
Chapter 9
High-Dimension Model Representation
via Sparse Grid Techniques

9.1 Introduction

The question of high-dimension model representation (HDMR) is of increasing
importance in computational mathematics and science. We introduced this subject
in Chaps. 7 and 8, where we invoked the Karhunen-Loève expansion to reduce the
number of random parameters that are required to define the stochastic model. We
continue the discussion of HDMR in this chapter by turning our attention to the
question of determining a suitable surrogate model for computing the response of
the forward problem via VIC-3D®. This surrogate takes the form of an interpolation
table, which is then transformed into the conventional table used in NLSE for
solving inverse problems. The surrogate model that we seek falls under the rubric
sparse grids, and has been the subject of intensive research in a number of areas in
recent years [15, 22, 43, 44, 46, 57, 58, 73, 121, 123, 146]. We will apply it to solving
problems of model-based inversion as was developed in [111]. Sparse grids can also
be used to effectively calculate high-dimensional integrals of the form (7.2).

9.2 Mathematical Structure of the Problem

The problems in this set are based on Fig. 6.3, and required 81 VIC-3D® runs to
establish the interpolating grid. Thus, we say that the grid has 81 nodes in four-
dimensional space, speaking abstractly. Each variable (the slab depth in Fig. 6.3)
defines a dimension of the grid. The fifth problem introduced another variable,
the width, with three possible values, making the overall grid a hypercube of 243
nodes in five-dimensional space. As we add dimensions (variables), we will soon
encounter the ‘curse of dimensionality,’ because each node requires a VIC-3D®

run to produce the corresponding blending function. The question arises as to
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whether we can reduce the number of runs by reducing the number of nodes in
the interpolating grid. The answer lies in the notion of ‘sparse grids.’ This is an
important area of study in numerical methods, and we refer the reader to [43] for a
brief tutorial. We will follow the presentation and nomenclature of [43], using the
complex-flaw model of Fig. 6.3 as an example. Further interesting applications of
the sparse grid approach can be found in [44] and [146].

Referring to Fig. 6.3, we can define the mathematical structure of the problem
by the abstract formula (0, 10, 20) ⊗ (0, 10, 20) ⊗ (0, 10, 20) ⊗ (0, 10, 20),
where ⊗ represents the Cartesian or ‘direct’ or ‘tensor’ product. Thus, we have
a problem that is defined on a four-dimensional hypercube with 16 corner nodes,
given by (0, 20) ⊗ (0, 20) ⊗ (0, 20) ⊗ (0, 20) and 65 interior nodes given by the
‘direct-difference’ between the total nodes given above and the corner nodes. These
involve the intermediate 10mil levels in Fig. 6.3. The question then becomes, are
all of the interior nodes required for an accurate representation of the function, and
if not, how do we choose which ones to keep? The answer to this is given by the
sparse grid algorithm.

The sparse grid algorithm of [43] relies on a refinement of the interval of interest
through successive halving of the previous interval, and then using the ‘hierarchical’
basis system of Fig. 9.1 as the interpolants. This system comprises, of course, our
famous one-dimensional, first-order spline tent functions:

φl,j =
{

1 − |x/hl − jl |, x ∈ [(jl − 1)hl, (jl + 1)hl] ∩ |0, 1|;
0, otherwise,

, (9.1)

where hl is the length of an interval in the lth level, and jl = 0, . . . , 2l determines
the position of a node. It is assumed in [43] that the grid is defined on the unit cube,
which is the reason for the appearance of the interval, [0, 1]. For our problem, we
are only interested in levels 0 and 1 of the hierarchy, because we only use at most
two intervals for each dimension (variable) of the problem, as shown in Fig. 6.3.

Multidimensional functions are obtained by taking products of the one-
dimensional splines:

φl,j = Πd
t=1φlt ,jt (xt ) , (9.2)

where l = (l1, . . . , ld ) denotes the number of intervals at the lth level in each
dimension. Each entry is an integer. Similarly, j = (j1, . . . , jd), with jt =
0, . . . , 2lt , denotes the nodal ordering at the lth level in each dimension. Associated
with the multidimensional functions is the index set

Bl =
{

jt = 1, . . . , 2lt − 1, jt odd, t = 1, . . . , d, if lt > 0,

jt = 0, 1, t = 1, . . . , d, if lt = 0 .
(9.3)
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Fig. 9.1 Illustrating the
one-dimensional hierarchical
basis system for the function
space, V3. Each level has 2l

intervals and 2l + 1 nodes.
Note that in our current
problem, we are working in
V1, so that we are only
interested in l = 0, 1. These
are the usual tent functions
with which we are well
familiar from VIC-3D®. ‘R’
and ‘S’ denote ‘ramp’ and
‘slide’, respectively. The
numbers along the abscissa
refer to the values of the test
depths of Fig. 6.3.
Multidimensional functions
are obtained by taking
products of these functions
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We define two norms for discrete multi-index vectors: |l|∞ = max1≤t≤d lt , and
|l|1 = ∑d

t=1 lt . Using these norms, together with (9.3), we can define a full-grid
function as an expansion in terms of the basis system (9.2),

f (x) =
∑
l∞≤n

∑
j∈Bl

αl,jφl,j(x) , (9.4)

and a sparse-grid function similarly,

f (x) =
∑
l1≤n

∑
j∈Bl

αl,jφl,j(x) . (9.5)

