
Chapter 1
A Bilinear Conjugate-Gradient Inversion
Algorithm

1.1 Optimization via Nonlinear Least-Squares

Standard methods for minimizing a real-valued function of several variables can be
divided into two general classes: those that require second derivative information,
usually referred to as Newton-type methods, and those requiring only first derivative
information, referred to as gradient methods. There are several excellent texts which,
in addition to discussing many of these methods in detail, also give suggestions
on when to use certain techniques. See, for example, the texts by Fletcher[36],
Hestenes[52] or Luenberger[64].

In this chapter, we concentrate on gradient techniques for minimizing Φ, the
norm of the residuals, for basically two reasons. First, the Töplitz-Hankel structure
of the operators in the original volume-integral equation allow us to use fast Fourier
transform techniques when doing matrix multiplications in solving the forward
problem, and secondly, the bilinearity of the entire system allows us to find the
gradient of Φ in closed form, as well as performing exact line searches when
minimizing Φ in a particular direction. We first presented this method in [102–
104]; it is known in the recent literature as the ‘contrast source inversion method’
[1, 10, 131].

1.2 A Bilinear Conjugate-Gradient Inversion Algorithm
Using Volume-Integrals

Bilinear Inversion Algorithm Consider a T/R configuration, in which a fixed
transmitting coil excites the anomaly, which is assumed to have a conductivity
vector, σ , and a receive coil scans the anomaly at positions, i = 1, . . . , Nv , where
Nv is the number of ‘views’. Conversely, we could assume a single transmitting coil,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. A. Sabbagh et al., Advanced Electromagnetic Models for Materials
Characterization and Nondestructive Evaluation, Scientific Computation,
https://doi.org/10.1007/978-3-030-67956-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67956-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-67956-9_1


4 1 A Bilinear Conjugate-Gradient Inversion Algorithm

and an array of Nv receive coils occupying the positions of the original scanned
receive coil. Furthermore, we could actually scan fewer than Nv positions, and
then interpolate to complete the Nv data points. (See [107] and [14] for further
discussions of multiview and multifrequency reconstruction methods.)

In any case, the transmitter generates an anomalous scattering current,
J(x), J(y), J(z), which is computed by VIC-3D® and the receive coil(s) produces
an incident field, E(R)

0x (i), E(R)
0y (i), E(R)

0z (i). These combine to produce the change-
in-transfer impedance due to the anomaly,

Z(i)(J) = E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) , (1.1)

that is also computed directly byVIC-3D®.1 Note that, unlike our NLSE algorithm,
we do not consider J(x), J(y), J(z) to be secondary variables that are dependent upon
the primary unknown, σ . Rather, the current-vectors along with the cell resistivities,
ρ, are the primary unknowns.

To determine the model equations for the inversion algorithm, return to the fun-
damental volume-integral electric equation that VIC-3D® solves for the anomalous
currents:

⎡
⎣
E(0x)

E(0y)

E(0z)

⎤
⎦ =

⎡
⎣
Q(x)(ρ) 0 0

0 Q(y)(ρ) 0
0 0 Q(z)(ρ)

⎤
⎦

⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦

+
⎡
⎣
G(xx) G(xy) G(xz)

G(yx) G(yy) G(yz)

G(zx) G(zy) G(zz)

⎤
⎦

⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦ . (1.2)

The incident field on the left-hand side of (1.2) is due to the transmitting coil. The
total electric-field moments are given by

E(x)(ρ, J(x)) = Q(x)(ρ) · J(x)

E(y)(ρ, J(y)) = Q(y)(ρ) · J(y)

E(z)(ρ, J(z)) = Q(z)(ρ) · J(z) , (1.3)

so that when this is substituted back into (1.2), we get the basic constraint equation
between the primary variables, ρ and J:

1 We are considering only ‘electric-electric’ interactions in this chapter. We assume that all hosts
and flaws are nonmagnetic.



1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals 5

⎡
⎣
E(0x)

E(0y)

E(0z)

⎤
⎦ =

⎡
⎣
E(x)(ρ, J(x))

E(y)(ρ, J(y))

E(z)(ρ, J(z))

⎤
⎦ +

⎡
⎣
G(xx) G(xy) G(xz)

G(yx) G(yy) G(yz)

G(zx) G(zy) G(zz)

⎤
⎦

⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦ . (1.4)

Thus, the two constraint equations that define the inverse model are the linear
system, (1.1), and bilinear system, (1.4). A bilinear system is linear in each variable,
when the other is held constant. In this case, the variables are ρ and J(x), J(y), J(z).

