
Chapter 6
Stochastic Inverse Problems: Models
and Metrics

6.1 Introducing the Problem

Over the past 2 years, we have been developing a theory of uncertainty quantification
and propagation that is computationally feasible with large numbers of unknowns.
We have applied it to a problem of characterizing the eddy-current response of a
shot-peened surface, where the surface is modeled as a one-dimensional random
conductivity field with a known covariance function. We are currently extending
the model to more general materials characterization problems, such as modeling
two-dimensional random anisotropic grain noise in titanium alloys. In this case, we
assume the existence of a (two-dimensional) covariance function for the random
distribution of Euler angles that define the orientation of each crystallite within the
material.

With this background, we want to develop a theory of stochastic inverse problems
for more traditional eddy-current NDE flaw characterization and sizing. Instead of a
random material, we assume that the flaw can be characterized as a random process.
That this is a reasonable approach is suggested by reference to Fig. 6.1, which shows
the typical shape of fatigue-crack growth progression in cold-worked fastener holes.
Clearly, the ensemble of cracks cannot be modeled by a simple canonical shape with
three parameters, length, width, height, so we will need to invoke a stochastic model
for analyzing such cracks.

With such a stochastic model, we can draw parallels between ‘probability of
detection’ (POD) and ‘likelihood of inversion’ (LOI). In the former, we are given
a flaw, and ask ourselves, ‘Can we detect it, and what are the metrics that measure
our success?’ In the latter, we are given data, and ask ourselves, ‘Can we associate
a flaw with them, and what are the metrics that measure our success?’
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Fig. 6.1 Typical shape of fatigue-crack growth progression in cold-worked fastener holes. Images
courtesty of D. Forsyth, TRI/Austin

The stochastic model will be described later, but first we will develop some
background tools that are currently resident in VIC-3D®, and will be the basis of
our stochastic computational model.

6.2 NLSE: Nonlinear Least-Squares Parameter Estimation

Let

Z = g(p1, . . . , pN, f ) , (6.1)

where p1, . . . , pN are the N parameters of interest, and f is a control parameter at
which the impedance, Z, is measured. f can be frequency, scan-position, lift-off,
etc. It is, of course, known; it is not one of the parameters to be determined. To be
explicit during our initial discussion of the theory, we will call f ‘frequency.’

In order to determine p1, . . . , pN , we measure Z at M frequencies, f1, . . . , fM ,
where M > N :

Z1 = g(p1, . . . , pN, f1)

...

ZM = g(p1, . . . , pN, fM) . (6.2)
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The right-hand side of (6.2) is computed by applying the volume-integral code to
a model of the problem, usually at a discrete number of values of the vector, p,
forming a multidimensional interpolation grid.

Because the problem is nonlinear, we use a Gauss-Newton iteration scheme to
perform the inversion. First, we decompose (6.2) into its real and imaginary parts,
thereby doubling the number of equations (we assume the p1, . . . , pN are real).
Then we use the linear approximation to the resistance, Ri , and reactance, Xi , at the
ith frequency:
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where the superscript (q) denotes the qth iteration, and the partial derivatives are
computed numerically by the software. The left side of (6.3) is taken to be the
measured values of resistance and reactance. We rewrite (6.3) as

0 ≈ r + Jp , (6.4)

where r is the 2M-vector of residuals, J is the 2M × N Jacobian matrix of
derivatives, and p is theN -dimensional correction vector. Equation (6.4) is solved in
a least-squares manner starting with an initial value, (x(0)

1 , . . . , x
(0)
N ), for the vector

of unknowns, and then continuing by replacing the initial vector with the updated
vector (x

(q)

1 , . . . , x
(q)
N ) that is obtained from (6.3), until convergence occurs.

