
Chapter 11
Spintronics

11.1 Introduction

The materials that have been considered thus far in the book are ’classical,’ in the
sense that their electromagnetic properties are easily stated as parameters that can
be easily measured in the laboratory, or can be computed and understood using
’classical’ physics. This is true whether the materials are ’structural’ or ’biological’.
Furthermore, we have shown that materials of these two classes can be characterized
using the same classical electromagnetic models.

In order to expand our understanding and application of electromagnetic models
to materials, we must consider cases in which the above statements do not hold, and
one must resort to more sophisticated physical models that incorporate quantum
mechanical principles just to understand the interaction of the electromagnetic field
with the material. There are a number of common and novel materials in which this
is true. For example, the interaction of an electromagnetic field in a microwave solid-
state maser can only be understood through the application of the quantum theory of
paramagnetism and electron spin dynamics [117]. Another well-known example is
nuclear magnetic resonance (NMR), in which the spin of the proton in the nucleus
of atoms provides the interaction that leads to magnetic resonance imaging (MRI).

11.2 Paramagnetic Spin Dynamics and the Spin Hamiltonian

In order to fully understand the possibilities of using paramagnetic phenomena to
detect lesions noninvasively, we must review a bit of electron-spin physics. Our
interest is in the dynamic response of spins to time-varying fields. These fields are
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284 11 Spintronics

either applied electromagnetic fields or fluctuating fields due to random vibrations of
the crystalline surroundings of the spin system.1

The system of equations used to describe spin dynamics is derived from
Schrödinger’s wave equation of quantum mechanics, and is given by

dρmn

dt
= j

h̄

∑

k

(ρmkHkn − Hmkρkn) +
∑

pq

Rmn,pq

(
ρpq − ρ(T )

pq

)
, (11.1)

where ρmn is the density matrix connecting energy states um and un of the
unperturbed system, Rmn,pq are real numbers that account for spin-lattice relax-
ation, and the superscript, T , denotes the thermal equilibrium density matrix.
Hjk = H0jk + H1jk(t), where H0jk is the unperturbed, time-independent spin-
Hamiltonian associated with the crystalline field, and H1jk(t) = ghβ [H(t) · S]jk

is the time-dependent perturbation. Here g is a constant, hβ the Bohr magneton,
h Planck’s constant, h̄ = h/2π , H(t) the time-dependent (rf) magnetic field, and
S = Sxax + Syay + Szaz is the vector spin operator.

Because {um} is an orthonormal system of eigenstates of H0, it follows
immediately that H0mm = Em, and all off-diagonal elements of H0mn vanish.
Furthermore, in order to get a linear (i.e., first-order in H(t)) response for the overall
system, we must set the diagonal terms of (11.1) to their thermal equilibrium values,
ρmn(t) = ρ

(T )
mn , and solve the off-diagonal terms to first-order in H(t):

dρmn

dt
=

(
jω0mn − 1

τmn

)
ρmn + j

h̄

(
ρ(T )

mm − ρ(T )
nn

)
H1mn(t) , (11.2)

where ω0mn = En − Em

h̄
, and the relaxation times, τmn, replace the Rmn,pq of

(11.1).

For a sinusoidally time-varying field, we have H1mn(t) = gβh

2

(
Hejωt+

H∗e−jωt
) · Smn. If we assume solutions of (11.2) of the form ρmn = Amne

jωt +
Bmne

−jωt , then the coefficients of the positive-frequency terms, Amn, and negative-
frequency terms, Bmn, are given by

Amn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (−ω + ω0mn) τmn

Smn · H

Bmn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (ω + ω0mn) τmn

Smn · H . (11.3)

1This discussion follows [96], which deals with spin dynamics in the crystalline field of a solid-
state maser. Later we will discuss the changes that occur when the spin system is in a noncrystalline
environment, such as biological tissue.
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The magnetic dipole-moment operator for each spin is gβhS, which means that
the average dipole-moment for each spin is m = Tr [ρgβhS], where Tr is the trace
of an operator (sum of the diagonal elements of its matrix representation). The
macroscopic dipole-moment per unit volume, M, is obtained by multiplying m by
the number density, N , of spins. Upon evaluating the trace, we find

M = γ 2
∑

j<k

SkjSjk

(
N

(T )
j − N

(T )
k

)

τjk

[(
j/h̄

1 − j (ω0jk − ω)τjk

− j/h̄

1 + j (ω0jk + ω)τjk

)
Hejωt

+
( −j/h̄

1 + j (ω0jk − ω)τjk

− −j/h̄

1 − j (ω0jk + ω)τjk

)
H∗e−jωt

]
, (11.4)

where we have discarded the time-independent static dipole terms, Smmρ
(T )
mm, and

have set γ 2 = g2h2β2. N
(T )
j is the number of spins per-unit-volume occupying the

j th energy level when the system is in thermal equilibrium at temperature T . If N is

the total number of spins (or systems) in the crystal, then N
(T )
j = N

Z
exp(−Ej/kT ),

where Z = ∑J
j=1 exp(−Ej/kT ) and J is the total number of energy states.

Thus, at thermal equilibrium (at positive temperatures), the lower energy states are
more densely populated than the higher energy states.

The absorption spectrum, A(ω), is given by μ0 times the imaginary part of the
generalized magnetic susceptibility, which is the coefficient of Hejωt in (11.4). In
the vicinity of the resonant frequency, ω0jk , the absorption spectrum is

A(ω) ≈ μ0
γ 2

2

∑

j<k

|Skj |2
(
N

(T )
j − N

(T )
k

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

= μ0
γ 2

2

N

Z

∑

j<k

|Skj |2
(
e−Ej /kT − e−Ek/kT

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

. (11.5)

This spectrum consists of ‘lorentzian’ curves (resonant curves) centered at the
frequencies ω0jk , with line-width 1/τjk . The peak of each resonance is proportional
to τjk , and this gives us the familiar trade-off between bandwidth and magnitude

of absorption (or magnitude of gain). The term N
(T )
j − N

(T )
k yields the population

difference per unit volume of the j th and kth energy levels when the system is in
thermal equilibrium at temperature T . This population difference will be small if
the energy differential, Ek − Ej , is small compared to the thermal energy, kT , as
is the usual case for paramagnetic spin systems at normal temperatures. In addition
to τjk , an important parameter is the ‘line-strength’, |Skj |2, or the transition matrix
element connecting the j th and kth states. It determines the ease with which pump
power is absorbed by the spins, or it determines the gain at signal frequencies.
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11.2.1 Application to Fe3+ : TiO2

