
Methodology for Design
and Implementation an Efficient HPC

Cluster

L. A. Torres1,2(B) and Carlos J. Barrios1,2(B)

1 Supercomputación y Cálculo Cient́ıfico (SC3), Universidad Industrial de Santander,
Bucaramanga 680002, Colombia

luis.torres@correo.uis.edu.co, cbarrios@uis.edu.co
2 Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE),

Universidad Industrial de Santander, Bucaramanga 680002, Colombia

Abstract. For years, clusters for HPC have been implemented through
the typical process of obtaining the source code, configuring and com-
piling each of the tools that make up the infrastructure services. Each
administrator based on their experience and knowledge assumes a series
of considerations to design and implement a cluster that is considered
efficient by installing base tools such as NTP, NFS, a task manager (that
is, SLURM), LDAP, among others. In order to reduce these times, sev-
eral open-source initiatives have emerged, such as Rocks, that allow the
rapid implementation of an HPC cluster despite its low configuration
flexibility. OpenHPC emerges as an alternative that provides the neces-
sary tools in a software repository and that once installed allows the same
flexibility of customization and adaptation as if they had been installed
in a typical way. It’s worth mentioning that OpenHPC provides all of
those standardized tools in order to spread best practices in building
and managing HPC data centers, but unlike Rocks, OpenHPC requires
pre-design of the platform, including network infrastructure, storage ser-
vices, and the different tools to implement, requiring prior knowledge
by the administrator about each of them. The objective of this paper
is to present the fundamental basis for implementing an efficient cluster
by using OpenHPC without becoming a technical installation guide, but
rather a series of steps in a methodology used by the Supercomputación
y Cálculo Cienf́ıfico Laboratory SC3.

Keywords: Cluster computing · OpenHPC implementation · HPL
metrics and evaluation

1 Introduction

HPC has reached a level where it has become indispensable in the different fields
of scientific research. Areas such as artificial intelligence, bioinformatics, climate
prediction, among others, are some of these fields that depend on supercomput-
ing centers to carry out their research. However, the design and implementation
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 71–85, 2021.
https://doi.org/10.1007/978-3-030-68035-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_6&domain=pdf
http://orcid.org/0000-0003-2597-9430
http://orcid.org/0000-0002-3227-8651
https://doi.org/10.1007/978-3-030-68035-0_6


72 L. A. Torres and C. J. Barrios

of these have always been a task that depends on the experience of the adminis-
trators and that despite this can lead to long implementation and commission-
ing times. To remedy this problem, tools such as Rocks have emerged that have
facilitated implementation but their cost-benefit in relation to the administra-
tion of the HPC platform makes them little-used [1]. Consequently, OpenHPC
appears as an alternative to facilitate administrators with quick implementation
and start-up by providing a software repository with different alternatives for
administrators [1].

The use of OpenHPC is presented as a set of tools rather than as a defini-
tive solution in the implementation of a cluster. Therefore, this paper presents
the methodology used for the implementation of the GUANE1 cluster of the
Supercomputing Center and Scientific Calculation SC3 [13] showing the basic
components necessary to take into account in the design and implementation
in a supercomputing platform. The first section introduces the basic concepts
and tools needed. The second describes the proposed methodology and the dif-
ferent tools implemented in such a way that the order in which they are pre-
sented is the order in which they must be installed and configured. The third
shows a description of the Linpack benchmark, its configuration, and the results
obtained. Finally, the conclusions of the methodology used are presented together
with a comparison made at the efficiency level with the first five machines that
appear in the Top500 [14].

2 Background

In our experience, the HPC system administrator must know a lot of concepts
raging from Linux to the main hardware deployed in any cluster. With this
background, we offer an overview of OpenHPC and the main tools implemented
in this methodology.

2.1 High Performance Computing

HPC is a field of computing that seeks to improve performance in solving major
problems in science, engineering, and business. Generally speaking, these com-
putationally complex problems are mathematically modeled and, through par-
allel computing techniques, they become code instructions that are executed on
machines known as supercomputers. These machines run these intensive pro-
grams on specialized CPU or GPU, significantly reducing the time to run on
regular hardware [15].