Recall that the tri-diagonal matrices are symmetric, and have the following non-
zero entries:

Q
(x)
kK(ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if K = k − 1
2(ρklm + ρk+1,lm) if K = k

ρk+1,lm if K = k + 1

Q
(y)
lL (ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if L = l − 1
2(ρklm + ρk,l+1,m) if L = l

ρk,l+1,m if L = l + 1

Q
(z)
mM(ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if M = m − 1
2(ρklm + ρklm+1) if M = m

ρklm+1 if M = m + 1

(1.5)

The first entry in each of these matrices is the lower diagonal, the second the main
diagonal, and the third the upper diagonal. Recall that the resistivity of the klmth
cell is the reciprocal of the conductivity, ρklm = 1/σklm. Note that if cell klm is
filled with host material, then ρklm = ∞. This fact could be useful in allowing ρklm

to act like a penalty term, forcing the associated current expansion coefficient, Jklm,
to zero.

Now,

E
(x)
klm =

∑
K

Q
(x)
kKJ

(x)
Klm

E
(y)
klm =

∑
L

Q
(y)
lL J

(y)
kLm

E
(z)
klm =

∑
M

Q
(z)
mMJ

(z)
klM , (1.6)

is the form that is useful when singling out the currents at each cell. When we want
to single out the resistivity at each cell, we simply rearrange (1.6):

E
(x)
klm =

∑
K

P
(x)
kK ρKlm



6 1 A Bilinear Conjugate-Gradient Inversion Algorithm

E
(y)
klm =

∑
L

P
(y)
lL ρkLm

E
(z)
klm =

∑
M

P
(z)
mMρklM , (1.7)

where the matrix elements follow from (1.5) and (1.6)

P
(x)
kK (J(x)) = δxδyδz

6

{
J

(x)
k−1lm + 2J (x)

klm if K = k

2J (x)
klm + J

(x)
k+1lm if K = k + 1

P
(y)
lL (J(y)) = δxδyδz

6

{
J

(y)

kl−1m + 2J (y)
klm if L = l

2J (y)
klm + J

(y)

kl+1m if L = l + 1

P
(z)
mM(J(z)) = δxδyδz

6

{
J

(z)
klm−1 + 2J (z)

klm if M = m

2J (z)
klm + J

(z)
klm+1 if M = m + 1

(1.8)

One approach to solving the system, (1.1) and (1.4), has been to use a linear
(‘Born’) approximation, which means that the electric field within the flawed region
is assumed to be the same as the electric field if the flaw were not present, namely
the incident electric field. Thus, one would write J = σE ≈ σE0, and then take
moments of this equation. Substituting the resulting expressions for J(x,y,z)

klm into
(1.1) will produce a linear system for the unknown conductivities, σklm, that can be
solved in a number of ways. See [105] for an example of this approach, in which
the linear system is solved using the algebraic reconstruction technique (ART), and
[24, 50, 51], as well as [111, pp. 282–285], for details on ART.

This approach, therefore, has the physical significance of ignoring the secondary
sources produced by multiple scattering within the flaw. From a mathematical
viewpoint, the second term of (1.4) (with the G matrices) is ignored. While
linearization is occasionally accurate, it is not as general as the main subject of this
chapter, bilinear conjugate-gradients. See [147] for a further discussion of the Born
approximation, and [14] for an application of the Born approximation to solve a
scattering problem of a three-dimensional flaw embedded in anisotropic composite
materials.

Bilinear Conjugate-Gradients We use nonlinear conjugate-gradients to minimize
the functional formed by the sum of squares of the residuals comprising (1.1) and
(1.4):

Φ(ρ, J) = 1

2

{
‖E(R)

0x · J(x) + E(R)
0y · J(y) + E(R)

0z · J(z) − Zmeas‖2

+‖E(x)(ρ, J(x)) + G(xx) · J(x) + G(xy) · J(y) + G(xz) · J(z) − E(0x)‖2
+‖E(y)(ρ, J(y)) + G(yx) · J(x) + G(yy) · J(y) + G(yz) · J(z) − E(0y)‖2