We are interested in determining a bound for the sensitivity of the residual norm
to changes in some linear combination of the parameters. Given an ε > 0 and a unit
vector, v, the problem is to determine a sensitivity (upper) bound, σ , such that

‖r(x∗ + σv)‖ ≤ (1 + ε)‖r(x∗)‖ . (6.5)

We will derive an estimate of σ . Equation (6.5) is equivalent to

‖r(x∗ + σv)‖ − ‖r(x∗)‖ ≤ ε‖r(x∗)‖ . (6.6)

The left-hand side of (6.6) can be approximated to the second order in σ by the
second-order Taylor expansion:
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‖r(x∗ + σv)‖ − ‖r(x∗)‖ ≈ σv · ∇‖r(x∗)‖ + σ 2
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where ∇ is the gradient operator inN−dimensional space. Even though the gradient
vanishes at the minimum point, we will compute it to get the algebra started:
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where the superscript T denotes the transpose of a matrix (or vector), and e(x) =
r(x)/‖r(x)‖ is a unit vector.

The second derivative that we want is the gradient of (6.8):
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Before going further, we can immediately drop the first term in (6.9) because the
gradient of the norm vanishes at the solution x∗. Thus, (6.9) becomes, using index
notation,
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Following [88, page 523], we discard the second-derivative term in (6.10) by
arguing that the residual vector for a good model fit should be small, which would
make the second derivative term small. Furthermore, it is likely that the residual
vector should have terms that are uncorrelated with each other and with the model,
thus tending to cancel the second derivative terms when summed over α. We will
call (6.10) the first-order curvature tensor, Γij , of the mapping (or deformation) of
the parameter space, {xi}, into the model-measurement space. If we call the ith
column of the Jacobian matrix, ci , then it follows from (6.10) that

Γij (x
∗) = ci(x

∗) · cj (x
∗)

‖r(x∗)‖ , (6.11)

where we are ignoring the second-derivative term in (6.10).

Digression on Computing Γ ij (x
∗) We can use the MINPACK code that is
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elements is already available as the ‘self sensitivities,’ so that leaves the off-diagonal
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, where the right-hand side is already calculable using

MINPACK in NLSE.

Substituting this result into (6.7) yields an upper bound for the quadratic term:
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and if we equate this to the right-hand side of (6.6), we get the final result

σv = ε1/2
( ‖r(x∗)‖
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)

. (6.13)
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Fig. 6.2 Showing sensitivity parameters for two system responses to xi . Response S is sensitive
to xi at x∗

i , whereas response I is not

We will call this the ‘first-order’ approximation, in the sense that we have truncated
the Taylor series expansion with the first nonzero term, and have ignored the second-
derivative terms in (6.10). This is the expression that is stated, but not derived, in
[77].

Note that if ‖J (x∗) · v‖ is small compared to ‖r(x∗)‖, then σ is large and the
residual norm is insensitive to changes in the linear combination of the parameters
specified by v. If v = ei , the ith column of the N × N identity matrix, then (6.13)
produces σi , the sensitivity bound for the ith parameter. Since σi will vary in size
with the magnitude of x∗

i , it is better to compare the ratios σi/x
∗
i for i = 1, . . . , N

before drawing conclusions about the fitness of a solution.
The importance of these results is that we now have metrics for the inversion

process: Φ = ‖r(x∗)‖, the norm of the residual vector at the solution, tells us
how good the fit is between the model data and measured data. The smaller this
number the better, of course, but the ‘smallness’ depends upon the experimental
setup and the accuracy of the model to fit the experiment. Heuristic judgement based
on experience will help in determining the quality of the solution for a given Φ.

The sensitivity coefficient, σ , is more subtle, but just as important. It, too, should
be small, but, again, the quality of the ‘smallness’ will be determined by heuristics
based upon the problem. If σ is large in some sense, it suggests that the solution
is relatively independent of that parameter, so that we cannot reasonably accept the
value assigned to that parameter as being meaningful, as suggested in Fig. 6.2, which
shows a system, S, for which the system is sensitive to variable, xi , at the solution
point, x∗

i , and another system, I , for which the system is insensitive to xi .
An example occurs when one uses a high-frequency excitation, with its attendant

small skin depth, to interrogate a deep-seated flaw. The flaw will be relatively
invisible to the probe at this frequency, and whatever value is given for its parameters
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will be highly suspect. When this occurs we will either choose a new parameter to
characterize the flaw, or acquire data at a lower frequency.

