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Preface

This book is a continuation of a study begun in [111] in which we developed and
applied computational electromagnetics and inverse techniques to quantitative non-
destructive evaluation and materials characterization. While model-based inverse
methods using a nonlinear least-squares algorithm (NLSE) were developed in [111],
we develop two new ’voxel-based’ algorithms in this book: the bilinear conjugate-
gradient and set-theoretic algorithms.

NLSE is suitable when there are only a few parameters that are required to
define a model. There are, of course, any number of practical problems that cannot
be simply defined in terms of a few variables. For example, an actual fatigue
crack may not be well-represented by a simple slot or EDM notch that could
be parameterized for NLSE. Actual cracks may emanate from a number of sites
(‘multisite damage’) or may simply meander through the structure, so that they are
not so easily parametrized. This suggests that we need to reconstruct the anomaly
voxel-by-voxel, which is what the set-theoretic and bilinear conjugate-gradient
algorithms are designed to do.

By ’voxel-based’, we mean that each voxel in the grid of the anomalous region
is to be reconstructed in order to determine the anomaly, rather than to model the
anomaly at the outset as a canonical structure that is defined by a few parameters
that are to be reconstructed. In this sense, voxel-based algorithms are an attempt to
eliminate the ’curse of dimensionality’ malady that is present in NLSE due to the
huge interpolation grid that is required for large problems [111].

We have studied two such voxel-based algorithms: the bilinear conjugate-
gradient algorithm and the set-theoretic algorithm. The conjugate-gradient algo-
rithm is rather well-known in the literature and reconstructs the grid in the usual
manner of considering the mutual interaction of each voxel on the other, much as
in solving the forward problem with VIC-3D®. On the contrary, the set-theoretic
algorithm reconstructs each voxel independently of the other (after a first stage
of linear data processing), i.e., it is non-Markovian and yields estimation-theoretic
quality estimates of each voxel as well. Furthermore, the set-theoretic algorithm
introduces some interesting statistical notions that are relevant to the research theme

v



vi Preface

of this project. Both of these algorithms are well-suited to the volume-integral
approach that is the basis of VIC-3D®.1

One interesting feature of set-theoretic estimation is that it is not an optimization
algorithm, such as NLSE or bilinear conjugate-gradients. Such algorithms require
derivatives, while set-theoretic estimation does not. In fact, we do not really invoke
the notion of ‘optimization’ until the very end of the algorithm, and then we do it on
a voxel-by-voxel basis using the robust estimators that are defined in [111, Chapter
13]. For this reason, we use the set-theoretic algorithm throughout the text.

Part II is the major portion of the book and deals with developing electromagnetic
models for characterizing a variety of materials, from carbon-fiber reinforced poly-
mer (cfrp) advanced composites to atherosclerotic lesions. This includes developing
rigorous models for handling anisotropies and then applying the set-theoretic inver-
sion algorithm to these materials. This plays a very significant role in such matters
as microstructure quantification problems, which are important in the manufacture
of cfrp prepregs, as well as in the analysis of completed structures. In addition,
we introduce such matters as studying stochastic models for anisotropic materials
that allow us to develop computational models for microstructure characterization,
among other things. Part II ends with a discussion of electromagnetic models for
biological tissue, which allows us to do such things as noninvasively detect and
characterize atherosclerotic lesions.

The last two chapters of the book deal with the application of quantum effects on
materials characterization. Chapter 11 deals with such things as paramagnetic spin
dynamics and the spin Hamiltonian. These things, of course, are fundamental to the
study of such practical systems as masers. Finally, in the last chapter, we begin the
development of electromagnetic models for carbon nanotube-reinforced polymers
through the use of quantum principles. These materials are finding application not
only in structures but also in electromagnetic devices. In both of these chapters, we
point out that the quantum calculations that are required to yield the electromagnetic
properties that VIC-3D® requires are done off-line, and then these properties are
imported into VIC-3D® to model the electromagnetic response of a device or
structure.
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Part I
Voxel-Based Inversion Algorithms



Chapter 1
A Bilinear Conjugate-Gradient Inversion
Algorithm

1.1 Optimization via Nonlinear Least-Squares

Standard methods for minimizing a real-valued function of several variables can be
divided into two general classes: those that require second derivative information,
usually referred to as Newton-type methods, and those requiring only first derivative
information, referred to as gradient methods. There are several excellent texts which,
in addition to discussing many of these methods in detail, also give suggestions
on when to use certain techniques. See, for example, the texts by Fletcher[36],
Hestenes[52] or Luenberger[64].

In this chapter, we concentrate on gradient techniques for minimizing Φ, the
norm of the residuals, for basically two reasons. First, the Töplitz-Hankel structure
of the operators in the original volume-integral equation allow us to use fast Fourier
transform techniques when doing matrix multiplications in solving the forward
problem, and secondly, the bilinearity of the entire system allows us to find the
gradient of Φ in closed form, as well as performing exact line searches when
minimizing Φ in a particular direction. We first presented this method in [102–
104]; it is known in the recent literature as the ‘contrast source inversion method’
[1, 10, 131].

1.2 A Bilinear Conjugate-Gradient Inversion Algorithm
Using Volume-Integrals

Bilinear Inversion Algorithm Consider a T/R configuration, in which a fixed
transmitting coil excites the anomaly, which is assumed to have a conductivity
vector, σ , and a receive coil scans the anomaly at positions, i = 1, . . . , Nv , where
Nv is the number of ‘views’. Conversely, we could assume a single transmitting coil,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Characterization and Nondestructive Evaluation, Scientific Computation,
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4 1 A Bilinear Conjugate-Gradient Inversion Algorithm

and an array of Nv receive coils occupying the positions of the original scanned
receive coil. Furthermore, we could actually scan fewer than Nv positions, and
then interpolate to complete the Nv data points. (See [107] and [14] for further
discussions of multiview and multifrequency reconstruction methods.)

In any case, the transmitter generates an anomalous scattering current,
J(x), J(y), J(z), which is computed by VIC-3D® and the receive coil(s) produces
an incident field, E(R)

0x (i), E(R)
0y (i), E(R)

0z (i). These combine to produce the change-
in-transfer impedance due to the anomaly,

Z(i)(J) = E(R)
0x (i) · J(x) + E(R)

0y (i) · J(y) + E(R)
0z (i) · J(z) , (1.1)

that is also computed directly by VIC-3D®.1 Note that, unlike our NLSE algorithm,
we do not consider J(x), J(y), J(z) to be secondary variables that are dependent upon
the primary unknown, σ . Rather, the current-vectors along with the cell resistivities,
ρ, are the primary unknowns.

To determine the model equations for the inversion algorithm, return to the fun-
damental volume-integral electric equation that VIC-3D® solves for the anomalous
currents:

⎡
⎣
E(0x)

E(0y)

E(0z)

⎤
⎦ =

⎡
⎣
Q(x)(ρ) 0 0

0 Q(y)(ρ) 0
0 0 Q(z)(ρ)

⎤
⎦
⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦

+
⎡
⎣
G(xx) G(xy) G(xz)

G(yx) G(yy) G(yz)

G(zx) G(zy) G(zz)

⎤
⎦
⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦ . (1.2)

The incident field on the left-hand side of (1.2) is due to the transmitting coil. The
total electric-field moments are given by

E(x)(ρ, J(x)) = Q(x)(ρ) · J(x)

E(y)(ρ, J(y)) = Q(y)(ρ) · J(y)

E(z)(ρ, J(z)) = Q(z)(ρ) · J(z) , (1.3)

so that when this is substituted back into (1.2), we get the basic constraint equation
between the primary variables, ρ and J:

1 We are considering only ‘electric-electric’ interactions in this chapter. We assume that all hosts
and flaws are nonmagnetic.



1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals 5

⎡
⎣
E(0x)

E(0y)

E(0z)

⎤
⎦ =

⎡
⎣
E(x)(ρ, J(x))

E(y)(ρ, J(y))

E(z)(ρ, J(z))

⎤
⎦ +

⎡
⎣
G(xx) G(xy) G(xz)

G(yx) G(yy) G(yz)

G(zx) G(zy) G(zz)

⎤
⎦
⎡
⎣
J(x)

J(y)

J(z)

⎤
⎦ . (1.4)

Thus, the two constraint equations that define the inverse model are the linear
system, (1.1), and bilinear system, (1.4). A bilinear system is linear in each variable,
when the other is held constant. In this case, the variables are ρ and J(x), J(y), J(z).

Recall that the tri-diagonal matrices are symmetric, and have the following non-
zero entries:

Q
(x)
kK(ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if K = k − 1
2(ρklm + ρk+1,lm) if K = k

ρk+1,lm if K = k + 1

Q
(y)
lL (ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if L = l − 1
2(ρklm + ρk,l+1,m) if L = l

ρk,l+1,m if L = l + 1

Q
(z)
mM(ρ) = δxδyδz

6

⎧⎨
⎩

ρklm if M = m − 1
2(ρklm + ρklm+1) if M = m

ρklm+1 if M = m + 1

(1.5)

The first entry in each of these matrices is the lower diagonal, the second the main
diagonal, and the third the upper diagonal. Recall that the resistivity of the klmth
cell is the reciprocal of the conductivity, ρklm = 1/σklm. Note that if cell klm is
filled with host material, then ρklm = ∞. This fact could be useful in allowing ρklm

to act like a penalty term, forcing the associated current expansion coefficient, Jklm,
to zero.

Now,

E
(x)
klm =

∑
K

Q
(x)
kKJ

(x)
Klm

E
(y)
klm =

∑
L

Q
(y)
lL J

(y)
kLm

E
(z)
klm =

∑
M

Q
(z)
mMJ

(z)
klM , (1.6)

is the form that is useful when singling out the currents at each cell. When we want
to single out the resistivity at each cell, we simply rearrange (1.6):

E
(x)
klm =

∑
K

P
(x)
kK ρKlm
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E
(y)
klm =

∑
L

P
(y)
lL ρkLm

E
(z)
klm =

∑
M

P
(z)
mMρklM , (1.7)

where the matrix elements follow from (1.5) and (1.6)

P
(x)
kK (J(x)) = δxδyδz

6

{
J

(x)
k−1lm + 2J

(x)
klm if K = k

2J
(x)
klm + J

(x)
k+1lm if K = k + 1

P
(y)
lL (J(y)) = δxδyδz

6

{
J

(y)

kl−1m + 2J
(y)
klm if L = l

2J
(y)
klm + J

(y)

kl+1m if L = l + 1

P
(z)
mM(J(z)) = δxδyδz

6

{
J

(z)
klm−1 + 2J

(z)
klm if M = m

2J
(z)
klm + J

(z)
klm+1 if M = m + 1

(1.8)

One approach to solving the system, (1.1) and (1.4), has been to use a linear
(‘Born’) approximation, which means that the electric field within the flawed region
is assumed to be the same as the electric field if the flaw were not present, namely
the incident electric field. Thus, one would write J = σE ≈ σE0, and then take
moments of this equation. Substituting the resulting expressions for J(x,y,z)

klm into
(1.1) will produce a linear system for the unknown conductivities, σklm, that can be
solved in a number of ways. See [105] for an example of this approach, in which
the linear system is solved using the algebraic reconstruction technique (ART), and
[24, 50, 51], as well as [111, pp. 282–285], for details on ART.

