
Dynamically Distributing Tasks
from an Unattended Parallel Compiler

with Cloudbook

José J. García-Aranda1, Juan Ramos-Díaz1, Sergio Molina-Cardín1,
Xavier Larriva-Novo2, Andrés Bustos3, Luis A. Galindo4,

and Rafael Mayo-García3(B)

1 Nokia, María Tubau 9, 28050 Madrid, Spain
2 ETSIT-UPM, Avda. Complutense s/n, 28040 Madrid, Spain
3 CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain

rafael.mayo@ciemat.es
4 Telefónica, Ronda de la Comunicación 2, 28050 Madrid, Spain

Abstract. A dynamic version of Cloudbook is presented in this work, a new
tool for automatically and unattendedly parallelizing codes which also lately dis-
tributes the tasks dynamically. Cloudbook is designed for Python codes and, above
all, makes the parallelization in a way in which the number and main characteris-
tics of the available infrastructure is taken into account for optimizing the execu-
tion (performance, bandwidth connection, etc.) in a dynamic way. Cloudbook is
designed to allow developers to get the technical benefits of automated distribu-
tion and parallelization of programs with a very low learning cost. It only requires
labelling the original code with a reduced set of pragmas located at function head-
ers. Results of the tests carried out with Cloudbook with several codes on a real
infrastructure are presented as well.

Keywords: Parallel computing · Compiler · Automatization

1 Introduction

In general terms, parallel computing refers to the use in combination of two or more
processes (threads, cores, computers…) to solve a single problem. This methodology
is carried out by using computing architectures in which several processors execute or
process simultaneously an application or computation. Thus, it is possible to perform
large computations by dividing the workload between more than one processor, all of
which execute their task through the computation at the same time in a predefined
scheme.

Compared to serial computing, parallel computing is then much better suited for
modelling, simulating, and understanding complex real world phenomena. Thus, the
primary objective of parallel computing, also known as parallel processing, is to increase
the available computation power for faster application execution or task resolution.

© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-68035-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_1&domain=pdf
http://orcid.org/0000-0002-0151-3954
https://doi.org/10.1007/978-3-030-68035-0_1


4 J. J. García-Aranda et al.

Today’s supercomputers employ parallel computing principles to operate and solve
complex problems. Some examples of computational science applied to natural sciences
are galaxy formation, climate change, weather forecast, energy production, bioinfor-
matics, material science, etc. Although parallel computing was firstly used for scientific
computing and the simulation of scientific problems, nowadays it is present in any field,
including human and social sciences too. This has led and is still leading to the design of
more powerful and efficient parallel hardware and softwaremaking a reality the so-called
High Performance Computing (HPC).

As a consequence, the use of the HPC infrastructure has become a challenge itself
with the advent of many-core systems, i.e. the parallelization of serial programs has
become a mainstream and cornerstone programming task.

Additionally, parallel computers based on interconnected networks need to have
somekind of routing protocols to enable the transmission ofmessages between nodes that
are not directly connected. Themedium used for communication between the processors
is likely to be hierarchical in large multiprocessor machines and have a strong influence
on the cluster performance when large parallel calculi are executed. The variation of the
performance with the number of computer resources is known as scalability and depends
on the hardware and architecture of the physical resources aswell as on the computational
characteristics of the problem to be solved. Scalability must be maximized, but it is
usually degraded when the computing resources or the problem size rise.

Summarizing, parallel computing is highly useful, but presents several challenges
that become more and more complex to be overcome as the size of the infrastructures
increase. Companies must manufacture efficient supercomputers from the energy point
of view that, in addition, should be efficiently exploited from the usage point of view. In
this sense, the way in which the parallelization is implemented is key as programming
to target parallel architectures can be highly difficult and requires human expertise and
know-how.

The first aim of this work is to provide a tool that automatically and unattendedly
parallelizes a code, releasing the final user of designing such a parallel implantation as
well as of debugging processes. Lately, a second goal is achieved by providing dynamic
capabilities for distributing the parallel tasks by the tool itself in order to optimize the
computational efficiency in terms of performance.

