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Abstract. Developing seamless smart parking solutions remain an
active research area. User coordination burden remains high, and sys-
tems based on complex instrumentation are often expensive and costly
to maintain. Contemporary parking lot management systems are slow to
adopt new technology, particularly in cases where there is no perceived
immediate return on investment. We propose the use of a low cost, low
power, Bluetooth Low Energy (BLE) based outdoor localization system
coupled with a Random Forest classifier and dual-mode Bluetooth mesh
network to provide space occupancy detection and sensor data transfer.
To balance computational demands with cost, we leverage fog comput-
ing paradigms to shift computational capability near the sensor network
where it can be used without an expensive network back-haul to a data
center or cloud. We provide operational experiment results and analysis,
and a study on the effects on accuracy from various network complexity
and radio map minimization schemes.
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1 Introduction

Contemporary smart parking solutions are plagued with enduring problems.
First is the excessive cost, due to the need for one sensor per parking space
and retrofitting of lots with networking and power. This is a significant problem
for large lots and those in remote locations without existing networking support
or power. Second is a continued usability concern caused by traffic bottlenecks
at ingress and egress payment support points. Those that do not suffer from
these problems often use crowd-sourced occupancy detection features or rely on
smartphone apps that offload the coordination burden directly onto the user and
require a complicated technology back-end.

Solutions to these problems require a low cost and low power wireless solution
that provides seamless occupancy tracking without the need for significant or
expensive lot alterations. To reduce deployment complexity, the solution should
cover multiple parking spaces per sensor and provide some degree of vehicle
detection and tracking to prevent the need for user-provided payment support.

In past work [32] we presented our zone-based space occupancy and vehicle
detection solution over our Bluetooth-based wireless mesh network along with
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experiments and results from the deployment of our system at a parking lot used
by the Center for Collision Safety and Analysis (CCSA) on the George Mason
University’s Fairfax, VA campus. In this work we present an extension of that
paper, including an updated prediction model, an ablation analysis detailing the
effects of a reduced sensor network and radio fingerprinting schemes on prediction
accuracy and mesh network density (Sect. 4) so we may reduce network size
and site deployment burdens without making our solution unusable, and an
expanded related work section that includes a more direct comparison with our
work (Sect. 5). When necessary, we simplified prior work explanations as well as
provided additional clarity to tables and figures (citing where appropriate).

2 Solution Overview

We show an overview of our solution in Fig. 1. Our Bluetooth sensor network is
deployed to a parking lot and collects Received Signal Strength Indicator (RSSI)
measurements of custom Bluetooth Low Energy (BLE) beacons deployed inside
parked vehicles. Prior to use, a radio map of RSSI values observed at each
sensor node is created for each space in the lot, and used to create a Random
Forest machine learning model (each space is a different class in the model).
When powered on, our nodes create a self-forming authenticated mesh network
to transport this RSSI data back to a central sink node.

To balance power hungry and network heavy computation and the use of
low-power sensor nodes, we leverage fog computing concepts by locating the
computational capability necessary to perform occupancy prediction near the
sensor network. We divide this computation into two groupings based off of
memory, power, and computational demand, where heavy one-time operations
such as model training occur in a cloud environment and data collection and use
of the model occurs in a fog network. We simulate our cloud environment, and
establish the fog network in the CCSA center at the edge of the sensor network.
This allows us to offload expensive computation and deploy lower power and
lower cost sensor nodes. We depict this arrangement in Fig. 2.

Fig. 1. Solution overview. Fig. 2. Cloud/Fog/Sensor computation.
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In addition to occupancy detection, we deploy a BLE-based vehicle ingress
and egress detection capability to the entrance to the lot, coupled with an object
recognition camera (for comparison).

2.1 Parking Space Occupancy Detection

Our current space occupancy detection system and Bluetooth mesh network is
an evolution of prior work [31,32]. This section presents that prior work.

Zone Based Occupancy Detection. Preliminary experiments in prior work
had a per-space occupancy detection goal [31]. In that work, training accuracy
was above 90% however testing results were significantly less accurate. Sev-
eral factors influence this outcome, from 2.4 GHz interference from nearby WiFi
access points (the CCSA lot has upwards of 35 such access points from a nearby
residential community) to vehicle size and orientation differences. To remedy
this situation, we shifted from a per-space detection goal to a per-zone one. By
creating zones, or contiguous parking space areas, we can mitigate small predic-
tion errors due to a difference of a small number of spaces. We constructed zones
as shown in Fig. 3. We believe that such a solution remains viable, as parking
lot owners may only be interested in the area a vehicle is parked in within a lot,
rather than an individual space. We outline the experiments that guided this
decision and created an improved prediction model in Sect. 3 (Fig. 4).

Fig. 3. Parking space zone map [32]. Fig. 4. Initial mesh connectivity.

Sensor Node Placement. Mounting locations for sensor nodes must not pre-
vent occupancy of existing spaces nor interfere with vehicle movement. For our
target lot, we utilized existing lamp posts, trees, and building window space to
provide coverage for all spaces (see Fig. 3). Nodes were mounted at least 8 ft
in the air to encourage line-of-sight with a maximum number of spaces. Exper-
iments in prior work [31] gave us some insight into network performance and
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localization accuracy, causing us to include a redundant communication path
from the sensor network to the fog network inside the building (through nodes
“C” and “8”), and add additional sensor nodes. Node 10 is a special mesh-only
node that is part of the mesh network but does not observe BLE beacons. Addi-
tionally, in this work we performed an ablation analysis on our prediction model
determining that several of these nodes could be safely removed without signif-
icantly decreasing occupancy prediction accuracy. We detail these outcomes in
Sect. 4.

