
Sergio Nesmachnow
Harold Castro
Andrei Tchernykh (Eds.)

7th Latin American Conference, CARLA 2020
Cuenca, Ecuador, September 2–4, 2020
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 1327

Communications
in Computer and Information Science 1327

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Sergio Nesmachnow • Harold Castro •

Andrei Tchernykh (Eds.)

High Performance
Computing
7th Latin American Conference, CARLA 2020
Cuenca, Ecuador, September 2–4, 2020
Revised Selected Papers

123

Editors
Sergio Nesmachnow
Universidad de la República
Montevideo, Uruguay

Harold Castro
Universidad de los Andes
Bogotá, Colombia

Andrei Tchernykh
CICESE Research Center
Ensenada, Mexico

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-68034-3 ISBN 978-3-030-68035-0 (eBook)
https://doi.org/10.1007/978-3-030-68035-0

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8146-4012
https://orcid.org/0000-0002-7586-9419
https://orcid.org/0000-0001-5029-5212
https://doi.org/10.1007/978-3-030-68035-0

Preface

This CCIS volume presents selected articles from the 7th edition of the Latin American
High Performance Computing Conference (CARLA 2020), which was held on
September 2–4, 2020 in Cuenca, Ecuador. Due to the COVID-19 pandemic, CARLA
2020 was held in a virtual format. This event continues the previous conferences held
in South America (HPCLATAM) and Mesoamerica (CLCAR), for a total number of 12
conference editions since 2008.

The main goal of the CARLA 2020 Conference was to provide a unified scientific
platform for researchers, scientists, teachers, postgraduate students and practitioners
from different countries in Latin America and worldwide to share their current findings
in various areas of High Performance Computing and Artificial Intelligence. The
articles in this volume address these two relevant topics, covering several areas of
research and applications.

The main program consisted of seven keynote talks, fourteen oral presentations and
four poster presentations from international speakers highlighting recent developments
in each of the areas. Over two hundred distinguished participants from 26 countries
gathered virtually for this conference. The Program Committee of CARLA 2020
received 35 manuscripts, and 14 submissions were accepted, taking into account the
comments by reviewers. All papers included in these CCIS proceedings have under-
gone careful peer review by three subject-matter experts before being selected for
publication.

We would like to express our deep gratitude to all the contributors of CARLA 2020,
the Conference Chairs and CEDIA (Ecuadorian Corporation for the Development of
Research and Academia) who helped in many ways to organize the conference, and
also to the authors and reviewers for their endeavors that made it possible to efficiently
review and publish the papers. We also thank the participants of the conference, our
industry sponsors and the readers of the proceedings.

October 2020 Harold Castro
Sergio Nesmachnow
Andrei Tchernykh

Organization

General Chairs

Jaime Puente Lenovo, USA
Juan Pablo Carvallo CEDIA, Ecuador

Program Committee Chairs

Harold Castro Universidad de los Andes, Colombia
Dennis Cazar Universidad San Francisco de Quito, Ecuador

CCIS Publication Chairs

Harold Castro Universidad de los Andes, Colombia
Sergio Nesmachnow Universidad de la República, Uruguay
Andrei Tchernykh CICESE, México

Steering Committee

Mateo Valero Barcelona Supercomputing Center, Spain
Carla Osthoff National Laboratory for Scientific Computing, Brazil
Philippe Navaux Federal University of Rio Grande do Sul, Brazil
Isidoro Gitler Center for Research and Advanced Studies

of the National Polytechnic Institute, Mexico
Esteban Mocskos University of Buenos Aires, Argentina
Sergio Nesmachnow Universidad de la República, Uruguay
Alvaro de la Ossa Osegueda University of Costa Rica, Costa Rica
Esteban Meneses National High Technology Center, Costa Rica
Carlos Jaime Barrios

Hernández
Industrial University of Santander, Colombia

Harold Enrique Castro
Barrera

Universidad de los Andes, Colombia

Ginés Guerrero Laboratorio Nacional de Computación de Alto
Rendimiento, Chile

Rafael Mayo CIEMAT, Spain
Robinson Díaz Universidad Central de Venezuela, Venezuela

Program Committee

Mariela Abdalah Colaboratorio Nacional de Computación Avanzada,
Costa Rica

Dennis Cazar Universidad San Francisco de Quito, Ecuador

Carlos Barrios Universidad Industrial de Santander, Colombia
Luis Cadenas RedClara, Chile
Carlos Calderón Universidad Técnica Particular de Loja, Ecuador
Oscar Carrillo Institut National des Sciences Appliquées de Lyon,

France
Harold Castro Universidad de los Andes, Colombia
Ulises Cortés Barcelona Supercomputing Center, Spain
Isidoro Gitler Center for Research and Advanced Studies

of the National Polytechnic Institute, Mexico
Ginés Guerrero Lab. Nacional de Computación de Alto Rendimiento,

Chile
Francisco Martínez Universidad Industrial de Santander, Colombia
Esteban Mocskos Universidad de Buenos Aires, Argentina
Carla Osthoff National Laboratory for Scientific Computing, Brazil
Alvaro de la Ossa Universidad de Costa Rica, Costa Rica
Pedro Silva Universidade Fernando Pessoa, Brazil
John Ruiz Universidad Industrial de Santander, Colombia
David Romo Universidad San Francisco de Quito, Ecuador
Julián Rodríguez Universidad Industrial de Santander, Colombia
Michel Riveill Université Nice Sophia Antipolis, France
Lucas Melo U. Federal do Rio Grande do Sul, Brazil
Víctor Martínez Universidad Industrial de Santander, Colombia
Esteban Hernández Universidad Distrital Francisco José de Caldas,

Colombia
Sergio Gélvez Universidad Industrial de Santander, Colombia
Edson Flórez Université Côte d’Azur, France
Jorge L. Chacón Universidad Industrial de Santander, Colombia
Xavier Besseron Université de Luxembourg, Luxembourg
Leonardo Camargo Universidad Industrial de Santander, Colombia
Luis Castillo Universidad de Caldas, Colombia
Leonardo Bautista Barcelona Supercomputing Center, Spain
Diego Brandão Centro Federal de Educação Tecnológica Celso

Suckow da Fonseca, Brazil
Jesús Carretero Universidad Carlos III de Madrid, Spain
Márcio Castro Federal University of Santa Catarina, Brazil
Daniel Cordeiro Universidade de São Paulo, Brazil
Alvaro Coutinho Federal University of Rio de Janeiro, Brazil
Matthieu Dreher Argonne National Laboratory, USA
José Luis Gordillo U. Nacional Autónoma de México, México
Benjamín Hernández Oak Ridge Laboratory, USA
Nikhil Jain University of Illinois at Urbana-Champaign, USA
Filip Křikava Czech Technical University, Czech Republic
Ignacio Laguna Lawrence Livermore National Laboratory, USA
Víctor Martínez Universidade Estadual de Campinas, Brazil
Rafael Mayo CIEMAT, Spain
Esteban Meneses National High Technology Center, Costa Rica

viii Organization

Philippe Navaux U. Federal do Rio Grande do Sul, Brazil
Sergio Nesmachnow Universidad de la República, Uruguay
Nick Nystrom Pittsburgh Supercomputing Center, USA
Kary Ocaña National Laboratory of Scientific Computing, Brazil
Ulises Orozco-Rosas CETYS Universidad, México
Aline Paes Universidade Federal Fluminense, Brazil
Maria Pantoja Cal Poly San Luis Obispo College of Engineering,

USA
Guilherme Peretti-Pezzi Swiss National Supercomputing Centre, Switzerland
Robinson Díaz Universidad Central de Venezuela, Venezuela
Ricardo Román-Brenes Universidad de Costa Rica, Costa Rica
Claudia Roncancio Université Grenoble Alpes, France
Thomas Ropars Université Grenoble Alpes, France
Isaac Rudomin U. Nacional Autónoma de México, México
John Sanabria Universidad del Valle, Colombia
Osman Sarood University of Illinois at Urbana-Champaign, USA
Bruno Schulze Laboratório Nacional de Computação Científica, Brazil
Roberto Souto Laboratório Nacional de Computação Científica, Brazil
Andrei Tchernykh CICESE, México
Nicolás Wolovick Universidad Nacional de Córdoba, Argentina
Marcelo Zamith Universidade Federal Rural do Rio de Janeiro, Brazil

Organization ix

Contents

High Performance Computing Applications

Dynamically Distributing Tasks from an Unattended Parallel Compiler
with Cloudbook . 3

José J. García-Aranda, Juan Ramos-Díaz, Sergio Molina-Cardín,
Xavier Larriva-Novo, Andrés Bustos, Luis A. Galindo,
and Rafael Mayo-García

Fostering Remote Visualization: Experiences in Two Different HPC Sites . . . 18
Sergio Augusto Gélvez Cortés, César A. Bernal, Carlos J. Barrios,
and Benjamín Hernández

High Performance Computing Simulations of Granular Media in Silos. 34
Miguel Da Silva, Sergio Nesmachnow, Santiago Iturriaga,
and Gabriel Usera

Performance Analysis of Main Public Cloud Big Data Services Processing
Brazilian Government Data . 49

Leonardo Rebouças de Carvalho, Marcelo Augusto da Cruz Motta,
and Aleteia Patricia Favacho de Araújo

Accelerating Machine Learning Algorithms with TensorFlow Using Thread
Mapping Policies . 62

Matheus W. Camargo, Matheus S. Serpa, Danilo Carastan-Santos,
Alexandre Carissimi, and Philippe O. A. Navaux

Methodology for Design and Implementation an Efficient HPC Cluster 71
L. A. Torres and Carlos J. Barrios

Estimating the Execution Time of the Coupled Stage in Multiscale
Numerical Simulations. 86

Juan H. L. Fabian, Antônio T. A. Gomes, and Eduardo Ogasawara

High Performance Computing and Artificial Intelligence

Using HPC as a Competitive Advantage in an International Robotics
Challenge. 103

Claudia Álvarez Aparicio, Jonatan Ginés, Miguel A. Santamarta,
Francisco Martín Rico, Ángel M. Guerrero Higueras,
Francisco J. Rodríguez Lera, and Vicente Matellán Olivera

A Survey on Privacy-Preserving Machine Learning with Fully
Homomorphic Encryption . 115

Luis Bernardo Pulido-Gaytan, Andrei Tchernykh,
Jorge M. Cortés-Mendoza, Mikhail Babenko, and Gleb Radchenko

Distributed Greedy Approach for Autonomous Surveillance Using
Unmanned Aerial Vehicles . 130

Santiago Behak, Giovani Rondán, Martín Zanetti, Santiago Iturriaga,
and Sergio Nesmachnow

Electricity Demand Forecasting Using Computational Intelligence
and High Performance Computing. 146

Rodrigo Porteiro and Sergio Nesmachnow

Parallel/Distributed Generative Adversarial Neural Networks for Data
Augmentation of COVID-19 Training Images. 162

Jamal Toutouh, Mathias Esteban, and Sergio Nesmachnow

Analysis of Regularization in Deep Learning Models on Testbed
Architectures . 178

Félix Armando Mejía Cajicá, John A. García Henao,
Carlos Jaime Barrios Hernández, and Michel Riveill

Computer Application for the Detection of Skin Diseases in Photographic
Images Using Convolutional Neural Networks . 193

Alejandro Reátegui Pezo, Isaac Ocampo Yahuarcani,
Angela Milagros Nuñez Satalaya, Lelis Antony Saravia Llaja,
Carlos Alberto García Cortegano, and Astrid Fariza Panduro Ahuanari

Neocortex and Bridges-2: A High Performance AI+HPC Ecosystem
for Science, Discovery, and Societal Good . 205

Paola A. Buitrago and Nicholas A. Nystrom

Author Index . 221

xii Contents

High Performance Computing
Applications

Dynamically Distributing Tasks
from an Unattended Parallel Compiler

with Cloudbook

José J. García-Aranda1, Juan Ramos-Díaz1, Sergio Molina-Cardín1,
Xavier Larriva-Novo2, Andrés Bustos3, Luis A. Galindo4,

and Rafael Mayo-García3(B)

1 Nokia, María Tubau 9, 28050 Madrid, Spain
2 ETSIT-UPM, Avda. Complutense s/n, 28040 Madrid, Spain
3 CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain

rafael.mayo@ciemat.es
4 Telefónica, Ronda de la Comunicación 2, 28050 Madrid, Spain

Abstract. A dynamic version of Cloudbook is presented in this work, a new
tool for automatically and unattendedly parallelizing codes which also lately dis-
tributes the tasks dynamically. Cloudbook is designed for Python codes and, above
all, makes the parallelization in a way in which the number and main characteris-
tics of the available infrastructure is taken into account for optimizing the execu-
tion (performance, bandwidth connection, etc.) in a dynamic way. Cloudbook is
designed to allow developers to get the technical benefits of automated distribu-
tion and parallelization of programs with a very low learning cost. It only requires
labelling the original code with a reduced set of pragmas located at function head-
ers. Results of the tests carried out with Cloudbook with several codes on a real
infrastructure are presented as well.

Keywords: Parallel computing · Compiler · Automatization

1 Introduction

In general terms, parallel computing refers to the use in combination of two or more
processes (threads, cores, computers…) to solve a single problem. This methodology
is carried out by using computing architectures in which several processors execute or
process simultaneously an application or computation. Thus, it is possible to perform
large computations by dividing the workload between more than one processor, all of
which execute their task through the computation at the same time in a predefined
scheme.

Compared to serial computing, parallel computing is then much better suited for
modelling, simulating, and understanding complex real world phenomena. Thus, the
primary objective of parallel computing, also known as parallel processing, is to increase
the available computation power for faster application execution or task resolution.

© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-68035-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_1&domain=pdf
http://orcid.org/0000-0002-0151-3954
https://doi.org/10.1007/978-3-030-68035-0_1

4 J. J. García-Aranda et al.

Today’s supercomputers employ parallel computing principles to operate and solve
complex problems. Some examples of computational science applied to natural sciences
are galaxy formation, climate change, weather forecast, energy production, bioinfor-
matics, material science, etc. Although parallel computing was firstly used for scientific
computing and the simulation of scientific problems, nowadays it is present in any field,
including human and social sciences too. This has led and is still leading to the design of
more powerful and efficient parallel hardware and softwaremaking a reality the so-called
High Performance Computing (HPC).

As a consequence, the use of the HPC infrastructure has become a challenge itself
with the advent of many-core systems, i.e. the parallelization of serial programs has
become a mainstream and cornerstone programming task.

Additionally, parallel computers based on interconnected networks need to have
somekind of routing protocols to enable the transmission ofmessages between nodes that
are not directly connected. Themedium used for communication between the processors
is likely to be hierarchical in large multiprocessor machines and have a strong influence
on the cluster performance when large parallel calculi are executed. The variation of the
performance with the number of computer resources is known as scalability and depends
on the hardware and architecture of the physical resources aswell as on the computational
characteristics of the problem to be solved. Scalability must be maximized, but it is
usually degraded when the computing resources or the problem size rise.

Summarizing, parallel computing is highly useful, but presents several challenges
that become more and more complex to be overcome as the size of the infrastructures
increase. Companies must manufacture efficient supercomputers from the energy point
of view that, in addition, should be efficiently exploited from the usage point of view. In
this sense, the way in which the parallelization is implemented is key as programming
to target parallel architectures can be highly difficult and requires human expertise and
know-how.

The first aim of this work is to provide a tool that automatically and unattendedly
parallelizes a code, releasing the final user of designing such a parallel implantation as
well as of debugging processes. Lately, a second goal is achieved by providing dynamic
capabilities for distributing the parallel tasks by the tool itself in order to optimize the
computational efficiency in terms of performance.

2 Related Work

As aforementioned, multi- and many-core machines are very common nowadays, allow-
ing a number of problems exploiting the tremendous processing power of suchmachines.
Such goal can only be efficiently achieved by parallel compilation. Automatic conver-
sion of serial code into its functionally equivalent parallel version remains as an open
challenge for researchers for the last years. These tools are intended to transform legacy
serial code into parallel code to execute on parallel architectures.

With respect to parallel compilers, a couple of reviews of the different tools can be
found in [1] and [2]. Roughly speaking, these works compare different automatic tools
(see references therein) on the basis of technology, language, available platforms and
features, and drawbacks. Themost important phase within the flowchart for parallelizing
the code is the detection of potential blocks, which is also the most time consuming part.

Dynamically Distributing Tasks from an Unattended Parallel Compiler 5

It is also found that most of the tools are either oriented to FORTRAN or C/C++ as
they clearly describe the operational flow in the code. Then, it is not strange that even
Barve et al. developed a serial to parallel C++ code converter for multi-core machines
after the publication of their revision [3]. Another posterior work presented a novel
architecture based on web services which is able to translate any legacy software appli-
cation into a parallel code [4]. In a similar way, André et al. [5] present an environment
for programming distributed memory computers using High Performance Fortran, with
emphasis put on compilation techniques and distributed array management. OpenMP
should be also highlighted, thewell-known application programming interface for shared
memory parallel computing [6].

With a focus on data-parallel compiler, the aim has been to equal the performance of
carefully hand-optimized parallel codes. For tightly coupled applications based on line
sweeps, the Rice dHPF compiler [7] and its extension [8] can be cited. Most closed to
Data-analytics, the TOREADOR tool has been recently published [9].

Specific developments for GPU environments such as the thesis by Hsu [10] or
for executions carried out by virtual machines with the HPVM framework [11] can be
consulted, but those works are less related to the one presented here.

On the other hand, literature about optimizing the execution of codes along runtime
taking into account the underlying infrastructure is huge. Just to focus on heteroge-
neous architectures, the OmpSs framework is able to provide dynamic allocation of jobs
among other duties [12], but other solutions for heterogeneous resources are available
too [13–15]. For loosely coupled applications, such as Monte Carlos codes, the Montera
framework provided good results on real in production distributed heterogeneous plat-
forms [16]. Works like this opened the door to widen this kind of solutions to virtualized
environments [17].

Analyzing the existing solutions, it can be deducted that all of them are still far away
from their expectations, focused on a specific kind of application/environment, or do not
stack a parallel compiler to the available infrastructure along runtime. The aim of this
work is then to present a general-purpose tool that will both make codes parallel and
will also take into account the infrastructure on which those codes are executed in order
to maximize their performance.

3 The Unattended Parallel Compiler

There are two main problems in parallel execution: the generation of pieces of code
to be executed on each processor as well as the efficient deployment and coordinated
execution of these tasks. This work focuses on both problems by splitting a Python
source code into the so-called deployable units (DU) and lately distributing these DUs
in a coordinated way allowing communication among them if needed. This solution is
called Cloudbook.

In order to achieve an efficient parallel execution, the proposed solution Cloudbook
defines several pragmas to be integrated in the source code, which will be interpreted by
a “maker” designed to split the code into DUs. The main components of the proposed
solution are summarized in the following architecture:

6 J. J. García-Aranda et al.

– Maker: comprises the graph analyzer of source code and the splitter, which produces
the DUs

– Deployer: assigns the DUs to the available resources and launches the execution
– Agents: execute the DUs.

During execution of Cloudbook programs, there is not need for a central server which
attends the requests from agents asking for tasks o providing results, because Cloubook
allows agents communicate each other and therefore the figure of a central controller
server is not needed.

3.1 Requirements

In order to both optimize parallelism and improve performance, the programmer can
include a series of labels in the functions that would indicate the agents how to execute
those functions.

Certain Cloudbook Pragmas may reflect the fork-join model spirit [18]. However,
in Cloudbook the invokers do not match the concept of “parent” of the fork-join model
because (among other details) tasks are executed on different agents, do not share a copy
of parent’s variables, threads can be either created at invoker or invoked, and parallel
functions cannot return values.

Cloudbook supports the following language extensions (pragmas) for functions:

– #__CLOUDBOOK:NONBLOCKING__: functions with this label cannot return any-
thing.WhenCloudbook detects a non-blocking function, its code ismodified to launch
a thread at the invoked agent and returns immediately. These functions cannot return
any value. Restriction: function parameters cannot be objects, only basic types.

– #__CLOUDBOOK:PARALLEL__: these functions are deployed in all DUs. These
functions are non-blocking by construction and therefore are not allowed to return
anything. The difference between non-blocking and parallel consists of the number of
DUs in which the function is deployed. Non-blocking functions are deployed in only
one DU, whereas parallel functions are deployed in all available DUs. Parallel func-
tions are synchronizable by using #CLOUDBOOK:SYNC__ (see below). Restriction:
function parameters cannot be objects, but basic types.

– #__CLOUDBOOK:RECURSIVE__: these functions are deployed in all DUs. The
behavior is defined to maximize the level of recursivity. Each recursive invocation
from any DU invokes other DU, which means that in a circle with 10 machines
you have 10 times more recursive level than in one machine. Restriction: function
parameters cannot be objects, only basic types.

– #__CLOUDBOOK:LOCAL__: these functions are deployed in all DUs, in order to
be available for local invocations, avoiding communications. This pragma is intended
to be considered at “tuning” phase of the program. There is no restriction in the
parameters. They can be objects as well as basic types.

– #__CLOUDBOOK:DU0__: these functions are deployed in DU0. This pragma is
useful if your program has certain interactive functionality such as GUIs or keyboard
input, which can be forced to be executed in Agent 0.

Dynamically Distributing Tasks from an Unattended Parallel Compiler 7

The pragmas at the level of function invocation are:

– #__CLOUDBOOK:NONBLOCKING_INV__: if the function is not defined as NON-
BLOCKING but the programmer does not want to wait for its execution, can invoke
the function using this label. In this case, a thread is launched at invoker agent, whereas
when the label is used at function definition, the thread is created at the invoked agent.

– #__CLOUDBOOK:SYNC[:timeout]__: this will wait until all the non-blocking oper-
ations have finished. In order to be able to continue executing in the cases where an
agent stops working, the optional parameter timeout (specified in seconds) may be
set after the SYNC word and a colon (:). In the case the optional parameter is set,
the program will continue running whenever the all non-blocking operations have
finished or when the waiting time exceeds the timeout value (whatever happens first).
Example: #__CLOUDBOOK:SYNC:3__.

Cloudbook supports global variables, but special treatment is needed:

– global: this Python keyword indicates to Cloudbook that must either load or refresh
the value of global var. Since then, a local cache copy of the var is used. The use of a
local copy benefits the performance, reducing communications. In this case, “global”
is not a Cloudbook pragma, but a Python keyword

– Critical sections: in order to support “safe variables” (which only can be used by one
DU at the same time) or any other critical resource, Cloudbook supports the definition
of critical sections, which can be defined by the pragmas #__CLOUDBOK:LOCK__
and #__CLOUDBOK:UNLOCK__; this way the modifications of global variables or
critical data are only accessed by one agent at a time

– #__CLOUDBOOK:NONSHARED__: the variable is created at any agent but non
shared among different agents. This type of variables allows having unique identifiers
for each agent, and different data at each agent if it is needed

– #__CLOUDBOOK:CONST__: this pragma allows Cloudbook to manage constant
global variables in an efficient way (replicate them among all DUs).

The use of global variables implies the creation of the following strategy:

– Each global variable is translated into one non-idempotent management function. It
exists only in a unique DU

– The management function includes the global var as a non-volatile internal attribute
Additionally, this management function must be a critical section in order to allow
multiple access from DU outside

– Each function using the global var requests its fresh value at the beginning, invoking
the management function, and stores it into volatile internal variable, which is used
during the function execution time

– If inside the body of a function that use the global variable is required a refresh of its
value, it can be possible invoking another local function that get at the beginning a
fresh global variable value and returns its value.

8 J. J. García-Aranda et al.

In order to be refreshed by Cloudbook conveniently, global variables should be
defined explicitly, but there is no need for a specific pragma. On the other side, objects
work as a function abstraction, i.e., themaker analyzes the procedural part of the program
and generates the different DUs.

Last but not least, the generic configuration parameters for Cloudbook are:

– Circle ID, unique identifier of a circle, being a circle a set of available resources
– Circle definition, which includes features of each machine belonging to the circle
– Distributed file system to be used by all agents, which is part of the circle properties
– Desired deployable units, number of DUs, which normally is greater or equal to the
number of machines

– Cloudbook_maxthreads, which allows launching up to
CLOUDBOOK_MAXTHREADS functions in parallel and waits to launch the next
one until any of the previously launched functions ends. This limit allows keeping
under control the number of resources at any invocation of parallel functions.

4 Cloudbook Global Architecture

The Cloudbook global architecture for a dynamic behavior is much simple and is
composed of the following components (see Fig. 1 too):

– Agent: This is the component that will be in eachmachine that is part of the Cloudbook
circle. Tasks:

• Executing code and communicating with other agents
• Start the application (through invocation to “run” at deployer service)

– Maker: This component receives a link to the code (which is located in the distributed
FS). The maker performs two tasks:

• Graph analysis: parses the code and produces the invocations matrix
• Split the program: groups functions into code pieces, which are the “Deployable
Units” (DU). The number of DU depends on circle definition (number of agents
and machines) and possible certain additional criteria.

– Distributed file system: Thismodule stores code and data. It is accessible by all agents;
the original code is located on folder the “original” and the maker saves the DUs on
the “cloudbook” folder. Agents are agnostic to this component. All machines mount
the distributed file system as a local directory and use it in the same way as local

– Deployer service: This module is responsible for the creation of the cloudbook direc-
tory, which contains the assignment of the deployable units to the different agents,
and starts the execution. Tasks:

• Create the cloudbook directory
• When “run” command is invoked, checks if all the required agents are online and
then start the execution

Dynamically Distributing Tasks from an Unattended Parallel Compiler 9

– Stats monitor: this module contains the statistics associated to the DUs’ executions in
order to allow a dynamic behavior of the tool

Cloudbook relies on distributed file systems to make DUs accessible to all agents
and also as storage for program files, which must be accessed by all agents. Cloudbook
is then agnostic to the file system and the programmer must decide which file system
to use in order to get a scalable communication mechanism avoiding using centralized
servers (for small/medium projects a NFS server may be enough, for big/huge projects
a bit torrent FS may be needed).

Fig. 1. The Cloudbook architecture

In order to replace these centralized servers, certain files have been defined for
allowing communication of all platform components:

– agent_<XXX>_grant.json: written by agent, read by deployer. Includes information
of agent identification, power granted by the agent, and public/private IP addresses.
There is one file per agent and the deployer reads and deletes them periodically. The
agents must re-create the file periodically and the deployer may deduce which agents
are new and which agents have stopped based on comparison of existing files

– Alarm files: written by agents, read by the deployer. There are two types of alarm:
WARNING (if it is possible to continue executing) and CRITICAL (if not possible).
When the deployer reads this file (only one file for all agents exists), it will perform
a hot redeployment (WARNING file) or a cold redeployment (CRITICAL file)

– Redeploy messages: written by the deployer, read by agents. Once the deployer has
produced a new cloudbook.json dictionary file, it will inform all agents creating a
COLD_REDEPLOY file or a HOT_REDEPLOY file. This file will be deleted in the
next deployer monitoring period

10 J. J. García-Aranda et al.

– stats_agent_<XX>.json: created by agents, read by the stats monitor. This file con-
tains execution stats which also contains information to tune the matrix at make
phase

– matrix_<timestamp>.json: created by the stats monitor, read by the maker: contains
a new version of the matrix taking into account execution stats

– du_list.json: created by the maker, read by the deployer, this file contains all DUs, in
order to be assigned by the deployer to the alive agents

– function_mapping.json: created by the maker, read by the stats monitor. This file
contains the mapping between original name functions and final name functions

5 Dynamic Execution

With the previously described architecture, it is possible to perform dynamic
(re)deployment and execution of codes. By profiting from the surveillance monitor,
it is possible to periodically check changes in the number of available agents and alarms
raised by agents in order to perform both a “hot” (without restarting the program) or
“cold” (program must be restarted) redeployment. Redeployments are initiated in the
following cases:

– Under critical alarms sent by agents (they cannot continue running), the surveillance
monitor must restart the deployment and in some cases the maker

– Under warning alarms sent by agents (they can continue running), the surveillance
monitor must make a hot redeployment and inform the agents to load the new
Cloudbook

– When new agents have been added or others have stopped, in a way in which the
new Cloudbook dictionary must be compatible with the previous one, so orphan DUs,
stopped agents, new agents, and critical DUs are properly reassigned by Cloudbook.

In order to keep track of the number of available agents, the surveillancemonitor will
use the agents_grant.json file. Agents will update this file periodically (period is chosen
taking into account both the distributed file system synchronization time and processing
time of the monitor) and surveillance monitor will explore this file periodically using a
larger interval. With the surveillance monitor component, the deployer will never stop
because sleeps and wakes up periodically (this strategy is better than a scheduled OS
task and allows easily stopping the deployer and the surveillance monitor mechanism).

The dynamic execution also allows improving performance based on collected statis-
tics. The redeployment for improving performance must take into account stats gathered
by agents. These stats provided by the agents feed a stats monitor, which dynamically
builds a matrix and compares with existing matrix used at current deployment. Stats
generated by agents include the number of times that each function has been invoked by
each “invoker” function. In order to make it possible, the name of the “invoker” function
will be sent at each invocation.

The existing matrix must be an output from the maker. The latter must invoke the
graph analyzer to build and fill the matrix only the first time. Therefore, an optional
parameter to use existing filled matrix must be included in the invocation to maker, i.e.

Dynamically Distributing Tasks from an Unattended Parallel Compiler 11

it must be possible to do a “remake” and not only a “make”, and for make it possible
the matrix parameter is needed. The matrix file used as input is created by the stats
monitor and improves the “default” assumptions that maker does when building the
matrix. By doing so, the performance can be improved in terms of the way in which the
code has been parallelized and distributed, but also in terms of performance based on
the underlying infrastructure as additional features can be added for doing an intelligent
redeployment. Stats provide real information about invocations among functions and
allow taking better decisions when the code of the original program is separated into
different DUs, which are executed on different agents. Stats may suggest that certain
functions should be deployed together in the same DU.

The way in which the dynamic redeployment is carried out is depicted in Fig. 2.

Fig. 2. The Cloudbook dynamic redeployment

6 Results

Experiments have been carried out in two platforms: a group of low-end machines and
an HPC cluster.

6.1 Group of Low-End Machines

For proof of concepts tests, platform is composed of four Raspberry Pi2 interconnected
with an Ethernet switch and sharing a NFS file system to store the program (DUs) and
files published by each agent. The characteristics of this circle of machines are:

12 J. J. García-Aranda et al.

– Processor: Broadcom BCM2837B0, Cortex-A53 64-bitSoC@ 1.4 GHz
– RAM: 1 GB LPDDR2 SDRAM
– Wi-Fi+Bluetooth: 2.4 GHz y 5 GHz IEEE 802.11.b/g/n/ac, Bluetooth
– Operating System: Raspbian

In order to test the correctness of Cloudbook, two first examples have been adapted
to the tool paradigm in order to include the simple and reduced pragmas that Cloudbook
needs to find out within the code in order to successfully make parallel an initial serial
code. These two problems are the N-body problem [19] and the tower of Hanoi game
[20]. According to the results, they have been used as valid proof of concept for this
work.

For the sake of completion, the results related to the N-body problem executed on
Cloudbook can be watched in a video [21], where it is demonstrated how the code is run
in the four aforementioned raspberries. The time spent in the algorithm by Cloudbook is
lower than the sequential version, from a certain number of bodies. The benefit is bigger
when the number of bodies processed by one invocation is high, and the communication
time becomes non relevant. Regarding the performance and taking into account the test
bed, Cloudbook starts performing better than the serial version from ~3,000 bodies on.
From this point, the speed up grows linearly, close to a 4x factor as is depicted in Fig. 3.

Fig. 3. Results of the N-body execution on the Cloudbook test bed. X-axis reads for number of
bodies and Y-Axis for seconds; they are not included in the Figure for readability reasons

Dynamically Distributing Tasks from an Unattended Parallel Compiler 13

With respect to the Hanoi game and in a similar way, it is also found out that Cloud-
book provides potentially 4 times bigger stack for recursive invocations in the aforemen-
tioned testbed, but what it is most important is to notice how this recursive problem is
able not to collapse thanks to Cloudbook. It has been demonstrated that for a ten of pieces
a sequential version would crash meanwhile Cloudbook is able to keep on working on
finding out the solution. Speed in recursive invocations is not improved but stack size is
increased linearly with the number of agents involved.

In order to test the solution proposed with a different approach, some tests have been
performed with Cloudbook executing an Intrusion Detection System (IDS). This way,
the focus is put most on dataset management and process. The comparison between one
machine and Cloudbook execution is shown in Table 1 below.

Table 1. Local and Cloudbook execution times for an IDS.

Data size (lines) Local execution time (s) Cloudbook execution time (s)

100,000 5.67 4.25

1,000,000 51.82 25.52

5,000,000 257.06 139.70

10,000,000 529.09 300.96

50,000,000 2,737.52 1,363.32

157,602,189 13,846.43 6,451.53

6.2 HPC Cluster

Twomore computationally demanding tests have been carried out on aHPCenvironment.
We runwithCloudBook a genetic algorithm in theXULAcluster, located at theCIEMAT
data center. We use the new partition of the cluster (upgraded in March 2020, named
Xula2), which is composed of 56 computing nodes and connected through IB HDR100.
Each node contains 2 processors Intel® Xeon® Gold 6254 (18C, 36T) @3.10 GHz and
192 GB of RAM memory. The common folder for Cloudbook is mounted on a Lustre
filesystem.

The genetic algorithm adapted to Cloudbook is DiVoS [22]. DiVoS is a simulation
code that finds the minimum energy of a superconducting layer by finding the optimal
position of its magnetic vortices. In the genetic algorithm, the chromosomes are the
position of the vortices and the fitness function is precisely the (negative) energy of the
system. Bymeans of heritage, crossovers, and natural selection rules, the algorithm finds
the best individual of the population, i.e. the one with lowest energy and thus the most
likely state of the system.

The DiVoS adaptation to CloudBook is rather straightforward: we have parallelized
a parameters scan in the input configuration file. In this way, we can easily perform
physical parameters sweeps and numerical convergence studies in a fast and easy way
from the user point of view. We must point out that this parallelization does not require

14 J. J. García-Aranda et al.

any communication between the agents. The two tests carried out are intended to show
the scaling of the computing time with the number of agents for a fixed problem size
and to compare the performance with the Multiprocessing Python built-in library. For
Cloudbook, the time measure is the execution time of the cloudbook_run.py program,
not taking into account the time needed to make, deploy, or activate the agents.

Fig. 4. Results of the DiVoS execution profiting from the Cloudbook solution and the Multipro-
cessing Python built-in library (homogenous tasks)

In the first test we consider a problem that consists of 128 identical tasks, andmeasure
the execution time in terms of the number of agents (or CPUs) used for the computation
both with Cloudbook and the Multiprocessing library. A number of tasks equal to the
number of available agents is run simultaneously, with a #__CLOUDBOOK:SYNC__
pragma at the end of each batch of tasks. Each case is executed 5-10 times, using the
average value and assuming an error equal to twice the standard deviation. We also
calculate the execution time corresponding to ideal scaling in the two cases. The results
are plotted in Fig. 4.

In the second test the problem is formed by 80 inhomogeneous tasks. Due to the
synchronization step, the scaling here is a bit worse, as can be seen in Fig. 5:

We can extract two conclusions from these tests:

– Cloudbook presents very similar performance as the Multiprocessing library within
the error bars.

Dynamically Distributing Tasks from an Unattended Parallel Compiler 15

Fig. 5. Results of the DiVoS execution profiting from the Cloudbook solution and the Multipro-
cessing Python built-in library (heterogeneous tasks)

– Cloudbook can scale up much more than the Multiprocessing library, because the
latter is limited to the number of available processors in each node (36 in Xula2) and
Cloudbook allows the deployment between any number of nodes.

7 Conclusions

In this work, a new tool called Cloudbook that automatically and unattendedly paral-
lelizes serial codes is presented.Unlike previous similar solutions, it is focused onPython
codes and has produced tangible results on production infrastructures at scale, which
are also reported via digital content. Cloudbook does not only make the parallelization,
but also is aware of the number and main characteristics (performance, bandwidth con-
nection, etc.) that the available resources provide in order to decide a smart distribution
of the parallel tasks (DUs) in order to optimize the performance.

The limits of the efficiency of parallel programmingwith Cloudbook are given by the
size of the problem and the cost of communication. Performance results can be improved
by taking advantage of the multi-processing in the agents, using their available cores.

Cloudbook follows the model of HPC and HTC computing in a versatile way and
can be adapted to a large set of problems, without forcing the programmer to make a
distributed design of the problem. The main contributions of Cludbook are:

– Provision of automatic splitting
– Generic, not simply bounded to master-slave based programs, for example

16 J. J. García-Aranda et al.

– Valid for both distributed and parallel environments
– Dynamic redeployment based on performance
– Low required level of knowledge

Having demonstrated its correctness, the methodology that Cloudbook applies for
making parallel a serial code is also extended to dynamic environments in which
resources are continuously integrated and decommissioned into/from the available
infrastructure, while the tool successfully responds to that on-the-fly.

References

1. Barve,A.,Khandelwal, S.,Khan,N.,Keshatiwar, S., Botre, S.: Serial to parallel code converter
tools: a review. Int. J. Res. Advent Tech. Special Issue National Conference “NCPCI-2016”
(2016)

2. Varsha, K.R.: Automatic parallelization tools: a review. IJESC 7(3), 5780–5784 (2017)
3. Barve, A., Khomane, S., Kulkarni, B., Katare, S., Ghadage, S.: A serial to parallel C++ code

converter for multi-core machines. In: Proceedings of the International Conference on ICT
in Business Industry & Government (2016)

4. Alsubhi, K.: An architecture for translating sequential code to parallel. In: Proceedings of
the 2nd International Conference on Information System and Data Mining, pp. 88–92, April
2018

5. André, F., Le Fur, M., Mahéo, Y., Pazat, J.-L.: The Pandore data-parallel compiler and its
portable runtime. In: Hertzberger, B., Serazzi, G. (eds.) HPCN-Europe 1995. LNCS, vol. 919,
pp. 176–183. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0046627

6. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP. The MIT Press, Cambridge (2008)
7. Chavarria-Miranda, D., Mellor-Crummey, J.: An evaluation of data-parallel compiler sup-

port for line-sweep applications. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pp. 7–17. IEEE, New York (2002)

8. Chavarría-Miranda, D., Mellor-Crummey, J., Sarang, T.: Data-parallel compiler support for
multipartitioning. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001.
LNCS, vol. 2150, pp. 241–253. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44681-8_36

9. DiMartino, B., Esposito, A., D’Angelo, S.,Maisto, S.A., Nacchia, S.: A compiler for agnostic
programming anddeployment of big data analytics onmultiple platforms. IEEETrans. Parallel
Distrib. Syst. 30(9), 1920–1931 (2019). https://doi.org/10.1109/TPDS.2019.2901488

10. Hsu, A.W.: A Data Parallel Compiler Hosted on the GPU. Indiana University, Bloomington
(2019)

11. Kotsifakou, M.: HPVM: heterogeneous parallel virtual machine. In: Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 68–80.
ACM Digital Library (2018)

12. Iserte, S., et al.: Dynamicmanagement of resource allocation for OmpSs jobs. In: Proceedings
of the First Ph.D. Symposium on Sustainable Ultrascale Computing Systems, NESUS COST
Action, Timisoara (2016)

13. Becker, T., Karl, W., Schüle, T.: Evaluating dynamic task scheduling in a task-based runtime
system for heterogeneous architectures. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm,
J., Pionteck, T. (eds.) ARCS 2019. LNCS, vol. 11479, pp. 142–155. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-18656-2_11

https://doi.org/10.1007/BFb0046627
https://doi.org/10.1007/3-540-44681-8_36
https://doi.org/10.1109/TPDS.2019.2901488
https://doi.org/10.1007/978-3-030-18656-2_11

Dynamically Distributing Tasks from an Unattended Parallel Compiler 17

14. Ramírez-Velarde, R., Tchernykh, A., Barba-Jimenez, C., Hirales-Carbajal, A., Nolazco-
Flores, J.: Adaptive resource allocation with job runtime uncertainty. J. Grid Comput. 15(4),
415–434 (2017). https://doi.org/10.1007/s10723-017-9410-6

15. Becker, T., Busse, P., Schuele, T.: Evaluation of dynamic task scheduling algorithms in a run-
time system for heterogeneous architectures. In: 31st InternationalConferenceonArchitecture
of Computing Systems, Braunschweig, pp. 1–8 (2018)

16. Rodriguez-Pascual, M., Mayo-García, R.M., Llorente, I.M.: Montera: a framework for effi-
cient execution of Monte Carlo codes on grid infrastructure. Comput. Inform. 32, 113–144
(2013)

17. Rubio-Montero, A.J., Rodríguez-Pascual, M.A., Mayo-García, R.: A simple model to exploit
reliable algorithms in cloud federations. Soft. Comput. 21, 4543–4555 (2017). https://doi.org/
10.1007/s00500-016-2143-9

18. Kumar, A., Shorey, R.: Performance analysis and scheduling of stochastic fork-join jobs in a
multicomputer system. IEEE Trans. Parallel Distrib. Syst. 4, 1147–1164 (1993). https://doi.
org/10.1109/71.246075

19. Heggie, D.C.: The Classical Gravitational N-Body Problem. Encyclopaedia of Mathematical
Physics, Elsevier (2006)

20. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret.
Math. 20, 610–622 (2006)

21. Demo of the N-Body proof of concept and how it performs. https://drive.google.com/open?
id=193f30luFq22cy8QUjzzWHgMA8zKfUAv4

22. Rodríguez-Pascual, M.A., et al.: Superconducting vortex lattice configurations on periodic
potentials: simulation and experiment. J. Supercond. Nov. Magn. 25, 2127–2130 (2012).
https://doi.org/10.1007/s10948-012-1636-8

https://doi.org/10.1007/s10723-017-9410-6
https://doi.org/10.1007/s00500-016-2143-9
https://doi.org/10.1109/71.246075
https://drive.google.com/open?id=193f30luFq22cy8QUjzzWHgMA8zKfUAv4
https://doi.org/10.1007/s10948-012-1636-8

Fostering Remote Visualization:
Experiences in Two Different HPC Sites

Sergio Augusto Gélvez Cortés1(B) , César A. Bernal1 , Carlos J. Barrios1 ,
and Benjamı́n Hernández2

1 Supercomputación y Cálculo Cient́ıfico, Universidad Industrial de Santander,
Bucaramanga, Colombia

sergio.gelvez@correo.uis.edu.co
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract. Visualization of scientific data is crucial for scientific dis-
covery to gain insight into the results of simulations and experiments.
Remote visualization is of crucial importance to access infrastructure,
data and computational resources and, to avoid data movement from
where data is produced and to where data will be analyzed. Remote
visualization enables geographically diverse collaboration and enhances
user experience through graphical user interfaces. This paper presents
two approaches deployed by two different HPC centers: The SC3 - Super-
computación y Cálculo Cient́ıfico Center in Colombia and the Oak Ridge
Leadership Computing Facility in USA. We overview our remote visu-
alization experiences, adopted technologies, use cases, and challenges
encountered. Our contribution is to signal the commonality between
approaches in terms of the end goal, showing their fitness for their con-
texts, while not focusing only on attempting to provide a general picture
of remote visualization, given the differences between centers in terms of
purposes, needs, resources, and national impact.

Keywords: Remote visualization · Scientific visualization · HPC

1 Introduction

SC3 - Supercomputación y Cálculo Cient́ıfico is a high performance computing
center at Universidad Industrial de Santander (UIS), a government sponsored
university in Bucaramanga, Colombia. It supports research initiatives derived
from the creation of the technology park at Guatiguará1. The mission of the
center is to provide computational resources to projects in research areas critical
to the region and boost research in fields such as Materials Sciences, Oil and Gas,
Biotechnology and Agroindustry, among others. The UIS acts as a research hub
of Santander region and shares research partnerships with Ecopetrol, Colombia’s
Oil & Gas company.

1 A research complex aimed to increase R&D+i in the region.

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 18–33, 2021.
https://doi.org/10.1007/978-3-030-68035-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_2&domain=pdf
http://orcid.org/0000-0002-7898-3962
http://orcid.org/0000-0002-1333-067X
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0002-0559-2813
https://doi.org/10.1007/978-3-030-68035-0_2

Remote Visualization: Experiences in Two Different HPC Sites 19

The Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge
National Laboratory (ORNL) is funded by the U.S. Department of Energy with
the main objective of providing the computational and data resources required
to solve the most challenging problems in areas such as Materials Sciences, Biol-
ogy, Chemistry, Engineering, Computer Sciences, among others. Through user
programs such as the Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) [19] and the ASCR Leadership Computing Challenge
(ALCC) [18], the OLCF offers researchers computing and data analysis resources
many times more powerful than they could access elsewhere [11].

The SC3 and the OLCF are user based facilities available for international
use, in addition to computational resources, both offer data analysis and visual-
ization expertise and infrastructure. Both sites collaborate with users that have
a diversity of skills and geographic location. These collaborations extend through
the life cycle of data, from computation to analysis and visualization.

Through interactions with our users, we noted an increased need for remote
visualization services. In particular, SC3’s users need to shift from a workstation
centered workflow to a HPC centric one. This shift implies SC3’s users get to
know HPC centric skills to do their work. On the other hand, the scale of data
produced at OLCF goes from a few terabytes to several petabytes. It is unfeasible
for our data intensive users perform data analysis and visualization on their
local systems. In particular, moving data from OLCF to researchers’ facility is a
time and energy consuming process that demands high network bandwidth and
significant storage resources to house their data. In addition, data analysis and
visualization of big scientific data requires HPC hardware, scalable software and
expertise that may not be available at the users’ premises.

This paper presents experiences to support SC3 and OLCF users’ remote
visualization needs. Specifically, YAJE, the SC3’s solution, is aimed at improving
user experience and reduce the learning curve of HPC centric workflows. YAJE
offers a containerized remote desktop solution based on virtual network com-
puting (VNC) with integration with the SC3’s job scheduler. Whereas, SIGHT,
the OLCF solution, is aimed at eliminating data transfers and enabling scalable
interactive exploration of large datasets. These two solutions tackle different
aspects of visualization, owing to the differences in the challenges and resources
of the centers in which they were conceived.

The remainder of this paper is organized as follows: in Sect. 2 we will intro-
duce a technical background of remote visualization processes. In Sect. 3 we will
introduce SC3, the user challenges they face, along with an specific use case and
a proposed solution. The results of this solution will also be discussed. Section
4 will present OLCF in the same manner and finally in Sect. 5, we will present
some discussions and future plans.

2 Technical Background

Scientific visualization allows the understanding and/or validation of simulation
and experiment results. It enables collaborative interaction and decision making,

20 S. A. G. Cortés et al.

during and after simulation. High resolution, interactivity and the possibility of
processing ever increasingly large scale datasets are desirable features in the
visualization process, no matter the scale size of the simulation campaign.

SC3 and OLCF’s users perform different modalities of scientific visualization,
i.e. batch based visualization, in-situ visualization and exploratory visualization.
For the purposes of this paper, we define each as follows:

– Batch based visualization. Visualization is usually performed after simulation
and executed in batch jobs, intensive data movement is required between
simulation and visualization tasks.

– In-situ visualization. Visualization and analysis tasks are performed while the
simulation is running, sharing the same HPC resources.

– Exploratory visualization. Visualization represents complex scientific data
interactively and fully as possible for model preparation, iterative hypoth-
esis verification, feature extraction and quantitative analysis.

Sustaining a good performance level and continuous improvements of each
visualization modality, poses interesting challenges for SC3 and OLCF users,
due to costs in data transfers, storage, and specialized or custom software. As
a result, an alternative solution to reduce this burden is the adoption of remote
visualization.

Remote visualization allows access to resources that cannot be afforded by
our scientists in their institutions. It enhances collaborative work, strengthening
community bounds. However, remote visualization also presents its own set of
challenges, for example, inter-site data transfer costs in terms of latency and
channel quality-of-service (QoS), user interaction (e.g adoption of new kind of
workflows), data compression [3], among others.

Infrastructure for remote visualization requires a distributed computing sys-
tem comprising software and data resources, HPC systems and independent com-
puters connected through a communication network. The HPC system stores
and transforms data into visualizations artifacts and, compresses and delivers
results. Independent computers connect to the HPC system, receives, decom-
presses and displays visualizations. A software stack establishes and maintains
secure communications, and coordinates the execution of applications. In the
next subsections we provide a general overview of technologies for remote visu-
alization.

2.1 Remote Desktops and GPU Based Alternatives

The X Window System provides support for OpenGL based rasterization com-
monly used in visualization packages. The X Window Server encapsulates GUI
and OpenGL’s commands in a X Window protocol stream coming from the
running application. Then, this stream is sent to the client machine where the
client’s X Window Server passes the OpenGL commands to the client’s rendering
system.

X Forwarding has been historically supported by both sites. It performs well
in applications with simple user interfaces, low refresh rate and low rendering

Remote Visualization: Experiences in Two Different HPC Sites 21

complexity (e.g. Ncview, gnuplot). For complex visualization and analysis tools,
X Forwarding has some disadvantages. First, X protocol has high latency, i.e.
it requires the client or server to wait for an acknowledgement before it can
transmit a new stream. Second, encapsulating OpenGL’s and GUI commands
in X Window protocol streams easily produces large sized packets that are not
compressed by the X Window System, this make X Forwarding unfeasible in low
network bandwidth environments. Finally, all OpenGL commands are produced
in the remote server but executed in the client machine, this imposes limitations
for large visualization workloads and advanced graphics features.

The Virtual Network Computing. The Virtual Network Computing (VNC)
extends X Window System remote capabilities and offers a totally functional
remote desktop experience [13]. VNC provides a viewer which the user interact
with, and a server that shares the desktop of the remote system. Client and server
communicates with each other via the OS agnostic VNC’s protocol a.k.a. RFB
protocol. VNC has been extended to support advanced features such as SIMD
compression (TurboJPEG library), GPU based OpenGL (VirtualGL) and web
based viewers.

NiceDCV. NiceDCV enables full GPU acceleration for streaming encoding
and OpenGL applications. This approach interpose the DCV library between
application and the system’s OpenGL libraries, then the 3D rendered images are
streamed to remote client using the DCV protocol and 2D images are streamed
over the RFB protocol. NiceDCV is a proprietary tool.

2.2 Containers on HPC Visualizations

Containers (formally known as OS-level virtualization technology) are an impor-
tant tool in HPC environments because they provide isolation for applications
to run safely, and low overhead in terms of computing resources. Portability and
reproducibility are other advantages of container technology as well. Deploy-
ing visualization tools in complex systems can be facilitated by this technology,
given its portability: an application environment set up can be replicated with-
out cumbersome procedures; containers also ensure that the application has all
dependencies met.

But OS-level virtualization can be problematic in terms of flexibility, i.e. some
implementations require superuser level permission for operation. Technologies
that can deploy container images without the use of superuser level permission
are desirable, specially in shared infrastructure situations. Singularity has this
flexibility ingrained in its design [17].

The main advantages of containers in HPC and visualization systems is that
they ensure that each application will run the same way and will produce the
same result in any supported environment. Singularity is designed with the capa-
bilities to simplify the process of moving containers across a single infrastructure
or across hybrid environments, while preserving privilege separation to satisfy
the security, privacy, and auditing requirements found in HPC environments.

22 S. A. G. Cortés et al.

3 Site 1: SC3 at UIS

GUANE-1 (GpUs AdvaNced Environment) is the flagship computing infras-
tructure at SC3. It was conceived to support highly parallel, GPU based, high
performance computing. The first version of GUANE-1 was built in 2012, and
an improved version (named GUANE-1 Reload) was finished in 2014. Today,
GUANE-1 Reload offers 128 GPUs NVIDIA Fermi M2050/M2075 (8 by node)
in 16 nodes with three different models of Intel Xeon Processors (in the E56XX
family at 2.1 Ghz, 2.4 Ghz and 2.6 Ghz). Each node has 104 GB of installed RAM.
GUANE-1 Reload has an interconnect comprised of three different networks: An
Infiniband Network (40 Gbps for application data transfer) and two Ethernet
networks (one of 1 Gbps for administration and other of 10 Gbps for user special
requirements in software environments). This platform was initially conceived
for computing, not visualization (Fig. 1).

Fig. 1. Guane-1

3.1 SC3 User Challenges

The number of users and usage of the resources at the site have grown in the last
eight years, bringing simulation workloads from diverse areas of knowledge such
as computer fluid dynamics, materials science, seismics, astrophysics, catalysis,
digital humanities, etc; and with this growth also came the demand for visualiza-
tion tools within the computing environment. Also, researchers at our University
ask for tools that simplify simulation workloads; some of those researchers come
from non-technical or non-computing backgrounds, and find the prospect of hav-
ing to learn new tools to do their work appalling, specially command line tools.
Presenting our users with experiences similar to the ones they are familiar with
when working in their workstations is of great value to them. The implementa-
tion of remote visualization in the site can be a way to offer this experience to
the users.

Remote Visualization: Experiences in Two Different HPC Sites 23

3.2 YAJE 2.0 a Solution for Remote Visualization Using Linux
Containers

YAJE, the solution for remote visualization developed at SC3, uses a VNC imple-
mentation with the VirtualGL library for hardware acceleration, very similar to
TurboVNC. For the client, YAJE uses noVNC which is a web based VNC client.
In addition, a proxy is configured to map websockets based noVNC messages
to TCP based VNC messages. The services are isolated using Singularity con-
tainers. The interaction is started by the user using a script via the GUANE-1’s
SLURM scheduler, which starts the services in the containers. Then, the user
can access the remote visualization using a browser with a zero-install approach
(Fig. 2).

Fig. 2. YAJE 2.0 implementation

This configuration allows for remote visualization of applications without a
client/server model, since the streaming is independent of the application code,
as is handled by the Remote Frame Buffer Protocol (RFB) via a web browser.
The isolation of the processes in the machine using containers maintains security
and enables deployment as Software as a service (SaaS). This configuration works
in this fashion thanks to the on-demand control over the platform, allowing 3D
X server installation and proxy configuration on GUANE-1’s nodes.

In this implementation we do not deliver a complete desktop environment to
the user. Instead, to minimize the required bandwidth and the computational
resources, only a lightweight desktop manager (Openbox) and the application
requested by the user are displayed inside the container. Likewise, a series of
monitoring scripts are deployed to keep the session alive without additional
user interaction. It is of importance to note that the main components of the

24 S. A. G. Cortés et al.

implementation are open source tools, and that the integration is low cost in
terms of deployment, since it was carried out mainly using scripts, with no
internal modification to the tools and APIs used.

3.3 Use Case

The specific problem that kickstarted the development of YAJE was a com-
putational fluid dynamics simulation code based on OpenFOAM, provided by
the Department of Mechanical Engineering of our University. These researchers
desired a quick and easy way to visually check the results of their simulations,
to fine tune different OpenFOAM scenarios. They wanted to avoid the cycle
of downloading results (over a slow local channel), inspect them in their local
machines, and then rerun the simulation. For the first iteration of the deploy-
ment, an uncoupled simulation was used: They ran the simulation, visually
inspected the results using YAJE, and then reran the simulations with the mod-
ifications they required. Further refinements to this implementation are in the
YAJE’s development roadmap.

3.4 Results

For the first test on YAJE, frame rate was selected as the main metric for the
performance evaluation of the system using the glxspheres64 benchmark. A
series of tests were carried out on two network connections, one with low latency
(5 ms) and another with high latency (150 ms) at different screen resolutions. In
addition, several virtual desktop resolutions were used for the measurement and
the number of spheres on screen was varied, acting as the independent variables
in the performance model. The machine used for the testing has a NVIDIA
Grid K2 GPU. Table 1 present the frame rate results at different latencies and
different resolutions.

Table 1. Comparison FPS to different resolutions with low and high latencies

YAJE NiceDCV

5 (ms) . 150 (ms) . 5 (ms) . 150 (ms) .

720p 18.1 5.1 29.3 19.3

1080p 7 3.0 25 14.6

This first metric, user side FPS for the glxspheres64 benchmark executed
on the visualization node has been measured directly on the web browser, which
is the interaction point for the user. The performance offered by NiceDCV using
the same benchmark in its web client version acted as a control value.

The purpose of this comparison is to show the capabilities of an open source
implementation against one using proprietary tools, providing a similar service.

Remote Visualization: Experiences in Two Different HPC Sites 25

Of note is the limitations of the YAJE implementation which uses CPU based
streaming encoding in contrast to NiceDCV that implements GPU based stream-
ing encoding.

On the other hand, two specific use cases of relevance to SC3 were selected:
an openFOAM visualization on Paraview (no Catalyst, single node visualiza-
tion) [6], and a simple VMD visualization using molecular dynamics results from
a catalyst design experiment using MOFs [2]. Also, network performance metrics
were taken from a machine inside the organization’s network, and from outside,
trying to represent the conditions in which a researcher would connect to the ser-
vice from their home machine. The metrics to evaluate were latency, bandwidth,
and browser framerate. For the first set of tests only the OpenFOAM visual-
ization was used. The connection parameters for both test set are presented in
Table 2. Note that in the second test set both visualization cases were used.

Table 2. Connection parameters for network performance testing

Parameter Value

First test set

Broadband nominal speed 10 Mbits/s

Last segment of connection Ethernet. 1 Gbit/s

Browser Chrome

Machine screen resolution 1920× 1080 p

Streaming resolution 1920× 1080 p (downscaled at browser)

Second test set

Broadband nominal speed 200 Mbits/s

Last segment of connection Wi-fi (n)

Browser Firefox

Machine screen resolution 1920× 1080 p

Streaming resolution 1920× 1080 p (downscaled at browser)

The results of the first set of tests showed an ample disparity between aver-
age frames rendered in the server vs frames received in the client (615.4 fps in
the server 4.7 fps in the client); the latency was estimated at 55 ms. Deeper
discussion of the results are presented in [4]. It is important to note that dur-
ing the development of the project and the execution of the testing procedures
the university upgraded its network infrastructure, improving the performance
of the network; this led to a second test set, with significantly better results.
Also, the latency and bandwidth measurements were conducted independently
from the frame rate tests, using similar time slots; this test was designed in this
manner in order not to have the bandwidth test impact the frame rate test,
since a large amount of data is transmitted for the former clearly diminishing
the performance of the latter.

26 S. A. G. Cortés et al.

The results of the latency and bandwidth tests can be summarized in the
top half of Table 3 in page 9, whereas the results of the frame rate tests are
presented in Table 4 in page 9.