2 Related Work

As aforementioned, multi- and many-core machines are very common nowadays, allow-
ing a number of problems exploiting the tremendous processing power of suchmachines.
Such goal can only be efficiently achieved by parallel compilation. Automatic conver-
sion of serial code into its functionally equivalent parallel version remains as an open
challenge for researchers for the last years. These tools are intended to transform legacy
serial code into parallel code to execute on parallel architectures.

With respect to parallel compilers, a couple of reviews of the different tools can be
found in [1] and [2]. Roughly speaking, these works compare different automatic tools
(see references therein) on the basis of technology, language, available platforms and
features, and drawbacks. Themost important phase within the flowchart for parallelizing
the code is the detection of potential blocks, which is also the most time consuming part.



Dynamically Distributing Tasks from an Unattended Parallel Compiler 5

It is also found that most of the tools are either oriented to FORTRAN or C/C++ as
they clearly describe the operational flow in the code. Then, it is not strange that even
Barve et al. developed a serial to parallel C++ code converter for multi-core machines
after the publication of their revision [3]. Another posterior work presented a novel
architecture based on web services which is able to translate any legacy software appli-
cation into a parallel code [4]. In a similar way, André et al. [5] present an environment
for programming distributed memory computers using High Performance Fortran, with
emphasis put on compilation techniques and distributed array management. OpenMP
should be also highlighted, thewell-known application programming interface for shared
memory parallel computing [6].

With a focus on data-parallel compiler, the aim has been to equal the performance of
carefully hand-optimized parallel codes. For tightly coupled applications based on line
sweeps, the Rice dHPF compiler [7] and its extension [8] can be cited. Most closed to
Data-analytics, the TOREADOR tool has been recently published [9].

Specific developments for GPU environments such as the thesis by Hsu [10] or
for executions carried out by virtual machines with the HPVM framework [11] can be
consulted, but those works are less related to the one presented here.

On the other hand, literature about optimizing the execution of codes along runtime
taking into account the underlying infrastructure is huge. Just to focus on heteroge-
neous architectures, the OmpSs framework is able to provide dynamic allocation of jobs
among other duties [12], but other solutions for heterogeneous resources are available
too [13–15]. For loosely coupled applications, such as Monte Carlos codes, the Montera
framework provided good results on real in production distributed heterogeneous plat-
forms [16]. Works like this opened the door to widen this kind of solutions to virtualized
environments [17].

Analyzing the existing solutions, it can be deducted that all of them are still far away
from their expectations, focused on a specific kind of application/environment, or do not
stack a parallel compiler to the available infrastructure along runtime. The aim of this
work is then to present a general-purpose tool that will both make codes parallel and
will also take into account the infrastructure on which those codes are executed in order
to maximize their performance.

3 The Unattended Parallel Compiler

There are two main problems in parallel execution: the generation of pieces of code
to be executed on each processor as well as the efficient deployment and coordinated
execution of these tasks. This work focuses on both problems by splitting a Python
source code into the so-called deployable units (DU) and lately distributing these DUs
in a coordinated way allowing communication among them if needed. This solution is
called Cloudbook.

In order to achieve an efficient parallel execution, the proposed solution Cloudbook
defines several pragmas to be integrated in the source code, which will be interpreted by
a “maker” designed to split the code into DUs. The main components of the proposed
solution are summarized in the following architecture:



6 J. J. García-Aranda et al.

– Maker: comprises the graph analyzer of source code and the splitter, which produces
the DUs

– Deployer: assigns the DUs to the available resources and launches the execution
– Agents: execute the DUs.

During execution of Cloudbook programs, there is not need for a central server which
attends the requests from agents asking for tasks o providing results, because Cloubook
allows agents communicate each other and therefore the figure of a central controller
server is not needed.

3.1 Requirements

In order to both optimize parallelism and improve performance, the programmer can
include a series of labels in the functions that would indicate the agents how to execute
those functions.

