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Abstract. Proving the functionality of AI-controlled automated vehicles is a
challenging task due to the enormous overall complexity. Although a scenario-
based validation approach is widely accepted in the literature, the identification
of these scenarios is still an open issue.

Real-world test drives are valuable data sources for this purpose. However,
an automated system is required for data management and scenario identifica-
tion to analyze the vast amount of data in a legitimate amount of time and effort.
Therefore, this work proposes a modular multi-tier Vehicle Data Management
System for large-scale test campaign management and analysis as the basis for
scenario-based validation of automated driving functions. For system demonstra-
tion, lane-change maneuvers are identified and extracted, and an onboard DAS is
evaluated with a real-world test drive sequence.

Keywords: ADAS validation · Maneuver identification · Real-world test
drives · Data enrichment · Scenario mining · Data Management System

1 Introduction

Automakers and suppliers are currently competing fiercely to develop advanced driver
assistance systems (ADAS) and to be among the first to launch a fully automated driving
solution into the market. In addition to the difficulties of solving technical challenges,
the high amount of testing and validation required for such systems poses a serious cost
factor for existing players and a high entry barrier for new companies which are plan-
ning on entering the ADAS segment. Hence, recent and current research projects aim to
provide methodologies, methods and tools [8,25] to reduce the effort for the validation
or, in particular, enable to approve automated driving functions w.r.t to functional safety
standards such as the ISO26262.

Technical advances in the field of computer graphics and computer simulation dur-
ing the last decades paved the way for new testing methods to master the growing
complexity of validating driver assistance systems. With more sophisticated models of
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real-world components becoming available, testing shifted from the real to the virtual
world. This is due to the fact that simulations allow to conduct risky maneuvers without
risking vulnerables such test engineers or other traffic participants [22]. Moreover, they
enable to reach a high test coverage more economically [19].

Nevertheless, real-world test drives are still compulsory to finally prove the system
functionality since no other certified methods are available [25]. Although simulation-
based testing procedures reduce the overall validation effort, they cannot be used for
the final system approval. This is due to the fact that they are currently not able to
sufficiently represent the extraordinary complexity of the real world. Hence, testing
results “need to be verified and validated on test grounds and in field tests” [25]. But,
since rigorous testing in the real world is economically infeasible, a scenario-driven
validation approach aims at reducing the overall effort [1,13]. Fur that purpose, real-
world test drives are mandatory to find relevant or critical scenarios which are the basis
for scenario-based validation approaches [4].

However, due to the high mileage that is required to prove the reliability of the sys-
tem under test (SUT) [9], assessing ADAS functionality in the real world using Field
Operations Tests (FOT) or Naturalistic Driving Studies (NDS) is complex, tedious and
cost-intensive. Engineers have to process and manage huge amount of recorded data
collected during test campaigns to prove the system’s functionality or fine-tune the
parameter of the SUT by examining and verifying the response of the system in specific
scenarios. Furthermore, engineers have to know where to find specific or rather rele-
vant scenarios in the data such as an overtaking sequence on a wet two-lane motorway
driving towards sundown.

Discovering such scenarios may become an enormous economic burden and tedious
task if analyzing the data without computational assistance. That includes labeling the
data with additional information for the identification of scenarios, performance assess-
ment of a system or for providing a comprehensive data basis for machine learning
[17]. Apart from that, the vast amount of data gathered during test campaigns must be
managed in such a way that it is accessible by multiple project participants. Data Man-
agement Systems (DMS) have shown to be the right choice for such data management
and analyzing tasks due to their usage in various domains, e.g. medicine [6], finance
[20] or ecology [7].

1.1 Research Project FASva

The identification of scenarios in real-world test drives, so-called scenario mining [5],
and analyzing the influence of environmental effects on the system performance is still
an open research question and the focus of the research project FASva1. Besides that, the
project aims at conducting and analyzing real-world test drives and propose tools and
frameworks supporting scenario-based real-world test drive data analysis. Therefore,
test drives of approx. 25,000 km were conducted on motorways, cities and rural roads in
mainly northern Germany within the last two years. This data is the basis for addressing

1 Intelligent Validierung von Fahrerassistanzsystemen (engl.: intelligent validation of driver
assistance systems) of the Hochschule Emden/Leer.
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the following open research question within the research project as already pointed out
in an earlier work [11]:

1. How to automatically identify scenarios in real-world test drive data efficiently for
setting up a rich catalog of general driving scenarios and for enabling scenario
search?

2. Which scenarios are relevant for the functional approval process of specific driving
functions?

3. Which parameters are system-relevant in certain scenarios?
4. How to evaluate the performance of conducted real-world test drives to ensure con-

ducting test campaigns efficiently?