The supercomputers were introduced in the 1960s by Seymour Cray of CDC
(Control Data Corporation) [2], and for many years associated companies bear-
ing this surname controlled this market. The vector processor with the ability to
operate on large data sets was introduced in the 1970s, and it was not until the
1990s that massively parallel supercomputers began to be used with standard

1 GpUs Advanced computiNg Environment.



Methodology for Design and Implementation an Efficient HPC Cluster 73

processors, which to date are the norm. It should be noted that the performance
of these machines is measured in floating point operations per second (FLOPS)
and not in millions of operations per second (MIPS), because the latter is more
a measure of the performance of a task in comparison to a reference and not
a measure of execution speed. In recent years, higher performance speeds than
petaFLOP have been achieved and it is hoped to achieve exaFLOPS in the near
future [3].

This evolution of supercomputers and high performance computing is due to
the increasing demand for computing speeds to solve problems in areas such as
quantum mechanics, weather forecasting, oil and gas exploration, among others.
In the last decade, this demand has reached very high levels due to the use
of different artificial intelligence algorithms, particularly machine learning and
deep learning algorithms.

Lastly, the HPC hardware falls into three main categories: Symmetric multi-
processor (SMP), vector processors, and clusters [15] and with the latter being
the subject of study in this methodology.

Cluster. It is the most widely used supercomputer and is a collection of many
servers (nodes) which are connected through a high speed and high bandwidth
network. These clustered servers can behave as a single server and a combination
of the following services must be provided: high performance, high availability,
load balancing, and scalable. Clusters can be classified according to their char-
acteristics into:

– Fail-over clusters
– Load-balancing clusters
– High-performance clusters

These differ depending on the type of applications and their purpose. The
Fail-over clusters and the Load-balancing clusters are used in mission-critical
applications where consistent, throughput availability of services is required
through many instances of one or more applications on different nodes. Finally,
the High-performance clusters are designed to increase performance and decrease
computing times when running work on multiple nodes at the same time [15].

2.2 OpenHPC

OpenHPC was launched in 2015 and formalized as a collaborative project of
the Linux Foundation in 2016 [1]. This project is comprised of 25 organizations
with representation in academia, research laboratories and industry. It has a
large number of software components that include provisioning tools, resource
management and scientific libraries. The main objective of this project is to make
best practices available to administrators and to provide a software repository
for HPC clusters.

For administrators, manually installing and configuring an HPC cluster
can be tedious and complicated. For this reason, several open-source solutions



74 L. A. Torres and C. J. Barrios

emerged, among which Rocks and OSCAR stand out. Rocks [4] is a CentOS-
based Linux distribution that contains additional software components for clus-
ter deployment and administration without the need for other external packages.
On the other hand, OSCAR (Open Source Cluster Application Resources) [5]
is a fully integrated software package that, unlike Rocks, you must first install
the frontend and then download and install the cluster configuration and admin-
istration tools. The project is no longer maintained and the latest version was
released in 2011.

A common issue with these tools is the lack of balance between customization
and ease of use [6], which is why OpenHPC takes a more basic approach when
providing a software repository. This approach requires the administrator to be
experienced but offers a variety of software components to promote flexibility
in different environments and scales. OpenHPC includes two end-user projects
that seek to reduce the complexity of installing and configuring scientific and
HPC software: Easybuild [7] and Spack [8].

2.3 Lightweight Directory Access Protocol

LDAP is a set of open protocols that are used to access information that is
centralized through the network. It is based on the X.500 standard but is less
complex and uses fewer resources. The information is organized in a hierarchical
and categorized model through the use of directories that can contain a large
amount of information. LDAP is a client/server system where the server uses
a database to store directories and is optimized for fast, high-volume readings.
When connecting to the server, the LDAP client can make queries or modify
a directory. In the latter case, the server verifies that the user has the permis-
sions to carry out this operation before making the change and updating the
information [16].

OpenLDAP is the free and open-source implementation of LDAP, supports
LDIFv1 and LDAP versions 2 and 3. In relation to supercomputing clusters,
OpenLDAP provides HPC infrastructures with a way to manage platform users.
One of the great advantages of using LDAP v3 is the possibility of using dynamic
groups, which allow the system administrator to create a tree with different
access privileges to the directories of the HPC system storage.

2.4 Simple Linux Utility for Resource Management

Linux clusters require a resource management system that performs tasks such as
scheduling user jobs, monitoring machine and job status, and managing machine
settings as such. This system should be simple to use, fault-tolerant, efficient,
scalable, and portable. With this in mind, Lawrence Livermore National Labo-
ratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull produced
the first slurm design [9].