These metrics are not available to us in the current inspection method, in which
analog instruments acquire data that are then interpreted by humans using hardware
standards. The opportunity to use these metrics is a significant advantage to the
model-based inversion paradigm that we propose in this paper.

6.3 Confidence Levels: Stochastic Global Optimization

We can extend the previous results to obtain a statistical measure of confidence in
the solution. Referring to Fig. 6.2, we have the probability relation

Prob[x∗
i − σvv ≤ xi ≤ x∗

i + σvv] = Prob

[‖r(xi)‖ − ‖r(x∗
i )‖

‖r(x∗
i )‖ ≤ ε

]
. (6.14)

Arguing that
‖r(xi)‖ − ‖r(x∗

i )‖
‖r(x∗

i )‖ is a random variable allows us to transform the

inverse methods of [111] into the realm of ‘stochastic inverse problems.’
This approach is based on the current ‘Multi-Level Single Linkage’ algorithm

that is used in NLSE to reach the global minimum with probability one [21, 78,
89, 94], and also fits our concept of ‘stochastic inversion.’ Furthermore, it allows
us to use prior knowledge of the unknown parameters. Let the model parameters,
{xn}, be a set of independent random variables, each uniformly distributed over its
known range of values. We’ll sample the parameter space by choosing, say, 500
points randomly, in accordance with the distribution function of each parameter,
and compute the norm of the residual vector at each of the points, as in the first
step of NLSE. In NLSE, these points are trial initial points for the minimization
algorithm, (6.3), and the lowest of the resulting 500 minima is guaranteed to be the
global minimum with unit probability [21, 78, 89, 94].1

The random variable,
‖r(xi)‖ − ‖r(x∗

i )‖
‖r(x∗

i )‖ , in (6.14) is a continuous function

of {xi} defined on a compact set (the ‘prior feasible set’), so it achieves a finite
maximum on that set. This maximum, if it could be determined with probability one,
is precisely ε in (6.14), and when this is substituted into the transfer function, (6.13),
we would have determined the confidence level, σv , with unit probability. Later we
will relax any claims of unit probability in determining ε, but we are permitted to

1The Multi-Level Single Linkage method guarantees that the global minimum will be found within
a finite number of iterations with probability one, given a sufficiently large sample size of trial
points. Numerical experiments with model and laboratory data for a variety of inverse problems
over many years [111] suggest that 500 trial points yield a reliable estimate of the global minimum
for problems with the number of variables that we are considering.
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Fig. 6.3 Showing the configuration of the one-dimensional pulse basis functions for parametrizing
a complex flaw. The nodes are located at depths of 0, 10, and 20 mils

make a strong statement about the confidence level, because in this formulation of
a stochastic inverse problem, we are assuming prior statistical constraints of the
unknown parameters, {xn}. This approach is quite ‘Bayesian’, in the sense that
we are combining prior information on the random variables with a likelihood
estimation (which follows from the least-squares inversion process) to get posterior
information on the variables.

Example: A Complex ‘Flaw’ The configuration of the problem is shown in
Fig. 6.3. The expansion of the flaw in the (Y, Z)−plane is given by

f (y, z) =
4∑

i=1

αiπ
(1)
i (y)π(1)(z) , (6.15)

where π(1) is a unit pulse function, and the expansion coefficients, {αi}4i=1,
determine the magnitude of π(1)(z). These coefficients are the unknown degrees
of freedom of the problem, and will be modeled as independent random variables
with a uniform distribution over the range [0, 20]. They will be determined by
inversion of the data, which are impedances measured by a probe that is scanned
over −100 ≤ Y ≤ 100, X = 0. It should be understood that this formalism fixes
the resolution of the flaw in the Y−direction to be 25 mils, as well as the width of
the flaw in the X−direction to be 0.1 mil. These numbers are arbitrary, of course,
and can be changed to suit the problem. Furthermore, with the four blocks arranged
as shown, this configuration will be best suited for modeling and reconstructing
midbore, throughwall, and corner bolt-hole cracks.