The five unpaired electrons in Fe3+ are each in the 3d state, meaning that the ion
is in an S-state, with a spin, S = 5/2. The total number of spin-states, therefore, is
Ns = 2S + 1 = 6. The spin-Hamiltonian, H0, for the Fe3+ : TiO2 complex is [96]

H0 = gβH0 · S+D
(
S2

z −35/12
)

+E
(
S2

x−S2
y

)
+(a/6)

(
S4

x+S4
y+S4

z −707/16
)

+ (7/36)F
(
S4

z − (95/14)S2
z + 81/16

)
, (11.6)

where the nominal values of the derived constants are g = 2.0, D =
20.35 GHz, E = 2.21 GHz, a = 1.1 GHz, F = −0.5 GHz, and H0 is the dc
magnetic field. Sx, Sy , and Sz are 6×6 Pauli spin-matrices. This Hamiltonian gives
us frequency directly, rather than energy. The D term has axial symmetry (about
the z-axis), and corresponds to the ion having an electric quadrupole moment, that
is acted upon by the crystalline electric fields. The E term represents and additional
nonaxially symmetric anisotropy in the xy plane, and corresponds to the ion’s
possessing an electric moment of higher order than quadrupolar. These are the main
terms, as the size of D and E would suggest; the remaining terms are due to the fact
that S > 2 and that the crystal symmetry is complicated. Clearly, these latter terms
are less important, but must be included for completeness.

The eigenvalue equation that determines the unperturbed energy levels (or
frequencies in this case) is

H0u = Eu , (11.7)

and when this equation is solved as a function of H0 = Haz, we get the six curves
shown in Fig. 11.1. The zero-field energies occur in pairs (Kramers’ doublets), as
is typical of a system with an odd number of electrons in an electric field (the
crystalline field).

Consider the system at H = 1.78 kilogauss; the eigenvalues of H0 are

E1 = −58.20 × 109h E2 = −54.15 × 109h E3 = −19.60 × 109h

E4 = −5.64 × 109h E5 = 56.14 × 109h E6 = 81.05 × 109h
, (11.8)

from which we derive the resonant frequencies (in GHz)

ω012 = 4.05 ω023 = 34.55 ω034 = 13.96 ω045 = 61.78 ω056 = 24.91
ω013 = 38.60 ω024 = 48.51 ω035 = 75.74 ω046 = 86.69
ω014 = 52.56 ω025 = 110.29 ω036 = 100.65
ω015 = 114.34 ω026 = 135.20
ω016 = 139.25

,

(11.9)



11.2 Paramagnetic Spin Dynamics and the Spin Hamiltonian 287

Fig. 11.1 Six-fold energy
levels (in frequency units) for
Fe3+ : TiO2, as a function of
the z-directed magnetic field,
H
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and the transition-matrix elements

Sx12 = 0.8 Sx23 = 0 Sx34 = −0.69 Sx45 = 0 Sx56 = 0
Sx13 = 1.66 Sx24 = −1.50 Sx35 = 1.08 Sx46 = 1.10
Sx14 = 0 Sx25 = −0.31 Sx36 = 0
Sx15 = 0 Sx26 = 0
Sx16 = 0

Sy12 = −j0.8 Sy23 = 0 Sy34 = −j0.53 Sy45 = 0 Sy56 = 0
Sy13 = −j1.66 Sy24 = −j1.02 Sy35 = −j1.08 Sy46 = j1.10
Sy14 = 0 Sy25 = j0.31 Sy36 = 0
Sy15 = 0 Sy26 = 0
Sy16 = j0.19

Sz12 = 0 Sz23 = 0.54 Sz34 = 0 Sz45 = 0 Sz56 = 0
Sz13 = 0 Sz24 = 0 Sz35 = 0 Sz46 = 0
Sz14 = 0.33 Sz25 = 0 Sz36 = 0
Sz15 = 0 Sz26 = 0
Sz16 = 0

.

(11.10)
From these results we can conclude, for example, that a transition between states

1 and 2 (4.05 GHz) has a ‘strength’ of (0.8)2 for either x- or y-polarized radiation at
that frequency, but cannot occur for z-polarized radiation. Similarly, we can answer
the question of pump transitions. There are only two possible pump transitions,
the 1–4 transition at 52.56 GHz and the 2–3 transition at 34.55 GHz, if one uses
z-polarized pump radiation. If, however, we wish to amplify a signal at 4.05 GHz
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Fig. 11.2 Absorption
spectrum in vicinity of
4.05 GHz, with
τ12 = 5.305 × 10−9 s. The
half-power width is 60 MHz

0

0.5

1

1.5

2

2.5

3

3.5

3.85 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25

Frequency (GHz)

Absorption Spectrum

(1–2 transition) we must pump between the first level and the third or higher level.
Hence, we consider pumping only the 1–3 or 1–4 transition if we wish to remain
below 100 GHz. The only possible 1–4 transition uses z-polarized radiation and has
a strength of (0.33)2. If we pump at 38.60 GHz (the 1–3 transition) we may use
x- or y-polarized radiation (or both, as in circular polarization) and improve the
absorption strength to (1.66)2.

The width of the absorption curve for the 1–2 (4.05 GHz) transition of
Fe3+ : TiO2 is 60 MHz. Hence, the spin-lattice relaxation (or simply the transverse
relaxation) time for the off-diagonal element, ρ12, is τ12 = 1/2π × 30 × 106 =
5.305 × 10−9 s. Figure 11.2 shows the absorption spectrum in the vicinity of
4.05 GHz with this value of τ12.

This example illustrates the utility of the eigenstates in determining the frequency
response of a maser. It relies, as we have noted, on knowledge of the crystalline-field
environment of the iron ion. It is this information that is lacking when we consider
electron-paramagnetic spin systems in biological tissue, and is the basis for one of
our research proposals.

