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Chapter 4
Plant-Based Natural Products: 
Potential Anti-COVID-19 Agents

Sana Aslam, Matloob Ahmad, and Hanan A. Henidi

 Introduction

Viral infections are becoming common day to day and cause many chronic human 
diseases. Viruses are responsible for numerous chronic diseases and hard-to-cure 
syndromes like HIV, hepatocellular carcinoma, HCV, type 1 diabetes, Alzheimer’s 
disease, etc. [1–3]. The current outbreaks of globalization, increased global travel, 
and drug-resistant viral strains have underscored the protection of human health: the 
emergence of coronavirus, dengue virus, severe acute respiratory syndrome (SARS) 
virus, measles virus, West Nile virus outbreaks, and influenza virus [4–6].

Despite the drug and vaccine advancement, there is still a need of novel antiviral 
drugs or vaccine therapies that are extremely efficacious as well as economical for 
the control and management of viral infections. Viral infection can be avoided by 
either minimizing the exposure to viruses, sanitizing the skin, or boosting the immu-
nization, and mucosal surfaces would reduce the risk of infection. However, with 
such a great care, there is still a need of effective treatments by virucidal or antiviral 
agents. Natural products especially secondary metabolites are an excellent source as 
therapeutic agents. They have a great antiviral potential, so are used as herbal medi-
cines and in various pharmaceutical products from many decades. According to the 
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WHO report, 80% of the world’s population depend upon the traditional plants (i.e., 
phytochemicals) to use as therapeutic agents [7].

Purified natural products and herbal medicines act either as a starting raw mate-
rial or as an intermediate source for new antiviral drug development. Mechanisms 
of antiviral actions depicted by the natural agents have shed light on the site of bind-
ing or interaction with the viral life cycle, like viral entry, release, assembly, replica-
tion, and structure-activity relationship as well as targeting of virus host-specific 
interactions.

 Antiviral Mechanistic Aspects of Phytochemicals

The phytochemicals were studied for their antiviral potential for more than six 
decades. There are a number of action mechanisms attributed to their antiviral activ-
ity, as explained in Table 4.1. The basic advantage of these plant-derived products is 
their nontoxicity with no or less side effects to human body as compared to the 
synthetic antiviral drugs. The structure-activity relationship is developed to explain 
the antiviral effect of these compounds.

 Mechanism

Natural phytochemicals bind either directly or indirectly to the virus cell during 
their virucidal activities and retard the virus growth. Basically, three modes of action 
mechanisms were identified antiviral reagents directly:

Virucidal effect, i.e., antiviral compounds, directly inactivates the viruses.
Antiviral compounds accelerate CPE on the virus-infected cells.
Antiviral compounds inhibit the few replication steps of the virus.

For example, octyl gallate showed its antiviral potential via following all these 
mechanisms against HSV-1. As it is ineffective against non-enveloped poliovirus, it 
requires lipid envelope for its virucidal activity. According to one study, its antioxi-
dant property helps to inactivate non-enveloped virus, which may be somehow simi-
lar to the oxidation of lipids [8].

 Plant Selection for Antiviral Screening

In plant selection for antiviral screening, four basic approaches must be considered:

Random plant collection followed by mass screening
Literature-based follow-up of the existing natural products

S. Aslam et al.
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Ethnomedical approach
Chemotaxonomic approach [27]

The most preferred choices are the second and third ones, due to their cost- 
effective applicability. The folkloric created selection also demonstrated the five 
times more preferable therapeutic phytochemicals as compared to other approaches. 
Combining different section approaches like ethnomedical, taxonomical, and phy-
tochemical methods collectively is also considered as the best choice. The random 
selection approach generally finds more novel antiviral natural compounds.

 Different Classes of Phytochemicals as Antiviral Agents

Various classes of naturally occurring phytochemicals as antiviral agents are dis-
cussed in detail with reference to sources of origin, specificity, mechanistic action, 
structure-activity relationship (SAR), phase trials, etc.

 Alkaloids

Alkaloids are a class of heterogeneous compounds having nitrogen atom linked 
with heterocyclic ring system. They possess basic character generally. Amino acids 
are usually the precursors for their biosynthesis within the plant body [28]. 
Handsome number of alkaloids showed potent antiviral activity. One of the studies 
on the 36 alkaloids isolated from C. lanceus or Catharanthus roseus as antiviral 
agents against polio type III and vaccinia viruses was reported. The results showed 
that the nine alkaloids were more potent as antiviral agents and pericalline was the 
most effective [29] (Fig. 4.1).