Table 3. Bandwidth and latency tests results

Parameter min max avg std

Second test set

Bandwidth [Mbits/s] 0.176 170.0 66.2 63.3

Latency [ms] 30.9 235.9 40.0 26.8

Second test set using RENATA

Bandwidth [Mbits/s] 3.770 212.000 167.877 46.491

Latency [ms] 30.275 61.275 31.958 2.966

Table 4. Frame rate test results, second test set

Second test set

VMD OpenFOAM

Parameter min max avg min max avg

FPS 10.2 60 51.8 25.5 60 59.0

Furthermore, there is also the possibility of using RENATA, an academic
high-speed interconnection network2, although not all of SC3 HPC services are
available using that channel yet. At the moment we cannot test the frame rate
on the browser, but we have the bandwidth and latency data, and the results
are promising. The results are presented in the bottom half of Table 3 in page
9.

It is important to note that the bandwidth maximum value is near the maxi-
mum in the channel: Taking into account the variability of the connection speed
in a residential channel, with RENATA we can have a much faster connection
to the server. Also, the latency maximum is significantly lower, the average is
much closer to the minimum value, and the standard deviation is lower; this
data shows more stability in terms of latency, which can be very beneficial to
this type of application [5].

Another important aspect of the results is the reception from the users. The
users from the mechanical engineering department reported satisfaction with the

2 RENATA, Red Nacional Académica de Tecnoloǵıa Avanzada (Academic National
Advanced Technology Network): the computer network is named after the organiza-
tion. https://www.renata.edu.co/.

https://www.renata.edu.co/

Remote Visualization: Experiences in Two Different HPC Sites 27

usability of Yaje; although the experience is not perfect, and the frame rate is not
locked at 60 fps, it is sufficient for an adequate interaction with the visualization
tools they requested. This effectively creates a new form of interaction with their
results, in a manner similar to their local desktop experience, saving them time
and effort in learning new tools for their workflow.

This results, although modest, are promising for the first iteration of the
project, and they provide the stakeholders at the site with the reassurance to
continue this path forward.

4 Site 2: Oak Ridge Leadership Computing Facility

OLCF provides scientific expertise in the area of data analysis and visualization
as part of the INCITE program. We engage and collaborate with users through
the life cycle of their data. Examples of collaborations includes consultation in
all data analysis and visualization aspects of using OLCF resources, maintain
relationships with INCITE teams to ensure OLCF is meeting their data analysis
and visualizations needs and, when standard solutions does not fit the user’s
needs, we develop custom software solutions. In addition, OLCF provides access
to compute systems and, data and visualization infrastructure. Compute systems
includes Summit, a 4,608 node IBM AC922 system, Rhea a 512 node Intel Xeon
E5-2650 cluster, Andes a 704 node AMD EPYC 7302 and 9 fat GPU node
cluster, and the Exploratory Visualization Environment for Research in Science
and Technology (EVEREST) facility for collaborative analysis and visualization
of simulation data. EVEREST comprises a power wall of 32 megapixeles and a
large format panel of a resolution of 1080p (Fig. 3 left).

4.1 OLCF’s User Challenges

We engage with INCITE teams electronically and by face-to-face conversations.
Electronic engagement includes follow-up email conversations after they have
submitted a technical support ticket and video-calls to get familiar with their
issues, challenges and needs. Face-to-face engagement usually occurs in events
such as the Annual OLCF User Meeting, OLCF’s training events, workshops
or conferences. Face-to-face engagement is important for us because it creates a
personal connection and builds trust between our team and the INCITE teams.

A recurrent finding after user engagement is that OLCF users have three
requirements in common. First, the scale of data they are producing or plan
to produce calls for solutions for remote visualization infrastructure; users are
interested in having ad hoc solutions to support their exploratory visualization
tasks (interactive model preparation or inspection). Second, users require remote
visualization solutions capable of handling large datasets or solutions to enhance
their current tools. Third, users are interested in easy-to-use tools and interactive
performance.

28 S. A. G. Cortés et al.

4.2 SIGHT, a Custom Solution for Remote Visualization

Following user requirements, we developed and deployed SIGHT, a custom solu-
tion for interactive data analysis and remote visualization of atomistic simula-
tions [16]. SIGHT (Fig. 3 left) uses a client-server architecture [1] where SIGHT’s
server manages remote visualization resources (data loading, analysis, render-
ing, communications and visualizations streaming and delivery) and SIGHT’s
client receives visualization streams, provides a simplified user interface (UI)
and presents results to the users. Components depicted in Fig. 3 left are detailed
next:

– A multi-threaded parser that take advantage of CPU cores to load datasets
in parallel. It loads the dataset into main memory and makes it available for
the Ray tracing and Data parallel Analysis components.

– A ray tracing backend that supports both Nvidia Optix [12] and Intel
OSPray [20] libraries to enable interactive and scalable ray tracing.

– The data parallel analysis component includes algorithms to generate
transversal views of atomistic models, atom selection and filtering and, cal-
culation of Euler distance between atoms [10]. Analysis is implemented using
data parallel primitives exposed in NVIDIA Thrust to support parallel com-
putations on CPUs and GPUs.

– The frame server enables SIGHT’s remote visualization capabilities and is
in charge of compressing and delivering the visualization frames produced
by the ray tracing backend and analysis component. The frame server also
dispatches the user commands from the client to other SIGHT’s components
accordingly.

– SIGHT’s client is a web based UI that receives and decompress the visualiza-
tion streams and presents the results to the user. The client supports regular
displays and powerwalls (Fig. 3 right).

Fig. 3. Left, SIGHT’s system architecture. Right, the Exploratory Visualization Envi-
ronment for Research in Science and Technology (EVEREST) facility.

Remote Visualization: Experiences in Two Different HPC Sites 29

4.3 Use Case

During their INCITE allocation, a team from University of Virginia, lead by
Dr. Leonid Zhigilei, ran billion scale atomistic simulations of laser ablation on
metals [21]. Each simulation campaign produced several time steps of around
500 GB each and their analysis and visualization workflow consisted on mov-
ing a time step from OLCF to the team’s facility, then it involved cutting the
time step into several pieces and reassembling the images produced for differ-
ent pieces. Their workflow was restricted to the generation of static images and
was time consuming. After user engagement, we found traditional visualization
tools (e.g. Paraview and VisIt) were cumbersome and provided a steep learning
curve for the team’s analysis (generate transversal views of the atomistic model,
atom selection and filtering, calculation of Euler distance between atoms) and
visualization tasks.

SIGHT was under development from 2016 to 2019 to support Dr. Zhigilei’s
team. After each simulation campaign, the team used SIGHT’s remote visualiza-
tion capabilities to reduce and/or eliminate data transfers between OLCF and
Dr. Zhigilei’s facilities. SIGHT’s parallel features enabled the team to perform
exploratory analysis and visualization on systems of size of up to a few billions
atoms. SIGHT’s design allowed the team to take advantage transparently of
Rhea’s and Summit heterogeneous node architecture.

4.4 Results

We present some SIGHT’s qualitative and quantitative results in this section.
In particular, the qualitative results are based on Dr. Zhigilei’s team publica-
tions where SIGHT was used successfully, i.e. [14–16] and two videos3 demon-
strating SIGHT’s capabilities. On the other hand, the quantitative results focus
on SIGHT’s remote visualization streaming performance, which is under the
scope of this paper; the interested reader is referred to [7,8,10] for details about
SIGHT’s ray tracing and data analysis performance.

Encoding and decoding speed in visualization streaming is of crucial impor-
tance to maintain latency low which results in a smooth interaction between the
user and the system. SIGHT’s frame server provides CPU and GPU based image
encoders. We used TurboJPEG library for JPEG compression using Intel’s SIMD
instructions and NVIDIA NVENC for GPU based H.264 encoding. Selected
encoders are conceptually different by design, in particular, we opted for Tur-
boJPEG because of its availability in VNC based solutions and ease of use. On
the other hand, to decode JPEG visualization frames, SIGHT’s client uses web
browser’s built-in JPEG image decoding and to decode H.264 frames, it uses the
Media Source Extensions (MSE) and the Broadway.js library.

We designed an experiment to evaluate the performance of SIGHT’s frame
server. The objective of the experiment was to analyze CPU and GPU based
encoding and decoding performance under different image resolutions. The

3 https://youtu.be/0nremmyPyG0, https://youtu.be/q6vmgYbVhe0.

https://youtu.be/0nremmyPyG0
https://youtu.be/q6vmgYbVhe0

30 S. A. G. Cortés et al.

Table 5. SIGHT’s streaming visualization performance results.

NVENC NVENC+MP4 TJPEG

Encoding Full HD (ms) 4.65 6.05 16.71

Encoding 4K (ms) 12.13 17.89 51.89

Frame size Full HD (KB) 116.00 139.61 409.76

Frame size 4K (KB) 106.32 150.65 569.04

experiment included different encoding/decoding scenarios. The first scenario
consisted on using NIVIDA NVENC for H.264 encoding and Broadway.js for
“direct” decoding in the web browser. In the second scenario, we used NVIDIA
NVENC and on-the-fly MP4 wrapping for encoding and MSE for decoding. The
last scenario, consisted on using TurboJPEG for encoding and web browser’s
built-in JPEG for decoding.

The experiment was run in a NVIDIA DGX-1 Volta system with network
bandwidth of 800 Mbps between SIGHT’s server and its client. H.264 quality
settings were set at 32 MBPS, 30 FPS, PROFILE BASELINE and JPEG quality
settings to 50. We performed simple calibration of both encoders based on visual
observation to set their quality settings at the same equivalent levels. We used
FireFox 65 with Broadway.js for “direct” H.264 decoding, and Chrome 72 for
MSE and built-in JPEG decoders. During the experiment, we tracked the behav-
ior of the encoders and decoders in a session of one minute. The session consisted
on navigating through a model, zooming in, zooming out, rotation and transla-
tion.

Table 5 reports average encoding/decoding latency in milliseconds and the
size, in kilobytes, of the stream after encoding Full HD (1920× 1080 pixels) and
4K (3840×2160 pixels) resolutions. We conclude encoding using NVENC for Full
HD resolution was 3.6× faster than TurboJPEG whereas NVENC 4 K resolution
was 4.3× faster. On the other hand, the media source extensions (MSE) provided
the best decoding performance, i.e. MSE for Full HD resolution was 1.1× faster
than Broadway.js and 1.95× faster than web browser’s built-in JPEG decoder.
F4 K resolution, MSE was 1.65× faster than Broadway.js and 3.72× faster than
built-in JPEG decoder.

5 Discussion and Future Plans

The significant increase in computing power, demonstrated by the deployment
of Summit supercomputer, provides an opportunity to solve larger and more
comprehensive problems in different scientific domains. This also raises oppor-
tunities to efficiently handling data-intensive applications through deployment of
remote visualization solutions as demonstrated by SIGHT. On the other hand,
HPC infrastructure, traditionally configured and deployed for compute work-
loads, comprises manycore and multicore processors that should be used for
visualization. Intel’s Software Defined Visualization [9] initiative or NVIDIA’s

Remote Visualization: Experiences in Two Different HPC Sites 31

continuous graphics support in their Tesla based products, exposes the visualiza-
tion capabilities of these processors. We have been in touch with both vendors to
design SIGHT’s infrastructure and to enable (remote) visualization capabilities
on OLCF’s x86 and POWER9 clusters. In addition, we use Summit for in-situ
visualization and, Rhea and Andes cluster for pre- and post-processing including
analysis, visualization and remote desktops based on TurboVNC and NiceDCV
solutions.

Along with the increase in computing power comes growth in the number
of users and types of usage, as evidenced by the situation at SC3. These new
users bring along expectations about usability. From the users’ perspective, inte-
grating HPC resources in their workflow can be very daunting. Users normally
prefer to carry on using the tools (and modes of interaction) they know best:
this is understandable given the costs associated with learning new tools and
methodologies, specially when highly specialized tools are considered. This work
presented an approach to facilitate the interaction of users with HPC resources
at SC3, using remote visualization for specific applications without a desktop
client; bypassing the console as much as possible is of utmost importance. The
main objective was to present the users an experience as close as the one pre-
sented in their desktops as possible. YAJE 2.0 was the implementation resulting
from this attempt. From the results of the tests carried out on the implementa-
tion we can conclude that a mechanism of interaction for the users at SC3 similar
to a local desktop, using remote visualization over the web, was developed. The
resulting solution has low overhead in resources, low cost of implementation, and
gentle learning curve. The main limitation of the solution is its dependence upon
the domestic internet connection of the users and the stability of our University
network, specially in terms of latency. We consider this results satisfactory, given
the fact that latency is the main limitation in similar applications in different
areas of remote visualization, both scientific and commercial. It is important to
note that the service is being rolled out to users, and their experience has been
positive; this feedback will ensure the continuity of the project.

As next steps in the YAJE roadmap, we are working on a better work flow
for the OpenFOAM and VMD based use cases, including the possibility of a an
In-transit coupled simulation. YAJE is in its early stages of development, and
we are considering several other angles to improve it: including more use cases
from other domains to obtain insight on a possible general set of requirements,
measuring the impact on the users using Human Computer Interaction metrics,
expanding the use of the tool, and working on improving the efficiency, exploring
options both in the containers and the data transfers; for this last part, the
expertise of the team at OLCF is of paramount importance.

An important lesson we learned at SC3 with the implementation of YAJE
was the preponderance of the user experience in HPC adoption processes: what
started as, in its very first conception, a project to develop and showcase technical
capabilities using existing hardware, quickly became a endeavour much more
grounded in the necessities of the users. It is now geared toward improving the
acceptance of the infrastructures by the researchers, traditionally skeptics on

32 S. A. G. Cortés et al.

the matter, thus aiding in the solution of a very real problem in newer high
performance computing sites: low usage rate of the platforms.

While the SC3 and OLCF are different in terms of users, applications, and
resources they share the same end goal: to provide support for scientists for
increasingly difficult problems. Both centers worked on an aspect related to this
end goal, i.e. remote visualization, which serves directly the scientists. Each
center tackled a different part of the visualization, according to their strengths
and limitations, and generated novel solutions according to their road maps;
even though these solutions are not comparable, and are not tackling the same
exact need, they show commonality in their conception.

Acknowledgments. This research partially used resources of the Oak Ridge Lead-
ership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725. SIGHT’s datasets provided by OLCF INCITE
2017–2019 “Petascale Simulations of Short Pulse Laser Interaction with Metals” PI
Leonid Zhigilei, University of Virginia. This research also used resources from Super-
computación y Cálculo Cient́ıfico (SC3), a High Performance Computing Centre at
Universidad Industrial de Santander (UIS), Colombia. The funding came from Vicer-
rectoŕıa de Investigación y Extensión (VIE), the Research unit of UIS.

References

1. Adler, R.M.: Distributed coordination models for client/server computing. Com-
puter 28(4), 14–22 (1995). https://doi.org/10.1109/2.375173

2. Ardila-Suárez, C., Perez-Beltran, S., Ramı́rez-Caballero, G.E., Balbuena, P.B.:
Enhanced acidity of defective mof-808: effects of the activation process and miss-
ing linker defects. Catal. Sci. Technol. 8, 847–857 (2018). https://doi.org/10.1039/
C7CY02462B

3. Bennett, J.C., Childs, H., Garth, C., Hentschel, B.: In situ visualization for com-
putational science (Dagstuhl Seminar 18271). Dagstuhl Rep. 8(7), 1–43 (2019).
https://doi.org/10.4230/DagRep.8.7.1, http://drops.dagstuhl.de/opus/volltexte/
2019/10171

4. Bernal Diaz, C.A.: Visualizacion de fluidos mediante tecnicas en dinamica de fluidos
computacionales sobre maquinas masivamente paralelas basadas en gpus (2018)

5. Choi, J., Ko, J.: RemoteGL - towards low-latency interactive cloud graphics expe-
rience for mobile devices (demo). In: Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2019, Seoul,
Republic of Korea, pp. 693–694. Association for Computing Machinery. https://
doi.org/10.1145/3307334.3328587

6. Gonzalez Esteban, F.E.: Evaluación de un convertidor de energia undimotriz en
colombia. Master Thesis

7. Hernández, B.: Exploratory visualization of petascale particle data in nvidia dgx-1.
In: NVIDIA GPU Technology Conference 2017, Silicon Valley CA, USA (2017)

8. Hernández, B.: Heterogeneous selection algorithms for interactive analysis of billion
scale atomistic datasets. In: NVIDIA GPU Technology Conference 2017, Silicon
Valley CA, USA (2017)

9. Intel: Software Defined Visualization. http://sdvis.org/. Accessed 10 June 2020

https://doi.org/10.1109/2.375173
https://doi.org/10.1039/C7CY02462B
https://doi.org/10.1039/C7CY02462B
https://doi.org/10.4230/DagRep.8.7.1
http://drops.dagstuhl.de/opus/volltexte/2019/10171
http://drops.dagstuhl.de/opus/volltexte/2019/10171
https://doi.org/10.1145/3307334.3328587
https://doi.org/10.1145/3307334.3328587
http://sdvis.org/

Remote Visualization: Experiences in Two Different HPC Sites 33

10. Kawakami, Y., Hernández, B.: Early experiences on OpenPOWER architecture:
analysis of billion-scale atomistic datasets. In: The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC 2019), Den-
ver, CO, USA (2019)

11. OLCF: Overview the Oak Ridge Leadership Computing Facility. https://www.olcf.
ornl.gov/about-olcf/overview/. Accessed 31 May 2020

12. Parker, S.G., et al.: Optix: a general purpose ray tracing engine. ACM Trans.
Graph. 29(4), 66:1–66:13 (2010). https://doi.org/10.1145/1778765.1778803

13. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network com-
puting. IEEE Internet Comput. 2(1), 33–38 (1998). https://doi.org/10.1109/4236.
656066

14. Shih, C.Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: Generation of subsurface voids,
incubation effect, and formation of nanoparticles in short pulse laser interactions
with bulk metal targets in liquid: molecular dynamics study. J. Phys. Chem. C
Nanomater. Interfaces 121(30), 16549–16567 (2017). https://doi.org/10.1021/acs.
jpcc.7b02301

15. Shih, C.Y., et al.: Two mechanisms of nanoparticle generation in picosecond laser
ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10(15),
6900–6910 (2018). https://doi.org/10.1039/C7NR08614H. Publisher: The Royal
Society of Chemistry

16. Shugaev, M.V., et al.: Fundamentals of ultrafast laser–material interaction. MRS
Bull. 41(12), 960–968 (2016). https://doi.org/10.1557/mrs.2016.274

17. Syslabs.io: Singularity Community and SingularityPRO on high-performance
servers. https://www.sylabs.io/singularity/#1543372082288-68c2f2d1-031d.
Accessed 10 June 2020

18. US Department of Energy Office of Science: ALCC. https://science.energy.gov/
ascr/facilities/accessing-ascr-facilities/alcc/. Accessed 14 May 2020

19. US Department of Energy Office of Science: INCITE. http://www.
doeleadershipcomputing.org/. Accessed 14 May 2020

20. Wald, I., et al.: Ospray - a CPU ray tracing framework for scientific visualization.
IEEE Trans. Visual. Comput. Graph. 23(1), 931–940 (2017). https://doi.org/10.
1109/TVCG.2016.2599041

21. Zhigilei, L.: Petascale simulations of short pulse laser interaction with met-
als. https://www.olcf.ornl.gov/web-project/petascale-simulations-of-short-pulse-
laser-interaction-with-metals/. Accessed 6 June 2020

https://www.olcf.ornl.gov/about-olcf/overview/
https://www.olcf.ornl.gov/about-olcf/overview/
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1109/4236.656066
https://doi.org/10.1109/4236.656066
https://doi.org/10.1021/acs.jpcc.7b02301
https://doi.org/10.1021/acs.jpcc.7b02301
https://doi.org/10.1039/C7NR08614H
https://doi.org/10.1557/mrs.2016.274
https://www.sylabs.io/singularity/#1543372082288-68c2f2d1-031d
https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/
https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/
http://www.doeleadershipcomputing.org/
http://www.doeleadershipcomputing.org/
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://www.olcf.ornl.gov/web-project/petascale-simulations-of-short-pulse-laser-interaction-with-metals/
https://www.olcf.ornl.gov/web-project/petascale-simulations-of-short-pulse-laser-interaction-with-metals/

High Performance Computing
Simulations of Granular Media in Silos

Miguel Da Silva, Sergio Nesmachnow, Santiago Iturriaga(B), and Gabriel Usera

Universidad de la República, Montevideo, Uruguay
{mdasilva,sergion,siturria,gusera}@fing.edu.uy

Abstract. This article presents the application of high performance
computing for efficient simulations of granular media in silos. Granu-
lar media are extensively used in industry, where storage and proper
treatment pose several challenges to the scientific community. A relevant
problem concerns the study of granular media stored in a silo. Deter-
mining the behavior of the media during load and discharge stages is
critical. Knowing how the stored particles interact with each other and
how they interact with the storage structure can lead to understanding
and preventing undesirable effects (e.g., the collapse of the structure)
during the silo operation. Charge and discharge processes of granular
media in silos are frequently studied using computer simulations. High
performance computing comes to help researchers to perform granular
media simulations for systems with a large number of particles, in order
to model realistic situations in reasonable computing times. This arti-
cle describes the application of a parallel/distributed high performance
computing approach for studying the mechanisms that control the charg-
ing and discharging process of silos, in which grains pass through a
bottleneck. Simulations are performed applying the Discrete Element
Method, and the experimental evaluation is performed over the high
performance computing infrastructure of the National Supercomputing
Center in Uruguay. The analysis includes large realistic scenarios consid-
ering the physical properties of different grains, involving up to 450,000
particles. The proposed implementation allowed to reduce the execution
time of simulations up to 42%, demonstrating the capabilities of the
proposed parallel/distributed computing approach to scale to solve large
problem instances properly.

Keywords: HPC · Granular media simulations · Silos ·
LIGGGHTS-PUBLIC

1 Introduction

Granular media (or granular materials) are conglomerates of discrete solid,
macroscopic particles, that conform bodies of different shapes, dimensions, and
composition. Some examples of granular media are rock agglomerates, plant
grains, sand, minerals, and also astronomical bodies (e.g., asteroids and the
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 34–48, 2021.
https://doi.org/10.1007/978-3-030-68035-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-68035-0_3

High Performance Simulations of Granular Media in Silos 35

rings of Saturn). Beyond their great diversity, granular media share some com-
mon physical characteristics, and they are often considered the fourth state of
matter [11].

Granular media have a broad application in the industry: granular is the
second most used type of material in industrial processes, after water [20]. Some
examples of industrial equipment that operate with granular media are fluid
chemical reactors, conveyor belts, and storage silos. The industrial use of spe-
cialized equipment to handle granular media requires knowing the material’s
behavior during the operation. In 1979, Cundall and Strack [5] proposed the
Discrete Elements Method (DEM), which enables performing computer simula-
tions for studying the dynamics of granular media.

DEM simulates the behavior over time of each particle of a granular media
system by applying Newton’s second law. This feature implies that simulations
of systems that contain a high number of particles are modeled using intensive
computing tasks. Many works have addressed the efficient execution of DEM
algorithms in multiprocessor or multicore computers [1,2,9,23].

Simulation of systems involving many particles usually demands significant
execution time. Numerical simulation systems for DEM usually include several
functionalities for using multiple processing units to improve the performance of
numerical simulations using different strategies and algorithms. One of the main
strategies to improve performance is the ability to redistribute the workload
among multiple processing units throughout a simulation, i.e., dynamic workload
distribution [15,19]. The consolidation of DEM as a valid method for simulation
of granular media systems led to the development of software packages that
offer a broad set of tools for research on granular media dynamics, including
EDEM [6], MFIX [16], and LIGGGHTS [14].

LIGGGHTS-PUBLIC is a popular and well-known open-source version of
the LIGGGHTS package for DEM simulations. However, it does not include a
dynamic workload distribution mechanism. Its workload distribution is static,
with workloads being assigned to processes at the beginning of each simula-
tion. The lack of a dynamic workload distribution mechanism means the over-
all performance of simulations of granular media using LIGGGHTS-PUBLIC
is sub-optimal, especially when simulating large systems. This is because some
processes may be assigned far larger workloads than others, slowing down the
simulation’s execution time.

This article proposes to study the simulation of discharge flows of granular
media stored in silos using LIGGGHTS-PUBLIC. These simulations allow study-
ing the distribution of pressures exerted on the walls of a silo during the discharge
process. Furthermore, this article proposes to apply high performance techniques
for improving simulation efficiency by implementing a new domain decomposi-
tion algorithm for dynamic workload distribution on LIGGGHTS-PUBLIC. This
domain decomposition algorithm is implemented using MPI and is based on the
mobile planes strategy proposed by Markauskas et al. [15].

The efficiency results obtained in the experimental analysis show that the
proposed solution is able to reduce the execution times of granular dynamics

36 M. Da Silva et al.

simulations when compared with the static strategy for workload distribution.
The proposed domain decomposition algorithm is robust, as it was able to prop-
erly handle granular media systems with particles of equal radius and particles
with different radios. Furthermore, the proposed method shows good scalability
properties, since the efficiency results improved as the number of processes in
the simulation increased.

The main contributions of the research reported in this article are: i) studying
the mechanisms that control the charging and discharging process of granular
media stored in silos, ii) high performance implementation for dynamic domain
decomposition for granular media simulations, iii) experimental evaluation on a
high performance computing infrastructure over large realistic scenarios involv-
ing up to 450,000 particles. The main results of the experimental evaluation
indicate that the proposed approach allows reducing up to 42% the execution
time of simulations over traditional LIGGGHTS-PUBLIC simulations and has
appropriate scaling capabilities.

The article is organized as follows. Section 2 describes the problem of simulat-
ing flows in granular media stored in silos and reviews related works. Section 3
describes the proposed dynamic domain decomposition strategy and its inte-
gration to LIGGGHTS-PUBLIC. The experimental evaluation and results are
reported and discussed in Sect. 4. Finally, the conclusions and the main lines for
future work are presented in Sect. 5.

2 Simulation of Flows in Granular Media Stored in Silos

This section describes the simulation of flows in granular media stored in silos
and reviews related works on the application of DEM to study the dynamics of
such granular media.

2.1 Computational Simulation of Granular Media on Silos

Granular media are extensively used in industry, where storage and proper treat-
ment pose several challenges to the scientific community. A relevant problem
concerns to the study of granular media stored in a silo. Determining the behav-
ior of the media during load and discharge stages is critical. Knowing how the
stored particles interact with each other and how they interact with the storage
structure can lead to understanding and preventing undesirable effects (e.g., the
collapse of the structure) during the operation of the silo.

A line of research with direct applicability in the construction and operation
of silos is the study of granular media flows in the discharge stage. Researchers
have determined that the flow pattern within the silo is related to the pressure
distribution in the discharge stage when a concentric outlet orifice is used (i.e.,
the exit orifice is in the center of the of the circumference determined by the
structure of the silo). Likewise, it has been verified that the results obtained in
small-scale models do not offer good approximations of the expected results in
real scale models [18]. Due to the aforementioned issues, the scientific community

High Performance Simulations of Granular Media in Silos 37

has applied computer simulations to carry out experiments for large-scale silo
models [5,13,22]

Two flow patterns are observed in a silo with a concentric discharge orifice:
(a) mass flow, where all the particles stored in the silo have a simultaneous
movement, and (b) funnel flow, where a region with particles that do not move
(stagnant zone) is observed, and the remaining particles move forming a flow
channel. Detailed studies of granular media dynamics have been presented for
both mass flow and funnel flow patterns [12]. However, when discharging a silo
through an eccentric orifice, a flow-through pattern contiguous to the wall closest
to the exit orifice (eccentric funnel flow) is observed.

Experiments for studying granular media flow patterns in the discharge of
silos at real-scale are scarce in the literature, and the instrumentation to perform
an experiment on that scale is very complex [3]. Furthermore, reported measure-
ments in real-scale experiments do not include the values for the distribution of
pressures and their correlation with the flow pattern [4,21].

Computational Fluid Dynamics and DEM are applied to study the dynamics
of granular media, primarily to determine the flow patterns during the discharge
stage, since the behavior of the particles directly influences the physical integrity
of the silo. Accidents that occur during the operation of a storage silo can be
fatal; for instance, in Uruguay in 2015, two workers died [7].

2.2 Related Work

Markauskas et al. [15] introduced the theoretical basis of a dynamic domain
decomposition algorithm based on moving planes. The goal of the mobile planes
algorithm is to distribute the total workload among several processes in an equi-
table manner. Two ways were considered for defining the workload of a process
p: i) the total number of particles assigned to p divided by the time necessary to
execute an iteration of the DEM method, and ii) the total number of particles
assigned to p. The authors used the first workload definition to prevent relatively
slower processes from being overloaded with a high number of particles. A toler-
ance level is used to determine when the workload distribution algorithm must
be executed. At the end of a DEM cycle, the workloads of each processor are
evaluated and if some of them are overloaded (i.e., the relative workload is higher
than the predefined tolerance level), the mobile planes algorithm is invoked. The
algorithm allows setting the volume of each subdomain so that the workload
of each processor is not higher than the predefined tolerance level. The domain
decomposition model used by the authors assigned each subdomain to a proces-
sor and the volume adjustment was done iteratively. An implementation of the
mobile planes method was incorporated into a DEM simulator developed by the
authors and used in an experimental analysis for two problems of discharge of
silos. The proposed method was able to balance the workload properly, starting
from an unbalanced scenario to an equilibrium in which all processors shared
approximately the same load.

Berger et al. [2] presented a parallel hybrid implementation for LIGGGHTS
combining distributed memory, implemented with the MPI library, and shared

38 M. Da Silva et al.

memory, implemented with OpenMP. The main goals of including the sec-
ond level of parallelism using OpenMP were increasing the parallelism level of
LIGGGHTS and providing a dynamic domain decomposition strategy. The pro-
posed hybrid model has two main components: (1) a component using MPI that
is responsible for the domain decomposition into subdomains and (2) a compo-
nent using MPI and OpenMP directives, which is responsible for the execution
threads created for the parallel processing of particles contained in a subdomain.
The authors described the strategy for dynamic domain decomposition in the full
version of LIGGGHTS and how they adapted the calculation algorithms using
OpenMP. Regardless of the domain decomposition strategy used, LIGGGHTS
bi-univocally assigns one MPI process to each generated subdomain. The modi-
fied version generates n partitions from the corresponding subdomain, creates n
OpenMP threads to process the movement and interaction of the particles within
each subdomain, and assign them bi-univocally to each partition. The Recursive
Coordinate Bisection algorithm was applied for generating the partitions. The
strategies used by LIGGGHTS for allocating MPI processes to subdomains and
dynamic domain decomposition were not modified.

Other articles have applied simple static domain decomposition approaches.
Kacianauskas et al. [13] proposed a parallel algorithm for DEM simulations of
polydisperse granular media using MPI. The proposed algorithm applied a homo-
geneous domain division in subdomains of equal volume, used the linked-cell lists
for efficient contact detection, and applied the Gear predictor-corrector scheme
for solving high-order differential equations. No explicit load balance method
was included, and the experiments were limited to 10 processors, to minimize
the impact of data communications and “maintain appropriate load balancing.”
Shigeto and Sakai [22] proposed a parallel algorithm using OpenMP for DEM
simulations using the linked-cell method and providing support for execution on
Graphics Processing Units (GPU). Different implementations were developed,
accounting for the execution platform (CPU or GPU) and single or double pre-
cision for floating-point numbers. Mixed efficiency results were obtained in the
experimental evaluation: the GPU version using single precision floats was 3
times faster than its CPU counterpart for small scenarios, but simulations using
double precision and a large number of particles were up to 13% faster when
executed in CPU. No load balancing analysis was performed or reported.

Overall, the analysis of related works allowed to conclude that high perfor-
mance computing techniques have been applied to successfully improve the effi-
ciency and reduce the execution time of DEM simulations for granular media.
Those researches that have also applied load balancing techniques were able
to further benefit from the capabilities of the parallel models when using
a proper workload distribution. In this line of work, this article proposes a
dynamic domain decomposition strategy applying mobile planes integrated to
LIGGGHTS-PUBLIC. The main details of the proposed algorithm are presented
in the next section.

High Performance Simulations of Granular Media in Silos 39

3 Dynamic Domain Decomposition Strategy

This section describes the proposed dynamic domain decomposition strategy and
its integration to the LIGGGHTS-PUBLIC software package.

3.1 Overall Description

The proposed dynamic domain decomposition strategy applies the mobile planes
strategy by Markauskas et al. [15]. The first step for applying the proposed
algorithm is to determine the load of a given computing resource (processor or
core). This work defines the processor load metric as its number of assigned
particles.

A workload reorganization/domain redefinition, using the mobile planes algo-
rithm, is applied when any given processor’s workload pi is larger than a given
threshold (fixed in 20%, but configurable) with respect to the workload of other
processor pj . Following the MPI notation (i.e., using ranks to identify processes
in execution), the algorithm is executed when the expression in Eq. 1 holds (n
is the number of processes and l(pi) is the load of process pi).

{pi | ∃pj , i, j ∈ {0, . . . , n − 1}, i �= j, |(l(pi) − l(pj)| > 0.2 × l(pj)} (1)

The execution cycle of LIGGGHTS-PUBLIC was modified to include the
dynamic domain decomposition of the flow. Figure 1 presents the original cycle
in LIGGGHTS-PUBLIC and the modified cycle including the dynamic domain
decomposition.

3.2 Process Grouping and Workload Calculation

Process grouping follows a 1D decomposition strategy where a group of processes
shares the coordinates on a given axis e of the boundary points that define the
subdomains, according to the user-defined partitions for axis e. For a given axis
e, Pe partitions are defined and processes pi and pj belong to the same group if
emin
i = emin

j and emax
i = emax

j , being emin
i and emax

i the minimum and maximum
values of the coordinates in axis e of the points that define the subdomain to
which pi was assigned. Figure 2 shows sample groups respect to axis y and z for
Px = 4, and Py = Pz = 2.

Process grouping is performed before starting the integration loop. The
boundaries defined by the new cutting points in axis e remain parallel to the axis
and subdomains remain orthoedric. Thus, processes in a group do not change
during the simulation and there is no need to generate process grouping many
times.

The method for generating the groups for a given axis (e.g., axis x) iterates
over subdomains and changes the coordinates for the remaining axis. The method
creates a 3D matrix of ranks that stores PARTS 1 ×PARTS 2 ×PARTS 3 integers
representing an attribute of the Comm class that stores in position (i, j, k) the rank
of the process assigned to the subdomain identified by coordinates (i, j, k).

40 M. Da Silva et al.

(a) Original integration scheme

(b) Modified integration scheme

Fig. 1. Execution cycles in LIGGGHTS-PUBLIC

High Performance Simulations of Granular Media in Silos 41

(a) Grouping respect to y axis (b) Grouping respect to z axis

Fig. 2. Two samples of 1D decomposition process grouping

The workload of process p is the proportion of the simulated particles con-
tained in the subdomain where p was assigned [15]. Specific modifications were
performed in LIGGGHTS-PUBLIC to include data structures to store the work-
load information. Attributes of the Atom class were extended to (the total num-
ber of particles, natoms, the number of particles in a subdomain nlocal, and the
number of ghost particles, nghost). An iterative two-stages algorithm was imple-
mented in MPI to compute the workload of a process grouping. The algorithm is
included in the new version of LIGGGHTS-PUBLIC as Verlet::compute load().
The workload of each process grouping respect to each coordinate are stored in
the sliceLoadArray matrix.

3.3 Dynamic Subdomain Boundaries

Using the information about the workload of each process grouping, the mobile
planes strategy is applied to compute the new boundaries of subdomains. The
computation is performed twice in the integration cycle. The details of each
computation are described in this section.

New Subdomain Boundaries. The method applied to compute the workload of
each process grouping is also applied to compute the new subdomain bound-
aries, just before ending each step of the integration cycle. The new method
Verlet::generate split() was implemented to perform this action. New bound-
aries computed at the end of a given step are available to be used by LIGGGHTS-
PUBLIC at the beginning of the next step, where some actions that depend on
the domain decomposition are performed (e.g., inserting new particles).

A Map-Reduce approach is applied, based on Dynamic strip decomposition
(DSD) from Hanxleden and Scott [10]. A new method Verlet::coord2SubSlice()

was developed to return the index of the fraction W i
r to whom particle x(part)

belongs to. Vector x (in class Atom) stores the coordinates of particles in subdo-
main r. All results are computed for each process and one MPI communicator
(subWorldSlices) is created per each group. MPI Reduce is used to consolidate all
results in vector totalPartInSubslice. After the computations and the reduc-
tion phase, a master process centrally defines the boundaries. The proposed
implementation iterates over the discretization defined for subintervals for each
coordinate. A new method Verlet::newSplitPointBoxCoord() was implemented

42 M. Da Silva et al.

to determine the cutting point that defines the new boundary according to the
index for each fraction W i

r . When all cutting points have been computed, a flag
is set to indicate that the new boundaries must be applied in the next timestep.

Application of New Boundaries. Specific code was developed and included into
the Verlet::run() method of LIGGGHTS-PUBLIC to check if a new domain
decomposition must be considered and to implement that decomposition if
needed, by modifying the new boundaries between subdomains. The adjustments
are performed iteratively by following the integration cycle of LIGGGHTS-
PUBLIC. A specific feature of this method is that the Irregular pattern for
communications is applied, in order to properly adjust the dimension of the sub-
domains and move particles to processes for which the associated subdomains
are not contiguous to the subdomain of the origin process.

The new domain decomposition is applied by updating all the data struc-
tures that store the cutting points for each coordinate and reconfiguring the
subdomains’ dimensions. The Comm class stores in attributes xsplit, ysplit, and
zsplit the cutting points for each axis. The new method Verlet::applyDomain()

stores the new cutting points in the corresponding attributes and calls the meth-
ods to reconfigure the subdomains. The assignment of processes to subdomains
does not change. The method Verlet::generate split() is executed regularly, in
intervals defined by the user, just before ending an iteration of the integration
cycle. LIGGGHTS-PUBLIC regenerates the list of neighbouring particles every
ten timesteps and checks if a new domain decomposition must be applied, only
if the list of neighbours changed. In case the time of application of a new domain
decomposition does not coincide with the timestep of LIGGGHTS-PUBLIC, the
new decomposition is delayed until both timesteps are synchronized.

Two methods were implemented to define the properties of the domain
decomposition: Input::cload() to configure parameters and Input::dddecomp()

to define the frequency of application of the dynamic domain decomposition.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed approach
using LIGGGHTS-PUBLIC.

4.1 Validation Problem and Instances

The Binflow problem is used for validation of the proposed domain decomposi-
tion strategy. Binflow simulates the loading and unloading of a silo, and it is part
of the benchmark problems included in LIGGGHTS-PUBLIC. Figure 3 shows
the silo considered in the experiments: it has two sections and a concentric exit
orifice. The first (upper) section has a cylindrical shape and the second (lower)
section has a funneled shape.

Particles are inserted at the top of the silo with initial velocity −→v0 = (0, 0,−1)
and move towards the bottom of the silo in a free fall motion. The configuration
of particles insertion with an initial velocity towards the bottom of the silo

High Performance Simulations of Granular Media in Silos 43

Fig. 3. Silo of the Binflow problem

simulates a charging procedure usually found in the industry, where the particles
reach the top of the silo through a conveyor belt and are introduced through
a hole. The discharge stage begins once the loading stage has finished and the
particles leave the silo through the hole in the bottom of the structure.

The physical-chemical properties of the materials considered in the simula-
tions are not especially relevant for the performance evaluation, so standard val-
ues were used: Young’s modulus = 25 MPa, friction coefficient between particles
= 0.175, friction coefficient between particle and surface = 0.2, particles density
= 1,000 kg/m3. Different instances of the problem were generated by varying
two parameters in the simulations, in order to generate different workloads: (1)
particle diameter and (2) number of particles in the system. The variation of
these parameters allows studying the robustness of the implemented dynamic
domain decomposition strategy with respect to changes in the material.

4.2 Numerical Results

Two configurations of the Binflow problem were defined: using 150,000 particles
with a radius of 1.5 mm, and 450,000 particles with a radius of 1.5 mm. Two
types of scenarios were defined for each configuration, in order to evaluate the
two versions of the proposed algorithms: static scenarios (bf *) and dynamic
scenarios (bf dyn *), taking into account the strategy for domain decomposition
used.

Four instances of the problem were defined for each scenario: three for the
configuration with 150,000 particles, using 8 (bf 8 and bf dyn 8), 16 (bf 16 and
bf dyn 16), and 24 (bf 24 and bf dyn 24) processes, and one for the configuration
with 450,000 particles (bf 450K and bf dyn 450K). A version of the problem with
150,000 particles executed sequentially (bf serial) was defined to be used as a
baseline for the comparison in the computational efficiency analysis, as used in
the related work by Berger et al. [2].

44 M. Da Silva et al.

The detail of the instances is presented in Table 1. The table reports the
instance of the problem, the total number of particles in the simulation, the
number and duration of timesteps, the process configuration, and the values of
frequency defined by the cload() and dddecomp() methods.

Table 1. Configurations of scenarios and instances of the Binflow problem

Instance #particles Timesteps #process Frequency

Total Duration(s) # Config cload dddecomp

bf serial 1.5× 105 3.5× 105 5.0× 10−6 1 – – –

Static scenario

bf 8 1.5× 105 3.5× 105 5.0× 10−6 8 2× 2× 2 20000 –

bf 16 1.5× 105 3.5× 105 5.0× 10−6 16 2× 2× 4 25000 –

bf 24 1.5× 105 3.5× 105 5.0× 10−6 24 2× 2×8 25000 –

bf 450K 4.5× 105 1.3× 107 5.0× 10−6 16 2× 2×4 25000 –

Dynamic scenario

bf dyn 8 1.5× 105 3.5× 105 5.0× 10−6 8 2× 2×2 20000 100000

bf dyn 16 1.5× 105 3.5× 105 5.0× 10−6 16 2× 2×4 25000 50000

bf dyn 24 1.5× 105 3.5× 105 5.0× 10−6 24 2× 2×8 25000 50000

bf dyn 450K 4.5× 105 1.3× 107 5.0× 10−6 16 2× 2× 4 25000 100000

For each problem instance and version of the algorithm, 30 independent exe-
cutions were performed to reduce the impact of non-expected deviations on the
execution time due to asynchronism. Experiments with up to 8 processes were
performed on a server with Intel Xeon E5430 processors, with 8 cores 2.66 GHz
and 8 GB RAM. Experiments with more than 8 processes were executed on a
server with AMD Opteron 6172 processor, 24 cores 2.10 GHz and 24 GB RAM.
Both servers are from Cluster FING, the High Performance Computing facility
at Universidad de la República, Uruguay [17]. Servers were selected according to
the availability of computing resources and to consider the two most important
architectures for high performance simulations nowadays.

Table 2 reports the minimum, maximum, average, and standard deviation
of the execution time for the sequential, static, and dynamic versions of the
simulations. The average improvement on the execution time and the speedup
of the versions using 8, 16, and 24 processes and the proposed load-balancing
dynamic domain decomposition are also reported.

The average improvement is computed from the results reported in Table 2,
for the same configuration of processes over the different executions. For example,
considering executions with 16 processes and 150,000 particles the improvement
is 1 − 4:54/8:20 = 0.42. The standard methodology to compute the relative
speedup is applied, dividing the execution time of the average execution time of
the sequential algorithm (bf serial) using a single computing resource and the

High Performance Simulations of Granular Media in Silos 45

Table 2. Execution time and efficiency metrics for sequential, static, and dynamic
versions of the proposed algorithm for the Binflow problem

Instance Execution time (mm:ss) Improvement Speedup

Min. Max. Avg. Std. dev.

bf serial 37:39 45:52 41:02 1:56 – –

bf 8 9:12 9:41 9:23 0:07 – –

bf dyn 8 6:04 6:23 6:10 0:06 34% 6.65

bf 16 7:27 10:06 8:20 0:47 – –

bf dyn 16 3:50 7:36 4:54 0:44 42% 8.37

bf 24 5:55 6:23 6:04 0:07 – –

bf dyn 24 3:23 3:57 3:30 0:06 42% 11.72

bf 450K 80:28 88:30 84:32 2:46 – –

bf dyn 450K 50:02 58:17 53:30 2:22 37% –

average execution time of the parallel algorithm using p computing resources.
For example, for version bf dyn 8 the speedup is 41:02/6:10 = 6.65.

Figure 4 reports the performance improvement when using different num-
ber of processes and the speedup analysis for a representative instance of the
Binflow problem with 150,000 particles. Results in Fig. 4 indicate that the pro-

(a) Performance improvement (b) Speedup

Fig. 4. Efficiency analysis for a representative instance of the Binflow problem with
150,000 particles

posed domain decomposition method achieved the best efficiency results when
the number of processes increases. The mobile planes strategy benefits from the
geometrical properties of the scenario to create more subdomains and adjust
the dimension of the subdomains precisely, in order to distribute the workload
evenly.

Figure 5 reports the average workload distribution among processes for ver-
sion bf mp 8 of Binflow, which is a representative case of the behavior observed

46 M. Da Silva et al.

for other versions. Each column in the graphic represents the workload assigned
to each process in a given timestep of the simulation.

Fig. 5. Workload distribution for instance bf mp 8 of the Binflow problem

Results in Fig. 5 summarize how the workload distribution evolves in a rep-
resentative execution of the simulations. For example, the graphic shows that
for timestep 20 × 103, processes 2, 4, 6, and 8 are idle and particles in the sim-
ulation distribute to processes 1, 3, 5 and 7 (nearly 25% of the particles to each
process). This not-evenly distribution is because the dynamic load balancing
algorithm has not been called in timestep 20×103 and particles have not moved
to subdomains to which processes 2, 4, 6 y 8 have been assigned. When times
advances, more particles are loaded into the simulation and existing particles
move to other subdomains.

When the dynamic load balancing algorithm is applied, the workload starts to
distribute evenly, as observed for timesteps 220×103 to 340×103 in the graphic.
These results imply a better use of the available computing resources and a
correct distribution of the workload that results in a lower overall execution
time of the simulation.

5 Conclusions and Future Work

This article studied the charging and discharging process of granular media
stored in silos, and proposed and evaluated a dynamic domain decomposi-
tion method based on the mobile planes strategy to be applied for granular
media simulations. The proposed method was designed to be implemented into
the LIGGGHTS-PUBLIC open-source simulation software. It was developed to
properly balance the workload between processes in a simulation, in order to
improve the computational efficiency and reduce the overall execution time.

High Performance Simulations of Granular Media in Silos 47

The experimental methodology evaluated the efficiency and the correct work-
load distribution of simulation using the proposed method. Several versions
and instances of the Binflow problem were studied, accounting for 150,000 and
450,000 particles. The main results indicate that the proposed dynamic domain
decomposition method is able to evenly distribute the workload and achieve
a proper load balancing, allowing to improve the execution time of simulations
up to 42%. An additional analysis over a large realistic scenario involving 450,000
particles shows that the proposed dynamic domain decomposition method has
appropriate scaling capabilities.

The main lines for future work are related to extending the performance eval-
uation of the proposed methods by including realistic scenarios with more par-
ticles and different computing environments. In addition, the proposed method
can be applied to the study of other granular media with application on science
(e.g., astronomical bodies [8]) and industry (e.g., different materials).

References

1. Amritkar, A., Deb, S., Tafti, D.: Efficient parallel CFD-DEM simulations using
OpenMP. J. Comput. Phys. 256, 501–519 (2014)

2. Berger, R., Kloss, C., Kohlmeyer, A., Pirkera, S.: Hybrid parallelization of the
LIGGGHTS open-source DEM code. Powder Technol. 278, 234–247 (2015)

3. Chen, J., Rotter, J., Ooi, J., Zhong, Z.: Flow pattern measurement in a full scale
silo containing iron ore. Chem. Eng. Sci. 60, 3029–3041 (2005)

4. Chen, J., Rotter, J., Ooi, J., Zhong, Z.: Correlation between the flow pattern and
wall pressures in a full scale experimental silo. Eng. Struct. 29(9), 2308–2320 (2007)

5. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies.
Géotechnique 29(1), 47–65 (1979)

6. DEM Solutions: EDEM-The leading Discrete Element Method (DEM) software.
https://www.edemsimulation.com/. Accessed 6 July 2020

7. El Observador: Hallan muertos a los dos operarios de Fadisol. https://www.
elobservador.com.uy/hallan-muertos-los-dos-operarios-fadisol-n297567. Accessed
6 July 2020

8. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of
self-gravity for small solar system bodies. IEEE Comput. 47(9), 34–39 (2014)

9. Gopalakrishnan, P., Tafti, D.: Development of parallel DEM for the open source
code MFIX. Powder Technol. 235, 33–41 (2013)

10. Hanxleden, R., Scott, L.: Load balancing on message passing architectures. J. Par-
allel Distrib. Comput. 13(3), 312–324 (1991)

11. Jaeger, H., Nagel, S., Behringer, R.: Granular solids, liquids, and gases. Rev. Mod.
Phys. 68(4), 1259 (1996)

12. Jenike, A., Johanson, J., Carson, J.: Bin loads–parts 2, 3 and 4: concepts, mass-flow
bins, funnel-flow bins. J. Eng. Ind. 95(1), 1–16 (1973)

13. Kačianuskas, R., Maknickas, A., Kačeniauskas, A., Markauskas, D., Balevičius, R.:
Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng.
Softw. 41, 52–63 (2010)

14. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and
validation for opensource DEM and CFD-DEM. Powder Technol. 12(2/3), 140–152
(2012)

https://www.edemsimulation.com/
https://www.elobservador.com.uy/hallan-muertos-los-dos-operarios-fadisol-n297567
https://www.elobservador.com.uy/hallan-muertos-los-dos-operarios-fadisol-n297567

48 M. Da Silva et al.

15. Markauskas, D., Kačeniauskas, A., Maknickas, A.: Dynamic domain decomposition
applied to hopper discharge simulation by discrete element method. Inf. Technol.
Control 40(4), 286–292 (2011)

16. National Energy Technology Laboratory: MFIX - Multiphase Flow with Interphase
eXchanges. https://mfix.netl.doe.gov/. Accessed 06 June 2020

17. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa. Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010). Text in Spanish

18. Nielsen, J.: Pressures from flowing granular solids in silos. Philos. Trans.: Math.
Phys. Eng. Sci. 1747, 2667 (1998)

19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117, 1–19 (1995)

20. Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation
and compaction of granular systems. Nature Mater. 4(2), 121–128 (2005)

21. Schuricht, T., Fürll, C., Enstad, G.: Full scale silo tests and numerical simulations of
the “cone in cone” concept for mass flow. In: Levy, A., Kalman, H. (eds.) Handbook
of Conveying and Handling of Particulate Solids, Handbooks of Powder Technology,
vol. 10, pp. 175–180. Elsevier Science B.V. (2001)

22. Shigeto, Y., Sakai, M.: Parallel computing of discrete element method on multi-core
processors. Particuology 9, 398–405 (2011)

23. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular
physics in low-gravity environments using discrete element method. Monthly
Notices Roy. Astron. Soc. 420(4), 3368–3380 (2012)

https://mfix.netl.doe.gov/

Performance Analysis of Main Public
Cloud Big Data Services Processing

Brazilian Government Data

Leonardo Rebouças de Carvalho , Marcelo Augusto da Cruz Motta(B) ,
and Aleteia Patricia Favacho de Araújo

Department of Computer Science, University of Brasilia, Brasilia, Brazil
leouesb@gmail.com, motta_marcelo@hotmail.com, aleteia@unb.br

Abstract. The growing amount of information generated by big data
systems has driven the use of tools that facilitate their processing, such
as Hadoop and its entire ecosystem. These tools can run on computa-
tional clouds whose benefits include payment on-demand, self-service,
and elasticity. This article evaluates three cloud services that delivers
fully-configured Hadoop ecosystems: AWS Elastic Map Reduce (EMR),
Google Dataproc, and Microsoft HDInsight. This evaluation was made
by measuring their performance and computational resource consump-
tion by performing workloads using data from the Bolsa Família, a social
welfare program of the Brazilian Government. The results showed that
HDInsight had better runtime performance. Variations in the consump-
tion of resources related to memory, disk activity, cost, and processing
were found, providing an insight into the strategy of each provider that
can be useful in the decision-making processes.

Keywords: Big data · Cloud computing · Hadoop · Bolsa família
Program · Google cloud platform · Amazon web services · Microsoft
AZURE

1 Introduction

The growing volume of data generated by society has produced an overwhelming
flow of data [1]. The volume of digital data is expected to jump from 33 zettabytes
in 2018 to 175 zettabytes in 2025 [25]. The amount of data generated by China
alone by 2020 is expected to exceed 10 times the amount of grains of sand on the
entire planet Earth [27]. This is not just an increase in business data volume,
but an increase of several orders of magnitude, commonly generated outside of
traditional enterprise applications and generally composed of unstructured or
semi-structured information types in huge amounts and continuous flow. This
reality has generated a demand for alternatives that can exploit these masses of
information and new data types, since traditional means have become insufficient
to meet the demand [9]. This paradigm was popularly called Big Data [26].

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 49–61, 2021.
https://doi.org/10.1007/978-3-030-68035-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_4&domain=pdf
http://orcid.org/0000-0001-7459-281X
http://orcid.org/0000-0002-4114-4735
http://orcid.org/0000-0003-4645-6700
https://doi.org/10.1007/978-3-030-68035-0_4

50 L. R. de Carvalho et al.

A Big Data environment faces challenges related to data processing and man-
agement [27], as well as data characteristics (whether by volume, speed, variety,
etc.). These challenges could be solved by investing in large data processing
centers. Given the high cost of installing and maintaining data centers, cloud
computing is an alternative to enabling big data scenarios. This makes compa-
nies able to extract from the mass of data the information they need to make
strategic decisions without the need for high investments.

As such, cloud providers may be made available exclusively by an organiza-
tion, such as private clouds [7], or may be contracted from public clouds, such
as Amazon, Google, and Microsoft. However, the process of choosing can be
complex due to the wide variety of companies offering this service.

This paper aims to comparatively analyze the performance (considering the
execution time and the consumption of computational resources) of the three
public cloud services that are designed to process large volumes of data using
Hadoop, whose providers are considered leaders of Gartner consults [8] in its
magic quadrant of 2019. The services reviewed were Google’s Dataproc [5],
Amazon’s Elastic Map Reduce (EMR) [20], and Microsoft’s HDInsight. These
providers were chosen because they are considered market leaders [8], in addi-
tion to their popularity and low cost. Among Big Data solutions (BigPanda [17],
StreamSets [18], WebAction [19], among others), the choice of Hadoop for this
study is justified because it is an open-source tool, having greater popularity and
a large number of contributors that contribute the growth and improvement of
the tool [11].

2 Big Data and Cloud Computing

Using Big Data presents many opportunities, whether it is supporting real-
time decisions, enabling risk management, or achieving organizational goals [12],
among other possibilities. Challenges such as volume, variety, velocity, veracity,
collection, storage, scalability, security, and privacy are common in this context
[10]. One area that has helped address these challenges is Cloud Computing.

Today, the concept of cloud computing is a well-established reality, with on-
demand access to many configured computing resources [3], such as infrastruc-
ture as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS). Cloud services have become a robust and affordable tool for performing
complex large-scale computing tasks, spanning many IT functions like storage,
processing, database services, e-mail, websites, and more.

The focus of this paper is to comparatively investigate the performance of
public cloud services in Big Data processing, providing information that can
support eventual decision making [7]. The providers for this analysis were chosen
by consulting the Gartner Magic Quadrant [8], which indicates that the leaders
in the public cloud segment, are Google Cloud Platform (GCP), Amazon Web
Services (AWS), and Microsoft Windows AZURE [21].

As a public cloud, AWS [6] provides database processing, storage, and power,
among other services. It also offers big data options such as Amazon Elastic

Performance Analysis of Main Public Cloud Big Data Services 51

MapReduce (EMR). This service is considered one of the most prominent exam-
ples of programming structures for distributed computing in large data sets [9].

EMR provides a managed Apache Hadoop framework, promising to make
it easy, fast, and cost-effective to process large volumes of data on dynami-
cally scalable Amazon EC2 instances. EMR lets you run other components of
the Hadoop ecosystem, such as Apache Spark, HBase, Presto, and more. EMR
operates seamlessly with other AWS services, such as S3 and AWS DynamoDB.

GCP offers a collection of services, including already hosted applications,
enabling the storage and development of applications running on Google hard-
ware. The range of services that Google Cloud Platform offers range from IaaS
with virtual machines; PaaS, with access to a scalable way of hosting where
developers can use kits like JDK1 through App Engine. Other types of services
are also available, such as Dataproc, which provides Hadoop ecosystem applica-
tions for big data processing.

In Dataproc, the client assembles the environment by setting-up the quantity
and configuration of each server. This service is intended to be fully manage-
able, fast, and simple to operate. It runs the Apache Spark and Apache Hadoop
clusters, charging for the use of virtual instances.

In October 2008 Microsoft announced the launch of its cloud service platform,
Azure [21]. However, only in February 2010 did the provider effectively start its
operation [29]. AZURE delivers cloud services from three traditional models:
SaaS, PaaS, and IaaS. These include HDInsight [30], whose delivery includes the
ecosystem that makes up the Hadoop Big Data solution with a Dataproc and
EMR equivalent stack. HDInsight also includes the following solutions: Apache
Spark [31], Apache Kafka [34], Apache HBase [35], Apache Hive [32] and Apache
Storm [33].

Both Dataproc, EMR, and HDInsight are the best of their respective
providers for the massive cloud data processing offering. All follow the same
operational approach to service delivery. From a parameter setting, the envi-
ronment is provisioned with the requested settings within minutes. Access to
the machines is through security keys created during the environment request
process, or even previously existing in the cloud. Google’s service offers greater
flexibility compared to the others. While AWS and Microsoft offer predefined
options, Google allows direct configuration of parameters such as: Hadoop ver-
sion, CPU and RAM amount, disk, cluster architecture, and number of nodes.
Other cluster types are also offered in these services, such as Apache Spark [31]
and HBase [35], but this article will explore only Hadoop.

3 Hadoop

Big Data is changing the landscape of analytics. Analysis, using tools and tech-
niques that work on structured data, is giving way to the chaotic universe of
unstructured data, very common in today’s internet blogging context. Unstruc-
tured data analysis has grown rapidly in importance because of its ability to
1 JDK - Java Development Kit.

52 L. R. de Carvalho et al.

exploit information from diverse sources such as social networks and virtual
traffic, for example [28].

To meet the new challenges brought by unstructured data, a number of tools
and technologies have grown in number and relevance. One platform that stands
out in this context is Hadoop. The combination of a powerful Hadoop Distributed
File System (HDFS) and a divide and conquer (MapReduce) processing strategy
has made Hadoop a popular choice for big data projects.

Fig. 1. Hadoop architecture [16].