Radio Map Construction. A radio map was constructed of the lot using our
in-vehicle beacon and the sensor deployment shown in Fig. 3. Data was collected
for each space for a 5 min window. Such a process, however, may be prohibitively
time consuming for larger lots. To remedy this, we examine the effects on our
model of reducing the number of spaces fingerprinted in Sect. 4.

Radio Fingerprint Feature Selection. Initially, we constructed a model that
used a set of features based on descriptive statistics (median, variance, etc.)
of all observed RSSI values. After additional analysis and experimentation we
concluded that such a feature set was vulnerable to interference, attenuation, and
other issues outlined in Sect. 3.1. In many cases these influences are ephemeral,
but have severe effects on consistency of values, adding a great deal of noise to
our features. We replaced this large unstable featureset with a single, maximum
RSSI value observed within a time window at each node. We detail experiments
that support this decision in Sect. 3.

2.2 Fogged Bluetooth Mesh Network

Each of our sensor nodes has identical hardware (except for the camera node)
and is assigned a specific role (mesh only, sink, localization sensor, camera, etc.)
within a configuration file. This role dictates its function, and allows a change
in function post-deployment without physically modifying nodes. We use Blue-
tooth in EDR mode to perform mesh communication so we can partially avoid
overlapping frequencies used by our BLE advertising channel-based localization.
As Bluetooth has trouble penetrating walls we avoid deploying multiple mesh-
only nodes to enable fog network communication, and instead communicate over
the building’s existing wired Ethernet. One mesh node is designated as the cen-
tral sink node, providing a gateway for sensor data to be sent to the prediction
system on the fog network.

Initially, our mesh network was deployed using a managed flooding approach.
After conducting experiments we discovered that the high degree of message
duplicates and inter-node connections was compromising our node’s ability to
receive beacon broadcasts from our in-vehicle beacon. To remedy this, we devel-
oped a simple routing algorithm to reduce network links, and a measurement
sampling configuration reducing the total number of messages transmitted. We
detailed these changes and their effects in Sect. 3.2.
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Algorithm 1 . RSSI based authenticated meshnet formation [32].

1: procedure join network
2: if node contains ”fog” service then
3: do SSDP on Ethernet network (for 20 mins)
4: for each fog node fn found do
5: if auth to fog network(fn) then
6: initialize message queues for fn

7: if at least one fog node found then
8: launch RESTful API listener (flask)

9: if node contains “edr” service then
10: perform BLE scan (for 20 mins)
11: for each advert bn with matching UUID do
12: if bn avg RSSI ≤ -75 dBm then
13: if auth to ble network(bn) then
14: known nodes.append(bn)

15: if at least one node bn found then
16: broadcast BLE advertisements (for 20 mins)
17: gw ← bn with largest RSSI value
18: Initialize message queues for gw

19: procedure auth to fog network(node info fn)
20: authmsg ← construct authentication message
21: Open RESTful HTTPS connection to fn
22: POST authmsg
23: authreply ← HTTP reply from POST
24: if authreply is valid then
25: return True
26: return False
27: procedure auth to ble network(node info bn)
28: authmsg ← construct authentication message
29: Open RFCOMM connection to bn
30: Send authmsg
31: authreply ← Receive from bn
32: if authreply is valid then
33: return True
34: return False

Authenticated Link Formation. Network formation occurs differently on
the fog and sensor networks due to the difference in existing protocols used
on Bluetooth and Ethernet networks. For example, node discovery on our fog
network uses a slimmed-down implementation of SSDP [31], while nodes are
discovered on the sensor network using Bluetooth’s Service Discovery Protocol
(SDP). The fog network is flat, while the sensor network is formed outward from
the central sink node. This allows new sensor nodes to join the network and
have a path back to the central node to carry our authentication messages.

Mesh network construction is shown as pseudocode in Algorithm 1 [32]. When
each nodes starts up, join network (line 1) repeatedly executes until at least
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one viable network hop is found. Next-hop discovery for fog-connected nodes
is shown in lines 2–8, and for Bluetooth-connected nodes in lines 9–18. Our fog
discovery (line 3) is implemented using a simplified SSDP service detailed in [31],
and authentication (lines 5–6, procedure outlined in lines 19–27) is performed
over a RESTful API written in Python and Flask over HTTPS (line 8). Blue-
tooth discovery (lines 11–12) uses BLE advertisements over a previously used
SDP protocol, to support our signal-strength based routing algorithm outlined
in Sect. 3.2. Bluetooth authentication proceeds in line 13. If authentication is
successful for at least one node (line 15), a best node is selected (line 17), message
queues are initialized (line 18), and the newly joined node begins broadcasting
its presence on its respective medium (fog/Ethernet, or Bluetooth mesh) in line
16. This allows for the mesh network to form out from the central sink node, as
it is the only node to advertise itself on boot, while all other nodes wait for a
broadcasting node to come in range. Experiments and analysis that lead us to
this algorithm are found in Sect. 3 and prior work [32].

Encrypted Message Transfer. Prior to deployment, each node exchanges
and stores AES and HMAC key material with the central node. Our mesh net-
work supports two main types of messages: authentication messages and parking
system messages (RSSI data, heartbeats, camera messages, etc). Each message
occupies a single AES block (128 bits) composed of a 4-bit message type to aid
in message processing implementation (0000 for heartbeats, 0001 for RSSI data,
etc.), a 16-bit sending node identifier, and 108 bit message text payload. This
entire block is encrypted with the AES key and signed with the HMAC key (we
implement a SHA-256 HMAC). This block is then pre-pended with a 2 bit mode
identifier and 16 bit recipient node identifier and sent out over the network,
each to allow for message routing and receipt without every node attempting
decryption on every message. This message format is shown in Fig. 5. Addi-
tional implementation details can be found in [32].

Fig. 5. 530 bit encrypted and signed message [32].