Slurm enables efficient management of clusters regardless of size or architec-
ture, is highly scalable, requires no kernel modification, and is relatively self-
contained. The basic components are shown in Fig. 1.



Methodology for Design and Implementation an Efficient HPC Cluster 75

Fig. 1. Slurm components [17]

In essence, slurm works using two daemons, one on the frontend called slurm-
ctld and the other on nodes called slurmd. The slurmd daemon provides fault-
tolerant hierarchical communications and is responsible for initiating and man-
aging user jobs. On the other hand, the slurmctld daemon sometimes referred
to as the “controller”, is in charge of orchestrating slurm activities, including
job queuing, monitoring the status of jobs, and allocating resources to jobs. As
shown in the Fig. 1, a backup to this daemon can be included which will auto-
matically take over in case of failure of the primary controller, which will regain
control when service is restored [9]. There is another optional daemon in slurm
called slurmdbd, which allows storing the accounting records of the jobs in a
database, allowing to generate reports about the platform.

Lastly, we find the user commands that allow them to run and monitor each
of the jobs that are sent to the HPC platform. The sbatch and srun commands
are used to run jobs, scancel command to cancel them, scontrol is used to view
or modify Slurm configuration and state and, sacct command displays account-
ing data for all jobs and job steps in the Slurm job accounting log or Slurm
database [9].

2.5 System Security Services Daemon (SSSD)

This daemon has the primary function of providing remote access to different
authentication mechanisms through a common framework. These mechanisms
are known as identity providers and SSSD allows them to connect to it as back-
ends [18].

SSSD provides caching and offline support for applications that require
authentication using standard PAM and NSS interfaces. With this feature, appli-
cations do not need to connect directly to identity providers (e.g. LDAP, NIS,
Samba, etc.) and even if they are not available, the SSSD cache allows the appli-
cations to authenticate. Another important feature of SSSD is its ability to use
multiple providers of the same type, such as two different LDAP servers [18].



76 L. A. Torres and C. J. Barrios

2.6 High-Performance Linpack (HPL)

HPL is an implementation of the Linpack benchmark [11] for computers with
distributed memory. This benchmark solves a dense linear random system in
double-precision arithmetic. Basically it only requires a configuration file where
the main parameters for creating the problem to be solved are specified.

The main parameters are:

– N: Order of the coefficient matrix A
– NB: Block size
– P: Number of processes - row
– Q: Number of processes - column

In general, the product of PxQ should be the number of MPI processes and
the value of Q should be greater than or equal to P. The value of N should be
chosen as close as possible to the total physical memory. For choosing N, the
following formula is usually used:

N ≈
√

Total Memory Size in bytes

sizeof(double)
(1)

Where N must be an integer and must be a multiple of the selected NB block
size. The size in bytes for the double-precision floating-point is 8.

The results obtained by HPL are the effective performance measures Rmax
finds for each of the configurations. Another important value to calculate is the
theoretical peak of Rpeak performance using the following equation:

Rpeak = NumCPU ∗ NumCore ∗ Frequency ∗ NumFLOPs/cycle (2)

Finally, the efficiency of the cluster is obtained by [10]:

Efficiency = Rmax/Rpeak (3)

These topics cover the main components in the HPC cluster and in our imple-
mentation but exist others that didn’t name in this section because we consider
tools that any Linux administrator knows. The integration of these topics and
other tools will be shown in the next section where will be described our method-
ology.

3 Methodology

By referring to the word “efficiency”, the aim is to adequately fulfill a certain
function. There are several ways to design and implement an HPC cluster but
the knowledge and experience of the administrators is what leads to what can be
considered to be really efficient. Many variables can be evaluated to determine
the real efficiency of the cluster such as: user experience, performance, security,
among others. However, the performance obtained from the HPL test will only



Methodology for Design and Implementation an Efficient HPC Cluster 77

be evaluated in order to show that it is possible to deploy an HPC cluster
using this methodology, obtaining acceptable performance values. Finally, the
objective of this methodology is to provide a guide that allows rapid deployment,
both to experienced administrators and those new to the HPC world, and that
is adaptable to the knowledge and experience of administrators.

3.1 Buildind a Efficient Cluster

Basic Architecture. In this first part, a general proposal of the organization
of the elements that are considered basic in the deployment of an HPC cluster is
presented. Two main points have been taken into account: ease of administration
and speed of communication. The design scheme is presented in Fig. 2.