Hadoop’s processing system is quite different from traditional systems. In a
web system, for example, data is sent for processing on a centralized server that
does all the work and then returns the result to the client. Assuming there is
a need to process a large data mass, using the traditional approach would need
to transfer them to the server, and this can be time consuming and requires
the server to support the volume of data. On the other hand, Hadoop’s strategy
is the opposite: once the data is loaded into your distributed file system, the
application is sent to each node that holds a fraction of the data and that node
performs the processing. With a portion of the result, the node sends it for
consolidation. Figure 1 illustrates Hadoop architecture, showing the relationship
between the main node and the working nodes.

Hadoop’s strategy takes advantage of parallelism to leverage the reduction
in processing time [14]. However, its implementation is more complex than the
traditional one, and for this reason several other tools have emerged to increase

Performance Analysis of Main Public Cloud Big Data Services 53

its potential and reduce complexity. These tools range from those for working
with the application like Pig [22] to even database systems like HBase [35]. This
whole set of tools, each with its own specific functions, has been referred to as
the Hadoop ecosystem [15].

4 The Bolsa Família Program

The Brazilian government has been providing data on various governmental
actions and programs. This information results in masses of data from various
analyses, either for content interpretation or performance testing. Considering
the large volume of data as well as the social importance, in this work we chose
to use the Bolsa Familia Program (BFP) database. The BFP data were obtained
from the Transparency Portal, a project of the Federal Controllership of Union,
which provides various public data, with the aim of improving the transparency
of public management [4].

The Bolsa Família Program assists in tackling extreme poverty and combat-
ing inequality throughout the Brazilian territory. Families receive a card and a
Social Identification Number (NIS) through which it is possible, for example, to
identify how many benefits have been directed to a particular family, as well as
the state in which the reside. Despite its broad potential, this work took advan-
tage of only the volume of data to simulate actual workloads on the evaluated
cloud services.

5 Methodology

In order to exploit the potential of massive data processing services, two work-
loads were developed on the Bolsa Família Program data. Each workload has a
processing characteristic and will be further detailed in Sect. 5.1.

To perform the tests, a service cluster was provisioned in each of the providers
according to the configurations shown in Fig. 2. Once the cluster was delivered
by the provider, the Node Exporter service was configured on all its instances
to enable communication with the monitoring stack. In each case, an additional
instance was created outside the cluster and within the same geographic region to
perform dedicated monitoring of CPU, RAM, network traffic, and disk activity
without geographic location interference. The architecture of this stack is made
up of the Prometheus [36], NodeExporter [37] and Grafana [38] tools, that can be
better understood in Fig. 3, which shows that NodeExporter collects the metrics
directly on the machines and passes them to Prometheus, which keeps periodic
records of this information. Grafana, on the other hand, obtains Prometheus
historical series and displays analytical panels. In more elaborate configurations
Grafana can trigger alerts in certain situations. These tools were chosen because

54 L. R. de Carvalho et al.

Fig. 2. Clusters parameters.

they are open source alternatives, widely used by the community and simple to
configure.

Algorithm 1: Workload 1
Result: Identifies how many payments were made per federation unit
while year in 2014 to 2019 do

while month in jan to dec do
Result[year][month][federationUnit] = sum(count(hdfs[A-Z][a-z]))

end
end

Algorithm 2: Workload 2
Result: Identifies how many payments were made for each identification

number (NIS)
while year in 2014 to 2019 do

while month in jan to dec do
result[NIS] = sum(hdfs[NIS])

end
end

Performance Analysis of Main Public Cloud Big Data Services 55

Fig. 3. Interactions between NodeExporter, Prometheus and Grafana.

Ten tests were performed for each workload in each cluster, enabling averages
for each monitored metric, preventing any single event from interfering with
the overall test result. The tests were performed between December, 27, 2019
and January, 01, 2020 and lasted approximately 12 hours. In each provider, the
cluster configurations were selected in order to guarantee the greatest possible
similarity in their architectures.

The EMR and Dataproc clusters are equivalent in number of nodes, proces-
sors and memory configuration, with one master node (4Vcpu, 16GB) and two
workers nodes (2Vcpu, 8GB). In HDInsigth, the minimum allowed architecture
was two masters nodes (2Vcpu, 16GB) and two workers nodes(4Vcpu, 8GB).
The standard storage services for each product were selected, in the case of EMR,
EBS (gp2) [39], for Dataproc the Standard Permanent Disks (pd-standard) [40],
and for Hdinsigth, Storage - General use V1. [41].

The physical location of data centers was not considered to be a relevant
factor for testing because measurements occurred exclusively within the internal
virtual network created by the providers. The process of obtaining data was not
considered for the calculation of metrics.

The mass of data was composed of information on family allowance receipts
from January 2014 to November 2019 and totaled approximately 90 GB of data.
This was used by both workloads and was downloaded only once from each
provider.

5.1 Test Scenarios

In order to obtain a behavior analysis of the selected providers, two calculation
processes were created under a mass of data. The Algorithm 1 identifies how
many payments were made per state. The processing result has two columns,

56 L. R. de Carvalho et al.

the first being the number of scholarships paid to beneficiaries in the period
comprised by the mass of data and the second the state.

The Algorithm2 identifies how many payments were paid for each identifi-
cation number (NIS), that is, the frequency of receipts grouped by the number
of times the NIS appears. Based on the result of the first processing, another
calculation is made to measure how many times each receipt appears. Thereby,
the workload can quantify how many families received payments from 1 to “n”
times in the period. The result has 2 columns, the first being the amount of
payments a family has received, and the second the number of beneficiaries who
have received that amount of times. The workload 2 uses the features of the
Hadoop cluster differently from workload 1 as it does two successive MapRe-
duce runs, giving providers the opportunity to demonstrate different strategies
for different issues.

5.2 Metrics

In order to evaluate different aspects of provider performance, the following
metrics were observed while performing workloads:

– runtime;
– CPU consumption;
– memory consumption;
– disk activity;
– network traffic.

6 Related Works

In the paper [2] the authors make an analysis of energy efficiency and perfor-
mance of Hadoop in physical and virtual clusters, but the workload used is the
benchmark of Hadoop itself using TeraSort [23] and TeraGen [24] as workload
tools. A comparison is made between the different data allocation and process-
ing configurations, but it does not refer to the performance of different public
cloud providers, the objective of this work. On the other hand, this study pro-
poses a comparison between providers and uses a different data mass, composed
by Bolsa Família data. In addition, it performs workloads directly on the main
server from the provider-supplied Hadoop installation, eliminating interference
from intermediate tools.

The article [13] compares the performance of the AWS EC2 public cloud
service with a private cloud managed by OpenNebula cloud controller for the
creation/destruction, suspension/recovery, and restart of virtual machines tasks.
The results demonstrate that elasticity can be provided by the evaluated plat-
forms at reasonable times, and that the choice of either cloud depends on the
applications and the user’s technical and financial conditions. This article is
not intended to compare public and private clouds, but different public cloud
providers. Nor does it focus on elasticity, but on another fundamental require-
ment of cloud services: performance.

Performance Analysis of Main Public Cloud Big Data Services 57

7 Results

The graphical analysis of the data allows us to observe the behavior of each
provider in the face of the challenges proposed by the two workloads of this
work. The horizontal axis (x) shows the result obtained in each execution of the
same workflow. The vertical axis (y) was reserved for the parameter values under
analysis. The AWS EMR service curve is in blue, the Dataproc, Google Cloud
curve is yellow, and AZURE HDInsight is red.

Fig. 4. Runtime average of Workloads 1 and 2.

Figure 4 shows that the execution time of the 10 tests, for workloads 1 and 2,
has a better result in AZURE when compared to the others, with an average of
42min per execution. It was also observed that Dataproc, even with an average
of approximately 84min per execution, suffered time degradation only in the first
round, better than the EMR, which obtained the highest average of 88min. This
performance divergence from AZURE to the others suggests the interference of
the second master in the architecture, which could not be equalized for testing
because the provider did not allow HDInsight cluster configuration like the other
providers did.

7.1 Resource Consumption Analysis

The methodology used to consolidate the data obtained by monitoring the
instances of each cluster, considers the average maximum CPU utilization of each
node, obtaining the average consumption per cluster. Figure 5 shows graphs of
cluster-consolidated CPU and RAM Memory consumption during the ten runs
of workloads 1 and 2.

It can be seen that CPU usage from the 5th execution onwards remains fairly
close across all three providers, however, while AZURE has remained close to
100% in the first three runs, it is clear that Google has remained below 40%

58 L. R. de Carvalho et al.

Fig. 5. CPU and RAM Memory usage.

and AWS, between the two, near 60% usage. Thus, it can be noted that AZURE
used more than twice the computational processing power employed by Google
and AWS to accomplish the same task.

Fig. 6. Disk activity per cluster (reads and writes).

It is also possible to see that during the first six runs, AZURE servers promote
large sinusoidal oscillations in the memory consumption curves. This demon-
strates intense management of this feature, preventing continued growth. From
the 7th run on, AZURE’s memory consumption curve follows the Google and
AWS threshold, but demonstrates lower manageability as it maintains long peri-
ods of high consumption. As of the 7th run, the memory consumption of the
three providers is equivalent to close to 40%, regardless of the performance of
the additional master node in AZURE.

Figure 6 shows the cluster disks utilization. It considers the maximum write
and read I/O values of all nodes in the cluster, allowing the analysis of the
writing and reading dynamics on the disks in the three providers. It is possible
to notice that only AZURE had a higher writing rate than reading rate. It is also
noticeable that Google, both in reading and writing had, in its first execution
a much higher average than the other executions. In relation to writing, the
three providers remain very close after the first execution, varying around 100
I/O per second, while in relation to reading, AZURE obtained the lowest rate,
followed by Google with records close to 300 I/O per second and finally AWS
with registers close to 400 I/O per second.

Performance Analysis of Main Public Cloud Big Data Services 59

Fig. 7. Network traffic per cluster (received and transmited).

Figure 7 shows the average of the maximum network traffic records, consid-
ering both the transmission and reception of data through the interfaces present
in the cluster instances.

Their analysis shows that Google’s servers demonstrated higher network
resource consumption than AZURE and AWS, particularly in the 2nd, 6th, and
5th runs of workloads. In all other runs, the three providers do not show much
network activity, although in AWS there are more variations than in Google,
though small.

8 Conclusion

Given the tests performed, Microsoft AZURE provider, through the HDInsight
service, performed better then Google’s Dataproc competitors and AWS EMR.
Although the parameters obtained in the tests were calculated to compensate
for the difference between cluster component configurations, the graph interpre-
tation shows that despite the linearity of workload execution times, Microsoft
AZURE has a higher resource consumption, suggesting concern with resource
pricing at the provider.

Google’s Dataproc, while consuming more time on its first run, remained
ahead and more constant than Amazon’s EMR on other workload runs, demon-
strating superior efficiency by keeping disk writes down while apparently gener-
ating more network traffic in three of the ten runs.

Amazon’s EMR, which demonstrated higher memory consumption efficiency
compared to other providers, also proved to be more efficient in CPU utilization
from the 5th run of workloads, however it required considerably more disk reads
to complete the task.

Considering the cost per hour and the average time of workload executions
in each provider, Microsoft AZURE even suggesting a higher consumption of
resources, proves to be the most viable provider in relation to cost, with an
average of approximately USD 0.30 per execution. Followed by Google with
USD 0.59 and Amazon USD 0.83.

For future work, it is suggested to use a data source with a more significant
size allowing better comparisons to be made with different workloads, including

60 L. R. de Carvalho et al.

studies that explore other criteria (such as resilience, elasticity, among others)
using clusters with different configurations than those used in this work, in order
to increasingly support the decision process in choosing the cloud service for big
data processing.

In addition, it is suggested that work be carried out to interpret data from
analyses of the Bolsa Família Program database, exploring causes and conse-
quences of discrepancies, either in the geographical distribution of payments or
in the amount of benefits paid to some beneficiaries of the program.

Considering academic research as a response to the real demands of society,
this comparative study can be an important tool in fostering decision making,
whether for users looking for better cloud service performance alternatives in
Big Data processing, or for providers to identify and correct weaknesses, and
enhance the most robust aspects of services.

References

1. Hashem, I., Yaqoob, I., Anua, N., Mokhtar, S., Gani, A., Khan, S.: The rise of “big
data” on cloud computing, review and open research issues. Inf. Syst. 47, 98–115
(2015)

2. Feller, E., Ramakrishnan, L., Morin, C.: Performance and energy efficiency of big
data applications in cloud environments. J. Parallel Distrib. Comput. 79–80, 80–89
(2015)

3. Huane, L.: Big data drives cloud adoption in enterprise. IEEE Internet Comput.
17, 68–71 (2013)

4. Brasil, Cidadãos e Justiça. http://www.brasil.gov.br/cidadania-e-justica/2017/
05/cidadaos-tem-acesso-a-dados-do-cadastro-unico-na-internet. Accessed 23 June
2019

5. DataProc, Google. https://cloud.google.com/dataproc. Accessed 23 Dec 2019
6. Amazon Web Services, Amazon. https://docs.aws.amazon.com. Accessed 23 June

2019
7. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute

of Standards and Technology (2011)
8. Gartner, magic quadrant for cloud infrastructure as a service, worldwide. https://

www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb. Accessed
22 Dec 2019

9. Correia, R.C.M., et al.: Hadoop cluster deployment: a methodological approach.
Information (2019). http://www.mdpi.com/2078-2489/9/6/131

10. Zicari, R.V., Akerkar, R. (eds.): Big Data Computing. CRC Press, Boco Raton
(2014)

11. Franco, A.L., Bessa, G.M.A.: Aplicabilidade, utilidade e ganhos do Big Data uti-
lizando a ferramenta Hadoop, Caderno de Estudos em Sistemas de Informação
(2016)

12. Kaur, P.D., Kaur, A., Kaur, S.: Performance Analysis in Bigdata, Int. J. Inf. Tech-
nol. Comput. Sci. (2015)

13. Azevêdo, E.M., et al.: Nuvem Pública vesrus Privada. In: Anais X Workshop em
Clouds e Aplicações (WCGA, Variações de desempenho de Infraestrutura para
Elasticidade, p. 2012 (2012)

http://www.brasil.gov.br/cidadania-e-justica/2017/05/cidadaos-tem-acesso-a-dados-do-cadastro-unico-na-internet
http://www.brasil.gov.br/cidadania-e-justica/2017/05/cidadaos-tem-acesso-a-dados-do-cadastro-unico-na-internet
https://cloud.google.com/dataproc
https://docs.aws.amazon.com
https://www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb
https://www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb
http://www.mdpi.com/2078-2489/9/6/131

Performance Analysis of Main Public Cloud Big Data Services 61

14. Assunção, M.D., Calheiros, R.N., Neto, M.A.S., Bianchi, S., Buyya, R.: Big Data
computing and clouds, trends and future directions. J. Parallel Distrib. Comput.
79, 3–15 (2015)

15. Haikal, L.: Prevenção da Dengue utilizando o sistema especialista para Big Data
Hadoop. Revista Academus - Gestão e Tecnologia (2017)

16. Scolati, R., Fronza, I., El Ioini, N., Samir, A., Pahl, C.: A containerized big data
streaming architecture for edge cloud computing on clustered single-board devices
(2019)

17. BigPanda, Big Panda: Autonomous Operations, Intelligent Automation for IT Inci-
dent Management. https://www.bigpanda.io/. Accessed 18 Apr 2019

18. StreamSets, StreamSets: Where DevOps Meets Data Integration, Efficiency.
Agility. Reliability. Confidence. https://streamsets.com/. Accessed 18 Apr 2019

19. LuxCer, WebAction. http://webaction.luxcer.com/platform/. Accessed 18 Apr
2019

20. Amazon, EMR. https://aws.amazon.com/emr/. Accessed 18 Apr 2019
21. Microsoft, Azure. https://azure.microsoft.com. Accessed 18 Oct 2019
22. Apache, Pig. https://pig.apache.org/. Accessed 18 Apr 2019
23. MAPR, TeraSort Benchmark Comparison for YARN. https://mapr.com/

whitepapers/terasort-benchmark-comparison-yarn/assets/terasort-comparison-
yarn.pdf. Accessed 18 Apr 2019

24. Nghiem, P., Figueira, S.: Towards efficient resource provisioning in MapReduce. J.
Parallel Distrib. Comput. 95, 29–41 (2016)

25. Reinsel, D., Gantz, J., Rydning, J.: The digitization of the world: from edge to
core, IDC (2018)

26. Uthayasankar, S., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of Big
Data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017)

27. Xuewei, L., Xue Yan, L.: Big data and its key technology in the future. Comput.
Sci. Eng. 20, 75–88 (2018)

28. Matrizes, E., Schroeder, R.: Big data: shaping knowledge, shaping everyday life,
vol. 12, pp. 135–163 (2018). https://www.revistas.usp.br/matrizes/article/view/
149604

29. Hauger, D.: Windows Azure General Availability. https://blogs.microsoft.com/
blog/2010/02/01/windows-azure-general-availability/. Accessed 18 May 2019

30. Microsoft, HDInsight. https://azure.microsoft.com/pt-br/services/hdinsight.
Accessed 18 Dec 2019

31. Apache, Spark. https://spark.apache.org/. Accessed 18 Dec 2019
32. Apache, Hive. https://hive.apache.org/. Accessed 18 Dec 2019
33. Apache, Storm. https://storm.apache.org/. Accessed 18 Dec 2019
34. Apache, Kafta. https://kafka.apache.org/. Accessed 18 Dec 2019
35. Apache, Hbase. https://hbase.apache.org/. Accessed 18 Dec 2019
36. The Linux Foundation, Prometheus. https://prometheus.io/. Accessed 18 Dec 2019
37. The Linux Foundation, Node Exporter. https://prometheus.io/docs/guides/node-

exporter/. Accessed 18 Dec 2019
38. Grafana Labs, Grafana. https://grafana.com/. Accessed 18 Dec 2019
39. Amazon Web Services, EBS Volume Types. https://docs.aws.amazon.com/pt-br/

AWSEC2/latest/UserGuide/ebs-volume-types.html. Accessed 18 Aug 2020
40. Google, Google Cloud Platafform. https://cloud.google.com/compute/docs/disks/

performance. Accessed 18 Aug 2020
41. Microsoft Azure, HDInsight. https://docs.microsoft.com/pt-br/azure/hdinsight/

hdinsight-hadoop-use-blob-storage. Accessed 18 Aug 2020

https://www.bigpanda.io/
https://streamsets.com/
http://webaction.luxcer.com/platform/
https://aws.amazon.com/emr/
https://azure.microsoft.com
https://pig.apache.org/
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/assets/terasort-comparison-yarn.pdf
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/assets/terasort-comparison-yarn.pdf
https://mapr.com/whitepapers/terasort-benchmark-comparison-yarn/assets/terasort-comparison-yarn.pdf
https://www.revistas.usp.br/matrizes/article/view/149604
https://www.revistas.usp.br/matrizes/article/view/149604
https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/
https://blogs.microsoft.com/blog/2010/02/01/windows-azure-general-availability/
https://azure.microsoft.com/pt-br/services/hdinsight
https://spark.apache.org/
https://hive.apache.org/
https://storm.apache.org/
https://kafka.apache.org/
https://hbase.apache.org/
https://prometheus.io/
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://grafana.com/
https://docs.aws.amazon.com/pt-br/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/pt-br/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/disks/performance
https://docs.microsoft.com/pt-br/azure/hdinsight/hdinsight-hadoop-use-blob-storage
https://docs.microsoft.com/pt-br/azure/hdinsight/hdinsight-hadoop-use-blob-storage

Accelerating Machine Learning
Algorithms with TensorFlow

Using Thread Mapping Policies

Matheus W. Camargo(B), Matheus S. Serpa, Danilo Carastan-Santos,
Alexandre Carissimi, and Philippe O. A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul – UFRGS,
Porto Alegre, Brazil

{mwcamargo,msserpa,danilo.csantos,asc,navaux}@inf.ufrgs.br

Abstract. Machine Learning (ML) algorithms are increasingly being
used in various scientific and industrial problems, with the time of exe-
cution of these algorithms as an important concern. In this work, we
explore mappings of threads in multi-core architectures and their impact
on new ML algorithms running with Python and TensorFlow. Using
smart thread mapping, we were able to reduce the execution time of
both training and inference phases for up to 46% and 29%, respectively.

Keywords: Machine learning · Thread mapping · Multi-core ·
TensorFlow

1 Introduction

Due to the growth of data and processing power availability nowadays, machine
learning (ML) is an area of research that is in constant progress. Such progress
is fueled by the increasing use of ML in various scientific and industrial
applications, such as fraud detection systems, recommendation mechanisms,
autonomous cars, demand forecasting, and even automated medical diagnosis
services [5,17,20].

However, the emergence of more complex ML algorithms, combined with
the increase in the amount of data available, leads to increasing demand for
computational power. Studying ways to improve the performance of these algo-
rithms, therefore, becomes an essential task. One of the most common strategies
to increase ML algorithms’ performance is using the Graphics Processing Unit
(GPU) computing [16]. However, using GPUs requires knowledge about the GPU
specificities, and often leads to either code refactorization or partial/full depen-
dence on specific ML libraries or GPU manufacturers.

In this context, running ML algorithms on multi-core architectures is still
a significant matter, since CPUs (Central Processing Units) are more common
(and thus more broadly available) processing devices. In regards to CPU comput-
ing, thread mapping presents itself as a useful resource to increase performance
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 62–70, 2021.
https://doi.org/10.1007/978-3-030-68035-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-68035-0_5

Accelerating Machine Learning Algorithms with TensorFlow 63

on multi-core architectures, since such techniques can provide performance gains
with low implementation cost [2,8,18].

By aiming at keeping threads that share data near each other in terms of
memory hierarchy for thread mapping policies, several applications can benefit
from performance improvement by reducing the latency associated with remote
memory access [4,7,14,19]. Therefore, this work aims to answer the following
question: Can smart thread mapping policies accelerate the performance of recent
ML algorithms on multi-core architectures?

To shed light on this question, in this work, we analyze how new machine
learning algorithms react when using different thread mapping policies. We uti-
lized an ML benchmark, namely AI-Benchmark [11,12], which relies on Python
and TensorFlow. Experimental results have shown that numerous ML algorithms
benefited from using smart thread mappings.

We organized the remainder of this paper in the following manner. Section 2
shows the related work. Section 3 presents a brief discussion of the ML algorithms
present in the benchmark used. Section 4 describes the experimental methodol-
ogy used in the research, presenting how the experiments were organized as well
as an explanation of the thread mappings used. Section 5 discusses the results,
and lastly, Sect. 6 presents conclusions and future work.

We follow a reproducible and open methodology in our investigation. This
work’s companion material is publicly available at https://github.com/MatheusWoeffel/

thread-data-mapping, containing the application code, the data analysis code, and
all data collected during experiments that culminated in this manuscript.

2 Related Work

Thread mapping of applications is studied mainly in the context of High-
Performance Computing (HPC). For instance, Mazouz et al. [15] analyze the
thread mapping effects on the SPEC OMP benchmark, which is a well known
HPC benchmark. They show that specific thread mappings can significantly
improve the performance of SPEC OMP.

In light of these findings, many works [3,6,9] also propose algorithms to
automatically perform active thread mapping of applications. However, in one
of our previous works [18] we show that in most cases, the execution time largely
depends on the patterns of memory access and data sharing between the threads
that constitute the algorithms, hence being challenging to determine which type
of algorithms may benefit from thread mapping without a previous execution.
This highlights the importance of experimental studies with a broad set of appli-
cations.

Similarly, in [1], broquedis et al. demonstrated that thread mapping could
outperform the first-touch default mapping used in Linux kernels, employing a
dynamic thread mapping from an OpenMP runtime perspective. You et al. [21]
refactor machine learning algorithms in order to improve communication.

Although the performance of thread mapping optimizations may be hardware
architecture-dependent and hence not portable, [22] showed that when those

https://github.com/MatheusWoeffel/thread-data-mapping
https://github.com/MatheusWoeffel/thread-data-mapping

64 M. W. Camargo et al.

optimizations are not static, a certain degree of portability can be achieved.
Using data locality, the authors proposed a mapping algorithm that presented
not only better performance but as well as lower energy consumption.

3 Machine Learning Algorithms Optimized

The AI-Benchmark has 21 machine learning algorithms, implemented using
Python and Tensorflow [12]. The applications include different fields such as
computer vision, digital image processing and natural language processing. Each
algorithm has two phases: (i) training, where ML models are optimized by the
respective training algorithms and (ii) inference, where the trained model is used
for its final purpose (predictions, image processing). Although a more significant
part of the computational cost of ML algorithms comes from training, we ana-
lyzed both phases of execution, aiming to further insight into how the mappings
and different types of applications behave.

The applications are separated as follows:

– Object Recognition/Classification: Automatic recognition of an object
present in the input. The applications are MobileNet-V2 Large, MobileNet-V2
and Inception-V3.

– Face Recognition: Automatic detection of a person based on a face photo.
The application is MobileNet-V3.

– Optical Character Recognition: Prediction of text based on images (e.g
logos). The applications are CRNN and Bi-LSTMs.

– Image Deblurring: Reduce the blur effect on images, making them sharper.
The application is Pynet.

– Image Super-Resolution: Upgrade the image resolution from a down-
graded version. The applications are VGG-19 and SRGAN;

– Bokeh Simulation: Insert blur effect only on the background of pictures,
maintaining the actual focus of the picture. The application is Unet.

– Semantic Segmentation: Automatic detection of categories of objects (e.g:
pedestrians, cars, roads) in a traffic picture. The application is Deeplab-V3+.

– Photo Enhancement:Transformation of pictures of low-end devices to
approximations of DSLR cameras pictures. The application is DPED-Resnet.

– Text Completion: Automatic fill of word gaps present in a text. Similar to
word suggestions in new smartphone keyboards. The applications are Static
RNN and LSTM;

– Memory Limits: Image processing of high-resolution images on memory
constraints. The applications are SRCNN 9-5-5.

All applications listed above use 50 epochs for training iterations and MSE
for loss function, Adam for optimizer and a learning rate of 10−14. Table 1 list
each application with its input size and batch size.

The benchmark uses the TensorFlow library, which we used the Intel Ten-
sorFlow [13] implementation to select between the mappings described in the
Experimental Methodology section. It is important to notice that by using this

Accelerating Machine Learning Algorithms with TensorFlow 65

implementation, the algorithms run entirely on the CPU. More details of the
benchmark can be accessed in the benchmark paper [12] or the actual Python
package that we used in the research [10].

Table 1. Input and batch size of different applications.

Application Input size Batch size

Deeplab 224 × 224 50

ICNet 1024 × 1563 10

Inception-Resnet-V2 346 × 346 8

Inception-V3 346 × 346 20

Inception-V4 346 × 346 10

LSTM-Sentiment 1024 × 300 10

MobileNet-V2 224 × 224 50

Nvidia-SPADE 128 × 128 1

Pixel-RNN 64 × 64 10

PSPNet 512 × 512 1

ResNet-DPED 128 × 128 15

Resnet-SRGAN 512 × 512 5

Resnet-V2-152 256 × 256 10

Resnet-V2-50 346 × 346 10

SRCNN-9-5-5 512 × 512 10

U-Net 256 × 256 4

VGG-16 224 × 224 2

VGG-19-Super-Res 224 × 224 10

4 Experimental Methodology

In this section, we present how we assess the impact of the different mappings
on AI-Benchmark algorithms. First, we present a description of the different
mappings used. Lastly, we discuss the architecture, the execution environment,
and how they are essential in thread mapping.

The following thread mappings were utilized:

– Baseline: Default mapping employed by Linux focuses on load balancing on
the nodes available for execution.

– Round Robin: Mapping in which the threads are mapped cyclically between
the nodes available for execution.

– Compact: Mapping in which threads with nearby ids are mapped to nearby
nodes, trying to minimize the distance between neighboring threads.

66 M. W. Camargo et al.

– Scatter: Mapping where the threads are arranged in the most evenly way
possible between the nodes available for execution, in this way, is the opposite
of compact.

The distance between the threads mentioned before is related to the distance
between two cores executing these threads concerning how far these cores are in
terms of the memory hierarchy. In that way, two threads running on the same
processor are closer than two threads running on different NUMA nodes. As the
first threads may share data by subsequent read/writes on L1 caches and the
latter could only be shared by remote read/writes, the latter’s latency is higher,
thus hazarding an application’s performance.

The experiments were partitioned into several steps. Each step consists of
several executions of the benchmark applications, considering all possible com-
binations of thread mappings and the applications themselves. The order of
combinations was randomized, and in total, each combination was executed ten
times intertwined with other applications. At the end of each step, the execution
times of all AI-Benchmark algorithms were collected.

The experiments were performed on a computational node, containing two
Haswell Intel Xeon E5-2650 v3 (Q3’14) processors, 2.3 GHz, totaling 20 cores
and 40 threads for each node.

5 AI Benchmark Performance Results

In this section, we show the usage of thread mapping policies in the algorithms of
AI Benchmark implemented with Python and TensorFlow. Inference and train-
ing modes are presented in their proper subsection.

5.1 Improving Performance of Training Algorithms

The algorithm’s performance improvements in training mode when thread map-
ping policies were used is presented in Fig. 1. We present the normalized execu-
tion time where the baseline is the Linux Default mapping. In the X-axis, the
algorithms are presented, and finally, on the Y-axis, the performance improve-
ments for each algorithm.

The highest performance improvement with thread mapping was obtained
by the Resnet-V2-152 (46.8%) when the scatter mapping was used. We can
further note that there were other applications on which the highest performance
improvement was obtained with scatter mapping as well: Deeplab, Inception-
Resnet-V2, Inception V4, Resnet-V2-152.

Another group of applications presented a different behavior, with the high-
est and very similar performance improvements achieved by compact and scat-
ter mappings: MobileNet-V2, PSPNet, U-net, VGG-16, VGG-19 Super Res. As
scatter and compact employ different strategies for the placement of threads, a
question can be raised on the origin of such gains in the above applications. A
hypothesis is that, as the threads are placed differently relative to each other,

Accelerating Machine Learning Algorithms with TensorFlow 67

Fig. 1. Performance improvement using thread mapping policies in training algorithms

those gains were not provided by reduced latency when the threads shared data,
but rather because of improved data locality. A strategy to verify such a hypoth-
esis is discussed further in Sect. 6.

Besides, we can remark that although all thread mapping policies pro-
vided some performance improvement in general, round-robin mapping pre-
sented a performance loss in several applications such as ICNet, ResNet-SRGAN,
SRCNN-955 and VGG-19-Super-Res. It happens because round-robin does not
take the memory hierarchy for its decisions, resulting in lousy mapping decisions.

5.2 Performance Improvements for Inference Algorithms

The algorithm’s performance improvements in inference mode when thread map-
ping policies were used are presented in Fig. 2. The axis is the same as in Fig. 1,
the difference being that now the results are from the inference algorithms.

In the inference algorithms, the highest performance gain was 29.5%,
obtained by the Inception-V4 when compact was used. Similar to what hap-
pened to the training applications scatter also presented similar results with
other applications such as Inception-V3, Inception-V4, PSPNet, Resnet-V2-152,
Resnet-V2-50 and SRC-955. As an exception, the LSTM-Sentient presented sim-
ilar performance improvement when RR or Scatter was used.

Comparably to the training algorithms results, some applications presented
a loss of performance when Round Robin mapping is used. The reason for this
behavior was already discussed in the previous section. It is important to remark
that when the inference and training algorithms are compared, all training algo-
rithms presented a more significant reduction of execution time.

68 M. W. Camargo et al.

−30

−20

−10

0

10

20

30
Dee

pL
ab

GNMT−
Tra

ns
lat

ion
IC

Net

Inc
ep

tio
n−

Res
Net−

V2

Inc
ep

tio
n−

V3

Inc
ep

tio
n−

V4

LS
TM
−S

en
tim

en
t

Mob
ile

Net−
V2

Nvid
ia−

SPA
DE

Pixe
l−R

NN
PSPNet

Res
Net−

DPED

Res
Net−

SRGAN

Res
Net−

V2−
15

2

Res
Net−

V2−
50

SRCNN−
9−

5−
5

U−
Net

VG
G−

16

VG
G−

19
−S

up
er
−R

esPe
rfo

rm
an

ce
 Im

pr
ov

em
en

t (
%

) Compact Round Robin Scatter

Fig. 2. Performance improvement using thread mapping policies in inference algo-
rithms

6 Conclusion and Future Work

Machine Learning (ML) algorithms and models are becoming common in many
scientific and industrial applications. The performance of ML algorithms has
become, therefore, one of the main concerns. Researchers and practitioners end-
lessly pursue for faster processing times, which can be rather challenging.

In this work, we exploit smart policies to assign threads to cores (the so-
called thread mapping policies). The objective is to attest if we can obtain better
performances from several ML algorithms and models present in the AI Bench-
mark built on top of TensorFlow and Python. We performed an extensive and
publicly available1 experimental campaign, and the results showed significant
performance improvements by applying such smart mappings, up to 46%, and
29% for the algorithms’ training and inference phases.

It is important to highlight here that these performance improvements were
obtained by only changing the application environment variable that set the
thread mapping policy. These included compacting the threads into the cores or
scattering them among the cores. Using these smart policies, the ML algorithms
and models can process faster than using the default system’s policy. There
was no change to the ML algorithms and models to achieve such performances,
which reinforces the advantage and importance of choosing an appropriate thread
mapping.

1 Full companion material at https://github.com/MatheusWoeffel/thread-data-
mapping.

https://github.com/MatheusWoeffel/thread-data-mapping
https://github.com/MatheusWoeffel/thread-data-mapping

Accelerating Machine Learning Algorithms with TensorFlow 69

An appropriate thread mapping can be even more critical for processors with
low processing power, such as those present on mobile devices. Many of the ML
algorithms and models considered in this work run on mobile devices, where
the processing time on the inference phase of the algorithms is critical. In this
regard, we foresee that similar performance improvements can be achieved on
mobile devices if the underlying systems implement the smart thread mapping
policies adopted in this work.

Besides asserting if thread mapping can accelerate the processing of ML algo-
rithms on mobile devices, we can devise several future works. Arguably the most
engaging future work is to find the origin of the observed performance improve-
ments. We can achieve this task by looking at the data present in the hardware
counters during the algorithms’ execution. With this further investigation, we
hope to define the thread mapping policy beforehand (i.e., before executing the
algorithms).

Acknowledgments. This work has been partially supported by Petrobras
(2016/00133-9, 2018/00263-5) and Green Cloud project (2016/2551-0000 488-9), from
FAPERGS and CNPq Brazil, program PRONEX 12/2014. We also thank RICAP,
partially funded by the Ibero-American Program of Science and Technology for Devel-
opment (CYTED), Ref. 517RT0529.

References

1. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic
task and data placement over NUMA architectures: an OpenMP runtime perspec-
tive. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 79–92. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02303-3 7

2. Castro, M., Góes, L.F.W., Méhaut, J.F.: Adaptive thread mapping strategies for
transactional memory applications. J. Parallel Distrib. Comput. 74(9), 2845–2859
(2014)

3. Cruz, E.H., Diener, M., Alves, M.A., Pilla, L.L., Navaux, P.O.: LAPT: a locality-
aware page table for thread and data mapping. Parallel Comput. 54, 59–71 (2016)

4. Cruz, E.H., Diener, M., Serpa, M.S., Navaux, P.O.A., Pilla, L., Koren, I.: Improving
communication and load balancing with thread mapping in manycore systems.
In: 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 93–100. IEEE (2018)

5. Culkin, R., Das, S.R.: Machine learning in finance: the case of deep learning for
option pricing. J. Invest. Manag. 15(4), 92–100 (2017)

6. Diener, M., Cruz, E.H., Alves, M.A., Navaux, P.O., Busse, A., Heiss, H.U.: Kernel-
based thread and data mapping for improved memory affinity. IEEE Trans. Parallel
Distrib. Syst. 27(9), 2653–2666 (2015)

7. Diener, M., Cruz, E.H., Pilla, L.L., Dupros, F., Navaux, P.O.: Characterizing com-
munication and page usage of parallel applications for thread and data mapping.
Perform. Eval. 88, 18–36 (2015)

8. Eastep, J., Wingate, D., Agarwal, A.: Smart data structures: an online machine
learning approach to multicore data structures. In: Proceedings of the 8th ACM
International Conference on Autonomic Computing, pp. 11–20 (2011)

https://doi.org/10.1007/978-3-642-02303-3_7
https://doi.org/10.1007/978-3-642-02303-3_7

70 M. W. Camargo et al.

9. He, J., Chen, W., Tang, Z.: NestedMP: enabling cache-aware thread mapping for
nested parallel shared memory applications. Parallel Comput. 51, 56–66 (2016)

10. Ignatov, A.: AI Benchmark. https://pypi.org/project/ai-benchmark/ (2020).
Accessed 29 March 2020

11. Ignatov, A., et al.: AI benchmark: running deep neural networks on android smart-
phones. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018)

12. Ignatov, A., et al.: AI benchmark: all about deep learning on smartphones in
2019. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pp. 3617–3635. IEEE (2019)

13. Intel: Intel TensorFlow. https://pypi.org/project/intel-tensorflow/ (2020).
Accessed. In: 29 May 2020

14. Kandemir, M., Ozturk, O., Muralidhara, S.P.: Dynamic thread and data mapping
for NoC based CMPS. In: 2009 46th ACM/IEEE Design Automation Conference,
pp. 852–857. IEEE (2009)

15. Mazouz, A., Barthou, D., et al.: Performance evaluation and analysis of thread pin-
ning strategies on multi-core platforms: case study of SPEC OMP applications on
intel architectures. In: 2011 International Conference on High Performance Com-
puting & Simulation, pp. 273–279. IEEE (2011)

16. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proc. IEEE 96(5), 879–899 (2008)

17. Perols, J.: Financial statement fraud detection: an analysis of statistical and
machine learning algorithms. Auditing J. Pract. Theory 30(2), 19–50 (2011)

18. Serpa, M.S., Krause, A.M., Cruz, E.H., Navaux, P.O.A., Pasin, M., Felber, P.:
Optimizing machine learning algorithms on multi-core and many-core architectures
using thread and data mapping. In: 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP), pp. 329–333. IEEE
(2018)

19. Serpa, M.S., et al.: Memory performance and bottlenecks in multicore and GPU
architectures. In: 2019 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pp. 233–236. IEEE (2019)

20. Stavens, D.M., et al.: Learning to drive: perception for autonomous cars. Ph.D.
Thesis, Citeseer (2011)

21. You, Y., Buluç, A., Demmel, J.: Scaling deep learning on GPU and knights landing
clusters. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–12 (2017)

22. Ştirb, I.: NUMA-BTDM: a thread mapping algorithm for balanced data locality on
NUMA systems. In: 2016 17th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), pp. 317–320 (2016)

https://pypi.org/project/ai-benchmark/
https://pypi.org/project/intel-tensorflow/

Methodology for Design
and Implementation an Efficient HPC

Cluster

L. A. Torres1,2(B) and Carlos J. Barrios1,2(B)

1 Supercomputación y Cálculo Cient́ıfico (SC3), Universidad Industrial de Santander,
Bucaramanga 680002, Colombia

luis.torres@correo.uis.edu.co, cbarrios@uis.edu.co
2 Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE),

Universidad Industrial de Santander, Bucaramanga 680002, Colombia

Abstract. For years, clusters for HPC have been implemented through
the typical process of obtaining the source code, configuring and com-
piling each of the tools that make up the infrastructure services. Each
administrator based on their experience and knowledge assumes a series
of considerations to design and implement a cluster that is considered
efficient by installing base tools such as NTP, NFS, a task manager (that
is, SLURM), LDAP, among others. In order to reduce these times, sev-
eral open-source initiatives have emerged, such as Rocks, that allow the
rapid implementation of an HPC cluster despite its low configuration
flexibility. OpenHPC emerges as an alternative that provides the neces-
sary tools in a software repository and that once installed allows the same
flexibility of customization and adaptation as if they had been installed
in a typical way. It’s worth mentioning that OpenHPC provides all of
those standardized tools in order to spread best practices in building
and managing HPC data centers, but unlike Rocks, OpenHPC requires
pre-design of the platform, including network infrastructure, storage ser-
vices, and the different tools to implement, requiring prior knowledge
by the administrator about each of them. The objective of this paper
is to present the fundamental basis for implementing an efficient cluster
by using OpenHPC without becoming a technical installation guide, but
rather a series of steps in a methodology used by the Supercomputación
y Cálculo Cienf́ıfico Laboratory SC3.

Keywords: Cluster computing · OpenHPC implementation · HPL
metrics and evaluation

1 Introduction

HPC has reached a level where it has become indispensable in the different fields
of scientific research. Areas such as artificial intelligence, bioinformatics, climate
prediction, among others, are some of these fields that depend on supercomput-
ing centers to carry out their research. However, the design and implementation
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 71–85, 2021.
https://doi.org/10.1007/978-3-030-68035-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_6&domain=pdf
http://orcid.org/0000-0003-2597-9430
http://orcid.org/0000-0002-3227-8651
https://doi.org/10.1007/978-3-030-68035-0_6

72 L. A. Torres and C. J. Barrios

of these have always been a task that depends on the experience of the adminis-
trators and that despite this can lead to long implementation and commission-
ing times. To remedy this problem, tools such as Rocks have emerged that have
facilitated implementation but their cost-benefit in relation to the administra-
tion of the HPC platform makes them little-used [1]. Consequently, OpenHPC
appears as an alternative to facilitate administrators with quick implementation
and start-up by providing a software repository with different alternatives for
administrators [1].

The use of OpenHPC is presented as a set of tools rather than as a defini-
tive solution in the implementation of a cluster. Therefore, this paper presents
the methodology used for the implementation of the GUANE1 cluster of the
Supercomputing Center and Scientific Calculation SC3 [13] showing the basic
components necessary to take into account in the design and implementation
in a supercomputing platform. The first section introduces the basic concepts
and tools needed. The second describes the proposed methodology and the dif-
ferent tools implemented in such a way that the order in which they are pre-
sented is the order in which they must be installed and configured. The third
shows a description of the Linpack benchmark, its configuration, and the results
obtained. Finally, the conclusions of the methodology used are presented together
with a comparison made at the efficiency level with the first five machines that
appear in the Top500 [14].

2 Background

In our experience, the HPC system administrator must know a lot of concepts
raging from Linux to the main hardware deployed in any cluster. With this
background, we offer an overview of OpenHPC and the main tools implemented
in this methodology.

2.1 High Performance Computing

HPC is a field of computing that seeks to improve performance in solving major
problems in science, engineering, and business. Generally speaking, these com-
putationally complex problems are mathematically modeled and, through par-
allel computing techniques, they become code instructions that are executed on
machines known as supercomputers. These machines run these intensive pro-
grams on specialized CPU or GPU, significantly reducing the time to run on
regular hardware [15].

The supercomputers were introduced in the 1960s by Seymour Cray of CDC
(Control Data Corporation) [2], and for many years associated companies bear-
ing this surname controlled this market. The vector processor with the ability to
operate on large data sets was introduced in the 1970s, and it was not until the
1990s that massively parallel supercomputers began to be used with standard

1 GpUs Advanced computiNg Environment.

Methodology for Design and Implementation an Efficient HPC Cluster 73

processors, which to date are the norm. It should be noted that the performance
of these machines is measured in floating point operations per second (FLOPS)
and not in millions of operations per second (MIPS), because the latter is more
a measure of the performance of a task in comparison to a reference and not
a measure of execution speed. In recent years, higher performance speeds than
petaFLOP have been achieved and it is hoped to achieve exaFLOPS in the near
future [3].

This evolution of supercomputers and high performance computing is due to
the increasing demand for computing speeds to solve problems in areas such as
quantum mechanics, weather forecasting, oil and gas exploration, among others.
In the last decade, this demand has reached very high levels due to the use
of different artificial intelligence algorithms, particularly machine learning and
deep learning algorithms.

Lastly, the HPC hardware falls into three main categories: Symmetric multi-
processor (SMP), vector processors, and clusters [15] and with the latter being
the subject of study in this methodology.

Cluster. It is the most widely used supercomputer and is a collection of many
servers (nodes) which are connected through a high speed and high bandwidth
network. These clustered servers can behave as a single server and a combination
of the following services must be provided: high performance, high availability,
load balancing, and scalable. Clusters can be classified according to their char-
acteristics into:

– Fail-over clusters
– Load-balancing clusters
– High-performance clusters

These differ depending on the type of applications and their purpose. The
Fail-over clusters and the Load-balancing clusters are used in mission-critical
applications where consistent, throughput availability of services is required
through many instances of one or more applications on different nodes. Finally,
the High-performance clusters are designed to increase performance and decrease
computing times when running work on multiple nodes at the same time [15].

2.2 OpenHPC

OpenHPC was launched in 2015 and formalized as a collaborative project of
the Linux Foundation in 2016 [1]. This project is comprised of 25 organizations
with representation in academia, research laboratories and industry. It has a
large number of software components that include provisioning tools, resource
management and scientific libraries. The main objective of this project is to make
best practices available to administrators and to provide a software repository
for HPC clusters.

For administrators, manually installing and configuring an HPC cluster
can be tedious and complicated. For this reason, several open-source solutions

74 L. A. Torres and C. J. Barrios

emerged, among which Rocks and OSCAR stand out. Rocks [4] is a CentOS-
based Linux distribution that contains additional software components for clus-
ter deployment and administration without the need for other external packages.
On the other hand, OSCAR (Open Source Cluster Application Resources) [5]
is a fully integrated software package that, unlike Rocks, you must first install
the frontend and then download and install the cluster configuration and admin-
istration tools. The project is no longer maintained and the latest version was
released in 2011.

A common issue with these tools is the lack of balance between customization
and ease of use [6], which is why OpenHPC takes a more basic approach when
providing a software repository. This approach requires the administrator to be
experienced but offers a variety of software components to promote flexibility
in different environments and scales. OpenHPC includes two end-user projects
that seek to reduce the complexity of installing and configuring scientific and
HPC software: Easybuild [7] and Spack [8].

2.3 Lightweight Directory Access Protocol

LDAP is a set of open protocols that are used to access information that is
centralized through the network. It is based on the X.500 standard but is less
complex and uses fewer resources. The information is organized in a hierarchical
and categorized model through the use of directories that can contain a large
amount of information. LDAP is a client/server system where the server uses
a database to store directories and is optimized for fast, high-volume readings.
When connecting to the server, the LDAP client can make queries or modify
a directory. In the latter case, the server verifies that the user has the permis-
sions to carry out this operation before making the change and updating the
information [16].

OpenLDAP is the free and open-source implementation of LDAP, supports
LDIFv1 and LDAP versions 2 and 3. In relation to supercomputing clusters,
OpenLDAP provides HPC infrastructures with a way to manage platform users.
One of the great advantages of using LDAP v3 is the possibility of using dynamic
groups, which allow the system administrator to create a tree with different
access privileges to the directories of the HPC system storage.

2.4 Simple Linux Utility for Resource Management

Linux clusters require a resource management system that performs tasks such as
scheduling user jobs, monitoring machine and job status, and managing machine
settings as such. This system should be simple to use, fault-tolerant, efficient,
scalable, and portable. With this in mind, Lawrence Livermore National Labo-
ratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull produced
the first slurm design [9].

Slurm enables efficient management of clusters regardless of size or architec-
ture, is highly scalable, requires no kernel modification, and is relatively self-
contained. The basic components are shown in Fig. 1.

Methodology for Design and Implementation an Efficient HPC Cluster 75

Fig. 1. Slurm components [17]

In essence, slurm works using two daemons, one on the frontend called slurm-
ctld and the other on nodes called slurmd. The slurmd daemon provides fault-
tolerant hierarchical communications and is responsible for initiating and man-
aging user jobs. On the other hand, the slurmctld daemon sometimes referred
to as the “controller”, is in charge of orchestrating slurm activities, including
job queuing, monitoring the status of jobs, and allocating resources to jobs. As
shown in the Fig. 1, a backup to this daemon can be included which will auto-
matically take over in case of failure of the primary controller, which will regain
control when service is restored [9]. There is another optional daemon in slurm
called slurmdbd, which allows storing the accounting records of the jobs in a
database, allowing to generate reports about the platform.

Lastly, we find the user commands that allow them to run and monitor each
of the jobs that are sent to the HPC platform. The sbatch and srun commands
are used to run jobs, scancel command to cancel them, scontrol is used to view
or modify Slurm configuration and state and, sacct command displays account-
ing data for all jobs and job steps in the Slurm job accounting log or Slurm
database [9].

2.5 System Security Services Daemon (SSSD)

This daemon has the primary function of providing remote access to different
authentication mechanisms through a common framework. These mechanisms
are known as identity providers and SSSD allows them to connect to it as back-
ends [18].

SSSD provides caching and offline support for applications that require
authentication using standard PAM and NSS interfaces. With this feature, appli-
cations do not need to connect directly to identity providers (e.g. LDAP, NIS,
Samba, etc.) and even if they are not available, the SSSD cache allows the appli-
cations to authenticate. Another important feature of SSSD is its ability to use
multiple providers of the same type, such as two different LDAP servers [18].

76 L. A. Torres and C. J. Barrios

2.6 High-Performance Linpack (HPL)

HPL is an implementation of the Linpack benchmark [11] for computers with
distributed memory. This benchmark solves a dense linear random system in
double-precision arithmetic. Basically it only requires a configuration file where
the main parameters for creating the problem to be solved are specified.

The main parameters are:

– N: Order of the coefficient matrix A
– NB: Block size
– P: Number of processes - row
– Q: Number of processes - column

In general, the product of PxQ should be the number of MPI processes and
the value of Q should be greater than or equal to P. The value of N should be
chosen as close as possible to the total physical memory. For choosing N, the
following formula is usually used:

N ≈
√

Total Memory Size in bytes

sizeof(double)
(1)

Where N must be an integer and must be a multiple of the selected NB block
size. The size in bytes for the double-precision floating-point is 8.

The results obtained by HPL are the effective performance measures Rmax
finds for each of the configurations. Another important value to calculate is the
theoretical peak of Rpeak performance using the following equation:

Rpeak = NumCPU ∗ NumCore ∗ Frequency ∗ NumFLOPs/cycle (2)

Finally, the efficiency of the cluster is obtained by [10]:

Efficiency = Rmax/Rpeak (3)

These topics cover the main components in the HPC cluster and in our imple-
mentation but exist others that didn’t name in this section because we consider
tools that any Linux administrator knows. The integration of these topics and
other tools will be shown in the next section where will be described our method-
ology.

3 Methodology

By referring to the word “efficiency”, the aim is to adequately fulfill a certain
function. There are several ways to design and implement an HPC cluster but
the knowledge and experience of the administrators is what leads to what can be
considered to be really efficient. Many variables can be evaluated to determine
the real efficiency of the cluster such as: user experience, performance, security,
among others. However, the performance obtained from the HPL test will only

Methodology for Design and Implementation an Efficient HPC Cluster 77

be evaluated in order to show that it is possible to deploy an HPC cluster
using this methodology, obtaining acceptable performance values. Finally, the
objective of this methodology is to provide a guide that allows rapid deployment,
both to experienced administrators and those new to the HPC world, and that
is adaptable to the knowledge and experience of administrators.

3.1 Buildind a Efficient Cluster

Basic Architecture. In this first part, a general proposal of the organization
of the elements that are considered basic in the deployment of an HPC cluster is
presented. Two main points have been taken into account: ease of administration
and speed of communication. The design scheme is presented in Fig. 2.

Fig. 2. General system architecture

In the age of artificial intelligence and big data, large volumes of data are
common in HPC clusters, making the storage system one of the main elements
to consider. The characteristics of these systems should allow for high transfer
rates along with low latency, redundancy, and above all high storage capacity.
Some HPC system designs typically mount the volumes created on the storage
system directly on the master node, which does not incur functionality issues,
but can affect performance by assigning cluster management tasks and traffic
between the storage system and compute nodes. For this reason, we recommend
that you have a unique I/O server that handles the transactional load on the
cluster.

In relation to the above, another important element to consider is high-speed
networks that are not included in many HPC clusters due to high acquisition
costs but can consequently lead to network bottlenecks when there is a high

78 L. A. Torres and C. J. Barrios

demand for the network. In the implementation of this methodology, two high-
speed networks have been used: Infiniband for communication and synchroniza-
tion between nodes and a fiber-optic channel for the storage system and I/O node
communication. It should be noted that new computing requirements and the
high scalability of emerging applications make this type of high-speed network
an essential part of any HPC cluster.

Finally, in the Fig. 2 shows other basic elements in any HPC cluster deploy-
ment such as ethernet switches, the master node, compute nodes, and an edge
protection system for accessing the cluster from external networks.

Network Configuration. This methodology bases your network configuration
on the recommendations that OpenHPC provides in your installation guide,
however, we talk about general recommendations because each infrastructure
differs according to the components at your disposal. Standards such as the
Uptime Institute2 recommend that all Datacenters have redundancy across all
systems, including the network, but for this methodology, we assume that only
the essential switches are available for each of the networks implemented in
Fig. 2.

It is proposed to implement two base networks for the cluster that will be sep-
arated as two different LANs within the configuration. The first will be responsi-
ble for the communication between the master node and the compute nodes and
will be for the exclusive use of the resource manager. The second network will
be responsible for data traffic between the master node, compute nodes, and the
I/O server. To provide Internet access to compute nodes, the gateway can be
redirected to the IP of the master node, keeping in mind that the master node
must have access to the Internet. This solution is not optimal, but it can simplify
the administrator’s work. It should be noted that this can cause network bottle-
necks dedicated to resource management especially if applications running in the
cluster require access to large databases available on remote servers. Therefore,
the most recommended solution is the implementation of a third network that
handles this external traffic, although this configuration makes it necessary to
count an extra server that serves as a gateway for the output to the Internet.

Base System. In what has been described so far, a basic organization of the
essential components in an HPC cluster has been shown together with the min-
imum network configuration required to obtain an acceptable performance and
that can be considered efficient or, in other words, that performs its function in
the most appropriate way.

Within this framework, the most important and essential software compo-
nents for administrators have been considered, without addressing their instal-
lation and configuration. In Sect. 2.2. It was mentioned that OpenHPC has been
designed to provide administrators with best practices and a software reposi-
tory that allows the system base to be easily installed, configured, and updated.

2 https://uptimeinstitute.com/.

https://uptimeinstitute.com/

Methodology for Design and Implementation an Efficient HPC Cluster 79

However, it was not mentioned that within this repository there are several tools
that perform similar tasks and that it is the administrator who must make the
selection of which ones were used, taking into account the experience of this and
their knowledge about them. These tools range from choosing the task handler
between Slurm or PBS, to a system file system such as BeeGFS or Lustre.

The following describes the tools that were considered in the cluster deploy-
ment process using the OpenHPC repository and that serve as the basis for the
implementation methodology suggested in this job:

– NTP (Network Time Protocol): It is an Internet protocol that is used
to synchronize clocks from different computer systems on local or global net-
works. For the suggested configuration, the cluster master node will be used
as the NTP server and will be responsible for keeping the system clock syn-
chronized on all compute nodes and the I/O server in the cluster. Examples of
the need for cluster synchronization can be seen in co-scheduling techniques
in parallel applications with sensitive bulk synchronous workloads, (ii) per-
formance analysis tools and (iii) autotuning strategies that want to exploit
State-of-the-Art (SoA) high-resolution monitoring systems [12].

– NFS (Network File System): It is a client/server file system that allows
users to access files and folders over the network and treat them as if they were
local. It will be used primarily for each user’s /home directory and for /opt
where the platform software will be installed. These two directories belong
to two logical volumes of the cluster storage system and are exported by the
I/O server to the different system nodes. [19].

– Support for Infiniband: Infiniband is a network communication standard
that provides high throughput and low latency. This type of high-speed net-
work is not required for cluster operation, but as mentioned earlier in the
network configuration section, the bottlenecks generated by high file transfer
and the communication required between nodes by using inadequate networks
make it an essential part of deploying an efficient cluster. In fact, OpenHPC
also comes with included support for Omni-Path but Infiniband has been
selected for the current cluster configuration where this methodology has
been developed, but it does not mean that better results cannot be presented
with Intel technology3.

– Memory usage limits: Linux systems have the ability to limit the system
resources that are available to user processes, and one of these limitations is
the use of memory by the different components of a process that is running.
Good practice in HPC is to establish new rules that allow the execution of
demanding tasks by parts of users, which include new rules for memory limits
and the maximum number of open files.

– HPC modules - LMOD: In short, a module is the setting of environ-
ment variables within a script. Each module is defined for a specified applica-
tion where their respective environment variables, license files if required, are
defined among the other requirements required for its successful execution.

3 https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/
omni-path-architecture-performance-overview.html.

https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

80 L. A. Torres and C. J. Barrios

It should be noted that there are two types of scripts when defining mod-
ules. The first one is using TCL4 while the second one is using LUA5, which
is distinguished from the first by using the .lua extension. Both types work
for the creation of a basic application module that only requires defining the
typical environment variables such as PATH, LD LIBRARY PATH, among
others, but LUA has a number of functions6 that allow the administrator
to create more optimized modules7. The use of Spack8 is also recommended,
which provides the cluster with a tool for managing multiple versions and
software configurations through environment modules. In the proposed imple-
mentation Spack was used instead of EasyBuild9 due to the experience of the
administrators in this tool, but it can be used both software repositories if so
required and if deemed necessary by the administrator.

– PowerShell: It is a tool developed in Python that allows you to execute
commands in parallel on all the nodes of the cluster and is highly scalable10.
These types of tools are essential and allow simplifying routine tasks such
as updates, maintenance, making copies of files and folders in directories
not mounted via NFS. This tool was chosen over Clusterssh11 motivated
by the search for simplification in administrative tasks and the reduction of
implementation times of a new cluster.

– NHC (node health check): One of the main tasks of administrators is to
ensure the correct operation of each node of the HPC platform. NHC allows
SLURM to monitor that each node is working properly, preventing user jobs
from running on nodes marked as unhealthy. If SLURM finds any hardware
failure or misconfiguration reported by NHC, the node is marked drained.

In the previous generalizations, the entire base system required for a basic
implementation of a cluster is shown, keeping in mind the fundamental idea of
providing those tools that improve the efficiency of the cluster. The next task
to carry out is the choice of the task manager and its configuration. It was
mentioned earlier that OpenHPC has two options, Slurm or PBS. The proposed
implementation methodology will discuss Slurm and some configuration options
that are considered necessary to improve performance and efficiency, but it does
not mean that the use of PBS will incur design deficiencies or any decrease
inefficiency.