Figure 6.4 illustrates a complex flaw extending over the entire range in Y . We
will use the output of a VIC-3D® model of this flaw to serve as the input data for
inversion. To illustrate the inversion process and the importance of the ‘surrogate’
interpolation table for the {αi}, we will perform a numerical experiment in which the
table has successively two, three and four nodes per dimension. In the first case, the
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Width of anomaly = 0.1mil
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Fig. 6.4 Showing the configuration of a complex flaw extending over the entire range of Fig. 6.3

Table 6.1 Results for the example problem vs. number of nodes per dimension

# Nodes ‖r(α∗)‖ α1/sensit α2/sensit α3/sensit α4/sensit # Points

2 0.319(−1) 11.47/4.12 20.0/3.4 16.80/3.58 4.64/4.46 272

3 0.405(−2) 10.18/0.53 19.86/0.698 15.87/0.558 3.9/0.444 226

4 0.159(−2) 11.19/0.125 20.11/0.216 15.56/0.212 6.06/0.1918 255

nodes are at [0, 20] , in the second, they are at [0, 10, 20], as in Fig. 6.3, and in the
third, [0, 7, 14, 21] (in this case, we assume a uniform distribution of the variables
over the range [0, 21]). Thus, the first table comprises 24 = 16 nodes, the second
34 = 81 nodes, and the last 44 = 256 nodes. A blending function for each node
is computed by VIC-3D®. We quickly see the ‘curse of dimensionality’ occurring.
This curse will be obviated through the use of sparse-grid interpolation techniques
to reduce the computational burden of building the new table.

The results of the experiment are shown in Table 6.1. The column labeled ’#
Points’ lists the number of the original 500 global starting points that are attracted
to the global minimum. These results show that increasing the number of nodes per
dimension yields improvements in reducing the norm of the residuals, Φ, and the
sensitivity coefficients of each variable. Figure 6.5 illustrates the results of Table 6.1,
and clearly indicates that increasing the number of nodes beyond 4 will have little
effect on the norm of the residuals, r , and only a slight reduction in the various
sensitivity coefficients, sensiti .

We ran NLSE four times, effectively sampling the {αi} space 2000 times,
yielding values of ‖r(α)‖max = 0.2545, 0.2689, 0.2351, and 0.265. The inverted
results of each of these runs were identical to those tabulated in Table 6.1, as we
expected, since the algorithm in NLSE ensures convergence to the global minimum
with probability one. Hence, using the data of the bottom row of Table 6.1 we have

‖r(α)‖max − ‖r(α∗)‖
‖r(α∗)‖ = 0.2689 − 0.00159

0.00159
= 168.12 = ε , (6.16)
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Stochastic Estimation Metrics vs. Number of Nodes
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Fig. 6.5 The results of Table 6.1 indicate that increasing the number of nodes beyond 4 will have
little effect on the norm of the residuals, r , and only a slight reduction in the various sensitivity
coefficients, sensit(i). The sensitivity coefficients have been scaled downward by a factor of 20 to
make them commensurate with the norm of the residuals for clarity of visualization

and when this is substituted into (6.13), along with the sensitivity coefficients
tabulated in the bottom row of Table 6.1, we get the parameters of the confidence
intervals to be σ1 = 1.62, σ2 = 2.8, σ3 = 2.75, σ4 = 2.49. These effectively
define the posterior distribution of the {αi}, which is certainly much different than
the prior distribution.

