Fig. 3. The difference
between (b) and (c) is which of the controls is negative. Note that this only affects
the assignment of V and V † to the first two gates. For two negative controls, a sixth
gate, a NOT, is required on the target line (t) as shown in (d).

Quantum realizations of MPMCT gates have been extensively studied beginning
with the seminal paper by Barenco et al. [1]. To estimate quantum costs during our
synthesis procedures, we use results from [18], which are given in Table 2. Each
entry in the table is the number of elementary NCV quantum operations required to
realize a gate with the associated number of controls.

The first three rows of the table for gates with 0, 1, and 2 controls are costed
as described above. We are using substitution (b) for negative control CNOT gates.
For three or more controls, a decomposition method is given in [18] which basically
expresses a MPMCT gate as a network of gates with fewer controls. It is important
to note that for three or more controls, the cost figures given in Table 2 assume
one ancillary line is available. Reference [18] includes less expensive realizations if
more ancillaries are available.

156 D. M. Miller and G. W. Dueck

Table 2 NCV costs of
MPMCT gates assuming one
ancillary is available if
needed

Negative controls

Controls 0 1 2 3 4 5 6 7 8

0 1

1 1 2

2 5 5 6

3 14 14 16 18

4 20 20 20 22 24

5 32 32 32 34 36 38

6 44 44 44 44 46 48 50

7 64 64 64 64 66 68 70 72

8 76 76 76 76 76 78 80 82 84

6.3 MPP and MPIP Gate Cost and Substitution

Consider Fig. 3 again. The control lines to a two-control MPMCT gate can be
interchanged. Furthermore, since an MPMCT gate is self-inverse, the quantum
circuit realization can be reversed. Now, since each of the circuits in Fig. 3 has a
CNOT between the two MPMCT gate controls, it is clear that that gate will cancel a
CNOT between c1 and c2 that follows it. The same is also true if the CNOT comes
first. This is the basis for substituting the gate pair with an MPP or MPIP gate. One
can see that an MPP or MPIP gate formed from an MPMCT with 0 or 1 negative
controls thus has a cost of 4. If the MPMCT gate has two negative controls, the cost
is 5.

MPP and MPIP gate substitution is straightforward. One need only scan the
circuit to find an appropriate two input MPMCT and CNOT gate pair that can be
moved together using the procedure described above. The two gates are replaced by
a MPP or MPIP gate depending on which side the CNOT lies.

6.4 Overall Simplification and Mapping Strategy

The process applied to simplify a circuit has the following steps:

1. Apply Rahman and Rice MPMCT simplifications.
2. Apply the CNOT correction procedure to deal with any CNOTs that have the

wrong control polarity.
3. Apply Rahman and Rice MPMCT simplifications.
4. If any changes to the circuit were made in 1–3, reverse the circuit and apply 1–3

to the result.
5. After iterating 1–4 until there are no changes, if the circuit is in reverse

orientation, reverse it.
6. If MPP and MPIP gates are to be used, make all possible MPP and MPIP gate

substitutions.

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 157

7 Experimental Results

We have implemented the methods described above in C and run our experiments on
a x64-based PC with an Intel i5 650 processor and 3GB RAM. Tables 3 and 5 show
the results for the 8! = 40,320 3-variable reversible functions for nine scenarios.
The average quantum cost is shown for each scenario as well as the cpu seconds
required.

Two versions of the search method are used. Search A has α0 = α1 = 1 and
Search B has α0 = 1.33 and α1 = 2. Raising the α broadens the scope of the
search, i.e., more potential circuits are considered, but that of course incurs increased
computational cost.

Scenario (a) in Table 3 is presented to serve as a base line. The methods are
applied with no function translations and none of the simplifications discussed in
Sects. 5 and 6 including no use of MPP or MPIP gates. Results are then shown for
(b) adding function inversion, (c) adding circuit simplification, and (d) adding the
use of MPP and MPIP gates.

Table 4 shows the incremental improvements of scenarios (b), (c), and (d)
compared to the base case (a). It is interesting to note that adding the use of the
function inverse, scenario (b), has marginal effect on the search methods whereas
adding the use of MPP and MPIP gates, scenario (d), significantly improves both
search methods.

The scenarios in Table 5 all use the function inverse, circuit simplification, and
MPP and MPIP gates. Scenarios (e), (f), and (g) show the results for adding use of
the dual, input-output negation and input-output permutation separately. Scenarios
(h) and (i) show the results for using the dual with permutation and input-output
negation with permutation. Scenario (i) gives the best results across Tables 3 and 5.

Table 6 shows the improvements offered by each of scenarios (e) to (i) for each
of the synthesis methods. For all methods, scenario (i) using input-output negation
and input-output permutation gives the most improvement. This is not surprising as
that scenario provides the most function translations to explore for each function.
It is interesting that the improvement is not as high for the search methods as for
the other three methods. That is because the search methods already explore an
extensive solution space.

Table 7 is an analysis of scenario (e) in Table 5 and shows the number of functions
for which each method gives the best result among the five synthesis methods.
Search B exhibits the best performance but there are exceptions. Separate analysis
shows that Search A finds a cheaper result than Search B for 5.1% of the functions.
There are even 354 functions for which the Basic method finds the cheapest circuit.
These anomalies are due to the heuristic nature of the five methods. Similar results
are found for analyses of scenarios (f) to (i).

For the Search B method under scenario (e), 45.96% of the best circuits were
found by synthesizing a circuit for f (X), 32.22% by synthesizing a circuit for
f−1(X), 11.71% by synthesizing a circuit for the dual of f (X), and 10.11% by
synthesizing a circuit for the dual of f−1(X). In total, the 40,320 circuits used

158 D. M. Miller and G. W. Dueck

Table 3 Average quantum costs for three variable reversible functions: scenarios (a)–(d)

(a) No inverse (b) Inverse (c) Inverse (d) Inverse simplify
or simplification no simplification simplification MPP MPIP gates

Synthesis method cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s)

Basic 17.87 0.05 15.99 0.08 14.59 0.33 13.50 0.38

Bidirectional 16.55 0.06 15.55 0.09 14.58 0.29 13.28 0.32

Multi-direct. 16.51 0.30 15.35 0.59 14.41 0.77 13.09 0.82

Search A 14.77 4.92 14.51 9.87 13.60 21.55 11.66 12.66

Search B 14.32 34.55 14.25 68.10 13.40 105.42 11.28 43.00

Table 4 Improvements
compared to scenario (a)

Incremental improvement

Synthesis method (b) (c) (d) Total

Basic 10.53% 7.83% 6.10% 24.46%

Bidirectional 6.04% 5.86% 7.85% 19.76%

Multi-direct. 7.03% 5.72% 7.97% 20.71%

Search A 1.76% 6.16% 13.13% 21.06%

Search B 0.49% 5.94% 14.80% 21.23%

Table 5 Average quantum costs for three variable reversible functions: scenarios (e)–(i)

(e) (f) Input-output (g) (h) Dual and (i) Input-output
Synthesis Dual negation Permutation permutation neg. and permutation

methoda cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s) cost cpu(s)

Basic 13.01 1.14 12.37 4.31 12.04 2.10 11.88 5.76 11.60 26.12

Bidirectional 12.63 1.00 11.97 3.65 11.84 1.76 11.65 4.82 11.31 21.68

Multi-direct. 12.48 1.86 11.85 7.75 11.72 4.78 11.54 10.97 11.21 46.15

Search A 11.49 37.78 11.33 135.16 10.94 74.40 10.90 181.84 10.84 819.35

Search B 11.16 160.04 11.07 648.62 10.76 261.93 10.73 762.61 10.69 3802.06
aFunction inverse, circuit simplification and MPP and MPIP gates used in all scenarios.

Table 6 Improvements compared to scenario (d)

Improvements

Synthesis method (e) (f) (g) (h) (i)

Basic 3.63% 8.39% 10.81% 12.00% 14.07%

Bidirectional 4.89% 9.89% 10.84% 12.27% 14.85%

Multi-direct. 4.66% 9.50% 10.47% 11.84% 14.39%

Search A 1.46% 2.84% 6.17% 6.52% 7.08%

Search B 1.06% 1.86% 4.61% 4.88% 5.23%

14,396 MPP and 13,275 MPIP gates. It is interesting to note that of those 27,671
gates, 33.15% had two positive controls, 10.7% had two negative controls, and
56.16% had one positive and one negative control. This demonstrates the usefulness
of allowing MPP and MPIP gates rather than just Peres and inverse Peres gates.

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 159

Table 7 Best results for scenario (e) in Table 5

Best result Unique best result

Synthesis No. of No. of
method functions % of total functions % of total

Basic 13,968 34.64% 354 0.88%

Bidirectional 17,135 42.50% 122 0.30%

Multi-directional 18,349 45.51% 34 0.08%

Search A 30,082 74.61% 1744 4.33%

Search B 37,678 93.45% 8975 22.26%

Table 8 Search B for scenario (i)—distribution by function translation

Permutation index

Negation 0 1 2 3 4 No perm. Subtotal % of total

No function inversion

No neg. 332 376 726 1913 2870 19,514 25,731 63.82%

1 17 18 20 56 65 137 313 0.78%

2 16 21 21 63 67 153 341 0.85%

3 14 15 17 65 67 223 401 0.99%

4 11 14 24 72 67 224 412 1.02%

5 15 21 26 86 88 355 591 1.47%

6 17 20 31 94 96 441 699 1.73%

Dual 19 22 33 131 135 1083 1423 3.53%

Subtotal 441 507 898 2480 3455 22,130 29,911 74.18%

% of total 1.09% 1.26% 2.23% 6.15% 8.57% 54.89%

With function inversion

No neg. 234 260 368 921 1248 4416 7447 18.47%

1 16 17 19 50 55 112 269 0.67%

2 14 15 19 43 49 115 255 0.63%

3 14 15 17 50 53 184 333 0.83%

4 9 12 19 63 58 174 335 0.83%

5 11 17 17 64 63 245 417 1.03%

6 15 18 25 79 73 284 494 1.23%

Dual 16 19 28 103 93 600 859 2.13%

Subtotal 329 373 512 1373 1692 6130 10,409 25.82%

% of total 0.82% 0.93% 1.27% 3.41% 4.20% 15.20%

Table 8 shows the distribution of the best circuits found for the 40,320 three
variable functions using method Search B for scenario (i) in Table 5.

To place the above results in some context, the authors of [2] considered the
realization of three variable reversible function using mixed-polarity Toffoli gates
and positive polarity Reed-Muller techniques. The best results they report have an
average quantum cost of 13.36 which is better than our base line but higher than our
best results. This illustrates further the advantage of using MPP and MPIP gates and
the circuit simplification results discussed in this chapter.