11.2.2 Ho++ : CaF2

Holmium is a type 4f rare earth, which means that the divalent Holmium ion has
its unpaired electrons in the 4f shell where they are effectively screened from their
crystalline surroundings by electrons in the outer shells. Therefore, as a reasonable
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approximation to the effective spin-Hamiltonian we may discard any terms that
represent the crystalline field. We must, however, include the spin-spin interaction
between the unpaired electrons and the nucleus because these electrons are relatively
close to the nucleus. Thus, we use the following spin-Hamiltonian

H0 = gβH0 · S + AI · S , (11.11)

where g = 5.91, β = 0.0014 GHz/gauss, A = 3.924 GHz, S is the electron spin
operator, with effective spin 1/2, and I is the nuclear spin operator with spin 7/2.

Because we are dealing with a system of two particles (electron plus nucleus)
we cannot simply form matrix products in order to evaluate H0, but must use the
direct product of the appropriate Pauli spin matrices of I and S. Because there are
two possible electron spin-states (“spin up” and “spin down” relative to, say, the
axis of H0) and 2 × 7/2 + 1 = 8 possible spin states of the nucleus, we have
a composite system of 16 possible states. This means that the combined spin-
Hamiltonian, (11.11), will be represented by a 16 × 16 matrix. When this matrix
is written out, and its eigenvalues determined as a function of magnetic field, we get
the plot of Fig. 11.3.

A comparison of Figs. 11.1 and 11.3 shows that Ho++ has a much more uniform
variation of energy (and, hence, resonant frequency) with H than does Fe3+. This
follows, as has been mentioned before, because the unpaired electrons in Ho++ are
screened from the crystalline field, whereas those of Fe3+ are not. Hence, Ho2+
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Fig. 11.3 Sixteen-fold energy levels (in frequency units) for Ho++ : CaF2, as a function of the
z-directed magnetic field, H
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behaves, for H greater than 3 kilogauss, as a free spin in an external magnetic field.
We would expect this same qualitative behavior for many of the 4f rare earths,
no matter what the crystal lattice is. This suggests that if we use 4f rare-earth
spin-systems, it may not be necessary to know anything about the electric-field
environment of the biological tissue.

11.3 Superparamagnetic Iron Oxide

This is what started this discussion of paramagnetic spin-systems. Iron oxide,
whether it is γ − Fe2O3, called ‘maghemite,’ or, perhaps magnetite, Fe3O4 ([95]
is not clear on this), is ferromagnetic. Because of the small size of the particles
(∼10 nm), their ferromagnetic properties manifest themselves in a single domain,
and such single domain particles can behave magnetically in a manner analogous to
the paramagnetism of moment-bearing atoms [16]. The main distinction is that the
moment of the particle may be 105 times the atomic moment, because of the 105

atoms ferromagnetically coupled by exchange forces within the single domain.2 ,3

Two Spins We’ll make a simple quantum-mechanical calculation of a system of
two electrons coupled through the exchange interaction in a static magnetic field,
H0. The Hamiltonian is

H = −gβH0 ·
(
S(1) + S(2)

)
− 2JexchS(1) · S(2) , (11.12)

where gβ = g × 0.0014 GHz/gauss = 2.8 GHz/kgauss, if we take g = 2. Jexch is
the exchange energy, with a nominal value of 2.1 × 10−21 J. Dividing by Plancks
constant, h, gives us the result in frequency units: Jexch/h = 2.1 × 10−21/6.626 ×
10−34 = 3169.3 GHz. Hence, the normalized Hamiltonian for the system becomes

H = −2.8H0 ·
(
S(1) + S(2)

)
− 6338.7S(1) · S(2)

= −2.8H0

(
S(1)

z + S(2)
z

)
− 6338.7S(1) · S(2) , (11.13)

where we assume that the static field is along the z-direction.

2Additional References on Superparamagnetic and Ferromagnetic Effects: [6, 23, 25, 49, 67, 75,
76, 116, 119, 124, 136].
3By a ‘single domain particle,’ we mean a particle that is in a state of uniform magnetization at any
magnetic field[16].
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The Pauli spin-matrices for a single electron in a z-directed magnetic field are

sx = 1

2

[
0 1
1 0

]
sy = 1

2

[
0 −j

j 0

]
sz = 1

2

[
1 0
0 −1

]
, (11.14)

and the eigenstates of sz are

[
1
0

]
,

[
0
1

]
, with the first one corresponding to ‘spin

up’ (parallel to the magnetic field), and the second to ‘spin down’ (antiparallel to
the magnetic field).

Since we have two coupled spins, we must work in the four-dimensional direct-
product space of the operators of (11.14):

S(1)
x S(2)

x = 1

4

⎡

⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥⎥⎦

S(1)
y S(2)

y = 1

4

⎡

⎢⎢⎣

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎤

⎥⎥⎦

S(1)
z S(2)

z = 1

4

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥⎦

S(1) · S(2) = S(1)
x S(2)

x + S(1)
y S(2)

y + S(1)
z S(2)

z

= 1

4

⎡

⎢⎢⎣

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎤

⎥⎥⎦ . (11.15)

The four-dimensional representations of Sx, Sy, Sz are obtained by taking the
left- and right-direct products of the single-electron Pauli spin-matrices, (11.14),
with the two-dimensional identity matrix. The results are
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S
(1)
x = 1

2

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦ S
(1)
y = 1

2

⎡

⎢⎢⎣

0 0 −j 0
0 0 0 −j

j 0 0 0
0 j 0 0

⎤

⎥⎥⎦ S
(1)
z = 1

2

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥⎦

S
(2)
x = 1

2

⎡

⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ S
(2)
y = 1

2

⎡

⎢⎢⎣

0 −j 0 0
j 0 0 0
0 0 0 −j

0 0 j 0

⎤

⎥⎥⎦ S
(2)
z = 1

2

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥⎦

(11.16)
for the two particles. Note that these two-particle spin matrices satisfy the general

commutation relations
[
S

(p)
x , S

(q)
y

]
= jδpqS

(p)
z . Note further that the product of

these matrices gives the same results that we obtained independently in (11.15).
The eigenvectors of the matrix, S

(1)
z + S

(2)
z , in (11.16) are the direct products of

the eigenstates of the two-dimensional Pauli spin-matrix, sz:

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ (11.17)

The first eigenvector in (11.17) corresponds to both spins in the ‘up’ position (both
parallel to the magnetic field), the second to ‘spin up; spin down,’ the third to ‘spin
down; spin up,’ and the fourth to ‘spin down; spin down.’