1.2 Contribution

To help engineers finding scenarios of interest in real-world test-drive data, this work
proposes a Vehicle Data Management System (VDMS) that is capable of scenario
identification. Hence, this paper addresses the first research question by introducing
a system for efficient scenario identification and search. For that purpose, the VDMS
presented in an earlier work [11] is extended by a procedure to extract maneuvers as
sequences instead of only finding the most likely point in time where the maneuvers
occurs, which is the main focus of other works [21,24,26]. The knowledge of the time
interval of maneuvers enables to analyze conducted test drives quantitatively in terms
of, e.g., total mileage and duration. Apart from that, engineers are able to find sequences
in real-world driving data representing a particular maneuver of interest to examine
Driver Assistance System (DAS) more efficiently. The feasibility for maneuver extrac-
tion is demonstrated and the performance of the approach is evaluated with a motorway
sequence of manually labeled lane-change intervals.

1.3 Structure of This Work

This work is structured as follows: Related work and projects are discussed in Sect. 2.
Afterwards, requirements on a VDMS are determined in Sect. 3 based on software
quality characteristics defined in ISO 25010 and requirements are derived for differ-
ent users-roles participating in test campaign. For the sake of completeness, the terms
scene, maneuver and scenarios are defined in Sect. 4. These definitions are the basis for
the proposed processing chain for maneuver identification and extraction presented in
Sect. 5. Afterwards, the architecture of the VDMS is described in Sect. 6. To demon-
strate the usability of the VDMS and to assess the performance of the proposed maneu-
ver extraction algorithm, a Lane Keep Assist System (LKA) is analyzed with a test-
drive on a motorway, and the accuracy of lane-change maneuver extraction is assessed
in Sect. 7. The paper concludes with a summary and outlook for further work in Sect. 8.

2 Related Work

Due to the development of AI-driven vehicles, the automotive industry faces new chal-
lenges by verifying the functional safety of the systems. Since rigorous testing of the
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automated driving systems is economically infeasible, a scenario-driven validation app-
roach aims at reducing the overall complexity. Due to this, identifying scenarios for the
validation of automated driving functions obtained much attention in the last years. In
particular, the focus is on the identification of relevant situations [4] in, e.g. databases of
traffic accidents [16], field operational tests [3] or naturalistic driving studies [10] aim-
ing at setting up a database of relevant traffic scenarios for the validation of automated
driving functions [16,27]. However, for the identification of such relevant scenarios, the
data of the conducted test drives need to be managed and analyzed.

Schneider et al. utilize a probabilistic approach using a Bayesian network and fuzzy
features for the classification of emergency braking situations [18]. Weidl et al. optimize
the Bayesian networks to recognize driving maneuver online [24]. In [17] scenario-
specific classification algorithms are evaluated for the identification of lane changes,
vehicle followings and cut-ins. Sonka et al. [21] propose an approach for lane change
and lane keeping detection by combining a probabilistic approach with fuzzy logic.

All of the approaches have in common that they classify scenarios based on the vehi-
cle sensor data. Thus, one can argue that they perform multivariate time-series analysis,
as already pointed out by [17]. Taking the vast amount of data gathered during test-
campaigns into account, reducing the data without high loss of information would, in
turn, reduce the required storage capacity, the classification time and thus validation
effort. Furthermore, utilizing the definition of the term scenario from [23] stating that
a scenario describes a particular time interval with environment and traffic conditions,
and including the description of the term scene representing a certain point in time,
the vehicle sensor data has to be aggregated to a time-series of scenes for describing
scenarios.

Therefore, this work proposes a temporal data discretization approach to aggregate
the raw vehicle sensor data to discrete scenes w.r.t to the time using equal width dis-
cretization [12] and by applying type-dependent data aggregation functions to reduce
the data size [14] while at the same time establishing the foundation for scene-based
scenario mining.

To examine the behavior of automated driving functions in specific situations, infor-
mation about the occurrence of a maneuver in a certain point in time is helpful. Those
data annotations allow test engineers to analyze test drives more efficiently since they
know where to find probably relevant situations. Hence, they only need to extract
sequences of the drives around those relevant situations.

However, instead of only annotating the point in time with high likelihood for rep-
resenting a maneuver, the time interval representing that particular maneuver would
further help on assessing certain driving functions in sequences of interest, e.g., the
adaptive cruise control (ACC) system in vehicle following scenarios. Moreover, by par-
titioning test drives in maneuvers, they can be quantitatively described according to the
occurrence of certain maneuvers. For instance, a free driving sequence on a motorway
(no vehicle in front of the ego vehicle) may not be relevant for the validation of an ACC
system at all. But, if the ACC emits a braking signal in free driving sequences that may
require further investigation by the test engineer. Hence, such data annotations enable
test engineers to quickly identify sequences of interest.
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In the last decades, however, the main focus of other works is on recognizing the
presence of a certain maneuver in a specific point in time with high accuracy [21,24],
e.g., to predict maneuvers of other vehicles to react accordingly [26]. For that purpose,
[21] proposed a method to identify the most probable point in time of a line-crossover
by estimating the likelihood for a line crossover for each point in time. The latter serves
as the basis for the proposed maneuver extraction approach that is presented in Sect. 5.3.