We summarize the results for αi by claiming that we are ‘certain’ that αi − σi ≤
αi ≤ αi + σi , with the most likely value being α∗

i . In the case where one of the
posterior limits on αi exceeds the prior limit, we reject it in favor of the prior limit,
because if the crack actually exceeded the prior limit, the inversion process would
have been constrained at the prior limit of the interpolation table. For example,
17.31 ≤ α2 ≤ 21, rather than 17.31 ≤ α2 ≤ 22.91.

The Chebyshev Inequality We can improve the calculation of the confidence
level, and even make its definition more precise in our example, by resorting to
the Chebyshev inequality [63], which states that, if Z is a random variable, then, for
every ξ > 0,

P [|Z| ≥ ξ ] ≤ VAR(Z)

ξ2
= MAX UNCERTAINTY(ξ)



6.3 Confidence Levels: Stochastic Global Optimization 153

Table 6.2 Results at 100Hz–1 kHz for conductivity and permeability

Trial ‖r(x)‖max ‖r(x∗)‖ σ /sensit μ/sensit

1 0.2503 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

2 0.2509 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

3 0.2521 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

4 0.2552 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

5 0.2525 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

MINIMUM CERTAINTY(ξ) = 1 − VAR(Z)

ξ2
, (6.17)

where ξ is the threshold or decision boundary for determining the confidence
interval. For example, if we want to be at least 95% confident in our assertion of

the probability of the first equality in (6.17), then 1 − VAR(Z)

ξ2
= 0.95, which

implies that ξ =
(
VAR(Z)

0.05

)1/2

.

To apply this theorem to our problem, we define Z = ‖r(α)‖max − ‖r(α)‖max,
where ‖r(α)‖max is a random variable whose sample value is the output of the
following ‘experiment’: run a 500-sample trial, as in the Multi-Level Single Linkage
algorithm, and choose the largest result for ‖r(α)‖max. Repeat the experiment for
the second sample, and so on. We have already given an example of this, with
the result after four trials that {‖r(α)‖max} = {0.2545, 0.2689, 0.2351, 0.265},
from which follow ‖r(α)‖max = 0.2559, VAR(Z) = 0.0001716, and ξ =
(0.0001716/0.05)1/2 = 0.0586 for 95% confidence level.

From the Chebyshev inequality we have, therefore, ‖r(α)‖max = 0.2559 +
0.0586 = 0.3145. This replaces ‖r(α)‖max = 0.2689 in (6.16), so that the 95%
upper bound is given by

‖r(α)‖max − ‖r(α∗)‖
‖r(α∗)‖ = 0.3145 − 0.00159

0.00159
= 196.8 = ε . (6.18)

The new values for the parameters corresponding to the 95% confidence interval
are {σ1 = 1.75, σ2 = 3.03, σ3 = 2.97, σ4 = 2.69}. The confidence intervals
for the four variables are, therefore: α1 : [9.44, 12.94], α2 : [17.08, 21], α3 :
[12.59, 18.53], α4 : [3.37, 8.75].
Joint Measurement of Conductivity and Magnetic Permeability We have taken
impedance measurements over the frequency range of 100Hz–1 kHz of a ferritic
heat-exchanger tube, with the intention of jointly determining the conductivity and
relative magnetic permeability of the tube. The interpolation table had the following
nodal values: σ : 1.0 × 106, 1.2 × 106, 1.4 × 106, 1.6 × 106, 1.8 × 106; μ :
50, 60, 70, 80, 90. We ran five trials of NLSE with the following results (Table
6.2):
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Table 6.3 Inverted results
for the width of a crack

Trial ‖r(x)‖max ‖r(x∗)‖ W/sensit

1 0.7979(−1) 0.2495(−1) 0.0793/0.0296

2 0.7990(−1) 0.2495(−1) 0.0793/0.0296

3 0.8024(−1) 0.2495(−1) 0.0793/0.0296

4 0.7941(−1) 0.2495(−1) 0.0793/0.0296

5 0.7999(−1) 0.2495(−1) 0.0793/0.0296

Following the procedure described above with respect to the Chebyshev inequal-
ity, we calculate a value of ε = 137, which yields σcond = 0.272 × 106, and
σμ = 1.76. Hence, we can say that the most likely value of the conductivity is
1.372 × 106, with a 95% confidence interval of [1.1 × 106, 1.644 × 106]. For the
permeability we get even tighter results; the most likely value is 68.18, with a 95%
confidence interval of [66.42, 69.94].