With this background, we can now write down the matrix representation of the
normalized spin-Hamiltonian (11.13):

H =

⎡

⎢⎢⎣

−2.8H0 − 1584.7 0 0 0
0 1584.7 −3169.4 0
0 −3169.4 1584.7 0
0 0 0 2.8H0 − 1584.7

⎤

⎥⎥⎦ (11.18)

The eigenspectrum of (11.18) is plotted as a function of H0 in Fig. 11.4. The
left-hand figure shows all four solutions, and the right-hand the bottom three
eigenvalues. The two parallel branches have a constant separation of 6338.7, which
is exactly 2Jexch, where Jexch is the exchange energy. It is important to note that
the transition (resonant) frequency between states 2 and 3 is the same between as
between 3 and 4, for all values of H0: ω023 = ω034 .

The eigenstates corresponding to the spectrum of Fig. 11.4 are, from the largest
to the smallest eigenvalue (in magnitude):
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(1) (2) (3) (4)

⎡

⎢⎢⎣

0.0
−0.707
+0.707

0.0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1.0
0.0
0.0
0.0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0.0
0.707
0.707

0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0.0
0.0
0.0
1.0

⎤

⎥⎥⎦
, (11.19)

where state 1 corresponds to the eigenvalue, 4754.1, in the left-hand part of
Fig. 11.4, and the other eigenvalues are listed in the right-hand part of the figure.

Clearly, state 2 corresponds to both spins being parallel to the static magnetic
field, because this gives the lowest energy level, whereas state 4 corresponds to
both spins being anti-parallel to the field. States 1 and 3 correspond to linear
combinations of spin 1 being parallel and spin 2 anti-parallel, and the converse.
The higher-energy state involves a sum and difference of the parallel-anti-parallel
combination, whereas the lower-energy state involves only the sum of two such
combinations. We’ll see this again in the three-electron calculation.

The transition matrix elements of the lowest three energy levels are
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Fig. 11.4 Eigenspectrum of spin-Hamiltonian with exchange interaction. Left: complete spec-
trum. Right: expanded version of bottom three eigenvalues
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Sx23 = u2 ·
(
S

(1)
x + S

(2)
x

)
· u3 = 0.707

Sx34 = u3 ·
(
S

(1)
x + S

(2)
x

)
· u4 = 0.707

Sy23 = u2 ·
(
S

(1)
y + S

(2)
y

)
· u3 = −j0.707

Sy34 = u3 ·
(
S

(1)
y + S

(2)
y

)
· u4 = −j0.707

Sz23 = u2 ·
(
S

(1)
z + S

(2)
z

)
· u3 = 0.0

Sz34 = u3 ·
(
S

(1)
z + S

(2)
z

)
· u4 = 0.0

, (11.20)

where the orthonormal eigenvectors, {ui}, are given in (11.19), and the spin oper-
ators are given in (11.16). These results indicate that one cannot induce transitions
by using z-directed AC magnetic fields, as we suspected, and that transitions are
equally likely with x- or y-directed AC fields (or with circularly polarized AC
fields).

When (11.20) is substituted into the expression, (11.5), for the absorption
coefficient and use is made of the fact that ω023 = ω034 = ω0 and τ23 = τ34 = τ ,
we get, after summing over the bottom three energy-states,

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E4/kT

) τ/h̄

1 + (ω0 − ω)2τ 2 . (11.21)

The response is as if the two coupled spins behave as a single spin-system transiting
from ‘spin-up’ (state 2) to ‘spin-down’ (state 4), which is what we would expect of
a two-level (spin-1/2) system.

For comparison, we write down the result for two non-interacting spin-1/2
particles:

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E3/kT

) τ/h̄

1 + (ω0 − ω)2τ 2
. (11.22)

Hence, the effect of the exchange interaction is to increase the density of spins in the
thermal term by eliminating the middle energy term, exp(−E3/kT ). Because there
is a greater differential in the energies than there was before, we have effectively
a greater population difference between the two energy states 2 and 3 that are
separated by h̄ω0. Clearly, the more interacting spins we have, the greater this
population difference becomes, and the greater the absorption spectrum becomes.
Because of these two effects, with something of the order of 105 spins interacting
through the exchange integral, the spectrum becomes significantly larger than in the
simple paramagnetic case, giving rise to the name ‘superparamagnetism.’ We’ll give
a further example of this next.

Three Spins We’ll extend the previous model to include three electrons interacting
through the exchange integral. The Hamiltonian now becomes
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H = −2.8H0

(
S(1)

z +S(2)
z +S(3)

z

)
−6338.7

(
S(1) · S(2)+S(1) · S(3)+S(2) · S(3)

)

(11.23)

where the various three-particle spin-matrices are obtained by taking three-fold left-
and right-direct products of the Pauli spin matrices, s, with the two-dimensional
identity matrix, I2:

S(1) = s ⊗ I2 ⊗ I2 S(2) = I2 ⊗ s ⊗ I2 S(3) = I2 ⊗ I2 ⊗ s . (11.24)

The results are:

S
(1)
x = 1

2

[
04 I4

I4 04

]
S

(2)
x =

[
S

(1)′
x 04

04 S
(1)′
x

]
S

(3)
x =

[
S

(2)′
x 04

04 S
(2)′
x

]

S
(1)
y = 1

2

[
04 −jI4

jI4 04

]
S

(2)
y =

[
S

(1)′
y 04

04 S
(1)′
y

]
S

(3)
y =

[
S

(2)′
y 04

04 S
(2)′
y

]

S
(1)
z = 1

2

[
I4 04

04 −I4

]
S

(2)
z =

[
S

(1)′
z 04

04 S
(1)′
z

]
S

(3)
z =

[
S

(2)′
z 04

04 S
(2)′
z

]

(11.25)

where the primed,’, submatrices refer to the corresponding 4×4 matrices in (11.16),
and I4, 04 are the four-dimensional identity and null-matrices, respectively.