SLURM. One of the most time-consuming tasks in the implementation of an
HPC cluster is the installation and configuration of the task manager, especially
4 https://en.wikipedia.org/wiki/Tcl.
5 https://en.wikipedia.org/wiki/Lua (programming language).
6 https://lmod.readthedocs.io/en/latest/050 lua modulefiles.html#lua-modulefile-

functions-label.
7 https://lmod.readthedocs.io/en/latest/015 writing modules.html.
8 https://spack.readthedocs.io/en/latest/.
9 https://easybuild.readthedocs.io/en/latest/.

10 https://clustershell.readthedocs.io/en/latest/.
11 https://github.com/duncs/clusterssh.

https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://lmod.readthedocs.io/en/latest/050_lua_modulefiles.html#lua-modulefile-functions-label
https://lmod.readthedocs.io/en/latest/050_lua_modulefiles.html#lua-modulefile-functions-label
https://lmod.readthedocs.io/en/latest/015_writing_modules.html
https://spack.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/
https://clustershell.readthedocs.io/en/latest/
https://github.com/duncs/clusterssh

Methodology for Design and Implementation an Efficient HPC Cluster 81

when you want to include certain features such as Infiniband within its config-
uration. Advanced administrators have the experience to easily deal with these
settings, but it can still take some time to get it working properly. Therefore,
it is proposed to use the SLURM and MUNGE12 packages that come in the
OpenHPC repository. Finally, it only remains to dedicate time to configuring
Slurm according to the characteristics of the cluster and the policies for the task
manager that are defined by the administrator.

There are a large number of configuration options in the slurm.conf file13 that
will not be detailed as they are outside the scope of this paper. However, the
configuration parameters related to the SCHEDULING section will be discussed
and some recommendations for their configuration will be given that will help
the administrator to improve the efficiency of the use of resources.

– SchedulerType: Specifies the scheduler plugin to use. This parameter
has two options: schedbackfill and schedbuiltin. The default option is
schedbackfill and we recommended use it but the following parameters should
be established to improve to the scheduler: DefaultTime (default job time
limit), MaxTime (Maximum job time limit) and OverTimeLimit (Amount
by which a job can exceed its time limit before it is killed). The optimal values
of these parameters must be set according to the infrastructure and it is a
task to trial and error.

– SelectType: Establishes how the resources of each node are used. The default
option allocates nodes to jobs in exclusive mode, in other words, another job
can not use the node even if resources are available. The best form to use
the total resources is to set this parameter in cons res (consumable resource)
allowing manage them on a much more fine-grained basis.

– SelectTypeParameters: Consumable resources in our cluster. There are
several values but the main consumables are the memory and the cores of
the nodes, so, we set this value CR Core Memory. The rest of the con-
figurations depend on the cluster and must be established by the systems
administrator.

– PriorityType: By default, SLURM use FIFO (First In, First Out) to assigns
the run priorities to each job. The best option in an efficient cluster is to set
this value to priority/multifactor. This value depends on another series of
parameters to calculate the priority of each of the jobs and they no will
show in this paper but the values of these parameters are a task to trial and
error [20].

It should be noted again that the detail of the SLURM configuration is not
entered into because of the differentiation that must be made in the config-
uration depending on the hardware resources and the policies defined by the
administrators. Likewise, the configuration of generic resources (GRES) such as
GPU cards is not mentioned and the task/cgroup plugin is not included, but the

12 https://github.com/dun/munge.
13 https://slurm.schedmd.com/SLUG19/Priority and Fair Trees.pdf.

https://github.com/dun/munge
https://slurm.schedmd.com/SLUG19/Priority_and_Fair_Trees.pdf

82 L. A. Torres and C. J. Barrios

reader is recommended to delve into this topic if its configuration requires the
use of these resources14.

Finally, it is worth remembering that within the SLURM configuration file
you must specify the use of NHC after all the configuration of the nodes has
been performed and their characteristics added to the slurm.conf file.

Lightweight Directory Access Protocol. Despite the fact that OpenLDAP
is not an essential tool in terms of performance if it is in terms of efficiency and
is mentioned here as one of the main components of a functional cluster.

LDAP is typically configured with its basic schema and is not usually modi-
fied to its tree because it is sufficient for system user management. However, we
have noted that collaborative work has increased among users, leading to stor-
age spaces shared among members of a research group or involved in the same
project. Therefore, good practice in implementing LDAP is the use of dynamic
groups [21] that allows you to assign different levels of access to different storage
spaces within the HPC platform.

In this sense, it is understood that the LDAP service is essential and must
have a mirror server that provides high availability of access to the platform. In
other words, if the main access server experiences a service outage, the backup
server is expected to offer the services while the main server recovers. This type
of design requires a more dense infrastructure that the vast majority of small
HPC labs do not have. To avoid access problems to the platform in the event
of a total crash of the LDAP servers or if there is no redundant server, SSSD is
used, which was explained in Sect. 2.5.

Finally, not only user access to the platform should be regulated. Storage
spaces such as the user’s home and project and research group folders must have
restrictions that are implemented through the use of disk quotas in conjunction
with LDAP.

This series of cluster implementation steps are proposed as an agile and
efficient methodology that can be replicated in other HPC laboratories and that
can optimize the task manager and the administration of the cluster and users by
the administrator. The following section will show the results obtained from the
HPL benchmark in order to show the correct operation of the cluster using the
proposed methodology. However, these results are not directly related to various
administrative tools that have been presented in this work and that cannot be
quantitatively evaluated and are recommendations of the authors based on their
experience in the implementation and administration of HPC laboratories.

4 Benchmarks and Results

HPC labs usually evaluate the performance of their clusters by running different
benchmarks where the most common is Linpack and the most used implemen-
tation is HPL15 explained in Sect. 2.6. This in turn is the tool used to position
14 https://slurm.schedmd.com/SLUG19/cgroups and pam slurm adopt.pdf.
15 https://www.netlib.org/benchmark/hpl.

https://slurm.schedmd.com/SLUG19/cgroups_and_pam_slurm_adopt.pdf
https://www.netlib.org/benchmark/hpl

Methodology for Design and Implementation an Efficient HPC Cluster 83

the most powerful supercomputers in the world listed in the TOP500. It should
be noted that these performance measures obtained and the comparison made
with the five most powerful supercomputers in the world do not really show the
efficiency of the cluster itself, but they do show its correct operation by using
the proposed methodology.

4.1 Results and Evaluation

The cluster for which the design and implementation was carried out following
the proposed methodology is made up of 14 servers

– 11 Servers:
• ProLiant SL390s G7
• 2 Intel Xeon E2.40 GHz processors
• 102 GB of RAM

– 3 Servers:
• ProLiant SL390s G7
• 2 Intel Xeon E2.67 GHz processors
• 102 GB of RAM

– Infiniband Mellanox Technologies MT26438 IB QDR/10GigE of Mellanox

Table 1 shows the results obtained by carrying out three tests on the cluster.
Two of them were made for the Intel Xeon E5645 processor model using 6 and
11 nodes, the third test was performed on the three nodes with Intel Xeon
E5640 processor. The parameter values for HPL were found using the equations
presented in Sect. 2.6. The NB value was selected from the values 96, 112, 128,
and 144 where the best Rpeak was for the value 112.

The Rpeak cluster of the cluster is obtained by multiplying the value of Rpeak

by the number of processors in a server by the number of servers used in the
measurement.

Table 1 shows the results obtained by carrying out three tests on the cluster.
Two of them were made for the Intel Xeon E5645 processor model using 6 and
11 nodes, the third test was performed on the three nodes with Intel Xeon
E5640 processor. The parameter values for HPL were found using the equations
presented in Sect. 2.6. The NB value was selected from the values 96, 112, 128,
and 144 where the best Rpeak was for the value 112.

Table 1. HPL best results

Processor Nodes MPI Proc NB PxQ N Rpeak Rpeak cluster Rmax Efficiency

Xeon E5645 6 144 112 12× 12 256256 57,6 691,2 556,9 0,804

11 264 112 12× 22 372512 57,6 1267,2 1035 0,8168

Xeon E5640 3 48 112 8× 6 162064 42,72 256,32 215,84 0,842

84 L. A. Torres and C. J. Barrios

Table 2 shows the performances of the first 5 supercomputing machines pre-
sented in the TOP500 in November 201916. These results obtained by the imple-
mentation of the methodology described in this document show an acceptable
operation by simplifying the tasks of deploying an HPC cluster.

Table 2. First HPC supercomputers - TOP500

Rank System Rmax Rpeak Effiency

1 Summit 148600 200749,9 0,7402

2 Sierra 94640 125712 0,7589

3 Sunway TaihuLight 93014,6 125435,9 0,7415

4 Tianhe-2A 61445,5 100378,7 0,6121

5 Frontera 23516,4 38745,9 0,6069

5 Conclusions

In conclusion, the use of the proposed methodology in the design and imple-
mentation of the cluster relying on the software repository and the best practice
recommendations provided by OpenHPC simplified the tasks for the HPC labo-
ratory start-up. In fact, the decrease in platform update times was also observed
along with the complexity of installation and configuration of certain scientific
applications through the use of Spack. Finally, according to the results obtained
from the HPL tests, it was observed that the implementation of the cluster using
the described methodology presents good performance results when executing
tasks that require intensive computation.

References

1. Schulz, K.W., et al.: Cluster computing with OpenHPC. In: HPC Systems Profes-
sionals Workshop (2016)

2. Thornton, J.E.: The CDC 6600 Project. Ann. Hist. Comput. 2(4), 338–348 (1980).
https://doi.org/10.1109/MAHC.1980.10044

3. Sen, S.K., Agarwal, R.P.: Computing: birth, growth, exaflops computation and
beyond. In: Flaut, D., Hošková-Mayerová, Š., Ispas, C., Maturo, F., Flaut, C.
(eds.) Decision Making in Social Sciences: Between Traditions and Innovations.
SSDC, vol. 247, pp. 3–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-30659-5 1

4. Papadopoulos, P.M., Katz, M.J., Bruno, G.: NPACI rocks: tools and techniques
for easily deploying manageable Linux clusters. Concurr. Comput.: Pract. Exp.
15(7–8), 707–725 (2003)

16 https://www.top500.org/lists/2019/11/.

https://doi.org/10.1109/MAHC.1980.10044
https://doi.org/10.1007/978-3-030-30659-5_1
https://doi.org/10.1007/978-3-030-30659-5_1
https://www.top500.org/lists/2019/11/

Methodology for Design and Implementation an Efficient HPC Cluster 85

5. Scott, S.L.: OSCAR and the Beowulf arms race for the “cluster standard”. In:
2001 IEEE International Conference on Cluster Computing (CLUSTER 2001),
8–11 October 2001, p. 137, Newport Beach (2001)

6. Aydin, S., Bay, O.F.: Building a high performance computing clusters to use in
computing course applications. Procedia - Soc. Behav. Sci. 1(1), 2396–2401 (2009)

7. Hoste, K., Timmerman, J., Georges, A., Weirdt, S.D.: EasyBuild: building software
with ease. In: 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012, pp. 572–
582 (2012)

8. Gamblin, T., et al.: The spack package manager: bringing order to HPC soft-
ware chaos. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, 15–20
November 2015, pp. 40:1–40:12 (2015)

9. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

10. Wang, L., et al.: BOPS, Not FLOPS! a new metric and roofline performance model
for datacenter computing (2018). http://arxiv.org/abs/1801.09212

11. Dongarra, J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurr. Comput.: Pract. Exper. 15, 803–820 (2003). https://doi.org/
10.1002/cpe.728

12. Libri, A., Bartolini, A., Cesarini, D., Benini, L.: Evaluation of NTP/PTP fine-grain
synchronization performance in HPC clusters. In: ACM International Conference
Proceeding Series (2018)

13. Supercomputación y Cálculo Cient́ıfico (SC3). https://www.sc3.uis.edu.co.
Accessed 20 May 2020

14. Top500. https://www.top500.org/. Accessed 20 May 2020
15. Clustering fundamentals. https://developer.ibm.com/articles/l-cluster1/.

Accessed 12 May 2020
16. Lightweight Directory Access Protocol (LDAP). http://web.mit.edu/rhel-doc/5/

RHEL-5-manual/Deployment Guide-en-US/ch-ldap.html. Accessed 5 May 2020
17. SLURM Overview. https://slurm.schedmd.com/overview.html. Accessed 8 May

2020
18. SSSD. https://access.redhat.com/documentation/en-us/red hat enterprise linux/

6/html/migration planning guide/sect-migration guide-security authentication-
sssd. Accessed 15 May 2020

19. Network File System (NFS). https://access.redhat.com/documentation/en-us/
red hat enterprise linux/7/html/storage administration guide/ch-nfs. Accessed 20
May 2020

20. SLURM Priority Multifactor. https://slurm.schedmd.com/priority multifactor.
html. Accessed 15 May 2020

21. ZYTRAX - Configuring Dynamic Groups. https://www.zytrax.com/books/ldap/
ch11/dynamic.html. Accessed 2 May 2020

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
http://arxiv.org/abs/1801.09212
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://www.sc3.uis.edu.co
https://www.top500.org/
https://developer.ibm.com/articles/l-cluster1/
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-ldap.html
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-ldap.html
https://slurm.schedmd.com/overview.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/migration_planning_guide/sect-migration_guide-security_authentication-sssd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs
https://slurm.schedmd.com/priority_multifactor.html
https://slurm.schedmd.com/priority_multifactor.html
https://www.zytrax.com/books/ldap/ch11/dynamic.html
https://www.zytrax.com/books/ldap/ch11/dynamic.html

Estimating the Execution Time
of the Coupled Stage in Multiscale

Numerical Simulations

Juan H. L. Fabian1 , Antônio T. A. Gomes1(B) , and Eduardo Ogasawara2

1 Laboratório Nacional de Computação Cient́ıfica (LNCC), Petrópolis, RJ, Brazil
{juanhlf,atagomes}@lncc.br

2 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ),
Rio de Janeiro, RJ, Brazil
eogasawara@ieee.org

Abstract. Estimating the execution time of high-performance comput-
ing (HPC) applications is an issue that affects both shared computing
infrastructures and their users. The goal of the present work is to esti-
mate the execution time of simulation applications driven by multiscale
numerical methods. In computational terms, these methods induce a
two-stage simulation process. Fundamentally, the number of possibilities
for configuring this two-stage process tends to be much larger than that
of classical, one-stage numerical methods. This scenario makes it harder
to provide accurate estimates of the execution time of multiscale simu-
lations by using classical regression techniques. We propose a method-
ology that explores the idiosyncrasies of multiscale simulators to reduce
the uncertainty of predictions. We applied it in this paper to the spe-
cific challenge of estimating the execution time of these simulators based
on knowledge about the influence of each parameter of the numerical
method they employ. We consider the multiscale hybrid-mixed (MHM)
finite element method as a specific multiscale method to validate our
methodology. We compared our proposed technique with 3 well-known
regression approaches: a model-based tree (M5P), a bayesian nonpara-
metric method (GPR), and a state-of-the-art ensemble method (Random
Forest). We found that the root-mean-square error (RMSE) of the test
dataset for our technique was considerably less than that obtained by
these 3 approaches. We conclude that an educated consideration of the
numerical parameters of the MHM method to estimate the execution
time of the simulations helps to obtain more accurate models. We believe
such conclusion can be easily generalized to other multiscale numerical
methods.

Keywords: Multiscale simulations · Performance prediction · Machine
learning

The authors thank CAPES (finance code 001), FAPERJ, and CNPq for partially fund-
ing this research.

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 86–100, 2021.
https://doi.org/10.1007/978-3-030-68035-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_7&domain=pdf
http://orcid.org/0000-0002-9934-8351
http://orcid.org/0000-0002-0746-4014
http://orcid.org/0000-0002-0466-0626
https://doi.org/10.1007/978-3-030-68035-0_7

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 87

1 Introduction

Simulators are computational tools used to assist in the understanding of com-
plex natural, artificial, and social-cultural phenomena. Phenomena with multi-
scale characteristics require the use of sophisticated numerical methods to deal
with these characteristics in terms of not only the quality of approximation
but also computational performance. The so-called multiscale numerical meth-
ods tackle both issues. These methods achieve low approximation error rates and
incorporate the granularity of the new generations of massively parallel architec-
tures. For this paper, we consider multiscale numerical methods for finite element
analysis. From a mathematical viewpoint, these methods are composed of: (i) a
global formulation defined in the skeleton of a mesh of elements; and (ii) a collec-
tion of local problems, element by element, guided by the problem data—which
is inherently multiscale [5]. In computational terms, this formulation induces a
two-stage process:

Asynchronous stage. It solves the local problems independently, without
communication between the involved processors;

Coupled stage. It collects the solutions of the local problems to build a single,
coupled problem that uses all available processors synchronously.

It is important to note that the computational effort to solve the problems in
the asynchronous stage can be performed offline. Besides, the problem solved at
the coupled stage—although it is usually carried out online—is typically smaller
than that found in a classical numerical method and, therefore, computationally
advantageous. The drawback of this two-stage process is that it increases the
number of configuration possibilities, as there is not only an additional stage to
be configured, but also the interface between the stages.

Consider the context of shared computing infrastructures, such as clusters in
supercomputing centers. The configuration problem mentioned above becomes
particularly important. In these clusters, workload management systems are
responsible for regulating users’ access to computing nodes. These systems imple-
ment scheduling strategies that arbitrate resource contention, managing queues
of jobs sent by users. Typically, users and the supercomputing center bene-
fit from job specifications that provide accurate estimates of total execution
time. It enables shorter queue times and better backfill scheduling performance.
Nonetheless, it is difficult to provide accurate estimates for simulations based on
multiscale numerical methods. Each configuration possibility impacts the quality
of approximation and computational performance achieved.

So far, research on predicting the execution time of high-performance com-
puting (HPC) applications has sought generality, targeting general-purpose code
kernels and parallel execution patterns. We believe that exploring the idiosyn-
crasies of specific application families—such as that of simulators based on mul-
tiscale numerical methods—helps to reduce the uncertainty of predictions.

We propose a methodology that employs machine learning to explore the
aforementioned idiosyncrasies. In this paper, we applied this methodology to
build models for the prediction of the execution time of multiscale simulators

88 J. H. L. Fabian et al.

based on knowledge about the influence of each parameter of the numerical
method they employ. We use the MHM method proposed by Araya et al. [2] as a
frame of reference for training and testing the prediction models. Nevertheless,
it is crucial to bear in mind that this study is also applicable to simulators based
on other multiscale numerical methods; notably, the ones with the same parallel
execution pattern [3,7].

As local problems can be computed offline, we disregard their cost for pre-
dicting the execution time of MHM simulations in this work. This simplification
does not make the prediction task less difficult, though. The parameters that
affect the quality of approximation of the asynchronous phase also affect some
characteristics related to the computational performance of the global problem,
such as the matrix conditioning and the sparsity pattern of the underlying sys-
tem of linear equations.

We compared the models we built in this paper for the prediction of the
execution time of MHM simulations with 3 well-known regression approaches:
(i) a model-based tree (M5P), (ii) a bayesian nonparametric method (GPR),
and (iii) a state-of-the-art ensemble method (Random Forest). We found that
our models achieved the lowest errors among them.

We organized the remainder of this paper in the following way. In Sect. 2, we
analyze some related work. The MHM method, on which the proposed method-
ology is based, is described in Sect. 3. It also presents the problem statement for
this work. In Sect. 4, we present the proposed methodology. Some experiments
are analyzed in Sect. 5. Finally, in Sect. 6, we present some concluding remarks
and perspectives for future work.

2 Related Work

In the last few years, there have been many initiatives that applied machine/
statistical learning for predicting the execution time of HPC applications. We
describe below the most representative ones according to the data collected,
techniques, and results achieved.

Matsunaga and Fortes [15] applied machine learning to predict the time and
resources consumed by applications. These applications may be used in different
computing infrastructures. To estimate the optimal resource usage for them is a
complex task. Thus, a tree algorithm called Predicting Query Runtime (PQR)
was applied to predict execution time and memory required. This algorithm
enables defining different machine learning models on the leaves. Models in the
leaves can be defined as linear regression or SVM. They are built from infor-
mation about the application and the computing infrastructure. The approach
was evaluated using two bioinformatics applications, BLAST, and RAxML, and
showed good accuracy for each prediction model.

Huang et al. [11] also studied the prediction of execution time in HPC appli-
cations. They built the prediction models by using a statistical technique called
sparse polynomial regression (SPORE). The use of this technique is justified
by many predictors (features) considered for each application. The paper also

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 89

investigated the relationship between the predictors and the target variable and
which predictors were the most relevant to predict the elapsed time. Three appli-
cations (Lucene search engine and two image processing algorithms) were used
to validate the method and compare it with other statistical techniques.

Tiwari et al. [19] used machine learning to model the performance of HPC
kernels. The data was collected using a tool called PowerMon. The assessed
kernels were matrix multiplication, stencil computation, and LU factorization.
It used a multilayer perceptron as the machine learning technique. Models were
built regarding energy usage and execution time for each kernel, and the authors
analyzed the influence of the training dataset size on the model accuracy.

Hieu et al. [10] studied the predictions for the execution time of applications
in computational fluid dynamics (CFD). Those CFD applications were executed
in a cloud environment. The prediction of the execution time was executed in
two steps. Firstly, a decision tree (C4.5) was built to classify the final status
of the execution (executed or not). Secondly, a multilayer perceptron was built
to predict the execution time. The authors assessed the models by using the
accuracy measure for the classifier, and the coefficient of determination (R) and
mean absolute relative error (MARE) for the regression.

Mart́ınez et al. [13] described a process to improve the performance of stencil
kernels on multicore architectures. The process used machine learning to predict
the GFLOPS and execution time of this kind of kernel. It used three different
data sources: configuration parameters in the stencil implementation, hardware
counters, and performance metrics. The final models were built in two steps.
Both were based on SVM. In the first, intermediate models were built relating
configuration parameters and hardware counters. Then, final models were built
using hardware counters and performance metrics. The authors considered two
kernels—7-point Jacobi and seismic wave modeling—for experimentation and
reported high accuracy in the performance prediction.

Tanash et al. [18] considered a supervised machine learning technique to pre-
dict needed resources in HPC systems. The authors were interested in predicting
the required memory and time for a job and in improving the Slurm resource
manager used in the HPC systems. HPC log files were used as input for the
model. By using a Slurm simulator, the authors observed that the model could
help the resource manager to use the HPC resources in a better way.

Kim et al. [12] proposed a scheme to estimate execution time in computa-
tional science and engineering simulations. The scheme, called EXTES, is based
on machine learning, and it is applied to obtain efficient simulations. The authors
demonstrated the use of EXTES in a web-based platform named EDISON. They
considered 16 simulation programs and observed better accuracy in the models
for each simulation program.

These pieces of work have in common the use of machine learning as a tool
to predict the performance of diverse kinds of applications or kernels. None of
them, however, considered as predictors domain-specific information about the
applications or kernels. We believe the lack of such type of information in pre-

90 J. H. L. Fabian et al.

diction models potentially reduces their accuracy. In this paper, we consider this
type of information, in the specific context of multiscale numerical simulations.

3 MHM: A Multiscale Numerical Method

In this section, we briefly describe the Multiscale Hybrid-Mixed method (MHM),
a type of finite element method that aims to solve large problems with multiple
scales. The application of this method departs from a partial differential equation
(PDE) that represents the physical problem to be simulated. A hybrid finite
element formulation is proposed for this PDE that considers the continuity of
its solution space using Lagrange multipliers. The hybrid formulation is then
rewritten to obtain the MHM method. This rewriting leads to two types of
problems: global and local. They are then discretized to obtain proper numerical
approximations to the solution of the original PDE. The global problem is solved
on the skeleton of a fixed finite element mesh that discretizes the domain of the
PDE. The local problems are independent of each other and are solved in parallel
for each element of the mesh. Each local problem considers its corresponding
element of the mesh, a domain of its own. Therefore, these elements may also be
discretized by a “sub-mesh”. Since the local problems may be computed offline,
we do not detail them in the remainder of this section.

Different physical problems can be modeled and simulated with the MHM
method [2,9]. For this paper, we consider in the following the Darcy equation in
a two-dimensional domain1 defined as a boundary value problem for a diffusive
process.

Diffusion Problem: Find the pressure u : Ω → R in the domain Ω s.t.:{
−KΔu = f in Ω,

u = 0 on ∂Ω.

For the hybridization procedure, the MHM method first considers the decom-
position of Ω into subdomains. It then defines the following function spaces:

– V: the space of u living over Ω; and
– Λ: the space of Lagrange multipliers living over the skeleton formed by the

decomposition of Ω. This space is associated with the normal fluxes over the
subdomains’ boundaries.

The solution u can then be characterized as:

u = u0 + ũ + uλ, with u0 ∈ V0, ũ ∈ Ṽ , uλ ∈ Λ, and V = V0

⊕
Ṽ ,

where V0 is the space in which the kernel of the Laplacian operator (Δ) lives.

1 Much of the description in this section also applies to a three-dimensional domain
setting, if one considers faces instead of edges as composing the skeleton of the mesh
that discretizes the domain.

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 91

For the discretization procedure, the MHM method first considers a regular
mesh TH of elements K that discretizes the domain Ω. H > 0 is the characteristic
measure (i.e., the level of refinement) of TH . For simplicity, let us map each
K to a unique subdomain of Ω. Each element K has its boundary ∂K, and
EH = {∂K}K∈TH

defines the skeleton (i.e., the set of edges) of TH . K can be
further discretized as a local sub-mesh; h > 0 is the characteristic measure of
this sub-mesh. The approximate function spaces are then:

ΛH = Λm
l ⊂ Λ and Ṽh =

⊕
K∈TH

ṼK ⊂ Ṽ .

The parameter m in the space of Lagrange multipliers defines the number of
partitions of each edge of ∂K, and the parameter l defines the degree of Lagrange
polynomials in each such partition. At the local level, each K has its space ṼK

formed by Lagrange polynomials of degree k. Further details about the MHM
method applied to diffusion problems are in [2,8].

It is worth remarking that, on average, approximately 94% of the time spent
on the global problem is due to the solution of its underlying system of linear
equations. Because of MHM’s hybridization procedure, this system is of the form:(

A B
BT 0

) (
λ
u0

)
=

(
gf

g0

)
,

in which the dimension of A is determined by l, m, and #EH , and the dimensions
of B and BT are proportional to #TH .

The linear system above is a saddle-point system, thus presenting important
challenges to linear solvers [4]. The larger the parameters l and m, and the
level of refinement of the mesh, the more challenging the linear system for the
solvers. Moreover, these parameters affect the linear system differently; refining
the mesh—i.e., increasing #EH and #TH only—increases the dimensions of the
matrix, while increasing l or m makes the matrix not only bigger but also denser.
The consideration of these aspects has an important impact on the quality of
the predictions of the time to run simulations based on the MHM method.

4 Methodology

This paper describes part of a methodology under development, called NAZCA,2

to assist users of multiscale simulations in the configuration of the simulations
themselves and the computing resources used for these simulations. Figure 1
depicts the workflow for prediction models proposed in the NAZCA methodology.

The NAZCA methodology has two steps: learning and production. The learn-
ing step defines the process of building predictive models. The process departs
from a set of three parameter spaces: (1) the characterization of the numerical
method, (2) the computational architecture, and (3) the performance metrics.
2 The name NAZCA was inspired by the Nazca Lines in Peru, which are sometimes

related with ceremonial activities involving prediction [17].

92 J. H. L. Fabian et al.

Fig. 1. NAZCA: The workflow for learning and operating prediction models.

For each intended predictive model, we need to do feature engineering in the
(raw) data collected from a subset of the parameter spaces and explore diverse
kinds of machine/statistical learning techniques over the data. The collected
data is then used to train a model. The model typically outputs a response liv-
ing in one of the parameter spaces. It is important to highlight that different
combination of these parameter spaces as predictors can be used to produce dif-
ferent models that output different responses. In this paper, we aim to use the
parameter space that characterizes the numerical method as a way to predict
the execution time of a simulation. In the production step, predictive models are
put into operation for new simulations. The feature engineering accomplished in
the learning process is considered for these models as well.

A dataset in the NAZCA methodology is organized as a table with attributes
as columns and samples as lines. The attributes are grouped in the three param-
eter spaces described above. To characterize a numerical method, we may define
attributes related to the physical phenomenon, the mesh of the domain, and
the numerical parameters. For the computational architecture, we may define
attributes related to the number of computational nodes, the number of cores
per node, and the RAM size in each node that is used in the simulation. Finally,
for the performance metric, we may define attributes to analyze the performance
of the numerical method (like errors in L2- and H1-norms) and of the simula-
tion as a whole (such as success or failure, and execution time). Some of these
attributes may be interrelated: for example, only when the simulation ends suc-
cessfully, is it possible to obtain information on RAM usage and execution time.

Table 1 presents an example of attributes for MHM simulations.3 These
attributes were used for the proof of concept in the experiments described

3 We differentiate h and submesh because the characteristic measure has an absolute
value, whereas the level of refinement for the sub-mesh has local meaning.

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 93

in Sect. 5. It is also described the type of each attribute. We do not apply
any attribute transformations. The users inform the values associated with the
attributes in the numerical method and computational architecture parameter
spaces. The attributes associated with the performance metric parameter space
are collected while the simulations run.

Table 1. Attributes from different parameter spaces: Numerical Method, Computa-
tional Architecture and Performance Metric.

Parameter space Attribute Nomenclature Type

Numerical method Dimension of the domain (2D, 3D) Dim Nominal

Physical phenomenon (diffusion, elasticity,

etc.)

Phys Nominal

Characteristic measure of the mesh H Continuous

Level of refinement for the sub-mesh submesh Discrete

Characteristic measure of the sub-mesh h Continuous

Degree of polynomial in the element - local

problems

k Discrete

Degree of polynomial on the edge/face

(2D/3D) - global problem

l Discrete

Number of divisions on the edge/face (2D/3D)

- global problem

m Discrete

Computational architecture Number of computational nodes Nodes Discrete

Number of cores per node Cores Discrete

Total RAM in the computational nodes RAM Discrete

Performance metric Success of the simulation S Binary

Numerical error in the L2-norm L2 Continuous

Numerical error in the H1-norm H1 Continuous

Total execution time TE Continuous

Partial time of the global problem TPG Continuous

Partial time of the local problems TPL Continuous

RAM usage in the local problems RAM-PL Discrete

RAM usage in the global problem RAM-PG Discrete

In the learning step, the data is randomly divided into training and test
datasets using the 80-20 strategy. The model is trained only using the training
dataset, and it is assessed in the test dataset. We do not optimize the hyperpa-
rameters of the models, therefore, a validation set is not defined.

Estimating the Execution Time from Numerical Method Attributes.
We explained in Sect. 3 that the execution time of the global problem in MHM
simulations is influenced by the parameters l, m, #EH , and #TH . Besides, l
and m are determinants for the sparse pattern of the system of linear equations
associated with the global problem, affecting its computational complexity (as
verified in Subsect. 5.2). We, therefore, devised a tree-based architecture that
handles each possible combination of l and m. Moreover, we employed a feature
engineering procedure to derive from l, m, #EH , and #TH an additional attribute
(GLG) that represents the total number of degrees of freedom in the linear
system solved by the global problem. This new attribute is employed as the

94 J. H. L. Fabian et al.

predictor of several univariate regression models, each one of them living on a
different leaf of the tree. Figure 2 depicts the tree architecture.

Fig. 2. Tree-based architecture for handling prediction models.

On each leaf of the model tree, we use empirical analysis to select the best
univariate regression model. The empirical analysis consists of repeating the
training and testing of a given model,4 with a random division of training and
test data for each repetition. We then collect for each such repetition the fitted
model and its associated prediction band, and analyze two hypotheses over them:
– HV

0 : The model suffers little effect from changes in training and test data.
We verify this hypothesis by ascertaining that the fitted models are confined
within the area bounded by the prediction bands;

– HR
0 : The model is reliable—we verify this hypothesis by ascertaining that the

data samples are all contained within some prediction band.

5 Experimental Evaluation

In this section, we describe the proof of concept of the methodology explaining
the experimental part of the research. We start by defining the data used for
building the prediction models, in which the attributes in the data were defined
by experts. Next, we look for any possible patterns in the data. Finally, we apply
our methodology for building predictive models of the execution time.

5.1 Dataset

Using Table 1 as a reference, we fixed Dim = ‘2D’ and Phys = ‘Diffusion’ to
match the diffusion problem described in Sect. 4. For the other parameters, we
considered the combination of the values listed in Table 2. For a single combina-
tion, two different simulations were performed to enrich the dataset—each one
based on a different refinement pattern for H (criss-cross and irregular). For
the computational architecture, we fixed a single configuration, consisting of a
workstation with two 12-core sockets and 320 GB of RAM. All the simulations
that were run to collect performance metric data used 2 MPI processes. This
setup amounts to a total of 1, 800 simulations in our experimental dataset.
4 We used 1, 000 repetitions as in the traditional bootstrap setup [6].

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 95

5.2 Exploratory Data Analysis

In Fig. 3, we analyze the relation between TPG (the target variable) and GLG.
We can confirm in Fig. 3(a) our assertions in Sects. 3 and 4 that there are different
patterns when we combine the values of parameters l and m. Besides, we can
see that for a fixed value of the parameter l, there are patterns influenced by the
values in the parameter m, as we can see in Figs. 3(b) and 3(c).

Table 2. Parameters used in the experimental evaluation

Parameters Values

Submesh 1, 2, 4, 8

m 1, 2, 4, 8

k 2, 3, 4, 5, 6

l 0, 1, 2, 3, 4

(a) Combining l and m (b) l = 0 (c) l = 4

Fig. 3. TPG vs GLG.

We show in Fig. 4 the distribution of training and test data on each of these
leaves. Each time we increase the value of l and m, the amount of data available
for training and test decreases. This skewed distribution is a consequence of the
specific constraints of the well-posedness of a formulation in MHM,5 and it may
affect the performance of the model, as we show in the following section.

5.3 Model Building and Assessment

We consider different kinds of models for our analysis: y = a0 + a1x (model 1);
y = a0 + a1x

3/2 (model 2); y = a0 + a1x + a2x
3/2 (model 3); y = a0 + a1x

2

(model 4) and y = a0 + a1x + a2x
2 (model 5). Models 2 and 3 were considered

5 Briefly speaking, increasing l without increasing m also increases the minimal
accepted value for k, thus reducing the amount of possible combinations in Table 2.

96 J. H. L. Fabian et al.

Fig. 4. Distribution of training and test data according to each case.

because we use the MUMPS parallel linear solver [1] for the global problem, and
Mary [14] shows that this solver has an asymptotic time complexity of O(n3/2).

In the following, we analyze cases l = 0,m = 2, and l = 4,m = 8. In the first
case, we have a filtered dataset with 200 simulations and a clear behavior for
the empirical analysis (c.f. Fig. 5). In the second case, we have a filtered dataset
with only ten simulations and a fuzzier behavior (c.f. Fig. 6).

As for the selection of model 2 in the example of Fig. 5, we observe that in
models 1, 3, and 5, there are data points that fall out of the prediction band.
For this reason, we refute the hypothesis HR

0 . Concerning the hypothesis HV
0 ,

we refute it in models 3, 4, and 5. We then selected model 2 because it was the
only one in which we could not refute both hypotheses. As for the case shown
in Fig. 6, at least one of the hypotheses was refuted by each model. In this case,
our technique cannot select a proper model using empirical analysis. Thus, the
strategy adopted based on Occam’s razor was to select the most straightforward
model (model 1). In Table 3, we summarize the models selected by our technique
for each leaf of our model tree.

Table 3. Models for different values of the parameters l and m.

l m Model l m Model l m Model l m Model l m Model

0 1 a0 + a1x 1 1 a0 + a1x3/2 2 1 a0 + a1x3/2 3 1 a0 + a1x3/2 4 1 a0 + a1x3/2

2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x3/2 2 a0 + a1x

4 a0 + a1x3/2 4 a0 + a1x3/2 4 a0 + a1x3/2 4 a0 + a1x 4 a0 + a1x

8 a0 + a1x3/2 8 a0 + a1x3/2 8 a0 + a1x 8 a0 + a1x 8 a0 + a1x

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 97

Fig. 5. An empirical analysis for l = 0,m = 2. We plot the data samples (dots) and the
fitted models (green) with their prediction bands, upper (blue) and lower (red) bound.
(Color figure online)

Fig. 6. An empirical analysis for l = 4,m = 8. We plot the data samples (dots) and the
fitted models (green) with their prediction bands, upper (blue) and lower (red) bound.
(Color figure online)

We calculated the error obtained in the test dataset for each leaf of our model
tree. After that, we computed the error for the complete test dataset and arrived
at an RMSE of 0.272. In Fig. 7, we can see the squared error for each leaf of our
model tree. We can identify which of them have the higher errors. A high error

98 J. H. L. Fabian et al.

Fig. 7. Squared errors for each case during the tests.

could be caused for diverse reasons, such as a small dataset or a poor model.
Reducing the errors for these cases is the subject of future work.

We compared the performance of our technique in the test dataset with 3
well-known regression approaches implemented in the WEKA workbench [21]:
(i) M5P ([16,20]), (ii) Gaussian Process Regression (GPR), and (iii) Random
Forest (RF). Table 4 summarizes the results obtained for each technique.

Table 4. Comparison of regression approaches.

Technique RMSE

NAZCA 0.272

M5P 2.111

RF 2.446

GPR 3.477

We can conclude that the considerations related to the numerical parameters
proposed in our technique allowed a better generalization of the model.

6 Conclusion

Predicting the execution time of simulations based on multiscale numerical meth-
ods is complex due to their two-stage process. We presented NAZCA, a method-
ology capable of dealing with this situation. NAZCA aims to build prediction
models for these simulations based on machine learning, benefiting both com-
puting infrastructure providers and their users.

We applied the MHM method in a diffusion equation, and we conducted some
experiments to obtain a dataset used for training and test. Different machine
learning techniques are explored to build prediction models. We proposed a
technique inspired in a tree, which for its building, considers some parameters

Execution Time of Coupled Stage in Multi-scale Numerical Simulations 99

of the numerical method. On each leaf of the tree, we carried out an empirical
analysis for model selection. To validate our approach, we compared it with three
well-known regression approaches. We concluded that our proposed technique
achieves a small error of generalization compared to them.

Some future work could be considered for this research. In our proposed
technique, we established some assumptions and limitations that could be tack-
led. Values for the numerical parameters are not limited to the experiments
considered here, so another type of learning technique may be needed for this
situation. In our technique, we also observed that the small amount of data
influenced the achievement of accurate models, and a better analysis of how to
get around this difficulty could be studied. Finally, we consider the application
of the methodology described herein to other multiscale numerical methods in
which the two-stage process is observed.

References

1. Amestoy, P., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

2. Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method.
SIAM J. Numer. Anal. 51(6), 3505–3531 (2013)

3. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed
finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems.
Acta Numerica 14, 1–137 (2005)

5. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09496-0

6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Mono-
graphs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton
(1993)

7. Guiraldello, R.T., Ausas, R.F., Sousa, F.S., Pereira, F., Buscaglia, G.C.: The mul-
tiscale robin coupled method for flows in porous media. J. Comput. Phys. 355,
1–21 (2018)

8. Harder, C., Paredes, D., Valentin, F.: A family of multiscale hybrid-mixed finite
element methods for the Darcy equation with rough coefficients. J. Comput. Phys.
245, 107–130 (2013)

9. Harder, C., Paredes, D., Valentin, F.: On a multiscale hybrid-mixed method for
advective-reactive dominated problems with heterogeneous coefficients. Multiscale
Model. Simul. 13(2), 491–518 (2015)

10. Hieu, D.N., Tieu Minh, T., Van Quang, T., Giang, B.X., Van Hoai, T.: A machine
learning-based approach for predicting the execution time of CFD applications
on cloud computing environment. In: Dang, T.K., Wagner, R., Küng, J., Thoai,
N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 40–52.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48057-2 3

11. Huang, L., Jia, J., Yu, B., Chun, B.G., Maniatis, P., Naik, M.: Predicting execution
time of computer programs using sparse polynomial regression. In: Advances in
Neural Information Processing Systems 23, pp. 883–891. Curran Associates, Inc.
(2010)

https://doi.org/10.1007/978-0-387-09496-0
https://doi.org/10.1007/978-3-319-48057-2_3

100 J. H. L. Fabian et al.

12. Kim, S., Suh, Y., Kim, J.: EXTES: an execution-time estimation scheme for effi-
cient computational science and engineering simulation via machine learning. IEEE
Access 7, 98993–99002 (2019)

13. Mart́ınez, V., Dupros, F., Castro, M., Navaux, P.: Performance improvement of
stencil computations for multi-core architectures based on machine learning. Proc.
Comput. Sci. 108, 305–314 (2017)

14. Mary, T.: Block Low-Rank multifrontal solvers: complexity, performance, and scal-
ability. Ph.D. thesis, Université Paul Sabatier - Toulouse III (2017)

15. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 495–504 (2010)

16. Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Confer-
ence on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

17. Silverman, H.: Cahuachi in the Ancient Nasca World. University of Iowa Press,
Iowa City (1993)

18. Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., Okanlawon, A.: Improv-
ing HPC system performance by predicting job resources via supervised machine
learning. In: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (Learning), pp. 1–8 (2019)

19. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum, pp. 990–998 (2012)

20. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes.
In: Poster Papers of the 9th European Conference on Machine Learning. Springer
(1997)

21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Series in Data Management Systems,
3rd edn. Morgan Kaufmann, Amsterdam (2011)

High Performance Computing
and Artificial Intelligence

Using HPC as a Competitive Advantage
in an International Robotics Challenge

Claudia Álvarez Aparicio1 , Jonatan Ginés2 , Miguel A. Santamarta1,
Francisco Mart́ın Rico2 , Ángel M. Guerrero Higueras1 ,

Francisco J. Rodŕıguez Lera1 , and Vicente Matellán Olivera3(B)

1 Grupo de Robótica, Universidad de León, León, Spain
{calvaa,mgons,am.guerero,fjrodl}@unileon.es

2 Robotics Lab, Universidad Rey Juan Carlos, Madrid, Spain
{jonatan,fmartin}@urjc.es

3 SCAYLE - Centro de Supercomputación de Castilla y Len, León, Spain
vicente.matellan@scayle.es

http://robotica.unileon.es

http://robotica.gsyc.urjc.es

http://www.scayle.es

Abstract. Researchers in every knowledge field are moving towards the
use of supercomputing facilities because the computing power they can
provide is not achievable by individual research groups. The use of super-
computing centers would allow them to reduce costs and time. Addition-
ally, there is a growing trend towards the use of GPUs clusters in HPC
centers to accelerate particularly parallel codes as the ones related with
the training of artificial neural networks. This paper presents a successful
use case of a supercomputing facility, SCAYLE - Centro de Supercom-
putación de Castilla y León -(Spain) by a group of robotic researchers
while participating in an international robotics competition - the ERL
Smart CIty RObotic Challenge (SciRoc). The goal of the paper is to
show that HPC facilities can be required to provided particular SLAs
(Service Level Agreement). In the case described, the HPC services were
used to train neural networks for object recognition, that could not be
easily trained on-site and that cannot be trained in advanced because of
the regulation of the competition.

Keywords: HPC · Robotics · Neural networks · Training

1 Introduction

The use of supercomputing facilities for training neural networks keeps growing
significantly, both in academia and in the industry. Moreover, robotic researchers
have lately show increasing interest on using deep learning approaches to face

Supported by SCAYLE, INCIBE and Spanish Ministry of Science and Innovation of
the Kingdom of Spain (Grant RTI2018-100683-B-I00).

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 103–114, 2021.
https://doi.org/10.1007/978-3-030-68035-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_8&domain=pdf
http://orcid.org/0000-0002-7465-8054
http://orcid.org/0000-0002-7319-098X
http://orcid.org/0000-0003-3121-5744
http://orcid.org/0000-0001-8277-0700
http://orcid.org/0000-0002-8400-7079
http://orcid.org/0000-0001-7844-9658
https://doi.org/10.1007/978-3-030-68035-0_8

104 C. Álvarez Aparicio et al.

robotic challenges [5]. One way of comparing the performance of these approaches
in this domain are competitions, but in those events the use of HPC facilities
presents some challenges that are shown in this paper.

The case described in this paper focuses on the ERL Smart CIty RObotic
Challenge (SciRoc challenge1), a biennial competition whose main objective is
the integration of robots in smart cities. The First SciRoc Challenge was held
at Milton Keynes (UK), on September 18th to 21st, 2019. In this edition, the
robots had to cooperate continuously with a simulated digital infrastructure of
a smart shopping mall, in order to accomplish their tasks.

The SciRoc Challenge is organized into three categories depending on the
task to achieve and the type of robots involved, HRI&Mobility, Manipulation,
and Emergency. These competitions aim at replicating consistent benchmarking
results and have been designed to target three clear objectives: the European
societal challenge of the aging population, the strengthening of the European
robotics service industry and to push the state of the art in autonomous systems
for emergency response [2].

The work described was carried out by Gentlebots a joint team between two
Spanish universities, Universidad de León and Universidad Rey Juan Carlos.
This team has participated in several competitions, such as the RoboCup, the
ERL or the first edition of the SciRoc Challenge. In these competitions several
robotic platforms have been used, Pepper, RB-1, TIAGo. Obtaining in some of
them even the first position in the episodes.

TIAGo robot [16] was used in the SciRoc Challenge by Gentlebots team.
The main components of this robot are an RGB-D camera on its head, a frontal
touch screen to interact with people in the torso and a horizontal laser with a
10-meter range in its base. The internal computer is an Intel i7 CPU with 16
GB of RAM and 512 GB of SSD. As an add-on, the robot has an Nvidia Jetson
TX2 on its back.

During the first edition of the SciRoc Challenge, the Gentlebots team com-
peted in two episodes. Both episodes have the social character of robotics implicit
in them but consist in solve completely different tasks.

1.1 Challenge Description

In the first episode called “Deliver coffee shop orders” (see Fig. 1a), the robot
assists people in a coffee shop to serve customers, by taking orders and bringing
objects to and from customers’ tables. In this episode, the main functionality that
is evaluated is people’s and object perception, navigation and, speech synthesis
and recognition [3].

In the second episode called “Take the elevator” (see Fig. 1c), the robot must
take the elevator crowded with customers to reach a location in a different floor.
The robot should interact with the referee to discover which floor it must reach
to accomplish its task and also be capable of taking the elevator. The robot
should be able to enter and exit the elevator on the right floor in the presence

1 https://sciroc.eu/challenge-description-2019.

http://www.gentlebots.robotica.gsyc.es/
https://www.softbankrobotics.com/us/pepper
https://www.robotnik.es/manipuladores/rb-one/
http://pal-robotics.com/es/robots/tiago/
https://sciroc.eu/challenge-description-2019

Using HPC as a Competitive Advantage 105

of people nearby and/or inside the elevator. To perform the episode the robot
can interact with the customers in spoken language [4].

(a) (b) (c)

Fig. 1. Real scenarios: (a) Episode E03 - “Deliver coffee shop orders” E. (b) Real
objects Episode E03. (c) Episode E04 - “Take the elevator”

The access time to the scenario and objects (Fig. 1) is very limited because
many teams participate in the same episode. Time is limited in every way, there
is a short period of time to get into the enclosure and examine the objects, but
there is very limited time to train the computing systems before the competition.

1.2 Software Description

The base system in which the team carries out the development is ROS (Robot
Operating System) the de facto standard for robotics nowadays. ROS is a dis-
tributed system that allows the communication between the different compo-
nents of the robot easily, abstracting from the hardware and allowing focus on
software development.

The implementation of the architecture used to solve the tasks is composed
of two main elements: ROSPlan [1] and BICA [11]. ROSPlan is an IA planning
framework, use popf as planner. BICA is a toolbox to create control solutions
for robots. Virtually all the elements of the design are BICA components that
perform different functions and is mapped to a ROS node. These components
are executed concurrently in a hierarchical way in order to generate complex
behaviors.

Gentlebots uses a well-known tool named YOLO [15] that integrates a neural
network to carry out object recognition, a fundamental task in episode E04. A
fully functional network model requires a large volume of data to train it.

The problem is how to generate that volume of data and its labeling in
the very limited time since the scenario and the objects are available and the
beginning of the competition. It is necessary to generate images with the objects
and label them manually, which is very time-consuming. The training of the
neural network with the information generated must be made as fast as possible
to win time. The goal of this work is to see if the use of supercomputing is
feasible in this domain.

106 C. Álvarez Aparicio et al.

The rest of the paper is organized as follows. The next section describes the
use of neural networks for object detection, including an explanation of different
technologies and why we choose YOLO. Section 3 describes the process of image
labeling and neural network training. The use of SCAYLE and the obtained
results are described in Sect. 4. Section 5 discusses the above results. Finally, our
contribution and the next steps foreseen are presented in Sect. 6.

2 Neural Networks for Object Detection

Object recognition in real environments is a challenge that has got many appli-
cations not only robotics, and that can be solved by different methods. However,
in recent years almost all efforts have been focused on the use of neural networks,
in particular convolutional neural networks (CNN).

Early research such as [17] presented an integrated framework for using CNNs
for classification, localization, and detection objects, introducing also a deep
learning approach to their localization by learning to predict object boundaries.
Other research [6] presented some improvements to CNNs based on object clas-
sification. Based on the use of CNN, the work [20] proposed a new architecture
named “Inception”, which was responsible for setting the new state of the art
for classification and detection in the ImageNet Large-Scale Visual Recognition
Challenge 2014 (ILSVRC 2014).

The work DenseNet (Dense Convolutional Network) [7], proposes a new
improvement in the use of CNNs for classification, localization, and detection
objects. In comparison with four highly competitive object recognition bench-
mark tasks, Imagenet abovementioned among other, (CIFAR-10, CIFAR-100,
SVHN, and ImageNet), DenseNets obtain significant improvements over the
state-of-the-art on most of them, whilst requiring less computation to achieve
high performance. They showed that convolutional networks can be substantially
deeper, more accurate, and efficient to train if they contain shorter connections
between layers close to the input and those close to the output.

Other researchers as CBNet [10] present results that improve the detection
accuracy of many state-of-the-art detectors, such as the FPN, CNN, and the
mask. CBNet presents a novel composite backbone network architecture for
object detection. It proposes a novel strategy for assembling multiple identi-
cal backbones by composite connections between the adjacent backbones, to
form a more powerful backbone. In this way, CBNet iteratively feeds the output
features of the previous backbone, namely high-level features, as part of input
features to the succeeding backbone, in a stage-by-stage fashion, and finally, the
feature maps of the last backbone (named Lead Backbone) are used for object
detection. This study allows for increasing the quality of the neural networks to
detect objects it works as an add-on to the neural network used in the system.
It would be necessary to integrate it with the different options present to carry
out object recognition in mobile robotics.

Researches as FoveaBox, [8] aim to carry out an improvement in the detection
of objects through neural networks. This research presents an accurate, flexible,

Using HPC as a Competitive Advantage 107

and completely anchor-free framework for object detection. FoveaBox directly
learns the object existing possibility and the bounding box coordinates without
anchor reference. This is achieved by predicting category-sensitive semantic maps
for the object existing possibility and producing a category-agnostic bounding
box for each position that potentially contains an object. By simultaneously
predict the object position and the corresponding boundary, FoveaBox gives a
clean solution for detecting objects without prior candidate boxes. This simplifies
the computation of object detection.

Other researches in this field of object recognition are based on the study and
development of new techniques for reducing training and computation times. In
one hand, in the work [18] SNIPER is introduced, an algorithm for performing
efficient multi-scale training in instance-level visual recognition tasks. Instead of
processing every pixel in an image pyramid, SNIPER processes context regions
around ground-truth instances. The research presents an algorithm for efficient
multi-scale training that sampled low-resolution chips from a multi-scale image
pyramid to accelerate multi-scale training by a factor of 3 times. This would
reduce the training time, but would not reduce the labeling time that the team
needs. In other hand, the paper [9] addresses the question of whether using the
memory in computer vision systems can not only improve the accuracy of object
detection in video streams but also reduce the computation time. this research
is based on the human visual system that is capable of forming a rich repre-
sentation of a complex environment, reaching a holistic understanding which
facilitates object recognition and detection. This phenomenon is known as rec-
ognizing the “gist” of the scene and is accomplished by relying on relevant prior
knowledge. The research demonstrates that the method is competitive with the
state-of-the-art for mobile video object detection while enjoying a substantial
speed advantage and removing the dependency on optical flow, making it effec-
tive and straightforward to deploy in a mobile setting. In mobile robotics, the
reduction of computing times is essential because it is real-time systems. Thus
approach would need to be adapted to an RGBD camera to test this new system
on a robot.

YOLO, based on a convolutional neural network, is the system chosen by
the team, has undergone several updates over the years as we see in [13–15]. Its
last version allows doing object detection in real-time. The algorithm applies a
single neural network to the full image, and then divides the image into regions
and predicts bounding boxes and probabilities for each region. These bounding
boxes are weighted by the predicted probabilities. These capabilities added to
the fact that at the start time to development for the competition, it was the
newest system and it was easily integrated on ROS. This made it be selected as
the software base for object recognition of the team.

3 Training Neural Networks in Challenging Domains

Training YOLO requires a great number of images. First, it is necessary to
generate the raw images which will be used later in the training. The easiest

108 C. Álvarez Aparicio et al.

way to obtain the images is recording videos of the objects that the network
has to detect in the real scenario. Every frame from these videos are extracted
creating a large set of individual images. Then the labeling process is needed,
for each raw image like Fig. 2a, it is needed to create manually a box around
each object we want to process, the resultant labeled image is shown in Fig. 2b.
This is one of the main problems of YOLO owing to the fact that a lot of time
is required to label the images.

After these images have been labeled, some operations have been made over
each of them to augment the dataset. These operations consist of rotations,
contrast changes, intensity changes, brightness changes, vertical flip, horizontal
flips and horizontal and vertical flip. With these operations the number of images
to training the neural network increase. Two subsets are created. One of them
has the images which will be used in the training. The other one is composed
of the images which YOLO will use to evaluate the training in each iteration.
Commonly is used 80% of the global dataset to train the neural network and
the 20% to evaluate it. This way, the training set is composed of 372605 images
and the validation set is composed of 79763 images.

The final step is training the neural network. This may take several hours so
using HPC to train YOLO network implies an advantage. Once the convolutional
neural network used by YOLO has been trained, we can use its software that
allows us to identify the objects captured by the robot’s camera as we can see
in Fig. 2c.

(a) (b) (c)

Fig. 2. Objects episode E03: (a) Raw image. (b) Labeled image. (c) YOLO output
after training

4 Experimentation

4.1 Hardware

SCAYLE (Supercomputing center of CAstilla y LEón) is a regional supercomput-
ing facility providing HPC services to the research and development instutions
of the region, and also at national level as part of the Spanish Supercomput-
ing Network (Red Española de Supercomputación - RES). It is headquartered

https://www.res.es

Using HPC as a Competitive Advantage 109

Fig. 3. SCAYLE evolution

in León (Spain) and currently is made up by more 7.000 cores of different Intel
processors (Sandybridge, Broadwell, Haswell and Ivybridge).

SCAYLE was established in 2009 and since then the computing capabilities
keep growing. Figure 3 shows the evolution of the intense calculus capabilities
(in TeraFLOPS, left column) and in storage (right column).

The tests with the different YOLO configurations described have been carried
out on SCAYLE, the node on which the tests have been carried out is composed
of a server with 2 Xeon E5-2695 v4 processors with 36 cores, 384 GB RAM, 2
hard drive of 200GB each one, Infiniband FDR 56 GB/s, and 8 GPUs Nvidia
V100. Also on a personal computer with an Intel Core i7-6700 3.4 GHz, a GTX
1060 6 GB GPU and 16 GB of RAM.

4.2 Parameters

The task, as previously explained, was training YOLO networks with different
configurations. To launch the task to the cluster we have used slurm [19], an open-
source job scheduling and cluster management system, with the configuration

110 C. Álvarez Aparicio et al.

shown in Listing 1.1. This configuration includes the use of one process and four
GPUs.

Listing 1.1. Slurm Script to launch YOLO training

1 #!/ bin / bash
2

3 #SBATCH −−ntask s=1
4 #SBATCH −−job−name=sc i r o c
5 #SBATCH −−mail−type=ALL
6 #SBATCH −−output=r e s u l t s / s c i r o c / s c i r o c%A %a . out
7 #SBATCH −−error=r e s u l t s / s c i r o c / s c i r o c%A %a . err
8 #SBATCH −−p a r t i t i o n=broadwe l l gpu
9 #SBATCH −−qos=normal

10 #SBATCH −−t ime=05:00:00
11 #SBATCH −−gre s=gpu :4
12

13 cd . /YOLO/darknet
14 srun . / darknet de t e c t o r t r a i n c f g / s c r i r o c . data \
15 c f g / s c i r o c . c f g darknet53 . conv .74

These configurations were tested using different values of the YOLO parame-
ters for managing the pipeline of training. On the one hand, the batch size is the
number of images processed in each iteration. On the other hand, as explained in
[12]; the subdivisions are the number of mini-batches used to train YOLO. For
this reason the subdivision must be a divisor of the batch size. Each mini-batch
is processed by the GPU in the training. For a smaller number of mini-batches,
more GPU resources will be needed and faster is the training speed.

The alteration of the three parameters described has repercussions on two
variables, time and loss. These variables will allow us to evaluate the effectiveness
of using HPC to train neural networks. Time describes the duration of neural
network training and the loss represents the error made at the end of each
interaction. This way, in each iteration, after training the network, the network
is evaluated with the evaluation set. This value is better the smaller it is because
represents the difference between the results obtained over the desired results.

Table 1. Tests

Test ID Iterations Batch size Subdivisions Training location

personal computer 3800 24 12 Personal computer

scayle 12 3800 24 12 SCAYLE

scayle 8 3800 24 8 SCAYLE

scayle 4 3800 24 4 SCAYLE

Using HPC as a Competitive Advantage 111

Table 2. Results

Test ID Total duration Average time Minimum Maximum

personal computer 3.90 h 3.69 s 1.85 s 6.57 s

scayle 12 1.34 h 1.27 s 0.51 s 2.00 s

scayle 8 1.22 h 1.16 s 0.44 s 2.03 s

scayle 4 1.13 h 1.07 s 0.38 s 1.82 s

The tests performed are sum up in Table 1. It has been determined to carry
out the study of the data on 3800 iterations, due to the fact that the training
on the personal computer takes too much time. With 3800 iterations only 91200
images are processed. The batch size defines the number of samples that will
be propagated through the network, which means, for example, for a set of 20
images, with a batch size of 10, the first 10 images would be processed in an
iteration and then the other 10 in the next iteration. The batch size chosen for
each test is the same for each test, 24, to get each test process the same number of
the image in each iteration. As the batch size value is 24, tests with subdivisions
of 12, 8 and 4 were performed (batch size divisors), but only in SCAYLE. As it is
shown in Table 1, there is only one test in which the personal computer is used.
This is because the personal computer does not have as many GPU resources
as SCAYLE. Table 2 represents the results obtained from carrying out YOLO
training with the parameters described in Table 1. For each training, the total
training time and the minimum and maximum time per iteration is presented.