2.3 Vehicle Identification and Tracking

Our solution provides vehicle detection in two ways. First, is a pure wireless
solution detailed in Sect. 2.3. For comparison, we include an object recognition
camera-based solution in Sect. 2.3 and use it to perform attestations for our BLE
beacon (i.e. a particular beacon does indeed belong to a vehicle).
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Algorithm 2 . BLE Only Vehicle Identification Procedures [32].

1: procedure initialize()
2: parked records ← {} � init history data structure
3: veh entered ← {} � init enter records
4: veh exited ← {} � init exit records
5: detect veh kill flag = False
6: beacon measure intvl = 5min
7: start thread detect vehicle enter()
8: start thread detect vehicle exit()

9: procedure detect veh enter(each received beacon b) � called for each beacon
central receives

10: if b.veh id not in parked records then
11: create entry for b.veh id in parked records
12: notify mgr new vehicle parked (b.veh id)

13: parked records[b.veh id].last seen ← b.time

14: procedure detect veh exit()
15: while detect veh kill flag = False do
16: n ← time.now()
17: for each veh rec ∈ parked records do
18: r ← parked records[b.veh id].last seen
19: if (n − r) > beacon measure intvl then
20: notify mgr new vehicle exited (b.veh id)

21: sleep (beacon measure intvl)

Algorithm 3 . Hybrid BLE/Camera Vehicle Identification Procedures [32].

1: procedure initialize
2: Initialize datastructure d
3: Start thread to record BLE beacons
4: Start thread to record events from camera
5: bt ← rssi threshold (set to -70 dBm)
6: td ← event time delay (set to 5 seconds)
7: if is nighttime then
8: Exit, as camera does not function at night

9: Start thread to loop through calls to attest veh thread(d)

10: procedure attest veh thread(datastructure d)
11: if d has new event e then
12: if e is a new Beacon event b then
13: Find matching Camera event c

14: if e is a new Camera event c then
15: Find matching Beacon event b

16: if both c and b exist then
17: Send attestation alert (c,b) to central node
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Ingress and Egress Tracking. We leverage our localization solution to provide
a means to track vehicles traveling into and out of the lot. When our nodes view
a beacon that has not been observed in some time, we can assume this is a
newly parked vehicle. Similarly, for beacons that are not seen for some time, we
can assume the vehicle has left the lot. This forms a basic Bluetooth-only vehicle
detection system, which we outline in Algorithm 2. The algorithm performs some
setup in lines 8–12, including the data structures it will need to store beacon
data. Two threads are launched (line 7–8) that loop through calls to procedures
(line 8 and 13) that observe these data structures for changes (lines 9 and 18) in
beacon timestamps, making notifications (lines 11 and 19) of vehicle detection
when a threshold (initialized in line 6) has been exceeded.

Camera-Based Vehicle Detection and BLE Beacon Attestation. We
also compared efficacy of our vehicle detection system to a low power, low
cost object recognition camera by locating both at the lot entrance. We used
a Jevois-A33 Smart Camera [17] connected via USB to one of our sensor nodes,
and configured the camera to use one of it’s pre-programmed recognition algo-
rithms (Jevois Darknet YOLO module [16]) to determine if an object was a “car”
or some other object. The sensor node was also equipped with our Bluetooth
receiver and provided identical functionality to other sensor nodes. In addition
to each solution being an independent way of detecting vehicles, we can combine
them together so that the camera performs a level of attestation of the beacon
it sees, to ensure that it indeed belongs to a vehicle. When a vehicle approaches
the entrance to the lot, its beacons are detected by our sensor node. When the
vehicle passes in front of the camera, the object recognition function is engaged
and determines a “car” has passed in front of the camera. We use timestamps of
these events to match them, and make an attestation. We provide an overview
of this combined detection and attestation functionality in Algorithm 3. Here we
start recording BLE beacon and camera detection events in lines 3–4. Thresh-
olds that we experimentally determined are set in lines 5–6. A third thread is
launched in line 9 that continuously runs an attestation procedure that matches
new beacon events with new camera events based on timestamps, submits an
alert back to the central node in line 17. We conducted feasibility experiments
for our implementation of this algorithm in Sect. 3.3.

3 Experiments and Results

Our sensor nodes are constructed with Raspberry Pi 3s and after-market Blue-
tooth USB adapters [35]. All of our code is written in Python, using pybluez [18]
libraries and the Bluez Linux Bluetooth stack [14]. We run a stripped down
version of Ubuntu Mate on the Pi, however any Linux operating system com-
piled for the Pi 3 should perform well. We used Weka [12] and scikit-learn [4] to
provide our machine learning libraries.
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Table 1. Offline lot spaces [32].

Name Source Spaces Rate

Tripod Tripod 1-84, 89-90 Constant

89-90

350 o 350Z set 2 Constant

370 o 370Z 1-90 Constant

TL o Acura set 3 Constant

Table 2. Over Mesh lot spaces [32].