3 Requirements

Due to the high economic effort of conducting real-world test drives, multiple parties
usually plan and perform test campaigns. In this work, however, we focus on the roles
working with the VDMS in such projects. A description of these roles is given in this
section including role-based functional requirements on the architecture which are the
basis for deriving general requirements utilizing software quality characteristics defined
in the ISO 25010.

1. The campaign manager is responsible for the achievement of the project goals and
acts as an interface to the principal or project owner. Consequently, they need up to
date status information about the project’s progress.

2. On behalf of the campaign manager, the drive planner plans the conduction of the
specific test drives w.r.t to the general campaign goals and the current test drive
coverage. They, therefore, require more detailed knowledge about the performed
test drives including, for instance, the weather condition on specific trips or the road
type distribution.

3. Test drivers perform the actual test drives according to the plans of the drive-planner.
After each drive, they have to verify the fulfillment of drive-specific test require-
ments. The result may be a report, used by the driver planner to organize follow-up
drives.

4. Test engineers perform the in-depth validation of the SUT. Based on the defined
specification of the system, they verify the performance of the SUT. Hence, they
need access to the sensor data collected by the test fleet in case of a system misbe-
havior.

5. The last role of interest is the Algorithm engineer. People with this role either opti-
mize design and develop new system functions or alternative solutions. The former
allows adding additional knowledge to the database which may help in the SUT val-
idation whereas the latter allows evaluating a SUT against a reference system, i.e.
evaluate the performance of different traffic-sign-detection systems.

Concluding this overview, it is evident that different roles have various functional
requirements on the VDMS w.r.t the grad of information detail or how to access the data
or even extending the VDMS functionality. Based on the defined role-specific require-
ments, general characteristics of the architecture are now defined. Therefore, in order
to ensure a software-quality driven design approach, a subset of the software quality
characteristics defined in the ISO 25010, the successor of the ISO 9126, is employed.



Vehicle Data Management System for Scenario-Based Validation 347

Scaleability. Test drive campaigns typically have a specific duration spanning from
several months up to years. Furthermore, the fleet of test drive campaigns typically
consists of multiple vehicles and the test drivers may change during the campaign. Thus,
the demand on a scalable framework exists in order to gap-free document the progress of
the campaign including information about the drivers, e.g. sex, weight and height which
might be used for driver behavior or system acceptance analysis, or the configuration
of each vehicle used within the campaign, such as the dimension of vehicles or sensor
configurations.

Compatibility. Unfortunately, there is currently no standard tool to measure the vehicle
sensor data. Conclusively, this also applies to the data format used for storing the vehicle
sensor data. Thus, besides the file format of ADTF2 used within this project, the VDMS
should be able to support diverse data file formats. Furthermore, it should be able to
manage information of external data sources, such as OpenStreetMap, which may be
required for the system analysis.

Maintainable. In order to support multiple data file formats or extend the function-
ality of the VDMS, adding new modules to the VDMS is vital. Thus, the architec-
ture has to be highly modular – on different levels of the system. On the top level,
where drive-related tasks run, adding further modules is required to process drives that
were uploaded by test drivers, i.e. import the drive into the database, query the weather
database based on the route in the drive or compress the files of the drive after the pro-
cessing. Whereas on the level, where the processing of the vehicle sensor data takes
places, adding new functions is required to add new facts to the database using, e.g.
external data sources or developed algorithms, as stated in the previous description of
the Software engineer role.

Reliability. In order to ensure that failures or non-normative behavior of functions or
algorithms added by engineers do not affect the whole system process, each module
should run in a dedicated context. In case of an error of a module, the system should
log this information and appropriately indicate that error.

4 Scenario Definition

Before presenting the proposed VDMS for scenario mining, the terms scene, maneu-
ver and scenario used in this work will be briefly described in the following based on
a representative sequence. The different terms are illustrated utilizing a hierarchy of
timelines depicted in Fig. 1.

The drive represents the first timeline. In this work, a drive begins at that moment
where the software in the experimental vehicle start recording and ends if the driver
stops the recording. A drive may have time gaps caused by the driver pausing and

2 The Automotive Data and Time-triggered Framework (ADTF) of Elektrobit is used for syn-
chronous data measurement and capturing.
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Fig. 1. This figure shows a representative sequence to illustrate the definition of a scenario and
scene within this work. The sequence contains an overtaking scenario that consists of multiple
subsequence maneuvers, each of which is represented by scenes.

resuming the recording. Each drive consists of multiple consecutive non-overlapping
scenarios on the second timeline.