5 Discussion

The first criteria to compare the environments is the duration of each test shown
in Fig. 4. Personal computer is the slowest one. Additionally, training performed
in SCAYLE could be improved by decreasing the subdivisions using the larger
amount of GPU memory.

Figure 5 shows the loss of the neural network at the end of each interaction
whit each configuration described in Table 1. On one hand, in spite of starting
with a different loss, each test tends to have the same loss. On the other hand,
it is important to remark that this loss is achieved in different instants of time.
Figure 6 shows that the test carried out in the personal computer needs more
time to get the same loss than the tests performed in SCAYLE. It is also shown
that thanks to the use of HPC more resources can be assigned to the training,
which makes that the training in SCAYLE can achieve better results using other
configurations that can be used in the personal computer.

The team in this type of competition plays against the time, teams are only
assigned a 2 h slot in the setup day. In this slot, the team can access to the
scenario to record the videos mentioned in Sect. 3 in addition to other tasks, it
is important to note that the team not only prepares the object recognition on
the first day but must do other tasks, such as configuring the network, creating

112 C. Álvarez Aparicio et al.

Fig. 4. Training time values

Fig. 5. Training loss values

Fig. 6. Loss values over training time

maps of the scenarios, etc. Once the videos have been recorded, part of the team
must start labeling the images obtained from the videos, this task took the team
about 10 h. Once the images are labeled are uploaded to the cluster. The volume
of images is increased, in the cluster, by the operations described in Sect. 3. Thus
reducing the number of images to be uploaded to the cluster making the network
consumption lower and therefore its upload faster. Finally, the training of the

Using HPC as a Competitive Advantage 113

network starts, the training is done during the night, so the next morning the
neural network model will be ready to be used in the episodes.

Tables 1 and 2 show that the use of a supercomputing facility means a reduc-
tion in the training times of the neural network used by YOLO. Compared to
the 3.93 h of training on the personal computer, we have durations of 1.34, 1.22
and 1.13 respectively for training in SCAYLE. This means a reduction of the
calculation times in SCAYLE compared the personal computer that oscillates
between 65.91% and 71.22% respectively.

We can also see that the reduction of the number of subdivisions allows
the training to be carried out at greater speed. For the scayle 12 configuration
which has 12 subdivisions, the training duration is 1.34 h compared to 1.22 and
1.13 h obtained with the scyale 8 and scayle 4 configurations respectively. This
represents a time reduction of 8.96% and 15.68% in the scyale 8 and scayle 4
configurations versus scayle 12 respectively. Thus, the reduction of subdivisions
can only be done if powerful GPUs are available so the reduction of training
times can only be done if this type of hardware is available, in the described
problem the use of SCAYLE is the solution.

6 Conclusions and Further Work

This paper describes the comparative study of training an artificial neural net-
work system in an HPC facility vs. local computer in an environment were time
restrictions were significant, a robotic competition. In that environment hard
real-time is not required, but deadlines (a few hours) are firm. Different config-
uration of the workloads was tested obtaining that the use of supercomputing
in this type of competition allows us to reduce the training time of the neu-
ral network that uses YOLO by 71.22%. Furthermore, the use of SCAYLE has
allowed us to discover that by reducing the value of the variable subdivisions we
can reduce up to 15.68% plus the time of training within SCAYLE. As future
work, the team will undoubtedly continue to use SCAYLE to carry out training
of their neural networks. In addition to studying new object recognition software
options and trying to find solutions to reduce image tagging time.

References

1. Cashmore, M., et al.: Rosplan: planning in the robot operating system. In: ICAPS
(2015)

2. ERL: European robotics league description (2016). https://www.eu-robotics.net/
robotics league/about/the-european-robotics-league/index.html. Accessed 16 Mar
2020

3. ERL: Episode e03 - deliver coffee shop orders (2018). https://sciroc.eu/e03-deliver-
coffee-shop-orders/. Accessed 16 Mar 2020

4. ERL: Episode e04 - take the elevator (2018). https://sciroc.eu/e04-take-the-
elevator/. Accessed 16 Mar 2020

https://www.eu-robotics.net/robotics_league/about/the-european-robotics-league/index.html
https://www.eu-robotics.net/robotics_league/about/the-european-robotics-league/index.html
https://sciroc.eu/e03-deliver-coffee-shop-orders/
https://sciroc.eu/e03-deliver-coffee-shop-orders/
https://sciroc.eu/e04-take-the-elevator/
https://sciroc.eu/e04-take-the-elevator/

114 C. Álvarez Aparicio et al.

5. Guerrero-Higueras, Á.M., et al.: Tracking people in a mobile robot from 2D lidar
scans using full convolutional neural networks for security in cluttered environ-
ments. Front. Neurorobot. 12, 85 (2019)

6. Howard, A.G.: Some improvements on deep convolutional neural network based
image classification. arXiv preprint arXiv:1312.5402 (2013)

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

8. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based
object detector. arXiv preprint arXiv:1904.03797 (2019)

9. Liu, M., Zhu, M., White, M., Li, Y., Kalenichenko, D.: Looking fast and slow:
memory-guided mobile video object detection. arXiv preprint arXiv:1903.10172
(2019)

10. Liu, Y., et al.: CBNet: a novel composite backbone network architecture for object
detection. arXiv preprint arXiv:1909.03625 (2019)

11. Mart́ın-Rico, F., Ginés, J., Vargas, D., Rodŕıguez-Lera, F.J., Matellán-Olivera, V.:
Planning-centered architecture for RoboCup SSPL @Home. In: Fuentetaja Pizán,
R., Garćıa Olaya, Á., Sesmero Lorente, M.P., Iglesias Mart́ınez, J.A., Ledezma
Espino, A. (eds.) WAF 2018. AISC, vol. 855, pp. 287–302. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-99885-5 20

12. Mou, X., Cui, J., Yin, H., Zhou, X.: Tracking position and status of electric control
switches based on YOLO detector. In: Yin, H., Camacho, D., Tino, P., Tallón-
Ballesteros, A.J., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol.
11871, pp. 184–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33607-3 21

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

14. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv (2018)
16. Robotics, P.: Tiago (2020). http://pal-robotics.com/es/robots/tiago/. Accessed 13

Apr 2020
17. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat:

integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229 (2013)

18. Singh, B., Najibi, M., Davis, L.S.: SNIPER: efficient multi-scale training. In:
Advances in Neural Information Processing Systems, pp. 9310–9320 (2018)

19. Slurm: Slurm (2020). https://slurm.schedmd.com/overview.html. Accessed 30 Apr
2020

20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

http://arxiv.org/abs/1312.5402
http://arxiv.org/abs/1904.03797
http://arxiv.org/abs/1903.10172
http://arxiv.org/abs/1909.03625
https://doi.org/10.1007/978-3-319-99885-5_20
https://doi.org/10.1007/978-3-030-33607-3_21
https://doi.org/10.1007/978-3-030-33607-3_21
http://pal-robotics.com/es/robots/tiago/
http://arxiv.org/abs/1312.6229
https://slurm.schedmd.com/overview.html

A Survey on Privacy-Preserving Machine
Learning with Fully Homomorphic Encryption

Luis Bernardo Pulido-Gaytan1 , Andrei Tchernykh1,2,4(B) ,
Jorge M. Cortés-Mendoza2 , Mikhail Babenko3,4 , and Gleb Radchenko2

1 CICESE Research Center, carr. Tijuana-Ensenada 3918, 22860 Ensenada, BC, Mexico
{lpulido,chernykh}@cicese.edu.mx

2 South Ural State University, Prospekt Lenina 76, 454080 Chelyabinsk, Russia
{kortesmendosak,gleb.radchenko}@susu.ru

3 North-Caucasus Federal University, Kulakova 2, 355029 Stavropol, Russia
mgbabenko@ncfu.ru

4 The Ivannikov Institute for System Programming of the RAS, Alexander Solzhenitsyn st., 25,
Moscow, Russia

Abstract. The secure and efficient processing of private information in the cloud
computing paradigm is still an open issue. New security threats arise with the
increasing volume of data into cloud storage, where cloud providers require high
levels of trust, and data breaches are significant problems. Encrypting the datawith
conventional schemes is considered the best option to avoid security problems.
However, a decryption process is necessary when the data must be processed,
but it falls into the initial problem of data vulnerability. The user cannot operate
on the data directly and must download it to perform the computations locally. In
this context, Fully Homomorphic Encryption (FHE) is considered the holy grail of
cryptography in order to solve cybersecurity problems, it allows a non-trustworthy
third-party resource to blindly process encrypted information without disclosing
confidential data. FHE is a valuable capability in a world of distributed compu-
tation and heterogeneous networking. In this survey, we present a comprehensive
review of theoretical concepts, state-of-the-art, limitations, potential applications,
and development tools in the domain of FHE. Moreover, we show the intersection
of FHE and machine learning from a theoretical and a practical point of view and
identify potential research directions to enrich Machine Learning as a Service,
a new paradigm of cloud computing. Specifically, this paper aims to be a guide
to researchers and practitioners interested in learning, applying, and extending
knowledge in FHE over machine learning.

Keywords: Cloud security · Fully homomorphic encryption · Machine learning
as a service

1 Introduction

Cloud computing provides considerable benefits as availability, scalability, pricing,
energy efficiency, application acceleration, without upfront infrastructure investment,

© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 115–129, 2021.
https://doi.org/10.1007/978-3-030-68035-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_9&domain=pdf
http://orcid.org/0000-0002-7384-7670
http://orcid.org/0000-0001-5029-5212
http://orcid.org/0000-0001-7209-8324
http://orcid.org/0000-0001-7066-0061
http://orcid.org/0000-0002-7145-5630
https://doi.org/10.1007/978-3-030-68035-0_9

116 L. B. Pulido-Gaytan et al.

and direct active management by the user. However, it also brings security and pri-
vacy concerns, where data breaches are the top threat. Sensitive information can be
released, viewed, stolen, or used by an unauthorized party. Additionally, data outsourc-
ing implies that the user delegates the direct control of data and its processing. The user
requires greater trust in the Cloud Service Provider (CSP) because dishonest behavior
can compromise the data. In general, new threats appear since more data is outsourced.

Security and privacy are critical issues for preserving integrity, reliability, and avail-
ability in a cloud computing environment. Privacy and efficient data processing are
important research areas in the field of outsourcing computing. Traditionally, encryp-
tion of confidential information was the standard solution before the use of the cloud
model, this approach may protect the privacy of user data from a non-trustworthy third-
party, but it cannot support effective ciphertext computing. In this respect, a vulnerability
appears when data has to be decrypted in order to be processed. In this sense, the general
idea of security is to delegate the processing of data without giving transparent access
to it.

Fully Homomorphic Encryption (FHE) has been dubbed the holy grail of cryp-
tography, an elusive goal that could solve the cybersecurity problems. FHE allows a
non-trustworthy third-party to blindly process encrypted information without disclosing
confidential data. Since the remote server only sees encryption of the data and never has
access to the secret key, the client can be assured that it does not learn anything about
their data, or the output of the computation. This is a hugely valuable capability in the
world of distributed computation and heterogeneous networking.

FHE enables applying mathematical operations directly to the ciphertext in such a
way that the decrypting of ciphertext results in the sameanswer as applying the operations
to the original unencrypted data. So, the processing of confidential data can be delegated
without giving away access to data. In other words, FHE enables compatibility between
two critical factors in computing: cloud computing and privacy.

FHE is a promising tool for security against the quantum computer threat [1]. Current
public-key cryptography is based on problems such as factoring or solving discrete
logarithms. These problems,widely studied, are believed to be hard to settle on a classical
computer. However, an adversary equipped with a sufficiently large quantum computer
can solve them easily. While the quantum computer does not exist today, its potential is
considered a threat.

Recent years of FHE development demonstrates remarkable progress. Despite the
continuous improvements in the field, its implementation exhibits several limitations in
performance; they suffer from complicates designs, low computational efficiency, and
high computing complexity. However, the actual knowledge in the area makes their
use technically feasible for real-world domains. A long-pursue application is a privacy-
preserving machine learning model for predicting or classifying of confidential informa-
tion. These systems can provide security and efficient accuracy at the same time, where
the data and processing are always encrypted.

In this paper, current FHE schemes are comprehensively overviewed, focusing
mainly on those located at the intersection of cryptography and machine learning. The
objective of this survey is to give a knowledge foundation to researchers and practitioners
interested in knowing, applying, and extending state-of-the-art FHE approaches.

A Survey on Privacy-Preserving Machine Learning 117

This paper is structured as follows. The next section reviews the evolution of homo-
morphic schemes. The formal definition of FHE and fundamental concepts, such as
bootstrapping and key-switching, are described in Sect. 3. Section 4 discusses the state-
of-the-art and current directions of homomorphic ciphers and Machine Learning as a
Service (MLaaS) paradigm. Section 5 presents the application of FHE in real-world
problems and currents tools for its development. Finally, we conclude and discuss future
works in Sect. 6.

2 Homomorphic Encryption

This section introduces the essential concepts of Homomorphic Encryption (HE)
schemes and presents relevant works in different research areas that emerge from this
approach.

HE performs operations on ciphertexts based solely on publicly available informa-
tion, and in particular, without having access to any secret key. The term “homomorphic”
refers to the existence of a correspondence between the space of messages and cipher-
texts. In such away, operations performedon ciphertexts are reflected in operations on the
messages they encrypt. As an example, an additively homomorphic encryption scheme
allows us to take a ciphertext c1 encrypting a message m1, a ciphertext c2 encrypting a
messagem2, and produce a ciphertext c+ that decrypts tom1 +m2. Analogously, a mul-
tiplicatively homomorphic encryption scheme, can build a ciphertext c× that decrypts
m1 × m2.

In this context, a Partially Homomorphic Encryption (PHE) scheme supports only
some types of operations, but not others. For example, additively homomorphic encryp-
tion allows additions but no multiplications. RSA [2] was the first PHE scheme, being
multiplicative homomorphic: given ciphertexts c1 = me

1 mod N and c2 = me
2modN ,

one can compute a ciphertext c× ← c1 × c2 = (m1 × m2)
e mod N that encrypts the

product of the original plaintexts. However, a basic RSA is deterministic and, therefore,
not even semantically secure. Some PHE approaches are described in [3–5].

The encryption process in HE requires adding an error term to guarantee a certain
level of security. The reason for the error in encryption schemes relies on the hardness
of solving “noisy” problems, i.e., problems where the relations are not exact but are
perturbed by a moderate quantity of error [6].

A Somewhat Homomorphic Encryption (SHE) scheme can evaluate a certain amount
of homomorphic operations before the error grows too much to maintain the correct-
ness of the evaluation. Roughly speaking, each homomorphic operation increases the
underlying noise. The message can be recovered if the error is under a certain threshold.
However, the decryption process is hopeless when the error overpasses the threshold.
Hence, noise growth limits the number of operations that can be accomplished.

A Fully Homomorphic Encryption scheme allows the evaluation of arbitrarily com-
plex computations over encrypted data; it enables calculation on encrypted data without
leaking any underlying information. A FHE scheme is more flexible than a SHE scheme
because it does not set a bound on the number of homomorphic operations. The first FHE
was proposed by Gentry [7]. In the last years, FHE has been an active field of research,
leading to an extensive list of contributions [8–12].

118 L. B. Pulido-Gaytan et al.

In general, the research in the field of FHE can roughly be divided into four main
families. The first family denotes the stemming directly from Gentry’s seminal work,
whose hardness is based on the lattice reduction problem. The second family refers to
those integer-based approaches [8, 10],where the hardness of the schemes is based on the
Approximate of Greatest Common Divisor (A-GCD) problem [13]. The third generation
includes schemes based on Learning with Error (LWE) [12], and Ring Learning with
Error (RLWE) [11], both reducible to lattice problems. Finally, the family ofNth-Degree
Truncated Polynomial Ring Unit (NTRU) [14], and subsequent works [15, 16].

Despite the continuous improvement in the efficiency of all these schemes, their
contributions involve complicated designs, too large keys, low computing efficiency,
and high computing complexity. Several schemes are far from practical applications due
to operations necessary to perform an addition or multiplication of integers in FHE.

For instance, any data must be homomorphically encrypted to be evaluated by a
computer; the most common message space is binary M = {0, 1} where operations of
addition and multiplication correspond to a logical operator’s XOR and AND, respec-
tively. Thus, performing a 32-bit integer addition using a simple ripple-carry adder design
involves 32 full adders, each requiring three XORs, two ANDs, and one OR operations,
i.e., 256 operations to add two integers [17].

3 Fully Homomorphic Encryption

FHE is a solution that provides privacy and computes outsourcing data effectively in
cloud environments. It allows delegating the processing of data without giving away
access to it. This section introduces the formal definition of FHE and fundamental
concepts, such as bootstrapping and key-switching.

The privacy homomorphism, a formal description of FHE, was introduced by Rivest
[3] shortly after having proposed the RSA scheme [2]. In general, the idea is the arbi-
trarily computing on encrypted data without the decryption key [7]. Obfuscation is not
a characteristic of FHE; this cybersecurity term refers to a scheme capable of hiding
a program P by PEncrypt . In such a way, a third-party can process PEncrypt(x) = P(x)
for each input x, it prevents learning nothing about P, except the input-output relation
between x and PEncrypt(x). In the case of FHE, the third-party cannot decrypt output
PEncrypt(x) to get P(x) from the compute of PEncrypt with input x.

At a high-level, the essence of FHE is simple: given ciphertexts c1, c2, . . . , ct that
encrypt themessagesm1,m2, . . . ,mt , FHE allows the output of a ciphertext that encrypts
f (m1,m2, . . . ,mt) for any desired function f , as long as that function can be efficiently
computed. No information about m1,m2, . . . ,mt or f (m1,m2, . . . ,mt) should leak; the
inputs, output, and intermediate values are always encrypted. Figure 1 shows the expected
operation of FHE based on the classic black box model in computer systems. The task
is basically to find the appropriate mechanism Evaluateε that satisfactorily leads to the
output.

The following sections present the formal definition of the FHE scheme and
fundamental concepts, such as bootstrapping and key-switching.

A Survey on Privacy-Preserving Machine Learning 119

Fig. 1. Homomorphic encryption scheme

3.1 Notation

Formally, a FHE scheme ε defines a conventional public-key scheme that relies on
four processes [7]: KeyGenε, Encryptε, Decryptε, and Evaluateε. The computational
complexity of all operations must be polynomial in λ, where:

• KeyGenε uses a security parameter λ as input and outputs a secret key sk and public
key pk; pk maps from a plaintext space P to a ciphertext spaceC and sk in the opposite
direction.

• Encryptε consists of taking pk and a plaintext m ∈ P as input and outputs a ciphertext
c ∈ C.

• Decryptε, the opposite process ofEncryptε, receives sk and c ∈ C as input and outputs
the plaintext m ∈ P.

• Evaluateε takes as input pk, a circuit δ ∈ δε, and a tuple of ciphertexts C = c1, . . . , ct
for the input wires of δ; it outputs a ciphertext C ′ ∈ C, such that Decryptε

(
sk,C ′) =

δ(m1, ...,mt).

Generally speaking, the desired functionality of Evaluateε is that, if ci encrypts
mi under pk, then C ′ ← Evaluateε(pk, δ,C) encrypts δ(m1, ...,mt) under pk, where
δ(m1, ...,mt) is the output of δ on inputs m1, ...,mt . In this sense, the four operations
establish the bases for a formal definition of a FHE scheme and fundamentals properties
of correctness and compactness.

Definition 1. Correctness. AHE scheme ε is correct for circuits in δε if, for any key-pair
(sk, pk) output by KeyGenε(λ), any circuit δ ∈ δε, any plaintexts m1, ...,mt , and any
ciphertexts C = c1, . . . , ct with ci ← Encryptε(pk,mi), it is the case that:

C ′ ← Evaluateε(pk, δ,C), then Decryptε
(
sk,C ′) → δ(m1, . . . ,mt) (1)

Definition 2. Compactness. A HE scheme ε is compact if there is a polynomial f such
that, for every value of the security parameter λ, Decryptε can be expressed as a circuit
Dε of size at most f (λ). Now, let ε be compact and also correct for all circuits in δε, then
ε “compactly evaluates” δε.

Definition 3. Fully Homomorphic Encryption. A HE scheme ε is fully homomorphic
if it compactly evaluates all circuits, i.e.:

Decryptε(sk,Evaluateε(pk, δ, c1, ..., ct)) = δ(m1, ...,mt) (2)

120 L. B. Pulido-Gaytan et al.

Additionally to the formal definition of FHE, the bootstrapping process is funda-
mental for a FHE scheme, the next section describes its importance and sketches the
process.

3.2 Bootstrapping

As previously mentioned, the encryption process and homomorphic operations require
adding an error term to guarantee a certain level of security; the plaintext is hidden by
noise, which can be removed by decryption. However, the error is increased with each
homomorphic operation, and the decryption process is hopeless when the error reaches
a threshold.

The notion of bootstrapping was introduced to limit the error growing in SHE
schemes; it allows the generation of the first FHE scheme. In general, bootstrapping
uses a recryption function that evaluates the decryption function homomorphically to
refresh the noisy ciphertext. The recryption function encrypts a ciphertext anew and
subsequently removing the inner encryption by homomorphically evaluating the doubly
encrypted plaintext using the encrypted secret key [18]. In other words, recryption refers
to the process of executing Evaluateε function on Decryptε, i.e., Evaluateε(pk,Dε, c),
where Dε is the Decryptε function expressed as a circuit of size at most f (λ), see Algo-
rithm 1. A scheme is called bootstrappable if it can evaluate its own decryption algorithm
circuit.

Algorithm 1 defines a sufficient process to build a FHE scheme out of the SHE, see
[7] for more details. Broadly, Evaluateε function takes in the bits of sk1 and c1, each

encrypted under pk2, i.e.,
〈
sk1j

〉
and

〈
c1j

〉
, where sk1j denotes the j th bit of sk1. After, ε

is used to evaluate the decryption circuit homomorphically. The output c2 is encryption
under pk2 of Decryptε(sk1, c1) = m. Since m is doubly encrypted, the inner encryption
is removed through the Evaluateε function, thus obtaining a new ciphertext with the
same thing as the original one.

Algorithm 1. Recryption function in bootstrapping
Input:
Output:

Self-reference has been proven impossible at times. In this context, bootstrapping
is a homomorphic encryption scheme able to decrypt itself. The next section provides
additional information about this characteristic.

3.3 Key-Switching

The notion of bootstrapping refers to a process that allows the encryption/decryption
procedure to be executed homomorphically. In algorithmic terms, bootstrapping can be
defined as:

C ′′ = Encryptε
(
pk2,Decryptε

(
sk1,C

′)) (3)

A Survey on Privacy-Preserving Machine Learning 121

According to Eq. (3), a fresh ciphertext C ′′ is generated with less noise than the
original C ′. sk1 and C ′ are encrypted under a public key pk1 and C ′′ under pk2. The
encryption of sk1 is usually referred to as bootstrapping key bk. bk is a fundamental piece
for the correct operation of the process. The quality in the selection and development of
bk is directly proportional to the performance carried out by bootstrapping and, therefore,
of the FHE scheme.

There are two alternatives to define bk: encrypt the secret key sk under itself
Encryptε(sk, sk), or under another key Encryptε

(
sk ′, sk

)
. The first possibility implies

that the refreshed ciphertextC ′′ is encrypted under the same key as the original ciphertext
C ′, it requires circular security [11] assumption to avoid handling a key collection.

The second alternative, also known as key-switching, has the advantage of not requir-
ing circular security. Hence, it handles multiple keys. Likewise, the number of keys is
a fundamental limitation of key-switching, i.e., n available keys allow to perform n
bootstrapping operations, thus achieving only a leveled homomorphism.

A combination of both alternatives is a possible solution to these problems, a circular
security scheme with key-switching. As an example, the following sequence of keys:
sk1 → sk2 → . . . skn → sk1 and so on, i.e., using a collection of keys iteratively. These
schemes have been widely used in different domains. The next section presents the last
advance in the field of HE and MLaaS.

4 Last Advances in the Field of HE

This section presents a comprehensive review of the last advances in the field of FHE on
the MLaaS domain. First, we highlight the gap in the related literature on both topics,
a lack of a specialized study of contributions to machine learning models. Later, we
identify general limitations, introduce the latest approaches, and establish the current
research in the area.

4.1 Related Work

This section presents a brief description of surveys in the literature related toHE schemes;
the main idea is to emphasize the contribution of each work and provide an extensive
bibliography reference in the field of FHE and machine learning.

Since Gentry [7] presented the first bootstrapping technique to transform a
SHE scheme into a FHE, multiple contributions to performance improvement, new
approaches, and applications have appeared in the literature. At the same time, vari-
ous surveys consolidate the work carried out and gave a clear knowledge foundation to
researchers interested in applying and extending FHE approaches.

Fundamental concepts related to implementation and development in HE, particu-
larly in FHE, are addressed in [18]. The authors present the last advances in the field
and discuss relevant terminology and notions.

In [19, 20], the benefits of real-world applications with the use of FHE or SHE are
exhibited, the authors analyze the practical use of applications in medical, financial, and
advertising domains, and present their significant limitations in computational cost.

122 L. B. Pulido-Gaytan et al.

An exhaustive literature review in the field and open research directions to essential
contributions are described in [21]. Likewise, the topic is presented from an engineering
perspective in [22], the state-of-the-art approaches are analyzed and compared with
respect to performance and security. Also, several works [23–26] cover developments
in homomorphic encryption, aimed mainly at mathematicians or expert readers rather
than practitioners.

Other works focused on specific domains can be found in the literature. For example,
signal processing applications [27], cloud applications [28], or hardware implementation
solutions of FHE schemes [29].

The extensive literature review exhibits the absence of a specialized survey in the
domain ofMLaaS and FHE schemes.Wemean a classified compendium of contributions
related to the design ofmachine learningmodules for processing confidential information
using homomorphic ciphers over encrypted data.

4.2 FHE on Machine Learning as a Service Paradigm

In this section, we introduce the MLaaS paradigm and show its potential use with FHE.
Both approaches enable the classification or prediction process over encrypted data
without leaking any underlying information. Also, we review the current state-of-the-art
in the field and present future research directions in the privacy-preserving evaluation
of these models.

In a nutshell, MLaaS refers to a cluster of services that offer machine learning tools
as a component of cloud computing services [30]. MLaaS has emerged as a flexible and
scalable solution to run predictive models remotely. However, the multiple benefits of
MLaaS can generate inherent security and privacy concerns. For example, prediction or
classificationmodels involvehighly sensitive information:medical, advertising, financial
data, among others.

FHE offers an elegant way to solve this apparent paradox by allowing encrypted data
to be blindly processed by a remote server, i.e., the third-party does not learn anything
about the data, or output of the computation. According to the notation used in previous
sections, the desired operation is as follows: given an scheme ε, a model α, and an
input pattern encrypted Encryptε(p), a FHE scheme returns a ciphertext c such that
Decryptε(c) = α(p), i.e., the evaluation of the model α on the input p.

Under this premise, many cryptographic systems have focused on implementing
machine learning models for the prediction or classification of confidential information
using homomorphic ciphers [31].

Naehrig et al. [19] considered a logistic regression model with private prediction
where training data are protected in the generation of the regression coefficients. The
model enables an efficient message encoding where n independent encryptions of bits
can be packed into a single ciphertext that encodes a degree-(n − 1) polynomial.

Regarding classification models, Khedr et al. [32] implement Bayesian filters and
decision trees on encrypted data using FHE, supporting ciphertexts multiplication
without requiring key-switching.

Some researches delver intoFHEschemes capable of enriching theMLaaSparadigm,
those contributions are dedicated to the design of efficient frameworks for the arbitrary
evaluation of complex Neural Networks (NN) over encrypted data.

A Survey on Privacy-Preserving Machine Learning 123

CryptoNets [33] was the first approach to address the challenge of achieving a blind
non-interactive classification. The NN over ciphertexts applies a SHE scheme into the
inputs and propagates the signals across the network homomorphically. Nevertheless,
the replacement of the sigmoid activation function and the computational overhead limit
its performance.

Several subsequent works in literature try to improve the CryptoNets approach:
Chabanne et al. [34] addressed the limitations of CryptoNets by taking advan-

tage of the batch normalization principle. The implementation enables a homomor-
phic evaluation of deeper NNs and achieves an accuracy similar to the best non-secure
versions.

Badawi et al. [35] presented a convolutional NN for image classification with prop-
erties of FHE on GPUs, the AlexNet accelerates the classification process and maintains
security and accuracy, it is a way towards efficient MLaaS.

Zhang et al. [36] proposed a privacy-preserving deep learningmodel for big data fea-
ture learning. Themodel uses a Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic
scheme [11] to support a back-propagation algorithm training on the cloud.

Other approaches propose to restructure the network:
Takabi et al. [37] worked over decentralized scenarios, where the datasets are dis-

tributed across multiple parties. They use a polynomial approximation as an activation
function to train a NN.

Phong et al. [38] introduced an additively HE with asynchronous stochastic gradient
descent on a Deep Neural Network (DNN). The approach keeps intact the accuracy and
adds a tolerable overhead to the conventional deep learning system.

Wagh et al. [39] proposed a novel secure three-party protocol for multiple NNs build-
ing blocks. This model enables the training and inference of several NNs architectures
without learning about the data.

Notwithstanding, FHE schemes still suffer fromperformance problems. For instance,
any HE is capable of natively supporting division operations or comparisons, such as the
test of equality/inequality. Number comparison or sign determination are essential oper-
ations for the implementation of cryptographic algorithms and cloud computing [40].
Consequently, many algorithms appear out of reach without substantial redevelopment
[17].

In this way, efforts have focused on designing approximate methods to address these
limitations. Babenko et al. [40] introduced a technique for numerical comparison in the
Residue Number System (RNS) without requiring resource-consuming non-modular
operations.

Table 1 presents a comparison between themain approaches of this nature, emphasiz-
ing its operational characteristics, objectives, ML approach, and implemented scheme.
The classification of the implemented scheme is based on the four families presented in
Sect. 2. According to Table 1, the majority of current works in FHE focus on security
and efficiency. However, both objectives are in conflict, a higher level of security, greater
computing resources are needed, and, therefore, less efficiency.

124 L. B. Pulido-Gaytan et al.

Table 1. Comparative of HE approaches

R
ef

er
en

ce

Y
ea

r

Operations ML approach Scheme Objective

A
dd

iti
on

M
ul

tip
lic

at
io

n

O
th

er

L o
gi

st
ic

re
gr

es
si

on

N
eu

ra
l N

et
w

or
ks

D
ee

p
N

eu
ra

l N
et

w
or

ks

D
ec

is
io

n
Tr

ee
s

D
is

cr
et

e
Fo

ur
ie

r T
ra

ns
fo

rm

Id
ea

l L
at

tic
e-

ba
se

d

In
te

ge
r-

ba
se

d

(R
) L

W
E

N
TR

U

Tw
o-

pa
rty

M
ul

ti-
pa

rty

Se
cu

rit
y

Ef
fic

ie
nc

y

[2] 1978 • • •
[4] 1985 • • •
[5] 1999 • • •
[7] 2009 • • • • •

[19] 2011 • • • • • •
[14] 2014 • • • • •
[41] 2014 • • • • • •
[31] 2015 • • • • • •
[32] 2015 • • • • • •
[37] 2016 • • • • • • •
[33] 2016 • • • • • •
[42] 2016 • • • • •
[43] 2016 • • • • • •
[36] 2016 • • • • • •
[1] 2017 • • • • • •

[34] 2017 • • • • • •
[44] 2017 • • • • • •
[45] 2018 • • • • • •
[38] 2018 • • • • • •
[46] 2018 • • • • • •
[35] 2018 • • • • • • •
[6] 2018 • • • • • •

[39] 2019 • • • • • •
[40] 2019 • • • • • •

The literature review exposes three main directions in FHE’s research and develop-
ment:

i. Optimization of the bootstrapping procedure, the major bottleneck in a FHE imple-
mentation. The aim is to improve data processing speed and its recurrent evaluation
in a circuit, both intricate tasks. Moreover, although noise needs to be controlled
through bootstrapping, approaches capable of reducing noise generation are also
required.

A Survey on Privacy-Preserving Machine Learning 125

ii. Improving the technical characteristics and expanding the scope of the homomor-
phic ciphers. A higher number of operations in FHE can benefit the security of more
real-world applications. For instance, the comparison of numbers, or determine the
sign of a number are operations that can define how far is the practical usage of
FHE.

iii. Designing and implementing machine learning models. A small number of primi-
tives have been developed for predicting, and classifying confidential information
using FHE schemes. The main goal is to enrich the MLaaS paradigm.

5 Applications and Tools

In this section, we outline the potential of FHE in real-world applications and present
current tools for its development. Instead of including an exhaustive applications list,
we evidence the importance of FHE and the breadth of domains that can benefit from it.

The traditional security model proposes to encrypt confidential information before
being transferred to a server to protect data from non-trustworthy third-parties. However,
a vulnerability appears when data have to be processed because the server needs unen-
crypted access to the data to compute on it. The traditional model is literally used in all
computer applications that need security; this situation enables a wide range of poten-
tial application lines to develop FHE schemes in almost any domain. In other words,
a computing environment without significant benefit from this kind of constructions is
challenging to identify.

Considering the strongly applied nature of FHE schemes, theoretical research should
be complemented with high-quality implementations, thus feeding back current efforts
and identifying remaining limitations. In this sense, it is currently possible to find imple-
mentations in areas such as genomics, smart cities, medical diagnosis, spam filtering,
image processing, advertising, financial privacy, etc. (see more details in [18–20]). A
promising long-pursue application is a search without disclosure where the engine does
not know what it is looking for, but it does. In a nutshell, we can encompass all these
tasks in a single one: computation delegation.

Several homomorphic encryption libraries have been released over the years by
numerous authors, mostly for specific implementations. We focus on those that allow
the reader to develop solutions in a broad spectrum of possibilities.

SimpleEncryptedArithmetic Library (SEAL) [47] is awell-documented open-source
HE tool powered by Microsoft. SEAL owns high popularity in the field and important
affordability for experts and practitioners with a limited background.

Homomorphic-Encryption Library (HElib) [48] is one of the most widely used
libraries in applications, HElib is characterized by executing homomorphic operations
efficiently, but with limited bootstrapping performance.

Faster Fully Homomorphic Encryption (TFHE) [9] is a library that features the
bootstrapping procedure in a fraction of second. This improvement is due to the
implementation of an alternative representation of the LWE problem over the torus.

PALISADE [49] is an open-source HE software library, the project provides imple-
mentations of lattice cryptography building blocks and leading HE schemes following
security standards for HE.

126 L. B. Pulido-Gaytan et al.

cuHE [50] is a CUDA GPU library to accelerate evaluations with homomorphic
schemes, where the optimizations take full advantage of the mass parallelism and high
memory bandwidth GPUs.

Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN) [51]
is a library with supports of fixed-point arithmetic. HEAAN supports approximate
operations between rational numbers.

Homomorphic Encryption transformer for nGraph (HE transformer) [52] is a graph
compiler for NN powered by Intel; the project is a proof-of-concept for HE on local
machineswith the goal ofmeasure performance of variousHE schemes for deep learning.

6 Conclusion

A large number of works in the field of homomorphic encryption have been proposed
due to its strongly applied nature in real-world problems and significant privacy benefits.
The increasing use of cloud computing makes full homomorphic encryption an ideal
candidate to solve security problems, so the development of a specialized survey in the
intersection of both domains appears to be an essential task.

This paper intends to be a reference guide for researchers and practitioners inter-
ested in learning, applying, and extending the knowledge on homomorphic encryption
andmachine learning. Themanuscript covers theoretical concepts, state-of-the-art, capa-
bilities, limitations, potential applications, and useful development tools of both fields.
Moreover, we highlight the limitations from a theoretical and a practical point of view,
identifying potential research directions to enrich the new paradigm of machine learning
as a service.

In this sense, our work can serve as guidelines with the goal of blindly process,
classify or predict encrypted information by non-trustworthy third-parties without dis-
closing confidential data. However, further study is required; this will be the subject of
future work.

Acknowledgment. This work was partially supported by the Ministry of Education and Science
of Russian Federation (Project 075-15-2020-788).

References

1. Player, R.: Parameter selection in lattice-based cryptography. Royal Holloway, University of
London, Ph.D. Thesis (2017)

2. Rivest, R., Shamir, A., Adleman, L.: Amethod for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21, 120–126 (1978). https://doi.org/10.1145/359340.359342

3. Rivest, R.L., Dertouzos, M.L., Adleman, L.: On data banks and privacy homomorphisms.
Found. Secur. Comput. 4, 160–179 (1978)

4. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory 31, 469–472 (1985). https://doi.org/10.1109/TIT.1985.1057074

5. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern,
J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X_16

https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/3-540-48910-X_16

A Survey on Privacy-Preserving Machine Learning 127

6. Minelli, M.: Fully homomorphic encryption for machine learning. PSL Research University,
Ph.D. Thesis (2018)

7. Gentry, C.: A fully homomorphic encryption scheme. Stanford University, Ph.D. Thesis
(2009)

8. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption:
bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53887-6_1

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106
(2011)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption with-
out bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference - ITCS 2012, pp. 309–325 (2012)

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4_5

13. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53, 97–105
(2010). https://doi.org/10.1145/1666420.1666444

14. Rohloff, K., Cousins, D.B.: AScalable implementation of fully homomorphic encryption built
on NTRU. In: Böhme R., Brenner M., Moore T., Smith M. (eds.) Financial Cryptography and
Data Security, FC 2014, pp. 221–234 (2014)

15. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrapping in
GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2_31

16. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2_17

17. Aslett, L.J.M., Esperança, P.M., Holmes, C.C.: A review of homomorphic encryption and
software tools for encrypted statistical machine learning (2015)

18. Armknecht, F., et al.: A guide to fully homomorphic encryption. IACR Cryptology ePrint
Archive (2015)

19. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
3rd ACM Workshop on Cloud Computing Security Workshop - CCSW 2011, pp. 113–124
(2011)

20. Archer, D., et al.: Applications of homomorphic encryption (2017)
21. Acar, A., Aksu, H., Selcuk Uluagac, A., Aksu, H., Uluagac, A.S.: A survey on homomorphic

encryption schemes: theory and implementation.ACMComput. Surv.51, 1–35 (2018). https://
doi.org/10.1145/3214303

22. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption: an
engineering perspective. ACMComput. Surv. 50, 33 (2017). https://doi.org/10.1145/3124441

23. Parmar, P.V., et al.: Survey of various homomorphic encryption algorithms and schemes. Int.
J. Comput. Appl. 91(8), 26–32 (2014)

24. Vaikuntanathan,V.:Computingblindfolded: newdevelopments in fully homomorphic encryp-
tion. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, Palm Springs,
pp. 5–16 (2011)

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-662-46447-2_31
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3124441

128 L. B. Pulido-Gaytan et al.

25. Sobitha Ahila, S., Shunmuganathan, K.L.: State of art in homomorphic encryption schemes.
Int. J. Eng. Res. Appl. 4, 37–43 (2014)

26. Gentry, C.: Computing on the edge of chaos: structure and randomness in encrypted
computation. In: Proceedings of the International Congress of Mathematicians (2014)

27. Aguilar-Melchor, C., Fau, S., Fontaine, C., Gogniat, G., Sirdey, R.: Recent advances in homo-
morphic encryption: a possible future for signal processing in the encrypted domain. IEEE
Signal Process. Mag. 30, 108–117 (2013). https://doi.org/10.1109/MSP.2012.2230219

28. Hrestak, D., Picek, S.: Homomorphic encryption in the cloud. In: 37th International Con-
vention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO 2014), pp. 1400–1404 (2014)

29. Moore, C., O’Neill, M., Hanley, N., O’Sullivan, E.: Accelerating integer-based fully homo-
morphic encryption using Comba multiplication. In: IEEE Workshop on Signal Processing
Systems, SiPS, pp. 1–6. IEEE (2014)

30. Hunt, T., Song, C., Shokri, R., Shmatikov,V.,Witchel, E.: Chiron: privacy-preservingmachine
learning as a service (2018)

31. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted
data. In: Network and Distributed System Security Symposium (2015)

32. Khedr, A., Gulak, G., Member, S., Vaikuntanathan, V.: SHIELD: scalable homomorphic
implementation of encrypted data-classifiers. IEEE Trans. Comput. 65, 2848–2858 (2015).
https://doi.org/10.1109/TC.2015.2500576

33. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig,M.,Wernsing, J.: CryptoNets:
applying neural networks to encrypted data with high throughput and accuracy. In: 33rd
International Conference on Machine Learning, pp. 201–210 (2016)

34. Chabanne, H., De Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving
classification on deep neural network (2017)

35. Badawi, A.Al., et al.: The AlexNet moment for homomorphic encryption: HCNN, the first
homomorphic CNN on encrypted data with GPUs (2018)

36. Zhang, Q., Yang, L.T., Chen, Z.: Privacy preserving deep computation model on cloud for big
data feature learning. IEEE Trans. Comput. 65, 1351–1362 (2016). https://doi.org/10.1109/
TC.2015.2470255

37. Takabi, H., Hesamifard, E., Ghasemi, M.: Privacy preserving multi-party machine learning
with homomorphic encryption. In: 29thAnnual Conference onNeural Information Processing
Systems (2016)

38. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13, 1333–1345
(2018). https://doi.org/10.1109/TIFS.2017.2787987

39. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network
training. Proc. Priv. Enhancing Technol. 2019, 26–49 (2019). https://doi.org/10.2478/popets-
2019-0035

40. Babenko,M., et al.: Positional characteristics for efficient number comparison over the homo-
morphic encryption. Program. Comput. Softw. 45(8), 532–543 (2019). https://doi.org/10.
1134/S0361768819080115

41. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data. J.
Biomed. Inform. 50, 234–243 (2014). https://doi.org/10.1016/j.jbi.2014.04.003

42. Xu, C., Chen, J., Wu, W., Feng, Y.: Homomorphically encrypted arithmetic operations over
the integer ring. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016. LNCS, vol.
10060, pp. 167–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49151-6_12

43. Aono, Y., Hayashi, T., Phong, L.T., Wang, L.: Scalable and secure logistic regression via
homomorphic encryption. In: 6th ACM Conference on Data and Application Security and
Privacy - CODASPY 2016, pp. 142–144 (2016)

https://doi.org/10.1109/MSP.2012.2230219
https://doi.org/10.1109/TC.2015.2500576
https://doi.org/10.1109/TC.2015.2470255
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1134/S0361768819080115
https://doi.org/10.1016/j.jbi.2014.04.003
https://doi.org/10.1007/978-3-319-49151-6_12

A Survey on Privacy-Preserving Machine Learning 129

44. Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of discrete fourier trans-
forms. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 517–529. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70972-7_29

45. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based
on the approximate homomorphic encryption. BMC Med. Genomics 11, 83 (2018). https://
doi.org/10.1186/s12920-018-0401-7

46. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over
the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_18

47. Chen, H., Laine, K., Player, R.: Simple Encrypted arithmetic library (2019)
48. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library

(2013)
49. PALISADE. https://palisade-crypto.org/community
50. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In: Pasalic, E.,

Knudsen, Lars R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–186. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_11

51. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approx-
imate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

52. Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: NGraph-HE: a graph compiler for deep
learning on homomorphically encrypted data. In: Proceedings of the 16th ACM International
Conference on Computing Frontiers, pp. 3–13 (2019)

https://doi.org/10.1007/978-3-319-70972-7_29
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1007/978-3-642-54631-0_18
https://palisade-crypto.org/community
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-319-70694-8_15

Distributed Greedy Approach
for Autonomous Surveillance Using

Unmanned Aerial Vehicles

Santiago Behak, Giovani Rondán, Mart́ın Zanetti, Santiago Iturriaga(B),
and Sergio Nesmachnow

Universidad de la República, Montevideo, Uruguay
{santiago.behak,giovani.rondan,martin.zanetti,

siturria,sergion}@fing.edu.uy

Abstract. This article presents a distributed approach for autonomous
exploration and surveillance using unmanned aerial vehicles. The pro-
posed solution applies the agent-oriented paradigm to implement a coop-
erative approach to solve the problem efficiently. A specific state machine
is proposed for unmanned aerial vehicles to implement the coordination
needed to explore and monitor a set of points of interest without a cen-
tralized infrastructure. The system is conceived to be applied in low-
cost commercial unmanned aerial vehicles, to provide an affordable solu-
tion for the problem. The experimental evaluation is performed over real
and synthetic scenarios. Relevant metrics are studied, including cover-
age of the explored area and surveillance of the defined points of interest,
considering the flight autonomy limitations due to the battery charge.
Results demonstrate the validity and applicability of the proposed dis-
tributed approach and the effectiveness of the greedy exploration strategy
to fulfill the considered goals.

Keywords: Computational intelligence · Distributed agents ·
Unmanned aerial vehicles · Surveillance

1 Introduction

Unmanned Aerial Vehicles (UAVs) have emerged as a useful tool in many appli-
cation areas, e.g., agriculture (field fertilization, measurements, and analysis of
soil and crops) [8], military applications (e.g., reconnaissance and offensive mis-
sions), security (surveillance [17] and support for rescue tasks [2]), logistics, and
other relevant applications. Currently, most of the existing applications are based
on remote control (by a human operator) of UAVs that do not fly autonomously.
In general, UAVs require a pilot to control them directly, or to at least carry out
follow-up tasks. Few systems have been proposed for completely autonomous
operation, via system-on-a-chip or single-(on)board computers.

One of the main limitations of UAVs is their flight autonomy. The flight
range of an UAVs is the maximum distance (or time) it can fly on a full charge
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 130–145, 2021.
https://doi.org/10.1007/978-3-030-68035-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-68035-0_10

Distributed Greedy Autonomous Surveillance Using UAVs 131

of its battery. While sophisticated UAVs provide a reasonable flight range, they
are also very expensive. On the other hand, low-cost commercial UAVs pro-
vide an appropriate solution for simple tasks, but their flight range is limited.
Specifically, the autonomy of most commercial UAVs does not exceed 25–30 min.
Furthermore, a full charge of the UAV battery is a slow process that takes about
an hour. These two drawbacks pose severe limitations to the practical operation
of low-cost commercial UAVs in tasks that requires a constant presence, such
as the surveillance of a terrain. These problems can be mitigated using a fleet
of multiple UAVs instead of a single one. A fleet improves the efficiency of the
system, allowing cooperation among several agents (the UAVs in the fleet) that
operate in parallel. It also provides a solution for covering the duties of any single
UAV that must recharge its battery, to maintain a constant presence in the air.
For these reasons, studying intelligent methods to guarantee autonomous flight
of UAV fleets has become and interesting subject in the area [18].

In this line of work, this article studies a cooperative approach for
autonomous UAVs operation. The main goal is to develop a system to allow
controlling a fleet of low-cost commercial UAVs in a completely autonomous
and distributed manner, to fulfill two goals: exploration and surveillance. In
particular, the problem to be solved has the following characteristics: i) UAVs
in the fleet must operate autonomously, without control of a human operator
or a central server; ii) UAVs must be able to communicate with each other to
exchange information; iii) the system must focus on maximizing the covered
area in the minimum time possible; and iv) certain points of interest (POI) are
defined in the area to be explored, which have priority over other locations, and
must be monitored regularly.

The proposed system is implemented over low-cost commercial UAVs (Par-
rot Bebop 2), using an environment for programming each UAV to have an
autonomous behavior. This is a specific contribution of the reported research,
since low-cost commercial UAVs do not include this type of environment, or just
offer a simple API that only allows controlling the UAV remotely. In turn, all the
functionalities needed to perform basic actions (communication between UAVs,
determining their location in space, navigation) are implemented. The logic of
the system is implemented in a state machine, and a specific distributed greedy
algorithm is proposed to determine the flight planning. The experimental evalua-
tion determines the capabilities of the proposed approach to successfully perform
the exploration and surveillance tasks, and the proposed greedy algorithm is
compared to other planning strategies over different realistic scenarios, consider-
ing different dimensions of the studied area, obstacles, and different surveillance
requirements for POIs. Results show that the developed system is effective to
fulfill the goals of the problem. The capabilities of the autonomous system to
meet the exploration goals is highlighted, in addition to the reduced response
time for monitoring the considered POIs. Furthermore, the implemented plan-
ning algorithm is able to react to information collected in real time, which allows
taking into account situations that vary during the system operation, such as
already explored areas and POIs that require to be visited.

132 S. Behak et al.

The article is organized as follows. Section 2 describes the problem of
autonomous flight of UAVs. Section 3 describes the proposed distributed app-
roach for exploration and surveillance. The experimental evaluation and results
are reported and discussed in Sect. 4. Finally, the conclusions and the main lines
for future work are presented in Sect. 5.

2 Exploration and Surveillance Using Autonomous UAVs

This section describes the problem of autonomous flight of unmanned aerial
vehicles for exploration and surveillance and reviews related works.

2.1 Autonomous Exploration and Surveillance

The problem to be solved consists of efficiently exploring and surveil a territory
using a fleet of UAVs that fly autonomously. A set of different POIs is considered
within the area to explore/surveil. POIs require to be periodically monitored,
thus they are prioritized in the surveillance. The exploration goal implies that
UAVs should maximize the area covered in the shortest time possible, to over-
come low flight autonomy due to limited battery charge.

Several subproblems are considered. The exploration goal involves a global
path planning problem to efficiently cover the area. In turn, the priority of the
considered POI imposes constraints on the possible paths computed for explo-
ration. The computed paths must consider the flight autonomy, since UAVs
must return to a charging dock to allow a continuous operation of the system.
All these subproblems have to be addressed cooperatively by UAVs in the fleet,
without considering a centralized infrastructure (e.g., a central server) that con-
trols the UAVs or even has global visibility of the fleet. Thus, an agent-based
approach must be applied, where each UAV includes the logic to communicate
and cooperate with other UAVs in the fleet. Then, a new subproblem arises when
considering that UAVs must establish an ad-hoc network, so that communication
can be performed independently of requiring an external network infrastructure.

Finally, the problem poses a significant additional challenge, because the
target vehicles are low-cost commercial UAVs. This decision is motivated by the
goal of providing a scalable and cost-efficiently solution, that can be implemented
in practice for surveillance of small and medium-size areas (e.g., educational,
industrial, or commercial facilities). This requirement implies that all the logic
must be implemented in the UAVs, using the available hardware infrastructure
and software able to run over it.

2.2 Related Works

Several recent articles have addressed different variants of the exploration prob-
lem using UAVs, providing different autonomy levels and developing solutions
for diverse objective platforms.

Distributed Greedy Autonomous Surveillance Using UAVs 133

Mufalli et al. [12] applied an optimization approach for military reconnais-
sance of target installations (whose location is known in advance), by UAVs
equipped with sensors. Two subproblems were considered: assigning sensors to
UAVs and routing them to fulfill the mission goals. A purely mathematical app-
roach was applied, using CPLEX for problem instances modeling simple missions
and heuristics to address larger missions. The approach applying Column Gen-
eration was able to compute the best solutions. No specific implementation was
proposed to be developed and operated in UAVs.

Cesare et al. [3] proposed an algorithm for coordinating a team of UAVs in
order to explore previously unknown territory, considering battery limitations
and unreliable communications. A state machine of five states (explore, meet,
sacrifice, relay, and go home) is proposed: exploration is based on defining bor-
ders between explored space and unknown space; meet is used for sharing data
in a known location; relay state lands the UAV; and go home sends a UAV to
a base location. The (unrealistic) sacrifice state commands the UAV to explore
disregarding its remaining battery. The proposed approach was evaluated in a
small safe area (office exploration) using two custom-built quadcopters. The pro-
posal is based on the premise that UAVs do not need to return to a base location,
thus it is not practical for realistic surveillance scenarios.

Grøtli and Johansen [6] solved the (offline) path planning of UAVs via Mixed
Integer Linear Programming, minimizing fuel consumption and maximizing con-
nectivity between UAVs and considering communication and terrain avoidance
constraints. Data from the SPLAT! service for radio communications were used
to estimate connectivity levels. Experiments were performed for a case study
considering two UAVs to form a communication chain from a base station to
a target station and considering a no-fly zone in the studied area. No specific
implementation on UAVs was proposed. Shang et al. [16] proposed a hybrid algo-
rithm to maximize benefits from UAVs surveillance subject to flight autonomy.
Genetic Algorithm, Ant Colony Optimization, and Path Relinking (PR) were
combined to provide a flexible optimization method for the theoretical approach
presented. No practical application was proposed or developed.

Previous work from our research group [5] explored the application of evolu-
tionary algorithms and agent-oriented programming to solve the static off-line
planning of a fleet of UAVs to achieve compromise values between the explored
area, the proximity of the UAVs, and surveillance metrics. Results indicated that
the proposed techniques are capable of computing effective flight plans to be used
as input for more sophisticated navigation methods to be implemented in the
UAVs [4]. Schleich et al. [15] proposed a control approach for a fleet of UAVs to
patrol an area, relying on communications for surveillance and connected cover-
age model that reinforces successful paths for other UAVs to follow. The mobility
model was compared with a random strategy to select destinations, regarding
coverage and connectivity in simulations with up to 20 UAVs. Results showed a
reduced negative impact on coverage, but connectivity is significantly improved.
The model does not apply computational intelligence and does not include the
reactive navigation component provided by agent-oriented programming.

134 S. Behak et al.

Some other articles focused specifically on communications. Kopeikin et al. [9]
analyzed the characteristics of the communication channels established on ad-
hoc networks of UAVs and concluded that proper control of the network is crit-
ical for a distributed system to function properly. Bekmezci et al. [1] introduced
the concept of flying ad-hoc network, which is critical for autonomous opera-
tion, and described the main design challenges and protocols. A recent analysis
was presented in the survey by Oubbati et al. [14], including classification and
comparative description of existing routing protocols.

The analysis of related works allows concluding that several researches
focused on autonomous flight and surveillance models for UAV fleets, with
emphasis on cooperative models using ad-hoc communication networks. How-
ever, few proposals have included specific distributed agent-based approaches to
be implemented in real UAVs. No proposals for low-cost commercial UAVs were
found, mainly because of the intrinsic difficulties of software development on the
limited API provided. Thus, there is room to contribute to this line of research
by implementing and evaluating distributed agent-based flight control systems.

3 The Proposed Distributed Cooperative Approach
for Exploration and Surveillance

This section describes the proposed distributed cooperative approach for explo-
ration and surveillance using autonomous low-cost commercial UAVs.

3.1 Overall Description

The proposed research posed several challenges to design and implement a robust
system to be used in practice over real low-cost commercial hardware. One of
the first difficulties was determining alternatives that allow the execution of a
software program directly on the UAV hardware. This was the first issue solved,
since it has a direct impact on the implementation of the other components of
the system, including the exploration algorithms, the communications network,
and the control/positioning mechanism. In addition, several limitations gener-
ated at software level by the operating system (OS) that runs on the UAVs were
addressed. After that, the implementation of flight instructions was addressed.
In turn, the communication components of the proposed solution were devel-
oped, which were needed for the next stage, that involved the development of
the logic for autonomous flight control via a specific state machine and explo-
ration strategies. These components and stages are described in the following
subsection.

3.2 Hardware and Software

Hardware. The research was developed using low-cost commercial Parrot Bebop
2 UAVs, which have several useful features, including a strong and simple design,
a good quality camera, GPS positioning, and flight stabilization systems. On the

Distributed Greedy Autonomous Surveillance Using UAVs 135

other hand, the Bebop 2 model has an important limitation: its hardware was
not designed for directly executing programs implemented by third parties.

Table 1 presents the main features of low-cost commercial Parrot Bebop 2
UAVs. Bebop 2 features the ARMv7 RISC architecture, which is not compatible
with x86 processors of desktop computers. Thus, specific systems are needed to
compile programs to be used in Bebop 2 UAVs. Next subsection describes differ-
ent alternatives proposed to overcome the limitations presented by the ARMv7
architecture and the custom OS in Bebop 2.

Table 1. Main features of low-cost commercial Parrot Bebop 2 UAVs.

Feature Description

Rotor system Four rotors (diameter: 5 cm), three blades
per helix

Max. speed 18 m/s (horizontal), 6 m/s (vertical)

Signal range 300 m

Battery 2.700 mAh

Flight autonomy 20–25 min

Front camera 14 megaṕıxeles

Dimensions 33× 30× 10 cm

Memory 8 GB

Weight 480 g

CPU architecture ARMv7

Sensors (accessible via SDK) Digital camera (1080 dpi), GPS sensor,
altimeter

Sensors (not accessible via SDK) Accelerometer, gyroscope, compass

Operating system Unix (Busybox)

Software. Bebop 2 UAVs use Busybox, a specific Unix distribution modified
by Parrot to prevent users from executing certain tasks (e.g., network connec-
tion, accessing the file system, executing privileged operations); it only grants
access to a limited part of the memory and does not allow new programs to be
installed or compiled directly from the UAV. Several alternatives were evaluated
to compile a program for ARMv7. Cross-compiling between x86 and ARM was
analyzed, but many drawbacks emerged do to the limited capabilities of the OS
and libraries installed in the UAVs. The use of the Qemu emulator to execute a
custom OS was also studied, but its installation/configuration are also difficult.
A third alternative was adopted: programs were compiled in (general purpose)
Raspberry Pi, which features the ARM architecture. This approach provides a
simpler solution, without requiring emulators or cumbersome techniques. In any
case, compiling and installing programs on the UAV is a complex and time-
consuming task, so we decided to install the minimum number of programs.

136 S. Behak et al.

A software development kit (SDK) is provided by Parrot to develop simple
software for controlling the UAV remotely, e.g., FreeFlightPro, an application
to control the Bebop 2 manually. Using the Parrot SDK directly to develop/run
programs is a complex task, so pyparrot (pypi.org/project/pyparrot), a Python
library that implements an interface to the Parrot SDK was used.

Pyparrot offers a variety of control options (e.g, connect/disconnect, take-
off/landing, camera control, sensor reading, etc., but it was not designed to be
used for a fleet of UAVs. Thus, several modifications were needed to operate
a fleet and implement the proposed strategies for exploration and surveillance.
The original version of the connect method provided to establish the connection
between pyparrot and the UAV, randomly connects one when many are flying
around. To solve this problem, the method was extended to receive a specific IP
address to identify the connected UAV and modified to handle several of them
operating in a fleet. Connect also starts the flow of data from the sensors. Sev-
eral additional modifications were performed for control and communications,
as described in the following subsection.