Name Source Spaces Rate

350 m1 350Z set 4 Constant

350 m2 350Z set 1 Constant

350 m3 350Z set 1 60s sample

370 m 370Z set 1 60s sample

Rogue m Rogue set 1 60s sample

During the course of our radio map creation and operational experiments,
we assembled several training and testing datasets. Initially, we deployed our
beacons to tripods in an attempt to create a radio map that was not biased
toward a particular vehicle orientation, however we determined through testing
of the effects of vehicle attenuation on the beacon’s signal that training data
produced from a beacon inside a vehicle produced a better model (see Sect. 3.1).
As a result, we re-fingerprinted the lot after mounting a beacon behind the rear
view mirror of a vehicle, and created several testing sets to explore accuracy
when the model is applied to different vehicle shapes and when data is collected
in an offline mode and over the live mesh network. We summarize each of these
datasets in Tables 1 and 2 (sample rates explained in Sect. 3.2). In these tables,
set 1 spaces include 8, 20, 25, 27, 34, 36, 44, 53, 58, 64, 75, and 83. set 2 spaces
includes 25, 27, 29, 34, 36, 38, 39, 56, 58, 60, 62, 64, 67, 70, 71, 75–77, 79–81, and
87–89. set 3 includes 1–2, 4, 6, 10–13, 18, 20, 24, 31–33, 35, 37, 39–45, 49–50,
53–55, 64, 66, 68, 72, 75, 77–78, 80, 82, and 90. set 4 spaces includes 25, 27, 29,
34, 36, 56, 58, 60, 71, 72, and 75–76. Earlier work used the entire target parking
lot [31], however at the time we conducted our new experiments, there were
unmovable objects located in what is shown in Fig. 3 that prevented us from
parking in those spaces. As a result, we kept the zone in the figure to prevent
the need to renumber spaces, but have removed mention of it in our analysis.

3.1 Improved Prediction Model

We outline improvements to our Random Forest classifier for occupancy pre-
diction in this section. We realized experimentally, that only maximum RSSI
values produced consistent results. As a consequence, our first improvement was
a reduction in feature-set size from 38 in prior work to 10 features per space, per
time interval. In Table 3 we show a summary of results using this new feature-
set trained against our tripod model (with both n = 100, and n = 1500 trees in
forest), tested with TL o, 350 o, and 370 o in-vehicle data sets. Training results,
10-fold cross-validated (CV) occupy the first row, while test data occupies the
remaining rows.

While our training accuracy was 100% in the optimized tripod model, our
success at predicting other vehicle occupancy on a per-space basis ranged 8.94%
and 14.05% with the smaller model (n = 100) and decreased with the optimized
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Table 3. Init. per-space tripod model.

Dataset n = 100 n = 1500

TP R TP R

Training 99.88% 1 100.0% 1

TL o 11.23% 0.80 10.44% 0.87

350 o 8.94% 0.79 8.18% 0.83

370 o 14.05% 0.74 10.91% 0.82

Table 4. Init. zoned tripod model.

Dataset n = 100 n = 1500

TP R TP R

Training 99.68% 1 99.68% 1

TL o 42.46% 0.83 38.95% 0.82

350 o 16.06% 0.71 18.48% 0.77

370 o 43.33% 0.81 43.93% 0.82

model to between 8.18% and 10.91%. Even after introducing additional sensors,
we were forced to abandon the tripod model and adapt a zone-based approach
(outlined in the next subsection) to obtain a viable solution.

Zone Based Occupancy Detection. To explore the effects of a move from
per-space to zoned prediction prior to investing in re-fingerprinting the lot, we
used the same tripod training data and divided the lot into zones as described
in Sect. 2.1. We retrained our model using 6 classes instead of 90, (i.e. 6 zones
assembled from all 90 spaces). Our zoned training and testing result is shown in
Table 4. This was a significant improvement, however well below an acceptable
level of accuracy. As a result, we replaced our tripod training set with one con-
structed from beacons located within a vehicle. We discuss this approach in the
next subsection.

In-vehicle Effects on Beacon Attenuation. Upon taking a closer look at
the individual measurements of our tripod model and comparing them to data
collected from in-vehicle beacons, we saw that the location and orientation of
the beacon has a significant impact on it’s viability at producing our radio map.
When mounted on a tripod, the beacon avoids any attenuation produced by the
vehicle’s chassis, seats, etc. In past work [31] we attempted to compensate for
this by uniformly increasing the RSSI values for beacons, however additional
analysis concluded that the attenuation is not consistent in every direction. For
example, the rear-view mirror in our vehicles produced a 6 dBm RSSI decrease
when measured from the same distance as a 1 dBm RSSI decrease due to a
vehicle’s front windshield. The errors created by this inconsistency were the
limited factor in our model, as artificial compensations produced more problems
than they solved. As the line-of-sight between the beacon and each node differs
with each space the vehicle is parked in, we had to rebuild our radio map. We
discuss our replacement map in the next subsection.

In-vehicle Fingerprinting. We re-fingerprinted the lot using the 370Z due to
convenient availability of the vehicle. We then retrained our model and repeated
the per-space and zoned tests that we performed for the tripod models. Results
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Table 5. Per-space in-vehicle model.

Dataset n = 100 n = 1500

TP R TP R

Training 99.63% 1 99.56% 1

TL o 42.11% 0.92 40.79% 0.95

350 o 12.78% 0.85 13.19% 0.89

Table 6. Zoned in-vehicle model.

Dataset n = 100 n = 1500

TP R TP R

Training 99.78% 1 99.67% 1

TL o 89.65% 0.99 89.39% 0.99

350 o 85.28% 1.0 79.86% 1

are shown in Tables 5 and 6. Our trained model evaluated to accuracy above 99%
for both per-space and zoned, however the zoned model produce a far superior
result in for the smaller (n = 100) model of between 85.28% and 89.65% in our
test vehicles. Additionally, the ROC areas increased for this zoned model to 99%
and 100%. These tests were performed with data collection in offline mode, as
they were collected and recovered from the node’s directly. We explore the use
of collecting data over our active mesh network in the next subsection.

3.2 Over-Mesh Experiments

Our first mesh design used a managed flooding algorithm with no route construc-
tion, which created a significantly dense and chatty network. In particular, node
1 (see Fig. 3) became an overloaded single point of failure as all mesh traffic was
sent through it. As a result, we found that our Bluetooth radios spent a large
amount of time communicating data instead of observing beacons. To remedy
this, we deployed an additional sensor node (node 8) to allow for a redundant
path, along with a simple route creation technique outlined earlier in Sect. 2.2
and sampling techniques outlined in Sect. 3.2. We discuss the experiments that
lead to this change in the following subsections.