This approach, therefore, has the physical significance of ignoring the secondary
sources produced by multiple scattering within the flaw. From a mathematical
viewpoint, the second term of (1.4) (with the G matrices) is ignored. While
linearization is occasionally accurate, it is not as general as the main subject of this
chapter, bilinear conjugate-gradients. See [147] for a further discussion of the Born
approximation, and [14] for an application of the Born approximation to solve a
scattering problem of a three-dimensional flaw embedded in anisotropic composite
materials.

Bilinear Conjugate-Gradients We use nonlinear conjugate-gradients to minimize
the functional formed by the sum of squares of the residuals comprising (1.1) and
(1.4):

Φ(ρ, J) = 1

2

{
‖E(R)

0x · J(x) + E(R)
0y · J(y) + E(R)

0z · J(z) − Zmeas‖2

+‖E(x)(ρ, J(x)) + G(xx) · J(x) + G(xy) · J(y) + G(xz) · J(z) − E(0x)‖2

+‖E(y)(ρ, J(y)) + G(yx) · J(x) + G(yy) · J(y) + G(yz) · J(z) − E(0y)‖2
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+‖E(z)(ρ, J(z)) + G(zx) · J(x) + G(zy) · J(y) + G(zz) · J(z) − E(0z)‖2
}

= 1

2

{
‖A (R)(J) − Zmeas‖2

+‖A (x)(ρ, J)−E(0x)‖2+‖A (y)(ρ, J)−E(0y)‖2+‖A (z)(ρ, J)−E(0z)‖2
}

= Φ(R)(J)+Φ(x)(ρ, J)+Φ(y)(ρ, J)+Φ(z)(ρ, J). (1.9)

Now let’s say a few words about the vector-matrix structure of these functionals.
As shown in (1.1), A (R) −Zmeas is an Nv × 1-vector, whose components are given
by (1.1). This suggests that we should think of E(R)

0x , E(R)
0y , E(R)

0z , as Nv × Nc-

dimensional matrices, E
(R)
0x(i,klm), E

(R)
0y(i,klm), E

(R)
0z(i,klm), i = 1, . . . , Nv, klm =

1, . . . , Nc, where Nc is the number of cells in the problem. Then, we have

Φ(R)(J) = 1

2
‖A (R)(J) − Zmeas‖2

= 1

2

Nv∑
i=1

|A (R)
i (J) − Zmeas(i)|2

= 1

2

Nv∑
i=1

(
A (R)

i (J) − Zmeas(i)
) (

A (R)
i (J) − Zmeas(i)

)∗

= 1

2

Nv∑
i=1

(
E(R)

0x (i) · J(x) + E(R)
0y (i) · J(y) + E(R)

0z (i) · J(z) − Zmeas(i)
)

(
E(R)

0x (i) · J(x)+E(R)
0y (i) · J(y)+E(R)

0z (i) · J(z)−Zmeas(i)
)∗

, (1.10)

where ∗ denotes the complex-conjugate, and the vector dot-product in the last
expression implies a sum over the cell indices, klm.

It is a straightforward calculation, using the final form of (1.10), to show that the
gradient of Φ(R)(J) with respect to its primary variables, J

(x)
klm, J

(y)
klm, and J

(z)
klm is

∂Φ(R)

∂J
(x)
klm

=
∑

i

E
(R)H
0x(klm,i)

(
E(R)

0x (i) · J(x) + E(R)
0y (i) · J(y) + E(R)

0z (i) · J(z) − Zmeas(i)
)

∂Φ(R)

∂J
(y)
klm

=
∑

i

E
(R)H
0y(klm,i)

(
E(R)

0x (i) · J(x) + E(R)
0y (i) · J(y) + E(R)

0z (i) · J(z) − Zmeas(i)
)

∂Φ(R)

∂J
(z)
klm

=
∑

i

E
(R)H
0z(klm,i)

(
E(R)

0x (i) · J(x) + E(R)
0y (i) · J(y) + E(R)

0z (i) · J(z) − Zmeas(i)
)

,

(1.11)
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where the superscript, H , on a matrix denotes the Hermitian of that matrix, namely
the complex-conjugate of the transpose of the matrix. The term in parentheses is the
ith component of the residual-vector, RESID(R).

The gradients of Φ(x), Φ(y), and Φ(z) with respect to J(x), J(y), and J(z) are given
by:

∂Φ(x)

∂J
(x)
klm

=
∑

KLM

(
Q

(x)T
klm,KLM + G

(xx)H
klm,KLM

)
(RESID(X))KLM

∂Φ(x)

∂J
(y)
klm

=
∑

KLM

G
(xy)H
klm,KLM (RESID(X))KLM

∂Φ(x)

∂J
(z)
klm

=
∑

KLM

G
(xz)H
klm,KLM (RESID(X))KLM

∂Φ(y)

∂J
(x)
klm

=
∑

KLM

G
(yx)H
klm,KLM (RESID(Y ))KLM

∂Φ(y)

∂J
(y)
klm

=
∑

KLM

(
Q

(y)T
klm,KLM + G

(yy)H
klm,KLM

)
(RESID(Y ))KLM

∂Φ(y)

∂J
(z)
klm

=
∑

KLM

G
(yz)H
klm,KLM (RESID(Y ))KLM

∂Φ(z)

∂J
(x)
klm

=
∑

KLM

G
(zx)H
klm,KLM (RESID(Z))KLM

∂Φ(z)

∂J
(y)
klm

=
∑

KLM

G
(zy)H
klm,KLM (RESID(Z))KLM

∂Φ(z)

∂J
(z)
klm

=
∑

KLM

(
Q

(z)T
klm,KLM + G

(zz)H
klm,KLM

)
(RESID(Z))KLM , (1.12)

where

RESID(X) = E(x)(ρ, J(x))+Gxx · J(x)+G(xy) · J(y)+G(xz) · J(z)−E(0x)

RESID(Y ) = E(y)(ρ, J(y))+Gyx · J(x)+G(yy) · J(y)+G(yz) · J(z)−E(0y)

RESID(Z) = E(z)(ρ, J(z))+Gzx · J(x)+G(zy) · J(y)+G(zz) · J(z)−E(0z) . (1.13)

Note We use the notation for the gradient of a real function with respect to a

complex variable to mean:
∂Φ

∂J
= ∂Φ

∂R
+ j

∂Φ

∂I
, where R = �J and I = �J .
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The final gradients are those of Φ(x), Φ(y), and Φ(z) with respect to ρ:

∂Φ(x)

∂ρklm

= �
∑

KLM

P
(x)H
klm,KLM (RESID(X))KLM

∂Φ(y)

∂ρklm

= �
∑

KLM

P
(y)H
klm,KLM (RESID(Y ))KLM

∂Φ(z)

∂ρklm

= �
∑

KLM

P
(z)H
klm,KLM (RESID(Z))KLM . (1.14)

Remember that the P -matrices that are defined in (1.7) and (1.8) are complex,
because they are explicit functions of the complex currents.

The gradient of Φ(ρ, J) is the sum of the various sub-gradients:

∂Φ

∂J
(x)
klm

= ∂Φ(R)

∂J
(x)
klm

+ ∂Φ(x)

∂J
(x)
klm

+ ∂Φ(y)

∂J
(x)
klm

+ ∂Φ(z)

∂J
(x)
klm

∂Φ

∂J
(y)
klm

= ∂Φ(R)

∂J
(y)
klm

+ ∂Φ(x)

∂J
(y)
klm

+ ∂Φ(y)

∂J
(y)
klm

+ ∂Φ(z)

∂J
(y)
klm

∂Φ

∂J
(z)
klm

= ∂Φ(R)

∂J
(z)
klm

+ ∂Φ(x)

∂J
(z)
klm

+ ∂Φ(y)

∂J
(z)
klm

+ ∂Φ(z)

∂J
(z)
klm

∂Φ

∂ρklm

= ∂Φ(x)

∂ρklm

+ ∂Φ(y)

∂ρklm

+ ∂Φ(z)

∂ρklm

. (1.15)

Eventually we will need to minimize Φ along the line (ρ, J(x), J(y), J(z)) +
α(u, v(x), v(y), v(z)) in function-space. α is a real number that parameterizes the line,
(ρ, J(x), J(y), J(z)) is a fixed starting point, and (u, v(x), v(y), v(z)) is a direction-
vector that will be determined by the conjugate-gradient algorithm. We will do this
by differentiating Φ with respect to α, and then set the derivative equal to zero to
determine the optimum α.

From (1.9), we have

Φ(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) =
Φ(R)(J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(x)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(y)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) +
Φ(z)(ρ + αu, J(x) + αv(x), J(y) + αv(y), J(z) + αv(z)) . (1.16)

Clearly, Φ(R)(J+ αv) is quadratic in α, but the other three functionals are of the
fourth-order in α, as can be seen by the bilinear function E(ρ, J) that is defined in
(1.3) and appears in (1.9).
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The derivative of Φ(R) is computed in a straight-forward (though slightly tedious)
manner to be:

dΦ(R)(J + αv)
dα

= �
{
v(x)∗ · ∂Φ(R)(J)

∂J(x)
+ v(y)∗ · ∂Φ(R)(J)

∂J(y)
+ v(z)∗ · ∂Φ(R)(J)

∂J(z)

+α

(
v(x)∗ · ∂Φ(R)(v)

∂J(x)
+ v(y)∗ · ∂Φ(R)(v)

∂J(y)
+ v(z)∗ · ∂Φ(R)(v)

∂J(z)

)}
. (1.17)

The vector dot-product denotes a sum over the cell indices, klm, as before, and the
components of the gradient vectors are given in (1.11).