1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals 7

+‖E(z)(ρ, J(z)) + G(zx) · J(x) + G(zy) · J(y) + G(zz) · J(z) − E(0z)‖2
}

= 1

2

{
‖A (R)(J) − Zmeas‖2

+‖A (x)(ρ, J)−E(0x)‖2+‖A (y)(ρ, J)−E(0y)‖2+‖A (z)(ρ, J)−E(0z)‖2
}

= Φ(R)(J)+Φ(x)(ρ, J)+Φ(y)(ρ, J)+Φ(z)(ρ, J). (1.9)

Now let’s say a few words about the vector-matrix structure of these functionals.
As shown in (1.1), A (R) −Zmeas is an Nv × 1-vector, whose components are given
by (1.1). This suggests that we should think of E(R)

0x , E(R)
0y , E(R)

0z , as Nv × Nc-

dimensional matrices, E
(R)
0x(i,klm), E

(R)
0y(i,klm), E

(R)
0z(i,klm), i = 1, . . . , Nv, klm =

1, . . . , Nc, where Nc is the number of cells in the problem. Then, we have

Φ(R)(J) = 1

2
‖A (R)(J) − Zmeas‖2

= 1

2

Nv∑
i=1

|A (R)
i (J) − Zmeas(i)|2

= 1

2

Nv∑
i=1

(
A (R)

i (J) − Zmeas(i)
) (

A (R)
i (J) − Zmeas(i)

)∗

= 1

2

Nv∑
i=1

(
E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) − Zmeas(i)

)

(
E(R)
0x (i) · J(x)+E(R)

0y (i) · J(y)+E(R)
0z (i) · J(z)−Zmeas(i)

)∗
, (1.10)

where ∗ denotes the complex-conjugate, and the vector dot-product in the last
expression implies a sum over the cell indices, klm.

It is a straightforward calculation, using the final form of (1.10), to show that the
gradient of Φ(R)(J) with respect to its primary variables, J (x)

klm, J
(y)
klm, and J

(z)
klm is

∂Φ(R)

∂J
(x)
klm

=
∑

i

E
(R)H
0x(klm,i)

(
E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) − Zmeas(i)

)

∂Φ(R)

∂J
(y)
klm

=
∑

i

E
(R)H
0y(klm,i)

(
E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) − Zmeas(i)

)

∂Φ(R)

∂J
(z)
klm

=
∑

i

E
(R)H
0z(klm,i)

(
E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) − Zmeas(i)

)
,

(1.11)



8 1 A Bilinear Conjugate-Gradient Inversion Algorithm

where the superscript, H , on a matrix denotes the Hermitian of that matrix, namely
the complex-conjugate of the transpose of the matrix. The term in parentheses is the
ith component of the residual-vector, RESID(R).

The gradients of Φ(x), Φ(y), and Φ(z) with respect to J(x), J(y), and J(z) are given
by:

∂Φ(x)

∂J
(x)
klm

=
∑

KLM

(
Q

(x)T
klm,KLM + G

(xx)H
klm,KLM

)
(RESID(X))KLM

∂Φ(x)

∂J
(y)
klm

=
∑

KLM

G
(xy)H
klm,KLM (RESID(X))KLM

∂Φ(x)

∂J
(z)
klm

=
∑

KLM

G
(xz)H
klm,KLM (RESID(X))KLM

∂Φ(y)

∂J
(x)
klm

=
∑

KLM

G
(yx)H
klm,KLM (RESID(Y ))KLM

∂Φ(y)

∂J
(y)
klm

=
∑

KLM

(
Q

(y)T
klm,KLM + G

(yy)H
klm,KLM

)
(RESID(Y ))KLM

∂Φ(y)

∂J
(z)
klm

=
∑

KLM

G
(yz)H
klm,KLM (RESID(Y ))KLM

∂Φ(z)

∂J
(x)
klm

=
∑

KLM

G
(zx)H
klm,KLM (RESID(Z))KLM

∂Φ(z)

∂J
(y)
klm

=
∑

KLM

G
(zy)H
klm,KLM (RESID(Z))KLM

∂Φ(z)

∂J
(z)
klm

=
∑

KLM

(
Q

(z)T
klm,KLM + G

(zz)H
klm,KLM

)
(RESID(Z))KLM , (1.12)

where

RESID(X) = E(x)(ρ, J(x))+Gxx · J(x)+G(xy) · J(y)+G(xz) · J(z)−E(0x)

RESID(Y ) = E(y)(ρ, J(y))+Gyx · J(x)+G(yy) · J(y)+G(yz) · J(z)−E(0y)

RESID(Z) = E(z)(ρ, J(z))+Gzx · J(x)+G(zy) · J(y)+G(zz) · J(z)−E(0z) . (1.13)

Note We use the notation for the gradient of a real function with respect to a

complex variable to mean:
∂Φ

∂J
= ∂Φ

∂R
+ j

∂Φ

∂I
, where R = �J and I = �J .