Certain Cloudbook Pragmas may reflect the fork-join model spirit [18]. However,
in Cloudbook the invokers do not match the concept of “parent” of the fork-join model
because (among other details) tasks are executed on different agents, do not share a copy
of parent’s variables, threads can be either created at invoker or invoked, and parallel
functions cannot return values.

Cloudbook supports the following language extensions (pragmas) for functions:

– #__CLOUDBOOK:NONBLOCKING__: functions with this label cannot return any-
thing.WhenCloudbook detects a non-blocking function, its code ismodified to launch
a thread at the invoked agent and returns immediately. These functions cannot return
any value. Restriction: function parameters cannot be objects, only basic types.

– #__CLOUDBOOK:PARALLEL__: these functions are deployed in all DUs. These
functions are non-blocking by construction and therefore are not allowed to return
anything. The difference between non-blocking and parallel consists of the number of
DUs in which the function is deployed. Non-blocking functions are deployed in only
one DU, whereas parallel functions are deployed in all available DUs. Parallel func-
tions are synchronizable by using #CLOUDBOOK:SYNC__ (see below). Restriction:
function parameters cannot be objects, but basic types.

– #__CLOUDBOOK:RECURSIVE__: these functions are deployed in all DUs. The
behavior is defined to maximize the level of recursivity. Each recursive invocation
from any DU invokes other DU, which means that in a circle with 10 machines
you have 10 times more recursive level than in one machine. Restriction: function
parameters cannot be objects, only basic types.

– #__CLOUDBOOK:LOCAL__: these functions are deployed in all DUs, in order to
be available for local invocations, avoiding communications. This pragma is intended
to be considered at “tuning” phase of the program. There is no restriction in the
parameters. They can be objects as well as basic types.

– #__CLOUDBOOK:DU0__: these functions are deployed in DU0. This pragma is
useful if your program has certain interactive functionality such as GUIs or keyboard
input, which can be forced to be executed in Agent 0.



Dynamically Distributing Tasks from an Unattended Parallel Compiler 7

The pragmas at the level of function invocation are:

– #__CLOUDBOOK:NONBLOCKING_INV__: if the function is not defined as NON-
BLOCKING but the programmer does not want to wait for its execution, can invoke
the function using this label. In this case, a thread is launched at invoker agent, whereas
when the label is used at function definition, the thread is created at the invoked agent.

– #__CLOUDBOOK:SYNC[:timeout]__: this will wait until all the non-blocking oper-
ations have finished. In order to be able to continue executing in the cases where an
agent stops working, the optional parameter timeout (specified in seconds) may be
set after the SYNC word and a colon (:). In the case the optional parameter is set,
the program will continue running whenever the all non-blocking operations have
finished or when the waiting time exceeds the timeout value (whatever happens first).
Example: #__CLOUDBOOK:SYNC:3__.

Cloudbook supports global variables, but special treatment is needed:

– global: this Python keyword indicates to Cloudbook that must either load or refresh
the value of global var. Since then, a local cache copy of the var is used. The use of a
local copy benefits the performance, reducing communications. In this case, “global”
is not a Cloudbook pragma, but a Python keyword

– Critical sections: in order to support “safe variables” (which only can be used by one
DU at the same time) or any other critical resource, Cloudbook supports the definition
of critical sections, which can be defined by the pragmas #__CLOUDBOK:LOCK__
and #__CLOUDBOK:UNLOCK__; this way the modifications of global variables or
critical data are only accessed by one agent at a time

– #__CLOUDBOOK:NONSHARED__: the variable is created at any agent but non
shared among different agents. This type of variables allows having unique identifiers
for each agent, and different data at each agent if it is needed

– #__CLOUDBOOK:CONST__: this pragma allows Cloudbook to manage constant
global variables in an efficient way (replicate them among all DUs).

The use of global variables implies the creation of the following strategy:

– Each global variable is translated into one non-idempotent management function. It
exists only in a unique DU

– The management function includes the global var as a non-volatile internal attribute
Additionally, this management function must be a critical section in order to allow
multiple access from DU outside

– Each function using the global var requests its fresh value at the beginning, invoking
the management function, and stores it into volatile internal variable, which is used
during the function execution time

– If inside the body of a function that use the global variable is required a refresh of its
value, it can be possible invoking another local function that get at the beginning a
fresh global variable value and returns its value.



