
Estimating the Execution Time
of the Coupled Stage in Multiscale

Numerical Simulations

Juan H. L. Fabian1 , Antônio T. A. Gomes1(B) , and Eduardo Ogasawara2

1 Laboratório Nacional de Computação Cient́ıfica (LNCC), Petrópolis, RJ, Brazil
{juanhlf,atagomes}@lncc.br

2 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ),
Rio de Janeiro, RJ, Brazil
eogasawara@ieee.org

Abstract. Estimating the execution time of high-performance comput-
ing (HPC) applications is an issue that affects both shared computing
infrastructures and their users. The goal of the present work is to esti-
mate the execution time of simulation applications driven by multiscale
numerical methods. In computational terms, these methods induce a
two-stage simulation process. Fundamentally, the number of possibilities
for configuring this two-stage process tends to be much larger than that
of classical, one-stage numerical methods. This scenario makes it harder
to provide accurate estimates of the execution time of multiscale simu-
lations by using classical regression techniques. We propose a method-
ology that explores the idiosyncrasies of multiscale simulators to reduce
the uncertainty of predictions. We applied it in this paper to the spe-
cific challenge of estimating the execution time of these simulators based
on knowledge about the influence of each parameter of the numerical
method they employ. We consider the multiscale hybrid-mixed (MHM)
finite element method as a specific multiscale method to validate our
methodology. We compared our proposed technique with 3 well-known
regression approaches: a model-based tree (M5P), a bayesian nonpara-
metric method (GPR), and a state-of-the-art ensemble method (Random
Forest). We found that the root-mean-square error (RMSE) of the test
dataset for our technique was considerably less than that obtained by
these 3 approaches. We conclude that an educated consideration of the
numerical parameters of the MHM method to estimate the execution
time of the simulations helps to obtain more accurate models. We believe
such conclusion can be easily generalized to other multiscale numerical
methods.

Keywords: Multiscale simulations · Performance prediction · Machine
learning

The authors thank CAPES (finance code 001), FAPERJ, and CNPq for partially fund-
ing this research.

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 86–100, 2021.
https://doi.org/10.1007/978-3-030-68035-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_7&domain=pdf
http://orcid.org/0000-0002-9934-8351
http://orcid.org/0000-0002-0746-4014
http://orcid.org/0000-0002-0466-0626
https://doi.org/10.1007/978-3-030-68035-0_7


Execution Time of Coupled Stage in Multi-scale Numerical Simulations 87

1 Introduction

Simulators are computational tools used to assist in the understanding of com-
plex natural, artificial, and social-cultural phenomena. Phenomena with multi-
scale characteristics require the use of sophisticated numerical methods to deal
with these characteristics in terms of not only the quality of approximation
but also computational performance. The so-called multiscale numerical meth-
ods tackle both issues. These methods achieve low approximation error rates and
incorporate the granularity of the new generations of massively parallel architec-
tures. For this paper, we consider multiscale numerical methods for finite element
analysis. From a mathematical viewpoint, these methods are composed of: (i) a
global formulation defined in the skeleton of a mesh of elements; and (ii) a collec-
tion of local problems, element by element, guided by the problem data—which
is inherently multiscale [5]. In computational terms, this formulation induces a
two-stage process:

Asynchronous stage. It solves the local problems independently, without
communication between the involved processors;

Coupled stage. It collects the solutions of the local problems to build a single,
coupled problem that uses all available processors synchronously.

It is important to note that the computational effort to solve the problems in
the asynchronous stage can be performed offline. Besides, the problem solved at
the coupled stage—although it is usually carried out online—is typically smaller
than that found in a classical numerical method and, therefore, computationally
advantageous. The drawback of this two-stage process is that it increases the
number of configuration possibilities, as there is not only an additional stage to
be configured, but also the interface between the stages.

Consider the context of shared computing infrastructures, such as clusters in
supercomputing centers. The configuration problem mentioned above becomes
particularly important. In these clusters, workload management systems are
responsible for regulating users’ access to computing nodes. These systems imple-
ment scheduling strategies that arbitrate resource contention, managing queues
of jobs sent by users. Typically, users and the supercomputing center bene-
fit from job specifications that provide accurate estimates of total execution
time. It enables shorter queue times and better backfill scheduling performance.
Nonetheless, it is difficult to provide accurate estimates for simulations based on
multiscale numerical methods. Each configuration possibility impacts the quality
of approximation and computational performance achieved.