1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals 9

The final gradients are those of Φ(x), Φ(y), and Φ(z) with respect to ρ:

∂Φ(x)

∂ρklm

= �
∑

KLM

P
(x)H
klm,KLM (RESID(X))KLM

∂Φ(y)

∂ρklm

= �
∑

KLM

P
(y)H
klm,KLM (RESID(Y ))KLM

∂Φ(z)

∂ρklm

= �
∑

KLM

P
(z)H
klm,KLM (RESID(Z))KLM . (1.14)

Remember that the P -matrices that are defined in (1.7) and (1.8) are complex,
because they are explicit functions of the complex currents.

The gradient of Φ(ρ, J) is the sum of the various sub-gradients:

∂Φ

∂J
(x)
klm

= ∂Φ(R)

∂J
(x)
klm

+ ∂Φ(x)

∂J
(x)
klm

+ ∂Φ(y)

∂J
(x)
klm

+ ∂Φ(z)

∂J
(x)
klm

∂Φ

∂J
(y)
klm

= ∂Φ(R)

∂J
(y)
klm

+ ∂Φ(x)

∂J
(y)
klm

+ ∂Φ(y)

∂J
(y)
klm

+ ∂Φ(z)

∂J
(y)
klm

∂Φ

∂J
(z)
klm

= ∂Φ(R)

∂J
(z)
klm

+ ∂Φ(x)

∂J
(z)
klm

+ ∂Φ(y)

∂J
(z)
klm

+ ∂Φ(z)

∂J
(z)
klm

∂Φ

∂ρklm

= ∂Φ(x)

∂ρklm

+ ∂Φ(y)

∂ρklm

+ ∂Φ(z)

∂ρklm

. (1.15)

Eventually we will need to minimize Φ along the line (ρ, J(x), J(y), J(z)) +
α(u, v(x), v(y), v(z)) in function-space. α is a real number that parameterizes the line,
(ρ, J(x), J(y), J(z)) is a fixed starting point, and (u, v(x), v(y), v(z)) is a direction-
vector that will be determined by the conjugate-gradient algorithm. We will do this
by differentiating Φ with respect to α, and then set the derivative equal to zero to
determine the optimum α.

From (1.9), we have

Φ(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) =
Φ(R)(J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(x)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(y)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(z)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) . (1.16)

Clearly, Φ(R)(J+ αv) is quadratic in α, but the other three functionals are of the
fourth-order in α, as can be seen by the bilinear function E(ρ, J) that is defined in
(1.3) and appears in (1.9).



10 1 A Bilinear Conjugate-Gradient Inversion Algorithm

The derivative ofΦ(R) is computed in a straight-forward (though slightly tedious)
manner to be:

dΦ(R)(J + αv)
dα

= �
{
v(x)∗ · ∂Φ(R)(J)

∂J(x)
+ v(y)∗ · ∂Φ(R)(J)

∂J(y)
+ v(z)∗ · ∂Φ(R)(J)

∂J(z)

+α

(
v(x)∗ · ∂Φ(R)(v)

∂J(x)
+ v(y)∗ · ∂Φ(R)(v)

∂J(y)
+ v(z)∗ · ∂Φ(R)(v)

∂J(z)

)}
. (1.17)

The vector dot-product denotes a sum over the cell indices, klm, as before, and the
components of the gradient vectors are given in (1.11).