Fig. 2. General system architecture

In the age of artificial intelligence and big data, large volumes of data are
common in HPC clusters, making the storage system one of the main elements
to consider. The characteristics of these systems should allow for high transfer
rates along with low latency, redundancy, and above all high storage capacity.
Some HPC system designs typically mount the volumes created on the storage
system directly on the master node, which does not incur functionality issues,
but can affect performance by assigning cluster management tasks and traffic
between the storage system and compute nodes. For this reason, we recommend
that you have a unique I/O server that handles the transactional load on the
cluster.

In relation to the above, another important element to consider is high-speed
networks that are not included in many HPC clusters due to high acquisition
costs but can consequently lead to network bottlenecks when there is a high



78 L. A. Torres and C. J. Barrios

demand for the network. In the implementation of this methodology, two high-
speed networks have been used: Infiniband for communication and synchroniza-
tion between nodes and a fiber-optic channel for the storage system and I/O node
communication. It should be noted that new computing requirements and the
high scalability of emerging applications make this type of high-speed network
an essential part of any HPC cluster.

Finally, in the Fig. 2 shows other basic elements in any HPC cluster deploy-
ment such as ethernet switches, the master node, compute nodes, and an edge
protection system for accessing the cluster from external networks.

Network Configuration. This methodology bases your network configuration
on the recommendations that OpenHPC provides in your installation guide,
however, we talk about general recommendations because each infrastructure
differs according to the components at your disposal. Standards such as the
Uptime Institute2 recommend that all Datacenters have redundancy across all
systems, including the network, but for this methodology, we assume that only
the essential switches are available for each of the networks implemented in
Fig. 2.

It is proposed to implement two base networks for the cluster that will be sep-
arated as two different LANs within the configuration. The first will be responsi-
ble for the communication between the master node and the compute nodes and
will be for the exclusive use of the resource manager. The second network will
be responsible for data traffic between the master node, compute nodes, and the
I/O server. To provide Internet access to compute nodes, the gateway can be
redirected to the IP of the master node, keeping in mind that the master node
must have access to the Internet. This solution is not optimal, but it can simplify
the administrator’s work. It should be noted that this can cause network bottle-
necks dedicated to resource management especially if applications running in the
cluster require access to large databases available on remote servers. Therefore,
the most recommended solution is the implementation of a third network that
handles this external traffic, although this configuration makes it necessary to
count an extra server that serves as a gateway for the output to the Internet.

Base System. In what has been described so far, a basic organization of the
essential components in an HPC cluster has been shown together with the min-
imum network configuration required to obtain an acceptable performance and
that can be considered efficient or, in other words, that performs its function in
the most appropriate way.

Within this framework, the most important and essential software compo-
nents for administrators have been considered, without addressing their instal-
lation and configuration. In Sect. 2.2. It was mentioned that OpenHPC has been
designed to provide administrators with best practices and a software reposi-
tory that allows the system base to be easily installed, configured, and updated.

2 https://uptimeinstitute.com/.

https://uptimeinstitute.com/


Methodology for Design and Implementation an Efficient HPC Cluster 79

However, it was not mentioned that within this repository there are several tools
that perform similar tasks and that it is the administrator who must make the
selection of which ones were used, taking into account the experience of this and
their knowledge about them. These tools range from choosing the task handler
between Slurm or PBS, to a system file system such as BeeGFS or Lustre.

The following describes the tools that were considered in the cluster deploy-
ment process using the OpenHPC repository and that serve as the basis for the
implementation methodology suggested in this job:

– NTP (Network Time Protocol): It is an Internet protocol that is used
to synchronize clocks from different computer systems on local or global net-
works. For the suggested configuration, the cluster master node will be used
as the NTP server and will be responsible for keeping the system clock syn-
chronized on all compute nodes and the I/O server in the cluster. Examples of
the need for cluster synchronization can be seen in co-scheduling techniques
in parallel applications with sensitive bulk synchronous workloads, (ii) per-
formance analysis tools and (iii) autotuning strategies that want to exploit
State-of-the-Art (SoA) high-resolution monitoring systems [12].

– NFS (Network File System): It is a client/server file system that allows
users to access files and folders over the network and treat them as if they were
local. It will be used primarily for each user’s /home directory and for /opt
where the platform software will be installed. These two directories belong
to two logical volumes of the cluster storage system and are exported by the
I/O server to the different system nodes. [19].