8 J. J. García-Aranda et al.

In order to be refreshed by Cloudbook conveniently, global variables should be
defined explicitly, but there is no need for a specific pragma. On the other side, objects
work as a function abstraction, i.e., themaker analyzes the procedural part of the program
and generates the different DUs.

Last but not least, the generic configuration parameters for Cloudbook are:

– Circle ID, unique identifier of a circle, being a circle a set of available resources
– Circle definition, which includes features of each machine belonging to the circle
– Distributed file system to be used by all agents, which is part of the circle properties
– Desired deployable units, number of DUs, which normally is greater or equal to the
number of machines

– Cloudbook_maxthreads, which allows launching up to
CLOUDBOOK_MAXTHREADS functions in parallel and waits to launch the next
one until any of the previously launched functions ends. This limit allows keeping
under control the number of resources at any invocation of parallel functions.

4 Cloudbook Global Architecture

The Cloudbook global architecture for a dynamic behavior is much simple and is
composed of the following components (see Fig. 1 too):

– Agent: This is the component that will be in eachmachine that is part of the Cloudbook
circle. Tasks:

• Executing code and communicating with other agents
• Start the application (through invocation to “run” at deployer service)

– Maker: This component receives a link to the code (which is located in the distributed
FS). The maker performs two tasks:

• Graph analysis: parses the code and produces the invocations matrix
• Split the program: groups functions into code pieces, which are the “Deployable
Units” (DU). The number of DU depends on circle definition (number of agents
and machines) and possible certain additional criteria.

– Distributed file system: Thismodule stores code and data. It is accessible by all agents;
the original code is located on folder the “original” and the maker saves the DUs on
the “cloudbook” folder. Agents are agnostic to this component. All machines mount
the distributed file system as a local directory and use it in the same way as local

– Deployer service: This module is responsible for the creation of the cloudbook direc-
tory, which contains the assignment of the deployable units to the different agents,
and starts the execution. Tasks:

• Create the cloudbook directory
• When “run” command is invoked, checks if all the required agents are online and
then start the execution



Dynamically Distributing Tasks from an Unattended Parallel Compiler 9

– Stats monitor: this module contains the statistics associated to the DUs’ executions in
order to allow a dynamic behavior of the tool

Cloudbook relies on distributed file systems to make DUs accessible to all agents
and also as storage for program files, which must be accessed by all agents. Cloudbook
is then agnostic to the file system and the programmer must decide which file system
to use in order to get a scalable communication mechanism avoiding using centralized
servers (for small/medium projects a NFS server may be enough, for big/huge projects
a bit torrent FS may be needed).

Fig. 1. The Cloudbook architecture

In order to replace these centralized servers, certain files have been defined for
allowing communication of all platform components:

– agent_<XXX>_grant.json: written by agent, read by deployer. Includes information
of agent identification, power granted by the agent, and public/private IP addresses.
There is one file per agent and the deployer reads and deletes them periodically. The
agents must re-create the file periodically and the deployer may deduce which agents
are new and which agents have stopped based on comparison of existing files

– Alarm files: written by agents, read by the deployer. There are two types of alarm:
WARNING (if it is possible to continue executing) and CRITICAL (if not possible).
When the deployer reads this file (only one file for all agents exists), it will perform
a hot redeployment (WARNING file) or a cold redeployment (CRITICAL file)

– Redeploy messages: written by the deployer, read by agents. Once the deployer has
produced a new cloudbook.json dictionary file, it will inform all agents creating a
COLD_REDEPLOY file or a HOT_REDEPLOY file. This file will be deleted in the
next deployer monitoring period



10 J. J. García-Aranda et al.

– stats_agent_<XX>.json: created by agents, read by the stats monitor. This file con-
tains execution stats which also contains information to tune the matrix at make
phase