Using the results of (11.25), we easily compute the dot-product matrices:

S(1) · S(2) = 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 2 0 0 0
0 0 0 −1 0 2 0 0
0 0 2 0 −1 0 0 0
0 0 0 2 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S(1) · S(3) = 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 −1 0 0 2 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 2 0
0 2 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 2 0 0 −1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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S(2) · S(3) = 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 −1 2 0 0 0 0 0
0 2 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 2 0
0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.26)

from which we get the final expression for the Hamiltonian of (11.23):

H = −2.8H0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

2
1

2
1

2
−1

2
1

2
−1

2
−1

2
−3

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−6338.7

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0 0 0
0 −1 2 0 2 0 0 0
0 2 −1 0 2 0 0 0
0 0 0 −1 0 2 2 0
0 2 2 0 −1 0 0 0
0 0 0 2 0 −1 2 0
0 0 0 2 0 2 −1 0
0 0 0 0 0 0 0 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.27)

The diagonal matrix in (11.27) is the projection onto the z−axis (the magnetic
field) of the combined system of particles. It’s eigenvectors are
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(3/2) (1/2) (1/2) (1/2) (−1/2) (−1/2) (−1/2) (−3/2)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(• • •) (• • ◦) (• ◦ •) (◦ • •) (• ◦ ◦) (◦ • ◦) (◦ ◦ •) (◦ ◦ ◦)

, (11.28)

where • denotes a spin-up state (parallel to the magnetic field), and ◦ denotes a
spin-down state.

The eigenspectrum of (11.27), plotted as a function of the static magnetic field,
is shown in Fig. 11.5. As is the case with the two-electron problem, the separation
between the lowest energy levels is constant and equal to 2.8H0 GHz where H0 is
in kGauss. This is identical to the result for a single electron with a spin of 1/2.

The eigenvectors corresponding to the eigenvalues of Fig. 11.5 are:
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Fig. 11.5 Eigenspectrum of spin-Hamiltonian with exchange interaction for three electrons. Left:
Spectrum of bottom four eigenvalues. Right: Spectrum of two largest (degenerate) eigenvalues.
The separation of the average value of each spectral cluster is 9508.2 = 3 × Jexch for all H0
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(1) (2) (3) (4) (5) (6) (7) (8)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.5774

0.5774

0.0

0.5774

0.0

0.0

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.5774

0.0

0.5774

0.5774

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.8165

−0.4082

0.0

−0.4082

0.0

0.0

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.7071

0.0

−0.7071

0.0

0.0

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.8165

0.0

−0.4082

−0.4082

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.0

0.0

0.7071

−0.7071

0.0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11.29)
where we note that vectors 5 and 6 correspond to the same eigenvalue, as do 7 and 8.

When we use (11.25) and (11.29), we compute the following transition matrix
elements for the lowest four levels:

Sx12 = 3 × 0.5774

2
Sx23 = 3 × 0.6667

2
Sx34 = 3 × 0.5774

2

Sy12 = −j3 × 0.5774

2
Sy23 = −j3 × 0.6667

2
Sy34 = −j3 × 0.5774

2

Sz12 = 0 Sz23 = 0 Sz34 = 0

(11.30)

The absorption coefficient for this system is obtained by substituting (11.30) into
the general expression, (11.5):

A(ω)=μ0γ
2

4Z

[
3
(
e−E1/kT −e−E4/kT

)
+

(
e−E2/kT −e−E3/kT

)] τ/h̄

1+(ω0−ω)2τ 2 .

(11.31)

Consider the left-parenthetical term, 3
(
e−E1/kT − e−E4/kT

) = 3e−E1/kT

(
1 − e−(E4−E1)/kT

)
, of (11.31), where E4−E1 = 3h̄ω0. Under the usual conditions

of room (or body) temperature, and a magnetic field of a few kGauss, the exponent,
(E4 − E1)/kT is of the order of 10−3, which means that the term in parenthesis is
approximately equal to 3 × h̄ω0/kT , so that the absorption coefficient in (11.31) is
approximately equal to

A(ω) ≈ 9μ0γ
2

4Z
e−E1/kT h̄ω0

kT

τ/h̄

1 + (ω0 − ω)2τ 2

= μ0g
2h2(3β)2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (11.32)

where β is the Bohr magneton (the magnetic dipole of a single spin). Therefore, we
can conclude from (11.32) that the exchange interaction causes individual spins
to align themselves parallel to each other, thereby producing an atomic system
of spin-1/2, but with an equivalent dipole three times that of a single spin-1/2
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particle. As indicated in (11.31), the effect of the AC field is to cause this single
macrospin system to transit from spin-up to spin-down, with all individual spins
remaining parallel to each other. In contrast, three noninteracting spins would have
an equivalent absorption coefficient of

A(ω) = 3μ0γ
2

4Z

(
e−E1/kT − e−E2/kT

) τ/h̄

1 + (ω0 − ω)2τ 2

≈ 3μ0γ
2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (11.33)

which is much smaller than (11.32). We can imagine what happens when 105

particles interact under exchange effects. This confirms, once again, that the
exchange interaction associated with ferromagnetic single-domain particles gives
rise to the notion of ‘superparamagnetism.’

This model of superparamagnetism results from the large value of Jexch, because
that isolates the upper energy levels of Figs. 11.4 and 11.5 from the lower levels
for all (reasonable) values of H0. The upper energy levels may be degenerate, as in
Fig. 11.5 for the three-spin problem, but the lower levels are always nondegenerate,
and have the same number of equal intervals as the number of spins. Furthermore,
the large value of the exchange energy ensures that the upper levels will be virtually
unpopulated compared to the lower levels. These facts are crucial to the theory.

We can gain further insight into the physics of the problem by considering
the combined spin operator S = S(1) + S(2) + S(3), where the matrices are defined
in (11.24) and (11.25). It is straightforward to form S2, which corresponds to the
length-squared of the spin of the composite system of three spin-1/2 particles. The
eigenvalues of S2 give the squares of the lengths when the system is in its allowed
states. There are two eigenvalues, 3.750 and 0.750, each four-fold degenerate. Thus,
there are two allowed lengths of the composite spin system, 3.7501/2 and 0.7501/2.
The first corresponds to all three spins being parallel to each other, and the second
to two spins being parallel and the third antiparallel. The ‘length’ of a spin operator
is [S(S + 1)]1/2, so in the first case S = 3/2 and in the second S = 1/2. Clearly,
the first case corresponds to three spin-1/2 particles being aligned in parallel to each
other, and the second to two aligned in parallel and the third oppositely aligned,
yielding an effective single spin-1/2 particle.