Before we discuss either expansion in detail, let’s take a look at the distinction
between them, which is tied up with the definition of the norms above. In the
complex-flaw case that we are considering, we have d = 4 and n = 1. Hence, the
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Table 9.1 Four-dimensional
vectors satisfying |l|∞ ≤ 1.
The last column gives the
number of nodes associated
with each vector

0 0 0 0 16

1 0 0 0 8

0 1 0 0 8

0 0 1 0 8

0 0 0 1 8

1 1 0 0 4

1 0 1 0 4

1 0 0 1 4

0 1 0 1 4

0 0 1 1 4

0 1 1 0 4

1 1 0 1 2

1 0 1 1 2

0 1 1 1 2

1 1 1 0 2

1 1 1 1 1

Total 81

Table 9.2 Four-dimensional
vectors satisfying |l|1 ≤ 1.
The last column gives the
number of nodes associated
with each vector

0 0 0 0 16

1 0 0 0 8

0 1 0 0 8

0 0 1 0 8

0 0 0 1 8

Total 48

condition |l|∞ ≤ 1 is satisfied 16 ways, as shown in Table 9.1. The resulting total
number of nodes agrees with what we knew before for the Cartesian product of three
nodes in each of four variables, 34 = 81. Contrast this with the vector condition
for sparse grids shown in Table 9.2. It is clear that the sparse grid algorithm gives a
significant reduction in the number of nodes in the interpolation grid. The difference
is even more striking in the case of the five-dimensional complex flaw of Test
Problem No. 5. In that case the full grid had 243 nodes, whereas the sparse grid
has only 25 + 5 × 16 = 112, which is less than half the full-grid complement.

We’ll interpret Table 9.2 geometrically, using Fig. 6.3 to motivate the develop-
ment. The entries in Tables 9.1 and 9.2 are the exponents, l, that yield the number of
intervals, 2l , in each slab of Fig. 6.3. Hence, the first entry in Table 9.2 corresponds
to the situation in which the midpoint, 10 mil, is missing in each of the slabs
(yielding a single interval in each slab) and we are working with the Cartesian
product (0, 20) ⊗ (0, 20) ⊗ (0, 20) ⊗ (0, 20), which are the 16 corner points of
a four-dimensional hypercube of length 20 on a side.

The next entry in Table 9.2 indicates that we have introduced the 10-mil midpoint
in the first slab, yielding a slab with two intervals. Geometrically, this corresponds
to the intersection of the hyperplane, x1 = 10, with the four-dimensional hyper-
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cube, resulting in eight nodes at the boundaries of the hypercube. Similarly, the
third through fifth entries correspond to the intersection of hyperplanes with the
hypercube, resulting in eight nodes for each entry, yielding a total of 48 nodes. Each
node carries a blending function that VIC-3D® must compute using the appropriate
parameters of Fig. 6.3. For example, the blending function corresponding to the
second entry in the table would have the first slab of Fig. 6.3 fixed at 10 mils depth,
and the other three cycling through 0 and 20 mils, each, giving a VIC-3D® problem
with 8 range values.

We turn our attention, now, to the hierarchical structure of the algorithm, which
lies at the heart of (9.5). Using the format of Table 9.2, we expand (9.5) as follows:

f (x) =
∑

|l|1≤1

∑
j∈Bl

αl,jφl,j(x)

=
∑

j∈B0000

α0000,jφ0000,j(x) +
∑

j∈B1000

α1000,jφ1000,j(x) +
∑

j∈B0100

α0100,jφ0100,j(x)

+
∑

j∈B0010

α0010,jφ0010,j(x) +
∑

j∈B0001

α0001,jφ0001,j(x) . (9.6)

Because the expansion functions, {φl,j(x)}, are nonoverlapping for a given level, l,
and have a unit amplitude, the expansion coefficients, {αl,j}, are simply equal to the
blending function associated with the node of the appropriate function at level l.

Figure 9.2 illustrates the situation in one dimension at levels 0 and 1. In this
example, we have α0,0 = BF(0), α0,20 = BF(20), α1,10 = SURPLUS, where
SURPLUS = BF(10) − 1/2(BF(20) + BF(0)). Hence, the expansion shown in
Fig. 9.2 is given by

f (x) = BF(0)φ0,0(x) + BF(20)φ0,20(x) + SURPLUSφ1,10(x) , (9.7)

where φ0,0(x) is the slide function, S(x), and φ0,20(x) is the ramp function, R(x),
in Fig. 9.2.

It is clear that the name ‘SURPLUS’ (called hierarchical surplus in [43])
denotes the excess in function value that the higher-order levels are supposed
to accommodate. It’s evaluation at level l requires only one additional blending
function to be computed, while using two previously computed at level l−1. This is
an advantage of the hierarchical structure of the algorithm. If SURPLUS=0, then the
interpolator would treat this function as being linear, instead of piecewise linear, in
this dimension. Thus, the expansion, (9.6), is reminiscent of a Taylor series, in which
the terms corresponding to higher levels of the hierarchy correspond to higher-order
polynomial terms in the Taylor series.