– matrix_<timestamp>.json: created by the stats monitor, read by the maker: contains
a new version of the matrix taking into account execution stats

– du_list.json: created by the maker, read by the deployer, this file contains all DUs, in
order to be assigned by the deployer to the alive agents

– function_mapping.json: created by the maker, read by the stats monitor. This file
contains the mapping between original name functions and final name functions

5 Dynamic Execution

With the previously described architecture, it is possible to perform dynamic
(re)deployment and execution of codes. By profiting from the surveillance monitor,
it is possible to periodically check changes in the number of available agents and alarms
raised by agents in order to perform both a “hot” (without restarting the program) or
“cold” (program must be restarted) redeployment. Redeployments are initiated in the
following cases:

– Under critical alarms sent by agents (they cannot continue running), the surveillance
monitor must restart the deployment and in some cases the maker

– Under warning alarms sent by agents (they can continue running), the surveillance
monitor must make a hot redeployment and inform the agents to load the new
Cloudbook

– When new agents have been added or others have stopped, in a way in which the
new Cloudbook dictionary must be compatible with the previous one, so orphan DUs,
stopped agents, new agents, and critical DUs are properly reassigned by Cloudbook.

In order to keep track of the number of available agents, the surveillancemonitor will
use the agents_grant.json file. Agents will update this file periodically (period is chosen
taking into account both the distributed file system synchronization time and processing
time of the monitor) and surveillance monitor will explore this file periodically using a
larger interval. With the surveillance monitor component, the deployer will never stop
because sleeps and wakes up periodically (this strategy is better than a scheduled OS
task and allows easily stopping the deployer and the surveillance monitor mechanism).

The dynamic execution also allows improving performance based on collected statis-
tics. The redeployment for improving performance must take into account stats gathered
by agents. These stats provided by the agents feed a stats monitor, which dynamically
builds a matrix and compares with existing matrix used at current deployment. Stats
generated by agents include the number of times that each function has been invoked by
each “invoker” function. In order to make it possible, the name of the “invoker” function
will be sent at each invocation.

The existing matrix must be an output from the maker. The latter must invoke the
graph analyzer to build and fill the matrix only the first time. Therefore, an optional
parameter to use existing filled matrix must be included in the invocation to maker, i.e.



Dynamically Distributing Tasks from an Unattended Parallel Compiler 11

it must be possible to do a “remake” and not only a “make”, and for make it possible
the matrix parameter is needed. The matrix file used as input is created by the stats
monitor and improves the “default” assumptions that maker does when building the
matrix. By doing so, the performance can be improved in terms of the way in which the
code has been parallelized and distributed, but also in terms of performance based on
the underlying infrastructure as additional features can be added for doing an intelligent
redeployment. Stats provide real information about invocations among functions and
allow taking better decisions when the code of the original program is separated into
different DUs, which are executed on different agents. Stats may suggest that certain
functions should be deployed together in the same DU.

The way in which the dynamic redeployment is carried out is depicted in Fig. 2.

Fig. 2. The Cloudbook dynamic redeployment

6 Results

Experiments have been carried out in two platforms: a group of low-end machines and
an HPC cluster.

6.1 Group of Low-End Machines

For proof of concepts tests, platform is composed of four Raspberry Pi2 interconnected
with an Ethernet switch and sharing a NFS file system to store the program (DUs) and
files published by each agent. The characteristics of this circle of machines are:



12 J. J. García-Aranda et al.

– Processor: Broadcom BCM2837B0, Cortex-A53 64-bitSoC@ 1.4 GHz
– RAM: 1 GB LPDDR2 SDRAM
– Wi-Fi+Bluetooth: 2.4 GHz y 5 GHz IEEE 802.11.b/g/n/ac, Bluetooth
– Operating System: Raspbian

In order to test the correctness of Cloudbook, two first examples have been adapted
to the tool paradigm in order to include the simple and reduced pragmas that Cloudbook
needs to find out within the code in order to successfully make parallel an initial serial
code. These two problems are the N-body problem [19] and the tower of Hanoi game
[20]. According to the results, they have been used as valid proof of concept for this
work.