Another research group developed a structure-activity relationship (SAR) for 
chromone-based alkaloids, extracted from Schumanniophyton magnificum as anti- 
HSV and anti-HIV agents in Vero cells and C8166, respectively. The research group 
was synthesized their methyl and acyl analogs and developed their SAR.  It was 

H
N

N

CH2

H3C

Pericalline

Fig. 4.1 Structure of 
pericalline
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concluded that the anti-HIV protentional is due to the presence of a free hydroxyl 
groups and piperidine ring [30] (Fig. 4.2).

Cepharanthine, an alkaloid, also showed remarkable antiviral potential by inhib-
iting the SARS-CoV protease enzyme at 0.5–10 μg/mL (Fig. 4.3) [31].

In another study, two alkaloids, i.e., 7-methoxycryptopleurine and tylophorine 
(Fig. 4.4), were isolated from Tylophora indica and tested for their inhibitory action 
for S and N protein activity, transmissible gastroenteritis virus, and enteropatho-
genic coronavirus replication [32]. These alkaloids showed excellent antiviral 
potential with IC50 values of <0.005 μM and 0.018 μM, respectively.

A recent research on berbamine showed its excellent antiviral activity against 
HCoV-NL63 with IC50 value 1.48 μM (Fig. 4.5).

Another research on antiviral potential of potent alkaloids, i.e., emetine, lyco-
rine, and mycophenolate mofetil, against MERS-CoV, HCoV-NL63, HCoV-OC43, 

Fig. 4.2 Structures of tetrandrine and homoharringtonine

Fig. 4.3 Structures of cepharanthine and fangchinoline
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and MHV-A59 was reported. Emetine and lycorine exhibited their antiviral poten-
tial by inhibiting the synthesis of RNA, DNA, and protein of virus and by stopping 
the cell division, respectively. However, mycophenolate mofetil showed its action 
by suppressing the immune effect on different CoV species [33] (Fig. 4.6).

Lycorine and pretazettine were extracted from Clivia miniata and Narcissus 
tazetta, respectively, and reported for their anti-HSV potential via cytotoxic protein 
synthesis [34–36] (Fig. 4.7).

Three potent anti-HSV alkaloids, i.e., oliverine, pachystaudine, and 
Oxostephanine (Fig. 4.8), were isolated from Polyalthia oliveri, Pachypodanthium 
staudi, and Stephania japonica, respectively. They showed their antiviral potential 
by inhibiting or delayed the synthesis of protein assembly of virions [37].

Fig. 4.4 Structures of 
7-methoxycryptopleurine 
and tylophorine

Fig. 4.5 Structure of berbamine
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 Flavonoids

Flavonoids are basically the chromone-based polyphenolic phytochemicals, con-
sisting 15-carbon skeleton with C6-C3-C6 pattern (Fig. 4.9). However, in some fla-
vonoids, five-membered ring replaces the six-membered heterocyclic ring C. The 
C2 is directly bonded to the oxygen atom to form a furan moiety called aurone.

Flavonoids are classified on the basis of substitution pattern on ring C and their 
mode of oxidation. The flavonoids class of phytochemicals is considered as the larg-
est group of antiviral agents in the whole plant kingdom. Flavonoids exhibits their 
biochemical potential by inhibiting various enzymes like xanthine oxidase, aldose 
reductase, lipoxygenase, cyclooxygenase, phosphodiesterase, Ca+2 -ATPase, etc.

The antiviral potential of flavonols are more as compared to the flavones against 
HSV, and their activity order is quercetin < kaempferol < galangin [38]. Another 
study reported the anti-HSV-1 potential of 3,5,7-trihydroxyflavone, i.e., galangin, 
extracted from Helichrysum aureonitens. This flavone also exhibited antiviral 
potential against Cox B1 at 12–47/μg/ml [39]. A study showed that the natural fla-
vonoids having molecular weight of about 2100 Daltons exhibited excellent antivi-
ral activity against type 2 and type 1 herpes simplex virus (HSV) [40]. 
Structure-activity relationship for 28 flavonoids against HIV-1 and HIV-2 was 
developed. Results showed that the flavan-3-o1 was most potent in selective inhibi-
tion of HIV due to the role of OH group on the flavone moiety [41].