Although different definitions of the term scenario exist in the literature, this work
employs the one defined by Ulbrich et al. stating that a “scenario describes the temporal
development between several scenes in a sequence of scenes. Every scenario starts with
an initial scene. Actions & events as well as goals & values may be specified to char-
acterize this temporal development in a scenario. Other than a scene, a scenario spans a
certain amount of time.” [23]

Such a scenario may be the overtake scenario depicted in Fig. 1, where the driver
intends to overtake another vehicle. However, this definition of a scenario allows no dis-
tinction between a maneuver and a scenario. Maneuvers also span a certain amount of
time, and the driver has a specific intention, too. For instance, the driver aims at closing
up to a lead vehicle in an approaching maneuver [1]. So, one can argue that maneuvers
and scenarios are the same. Due to this, maneuvers are, in this work, certain driving
actions represented by series of scenes initiated by events such as an obstacle in front of
the ego vehicle or the scene where the vehicle crosses a line. Thus, they represent a time
interval in which the vehicle performs a particular driving action. Furthermore, the def-
inition of a scenario is extended by the restriction that a scenario consists of at least one
maneuver and that it also includes information about the vehicle’s environment such as
other traffic participants or road infrastructure as in [1].

The smallest time unit is a scene representing the state of the vehicle and its envi-
ronment in a short interval, e.g. seconds, depicted on the last timeline as black bars.
Hence, in this work, the restriction of [23] that a scene does not span “a certain amount
of time” [23] is relaxed to guarantee that all information are available–even if sensors
with different sampling frequencies are used.

5 Processing Chain

Based on the definition of a scene, maneuver and scenario in the previous section, the
proposed procedure to process real-world test drive data is presented in the following.
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This work extends the three-stage process introduced in [11] for the scene-based identi-
fication of scenarios in the real-world test-drive data with a maneuver mining step (see
Fig. 2). The data basis for the processing are the raw vehicle sensor data collected dur-
ing test drives that are transformed to series of scenes. Those scenes will be enriched
with additional information from algorithms and external data sources. Based on the
enriched scenes, maneuvers are extracted. For the sake of completeness, each stage is
described briefly in the following.

Fig. 2. The four stage process for maneuver identification by transforming the vehicle sensor
data to a series of scenes enriched with additional information from algorithms and external data
sources.

5.1 Data Discretization and Aggregation

The first step is the temporal data discretization and aggregation utilizing equal width
discretization [12] and applying type-depend aggregation operations.

At first, the time series of the available sensors are discretized to a time series of
scenes on a per-drive basis. Therefore, let D = {tstart, S, tend} represent a drive as a
set with three elements, whereas tdstart, tdend ∈ N giving the beginning and end time
of the drive d as milliseconds since epoch and S = {s1, s2, . . . , sk} as the discretized
and aggregated vehicle sensor data as a set of k scenes. Utilizing the definition of mul-
tivariate time-series of [2], let E = {e1, e2, . . . , em} be a set of m vehicle sensors, each
of which generates a finite series of n values x1, x2, . . . ., xn. Since the vehicle sensors
have different sample frequencies and thus the sensor series vary in length denoted in
Fig. 2 with the number of black bars per signal in the scene of raw sensor values, the
definition of [2] is adapted so that xi =

[
xi
1, x

i
2, . . . , x

i
ni

]
represents the time series of

the ith sensor with ni values. Furthermore, the multivariate time series X is defined as
a set of vehicle sensor time series with X = {x1,x2, . . . ,xm}.

For the discretization of the multivariate time series X into a time series of scenes,
equal width discretization (EWD) is applied to each sensor series [12]. Hence, using
the previous definition of xi, the time series of the ith sensor is split up into a series of
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k scenes ui1,ui2, . . . ,uik with equal duration Δt so that the jth scene time series of
the ith sensor is defined as

uij = {x | x ∈ xi ∧
(
tjstart ≤ Φ(x) ≤ tjstart + Δt

)
} (1)

whereas Φ(x) giving the time of the sample x in the time series and tjstart stating the
beginning of the jth scene s. The number of scenes k = |S| in the drive d is given by

k =

{
˜d

Δt + 1 if d̃ mod Δt > 0
˜d

Δt if d̃ mod Δt ≡ 0
(2)

with d̃ stating the duration of the drive d. Then, utilizing the definition of Eq. (1) the
series of scenes S of a drive d is formally defined by the m × k matrix

Sd =

⎡

⎢
⎢
⎢
⎢
⎣

u11 u12 . . . u1k

u21
. . .

. . .
...

...
. . .

. . .
...

um1 . . . . . . umk

⎤

⎥
⎥
⎥
⎥
⎦

. (3)

Aggregation. The next step is to aggregate the sensor series of each scene. Therefore,
let A = {a1, a2, . . . , am} represent a set of m aggregation functions for each sensor,
mapping the scene time series uij of the ith sensor to an aggregated value vij with
a ∈ A : uij → vij . Then, using the Eq. (3), the series of scenes S of a drive d is
formally represented by the m × k matrix

Sd =

⎡

⎢
⎢
⎢
⎢
⎣

a1(u11) a1(u12) . . . a1(u1k)

a2(u21)
. . .