For the sake of completion, the results related to the N-body problem executed on
Cloudbook can be watched in a video [21], where it is demonstrated how the code is run
in the four aforementioned raspberries. The time spent in the algorithm by Cloudbook is
lower than the sequential version, from a certain number of bodies. The benefit is bigger
when the number of bodies processed by one invocation is high, and the communication
time becomes non relevant. Regarding the performance and taking into account the test
bed, Cloudbook starts performing better than the serial version from ~3,000 bodies on.
From this point, the speed up grows linearly, close to a 4x factor as is depicted in Fig. 3.

Fig. 3. Results of the N-body execution on the Cloudbook test bed. X-axis reads for number of
bodies and Y-Axis for seconds; they are not included in the Figure for readability reasons



Dynamically Distributing Tasks from an Unattended Parallel Compiler 13

With respect to the Hanoi game and in a similar way, it is also found out that Cloud-
book provides potentially 4 times bigger stack for recursive invocations in the aforemen-
tioned testbed, but what it is most important is to notice how this recursive problem is
able not to collapse thanks to Cloudbook. It has been demonstrated that for a ten of pieces
a sequential version would crash meanwhile Cloudbook is able to keep on working on
finding out the solution. Speed in recursive invocations is not improved but stack size is
increased linearly with the number of agents involved.

In order to test the solution proposed with a different approach, some tests have been
performed with Cloudbook executing an Intrusion Detection System (IDS). This way,
the focus is put most on dataset management and process. The comparison between one
machine and Cloudbook execution is shown in Table 1 below.

Table 1. Local and Cloudbook execution times for an IDS.

Data size (lines) Local execution time (s) Cloudbook execution time (s)

100,000 5.67 4.25

1,000,000 51.82 25.52

5,000,000 257.06 139.70

10,000,000 529.09 300.96

50,000,000 2,737.52 1,363.32

157,602,189 13,846.43 6,451.53

6.2 HPC Cluster

Twomore computationally demanding tests have been carried out on aHPCenvironment.
We runwithCloudBook a genetic algorithm in theXULAcluster, located at theCIEMAT
data center. We use the new partition of the cluster (upgraded in March 2020, named
Xula2), which is composed of 56 computing nodes and connected through IB HDR100.
Each node contains 2 processors Intel® Xeon® Gold 6254 (18C, 36T) @3.10 GHz and
192 GB of RAM memory. The common folder for Cloudbook is mounted on a Lustre
filesystem.

The genetic algorithm adapted to Cloudbook is DiVoS [22]. DiVoS is a simulation
code that finds the minimum energy of a superconducting layer by finding the optimal
position of its magnetic vortices. In the genetic algorithm, the chromosomes are the
position of the vortices and the fitness function is precisely the (negative) energy of the
system. Bymeans of heritage, crossovers, and natural selection rules, the algorithm finds
the best individual of the population, i.e. the one with lowest energy and thus the most
likely state of the system.

The DiVoS adaptation to CloudBook is rather straightforward: we have parallelized
a parameters scan in the input configuration file. In this way, we can easily perform
physical parameters sweeps and numerical convergence studies in a fast and easy way
from the user point of view. We must point out that this parallelization does not require



14 J. J. García-Aranda et al.

any communication between the agents. The two tests carried out are intended to show
the scaling of the computing time with the number of agents for a fixed problem size
and to compare the performance with the Multiprocessing Python built-in library. For
Cloudbook, the time measure is the execution time of the cloudbook_run.py program,
not taking into account the time needed to make, deploy, or activate the agents.

Fig. 4. Results of the DiVoS execution profiting from the Cloudbook solution and the Multipro-
cessing Python built-in library (homogenous tasks)

In the first test we consider a problem that consists of 128 identical tasks, andmeasure
the execution time in terms of the number of agents (or CPUs) used for the computation
both with Cloudbook and the Multiprocessing library. A number of tasks equal to the
number of available agents is run simultaneously, with a #__CLOUDBOOK:SYNC__
pragma at the end of each batch of tasks. Each case is executed 5-10 times, using the
average value and assuming an error equal to twice the standard deviation. We also
calculate the execution time corresponding to ideal scaling in the two cases. The results
are plotted in Fig. 4.