160 D. M. Miller and G. W. Dueck

Table 9 Selected worst case functions

Synthesis
method costa costb costc code cpu(s) costa costb costc code cpu(s)

3_17 4_49

Basic 15 15 11 P3-I 0.00 80 68 43 P6-N5 0.06

Bidirectional 15 12 11 P3 0.00 101 87 31 P6-N11-I 0.04

Multi-direct. 15 12 11 P3 0.00 69 70 32 P6-N11 0.08

Search A 15 12 11 N3 0.01 55 52 32 P6-N11 3.55

Search B 15 12 11 P4-I 0.06 36 32 28 P17-N11 476.90

Best known cost 10 [28] 32 [28]

hwb4 hwb5

Basic 71 53 32 P22-D 0.05 352 294 199 P119-N3-I 4.24

Bidirectional 64 52 21 P22-I 0.04 323 301 171 P116-N20-I 2.84

Multi-direct. 58 55 21 P22-I 0.07 313 282 172 P115-N3-I 5.35

Search A 49 41 21 P22-I 3.39 280 230 101 P110-N16-I 6909.33

Search B 27 21 20 P20-I 12.97 see note d

Best known cost 19 [8] 71 [8]
aUsing inverse translation, no circuit simplification or MPP/MPIP gates
bUsing inverse translation, circuit simplification and MPP/MPIP gates
cUsing inverse, input-output negation, input-output permutation, circuit simplification and
MPP/MPIP gates
dSearch B for hwb5 is computationally prohibitive

De Vos and Van Rentergem [3] have presented a reversible circuit synthesis
approach using Young-based subgroups. They consider circuits with positive and
negative controls. A difference from the work here is that the control function
for a gate can be any Boolean function not just the conjunction of controls. They
allow CNOT gates with a negative control. They did not use Peres type gates. For
3-variable reversible functions, they report average gate counts of 5.88 for their
Algorithm A, 4.21 for their Algorithm B and 3.73 as the optimal average. When
we apply our methods allowing negative control CNOT gates, using MPP or MPIP
gates and using the dual and choice of a circuit for f or f−1, we find gate averages
of 4.73 (Basic), 4.57 (Bidirectional), 4.50 (Multi-directional), 4.49 (Search A), and
4.50 (Search B). Note that this is a very rough comparison as we are using Peres
type gates and all our gates use a conjunctive control function.

Table 9 shows the results for four functions which have been described as worst
cases for several synthesis methods [28]. They are certainly known to be difficult for
transformation-based synthesis. Note that the results show the cost of the best circuit
when considering the synthesis of f and f−1 and using input-output negation and
input-output permutation. All simplification techniques discussed in Sects. 5 and 6
are applied including the use of MPP and MPIP gates.

In Table 9, the function translation resulting in the best circuit found for each
case is shown in column trans. P-x indicates input-output permutation has been
applied where x denotes the permutation index as defined in [12]. N-x indicates

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 161

Table 10 Search B applied
to hwb5 for four function
translations

Solution Total
Translation cost cpu(s) cpu(s)

Function 120 2538.43 3600.00

Inverse 85 2444.29 2565.57

Dual 144 1503.20 3600.00

Inverse dual 152 614.17 3600.00

Fig. 4 hwb5 circuit found using Search B: 30 gates, quantum cost 85

input-output negation has been applied, after possible permutation, with the 1’s in
the binary expansion of x indicating which input-output positions are negated. D is
used to indicate all input-output pairs are negated, i.e., the dual is used. Lastly, I
indicates the function is inverted following any permutation and negation.

Method Search B is computationally much more expensive than the other
methods. For that reason, applying Search B to hwb5 is omitted in Table 9. Instead,
Table 10 gives the results for applying Search B to hwb5 for four scenarios: the
function, the inverse of the function, the dual of the function, and the dual of the
inverse of the function. For each scenario, a limit of 1 h CPU time was imposed.

The best circuit was found using the inverse function. Interestingly that scenario
did not hit the 1 h time limit which means the full search was completed. The circuit
found using the inverse of hwb_5 is shown in Fig. 4. Note that it uses MPMCT gates
with negative controls as well as an MPP and an MPIP gate. This circuit is far better
than the results reported for hwb_5 in Table 9 but finding it required very lengthy
computation time.

This result is reasonably close to the best circuit found to date, cost 71, which is
listed on Maslov’s benchmark web site [8]. That circuit was posted by the authors
of [26] which presented a variable-length chromosome evolutionary algorithm for
reversible circuit synthesis. The cpu usage required to find the circuit is not reported.
It is interesting that a relatively simplistic transformation-based synthesis approach
can produce so good a circuit especially compared to other techniques (see [8, 28]
for examples of circuits for hwb5).

8 Heuristic Selection of Function Translations

The results presented in the previous section show that the use of input-output nega-
tion and input-output permutation can significantly reduce circuit cost. However it
is clear that searching through all possible translations quickly becomes impractical
as n, the number of variables, increases since there are 2n input-output negations
and n! input-output permutations. The ideal would be able to pick a small number

162 D. M. Miller and G. W. Dueck

Table 11 Selected translation scenarios for 3-variable functions using the basic method

% Impr.
Translations Cost over (a) cpu(s)

1 Inverse (a) 13.50 0.37

2 Inverse, dual 13.04 3.47% 0.98

3 Inverse, HION 12.80 5.23% 1.42

4 Inverse, full I-O negation 12.37 8.41% 4.24

5 Inverse, HIOP 12.52 7.29% 0.73

6 Inverse, all I-O perm. 12.04 10.86% 2.05

7 Inverse, HION, HIOP 12.11 10.32% 2.91

8 Inverse, all I-O neg., all I-O perm. 11.60 14.09% 25.17

of translations to consider based on properties of the function to be synthesized. As
a start toward that goal, we here present two heuristic methods for choosing which
translations to consider.

Heuristic Input-Output Negation (HION) We use the following:

1. No input-output negations applied.
2. All input-output pairs negated, i.e., the dual.
3. The α-translation, see Definition 9, where αi is the identity if xi = 0 and

αi is NOT if xi = 1 in the earliest assignment to (x0, x1, . . . , xn−1) where
the Hamming distance between that assignment and the corresponding output
assignment (x+0 , x+1 , . . . , x+n−1) is minimal where earliest refers to considering
input assignments starting from (0, 0, . . . , 0) in truth table order.

Heuristic Input-Output Permutation (HIOP) We employ two permutations:

1. The inputs and outputs in the order given, i.e., the null permutation.
2. The reverse permutation where the inputs and outputs are in the reverse of the

order given, e.g., x0, x1, x2 is permuted to x2, x1, x0.

Table 11 presents results of applying the basic transformation-based synthesis
method to the 40,320 3-variable reversible functions for a variety of function
translation scenarios. Circuit simplification and MPP and MPIP gates are used in
all cases.

The top row of Table 11 uses only the function inverse translation and is intended
as a baseline for measuring the improvement offered by the other scenarios. The
function inverse translation is employed in all the other scenarios.

Lines 2–4 show the results for using the dual, heuristic input-output negation,
and for comparison using all eight possible input-output negations. Lines 5 and
6 compare using heuristic input-output permutation and all six possible input-
output permutations. Lastly, rows 7 and 8 compare using both heuristic translation
approaches with using all function translations. In all cases, improvement is
measured relative to just using the function inversion translation and shows the
percentage reduction in the circuit quantum cost.

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 163

The results indicate that while our heuristic methods show quite good im-
provement, they, as one would expect for such simple approaches, fall well
short of employing all function translations. Applying the basic synthesis method
and heuristic translation approaches to the worst case function 3_17 reduces the
quantum cost from 15 down to 11 for the function inverse, reverse permutation,
and no input-output negation. However, applying the techniques to the other three
worst case functions offers no improvement over just using only the function inverse
translation. That is simply the nature of those functions but does suggest that the
heuristic techniques described in this section can likely be improved upon.

9 Discussion and Future Work

This chapter has considered a number of aspects of the synthesis and simplification
of reversible circuits with positive and negative controls. The main contributions
are the function translation techniques of input-output negation and input-output
permutation introduced in Sect. 4, the employment of mixed control Peres gates, and
various circuit simplifications discussed in Sects. 5 and 6 which combine well with
Rahnan and Rice’s MPMCT techniques. We plan to investigate whether the circuit
rewriting rules proposed in [21] can improve our circuit simplification procedures.

The experimental results presented in this chapter demonstrate that the input-
output negation and input-output permutation function translations introduced
here have significant potential for improving the synthesis of reversible circuits.
However, the approach of searching all possible translations is clearly limited. We
have suggested some initial heuristic techniques to choose translations to consider
by examining the function to be synthesized. The results show some promise, but it
is very likely that incorporating the choice of function translations into the synthesis
process will be more effective than making a pre-synthesis choice. This is an area
requiring further research.

The transformation-based search method is of potential interest but is truly
a work in progress. More work is needed to determine how best to bound the
search in order to make it computationally feasible. In addition, the authors of
[6, 20] have incorporated Fredkin gates [5], which are controlled swap gates, into
transformation-based synthesis. It would be interesting to see how their approaches
might be incorporated into our work and how Fredkin gates might be extended to
be mixed-polarity multiple control gates.

The work thus far has been limited to considering transformation-based synthesis
methods. It would be very interesting to see how effective the function transla-
tions input-output negation and input-output permutation are when combined or
integrated into other reversible circuit synthesis methods.

This work has shown that mixed polarity Peres and inverse Peres gates can
be quite effective in reducing quantum circuit cost. The approach here has been
to consider the introduction of such gates into a circuit as part of the circuit
simplification process. It would be interesting to consider integration of these gate

164 D. M. Miller and G. W. Dueck

types into the synthesis process itself both for transformation-based and other
synthesis methods.

The comparison of the methods presented in this chapter to the work of De Vos
and Van Rentergem [3], despite the differences in gate types permitted, suggests
there is room for further improvement of our methods.

The quantum cost used in this chapter is based on the NCV gate library. Future
work should consider cost metrics for fault-tolerant quantum circuits using the
Clifford+T quantum gate library [13]. Another area to consider would use Qiskit
or ProjectQ [7] to map an MCMPT circuit into an NISQ compatible circuit and then
count gates after performing optimizations at the quantum gate level.

References

1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, M., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5),
3457–3467 (1995)

2. Cheng, C.S., Singh, A.K., Gopal, L.: Efficient three variables reversible logic synthesis using
mixed polarity Toffoli gate. Procedia Comput. Sci. 70, 362–368 (2015)

3. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math.
Commun. 2, 183–200 (2008)

4. Feynman, R.: Quantum mechanical computers. Optic News (1985), pp. 11–20
5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)
6. Handique, M., Singha, R.: A modified transformation-template based synthesis using Fred-

kin/swap gates in reversible circuits. Procedia Comput. Sci. 125, 801–809 (2018)
7. LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3,

130 (2019)
8. Maslov, D.: Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov/
9. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation-based algorithm for reversible logic

synthesis. In: Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 318–323
(2003)

10. Moraga, C.: Using negated control signals in quantum computing circuits. Facta Universi-
tatis(Nis) Ser. Electr. Energy 24(3), 423–435 (2011)

11. Moraga, C.: Mixed polarity reversible Peres gates. Electron. Lett. 50(14), 987–989 (2015)
12. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Inf. Process.