3.3 Control and Positioning System

Geolocalization. Geolocalization is essential for the correct operation of several
functionalities, such as take-off/landing, collecting data, maintaining the state of
the map, evading obstacles, etc. Studied alternatives for geolocalization include:

– relative positioning : determines the UAV position based on the location of the
starting point and a record of its movements. This method does not require
using external sensors or other equipment, but it heavily depends on the
precision of movements, which accumulates inaccuracies in practice.

– GPS positioning : uses information from the GPS sensor to estimate lati-
tude and longitude coordinates of each UAV. GPS positioning has several
drawbacks, including interference, delays (up to a few minutes) for satellite
connection and about 10 seconds for updating, dependence on the weather,
and a margin of error of approximately 5 m.

– Wi-Fi Positioning System (WPS): uses trigonometry to estimate the UAV
position, measuring the signal strength of nearby Wi-Fi access points (AP).
Theoretically, only three AP are needed, but in practice at least five are rec-
ommended [10]. Databases owned by IT companies are needed to get infor-
mation (intensity, decay rate, AP location), which either are not free or do
not provide enough accuracy for operating in medium-size areas.

– positioning using camera images: computes the relative position with respect
to the known location of other objects, e.g. using a marker-based technique [4].
This method is accurate, but requires placing markers in the area and also
demands computational resources for image processing.

The Parrot Bebop 2 do not have distance sensors, just a height sensor, and the
SDK does not provide access to accelerometer or gyroscope information. Thus,
developing a custom geolocation system is hard. WPS require three antennas to

https://pypi.org/project/pyparrot/

Distributed Greedy Autonomous Surveillance Using UAVs 137

reduce the multipath effect, which the Bebop 2 does not have. Some function-
alities require accuracy, e.g., landing in the charging pad, thus GPS positioning
cannot be used. On the other hand, relative positioning can be implemented
using the pyparrot relative flight mode and the information from the proposed
navigation/exploration system.

Navigation. Two navigation modes were implemented: lateral movements and
rotation and forward translation. Using only lateral movements is simpler and
more accurate, but limits the view of the camera, which always points in the
same direction. This can be mitigated by pointing the camera downwards, but
the viewing area is less than pointing the camera tangentially at the ground. The
rotation+translation mode allows the camera to be in a more natural position,
close to 45◦ with respect to the horizontal, giving a larger, more natural viewing
area for filming, but offering only one horizontal angle. On the other hand,
rotation involves making an extra movement every time the UAV moves, which
doubles the number of movements required. In addition, a mechanism in needed
to allow the value of the rotation angle to be accurately determined, which is
as costly as accurately determining the position of the UAV. These difficulties
make the option of using rotations slow and imprecise.

3.4 Connectivity and Communications

Two alternatives were developed for establishing the communication network
between UAVs: i) ad-hoc master/managed network, since the integrated network
card in Bebop 2 (Broadcom BCM4360) only includes drivers for master/managed
modes, the network is established by configuring a leader UAV in master mode
and the others in managed mode; and ii) WiFi network, UAVs communicates
using a WiFi covering the exploration area, without making one of them a single-
point-of-failure. The default UAV configuration is changed to allow the managed
mode, include an IP address, the name of the access point, and a password (a
script was installed on each UAV to allow changing the interface mode).

A specific information exchange protocol was established between the UAVs
through the established communication channel (see next subsection).

3.5 State Machine

The implemented control is based on the agent-oriented programming paradigm,
to allow the collaboration of UAVs in the fleet. Each UAV executes the logic
defined in the state machine presented in Fig. 1, which accounts for a specific
exploration strategy, the considered PoI in the surveilled area, the communica-
tion protocol between UAVs, and the monitoring of the battery charge.

138 S. Behak et al.

assign
PoI

ini al
state

low
ba ery

endexplora on

coordina on

no
connec vity

low ba ery

low
ba ery

low ba ery

ba ery,
not mer

ba ery, mer

mer

ba ery,
not mer

connec on

low ba ery

ba ery

PoI assigned

PoI not
assigned mer

connec on

Fig. 1. State machine of the proposed distributed exploration system

Initial State. The initial state loads relevant parameters from a configuration
file, including the dimensions of the explored area, the location of PoI, WiFi
and video streaming parameters, etc. A synchronization algorithm is executed
to coordinate the internal timers of each UAV to consider for POI surveillance.
After that, all UAVs move to the exploration state.

Exploration State. A specific procedure is applied to determine the next area
to visit, by dynamically defining movements using data collected in real time to
determine the path of each UAV. Two strategies were implemented: greedy strat-
egy and by regions strategy. Both strategies divide the area to explore in regular
(square) zones. The greedy strategy (Algorithm 1) only considers neighboring
zones in the search, visiting them according to the times of the last visit. On the
other hand, the regions strategy (Algorithm 2) considers all zones, grouped in
four regions (NW, NE, SE, and SW, clockwise). The coverage of each region is
evaluated and the zone with the minimum time of last visited in the least cov-
ered region is selected. After performing a movement, the internal map of the
UAV is updated, registering the current position as visited. Once this stage is
completed, if the UAV can establish a connection with another one in the fleet,
a Coordination is performed to implement the collaborative exploration system;
otherwise the No Connectivity state of the machine is executed.

Distributed Greedy Autonomous Surveillance Using UAVs 139

Algorithm 1 . Greedy explo-
ration strategy
1: for each neighbor zone Z do
2: timer =

GetTimeLastVisit(Z)
3: min = GetThreshold()
4: if timer ¡ min then
5: min = timer
6: selectedZone = Z
7: end if
8: end for
9: return selectedZone

Algorithm 2. Regions exploration strategy
1: for each region Z do
2: coverage = GetCoverage(R)
3: if coverage ¡ minCoverage then
4: minCoverage = coverage
5: selectedRegion = R
6: end if
7: end for
8: for each zone Z in R do
9: timer = GetTimeLastVisit(Z)

10: min = GetThreshold()
11: if timer ¡ min then
12: min = timer
13: selectedZone = Z
14: end if
15: end for
16: return selectedZone

Assign PoI State. UAVs execute this state when the time since the last visit of
a given zone is above a predefined threshold. A collaborative algorithm is then
applied to select a UAV to attend the unattended PoI. A consensus algorithm
based on the classical Paxos method for fault-tolerant distributed systems [11] is
used. The proposed negotiation involves five steps: i) all available UAVs (battery
charged and not assigned to any prioritized task) exchange messages to announce
the participation on the decision process for a given PoI; a time window is defined
by each UAV and all time windows are synchronized to avoid inconsistencies;
ii) participating UAVs exchange message stating their distance to the PoI; iii)
each UAV proposes the closest UAV to the PoI to be assigned to attend it; iv)
each UAV revises the received proposals and the one with the most votes is
selected; this step is repeated until just one candidate exists; v) the decision is
communicated to the selected UAV; which is monitored by the other members
of the fleet to assure that the mission is accepted and accomplished.

All UAVs act as leaders in the consensus algorithm (until the final step), ben-
efiting from autonomy and reducing the impact of errors due to no-connectivity.
All UAVs act as proposers and can be selected as acceptors. The considered PoI
is the client, which issues a request to the distributed system, and waits for a
response. In the case of a tie, the UAV with the greatest IP address is selected.
The robustness of the method is guaranteed since distance is an absolute value
for all UAVs and IP addresses are unique. UAVs not selected for PoI surveil-
lance return to Exploration state. The selected UAV must prioritize visiting the
assigned PoI, thus their movements are redirected. Two cases are distinguished:
if the alert is not critical or the timer does not exceed the threshold value for a
critical visit, the UAV returns to Exploration state but considering only zones
that allow approximating to the assigned PoI. Otherwise, the UAV flies directly
to the zone of the assigned PoI. To determine the shortest path to reach the

140 S. Behak et al.

destination, the A* pathfinding algorithm [7] is used, considering the Manhat-
tan distance. When a PoI is visited, a message is sent to all UAVs to reset their
timer for that PoI.

Low Battery State. This state is executed if the UAV charge is below a con-
figurable threshold. Similar to the previous state, two cases are distinguished:
if the battery charge is not critical (i.e., it allows performing more movements
than those required to reach the charging platform from its current location),
the UAV continues exploring, but considering only zones that allows approxi-
mating the charging platform. Otherwise, the UAV flies directly to the charging
platform, considering the shortest path computed using the A* algorithm and
the Manhattan distance. Once the UAV battery is charged, it rejoins the fleet.

Coordination State. In this state, UAVs send messages using the connection
established in the initial state. Information about the current location is shared
among UAVs and timers are updated accordingly. To check status mission each
UAV tries to establish a connection with the assigned UAV to each PoI; when an
ack is received, a message is sent to all other UAVs to warn that the mission is
being carried out normally and UAVs move to Exploration state. If no member
of the fleet receives a response from the UAV with the assigned mission, all UAVs
return to the assign PoI state to reassign the PoI to an available UAV.

A specific protocol was defined over TCP/IP and queues are used to store
messages waiting to be processed in the corresponding state for each UAV.

No Connectivity State. In case the UAV cannot establish a communication chan-
nel with any other member of the fleet, an off-line exploration is performed pri-
oritizing visiting those zones where connection was previously established with
other UAVs. If it has a PoI assigned, the mission is canceled. In turn, an offline
update of the map is performed and the corresponding information is stored to
be shared with the rest of the fleet after re-connection. If a re-connection is not
possible, the UAV lands in the base and moves to the end state.

End State. At the end of the execution of the system, the UAV is landed in
the base, close the communication channel and all relevant information of the
execution is stored in CSV files.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed distributed
approach for a UAV fleet.

4.1 Evaluation Methodology, Validation Problem and Instances

Methodology. Experiments were performed considering a fleet of three UAVs.
The flight height was defined to 10 m. The (non-rotation) lateral displacement

Distributed Greedy Autonomous Surveillance Using UAVs 141

navigation mode was used, providing vision over an area of 10×18 m. Thus,
each scenario is represented as a grid of rectangles of dimension 10×18 m. The
maximum flying time of each UAV was set to 20 min (slightly shorter than the
flight autonomy of Bebop 2 UAVs) and the total time of the mission is 120 min.
The departing location is at the bottom left corner of the area. PoI generate
standard and critical alerts that must be considered by the UAVs. Critical alerts
have precedence over standard and must be attended first.

Metrics. Several metrics are proposed to evaluate the proposed exploration
strategies. These metrics account for the two main objectives of the problem:
cover the area to be explored and properly surveil the PoIs, with the least pos-
sible delay. The studied metrics are:

– percentage of the map covered (cov); a zone is considered covered if it is
visited in the last 10 min;

– percentage of the map covered per time (cpt), based on samples taken every
10 s;

– average/best/worst response time (rt) to attend a standard PoI alert;
– average/best/worst response time to attend a critical PoI alert

A random walk is used as a baseline method to compare the results of the pro-
posed exploration strategies. All results correspond to average values computed
over 50 executions of each algorithm performed for each scenario.

Scenarios and Instances. Three realistic scenarios were considered in the evalu-
ation, accounting for different dimensions and position of obstacles. Scenario 1
is based on a real facility to be surveilled using UAVs, from a company in Mon-
tevideo. This scenario was studied with real UAVs. In turn, two larger scenarios
were built and studied using a distributed simulation approach, implemented
over Sphinx, the official simulator for Parrot UAVs, based on Gazebo robotics
software for 64-bit Linux. Experiments were executed on Xeon Gold 6138 pro-
cessors with 128 GB of RAM memory and Nvidia Tesla P100 GPUs (12 GB
memory), from National Supercomputing Center (Cluster-UY), Uruguay [13],
following a Multiple-Instruction-Multiple-Data (MIMD) parallel approach.

For each scenario, ten instances are created varying the PoI locations (uni-
form distribution in the exploration zone) and the requests to be attended
(uniform distribution between one and ten minutes). Overall, thirty problem
instances are considered. Five executions are performed for each instance, and
average/standard deviation values are reported for each metric. Details of the
considered scenarios are provided in Fig. 2.

4.2 Numerical Results

Coverage. The greedy exploration strategy computed the best results for all
scenarios. Improvements over random walk were 31.3% in average and up to
39.4% in the best case, while improvements over the regions strategy were 22.9%

142 S. Behak et al.

(a) scenario 1 (b) scenario 2 (c) scenario 3

attribute scenario 1 scenario 2 scenario 3

description small shed medium-size lot large terrain
dimensions 70m×70m 100m×100m 141m×141m
area, grid 5000m2 (5×5) 10000m2 (8×8) 20000m2 (10×10)

#PoI 1 3 5
obstacles wall buildings trees, houses, etc.

Fig. 2. Evaluated scenarios:×–starting point, –obstacle, –exploration zone.

Table 2. Coverage results for the studied exploration strategies.

Scenario Metric Exploration strategy

Greedy Regions Random walk

Scenario 1 Average coverage 100.00% 83.25% 79.75%

Average coverage per time 10.0 5.2 5.3

Δ coverage 1.00 1.06 1.16

scenario 2 average coverage 93.50% 66.90% 54.12%

Average coverage per time 9.4 8.9 6.8

Δ coverage 1.09 1.25 1.26

scenario 3 Average coverage 66.46% 41.23% 32.31%

Average coverage per time 16.6 12.7 9.2

Δ coverage 1.12 1.37 1.34

in average and up to 26.6%. These results implies that the greedy algorithm
provides a better coverage and speed for exploring the considered scenarios.

Regarding the coverage of the map as a function of time, all algorithms
showed the same trend: coverage increased progressively until reaching a certain
limit and then remains relatively stable until the end of the execution. This limit
varies significantly for each algorithm and for each scenario (Table 2).

Coverage results of the greedy algorithm demonstrated a high robustness.
The percentual standard deviation of the coverage results distribution was σ <
0.08, and the maximum difference between coverage obtained for any scenario
(Δ coverage) was just 0.12 for scenario 3.

Distributed Greedy Autonomous Surveillance Using UAVs 143

PoI Surveillance. Regarding PoI surveillance, the greedy algorithm computed
the best values for average and maximum rt, as reported in Table 3. Small dif-
ferences were detected between the regions algorithm and the random walk,
suggesting that the regions strategy is not useful for surveillance in practice.
Results are not as consistent between the instances of the same scenario as in
the case of coverage. When comparing the results obtained for each scenario, it
is highlighted that the rt metrics are significantly affected by the distribution of
POIs for each instance. No special pattern is detected regarding the distribution
of POIs generates the best results.

Table 3. PoI surveillance results for the studied exploration strategies.

Scenario Metric Exploration strategy

Greedy Regions Random walk

Scenario 1 Average rt a standard PoI 65.74 78.35 104.63

Δrt standard PoI 1.23 1.25 1.25

Average rt critical PoI 27.68 36.76 52.49

Δrt critical PoI 1.62 1.40 1.32

Scenario 2 Average rt standard PoI 93.89 112.85 132.92

Δ rt standard PoI 1.15 1.19 1.15

Average rt critical PoI 45.29 67.56 75.32

Δ rt critical PoI 1.38 1.22 1.20

Scenario 3 Average rt standard PoI 114.18 158.01 179.19

Δrt standard PoI 1.12 1.13 1.11

Average rt critical PoI 58.8 104.66 121.94

Δrt critical PoI 1.23 1.12 1.14

Results for critical PoIs were somehow similar to the ones computed for stan-
dard PoIs. The greedy algorithm remains the one with the best results regarding
both average and maximum rt metrics. Improvements of greedy over random
walk were 34.3% in average and up to 37.2% for standard PoIs, and 46.2% in
average and up to 51.8% for critical PoIs. Improvements of greedy over the
regions strategy were 20.2% in average and up to 27.7% for standard PoIs, and
33.8% in average and up to 43.8% for critical PoIs. These results indicate that the
time for an effective surveillance reduced between one third and one half when
using the greedy algorithm. Furthermore, both the consistency of results and
the differences in rt metrics between greedy and the other algorithms increased
with the size of the map, suggesting that greedy is more adaptable and scalable
to face more complex situations.

5 Conclusions and Future Work

This article presented a distributed approach for autonomous exploration and
surveillance using low-cost unmanned aerial vehicles, a relevant problem with
several social and economic applications.

144 S. Behak et al.

The agent-oriented paradigm was applied to implement an efficient coop-
erative solution to the problem. Coordination is achieved by a state machine
that allows exploring and monitoring a set of points of interest without using
a centralized infrastructure. The system is conceived to be applied in low-cost
commercial Parrot Bebop 2 UAVs, in order to provide an affordable solution for
the problem.

The experimental evaluation performed over a real and several synthetic sce-
narios considered coverage of the explored area and surveillance metrics for the
defined PoIs. The proposed greedy exploration strategy was able to consistently
obtain the best results on both coverage and surveillance metrics, when com-
pared with a region-oriented exploration algorithm and a random walk method
used as a reference baseline. Furthermore, results computed by the greedy explo-
ration strategy were robust and properly scaled to the largest scenarios. These
results demonstrate the applicability of the proposed distributed approach and
the effectiveness of the greedy exploration strategy to fulfill the considered goals.

The main lines for future work are related to extending the evaluation of
the proposed methodology and including more sophisticated intelligent mecha-
nisms for navigation (e.g., via online analysis of camera images) and exploration
(including learning methods to detect common patterns from different scenar-
ios). The applicability of the proposed approach to other commercial UAVs must
be studied too.

References

1. Bekmezci, İ., Sahingoz, O., Temel, Ş.: Flying ad-hoc networks (FANETs): a survey.
Ad Hoc Netw. 11(3), 1254–1270 (2013)

2. Cacace, J., Finzi, A., Lippiello, V.: Multimodal interaction with multiple co-located
drones in search and rescue missions. In: Italian Workshop on Artificial Intelligence,
pp. 54–67 (2015)

3. Cesare, K., Skeele, R., Yoo, S.H., Zhang, Y., Hollinger, G.: Multi-UAV exploration
with limited communication and battery. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA) (2015)

4. Dı́az, S., Garate, B., Nesmachnow, S., Iturriaga, S.: Autonomous navigation of
unmanned aerial vehicles using markers. In: II Iberoamerican Congress on Smart
Cities (2020)

5. Gaud́ın, A., et al.: Autonomous flight of unmanned aerial vehicles using evolution-
ary algorithms. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019.
CCIS, vol. 1087, pp. 337–352. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-41005-6 23

6. Grøtli, E.I., Johansen, T.: Path planning for UAVs under communication con-
straints using SPLAT! and MILP. J. Intell. Robot. Syst. 65(1–4), 265–282 (2011)

7. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

8. Ju, C., Son, H.: Multiple UAV systems for agricultural applications: control, imple-
mentation, and evaluation. Electronics 7(9), 162 (2018)

9. Kopeikin, A., Ponda, S., Inalhan, G.: Control of communication networks for teams
of UAVs. In: Valavanis, K., Vachtsevanos, G. (eds.) Handbook of Unmanned Aerial
Vehicles, pp. 1619–1654. Springer, Netherlands (2014)

https://doi.org/10.1007/978-3-030-41005-6_23
https://doi.org/10.1007/978-3-030-41005-6_23

Distributed Greedy Autonomous Surveillance Using UAVs 145

10. Kotaru, M., Joshi, K., Bharadia, D., Katti, S.: SpotFi. ACM SIGCOMM. Comput.
Commun. Rev. 45(4), 269–282 (2015)

11. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 51–58 (2001)
12. Mufalli, F., Batta, R., Nagi, R.: Simultaneous sensor selection and routing of

unmanned aerial vehicles for complex mission plans. Comput. Oper. Res. 39(11),
2787–2799 (2012)

13. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

14. Oubbati, O., Atiquzzaman, M., Lorenz, P., Tareque, H., Hossain, S.: Routing in fly-
ing ad hoc networks: Survey, constraints, and future challenge perspectives. IEEE
Access 7, 81057–81105 (2019)

15. Schleich, J., Panchapakesan, A., Danoy, G., Bouvry, P.: UAV fleet area coverage
with network connectivity constraint. In: 11th ACM International Symposium on
Mobility Management and Wireless Access, pp. 131–138 (2013)

16. Shang, K., Karungaru, S., Feng, Z., Ke, L., Terada, K.: A GA-ACO hybrid algo-
rithm for the multi-UAV mission planning problem. In: 14th International Sympo-
sium on Communications and Information Technologies (2014)

17. Singh, A., Patil, D., Omkar, S.: Eye in the sky: real-time drone surveillance sys-
tem (DSS) for violent individuals identification using scatternet hybrid deep learn-
ing network. In: IEEE Computer Vision and Pattern Recognition Workshops, pp.
1629–1637 (2018)

18. Tahir, A., Böling, J., Haghbayan, M.H., Toivonen, H.T., Plosila, J.: Swarms of
unmanned aerial vehicles—a survey. J. Ind. Inf. Integr. 16, 100–106 (2019)

https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16

Electricity Demand Forecasting Using
Computational Intelligence and High

Performance Computing

Rodrigo Porteiro1,2(B) and Sergio Nesmachnow2

1 UTE, Paraguay, Uruguay
2 Universidad de la República, Montevideo, Uruguay

rporteiro@ute.com.uy, sergion@fing.edu.uy

Abstract. This article presents the application of parallel computing for
building different computational intelligence models applied to the fore-
cast of the hourly electricity demand of the following day. The short-term
forecast of electricity demand is a crucial problem to define the dispatch
of generators. In turn, it is necessary to define demand response poli-
cies related with smart grids. Computational intelligence models have
emerged as successful methods for prediction in recent years. The large
amount of existing data from different sources and the great development
of supercomputing allows to build models with adequate complexity to
represent all the variables that improves the prediction. Parallel com-
puting techniques are applied to obtain two artificial neural network
architectures and its related parameters to forecast the total electric-
ity demand of Uruguay for the next day. These techniques consists in
train and evaluate models in parallel with different architectures and
sets of parameters using grid search techniques. Furthermore each model
is trained using Tensorflow with finite-grained GPU parallelism. Consid-
ering the high computing demands of the applied techniques, they are
developed and executed on the high performance computing platform
provided by National Supercomputing Center (Cluster-UY), Uruguay.
Standard performance metrics are applied to evaluate the proposed mod-
els. The experimental evaluation of the best model reports excellent fore-
casting results. This model has a mean absolute percentage error of 4.3%
when applied to the prediction of unseen data.

Keywords: Computational intelligence · Forecasting · Parallel
training

1 Introduction

In recent years, a wide variety of measurement devices have been incorporated
into electrical systems. Many of these instruments have been installed to assist
the management of new electricity generation technologies, such as wind and
solar generation. Useful information for short term electricity demand forecasting
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 146–161, 2021.
https://doi.org/10.1007/978-3-030-68035-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-68035-0_11

Computational Intelligence and HPC for Electricity Demand Forecasting 147

is related to natural variables and can be obtained from this type of devices. The
corresponding information obtained from instruments related to base sources is
often incorporated in prediction models for decision making [10].

To improve decision making for economic optimization, a large number of
stochastic variables must be taken into account. Hardware infrastructure to per-
form computations on large volumes of data has developed strongly last years,
so the increase in complexity associated with the number of variables can be
mitigated by using such infrastructures.

The energy industry faces the challenge of harnessing new sources of informa-
tion by developing appropriate intelligent systems. Traditional tools, that were
useful for making predictions some decades ago, have many limitations. In this
new context, computational intelligence methods have presented excellent fore-
casting accuracy in different areas of research in recent years. These methods
have proven to be able to learn the most relevant features of the data considered
to provide an accurate forecast, excluding non-relevant information and focusing
on the most useful data [14].

This article presents the application of two prediction models based on com-
putational intelligence to forecast the total electricity demand of Uruguay. Both
models uses artificial neural networks (ANN), a network of nodes called neurons
which perform numerical manipulations and are interconnected in a specific order
determining the network architecture. The first model uses a combination of long
short term memory cells (LSTM) [5] and Dropout Layers [23]. The second model
improves the first one by adding convolutional neural networks layers (CNN) [11]
and a vector to encode input data. Both models are compared with an Extra-
Trees Regressor model applied to the same data. Both models are implemented
using a two-level parallel model. The upper level consists of parallelizing the
training of different neural networks at a coarse-grained level, to determine the
best architectures and parameters for the problem. In turn, in the lower level,
each of the models is individually parallelized with fine-grained GPU parallelism
using Tensorflow. The main results of the experimental evaluation indicate that
the best model found, based on CNN+LSTM, allowed obtaining a prediction
error of 4.3%, outperforming existing models for the same problem. The parallel
model was effective too, allowing to perform the parameter search to find the best
model in 7.5 h, up to 24× faster than using a sequential approach. Once trained,
the computation of the next 24-h forecast with the best model is instantaneous.

Overall, the major contributions of this article are: i) the evaluation and
comparison of computational intelligence models applied to forecasting the total
demand of Uruguay, and ii) the implementation of a parallel strategy to optimize
the proposed models using the high performance computing infrastructure of the
National Supercomputing Center, in Uruguay.

The article is organized as follows. Section 2 presents the electricity demand
forecasting problem, forecasting techniques, and a review of related works.
Section 3 describes the approach to solve the problem. Section 3.3 presents the
implementation of the architectures considered and the description of the paral-

148 R. Porteiro and S. Nesmachnow

lel model. Section 5 reports the experimental analysis of the developed models.
Conclusions and future work are formulated in Sect. 6.

2 Forecasting Energy Demand

This section describes typical forecasting techniques applied to the problem of
energy demand forecasting and reviews related works.

2.1 General Considerations

Energy demand forecasting studies usually are classified in three categories. The
applied categories are related to the forecasting horizon.

The short-term forecast category refers to time horizons ranging from one
hour to one week. This type of forecast is usually applied to optimize the distri-
bution network, make decisions related to demand management, or to operate
generators. When considering the planning of investments in the transmission
network or the design of commercial rates, it is necessary to study medium-term
forecasting, for time horizons that vary from one month to five years. Finally,
investment planning and resource management to define the expansion of the
electricity system require long-term forecasting and simulations. Among other
stochastic variables, in this case is necessary to simulate demand scenarios. This
scenarios are generated using long-term forecasting models.

Depending on the time horizon of the model, different variables must be con-
sidered for forecasting. For instance, in a short-term model it is very important
to consider the last measured energy demand values and taking into account the
gross domestic product is almost useless. However, when considering long-term
scenarios, having a model of the evolution of GDP is crucial. Hence, there is
a real need of developing models for different time horizons, depending on the
goals.

On the one hand, in the residential sector, power consumption profiles are
variable. Power profiles depend mainly on the time of the day and the day
of the week. They also depend on occasional events, such as holidays, and
other factors [2]. On the other hand, stability is the main feature of industrial
and commercial power profiles [19]. This article focuses on short-term energy
demand forecasting considering the aggregated total demand of Uruguay. There-
fore, industrial, commercial, and residential components are considered within
the power consumption, and all their main features are taken into account to
develop the forecasting models.

There are two strategies to address the development of forecast models to
predict energy demand: causal and historical models [22]. Causal models consider
the cause and effect relationship between some input variables, such as climate
or economic factors, and energy consumption. Models based on historical data
use past values of a variable to predict future values. One the one hand, com-
putational intelligence techniques such as ANN are generally applied for causal

Computational Intelligence and HPC for Electricity Demand Forecasting 149

models. On the other hand, econometric models such as ARMA, ARIMA, SARI-
MAX are used for historical models. This article proposes an strategy combining
features of both models, by considering computational intelligence models, but
also including a recurrent component that takes into account the temporal cor-
relation.

2.2 Problem Formulation

The study reported in this article applies ANN to develop a model for electric-
ity hourly demand forecast of the next day. Combining casual and historical
strategies described in Sect. 2.1 imply to consider historical past demand values
and other correlated variables such as temperature, day of the week, season,
etc. In the proposed approach, a one-model multiple-output strategy is adopted.
Multiple output models can learn the dependence structure between inputs and
outputs as well as between outputs at the same time. However, they are slower
to train than single output models and require more data to avoid overfitting.
The sufficient amount of data gathered from the National Institute of Meteo-
rology and the total hourly demand of Uruguay, and the fact that models are
estimated on the high performance computing platform provided by National
Supercomputing Center allows overcoming the aforementioned difficulties.

In the proposed approach, the output of the model consists of 24 compo-
nents: pred(t+1,...,t+24) = M(dt−1, ..., dt−24, tt+1, ..., tt+24, feat1, ..., featm). Each
component of pred(t+1,...,t+24) represents the hourly demand forecast for the
next day. The input consists in hourly demand data of the previous day
(dt−1, ..., dt−24), hourly temperature forecast of the next day (tt+1, ..., tt+24),
and features that characterizes the next day such as weekday, holiday, etc.
(feat1, ..., featm).

2.3 Related Works

Several recent articles have proposed applying different variants of computational
intelligence approaches for electric load forecasting. Such models include ANN
[3,8,21], fuzzy inference models [13], and kernel-based models [6].

Khwaja et al. [9] used hourly temperatures and electric demand from the
New England region (USA) to train an ANN for short-term load forecasting.
The results confirmed that the proposed model outperformed other existing tech-
niques. Ertugrul [3] studied a recurrent model applying extreme learning machine
to forecast electric demand. Empirical results demonstrated that the recurrent
ANN had success in forecasting with comparison to feed forward ANNs. The
previously commented work guided our research towards the use of recurrent
neural networks as a component of the models addressed.

Although ANN can significantly improve forecasting performance, computa-
tional intelligence approaches suffer from some intrinsic drawbacks. Some of the
main issues related to these models include the difficulty to set the parameters
that define the underlying architecture [24]. Also, ANN training may incur in pre-
mature convergence problem, i.e., get stuck in local optimal value [1]. To mitigate

150 R. Porteiro and S. Nesmachnow

some of the aforementioned drawbacks, parallel models have been applied. Li [12]
proposed a simple and robust parameter optimization, which exploits parallelism
and aggressive early-stopping. Other established parallel methods for parameter
tuning include population based training [7] and Vizier [4]. More insights into the
application of computational intelligence models in forecasting electric loads are in
the studies of Sapankevych and Sankar [20] and Panapakidis and Dagoumas [17].

The analysis of related works allows concluding that is possible to apply
fine and coarse grained parallel techniques to improve parameter optimization
of computational intelligence models. Thus, there is room to contribute in short
term electricity load forecasting by applying parallel techniques to build different
computational intelligence models.

3 The Proposed Approach for Day Ahead Hourly
Demand Forecasting

This section describes the design of the model applied to solve the problem
of hourly electricity demand forecasting, described in Sect. 2.2. The treatment
of the input data and implementation of the ANN architectures addressed for
building a short-term forecasting model of total electricity demand in Uruguay
are also described.

3.1 Data Description

The information required to build the proposed models is related, on the one
hand, to historical energy records, and on the other hand, to meteorological
information. Regarding meteorological information, hourly data collected by the
National Institute of Meteorology, Uruguay (www.inumet.gub.uy) between Jan-
uary 2010 and February 2020 is used. Regarding the total electricity demand of
Uruguay, hourly data collected by the National Electricity Market Administra-
tion (adme.com.uy) from January 2010 to February 2020 is used.

The following fields are considered in each measurement representing the 53
features for each individual day: Year, is the year on which the measure was taken.
Month, is the month on which the measure was taken. Day, is the day on which the
measurewas taken.Daytype, representswhether themeasurewas taken in aholiday
or not.Dayofweek, is the day on which the measure was taken.Temperature forecast
(24 values), indicating the temperature prediction for each hour of the forecasted
day.Demand (24 values), the demand value for each hour of the previous day.

3.2 Data Preparation

A data cleansing process was carried out, following the urban data analysis
paradigm [15], to improve the quality of the models to be trained. First, a few
invalid measurements (only 0.01%) were replaced by the average of neighboring
measurements. After that, a standard detection and treatment of outliers was per-
formed. Demand values that deviates from the mean by more than three times the

www.inumet.gub.uy
https://adme.com.uy/

Computational Intelligence and HPC for Electricity Demand Forecasting 151

standard deviation are considered outliers. Detected outliers were replaced by the
value of the mean, substracting three times the standard deviation if the outlier is
smaller than the mean or adding three times the standard deviation if the outlier is
greater. Finally, feature standardization was applied to the input dataset to avoid
typical scale issues that emerge when using ANN models. The evaluation using the
proposed metrics did not show significant changes after the data cleaning process,
possibly due to very little anomalous data corrected in this process.

3.3 Implementation

This subsection describes the two base ANN architectures considered for the
implementation of the proposed approach.

Overall Description. The set of parameters of the ANN structure was explored
to find the best configuration for each architecture. Architectures are built con-
necting different layers. A layer is a container that receives weighted inputs,
transforms them by applying a set of functions, and then passes the results as
output to the next layer. The first and last layers in a network are called input
and output layers, respectively; all layers in between are called hidden layers.

Typical layers used in ANNs are fully connected layers, which connects every
neuron in one layer to every neuron in the next layer; LSTM layers, capable
of learning long-term dependencies; convolutional layers, which applies a set
of filters (convolution) and pass the result to the next layer; pooling layers,
which perform a subsampling on the input by combining multiple outputs of a
previous layer into a single value in the next layer; and dropout layers, which
ignore units at random during the training phase with probability 1− p or kept
them with probability p, to prevent overfitting. Dropout can also be applied
in the other types of layers. When ANN are applied to time series, a standard
practice is to define an architecture that treats the temporal component and
another architecture that, prior to the temporal component, performs a coding
of the features. The description of the two base architectures studied in this
article according to the aforementioned practice is presented next.

LSTM Model. This model is composed by an input layer, four hidden layers,
and an output layer. In the first hidden layer, multiple LSTM are combined to
capture the time dependency. The output of this layer is connected to a series of
three fully connected layers, that compose the set of hidden layers. An output
layer completes the architecture. Figure 1 represents a general outline of the
structure of the proposed model.

Each component includes the following elements:

– Input layer, consisting of a matrix of 53 × l units according to the input
data defined in Sect. 3.1. The dimension l represents the number of days back
considered to capture the time dependence for the forecast.

– LSTM layer with L1 LSTM units using the relu activation function.

152 R. Porteiro and S. Nesmachnow

– Fully connected layers with dropout, including three fully connected layers
with FC1, FC2 and FC3 units respectively, using the relu activation function
and dropout with probability probd.

– Output layer with 24 units representing the output, using a linear activation
function.

Fig. 1. Architecture of the proposed LSTM model.

CNN+LSTM Model. This model was built based on the previously described
LSTM architecture. In CNN+LSTM, the input is connected to a feature extrac-
tion module based on convolution filters combined with a max pooling layer and
a vector flattening procedure. The goal of this module is to encode all the rel-
evant features for prediction into a single vector. This vector is supplied to the
forecast component that has the LSTM structure already presented. Figure 2
presents the complete CNN+LSTM architecture.

Fig. 2. Architecture of the CNN+LSTM model.

Computational Intelligence and HPC for Electricity Demand Forecasting 153

The architecture of the CNN+LSTM model includes the following elements:

– Input layer, consisting of 53×l units, according to the input data described in
Sect. 3.1. 53 features are considered for each individual day and l represents
the number of days back considered to capture the time dependence for the
forecast.

– CNN layer using f convolutional filters of size 3 and relu activation function.
– Max pooling layer with pool size p.
– Flatten layer that reshapes the output matrix of the previous layer in a vector,

which represents an encoding of the original features.
– Repetition layer, which is the interface between the feature extraction module

and the forecasting module presented in Fig. 2. The function of the repetition
layer is to copy the output vector of the previous layer 24 times. The 24 copies
generated are passed to the next layer.

– LSTM layer with L1 LSTM units with relu activation function.
– fully connected layers with dropout, including three dense layers with FC1,

FC2 and FC3 units respectively, using the relu activation function and
dropout with probability probd.

– Output layer with 24 units representing the output, using a linear activation
function.

4 Parallel Model

A two-level parallel model is applied in the proposed implementation for config-
uring and training each forecasting model described in the previous subsection.
The main details of the applied parallel model are provided next.

4.1 Upper Level: Architecture and Parameter Configuration

On the one hand, the upper level applies a Multiple-Instruction-Multiple-Data
(MIMD) parallel model to study the most important configuration parameters of
the proposed model. Each model defined in the previous subsection has a series of
parameters that define their learning behavior. First, several parameters define
the architecture: f, p, L1, FC1, FC2 and FC3. In turn, once a particular set
of the parameters that define the architecture is determined, other parameters
related to the training process (e.g., learning rate, optimizer type, size of the
batch of samples used in each iteration).

A configuration grid is defined, by combining parameters that define the
architecture and the parameters that characterize the training process. Then, a
domain decomposition is performed, using distributed memory to process sub-
sets for each studied architecture, and shared memory to explore the learning
parameters configurations. A multithreading approach is implemented for the
parameter configuration on the upper level, by using the threading module
of python. This module builds higher-level threading interfaces on top of the
low-level primitives for working with multiple threads provided by the thread

154 R. Porteiro and S. Nesmachnow

module. Easy-to-implement primitives are used to define locking mechanism for
workload assignment and threads synchronization.

The pseudocode in Algorithm 1 presents a schema of the multithreading app-
roach implemented.

Algorithm 1 Multithread processing for parameter configuration
1: procedure thread-train(par)
2: global bestMAPE, bestModel
3: model = BuildModel(P) � Model construction
4: model.train() � Model training in GPU
5: MAPE = model.evaluate()
6: if MAPE < bestMAPE then
7: bestMAPE = MAPE
8: bestModel = model
9:
10: global bestMAPE = Inf, bestModel = {}
11: for each i in range(1,#conf/#threads) do
12: threads = list() � Create pool of threads
13: for each index in range(#threads) do
14: x = threading.Thread(target=thread-train, args=(par))
15: x.start()
16: for each index, thread in enumerate(threads) do
17: thread.join()

4.2 Lower Level: Parallel Training on GPU

The lower level applies an implicit asynchronous parallel model for ANN training,
where different worker processes train using different portion of the input data.
Synchronization is applied to aggregate gradients of the backpropagation method
at each training step. An all-reduce pattern is applied by all processes.

Parallel training in GPU is accomplished via pilot jobs, which allow imple-
menting a multilevel scheduling approach where a specific resource of the HPC
platform is reserved by an application and specific tasks are scheduled in that
resource directly. This method allows avoiding using a local job scheduler, thus
reducing the waiting times in the queues used by the resource manager of multi-
purpose systems. Figure 3 presents a diagram of the proposed parallel model for
ANN models for hourly electricity demand forecasting.

5 Experimental Evaluation

This section describes the experimental analysis for the proposed computational
intelligence methods for forecasting the total electricity demand of Uruguay.

Computational Intelligence and HPC for Electricity Demand Forecasting 155

5.1 Computational Platform and Software

The proposed models were implemented on the Python programming language,
using Tensorflow due to the flexibility it provides to define ANN architectures.
The experimental analysis was performed in the high performance computing
infrastructure of National Supercomputing Center, Uruguay (Cluster-UY) [16].
The hardware environment consists on a HP ProLiant DL380 G9 high end server
with two Intel Xeon Gold 6138 processors (20 cores each) and 128 GB RAM.

Fig. 3. Diagram of the proposed parallel model

5.2 Validation Problem and Instances

This subsection introduces the metrics used for evaluation of the proposed app-
roach and describes the methodology applied for training of the studied models.

Metrics Used for Evaluation. Two standard metrics are used for the experimen-
tal evaluation of the forecasting accuracy of the studied models:

– Mean absolute percentage error (MAPE), defined in Eq. (1)
– Root mean square error (RMSE), defined in (Eq. 2).

MAPE = 100 ×
∑n

i=1|acti−predi
acti

|
n

(1) RMSE =

√
∑n

i=1 (acti − predi)
2

n
(2)

156 R. Porteiro and S. Nesmachnow

In both equations, acti represents the measured value for t = i, predi repre-
sents the predicted value, and n represents the predicted horizon length.

Model Training. The methodology applied for training of the studied ANN
applies the backpropagation algorithm. Backpropagation is a classical algorithm
used to effectively train a neural network through applying the chain rule to
compute the partial derivatives of the loss function with respect to each input.
After each forward pass computation through a neural network, backpropagation
performs a backward pass while adjusting the parameters of the model (weights
and biases) to minimize the loss function defined.

The following procedure was applied for training and evaluation of the stud-
ied ANN models:

1. Training and validation sets were generated considering real energy consump-
tion data from the last ten years in Uruguay obtained from ADME, Uruguay.
The training set is composed of data from 2010 to 2017 and the validation
set is composed of data from 2018 to 2020. The proportion between training
set and validation set is 4:1.

2. The experimental evaluation compares the proposed methods between them,
and an ExtraTrees Regressor model is also used as a baseline method for the
results comparison. The ExtraTrees Regressor model consists of an estimator
to fit several randomized decision trees on different subsets of the dataset of
the considered problem.This method is used as baseline because have shown
to be the most accurate for energy demand forecasting in industrial facilities
in previous works [18,19].

3. A set of several configurations for the model were generated by choosing differ-
ent parameters that define the underlying ANN architectures and parameters
related to the training algorithm.

4. MAPE and RMSE metrics were evaluated to determine the best model.
MAPE results were considered as the main factor for results evaluation, since
it allows performing a scale-independent and easy to interpret numerical anl-
ysis. In turn, RMSE metric was also evaluated, taking into account that it
can provide an insight on the forecasting efficacy of the proposed models in
those scenarios where MAPE produces infinite or undefined values for zero
or close-to-zero actual values.

5.3 Numerical Results

Parameters Configuration. The parameters evaluated in the configuration exper-
iments for each model are described in Table 1.

Computational Intelligence and HPC for Electricity Demand Forecasting 157

Table 1. Parameters and candidate values for the studied ANN models

LSTM and CNN+LSTM

Parameter Candidate values

Number of days back (l) 1, 10

LSTM units on the first layer (L1) 64, 128

Units on hidden layers (FC1, FC2, FC3) 32, 64

Dropout probability (probd) 0.01, 0.05

Learning rate (lr) 0.01, 0.05, 0.1

Batch size 64, 128

Only CNN+LSTM

Convolutional filters (f) 3, 5

Pool size (p) 2, 3

The size of the parameter space is 27×3 = 384 points for the LSTM model
and 29×3 = 1536 points for the CNN+LSTM model. Each point represents a
different model to be trained.

From the results obtained in the parameters analysis, the best configuration
for each studied ANN corresponds to:

– LSTM: l = 1, L1 = 128, FC1 = 64, FC2 = 64, FC3 = 64, probd = 0.05,
lr = 0.01, batch size = 128.

– CNN+LSTM: l = 1, L1 = 128, FC1 = 64, FC2 = 64, FC3 = 64, probd =
0.05, lr = 0.01, batch size = 128, f = 3, p = 2.

Forecasting Precision. Table 2 reports the obtained results for rhe studied LSTM
and CNN+LSTM ANNs, regarding the forecasting accuracy metrics defined in
Subsect. 5.2. Results are compared with the baseline ExtraTrees Regressor model
and the best model is highlighted in bold font.

Table 2. Comparison of the proposed ANN models and the baseline ExtraTreesRe-
gressor after parameter tuning.

Model MAPE RMSE ΔMAPE ΔRMSE

ExtraTrees 5.17% 131.83 - -

LSTM 4.76% 123.12 −0.41% −8.71

CNN+LSTM 4.30% 109.06 −0.87% − 22.77

The obtained results indicate that CNN+LSTM was the best model, obtain-
ing a MAPE of 4.30%. Improvements over LSTM were 0.46% (MAPE) and
14.06 (RMSE), while improvements over the baseline ExtraTreesRegressor were
0.87% (MAPE) and 22.7 (RMSE). Improvements of CNN+LSTM over LSTM
indicate that the explicit feature extraction module allows focusing on those fea-
tures that are more relevant for a correct forecasting. The LSTM model strives
to learn nonexistent correlations between weak features and the output, getting

158 R. Porteiro and S. Nesmachnow

stuck in worse forecast values. The results of CNN+LSTM represent an excellent
forecasting accuracy, considering the complexity of the problem. Furthermore,
results improve over the official models currently used by ADME for next day
electricity demand forecasting, which have an average MAPE of 5%.

Figure 4 presents a graphical comparison between the actual hourly demand
and the values predicted by the CNN+LSTM model for a typical day.

Computational Efficiency. The proposed parallel model allowed reducing the
overall execution time. Figure 5 summarizes the comparison between the sequen-
tial and parallel execution times and reports the speedup (S24) over the consid-
ered computational platform.

The CNN+LSTM model has the highest computing demands, thus it profits
properly from parallelism. On the other hand, the LSTM model did not scaled
properly in the performed experiments, possible due to the sequential structure
of LSTM layers that are not completely parallelizable in contrast with the CNN
component of the other architecture. A negligible overhead was observed for

Fig. 4. Predicted demand and actual demand for a typical day.

Fig. 5. Execution times of the sequential and parallel versions of the studied ANNs for
energy demand forecasting

Computational Intelligence and HPC for Electricity Demand Forecasting 159

the CNN+LSTM model, mainly because using the pilot jobs paradigm allows
reducing the impact of the time waiting on the system queues.

Furthermore, training times of the CNN+LSTM model are appropriate, espe-
cially considering the complexity of the addressed problem. Once trained, the
model prediction time is negligible. Thus, according to the reported execution
times, the CNN+LSTM model can be trained every day to allow incorporating
data from the last day, update weather predictions, etc., and executed opera-
tively to analyze diverse scenarios.

6 Conclusions and Future Work

This article presented a proposal for using computational intelligence and high
performance computing to develop accurate forecasting models for short-term
electricity demand, applied to the total demand of Uruguay.

ANNs were considered as forecasting tool, according to their capabilities in
relevant related works. The proposed design applies a two-level parallel approach
to efficiently obtain the best forecasting model. At the upper level, a parameter
search was performed on two base ANN architectures considering long-short-
term memory and a convolutional model. At the lower level, each model to be
evaluated was trained using fine-grained parallelism on GPU. For each ANN
architecture, the best configuration of parameters was found.

The experimental evaluation considered real data of hourly electricity
demand of Uruguay gathered in the period January, 2010–February, 2020. The
studied techniques were developed and executed on the high performance com-
puting platform provided by National Supercomputing Center, Uruguay.

The MAPE metric was used for evaluating the forecasting accuracy of the
studied models. Results showed that CNN+LSTM had the best forecasting capa-
bilities over the studied data, reporting a value of MAPE = 4.3%. This result is
very promising for addressing the addressed forecasting problem, even outper-
forming the results of models currently used by the National Administration of
the Electric Market of Uruguay, which report MAPE values of 5%.

In terms of computational efficiency, the approach applying computational
intelligence and high performance computing was useful to solve the prob-
lem. Parallel implementation for grid search parameter configurations allowed
improving the forecasting capabilities of ANN-based models. Furthermore, a
properly utilization of the available computing resources in a scientific comput-
ing platform reduced the execution times, up to 24× for the best efficiency result
of the studied parallel model.

The main lines for future work are related to extend the analysis to long-term
demand forecasting including relevant variables such as gross domestic product,
insertion of electric vehicles, smart grid devices or air conditioning to the net-
work, etc. Another line of future work consists in generating different demand
scenarios for each node of the transmission grid, which together represent the
aggregate demand. This distributed demand model is key when planning the
expansion of the transmission network. The importance of scenarios generation

160 R. Porteiro and S. Nesmachnow

that includes more stochastic variables also makes it necessary to improve the
parallel model, which constitutes another future line of work.

References

1. Aras, S., Kocakoç, İ.: A new model selection strategy in time series forecasting
with artificial neural networks: Ihts. Neurocomputing 174, 974–987 (2016)

2. Chavat, J., Graneri, J., Nesmachnow, S.: Household energy disaggregation based
on pattern consumption similarities. In: Nesmachnow, S., Hernández Callejo, L.
(eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 54–69. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38889-8 5

3. Ertugrul, Ö.: Forecasting electricity load by a novel recurrent extreme learning
machines approach. Inte. J. Electr. Power Energy Syst. 78, 429–435 (2016)

4. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
vizier: a service for black-box optimization. In: 23rd ACM International Conference
on Knowledge Discovery and Data Mining, pp. 1487–1495 (2017)

5. Hochreiter, S., Schmidhuber, J.: Forecasting electricity load by a novel recurrent
extreme learning machines approach. Neural Comput. 9(8), 1735–1780 (1997)

6. Hua, J., Noorian, F., Moss, D., Leong, P.H., Gunaratne, G.: High-dimensional
time series prediction using kernel-based Koopman mode regression. Nonlinear
Dyn. 90(3), 1785–1806 (2017). https://doi.org/10.1007/s11071-017-3764-y

7. Jaderberg, M., et al.: Population based training of neural networks. Preprint
arXiv:1711.09846 (2017)

8. Kelo, S., Dudul, S.: A wavelet Elman neural network for short-term electrical load
prediction under the influence of temperature. Int. J. Electr. Power Energy Syst.
43(1), 1063–1071 (2012)

9. Khwaja, A., Zhang, X., Anpalagan, A., Venkatesh, B.: Boosted neural networks
for improved short-term electric load forecasting. Electric Power Syst. Res. 143,
431–437 (2017)

10. Lazos, D., Sproul, A., Kay, M.: Optimisation of energy management in commercial
buildings with weather forecasting inputs: a review. Renew. Sustain. Energy Rev.
39, 587–603 (2014)

11. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
Handb. Brain Theory Neural Netw. 3361(10), 1–8 (1995)

12. Li, L., Jamieson, K., et al.: A system for massively parallel hyperparameter tuning.
In: 3rd Conference on Machine Learning and Systems (2020)

13. Lou, C., Dong, M.: A novel random fuzzy neural networks for tackling uncertainties
of electric load forecasting. Int. J. Electr. Power Energy Syst. 73, 34–44 (2015)

14. Luján, E., Otero, A., Valenzuela, S., Mocskos, E., Steffenel, A., Nesmachnow, S.: An
integrated platform for smart energy management: the CC-SEM project. Revista
Facultad de Ingenieŕıa Universidad de Antioquia (2019)

15. Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data
analysis in smart cities: combining intelligent transportation systems and socioe-
conomic data for montevideo, uruguay. EAI Endorsed Trans. Smart Cities 2(5),
e3 (2017)

16. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

https://doi.org/10.1007/978-3-030-38889-8_5
https://doi.org/10.1007/s11071-017-3764-y
http://arxiv.org/abs/1711.09846
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16

Computational Intelligence and HPC for Electricity Demand Forecasting 161

17. Panapakidis, I., Dagoumas, A.: Day-ahead electricity price forecasting via the
application of artificial neural network based models. Appl. Energy 172, 132–151
(2016)

18. Porteiro, R., Hernández-Callejo, L., Nesmachnow, S.: Electricity demand forecast-
ing in industrial and residential facilities using ensemble machine learning. Revista
Facultad de Ingenieŕıa Universidad de Antioquia (2020)

19. Porteiro, R., Nesmachnow, S., Hernández-Callejo, L.: Short term load forecasting
of industrial electricity using machine learning. In: Nesmachnow, S., Hernández
Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 146–161. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-38889-8 12

20. Sapankevych, N., Sankar, R.: Time series prediction using support vector machines:
a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)

21. Singh, P., Dwivedi, P.: Integration of new evolutionary approach with artificial
neural network for solving short term load forecast problem. Appli. Energy 217,
537–549 (2018)

22. Sriram, L., Gilanifar, M., Zhou, Y., Ozguven, E., Arghandeh, R.: Causal Markov
Elman network for load forecasting in multinetwork systems. IEEE Trans. Ind.
Electron. 66(2), 1434–1442 (2018)

23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

24. Suykens, J., Vandewalle, J., De Moor, B.: Optimal control by least squares support
vector machines. Neural Netw. 14(1), 23–35 (2001)

https://doi.org/10.1007/978-3-030-38889-8_12

Parallel/Distributed Generative
Adversarial Neural Networks for Data
Augmentation of COVID-19 Training

Images

Jamal Toutouh1(B) , Mathias Esteban2 , and Sergio Nesmachnow2

1 Massachusetts Institute of Technology, Cambridge, MA, USA
toutouh@mit.edu

2 Universidad de la República, Montevideo, Uruguay
{mathias.esteban,sergion}@fing.edu.uy

Abstract. This article presents an approach using parallel/distributed
generative adversarial networks for image data augmentation, applied
to generate COVID-19 training samples for computational intelligence
methods. This is a relevant problem nowadays, considering the recent
COVID-19 pandemic. Computational intelligence and learning methods
are useful tools to assist physicians in the process of diagnosing diseases
and acquire valuable medical knowledge. A specific generative adver-
sarial network approach trained using a co-evolutionary algorithm is
implemented, including a three-level parallel approach combining dis-
tributed memory and fine-grained parallelization using CPU and GPU.
The experimental evaluation of the proposed method was performed on
the high performance computing infrastructure provided by National
Supercomputing Center, Uruguay. The main experimental results indi-
cate that the proposed model is able to generate accurate images and the
3× 3 version of the distributed GAN has better robustness properties of
its training process, allowing to generate better and more diverse images.

Keywords: Computational intelligence · Learning · Generative
Adversarial Networks · Data augmentation · COVID-19

1 Introduction

Computational intelligence and automated learning have been successful tools
for a wide range of applications [4]. In particular, generative models are power-
ful methods for learning and gaining knowledge about data, data distributions,
and other valuable information. Generational models have been one of the most
versatile unsupervised learning techniques in recent years [22,23].

Generative Adversarial Networks (GANs) [5] are powerful methods originally
proposed to train generative models by using unsupervised learning. Nowadays,
they have been extended to consider other approaches, including semi-supervised
c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 162–177, 2021.
https://doi.org/10.1007/978-3-030-68035-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_12&domain=pdf
http://orcid.org/0000-0003-1152-0346
http://orcid.org/0000-0003-2199-0675
http://orcid.org/0000-0002-8146-4012
https://doi.org/10.1007/978-3-030-68035-0_12

Parallel/Distributed GANs for Augmentation of COVID-19 Images 163

and fully supervised learning, and reinforcement learning. GANs propose a
method for learning and estimate the distribution of data from a training set,
to produce new information units that approximate the original set. Two arti-
ficial neural networks (ANN) are used (a generator and a discriminator), and
adversarial learning is applied to optimize the learning process and the result-
ing outcome. GANs have been successfully applied to many problems, especially
those concerning multimedia information (e.g., images, sound, and video), in
science, design, art, games, and other areas [13]. Even complex tasks such as
autonomous driving [20] and medical assistance [9] have been addressed using
GANs. In fact, medical assistance provides a very interesting application area
for GANs, since they can provide new insights to the interpretation process of
medical information stored in different media (radiography, ultrasound, etc.).

In this line of work, this article presents a parallel/distributed GAN approach
for image data augmentation, applied to generate COVID-19 training samples
for computational intelligence methods. This is a relevant problem nowadays,
considering the recent COVID-19 pandemic. The proposed approach is based
on a two-level parallel model for training and configuration, and co-evolutionary
training considering a dataset of real X-rays chest images. The proposed model
is implemented and executed in the high performance computing infrastructure
provided by National Supercomputing Center (Cluster-UY), Uruguay.

The main contribution of the research reported in this article include: i) a pro-
posal for applying GANs to the data augmentation problem for medical images,
to assist COVID-19 diagnosis; ii) a two-level parallel model developed to take
advantage of high performance computing facilities; and iii) the experimental
evaluation of the proposed distributed parallel/distributed GAN approach con-
sidering a dataset of real X-rays images.

The article is organized as follows. Section 2 describes the data augmenta-
tion problem to assist COVID-19 detection and reviews related works. Section 3
describes the proposed parallel/distributed approach. The experimental evalu-
ation and results are reported and discussed in Sect. 5. Finally, the conclusions
and the main lines for future work are presented in Sect. 6.

2 Data Augmentation for Medical Images to Assist
COVID-19 Detection

This section describes the problem of data augmentation for medical images, its
application to assist COVID-19 detection and reviews related works.

2.1 Data Augmentation for Medical Images and COVID-19
Detection

The technique of medical imaging consists of creating visual representations of
the human body for clinical analysis to help diagnosing and treating diseases.
Using this technique, physicians and organizations gather useful information to

164 J. Toutouh et al.

build databases of both normal and pathological images to identify physiolog-
ical anomalies. To that end, several imaging technologies are applied, includ-
ing radiography (X-rays), magnetic resonance, ultrasound, thermography, and
others.

In recent years, computational intelligence methods have been increasingly
applied to assist medical diagnostics. This way, learning models have been
applied to provide a new insight to the process of medical image interpretation,
which was previously limited to radiologists. However, learning models require
significantly large datasets for training. Within this context, an important prob-
lem arises: expanding the base of knowledge about medical conditions in order
to perform a proper training of computational intelligence/learning methods.

Image data augmentation [17] allows overcoming the difficulties associated
to having few data to build training datasets for learning methods. The aug-
mentation technique is useful to expand the size of a given training dataset, by
creating modified versions of existing images. Then, learning models trained with
the expanded dataset are able to produce better models and improve detection
results, considering that more information can be extracted from the original
dataset through augmentations. Useful, transfer learning and generalization are
applied to broaden the applicability of built models.

Traditional approaches for image data augmentation are based on applying
image operations, like point processing and frame transformations, geometric
(resize, crop) and color transformations, merging, equalization, etc. On the other
hand, deep learning approaches include adversarial training, neural style transfer,
and GAN-based data augmentation.

Nowadays, there is an increasing interest on learning approaches to help
dealing with outbreaks, like the recent COVID-19 pandemic.

2.2 Related Works

Computational intelligence have been applied for medical image processing, to
address disease detection, help and guide diagnostics, and to improve medical
imaging research [11].

Kovalev and Kazlouski [9] studied the generation of artificial biomedical
images to be used as a substitute for real image datasets, focusing on gener-
ating realistic chest X-ray images using Deep Convolutional GAN and Progres-
sive Growing GAN (growing both generator and discriminator continuously). A
benchmark classification problem was solved using real and synthetic images for
the problem of detecting breast tumor, using data from the lymph node database
(image size: 256×256). The classification accuracy dropped between 2.2%–3.5%
(considered as “acceptable for practical applications”), improving between two
and four times the results of Loopy Belief Propagation and Random Forest.

The application of GANs in radiology, specifically for detecting congestive
cardiac failure on chest radiographies, was studied by Seah et al. [16]. A gener-
ative model (Generative Visual Rationales, GVR) was trained on an unlabeled
subset of a frontal chest radiographies set and a traditional ANN encoder was
trained on a labeled subset. The experimental evaluation considered a custom

Parallel/Distributed GANs for Augmentation of COVID-19 Images 165

overfitted model developed for comparison and classification by experts. The
main results allowed to conclude that features by ANN can be identified using
GVR, thus allowing detection of bias and overfitted models. The preprint article
by Khalifa et al. [8] also explored the use of GANs and transfer learning, but in
this cases focusing on a more general pneumonia disease. Several deep transfer
learning models were studied to detect the pneumonia from images, using a train-
ing set of just 10% of real data and the other 90% generated using a GAN. No
computational efficiency evaluation was reported, but authors worked under the
assumption of including few layers in the underlying GANs, to reduce memory
consumption and execution time. The main results showed that using GANs as
augmentation technique allows improving the robustness of the proposed model,
making it less prone to overfitting. Thus, using the proposed method, better
images can be generated.