In the second test the problem is formed by 80 inhomogeneous tasks. Due to the
synchronization step, the scaling here is a bit worse, as can be seen in Fig. 5:

We can extract two conclusions from these tests:

– Cloudbook presents very similar performance as the Multiprocessing library within
the error bars.



Dynamically Distributing Tasks from an Unattended Parallel Compiler 15

Fig. 5. Results of the DiVoS execution profiting from the Cloudbook solution and the Multipro-
cessing Python built-in library (heterogeneous tasks)

– Cloudbook can scale up much more than the Multiprocessing library, because the
latter is limited to the number of available processors in each node (36 in Xula2) and
Cloudbook allows the deployment between any number of nodes.

7 Conclusions

In this work, a new tool called Cloudbook that automatically and unattendedly paral-
lelizes serial codes is presented.Unlike previous similar solutions, it is focused onPython
codes and has produced tangible results on production infrastructures at scale, which
are also reported via digital content. Cloudbook does not only make the parallelization,
but also is aware of the number and main characteristics (performance, bandwidth con-
nection, etc.) that the available resources provide in order to decide a smart distribution
of the parallel tasks (DUs) in order to optimize the performance.

The limits of the efficiency of parallel programmingwith Cloudbook are given by the
size of the problem and the cost of communication. Performance results can be improved
by taking advantage of the multi-processing in the agents, using their available cores.

Cloudbook follows the model of HPC and HTC computing in a versatile way and
can be adapted to a large set of problems, without forcing the programmer to make a
distributed design of the problem. The main contributions of Cludbook are:

– Provision of automatic splitting
– Generic, not simply bounded to master-slave based programs, for example



16 J. J. García-Aranda et al.

– Valid for both distributed and parallel environments
– Dynamic redeployment based on performance
– Low required level of knowledge

Having demonstrated its correctness, the methodology that Cloudbook applies for
making parallel a serial code is also extended to dynamic environments in which
resources are continuously integrated and decommissioned into/from the available
infrastructure, while the tool successfully responds to that on-the-fly.

References

1. Barve,A.,Khandelwal, S.,Khan,N.,Keshatiwar, S., Botre, S.: Serial to parallel code converter
tools: a review. Int. J. Res. Advent Tech. Special Issue National Conference “NCPCI-2016”
(2016)

2. Varsha, K.R.: Automatic parallelization tools: a review. IJESC 7(3), 5780–5784 (2017)
3. Barve, A., Khomane, S., Kulkarni, B., Katare, S., Ghadage, S.: A serial to parallel C++ code

converter for multi-core machines. In: Proceedings of the International Conference on ICT
in Business Industry & Government (2016)

4. Alsubhi, K.: An architecture for translating sequential code to parallel. In: Proceedings of
the 2nd International Conference on Information System and Data Mining, pp. 88–92, April
2018

5. André, F., Le Fur, M., Mahéo, Y., Pazat, J.-L.: The Pandore data-parallel compiler and its
portable runtime. In: Hertzberger, B., Serazzi, G. (eds.) HPCN-Europe 1995. LNCS, vol. 919,
pp. 176–183. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0046627

6. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP. The MIT Press, Cambridge (2008)
7. Chavarria-Miranda, D., Mellor-Crummey, J.: An evaluation of data-parallel compiler sup-

port for line-sweep applications. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pp. 7–17. IEEE, New York (2002)

8. Chavarría-Miranda, D., Mellor-Crummey, J., Sarang, T.: Data-parallel compiler support for
multipartitioning. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001.
LNCS, vol. 2150, pp. 241–253. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44681-8_36