Lett. 79, 281–284 (2001)
13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge (2000)
14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266–3276 (1985)
15. Rahman, M.Z., Rice, J.E.: Templates for positive and negative control Toffoli networks. In:

Lecture Notes in Computer Science, vol. 8507 (2014)
16. Ribeiro, A., Kowada, L., Marquezino, F., Figueiredo, C.: A New reversible circuit synthesis

algorithm based on cycle representations of permutations. Electron. Notes Discrete Math. 50,
187–192 (2015)

17. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - A survey. CoRR
abs/1110.2574 (2011). http://arxiv.org/abs/1110.2574

18. Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In:
Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, pp. 567–571 (2011)

http://www.cs.uvic.ca/~dmaslov/
http://arxiv.org/abs/1110.2574

Translations for Reversible Circuit Synthesis with Positive and Negative Controls 165

19. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit synthesis. In:
ICCAD. San Jose, California, USA, pp. 125–132 (2002)

20. Soeken, M., Chattopadhyay, A.: Fredkin-enabled transformation-based reversible logic syn-
thesis. In: Proceedings of the International Symposium on Multiple-Valued Logic, pp. 60–65
(2015)

21. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In:
Lecture Notes in Computer Science, vol. 7948 (2013)

22. Soeken, M., Dueck, G.W., Rahman, M.M., Miller, D.M.: An extension of transformation-based
reversible and quantum circuit synthesis. In: Proceedings of the International Symposium on
Circuits and Systems, pp. 2290–2293 (2016)

23. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible
functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)

24. Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli
gates with multiple-control signals. In: 2013 13th IEEE International Conference on
Nanotechnology (IEEE-NANO 2013), pp. 802–807 (2013)

25. Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Comp. Sci
(1980)

26. Wang, X., Jiao, L., Li, Y., Qi, Y., Wu, J.: A variable-length chromosome evolutionary algorithm
for reversible circuit synthesis. Multiple-valued Logic Soft Comput. 25, 643–671 (2015)

27. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In:
Proceedings of the Design Automation Conference, pp. 270–275 (2009)

28. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for
reversible functions and reversible circuits. In: Int’l Symposium on Multi-Valued Logic, pp.
220–225 (2008). RevLib is available at www.revlib.org

29. Yamashita, S., Minato, S., Miller, D.M.: Synthesis of semi-classical quantum circuits.
Multiple-Valued Logic Soft Comput. 18(1), 99–114 (2012)

www.revlib.org

Hybrid Control of Toffoli and Peres Gates

Claudio Moraga

1 Introduction

Toffoli [9] and Peres [7] gates are basic components of reversible circuits. Figure 1
shows their symbolic representation and functionality following the definitions
given by their authors. Characteristic of these representations is the use of dots to
signalize the connection between the control signals and the gate to be controlled.
Originally the dots were black and defined to represent an effective control signal
with value 1. Much later white dots were introduced (see [4, 8]) to represent effective
control signals with value 0.

In [5] Toffoli gates with disjunct control were introduced, adding some flexibility
to the synthesis of reversible circuits. For this kind of gate, instead of a dot as
connecting symbol between a control bit and a target gate, an upside down (black)
triangle � was chosen for its similarity with the disjunction symbol ∨ used in
mathematical logic. The symbol, functionality, its Barenco et al. type of quantum
model [2], and its specification matrix is shown in Fig. 2.

It is simple to see in the Barenco et al. type model that if c1 has the value 1
and c2 has the value 0, the first V -gate will become active, and the second one will
be inhibited and behaving as the identity. (For short, in what follows it will simply
be said “if c1 is 1 and c2 is 0”.) Furthermore, c1 will activate the CNOT gates,
producing a “local 1” that will activate the third V -gate. (The last CNOT gate only
recovers the original value of c2). Finally, the cascade of the two active V -gates
produce the expected NOT behavior.

C. Moraga (�)
Faculty of Computer Science, Technical University of Dortmund, Dortmund, Germany

Department of Informatics, Technical University “Federico Santa María”, Valparaíso, Chile
e-mail: claudio.moraga@tu-dortmund.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_8&domain=pdf
mailto:claudio.moraga@tu-dortmund.de
https://doi.org/10.1007/978-3-030-68071-8_8

168 C. Moraga

c1c1 c1c1

c2c2 c2c2

tt t’t’
()a ()b ()c

1 1 2 2= , = 1 1 2 1= , = c2

t t’ = 1 2 t t’ = 1 2

’ ’
’’

’ ’’ ’

Fig. 1 (a) Symbol and functionality of a Toffoli gate. (b, c) Symbols and functionality of a Peres
gate

c1 c1

c1 c1

c2 c2 t

c2 c2

t

t t’

c c
c c

1 1

2 2

=
=

t t’ = c c1 2) V = sqrt(NOT)

V V V

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1 1 0

=

’
’

’
’

’ ’ ’

Fig. 2 Symbol, functionality, Barenco et al. type model, and matrix specification of the disjunc-
tively controlled Toffoli gate

In the case that c1 is 0 and c2 is 1, the first V -gate and the CNOT gates will
be inhibited, whereas the second and the third V -gates will be activated and will
produce the expected NOT behavior. Finally, if both c1 and c2 are 1, the two
first V -gates become activated and produce the expected NOT behavior. Since the
CNOT gates will also become activated by c1, the first one will produce a local 0
by negating c2, inhibiting the third V -gate.

It is fairly obvious that if both c1 and c2 are 0, then all gates will be inhibited.
From the above analysis of cases clearly follows that all three elementary gates of

the Barenco et al. type model are equal: either V or V †. Recall that V 2 = (V †)2 =

Hybrid Control of Toffoli and Peres Gates 169

Fig. 3 (a) Symbol and
functionality of a
disjunctively controlled Peres
gate. (b) Symbol and
functionality of a
disjunctively controlled
inverse Peres gate

c1

c c1 1= ; c c1 1= ;

c1c1 c1

c2 c2c2

c c2 1= c2 c c2 1= c2

c2

t tt’ t’
()a ()b

t t’ = ()c c1 2 t t’ = ()c c1 2

’
’

’
’

’ ’ ’ ’

NOT . It is interesting to mention that except for [5], no other circuits using disjunct
control of reversible gates seem to be available in the literature. However, a Clifford
+T circuit [1, 3] with the functionality of a disjunctively controlled Toffoli gate
based on c1c2 appears in [1].

In the conjunctive control case, Peres gates [7] are closely related to the Toffoli
gates. At the target level, they have the same functionality but c′2 = c1 ⊕ c2.
Moreover, Peres gates are not self-inverses. An inverse Peres gate has been designed
such that its Barenco et al. quantum model is the mirror of that of the original Peres
gate. These features are preserved for the Peres gate with disjunctive control. This
is shown in Fig. 3. The symbol for the “OR-Peres” gate has been made in analogy
to that of Fig. 1c.

2 Hybrid-Controlled Gates

In this section, the following question will be considered: Is it possible to have gates
with k controls, k > 2, (or their efficient building blocks realization based on the
Barenco et al. and [5, 6] quantum models), realizing the specifications of Eq. (1)?

t ′ = t ⊕ (cj ∨
k∧

i = 1
i �= j

ci) or t ′ = t ⊕ (cj ∧
k∨

i = 1
i �= j

ci). (1)

A control strategy leading to the above results will be called hybrid.
Without loss of generality, the case k = 3 and j = 1 will be first analyzed. The

symbolic representation of these cases is shown in Fig. 4.
A straightforward realization of the gate of Fig. 4a is shown in Fig. 5. The circuit

of Fig. 5 has a quantum cost of 13 [2, 5], but it requires an ancillary line driven
by 0. Notice that the dotted CNOT gates cancel each other changing the Toffoli
gates into a Peres gate and an inverse Peres gate, respectively, thus reducing by 2
the quantum cost.

170 C. Moraga

Fig. 4 Symbolic
representation of
hybrid-controlled gates

c1 c1c1 c c1 1=
c2

c3 c3c3 c c3 3=
c2c2 c c2 2=

t tt’ t’

()a ()b

t t’ = ()c c c1 2 3 t t’ = c c c1 2 3()

’
’

’

’
’
’

Fig. 5 Realization of the gate of Fig. 4a. Symbolic diagram and quantum circuit based on [2]
and [5]

It should be recalled that in the context of a quantum realization, an ancillary line
is an additional qubit, and this may increase the decoherence risk of the circuit.

A better realization may be obtained based on the equivalence:

c1 ∨ c2c3 = c1 ⊕ c2c3 ⊕ c1c2c3. (2)

The circuit shown in Fig. 6 is ancilla-free. It has a quantum cost of 19, and it
makes use of the quantum gates CNOT , V = sqrt (NOT) and W = sqrt (V).

An even better realization may be obtained considering that the following holds:

c1 ∨ c2c3 = c1c2c3 = 1⊕ c1c2c3 = 1⊕ c1 ⊕ c1c2c3 = c1 ⊕ c1c2c3. (3)

Equation (3) leads to the circuit shown in Fig. 7.
The realization shown in Fig. 7 is ancilla-free and has a quantum cost of 14. It

makes use of CNOT , W , and W † gates. It may be seen that the first CNOT gate

Hybrid Control of Toffoli and Peres Gates 171

c1

c1 1 2 32 3

c1

c2
c2

c3
c3

t

†

†

t’

= W = = W =1 1
2 2

1+ 1-
1- 1+

i i
i i

1/2 1/2

1/2 1/2
1- 1+
1+ 1-

i i
i i
3/2 3/2

3/2 3/2; ;

(w) =(W) = NOT4 4

]6[]2[

Fig. 6 Ancilla-free quantum circuit for t ⊕ (c1 ∨ c2c3)

c1 c1

c2 c2

c3
c3

t t’

=

Fig. 7 Quantum realization t ′ = t ⊕ (c1 ∨ c2c3) = t ⊕ c1 ⊕ c1c2c3

may be moved to the end of the circuit and could be activated together with the
CNOT gate acting on c3 controlled by c2. Then the circuit would have a depth
of 12. Of all shown circuits, this is the realization with lowest quantum cost and
shortest depth.

With respect to the gate of Fig. 4b, a straightforward realization taking advantage
of Peres gates, which at the target level have the same functionality as the Toffoli
gate, but with a lower quantum cost, is shown in Fig. 8.

The circuits of Fig. 8 have the same structure, quantum cost, and drawback of the
circuit shown in Fig. 5, mainly, the use of an ancilla qubit.

For a good realization of a circuit for the gate of Fig. 4b, it is quite reasonable to
analyze the dual of Eq. (3):

c1(c2 ∨ c3) = c1(c2c3) = c1 ⊕ c1c2c3. (4)

Equation (4) leads to the following “dual” circuit:
The circuit of Fig. 9 inherits all properties of the circuit of Fig. 7 with a quantum

cost of 14 and a possible depth of 12.

3 Scalability

In this section, equation (1) will be used again, but with j �= 1 and k > 3.

172 C. Moraga

c1

c1

c1

c1

c2

c2

c2

c2

c3

c3

c3

c3

t t’

t t’

0

0

0

0

Fig. 8 Realization of the gate of Fig. 4b. Symbolic diagram and quantum circuit based on [5]
and [2]

c1 c1

c2 c2

c3
c3

t t’

=

Fig. 9 Quantum realization of the hybrid-controlled gate of Fig. 4b

c1 c1

c2 c2

c3
c3

t t’

=

Fig. 10 Quantum realization of t ′ = t ⊕ (c2 ∨ c1c3) = t ⊕ c2 ⊕ c1c2c3

If j = 2 or 3, and k = 3, no swap gates are necessary. Only the functionality of
the lines will be accordingly modified. This is shown in Fig. 10 with respect of the
circuit of Fig. 7. A similar change would take place in the circuit of Fig. 9.