Fig. 4.6 Structures of emetine and lycorine

Fig. 4.7 Structure of 
pretazettine
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Nineteen natural compounds were extracted from Ranunculus sceleratus and 
Ranunculus sieboldii and were investigated for their antiviral potential against hep-
atitis B virus (HBV) and herpes simplex virus (HSV-1). The experimental results 
revealed that apigenin 7-O-betaglucopyranosyl-4′-O-alpha-rhamnopyranoside, api-
genin 4’-O-alpha-rhamnopyranoside, isoscopoletin, tricin, and tricin 7-O-beta- 
glucopyranoside showed significant antiviral potential against HBV replication 
(Fig. 4.10).

In addition, protocatechuic aldehyde exhibited antiviral activity by inhibiting the 
HSV-1 replication [39, 42, 43] (Fig. 4.11).

 Classification of Flavonoids

 Chalcones

Chalcones as a major subclass of flavonoids are basically benzylideneacetophenone 
(1,3-diphenylpropenone) and its derivatives with basic formula ArCH=CHC(=O)
Ar. Chalcones have been broadly investigated for their antiviral potential.

Chalcones also form basis for the biosynthesis of other flavonoids and isoflavo-
noids. Chalcones (Fig. 4.12) exhibited excellent antiviral potential [44]. They also 

Fig. 4.8 Structures of oliverine, pachystaudine, and oxostephanine

Fig. 4.9 Structures of 
general flavonoid 
and aurone
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developed SAR for these chalcone pharmacophore models which were helpful to 
identify chemical signatures for the antiviral activity.

On the basis of these results, 44 chalcones exhibited inhibitory potency <100 μM, 
while 4 showed IC50 values <10 μM [45].

Different varieties of chalcones, i.e., kazinol (A, B, F, and J), broussochalcone (A 
and B), 3′-broussoflavan A, (3-methylbut-2-enyl)-3′,4,7-trihydroxyflavane, 
4-hydroxyisolonchocarpin, and papyriflavonol A, were extracted from Broussonetia 
papyrifera and reported their antiviral activity against both SARS-CoV PLpro and 
3CLpro. The results reported the highest inhibition potential exhibited by papyrifla-
vonol A against PLpro with IC50 value 3.7 μM [46] (Fig. 4.13).

In another study, 4’-O-methylbavachalcone, psoralidin, bavachinin, corylifol, 
isobavachalcone, and neobavaisoflavone were extracted from Psoralea corylifolia 
and tested for their papain-like protease inhibitory action against SARS-CoV [47]. 
Among these isolated phytochemicals, psoralidin exhibited most potent inhibitory 
action against SARS-CoV, with IC50 value 4.2 μM (Fig. 4.14).

 Dihydrochalcones

Dihydrochalcones were derived from its respective chalcone derivatives via a reduc-
tion of the C=C double bond (Figure). But as a result of reduction, its lost and chro-
mophoric property as UV visibility is concerned as compared to its parent chalcone 
moiety. Dihydrochalcones extracted from Millettia leucantha KURZ (Leguminosae) 
exhibited potent anti-HSV activity [48] (Fig. 4.15).

Fig. 4.10 Structures of apigenin and hesperetin

Fig. 4.11 Structures of isoscopoletin and protocatechuic aldehyde
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 Flavones

Flavones having 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) basic 
backbone constitute a significant class of flavonoid family. Flavones were mainly 
isolated from various plant families like Lamiaceae, Asteraceae, Apiaceae, etc. 
Many potent flavones were isolated from heartwood of Artocarpus gomezianus and 
studied for their anti-HSV activity. Among the identified compounds, artogomezia-
none (Fig. 4.16) exhibited the excellent antiherpetic properties [49].

Naringin (3′,4′-diacetoxy-5,6,7-trimethoxyflavone) having therapeutic proper-
ties especially for viral infections (e.g., HCV, HIV, respiratory virus, and 
Picornavirus). These flavones also used for the treatment of infections caused by 
parasites (e.g., toxoplasmosis) [50]. Methoxyflavones were studied for its SAR as 
anti-Picornavirus by means of molecular electrostatic potential (MEP) maps, and 
results showed that the antiviral properties are due to the negative MEP values espe-
cially in two regions, i.e., the first is in 3-methoxy (3-OMe) group, while the other 
is diagonally opposite to the substituent at C7 atom of the molecule [51] (Fig. 4.17).