Similarly,

dΦ(x)

dα
(ρ + αu, J + αv)

= � {
A∗

0x · B0x + α
(
A∗

0x · B1x + A∗
1x · B0x

)

+α2 (A∗
0x · B2x + A∗

1x · B1x

) + α3A∗
1x · B2x

}

dΦ(y)

dα
(ρ + αu, J + αv)

= �
{
A∗

0y · B0y + α
(
A∗

0y · B1y + A∗
1y · B0y

)

+α2
(
A∗

0y · B2y + A∗
1y · B1y

)
+ α3A∗

1y · B2y

}

dΦ(z)

dα
(ρ + αu, J + αv)

= � {
A∗

0z · B0z + α
(
A∗

0z · B1z + A∗
1z · B0z

)

+α2 (A∗
0z · B2z + A∗

1z · B1z

) + α3A∗
1z · B2z

}
(1.18)

where

A∗
0x = J(x)∗ · Q(x)T (u) + v(x)∗ · Q(x)T (ρ) + v(x)∗ · G(xx)H

+v(y)∗ · G(xy)H + v(z)∗ · G(xz)H

A∗
1x = 2v(x)∗ · Q(x)T (u)

B0x = Q(x)(ρ) · J(x) + G(xx) · J(x)

+G(xy) · J(y) + G(xz) · J(z) − E(0x)

B1x = Q(x)(u) · J(x) + Q(x)(ρ) · v(x) + G(xx) · v(x)

+G(xy) · v(y) + G(xz) · v(z)
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B2x = Q(x)(u) · v(x)

A∗
0y = J(y)∗ · Q(y)T (u) + v(y)∗ · Q(y)T (ρ) + v(x)∗ · G(yx)H

+v(y)∗ · G(yy)H + v(z)∗ · G(yz)H

A∗
1y = 2v(y)∗ · Q(y)T (u)

B0y = Q(y)(ρ) · J(y) + G(yx) · J(x)

+G(yy) · J(y) + G(yz) · J(z) − E(0y)

B1y = Q(y)(u) · J(y) + Q(y)(ρ) · v(y) + G(yx) · v(x)

+G(yy) · v(y) + G(yz) · v(z)

B2y = Q(y)(u) · v(y)

A∗
0z = J(z)∗ · Q(z)T (u) + v(z)∗ · Q(z)T (ρ) + v(x)∗ · G(zx)H

+v(y)∗ · G(zy)H + v(z)∗ · G(zz)H

A∗
1z = 2v(z)∗ · Q(z)T (u)

B0z = Q(z)(ρ) · J(z) + G(zx) · J(x)

+G(zy) · J(y) + G(zz) · J(z) − E(0z)

B1z = Q(z)(u) · J(z) + Q(z)(ρ) · v(z) + G(zx) · v(x)

+G(zy) · v(y) + G(zz) · v(z)

B2z = Q(z)(u) · v(z) , (1.19)

and, once again, the vector dot-product denotes a sum over the cell indices, klm.
Note that B0 is a residual-vector, which means that there may be some simplification
in computing or using it, and finally, the order of some of the computations in (1.19)
might be changed in order to take advantage of the convolutional or correlational
nature of the matrices.

The total cubic polynomial for
dΦ

dα
(ρ + αu, J + αv) = 0 is given by setting

the sum of (1.17) and (1.18) equal to zero. Note that, because the coefficients of
the polynomial are real, any complex roots must occur in conjugate pairs. This
guarantees at least one real root, and possibly three. We will take the smallest real
root.
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1.3 The Algorithm

Step 0: Initialization The user creates a starting point

⎛
⎜⎜⎜⎝

J(x)
0

J(y)

0
J(z)

0
ρ0

⎞
⎟⎟⎟⎠ .

Step 1: Steepest Descent First calculate the gradient

∇Φ(ρ0, J0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Φ

∂J(x)

∂Φ

∂J(y)

∂Φ

∂J(z)

∂Φ

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ρ0, J0)

using (1.15). Then set the direction of movement at the first iteration to be

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ = −∇Φ(ρ0, J0)

where (v(x), v(y), v(z)) = v ∈ CNc ×CNc ×CNc , and u ∈ RNc . Note that we will later
use f1 to denote this direction. The problem now is to minimize Φ in the direction

(
v
u

)
from the point (ρ0, J0). We should normalize the direction vector

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠

before calculating the coefficients of the cubic equation that gives the minimum
value. Therefore, define the new direction vector to be the unit vector

1√
(‖v‖2 + ‖u‖2)

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠
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and note that we will use the same notation,

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠, for the normalized (unit)

direction vector. Now find the smallest positive α0 that satisfies

a0 + a1α + a2α
2 + a3α

3 = 0

where the coefficients are given by the appropriate sums of (1.17) and (1.18), with
J = J0 and ρ = ρ0. Then define the new approximation to be

(
J1

ρ1

)
=
(
J0

ρ0

)
+ α0

(
v
u

)
.

Step k + 1 Assume that the kth (k ≥ 1) iteration,

(
Jk

ρk

)
, has been determined.

Let {fk} be the sequence of direction vectors that is generated by defining f1 =
−∇Φ(J0, ρ0) and for k ≥ 1,

fk+1 = −∇Φ(Jk, ρk) + βk+1fk ,

where ∇Φ(Jk, ρk) and βk+1 are determined as follows:

∇Φ(ρk, Jk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Φ

∂J(x)

∂Φ

∂J(y)

∂Φ

∂J(z)

∂Φ

∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ρk, Jk) ,

and the parameter, βk+1, depends upon one of the following iteration methods:

Steepest Descent This technique simply continues as Step 1, and defines the
direction vector to always be the steepest descent direction. Hence, βk+1 will always
be set equal to 0.

Fletcher-Reeves Here, βk+1 is defined as

βk+1 = ‖∇Φ(Jk, ρk)‖2

‖∇Φ(Jk−1, ρk−1)‖2
.
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Polak-Ribière In this algorithm, βk+1 is defined as

βk+1 =
(∇Φ(Jk, ρk) − ∇Φ(Jk−1, ρk−1)

)∗ · ∇Φ(Jk, ρk)

‖∇Φ(Jk−1, ρk−1)‖2
.

Fletcher-Reeves with Restart This method is similar to the Fletcher-Reeves
algorithm except that after every r iterations, we restart the algorithm with the
steepest descent step. Therefore, we can define βk+1 as

βk+1 =
⎧⎨
⎩

0 if k is a multiple of r

‖∇Φ(Jk, ρk)‖2

‖∇Φ(Jk−1, ρk−1)‖2 otherwise

Hybrid 1 This hybrid algorithm tries to take into account the best aspects of some
of the algorithms presented above.

βk+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if ‖∇Φ(Jk, ρk)‖2 > (0.2)k × 108

βFR if βPR < 0

βPR if βPR ≤ 5
‖∇Φ(Jk, ρk)‖2

‖∇φ(Jk−1, ρk−1)‖2
= 5βFR

βFR otherwise

Hybrid 2 In this algorithm, we try to control the orthogonality of the gradients and
define βk+1 as

βk+1 =
⎧⎨
⎩

0 if |∇Φ(Jk−1, ρk−1)
∗ · ∇Φ(Jk, ρk)| > 0.2

‖∇Φ(Jk, ρk)‖2

‖∇Φ(Jk−1, ρk−1)‖2
otherwise

After determining βk+1, we set the new direction vector

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ = fk+1 = −∇Φ(ρk, Jk) + βk+1fk

where, as before (v(x), v(y), v(z)) ∈ CNc × CNc × CNc , and u ∈ RNc . As in Step

1, we should normalize

(
v
u

)
to make it a unit vector, and then find the smallest

positive αk that satisfies

a0 + a1α + a2α
2 + a3α

3 = 0

with coefficients gotten from (1.17)–(1.19) and the various functions evaluated at
the current point, (Jk, ρk).
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Since we are able to use exact line searches in this algorithm, most of the methods
which we use will always yield a direction in which Φ is decreasing. In fact, since
we normalize the direction vector, the constant in the cubic equation, a0, is equal to

the directional derivative of Φ at the point (Jk, ρk) in the direction

(
v
u

)
. Therefore,

a0 should always be negative. We have found, however, that even in the methods
which theoretically always yield descent directions, we sometimes will obtain a
positive a0. Usually this phenomenon occurs when we are ‘close’ to the actual
solution. We suggest that if a0 ≥ 0, then the algorithm should be restarted by going
to the initialization step, and setting (J0, ρ0) = (Jk, ρk). This is equivalent to using
the steepest descent direction (i.e., letting βk+1 = 0) at Step k + 1.

Now define the new iteration to be

⎛
⎜⎜⎜⎝

J(x)
k+1

J(y)

k+1

J(z)
k+1

ρk+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

J(x)
k

J(y)
k

J(z)
k

ρk

⎞
⎟⎟⎟⎠ + αk

⎛
⎜⎜⎝

v(x)

v(y)

v(z)

u

⎞
⎟⎟⎠ ,

check the residuals for convergence, and either quit or continue with the iteration.
This requires a stopping rule, which could be a variation of what we do now in

VIC-3D®, or perhaps stopping when the relative error,
Φ(J, ρ)

‖(J, ρ)‖ , is less than some

prescribed value.

1.4 Example: Raster Scan at Three Frequencies2

Consider Fig. 1.1, which shows a 4 × 4 × 4 mm3 through-wall anomaly and a
T/R-scan system in which the transmitter occupies two positions, (−14,−14)mm
and (14,−14) mm, and the receiver undergoes a two-dimensional raster scan of 11
points, with equal intervals of 0.75 mm in each direction. The anomaly grid consists
of 16 × 16 × 4 = 1024 cells, with the four z-layers numbered 0,1,2,3. The flaw that
is to be reconstructed is shown in Fig. 1.2.

The model coil parameters are given in Table 1.1. It is clear that the transmit
coil is much larger than the grid cell-size, and is quite remote from the anomalous
region. The receive coil scans over the region with dimensions that are comparable
to the cell-size, though this is not a requirement.

The transmitter is excited at three frequencies of 102, 104 and 105 Hz, which,
with the two-point transmitter scan, produces six ‘experiments,’ in the language of
set-theoretic estimation. Thus, the total impedance data set that is submitted to the
bilinear conjugate-gradient inversion algorithm comprises 6×11×11 = 726 values.

2See [102–104] for additional examples.
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Fig. 1.1 Illustrating the first example. All unlabeled coordinates are in mms. The 11 × 11-point
scan of the receiver probe is shown, as well as the 2-point scan of the transmitter probe. Top: Side
view. Bottom: Top view

Fig. 1.2 Illustrating the flaw that is to be reconstructed. Left: Layers 0 and 3. Right: Layers 1 and
2. A solid cell has a volume-fraction of 1 (empty), and a blank cell a volume-fraction of 0 (host
material)
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Table 1.1 Coil parameters
for Example 1

Parameter Transmit Receive

Inner radius (mm) 15.0 0.25

Outer radius (mm) 25.0 0.50

Height (mm) 3.0 1.0

Turns 100 100

Fig. 1.3 Reconstruction of the flaw in Fig. 1.2. Left: Layers 0 and 3. Right: Layers 1 and 2

The unknowns are 1024 values of conductivity and 3072 values of anomalous
current for each experiment, giving a total of 19,456 unknowns to be determined
by the inversion algorithm.

In starting the inversion process, we assume that the anomaly is nonexistent,
which means that the initial conductivity is that of the host region, and the initial
anomalous currents are zero for each experiment. The Polak-Ribière algorithm is
used to compute βk+1. The results are shown in Fig. 1.3.
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Fig. 1.4 Reconstruction of the flaw in Fig. 1.2 with 5% Gaussian noise added to the input
impedance data. Left: Layers 0 and 3. Right: Layers 1 and 2

When we repeat the experiment with the original input data corrupted by the
addition of 5% Gaussian noise, we get a reconstruction shown in Fig. 1.4. Clearly,
even with a strongly underdetermined system the inversion algorithm performs
robustly in the presence of a large noise component.