If k > 3 and j �= 1, Eqs. (3) and (4) may be straightforward extended to satisfy
the new requirements.

cj ∨ c1c2 · · · cj−1cj+1 · · · ck = cj c1c2 · · · cj−1cj+1 · · · ck

= 1⊕ cj c1c2 · · · cj−1cj+1 · · · ck

= 1⊕ cj ⊕ cj c1c2 · · · cj−1cj+1 · · · ck (5)

= cj ⊕ cj c1c2 · · · cj−1cj+1 · · · ck

= cj ⊕ c1c2 · · · cj−1cj cj+1 · · · ck

Hybrid Control of Toffoli and Peres Gates 173

c1 c1

c2 c2

c3

c4 c4

c3

t t’

0

0 0

0

()a ()b ()c

Fig. 11 Circuits for Eqs. (7) and (8). (a) Decomposition using Peres and inverse Peres gates. (b)
GF(2) decomposition. (c) Decomposition using Peres gates and the circuit of Fig. 7 (shown in a
dotted box)

A similar result is obtained if Eq. (4) is extended. In both cases, the Toffoli gate
will increase the number of control signals. The method presented in [6] shows how
to obtain the quantum model of Toffoli gates with an increasing number of control
lines. The functionality of the lines will possibly have to be reordered, depending
on the value of j , as illustrated in Fig. 10.

A next step of scalability considers the sets Nn = {1, 2, . . . , n}, Q ⊂ Nn, R ⊂
Nn, |Q| = q, |R| = r , where Q ∩ R = Φ. In analogy to Eq. (1), let

t ′ = t ⊕ (
∧

i∈Q
ci ∨

∧

j∈R
cj). (6)

Without loss of generality let q = r = 2, reducing Eq. (6) to

t ′ = t ⊕ (c1c2 ∨ c3c4) = t ⊕ c1c2 ⊕ c3c4 ⊕ c1c2c3c4, (7)

but also

t ′ = t ⊕ 1⊕ c1c2 · c3c4 = t ⊕ c1c2 ⊕ c1c2c3c4. (8)

Both expressions of Eq. (7) and Eq. (8) lead to the realizations presented in
Fig. 11.

The circuit 12(a) represents a straightforward decomposition. It uses two ancillae
and has a quantum cost of 21. The circuit 12(b) is based on the GF(2) equivalence
of a disjunction; it does not require ancillae, but has a quantum cost of 39, because
of the Toffoli gate with 4 controls. The circuit 12(c) is also based on decomposition,
it uses an ancilla, and uses as sub-circuit, the realization of Fig. 7, reaching a total
quantum cost of 22. The circuit 12(c) represents the best tradeoff with respect to
ancillae and quantum cost.

174 C. Moraga

4 Closing Remark

The concept of hybrid control was introduced, combining conjunctive and disjunc-
tive control of gates. Quantum models of the corresponding gates were disclosed
and their complexity analyzed. It is reasonable to expect that hybrid-controlled
gates, whenever applicable, will add flexibility to the design of reversible/quantum
circuits.

Example Design a circuit for

f1(x1, x2, x3, x4) = x1x2 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x2x3x4, (9)

and

f2(x1, x2, x3, x4, x5) = x5 ⊕ x5f1. (10)

Notice that expressing (9) and (10) in positive polarity leads to:

f1=x1x2 ⊕ (1⊕ x1)x2x3 ⊕ x1(1⊕ x2)x4 ⊕ x1x2(1⊕ x3)(1⊕ x4)

=x1x2 ⊕ x2x3⊕x1x2x3⊕x1x4⊕x1x2x4 ⊕ x1x2 ⊕ x1x2x3⊕x1x2x4⊕x1x2x3x4

=x2x3 ⊕ x1x4 ⊕ x1x2x3x4 (11)

=x1x4 ∨ x2x3,

f2 = x5 ⊕ (1⊕ x5)f1 = x5 ⊕ f1 ⊕ x5f1 = x5 ∨ f1. (12)

Figure 12 shows realizations based on Eqs. (9) and (10), as well as on Eqs. (11)
and (12).

The circuit on the left, which is based on the GF(2) polynomial expressions
as given, without optimization, has a quantum cost of 66, since it comprises two
Toffoli gates with two controls (QC = 10), two Toffoli gates with three controls
(QC = 26), one Toffoli gate with 4 controls (QC = 29), and a CNOT gate
(QC = 1). The circuit on the right, which is hybrid-controlled, has a quantum
cost of 27, since it comprises two Peres gates (QC = 8), a Toffoli gate with three
controls (QC = 13), a CNOT gate (QC = 1), and an OR-Toffoli gate (QC = 5).

Notice that since the example refers to the generation of two functions, the target
lines are initialized with 0. In the hybrid-controlled circuit, up to the inverse Peres
gate, the circuit corresponds to the one shown in Fig. 11c, and it uses the line
intended to be the target line for f2 as its ancilla. Since the 0 input is recovered
by the inverse Peres gate, the line becomes a correct target line for f2 and the circuit
does not require an additional ancilla.

Hybrid Control of Toffoli and Peres Gates 175

x1 x1x1 x1

x2 x2x2 x2

x3 x3x3 x3

x4 x4x4 x4

x5 x5x5 x5

0 0f2 f2

0 0f1 f1

Fig. 12 Circuits for the functions of the example. Left: GF(2) based realization. Right: Hybrid-
controlled realization

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast
synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 32, 818–830 (2013)

2. Barenco, A., Bennett, C.H., Cleve, R., Di Vincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52,
3457–3467 (1995)

3. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-Count. arXiv quant-
ph: 1308.4134v1 (2013)

4. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and
level compaction. IEEE Trans. CAD Integr. Circ. Syst. 27(3), 436–444 (2008)

5. Moraga, C.: Hybrid GF(2) – boolean expressions for quantum computing circuits. In: De Vos,
A., Wille, R. (eds.), RC 2011, LNCS 7165, pp. 54–63. Springer, Berlin (2012)

6. Moraga, C.: Mixed Polarity Reversible Peres gate. Electron. Lett. 50(14), 987–989 (2014)
7. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)
8. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In: Dueck,

G.W., Miller, D.M. (eds), RC 2013. LNCS 7948, pp. 196–208. Springer, Berlin (2013)
9. Toffoli, T.: Reversible computing. In: Bakker, J.W., van Leeuwen, J. (eds.), ALP 1980. LNCS

84, pp. 632–644. Springer, Berlin (1980)

GENMUL: Generating Architecturally
Complex Multipliers to Challenge
Formal Verification Tools

Alireza Mahzoon, Daniel Große, and Rolf Drechsler

1 Introduction

Nowadays, arithmetic circuits play a key role in many computation intensive
applications (e.g., signal processing and cryptography) as well as in upcoming AI
architectures (e.g., for machine learning or deep learning). Integer multiplication
is one of the most dominant operations in arithmetic circuits, making multipliers
crucial components in almost every design. In order to satisfy the demands
for fast, area-efficient, and low power designs, a large variety of multiplication
algorithms have been introduced. Although some of the proposed algorithms are
straightforward, most of them result in highly parallelized and complex hardware
architectures. This makes multipliers prone to design errors.

The famous Pentium FDIV bug back in 1994 caused a significant financial
loss for the manufacturer. Since then, researchers have put a lot of effort in the
development of verification methods in order to avoid design bugs. Particularly,
the formal verification methods gained more attention as they take advantage
of a mathematical approach to cover the whole input space. Despite the recent
achievements, the development of formal verification techniques to support different
multiplier architectures is still a big challenge.

In the last 20 years, several verification methods have been proposed to formally
prove the correctness of the multipliers. However, most of them suffer from
serious limitations: (a) Decision Diagrams (DDs) (both bit-level diagrams such as

A. Mahzoon (�) · R. Drechsler
Institute of Computer Science, University of Bremen, Bremen, Germany
e-mail: mahzoon@informatik.uni-bremen.de; drechsle@informatik.uni-bremen.de

D. Große
Institute for Complex Systems, Johannes Kepler University, Linz, Austria
e-mail: daniel.grosse@jku.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8_9

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68071-8_9&domain=pdf
mailto:mahzoon@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
mailto:daniel.grosse@jku.at
https://doi.org/10.1007/978-3-030-68071-8_9

178 A. Mahzoon et al.

BDDs1 [1] and Word-level Decision Diagrams2 [5] such as *BMDs) fail due to
memory blow-up when it comes to the verification of large multipliers, (b) Boolean
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) [6] stuck when the
bit-width of multiplier increases, (c) Theorem Proving [7] needs considerable
manual effort before ensuring the correctness, (d) reverse engineering approaches
using Arithmetic Bit-Level (ABL) [8, 9] are exponential in detection of carry
propagation hardware and therefore cannot support a wide range of architectures,
and (e) term rewriting techniques [10] are not fully automated as a manual update
of rewrite rules is necessary for non-existing implementations.

Recently, Symbolic Computer Algebra (SCA) approaches have overcome many
limitations of the just mentioned methods (see for instance [11–18]). The general
idea of SCA-based verification is to

1. Represent the function of the multiplier based on its inputs and outputs as a
Specification Polynomial SP

2. Capture the logical gates of the circuit also as a set of polynomials PG

3. Take advantage of Gröbner basis theory in order to prove the membership of SP

in the ideal generated by PG.

The just mentioned third step consists of the step-wise division of SP by
PG known as backward rewriting, and eventually the evaluation of the resulting
remainder. If this remainder is zero, the multiplier is correct; otherwise, it is buggy.

While SCA-based verification scales for trivial multipliers, non-trivial multipli-
ers, i.e., architecturally complex multipliers, are still problematic for SCA verifiers
since for them the number of monomials always explodes during backward rewrit-
ing. Recent results showed that this explosion is caused by redundant monomials,
known as vanishing monomials in literature [13, 15]. A new theory for the source
of vanishing monomials has been introduced in [19]. The vanishing monomials
are formed when substituting a converging gate during backward rewriting, i.e., a
gate where both outputs of a Half-Adder (HA) converge. Reverse engineering
techniques to identify atomic blocks allow to further improve this approach such
that also dirty multipliers can be verified with up to 1024 output bits [20]. When it
comes to the verification of optimized and technology mapped multipliers including

1Bryant already proved in his seminal paper introducing BDDs [1] that the Boolean function for the
middle output bit of the binary multiplication function has only exponential BDD representations.
2Word-level Decision Diagrams represent integer-valued functions f : {0, 1}n → Z. Many
different types of Word-level Decision Diagrams have been introduced, e.g., MTBDDs, EVBDDs,
BMDs, *BMDs, K*BMDs, and *PHDDs [2]. BMDs, *BMDs, K*BMDs, and *PHDDs have the
advantage that they provide efficient representations for the multiplier function mult : {0, 1}2n →
Z mapping two n-bit operand vectors to the number representing the product of the two operands.
Although there are papers proposing an efficient construction of Word-level Decision Diagrams
from multiplier circuits by a so-called backward construction that starts from a Word-level decision
diagram representing the “output word”

∑2n−1
i=0 zi2i and performs substitutions of gate functions

in reverse topological order [3, 4], even intensive efforts could not confirm any practical success of
this approach for non-trivial multipliers.

GENMUL 179

industrial benchmarks, the size of the intermediate polynomial grows very fast, as
the boundaries for many atomic blocks have already been destroyed as a result of
optimization. Thus, using a dynamic substitution order is mandatory to control the
size of the intermediate polynomial [21].

Despite the very good progress, still more insight into multiplier verification
in general is mandatory, as we show in several experiments in this chapter. For
this purpose, we have developed the multiplier generator GENMUL which can
generate very different multiplier architectures based on a wide set of algorithms.
This allows the community a broad comparison when verifying different multiplier
architectures. Related to GENMUL is the Arithmetic Module Generator, known as
AOKI [22]. However, AOKI does only support a maximum input width of 64 bits
per multiplier input, and is also closed source. In contrast, the input size of GENMUL

is not bounded and we have made GENMUL open source under MIT-license.3

This chapter is structured as follows: Sect. 2 reviews the three-stage structure
of integer multipliers as well as their formal verification using SCA. Afterwards,
Sect. 3 introduces GENMUL. This includes the main data structures available for
defining the respective multiplier stage as well as the already supported multiplier
architectures. The challenges of verifying different multiplier architectures gener-
ated by GENMUL are demonstrated by several conducted experiments and discussed
in Sect. 4. Finally, Sect. 5 concludes the chapter.