So far, research on predicting the execution time of high-performance com-
puting (HPC) applications has sought generality, targeting general-purpose code
kernels and parallel execution patterns. We believe that exploring the idiosyn-
crasies of specific application families—such as that of simulators based on mul-
tiscale numerical methods—helps to reduce the uncertainty of predictions.

We propose a methodology that employs machine learning to explore the
aforementioned idiosyncrasies. In this paper, we applied this methodology to
build models for the prediction of the execution time of multiscale simulators



88 J. H. L. Fabian et al.

based on knowledge about the influence of each parameter of the numerical
method they employ. We use the MHM method proposed by Araya et al. [2] as a
frame of reference for training and testing the prediction models. Nevertheless,
it is crucial to bear in mind that this study is also applicable to simulators based
on other multiscale numerical methods; notably, the ones with the same parallel
execution pattern [3,7].

As local problems can be computed offline, we disregard their cost for pre-
dicting the execution time of MHM simulations in this work. This simplification
does not make the prediction task less difficult, though. The parameters that
affect the quality of approximation of the asynchronous phase also affect some
characteristics related to the computational performance of the global problem,
such as the matrix conditioning and the sparsity pattern of the underlying sys-
tem of linear equations.

We compared the models we built in this paper for the prediction of the
execution time of MHM simulations with 3 well-known regression approaches:
(i) a model-based tree (M5P), (ii) a bayesian nonparametric method (GPR),
and (iii) a state-of-the-art ensemble method (Random Forest). We found that
our models achieved the lowest errors among them.

We organized the remainder of this paper in the following way. In Sect. 2, we
analyze some related work. The MHM method, on which the proposed method-
ology is based, is described in Sect. 3. It also presents the problem statement for
this work. In Sect. 4, we present the proposed methodology. Some experiments
are analyzed in Sect. 5. Finally, in Sect. 6, we present some concluding remarks
and perspectives for future work.

2 Related Work

In the last few years, there have been many initiatives that applied machine/
statistical learning for predicting the execution time of HPC applications. We
describe below the most representative ones according to the data collected,
techniques, and results achieved.

Matsunaga and Fortes [15] applied machine learning to predict the time and
resources consumed by applications. These applications may be used in different
computing infrastructures. To estimate the optimal resource usage for them is a
complex task. Thus, a tree algorithm called Predicting Query Runtime (PQR)
was applied to predict execution time and memory required. This algorithm
enables defining different machine learning models on the leaves. Models in the
leaves can be defined as linear regression or SVM. They are built from infor-
mation about the application and the computing infrastructure. The approach
was evaluated using two bioinformatics applications, BLAST, and RAxML, and
showed good accuracy for each prediction model.

Huang et al. [11] also studied the prediction of execution time in HPC appli-
cations. They built the prediction models by using a statistical technique called
sparse polynomial regression (SPORE ). The use of this technique is justified
by many predictors (features) considered for each application. The paper also



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 89

investigated the relationship between the predictors and the target variable and
which predictors were the most relevant to predict the elapsed time. Three appli-
cations (Lucene search engine and two image processing algorithms) were used
to validate the method and compare it with other statistical techniques.

Tiwari et al. [19] used machine learning to model the performance of HPC
kernels. The data was collected using a tool called PowerMon. The assessed
kernels were matrix multiplication, stencil computation, and LU factorization.
It used a multilayer perceptron as the machine learning technique. Models were
built regarding energy usage and execution time for each kernel, and the authors
analyzed the influence of the training dataset size on the model accuracy.

Hieu et al. [10] studied the predictions for the execution time of applications
in computational fluid dynamics (CFD). Those CFD applications were executed
in a cloud environment. The prediction of the execution time was executed in
two steps. Firstly, a decision tree (C4.5) was built to classify the final status
of the execution (executed or not). Secondly, a multilayer perceptron was built
to predict the execution time. The authors assessed the models by using the
accuracy measure for the classifier, and the coefficient of determination (R) and
mean absolute relative error (MARE) for the regression.