The full four-dimensional expansion of (9.6) is given next. The first term is:

BF(0, 0, 0, 0)S(x1)S(x2)S(x3)S(x4) + BF(20, 0, 0, 0)R(x1)S(x2)S(x3)S(x4) +
BF(0, 20, 0, 0)S(x1)R(x2)S(x3)S(x4) + BF(20, 20, 0, 0)R(x1)R(x2)S(x3)S(x4) +
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Fig. 9.2 Illustrating a one-dimensional example of the hierarchical expansion at levels 0 (a) and
1 (b). The blending functions, BF(), are labeled at the nodes of the one-dimensional simplex. The
‘Surplus’ value defines the magnitude of the level-1 spline

BF(0, 0, 20, 0)S(x1)S(x2)R(x3)S(x4) + BF(20, 0, 20, 0)R(x1)S(x2)R(x3)S(x4) +
BF(0, 20, 20, 0)S(x1)R(x2)R(x3)S(x4) + BF(20, 20, 20, 0)R(x1)R(x2)R(x3)S(x4) +
BF(0, 0, 0, 20)S(x1)S(x2)S(x3)R(x4) + BF(20, 0, 0, 20)R(x1)S(x2)S(x3)R(x4) +
BF(0, 20, 0, 20)S(x1)R(x2)S(x3)R(x4) + BF(20, 20, 0, 20)R(x1)R(x2)S(x3)R(x4) +
BF(0, 0, 20, 20)S(x1)S(x2)R(x3)R(x4) + BF(20, 0, 20, 20)R(x1)S(x2)R(x3)R(x4) +
BF(0, 20, 20, 20)S(x1)R(x2)R(x3)R(x4) + BF(20, 20, 20, 20)R(x1)R(x2)R(x3)R(x4) ;

(9.8)

the second:

SURPLUS(10, 0, 0, 0)φ1,10(x1)S(x2)S(x3)S(x4)

+SURPLUS(10, 20, 0, 0)φ1,10(x1)R(x2)S(x3)S(x4) +
SURPLUS(10, 0, 20, 0)φ1,10(x1)S(x2)R(x3)S(x4)

+SURPLUS(10, 20, 20, 0)φ1,10(x1)R(x2)R(x3)S(x4) +
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SURPLUS(10, 0, 0, 20)φ1,10(x1)S(x2)S(x3)R(x4)

+SURPLUS(10, 20, 0, 20)φ1,10(x1)R(x2)S(x3)R(x4) +
SURPLUS(10, 0, 20, 20)φ1,10(x1)S(x2)R(x3)R(x4)

+SURPLUS(10, 20, 20, 20)φ1,10(x1)R(x2)R(x3)R(x4) ;
(9.9)

the third:

SURPLUS(0, 10, 0, 0)S(x1)φ1,10(x2)S(x3)S(x4)

+SURPLUS(20, 10, 0, 0)R(x1)φ1,10(x2)S(x3)S(x4) +
SURPLUS(0, 10, 20, 0)S(x1)φ1,10(x2)R(x3)S(x4)

+SURPLUS(20, 10, 20, 0)R(x1)φ1,10(x2)R(x3)S(x4) +
SURPLUS(0, 10, 0, 20)S(x1)φ1,10(x2)S(x3)R(x4)

+SURPLUS(20, 10, 0, 20)R(x1)φ1,10(x2)S(x3)R(x4) +
SURPLUS(0, 10, 20, 20)S(x1)φ1,10(x2)R(x3)R(x4)

+SURPLUS(20, 10, 20, 20)R(x1)φ1,10(x2)R(x3)R(x4) ;
(9.10)

the fourth:

SURPLUS(0, 0, 10, 0)S(x1)S(x2)φ1,10(x3)S(x4)

+SURPLUS(20, 0, 10, 0)R(x1)S(x2)φ1,10(x3)S(x4) +
SURPLUS(0, 20, 10, 0)S(x1)R(x2)φ1,10(x3)S(x4)

+SURPLUS(20, 20, 10, 0)R(x1)R(x2)φ1,10(x3)S(x4) +
SURPLUS(0, 0, 10, 20)S(x1)S(x2)φ1,10(x3)R(x4)

+SURPLUS(20, 0, 10, 20)R(x1)S(x2)φ1,10(x3)R(x4) +
SURPLUS(0, 20, 10, 20)S(x1)R(x2)φ1,10(x3)R(x4)

+SURPLUS(20, 20, 10, 20)R(x1)R(x2)φ1,10(x3)R(x4) ;
(9.11)

and the fifth:

SURPLUS(0, 0, 0, 10)S(x1)S(x2)S(x3)φ1,10(x4)

+SURPLUS(20, 0, 0, 10)R(x1)S(x2)S(x3)φ1,10(x4) +
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SURPLUS(0, 20, 0, 10)S(x1)R(x2)S(x3)φ1,10(x4)

+SURPLUS(20, 20, 0, 10)R(x1)R(x2)S(x3)φ1,10(x4) +
SURPLUS(0, 0, 20, 10)S(x1)S(x2)R(x3)φ1,10(x4)

+SURPLUS(20, 0, 20, 10)R(x1)S(x2)R(x3)φ1,10(x4) +
SURPLUS(0, 20, 20, 10)S(x1)R(x2)R(x3)φ1,10(x4)

+SURPLUS(20, 20, 20, 10)R(x1)R(x2)R(x3)φ1,10(x4) .

(9.12)

The arguments of the BF and SURPLUS functions are the depth parameters of
the corresponding slabs in Fig. 6.3. Thus, BF(0, 20, 20, 20) is the blending function
computed by VIC-3D® when slab 1 has a depth of 0, and the other three slabs are
at a full depth of 20. In (9.9)–(9.12), we have

SURPLUS(10, a, b, c) = BF(10, a, b, c) − 1/2(BF(20, a, b, c) + BF(0, a, b, c))

SURPLUS(a, 10, b, c) = BF(a, 10, b, c) − 1/2(BF(a, 20, b, c) + BF(a, 0, b, c))

SURPLUS(a, b, 10, c) = BF(a, b, 10, c) − 1/2(BF(a, b, 20, c) + BF(a, b, 0, c))

SURPLUS(a, b, c, 10) = BF(a, b, c, 10) − 1/2(BF(a, b, c, 20) + BF(a, b, c, 0))

(9.13)

9.3 Clenshaw-Curtis Grids

The Clenshaw-Curtis family of grids [57, 58] are, for the most part, superior to
others of the genre that we have just described, in the sense that the number of points
in C-C grids increases more slowly with the level of refinement, while retaining the
same asymptotic error decay rate. Our presentation follows [58].