2 Preliminaries

In this section, we first introduce the general structure of multipliers. Then, we
review the basic concepts of SCA. Finally, we explain the SCA-based verification
of multipliers in details.

2.1 Multiplier Architectures

Since the invention of the first integer multiplier, the demands for fast and
area-efficient designs have encouraged designers to implement a wide variety of
multiplier architectures. Although these architectures are apparently very different,
they mostly follow the basic idea of computing partial products and then summing
the partial products together in order to generate the final result. The main factor
differentiating the architectures is the way that they generate and reduce partial
products. This process is usually done in three phases which makes the three-stage
structure of the multipliers dominant in most designs.

3GENMUL is available on http://www.sca-verification.org/genmul.

http://www.sca-verification.org/genmul

180 A. Mahzoon et al.

Partial Product Generator
(PPG)

Partial Product Accumulator
(PPA)

Final Stage Adder
(FSA)

Multiplier Multiplicand

Product

Fig. 1 General three-stage multiplier structure

Figure 1 shows the three-stage structure of an integer multiplier. These stages
are:

(S1) Partial Product Generator (PPG), which generates partial products from the
inputs Multiplier and Multiplicand

(S2) Partial Product Accumulator (PPA), which reduces partial products by multi-
operand adders and computes their sum

(S3) Final Stage Adder (FSA), which converts this sum to the corresponding binary
output

There are always some critical parameters in the design of multipliers such as
area, delay, and power. These parameters play a major role in determining which
architecture/algorithm is suitable for a specific stage [23, 24]. For example, in the
second stage, Wallace tree is known for its optimal computational time (lowest
overall delay); however, it requires the largest wiring tracks. On the other hand,
Balanced delay tree has the smallest number of wiring tracks but suffers from a high
overall delay. In the final stage, Ripple carry adder has the most straightforward
implementation. In contrast, Carry look-ahead adder enjoys the parallel carry
generation which reduces the overall delay of the circuit. Moreover, Lander-Fischer
and Brent-Kung adders are recognized for minimum logic depth and minimum area,
respectively.

2.2 SCA Basics

Definition A Monomial is the power product of variables in the following form:

GENMUL 181

M = x
α1
1 x

α2
2 . . .xαn

n with αi ∈ N0 (1)

A monomial with a coefficient is called a Term. �
Definition A Polynomial is a finite sum of monomials with coefficients in field k:

P = c1M1 + c2M2 + · · · + cjMj cj ∈ k (2)

A polynomial has a monomial order which facilitates the polynomial manipula-
tions. This order is specified based on the ordering of variables and their powers.
We use A > B to show that A is in a higher order than B. For example, in
f = y4z+ y2z2 + xy, if we assume that the ordering of the variables is x > y > z,
then the monomial order will be xy > y4z > y2z2. The first monomial and the first
term after ordering are called leading monomial and leading term and are denoted
by LM(P) and LT (P), respectively.

In SCA, division is denoted by p
F−→ r , where F is a set of polynomials and

r is the remainder. For example, if p = xy, f1 = x − z, and f2 = yz, then

xy
f1−→ yz

f2−→ 0. To perform the division of xy by f1, first f1 is multiplied by y to
produce the same leading monomial xy as p, so f1y = xy − yz. Subsequently, the
subtraction is performed, i.e., p− (f1y) = xy− (xy−yz) = yz, which is the result
of the first division. Finally, yz is divided by f2 to get remainder 0.

2.3 SCA-Based Verification

In SCA-based verification of arithmetic circuits, the gate-level netlist and the
specification polynomial are given as inputs, and the task is to formally prove
that the specification polynomial and the arithmetic circuit are equivalent. The
specification polynomial is a polynomial determining the function of an arithmetic
circuit based on its inputs and outputs. For example, the specification polynomial for
the 2-bit multiplier of Fig. 2a is SP = 8Z3+4Z2+2Z1+Z0−(2a1+a0)(2b1+b0)

where 8Z3 + 4Z2 + 2Z1 +Z0 describes the 4-bit output, and (2a1 + a0)(2b1 + b0)

indicates the multiplication of the 2-bit inputs.
The gates of an arithmetic circuit can be modeled as polynomials determining

the relation between output and inputs. The polynomials of basic Boolean gates are
as follows:

z =¬a ⇒ pg := z− 1+ a, z = a ∨ b⇒ pg := z− a − b + ab,

z =a ∧ b⇒ pg := z− ab, z = a ⊕ b⇒ pg := z− a − b + 2ab (3)

The polynomials in (3) are in the form of Pg = x− tail(Pg) where x is the gate’s
output and tail(Pg) is a function based on the gate’s inputs.

The gate polynomials for the 2-bit multiplier of Fig. 2a are:

182 A. Mahzoon et al.

a1 b1 a0 b0

w1 w2 w3

w4

Z3 Z2 Z1 Z0

g1 g2

g3 g4

g5 g6 g7 g8

(a) 2-bit multiplier

SP := 8Z3 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP
pg1−−→ SP1 := 8w1w4 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP1
pg2−−→ SP2 := 4w1 + 4w4 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP2
pg3−−→ SP3 := 4w1 + 4w2w3 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP3
pg4−−→ SP4 := 4w1 + 2w2 + 2w3 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP4
pg5−−→ SP5 := 2w2 + 2w3 + Z0 − (2a1b0 + 2a0b1 + a0b0)

SP5
pg6−−→ SP6 := 2w3 + Z0 − (2a0b1 + a0b0)

SP6
pg7−−→ SP7 := Z0 − (a0b0)

SP7
pg8−−→ r := 0

(b) Backward rewriting steps

Fig. 2 2-bit multiplier and backward rewriting steps. (a) 2-bit multiplier. (b) Backward rewriting
steps

pg1 := Z3 − w1w4

pg2 := Z2 − w1 − w4 + 2w1w4

pg3 := w4 − w2w3

pg4 := Z1 − w2 − w3 + 2w2w3

pg5 := w1 − a1b1

pg6 := w2 − a1b0

pg7 := w3 − a0b1

pg8 := Z0 − a0b0

(4)

Assume that the signals of an arithmetic circuit are ordered based on the reverse-
topological order (i.e., from outputs toward inputs). The specification polynomial

GENMUL 183

SP and the gate-level netlist are equivalent, iff the remainder of dividing SP by gate
polynomials becomes zero. This division is known as Gröbner basis reduction. For
the theory of Gröbner basis and its application to verification of arithmetic circuits,
we refer to [15, 25].

The steps of dividing SP by pg1 , . . . , pg8 for the 2-bit multiplier of Fig. 2a are
shown in Fig. 2b. The final remainder of the division is equal to zero, hence the
multiplier is bug-free. Please note that all variables in the polynomials are Boolean.
Thus, xn can be replaced by x. Furthermore, for integer arithmetic circuits, dividing
SPi by a gate polynomial pgi

= xi − tail(pgi
) is equivalent to substituting xi with

tail(pgi
) in SPi . For example, to obtain the result of the first division step in Fig. 2b,

Z3 can be substituted with w1w4 in SP . The process of dividing the specification
polynomial by gate polynomials (or equivalently substituting gate polynomials in
the specification polynomial) is called backward rewriting.

3 Multiplier Generator GENMUL

In this section, we first provide an overview on GENMUL including the main data
structures. Then, we describe the supported multiplier architectures that can be
generated in the form of Verilog netlists using GENMUL.

3.1 Overview and Data Structures

The main idea behind most of multiplication algorithms is generating and reducing
partial products. The partial products are characterized by a weight4 w. Therefore,
the integer value of a partial product is p2w, where p is a Boolean number. The
partial products with the same weights can be added together to generate the
reduced set. In the C++-implementation of GENMUL, we have defined a class
named Partial containing the two data members weight and ID, respectively.
ID is an integer identification number assigned to a partial product automatically
during its initialization. ID numbers are unique for each partial product, and help us
to implement them as wires with specific names in the final Verilog file.

The generation and reduction of partial products are performed by some compu-
tational components in each stage of a multiplier. In the first stage, AND gates are
the main components. Half-Adders (HAs), Full-Adders (FAs), and larger adders,
e.g., (7:3) counters, are used in the second stage to add the partial products. Finally,
multiplexers and carry propagation hardware as well as HAs and FAs construct the
final stage of a multiplier. A parent class named Component has been defined in
GENMUL covering all possible existing computational components. This class has

4In literature sometimes also termed significance.

184 A. Mahzoon et al.

two data members inputs and outputs, which are vectors of partials and play
the role of component inputs and outputs. An existing computational component,
e.g., an FA, is implemented as a class inheriting from the parent class Component.
All these classes contain functions to evaluate outputs based on the partial inputs
and the type of the component, and also generate the Verilog code of the component.
Besides this, it is possible for the user to add new components to the GENMUL and
use them for implementing of the architectures.

The availability of the Partial and Component classes in GENMUL allows
to easily add further multiplier algorithms to form new multiplier architectures. For
example, the Wallace tree takes advantage of a parallel addition algorithm to reduce
partial products using HAs and FAs. Hence, the key steps in the implementation
are:

1. Adding the partial products with the same weights according to the Wallace
algorithm

2. Collecting the outputs of components as new partial products and hashing them
based on the weights

3. Repeating the first and second steps until having maximum two partial products
with the same weights.

3.2 Generation of Multipliers

GENMUL already supports several architectures/algorithms for each stage of a
multiplier. We are also working on extra architectures to increase the diversity of
the designs even more. Table 1 shows the multiplier architectures of GENMUL for
three stages of a multiplier. All architectures shown in black are ready to be used.
The architectures shown with gray background are under-development, and will
be available soon.

One of the main features of GENMUL is the generation of multipliers with
arbitrary input sizes. Moreover, GENMUL is open source on GitHub and due to
generic data structures new architectures/algorithms can be easily added. Finally,
the web-based version of GENMUL is available. We have used the Emscripten
toolchain [26] to compile Javascript from our C++ implementation of GENMUL.
This allows to configure an available multiplier of GENMUL on our webpage, then
to press the “Generate” button (see Fig. 3) and after generation, the user can directly
download the requested Verilog file.

4 Challenges of Verifying Multipliers

In this section, we give insight into challenges of verifying different multiplier
architectures. In order to gain a comprehensive understanding, we first generated

GENMUL 185

Table 1 Multiplier architectures of GENMUL

First stage Second stage Third stage
(PPG) (PPA) (FSA)

Unsigned simple PPG Array Ripple carry

Signed simple PPG Wallace tree Carry look-ahead

Unsigned booth PPG Dadda tree Lander-Fischer

Signed booth PPG Counter-based Wallace Kogge-Stone

Balanced delay tree Brent-Kung

Overturned-stairs tree Carry-skip

Han-Carlson

Carry select

Conditional sum

24 multipliers with 40 bits per input using GENMUL which cover all possible com-
binations of different algorithms for each stage.5 Then, we verified the generated
benchmarks by employing eight state-of-the-art formal verification methods. The
verification run-times are reported in Table 2. The experiments have been carried
out on an Intel(R) Core(TM) i5-4300M CPU 2.60 GHz with 16 GByte of main
memory.