Though we have not done it here, it is possible to introduce adaptive precondi-
tioning to reduce the effects of noise during the inversion process by introducing
a scaling operator, B, that selectively eliminates those components of the recon-
structed vector that are less than a certain value. The threshold value is determined
early in the iterative process, and requires a certain amount of intuition. It can
be made more precise by using statistical decision theory. This is in contrast to
post-reconstruction image processing, where weighted averaging filters are used to
remove unwanted artifacts after the image has been reconstructed. An example of
this approach is given in [14] in the context of a linearized Born approximation to
the conjugate-gradient algorithm.



Chapter 2
Voxel-Based Inversion Via Set-Theoretic
Estimation

2.1 The Electromagnetic Model Equations

The starting point for any electromagnetic inverse problem is Maxwell’s equations:

∇ × E(r) = −jωμ0H(r)

∇ × H(r) = jωε0E + σ(r)E(r)

= jωε0E(r) + (σf (r) − σh)E(r) + σhE(r)

= jωε0E(r) + σ (a)(r)E(r) + σhE(r) , (2.1)

where σf (r) is the flaw conductivity, σh is the uniform host conductivity, and σ (a)(r)
is the anomalous conductivity. The product, σ (a)(r)E(r) defines the anomalous
electric current density, J(r).

The formal solution of Maxwell’s equations can be obtained by equating the total
electric field, E(r) = J(r)/σa(r), to the sum of the incident field, that is produced
by the current in the exciter coil, and the scattered field, that is due to the anomalous
electric current:

E(i)
x (r) = Jx(r)

σa(r)
− E(s)

x (r) [J]

E(i)
y (r) = Jy(r)

σa(r)
− E(s)

y (r) [J]

E(i)
z (r) = Jz(r)

σa(r)
− E(s)

z (r) [J] . (2.2)
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The second term on the right-hand side of each of the equations in (2.2) stands
for a linear functional, whose kernel is a Green’s function. In order to discretize the
integral relations implied in (2.2) by means of the method of moments, we define a
regular three-dimensional grid of cells, each of dimension δx × δy × δz, and expand
the current vector on this grid as

Jx(r) =
∑

KLM

J
(x)
KLMT

(x)
KLM(r)

Jy(r) =
∑

KLM

J
(y)
KLMT

(y)
KLM(r)

Jz(r) =
∑

KLM

J
(z)
KLMT

(z)
KLM(r) . (2.3)

The expressions for the T
(q)
klm(r) are:

T
(x)
klm(r) = π2k(x/δx)π1l (y/δy)π1m(z/δz)

T
(y)
klm(r) = π1k(x/δx)π2l (y/δy)π1m(z/δz)

T
(z)
klm(r) = π1k(x/δx)π1l (y/δy)π2m(z/δz) , (2.4)

where π1m(y/δy) is the mth unit pulse function, and π2k(x/δx) is the kth tent
function, which is the convolution of π1k(x/δx) with itself (see Fig. 2.1).

The present version of VIC-3D® uses the Galerkin variant of the method of
moments, in which testing is done with the same basis set that is used to expand the
unknown currents. This differs from the earlier version, which used point-matching
to complete the discretization. The implication for the present inverse problem is
that we can no longer assume that the electric fields are known at the center of each
cell; rather, we are given the moments of the electric field throughout each cell,
as well as the expansion coefficients for the currents. We will now show how this
knowledge can be used to determine the conductivity of each cell, if the anomalous
currents are given.

The field moments for the x and y components of the (total) electric field are

Ex
klm =

∫ ∫ ∫
Ex(x, y, z)T x

klm(x, y, z)dxdydz (2.5)

E
y
klm =

∫ ∫ ∫
Ey(x, y, z)T

y
klm(x, y, z)dxdydz . (2.6)
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k (k+1) (k+2)

X

l (l+1)

Y

m (m+1)

Z

δ δ δ

δ δ

δ δ

x x x

y y

z z

1

1

1

Fig. 2.1 Showing the location of the tent and pulse functions for the element T
(x)
klm(x, y, z) =

π2k(x/δx)π1l (y/δy)π1m(z/δz)

We can compute these from the discretized form of the volume-integral equations

Ex
klm = E

(i)(x)
klm +

∑
KLM

G
(xx)
klm,KLMJx

KLM +
∑

KLM

G
(xy)
klm,KLMJ

y
KLM

+
∑

KLM

G
(xz)
klm,KLMJ z

KLM

E
y
klm = E

(i)(y)
klm +

∑
KLM

G
(yx)
klm,KLMJx

KLM +
∑

KLM

G
(yy)
klm,KLMJ

y
KLM

+
∑

KLM

G
(yz)
klm,KLMJ z

KLM , (2.7)

where E
(i)
klm are the field moments of the incident field, and the JKLM ’s are the

expansion coefficients of the anomalous electric currents. The Gklm,KLM ’s are the
matrices that result from the discretization of the functionals with the Green’s
function kernels, and, thus, do not depend upon the cell conductivities.
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We relate the cell conductivities to the electric field moments in the following
way:

E = J(a)(x, y, z)

σ (a)(x, y, z)
, (2.8)

where E(x, y, z) is the total electric field, J(a)(x, y, z) is the anomalous electric
current, and σ (a) is the anomalous flaw conductivity. Upon substituting (2.8) into
(2.5) and (2.6), we get

Ex
klm =

∫ ∫ ∫
J (a)(x)(x, y, z)

σ (a)(x, y, z)
T x

klm(x, y, z)dxdydz (2.9)

E
y
klm =

∫ ∫ ∫
J (a)(y)(x, y, z)

σ (a)(x, y, z)
T

y
klm(x, y, z)dxdydz . (2.10)

Expanding J(a)(x, y, z) in terms of the basis functions T x
KLM(x, y, z) and

T
y
KLM(x, y, z) gives

Ex
klm =

∫ ∫ ∫ ∑
KLM Jx

KLMT x
KLM(x, y, z)

σ (a)(x, y, z)
T x

klm(x, y, z)dxdydz (2.11)

E
y
klm =

∫ ∫ ∫ ∑
KLM J

y
KLMT

y
KLM(x, y, z)

σ (a)(x, y, z)
T

y
klm(x, y, z)dxdydz . (2.12)

We need to rewrite T x
KLM, T

y
KLM, T x

klm, and T
y
klm in terms of functions whose

support is a single flaw cell. Thus, we write

T x
klm(x, y, z) = Rx

klm(x, y, z) + Sx
k+1lm(x, y, z) (2.13)

T
y
klm(x, y, z) = R

y
klm(x, y, z) + S

y

kl+1m(x, y, z) , (2.14)

with the definitions

Rx
klm(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

x − kδx

δx
for kδx ≤ x ≤ (k + 1)δx,

lδy ≤ y ≤ (l + 1)δy, mδz ≤ z ≤ (m + 1)δz

0 otherwise

(2.15)

Sx
klm(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

(k + 1)δx − x

δx
for kδx ≤ x ≤ (k + 1)δx,

lδy ≤ y ≤ (l + 1)δy, mδz ≤ z ≤ (m + 1)δz

0 otherwise

(2.16)
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R
y
klm(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

y − lδy

δy
for kδx ≤ x ≤ (k + 1)δx,

lδy ≤ y ≤ (l + 1)δy, mδz ≤ z ≤ (m + 1)δz

0 otherwise

(2.17)

S
y
klm(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

(l + 1)δy − y

δy
for kδx ≤ x ≤ (k + 1)δx,

lδy ≤ y ≤ (l + 1)δy, mδz ≤ z ≤ (m + 1)δz

0 otherwise .

(2.18)

Rewriting (2.11) and (2.12) in terms of these new functions gives

Ex
klm =

∫ ∫ ∫ ∑
KLM

Jx
KLM

[
Rx

KLM(x, y, z)

σKLM

+ Sx
K+1LM(x, y, z)

σK+1LM

]

[
Rx

klm(x, y, z) + Sx
k+1lm(x, y, z)

]
dxdydz

E
y
klm =

∫ ∫ ∫ ∑
KLM

J
y
KLM

[
R

y
KLM(x, y, z)

σKLM

+ S
y

KL+1M(x, y, z)

σKL+1M

]

[
R

y
klm(x, y, z) + S

y

kl+1m(x, y, z)
]
dxdydz ,

(2.19)

where σKLM is the (uniform) conductivity of flaw cell KLM .
Because of the compact support of the basis functions, we have

∫ ∫ ∫
Rx

KLM(x, y, z)Rx
klm(x, y, z)dxdydz = 1

3
δxδyδzδkKδlLδmM (2.20)

∫ ∫ ∫
Rx

KLM(x, y, z)Sx
klm(x, y, z)dxdydz = 1

6
δxδyδzδkKδlLδmM (2.21)

∫ ∫ ∫
R

y
KLM(x, y, z)R

y
klm(x, y, z)dxdydz = 1

3
δxδyδzδkKδlLδmM (2.22)

∫ ∫ ∫
R

y
KLM(x, y, z)S

y
klm(x, y, z)dxdydz = 1

6
δxδyδzδkKδlLδmM . (2.23)

Putting these results into (2.19) gives

Ex
klm =

(
1

3

J x
klm

σklm

+ 1

6

J x
k+1lm

σk+1lm

+ 1

6

J x
k−1lm

σklm

+ 1

3

J x
klm

σk+1lm

)
δxδyδz (2.24)
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E
y
klm =

(
1

3

J
y
klm

σklm

+ 1

6

J
y

kl+1m

σkl+1m

+ 1

6

J
y

kl−1m

σklm

+ 1

3

J
y
klm

σkl+1m

)
δxδyδz . (2.25)

By adding the following equations for Ex
kl+1m and E

y

k+1lm,

Ex
kl+1m =

(
1

3

J x
kl+1m

σkl+1m

+ 1

6

J x
k+1l+1m

σk+1l+1m

+ 1

6

J x
k−1l+1m

σkl+1m

+ 1

3

J x
kl+1m

σk+1l+1m

)
δxδyδz (2.26)

E
y

k+1lm =
(

1

3

J
y

k+1lm

σk+1lm

+ 1

6

J
y

k+1l+1m

σk+1l+1m

+ 1

6

J
y

k+1l−1m

σk+1lm

+ 1

3

J
y

k+1lm

σk+1l+1m

)
δxδyδz ,(2.27)

we obtain four equations in the four unknowns, σklm, σk+1lm, σkl+1m, σk+1l+1m.
These equations can be written in matrix form as:

⎡
⎢⎢⎣

x00 x10 0 0
y00 0 y01 0
0 0 x01 x11

0 y10 0 y11

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ρklm

ρk+1lm

ρkl+1m

ρk+1l+1m

⎤
⎥⎥⎦ δxδyδz =

⎡
⎢⎢⎣

Ex
klm

E
y
klm

Ex
kl+1m

E
y

k+1lm

⎤
⎥⎥⎦ , (2.28)

where ρklm = 1/σklm and

x00 = J x
klm

3
+ J x

k−1lm

6
, y00 = J

y
klm

3
+ J

y

kl−1m

6
(2.29)

x10 = J x
klm

3
+ J x

k+1lm

6
, y01 = J

y
klm

3
+ J

y

kl+1m

6
(2.30)

x01 = J x
kl+1m

3
+ J x

k−1l+1m

6
, y10 = J

y

k+1lm

3
+ J

y

k+1l−1m

6
(2.31)

x11 = J x
kl+1m

3
+ J x

k+1l+1m

6
, y11 = J

y

k+1lm

3
+ J

y

k+1l+1m

6
. (2.32)