The eigenvectors of S2 are precisely those shown in (11.29), with the first four
corresponding to the eigenvalue, 3.75, and the last four to the eigenvalue 0.75. In
the first case, as we stated above, all spins are aligned with each other, yielding
a preferred energy state under the effect of the exchange interaction, whereas the
second case corresponds to one particle being oppositely aligned to the other two.
This results in a significant energy increase due to the large exchange interaction,
and this is exactly what we saw in Fig. 11.5. We can further interpret the left-
hand spectrum in Fig. 11.5 as being due to the composite system of three parallel
spins oriented so that the net component along the magnetic field is maximum
(level 1), 1/2 maximum (level 2), 1/2 maximum, but oriented opposite to the field
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(level 3), and maximum orientation opposite to the field (level 4). This supports our
earlier conclusion that under the effects of the exchange interaction the three spins
behave as a single large moment, as far as the transitions of the lower energies are
concerned.

For the two-spin problem, the eigenvalues of S2 are 2.000, 2.000, 2.000, and
0.000. The eigenvectors corresponding to the first (degenerate) eigenvalue of 2.000
are the second through fourth eigenvectors listed in (11.19), and the eigenvector
corresponding to the eigenvalue 0.000 is the first eigenvector listed in (11.19).
The interpretation of the two-spin system follows that of the three-spin system; an
eigenvalue of 2.000 means that the two spins are parallel to each other in each of the
states shown in the right-hand of Fig. 11.4, whereas the zero eigenvalue means that
the two spins are oppositely aligned, thereby cancelling each other, resulting in a
zero spin, and no energy variation as H0 is varied in the top curve of the left-hand of
Fig. 11.4. The middle curve on the right-hand part of the figure corresponds to the
situation in which the ‘macrospin’ (both spins aligned with each other) is exactly
orthogonal to H0, meaning that there is no energy variation as H0 is varied. This
explains why states 1 and 3 are constant with respect to H0. Figure 11.6 summarizes
the physics of the problem for the two- and three-spin-1/2 systems.

11.4 Fe3+ and Hund’s Rules

The models that we have considered so far for superparamagnetism comprised two
and three independent electrons, coupled through an exchange interaction only. Real
systems contain atoms or ions, which comprise collections of electrons, but whose
electrons are not independent. We’ll give an example of an important ion, triply-
ionized iron [97].

The five unpaired electrons in Fe3+ are each in the 3d state. This means that
the ion itself is in an orbital S state, i.e., L = 0, where L is the orbital angular
momentum quantum number. To prove this we use Hund’s rules together with the
Pauli exclusion principle. Hund’s rules are:

1. Assign maximum S (spin) consistent with the Pauli principle.
2. Assign maximum L (orbital angular momentum) consistent with the S. L is

defined to be the maximum value of the sum of the z-components of orbital
angular momentum for the group of electrons.

Thus, each electron has the same energy quantum number, 3, the same orbital
angular momentum quantum number, 2 (corresponding to the d-state), and, if we
are to assign maximum spin to the electron group, the same spin quantum number,
1/2. If there is to be no violation of the Pauli principle, therefore, each electron must
have a different quantum number, m, corresponding to the z-component of orbital
angular momentum. Because l = 2 for a d-state, we have m = 2, 1, 0, −1, −2.
Thus, electron number 1 has m = 2, number 2 has m = 1, etc., to number 5 having
m = −2. The total M = m1 +m2 +m3 +m4 +m5 = 0. But since any arrangement
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Fig. 11.6 Illustrating the energy levels and states corresponding to two spin-1/2 particles (left)
and three spin-1/2 particles (right) in the presence of a magnetic field, H0. The labeling of the
energy eigenstates (E) corresponds to Fig. 11.4 for the two-particle system, and to Fig. 11.5 for the
three-particle system. S2 labels the eigenvalues of the S2 operator for each of the systems

of the five electrons among the five m-states always yields M = 0, we conclude that
L = 0 (recall that L = Mmax). Thus, Fe3+ is in an S-state (L = 0) with a spin equal
to 5/2. The fact that L = 0 means that the orbital angular momentum is ‘quenched,’
and cannot contribute to magnetic effects of the ion. Spin is the sole contributor
of magnetic effects, and these effects are manifest through the spin-Hamiltonian
(Figs. 11.7, 11.8, and 11.9).

The Pauli spin-matrices for a spin-5/2 system are the 6 × 6 matrices:

σx = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
√

5 0 0 0 0√
5 0

√
8 0 0 0

0
√

8 0 3 0 0
0 0 3 0

√
8 0

0 0 0
√

8 0
√

5
0 0 0 0

√
5 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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σy = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 −j
√

5 0 0 0 0
j
√

5 0 −j
√

8 0 0 0
0 j

√
8 0 −j3 0 0

0 0 j3 0 −j
√

8 0
0 0 0 j

√
8 0 −j

√
5

0 0 0 0 j
√

5 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

σz = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.34)

The direct-product spin-matrices for the two-ion system are given by S(1) =
σ ⊗ I6, S(2) = I6 ⊗ σ , where I6 is the six-dimensional identity matrix. Spelled out,
these are:

S(1)
x = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

06
√

5I6 06 06 06 06√
5I6 06

√
8I6 06 06 06

06
√

8I6 06 3 06 06

06 06 3 06
√

8I6 06

06 06 06
√

8I6 06
√

5I6

06 06 06 06
√

5I6 06

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

S(1)
y = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

06 −j
√

5I6 06 06 06 06

j
√

5I6 06 −j
√

8I6 06 06 06

06 j
√

8I6 06 −j3I6 06 06

06 06 j3I6 06 −j
√

8I6 06

06 06 06 j
√

8I6 06 −j
√

5I6

06 06 06 06 j
√

5I6 06

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

S(1)
z = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

5I6 06 06 06 06 06

06 3I6 06 06 06 06

06 06 1I6 06 06 06

06 06 06 −1I6 06 06

06 06 06 06 −3I6 06

06 06 06 06 06 −5I6

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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S(2)
x = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σx 06 06 06 06 06

06 σx 06 06 06 06

06 06 σx 06 06 06

06 06 06 σx 06 06

06 06 06 06 σx 06

06 06 06 06 06 σx

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

S(2)
y = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σy 06 06 06 06 06

06 σy 06 06 06 06

06 06 σy 06 06 06

06 06 06 σy 06 06

06 06 06 06 σy 06

06 06 06 06 06 σy

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

S(2)
z = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σz 06 06 06 06 06

06 σz 06 06 06 06

06 06 σz 06 06 06

06 06 06 σz 06 06

06 06 06 06 σz 06

06 06 06 06 06 σz

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (11.35)

11.5 Crystalline Anisotropy and TiO2

Now we need to include the effects of crystalline anisotropy. The only spin-
Hamiltonian that we have for the interaction of a crystal field with Fe3+ is for
TiO2, and is given in (11.6). When we add the D-term of the crystal field to
the spin-Hamiltonian for the Zeeman and exchange interactions, and compute the
eigenvalues, we get the results shown in Fig. 11.10 for the lowest eleven frequencies,
the ‘A-section’ of Fig. 11.9. The spectrum of the other five sections of Fig. 11.9
are shown in Figs. 11.11, 11.12, 11.13, 11.14, and 11.15. Clearly, the spectrum is
altered significantly by the crystal-field interaction, and that is why this interaction
is so important to us. In order for us to ‘tune’ the system to the proper frequency of
operation by adjusting the external magnetic field, we must know the nature of the
environment of the iron ion, and how this environment reacts with the ion.