. . .
...

...
. . .

. . .
...

am(um1) . . . . . . am(umk)

⎤

⎥
⎥
⎥
⎥
⎦

(4)

where the scene st at time t is represented by the column vector st = [a1 (u1t) ,

a2 (u2t) , . . . , am (umt)]
T or in short st = [v1, v2, . . . , vm].

For the data aggregation, a data-type dependent approach was chosen for select-
ing the aggregation functions. The supported data types are T = {boolean, integer,
floating point, string} and the set of default aggregation functions is A = {or, median,
mean, concatenate}. The following applies mapping a scene time series uij to its
aggregated value vij using the aggregation functions of A:

vij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mean (uij) if ρ (uij) ≡ floating point

median (uij) if ρ (uij) ≡ integer

or (uij) if ρ (uij) ≡ boolean

concate (uij) if ρ (uij) ≡ string

(5)

with x = ρ(uij) giving the value type of uij , whereas x ∈ T . Besides the default
aggregation functions, custom ones can be defined for specific signals.
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5.2 Data Enrichment

The next step in the processing chain is the enrichment of the scenes with information
from various data sources to further describe the vehicle and its environment such as
other traffic participants, the weather or road as depicted at the right of Fig. 2. Hence, the
previously introduced set E of vehicle sensors is extended with virtual scene sensors.

Fig. 3. The enrichment module uses an acyclic graph to manage components and their dependen-
cies for scene enrichment visualized as a tree of components.

Each virtual sensor is a component running as a part of the enrichment module (cf.
Sect. 6.2 about modules). Since a virtual sensor may depend on information generated
by another sensor, i.e., a map matching algorithm used to map the ego vehicle position
to a digital map depends on an accurate ego-position, an acyclic directed graph is used
to manage the virtual sensors and the dependencies between them. An overview of the
available components is depicted in Fig. 3. Choosing an acyclic graph enables to build
up processing chains with components only being run if their dependents finished pro-
cessing a particular drive. It also allows running independent components concurrently
to speed up the processing.

5.3 Maneuver Mining

The last step of the chain is the extraction of maneuvers based on the enriched scenes
and depicted in Fig. 4.

Instead of only giving the most likely point in time of the maneuver, the most
likely interval is retrieved. Thus, let M = {m1,m2, . . . ,mj} be the set of maneu-
vers in the drive with B = {b1, b2, . . . , bn} as the available maneuver types, and
G = {(m, b)1, (m, b)2} a set of tuples mapping each maneuver m ∈ M to at least
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Fig. 4. The procedure for maneuver mining and drive coverage estimation based on the enriched
scenes.

one maneuver type b ∈ B. A maneuver m is defined as a series of enriched scenes,
m = ststart

, s
start+1, . . . , stend

with tstart and tend as the start and end of the maneu-
ver. The duration of the maneuver m̃ is estimated by m̃ = Δt ∗ |m| with Δt as the
chosen scene width in the data discretization step (cf. Eq. (1)). It is assumed that differ-
ent types of maneuvers (mbi ,mbj ) overlaps, so that mbi ∩ mbj is not empty in every
case. But, maneuvers (mi

b,m
j
b) of the same type b are distinct, i.e. mi

b ∩ mj
b = ∅ which

is also represented in Fig. 1. As depicted in Fig. 4 the framework is currently able to
identify and extract lane change maneuvers.

For extracting the maneuver interval, a probability-based approach is used based
on the Fine Search procedure proposed by [21]. The maneuver extraction process is
elaborated in the following for the lane change maneuver depicted in Fig. 5.

Let f(t) represent the distance to the right lane of the scene at time t in a moving
time window w = {t − Δt, . . . , t + Δt} with a duration of 2Δt so that t ∈ w (see
blue line in Fig. 5). The first step is to reduce noise in the signal since this impacts the
follow-up steps. Thus, the moving window is smoothed by convolving it with a uniform
kernel of size n. Furthermore, let P (t) represent the probability and P ′(t) the slope of
the probability for a maneuver at time t. For the lane change maneuver, the probability
P (t) is defined as

P (t) =
|g(t)|

|g(t)|max
(6)

with g(t) as f(t) shifted so that

g(t) = f(t) − f̃(t) (7)
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Fig. 5. For maneuver interval extraction, a probability-based approach is utilized and exemplary
shown for the lane-change maneuver.

where f̃(t) is the signal mean in the moving window such that

f̃(t) =
1

|w|
w∑

i

f(i) (8)

finally leading to

|g(t)| =
∣
∣
∣f(t) − f̃(t)

∣
∣
∣ . (9)

To find the start and end time of the maneuver tstart, tend, the time and value
tmax, pmax of the signal peak is estimated in the moving window. Afterwards, the
signal window is split up into the left and right part. The start of the left tl,start and
right tr,start window is the point in times where

tl,start = max
(

argmax
t∈w,t<tmax

P (t) < pmax · λupper

)
(10)

and

tr,start = min
(

argmax
t∈w,t>tmax

P (t) < pmax · λupper

)
(11)

that is the maximum in the left window and minimum in the right window where P (t)
is smaller than the upper bound pupper = pmax ∗ λupper denoting the start of the gray
areas in Fig. 5.