– Support for Infiniband: Infiniband is a network communication standard
that provides high throughput and low latency. This type of high-speed net-
work is not required for cluster operation, but as mentioned earlier in the
network configuration section, the bottlenecks generated by high file transfer
and the communication required between nodes by using inadequate networks
make it an essential part of deploying an efficient cluster. In fact, OpenHPC
also comes with included support for Omni-Path but Infiniband has been
selected for the current cluster configuration where this methodology has
been developed, but it does not mean that better results cannot be presented
with Intel technology3.

– Memory usage limits: Linux systems have the ability to limit the system
resources that are available to user processes, and one of these limitations is
the use of memory by the different components of a process that is running.
Good practice in HPC is to establish new rules that allow the execution of
demanding tasks by parts of users, which include new rules for memory limits
and the maximum number of open files.

– HPC modules - LMOD: In short, a module is the setting of environ-
ment variables within a script. Each module is defined for a specified applica-
tion where their respective environment variables, license files if required, are
defined among the other requirements required for its successful execution.

3 https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
omni-path-architecture-performance-overview.html.

https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html


80 L. A. Torres and C. J. Barrios

It should be noted that there are two types of scripts when defining mod-
ules. The first one is using TCL4 while the second one is using LUA5, which
is distinguished from the first by using the .lua extension. Both types work
for the creation of a basic application module that only requires defining the
typical environment variables such as PATH, LD LIBRARY PATH, among
others, but LUA has a number of functions6 that allow the administrator
to create more optimized modules7. The use of Spack8 is also recommended,
which provides the cluster with a tool for managing multiple versions and
software configurations through environment modules. In the proposed imple-
mentation Spack was used instead of EasyBuild9 due to the experience of the
administrators in this tool, but it can be used both software repositories if so
required and if deemed necessary by the administrator.

– PowerShell: It is a tool developed in Python that allows you to execute
commands in parallel on all the nodes of the cluster and is highly scalable10.
These types of tools are essential and allow simplifying routine tasks such
as updates, maintenance, making copies of files and folders in directories
not mounted via NFS. This tool was chosen over Clusterssh11 motivated
by the search for simplification in administrative tasks and the reduction of
implementation times of a new cluster.

– NHC (node health check): One of the main tasks of administrators is to
ensure the correct operation of each node of the HPC platform. NHC allows
SLURM to monitor that each node is working properly, preventing user jobs
from running on nodes marked as unhealthy. If SLURM finds any hardware
failure or misconfiguration reported by NHC, the node is marked drained.

In the previous generalizations, the entire base system required for a basic
implementation of a cluster is shown, keeping in mind the fundamental idea of
providing those tools that improve the efficiency of the cluster. The next task
to carry out is the choice of the task manager and its configuration. It was
mentioned earlier that OpenHPC has two options, Slurm or PBS. The proposed
implementation methodology will discuss Slurm and some configuration options
that are considered necessary to improve performance and efficiency, but it does
not mean that the use of PBS will incur design deficiencies or any decrease
inefficiency.

SLURM. One of the most time-consuming tasks in the implementation of an
HPC cluster is the installation and configuration of the task manager, especially
4 https://en.wikipedia.org/wiki/Tcl.
5 https://en.wikipedia.org/wiki/Lua (programming language).
6 https://lmod.readthedocs.io/en/latest/050 lua modulefiles.html#lua-modulefile-

functions-label.
7 https://lmod.readthedocs.io/en/latest/015 writing modules.html.
8 https://spack.readthedocs.io/en/latest/.
9 https://easybuild.readthedocs.io/en/latest/.

10 https://clustershell.readthedocs.io/en/latest/.
11 https://github.com/duncs/clusterssh.

https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://lmod.readthedocs.io/en/latest/050_lua_modulefiles.html#lua-modulefile-functions-label
https://lmod.readthedocs.io/en/latest/050_lua_modulefiles.html#lua-modulefile-functions-label
https://lmod.readthedocs.io/en/latest/015_writing_modules.html
https://spack.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/
https://clustershell.readthedocs.io/en/latest/
https://github.com/duncs/clusterssh


Methodology for Design and Implementation an Efficient HPC Cluster 81

when you want to include certain features such as Infiniband within its config-
uration. Advanced administrators have the experience to easily deal with these
settings, but it can still take some time to get it working properly. Therefore,
it is proposed to use the SLURM and MUNGE12 packages that come in the
OpenHPC repository. Finally, it only remains to dedicate time to configuring
Slurm according to the characteristics of the cluster and the policies for the task
manager that are defined by the administrator.