In the example just computed, we see that the lowest energy levels, 1 and 2 in the
A-spectrum, have a small separation as H0 is varied. The frequency interval, ω012,
varies between 100 MHz and 1.5 GHz, and the transition-matrix element, Sy12, is
relatively close to ±j4.8 over this range. This is a considerably larger value of the
transition-matrix element than those given in (11.10) for a single, noninteracting
spin, and, once again, demonstrates the effect of the exchange interaction.
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Fig. 11.7 Energy-levels (in GHz) for the system comprising two Fe(3+) ions connected through
the exchange interaction Jexch. The numbers just inside the vertical line indicate the number of
energy levels associated with that branch of the spectrum; the spacing between consecutive pairs
of levels is equal to 2.8H0, where H0 is in kGauss. The letters, A-F, correspond to the physical
arrangement of the ten electrons in the coupled system, as shown in Table 11.1. S2 are the
eigenvalues of the magnitude-squared spin-operator, S2, and the β-values indicate the number of
Bohr magnetons in the various arrangements of parallel spins

Table 11.1 Spin
arrangements for Fig. 11.7.
The bullets, •, correspond to
spins that are parallel to the
z−axis, and the circles, ◦, to
spins that are anti-parallel

A • • • • • • • • •• S = 5 : 2S + 1 = 11

B • • • • • • • • •◦ S = 4 : 2S + 1 = 9

C • • • • • • • • ◦◦ S = 3 : 2S + 1 = 7

D • • • • • • • ◦ ◦◦ S = 2 : 2S + 1 = 5

E • • • • • • ◦ ◦ ◦◦ S = 1 : 2S + 1 = 3

F • • • • • ◦ ◦ ◦ ◦◦ S = 0 : 2S + 1 = 1

The eigenvalues (in GHz) corresponding to the lowest eleven energy levels (the
‘A-section’ spectrum of Fig. 11.10) are listed here in the order, E1 to E11, left-to-
right, for H0 = 1 kGauss:

h = 1.000000000000000
A-section spectrum
-39662.7967 -39661.1857 -39580.6189 -39558.0700 -39525.8847 -39453.1469
-39436.4784 -39306.8435 -39284.5805 -39098.4235 -39070.4491
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Fig. 11.8 Positions of the
10-spin magnetic dipole that
produce the ‘A-spectrum’ of
Fig. 11.7. The numbering of
the energy levels, E1 · · ·E11,
corresponds to that of
Fig. 11.9

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

The resonant frequencies (in GHz) associated with transitions between these
eigenvalues are:

h = 1.000000000000000
A-section resonant frequencies
1.6109 82.1777 104.7267 136.9120 209.6497 226.3183 355.9532
378.2162 564.3732 592.3476

80.5668 103.1157 135.3010 208.0388 224.7073 354.3423 376.6052
562.7622 590.7366

22.5489 54.7342 127.4720 144.1405 273.7755 296.0384 482.1954 510.1698
32.1853 104.9231 121.5916 251.2266 273.4895 459.6465 487.6209
72.7377 89.4063 219.0412 241.3042 427.4612 455.4356
16.6685 146.3035 168.5665 354.7234 382.6978

129.6350 151.8979 338.0549 366.0293
22.2630 208.4200 236.3943

186.1570 214.1314
27.9744
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Fig. 11.9 Variation of A-section spectrum of Figs. 11.7 and 11.8 as a function of the magnetic
field

The transition-matrix elements, Sxij
, Syij

, Szij
, with i < j , for the lowest eleven

energy levels (the ‘A-spectrum’) are shown next for H0 = 1 kGauss. The Syij
are

complex–in this case pure imaginaries.

h = 1.000000000000000
transx
0.0340 2.3641 0.0000 0.0000 -0.3188 -0.3458 0.0000 0.0000 0.0104 0.0083
0.0000 2.2114 -0.2267 0.0000 0.0000 -0.0881 0.0708 0.0000 0.0000
0.4898 3.4479 0.0000 0.0000 -0.2023 -0.1794 0.0000 0.0000
0.0000 2.3182 -1.2585 0.0000 0.0000 -0.0475 0.0315
1.5273 2.5256 0.0000 0.0000 -0.0396 -0.0480
0.0000 2.3001 -0.2578 0.0000 0.0000
0.2658 2.2929 0.0000 0.0000
0.0000 1.6855 -0.0044
0.0044 1.6823
0.0000
transy
0.0000 4.8024 0.0000 -0.0927 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3642
0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0096 0.0000 -0.0077
0.0000 0.0000 0.0000 0.1411 0.0000 0.8497 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0777 0.0000 -0.0633 0.0000 0.0000 0.0000 0.0000
0.0000 3.2101 0.0000 -0.5124 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1786
0.0000 0.1571 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.3829 0.0000 1.2520 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0435 0.0000 -0.0289



11.5 Crystalline Anisotropy and TiO2 307

-39900

-39800

-39700

-39600

-39500

-39400

-39300

-39200

-39100

0 2 4 6 8 10

F
re

qu
en

cy
 (

G
H

z)

H (kgauss)

Spectrum for Exchange Interaction

1
2
3
4
5
6
7
8
9

10
11

Fig. 11.10 Modification of the A-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