Effects of Over-Mesh Data Collection. With our mesh network active and
collecting node data at the central sink node, we repeated our testing exper-
iments using the 370Z, 350Z, and Acura TL test vehicles. Results are found
in Table 7, computed against our zoned model (and per-space model for com-
parison). We continued to see a large amount of message queuing due to the
volume of messages produced by a single beacon, as several beacons broadcasts
can be observed by each node, for each time slice. This also produced a delay in
assembling all of the required node data to make a prediction at the sink node.
Results were close to the offline results in the last subsection, however there was
a notable decrease in accuracy which due to this overload of messages. In some
cases, no beacons were observed from nodes that produced data when in offline
mode.

Effects of Down-Sampling. To improve accuracy and consistency we were
forced to determine a means to reduce overall messages transmitted throughout
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Table 7. Initial over-mesh results.

Model (Dataset) TP R

Zoned (350 m1) 46.33% 0.82

Zoned (350 m2) 61.94% 0.85

Per-Space (350 m1) 1.98% 0.60

Per-Space (350 m2) 9.72% 0.82

Table 8. Prediction using Single Max.

Model (Dataset) TP R

Zoned (350 m1) 66.67% 0.68

Zoned (350 m2) 75% 0.75

Per-Space (350 m1) 8.33% 0.85

Per-Space (350 m2) 8.33% 0.91

the network. To explore this, we first conducted an experiment where we reduced
our mesh-collected test datasets to a single maximum RSSI measurement for each
5 min observation widow. This would be the most extreme reduction of message
traffic that would remain within our experimental parameters. Results for pre-
diction using these values is shown in Table 8, which showed an improvement in
prediction allowing us confidence in investing in creating a data-sampling scheme
at the nodes, and re-collecting new sampled test data.

To further explore sampling prior to making code changes, we took our train-
ing set and produced downsampled training sets to determine if an accurate
model could still be constructed from a sample per 30 s, 60 s, 120 s, and 300 s
(maximum). We show these results in Table 9. We see diminishing returns after
a 60 s sample rate, so we coded that into our meshnet and use it moving forward.

Table 9. Down-sampled per-space results [32].

Sample rate TP R Sample rate TP R

30 s 99.78% 1 60 s 99.78% 1

120 s 98.33% 1 300 s 97.78% 1

Finalize Design: Sampled and Routed Mesh Results. Before we created
our downsampling scheme we attempted to mitigate message overloads with arti-
ficial delays so that messages could queue up in nodes and burst across to other
nodes when connections were made. Our experiments showed, however, that
this did not solve the problem. Once we implemented our downsampling and
routed configurations, we repeated this measurement for comparison in Fig. 6.
We see the routed mesh results are consistently and significantly below the mes-
sage delays of the initial flooded mesh configuration, and the total messages
seen during our experiments were several orders of magnitude less in our new
scheme. During this experiment, we set a minimum delay for messages to 100 s
to reduce risk of compounding messages and allow for fewer connection estab-
lishments when message counts are slow, however in later iterations this delay
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was removed to speed up availability of occupancy prediction results at the sink
node.

We then repeated our testing with the 370Z, and added the Nissan Rogue
to add diversity in vehicle size and orientation. We were unable to repeat the
experiment with the 350Z, however we used downsampled results from the prior
over-mesh experiments (350 m2) to form a new dataset for that vehicle (350 m3).
These results are listed in the first three lines of Table 10. We also discovered
during our experiments that there was a slight increase in accuracy when we
used a per-space model, but performed post-processing on the prediction results
to match the predicted space to it’s corresponding zone. We refer to that in our
results as post zoned results (lines 4–6 of Table 10). Lastly, we performed an
additional post processing step where we determine the final prediction value of
the vehicle to be the zone that occurred more than 50% of the time, referred to
as Majority. We show results from this in the last three lines of the table.

Table 10. 60 s sampled mesh results [32].

Model (dataset) Default

TP R

370 Zoned(350 m3) 83.33% 0.90

370 Zoned(370 m) 77.08% 0.88

370 Zoned(Rogue m) 77.08% 0.90

370 60 s Post Zoned (350 m3) 95.83% –

370 60 s Post Zoned (370 m) 85.41% –

370 60 s Post Zoned (Rogue m) 75% –

370 60 s Post Zoned Majority (350 m3) 100% –

370 60 s Post Zoned Majority (370 m) 83.33% –

370 60 s Post Zoned Majority (Rogue m) 75% –

Fig. 6. Message delay comparison [32]. Fig. 7. Routed mesh connections.
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3.3 Camera vs. BLE Based Vehicle Entrance/Exit Detection

We compared our BLE-only vehicle ingress/egress detection with outputs from
an object recognition camera. To accomplish this, we mounted the camera onto
one of our BLE nodes and aimed at the ingress/egress location in our target lot
from a window in the near-by building (Fig. 8). We then drove a vehicle into and
out of the lot 10 times and compared the outputs from both our node and the
object recognition camera. When we analyzed the RSSI values from our node, we
determined a consistent threshold for vehicle proximity was a value above −70
dBm. We then counted the number of beacons observed above this threshold.
The object recognition camera labeled the vehicle as “car”, and timestamps were
recovered for each instance where this recognition was made. These outputs are
shown in Table 11, along with a range of delays between then the BLE node
detected the beacon and when the camera produced a detection output. We see
that the camera had a delay of several seconds between the time a beacon was
first observed and a recognition event was processed. This is due to the lack
of a significant computational demand when detecting the presence of our BLE
beacon.

Table 11. Daytime camera recognition vs BLE
detection (≤ 70 dBm.) [32]

Vehicle Observed Recog. Detection

Direction Beacons Objects Δt

Enter (10) 2–3 1–2 “car” 0–3 s

Exit (10) 1–4 1–3 “car” 2–11 s

Fig. 8. Camera/BLE node rig.