Mart́ınez et al. [13] described a process to improve the performance of stencil
kernels on multicore architectures. The process used machine learning to predict
the GFLOPS and execution time of this kind of kernel. It used three different
data sources: configuration parameters in the stencil implementation, hardware
counters, and performance metrics. The final models were built in two steps.
Both were based on SVM. In the first, intermediate models were built relating
configuration parameters and hardware counters. Then, final models were built
using hardware counters and performance metrics. The authors considered two
kernels—7-point Jacobi and seismic wave modeling—for experimentation and
reported high accuracy in the performance prediction.

Tanash et al. [18] considered a supervised machine learning technique to pre-
dict needed resources in HPC systems. The authors were interested in predicting
the required memory and time for a job and in improving the Slurm resource
manager used in the HPC systems. HPC log files were used as input for the
model. By using a Slurm simulator, the authors observed that the model could
help the resource manager to use the HPC resources in a better way.

Kim et al. [12] proposed a scheme to estimate execution time in computa-
tional science and engineering simulations. The scheme, called EXTES, is based
on machine learning, and it is applied to obtain efficient simulations. The authors
demonstrated the use of EXTES in a web-based platform named EDISON. They
considered 16 simulation programs and observed better accuracy in the models
for each simulation program.

These pieces of work have in common the use of machine learning as a tool
to predict the performance of diverse kinds of applications or kernels. None of
them, however, considered as predictors domain-specific information about the
applications or kernels. We believe the lack of such type of information in pre-



90 J. H. L. Fabian et al.

diction models potentially reduces their accuracy. In this paper, we consider this
type of information, in the specific context of multiscale numerical simulations.

3 MHM: A Multiscale Numerical Method

In this section, we briefly describe the Multiscale Hybrid-Mixed method (MHM),
a type of finite element method that aims to solve large problems with multiple
scales. The application of this method departs from a partial differential equation
(PDE) that represents the physical problem to be simulated. A hybrid finite
element formulation is proposed for this PDE that considers the continuity of
its solution space using Lagrange multipliers. The hybrid formulation is then
rewritten to obtain the MHM method. This rewriting leads to two types of
problems: global and local. They are then discretized to obtain proper numerical
approximations to the solution of the original PDE. The global problem is solved
on the skeleton of a fixed finite element mesh that discretizes the domain of the
PDE. The local problems are independent of each other and are solved in parallel
for each element of the mesh. Each local problem considers its corresponding
element of the mesh, a domain of its own. Therefore, these elements may also be
discretized by a “sub-mesh”. Since the local problems may be computed offline,
we do not detail them in the remainder of this section.

Different physical problems can be modeled and simulated with the MHM
method [2,9]. For this paper, we consider in the following the Darcy equation in
a two-dimensional domain1 defined as a boundary value problem for a diffusive
process.

Diffusion Problem: Find the pressure u : Ω → R in the domain Ω s.t.:{
−KΔu = f in Ω,

u = 0 on ∂Ω.

For the hybridization procedure, the MHM method first considers the decom-
position of Ω into subdomains. It then defines the following function spaces:

– V: the space of u living over Ω; and
– Λ: the space of Lagrange multipliers living over the skeleton formed by the

decomposition of Ω. This space is associated with the normal fluxes over the
subdomains’ boundaries.

The solution u can then be characterized as:

u = u0 + ũ + uλ, with u0 ∈ V0, ũ ∈ Ṽ , uλ ∈ Λ, and V = V0

⊕
Ṽ ,

where V0 is the space in which the kernel of the Laplacian operator (Δ) lives.

1 Much of the description in this section also applies to a three-dimensional domain
setting, if one considers faces instead of edges as composing the skeleton of the mesh
that discretizes the domain.



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 91

For the discretization procedure, the MHM method first considers a regular
mesh TH of elements K that discretizes the domain Ω. H > 0 is the characteristic
measure (i.e., the level of refinement) of TH . For simplicity, let us map each
K to a unique subdomain of Ω. Each element K has its boundary ∂K, and
EH = {∂K}K∈TH

defines the skeleton (i.e., the set of edges) of TH . K can be
further discretized as a local sub-mesh; h > 0 is the characteristic measure of
this sub-mesh. The approximate function spaces are then:

ΛH = Λm
l ⊂ Λ and Ṽh =

⊕
K∈TH

ṼK ⊂ Ṽ .