Note that on the borders of the flaw, some of the expansion coefficients for the
anomalous currents vanish. In particular

J x
klm =

{
nonzero 0 ≤ k ≤ Nx − 2, 0 ≤ l ≤ Ny − 1, 0 ≤ m ≤ Nz − 1
zero otherwise

(2.33)

J
y
klm =

{
nonzero 0 ≤ k ≤ Nx − 1, 0 ≤ l ≤ Ny − 2, 0 ≤ m ≤ Nz − 1
zero otherwise

(2.34)
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Inverting matrix equation (2.28) gives

δxδyδz

⎡
⎢⎢⎢⎣

ρklm

ρk+1lm

ρkl+1m

ρk+1l+1m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11y01y10

D

−y11x01x10

D

y01y11x10

D

−y01x11x10

D

−y00y11x01

D

y11x01x00

D

−y01y11x00

D

x00x11y01

D

−x11y00y10

D

x00x11y10

D

−y00y11x10

D

y00x11x10

D

x01y00y10

D

−x00x01y10

D

x00y01y10

D

−y00x01x10

D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ex
klm

E
y
klm

Ex
kl+1m

E
y

k+1lm

⎤
⎥⎥⎥⎦ ,

(2.35)
where D = x00x11y01y10 − y00y11x01x10. The solution for the σ ’s is

σklm = (x00x11y01y10 − y00y11x01x10) δxδyδz

x11y01y10E
x
klm − y11x01x10E

y
klm + y01y11x10E

x
kl+1m − y01x11x10E

y

k+1lm

σk+1lm = (x00x11y01y10 − y00y11x01x10) δxδyδz

−y00x01y11E
x
klm + y11x01x00E

y
klm − y01y11x00E

x
kl+1m + y01x11x00E

y

k+1lm

σkl+1m = (x00x11y01y10 − y00y11x01x10) δxδyδz

−x11y00y10E
x
klm + x11x00y10E

y
klm − y00y11x10E

x
kl+1m + y00x11x10E

y

k+1lm

σk+1l+1m = (x00x11y01y10 − y00y11x01x10) δxδyδz

x01y00y10E
x
klm − y10x01x00E

y
klm + y01y10x00E

x
kl+1m − y00x01x10E

y

k+1lm

.

(2.36)

This solution for the σ ’s will not exist unless the system, (2.28), is independent.
There are many situations that are likely to arise which will result in dependence
among these equations, and we, therefore, turn to a different method of ‘solving’
(2.28), which we call the ‘two-cell’ hypothesis. Consider a 2 × 2 array of adjacent
cells in the x- and y-directions. We call this array a ‘window pane,’ and ask for the
solution of (2.28) under the hypothesis that two adjacent cells in the window pane
have equal conductivities. The answer is:

σklm = σk+1lm = (x00 + x10)

Ex
klm

σklm = σkl+1m = (y00 + y01)

E
y
klm

σkl+1m = σk+1l+1m = (x01 + x11)

Ex
kl+1m

σk+1lm = σk+1l+1m = (y10 + y11)

E
y

k+1lm

(2.37)
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Of course, this results in non-unique solutions; each cell in the window pane has
two solutions. In fact, because the σ ’s are known to be real, we can separate the x’s
and y’s and E’s into their real and imaginary parts, and get four solutions for each
cell of the window pane. Each solution, then, is an outcome of an experiment, in the
language of set-theoretic estimation theory, and is a candidate for processing by the
robust statistical estimator that is described in the next chapter.

The integral relation that allows us to determine the anomalous current is derived
from the measurement process. Typically, we measure the perturbation of the probe
impedance, ΔZ, due to the flaw. Adopting the probe current Jp as the phase
reference, this impedance is given by:

I 2ΔZ = −
∫

coil

E(s)(r) · Jp(r)dr

= −
∫

f law

E(i)(r) · J(r)dr, (2.38)

where I is the total driving-current in the probe coil. In arriving at the final
expression, we used a reciprocity theorem (see [111, Chapter 5]) that relates the
scattered field, E(s), at the primary source (the eddy-current probe coil) to the
incident field at the secondary source (the anomalous current source due to the flaw).

The integral expression, (2.38), is discretized by substituting the expansions,
(2.3), for the currents, and making use of the definitions of the field moments, (2.5),
(2.6). The result is quickly obtained:

ΔZ = −
∑

KLM

(
J

(x)
KLME

(i)(x)
KLM + J

(y)
KLME

(i)(y)
KLM

)
, (2.39)

where we assume that I = 1, and that the exciting coils produce an incident field
that is oriented in the (x, y)-plane; i.e., E

(i)(z)
KLM = 0.

2.2 Set-Theoretic Estimation

We quote Combettes [27, p. 202]

The basic philosophical motivation for the set theoretic approach is that more reliable
solutions can be obtained by exploiting known information rather than imposing an often
subjective notion of optimality. Thus, in the set theoretic framework, the emphasis is placed
on the feasibility of a solution rather than its optimality, as is done in the conventional
approach. The goal is not to produce a “best” solution but one that is consistent with all
available information. In set theoretic estimation, all the members of the feasibility set
are acceptable solutions. They can be regarded as the objects that, in light of all available
information, may have given rise to the observed data. The only way to restrict objectively
the feasibility set is to incorporate more information in the formulation. If some of the
feasible solutions are not acceptable, then it must be the case that the formulation fails to
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include some constraint that has not been identified. Once the set based on this constraint
is incorporated, any point in the feasibility set should be acceptable; if not the cycle is
repeated. Usually, there is more than one solution, which may be counterintuitive from the
standpoint of conventional point estimation theory where, to extract a single solution, an
objective function with a unique extremum is employed. On the other hand, because of the
arbitrariness in the selection of such an objective function, the result is, at best, nothing but
a qualitative selection of a feasible solution.

In set theoretic estimation, we do not seek a unique solution, as in optimization,
but we seek the set of feasible solutions; all such solutions are acceptable [27]. A
feasible solution is one that is consistent with all available information, such as the
field equation, (2.41), and the data equation, (2.40), both shown below.

The algorithm that we are developing is based on statistical decision theory
applied to the outcomes of a number of “experiments.” Each experiment is labeled
by the view-index v that is associated with the frequency of excitation and position
of the exciting probe in the eddy-current NDE process. The outcomes of the
experiments are elements of the “feasibility set,” in the language of set theoretic
estimation; that is, they satisfy all known information about the problem.

We write the data equation and the field equation as

Z(v) = −
∑
LMJ

E(i)
LMJ (v) · JLMJ (v) (2.40)

E(i)
lmj (v) = Elmj (v) −

∑
LMJ

G
(ee)
jJ (l − L,m − M;ω) · JLMJ (v) , (2.41)

respectively, where G(ee) is an ‘electric-electric’ Green’s dyadic, that transforms an
electric current into an electric field moment.1 Note that (2.40) and (2.41) are linear
in all the variables.

We define the vth “experiment” to be the pair (Z(v),E(i)
lmj (v)), and the “out-

comes” of this experiment to be the pair (Jlmj (v),Elmj (v)), which satisfy (2.40) and
(2.41). Thus, the outcomes are feasible because they satisfy all known information
about the problem. Clearly, we cannot talk about a unique solution, because the
feasible set contains many points.

In the problems that are described in this chapter, we model a single transmitting
coil to excite the system, and a single receiver coil that is scanned over the region
of interest. In place of a single, movable, receiver coil, it is possible to use a fixed
array of receivers. In either case, this is an example of a transmit-receive (T/R)
configuration, which is becoming more widely used in the NDE industry. The use
of a T/R configuration allows us to gain more information from each experiment
(i.e., from each viewing).

For example, if we have a single excitation source (the transmitter), and a single
receiver sensor that is scanned over Ns points, then each view, v, produces Ns

results, {Z1(v), . . . , ZNs (v)}. The actual current JLMJ (v), however, is associated

1We consider only problems in which the host and anomalies are nonmagnetic.
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only with the transmitter, because the transmitter is the sole exciter of the system
(the receiver is assumed to carry no current). Hence, (2.40) is replaced by

Z1(v) = −
∑
LMJ

E(1)
LMJ (v) · JLMJ (v)

Z2(v) = −
∑
LMJ

E(2)
LMJ (v) · JLMJ (v)

...

ZNs (v) = −
∑
LMJ

E(Ns)
LMJ (v) · JLMJ (v) , (2.42)

where E(n)
LMJ (v) is the “incident” field produced by the sensor when it is in its nth

scan position, during the vth view. This field is known a priori, because we know
the location and geometry of the receiving sensor during the vth view.

The minimum-norm solution of (2.42) is given by

J̃LMJ (v) = M †(v)

⎡
⎢⎣

Z1(v)
...

ZNs (v)

⎤
⎥⎦ , (2.43)

where M †(v) is the pseudoinverse of the matrix in (2.42). In the examples of
this chapter, we used the QR-decomposition [62] to compute the minimum-norm
solution. The algorithm that is presented in [62] to solve for the minimum-norm
solution allows the user to define a tolerance level, from which an effective pseudo-
rank is obtained for the system matrix. The tolerance is chosen to produce a stable
solution in the presence of noisy data.

The electric field produced by this current is gotten by substituting (2.43) into
(2.41):

Ẽlmj (v) = E(i)
lmj (v) +

∑
LMJ

G
(ee)
jJ (l − L,m − M;ω) · J̃LMJ (v) . (2.44)

Note that this is the correct electric field-moment corresponding to the current J̃, and
VIC-3D® computes this field very quickly and accurately. This gives VIC-3D®
the advantage over other field-solving methods, such as finite-elements or finite-
differences. More important, however, is that (2.44) is the unique field-moment
associated with the current, and is calculated to the same precision as the current,
which will ensure that the final step in the algorithm, namely the statistical decision
step that is described below, will be meaningful.

Given the electric field moments, we can then calculate an expansion for the
electric field within the flaw. The resulting electric field expansion coefficients will
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be called ẽlmj . Hence, for this value of the view-index, v, we associate the triple,
(J̃x, ẽx)lmj (v), (J̃y, ẽy)lmj (v), (J̃z, ẽz)lmj (v), with the lmj th cell, and when we take
the ratio of the electric current to the electric field at the middle of the lmj th cell,
we arrive at the conductivity, σlmj of the lmj th cell, which is our final goal. We
then perform another experiment by choosing another value of v, thereby generating
another triplet. This ensemble of triplets constitutes the feasible set for each cell.

2.3 Statistical Analysis of the Feasible Set

One of the principal efforts of research in Set-Theoretic Estimation is to determine
the number and nature of the experiments, (Z(v),E(i)

lmj (v)), and receiver scans,

E(n)
LMJ , that produce a good feasible set for statistical analysis. As might be expected,

this depends upon the complexity of the flaw that is to be reconstructed, and upon
the resolution desired in the reconstruction.