The first column of the table shows the Multiplier architectures, which
consists of three subcolumns: First stage (PPG) shows the partial product generator
algorithm. Second stage (PPA) refers to the employed algorithm for the partial
product accumulator. The used algorithm for the final stage adder is shown in the
Third stage (FSA).

The run-times (in seconds) of the state-of-the-art verification methods are
reported in the second column Verification methods, which consists of eight
subcolumns: The first seven subcolumns report the run-times of the resent SCA-
based verification techniques. The eighth subcolumn Comm. refers to the run-time
of the commercial formal verification tool OneSpin. Please note that the Time-Out
(TO) has been set to 10 h. Moreover, Failed in Table 2 implies that verification
technique could not complete the task due to an internal error.

We now discuss what can be seen when looking into the results of Table 2. As far
as the second and third stages of a multiplier consist of only HAs and FAs, most of
the verification techniques successfully verify the multiplier. Multipliers with Array,
Wallace, and Dadda algorithms in the second stage and Ripple carry in the third
stage are examples of this observation. The reason for this successful verification
is: HAs and FAs are two relatively small computational components which have a
simple word-level relation between their inputs and outputs:

5For this chapter we only used 40 bits per multiplier input, since this already shows the challenges.
In [20] we report results for benchmarks generated with GENMUL for up to 512× 512 multipliers.

186 A. Mahzoon et al.

HA(in : X, Y out : C, S) ⇒ 2C + S = X + Y

FA(in : X, Y,Z out : C, S) ⇒ 2C + S = X + Y + Z (5)

Based on (5), substituting the polynomial 2C + S of a HA (FA) by its gates
polynomials finally results in a polynomial consisting of the inputs summation.
Therefore, after substituting/dividing all gates polynomials of an HA (FA), the size
of the specification polynomial increases by zero (one). The integration of reverse-
engineering in [14, 20] leads to even faster run-times as the HAs and FAs are
identified first, and the polynomials of (5) can be used directly during backward
rewriting. The column-wise verification methods introduced in [15, 16] work when
the multiplier consists of Array and Ripple carry at the second and third stages.
However, they time-out if the parallel partial product reduction algorithms such as
Wallace or Dadda tree are used for the second stage.

Despite Ripple carry adder, some of the algorithms used in the third stage of the
multiplier take advantage of the carry propagation hardware to reduce the overall
delay. Carry look-ahead and parallel prefix adders (Lander-Fischer, Kogge-Stone,
and Brent-Kung) are among these architectures. Based on our experiments, a huge
number of vanishing monomials are generated during verification of multipliers
containing carry propagation hardware which results in polynomial explosion
during backward rewriting. To illustrate the role of carry propagation hardware in
generation of vanishing monomials, we consider the Boolean formulation of a 4-bit
carry look-ahead adder:

Gi = xi ∧ yi,

Pi = xi ⊕ yi,

c1 = G0 ∨ (c0 ∧ P0),

c2 = G1 ∨ (G0 ∧ P1) ∨ (c0 ∧ P0 ∧ P1),

c3 = G2 ∨ (G1 ∧ P2) ∨ (G0 ∧ P1 ∧ P2) ∨ (c0 ∧ P0 ∧ P1 ∧ P2),

c4 = G3 ∨ (G2 ∧ P3) ∨ (G1 ∧ P2 ∧ P3) ∨ (G0 ∧ P1 ∧ P2 ∧ P3)

∨ (c0 ∧ P0 ∧ P1 ∧ P2 ∧ P3) (6)

where xi and yi are ith bit of the first and second input and ci is the final carry.
In (6), Gi and Pi are outputs of an HA. Hence, the product of them is always

equal to zero, i.e., GiPi = 0. If c4 is transformed naively to polynomial form,
it consists of 31 monomials. However, 26 monomials contain the product of Gi

and Pi , i.e., they reduce to zero after Gi and Pi substitution. These monomials
are vanishing monomials and cause explosion in the number of monomials before
cancellation. The proposed methods of [11, 14–16] do not provide any solution
for this vanishing monomial problem. As a result, they time-out in verification of
multiplier architectures containing carry look-ahead, Lander-Fischer, Kogge-Stone,
and Brent-Kung (see Table 2). The XOR-rewriting heuristic in [13] enables us to

GENMUL 187

verify some of these architectures. However, this method is not robust and fails
for many benchmarks since it misses many vanishing monomials. The idea of
creating converging gate cones and removing vanishing monomials locally before
global backward rewriting as introduced in [19] helps to remove all vanishing
monomials and verify most of the non-trivial architectures. Finally, the proposed
method of [20], which integrates reverse engineering and local vanishing removal,
supports the verification of more architectures and is much faster than [19] as can
be seen in Table 2.

All SCA-verification methods fail to verify multipliers using counter-based
Wallace algorithm in the second stage. Counters are computational components
that count the number of inputs whose value is 1 and return the result on outputs;
e.g., HA and FA are (3:2) and (2:2) counters, respectively. Counter-based Wallace
algorithm takes advantage of bigger counters (usually (7:3) counters) to speed up the
partial product reduction. Counters still have a simple relation between inputs and
outputs. However, they constitute of a larger number of logical gates in comparison
to HAs and FAs. Therefore, the large number of generated monomials during
substitution of intermediate gates polynomials leads to the verification failure. We
plan to extend the reverse engineering technique of RevSCA [20] in order to identify
counters with different sizes. Finally, please note that the commercial tool could not
verify any of the generated benchmarks.

Overall, as can be concluded from the experiments, additional research is needed
to conquer the automatic formal verification of multipliers.

5 Conclusion

In this chapter, we have introduced the multiplier generator GENMUL which allows
generation of a wide range of multiplier architectures. GENMUL is open source and
already supports many different algorithms for each stage of multipliers. Moreover,
due to its generic data structures, further algorithms can be easily added. We used
the generated multipliers of GENMUL to challenge all available recent SCA-based
formal verification techniques, and also provided some insight on the reasons why
certain approaches fail in verifying non-trivial multiplier architectures.

Acknowledgements This work was supported by the German Research Foundation (DFG) within
the project VerA (GR 3104/6-1 and DR 297/37-1).

188 A. Mahzoon et al.

Ta
bl

e
2

V
er

ifi
ca

tio
n

ru
n-

tim
es

fo
r

40
-b

it
m

ul
tip

lie
rs

(r
un

-t
im

es
in

se
co

nd
s)

M
ul

tip
lie

r
ar

ch
ite

ct
ur

es
V

er
ifi

ca
tio

n
m

et
ho

ds

Fi
rs

ts
ta

ge
(P

PG
)

Se
co

nd
st

ag
e

(P
PA

)
T

hi
rd

st
ag

e
(F

SA
)

[2
0]

[1
9]

[1
3]

[1
1]

[1
4]

[1
5]

[1
6]

C
om

m
.

Si
m

pl
e

PP
G

A
rr

ay
R

ip
pl

e
ca

rr
y

4.
73

16
.9

6
47

.1
2

5.
88

0.
04

16
5.

40
2.

36
T

O

C
ar

ry
lo

ok
-a

he
ad

12
.3

6
36

.8
8

91
.6

0
T

O
T

O
T

O
T

O
T

O

L
an

de
r-

Fi
sc

he
r

4.
90

17
.4

7
50

.9
0

T
O

T
O

T
O

T
O

T
O

K
og

ge
-S

to
ne

9.
49

T
O

Fa
ile

d
T

O
T

O
T

O
T

O
T

O

B
re

nt
-K

un
g

5.
01

12
.8

9
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

C
ar

ry
-s

ki
p

14
.3

2
T

O
Fa

ile
d

T
O

T
O

T
O

Fa
ile

d
T

O

W
al

la
ce

R
ip

pl
e

ca
rr

y
5.

56
19

.4
9

Fa
ile

d
7.

17
0.

04
T

O
T

O
T

O

C
ar

ry
lo

ok
-a

he
ad

94
.7

1
25

1.
31

Fa
ile

d
T

O
T

O
T

O
T

O
T

O

L
an

de
r-

Fi
sc

he
r

6.
32

19
.7

8
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

K
og

ge
-S

to
ne

41
.3

3
T

O
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

B
re

nt
-K

un
g

7.
69

18
.6

2
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

C
ar

ry
-s

ki
p

24
6.

79
T

O
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

D
ad

da
R

ip
pl

e
ca

rr
y

5.
91

17
.6

3
51

.6
4

5.
59

0.
04

T
O

T
O

T
O

C
ar

ry
lo

ok
-a

he
ad

13
4.

29
29

6.
72

T
O

T
O

T
O

T
O

T
O

T
O

L
an

de
r-

Fi
sc

he
r

7.
65

18
.1

8
60

.7
7

T
O

T
O

T
O

T
O

T
O

K
og

ge
-S

to
ne

40
.0

1
T

O
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

B
re

nt
-K

un
g

7.
48

16
.6

9
58

.4
9

T
O

T
O

T
O

T
O

T
O

C
ar

ry
-s

ki
p

22
8.

92
T

O
Fa

ile
d

T
O

T
O

T
O

T
O

T
O

C
ou

nt
er

-b
as

ed
W

al
la

ce
R

ip
pl

e
ca

rr
y

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

C
ar

ry
lo

ok
-a

he
ad

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

L
an

de
r-

Fi
sc

he
r

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

K
og

ge
-S

to
ne

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

B
re

nt
-K

un
g

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

C
ar

ry
-s

ki
p

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

T
O

:T
im

e-
O

ut
of

10
h

Fa
ile

d:
In

te
rn

al
er

ro
r

GENMUL 189

Fig. 3 GENMUL website

190 A. Mahzoon et al.

Appendix

GENMULWebsite

GENMUL is now available on http://www.sca-verification.org/genmul. In Fig. 3, a
screenshot of the GENMUL website is shown.