The parameter m in the space of Lagrange multipliers defines the number of
partitions of each edge of ∂K, and the parameter l defines the degree of Lagrange
polynomials in each such partition. At the local level, each K has its space ṼK

formed by Lagrange polynomials of degree k. Further details about the MHM
method applied to diffusion problems are in [2,8].

It is worth remarking that, on average, approximately 94% of the time spent
on the global problem is due to the solution of its underlying system of linear
equations. Because of MHM’s hybridization procedure, this system is of the form:(

A B
BT 0

) (
λ
u0

)
=

(
gf

g0

)
,

in which the dimension of A is determined by l, m, and #EH , and the dimensions
of B and BT are proportional to #TH .

The linear system above is a saddle-point system, thus presenting important
challenges to linear solvers [4]. The larger the parameters l and m, and the
level of refinement of the mesh, the more challenging the linear system for the
solvers. Moreover, these parameters affect the linear system differently; refining
the mesh—i.e., increasing #EH and #TH only—increases the dimensions of the
matrix, while increasing l or m makes the matrix not only bigger but also denser.
The consideration of these aspects has an important impact on the quality of
the predictions of the time to run simulations based on the MHM method.

4 Methodology

This paper describes part of a methodology under development, called NAZCA,2

to assist users of multiscale simulations in the configuration of the simulations
themselves and the computing resources used for these simulations. Figure 1
depicts the workflow for prediction models proposed in the NAZCA methodology.

The NAZCA methodology has two steps: learning and production. The learn-
ing step defines the process of building predictive models. The process departs
from a set of three parameter spaces: (1) the characterization of the numerical
method, (2) the computational architecture, and (3) the performance metrics.
2 The name NAZCA was inspired by the Nazca Lines in Peru, which are sometimes

related with ceremonial activities involving prediction [17].



92 J. H. L. Fabian et al.

Fig. 1. NAZCA: The workflow for learning and operating prediction models.

For each intended predictive model, we need to do feature engineering in the
(raw) data collected from a subset of the parameter spaces and explore diverse
kinds of machine/statistical learning techniques over the data. The collected
data is then used to train a model. The model typically outputs a response liv-
ing in one of the parameter spaces. It is important to highlight that different
combination of these parameter spaces as predictors can be used to produce dif-
ferent models that output different responses. In this paper, we aim to use the
parameter space that characterizes the numerical method as a way to predict
the execution time of a simulation. In the production step, predictive models are
put into operation for new simulations. The feature engineering accomplished in
the learning process is considered for these models as well.

A dataset in the NAZCA methodology is organized as a table with attributes
as columns and samples as lines. The attributes are grouped in the three param-
eter spaces described above. To characterize a numerical method, we may define
attributes related to the physical phenomenon, the mesh of the domain, and
the numerical parameters. For the computational architecture, we may define
attributes related to the number of computational nodes, the number of cores
per node, and the RAM size in each node that is used in the simulation. Finally,
for the performance metric, we may define attributes to analyze the performance
of the numerical method (like errors in L2- and H1-norms) and of the simula-
tion as a whole (such as success or failure, and execution time). Some of these
attributes may be interrelated: for example, only when the simulation ends suc-
cessfully, is it possible to obtain information on RAM usage and execution time.

Table 1 presents an example of attributes for MHM simulations.3 These
attributes were used for the proof of concept in the experiments described

3 We differentiate h and submesh because the characteristic measure has an absolute
value, whereas the level of refinement for the sub-mesh has local meaning.



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 93

in Sect. 5. It is also described the type of each attribute. We do not apply
any attribute transformations. The users inform the values associated with the
attributes in the numerical method and computational architecture parameter
spaces. The attributes associated with the performance metric parameter space
are collected while the simulations run.

Table 1. Attributes from different parameter spaces: Numerical Method, Computa-
tional Architecture and Performance Metric.

Parameter space Attribute Nomenclature Type

Numerical method Dimension of the domain (2D, 3D) Dim Nominal

Physical phenomenon (diffusion, elasticity,

etc.)