Antiviral potent flavones and biflavones extracted from Torreya nucifera showed 
their virucidal activity against SARS-CoV 3CLpro [52]. Moreover, IC50 values of 
quercetin, luteolin, apigenin, and amentoflavone were 23.8, 20.2, 280.8, and 8.3 μM, 
respectively (Fig. 4.18).

Silybum marianum, a flavonolignan (also known as “silymarin” or “milk this-
tle”), was reported for its in vitro anti-HCV potential [53, 54] via exhibiting the 
significant effects on reducing the viral load [55–57].

Three biflavonoids, i.e., stelleranol, genkwanol C, and genkwanol B, were 
extracted from Radix Wikstroemiae and reported their effective antiviral potential 
against RSV [58]. Various flavone 6-C-monoglycosides were isolated from 
Lophatherum gracile leaves and showed good viricidal activity against RSV infec-
tion, determined by cytopathic effect reduction assay [59].

 Flavonones

Flavonones consist of the same basic structural backbone as present in the flavones 
except the presence of the carbonyl moiety at the C4 carbon. Synthesis of flavanone 
derivatives of Abyssinone II (Fig. 4.19), a natural prenylated flavanone has been 

Fig. 4.12 Structure of different chalcones
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reported in literature. These analogs were tested against HSV-1 in HeLa 5 cells and 
reported their excellent antiviral potential [60].

A number of natural plants products, i.e., 6-geranyl-4′,-5,7-trihydroxy-3′,5′-
dimethoxyflavanone, different types of tomentin (A, B, C, D, and E), mimulone, 
diplacone, 3’-O-methyldiplacone, 4’-O-methyldiplacone, 3’-O-methyldiplacol, and 

Fig. 4.13 Structures of broussochalcone B and kazinol (A, B, F, and J)
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4’-O-methyldiplacol were extracted from Paulownia tomentosa and showed their 
antiviral therapeutic action by inhibiting the PLpro of SARS-CoV [61] (Figs. 4.20 
and 4.21).

In addition, juglanin also reported as an antiviral agent against SARS-CoV, by 
blocking the 3a channel of SARS-CoV having 2.3 μM IC50 value [62].

Fig. 4.14 Structures of neobavaisoflavone, psoralidin, isobavachalcone, and 
4’-O-methylbavachalcone

Fig. 4.15 Synthetic layout of dihydrochalcones
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 Dihydroflavonols

Dihydroflavonols (Fig. 4.22) are categorized by OH substituent at C3 of the flavo-
none pharmacophore. Flavanonols and their derivatives showed antiviral potential 
against various strains of viruses like hepatitis B, liver protection, mycotic infection, 
autoimmune disease, and inflammation disease [27].

 Flavonol

Flavonol consists of identical basic structural backbone as present in the flavones 
having OH functional group at 3-position of the flavone. Quercetin (Fig.  4.23) 
exhibited the efficient antiviral potential against different viral strains like respira-
tory syncytial virus (RSV), poliovirus type 1, HSV-I, parainfluenza virus type 3 
(Pf-3), etc. Quercetin not only reduced the intracellular replication but also trig-
gered a concentration-dependent decrease in the viral infection [63]. Myricetin 
(3,5,7,3′,4′,5′-hexa-hydroxyflavone), a plant-derived flavonoid, has natural com-
pound with potent nutraceuticals value and so is used in many foods and beverages. 

Fig. 4.16 Structure of 
artogomezianone

Fig. 4.17 Structure of 
naringin
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It is also used as preservative in oils and fats to increase the shelf life by acting as 
antioxidant. This phytochemical showed a wide range of bioactivities like antioxi-
dant, anti-inflammatory, antidiabetic, and anticancer. This compound showed excel-
lent therapeutic results against Parkinson and Alzheimer’s disease. Myricetin also 
exhibited significant antiviral activity against coronavirus, influenza virus, and hep-
atitis B virus [64].

The natural phytochemicals cinnamtannin B1, procyanidin A2, and procyanidin 
B1 (Fig. 4.24) were extracted from Cinnamomi cortex and reported their antiviral 
potential against SARS-CoV [65].