The points, xi
j , of the C-C grid in one dimension are defined as

mi =
{

1, if i = 1,

2i−1 + 1, if i > 1,

xi
j =

{
(j − 1)/(mi − 1) for j = 1, . . . , mi if mi > 1,

0.5 for j = 1 if mi = 1.
(9.14)

The index, i, is used to indicate a level of refinement of the grid in the appropriate
dimension. It is clear from (9.14) that the set of points, Xi , generated at the ith level,
is a subset of Xi+1: Xi ⊂ Xi+1. Furthermore, this implies that the multidimensional
sparse grid generated by the tensor product of the one-dimensional grids
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Fig. 9.3 Example of two point sets of the C-C grid. Left:X1 ⊗ X4. Right:X1 ⊗ X5. Note that
X1 ⊗ X4 is a subset of X1 ⊗ X5

Hq,d = ∪q−d+1≤|l|1≤q(Xi1 ⊗ · · · ⊗ Xid ) , (9.15)

also satisfies the inclusion property: Hq,d ⊂ Hq+1,d . The index, q, is associated
with the level of the dth dimension. The importance of this last relationship is that
it implies that those blending functions that have already been computed on the set
Hq,d can be used in Hq+1,d , with only the surplus blending-functions being needed
to be computed in Hq+1,d . When these surpluses are smaller than a threshold, we
can stop refining the grid. Figure 9.3 illustrates two point sets of the C-C grid, X1 ⊗
X4 and X1 ⊗ X5. The former is a subset of the latter, which is at the next level of
refinement.

An example of (9.15) for the case q = 6, d = 4 is given here:

H6,2 = ∪5≤i1+i2≤6X
i1 ⊗ Xi2

= X1 ⊗ X4 ∪ X1 ⊗ X5 ∪ X2 ⊗ X3 ∪ X2 ⊗ X4 ∪ X3 ⊗ X2 ∪ X3 ⊗ X3

∪ X4 ⊗ X1 ∪ X4 ⊗ X2 ∪ X5 ⊗ X0 ∪ X5 ⊗ X1 , (9.16)

with X0 = ∅. The C-C grid corresponding to (9.16) is shown in Fig. 9.4.
With Xi

Δ = Xi\Xi−1, namely those points in Xi that are not in Xi−1 (the
‘excess’ points), (9.15) can be expanded as

Hq,d = ∪|i|1≤q(X
i1
Δ ⊗ · · · ⊗ X

id
Δ) = Hq−1,d ∪ ΔHq,d , (9.17)

where

ΔHq,d = ∪|i|1=q(X
i1
Δ ⊗ · · · ⊗ X

id
Δ) , (9.18)
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Fig. 9.4 Sparse grid HCC
6,2 at level 4. There are a total of 65 points

Table 9.3 Number of grid
points at level n = q − d for
Clenshaw-Curtis grids

n d = 2 d = 4 d = 8 d = 16

0 1 1 1 1

1 5 9 17 33

2 13 41 145 545

and Hd−1,d = ∅. This is more convenient for expansion of the interpolant using
successive refinements of the grid with increasing parameter, q.

Table 9.3 shows the number of grid points at level n = q − d for Clenshaw-
Curtis grids of up to 16 dimensions. We see that the increase in grid points with
dimension is rather slow, which is a significant advantage of C-C grids. If we argue,
as we did earlier, that the complex flaw of Fig. 6.3 requires only three grid points per
dimension, then it follows from Table 9.3 that we may be able to get by with a total
of 33 points for 16 dimensions at level 1! This is due to the fact that the midpoint
is used at the 0th level, and the two end points at the first level, and is an incredible
savings. If we are conservative, and decide that we need to go to level 2, we can go
up to eight dimensions and require only 145 blending functions. If we used a full
grid for an eight-dimensional problem with three points per dimension, we would
need a total of 6561 points! The curse of dimensionality strikes again.

Klimke, [57, 58], allows one to compute the coordinates of a C-C grid, which
then allows the user to determine a priori what blending functions to compute for
an interpolation table. Table 9.4 lists the coordinates of hierarchical C-C grid points
for d = 4, n = 0 : 2. The table is arranged to show the grid points that are added
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Fig. 9.5 Illustrating nodal basis functions, φ3,j , x3,j ∈ X3 (left) and hierarchical basis functions,
φi,j , with their support nodes, xi,j ∈ Xi

Δ, i = 1, . . . , 3 (right) for the Clenshaw-Curtis grid (see
[58])

to the interpolant at level n. The total number of points is 41, and agrees with the
corresponding entry in Table 9.3.

Now that we have discussed the nature of C-C grids, it is time to address the
expansion of the interpolant in function space. Figure 9.5 illustrates the typical
piecewise nodal basis functions used in conventional interpolation schemes, as well
as the hierarchical basis functions used with Clenshaw-Curtis grids. Note that in the
C-C basis, the lowest level function in the hierarchy is simply a constant, whereas
the basis system in the next level are a slide (left) and ramp (right) which do not
span the entire line, but only one-half. Finally, the basis functions at level 2 are the
usual disjoint tent functions that we have seen before in Fig. 9.1.