Phys Nominal

Characteristic measure of the mesh H Continuous

Level of refinement for the sub-mesh submesh Discrete

Characteristic measure of the sub-mesh h Continuous

Degree of polynomial in the element - local

problems

k Discrete

Degree of polynomial on the edge/face

(2D/3D) - global problem

l Discrete

Number of divisions on the edge/face (2D/3D)

- global problem

m Discrete

Computational architecture Number of computational nodes Nodes Discrete

Number of cores per node Cores Discrete

Total RAM in the computational nodes RAM Discrete

Performance metric Success of the simulation S Binary

Numerical error in the L2-norm L2 Continuous

Numerical error in the H1-norm H1 Continuous

Total execution time TE Continuous

Partial time of the global problem TPG Continuous

Partial time of the local problems TPL Continuous

RAM usage in the local problems RAM-PL Discrete

RAM usage in the global problem RAM-PG Discrete

In the learning step, the data is randomly divided into training and test
datasets using the 80-20 strategy. The model is trained only using the training
dataset, and it is assessed in the test dataset. We do not optimize the hyperpa-
rameters of the models, therefore, a validation set is not defined.

Estimating the Execution Time from Numerical Method Attributes.
We explained in Sect. 3 that the execution time of the global problem in MHM
simulations is influenced by the parameters l, m, #EH , and #TH . Besides, l
and m are determinants for the sparse pattern of the system of linear equations
associated with the global problem, affecting its computational complexity (as
verified in Subsect. 5.2). We, therefore, devised a tree-based architecture that
handles each possible combination of l and m. Moreover, we employed a feature
engineering procedure to derive from l, m, #EH , and #TH an additional attribute
(GLG) that represents the total number of degrees of freedom in the linear
system solved by the global problem. This new attribute is employed as the



94 J. H. L. Fabian et al.

predictor of several univariate regression models, each one of them living on a
different leaf of the tree. Figure 2 depicts the tree architecture.

Fig. 2. Tree-based architecture for handling prediction models.

On each leaf of the model tree, we use empirical analysis to select the best
univariate regression model. The empirical analysis consists of repeating the
training and testing of a given model,4 with a random division of training and
test data for each repetition. We then collect for each such repetition the fitted
model and its associated prediction band, and analyze two hypotheses over them:
– HV

0 : The model suffers little effect from changes in training and test data.
We verify this hypothesis by ascertaining that the fitted models are confined
within the area bounded by the prediction bands;

– HR
0 : The model is reliable—we verify this hypothesis by ascertaining that the

data samples are all contained within some prediction band.

5 Experimental Evaluation

In this section, we describe the proof of concept of the methodology explaining
the experimental part of the research. We start by defining the data used for
building the prediction models, in which the attributes in the data were defined
by experts. Next, we look for any possible patterns in the data. Finally, we apply
our methodology for building predictive models of the execution time.

5.1 Dataset

Using Table 1 as a reference, we fixed Dim = ‘2D’ and Phys = ‘Diffusion’ to
match the diffusion problem described in Sect. 4. For the other parameters, we
considered the combination of the values listed in Table 2. For a single combina-
tion, two different simulations were performed to enrich the dataset—each one
based on a different refinement pattern for H (criss-cross and irregular). For
the computational architecture, we fixed a single configuration, consisting of a
workstation with two 12-core sockets and 320 GB of RAM. All the simulations
that were run to collect performance metric data used 2 MPI processes. This
setup amounts to a total of 1, 800 simulations in our experimental dataset.
4 We used 1, 000 repetitions as in the traditional bootstrap setup [6].



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 95

5.2 Exploratory Data Analysis

In Fig. 3, we analyze the relation between TPG (the target variable) and GLG.
We can confirm in Fig. 3(a) our assertions in Sects. 3 and 4 that there are different
patterns when we combine the values of parameters l and m. Besides, we can
see that for a fixed value of the parameter l, there are patterns influenced by the
values in the parameter m, as we can see in Figs. 3(b) and 3(c).

Table 2. Parameters used in the experimental evaluation

Parameters Values

Submesh 1, 2, 4, 8

m 1, 2, 4, 8

k 2, 3, 4, 5, 6

l 0, 1, 2, 3, 4

(a) Combining l and m (b) l = 0 (c) l = 4

Fig. 3. TPG vs GLG.