0.0000 1.5732 0.0000 -1.6175 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0360
0.0000 0.0438
0.0000 0.0000 0.0000 1.9029 0.0000 0.2246 0.0000 0.0000 0.0000 0.0000
0.0000 0.2310 0.0000 -1.9156 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.4797 0.0000 0.0039
0.0000 0.0039 0.0000 -1.4829
0.0000 0.0000
transz
0.0000 0.0000 -0.9531 0.1054 0.0000 0.0000 0.0335 -0.0271 0.0000 0.0000
1.0827 0.0000 0.0000 -0.1526 -0.1637 0.0000 0.0000 0.0038 0.0030
0.0000 0.0000 -0.5122 0.3721 0.0000 0.0000 0.0089 -0.0076
1.7013 0.0000 0.0000 -0.1711 -0.1161 0.0000 0.0000
0.0000 0.0000 -0.1487 0.1827 0.0000 0.0000
0.6668 0.0000 0.0000 -0.0964 -0.0108
0.0000 0.0000 -0.0114 0.0935
0.0208 0.0000 0.0000
0.0000 0.0000
0.0002

Let’s use these results to calculate the peak value of the absorption coefficient
for those transitions that occur with a frequency less than 50 GHz. According to the
table of ‘A-section resonant frequencies,’ there are six such transitions: 12, 34, 45,
67, 89, 1011. According to (11.5), the peak value of the absorption coefficient is
given by
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Fig. 11.11 Modification of the B-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

A(ω0jk
) ∝ |Skj |2

(
N

(T )
j − N

(T )
k

)
τjk/h̄

= |Skj |2Nj

(
1 − e−(Ek−Ej )/kT

)
τjk/h̄

≈ |Skj |2Nj

(
Ek − Ej

)

kT

τjk

h̄

= |Skj |2Nj

h̄ω0jk

kT

τjk

h̄

= |Skj |2Nj

ω0jk
τjk

kT
. (11.36)

We will assume that the temperature is 98.6 ◦F, which is 310 ◦K, so that kT =
4.2811×10−21 J. To express this in terms of frequency, divide by Planck’s constant,
6.626 × 10−34 J, and get 6.461 × 1012Hz = 6461.1 GHz. Since this number is
much greater than the resonant frequencies, we are permitted to carry out the
approximation in the third line of (11.36). The transition matrix elements in (11.36)
include Sx, Sy, and Sz (transx, transy, transz, respectively), and from here on we
will assume that the relaxation frequency, τjk , is fixed for all transitions.
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Fig. 11.12 Modification of the C-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

The following table lists important data for the calculations:

Transition ω0j (GHz) Transx Transy Transz Nj/N1 ω0j /ω01

12 1.6109 0.0340 j4.8024 0.0 1 1

34 22.5489 0.4898 j3.2101 0.0 0.987 14.0

45 32.1853 0.0 0.0 1.7013 0.984 19.98

67 16.6685 0.0 0.0 0.6668 0.968 10.35

89 22.2630 0.0 0.0 0.0208 0.946 13.82

10,11 27.9744 0.0 0.0 0.0002 0.916 17.37

It turns out that the first three absorption lines are much stronger than the
others, and these are plotted in Fig. 11.16. This is an example of how we can
‘tune’ our system to achieve a design feature once we have the physics in the
form of a mathematical model. Even though the two higher-frequency lines are
stronger, practical considerations would lead us to use the response at 1.6109 GHz
for noninvasive probing for lesions.
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Fig. 11.13 Modification of the D-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

11.5.1 Application to a ‘Magnetic Lesion’

Consider the model shown in Fig. 11.17, which corresponds to Fig. 10.8, except that
the background is tissue with a conductivity that is the average of that found in the
body, and the lesion is nonconducting, but is magnetically permeable. If we assume
that the same coil is used as in the model of Fig. 10.8, and that the lesion is much
deeper, being 5 cm beneath the surface, and that the coil is excited at 1.6 GHz, which
corresponds to the lowest transition frequency described above, then the response
of the probe to the lesion, whose permeability (at 1.6 GHz) is μ = 2, 10, and 100,
is shown in Fig. 11.18.

11.6 Static Interaction Energy of Two Magnetic Moments

The spin-Hamiltonian that we have worked with so far includes only the Zeeman
term and the exchange interaction. There are other terms that reflect certain
physical processes that need to be included, as well. One such term corresponds
to the static interaction energy of two magnetic moments [72, p. 412]: H ′ =
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Fig. 11.14 Modification of the E-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

μ0

4πr3

[
m1 · m2 − 3

(m1 · r) (m2 · r)
r2

]
, where m1 and m2 are the magnetic moments

of the dipoles, and r is the vector separation between the two dipoles. This
energy term manifests itself in the following spin-Hamiltonian for three interacting
electrons:

Hdd = μ0

4π
4β2

0

[
S1 · S2

r3
12

+ S1 · S3

r3
13

+ S2 · S3

r3
23

−3
(r12 · S1) (r12 · S2)

r5
12

− 3
(r13 · S1) (r13 · S3)

r5
13

− 3
(r23 · S2) (r23 · S3)

r5
23

]
,(11.37)

where β0 = 9.2731 × 10−24 amp − meters2 is the Bohr magneton, and the various
vector spin-matrices have been defined earlier. If we assume that the spins lie at the
vertices of an equilateral triangle of side 6 × 10−10m, as in Fig. 11.19, then we can
expand (11.37) to get

Hdd = 0.24
[
S1 · S2 + S1 · S3 + S2 · S3 − 3S(1)

x S(2)
x − 0.75

(
S(1)

x S(3)
x + S(2)

x S(3)
x

)
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Fig. 11.15 Modification of the F-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)
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Fig. 11.16 Relative absorption peaks versus frequency
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Tissue: σ=0.5
Lesion
Nonconducting, PermeableS/m

Coil

Fig. 11.17 Model of an eddy-current probe scanned past a nonconducting, magnetically perme-
able lesion embedded in tissue of an averaged conductivity
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Fig. 11.18 Response of probe to a lesion whose permeability (at 1.6 GHz) is μ = 2, 10, and 100
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y S(3)
y

)]
, (11.38)

where the units of Hdd in (11.38) are in GHz. This matrix operator is added to that
in (11.27) to get the overall spin-Hamiltonian for Zeeman + Exchange + Dipolar
effects.
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Fig. 11.19 Illustrating three
magnetic dipoles, labeled as
spin operators, S, situated on
the vertices of an equilateral
triangle, for the purpose of
computing the dipole-dipole
interaction
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