After deducing the feasibility set, we are then faced with the task of assigning a
single number for the conductivity of each cell; this is a problem of data analysis,
which uses robust regression, as described in [111, Chapter 13]. The aim of the
statistical analysis of the feasible set is to fit a constant through the data, which
are produced by the algorithm described in the preceding section, for all views (or
experiments), v.

A beneficial feature of this algorithm is that the analysis of the data set for each
cell is done independently of every other cell; i.e., a decision is made on a cell-by-
cell basis. Since the decision to be made for each cell involves a nonlinear (robust)
estimator, the computational burden is greatly reduced when compared to using a
nonlinear estimator to solve for many cells jointly. (The bilinear conjugate-gradient
algorithm is an exception.) Furthermore, this leads us to a constrained iterative
(‘layer-stripping’) algorithm, that uses the known and accepted results for some
cells to determine the results for others at a later stage of the iteration.

2.4 A Layer-Stripping Algorithm

A classical layer-stripping algorithm consists of solving an inverse problem layer-
by-layer, when the physical system permits such a reconstruction. If the excitation
and detection methods permit only one layer to be detected, say due to timing
arrangements in a pulsed system, then only that layer will be reconstructed. This
reconstruction, then, constitutes known data for the reconstruction of the next layer.

In our situation, we have discovered that we can reconstruct certain cells
accurately, similar to the reconstruction of a layer, and we then want to use this
result in the reconstruction of the remaining cells. We do not assume that an entire
layer has been reconstructed, nor that we will reconstruct on a layer-by-layer basis.
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The proposed algorithm proceeds as follows: suppose that we have successfully
reconstructed the conductivity of each cell of a 2 × 2 window pane. That means
that we know σklm, σk+1lm, σkl+1m, andσk+1l+1m; hence, all of the coefficients
in (2.24) and (2.25) are well-defined. Then, we substitute these equations into the
left-hand sides of the field equations, (2.7), and derive the constraint equations:

(
1

3

J x
klm

σklm

+ 1

6

J x
k+1lm

σk+1lm

+ 1

6

J x
k−1lm

σklm

+ 1

3

J x
klm

σk+1lm

)
δxδyδz =

E
(i)(x)
klm +

∑
KLM

G
(xx)
klm,KLMJx

KLM +
∑

KLM

G
(xy)
klm,KLMJ

y
KLM +

∑
KLM

G
(xz)
klm,KLMJ z

KLM

(
1

3

J
y
klm

σklm

+ 1

6

J
y

kl+1m

σkl+1m

+ 1

6

J
y

kl−1m

σklm

+ 1

3

J
y
klm

σkl+1m

)
δxδyδz =

E
(i)(y)
klm +

∑
KLM

G
(yx)
klm,KLMJx

KLM +
∑

KLM

G
(yy)
klm,KLMJ

y
KLM

+
∑

KLM

G
(yz)
klm,KLMJ z

KLM , (2.45)

The unknowns in this equation are the currents in all the cells (including klm);
everything else is known. This equation, which is of the form that VIC-3D® solves,
constitutes a constraint on the system of data equations (2.42). Of course, we get an
equation that is identical to (2.45) for each successfully reconstructed window-pane.
The system of such equations is consistent, and generally well conditioned. Note, in
particular, that if σklm = 0 then the constraint equations become J x

klm = J x
k−1lm =

J
y
klm = J

y

kl−1m = 0.
Thus, our problem now is to determine a minimum-norm (least-squares) solution

of (2.42), subject to the linear constraint(s) of (2.45). We appeal to well-known
algorithms in linear least-squares problems. Lawson and Hanson [62, pp.134–157]
give three algorithms, together with supporting code, to solve this problem. Each of
the three methods consists of three stages:

1. Derive a lower-dimensional unconstrained least squares problem from the given
problem.

2. Solve the derived problem.
3. Transform the solution of the derived problem to obtain the solution of the

original constrained problem.

In Lawson and Hanson’s first method, one makes use of an orthogonal basis for
the null space of the matrix of the constraint equations. If the problem does not have
a unique solution, this method will produce the unique minimum norm solution of
the original constrained problem. Furthermore, this method has the very attractive
feature of being amenable to numerically stable updating techniques, which will be
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necessary as we add more rows to the constraint equation; this will happen as we
satisfactorily reconstruct more and more cells.

The second method uses direct elimination by premultiplication using both
orthogonal and nonorthogonal transformation matrices, and the third solves the
problem by using weighted least-squares. We have tested the second and third
methods, and have found them to produce good results. We used the second method
in the examples reported later in this chapter.

Once the minimum-norm solution of the constrained least-squares problem has
been computed, the algorithm proceeds as before. The currents are substituted into
(2.41), thereby determining the total field in each cell (we can exclude cell klm,
unless we believe that it could be improved). Then the feasibility set is fitted with a
straight line by means of robust estimation; the slope of this line is accepted as the
normalized conductivity of the cell.

If we are still not satisfied with the results of one or more cells, we will perform
a new experiment. The experiment could be simply a new frequency of excitation,
which would make the process a multifrequency algorithm.

2.5 Some Examples of the Inversion Algorithm

Introduction The model examples in this section include surface-breaking and
buried flaws in a half-space. We simulate a transmit-receive (T/R) probe con-
figuration, which includes a single transmitting and receiving probe. Each probe
is scanned independently of the other, but the receiving probe is assumed to be
connected to an infinite-impedance amplifier. This means that it carries no current;
hence, the excitation of the flaw is accomplished solely by means of the transmitter
probe. In all cases the transmitting and receiving coils are identical.

In all the problems considered in this chapter, the host region is a half-space,
whose conductivity is 105 S/m. The anomalous conductivity is normalized to have
a value σa = σf /σh − 1, where σf is the conductivity of the flaw, and σh is the
conductivity of the host. Hence, for a void, in which the conductivity of the flaw,
σf = 0, we have σa = −1, and this is the smallest value that the anomalous
conductivity can take, because σf ≥ 0. For an unflawed cell, σf = σh, which
implies that σa = 0.

In principle, there is no upper limit to the value that σa can assume, but in practice
the conductivity of the flaw is not likely to exceed that of copper (= 5.8 × 107),
which means that for typical host materials, whose conductivities are in the range
106 to 107, σa is likely to be bounded by 9 or so. In the numerical experiments
presented here, we used this as our upper bound in searching for the best fit for the
conductivity of each cell.

A Surface-Breaking Slot at 50 kHz Consider a cubic region intersecting the
surface of the half-space and extending 3 mm vertically (the z-direction) into the
half-space. The (x, y) dimensions are also 3 mm, centered at the origin in (x, y)-
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Fig. 2.2 A surface-breaking slot. Those cells labeled ‘0’ are unflawed, and those labeled ‘−1’ are
empty (zero conductivity)

space. This cube is partitioned into forty-nine cells in the (x, y)-plane, and one cell
in the z-direction. The middle three cells are filled with air (σa = −1), and the
remaining forty-six are filled with host material (σa = 0), as shown in Fig. 2.2.
This arrangement constitutes a surface-breaking slot, whose precise location in the
(x, y)-plane is uncertain. The frequency of excitation is 50 kHz, which produces a
skin-depth of

δs =
√

2

2πf μσh

=
√

2

2π × 5 × 104 × 4π × 10−7 × 105

= 7.12 mm . (2.46)

The transmitting coil is scanned over the (x, y)-plane, using 16 equi-spaced
points in each direction, starting at coordinates (−3.0,−3.0) and ending at
(3.0, 3.0). This scan constitutes 256 ‘experiments.’ The outcome of each of
these experiments is obtained by scanning the receiver coil over the same (x, y)-
raster as for the transmitter, when the transmitter is fixed at each of its points.
This gives us 256 complex equations, with 98 complex unknowns (the x and y-
components of the anomalous current in each cell), which are to be massaged by
the QR-decomposition, producing a single least-squares estimate of the complex
current in each cell. The algorithm then produces the x and y-components of the
corresponding complex electric field within each cell; these are the feasibility sets
that are defined above.

We display the feasibility sets for cells numbered 18, 25, and 32 in Fig. 2.3.
Clearly, the data favor a conductivity value of −1, and that is what the LMS-
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Fig. 2.3 Feasibility sets for cells numbered 18, 25, and 32

estimator produces in the reconstruction shown in Fig. 2.4. This, of course, is the
exact answer for these three cells.

In Fig. 2.5 we show feasibility sets for cells numbered 1, 17, and 26. These cells
are unflawed, but only cell number 1 is reconstructed exactly. Despite this fact,
this reconstruction can be useful in practical NDE, because it indicates clearly the
presence of a flaw, and gives a reasonable estimate of its size. An application of the
S-estimator as well as the classical least-squares estimator produced essentially the
same results.

We can get an idea of the quality of the reconstruction of each cell (or, to put it
roughly, the confidence we can place on the results), by plotting the logarithm of the
median of the squares of the residuals (if we are using the LMS-estimator) versus
theta. The algorithm requires us to choose the minimum of this function, so we wish
to determine the global picture to determine the ‘quality’ of this minimum. We show
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Fig. 2.4 Reconstruction of
the flaw of Fig. 2.2. The
LMS-estimator was used for
this reconstruction
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these results in Fig. 2.6 for cells 18, 25, and 32, and in Fig. 2.7 for cells 1, 17, and
26.

We will use figures such as these in some of our other examples to explain the
results of reconstructions.

Buried Void at 50 MHz We take the same slot configuration of the preceding
example, except to make it only 1.5 mm deep, bury it under a host layer that is
also 1.5 mm thick, and excite this system at 50 MHz. Our use of 50 MHz stems
from our interest in improving the resolution of the reconstructions of the preceding
example, and is guided by the following argument. The (x, y) cell dimensions are
0.429 mm, and the skin depth at 50 kHz is 7.12 mm. At 50 MHz, the skin depth is
0.225 mm, which is about one-half the cell dimensions. The skin effect is isotropic,
which means that a localized source radiating in the host material will have its signal
reduced to 1/e = 0.368 in 0.225 mm, in any direction, at 50 MHz. Thus, at this
frequency, we expect two nearby cells to be well distinguished as compared to the
situation at 50 kHz. The use of the over-layer of host material is merely to make
the problem more challenging and realistic. We used the same raster scan for both
transmitter and receiver as in Section (a), but the inversion process now involves 98
cells, since we are attempting to reconstruct the top layer, as well as the buried void.
That is, we are assuming that we know nothing about the depth of the void. The
system is shown in Fig. 2.8; the upper grid corresponds to the 49 cells of the host
layer, and the lower grid shows the flaw.

The results of the inversion support our conjecture about the smaller skin
depth aiding the resolution of the reconstruction. Each cell of the host layer is
reconstructed exactly (to machine precision) as 0. This exact result is probably due
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Fig. 2.5 Feasibility sets for the unflawed cells numbered 1, 17, and 26

to the fact that this part of the ‘flaw’ is uniform, which means that resolution is no
problem. Furthermore, those parts of the flaw that are nearer the exciting source are
generally reconstructed more accurately than those that are buried.