Figure 9.6 illustrates how the two sets of basis functions are used in interpola-
tions. Our interest is in the hierarchical system shown at the bottom of the figure.
The wi,j denote the hierarchical surpluses that are the expansion coefficients for the
hierarchical interpolation formula:

U(x) = w1,1φ1,1(x) + w2,1φ2,1(x) + w2,2φ2,2(x) + w3,1φ3,1(x) + w3,2φ3,2(x) .

(9.19)
They are given by: w1,1 = f (0.5), w2,1 = f (0) − f (0.5), w2,2 = f (1) − f (0.5),
w3,1 = f (0.25)− 1/2(f (0)+f (0.5)), and w3,2 = f (0.75)− 1/2(f (1)+f (0.5)),
where f (x) is shown as the dashed curve in the figure. (The surpluses are the
expansion coefficients because the basis functions all have unit amplitude, and do
not overlap with each other at a given level.) Note the efficiency in the hierarchical
algorithm, in that function values computed at one level are reused in the next higher
level.

In reality, the nodal values in Fig. 9.6 are blending functions, comprising an entire
1- or 2-D scan impedance response. Here’s how we use the coordinate information
in Table 9.4 to determine the computation of the associated blending function in
Fig. 6.3. For n = 0, we set the boundary of each slab in Fig. 6.3 to be 10 mils
(recall that we are scaling the physical dimensions to fit into a unit hypercube in
4-space), and use VIC-3D® to compute the response. This, then, is the blending
function associated with the midpoint of the hypercube.
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Table 9.4 Coordinates of
hierarchical C-C grid points
for d = 4, n = 0 : 2

n = 0 0.5 0.5 0.5 0.5

n = 1 0.0 0.5 0.5 0.5

1.0 0.5 0.5 0.5

0.5 0.0 0.5 0.5

0.5 1.0 0.5 0.5

0.5 0.5 0.0 0.5

0.5 0.5 1.0 0.5

0.5 0.5 0.5 0.0

0.5 0.5 0.5 1.0

n = 2 0.25 0.5 0.5 0.5

0.75 0.5 0.5 0.5

0.0 0.0 0.5 0.5

1.0 0.0 0.5 0.5
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Fig. 9.6 Illustrating nodal
(top) versus hierarchical
(bottom) interpolation in one
dimension (see [58]). The
wi,j denote the hierarchical
surpluses that are the
expansion coefficients for the
hierarchical interpolation
formula:
U(x) = w1,1φ1,1(x) +
w2,1φ2,1(x) + w2,2φ2,2(x) +
w3,1φ3,1(x) + w3,2φ3,2(x).
They are given by:
w1,1 = f (0.5),
w2,1 = f (0) − f (0.5),
w2,2 = f (1) − f (0.5),
w3,1 =
f (0.25)−1/2(f (0)+f (0.5)),
and w3,2 =
f (0.75)−1/2(f (1)+f (0.5)),
where f (x) is shown as the
dashed curve in the figure
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The problem configuration for computing the blending function associated with
the first entry at n = 1 of Table 9.4 would have the depth of the first slab of Fig. 6.3
equal to zero, and the other three fixed at 10 mils. For the first entry at n = 2, the
depth of the first slab would be 5 mils, and the other three depths would be 10 mils,
and so on.

9.4 The TASMANIAN Sparse Grids Module

The Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN
is a robust library for high-dimensional integration and interpolation, as well as
parameter calibration. The code consists of several modules that can be used indi-
vidually or conjointly. The project is sponsored by Oak Ridge National Laboratory
Directed Research and Development as well as the Department of Energy Office for
Advanced Scientific Computing Research (see tasmanian.ornl.org/about.html).

Sparse Grids is a family of algorithms for constructing multidimensional quadra-
ture and interpolation rules from tensor products of one-dimensional rules. The
TASMANIAN Sparse Grid code implements a number of different quadrature
rules and basis functions (see [123] for details). The rules are grouped into three
categories:

www.tasmanian.ornl.org/about.html
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• Global Grids: suitable for globally smooth functions. Quadrature is based on
a number of rules, including Clenshaw-Curtis, and interpolation is based on
global Lagrange polynomials. Nodal point selection follows the same rules as
quadrature. These grids are most suitable for our use, and will be discussed in
more detail below.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp
behavior. Interpolation is based on hierarchical piecewise polynomials with local
support and user-specified order. These grids are suitable for local refinement.

• Wavelet Grids: are similar to local polynomials, except that it is assumed that
the order is either 1 or 3. When coupled with local refinement, these grids often
provide the same accuracy with fewer abscissas.