This ensures that the windows do not contain the peak of the signal. This is the
requirement for the next step: search the start and end of the maneuver. For that pur-
pose, the thresholds plower and p′

lower are introduced. The first defines the maximum
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probability and the latter the maximum probability change for the start and end of the
maneuver. Hence, the start tstart of the maneuver is estimated by

tstart = max

(

argmax
t∈w,t<tl,start

P (t) < plower ∧ P ′(t) < p′
lower

)

(12)

and the end tend by

tend = min

(

argmax
t∈w,t>tr,start

P (t) < plower ∧ P ′(t) < p′
lower

)

(13)

denoted as black vertical lines in Fig. 5. The performance of the presented approach for
maneuver extraction is evaluated in Sect. 7.

6 VDMS Architecture

The presented processing chain consists of multiple components each of which is part of
the proposed Vehicle DataManagement System (VDMS). For the sake of completeness,
the modular and event-driven three-tier architecture presented in [11] described, based
on the roles and their participation in the project and on the defined general requirements
in Sect. 3.

6.1 Data Layer

The bottom layer Data contains all types of data in form of files on the file-system that
are either generated or from external sources including data in databases. These data
files are, for instance, ADTF container collected during test drives by the test drivers.
Furthermore, the layer also includes files generated by components of the Modules
layer, such as images extracted from the ADTF container, thumbnails of the images
or JSON files representing the decoded CAN data of the ADTF containers.

The CAN signal data are extracted from the ADTF container to a generic JSON file
due to the demand to support other measurement tools such as ADTF as well. Because
by only supporting a single data format, the usability of the framework is quite limited
and thus the flexibility (Fig. 6).

The basic properties of the JSON format provide information about the vehicle,
driver and the time interval of the measurements to easily match the conducted test
drives to a specific test campaign and driver in the database. The time interval of the
record is required since, by design, all signal value timestamps are relative to the start
time. That enables to change the reference system even after the campaign, i.e. to syn-
chronize the record times to an absolute reference system. This may be helpful if test
drives are conducted in different time zones. The special property measurements con-
tains the signal values. Each signal is defined by its minimum and maximum value, its
type (e.g. floating point number or integer) and unit (e.g. kilometer per hour). Besides
that, it contains all timestamped values of that signal in the property value sorted by the
signal value timestamps.
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Fig. 6. The architecture of the proposed VDMS for managing large-scale test campaigns consists
of three layers: Data, Modules and Interfaces [11].

Fig. 7. The drive visualisation service provides an interactive web-interface of the conducted
test drives including filter capabilities for efficient sequence identification and track selection for
scene analysis. Left: Amap of all conducted test drives. Right: The same zoomed-in map showing
information of a selected scene [11].
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6.2 Modules Layer

The second layer Modules entails all modules of the system. Each module has a distinct
functional purpose and is independent of the other modules ensuring a loosely-coupled
design and thus facilitating a scalable and maintainable software system.

The loose coupling of modules is realized by an event-driven file-system based
information passing method and by utilizing the observer pattern for asynchronously
notify about module state changes. The latter is used for the Module State Control com-
ponent of the layer Interfaces to notify connected clients, e.g. test engineers, about the
progress of modules via WebSocket connections asynchronously. Whereas the former
is used to trigger modules and thus, start the processing of a specific drive. Therefore,
all modules have the following three parameters: source, indicate, destination.

The source parameter defines the directory where the module watches for drives
to process. If a module successfully processed a drive, it creates a new symbolic link
in one or multiple directories, defined with the parameter indicate, to inform all other
modules watching for the directory defined in indicate about its progress. In the case of
modules creating new files, the parameter destination defines the location where to put
those files.

Having the compatibility in mind, the implementation language of the module func-
tionality is not restricted to the implementation language of the architecture which cur-
rently is Python. Instead, the module class merely works as a wrapper or adapter to the
actual functionality to save the state of the module’s progress in the database and to
guarantee the reliability of the framework, i.e. robust the framework against misbehav-
ior or errors in the modules such as memory leaks.

6.3 Interfaces Layer

The last layer Interfaces provides access to the VDMS for different project roles with
each component of the layer working as a service interconnected by an HTTP server.