There are a large number of configuration options in the slurm.conf file13 that
will not be detailed as they are outside the scope of this paper. However, the
configuration parameters related to the SCHEDULING section will be discussed
and some recommendations for their configuration will be given that will help
the administrator to improve the efficiency of the use of resources.

– SchedulerType: Specifies the scheduler plugin to use. This parameter
has two options: schedbackfill and schedbuiltin. The default option is
schedbackfill and we recommended use it but the following parameters should
be established to improve to the scheduler: DefaultTime (default job time
limit), MaxTime (Maximum job time limit) and OverTimeLimit (Amount
by which a job can exceed its time limit before it is killed). The optimal values
of these parameters must be set according to the infrastructure and it is a
task to trial and error.

– SelectType: Establishes how the resources of each node are used. The default
option allocates nodes to jobs in exclusive mode, in other words, another job
can not use the node even if resources are available. The best form to use
the total resources is to set this parameter in cons res (consumable resource)
allowing manage them on a much more fine-grained basis.

– SelectTypeParameters: Consumable resources in our cluster. There are
several values but the main consumables are the memory and the cores of
the nodes, so, we set this value CR Core Memory. The rest of the con-
figurations depend on the cluster and must be established by the systems
administrator.

– PriorityType: By default, SLURM use FIFO (First In, First Out) to assigns
the run priorities to each job. The best option in an efficient cluster is to set
this value to priority/multifactor. This value depends on another series of
parameters to calculate the priority of each of the jobs and they no will
show in this paper but the values of these parameters are a task to trial and
error [20].

It should be noted again that the detail of the SLURM configuration is not
entered into because of the differentiation that must be made in the config-
uration depending on the hardware resources and the policies defined by the
administrators. Likewise, the configuration of generic resources (GRES) such as
GPU cards is not mentioned and the task/cgroup plugin is not included, but the

12 https://github.com/dun/munge.
13 https://slurm.schedmd.com/SLUG19/Priority and Fair Trees.pdf.

https://github.com/dun/munge
https://slurm.schedmd.com/SLUG19/Priority_and_Fair_Trees.pdf


82 L. A. Torres and C. J. Barrios

reader is recommended to delve into this topic if its configuration requires the
use of these resources14.

Finally, it is worth remembering that within the SLURM configuration file
you must specify the use of NHC after all the configuration of the nodes has
been performed and their characteristics added to the slurm.conf file.

Lightweight Directory Access Protocol. Despite the fact that OpenLDAP
is not an essential tool in terms of performance if it is in terms of efficiency and
is mentioned here as one of the main components of a functional cluster.

LDAP is typically configured with its basic schema and is not usually modi-
fied to its tree because it is sufficient for system user management. However, we
have noted that collaborative work has increased among users, leading to stor-
age spaces shared among members of a research group or involved in the same
project. Therefore, good practice in implementing LDAP is the use of dynamic
groups [21] that allows you to assign different levels of access to different storage
spaces within the HPC platform.

In this sense, it is understood that the LDAP service is essential and must
have a mirror server that provides high availability of access to the platform. In
other words, if the main access server experiences a service outage, the backup
server is expected to offer the services while the main server recovers. This type
of design requires a more dense infrastructure that the vast majority of small
HPC labs do not have. To avoid access problems to the platform in the event
of a total crash of the LDAP servers or if there is no redundant server, SSSD is
used, which was explained in Sect. 2.5.

Finally, not only user access to the platform should be regulated. Storage
spaces such as the user’s home and project and research group folders must have
restrictions that are implemented through the use of disk quotas in conjunction
with LDAP.

This series of cluster implementation steps are proposed as an agile and
efficient methodology that can be replicated in other HPC laboratories and that
can optimize the task manager and the administration of the cluster and users by
the administrator. The following section will show the results obtained from the
HPL benchmark in order to show the correct operation of the cluster using the
proposed methodology. However, these results are not directly related to various
administrative tools that have been presented in this work and that cannot be
quantitatively evaluated and are recommendations of the authors based on their
experience in the implementation and administration of HPC laboratories.