As for the buried part, it, too, is reconstructed well. We show in Fig. 2.9 several
of the cells surrounding the slot that were not well reconstructed in Fig. 2.4; clearly,
there is significant improvement in the reconstructions of these cells.

In performing this reconstruction we used the entire data set of 1024 points.
If we use only the partial data sets associated with the real and imaginary parts
of the x and y-components of the current density and electric field within each
cell, we continued to get a good reconstruction, using either the S-estimator or the
LMS-estimator. If we consider a performance criterion (or, perhaps we should say
a parameter of confidence), to be the ratio of the largest value of the median (or
estimate of scale in the case of the S-estimator) to the smallest, as θ (the conductivity
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Fig. 2.6 Logarithm of the
median-of-the-squares of the
residual (LMS-algorithm)
versus theta for cells 18, 25,
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Fig. 2.7 Logarithm of the
median-of-the-squares of the
residual (LMS-algorithm)
versus theta for cells 1, 17,
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slope) is varied from −1 to 0, then we found the use of the real and imaginary
parts of the y-components to give, respectively, ratios of 100 and 200 for cell 73
(conductivity = −0.02 in Fig. 2.9). The use of the real and imaginary parts of the
x-components gave, respectively, 40 and 180. When we used the entire data set of
1024 in cell 73, we computed a ratio of 105. In this sense, we can say that the
imaginary part of both components provides superior data.

A Surface-Breaking Checkerboard at 50 MHz In this experiment we replace the
simple slot of the first example by a complex checkerboard flaw that is shown in
Fig. 2.10, and, again, perform a 16×16 raster scan with the transmitter and receiver
probes at 50 MHz.



2.5 Some Examples of the Inversion Algorithm 37

Fig. 2.8 A buried void. The
upper grid corresponds to the
49 cells of the host layer, and
the lower grid shows the flaw
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Fig. 2.9 Showing the
reconstruction of several cells
surrounding the slot, using
the S-estimator. These are
well reconstructed when
compared to Fig. 2.4
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The checkerboard is a difficult flaw to reconstruct, because the ‘scene’ changes
so rapidly; i.e., it contains high spatial frequencies and the receiver scan must be
fine enough to reconstruct these frequencies. The reconstruction using the LMS-
estimator is quite good (corresponding results were obtained using the S-estimator
and classical estimator). We show the reconstruction of the middle row and column
in Fig. 2.11.

A Buried Checkerboard When we bury the checkerboard below a layer of host
material we get the added complication of increasing the number of unknowns that
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Fig. 2.10 A surface-breaking checkerboard

Fig. 2.11 Reconstruction of
the middle row and column of
the surface-breaking
checkerboard
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are to be determined during the reconstruction. This, together with the fact that the
checkerboard scene contains high spatial-frequencies, suggests that we use a 31×31
raster scan for the receiver probe, rather than the 16 × 16 scan that was used in the
preceding examples, but covering the same area. The resolution of the receiver scan
was thereby improved to 0.2 over 0.4 mm.

When we do this we get an excellent reconstruction; the top layer is reconstructed
exactly (zero anomalous conductivity), and the reconstruction of the middle row and
column of the bottom layer are shown in Fig. 2.12.
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Fig. 2.12 Reconstruction of
the middle row and column of
the buried checkerboard
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When we attempted to reconstruct the buried checkerboard using the previous
16 × 16 raster scan with the receiver, we obtained a reasonable reconstruction– one
that was good enough to indicate the presence of a checkerboard flaw beneath a
layer of host material, but not as good as Fig. 2.12. See Fig. 2.13 for these results.

A Double Checkerboard When we stack two checkerboards with the opposite
polarity on top of each other, and reconstruct at 50 MHz using a 31 × 31 receiver
raster scan, we have difficulty obtaining an accurate reconstruction, except for the
zeros of the top layer.

We have developed an empirical rule for determining the quality of a recon-
structed cell, when using either the LMS or S-estimators. We plot the median of the
squares of the residuals, in the case of the LMS-estimator, or the scale factor, in the
case of the S-estimator, versus the sought-for parameter, θ , for −1 ≤ θ ≤ 9 (say, or
some other upper bound, perhaps 0). If the minimum value of the minimum median
or scale factor is two or more orders of magnitude smaller than the maximum value
of median or scale, then the resulting answer is reliable; otherwise, it is suspect.
For example, in Fig. 2.14 we plot the curve of the logarithm of the median versus
θ , for −1 ≤ θ ≤ 0, for cell 1 (corner cell, top layer, conductivity = 0) and cell 2
(conductivity = −1). The curve for cell 1 clearly satisfies our empirical rule for a
reliable reconstruction, whereas that for cell 2 does not. The reconstructed value for
cell 1 is zero, whereas it is not well defined for cell 2.

The source of this problem in our inversion algorithm is the quantity and quality
of data that are presented to the QR-decomposer in the first stage of the algorithm.
Typically, the QR-method in least-squares analysis produces reliable results if the
system of equations is quite over-determined. Hence, there are three possible ways
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layer was reconstructed perfectly. The classical (least-squares) estimator produced these results
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of improving the reconstruction of complex flaws of the double-checkerboard type:
(1) increase the amount of input data by scanning the receiver probe over a larger
range, with increased resolution, (2) using a different least-squares algorithm, such
as Kaczmarz’ [24, 27, 51] algorithm, that works well for even strongly under-
determined systems, or (3) modify our inversion algorithm to account for known
constraints on certain correctly reconstructed cells.

2.6 Application to Aircraft Structures

The Canonical Problems The problems that will be solved in this section are:

1. Use VIC-3D® and our inversion algorithm to model the detection and character-
ization of metal corrosion in hidden or inaccessible airframe locations, such as
double- or triple-layer airframes.

2. Use VIC-3D® and our inversion algorithm to model the detection and character-
ization of cracking or multisite damage in metallic airframe structures.

3. Use VIC-3D® and our inversion algorithm to model the detection, imaging, and
characterization of surface and bulk anomalies in metallic airframe structures or
engine components.

We can model corrosion as a weakly conducting region within a host material,
and a crack as a nonconducting region within the same host. In fact, any region
within the host material that is electrically distinct from the host will be called an
anomalous region, and includes corrosion, cracks, fasteners, etc. We will take the
host material to be aluminum, with a conductivity of 3.06 × 107 S/m, and a relative
magnetic permeability of unity. In the problems that we will solve, we will replace
‘corrosion’ by a ‘fastener,’ whose conductivity is 16% that of aluminum. This is
typical of brass, say.

The canonical structure for the inversion problems is shown in Fig. 2.15, which
we will call a fastener with multisite damage. The structure consists of two layers,
with the damage (or crack) emanating from opposite sides of the fastener in each
layer.

Recall that the anomalous conductivity is given by σf (r) − σh, where σf is the
conductivity of the flaw, and σh the host conductivity. The normalized anomalous
conductivity is simply the anomalous conductivity divided by the host conductivity.
The conductivity of the crack will be zero, which means that the normalized anoma-
lous conductivity of the crack will be −1. The normalized anomalous conductivity
of the fastener is −0.84. Of course, the normalized anomalous conductivity of
the host region is zero. Hence, the normalized anomalous conductivity-map of the
structure is as shown in Fig. 2.16. We number the cells of the grid starting with the
bottom layer, and working to the top. Cell number 1 is in the upper-left corner of
the bottom layer, and cell number 64 is in the lower-right corner of the bottom layer.
Cell number 65 is in the upper-left corner of the top layer (for a two-layer structure),
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Fig. 2.15 Showing a fastener with multisite damage (the ‘crack’) embedded in a host region

and cell number 128 is in the lower-right corner. The length and width of the flaw
will be 10 mm, and the depth 2.5 mm.

The data for the inversion experiments are gotten by assuming a transmit-receive
system, in which the transmitter and receiver coils move independently of each
other. The transmitter coil is taken to have an inner radius of 5 mm, an outer radius
of 10 mm, a height of 2 mm, and to contain 200 turns. It undergoes a 4 × 4 raster
scan in the (x, y) plane, which means that there are sixteen ‘experiments,’ in the
language of set-theoretic estimation theory. The scan increment in the x- and y-
directions is 3.3333 mm, which means that the raster scan covers the entire range of
10 × 10 square-millimeters of the flaw. The lift-off of the transmitter coil is 1 mm.

The receiver coil undergoes a 32 × 32 raster scan in the (x, y)-plane, again
covering the 10 × 10 square-millimeters of the flaw. The inner radius of the receive
coil is assumed to be 1 mm, the outer radius 2 mm, and the height 0.5 mm. The
receive coil contains 200 turns, and its scan lift-off is zero.
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Fig. 2.16 Normalized anomalous conductivity-map of the fastener-with-multisite-damage struc-
ture

We have added noise to all the model impedance data used in our inversions. We
assume that the noise has a zero-mean Gaussian distribution for both the magnitude
and the phase of the impedance. We use a 1% variance in the magnitude and a 1◦
variance in the phase angle. These figures are realistic for contemporary instruments
and data gathering techniques. As for the robust estimators, we have experimented
with both, the Least Median of Squares (LMS) and the Scale (S) estimators, and
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Fig. 2.17 Fastener with multisite damage as a surface-breaking anomaly

will report only the results of the S-estimator, which we call ‘stest’ in the captions
of several figures.

Problem No. 1: Fastener with Multisite Damage in a Slab In the first problem,
the anomalous region breaks the surface of a slab, as shown in Fig. 2.17. The data
are gathered at 200 Hz.

The results for this problem are shown in Fig. 2.18.

Problem No. 2: Layer-Stripping Using Multifrequencies In an attempt to
improve the results of Problem No. 1, we redo that problem by adopting a strategy,
that we call layer-stripping using multifrequencies. The idea is to isolate the top
layer of the anomalous region of Fig. 2.17 from the bottom layer. We do this by
gathering data at a very high frequency, such that the incident field produced by
the sensors does not penetrate to the bottom layer. This means that the anomalous
currents in the cells of the bottom layer will not contribute to the measured
impedances. Hence, we simply constrain these currents to be zero when we do
the reconstruction starting with the QR-decomposition. We used VIC-3D® to
determine suitable frequencies, trying 85, 170, and 340 kHz; we will report the
results for 340 kHz.

The results of the inversion are shown in Fig. 2.19. The important point to note
here is that the ‘zeroes’ in the upper layer are very sensitive to the systematic
and random errors, and are therefore not well reconstructed, whereas the flaw and
fastener cells are well reconstructed. This numerical experiment (and others which
we will not report here) is the basis for determining a heuristic rule, which will be
discussed now.

The stest-estimator generates a curve of scale, S, versus the normalized anoma-
lous conductivity. The conductivity-estimate for each cell is chosen to be that
which produces the (unique) minimum of this curve. In Fig. 2.20 we plot S versus
conductivity for cells 86 and 87 of Fig. 2.19. Cell no. 86 contains flawed material,
whereas no. 87 contains host material.