The fact that the permeability is well defined at these low frequencies has been
validated by use of the Cramer-Rao Lower Bound (CRLB), [111, pp. 407–410],
where it is also shown that the optimum frequency for estimating conductivity is
6.0 kHz.

Estimation of Width of a Long, Thin Crack We are given data at 200 kHz for a
crack in a bolt-hole. The data were obtained by a splitD probe with ferrite cores, and
the crack was 100 mils long and 18 mils deep. The objective was to determine the
width of the crack. The problem is described in greater detail in [111, Section 6.6].

The interpolation table for the width has nodes at 0, 0.125 mils, and 0.25 mils.
The inverted results after 5 trials are shown in Table 6.3.

These results yield a value of ε = 2.31 and σW = 0.045. The most likely value
of W is 0.0793 mils, and the 95% confidence interval is [0.0343, 0.1243]. We
should note that in these two examples, the confidence interval calculation becomes
more precise with an increase in the number of nodes in the interpolation table, as
indicated earlier.

6.4 Summary

We summarize the algorithm and process here.

1.
‖r(x)‖max − ‖r(x∗)‖

‖r(x∗)‖ = OBJ(x) is a random variable.

2. ‖r(x∗)‖ and the Jacobian, J (x∗), are determined with prob → 1 (Stochastic
Global Optimization via MLSL).

3. The set {x(ε)} 
 OBJ(x) ≤ ε is the ‘posterior feasible set at level ε’.
4. If OBJ(x) is parabolic (ellipsoidal in N-space), then the set {x(ε)} is called the

‘first-order posterior feasible set at level ε’.
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Fig. 6.6 Illustrating the interpretation and calculation of confidence intervals

5. σv = ε1/2
( ‖r(x∗)‖

‖J (x∗) · v‖
)
is a mapping from the ‘prior feasible set’ to the ‘first-

order posterior feasible set at level ε’.
6. If we choose ε to be at the 95% confidence level, as with the Chebyshev

Inequality, then the measure of {x∗ − σ ≤ x ≤ x∗ + σ } is at least 95% that
of the maximum first-order posterior feasible set, and x∗ is the most likely value
of x.

Figure 6.6 illustrates the algorithm.

A 2D Example The results just given are for the situation in which each parameter
is tested separately, while the others are fixed at the solution point. Now, we must
consider the general case in which the totality of variables are considered jointly.
This means operating in four-dimensional space. The tools that we have already set
up allow us to do that with no additional expense, except for a minor enhancement
to the NLSE code in VIC-3D®. Equation (6.13) is valid for arbitrary orientations
of the unit vector, v, and ε has already been computed using the entire four-
dimensional random parameter space in the MLSL stochastic global optimization
algorithm.

Consider the 2D example shown in Fig. 6.7, which is the projection onto the
(x1, x2)-plane of the four-dimensional hyperellipsoid associated with the complex
flaw example described earlier. Using NLSE, we compute the joint sensitivity
associated with the unit vector, v = [0.5, 0.5, 0.5, 0.5] to be 0.129. Then, using
ε = 196.8, as before, we compute σ0.5,0.5,0.5,0.5 = 1.81 from (6.13) for the
95%-confidence region for this combination of variables. It should be understood
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Fig. 6.7 A 2D ellipsoidal confidence region. The origin, (x∗
1 , x∗

2 ), is the solution of the optimiza-
tion problem

that NLSE already gives us the information to generate the entire N-dimensional
hyperellipsoid for a given problem. This would allow us to analytically calculate
such things as the volume of the ellipsoid, or cross-sectional areas, etc.
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