9. DiMartino, B., Esposito, A., D’Angelo, S.,Maisto, S.A., Nacchia, S.: A compiler for agnostic
programming anddeployment of big data analytics onmultiple platforms. IEEETrans. Parallel
Distrib. Syst. 30(9), 1920–1931 (2019). https://doi.org/10.1109/TPDS.2019.2901488

10. Hsu, A.W.: A Data Parallel Compiler Hosted on the GPU. Indiana University, Bloomington
(2019)

11. Kotsifakou, M.: HPVM: heterogeneous parallel virtual machine. In: Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 68–80.
ACM Digital Library (2018)

12. Iserte, S., et al.: Dynamicmanagement of resource allocation for OmpSs jobs. In: Proceedings
of the First Ph.D. Symposium on Sustainable Ultrascale Computing Systems, NESUS COST
Action, Timisoara (2016)

13. Becker, T., Karl, W., Schüle, T.: Evaluating dynamic task scheduling in a task-based runtime
system for heterogeneous architectures. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm,
J., Pionteck, T. (eds.) ARCS 2019. LNCS, vol. 11479, pp. 142–155. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18656-2_11

https://doi.org/10.1007/BFb0046627
https://doi.org/10.1007/3-540-44681-8_36
https://doi.org/10.1109/TPDS.2019.2901488
https://doi.org/10.1007/978-3-030-18656-2_11


Dynamically Distributing Tasks from an Unattended Parallel Compiler 17

14. Ramírez-Velarde, R., Tchernykh, A., Barba-Jimenez, C., Hirales-Carbajal, A., Nolazco-
Flores, J.: Adaptive resource allocation with job runtime uncertainty. J. Grid Comput. 15(4),
415–434 (2017). https://doi.org/10.1007/s10723-017-9410-6

15. Becker, T., Busse, P., Schuele, T.: Evaluation of dynamic task scheduling algorithms in a run-
time system for heterogeneous architectures. In: 31st InternationalConferenceonArchitecture
of Computing Systems, Braunschweig, pp. 1–8 (2018)

16. Rodriguez-Pascual, M., Mayo-García, R.M., Llorente, I.M.: Montera: a framework for effi-
cient execution of Monte Carlo codes on grid infrastructure. Comput. Inform. 32, 113–144
(2013)

17. Rubio-Montero, A.J., Rodríguez-Pascual, M.A., Mayo-García, R.: A simple model to exploit
reliable algorithms in cloud federations. Soft. Comput. 21, 4543–4555 (2017). https://doi.org/
10.1007/s00500-016-2143-9

18. Kumar, A., Shorey, R.: Performance analysis and scheduling of stochastic fork-join jobs in a
multicomputer system. IEEE Trans. Parallel Distrib. Syst. 4, 1147–1164 (1993). https://doi.
org/10.1109/71.246075

19. Heggie, D.C.: The Classical Gravitational N-Body Problem. Encyclopaedia of Mathematical
Physics, Elsevier (2006)

20. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret.
Math. 20, 610–622 (2006)

21. Demo of the N-Body proof of concept and how it performs. https://drive.google.com/open?
id=193f30luFq22cy8QUjzzWHgMA8zKfUAv4

22. Rodríguez-Pascual, M.A., et al.: Superconducting vortex lattice configurations on periodic
potentials: simulation and experiment. J. Supercond. Nov. Magn. 25, 2127–2130 (2012).
https://doi.org/10.1007/s10948-012-1636-8

https://doi.org/10.1007/s10723-017-9410-6
https://doi.org/10.1007/s00500-016-2143-9
https://doi.org/10.1109/71.246075
https://drive.google.com/open?id=193f30luFq22cy8QUjzzWHgMA8zKfUAv4
https://doi.org/10.1007/s10948-012-1636-8

	Dynamically Distributing Tasks from an Unattended Parallel Compiler with Cloudbook
	1 Introduction
	2 Related Work
	3 The Unattended Parallel Compiler
	3.1 Requirements

	4 Cloudbook Global Architecture
	5 Dynamic Execution
	6 Results
	6.1 Group of Low-End Machines
	6.2 HPC Cluster

	7 Conclusions
	References