Similarly,

dΦ(x)

dα
(ρ + αu, J + αv)

= � {
A∗
0x · B0x + α

(
A∗
0x · B1x + A∗

1x · B0x
)

+α2 (
A∗
0x · B2x + A∗

1x · B1x
) + α3A∗

1x · B2x

}

dΦ(y)

dα
(ρ + αu, J + αv)

= �
{
A∗
0y · B0y + α

(
A∗
0y · B1y + A∗

1y · B0y

)

+α2
(
A∗
0y · B2y + A∗

1y · B1y

)
+ α3A∗

1y · B2y

}

dΦ(z)

dα
(ρ + αu, J + αv)

= � {
A∗
0z · B0z + α

(
A∗
0z · B1z + A∗

1z · B0z
)

+α2 (
A∗
0z · B2z + A∗

1z · B1z
) + α3A∗

1z · B2z

}
(1.18)

where

A∗
0x = J(x)∗ · Q(x)T (u) + v(x)∗ · Q(x)T (ρ) + v(x)∗ · G(xx)H

+v(y)∗ · G(xy)H + v(z)∗ · G(xz)H

A∗
1x = 2v(x)∗ · Q(x)T (u)

B0x = Q(x)(ρ) · J(x) + G(xx) · J(x)

+G(xy) · J(y) + G(xz) · J(z) − E(0x)

B1x = Q(x)(u) · J(x) + Q(x)(ρ) · v(x) + G(xx) · v(x)

+G(xy) · v(y) + G(xz) · v(z)



1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals 11

B2x = Q(x)(u) · v(x)

A∗
0y = J(y)∗ · Q(y)T (u) + v(y)∗ · Q(y)T (ρ) + v(x)∗ · G(yx)H

+v(y)∗ · G(yy)H + v(z)∗ · G(yz)H

A∗
1y = 2v(y)∗ · Q(y)T (u)

B0y = Q(y)(ρ) · J(y) + G(yx) · J(x)

+G(yy) · J(y) + G(yz) · J(z) − E(0y)

B1y = Q(y)(u) · J(y) + Q(y)(ρ) · v(y) + G(yx) · v(x)

+G(yy) · v(y) + G(yz) · v(z)

B2y = Q(y)(u) · v(y)

A∗
0z = J(z)∗ · Q(z)T (u) + v(z)∗ · Q(z)T (ρ) + v(x)∗ · G(zx)H

+v(y)∗ · G(zy)H + v(z)∗ · G(zz)H

A∗
1z = 2v(z)∗ · Q(z)T (u)

B0z = Q(z)(ρ) · J(z) + G(zx) · J(x)

+G(zy) · J(y) + G(zz) · J(z) − E(0z)

B1z = Q(z)(u) · J(z) + Q(z)(ρ) · v(z) + G(zx) · v(x)

+G(zy) · v(y) + G(zz) · v(z)

B2z = Q(z)(u) · v(z) , (1.19)

and, once again, the vector dot-product denotes a sum over the cell indices, klm.
Note that B0 is a residual-vector, which means that there may be some simplification
in computing or using it, and finally, the order of some of the computations in (1.19)
might be changed in order to take advantage of the convolutional or correlational
nature of the matrices.

The total cubic polynomial for
dΦ

dα
(ρ + αu, J + αv) = 0 is given by setting

the sum of (1.17) and (1.18) equal to zero. Note that, because the coefficients of
the polynomial are real, any complex roots must occur in conjugate pairs. This
guarantees at least one real root, and possibly three. We will take the smallest real
root.



12 1 A Bilinear Conjugate-Gradient Inversion Algorithm

1.3 The Algorithm

Step 0: Initialization The user creates a starting point

⎛
⎜⎜⎜⎝

J(x)
0

J(y)

0
J(z)
0
ρ0

⎞
⎟⎟⎟⎠ .

Step 1: Steepest Descent First calculate the gradient

∇Φ(ρ0, J0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Φ

∂J(x)

∂Φ

∂J(y)

∂Φ

∂J(z)

∂Φ

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ρ0, J0)

using (1.15). Then set the direction of movement at the first iteration to be

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ = −∇Φ(ρ0, J0)

where (v(x), v(y), v(z)) = v ∈ CNc ×CNc ×CNc , and u ∈ RNc . Note that we will later
use f1 to denote this direction. The problem now is to minimize Φ in the direction

(
v
u

)
from the point (ρ0, J0). We should normalize the direction vector

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠

before calculating the coefficients of the cubic equation that gives the minimum
value. Therefore, define the new direction vector to be the unit vector

1√
(‖v‖2 + ‖u‖2)

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠



1.3 The Algorithm 13

and note that we will use the same notation,

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠, for the normalized (unit)

direction vector. Now find the smallest positive α0 that satisfies

a0 + a1α + a2α
2 + a3α

3 = 0

where the coefficients are given by the appropriate sums of (1.17) and (1.18), with
J = J0 and ρ = ρ0. Then define the new approximation to be

(
J1
ρ1

)
=

(
J0
ρ0

)
+ α0

(
v
u

)
.