We performed this experiment during daylight hours, and repeated another
10 passes at night. Our solution functions regardless of light levels, while the
camera failed to detect any object in darkness. Additionally, for each ingress
pass at night, we parked the vehicle in a different parking space within the lot.
For spaces that were far from the ingress beacon, there was a clear gap between
entrance and exit (Fig. 9) signifying when the vehicle passed by the beacon on
its way to a far parking space. For spaces that were near the beacon, there was a
much less pronounced difference (Fig. 10), indicating that our BLE-only solution
may perform poorly when vehicles park in spaces near the ingress point of the
lot. We conclude that a preferred solution leverage all nodes in a lot to perform
detection, rather than a single node near the lot’s entrance. We will explore this
in future work.
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Fig. 9. Far space detection [32]. Fig. 10. Near space detection [32].

4 Prediction Model Ablation Study

For very large parking lots, fingerprinting each space may be a prohibitive bur-
den. Furthermore, for zone-based detection, it may not be necessary. To explore
the effect of removing sensor nodes (i.e. deploying a smaller sensor network)
from the model and removing fingerprinting data (i.e. skipping parking spaces
during fingerprinting) from the radio map has on prediction accuracy we con-
ducted an ablation study. This technique exposes certain behaviors of our model
for our target environment by removing data from our model piece-by-piece and
studying the effects on prediction accuracy. Our goals with this exercise are to
study effects and produce a minimum sensor network size (number of nodes)
and smallest radio map (fewest spaces fingerprinted).

Each set of experiments begins with the default model from prior work [32],
however we found that a small but consistent increase in accuracy was achieved
by setting the algorithm to construct a model with random tie-breakers between
attributes that are of equal value, and tuned our new model to enable this option.

Effects of Node Reduction. Recall from Sect. 2 that our prediction model
is formed by combining maximum RSSI values from each node in the sensor
network. For our 10 node deployment, the model is created from 10 values
per instance (one for each node). We perform our node reduction experiments
by computing attribute importance for each of these values, using the average
impurity decrease method implemented in Weka, and remove the least impor-
tant node. We chose this model as it is model dependent, and not specific to our
observations about the physical layout of the sensor network.

Once a node is removed, we retrain our model with the remaining values and
compare its accuracy. Each retraining cycle also computes attribute importance
to produce a new least important feature, followed by removal of the next least
important node, and so on until only a single node is left. This produces 10
accuracy measurements, one for the original model and 9 corresponding to each
new model.
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Fig. 11. Effects per-space fingerprint-
ing. (Color figure online)
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Fig. 12. Effects zoned fingerprinting.
(Color figure online)

We performed this activity for both our per-space model and our zoned
model, and show the output in blue in Figs. 11 and 12 (respectively). Here
we see the original radio map, with node reduction as explained above, as a
blue curve. For both per-space and zoned models, we were able to remove 7
nodes (of 10 total) before accuracy dropped below 90%. Additionally, our zoned
model remained about 98% after 6 nodes removed, while the per-space model
behaved similarly only up to 4 nodes removed. This makes intuitive sense, as
our zoned model effectively masks some prediction errors found in the per-space
model, when incorrectly classified nodes produce a prediction that remains in the
correct zone. While encouraging, accuracy here is computed only across training
data.

To obtain a minimal sensor network size with practical accuracy we must
test the models produced with these reduced network size using test data used
to validate our original models in Sect. 3.2 (i.e. differing vehicles, sampled and
collected over mesh). We tested these reduced node models using the over-mesh
350 and Rogue datasets, and show results in Figs. 13 and 14. The left figure shows
how our new model behaves with node reduction, showing consistent results even
with removal of 2 to 4 sensor nodes. The right table shows the same result with
the majority post processing we used in prior work, described in Sect. 3.2. This
post processing had a marginal improvement in prediction accuracy, particularly
for the rogue test set, however in three cases (2 in the 350 set, 1 on the rogue set)
where this post-processing technique decreased accuracy. These three cases were
limited to cases when 6 and 9 nodes were removed, where successful predictions
were in the minority of other incorrect predictions.
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Fig. 13. Node reduction testing results.
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Fig. 14. Effects zoned fingerprinting.
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When we examine the training and testing results together, we can see that
the zoned model maintains performance (e.g. no more than a 10% accuracy loss)
when up to 3 nodes were removed. These nodes correspond to nodes 1, 5 and 9.
When we examine the network formed by our improved mesh network in Fig. 7,
we notice that nodes 1 and 5 are links in the mesh network, and cannot be
removed without requiring the network to reform. While we did not perform a
network formation experiment with this new arrangement, we know from past
data that replacement links between node 4 and 7, and 2 and 6 could have been
established instead. We depict this reduced network in Fig. 15.

Effects of Radio Map Reduction. This section includes our analysis of the
effects of reducing our radio map size. To remain independent of a priori facts
about the physical layout of the parking lot or how our nodes behave (after
fingerprinting the entire lot), we select spaces to remove from the radio map by
simply keeping every 2nd space, and every 4th space. This produces two new
radio maps that are half, and one-fourth the size of the original map. Should a
balance be achieved between accuracy and space fingerprinting investment, new
(perhaps larger) lots can be fingerprinted with less effort.

Fig. 15. New node reduced sensor network.

We trained two new prediction models, corresponding to each of our planned
radio maps: full size (original), 1/2 size, and 1/4 size, and again used our 350 and
rogue sampled datasets from Sect. 3.2. We show results in Table 12, where we see
almost no significant influence on the training set’s accuracy but a 20.8333% and
14.5833% decrease in accuracy for 350 and rogue testing sets (respectively) with
the 1/2 radio map and a 16.6666% and 27.0833% decrease for the 1/4 radio map.
Curiously, for the 350 test set, the accuracy counter-intuitively increased with a
smaller radio map. We will explore this occurrence in future work. Additionally in
the table, we show the outcomes from the “majority” post-processing technique
we used in Sect. 3.2 when combining multiple prediction instances. In these
cases, accuracy remained the same or was decreased due to rounding error in
cases where correct and incorrect predictions totaled the same number (a case
we consider a majority “incorrect”).
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Table 12. Effects of radio map reduction on full-lot accuracy.