Regarding data augmentation of medical images, Bhagat and Bhaumik [2]
proposed a method for generating synthetic chest X-ray images of patients
with pneumonia, using GANs. Generator and discriminator started with low-
resolution images (4×4) and the resolution increased step-by-step when including
more layers (up to 128×256 and 256×128). A deep convolutional neural network
was trained using the generated images, to solve the classification problem. The
prediction accuracy improved when considering the augmented database.

Several recent articles have extended previous approach to help addressing
the problem of coronavirus disease detection. Loey et al. [10] applied GAN and
deep transfer learning for COVID-19 detection considering chest X-ray images
as input, extending the proposal by Khalifa et al. [8]. Deep transfer models were
studied over a training dataset containing images of four classes (COVID-19,
normal, pneumonia bacterial, and pneumonia virus). GANs were applied as sub-
ordinate method for expanding the training dataset to contribute improving the
detection accuracy. Waheed et al. [21] developed an auxiliary classifier GAN to
overcome the problem of limited images available for COVID-19 detection when
using convolutional neural networks (CNNs). The main results demonstrate that
using synthetic images produced by the auxiliary classifier GAN allows improv-
ing the COVID-19 detection accuracy of CNN from 85% to 95%.

On the other hand, some recent advances have been developed on applying
parallel computing to speed-up the training process of GANs and their effec-
tiveness. Im et al. [7] recognized the difficulties of GAN training in practice,
and proposed the Generative Adversarial Parallelization (GAP) framework for
the simultaneous training of several GANs that share their discriminators. This
approach extends the two-player generative adversarial game into a multi-player
game, thus transforming the training from being a tightly-coupled problem
(between generator and discriminator) to a more loosely one. Multiple mod-
els are required, each one with its own parameters, which are structured in a
bipartite layout for competence. Instead of applying a traditional data-parallel
approach on the parameter space, GANs are trained randomly swapping different
discriminators/generators to produce synergy. The model was implemented in
Theano and executed in GPU, without transfers through host memory (to reduce

166 J. Toutouh et al.

communication overheads). Empirical results showed that the GAP model allows
improving mode coverage, convergence, and quality. No efficiency or execution
time analysis was reported. Up to now, no parallel GAN training for COVID-19
detection has been proposed.

The analysis of related works allows concluding that no previous proposals
have explored the application of parallel computing to implement efficient and
accurate IA models for COVID-19 detection. This article contributes in this
line of research, by applying a two-level parallel model for GANs training and
configuration, applied to data augmentation for medical images to contribute in
COVID-19 research.

3 The Proposed Parallel/distributed GANs
for COVID-19 Data Augmentation

This section describes the proposed approach applying parallel/distributed
GANs for COVID-19 data augmentation.

3.1 Generative Adversarial Networks

GANs are computational intelligence methods that intends to learn the specific
distribution of a given training dataset, to synthesize samples using the estimated
distribution. GANs consist of two ANNs, a generator and a discriminator, that
applies adversarial learning to optimize their parameters. The discriminator try
to learn how to distinguish the natural/real samples from the artificial/fake
samples produced by the generator. The generator is trained to transform its
inputs from a random latent space into artificial/fake samples to deceive the

Fig. 1. General diagram of a generative adversarial network

Parallel/Distributed GANs for Augmentation of COVID-19 Images 167

discriminator (see Fig. 1). The GAN training problem is formulated as a minmax
optimization problem by the definitions of generator and discriminator. In the
last years, GANs have demonstrated to be efficient methods for learning [5].

3.2 Distributed GAN Training

The proposed approach applies the methodology introduced by Lipizzaner [15]
and Mustangs [19]. A distributed GAN training is performed by applying co-
evolutionary algorithms (coEA).

In the co-evolutionary distributed GAN training, two populations are
evolved, one for generators and one for discriminators. These two populations
are trained by competition between them. Individuals in each population are
located in a spatial structure, an underlying toroidal grid. The concept of neigh-
borhood is applied to define those individuals that participate in the training
phase for both generators and discriminators.

The approach using distributed coEAs has shown to be effective overcoming
the main pathologies in GAN training, namely modal collapse, vanish gradi-
ent, and non-convergence. Futhermore, cellular training allows implementing a
data-parallel approach where each cell is trained using reduced subsets without
affecting the overall quality of the implemented GANs, considering the differ-
ence between the probability distributions of generated samples and the original
samples (or the similarity of generated images, when used with that goal). The
data-parallel approach also allows improving the computational efficiency of the
training process, since a smaller amount of training data batches are needed [18].
Figure 2 presents a diagram of the proposed distributed training for GANs imple-
mented in Lipizzaner.

Fig. 2. Diagram of the distributed training for GANs proposed by Lipizzaner

4 Distributed GANs for COVID-19 Images Generation

This section describes the proposed approach for data augmentation of COVID-
19 datasets using GANs.

168 J. Toutouh et al.

4.1 Overall Description

The proposed approach for data augmentation of the COVID-19 image dataset
applies the generative paradigm previously applied for generating new images of
handwritten digits, small object photograph, and faces.

The approach consist in sampling from an existing database of real chest X-
ray images to train the discriminator, while the generator uses a random variable
from a Gaussian distribution, z ∼ N (0, 1). Then, generator and discriminator
are trained using the distributed co-evolutionary approach. Figure 3 shows two
sample real chest X-ray images used for training.

Fig. 3. Sample chest X-ray images used for GAN training

4.2 Implementation Details

Both the generator and discriminator models were implemented as Multilayer
Perceptrons (MLP). MLP are one of the classical and most used types of neural
network [6]. A MLP is comprised of perceptrons or neurons, organized on layers.
At least two layers are used: input layer, which receives the problem data as input
and output layer, and output layer, which produces the results. In between, one
or more hidden layers can be included to provide different levels of abstraction
to help with the learning goal. MLP are feedforward ANNs, meaning that con-
nections between neurons do not form a cycle; information moves in only one
direction (forward) from neurons on the input layer, through neurons on the
hidden layers (if they exist) and finally to neurons in the output layer. Except
for the input neurons, all other neurons use a nonlinear activation function,
which separates MLP to simpler linear perceptrons. This feature makes MLP
able to distinguish not linearly separable data. MLP are usful for dealing with
structured data (e.g., tables), classification/prediction problems whith labeled

Parallel/Distributed GANs for Augmentation of COVID-19 Images 169

inputs, regression problems, etc. Furthermore, MLP hava a high flexibility and
applicability to learn any mapping function from inputs to outputs. Their flex-
ible nature allows MLP to be applied to other types of data, e.g., pixels of an
image, such as proposed for medical images in this article.

To deal with the proposed problem, the proposed approach explores the
use of MLPs using four and five layers as underlying ANN architectures for
both generators and discriminators. The generators and discriminators have the
same input and output sizes. The generator input from the latent space has
size 64 and the output has size 16384 (to encode 128 × 128 gray-scale images).
The discriminator has input size of 16384 (an image) and output size of one
to encode the truth value (real or fake). Both type of MLP use linear layers.
Hidden layers apply the leaky version of a rectified linear unit (LeakyRelu) as
activation function, the generators output layer the hyperbolic tangent (Tanh),
and the discriminator output layer the sigmoid function. Table 1 report the main
features of the MLP architectures in both generators and discriminators.

Table 1. Main features of the MLP architectures used in generators and discriminators
of the proposed GAN for COVID-19 images generation

Layers Four-layer MLP GAN Five-layer MLP GAN

Generator Discriminator Generator Discriminator

First hidden layer 64 × 256 16384 × 256 64 × 256 16384 × 512

Second hidden layer 256 × 256 256 × 256 256 × 256 512 × 256

Third hidden layer – – 256 × 512 256 × 256

Output 256 × 16384 256 × 1 256 × 16384 256 × 1

One of the key components of GANs is the DataLoader function, which allows
performing the domain decomposition by dividing the training data in batches
to be processed iteratively. In the proposed implementation, the Dataloader
function reads the images from the training set and encodes each pixel with a
real number in (0,1). Since gray-scale images are used, a single number is enough
to provide the needed encoding (0 represents white and 1 represents black). After
that, since images have different size because they come from different databases
or have been possibly acquired using different devices, a resize transformation
is applied in order to convert them to a unique resolution (set as an input
parameter, in the reported research it is 128 × 128). The resulting vector of
16 384 positions is stored in memory. After all images are read, a tensor of
16 384 × #TD is transferred to GPU, where #TD is the size of the training
dataset.

170 J. Toutouh et al.

4.3 Parallel Model

A three-level parallel model is applied in the proposed implementation, following
the idea of the parallel/distributed implementation of cellular training for GANs
proposed in our previous work [14].

The upper level applies a Multiple-Instruction-Multiple-Data (MIMD) paral-
lel model to study one of the most important parameters of the model proposed
by GANs: the architecture of the underlying ANN. A domain decomposition
approach is applied on the space of candidate architectures, defined ad-hoc for
the problem, and the space of relevant parameters (pi) and a set of candidate
values (vi). A parallel master-slave model is followed, using a distributed memory
paradigm implemented in the MPI for Python package. Considered architectures
and parameter sets are assigned on-demand to a set of distributed processes, exe-
cuted according to the availability of computational resources. A dynamic load
balancing procedure is applied.

In turn, the medium level applies a distributed training approach, according
to the parallel co-evolutionary model proposed by Lipizzaner. In the Lipizzaner
algorithm, the population of generators and discriminators are distributed using
a logical spatial grid and applying a cellular parallel model for EAs [1]. Param-
eters of the training process are explored and optimized competitively, in an
asynchronous parallel execution of all cells in the grid defined by Lipizzaner. A
master process performs the data distribution, by assigning populations to grid
cells, and defines the communication channels according to the neighborhood
topology, accounting for the grid size. Communications between processes are
performed to exchange relevant information along the evolution.

Finally, the lower level applies the parallel training of the studied GANs in
GPU, applied a Single-Instruction-Multiple-Data approach. This parallel train-
ing is implemented using the PyTorch open source machine learning library,
widely employed for applications related to multimedia/image processing and
computer vision. Unlike other libraries for ANN training like TensorFlow,
PyTorch does not include a specific library for execution on GPU. Thus, the
training dataset is loaded, a tensor is created (dimension #images × image
width × image height ×#channels). That tensor is transferred to GPU and pro-
cessed in batches.

A schema of the proposed parallel model is presented in Fig. 4 (the sets of
parameters and values on which the parameter sweep is performed could be
different for different architectures).

Parallel/Distributed GANs for Augmentation of COVID-19 Images 171

Fig. 4. Diagram of the three-levels parallel model for GANs training

5 Experimental Evaluation

This section describes the experimental evaluation of the proposed approach
using GANs for COVID-19 images generation.

5.1 Evaluation Methodology, Training and Validation Instances

Methodology. The experimental evaluation is focused on analyzing the parameter
configuration of the learning method and the quality of the generated images.
The stop condition is 1000 training epochs. One training epoch is the number of
iterations required to feed all batches in the training dataset to the generator.

Regarding the proposed approach using Lipizzaner, three configurations of
the distributed learning method are studied: 1 × 1 grid, 2 × 2 grid, and 3 × 3
grid.

Metrics and Parameters. The metric considered in the evaluation is the inception
score, which is commonly used for evaluating images generated by GANs. It
aims at objectively assessing the quality of generated images via two relevant
properties that are evaluated simultaneously: likeliness to a specific object to
be generated and diversity. Inception score is within the range (1.0,M), being
M the highest inception score for the considered dataset. The computational
efficiency of the proposed parallel model is also evaluated. In turn, the quality
of generated images is also evaluated by examination of representative samples.

The studied parameters are the ANN architecture, the batch size, the Gaus-
sian mutation probability (pM), and the initial learning rate (l0). All reported

172 J. Toutouh et al.

Table 2. Inception score results for the studied configuration parameters.

Parameter Value Minimum Median Iqr Max

Network architecture Four layers perceptron 1.43 1.68 0.14 1.88

Five layers perceptron 1.00 1.68 0.27 2.25

Batch size 50 1.00 1.70 0.14 2.05

75 1.00 1.69 0.16 2.25

100 1.00 1.64 0.18 2.07

pM 0.3 1.00 1.66 0.18 1.95

0.4 1.00 1.69 0.18 2.25

0.5 1.00 1.68 0.19 2.07

l0 0.00010 1.26 1.65 0.18 1.94

0.00025 1.04 1.73 0.12 1.93

0.00050 1.00 1.66 0.34 2.25

results correspond to 14 independent executions of the proposed GAN performed
for each parameter configuration.

Training and Validation Instances. The training of the proposed model was
performed using images from the open repository created by Cohen et al. [3],
publicly available at https://github.com/ieee8023/covid-chestxray-dataset. The
same dataset is considered for computing the inception score.

Development and Execution Platform. The proposed parallel/distributed GAN
implementation was implemented in Python3 using pytorch (pytorch.org).

The experimental analysis was performed on National Supercomputing Cen-
ter (Cluster-UY), Uruguay [12]. Cluster-UY offers up to 30 computing servers,
each of them with Xeon Gold 6138 processors with 40 cores, Nvidia Tesla P100
GPUs (12 GB memory), 128 GB of RAM memory, and 300 GB of SSD storage
for temporary files, interconnected by Ethernet at 10 Gbps.

5.2 Numerical Results

Quality of Generated Images: Inception Score. Table 2 reports the inception
score values obtained for the studied configuration parameters. Results do not
follow a normal distribution, thus values of median and interquartile range (Iqr.)
are reported as relevant estimators. Figure 5 shows the corresponding boxplots
for the parameters with more impact in the inception score values.

Computational Efficiency. Table 3 reports the execution time of the proposed
GANs for the two configuration parameters that affect the most to the execu-
tion time. Execution parameters that impact the computational efficiency of the
training process are the network architecture and the batch size. Other parame-
ters impact on the result quality, but not on the efficiency. Results do not follow

https://github.com/ieee8023/covid-chestxray-dataset
https://pytorch.org/

Parallel/Distributed GANs for Augmentation of COVID-19 Images 173

Fig. 5. Inception score boxplots for the studied configuration parameters

Table 3. Execution time for the studied network architectures and batch sizes.

Parameter Value Minimum Median Iqr Max

Network architecture Four layer perceptron 8.15 12.68 5.20 19.38

Five layer perceptron 10.42 17.22 7.62 27.12

Batch size 50 9.42 15.68 3.73 27.12

75 8.57 13.95 9.37 21.05

100 8.15 12.53 4.52 19.38

a normal distribution, thus values of median and interquartile range (Iqr.) are
reported as relevant estimators. The non-parametric Wilcoxon test was applied
to analyze the results distributions and results confirmed that the differences are
statistically significant (p-value< 0.01). Boxplots are presented in Fig. 6.

Fig. 6. Execution time boxplots for the studied values of network architecture and
batch size parameters

Overall Analysis. Figure 7 presents a 2D graphical comparison of the inception
score results and the execution time required for training. The well-known trade-
off between results quality and execution time is observed. Considering that the
time for a single execution of the proposed GAN model are very reasonable,
the configurations that allowed computing the best inception score results were

174 J. Toutouh et al.

selected for execution of the distributed 2 × 2 and 3 × 3 GANs using Lipizzaner.
The selected configurations are: best median (five layers perceptron, batch size
50, pM = 0.4, and l0 = 0.00025, whose results are marked with a red star in
Fig. 7) and best maximum (five layers perceptron, batch size 75, pM = 0.4, and
l0 = 0.0005, whose results are marked with a blue diamond). These configu-
rations significantly outperformed the inception score results obtained by all
others.

Fig. 7. Inception score vs. execution time (Color figure online)

Distributed GANs. Inception score results for 2 × 2 and 3 × 3 grids are reported
in Table 4. In turn, Fig. 8 presents the evolution of loss during the training of
generator (red line) and discriminator (blue line) for one representative client of
Lipizzaner, using 2 × 2 grid (left) and 3 × 3 grid (right).

Table 4. Inception score results for the different grid sizes

Grid Best maximum configuration Best median configuration

Minimum Median Maximum Minimum Median Maximum

2 × 2 1.53 1.66 1.68 1.61 1.63 1.68

3 × 3 1.34 1.58 1.73 1.80 1.83 1.86

Overall 1.34 1.63 1.73 1.61 1.74 1.86

Parallel/Distributed GANs for Augmentation of COVID-19 Images 175

(a) 2×2 grid (b) 3×3 grid

Fig. 8. Loss during the training for one representative client of Lipizzaner (Color figure
online)

Fig. 9. Sample images generated by the proposed distributed GAN approach

Results reported in Table 4 indicate that the 3 × 3 grid trained better gen-
erators, able to create better samples (higher inception scores). Loss evolution
in Fig. 8 show that the 3 × 3 grid also provides a more robust behavior of the
resulting GAN, confirmed by a the loss function with fewer peaks and smoother
variations, when compared with the one computed using the 2 × 2 grid. This
result implies a better training, less prone to typical pathologies of GANs, thus
producing better and more diverse images.

Sample Generated Images. Figure 9 shows two sample generated images using
the proposed GAN approach.

6 Conclusions and Future Work

This article presented parallel/distributed GANs for image data augmentation,
applied to the relevant problem of generating X-rays chest COVID-19 samples.

176 J. Toutouh et al.

The proposed implementation applies a parallel model in three levels to com-
bine Single-Program-Multiple-Data paralellism for parameters configuration, a
masteer slave model to implement a distributed co-evolutionary training, and
Single-Instruction-Multiple-Data using pytorch for training in GPU.

The experimental methodology was oriented to evaluate the image quality,
considering the required execution time. The high performance computing infras-
tructure of National Supercomputing Center, Uruguay, was used.

The main results indicate that the proposed model is able to generate accu-
rate images. The distributed GAN using a 3×3 neighborhood computed the best
results, achieving a more robust training and generating better and more diverse
images. These results allow concluding that the proposed method is useful for
generation of synthetic COVID-19 images.

The main lines for future work are related to extend the evaluation of the
proposed approach by studying larger training datasets, other synthetic meth-
ods for augmentation and different ANN architectures for both generator and
discriminator in the proposed model.

Acknowledgment. The work of S. Nesmachnow is partly supported by ANII and
PEDECIBA, Uruguay. J. Toutouh has been partially funded by EU Horizon 2020
research and innovation programme (Marie Sk�lodowska-Curie grant agreement No
799078), by the Spanish MINECO and FEDER projects TIN2017-88213-R and
UMA18-FEDERJA-003, and the Systems that learn initiative at MIT CSAIL.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2012)

2. Bhagat, V., Bhaumik, S.: Data augmentation using generative adversarial networks
for pneumonia classification in chest Xrays. In: 5th International Conference on
Image Information Processing (2019)

3. Cohen, J., Morrison, P., Dao, L.: COVID-19 Image Data Collection (2020).
Preprint arXiv:2003.11597v1

4. Engelbrecht, A.: Computational Intelligence: An Introduction. Wiley, Hoboken
(2007)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

7. Im, D., Ma, H., Kim, C., Taylor, G.: Generative adversarial parallelization (2016).
Preprint arXiv:1612.04021

8. Khalifa, N., Taha, M., Hassanien, A., Elghamrawy, S.: Detection of Coronavirus
(COVID-19) Associated Pneumonia based on Generative Adversarial Networks
and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray Dataset (2020).
arXiv preprint 2004.01184. Accessed June 2020

9. Kovalev, V., Kazlouski, S.: Examining the capability of GANs to replace real
biomedical images in classification models training. In: Ablameyko, S.V., Krasno-
proshin, V.V., Lukashevich, M.M. (eds.) PRIP 2019. CCIS, vol. 1055, pp. 98–107.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35430-5 9

http://arxiv.org/abs/2003.11597v1
https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1612.04021
https://doi.org/10.1007/978-3-030-35430-5_9

Parallel/Distributed GANs for Augmentation of COVID-19 Images 177

10. Loey, M., Smarandache, F., Khalifa, N.: Within the lack of chest COVID-19 x-
ray dataset: a novel detection model based on GAN and deep transfer learning.
Symmetry 12(4), 651 (2020)

11. Morra, L., Delsanto, S., Correale, L.: Artificial Intelligence in Medical Imaging.
CRC Press (2019)

12. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

13. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., Zheng, Y.: Recent progress on gener-
ative adversarial networks (GANs): a survey. IEEE Access 7, 36322–36333 (2019)

14. Perez, E., Nesmachnow, S., Toutouh, J., Hemberg, E., O’Reily, U.: Paral-
lel/distributed implementation of cellular training for generative adversarial neu-
ral networks. In: 10th IEEE Workshop on Parallel Distributed Combinatorics and
Optimization (2020)

15. Schmiedlechner, T., Yong, I., Al-Dujaili, A., Hemberg, E., O’Reilly, U.: Lipizzaner:
a system that scales robust generative adversarial network training. In: 32nd Con-
ference on Neural Information Processing Systems (2018)

16. Seah, J., Tang, J., Kitchen, A., Gaillard, F., Dixon, A.: Chest radiographs in con-
gestive heart failure: visualizing neural network learning. Radiology 290(2), 514–
522 (2019)

17. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1) (2019)

18. Toutouh, J., Hemberg, E., O’Reilly, U.-M.: Data dieting in GAN training. In:
Iba, H., Noman, N. (eds.) Deep Neural Evolution. NCS, pp. 379–400. Springer,
Singapore (2020). https://doi.org/10.1007/978-981-15-3685-4 14

19. Toutouh, J., Hemberg, E., O’Reilly, U.M.: Spatial evolutionary generative adversar-
ial networks. In: Genetic and Evolutionary Computation Conference, pp. 472–480
(2019)

20. Uřičář, M., Kř́ıžek, P., Hurych, D., Sobh, I., Yogamani, S., Denny, P.: Yes, we
GAN: applying adversarial techniques for autonomous driving. Electron. Imaging
2019(15), 48-1–48-17 (2019)

21. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.:
CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-
19 detection. IEEE Access 8, 91916–91923 (2020)

22. Wang, Z., She, Q., Ward, T.: Generative adversarial networks: a survey and tax-
onomy. preprint arXiv:1906.01529 (2019)

23. Wu, X., Xu, K., Hall, P.: A survey of image synthesis and editing with generative
adversarial networks. Tsinghua Sci. Technol. 22(6), 660–674 (2017)

https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-981-15-3685-4_14
http://arxiv.org/abs/1906.01529

Analysis of Regularization in Deep Learning
Models on Testbed Architectures

Félix Armando Mejía Cajicá1(B) , John A. García Henao2(B) ,
Carlos Jaime Barrios Hernández1(B) , and Michel Riveill2

1 SC3UIS, CAGE, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
fmejia2067165@correo.uis.edu.co, cbarrios@uis.edu.co

2 Laboratoire I3S, Université Côte d’Azur, 06900 Nice, SA, France
henao@i3s.unice.fr, michel.riveill@unice.fr

Abstract. Deep Learning models have come into significant use in the field of
biology and healthcare, genomics, medical imaging, EEGs, and electronic medi-
cal records [1–4]. In the training these models can be affected due to overfitting,
which is mainly due to the fact that Deep Learning models try to adapt as much as
possible to the training data, looking for the decrease of the training error which
leads to the increase of the validation error. To avoid this, different techniques have
been developed to reduce overfitting, among which are the Lasso and Ridge regu-
larization, weight decay, batch normalization, early stopping, data augmentation
and dropout. In this research, the impact of the neural network architecture, the
batch size and the value of the dropout on the decrease of overfitting, as well as on
the time of execution of the tests, is analyzed. As identified in the tests, the neural
network architectures with the highest number of hidden layers are the ones that
try to adapt to the training data set, which makes them more prone to overfitting.

Keywords: Deep learning · Dropout · Overfitting

1 Introduction

Artificial Intelligence (AI) is the attempt to imitate human intelligence by creating pro-
grams and mechanisms that can display behaviors considered intelligent. An AI system
can analyze large volumes of information (big data), identifying patterns and trends and
from these, making predictions automatically with speed and precision. Pattern recog-
nition refers to information processing to solve a wide range of problems, such as the
classification of objects into classes, where these objects can be images, sounds, smells,
in general [5]. Deep learning (DL) is a case of a neural network characterized by having
multiple layers of neurons connected to each other, where data processing is carried out
in a hierarchical way. Neural networks obtain increasingly meaningful representations
of data through layered learning.

Among the best-known applications that use DL are those that estimate risk based
on the input data that is injected and the output data that is indicated is of greater interest.
The computer is doing more than approaching human capabilities, as it is finding new

© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 178–192, 2021.
https://doi.org/10.1007/978-3-030-68035-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_13&domain=pdf
http://orcid.org/0000-0002-9307-4177
http://orcid.org/0000-0003-4577-5144
http://orcid.org/0000-0002-3227-8651
http://orcid.org/0000-0001-6726-6637
https://doi.org/10.1007/978-3-030-68035-0_13

Analysis of Regularization in Deep Learning Models 179

relationships that are not so evident to humans and that are present in the data. For this
reason, there is great fervor in the use of AI and especially DL in the field of medicine.

Medicine is one of the sciences that has benefited most from DL algorithms since
they take advantage of the great computational capacities that allow the analysis of large
amounts of information to predict the risks of death, the duration of hospitalization and
the length of stay in intensive care units, among others [6].

The field of medicine has been supported by the DL through the analysis of medical
images taken with different techniques. Researchers have seen in new technologies such
as AI an indispensable support that facilitates and speeds up their work [7], since it will
significantly improve quality, efficiency, and results. The total volume of medical data
is increasing, it is said that every three years it doubles, making it difficult for doctors
to make good use of it, so digital processing of the information is necessary.

DL models with a large number of parameters are very powerful machine learning
systems, however, sometimes the problem of overfitting occurs, to avoid this, some
randomly selected neural network records are discarded in the training, this prevents over
adaptation by significantly reducing overfitting and providing a significant improvement
in model regularization, in addition to analyze what impact this has on execution time
and to determining that it is better to have a deep network or a wide network.

This research deals with how the DropOut regularization method [8] behaves in the
supervised DL models, which avoids overfitting and provides a way to combine approx-
imately different neural network architectures. The DropOut works by probabilistically
keeping active the inputs to a layer, which can be either input variables in the data sample
or triggers from a previous layer. As neurons are randomly kept active in the network dur-
ing training, other neurons will have to intervene and handle the representation needed to
make predictions about the missing neurons. It is believed that this results in the network
learning multiple independent internal representations. The effect is that the neuronal
network becomes less sensitive to the specific weights of the neurons. This in turn results
in a network that is capable of better generalization and less likely to overfitting.

2 Related Work

The representative power of the artificial neuronal network becomes stronger as the
architecture gets deeper [9]. However,millions of parametersmake deep neural networks
easily accessible through fit. Regularization [10, 11] is an effective way to obtain amodel
that generalizes well.

The networks become more powerful as the network gets deeper and as it has more
parameters overfitting begins to occur. By means of regularization, there is an effec-
tive way to generalize a model. There are many techniques that allow regularizing the
training of deep neural networks, such as weight decay [12], early stopping [13], data
augmentation, dropout, etc. The dropout is a technique in which randomly selected neu-
rons are ignored during training, that is, they are “dropped out” at random. This means
that their contribution to the activation of the neurons below is temporarily eliminated
in the forward pass and any weight update is not applied to the neuron in the backward
pass.

As a neural network learns, the weights of the neurons settle into their context within
the network. Theweights of the neurons are tuned for specific characteristics that provide

180 F. A. M. Cajicá et al.

some specialization. Neighboring neurons become dependent on this specialization,
which if taken too far can result in a fragile model that is too specialized for training
data. This dependence on the context of a neuron during training refers to complex
co-adaptations.

Srivastava [14] and Warde-Farley [15] demonstrated through experiments that the
weight scaling approach is a precise alternative for the geometric medium and for all
possible subnetworks. Gal et al. [8] stated that deep neural network trainingwithDropout
is equivalent to making a variational inference in a deep Gaussian Process. Dropout can
also be considered as a way of adding noise to the neural network.

At the same time, academy and industry groups are working on high-level frame-
works to enable scale out to multiple machines, extending well known deep learning
libraries (like tensorflow, pytorch and others).

Keras is an open-source neural-network library written in Python. It can run on top
of TensorFlow, Microsoft Cognitive Toolkit, R, Theano, or PlaidML [16–18]. Designed
to enable fast experimentation with deep neural networks, it focuses on being user-
friendly, modular, and extensible. It was developed as part of the research effort of
project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System),
[19] and its primary author and maintainer is François Chollet, a Google engineer. Chol-
let also is the author of the XCeption deep neural network model [20]. Horovod [21] is
a high-level library made over tensorflow, that implements a ring all reduce as gradient
update synchronization and uses MPI to communicate the workers, providing an alter-
native method for coordinating the parameters instead of PS. Whose scalability is linear
until 256 GPUs for small neural networks as Inception V3, but presents task-granularity
issues when the dimension of the neural network increases as VGG-16, the perfor-
mance decreases. Mesh-tensorflow [22], implements synchronous data-parallelism with
replicated parameters and the mini-batch is divided into sub-batches (one for each pro-
cessor), in which the gradients update broadcast to all processors, then each processor
updates its own copy of the parameters. This approach uses aWMT14 neural network to
scale until 512 cores, but it did not support accelerators. Nevertheless, these approaches
are tested with well-tuned AI benchmarks (as MLPerf), masked the workflow needs
for implementing applications in the HDA ecosystem. DiagnoseNET [23] as a modu-
lar framework that enables the application-workflow management and the expressivity
to build and finetune deep neural networks, while its runtime abstracts the distributed
orchestration of portability and scalability from a GPU workstation to multi-GPUs and
multi-nodes computational platforms. In which the inpatient-diagnostic workflow is
being optimized for training deep neural networks on low power consumption platforms
(Domain framework).

3 Methodology

The use of GPU in DL is mainly due to their enormous capacity compared to CPUs,
because the latter have a few cores optimized to process sequential tasks, instead the
GPU have a parallel architecture that has thousands of smaller, more efficient cores
designed to multitask. To determine the relationship between regularization and batch
size, dropout value and network architecture, an experimental methodology was used,

Analysis of Regularization in Deep Learning Models 181

using the Framework DiagnoseNet [23], developed at Sophia Antipolis (I3S) Computer,
Systems and Signals Laboratory in France and as input data a set of clinical admission
and hospital data which has an average of 116831 hospital patient records, which has
records of the activities of hospitals in the south-ern region of France, which contains
information on morbidity, medical procedures, admission details and other variables
[24].

Fig. 1. DiagnoseNET framework scheme [23].

DiagnoseNETwas designed to harmonize the deep learning workflow and to autom-
atize the distributed orchestration to scale the neural network model from a GPU work-
station to multi-nodes. Figure 1 shows the schematic integration of the DiagnoseNET
modules with their functionalities.

The first module is the deep learning model graph generator, which has two expres-
sion languages: Sequential Graph API designed to automatize the hyperparameters
search and a Custom Graph which support the TensorFlow expression codes for sophis-
ticated neural networks. In this module, for optimized the computationals resources, in
DiagnoseNet Framework was implemented the Population based training starts like par-
allel search, randomly sampling hyperparameters and weight initializations. However,
each training run asynchronously evaluates its performance periodically. If a model in
the population is under-performing, it will explore the rest of the population by replacing
itself with a better performing model, and it will explore new hyperparameters by mod-
ifying the better model’s hyperparameters, before training is continued. This process
allows hyperparameters to be optimized online, and the computational resources to be
focused on the hyperparameter andweight space that hasmost chance of producing good

182 F. A. M. Cajicá et al.

results. The result is a hyperparameter tuning method that while very simple, results in
faster learning, lower computational resources, and often better solutions [25]. The sec-
ondmodule is the datamanager, compose by three classes designed for splitting, batching
and multi-task any dataset over GPU workstations and multi-nodes computational plat-
forms. The third module extends the enerGyPU monitor for workload characterization,
constitute by a data capture in runtime to collect the convergence tracking logs and the
computing factormetrics; and a dashboard for the experimental analysis results [26]. The
fourth module is the runtime that enables the platform selection from GPU workstations
to multi-nodes whit different execution modes, such as synchronous and asynchronous
coordination gradient computations with gRPC or MPI communication protocols [23].

The methodology of experimentation consists of four phases as shown in Fig. 2: the
first phase receives the patient’s records. The second phase establishes the architecture
of the neural network, batch size, dropout value, number of peak periods, computer
architecture. With these parameters the training and validation of the DL model is ini-
tiated. The third phase is the analysis phase in which the overfitting, execution time,
convergence curves, computational use and F1 score variables are verified.

Once the analysis stage is finished, the results are verified and other runs are executed
with a new combination of parameters, to examine the relationship between the dropout
and the overfitting in order to determine which combination of parameters is the best to
achieve the reduction of the overfitting.

To establish the architectures of the neural networks, the same number of neuronswas
maintained in each of the architectures, onlymodifying the number of neurons per hidden
layer. The number of hidden layers increases as a power of 2, starting with 2, followed
by 4, and finally 8 hidden layers. For the dropout values that establish the probability
that a neuron remains activated, values that vary by 20% were established, starting from
40%, 60% and 80%, to determine how the models increase their generalization and two
sizes were used 100 and 200 to identify the relationship between the dropout and batch
size.

Fig. 2. Diagram of the experimental methodology.

Analysis of Regularization in Deep Learning Models 183

4 Evaluation and Results

Several executions were performed using different hardware architectures, neural net-
work architectures, batch sizes and dropout values, this in order to determine the rela-
tionship between these parameters with the execution time and the regularization of the
DL model, in order to estimate if an over adjustment occurs, establishing a maximum
number of times to stop the training process.

The dataset of input data, which was used consists of 116831 medical records of the
patients representing their characteristics, where each record has 10833 patient charac-
teristics and is labeled in 14 classes that represent the purpose of health care of the same.
Of these records, 99306 were used as training records, 5841 as validation records, and
11684 as test records.

The testbed architecture that was used for the experiments is shown in Table 1 and
Table 2.

Table 1. Testbed architecture (computer)

ID. Processor Speed Cache Cores Watts Memory

PC1 I7 4790 K 4.0 GHz 8 MB 4 88 32 GB
DDR3

PC2 I7 4710HQ 2.5 GHz 6 MB 4 47 32 GB
DDR3

Table 2. Testbed architecture (GPU)

ID. Reference Cores Speed Memory Bus

PC1 GTX 1080 TI 3584 1582 MHz 11264 MB GDDR5 352 Bits

PC2 GTX 980 M 1536 1127 MHz 4096 MB GDDR5 256 Bits

The artificial neural network architectures used were three multi-layer perceptron
neural networks, the first NNA1 that has 8 hidden layers of 256 neurons each hidden
layer, the second NNA2 with 4 hidden layers of 512 neurons and the third NNA3 with
2 hidden layers each layer with 1024 neurons, that is all the models of neural network
architecture maintain the same number of neurons. See Fig. 3.

For the experiments, the batch size, dropout value and neural network architecture
were modified.

184 F. A. M. Cajicá et al.

Fig. 3. Neural network architecture

Subsequently, the loss and accuracy graphs were analyzed, both for training and
validation. The loss graph measures the uncertainty that our classifier has had with
respect to the actual corresponding label, i.e. whether the classification has varied or has
deviated a lot or a little from what it should be. This value is intended to be closer to
0. When you have a regularized DL model, the training and validation loss curves are
quite close, i.e. the gap between these two curves is as small as possible. The accuracy
graph shows the fraction or number of examples that have been correctly classified. If
the number of known tags corresponds to the same number of predicted tags, then you
have an accuracy of 1.0. In this metric, the better our classifier is, the closer it is to 1.

Table 3 shows the results obtained in the testbed architecture PC1, with the different
combinations of parameters with which the tests were executed. The neural network
architect, batch size and dropout were varied, and the F1 Score weighted, F1 score
micro, loss validation and execution time were obtained. It can be seen that with the
different combinations there is not much variation in the execution time for each of
the tests, so it is determined that these parameters do not intervene in the training and
validation of the DL models. As for the variables F1 score Weighted, F1 Score micro
and Loss Validation, the best results are obtained in the combination of NNA2, with
batch size of 200 and dropout of 0.6.

Analysis of Regularization in Deep Learning Models 185

Table 3. Testbed table – PC1

Neural
network
architecture

Batch size DropOut F1 score
weighted

F1 score
micro

Loss
validation

Execution
time [hours]

NNA1 100 0,4 0,31 0,33 1,62 1,98

NNA1 100 0,6 0,66 0,68 0,94 1,94

NNA1 100 0,8 0,69 0,69 0,90 1,98

NNA1 200 0,4 0,21 0,23 1,63 1,95

NNA1 200 0,6 0,63 0,66 1,03 1,93

NNA1 200 0,8 0,48 0,53 1,38 1,95

NNA2 100 0,4 0,68 0,69 0,95 1,93

NNA2 100 0,6 0,71 0,71 0,90 1,94

NNA2 100 0,8 0,69 0,70 0,88 1,96

NNA2 200 0,4 0,64 0,66 0,95 1,93

NNA2 200 0,6 0,71 0,71 0,77 1,93

NNA2 200 0,8 0,58 0,61 1,09 1,94

NNA3 100 0,4 0,72 0,72 0,86 1,93

NNA3 100 0,6 0,71 0,71 0,87 1,93

NNA3 100 0,8 0,70 0,70 0,91 1,95

NNA3 200 0,4 0,71 0,71 0,79 1,93

NNA3 200 0,6 0,69 0,70 0,81 1,94

NNA3 200 0,8 0,66 0,67 0,90 1,96

Analyzing the loss curves using the NNA1 neural network architecture that contains
the 8 hidden layers, see Fig. 4; it is identified that the best combination of parameters
that allow to have a regularization of the DL model is the one that uses a batch size
of 200 and a dropout of 0.6, this is evidenced because the training and validation loss
curves are the ones that present less difference.

When the neural network architecture NNA2 is used, which consists of 4 hidden
layers, it is visualized that it diminishes the loss curve a lot, and it improves the accuracy
curve reaching almost 80%, as it is visualized in Fig. 5, with the combination of batch
size 200 and a dropout of 0.6. As it happened with the NNA1 a better regularization is
presented with this combination, since the gap between the training and validation loss
curves is quite small.

186 F. A. M. Cajicá et al.

Fig. 4. Loss & accuracy curves PC1 – NNA1

Fig. 5. Loss & accuracy curves PC1 – NNA2

Analysis of Regularization in Deep Learning Models 187

As can be seen in Fig. 6, where the loss and accuracy curves are displayed, for the
NNA3 neural network architecture, that is to say, the one that presents only two hidden
layers, it is obtained that the best combination is the batch size and the drop-out of 0.4,
because the difference between the two curves presents the least varia-tion, besides in
the accuracy curve values close to 80% are achieved.

Fig. 6. Loss & accuracy curves PC1 – NNA3

Table 4 shows the results for the testbed architecture PC2. As the PC2 displays the
same behavior, the runtime increases because the GPU has fewer cores than the PC1.

188 F. A. M. Cajicá et al.

Table 4. Testbed table – PC2

Neural
network
architecture

Batch size DropOut F1 score
weighted

F1 score
micro

Loss
validation

Execution
time [hours]

NNA1 100 0,4 0,32 0,38 1,65 2,43

NNA1 100 0,6 0,65 0,68 1,02 2,54

NNA1 100 0,8 0,69 0,69 0,91 2,44

NNA1 200 0,4 0,19 0,27 2,25 2,62

NNA1 200 0,6 0,65 0,67 1,28 2,43

NNA1 200 0,8 0,66 0,65 0,94 2,63

NNA2 100 0,4 0,67 0,69 0,95 2,45

NNA2 100 0,6 0,70 0,70 0,89 2,44

NNA2 100 0,8 0,69 0,70 0,89 2,43

NNA2 200 0,4 0,65 0,67 1,26 2,59

NNA2 200 0,6 0,70 0,71 0,97 2,44

NNA2 200 0,8 0,59 0,61 1,12 2,46

NNA3 100 0,4 0,71 0,72 0,84 2,46

NNA3 100 0,6 0,71 0,71 0,86 2,45

NNA3 100 0,8 0,70 0,70 0,93 2,47

NNA3 200 0,4 0,72 0,72 1,08 2,58

NNA3 200 0,6 0,72 0,72 1,06 2,52

NNA3 200 0,8 0,66 0,67 0,91 2,44

As for the convergence curves these present the same behavior which we can see in
the Figs. 7, 8 and 9. The loss and accuracy curves for each one of the neural net-work
architectures, NNA1, NNA2 and NNA3, are shown.

Analysis of Regularization in Deep Learning Models 189

Fig. 7. Loss & Accuracy curves PC2 – NNA1

Fig. 8. Loss & accuracy curves PC2 – NNA2

190 F. A. M. Cajicá et al.

Fig. 9. Loss & accuracy curves PC2 – NNA3

5 Discussion

The dropout is a technique that allows to improve neural networks by reducing the
overfitting, however it has limitations when it comes to changing the scale.

There is a close relationship between dropout and the number of hidden layers, the
higher the number of hidden layers, the higher the dropout value is needed so that the
accuracy of the DL model is not affected.

DL models with many parameters benefit from distributed computational architec-
tureswhere there ismore computing capacity andmemory, precisely affects performance
and therefore execution time.

6 Conclusions

The dropout improves neural networks by reducing overfitting and in turn improves the
accuracy without affecting neural network performance in a wide variety of ap-plication
areas.

Regarding the number of hidden layers, it is evident that having a deeper neural
network causes a decrease in accuracy for the DL models.

Using very low dropout values in neural network architectures with many hidden
layers affects the model’s ability to generalize values not seen in the training.

7 Further Work

To analyze the behavior of DL algorithms, the volume of input data will be drastically
increased, using HPC computing architectures, in turn, better performance monitors that

Analysis of Regularization in Deep Learning Models 191

have an impact on the efficiency of the implementation of DL algorithms for determine
the scalability, efficiency, portability and precision of the results using a variety of com-
ponents both at the hardware/software level and thus determine if these DL algorithms
can be implemented with different mechanisms.

This scalability will be measured using the MPI [27] distributed model on HPC
machines both synchronously and asynchronously and thus determine the efficiency in
terms of runtime.

References

1. Xiong,H.Y., et al.: The human splicing code reveals new insights into the genetic determinants
of disease (2015)

2. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks
(2017)

3. Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y.: Cardiologist level
arrhythmia detection with convolutional neural networks (2017)

4. Futoma, J., et al.: An improved multi-output gaussian process RNN with real-time validation
for early sepsis detection (2017)

5. Reynaga, R., Mayta, W.: Introduction the pattern recognition. Reconocer Inc. Fides Et Ratio
V.3 (2009)

6. Gentimis, T., Ala’J, A., Durante, A., Cook, K., Steele, R.: APredicting hospital length of stay
using neural networks on MIMIC III data (2017)

7. Sardanelli, F.: Trends in radiology and experimental research. European Radiology Experi-
mental. Department of Biomedical Sciences (2017)

8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncer-
tainty in deep learning. In: Proceedings of the 33nd International Conference on Machine
Learning, ICML, New York City, pp. 1050–1059 (2016)

9. Bengio, Y.: Learning deep architectures for AI. In: Foundations and Trends in Machine
Learning, pp. 1–127 (2009)

10. Wager, S., Wang, S., Liang, P.: Dropout training as adaptive regularization. In: Advances in
Neural Information Processing Systems, pp. 351–359 (2013)

11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does
unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

12. Moody, J., Hanson, S., Krogh, A., Hertz, J.A.: A simple weight decay can improve
generalization. In: Advances in Neural Information Processing Systems, pp. 950–957 (1995)

13. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural
Netw. 11, 761–767 (1998)

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

15. Warde Farley, D., Goodfellow, I.J., Courville, A., Bengio, Y.: An empirical analysis of dropout
in piecewise linear networks (2013)

16. Keras: Backend utilities Homepage. https://keras.io/backend/. Accessed 23 Feb 2018
17. Keras:Why choose Keras Homepage. https://keras.io/why-use-keras/. Accessed 22Mar 2018
18. Keras Studio Homepage. https://keras.rstudio.com/. Accessed 22 Mar 2020
19. Keras Simple: Flexible. Powerful Homepage. https://keras.io/#why-this-name-keras.

Accessed 18 Sept 2016
20. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2016)
21. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in Tensorflow

(2018)

https://keras.io/backend/
https://keras.io/why-use-keras/
https://keras.rstudio.com/
https://keras.io/#why-this-name-keras

192 F. A. M. Cajicá et al.

22. Shazeer, N., et al.: Mesh-tensorflow: deep learning for supercomputers (2018)
23. GarcíaHenao, J.A., Precioso, F., Staccini, P., Riveill,M.:DiagnoseNET: automatic framework

to scale neural networks on heterogeneous systems applied to medical diagnosis (2020)
24. García Henao, J.A., Precioso, F., Staccini, P., Riveill, M.: Parallel and distributed processing

for unsupervised patient phenotype representation (2016)
25. Jaderberg, M., et al.: Population based training of neural networks. DeepMind. London, UK

(2017)
26. García Henao, J.A., Hernandez, B.E., Montenegro, C.E., Navaux, P.O., Barrios, H.C.J.: ener-

GyPU and enerGyPhi monitor for power consumption and performance evaluation on Nvidia
Tesla GPU and Intel Xeon Phi (2016)

27. Open Source High Performance Computing Homepage. https://www.open-mpi.org/.
Accessed 24 May 2020

https://www.open-mpi.org/

Computer Application for the Detection of Skin
Diseases in Photographic Images Using

Convolutional Neural Networks

Alejandro Reátegui Pezo1(B) , Isaac Ocampo Yahuarcani2(B) ,
Angela Milagros Nuñez Satalaya2(B) , Lelis Antony Saravia Llaja2(B) ,

Carlos Alberto García Cortegano1(B) , and Astrid Fariza Panduro Ahuanari2(B)

1 Faculty of Systems and Informatics Engineering, National University of the Peruvian
Amazon, Iquitos, Peru

alejandroreategui_pezo@hotmail.com, cagaco177@gmail.com
2 Group Invéntalo, Iquitos, Peru

isaacocampoy16@gmail.com, mily_angela@hotmail.com,

saravia.lelis95@gmail.com, farizapanduro@gmail.com

Abstract. The present work was to generate an efficient computer application
for the detection of skin diseases from photographic images, using convolutional
neural network algorithms. This tool is aimed at supporting diagnostic processes.
For this research, priority has been given to the diseases “Impetigo” and “Psori-
asis”, which are common diseases in cities of the Peruvian Amazon. The city of
Iquitos will be taken as a case study. An image bank of 1640 images has been
generated, and 3 algorithms have been experimented with: Inception V3, VGG 16
and ResNet 50. Finally, excellent results have been achieved in the detection of
skin diseases with the Inception V3 algorithm.

Keywords: Computer application · Skin · CNN · Impetigo · Psoriasis

1 Introduction

Skin diseases stand out among the chronic health problems present in the population of
most countries in the world. However, they are more prevalent in countries and cities
with low economic levels and tropical regions such as the Peruvian Amazon [1]. There
are a series of factors that influence or favour the expansion of skin diseases, among
which the most important are elements associated with the environment such as temper-
ature, humidity, winds, which facilitate the expansion or growth of other factors such as
bacteria, viruses, parasites, etc. Also, in several towns and cities of the Amazon there
is little access to health services (reduced number of doctors and health centers), while
the quality of services are poor which reduces the chances of identifying, controlling
and eradicating skin diseases. Currently, through sciences such as computers, various
technological solutions are being generated to support access to public health (TELE-
SALUD), as well as the detection or diagnosis of diseases using computer tools [2–5].
In this way, the use of computer solutions based on Artificial Intelligence is proposed

© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 193–204, 2021.
https://doi.org/10.1007/978-3-030-68035-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_14&domain=pdf
http://orcid.org/0000-0003-3901-7240
http://orcid.org/0000-0002-5235-9387
http://orcid.org/0000-0003-1125-4738
http://orcid.org/0000-0003-3509-4089
http://orcid.org/0000-0003-3353-9566
http://orcid.org/0000-0003-3069-1140
https://doi.org/10.1007/978-3-030-68035-0_14

194 A. R. Pezo et al.

as alternative and complementary tools to support the reduction of gaps in public health
services.

Among themostwidespread skin diseases in theworld are atopic dermatitis,measles,
infections, hives, and the best known in a chronic state is skin cancer. Also according
to the University of Colorado Cancer Center [6], which indicates that skin diseases are
the fourth most common cause of disability that develops throughout a person’s life. In
the case of Peru, according to data from the Ministry of Health [7] at least 1,200 new
cases of skin cancer are detected nationwide, not counting the number of cases of other
skin diseases that affect both children and adults. Within the group of diseases that stand
out mainly in the child and adult population of Peru, we have impetigo, chickenpox and
psoriasis, however, there are others like scabies, hives, among others.

On the other hand, according to the reportmade by theNational Institute of Radio and
Television [8], in Peru approximately 400,000 people suffer from psoriasis disease, and
worldwide the same disease affects more than 125 million people. It is important to note
that psoriasis is considered by the World Health Organization [9], to be a very painful,
disfiguring anddisabling condition. It is alsoworthmentioning that thePeruvianMinistry
of Health [10], has been implementing a warning plan for the increase of chickenpox in
Peru since 2016. Cases have been reported in the regions of Lima, Arequipa, Amazonas,
Loreto and Piura, with up to 10,000 cases reported in 2016 and 6,000 more by the end
of 2017.

In the Peruvian Amazon, specifically in the Loreto region, there have been alarming
reports for several years of cases of skin diseases or injuries, as indicated by the website
of the newspaper La Región [11], while health campaigns have been promoted for skin
care by EsSalud [12], mainly in the city of Iquitos.

Among the determining factors that favour the expansion of skin diseases in Loreto
are the low accessibility to health services, determined by the limited number of spe-
cialist doctors, the low number of health centres in rural and indigenous communities
far from the cities, as well as a weak culture of visiting health centres by a large part
of the population (the population probably stays away for fear of invasive procedures,
which can cause some degree of pain and discomfort to the patient affected by a derma-
tological disease or injury), and even limited economic conditions. Likewise, according
to the Peruvian Institute of Economics, in the results of the Regional Competitiveness
Index - INCORE [13], the Loreto region has been in the last places with respect to the
competitiveness index of its health services for more than a decade, which considerably
affects the quality of life of the population. Among themost affected groups are children.

Among the more complex problems associated with health service quality are the
following:

• Prolonged time in traditional medical care processes for diagnosis of skin diseases in
the city of Iquitos.

• Absence of reliable methodological alternatives for diagnosis of skin diseases.
• Difficulties of the population in accessing health care services
• Scarce number of patients diagnosed due to lack of health centers and doctors.

On the other hand, there are a series of limitations typical of the health sector in the
Amazon, which could not be solved by the project:

Computer Application for the Detection of Skin Diseases 195

• The Peruvian Amazon, has high rates of skin diseases caused by various factors
such as bacteria and insects exposed in the environment, use of contaminated water
(contaminated rivers).

• Insufficient number of doctors in hospitals and accessible health centers in the cities
and rural communities.

• Insufficient number of hospitals and health centers in the Amazonian cities and rural
communities of Loreto

• Poorly equipped hospitals and health centers.
• Relatively high costs for access to health care in the Amazon
• Health centers in rural areas do not have basic conditions for attention (lack of
electricity, water, sanitation, and telecommunications).

• Factors such as the intensity of the solar waves, together with the humidity of the
Peruvian Amazon, increase the problems of skin diseases.

• All over Peru, due to climate change issues, cases of cancer and other skin diseases
are increasing.

Thus, it is necessary the existence of an alternativemechanism that supports the processes
of diagnosis of skin diseases that is easily accessible to families without socioeconomic
distinction in the urban and rural environment.

Therefore, the development of a computer application that generates relevant infor-
mation for the diagnosis of skin diseases is proposed (the result could be considered a
previous diagnosis verifiable by doctors). The idea of using mobile devices arises due
to the high rates of penetration of the use of mobile devices both in the cities and in the
indigenous communities of the Peruvian Amazon.

2 Methodology

The development of the software comprised the following steps:

2.1 Disease Prioritization and Requirement Identification

In order to understand the context and processes related to health services in Loreto,
officials, medical nurses, and other collaborators associated with the Regional Health
Directorate of theRegionalGovernment of Loreto and private entitieswere contacted and
interviewed. The central idea was to identify the main and most common skin diseases,
in addition to obtaining important information related to the procedures followed to care
for patients with skin conditions or problems, such as tools and studies that are conducted
in these conditions.

Bibliographic consultations have also been carried out in data sources such as Sco-
pus, IEEEXplore, SciencieDirect, Google Scholar, among others, searching for research
(scientific articles, postgraduate theses and even publications in the Peruvian and interna-
tional press) related to neural networks [14–16] that identify patterns of textures, disease
detection systems [17–20] and public health services.

Taking into account the information collected in the above sources, it was determined
to generate the application aimed at the recognition of the diseases “Psoriasis” and

196 A. R. Pezo et al.

“Impetigo”, these being the most widespread skin diseases in the city of Iquitos, Loreto,
on which Datasets could be built or accessed. However, the limited accessibility to
hospitals due to the COVID-19 pandemic has been presented as a limitation. Likewise,
these interviews served to analyze the processes and limitations of health services in
both cities and rural and indigenous communities, the same ones that were used in the
generation of the software requirements, which are described below:

• The system should be accessible in web and mobile formats (the latter especially for
rural areas where there is no access to electricity).

• The system must work offline for rural communities or areas far from cities, and at
the same time it must be able to provide server-connected service in urban areas.

• The system should be intuitive and its graphics should be understandable, while pro-
viding ease of use for users from indigenous peoples who do not necessarily speak
Spanish.

• The system should provide guidance on its use, emphasizing that these are preliminary
results that should be verified with visits to medical offices.

• The system should have facilities to increase the recognition of other skin diseases.
• The system shall provide graphical and sound information oriented to populations
with limited ICT capabilities.

2.2 Dataset Construction

A protocol has been defined and validated with specialist criteria for the acquisition of
photographic images of the skin, which has considered aspects such as: the distance from
the camera to the photo, lighting, colour, focus, and other conditions. At the beginning
of the generation of the datasets, visits to hospitals and health centres in the city were
determined, to identify cases of patients diagnosed with the prioritised skin diseases.
However, due to security measures associated with the COVID-19 pandemic, access
to these facilities has been limited, making it difficult to achieve the datasets entirely.
As a solution, it has been determined to obtain the dataset from dermatological image
databases, which were:

• DermIS-DATABASE [21]
• Image library: DermNet NZ [22]
• Clinical Images of Skin Diseases: Department of Dermatology [23]
• Dermnet: Dermatology photos - Photos of skin diseases [24]

The set of images downloaded from the dermatological databases made a total of 228
images (102 images of “Impetigo” and 126 images of “Psoriasis”) (Figs. 1 and 2).

Adversarial Generative Neural Networks are a new way of using deep learning to
generate images that appear real. They can also generate other types of data such asmusic.
Generative Adversarial Neural Networks are also called GANs (Generative Adversarial
Networks). Generative models use 2 deep neural networks. These two networks are
adversarial, where what one network gains, the other loses [25].

For the generation of images with GANs algorithms, a lot of processing time was
required, even up to 10 000 epochs to be able to generate 1000 images of a class in an
average time of 15 h, obtaining results that do not adapt to the expected dataset.

Computer Application for the Detection of Skin Diseases 197

Fig. 1. Dataset sample impetigo

Fig. 2. Dataset sample Psoriasis

The Data Aumentagtion technique is the artificial generation of data bymeans of dis-
turbances in the original data. This allows us to increase both the size and diversity of our
training data set. In artificial vision, this technique became a standard for regularization,
and also to improve performance and combat overfitting in CNNs [26].

In this work, offline magnification was used, which is a preferred method for rela-
tively smaller datasets, as it would end up increasing the size of the dataset by a factor
equal to the number of transformations it performs, and is applied before pre-processing.

Techniques such as: flipping, rotation and scaling were applied.
On the other hand, experimentation was carried out using the Data Augmentation

technique, a technique that occupied less processing time, thus obtaining 1000 images
for each class in an average time of thirty minutes per class.

The results of the Data Aumentagtion technique are presented here (Fig. 3):

198 A. R. Pezo et al.

Fig. 3. Dataset with Data aumentagtion

2.3 Algorithm Selection and Experimentation

Taking into account experiences and case studies found in the literature review related
to the implementation of texture-oriented convolutional neural networks and computer
solutions applied to health, three algorithms were initially identified: Inception V3 [27],
VGG 16 [28] and ResNet 50 [29].

We experimented with the 3 algorithms, comparing the results according to the
following criteria:

• Algorithm configuration: Number of layers, Number of epochs, Filter size, libraries,
among others.

• Processing time based on the collection of similar research with the above mentioned
algorithms.

• Significant indicators in training and testing processes: Sensitivity, Accuracy, Speci-
ficity, others.

a. Inception V3 Algorithm
It is the third version in a series of deep-learning convolutional architectures. Incep-
tion V3 was trained using a 1,000 class data set from the original ImageNet data set
that was trainedwith over 1million training images, the Tensorflowversion has 1,001
classes due to an additional “background” class not used in the original ImageNet.
Inception V3 was trained for the ImageNet Large Visual Recognition Challenge,
where it took first place [27, 30].

b. VGG 16 Algorithm
It was proposed by Karen Simonyan and Andrew Zisserman of the Laboratory of
the Visual Geometry Group at Oxford University in 2014 in the article “Very deep
convolutional networks for large-scale image recognition”. This model won 1st and
2ndplace in the above categories in the ILSVRC2014 challenge. Thismodel achieves
92.7% test accuracy in the top 5 in the ImageNet dataset containing 14million images
belonging to 1000 classes [28, 31].

Computer Application for the Detection of Skin Diseases 199

c. ResNet 50 algorithm
It is a model developed in a residual learning framework to facilitate substantially
deeper networking, and has been shown to be easier to optimise and more accurate.
This model achieved an error of 3.57% in the ImageNet data set. This result won 1st
place in the ILSVRC 2015 classification task. An analysis on CIFAR-10 with 100
and 1000 layers was also presented [29].

These models have the following architecture (Table 1):

Table 1. Architecture of the convolutional neuronal networks

Inception V3 VGG 16 ResNet 50

Input Image Dimensions 299 × 299 × 3 224 × 224 × 3 224 × 224 × 3

Total number of layers 42 layers 16 layers 50 layers

Error rate 3.46% 6,3% 3.57

Filter size 1 × 1, 3 × 3, 5 × 5 3 × 3 1 × 1, 3 × 3

The model settings were adjusted for binary classification, as only the classes
“Impetigo” and “Psoriasis” are available.