Lagrange Polynomial Interpolation Given nodal values, f (xi), the LP interpola-
tor is given by

f (x) =
N∑

i=0

li (x)f (xi) , (9.20)

where

li (x) =
N∏

j=0
j 
=i

x − xj

xi − xj

, i = 0, . . . , N . (9.21)

The interpolating polynomials, {li (x)}, satisfy li (xj ) = δij . An example for N = 3
is given here:

l0(x) = x − x1

x0 − x1

x − x2

x0 − x2

x − x3

x0 − x3

l1(x) = x − x0

x1 − x0

x − x2

x1 − x2

x − x3

x1 − x3

l2(x) = x − x0

x2 − x0

x − x1

x2 − x1

x − x3

x2 − x3

l3(x) = x − x0

x3 − x0

x − x1

x3 − x1

x − x2

x3 − x2
. (9.22)

The nodal points, or knots, are located at the extrema (maxima or minima) of
Chebyshev polynomials. If mi > 1 is the number of knots at the ith level of
approximation in a given dimension, then the knots, over the interval [−1,+1],
are given by

xi
j = − cos

π(j − 1)

mi − 1
, j = 1, . . . , mi , (9.23)



9.6 Results for 4D-Level 8 229

with xi
1 = 0 if mi = 1. In order for the knots to be nested at the next level of

approximation, we choose m1 = 1 and mi = 2i−1 + 1 for i > 1 [15]. The Lagrange
interpolator is an example of Eq. (1.3) in the TASMANIAN User Manual.

9.5 First TASMANIAN Results

In order to test the accuracy of interpolating high-dimensional models at various
levels,1 we start with a simple example in which we compare the interpolated result
at various levels with original data that are computed directly with VIC-3D® for
the complex flaw with ‘coordinates’ (20,0,0,0) shown in Fig. 9.7. These results are
shown in Figs. 9.8 and 9.9. Additional test results are shown in Figs. 9.10, 9.11,
and 9.12. It is clear from these tests that TASMANIAN works well as long as the
level is chosen correctly. It seems likely that one could determine a suitable level
for problems of a given dimension by using theoretical rates of convergence, but in
these tests we used an empirical approach to determine such levels.

9.6 Results for 4D-Level 8

We have done a number of numerical experiments to test TASMANIAN, and learn
more about the relationship between the number of dimensions in a grid and the level
of the grid. For example, we found that there was reasonable convergence from 8D-
Level3(593 points) to 8D-Level4(1953 points), but to use an eight-dimensional grid

1 42 3

Y

Z

20 mil

–25 mil 50 mil25 mil

Width of anomaly = 0.1mil

–50 mil

10 mil

Fig. 9.7 Showing a complex flaw extending over one-half of the first block of Fig. 6.3 and
vanishing elsewhere

1‘Level’, in the context of Lagrange interpolation with the Chebyshev rule, implies the highest
order polynomial that can be interpolated exactly.



230 9 High-Dimension Model Representation via Sparse GridTechniques

Fig. 9.8 Comparison of interpolated result with original data for the complex flaw with ‘coordi-
nates’ (20,0,0,0). (See Fig. 9.7.) The four-dimensional TASMANIAN sparse grid was generated at
level 2, and required 33 Chebyshev points

Fig. 9.9 Comparison of interpolated result with original data for the complex flaw with ‘coordi-
nates’ (20,0,0,0). (See Fig. 9.7.) The four-dimensional TASMANIAN sparse grid was generated at
level 4, with 145 points. Note the significant improvement over Fig. 9.8
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Fig. 9.10 Comparison of interpolated result with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The four-dimensional TASMANIAN sparse grid was
generated at level 2 (33 points)

Fig. 9.11 Comparison of interpolated result with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The four-dimensional TASMANIAN sparse grid was
generated at level 4 (145 points). Note the improvement over Fig. 9.10. The relative errors are less
than 7% in the real part (resistance), less than 3% in the imaginary part (reactance). The major part
of the relative error occurs when the real and imaginary parts, especially the imaginary part, are
both small. The relative error is calculated as the ratio of the difference of the ‘experimental data’
and the interpolated data to the experimental data. The absolute error is the absolute value of the
difference between the experimental and interpolated data
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Fig. 9.12 Comparison of interpolated results with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The coordinates of the flaw in eight dimensions are
(20,20,40,40,30,30,10,10), because the length of each of the eight-dimensional slabs is one-half
that of the four-dimensional slabs. The eight-dimensional TASMANIAN sparse grid was generated
at level 3, with 593 Chebyshev points

Fig. 9.13 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8, with 1857 Chebyshev points
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Fig. 9.14 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.15 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

accurately would require even higher levels. Since the 8D-Level4 run took 12.5 h,
we decided not to go to higher dimensions, until we were absolutely forced to. In
fact, it is probably wiser to use voxel-based inverse methods when the number of
parameters needed to accurately model the geometry of the problem exceeds, say, 5
or 6.

We also studied the convergence of 4D-Level 6 to 4D-Level 8, and find excellent
results. Hence, the remainder of our study at this point will concentrate on 4D-
Level 8 situation. As a starter, we show in Figs. 9.13, 9.14, 9.15, 9.16, 9.17, 9.18,
9.19, 9.20, 9.21, 9.22, and 9.23 a comparison of interpolated results at 81 arbitrarily
selected points with the TASMANIAN grid at level 8 with 1857 Chebyshev points.
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Fig. 9.16 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.17 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Scaling may be a contributing factor to the occasionally poor fit of the real part,
since the real part is much smaller than the imaginary, but it is also likely that the
real and imaginary parts vary differently over this rather large range of the variables
in physical space, which may contribute to the challenge of accurately interpolating
each component.