We show in Fig. 4 the distribution of training and test data on each of these
leaves. Each time we increase the value of l and m, the amount of data available
for training and test decreases. This skewed distribution is a consequence of the
specific constraints of the well-posedness of a formulation in MHM,5 and it may
affect the performance of the model, as we show in the following section.

5.3 Model Building and Assessment

We consider different kinds of models for our analysis: y = a0 + a1x (model 1);
y = a0 + a1x

3/2 (model 2); y = a0 + a1x + a2x
3/2 (model 3); y = a0 + a1x

2

(model 4) and y = a0 + a1x + a2x
2 (model 5). Models 2 and 3 were considered

5 Briefly speaking, increasing l without increasing m also increases the minimal
accepted value for k, thus reducing the amount of possible combinations in Table 2.



96 J. H. L. Fabian et al.

Fig. 4. Distribution of training and test data according to each case.

because we use the MUMPS parallel linear solver [1] for the global problem, and
Mary [14] shows that this solver has an asymptotic time complexity of O(n3/2).

In the following, we analyze cases l = 0,m = 2, and l = 4,m = 8. In the first
case, we have a filtered dataset with 200 simulations and a clear behavior for
the empirical analysis (c.f. Fig. 5). In the second case, we have a filtered dataset
with only ten simulations and a fuzzier behavior (c.f. Fig. 6).

As for the selection of model 2 in the example of Fig. 5, we observe that in
models 1, 3, and 5, there are data points that fall out of the prediction band.
For this reason, we refute the hypothesis HR

0 . Concerning the hypothesis HV
0 ,

we refute it in models 3, 4, and 5. We then selected model 2 because it was the
only one in which we could not refute both hypotheses. As for the case shown
in Fig. 6, at least one of the hypotheses was refuted by each model. In this case,
our technique cannot select a proper model using empirical analysis. Thus, the
strategy adopted based on Occam’s razor was to select the most straightforward
model (model 1). In Table 3, we summarize the models selected by our technique
for each leaf of our model tree.

Table 3. Models for different values of the parameters l and m.

l m Model l m Model l m Model l m Model l m Model

0 1 a0 + a1x 1 1 a0 + a1x3/2 2 1 a0 + a1x3/2 3 1 a0 + a1x3/2 4 1 a0 + a1x3/2

2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x

4 a0 + a1x3/2 4 a0 + a1x3/2 4 a0 + a1x3/2 4 a0 + a1x 4 a0 + a1x

8 a0 + a1x3/2 8 a0 + a1x3/2 8 a0 + a1x 8 a0 + a1x 8 a0 + a1x



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 97

Fig. 5. An empirical analysis for l = 0,m = 2. We plot the data samples (dots) and the
fitted models (green) with their prediction bands, upper (blue) and lower (red) bound.
(Color figure online)

Fig. 6. An empirical analysis for l = 4,m = 8. We plot the data samples (dots) and the
fitted models (green) with their prediction bands, upper (blue) and lower (red) bound.
(Color figure online)

We calculated the error obtained in the test dataset for each leaf of our model
tree. After that, we computed the error for the complete test dataset and arrived
at an RMSE of 0.272. In Fig. 7, we can see the squared error for each leaf of our
model tree. We can identify which of them have the higher errors. A high error



98 J. H. L. Fabian et al.

Fig. 7. Squared errors for each case during the tests.

could be caused for diverse reasons, such as a small dataset or a poor model.
Reducing the errors for these cases is the subject of future work.

We compared the performance of our technique in the test dataset with 3
well-known regression approaches implemented in the WEKA workbench [21]:
(i) M5P ([16,20]), (ii) Gaussian Process Regression (GPR), and (iii) Random
Forest (RF). Table 4 summarizes the results obtained for each technique.

Table 4. Comparison of regression approaches.

Technique RMSE

NAZCA 0.272

M5P 2.111

RF 2.446

GPR 3.477

We can conclude that the considerations related to the numerical parameters
proposed in our technique allowed a better generalization of the model.

6 Conclusion

Predicting the execution time of simulations based on multiscale numerical meth-
ods is complex due to their two-stage process. We presented NAZCA, a method-
ology capable of dealing with this situation. NAZCA aims to build prediction
models for these simulations based on machine learning, benefiting both com-
puting infrastructure providers and their users.