For the execution of the training of the algorithms the Anaconda environment has
been implemented with Jupyter’s notebook in the version of Python 3.7. Since these
algorithms require considerable computing power, the comparative use of a personal
computer (laptop), a workstation and a supercomputer was defined at the beginning of
the training. The Peruvian Amazon has had a public access Supercomputer since 2017
[32]. Since the execution in the personal computer was quite slow and there was an
interruption in the access to the Supercomputer, the experimentation in the Workstation
was determined.

2.4 Design and Development of Computer Applications

A series of activities were established to build and develop the application, in order to
have an accessible and friendly tool for the end user.

Application Interface Design: To elaborate the design of theweb application, the basic
and important functions of the application were taken into account, as well as the user
experience in the use and handling of technologies in order to obtain a user-friendly
software. Within the system is considered the function to attach an image type file from
a data source (image gallery, local file folder, etc).

For the development of the web application, the team worked under the XPMethod-
ology (Extreme Programming), considered as an agile methodology that adjusts to the
limitations of time and human and financial resources that characterize this development
according to the needs identified in the requirements.

200 A. R. Pezo et al.

Computer Configuration: The web platform was taken into account for the develop-
ment process of the IT solution, which was developed under the use of tools and free
software, the programming language PHP and the programming language Python was
used to develop the scripts for the execution of the recognition (Fig. 4).

Fig. 4. Design logical web application architecture

3 Results

As a result of the Data Aumentagtion technique, and the training time required by the
data set, an average dataset of 1680 images was finally determined for the training of
each convolutional neural network model.

At the end of the training and use tests, more favourable results were obtained for
the models under the following scheme (Table 2):

Table 2. Results of comparison between CNN models

Inception v3 VGG 16 ResNet 50

Époch 10 10 10

Time of processing 3 h 1 h 2 h

Batch_size 16 16 16

Data 1680 1680 1680

Time recognition 1 min 31 s 36 s

An average of 12 experiments were performed, 4 for each neural network, with 10,
30, 50 and 100 epochs, with batch_size of 16, 32 and 64, however, better results were
obtained at 10 epochs.

Computer Application for the Detection of Skin Diseases 201

Therefore, the comparison of themodels to 10 epochs has achieved acceptable results
in the Sensitivity, Specificity, Precision and Accuracy indexes detailed in the following
table (Table 3):

Table 3. Results of the Metrics

Inception
v3

VGG 16 ResNet 50

Sensibility 94% 92% 92%

Especificity 94% 92% 92%

Precision 94% 92% 92%

Exactitud 94% 92% 92%

Finally, higher indices have been observed in the Inception V3 algorithm, this algo-
rithm was implemented in the computer application in web format (Figs. 5 and 6).

Fig. 5. System image recognizing “Impetigo”.

202 A. R. Pezo et al.

Fig. 6. System image recognizing “Psoriasis”

4 Conclusions

At the end of the experiment, we can conclude that the generation of images from data
augmentation techniques is much more favorable with respect to time, whereas GAN
images require greater computational capacity, longer times and even greater diversity
in the base data set. The Data aumentagtion technique is easier to implement.

It is concluded that the alternative method generated in this research has proven
results that indicate that it can be a useful tool in the identification of skin diseases
(Impetigo and Psoriasis), and support the processes of recognition with a non-invasive
method and with real-time results, from an image taken from a mobile device.

Futurework is expected to includemore images and diseases, in order to build disease
recognition services as a support tool in medical diagnosis in regions with health service
constraints.

References

1. Gutierrez, E., et al.: Prevalence of skin diseases in a rural area of Peruvian Amazonia.
Dermatología Peruana 19(2) (2009)

2. Melbin, K., Vetha Raj, Y.J.: An enhanced model for skin disease detection using dragonfly
optimization based deep neural network. In: 2019 Third International conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 346–351 (2019)

3. Anthal, J., Upadhyay, A., Gupta, A.: Detection of vitiligo skin disease using LVQ neural
network. In: International Conference on Current Trends in Computer, Electrical, Electronics
and Communication, pp. 922–925 (2017)

4. Rathod, J., Waghmode, V., Sodha, A., Bhavathankar, P.: Diagnosis of skin diseases
using Convolutional Neural Networks. In: Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA), pp. 1048–1051 (2018)

5. ConSalud.es: Una nueva técnica para detectar rápidamente el cáncer de piel. Redacción Con-
Salud, 19 Setiembre (2019). [En línea]. https://www.consalud.es/tecnologia/una-nueva-tec
nica-para-detectar-rapidamente-el-cancer-de-piel_68526_102.html

https://www.consalud.es/tecnologia/una-nueva-tecnica-para-detectar-rapidamente-el-cancer-de-piel_68526_102.html

Computer Application for the Detection of Skin Diseases 203

6. Todo Dermo. https://www.correofarmaceutico.com/. 4 Marzo 2017. [En línea]. https://www.
correofarmaceutico.com/tododermo/enfermedades-de-la-piel/las-enfermedades-de-la-piel-
la-cuarta-causa-de-discapacidad-en-el-mundo.html

7. Ministerio de Salud (2016). http://bvs.minsa.gob.pe/. [En línea]. http://bvs.minsa.gob.pe/
local/MINSA/3774.pdf

8. Instituto Nacional de Radio y Televisión del Perú. https://www.tvperu.gob.pe/. 6 Mayo
2019. [En línea]. https://www.tvperu.gob.pe/novedades/junta-medica/psoriasis-una-enferm
edad-que-debes-conocer-a-profundidad

9. Asociación de Pacientes de Psoriasis, Artritis Psoriásica y Familiares. https://www.accionpso
riasis.org/. [En línea]. https://www.accionpsoriasis.org/recursos/publicaciones.html?catid=
0&id=373#:~:text=La%2067%20%C2%AA%20Asamblea%20Mundial,la%20que%20no%
20hay%20cura%22

10. Ministerio de Salud (2018). http://www.dge.gob.pe/. [En línea]. http://www.dge.gob.pe/por
tal/docs/vigilancia/boletines/2018/52.pdf

11. Diario La Región. https://diariolaregion.com/. 26 Noviembre 2012. [En línea]. https://diario
laregion.com/web/enfermedades-a-la-piel-en-loreto-cada-ano-aumentan/

12. EsSalud. http://www.essalud.gob.pe/. 30 Enero 2015. [En línea]. http://www.essalud.gob.pe/
essalud-promueve-campana-de-prevencion-de-lesiones-en-la-piel-en-la-ciudad-de-iquitos/

13. Instituto Peruano de Economía (2019). https://www.ipe.org.pe/. [En línea]. https://www.ipe.
org.pe/portal/incore-2019-indice-de-competitividad-regional/

14. Venegas, D.: Sistema de Pre-Diagnóstico de Cáncer deMelanomas usando Redes Neuronales
Artificiales, Texcoco (2019)

15. Cabezas, E., Galarza, E.: Reconocimiento de patrones de imágenes médicas para establecer
diagnósticos previos en trastornos pulmonares, Ambato (2019)

16. Cabezas, E.: Reconocimiento de patrones de imágenes médicas para establecer diagnósticos
previos en trastornos pulmonares, Ambato (2019)

17. Kaplan, A., Güldoğan, E., Çolak, C., Arslan, A.K.: Prediction of Melanoma from Dermo-
scopic Images Using Deep Learning-Based Artificial Intelligence Techniques. IEEE Xplore
(2019)

18. Suárez, J., Colín, L., Mejía, A., Ambriz, J., García, J.: Una aproximación al diagnóstico de
enfermedades de la piel por medio de aprendizaje profundo. Número Especial de la Revista
Aristas: Investigación Básica y Aplicada, vol. 6, nº 12, pp. 13–16 (2018)

19. Coronado, R.: Reconocimiento de patrones en imágenes no dermatoscópicas para la detec-
ción de enfermedades malignas en la piel, utilizando redes neuronales convolutivas y
autocodificadores (2018)

20. Gavrilov, D., Schelkunov, N., Melerzanov, A., Gorodilov, A.: Artificial intelligence image
recognition inhealthcare. IEEE Xplore, pp. 24–26 (2018)

21. Dermis.net: Dermatology Information System. [En línea]. https://www.dermis.net/dermis
root/es/home/index.htm

22. DermNet NZ: Dermatology Image Library. [En línea]. https://www.dermnetnz.org/image-lib
rary/

23. University of Iowa: Carver College of Medicine - Clinical Skin Disease Images. [En línea].
https://medicine.uiowa.edu/dermatology/education/clinical-skin-disease-images

24. Dermet:ActinicKeratosisHandPhotos. [En línea]. http://www.dermnet.com/images/Actinic-
Keratosis-Hand

25. IArtificial.net (2020). https://www.iartificial.net/. [En línea]. https://www.iartificial.
net/redes-neuronales-generativas-adversarias-gans/#:~:text=Las%20Redes%20Neurona
les%20Generativas%20Adversarias,generar%20im%C3%A1genes%20que%20parecen%
20reales.&text=Las%20Redes%20Neuronales%20Generativas%20Adversarias%20tamb
i%C3%

https://www.correofarmaceutico.com/
https://www.correofarmaceutico.com/tododermo/enfermedades-de-la-piel/las-enfermedades-de-la-piel-la-cuarta-causa-de-discapacidad-en-el-mundo.html
http://bvs.minsa.gob.pe/
http://bvs.minsa.gob.pe/local/MINSA/3774.pdf
https://www.tvperu.gob.pe/
https://www.tvperu.gob.pe/novedades/junta-medica/psoriasis-una-enfermedad-que-debes-conocer-a-profundidad
https://www.accionpsoriasis.org/
https://www.accionpsoriasis.org/recursos/publicaciones.html%3fcatid%3d0%26id%3d373#:%7e:text%3dLa%2067%20%25C2%25AA%20Asamblea%20Mundial%2cla%20que%20no%20hay%20cura%2522
http://www.dge.gob.pe/
http://www.dge.gob.pe/portal/docs/vigilancia/boletines/2018/52.pdf
https://diariolaregion.com/
https://diariolaregion.com/web/enfermedades-a-la-piel-en-loreto-cada-ano-aumentan/
http://www.essalud.gob.pe/
http://www.essalud.gob.pe/essalud-promueve-campana-de-prevencion-de-lesiones-en-la-piel-en-la-ciudad-de-iquitos/
https://www.ipe.org.pe/
https://www.ipe.org.pe/portal/incore-2019-indice-de-competitividad-regional/
https://www.dermis.net/dermisroot/es/home/index.htm
https://www.dermnetnz.org/image-library/
https://medicine.uiowa.edu/dermatology/education/clinical-skin-disease-images
http://www.dermnet.com/images/Actinic-Keratosis-Hand
https://www.iartificial.net/
https://www.iartificial.net/redes-neuronales-generativas-adversarias-gans/#:%7e:text%3dLas%20Redes%20Neuronales%20Generativas%20Adversarias%2cgenerar%20im%25C3%25A1genes%20que%20parecen%20reales.%26text%3dLas%20Redes%20Neuronales%20Generativas%20Adversarias%20tambi%25C3%25

204 A. R. Pezo et al.

26. NanoNet Technologies Inc. (2018). https://nanonets.com/. [En línea]. https://nanonets.com/
blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception
Architecture for Computer Vision (2015)

28. Simonyan, K., Zisserman, A.: Very deep concolutional networks for large-scale image
recognition. In: ICLR 2015 (2015)

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR
(2016)

30. Corporación Intel (2019). https://software.intel.com/. [En línea]. https://software.intel.com/
content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-cla
ssifying-acute-myeloidlymphoblastic.html

31. Neurohive (2018). https://neurohive.io/. [En línea]. https://neurohive.io/en/popular-networks/
vgg16/

32. Diario La región. https://diariolaregion.com/. 28 Enero 2017. [En línea]. https://diariolar
egion.com/web/inauguraron-supercomputadora-del-iiap-denominada-manati/

https://nanonets.com/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://software.intel.com/
https://software.intel.com/content/www/us/en/develop/articles/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://neurohive.io/
https://neurohive.io/en/popular-networks/vgg16/
https://diariolaregion.com/
https://diariolaregion.com/web/inauguraron-supercomputadora-del-iiap-denominada-manati/

Neocortex and Bridges-2 : A High
Performance AI+HPC Ecosystem for
Science, Discovery, and Societal Good

Paola A. Buitrago(B) and Nicholas A. Nystrom

Pittsburgh Supercomputing Center, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

paola@psc.edu

Abstract. Artificial intelligence (AI) is transforming research through
analysis of massive datasets and accelerating simulations by factors of
up to a billion. Such acceleration eclipses the speedups that were made
possible though improvements in CPU process and design and other
kinds of algorithmic advances. It sets the stage for a new era of dis-
covery in which previously intractable challenges will become surmount-
able, with applications in fields such as discovering the causes of can-
cer and rare diseases, developing effective, affordable drugs, improving
food sustainability, developing detailed understanding of environmental
factors to support protection of biodiversity, and developing alternative
energy sources as a step toward reversing climate change. To succeed, the
research community requires a high-performance computational ecosys-
tem that seamlessly and efficiently brings together scalable AI, general-
purpose computing, and large-scale data management. The authors,
at the Pittsburgh Supercomputing Center (PSC), launched a second-
generation computational ecosystem to enable AI-enabled research,
bringing together carefully designed systems and groundbreaking tech-
nologies to provide at no cost a uniquely capable platform to the research
community. It consists of two major systems: Neocortex and Bridges-
2. Neocortex embodies a revolutionary processor architecture to vastly
shorten the time required for deep learning training, foster greater inte-
gration of artificial deep learning with scientific workflows, and accel-
erate graph analytics. Bridges-2 integrates additional scalable AI, high-
performance computing (HPC), and high-performance parallel file sys-
tems for simulation, data pre- and post-processing, visualization, and
Big Data as a Service. Neocortex and Bridges-2 are integrated to form
a tightly coupled and highly flexible ecosystem for AI- and data-driven
research.

Keywords: Computer architecture · Artificial intelligence · AI for
Good · Deep learning · Big data · High-performance computing

c© Springer Nature Switzerland AG 2021
S. Nesmachnow et al. (Eds.): CARLA 2020, CCIS 1327, pp. 205–219, 2021.
https://doi.org/10.1007/978-3-030-68035-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68035-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-68035-0_15

206 P. A. Buitrago and N. A. Nystrom

1 Introduction

Scalable artificial intelligence (AI) is of vital importance for enabling research,
yet computational resources to support developing accurate models have largely
been based on processor technologies developed for other kinds of applications,
and infrastructure to support scaling has been implemented mostly in software,
limiting its effectiveness and ease of use. This paper describes a new, ambi-
tious computer architecture for supporting AI-enabled research that balances
the most powerful processors ever built with high-performance computing and
data infrastructure. The two systems—Neocortex, which vastly shortens the time
required for deep learning training, and Bridges-2, which provides great capacity
for the many facets of rapidly evolving research—are integrated into a compu-
tational ecosystem to enable research in AI and its applications across all fields
of study. They are being deployed at the Pittsburgh Supercomputing Center
(PSC), a joint research center of Carnegie Mellon University and the University
of Pittsburgh.

In 2012, the artificial neural network AlexNet [11] demonstrated the power
of deep neural networks (DNNs) by dramatically decreasing the error rate in
image classification and surpassing other machine learning (ML) approaches by
10.8% in the 2012 ImageNet competition. AlexNet achieved a top-5 error rate
of 15.3%, with human-level accuracy being 5.1%. AlexNet consists of 8 network
layers and 62,378,344 parameters, and it requires 7.25 × 108 flops. It took over
five days to train on two NVIDIA GTX 580 GPUs.

The AlexNet result was significant because it convincingly demonstrated the
ability of deep neural networks to automatically learn representations. AlexNet
surpassed decades of traditional machine learning based on explicit feature engi-
neering and other statistics. Inspired by AlexNet, researchers began developing
more deeper, more sophisticated networks with progressively better results. Con-
currently, domain scientists started applying the networks being created – and
creating their own – to challenging problems in medical imaging, weather, cos-
mology, and many other fields.

In 2015, a new network, ResNet-152 [8], achieved top-5 error rate of only
4.49%, surpassing human-level accuracy. What changed were that ResNet-152
is an example of a residual network, and it is extremely deep: 152 layers. It
has 60,192,872 parameters and requires 1.13× 1010 flops, over 15 times that for
AlexNet. This pattern is repeated across image classification and segmentation,
time series analysis, natural language processing, and other fields to which deep
learning is applied with great degrees of success: deeper, more complex networks
better learn representations and result in higher accuracy. Neural networks for
time series analysis and natural language processing (NLP) require recurrence
and are much larger, for example, 330 million parameters for BERT [6] and 8.3
billion parameters for Megatron-LM [16]. In 2020, the GPT-3 language model
presented another example of larger models yielding more accurate inferences.
GPT-3 has 175 billion parameters and required 3.14 × 1023 flops (10 petaflop-
years) to train [1]. Training time is the primary bottleneck in applying AI to

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 207

research, and the increasing complexity of deep learning models amplifies exac-
erbates the time required for training.

Concurrently, researchers have begun to apply deep learning to a wide range
of fields in science and engineering with remarkable results. For example, Kasim
et al. demonstrated speedups of 100,000 to 2,000,000,000 for a variety of applica-
tions including inertial confinement fusion (ICF), a global ocean biogeochemical
model (MOPS), and a global aerosol-climate model (GCM) using Deep Emula-
tor Network SEarch (DENSE) to develop and train neural network models [9].
The models are then used as emulators, i.e., as surrogates that replace computa-
tionally demanding calculations with much faster inferencing. Using a different
approach, Smith et al. demonstrated billion-fold speedup in quantum chemistry
with neural network potentials and transfer learning while approaching gold-
standard accuracy of CCSD(T)/CBS calculations [17]. In large-scale data ana-
lytics, Khan et al. developed a neural network classifier for galaxies in the Dark
Energy Survey (DES) that achieves state-of-the-art accuracy of 99.6% and also
showed how it can be combined with unsupervised recursive training to prepare
for extremely large sky surveys such as will be obtained from the Large Synoptic
Survey Telescope (LSST) project [10].

The benefits of high-accuracy models are great. Such models can be applied
to analyze and extract information from large datasets and to create surrogate
models that substitute for expensive calculations in simulation codes to decrease
time-to-solution by orders of magnitude without loss of accuracy. But first, the
models must be trained.

Training deep neural networks often takes days, weeks, or even months. For
some applications such as image segmentation in radiology, there already exist
deep neural networks that are known to work reasonably well. For many other
applications, developing a model first requires building and optimizing a neu-
ral network architecture. Different types of networks better suited to different
types of applications, and the field is evolving rapidly, with new network types
frequently emerging. Once a network architecture is selected, and also to choose
between network architectures, hyperparameters must be optimized, requiring
additional sets of runs. The time requirement can be prohibitive. It is this chal-
lenge that Neocortex is designed to overcome.

The following sections describe a unique, heterogeneous system architecture
for scalable AI, data pre- and post-processing, and simulation. Section 2 sum-
marizes related work. For context, Sect. 3 provides an overview of the integrated
system. Sections 4 and 5 then describe the Neocortex and Bridges-2 architec-
tures, respectively. Section 6 concludes with a summary of the ecosystem’s novel
capabilities and expected opportunities.

2 Related Work

The heterogeneous architecture of Bridges-2 is an evolution of the Bridges sys-
tem [13,14], which pioneered the convergence of HPC, AI, and Big Data. Bridges,
which was designed in early 2014 and entered production in April 2016, tightly

208 P. A. Buitrago and N. A. Nystrom

integrated dual-socket CPU nodes, large-memory four- and sixteen-socket CPU
nodes, GPU nodes, and a parallel, disk-based file system with an overarching
interconnect fabric. Bridges enabled complex workflows running concurrently on
different kinds of compute nodes for which individual components were best-
suited. Dedicated nodes containing solid-state disks (SSDs) for high IOPs and
hard disk drives (HDDs) for large capacity supported persistent databases and
web portals for different kinds of research (“science gateways”). Bridges was the
world’s first deployment of the Intel Omni-Path Architecture (OPA) fabric.

In November 2018, the authors developed and deployed Bridges-AI [4] as an
expansion to Bridges. Bridges-AI consists of two types of AI-optimized nodes: an
NVIDIA DGX-2 enterprise AI research system and nine Hewlett Packard Enter-
prise (HPE) Apollo 6000 Gen10 servers. The DGX-2 contains sixteen NVIDIA
Tesla V100 GPUs with 32 GB of HBM2 memory (aggregate 512 GB HBM2),
interconnected by the NVSwitch at 2.4 TB/s bisection bandwidth, 30TB NVMe
of SSD, two Intel Xeon Platinum 8168 CPUs, and 1.5 TB of CPU memory. Its
10,240 tensor cores deliver 2 Pf/s of performance. Until recently, the DGX-2 was
the world’s most powerful AI system. The nine Apollo 6000 servers each have
eight V100 GPUs with 16 GB of HBM2 memory, 7.68 TB NVMe SSD, two Intel
Xeon Gold 6148 CPUs, and 192 GB of CPU memory. They provide additional
substantial capacity for deep learning training for models and data that don’t
require the DGX-2. When Bridges-AI entered production in January 2019, it
expanded the aggregate AI capacity of the NSF XSEDE ecosystem by 300%.

The optimization of advanced cyberinfrastructure for AI research is highly
complex due to the rapid advance of hardware and software technologies and the
differences between models that are important for social networks and business
versus models that address the very large images, volumes, time series, and
multimodal data of research applications. The Open Compass [2] project aims to
evaluate the potential of new AI technologies for research, going beyond standard
benchmarks such as MLPerf to also evaluate representative research applications,
and developing and sharing best practices.

As more is learned, there exists the potential to apply AI to improve the
design of large-scale computer systems and specific workloads. Concurrently, AI
can be applied to increase supercomputers’ performance, reliability, and usabil-
ity and to improve user experience. This is the subject of one of the authors’
(Buitrago’s) Calima project, and it is addressed in the report of the NSF Work-
shop on Smart Cyberinfrastructure [3].

3 Integrated Neocortex + Bridges-2 AI+HPC Ecosystem

Neocortex and Bridges-2, which are detailed in the following sections, are
being integrated with each other, Bridges-AI [4], and wide-area networks
to national and international cyberinfrastructure, instruments, campuses, and
clouds. Figure 1 illustrates the computational and data components and band-
widths of the combined system.

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 209

Fig. 1. High-level architecture of the Neocortex and Bridges-2 ecosystem for AI, HPC,
and data. Bandwidths are balanced to enable efficient access to data and rapidly staging
large-scale data from Bridges-2’s Ocean file system to Neocortex’s local NVMe flash
file system. This facilitates training on Neocortex and doing pre- and post-processing
on Bridges-2, as well as equitable access to Neocortex for a large number of users and
research projects.

210 P. A. Buitrago and N. A. Nystrom

From a hardware architecture perspective, the goals are capability, perfor-
mance, and efficiency. Capability arises from processing nodes that are sepa-
rately specialized for different components of research workflows and that have
unified access to high-performance data storage. Performance arises from node
architectures that are individually optimized for deep learning and other machine
learning, high performance computing, and large-memory tasks. Efficiency arises
from balanced bandwidth across the various data paths within the system.

A key metric for the combined system is efficiently transferring data from
Bridges-2 to Neocortex, for which loading 200 TB of training data into Neocortex
from Bridges-2 can be achieved in approximately 20 min, assuming that the data
is well-distributed in Bridges-2’s large (15 PB) disk-based Ocean file system,
resident in its flash-based Jet file system, or resident in RAM.

4 Neocortex

In early summer 2020, an innovative and unprecedented AI supercomputer, Neo-
cortex, was awarded by the National Science Foundation. Neocortex, which cap-
tures groundbreaking new hardware technologies, is designed to accelerate AI
research in pursuit of science, discovery, and societal good.

Neocortex is a highly innovative resource designed to accelerate AI-powered
scientific discovery by vastly shortening the time required for deep learning train-
ing, foster greater integration of artificial deep learning with scientific workflows,
and provide revolutionary new hardware for the development of more efficient
algorithms for artificial intelligence and graph analytics. Its scale democratizes
access to game-changing compute power otherwise only available to tech giants,
allowing students, postdocs, faculty, and other researchers who require faster
turnaround on training to analyze data and integrate AI with simulations. A
primary goal of Neocortex is to inspire the research community to tackle big
ideas, no longer constrained by computational resources, and scale their AI-
based research and integrate AI advances into their research workflows. Neocor-
tex allows users to apply more accurate models and train on larger data. It also
allows scaling model parallelism to unprecedented levels, avoiding the need for
expensive and time-consuming hyperparameter optimization.

Neocortex is Designed to Enable Three Exciting Areas of Research. First, the
WSE takes processor architecture to an unprecedented scale. Providing the
research community with access to that unique and remarkable capability is
vital to understand the potential of the WSE approach. Second, as powerful as
the WSE is, there are models too large for one WSE. Neocortex uniquely cou-
ples two CS-1 systems using a large-memory “front end” to enable research into
scaling across multiple WSEs. Third, Neocortex is designed to enable important
research for societal good. Examples include discovering the fundamental causes
of rare diseases and providing insights into treatments, revealing the low-level
mechanisms of cancer to improve understanding of its causes and progression
despite its complexity, and improving crops’ resistance to climate change to alle-
viate world hunger.

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 211

4.1 Neocortex Overview

Neocortex couples two Cerebras CS-1 AI servers with a large shared mem-
ory HPE Superdome Flex HPC server to achieve unprecedented AI scalability
with excellent system balance. Each Cerebras CS-1 is powered by one Cerebras
Wafer Scale Engine (WSE) processor, a revolutionary high-performance proces-
sor designed specifically to accelerate deep learning training and inferencing [12].
The Cerebras WSE is the largest chip ever built, containing 400,000 AI-optimized
cores implemented on a 46,225 mm2 wafer with 1.2 trillion transistors. An on-chip
fabric provides 100 Pb/s of bandwidth through a fully configurable 2D mesh with
no software overhead. The Cerebras WSE includes 18 GB of SRAM accessible
within a single clock cycle at 9 PB/s bandwidth. The Cerebras WSE is uniquely
engineered to enable efficient sparse computation, wasting neither time nor power
multiplying the many zeroes that occur in deep networks. The Cerebras CS-1
software can be programmed with common machine learning frameworks such as
TensorFlow and PyTorch, which for computational efficiency are mapped onto
an optimized graph representation and a set of model-specific computation ker-
nels. The CS-1 also supports native code development. Support for the most
popular deep learning frameworks and automatic, transparent acceleration will
researchers with ease of use. Table 1 summarizes the architectural characteristics
of the subsystems of Neocortex.

Table 1. Neocortex architectural characteristics. Each of the two Cerebras CS-1 sys-
tems features a Cerebras Wafer Scale Engine (WSE) processor.

Cerebras CS-1

AI Processor Cerebras Wafer Scale Engine (WSE)

400,000 Sparse Linear Algebra Compute (SLAC) cores

1.2 trillion transistors

46,225 mm2

18GB SRAM on-chip memory

9.6PB/s memory bandwidth

100Pb/s interconnect bandwidth

System I/O 1.2Tb/s (12 × 100GbE interfaces)

HPE Superdome Flex

CPUs 32 × Intel Xeon Platinum 8280

Memory 24TiB RAM, aggregate bandwidth 4.5TB/s

Data storage 32 × 6.4TB NVMe SSDs

204.6TB aggregate

150GB/s read bandwidth

Network to CS-1 systems 24 × 100 GbE interfaces

1.2Tb/s (150GB/s) to each CS-1

2.4Tb/s aggregate

Network to Bridges-2 16 × HDR-100 InfiniBand

1.6Tb/s aggregate

212 P. A. Buitrago and N. A. Nystrom

The two Cerebras CS-1 systems and the HPE Superdome Flex are balanced
to allow running the CS-1 systems concurrently on different models or together
on a single model. This includes the bandwidth of the NVMe SSD file system in
Neocortex, the bandwidth to each CS-1, and the even higher RAM bandwidth
of Superdome Flex.

4.2 Cerebras CS-1 and Wafer Scale Engine

The Cerebras CS-1 is first available system featuring the Cerebras Wafer Scale
Engine (WSE) processor, which is the largest chip ever built. Fabricated using a
whole silicon wafer, the Cerebras WSE measures 46,225 2 and contains 400,000
AI-optimized cores and 1.2 trillion transistors. It includes an on-chip 100 Pb/s
fabric as a fully configurable 2D mesh with no software overhead. 18 GB of SRAM
provides memory latency of only one clock and memory bandwidth of 9.6 PB/s.
The Cerebras CS-1 contains one WSE processor, twelve 100 GbE ports, twelve
3 kW power supplies, and self-contained water cooling in a 15U enclosure.

The matrix and vector values of deep neural networks are mostly zeros, which
arises from operations such as ReLU (rectified linear unit; 90% natural spar-
sity) and dropout (30% natural sparsity). For example, Transformer has 50–98%
zeros [7]. The inherent sparsity of deep neural networks is not aligned with GPUs
and CPUs, the memory subsystems of which have been designed to maximize
the efficiency of dense operations. For networks with high sparsity, there is little
to no cache reuse. This mismatch manifests as low performance resulting from
the high latency incurred when fetching non-sequential data from memory or
other processors, potentially across a PCI Express bus. The latency for remote
fetches, i.e., at least a microsecond, is at least three orders of magnitude greater
than accessing data that is already in cache, only a few clocks away, i.e., on the
order of a nanosecond.

The Cerebras WSE overcomes the latency barrier through mutually rein-
forcing architectural advances in on-chip memory, in-processor communications,
optimized compute cores, and software. These synergistic advances overcome
the latency barrier by making memory accesses local and explicitly addressing
sparsity.

The 400,000 Sparse Linear Algebra (SLA) cores of the WSE are optimized
for deep learning. They contain no caches or other unnecessary features that
would introduce overhead. The SLA cores are fully programmable, supporting
arithmetic, logical operations, load/store, and branching, and they implement
optimized tensor operations specific to deep learning. The SLA cores are engi-
neered to exploit sparsity, containing fine-grained dataflow scheduling through
which compute is triggered by data. Multiples are performed only for non-zero
operands. Both fine- and coarse-grained sparsity are supported to accommodate
activations and weights being zero at both the individual and block levels [5].

The WSE includes 18 GB of on-chip SRAM (static RAM), yielding 9 PB/s
of memory bandwidth and a latency of only one clock cycle. The distribution of
SRAM across the wafer supports sparsity to run all SLA cores at full speed [12].

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 213

The Cerebras Swarm communication fabric interconnects the 400,000 cores
on the WSE. It is a flexible, all-hardware, 2D mesh that delivers 100 Pb/s of
bandwidth, hardware routing, and single-word active messages. Link latency
and energy cost are extremely low. The Swarm fabric is fully reconfigurable,
allowing optimized communication paths to be implemented for each model,
avoiding overheads and improving power efficiency [12].

The Cerebras software stack abstracts the WSE’s sophisticated features to
allow translation from models expressed in TensorFlow and PyTorch to highly
efficient implementations on the WSE. The Cerebras Graph Compiler builds a
dataflow representation from the user’s model, mapping it onto an intermediate
representation and optimized low-level kernels. A place-and-route step maps the
model onto the WSE, creating a datapath that is optimized for locality and
communications [18].

This hardware and software co-design enables great efficiency and new
approaches to model parallelism. For example, by placing an entire network
on the WSE at once, data can be streamed through a multi-stage pipeline, effec-
tively running all layers simultaneously.

4.3 HPE Superdome Flex

The HPE Superdome Flex system is a high-end, modular, shared-memory server
engineered for mission-critical AI and HPC workloads. For Neocortex, a large
Superdome Flex was selected as the most powerful, user-friendly front-end for the
two Cerebras CS-1 systems. The scalability of the Superdome Flex allows it to be
robustly provisioned to drive the CS-1 systems independently or together. The
Superdome Flex builds on experience with large shared-memory servers, which
have been observed to support scaling with high ease of use (e.g., Blacklight [15]).

The Superdome Flex in Neocortex consists of 8 chassis connected by an
internal interconnect to create a single-system image (SSI) spanning 32 high-
end CPUs, 24 TB of hardware cache-coherent shared memory, 204.8 TB (raw) of
high-bandwidth NVMe PCIe flash storage, 24 100 GbE ports, and 16 HDR-100
InfiniBand ports. The full 24 TB of RAM is cache-coherent across all 32 CPUs,
supported by HPE Superdome Flex ASICs with coherency unit of one cache
line (64 bytes). The internal Superdome crossbar interconnect, supported by
two HPE Superdome Flex ASICs in each chassis, supports 850 GB/s of bisection
bandwidth. The single-system image lets users quickly and conveniently train on
their data without having manually to distribute it across a cluster of servers,
saving them time and avoiding load imbalance to maximize efficiency.

The Superdome Flex is fully populated with 32 Intel Xeon Platinum 8280
CPUs, which have 28 cores, 56 hardware threads, base and maximum turbo
frequencies of 2.70 GHz and 4.00 GHz, respectively, 38.5 MB of cache, and 3 UPI
links. The 24 TB memory is comprised of of 192 × 128 GiB DDR4-2933 RDIMMs,
with aggregate memory bandwidth of 4.5 TB/s.

Local storage consists of 32 NVMe 6.4 TB PCIe flash cards, for 204.6 TB
raw capacity and 150 GB/s read bandwidth, matching the 150 GB/s network
connection to a Cerebras CS-1. The local storage is managed by HPE Data

214 P. A. Buitrago and N. A. Nystrom

Management Framework (DMF) for user-friendly, efficient data transfer from
Bridges-2 over InfiniBand at up to 1.6 Tb/s.

Twenty-four 100 GbE network interface cards (NICs) provide 2.4 Tb/s of Eth-
ernet connectivity, with 1.2 Tb/s (150 Gb/s) to each of the two Cerebras CS-1
systems in Neocortex. Sixteen HDR InfiniBand host channel adapters (HCAs),
mounted on sixteen PCI Express Gen 3 ×16 ports, connect to Bridges-2’s HDR
InfiniBand fabric at 1.6 Tb/s.

The HPE Superdome Flex ASIC differentiates the Superdome Flex from
other servers by providing cache-coherent shared memory spanning 32 CPUs.
For Neocortex, the SD Flex’s 24 TB of cache-coherent shared memory backed by
over 200 TB of high-bandwidth NVMe flash storage ease training on very large
datasets, avoiding the laborious task of splitting datasets across worker nodes
and possibly generating load imbalances.

4.4 Neocortex Interconnect

Each Cerebras CS-1 is connected to the HPE Superdome Flex by twelve 100 Gb/s
Ethernet ports, for aggregate 1.2 Tb/s (150 GB/s) from the Superdome Flex to
each CS-1 and 2.4 Tb/s (300 GB/s) combined. Each of the Mellanox SN3700cM
32-port switches has eight ports remaining, which are interconnected between
the switches to enable research involving communications directly between the
two Cerebras CS-1 systems.

4.5 Neocortex Software

The Cerebras Software Stack [18] translates models from widely used frame-
works such as TensorFlow and PyTorch to executables for the Cerebras CS-1,
as summarized above. Neocortex’s Superdome Flex runs the CentOS 8 operat-
ing system and is configured with containers, frameworks, libraries, and tools to
support the Cerebras CS-1.

5 Bridges-2

Bridges-2 builds on, improves, and extends concepts proven in Bridges [13] to
take the next step in pioneering converged, scalable HPC, AI, and data; prior-
itize researcher productivity and ease of use; and provide an extensible archi-
tecture for interoperation with complementary data-intensive projects, campus
resources, and clouds. Funded by the National Science Foundation, Bridges-2
is a “capacity” resource, designed to enable rapidly evolving research and an
extremely wide range of applications.

Bridges-2 contains 566 nodes, 70,208 CPU cores, and 192 GPUs. Its peak
floating-point rates are 5.175 Pf/s fp64 and 24 Pf/s mixed-precision/tensor. It
contains 158.5 TiB of memory with 223.4 TiB/s of memory bandwidth, 2.2 PB of
node-local NVMe SSD, 15 PB (usable) disk in a high-performance Lustre file sys-
tem, and 8.6 PB tape (estimated, assuming 20% compression). High bandwidth
for efficient data movement was prioritized over raw flops. Figure 2 illustrates
the high-level architecture of Bridges-2.

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 215

Fig. 2. Bridges-2 consists of four types of compute nodes—Regular Memory (RM),
Large Memory (LM), Extreme Memory (EM), and Graphics Processing Unit (GPU)—
interconnected with each other, file systems, and utility and management nodes by
a high-performance fabric. Persistent data is maintained in the hierarchical Ocean
file system. Data requiring high IOPs, such as for deep learning training, is cached
to the Jet flash file system. Utility nodes serve persistent databases and distributed
(web) services, data transfer (100 Gbps), and logins. Management nodes serve system
configuration management, scheduling, logging, and other administrative functions.

5.1 Innovations

Bridges-2 introduces six important innovations beyond Bridges, in addition to
greatly improving all aspects of system performance. These innovations, which
reflect the evolution of research applications, are as follows:

– An all-flash filesystem, Jet, provides 9 IOPs (measured on 4 kB reads) of
random-access I/O performance to support deep learning training on data
that is much larger than node-local storage capacity. Jet has 460.8 TB of
capacity (raw) and supports at least 100 GB/s of read/write bandwidth.

– Enhanced GPU nodes amplify scalable deep learning. GPU nodes each
have eight NVIDIA Tesla V100-32GB SXM2 GPUs (aggregate 256 GB HBM2
memory per node), up to 768 GB of CPU memory, and dual-rail Mellanox
HDR-200 InfiniBand (IB) between GPU nodes.

– Full-system HDR-200 InfiniBand doubles link bandwidth relative to
Bridges and provides 200M messages/s injection rate, and <1µs latency, and
numerous advanced features for performance, flexibility, and to scale GPU
applications, including GPUDirect RDMA communications between GPUs
on different nodes.

– AMD EPYC 7742 (“Rome”) CPUs support PCI Express Gen 4 (31.5
GB/s for 16 lanes), enabling full use of HDR-200 InfiniBand. They also yield
excellent performance with 64 cores each.

216 P. A. Buitrago and N. A. Nystrom

– Bridges-2 supports full-system AI. Its 24 GPU nodes (192 NVIDIA
Tesla V100-32GB SXM2 GPUs) provide high scalability and capacity for deep
learning training, and its AMD EPYC 7742 CPUs have ample cores (64) for
high-performance inferencing, including coupling of surrogate models with
simulations. The unified architecture also allows for online training.

– A hierarchical storage system provides project storage (disk) and expand-
able archive and disaster recovery storage (tape), using HPE DMF to expose
a single name space with rule-based replication and migration.

5.2 Compute and Utility Nodes

Bridges-2 contains four types of compute nodes:

– 488 Regular Memory (RM) nodes each have 2 AMD EPYC 7742
(“Rome”) CPUs, 256 GB of DDR4-3200 memory, 3.84–7.68 TB NVMe SSD
local storage, and 1 HDR-200 IB adapter. RM nodes are HPE Apollo Gen10
plus chassis containing HPE ProLiant XL225n Gen10 plus Servers. RM nodes
are used for HPC, data analytics and pre- and post-processing, and other
general-purpose computing ranging from 1 core to 61k cores. HPC jobs can
be run across all 62,464 (61k) cores of RM nodes.

– 16 Large Memory (LM) nodes are similar to RM nodes, differing only in
containing twice the memory (512 GB) and 7.68 TB NVME SSD. LM nodes
are used for genomics and tasks similar to those for RM nodes but that need
more memory. Large-memory HPC jobs can be run across all 2,048 (2k) cores
of EM nodes, and especially demanding HPC jobs can be run across all 64,512
(63k) cores of combined RM and EM nodes.

– 4 Extreme Memory (EM) nodes each have 2 Intel Xeon Platinum 8260M
(“Cascade Lake”) CPUs, 4 TB of DDR4-2933 memory, 7.68 TB NVMe SSD,
and 1 HDR-200 IB adapter. EM nodes are HPE ProLiant DL560 Gen10
servers. EM nodes are used for genome sequence assembly and other tasks
that require large shared memory.

– 24 Graphics Processing Unit (GPU) nodes each have 8 NVIDIA Tesla
V100-32GB SXM-2 GPUs (aggregate 256 GB HBM2 memory), 2 Intel Xeon
Gold 6248 (“Cascade Lake”) CPUs, 384–768 GB of DDR4-2933 memory,
7.68 TB NVMe SSD, and 2 HDR-200 IB adapters. GPU nodes are HPE Apollo
6500 Gen10 servers. GPU nodes are used for deep learning, other machine
learning, visualization, and accelerated simulation. Preference is given to the
768 GB GPU nodes for deep learning training.

Bridges-2 utility nodes are identical to RM nodes but dedicated to specific
purposes (i.e., not available for routine scheduling via Slurm). Of the 22 utility
nodes, 6 are dedicated to serving web portals (for example, domain-specific “Sci-
ence Gateways”) that provide HPC, Big Data, and Software as a Service, 12 are
dedicated to serving persistent databases to power workflows and web portals,
2 are Data Transfer Nodes for high-bandwidth transfers from and to wide-area
networks, and 2 are login nodes. Services and databases running on web server

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 217

and database nodes are typically isolated in virtual machines and potentially
also containerized. If additional web or database nodes come to be needed, RM
nodes can be repurposed accordingly.

5.3 File Systems

Bridges-2 supports four file systems: Ocean, Jet, local, and memory.
The Ocean file system is hierarchical, providing user-friendly, seamless man-

agement of disk and tape subsystems in a single name space using the HPE Data
Management Framework (DMF). The disk component of Ocean is an HPE Clus-
terStor E1000 storage system, with 15 PB of usable capacity (21 PB raw) and
129 GB/s and 142 GB/s read and write bandwidth, respectively. It runs Lustre,
for which 10 data server pairs each serve 2.1 PB (raw) capacity. The tape compo-
nent of Ocean is an HPE StoreEver MSL6480 Tape Library, initially populated
with 5 modules (scalable to 7), where each module holds 80 LTO-8 Type M tape
cartridges. Its raw capacity is 7.2 PB. Based on historical data, approximately
20% compression is expected, which occurs at line speed, increasing effective
capacity to approximately 8.6 PB. Bandwidth is 50 TB/hour. The tape subsys-
tem is expected to be used for archiving and disaster recovery (DR), and it is
expandable, should the need and external support arise, to serve specific projects
requiring great amounts of archive/DR capacity.

The Jet file system uses NVMe flash storage devices to provide 9M IOPs, at
least 100 GB/s of read/write bandwidth, and 460.8 TB of raw capacity. The Jet
file system is used to cache moderately large data for which high bandwidth is
needed, for example, deep learning training.

Local and memory filesystems exploit NVMe SSD and RAM, respectively,
on each compute node, which can substantially increase bandwidth for deep
learning training, scratch files, and other ephemeral storage requirements.

5.4 Interconnect

A Mellanox HDR-200 InfiniBand fabric provides high communications perfor-
mance both between compute nodes (for HPC jobs) and to and from Bridges-2’s
file systems. It is configured in a leaf-spine topology with 12 spine switches and
26 leaf switches, which cost-effectively supplies ample bandwidth for Bridges-2
diverse workload. The oversubscription is 2.3:1. Dual-rail HDR-200 (400 Gb/s) is
used to interconnect Bridges-2’s GPU nodes, doubling the inter-node bandwidth
to more effectively scale deep learning training across nodes.

5.5 User Environment

The Bridges-2 user environment supports an extremely wide range of applica-
tions, libraries, and frameworks. Bridges-2 supports Singularity for containerized
applications, including NVIDIA GPU Cloud containers. Conversion from Docker
containers is typically straightforward. Both batch and interactive access are

218 P. A. Buitrago and N. A. Nystrom

supported. System resources are managed by Slurm, and a user-friendly interact
command is implemented to obtain immediate access to resources ranging from
a single core to multiple nodes. Interactivity has proven invaluable on Bridges
for analytics, development, debugging, and visualization, and it has been pos-
sible to provision resources for interactive use with very low impact on overall
utilization.

6 Summary

Neocortex and Bridges-2 form a unique computational ecosystem for scalable
AI, data processing, analytics, and management, and high-performance simula-
tion. Their design was strongly influenced by consideration of applications across
diverse fields of research, especially for societal good. The innovations that dif-
ferentiate this ecosystem are great innovation hardware architecture, fully inte-
grated heterogeneous node types to optimally support components of research
workflows, and a unified data management system consisting of in-processor
memory, conventional memory, flash, disk, and tape layers. Specifically, Neo-
cortex introduces the Cerebras Wafer Scale Engine, the largest processor ever
built, to the open research community to accelerate deep learning training by
orders of magnitude, potentially to interactive rates, and it couples two Cere-
bras CS-1 systems through a very large memory HPE Superdome Flex “front
end” to explore scaling models to multiple CS-1 systems. Bridges-2 provides high
capacity for data pre- and post-processing, other types of machine learning, sim-
ulation, and large-scale data management, and archiving through integration
of multiple nodes types and hierarchical data storage using a high-performance
200 Gb/s fabric, with 400 Gb/s between its GPU-accelerated AI nodes, also to
support scalable deep learning. Both systems are available at no cost for open
research.

Acknowledgments. Thanks to Natalia Vassilieva for collaboration on the Cerebras
CS-1. The Bridges system, including Bridges-AI, is supported by NSF award number
1445606. The Bridges-2 system is supported by NSF award number 1928147. The
Neocortex system is supported by NSF award number 2005597. The Open Compass
project is supported by NSF award number 1833317.

References

1. Brown, T.B., et al.: Language models are few-shot learners (2020)
2. Buitrago, P.A., Nystrom, N.A.: Open compass: accelerating the adoption of AI

in open research. In: Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning), PEARC 2019. Asso-
ciation for Computing Machinery, New York (2019). https://doi.org/10.1145/
3332186.3332253

3. Buitrago, P.A., Nystrom, N.A.: Strengthening the adoption of AI in research and
cyberinfrastructure. In: Pascucci, V., et al. (eds.) Report from the NSF Workshop
on Smart Cyberinfrastructure 2020, Alexandria, Virginia (2020)

https://doi.org/10.1145/3332186.3332253
https://doi.org/10.1145/3332186.3332253

Neocortex and Bridges-2 : A High-Peformance AI Ecosystem 219

4. Buitrago, P.A., Nystrom, N.A., Gupta, R., Saltz, J.: Delivering scalable deep learn-
ing to research with bridges-AI. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.)
CARLA 2019. CCIS, vol. 1087, pp. 200–214. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-41005-6 14

5. Cerebras Systems: Cerebras wafer scale engine: an introduction (2019)
6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep

bidirectional transformers for language understanding (2018)
7. Gale, T., Elsen, E., Hooker, S.: The state of sparsity in deep neural networks (2019)
8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

9. Kasim, M.F., et al.: Up to two billion times acceleration of scientific simulations
with deep neural architecture search (2020)

10. Khan, A., Huerta, E.A., Wang, S., Gruendl, R., Jennings, E., Zheng, H.: Deep
learning at scale for the construction of galaxy catalogs in the Dark Energy Survey.
Phys. Lett. B 795, 248–258 (2019). https://doi.org/10.1016/j.physletb.2019.06.009

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates, Inc. (2012)

12. Lie, S.: Wafer scale deep learning. In: Hot Chips 31 (2019)
13. Nystrom, N.A., Buitrago, P.A., Blood, P.D.: Bridges: converging HPC, AI, and big

data for enabling discovery. In: Vetter, J.S. (ed.) Contemporary High Performance
Computing: From Petascale toward Exascale. Contemporary High Performance
Computing, vol. 3. CRC Press, Boca Raton (2019)

14. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexible
HPC resource for new communities and data analytics. In: Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfras-
tructure, XSEDE 2015. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2792745.2792775

15. Nystrom, N.A., Welling, J., Blood, P.D., Goh, E.L.G.: BlackLight: coherent shared
memory for enabling science. In: Vetter, J.S. (ed.) Contemporary High Performance
Computing: From Petascale toward Exascale. Contemporary High Performance
Computing. Taylor & Francis Group, Boca Raton (2013)

16. Shoeybi, M., et al.: Megatron-LM: training multi-billion parameter language mod-
els using model parallelism (2019)

17. Smith, J.S., et al.: Approaching coupled cluster accuracy with a general-purpose
neural network potential through transfer learning. Nat. Commun. 10(1), 2903
(2019). https://doi.org/10.1038/s41467-019-10827-4

18. Vassilieva, N., Buitrago, P.A., Nystrom, N.A., Sanielevici, S.E.: Technical overview
of the Cerebras CS-1, the AI compute engine for Neocortex (webinar) (2020).
https://www.cmu.edu/psc/aibd/neocortex/technical-overview-webinar.html

https://doi.org/10.1007/978-3-030-41005-6_14
https://doi.org/10.1007/978-3-030-41005-6_14
https://doi.org/10.1016/j.physletb.2019.06.009
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1038/s41467-019-10827-4
https://www.cmu.edu/psc/aibd/neocortex/technical-overview-webinar.html

Author Index

Ahuanari, Astrid Fariza Panduro 193
Álvarez Aparicio, Claudia 103

Babenko, Mikhail 115
Barrios, Carlos J. 18, 71
Behak, Santiago 130
Bernal, César A. 18
Buitrago, Paola A. 205
Bustos, Andrés 3

Cajicá, Félix Armando Mejía 178
Camargo, Matheus W. 62
Carastan-Santos, Danilo 62
Carissimi, Alexandre 62
Cortegano, Carlos Alberto García 193
Cortés, Sergio Augusto Gélvez 18
Cortés-Mendoza, Jorge M. 115

da Cruz Motta, Marcelo Augusto 49
Da Silva, Miguel 34
de Araújo, Aleteia Patricia Favacho 49
de Carvalho, Leonardo Rebouças 49

Esteban, Mathias 162

Fabian, Juan H. L. 86

Galindo, Luis A. 3
García Henao, John A. 178
García-Aranda, José J. 3
Ginés, Jonatan 103
Gomes, Antônio T. A. 86
Guerrero Higueras, Ángel M. 103

Hernández, Benjamín 18
Hernández, Carlos Jaime Barrios 178

Iturriaga, Santiago 34, 130

Llaja, Lelis Antony Saravia 193

Martín Rico, Francisco 103
Matellán Olivera, Vicente 103
Mayo-García, Rafael 3
Molina-Cardín, Sergio 3

Navaux, Philippe O. A. 62
Nesmachnow, Sergio 34, 130, 146, 162
Nystrom, Nicholas A. 205

Ogasawara, Eduardo 86

Pezo, Alejandro Reátegui 193
Porteiro, Rodrigo 146
Pulido-Gaytan, Luis Bernardo 115

Radchenko, Gleb 115
Ramos-Díaz, Juan 3
Riveill, Michel 178
Rodríguez Lera, Francisco J. 103
Rondán, Giovani 130

Santamarta, Miguel A. 103
Satalaya, Angela Milagros Nuñez 193
Serpa, Matheus S. 62

Tchernykh, Andrei 115
Torres, L. A. 71
Toutouh, Jamal 162

Usera, Gabriel 34

Yahuarcani, Isaac Ocampo 193

Zanetti, Martín 130

	Preface
	Organization
	Contents
	High Performance Computing Applications
	Dynamically Distributing Tasks from an Unattended Parallel Compiler with Cloudbook
	1 Introduction
	2 Related Work
	3 The Unattended Parallel Compiler
	3.1 Requirements

	4 Cloudbook Global Architecture
	5 Dynamic Execution
	6 Results
	6.1 Group of Low-End Machines
	6.2 HPC Cluster

	7 Conclusions
	References

	Fostering Remote Visualization: Experiences in Two Different HPC Sites
	1 Introduction
	2 Technical Background
	2.1 Remote Desktops and GPU Based Alternatives
	2.2 Containers on HPC Visualizations

	3 Site 1: SC3 at UIS
	3.1 SC3 User Challenges
	3.2 YAJE 2.0 a Solution for Remote Visualization Using Linux Containers
	3.3 Use Case
	3.4 Results

	4 Site 2: Oak Ridge Leadership Computing Facility
	4.1 OLCF's User Challenges
	4.2 SIGHT, a Custom Solution for Remote Visualization
	4.3 Use Case
	4.4 Results

	5 Discussion and Future Plans
	References

	High Performance Computing Simulations of Granular Media in Silos
	1 Introduction
	2 Simulation of Flows in Granular Media Stored in Silos
	2.1 Computational Simulation of Granular Media on Silos
	2.2 Related Work

	3 Dynamic Domain Decomposition Strategy
	3.1 Overall Description
	3.2 Process Grouping and Workload Calculation
	3.3 Dynamic Subdomain Boundaries

	4 Experimental Evaluation
	4.1 Validation Problem and Instances
	4.2 Numerical Results

	5 Conclusions and Future Work
	References

	Performance Analysis of Main Public Cloud Big Data Services Processing Brazilian Government Data
	1 Introduction
	2 Big Data and Cloud Computing
	3 Hadoop
	4 The Bolsa Família Program
	5 Methodology
	5.1 Test Scenarios
	5.2 Metrics

	6 Related Works
	7 Results
	7.1 Resource Consumption Analysis

	8 Conclusion
	References

	Accelerating Machine Learning Algorithms with TensorFlow Using Thread Mapping Policies
	1 Introduction
	2 Related Work
	3 Machine Learning Algorithms Optimized
	4 Experimental Methodology
	5 AI Benchmark Performance Results
	5.1 Improving Performance of Training Algorithms
	5.2 Performance Improvements for Inference Algorithms

	6 Conclusion and Future Work
	References

	Methodology for Design and Implementation an Efficient HPC Cluster
	1 Introduction
	2 Background
	2.1 High Performance Computing
	2.2 OpenHPC
	2.3 Lightweight Directory Access Protocol
	2.4 Simple Linux Utility for Resource Management
	2.5 System Security Services Daemon (SSSD)
	2.6 High-Performance Linpack (HPL)

	3 Methodology
	3.1 Buildind a Efficient Cluster

	4 Benchmarks and Results
	4.1 Results and Evaluation

	5 Conclusions
	References

	Estimating the Execution Time of the Coupled Stage in Multiscale Numerical Simulations
	1 Introduction
	2 Related Work
	3 MHM: A Multiscale Numerical Method
	4 Methodology
	5 Experimental Evaluation
	5.1 Dataset
	5.2 Exploratory Data Analysis
	5.3 Model Building and Assessment

	6 Conclusion
	References

	High Performance Computing and Artificial Intelligence
	Using HPC as a Competitive Advantage in an International Robotics Challenge
	1 Introduction
	1.1 Challenge Description
	1.2 Software Description

	2 Neural Networks for Object Detection
	3 Training Neural Networks in Challenging Domains
	4 Experimentation
	4.1 Hardware
	4.2 Parameters

	5 Discussion
	6 Conclusions and Further Work
	References

	A Survey on Privacy-Preserving Machine Learning with Fully Homomorphic Encryption
	1 Introduction
	2 Homomorphic Encryption
	3 Fully Homomorphic Encryption
	3.1 Notation
	3.2 Bootstrapping
	3.3 Key-Switching

	4 Last Advances in the Field of HE
	4.1 Related Work
	4.2 FHE on Machine Learning as a Service Paradigm

	5 Applications and Tools
	6 Conclusion
	References

	Distributed Greedy Approach for Autonomous Surveillance Using Unmanned Aerial Vehicles
	1 Introduction
	2 Exploration and Surveillance Using Autonomous UAVs
	2.1 Autonomous Exploration and Surveillance
	2.2 Related Works

	3 The Proposed Distributed Cooperative Approach for Exploration and Surveillance
	3.1 Overall Description
	3.2 Hardware and Software
	3.3 Control and Positioning System
	3.4 Connectivity and Communications
	3.5 State Machine

	4 Experimental Evaluation
	4.1 Evaluation Methodology, Validation Problem and Instances
	4.2 Numerical Results

	5 Conclusions and Future Work
	References

	Electricity Demand Forecasting Using Computational Intelligence and High Performance Computing
	1 Introduction
	2 Forecasting Energy Demand
	2.1 General Considerations
	2.2 Problem Formulation
	2.3 Related Works

	3 The Proposed Approach for Day Ahead Hourly Demand Forecasting
	3.1 Data Description
	3.2 Data Preparation
	3.3 Implementation

	4 Parallel Model
	4.1 Upper Level: Architecture and Parameter Configuration
	4.2 Lower Level: Parallel Training on GPU

	5 Experimental Evaluation
	5.1 Computational Platform and Software
	5.2 Validation Problem and Instances
	5.3 Numerical Results

	6 Conclusions and Future Work
	References

	Parallel/Distributed Generative Adversarial Neural Networks for Data Augmentation of COVID-19 Training Images
	1 Introduction
	2 Data Augmentation for Medical Images to Assist COVID-19 Detection
	2.1 Data Augmentation for Medical Images and COVID-19 Detection
	2.2 Related Works

	3 The Proposed Parallel/distributed GANs for COVID-19 Data Augmentation
	3.1 Generative Adversarial Networks
	3.2 Distributed GAN Training

	4 Distributed GANs for COVID-19 Images Generation
	4.1 Overall Description
	4.2 Implementation Details
	4.3 Parallel Model

	5 Experimental Evaluation
	5.1 Evaluation Methodology, Training and Validation Instances
	5.2 Numerical Results

	6 Conclusions and Future Work
	References

	Analysis of Regularization in Deep Learning Models on Testbed Architectures
	1 Introduction
	2 Related Work
	3 Methodology
	4 Evaluation and Results
	5 Discussion
	6 Conclusions
	7 Further Work
	References

	Computer Application for the Detection of Skin Diseases in Photographic Images Using Convolutional Neural Networks
	1 Introduction
	2 Methodology
	2.1 Disease Prioritization and Requirement Identification
	2.2 Dataset Construction
	2.3 Algorithm Selection and Experimentation
	2.4 Design and Development of Computer Applications

	3 Results
	4 Conclusions
	References

	Neocortex and Bridges-2: A High Performance AI+HPC Ecosystem for Science, Discovery, and Societal Good
	1 Introduction
	2 Related Work
	3 Integrated Neocortex + Bridges-2 AI+HPC Ecosystem
	4 Neocortex
	4.1 Neocortex Overview
	4.2 Cerebras CS-1 and Wafer Scale Engine
	4.3 HPE Superdome Flex
	4.4 Neocortex Interconnect
	4.5 Neocortex Software

	5 Bridges-2
	5.1 Innovations
	5.2 Compute and Utility Nodes
	5.3 File Systems
	5.4 Interconnect
	5.5 User Environment

	6 Summary
	References

	Author Index