Step k + 1 Assume that the kth (k ≥ 1) iteration,

(
Jk

ρk

)
, has been determined.

Let {fk} be the sequence of direction vectors that is generated by defining f1 =
−∇Φ(J0, ρ0) and for k ≥ 1,

fk+1 = −∇Φ(Jk, ρk) + βk+1fk ,

where ∇Φ(Jk, ρk) and βk+1 are determined as follows:

∇Φ(ρk, Jk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Φ

∂J(x)

∂Φ

∂J(y)

∂Φ

∂J(z)

∂Φ

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ρk, Jk) ,

and the parameter, βk+1, depends upon one of the following iteration methods:

Steepest Descent This technique simply continues as Step 1, and defines the
direction vector to always be the steepest descent direction. Hence, βk+1 will always
be set equal to 0.

Fletcher-Reeves Here, βk+1 is defined as

βk+1 = ‖∇Φ(Jk, ρk)‖2
‖∇Φ(Jk−1, ρk−1)‖2

.



14 1 A Bilinear Conjugate-Gradient Inversion Algorithm

Polak-Ribière In this algorithm, βk+1 is defined as

βk+1 =
(∇Φ(Jk, ρk) − ∇Φ(Jk−1, ρk−1)

)∗ · ∇Φ(Jk, ρk)

‖∇Φ(Jk−1, ρk−1)‖2
.

Fletcher-Reeves with Restart This method is similar to the Fletcher-Reeves
algorithm except that after every r iterations, we restart the algorithm with the
steepest descent step. Therefore, we can define βk+1 as

βk+1 =
⎧⎨
⎩

0 if k is a multiple of r

‖∇Φ(Jk, ρk)‖2
‖∇Φ(Jk−1, ρk−1)‖2

otherwise

Hybrid 1 This hybrid algorithm tries to take into account the best aspects of some
of the algorithms presented above.

βk+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if ‖∇Φ(Jk, ρk)‖2 > (0.2)k × 108

βFR if βPR < 0

βPR if βPR ≤ 5
‖∇Φ(Jk, ρk)‖2

‖∇φ(Jk−1, ρk−1)‖2
= 5βFR

βFR otherwise

Hybrid 2 In this algorithm, we try to control the orthogonality of the gradients and
define βk+1 as

βk+1 =
⎧⎨
⎩

0 if |∇Φ(Jk−1, ρk−1)
∗ · ∇Φ(Jk, ρk)| > 0.2

‖∇Φ(Jk, ρk)‖2
‖∇Φ(Jk−1, ρk−1)‖2

otherwise

After determining βk+1, we set the new direction vector

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ = fk+1 = −∇Φ(ρk, Jk) + βk+1fk

where, as before (v(x), v(y), v(z)) ∈ CNc × CNc × CNc , and u ∈ RNc . As in Step

1, we should normalize

(
v
u

)
to make it a unit vector, and then find the smallest

positive αk that satisfies

a0 + a1α + a2α
2 + a3α

3 = 0

with coefficients gotten from (1.17)–(1.19) and the various functions evaluated at
the current point, (Jk, ρk).



1.4 Example: Raster Scan at Three Frequencies 15

Since we are able to use exact line searches in this algorithm, most of the methods
which we use will always yield a direction in which Φ is decreasing. In fact, since
we normalize the direction vector, the constant in the cubic equation, a0, is equal to

the directional derivative of Φ at the point (Jk, ρk) in the direction

(
v
u

)
. Therefore,

a0 should always be negative. We have found, however, that even in the methods
which theoretically always yield descent directions, we sometimes will obtain a
positive a0. Usually this phenomenon occurs when we are ‘close’ to the actual
solution. We suggest that if a0 ≥ 0, then the algorithm should be restarted by going
to the initialization step, and setting (J0, ρ0) = (Jk, ρk). This is equivalent to using
the steepest descent direction (i.e., letting βk+1 = 0) at Step k + 1.