4 Benchmarks and Results

HPC labs usually evaluate the performance of their clusters by running different
benchmarks where the most common is Linpack and the most used implemen-
tation is HPL15 explained in Sect. 2.6. This in turn is the tool used to position
14 https://slurm.schedmd.com/SLUG19/cgroups and pam slurm adopt.pdf.
15 https://www.netlib.org/benchmark/hpl.

https://slurm.schedmd.com/SLUG19/cgroups_and_pam_slurm_adopt.pdf
https://www.netlib.org/benchmark/hpl


Methodology for Design and Implementation an Efficient HPC Cluster 83

the most powerful supercomputers in the world listed in the TOP500. It should
be noted that these performance measures obtained and the comparison made
with the five most powerful supercomputers in the world do not really show the
efficiency of the cluster itself, but they do show its correct operation by using
the proposed methodology.

4.1 Results and Evaluation

The cluster for which the design and implementation was carried out following
the proposed methodology is made up of 14 servers

– 11 Servers:
• ProLiant SL390s G7
• 2 Intel Xeon E2.40 GHz processors
• 102 GB of RAM

– 3 Servers:
• ProLiant SL390s G7
• 2 Intel Xeon E2.67 GHz processors
• 102 GB of RAM

– Infiniband Mellanox Technologies MT26438 IB QDR/10GigE of Mellanox

Table 1 shows the results obtained by carrying out three tests on the cluster.
Two of them were made for the Intel Xeon E5645 processor model using 6 and
11 nodes, the third test was performed on the three nodes with Intel Xeon
E5640 processor. The parameter values for HPL were found using the equations
presented in Sect. 2.6. The NB value was selected from the values 96, 112, 128,
and 144 where the best Rpeak was for the value 112.

The Rpeak cluster of the cluster is obtained by multiplying the value of Rpeak

by the number of processors in a server by the number of servers used in the
measurement.

Table 1 shows the results obtained by carrying out three tests on the cluster.
Two of them were made for the Intel Xeon E5645 processor model using 6 and
11 nodes, the third test was performed on the three nodes with Intel Xeon
E5640 processor. The parameter values for HPL were found using the equations
presented in Sect. 2.6. The NB value was selected from the values 96, 112, 128,
and 144 where the best Rpeak was for the value 112.

Table 1. HPL best results

Processor Nodes MPI Proc NB PxQ N Rpeak Rpeak cluster Rmax Efficiency

Xeon E5645 6 144 112 12× 12 256256 57,6 691,2 556,9 0,804

11 264 112 12× 22 372512 57,6 1267,2 1035 0,8168

Xeon E5640 3 48 112 8× 6 162064 42,72 256,32 215,84 0,842



84 L. A. Torres and C. J. Barrios

Table 2 shows the performances of the first 5 supercomputing machines pre-
sented in the TOP500 in November 201916. These results obtained by the imple-
mentation of the methodology described in this document show an acceptable
operation by simplifying the tasks of deploying an HPC cluster.

Table 2. First HPC supercomputers - TOP500

Rank System Rmax Rpeak Effiency

1 Summit 148600 200749,9 0,7402

2 Sierra 94640 125712 0,7589

3 Sunway TaihuLight 93014,6 125435,9 0,7415

4 Tianhe-2A 61445,5 100378,7 0,6121

5 Frontera 23516,4 38745,9 0,6069

5 Conclusions

In conclusion, the use of the proposed methodology in the design and imple-
mentation of the cluster relying on the software repository and the best practice
recommendations provided by OpenHPC simplified the tasks for the HPC labo-
ratory start-up. In fact, the decrease in platform update times was also observed
along with the complexity of installation and configuration of certain scientific
applications through the use of Spack. Finally, according to the results obtained
from the HPL tests, it was observed that the implementation of the cluster using
the described methodology presents good performance results when executing
tasks that require intensive computation.