Fig. 4.18 Structures of amentoflavone and apigenin

Fig. 4.19 Structure of 
Abyssinone II

Fig. 4.20 Structure of 
6-geranyl-4′,-5,7- 
trihydroxy- 3′,5′-
dimethoxyflavanone
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 Isoflavonoids

Isoflavonoids are the derivatives of flavonoids having phenyl group at 3-position 
instead of 2-position (Fig. 4.25) as a result of migration, with important therapeutic 
activities.

Fig. 4.21 Structure of 
juglanin

Fig. 4.22 Structures of dihydroflavonol
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 Isoflavones

Isoflavones (Fig. 4.25) are mainly isolated from the Leguminosae family. Rotenone 
(Fig. 4.26) showed excellent antiviral activity against Newcastle disease virus as 
tested by means of plate and tube assay methods [66].

Fig. 4.23 Basic structures of quercetin and myricetin

Fig. 4.24 Structure of procyanidin A2 and procyanidin B1

Fig. 4.25 Structure of isoflavones
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 Isoflavanones

Isoflavanones are consist of the same basic structural backbone as present in the 
isoflavones except the presence of the carbonyl moiety at the C4 carbon and also 
have chiral center at C3. A prenylated isoflavanone, i.e., PMZ-1, was extracted from 
Bolusanthus speciosus (Bolus Harms) and evaluated for its anti-HIV potential with 
wide therapeutic index (TI > 300) [67] (Fig. 4.27).

 Neoflavonoids

Neoflavonoids are the class of flavonoids having aryl group at C4. Four neoflavo-
noids, i.e., calophyllolide and inophyllums (Fig.  4.28), were isolated from 
Calophyllum inophyllum and tested for their antiviral potential against HIV-1 
RT. The results showed that inophyllums (i.e., P and B) were the most effective with 
IC50 values of 0.130 mM and 0.038 mM, respectively [68].

AnthocyanidinAnthocyanidin (Fig. 4.29) consists of aglycone (anthocyanidine) 
backbone with glycone sugar moiety, an important class of plant pigments. Their 
biological potential is based on the coordination of free OH group with metal ions, 
e.g., Ca2+ and Mg2+, in basic conditions.

Fig. 4.26 Structure of 
rotenone

Fig. 4.27 Structure 
of PMZ-1
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SP-303 (Fig. 4.30) is a mixture of oligomeric proanthocyanidins up to Mol. wt. 
2100 Daltons. It is extracted from the latex of Croton lechleri and evaluated for its 
in vitro antiviral activity against various strains of RNA, DNA viruses, and HSV.

Fig. 4.28 Structures of (+) inophyllums B, (+) inophyllums P, (+) inophyllums C, and 
calophyllolide

Fig. 4.29 Structures of 
general anthocyanidin

Fig. 4.30 Structure 
of SP-303
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Virend, a topical formulation of SP-303, was evaluated in phase II clinical trials 
and used in combination with acyclovir for the treatment of genital herpes. But 
these trials were stopped later on due to no extra benefits of virend over using acy-
clovir alone [69].

 Terpenoids

Terpenoids are abundantly natural-occurring secondary metabolites, having five- 
carbon isoprene units as basic skeleton, and classified according to the number of 
isoprene units present in a molecule.

These are basically classified into:

Monoterpenes (C10), 2 isoprene units with 10 carbon atom basic skeleton
Sesquiterpenes (CI5), 3 isoprene units with 15 carbon atom basic skeleton
Diterpenes (C20), 4 isoprene units with 20 carbon atom basic skeleton
Triterpenes (30), 6 isoprene units with 30 carbon atom basic skeleton
Tetraterpenes (40), 8 isoprene units with 40 carbon atom basic skeleton

Sterols and saponins also classified as terpenoids.
Terpenoids possess diverse class of natural therapeutic phytochemicals. Many of 

the terpenoids were tested for their antiviral potential against severe acute respira-
tory syndrome (SARS-CoV) caused by coronavirus, and results showed their excel-
lent antiviral potential (Fig. 4.31) [70].

These bioactive compounds also include abietane-type (diterpenes), labdane- 
type (i.e., both sesquiterpenes and triterpenes).

The saikosaponins (A, B2, C, and D, 5–25 μM/L) exhibited potent antiviral activ-
ity against human CoV-229E, with EC50 values of 13.2, 19.9, 1.7, and 8.6 μM for D, 
C, B2, and A, respectively. Saikosaponin B2 showed its antiviral activity by inhibit-
ing the attachment and penetration stages of the virus [71] (Fig. 4.32).