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
put. 35(8), 677–691 (1986)

2. Scholl, C., Becker, B., Weis, T.: On WLCDs and the complexity of word-level decision
diagrams – a lower bound for division. Formal Methods Syst. Des. Int. J. 20(3), 311 (2002)

3. Hamaguchi, K., Morita, A., Yajima, S.: Efficient construction of binary moment diagrams for
verifying arithmetic circuits. In: International Conference on Computer-Aided Design, pp. 78–
82 (1995)

4. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal verification of
multipliers. Formal Methods Syst. Des. 22(1), 39–58 (2003)

5. Drechsler, R.: Formal Verification of Circuits. Kluwer Academic Publishers, New York (2000)
6. Diao, Y., Wei, X., Lam, T., Wu, Y.: Coupling reverse engineering and SAT to tackle np-

complete arithmetic circuitry verification in ∼o(# of gates). In: ASP Design Automation
Conference, pp. 139–146 (2016)

7. Kapur, D., Subramaniam, M.: Mechanically verifying a family of multiplier circuits. In:
Computer Aided Verification, pp. 135–146 (1996)

8. Stoffel, D., Kunz, W.: Equivalence checking of arithmetic circuits on the arithmetic bit level.
IEEE Trans. Comput. Aided Des. Circ. Syst. 23(5), 586–597 (2004)

9. Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Wienand, O., Karibaev, E.: Modeling of
custom-designed arithmetic components in ABL normalization. In: Forum on Specification
and Design Languages (2008), pp. 124–129

10. Vasudevan, S., Viswanath, V., Sumners, R.W., Abraham, J.A.: Automatic verification of
arithmetic circuits in RTL using stepwise refinement of term rewriting systems. IEEE Trans.
Comput. 56(10), 1401–1414 (2007)

11. Farahmandi, F., Alizadeh, B.: Gröbner basis based formal verification of large arithmetic
circuits using gaussian elimination and cone-based polynomial extraction. Microprocessors
Microsyst. 39(2), 83–96 (2015)

12. Yu, C., Brown, Liu, W.D., Rossi, A., Ciesielski, M.: Formal verification of arithmetic circuits
by function extraction. IEEE Trans. Comput. Aided Des. Circ. Syst. 35(12), 2131–2142 (2016)

13. Sayed-Ahmed, A., Große, D., Kühne, U., Soeken, M., Drechsler, R.: Formal verification of
integer multipliers by combining Gröbner basis with logic reduction. In: Design, Automation
and Test in Europe, pp. 1048–1053 (2016)

14. Yu, C., Ciesielski, M., Mishchenko, A.: Fast algebraic rewriting based on and-inverter graphs.
IEEE Trans. Comput. Aided Des. Circ. Syst. 37(9), 1907–1911 (2017)

15. Ritirc, D., Biere, A., Kauers, M.: Column-wise verification of multipliers using computer
algebra. In: International Conference on Formal Methods in CAD, pp. 23–30 (2017)

16. Ritirc, D., Biere, A., Kauers, M.: Improving and extending the algebraic approach for verifying
gate-level multipliers. In: Design, Automation and Test in Europe, pp. 1556–1561 (2018)

17. Mahzoon, A., Große, D., Drechsler, R.: Combining symbolic computer algebra and boolean
satisfiability for automatic debugging and fixing of complex multipliers. In: IEEE Annual
Symposium on VLSI, pp. 351–356 (2018)

http://www.sca-verification.org/genmul

GENMUL 191

18. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining SAT and
computer algebra. In: International Conference on Formal Methods in CAD, pp. 28–36 (2019)

19. Mahzoon, A., Große, D., Drechsler, R.: PolyCleaner: clean your polynomials before backward
rewriting to verify million-gate multipliers. In: International Conference on Computer-Aided
Design, pp. 129:1–129:8 (2018)

20. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using reverse engineering to bring light
into backward rewriting for big and dirty multipliers. In: Design Automation Conference, pp.
185:1–185:6 (2019)

21. Mahzoon, A., Große, D., Scholl, C., Drechsler, R.: Towards formal verification of optimized
and industrial multipliers. In: Design, Automation and Test in Europe, pp. 544–549 (2020)

22. Arithmetic module generator based on ACG. Available at https://www.ecsis.riec.tohoku.ac.jp/
topics/amg/i-amg (2019)

23. Zimmermann, R.: Binary adder architectures for cell-based vlsi and their synthesis. Ph.D.
dissertation, Swiss Federal Institute of Technology (1997)

24. Koren, I.: Computer Arithmetic Algorithms, 2nd ed. A. K. Peters, Natick (2001)
25. Cox, D.A., Little, J., O’Shea, D.: Ideals Varieties and Algorithms. Springer, New York (1997)
26. “Emscripten,” Available at https://emscripten.org (2019)

https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/i-amg
https://emscripten.org

Index

A
ABC/BOOLECTOR, 16–17, 21–22
Adder substitution, 12, 18
Affine functions, 105, 106
Algebraic proof system, 8–9, 90
Algorithm

bidirectional, 151
Buchberger’s, 6
FFT-like permutation, 105–123
instance properties, 137
multi-directional, 151
NN and genetic, 32
optimization, 31, 47, 52
pmin and nmax, 75–76
search, 151–153

AMULET, 10–12, 18–24
Arithmetic circuit, 1, 2, 10, 177, 181–183
ARITHMETIC MODULE GENERATOR, 14,

18–19
Asymptotic theory, 98
Automated reasoning, 3
Axiomatization

Boolean
derivatives, 83
differentiation, 84–85

infinite models, 84
model-theoretic

advantage, 84
fundamentals, 85–89

outline, 85

B
Basic transformation-based synthesis method,

150, 162

Benchmarks
generators

ABC/BOOLECTOR, 16–17
ARITHMETIC MODULE

GENERATOR, 14
EPFL Combinational Benchmark Suite,

16
GenMul, 15
MULTGEN, 15
optimizing benchmarks, 17–18
processing verilog benchmarks, 17

state-of-the-art formal verification methods,
185

web site, 161
Bent functions

algorithm, 122–123
Boolean functions, 105
examples, 112–122
FFT, 110–111
functional expressions, 105
non-zero Reed-Muller coefficients, 106
permutation matrices, 111–112
spectral

domain, 106
invariant operations, 108–109

Walsh
coefficients, 106–107
domain, 108–109
transform, 107–110

Bentness, 106, 111, 122, 123
Bidirectional transformation-based synthesis

method, 151
Bijective transformation, 145
Black triangles, 167
Boolean derivative, 83, 91, 94, 97, 101

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Drechsler, D. Große (eds.), Recent Findings in Boolean Techniques,
https://doi.org/10.1007/978-3-030-68071-8

193

https://doi.org/10.1007/978-3-030-68071-8

194 Index

Boolean differentiation
applications and perspectives, 101–103
Boolean functions, rings, and derivations,

89–90
complete axiomatization, 91–97
finite models, 97–101

Boolean ring, 87, 89, 90, 93, 94, 96–99, 101,
102

BSIM, 29, 30, 33, 36, 43

C
Carry propagation hardware, 183, 186
Categoricity, 86, 93, 95, 96
Circuit simulation, 29, 31, 33, 41
Circuit verification

algebra, 5–6
algebraic proof systems, 8–9
multiplier circuits, 3–5
using computer algebra, 7–8

Clique cover, 127–134, 136
Compact model, 29, 30, 32–34, 38, 39, 43, 48,

55
Compatibility graph, 129–132, 134
Complete axioms, 84, 91–97
Computer algebra, 2, 3

algebra, 5–6
algebraic proof systems, 8–9
circuit verification, 7–8
multiplier circuits, 3–5

Cooley-Tukey FFT, 106, 110, 123
Counter, 8, 14, 15, 183, 185, 187, 188
Cube compatibility, 128, 130
Cube intersection, 128

D
Deep analysis, 65
Design Technology Co-Optimization (DTCO),

31–33, 44, 45–48, 50
NC-FinFET, 47
parameter optimization, 50–54

Differential operator, 101, 102
Disjoint translation, 113
Disjunctive control, 168, 169
DTCO, see Design Technology Co-

Optimization (DTCO)
Dyadic group, 107, 110
Dynamic substitution, 179
DYPOSUB, 13–14, 18–22, 24

E
Elementary symmetric function, 62, 64, 65, 80
Emerging technologies, 30, 32–34, 38

EPFL Combinational Benchmark Suite, 16, 21
Equivalence class, 132
Exact solution, 65, 136
Experimental evaluation, 10, 11, 14, 141

F
F2-vector space, 87, 88, 92, 95, 99
Factor matrices, 107, 110, 112, 123

sparse, 111
FA, see Full-adder (FA)
Fast Fourier transform (FFT)

essence of, 110–111
Good-Thomas factorization, 106
permutation matrices, 123
Walsh transform, 106

Fast Walsh transform (FWT), 106, 107, 110,
113, 123

FFT, see Fast Fourier transform (FFT)
Final stage adder (FSA), 5, 11, 14, 15, 180,

185
FinFET transistor, 34
First-order theory, 83, 85, 86, 88, 93, 96, 97,

101
Formal verification

bit-level reverse engineering, 2
circuit verification, 3–9
digital circuits, 1
multipliers, 187
Pentium FDIV bug, 1
predefined specification, 2
processors, 1
tools

Algebraic RewriTing in ABC, 10–11
using SCA, 179

Fraisse limit, 88– 100
FSA, see Final stage adder (FSA)
Full-adder (FA), 2, 5, 10, 13, 17, 21, 183
Function extraction, 10
Function inverse, 147–149, 157, 158, 162, 163
Function translations, 143, 144, 159, 160, 163

discussion and future work, 163–164
function inverse, 147–148
heuristic selection, 161–163
input-output

negation, 148–149
permutation, 149

G
Gate constraints, 7, 10
Generator

ABC/BOOLECTOR, 16–17
ARITHMETIC MODULE, 14

Index 195

EPFL Combinational Benchmark, 16
GenMul, 15
MULTGEN, 15
multiplier, 183–184
optimizing benchmarks, 17–18
processing verilog benchmarks, 17

Generic theory, 87, 88, 98, 101
GenMul, 15, 17, 19–20

arithmetic circuits, 177
multiplier

architectures, 179–180
generator, 183–184
verification, 179

Pentium FDIV bug, 177
SCA basics, 180–181
SCA-based verification, 177–178, 181–183

Good-Thomas factorisation, 106, 110, 123
Gröbner basis, 2, 6–8, 10, 11, 178, 183

H
Hadamard order, 106, 107, 109, 110, 123
Half-adder (HA), 5, 12, 13, 178, 183
Hamming weight, 105, 106
HA, see Half-adder (HA)
Hybrid control

gates, 169–171
quantum models, 174–175
scalability, 171–173
symbol and functionality, 167–169

I
Ideal membership testing, 6, 7
Index generation function

best method, 60, 61
branch-and-bound approach, 59
computation time, 60
experimental results, 76–80
heuristic approach, 60
linear decomposition, 59
linearity, orthogonality, and circuit

structures, 63–64
pmin and nmax, 75–76
preliminaries, 61–63
reverse task

analysis, 74–75
missing values, 71–74
regions of restrictions, 68–69
repeated use of the smallest optimal

circuits, 70–71
smallest optimal circuits, 66–68
trivial solution for t = 1, 66

task to solve, 65

used approach, 65
Infinite Boolean Algebras, 84, 85, 87
Input-output negation, 148–149, 157, 160–163
Input-output permutation, 149, 157, 160–163
Inverse Peres gates, 144, 146, 148, 158, 163,

169, 173, 174
Involution, 84, 90, 91, 93–97, 102, 111

L
Library characterization

ML estimators training, 46–47
training data generation, 45–46

Linearly independent derivatives, 93, 98

M
Machine learning

circuit simulations, 29
compact models, 33–34
design technology co-optimization,

NC-FinFET, 47
early evaluation of technology, 30
evaluation and experimental results

cell library prediction accuracy, 48, 49
DTCO parameter optimization, 50–54
performance improvement, 54–55
prediction on system level accuracy, 50

for library characterization, 45–47
foundry secrecy, 29
innovation, 29–30
negative capacitance FinFET, 34
related work, 32–33
standard cell model, 31–32
transistor

characteristics, 34–35
model, 30, 35–44

Mixed controlled gates, 146, 163
Mixed polarity, 145, 146, 159, 163
Mixed-polarity multiple-control Toffoli gates

(MPMCT), 145, 159
Mixed-polarity Peres (MPP) gates, 146
Model theory, 83–87, 98
Monomial

backward rewriting, 178
coefficient, 181
modular reasoning, 8
specification, 12
verification

of multipliers, 186
tools, 3

MPMCT, see Mixed-polarity multiple-control
Toffoli gates (MPMCT)

MULTGEN, 15, 17, 20

196 Index

Multiplier
architectures, 179–180
challenges, 184–186
circuits (see Formal verification)
design errors, 177
generator (see Multiplier generator)
GenMul (see GenMul)
SMT-solver BOOLECTOR, 16