We applied the MHM method in a diffusion equation, and we conducted some
experiments to obtain a dataset used for training and test. Different machine
learning techniques are explored to build prediction models. We proposed a
technique inspired in a tree, which for its building, considers some parameters



Execution Time of Coupled Stage in Multi-scale Numerical Simulations 99

of the numerical method. On each leaf of the tree, we carried out an empirical
analysis for model selection. To validate our approach, we compared it with three
well-known regression approaches. We concluded that our proposed technique
achieves a small error of generalization compared to them.

Some future work could be considered for this research. In our proposed
technique, we established some assumptions and limitations that could be tack-
led. Values for the numerical parameters are not limited to the experiments
considered here, so another type of learning technique may be needed for this
situation. In our technique, we also observed that the small amount of data
influenced the achievement of accurate models, and a better analysis of how to
get around this difficulty could be studied. Finally, we consider the application
of the methodology described herein to other multiscale numerical methods in
which the two-stage process is observed.

References

1. Amestoy, P., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

2. Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method.
SIAM J. Numer. Anal. 51(6), 3505–3531 (2013)

3. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed
finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems.
Acta Numerica 14, 1–137 (2005)

5. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09496-0

6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Mono-
graphs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton
(1993)

7. Guiraldello, R.T., Ausas, R.F., Sousa, F.S., Pereira, F., Buscaglia, G.C.: The mul-
tiscale robin coupled method for flows in porous media. J. Comput. Phys. 355,
1–21 (2018)

8. Harder, C., Paredes, D., Valentin, F.: A family of multiscale hybrid-mixed finite
element methods for the Darcy equation with rough coefficients. J. Comput. Phys.
245, 107–130 (2013)

9. Harder, C., Paredes, D., Valentin, F.: On a multiscale hybrid-mixed method for
advective-reactive dominated problems with heterogeneous coefficients. Multiscale
Model. Simul. 13(2), 491–518 (2015)

10. Hieu, D.N., Tieu Minh, T., Van Quang, T., Giang, B.X., Van Hoai, T.: A machine
learning-based approach for predicting the execution time of CFD applications
on cloud computing environment. In: Dang, T.K., Wagner, R., Küng, J., Thoai,
N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 40–52.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48057-2 3

11. Huang, L., Jia, J., Yu, B., Chun, B.G., Maniatis, P., Naik, M.: Predicting execution
time of computer programs using sparse polynomial regression. In: Advances in
Neural Information Processing Systems 23, pp. 883–891. Curran Associates, Inc.
(2010)

https://doi.org/10.1007/978-0-387-09496-0
https://doi.org/10.1007/978-3-319-48057-2_3


100 J. H. L. Fabian et al.

12. Kim, S., Suh, Y., Kim, J.: EXTES: an execution-time estimation scheme for effi-
cient computational science and engineering simulation via machine learning. IEEE
Access 7, 98993–99002 (2019)

13. Mart́ınez, V., Dupros, F., Castro, M., Navaux, P.: Performance improvement of
stencil computations for multi-core architectures based on machine learning. Proc.
Comput. Sci. 108, 305–314 (2017)

14. Mary, T.: Block Low-Rank multifrontal solvers: complexity, performance, and scal-
ability. Ph.D. thesis, Université Paul Sabatier - Toulouse III (2017)

15. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 495–504 (2010)

16. Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Confer-
ence on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

17. Silverman, H.: Cahuachi in the Ancient Nasca World. University of Iowa Press,
Iowa City (1993)

18. Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., Okanlawon, A.: Improv-
ing HPC system performance by predicting job resources via supervised machine
learning. In: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (Learning), pp. 1–8 (2019)

19. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum, pp. 990–998 (2012)

20. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes.
In: Poster Papers of the 9th European Conference on Machine Learning. Springer
(1997)

21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Series in Data Management Systems,
3rd edn. Morgan Kaufmann, Amsterdam (2011)


	Estimating the Execution Time of the Coupled Stage in Multiscale Numerical Simulations
	1 Introduction
	2 Related Work
	3 MHM: A Multiscale Numerical Method
	4 Methodology
	5 Experimental Evaluation
	5.1 Dataset
	5.2 Exploratory Data Analysis
	5.3 Model Building and Assessment

	6 Conclusion
	References