The Drive visualisation service utilizes OpenStreetMap to show the conducted test
drives via an interactive web-based frontend. The left image in Fig. 7 shows the con-
ducted drives within FASva. The purpose of this service is to help drive planner by
planning test drives since it gives a rough overview about the test drive coverage w.r.t
the geolocation and engineers by finding sequences of interest. Therefore, the web-
interface provides filter and selection capabilities. The former enables to search for
sequences with specific characteristics, e.g. test campaign, daytime, region of interest
or road type and the latter gives access to specific situations or scenes of a drive. That
includes information about the vehicle and its environment either from onboard sen-
sors, e.g. velocity or location or any other external sources such as weather, street type
or daytime.

The RESTful-API service provides access to the data of conducted test drives, e.g.
sensor data or images of cameras and is used by test engineers and algorithm devel-
opers. The OpenAPI specification is used for the description of the API, allowing to
generate client applications for various programming languages. The drive visualisa-
tion service, for instance, uses the RESTful-API to retrieve the meta-information and
thumbnails of specific situations and the geolocation of the conducted test drives.
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The Module State Control service allows algorithm engineers to interact with the
modules of the Modules layer, e.g. to start the processing of a particular drive or getting
notified if a module finished processing.

The Overpass API service grant access to the OpenStreetMap (OSM) server for
adding information about the infrastructure. This enables test engineers or algorithm
developers to find sequences that took place on specific road types, e.g. motorway
or rural roads. The Map Matching Enricher of the Enrichment module, for
instance, uses the OSM server to retrieve information about the road the vehicle is on,
which is used in the maneuver mining step to detect lane-changes on highways.

7 Experiments and Proof of Concept

To evaluate the proposed VDMS architecture and processing chain, the evaluation of
driving functions and scenario identification is demonstrated by extracting lane changes
and analyze an onboard DAS.

7.1 Dataset

The data basis for the following experiments are two sequences captured with our
research vehicle and retrieved via the RESTful API presented in Sect. 6.3.

The first sequence covers approx. 100 km and takes place on a motorway with two
to three lanes (see Fig. 9). During the trip, 16 lane changes occurred which were manu-
ally labeled using the drive visualization interface shown in Fig. 7. The scene duration
within this sequence is 1 s, since according to [15], the probability of a lane change
duration X being greater two seconds P (X > 2) is approx. 99.52% which is adequate
for the analysis since all lane changes are represented in the signal (see black crosses in
Fig. 9).

The second sequence is another trip on a motorway with a duration of approx. One
hour and total mileage of approx. 55 km. The trip contains 28 left and 30 right lane-
changes. For each maneuver, the interval was labeled manually.

7.2 Maneuver Extraction

To evaluate the proposed approach for maneuver extraction, lane changes maneuvers are
extracted from the second test sequence since the real maneuver intervals are known.

The prerequisite for maneuver extraction is the identification of the lane crossing
event. For that purpose, a sliding window-based approach with a window size of 8 s is
utilized to search for dominant peaks in the signals representing the distance to the left
and right lane as depicted in Fig. 5. The duration of 8 s is used since [15] shows that
the mean lane change duration is μ = 6.25 s with a standard deviation of σ = 1.64.
Although the approach is simple, it correctly identifies all available lane changes but
has two false positives for left and right lane changes.

To assess the performance of the maneuver extraction approach, the extracted
maneuver are matched against the manually labeled intervals. Therefore, a maneuver
is correctly matched if the difference between the estimated and real start and end time
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Fig. 8. The performance of the maneuver extraction algorithm depends on multiples thresholds.
Left: The relative upper bound threshold. Middle: The maximum allowed probability plower for
the end and start of the maneuver. Right: The maximum allowed probability slope p′

lower for the
maneuver start and end.

is smaller than a maximum time difference Δt = {0.5, 1, . . . , 0.5}. To quantify the
accuracy, the F1 score with

F1 = 2 · precision · recall
precision+ recall

(14)

estimated. The precision and recall is defined as

precision =
tp

tp + fp

recall =
tp

tp + fn

(15)

where tp is the number of correctly matched way changes and fp the number of
unmatched maneuvers.

Since the approach depends on multiple thresholds, their influence on the perfor-
mance is depicted in Fig. 8. It is evident that, the higher the maximum time difference
Δt, the more accurate is the approach. Note that the F1 score cannot be one since the
sliding-window approach detected false positives.

Based on the given results, the optimal parameter for each maneuver can be esti-
mated assuming the following requirements.
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1. The offset between the extracted and true maneuver intervals should be as small as
possible.

2. The computational complexity for finding the start and end of the interval should be
minimized.

By applying these restrictions to the preliminary results, the estimated parameters
and performance for left and right lane-change extraction are given in Table 1. The
extraction of left lane-changes is accurate up to 3.0 s and right lane-changes can be
extracted precisely with a maximum difference of 1.5 s. With this method, the parame-
ters for each maneuver can be derived automatically based on ground truth information.

This demonstration shows that accurate maneuver extraction is possible with the
proposed approach if the maneuver identification is precise. That enables test engineers
to assess driving functions in specific sequences more efficiently, since this approach
delivers the sequences and not only the point of time of a certain event.