Multiplier generator
challenges, 184–188
data structures, 183–184
generation, 184
overview, 183–184
website, 187, 189

Multiplier verification, 8, 179
Multi-valued (MV)

function, 127, 133
variable, 127, 133

N
NC-FinFET, 30, 34, 36, 38, 43–45, 47, 48, 51,

55
NCV quantum gates, 144, 146, 153, 155
Negative capacitance transistor, 34
Neural Networks (NNs), 30, 39, 42, 46

and genetic algorithms, 32
interpolation, 38
modeling, 30
NC-FinFET, 43–44
training data, 36
transistor modeling, 38–40

Nonlinear codes
ATE channels, 126
BIST domain, 126–127
compatibility graph properties, 129–132
digital device, 125
error-correcting code, 126
expander

input, 132–134
outputs as a clique cover problem,

127–129
FSM, 125
method summary, 134, 135
minimum clique cover techniques, 132
MV-encoding problem, 132–134
results

algorithms 1 and 2, 136
expander synthesis, 138–141
expander widths comparison, 136, 137
implementation, 135
instance properties, 136, 137
MV encoding, 136, 138

Nullstellensatz proof, 8, 9

O
Open-source, 14, 179, 184, 187
Optimizing benchmarks, 17–18, 22–23
OR-Peres gates, 169
OR-Toffoli gates, 174

P
Partial product, 4, 5, 179, 180, 183–187
Partial product accumulator (PPA), 5, 180, 185,

188
Partial product generator (PPG), 4, 5, 180, 185,

188
Permutation matrices, 107, 109–114, 121–123

FFT-like, 22, 111, 112, 122
Polarization of function, 108, 110
Polarization of variables, 108, 110, 112
POLYCLEANER, 10, 12, 18–21
Polynomial

by-product, 3
calculus, 8
input and output variables, 7
intermediate, 179
internal gate, 12
monomial order, 181
Nullstellensatz proof system, 9
principal ideal domains, 8
specification, 2

PPA, see Partial product accumulator (PPA)
PPG, see Partial product generator (PPG)
Proof checking, 3, 9, 24
Proof generation, 23, 24

Q
Quantifier elimination, 89, 99–101, 103
Quantum circuit cost

MPP and MPIP gate cost and substitution,
156

NCV realization of MPMCT gates, 155,
156

negative control CNOTs, 154–155
simplification and mapping strategy, 156

Quantum cost, 151, 153, 155, 157–159,
161–164, 169, 171, 173, 174

Quantum gates, 144, 146–147, 154, 164, 170
Quantum models, 169, 173, 174
Quantum V-gates, 170
Quantum W-gates, 170

R
Reed-Muller coefficients, 106
Reed-Muller expressions, 105

Index 197

Reverse engineering, 2, 13, 29, 39,
178, 187

Reverse task, 60, 65–66, 76, 78, 80
Reversible circuit synthesis

Boolean function, 143
experimental results, 157–161
function translations, 143, 147–149
quantum circuit, 154–156
quantum gates and circuits, 146–147
reversible functions, gates, and circuits,

145–146
simplifying, 153–154
transformation-based synthesis, 144,

150–153
Reversible circuits

for function, 146
mapping, 154–156
simplifying, 153–154
synthesis (see Reversible circuit synthesis)

Reversible functions, 144–150, 157–160, 162
Reversible gates, 143, 145, 146, 148,

154, 169
REVSCA/REVSCA-2.0, 10, 12–13, 18
Ridge Regressors, 46

S
Scan chain, 125–127
Sequential Least Squares Programming

(SLSQP), 47
Smoothly approximable structures, 103
Spectral invariant operations, 106–114, 118,

122, 123
SPICE, 29, 31–33, 35–40, 42
Stability, 38, 84, 86, 87, 103
Standard cells

library, 18, 22, 31, 33
Survey

formal verification (see Formal verification)
integer multipliers, 3

Switching algebras, 98–101
Symmetric function, 62, 64, 65, 80

T
Test compression, 126
Test delivery, 125
Test vector redundancy, 126
Three-stage structure, 179, 180
Time complexity, 4, 80
Toffoli and Peres gates, 145, 146, 150, 155,

159, 167–169, 171, 173–175
Tools

EDA, 30, 31, 44, 47
formal verification (see Formal verification)
model-theoretic, 93
verification, 10–14

Transformation-based synthesis, 144, 150–153,
160–163

Transistor modeling
data scaling, 36–38
early evaluation with limited data, 42–43
experimental setup, 35–36
inference accuracy, 40–41
machine learning, 30
NC-FinFET, 43–44
NN-based

advantages, 38–39
disadvantages, 39–40

traditional fitness, 41–42
training time, 40–41

V
Vanishing monomials, 12, 178, 186, 187
Variable encoding, 127, 141
Vectorial derivative, 84, 90, 95
Verilog benchmarks, 17
Very fast algorithm, 179

W
Walsh spectrum, 107, 109, 110, 113, 115, 123

flat, 109
Walsh transform, 106–110, 123
White dots, 144, 167

	Preface
	Contents
	Formal Verification of Integer Multiplier Circuits Using Algebraic Reasoning: A Survey
	1 Introduction
	2 Circuit Verification Using Computer Algebra
	2.1 Multiplier Circuits
	2.2 Algebra
	2.3 Circuit Verification Using Computer Algebra
	2.4 Algebraic Proof Systems

	3 Verification Tools
	3.1 Algebraic RewriTing in ABC CiesielskiYuBrownLiuRossi-DAC15,YuBrownLiuRossiCieslieski-TCAD16,YuCiesielskiMishchenko-TCAD17,CiesielskiSuYasinYu-TCAD19
	3.2 AMulet KaufmannBiereKauers-FMCAD19
	3.3 PolyCleaner MahzoonGrosseDrechsler-ICCAD18
	3.4 RevSCA/RevSCA-2.0 MahzoonGrosseDrechsler-DAC19
	3.5 DyPoSub MahzoonGrosseSchollDrechsler-DATE20

	4 Benchmark Generators
	4.1 Arithmetic Module Generator
	4.2 GenMul
	4.3 MultGen
	4.4 EPFL Combinational Benchmark Suite
	4.5 ABC/Boolector
	4.6 Processing Verilog Benchmarks
	4.7 Optimizing Benchmarks

	5 Evaluation
	5.1 Arithmetic Module Generator
	5.2 GenMul
	5.3 MultGen
	5.4 EPFL Combinational Benchmark Suite
	5.5 ABC/Boolector
	5.6 Optimized Benchmarks
	5.7 Proof Generation

	6 Conclusion
	References

	The Vital Role of Machine Learning in Developing Emerging Technologies
	1 Introduction
	1.1 Machine Learning Transistor Model
	1.2 Machine Learning Standard Cell Model

	2 Related Work
	3 Background
	3.1 Compact Models
	3.2 Negative Capacitance FinFET
	3.3 Transistor Characteristics

	4 Our Machine Learning Transistor Model
	4.1 Experimental Setup
	4.2 Data Scaling
	4.3 Advantages of NN-Based Transistor Modeling
	4.4 Disadvantages of NN-Based Transistor Modeling
	4.5 Inference Accuracy and Training Time
	4.6 Traditional Fitness Compared to Transistor Metric Fitness
	4.7 Early Evaluation with Limited Data
	4.8 Modeling NC-FinFET with NN-Based Transistor Models

	5 Our Proposed Machine Learning-Based Approach
	5.1 ML for Library Characterization
	5.1.1 Generation of Training Data
	5.1.2 Training of ML Estimators

	5.2 Design Technology Co-Optimization for NC-FinFET

	6 Evaluation and Experimental Results
	6.1 Accuracy of Cell Library Prediction
	6.2 Accuracy of Prediction on System Level
	6.3 DTCO Parameter Optimization
	6.4 Improvement in Performance

	7 Conclusion
	References

	Fast Optimal Synthesis of Symmetric Index Generation Functions
	1 Introduction
	2 Preliminaries
	3 Linearity, Orthogonality, and Circuit Structures
	4 The Task to Solve and the Used Approach
	5 Analysis of the Properties of the Reverse Task
	5.1 Trivial Solution for t=1
	5.2 Smallest Optimal Circuits L for a Fixed Value of t
	5.3 Regions of Restrictions
	5.4 Repeated Use of the Smallest Optimal Circuits
	5.5 Missing Values nmax for Odd Values of t
	5.6 Missing Values nmax for Even Values of t
	5.7 Summary of the Analysis

	6 Algorithms to Compute pmin and nmax
	7 Experimental Results
	8 Conclusion and Future Work
	References

	Axiomatizing Boolean Differentiation
	1 Introduction
	1.1 Our Approach
	1.2 Applications of Axiomatizing Boolean Differentiation
	1.3 Outline

	2 Model-Theoretic Fundamentals
	3 Axiomatizing=3=3= Boolean Differentiation
	3.1 Boolean Functions, Rings, and Derivations
	3.2 A Complete Axiomatization

	4 Relationship to Finite Models and Immediate Consequences
	5 Future Applications and Perspectives
	References

	Construction of Binary Bent Functions by FFT-Like Permutation Algorithms
	1 Introduction
	2 Walsh Transform
	3 Spectral Invariant Operations in the Walsh Domain
	4 Bent Functions and Walsh Transform
	5 Essence of FFT
	6 Permutation Matrices
	7 Illustrative Examples
	8 Algorithm for Constructing Bent Functions
	9 Closing Remarks
	References

	Nonlinear Codes for Test Patterns Compression: The Old School Way
	1 Introduction
	2 Proposed Approach
	2.1 Expander Outputs as a Clique Cover Problem
	2.2 Compatibility Graph Properties
	2.3 Techniques for Minimum Clique Cover
	2.4 Expander Input as an MV-Encoding Problem
	2.5 Method Summary

	3 Results
	3.1 Implementation
	3.2 Resulting Codes
	3.3 Is Optimum MV Encoding Important?
	3.4 Expander Synthesis

	4 Future Directions
	5 Conclusions
	References

	Translation Techniques for Reversible Circuit Synthesis with Positive and Negative Controls
	1 Introduction
	2 Background
	2.1 Reversible Functions, Gates, and Circuits
	2.2 Quantum Gates and Circuits

	3 Function Translations
	3.1 Function Inverse
	3.2 Input-Output Negation
	3.3 Input-Output Permutation

	4 Transformation-Based Synthesis
	5 Simplifying a Reversible Circuit
	6 Mapping a Reversible Circuit to a Quantum Circuit
	6.1 Negative Control CNOTs
	6.2 NCV Realization of MPMCT Gates
	6.3 MPP and MPIP Gate Cost and Substitution
	6.4 Overall Simplification and Mapping Strategy

	7 Experimental Results
	8 Heuristic Selection of Function Translations
	9 Discussion and Future Work
	References

	Hybrid Control of Toffoli and Peres Gates
	1 Introduction
	2 Hybrid-Controlled Gates
	3 Scalability
	4 Closing Remark
	References

	GenMul: Generating Architecturally Complex Multipliers to Challenge Formal Verification Tools
	1 Introduction
	2 Preliminaries
	2.1 Multiplier Architectures
	2.2 SCA Basics
	2.3 SCA-Based Verification

	3 Multiplier Generator GenMul
	3.1 Overview and Data Structures
	3.2 Generation of Multipliers

	4 Challenges of Verifying Multipliers
	5 Conclusion
	Appendix
	GenMulWebsite

	References

	Index