Figure 9.24 shows the VIC-3D® model response of Fig. 6.4 when block 2 is
varied in depth from 0 to 20 mils in four equal intervals, and the other blocks remain
fixed at the values shown. Figure 9.25 shows a fourth-order polynomial fit to the
peak values of the impedance data of Fig. 9.24, and Table 9.5 lists the coefficients
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Fig. 9.18 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.19 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

of these fits. Clearly, there is a difference in the way that the real and imaginary
parts vary with this particular geometric feature of the model. In both Figs. 9.24
and 9.25, the legend indicates depths of 0–40, which is due to the fact that the
slabs are represented in VIC-3D® as canonical ‘blocks,’ whose reference coordinate
system is at the center of the block. The blocks are defined in VIC-3D® by the total
length of the unclipped block, so that when the clip plane passes through the origin
of the block, as in this case, the ‘length’ parameter that VIC-3D® uses, and which
is shown in the figures, is always twice the depth parameter shown in Fig. 6.4.
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Fig. 9.20 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.21 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

9.7 The Geometry of the 4D-Level 8 Chebyshev Sparse Grid

We show in Figs. 9.26, 9.27, 9.28, 9.29, and 9.30 the distribution of points in a
number of two-dimensional subspaces of the original four-dimensional grid.
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Fig. 9.22 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.23 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Table 9.5 Coefficients of the fourth-order polynomial fits of Fig. 9.25

Order R X

4 −2.89708333333331e − 09 9.79583333333349e − 09

3 6.61083333333314e − 08 −1.28541666666668e − 06

2 7.25370833333338e-06 4.77454166666668e − 05

1 −6.38808333333335e − 05 −9.69083333333310e − 05

0 0.00300550000000000 0.0116510000000000

9.8 Searching the Sparse Grid for a Starting Point for
Inversion

One of the applications of the sparse grid is as a surrogate for VIC-3D® in
choosing a starting point for inversion with NLSE. To demonstrate this, we took two
‘test data’ sets, one with coordinates (0,10,18,32), and the other with coordinates
(0,10,5,12). The first corresponds to a ‘good’ interpolation, as shown in the first
column of the third row of Fig. 9.13, and the second to a ‘not-so-good’ interpolation,
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Fig. 9.24 VIC-3D® model response of Fig. 6.4 when block 2 is varied in depth from 0 to 20 mils
in four equal intervals, and the other blocks remain fixed at the values shown

Fig. 9.25 Showing a fourth-order polynomial fit to the peak values of the impedance data of
Fig. 9.24

as shown in the first column of the first row of Fig. 9.13. The algorithm for finding
the starting point is to determine the ‘nearest neighbor’ to the test data among the
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Fig. 9.26 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8

Table 9.6 Nearest sparse grid neighbors for two test data sets

Test set Nearest neighbor/Φ Second nearest neighbor/Φ

(0, 10, 18, 32) (0, 5.8579, 20, 30)/9.42(−4) (5.8579, 5.8579, 20, 20)/1.17(−3)

(0, 10, 5, 12) (0, 10, 0, 10)/5.43(−4) (0, 0, 10, 10)/1.08(−3)

1857 sparse grid points by choosing that point with the smallest norm of the residual
impedance vector. The result of the experiment is shown in Table 9.6. The second
nearest point is also shown for each data vector. The nearest neighbor to (0,10,18,32)
lies in the subspace (d1, d2, 20, 30) in Fig. 9.27, and the second nearest neighbor lies
in the subspace (d1, d2, 20, 20) in the same figure. As for (0,10,5,12), its nearest
neighbor lies in the subspace (d1, d2, 0, 10) shown in Fig. 9.26, and the second
nearest neighbor lies in (d1, d2, 10, 10) in the same figure.
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Fig. 9.27 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

In this manner we can map the ‘most likely’ regions of the sparse grid in which
the data vector lies, and then compute a compact uniform grid for interpolation in
NLSE within these regions. If the uniform grid is much smaller than the sparse grid,
we would expect to get tighter estimations of confidence intervals when we perform
a stochastic inversion with NLSE.

9.9 A Five-Dimensional Inverse Problem

The proof-of-the-pudding with sparse grids is their ability to simplify the solution
of inverse problems that utilize internal interpolation tables as with NLSE. Our hope
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Fig. 9.28 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

is that we need to compute far fewer forward solutions with VIC-3D®, but then use
the resulting sparse-grid solution to compute a much more refined full Cartesian
grid which NLSE will then use to complete the inversion problem. This example
will demonstrate the validity of this approach.

The problem consists of a split-D probe of the type shown in Fig. 9.31, and which
was analyzed in [111, Section 6.6] that is scanned past a rectangular slot whose
dimensions are 1 mm × 2 mm × 3 mm. The probe is vertical to the surface of the
workpiece, but is rotated about its axis by 22◦. The two parameters that define the
orientation of the probe are the Euler angles shown in Fig. 9.32. These two angles,
together with the liftoff of the probe and the length and depth of the flaw are the five
parameters that are to be determined in the inverse problem. The ‘true’ values of the
parameters are: LO = 3.5,Θ = 0, Ψ = 22, L = 2, and D = 3.
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Fig. 9.29 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

The five-dimensional parameter space ranges over: LO = [0, 9.99],Θ =
[0, 9.99], Ψ = [0, 90], L = [1.7, 2.3], D = [2.7, 3.3], which at level 4 will be
covered by 311 Chebyshev points. These are the values that are presented to VIC-
3D® to generate the sparse interpolation table. The first NLSE full Cartesian table
consists of four points in each dimension, uniformly distributed over its range, which
yields 1024 nodes for NLSE. The results of the first inversion test are shown in
Table 9.7. The final column in the table gives the number of local minima generated
by the 500 random starting points that coalesce into the global minimum. In order to
improve the accuracy of the inversion of Ψ , we increase the number of NLSE nodes
in this parameter to 6, and get the result shown as Test 2 in Table 9.7. Clearly, this
parameter benefits from a denser nodal distribution because it covers a large range
of [0,90].
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Fig. 9.30 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