According to the research report, carotenoids (tetraterpenoids, having 40-carbon 
polyene chain) like β-carotene, lycopene, α-carotene, and zeaxanthin/lutein 
(Fig. 4.33) increase the death rate during HIV infection [72].

Fig. 4.31 Structures of Ferruginol, 6-7-dehydroyleanone and 3-beta cedran
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Fig. 4.32 Structures of saikosaponins (A, B2, C, and D)
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 Tannins

Tannins are basically high molecular weight phenolic compounds also containing 
other functional groups like (carboxyl, e.g., hexahydroxydiphenic acid), which give 
suitable property to coordinate for strong complex formation [73]. They are classi-
fied into two types, i.e., hydrolyzable and non-hydrolyzable (condensed). 
Hydrolyzable tannins, basically simple phenolic acids, are linked with the sugar 
moiety, for example, gallic acid. The condensed types have structural resemblance 
to flavonoids (Fig. 4.34).

Fig. 4.33 Structures of α-carotene, β-carotene, lycopene, and lutein

Fig. 4.34 Structure of 
hexahydroxydiphenic acid

4 Plant-Based Natural Products: Potential Anti-COVID-19 Agents



136

Lemon balm (Melissa officinalis, Labiatae) is well known for its antiviral poten-
tial. This medicinal tannin containing plant is broadly studied. Leaves of lemon 
balm comprise 5 percent dry weight of tannins, in which caffeic acid is present as a 
main constituent. A cream having 1 percent dried leave extract of lemon balm has 
been introduced in Germany for the topical treatment of herpes infection of the 
skin [74].

Many tannin compounds like pentagalloylglucose, galloyl geraniin, sanguin, 
genothein B, punicalagin, punicallin, gemin D, etc. were reported for their antiviral 
potential against different chronic viral infections, i.e., HSV, HIV, and HIV-RT [75–
80] (Fig. 4.35).

Seven ellagitannins were extracted from P. urinaria (Euphorbiaceae) and 
Phyllanthus myrtifolius and reported their antiviral potential against Epstein-Barr 
virus DNA polymerase (EBV-DP).

Dieckol, phlorofucofuroeckoln, eckol, and 7-phloroeckol isolated from Ecklonia 
cava displayed their antiviral activity by blocking the viral binding to porcine epi-
demic cells and reported experimental IC50 values of 14.6, 12.2, 18.6, and 22.5 μM, 
respectively [81] (Fig. 4.36).

Three polyphenolic compounds, i.e., tannic acid, 3-isotheaflavin-3-gallate, and 
theaflavin-3,3′-digallate (Fig. 4.37), were extracted from black tea and tested for 
their inhibitory action against SARS-CoV 3CLpro with IC50 values of 9.5, 7, and 
3 μM, respectively [82].

The hydrolyzable tannins, i.e., punicalagin and chebulagic acid which exhibited 
broad-spectrum antiviral potential, include RSV infection. These tannins showed 
their antiviral potential either by inactivating the RSV particles or by blocking the 
viral entry into the host cell, i.e., binding and fusion. Interestingly, both punicalagin 
and chebulagic acid were reported as futile against RSV postinfection spread. 
However, they are still effective against measles virus (MV, paramyxovirus) postin-
fection spread [83] (Fig. 4.38).

Punicalagin and chebulagic acid also exhibited anti-HSV-1 potential and showed 
their virucidal activity by acting as a glycosaminoglycan (GAG) competitors, so 
inhibiting the entry as well as cell-to-cell spread. Both directly targeted the HSV-1 
glycoproteins which interact with glycosaminoglycan and inhibit the binding recep-
tors [10].

 Vitamins

Vitamin E includes eight isomeric derivatives, i.e., tocopherols and tocotrienols. 
They are fat-soluble and act as an excellent antioxidant. Vitamin E improves the 
immune system of the human body (Fig. 4.39). Vitamin E supplementation could be 
used as therapeutic agent for chronic hepatitis B [84].

Vitamin C also acts an antioxidant and enhances the immune defense against 
many infectious diseases [85] (Fig. 4.40).
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Fig. 4.35 Structures of punicalagin, gemin D, and genothein B

4 Plant-Based Natural Products: Potential Anti-COVID-19 Agents



138

Vitamin C not only boosts the immune systems but also exerts anticancer, anti-
bacterial, and antiviral activity [86–90]. In a comparative research study, antiviral 
potential of vitamin C against influenza virus type A, HSV-1, and poliovirus was 
reported. The decreasing sensitivity order of vitamin C was as follows: influenza 
virus> HSV-1 > poliovirus [91].

Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid. It is reported 
that DHA showed more potent antiviral activity against HSV-1 and influenza virus 
as compared to vitamin C (ascorbic acid), due to its stronger chemical stability of 

Fig. 4.36 Structures of 7-phloroeckol, eckol, dieckol, and phlorofucofuroeckoln
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Fig. 4.37 Structures of tannic acid, 3-isotheaflavin-3-gallate, and theaflavin-3,3′-digallate
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Fig. 4.38 Structure of punicalagin

Fig. 4.39 Structure of vitamin E (i.e., tocopherol and tocotrienol)
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Fig. 4.40 Structure of 
vitamin C

Fig. 4.41 Structures of psoralen, isopimpinellin, khellin, visnagin, and angelicin

Fig. 4.42 Structures of glycycoumarin and licopyranocoumarin

4 Plant-Based Natural Products: Potential Anti-COVID-19 Agents



142

DHA. So results suggested that the antiviral potential of vitamin C is not only of its 
antioxidant property.

 Chromones and Coumarins

Chromones and furanocoumarins are commonly present phytochemicals in various 
plant families. These natural compounds are abundantly found in families 
Umbelliferae and Rutaceae. According to research study, Khellin and visnagin were 
isolated from Ammi species (Umbelliferae) and reported their antiviral activities 
[92]. Psoralen, isopimpinellin, 8-methoxypsoralen, coriandrin, and angelicin were 
extracted from Coriandrum sativum and tested their antiviral potential against HIV, 
DNA, and RNA viruses and bacteriophages [93] (Figs. 4.41, 4.42, and 4.43).

Two potent anti-HIV coumarins, i.e., glycycoumarin and licopyranocoumarin, 
were isolated from Glycyrrhiza Glabra [94].

According to research study, two chromone glycosides, i.e., uncinosides A and 
B, were extracted from Selaginella uncinata and reported their potent antiviral 
activity against respiratory syncytial virus (RSV) infection [95].

Fig. 4.43 Structures of uncinosides A and B

Table 4.2 Organosulfur phytochemicals isolated from Brassicaceae family and Allium [96]

Sr. 
no Compounds

Type of 
compounds Natural source

1. Glucobrassicin Glucosinolates Cauliflower, Brussels, mustard, cabbage, choy, kale, 
water garden cress, sprouts, Bok, radish

2. Allyl sulfides
Dithiolethiones

Sulfides Garlic, broccoli, onion

3. Sulphoraphanes
Phenylethyl
Isothiocyanates

Isothiocyanates Cabbage, kale, cauliflower, radish, Brussels, mustard, 
water garden cress, bok choy, sprouts

S. Aslam et al.



143

 Organosulfur Compounds

Phytochemicals having sulfur atom are mainly isolated from Brassicaceae family 
and Allium (Table 4.2). The organosulfur phytochemicals having pungent odor are 
chemically unstable. The organosulfur compounds possess excellent antiviral 
potential [96]. A handsome number of organosulfur compounds showed antiviral 
activities (Fig. 4.44).

Various unsymmetrical alkyl-aryl disulfides were synthesized and then oxidized 
into thiolsulfinate [97].

A considerable large number of organosulfur compounds were isolated from 
fresh garlic extract like diallyl thiosulfinate, diallyl disulfide, diallyl trisulfide, allyl 
methyl thiosulfinate, alliin, allicin, deoxyalliin, and ajoene. These compounds were 
then evaluated for their in vitro virucidal potential [98] (Fig. 4.45).

The antiviral mechanistic action of garlic containing phytochemicals against 
selected strains of viruses, i.e., HSV type 1 and type 2, vesicular stomatitis virus, 
human rhinovirus type 2, vaccinia virus, and parainfluenza virus type 3, were 
reported. The results indicated that in vitro virucidal activity depends upon the type 
of viral envelope and the cytotoxicity may depend upon the cell membrane. Virucidal 
activity is shown by inhibition of viral penetration or adsorption for non-enveloped 

Fig. 4.44 Structures of diallyl disulfide, diallyl sulfide, allicin, and s-allylcysteine

Fig. 4.45 Structures of allyl methyl thiosulfinate, ajoene, deoxyalliin, and alliin
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virus. The increasing virucidal activity order was ajoene > allicin > allyl-methyl 
thiosulfinate.