Dataset Full size 1/2 size 1/4 size

Acc. Major. R Acc. Major. R Acc. Major. R

Training 99.7037 100 1 99.7037 100 1 99.7101 100 1

350 m3 83.3333 83.3333 0.896 62.5 58.3333 0.878 66.6667 66.6667 0.850

Rogue m 81.25 83.3333 0.899 66.6667 66.6667 0.896 54.1667 50 0.904

Outcomes from these experiments show that decreasing the radio map has
a potentially prohibitive effect on prediction accuracy. In these cases, we would
need to either combine zones together to further reduce error, or determine a
way to perform interpolation on the missing spaces. We believe the latter is a
feasibly approach and will explore this in future work.

Balancing Sensor Network and Radio Map Size. When combining a
reduced radio map with a reduced sensor network, we are faced with a plan-
ning challenge. In the last two subsections, we explored effects of each, however
when combining the two techniques together we must be careful not to com-
pound losses in accuracy. We combined our node reduced models together with
a reduced radio map, and repeated our training and testing exercises. We show
the results in Figs. 16 for training data and Fig. 17 for testing data. Our “major-
ity” post processing technique did not increase accuracy significantly, so we will
favor clarity and avoid including those results in this discussion. Additionally
our testing data was matched with a zoned model only, as per-space prediction
was not possible for a reduced map size (i.e. many of the spaces that correspond
to the true location were removed from the map to support the experiment).

Our training data, as expected (per prior discussion), produced a model
that evaluated to accuracy above 98% regardless of radio map size up to and
including removal of 6 (of 10 total) sensor nodes. Also as expected, the zoned
model out performed the per-space model, however accuracy was maintained
above 99% up to and including 3 removed nodes. When this process was repeated
for testing data in Fig. 17 we see a less pronounced decrease in accuracy across
the range of 7 removed nodes. In this case, however, we do see a rank ordering
of accuracy with respect to changes in radio map size that favored a larger map.
The less fingerprinted spaces, the higher the potential that any test measurement
may predict out to the wrong zone. This was expected, however the interest
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Fig. 16. Combined effects on training data.

here concerns the notion of acceptable losses in accuracy when compared to the
deployment time savings of a reduced map and smaller sensor network. We see
for both the 350Z and Rogue test sets, reducing the radio map size and a single
node improved accuracy. In the case of the rogue dataset, this was maintained
for 3 more removed nodes. We suspect that this was due to a specific coincidence
where the spaces tested have some values that were creating mis-classification
due to less than optimal data in one of the nodes. After examining the model,
we noticed that Node 5 was the offending node in this case, and the incorrectly
classified spaces were consistently in Zone 1, which happens to be the zone closest
to Node 5. This is a bit counter-intuitive as our nodes should be less vulnerable
to interference and other attenuation factors with shorter distances from beacon
to observing node. In this case, however, a combination of factors are in play. For
example, the Rogue is a larger vehicle, with a different internal orientation to the
training vehicle, potentially appearing farther away from Node 5’s perspective.
This part of the lot has fewer observing nodes as well, increasing the effect of
Node 5’s errors. We seek to explore this topic in future work, and remedy the
mis-classification effects from scenarios such as this.

From the data we have assembled, we observe that decreasing radio map size
has a significant impact on detection accuracy, while reducing some nodes using
the methods we employed can be done with less significant impacts. The node
reduced sensor network depicted previously in Fig. 15 will still be viable, but
at this time must be combined with a full size radio map if accuracy is to be
maintained. We will continue to explore this area to improve both our prediction
methods, and our node and map downsizing techniques.
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Fig. 17. Combined effects on testing data.

5 Related Work

5.1 Parking Management

Most paid parking lots (and even some free lots) have some degree of park-
ing management deployed, either to collect information on space occupancy or
support billing or payment transactions. These often come in the form of a
human attendant that handles all aspects of driver and vehicle interaction, or
an attendant-less lot with automated ingress and egress ticketing systems.

Crowd-Sourced Space Availability. Many commercially managed lots and
street parking owners employ so-called crowd-sourced occupancy detection capa-
bilities (ParkMobile [24]) where users of the system indicate when and where they
have parked through a smartphone app or near-by electronic kiosk so that fees
can be transacted electronically. Similar systems [28,29] often include a means
to reserve spaces in advance of parking and often forgo the use of ingress and
egress ticketing to speed up this interaction.

There are two main problems, however, with these approaches. First, they
rely entirely on the accuracy and trustworthiness of the vehicle operator to cor-
rectly indicate where they have parked. Second, they place the entire coordina-
tion burden on the end user, substituting the time it takes to get into and out
of the lot with time the user must spend indicating where they have parked.
Our solution replaces all of these parking system characteristics by removing
the ticketing stations entirely, as well as any requirement for the vehicle driver
to interact with our system when parking. This represents the optimal seamless
parking experience.
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5.2 Indoor and Outdoor Localization

Outdoor localization is thought to be a solved problem with the deployment
of GPS, however fine grained precision of static locations with low cost and
low-power hardware continues to face challenges. Contemporary estimates of
smartphone GPS accuracy under ideal weather and line-of-sight conditions, for
example, is estimated to be just under 5 m [26]. Some research [13] has been per-
formed combining GPS data with historic crowd-sourced space occupancy infor-
mation to provide localization and predict space availability. Systems like these
may have a large data storage burden when forced to maintain large amounts of
past parking data. There is a larger concern, however, with systems that rely on
parked-vehicle provided GPS data: The parking management system is trusting
localization data provided to it by the entity that parks. This empowers user-
exploitation, particularly when large fees are involved. Parking management sys-
tems must perform localization (or verification) from an infrastructure-controlled
system, where sensing local to the parking space performs confirmation of vehi-
cle location. Our system does precisely this, however there is a small possibility
that the in-vehicle beacons could be manipulated in a way such that malicious
activity could focus on directing a signal in such a way at our sensor nodes,
that the prediction model would fail or produce incorrect results. We believe,
however, that this would be very time-consuming for an adversary and is not
something we feel is necessary to defend against at this time.