References

1. Schulz, K.W., et al.: Cluster computing with OpenHPC. In: HPC Systems Profes-
sionals Workshop (2016)

2. Thornton, J.E.: The CDC 6600 Project. Ann. Hist. Comput. 2(4), 338–348 (1980).
https://doi.org/10.1109/MAHC.1980.10044

3. Sen, S.K., Agarwal, R.P.: Computing: birth, growth, exaflops computation and
beyond. In: Flaut, D., Hošková-Mayerová, Š., Ispas, C., Maturo, F., Flaut, C.
(eds.) Decision Making in Social Sciences: Between Traditions and Innovations.
SSDC, vol. 247, pp. 3–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-30659-5 1

4. Papadopoulos, P.M., Katz, M.J., Bruno, G.: NPACI rocks: tools and techniques
for easily deploying manageable Linux clusters. Concurr. Comput.: Pract. Exp.
15(7–8), 707–725 (2003)

16 https://www.top500.org/lists/2019/11/.

https://doi.org/10.1109/MAHC.1980.10044
https://doi.org/10.1007/978-3-030-30659-5_1
https://doi.org/10.1007/978-3-030-30659-5_1
https://www.top500.org/lists/2019/11/


Methodology for Design and Implementation an Efficient HPC Cluster 85

5. Scott, S.L.: OSCAR and the Beowulf arms race for the “cluster standard”. In:
2001 IEEE International Conference on Cluster Computing (CLUSTER 2001),
8–11 October 2001, p. 137, Newport Beach (2001)

6. Aydin, S., Bay, O.F.: Building a high performance computing clusters to use in
computing course applications. Procedia - Soc. Behav. Sci. 1(1), 2396–2401 (2009)

7. Hoste, K., Timmerman, J., Georges, A., Weirdt, S.D.: EasyBuild: building software
with ease. In: 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012, pp. 572–
582 (2012)

8. Gamblin, T., et al.: The spack package manager: bringing order to HPC soft-
ware chaos. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, 15–20
November 2015, pp. 40:1–40:12 (2015)

9. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

10. Wang, L., et al.: BOPS, Not FLOPS! a new metric and roofline performance model
for datacenter computing (2018). http://arxiv.org/abs/1801.09212

11. Dongarra, J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurr. Comput.: Pract. Exper. 15, 803–820 (2003). https://doi.org/
10.1002/cpe.728

12. Libri, A., Bartolini, A., Cesarini, D., Benini, L.: Evaluation of NTP/PTP fine-grain
synchronization performance in HPC clusters. In: ACM International Conference
Proceeding Series (2018)

13. Supercomputación y Cálculo Cient́ıfico (SC3). https://www.sc3.uis.edu.co.
Accessed 20 May 2020

14. Top500. https://www.top500.org/. Accessed 20 May 2020
15. Clustering fundamentals. https://developer.ibm.com/articles/l-cluster1/.

Accessed 12 May 2020
16. Lightweight Directory Access Protocol (LDAP). http://web.mit.edu/rhel-doc/5/

RHEL-5-manual/Deployment Guide-en-US/ch-ldap.html. Accessed 5 May 2020
17. SLURM Overview. https://slurm.schedmd.com/overview.html. Accessed 8 May

2020
18. SSSD. https://access.redhat.com/documentation/en-us/red hat enterprise linux/

6/html/migration planning guide/sect-migration guide-security authentication-
sssd. Accessed 15 May 2020

19. Network File System (NFS). https://access.redhat.com/documentation/en-us/
red hat enterprise linux/7/html/storage administration guide/ch-nfs. Accessed 20
May 2020

20. SLURM Priority Multifactor. https://slurm.schedmd.com/priority multifactor.
html. Accessed 15 May 2020

21. ZYTRAX - Configuring Dynamic Groups. https://www.zytrax.com/books/ldap/
ch11/dynamic.html. Accessed 2 May 2020

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
http://arxiv.org/abs/1801.09212
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://www.sc3.uis.edu.co
https://www.top500.org/
https://developer.ibm.com/articles/l-cluster1/
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-ldap.html
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-ldap.html
https://slurm.schedmd.com/overview.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/priority_multifactor.html
https://www.zytrax.com/books/ldap/ch11/dynamic.html
https://www.zytrax.com/books/ldap/ch11/dynamic.html

	Methodology for Design and Implementation an Efficient HPC Cluster
	1 Introduction
	2 Background
	2.1 High Performance Computing
	2.2 OpenHPC
	2.3 Lightweight Directory Access Protocol
	2.4 Simple Linux Utility for Resource Management
	2.5 System Security Services Daemon (SSSD)
	2.6 High-Performance Linpack (HPL)

	3 Methodology
	3.1 Buildind a Efficient Cluster

	4 Benchmarks and Results
	4.1 Results and Evaluation

	5 Conclusions
	References