The five-dimensional, level 4 inversion is quite good, but the important thing to
note is the ‘leverage-value’ of each test in Table 9.7, namely 1024/311 = 3.3 for the
first, and 4.94 for the second. This is significant because the time to compute the 311
points completely dominates the overall inversion process, whereas the computation
of function values for NLSE using the full Cartesian grid interpolation table derived
from these 311 points is much faster.
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IR = 9.34mm
OR = 18.4mm

HT = 9mm

Turns = 408

Transmit Coil:

Cores:
R = 7.34mm

2mm

Receive Coils:

IR = 7.34mm

OR = 8.34mm

HT = 9mm

µ=2000
HT=9mm

Turns = 100

Fig. 9.31 The split-D coil configuration

Fig. 9.32 Illustrating the two
Euler angles that define the
orientation of the split-D
probe in the test problem. The
probe axis is orthogonal to the
plane of Fig. 9.31. The input
model data for the inversion
are Ψ = 22◦ and Θ = 0◦

X

Z

Y

Θ
Ψ

Probe Axis

9.10 Noisy Data and Uncertainty Propagation

In developing the stochastic inverse model of Chap. 6, we assumed that the input
data were given, and that the only stochastic feature of the problem was the random
vector of unknown parameters that were to be determined. Each component of the
vector was uniformly distributed over a certain range.
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Table 9.7 Inversion results for the five-dimensional problem at level 4 with two different
interpolation tables for NLSE

Test Size (NLSE) Level No. Cal. No. Nodes φ No. Pts.

1 4 × 4 × 4 × 4 × 4 4 311 1024 0.639(−5) 87

2 4 × 4 × 6 × 4 × 4 4 311 1536 0.578(−5) 78

Test LO/Sensit Θ/Sensit Ψ /Sensit L/Sensit D/Sensit

1 3.5/2.24(−2) 5.46(−2)/4.17(−2) 20.4/0.47 1.99/4.25(−3) 2.98/0.28

2 3.5/2.02(−2) 0.11/3.71(−2) 21.51/0.36 1.99/3.83(−3) 2.99/0.25
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Fig. 9.33 Illustrating the noise-free input to the five-dimensional inverse problem. Left: resistance,
Right: reactance

Now we want to extend the model to include the effects of Gaussian random
noise that is superimposed on the noise-free input, shown in Fig. 9.33, to the five-
dimensional inverse problem discussed in the preceding section. We consider two
levels of noise, one with an RMS value of 1 × 10−5 and the other with an RMS
value of 3 × 10−5. Figure 9.34 illustrates a sample function of the former process
superimposed on the noiseless data, and Fig. 9.35 illustrates a sample function from
the second process superimposed on the noiseless data.

Our interest is in determining how uncertainty in the input data is propagated
through the nonlinear least-squares filter into uncertainty in the output parameters.
To accomplish this, we do a Monte Carlo analysis, in which the data of Fig. 9.33
are corrupted by ten samples from each noise source, as in Figs. 9.34 and 9.35, and
then applied to NLSE using the interpolation table shown as Test 2 in Table 9.7.

The results are shown in Fig. 9.36, which depicts the relative error, defined to
be the ratio of the computed value to the ‘true’ value, except for Θ , which uses an
artificial value of 1 × 10−8 for zero. The ‘Noise Level’ in the figure is the ratio
of the RMS value of noise to the peak value of the noiseless resistance, 0.00025,
in Fig. 9.33. The ten sample points for each reconstructed parameter are shown as
small dots, and the mean of the results is shown as the large red dot. The large black
dot is the true value of the parameter. Note that many of the sample points are hidden
behind either of the large dots.
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Fig. 9.34 Illustrating the noise-free input to the five-dimensional inverse problem with a sample
function of noise at an RMS level of 1 × 10−5 superimposed. Left: resistance, Right: reactance
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Fig. 9.35 Illustrating the noise-free input to the five-dimensional inverse problem with a sample
function of noise at an RMS level of 3 × 10−5 superimposed. Left: resistance, Right: reactance

The mean values are in reasonable agreement with the true values, which
suggests that the inversions are reasonable with these levels of input noise. The
results for depth, D, may appear strange, in that the error in the mean value
for the 1 × 10−5 noise source is greater than that for the 3 × 10−5 source, but
keep in mind that the sensitivity coefficient for D in Table 9.7 is large, which,
following our discussion in Chap. 6, indicates that the inversion process alone
will introduce significant uncertainty in the estimated value of D. Our intuition
is restored, however, when we look at the distribution of the errors over the ten
samples: it is much larger for all five parameters when the noise level is 0.12. (Note
that there is a small dot at ±0.1 in D for Noise Level = 0.12.)



9.10 Noisy Data and Uncertainty Propagation 247

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
E

rr
or

LO
0

0.5

1

1.5

2

2.5
x 10

8

Theta
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Noise Level=
0.04

Psi
−6

−4

−2

0

2

4

6

8

10

12
x 10

−3

L
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

D

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

E
rr

or

LO
0

0.5

1

1.5

2

2.5

3
x 10

8

Theta
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Noise Level=
0.12

Psi
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

L
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

D

Fig. 9.36 Result of the Monte Carlo test to determine the error in inversion due to random noise
at two different RMS values in the input data. Top: RMS = 1×105; Bottom: RMS = 3×105. The
‘Noise Level’ is the ratio of the RMS value of noise to the peak value of the noiseless resistance,
0.00025, in Fig. 9.33
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