Indoor localization systems were created to provide location services indoors,
where GPS cannot reach. Some solutions on vehicle dead reckoning such as work
by Gao et al. that leverages inertial sensors within an in-vehicle smartphone to
detect vehicle movement [10]. Liniger [22] combines GPS data with BLE beacons
and a vehicle’s state obtained from its On-Board Diagnostic (OBD-2) connec-
tion to determine is a vehicle is parked or moving. Others use physical detection
of occupancy through use of infrared sensors aimed at spaces [38]. Many wire-
less localization solutions, in contrast, use signal strength measures (often RSSI
measures) to perform position prediction using a variety of radio technologies
(which can also be used in outdoor environments). For example, Oguejioforo
et al. [27] uses RSSI measurements of IEEE 802.15.4 (low-rate wireless Personal
Area Networks) radios combined with linear distance estimates, while Fabian [7]
provides localization in their parking management solution that uses trilatera-
tion. Two problems exist with use of euclidean distance measurements. First, to
make use of the estimates, the geography of the environment they are used in
must be measured so that some indicated distance from a receiver can be inter-
preted as a particular location. Second, single sensor measurements are often
error prone, and combining several distances to form an accurate single deter-
mination of location would compound these errors. An alternative technique is
to employ the use of radio maps where sensing remains static but measurements
(so called “fingerprints”) at predetermined locations are taken and combined
together. This modeling can be done and data can be manipulated in many
different ways. For example, Faragher and Harle perform develop several local-
ization techniques that compare the use of BLE and WiFi radios [8]. Silver [33]
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combines various measurement value filtering techniques and compares accuracy
of disc trilateration and k-nearest neighbor fingerprinting techniques. Daniay
et al. [5] leverages RSSI fingerprinting of moving BLE beacons to feed k-nearest
neighbor and Neural Network algorithms. Additional works are surveyed in [23].

5.3 Bluetooth and Mesh Networking

Our initial mesh deployment mimicked the Bluetooth SIG BLE mesh specifica-
tion [3] and other Bluetooth controlled flooding algorithms [19], however such
a design quickly became unusable for our purposes as we needed to minimize
our use of BLE advertising channels as they were the foundation of our local-
ization solution. This drove us to use Bluetooth classic (EDR) in an attempt to
minimize the impact on these channels.

Mesh networks are too large of a topic for this section, however we can
group mesh network research into two main groups, those that use message
flooding [1,15,30] and those that establish fixed or dynamic routes [11,21,25,34].
In contrast, flooding approaches are generally easier to implement and are often
broadcast based but produce a lot of duplicate messages while routed approaches
are (sometimes) more complicated to implement and often produce some degree
of network overhead due to the exchange of routing information between network
nodes. Our solution avoids some of this message overhead by producing routes
prior to the use of the network, based on a boot-time RSSI measurement of
nearby nodes. This prevents the need for network overhead, and remains viable
since our sensor network never moves (e.g. the RSSI measurements are network
construction will remain the same). Additional routed mesh protocols can be
found in [37], and Bluetooth-specific mesh protocols surveyed in [6,36].

5.4 Random Forest Classifiers

Machine learning techniques are used to find patterns and solve real world prob-
lems from malware detection [9] to detecting oils spills in satellite imagery [20].
Any well understood problem that requires a solution involving the determina-
tion of patterns within data that are not clearly accessible by manual exam-
ination are prime candidates for machine learning algorithms. Random forest
classifiers are a type of machine learning algorithm referred to as ensemble tech-
niques as they combine multiple models together to form more accurate detection
(many other examples of use are surveyed in [2]). Classifiers of this type are easy
to interpret and tune, which was out primary driver in considering their use
(outside of experimental validation conducted in past work [31].

6 Conclusions

In this work we present an evolution of out Bluetooth based outdoor smart-
parking localization solution. We perform a series of validation experiments to
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produce a prediction model that balances efficacy with simplicity of deploy-
ment. With zone-based smart parking solutions like ours, outdoor lot owners
can leverage new technologies to make parking management more efficient with-
out requiring significant investments in technology.
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sensor networks to internet of things. Bluetooth low energy, a standard for
this evolution. Sensors 17(2), 372 (2017). https://doi.org/10.3390/s17020372.
https://www.mdpi.com/1424-8220/17/2/372

16. Itti, L.: Darknet yolo jevois module (2018). http://jevois.org/moddoc/
DarknetYOLO/modinfo.html

17. JeVois Inc: Jevois-a33 smart camera (2018). https://www.jevoisinc.com/pages/
hardware

18. karulis: Pybluez - python extension module allowing access to system bluetooth
resources (2018). https://github.com/pybluez

19. Kim, H., Lee, J., Jang, J.W.: Blemesh: a wireless mesh network protocol for blue-
tooth low energy devices. In: 2015 3rd International Conference on Future Internet
of Things and Cloud, pp. 558–563, August 2015

20. Leifer, I., et al.: State of the art satellite and airborne marine oil spill remote
sensing: application to the BP deepwater horizon oil spill. Remote Sens. Environ.
124, 185–209 (2012)
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