 Selenium Compounds

Selenium compounds also have antiviral potential against different strains of 
viruses. Various different selenium compounds with effective antiviral activity are 
shown in Fig. 4.46.

The experimental results of these compounds against different viral infections 
demonstrate the significance of selenium-based compounds. Antiviral potential of 
three selenium compounds against Coxsackievirus was B5 reported via targeting 
their replication rate [99, 100]. Selenite inhibited the replication of Coxsackievirus 
B5 more effectively, while selenomethionine and selenite did not show any signifi-
cant antiviral potential. Ebselen derivatives were synthesized and tested for their 
in vitro antiviral potential. The results demonstrated that few tested analogs effi-
ciently target the herpes simplex virus type 1 (HSV-1) and encephalomyocarditis 
virus (EMCV) by inhibiting the cytopathic activity [101].

 Miscellaneous Antiviral Phytochemicals

 Curcumin and Its Derivative

Curcumin is one of the important constituents of turmeric. Different analogs of 
curcumin showed significant antiviral activity against HIV-1 integrase [102]. 
Curcumin also shows anti-HCV potential by inhibiting the replication of HCV, 

Fig. 4.46 Structures of diallylselenide, benzylselenocyanate, and methylselenocysteine

Fig. 4.47 Structure of 
curcumin
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targeting the suppression of sterol regulatory element binding protein-1 (SREBP-1) 
Akt pathway [103] (Fig. 4.47).

 Chlorophyllin

Synthetic derivative of chlorophyll, i.e., chlorophyllin (CHLN) (Fig. 4.48), has anti-
mutagenic activity against various environmental pollutants. Chlorophyllin was 
evaluated for virucidal activity against poliovirus by inhibiting the nuclear fragmen-
tation (NF) in HEp-2-infected cells [104].

 Gingerols

Gingerols (Fig. 4.49) have been isolated from ginger and traditionally have been 
used for the treatment of throat infections and common colds. Gingerols also form 
an important ingredient of Ayurvedic formulations. Gingerols reported excellent 
antiviral activity against many strains of viruses [105].

Fig. 4.48 Structures of disodium copper chlorin and trisodium copper chlorin

Fig. 4.49 Structure of 6-gingerol
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 Chitin and Chitosan

Chitin, a natural polysaccharide, has partially deacetylated amino sugar 
N-acetylglucosamine basic skeleton, while chitosan is the deacetylated form of chi-
tin. A research study on SCM chitin III (i.e., carboxymethyl chitin having 7.66% 
degree of sulfation) as its antiviral potential against HSV and Friend murine leuke-
mia helper virus (F-MuLV) was reported [106].

 Anthraquinone

Anthraquinone (9, 10-dioxoanthracene Fig.  4.50) is an anthracene derivative. 
Chrysophanic acid (1,8-dihydroxy-3-methylanthraquinone) is extracted from 
Dianella longifolia and tested for its in vitro antiviral activity against poliovirus 
types 2 and 3 by inhibiting the viral replication. Emodin was extracted from genus 
Polygonum and Rheum and exhibited excellent potential for the treatment of severe 
acute respiratory syndrome (SARS), which is caused by novel coronavirus (SARS- 
CoV). A type I membrane-bound protein, i.e., SARS-CoV spike (S) protein, is nec-
essary for the attachment of virus to the angiotensin-converting enzyme 2 (ACE2) 
receptor of the host cell. Emodin effectively blocked the interaction of S protein 
with ACE2. It also showed significant inhibitory antiviral action against S protein- 
pseudotyped retrovirus to Vero E6 cells [107, 108].

 Conclusion

In this chapter, we have discussed antiviral agents belonging to the different classes 
of natural phytochemicals like alkaloids, terpenes, flavonoids, tannins, vitamins, 
etc. There lies a huge scope in the development of new antiviral drugs due to the dire 
need. Nature has preserved a huge range of therapeutic natural compounds in the 
plant body. The coronavirus pandemic has enforced the scientific community to 
search for new antiviral agents. The work described herein is the sum-up of litera-
ture data described in previous few decades for the antiviral natural products and is 
expected to be useful for researchers working to develop new antiviral products.

Fig. 4.50 Structures of anthraquinone, emodin, and chrysophanic
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