Table 1. The best parameter constellation for each maneuver estimated by maximizing the F1

score, minimizing the maximum time difference dt and search window.

Statistics Parameters

Δt F1 λupper plow p′
low

Left lane-change 3.0 0.9655 0.95 0.075 0.0205

Right lane-change 1.5 0.9642 0.40 0.090 0.0205

7.3 System Evaluation

Besides the identification of scenarios, the assessment of a system under test (SUT) is
another typical use-case. A test engineer might want to find those situations in which a
SUT such as a Lane Keep Assist System (LKA) does not operate. In Fig. 9 the purple
line represents the state of the LKA. If the LKA actively assist the driver, the signal is
one and zero otherwise. Hence, the situations in which the signal is zero are of special
interest. From the Fig. 9 it is evident that on this sequence, the LKA stops operating
if the driver performs a lane change (manually marked as black crosses). Hence, this
system does not actively assist the driver during lane changes. Besides that, the system
is also deactivated in two other cases with no lane-change maneuvers but lane crossing
events. Based on this, one can conclude that the system is deactivated fi the vehicle is
on multiple lanes and not ultimately conducting a lane-change maneuver.

This demonstration shows that by supporting the addition of algorithms to the
VDMS, reference signals with a higher confidence or further knowledge about the vehi-
cle and its environment may help assessing and analyzing onboard DAS.
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Fig. 9. Sequence of a trip on a motorway with two to three lanes for demonstrating the proof
of concept of the proposed VDMS for system evaluation. Top: Distance to nearest line and the
manually labeled lane changes. Bottom: The signal of the onboard Lane Keep Assist System.

8 Summary and Outlook

Test drives in the real world are mandatory to find relevant and critical scenarios for the
validation of automated driving functions [4]. However, since the analysis of large-scale
test campaigns requires computational assistance for efficient scenario identification,
this work proposes a highly modularized three-tier VDMS. That enables to manage and
analyses real-world test drives for the scenario-based validation of automated driving
functions.

Based on a definition of the terms scene, maneuver, and scenarios, a formal def-
inition of time-series of scenes is given. That is the foundation for the proposed pro-
cessing chain for maneuver mining. The raw vehicle sensor data are aggregated to time
series of scenes enriched with additional information from algorithms or external data
sources that may not be available during test drives. The enriched scenes are partitioned
into sequences by the maneuver mining component of the processing chain. For that
purpose, a novel probability-based maneuver extraction approach is presented. Fur-
thermore, a method is introduced to derive the optimal parameters for the maneuver
extraction approach for each maneuver.

That processing chain is a central component of the VDMS, whereas the design
of the architecture follows a requirements-driven approach utilizing software-quality
characteristics defined in the ISO 25010. Therefore, the needs of particular project roles
are analyzed and specific and general requirements on the architecture are derived.

The usability of the VDMS and the performance of the proposed maneuver extrac-
tion approach are finally evaluated by assessing an onboard DAS and finding sequences
representing lane-change maneuvers. For that purpose, the RESTful API is utilized to
retrieve sequences of the conducted test drives and label lane changes based on the
images of the front camera.

The evaluation shows that the extraction of left and right lane-changes is accurate
up to 3.0 and 1.5 s respectively. That enables test engineers to assess driving functions
in specific sequences more efficiently since they can find maneuver sequences instead
of only the time a maneuver occurred.

To compile a sophisticated set of scenarios, the focus in follow-up works is to inte-
grate additional algorithms to identify typical maneuver such as vehicle approaching,
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vehicle following and free driving [17]. Furthermore, the presented method for maneu-
ver interval extraction needs to be validated with other algorithm.

Acknowledgements. We thank LG Electronics, Vehicle Solution Company, Republic of Korea,
for supporting this project by cooperating in capturing large-scale test drives and providing valu-
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16. Pütz, A., Zlocki, A., Bock, J., Eckstein, L.: System validation of highly automated vehicles
with a database of relevant traffic scenarios. In: 12th ITS European Congress. ITS European
Congress (2017)

17. Roesener, C., Fahrenkrog, F., Uhlig, A., Eckstein, L.: A scenario-based assessment approach
for automated driving by using time series classification of human-driving behaviour. In:
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp.
1360–1365, November 2016. https://doi.org/10.1109/ITSC.2016.7795734

18. Schneider, J., Wilde, A., Naab, K.: Probabilistic approach for modeling and identifying driv-
ing situations. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 343–348, June 2008.
https://doi.org/10.1109/IVS.2008.4621145

19. Schuldt, F.: Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit
Hilfe von virtuellen Umgebungen. Ph.D. thesis, Technische Universität Carolo-Wilhelmina
zu Braunschweig, April 2017. https://doi.org/10.24355/dbbs.084-201704241210

20. Shavit, E., Teichner, L.: Interactive market management system, US Patent 4.799.156, Jan-
uary 1989
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