Now define the new iteration to be

⎛
⎜⎜⎜⎝

J(x)
k+1

J(y)

k+1

J(z)
k+1

ρk+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

J(x)
k

J(y)
k

J(z)
k

ρk

⎞
⎟⎟⎟⎠ + αk

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ ,

check the residuals for convergence, and either quit or continue with the iteration.
This requires a stopping rule, which could be a variation of what we do now in

VIC-3D®, or perhaps stopping when the relative error,
Φ(J, ρ)

‖(J, ρ)‖ , is less than some

prescribed value.

1.4 Example: Raster Scan at Three Frequencies2

Consider Fig. 1.1, which shows a 4 × 4 × 4 mm3 through-wall anomaly and a
T/R-scan system in which the transmitter occupies two positions, (−14,−14)mm
and (14,−14)mm, and the receiver undergoes a two-dimensional raster scan of 11
points, with equal intervals of 0.75mm in each direction. The anomaly grid consists
of 16× 16× 4 = 1024 cells, with the four z-layers numbered 0,1,2,3. The flaw that
is to be reconstructed is shown in Fig. 1.2.

The model coil parameters are given in Table 1.1. It is clear that the transmit
coil is much larger than the grid cell-size, and is quite remote from the anomalous
region. The receive coil scans over the region with dimensions that are comparable
to the cell-size, though this is not a requirement.

The transmitter is excited at three frequencies of 102, 104 and 105 Hz, which,
with the two-point transmitter scan, produces six ‘experiments,’ in the language of
set-theoretic estimation. Thus, the total impedance data set that is submitted to the
bilinear conjugate-gradient inversion algorithm comprises 6×11×11 = 726 values.

2See [102–104] for additional examples.



16 1 A Bilinear Conjugate-Gradient Inversion Algorithm

Fig. 1.1 Illustrating the first example. All unlabeled coordinates are in mms. The 11 × 11-point
scan of the receiver probe is shown, as well as the 2-point scan of the transmitter probe. Top: Side
view. Bottom: Top view

Fig. 1.2 Illustrating the flaw that is to be reconstructed. Left: Layers 0 and 3. Right: Layers 1 and
2. A solid cell has a volume-fraction of 1 (empty), and a blank cell a volume-fraction of 0 (host
material)



1.4 Example: Raster Scan at Three Frequencies 17

Table 1.1 Coil parameters
for Example 1

Parameter Transmit Receive

Inner radius (mm) 15.0 0.25

Outer radius (mm) 25.0 0.50

Height (mm) 3.0 1.0

Turns 100 100

Fig. 1.3 Reconstruction of the flaw in Fig. 1.2. Left: Layers 0 and 3. Right: Layers 1 and 2

The unknowns are 1024 values of conductivity and 3072 values of anomalous
current for each experiment, giving a total of 19,456 unknowns to be determined
by the inversion algorithm.

In starting the inversion process, we assume that the anomaly is nonexistent,
which means that the initial conductivity is that of the host region, and the initial
anomalous currents are zero for each experiment. The Polak-Ribière algorithm is
used to compute βk+1. The results are shown in Fig. 1.3.



18 1 A Bilinear Conjugate-Gradient Inversion Algorithm

Fig. 1.4 Reconstruction of the flaw in Fig. 1.2 with 5% Gaussian noise added to the input
impedance data. Left: Layers 0 and 3. Right: Layers 1 and 2

When we repeat the experiment with the original input data corrupted by the
addition of 5% Gaussian noise, we get a reconstruction shown in Fig. 1.4. Clearly,
even with a strongly underdetermined system the inversion algorithm performs
robustly in the presence of a large noise component.

Though we have not done it here, it is possible to introduce adaptive precondi-
tioning to reduce the effects of noise during the inversion process by introducing
a scaling operator, B, that selectively eliminates those components of the recon-
structed vector that are less than a certain value. The threshold value is determined
early in the iterative process, and requires a certain amount of intuition. It can
be made more precise by using statistical decision theory. This is in contrast to
post-reconstruction image processing, where weighted averaging filters are used to
remove unwanted artifacts after the image has been reconstructed. An example of
this approach is given in [14] in the context of a linearized Born approximation to
the conjugate-gradient algorithm.


	1 A Bilinear Conjugate-Gradient Inversion Algorithm
	1.1 Optimization via Nonlinear Least-Squares
	1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals
	1.3 The Algorithm
	1.4 Example: Raster Scan at Three Frequencies