The minimum for cell no. 87 would, ideally, be sharply peaked at zero, but is
quite broad, and lies too far to the left. Furthermore, it is a shallow null; i.e., the
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Fig. 2.18 Fastener with multisite damage. Reconstructed with 4 × 4 transmitter scan and 32 × 32
receiver scan, using the stest estimator. Noise: 1% relative magnitude error; 1◦ phase error

ratio of the largest to the smallest value of S is not large, typically five or less. On the
other hand, the minimum for cell no. 86 is quite sharply peaked at a value of −0.86,
which is quite close to its ‘correct’ value of −0.84. Furthermore, the minimum is
much deeper than that for cell no. 87. This, then, is the basis of our heuristic rule:
if host cells and anomalous cells occupy the same layer, the host cells are quite
poorly resolved compared to the anomalous cells. Hence, when we see curves
such as those in Fig. 2.20, we will assume that cells, such as no. 87, for which
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Fig. 2.19 Fastener with multisite damage. Reconstructed with 4 × 4 transmitter scan and 32 × 32
receiver scan. This is an example of layer-stripping with multifrequencies, using the stest estimator.
Noise: 1% relative magnitude error; 1◦ phase error. Cells of the top layer, that are marked with a
‘?’, have poorly resolved zeroes. Cells of the bottom layer, marked with a zero and shown in black,
are forced to have a zero conductivity
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Fig. 2.20 Scale, S, versus normalized anomalous conductivity for cells 86 and 87 of Fig. 2.19.
Cell no. 86 contains flawed material, whereas no. 87 contains host material

the ratio of the largest to the smallest value of S is five (5) or less, should have a
zero value for the normalized anomalous conductivity.

When we apply the heuristic rule, and force the appropriate cells in the upper
layer to have zero anomalous conductivity, we obtain the improved results of
Fig. 2.21. Note that by a rather straightforward post-processing algorithm, we have
virtually eliminated the effects of noise.

Furthermore, we have even improved the solution for cell no. 86, as we see in
Fig. 2.22. Here we plot S vs. conductivity for cell no. 86, when the conditions of
Figs. 2.19 (unforced zeros) and 2.21 (forced zeros) hold. Note that the curve is
even more sharply peaked downward when the appropriate cells of the top layer
are forced to be zero than when they are not. Furthermore, the new estimate of the
value of the normalized anomalous conductivity is now −0.84, which agrees with
the original model.

At this point, the logic of the layer-stripping algorithm would have us use the
results for the top layer as a constraint when reconstructing the bottom layer at a
lower frequency, say 200 Hz. This is why the algorithm is called a multifrequency
layer-stripping algorithm. We cannot proceed to do this, however, because the
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Fig. 2.21 Results for the same system as Fig. 2.19, except that the appropriate cells in the upper
layer are forced to have zero anomalous conductivity. Hence, all cells labeled ‘0’, which are shown
in black, have been forced to have zero anomalous conductivity
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Fig. 2.22 Scale, S, versus normalized anomalous conductivity for cell no. 86 before (diamond)
and after (+) forcing zeros for the appropriate cells in the upper layer

current version of VIC-3D® allows us only to apply constraints when a cell has
a zero anomalous conductivity.

Problem No. 3: Fastener with Multisite Damage in Bottom Plate of a Double-
Plate System In this problem, we take the same anomaly as before (the fastener
with multisite damage) and put in the bottom plate of a double-plate system, as
shown in Fig. 2.23. Each plate is 2.5 mm thick, and the distance between them is 1
mm. The anomaly, therefore, penetrates the bottom layer (a ‘throughwall’ anomaly).

In order to make the problem more interesting, we consider the anomaly to lie
in four layers, rather than two. The bottom two layers repeat the bottom layer of
Fig. 2.15, and the top two layers repeat the top layer of that figure. The numerical
experiment is run at 200 Hz, and the results shown in Fig. 2.24. As before, the
‘?’ denotes a poorly resolved cell, which, according to our heuristic rule, will be
interpreted as being a cell containing host material, so that its conductivity will be
constrained to be zero.
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Fig. 2.23 Fastener with multisite damage in bottom plate of a double-plate system

Fig. 2.24 Fastener with multisite damage in second plate of double-plate system. Reconstructed
with 4 × 4 transmitter scan and 32 × 32 receiver scan, using the stest estimator. Noise: 1% relative
magnitude error; 1◦ phase error. The layers are numbered from bottom to top
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Fig. 2.25 Results for the fourth (top) layer of Fig. 2.24, when cells in only the fourth layer are
constrained

When we force the appropriate cells of only the fourth (top) layer to be zero,
we get the results shown in Fig. 2.25 for the fourth layer. There is a significant
improvement compared to Fig. 2.24.

If, however, we constrain the appropriate cells in all of the layers, then we get the
dramatic improvement shown in Fig. 2.26.

Even though the results are excellent, there remains an interesting anomaly
in them. Note the twelve circled cells; their conductivities are too low. This is
a manifestation of the failure of the ‘two-cell hypothesis,’ because two of the
four nearest neighbor cells have perfect zero anomalous conductivities. Hence, the
hypothesis must fail in 50% of the cases for these cells. Nevertheless, this anomaly
is easily recognized, and easily cured. We simply redo the two-cell hypothesis
using the two nearest neighbors that have nonzero conductivities, and recalculate
the conductivities using the robust estimator. When we do this we get excellent
agreement with the true value for these cells.

Problem No. 4: Another Layer-Stripping Example Using Multifrequencies
This problem concerns a buried flaw in an aluminum slab. The anomalous region
is again modeled as a two-layer system, as in Fig. 2.17, but the top layer is simply
host material (anomalous conductivity of zero for each cell). The bottom layer is
identical to the bottom layer of Fig. 2.15.

Because we do not know a priori that the top layer is host material, we run the
problem first at 85 kHz, in order to reconstruct the top layer independently of the
bottom, as in Problem No. 2. This is done by forcing the bottom cells to have zero
anomalous conductivity, as in Fig. 2.27.

The reconstruction of the top layer produces excellent zeros for all of the cells,
as we would hope. This is not a violation of the heuristic rule that was defined in
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Fig. 2.26 Results for all four layers of Fig. 2.24 when the appropriate cells (which are unmarked
in this figure) in all four layers are constrained to have zero relative anomalous conductivity. The
twelve circled cells have values that are too low because of the failure of the ‘two-cell hypothesis.’

Problem No. 2, because there are only host cells in the top layer, not a mixture of
host and anomalous cells.

Next, we rerun the problem at 200 Hz, constraining the top cells to have zero
conductivity, because that is what the reconstruction produced. This is the ‘layer-
stripping’ step, and we can rigorously apply it in this example because the layer
stripped-off has only zero-conductivity cells. The result is shown in Fig. 2.28.

When we apply the heuristic rule to the bottom layer of Fig. 2.28, and force
the appropriate cells to take the value of zero, we get the excellent reconstruction
shown in Fig. 2.29. The cells shown in black are forced to have zero conductivity.
The anomalously low values of three cells are due to the ’two-cell’ hypothesis, and
can be corrected as described before.
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Fig. 2.27 Reconstruction at 85 kHz, with the bottom layer constrained to have zero anomalous
conductivity in each cell (shown in black). The cells of the top layer are freely reconstructed in
accordance with the inversion algorithm, and produce very well-resolved zeros
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Fig. 2.28 Reconstruction of buried flaw, using layer-stripping. Only the cells of the top layer
(shown in black) have been forced to have zero conductivity. The frequency is 200 Hz
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Fig. 2.29 Reconstruction of buried flaw, using layer-stripping. All of the cells labeled zero, and
shown in black, have been forced to have zero anomalous conductivity. The color map in the bottom
figure has a resolution of only 5%
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Chapter 3
Modeling Composite Structures

3.1 Background

Composite materials in the form of fiber-reinforced matrix materials as, for example,
graphite-epoxy, are being increasingly used in critical structures and structural com-
ponents because of their high strength-to-weight ratio. In order to assess the integrity
of these structures, it is necessary to employ suitable methods for quantitative
NDE. One method uses eddy-currents; composite materials, however, are inherently
anisotropic, which means that many of the classical eddy-current technology and
design procedures are not applicable. In addition, composite materials vary widely
in their permittivities and conductivities, which means that new analyses must be
carried out to develop effective strategies for using eddy-currents in quantitative
NDE. A final problem is that there is a variety of potential failure modes in
composites, such as delaminations, fiber-breakage due to impact damage, flaws,
etc., some of which may not be readily detectable by eddy-currents [85]. In order to
complement empirical studies it is necessary to embark upon a rigorous quantitative
NDE program for composites to assess the role that eddy-currents play in it, and
especially to determine suitable inversion algorithms.

Eddy-current methods for the examination of carbon-fiber reinforced epoxy
resins and other composite materials have been discussed and analyzed by Owston
and Prakash [82, 83, 86, 87]. These analyses have been based on an ad hoc
equivalent circuit in which the composite test piece is regarded as being inductively
coupled to the probe, much as in the classical treatment of eddy-current evaluation
of metals. Though the technique gives a useful indication of the form of the results,
a more satisfactory approach, as Owston [83] points out, is to use a field-theoretic
analysis which is capable of giving exact results for a given model. A field-theoretic
analysis is also desirable when computing electromagnetic interactions for shielding
effectiveness of advanced composites in aircraft [132].
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The heart of the problem, as we have emphasized throughout this book, is to
determine a Green’s function for the composite material. Much work has been done
in recent years on the subject of electromagnetic interactions with composite mate-
rials, mostly in the context of electromagnetic shielding of avionics equipment from
electromagnetic pulses [4, 5, 45, 120, 132]. Some of this work is directly applicable
to the problem of computing eddy-current flow within composites, but the Green’s
function problem must be attacked by applying rigorous electromagnetic theory to
anisotropic media.

3.2 Constitutive Relations for Advanced Composites

Advanced composite materials are laminates made up of a number of individual
layers bonded together. Each layer consists of a unidirectional array of long fibers
embedded in, and firmly bonded to, a matrix. The basic building blocks of any
specific composite are defined by the types of fibers and matrix involved. Some
fiber-matrix systems are: boron-epoxy, graphite-epoxy, Kevlar-epoxy, graphite-
polymide and graphite-thermoplastic [5]. The matrix for each of these materials
is normally a good dielectric, whereas the fibers vary in electrical conductivity from
modest (graphite) to a poor dielectric (boron) to a good dielectric (Kevlar). These
materials are nonmagnetic, so that the magnetic permeability is μ0.

Composites have anisotropic conductivities because of the unidirectional arrays
of fibers within. For example, for graphite-epoxy the average macroscopic conduc-
tivity along the fiber direction is 20,000 S/m, whereas in the direction transverse
to the fibers, the conductivity is 100 S/m. It may be surprising to find a nonzero
transverse conductivity in graphite-epoxy, in view of the earlier statement that the
matrix is a good dielectric. The fact is that there is enough local fiber-to-fiber
contact that the average macroscopic conductivity is not zero, as illustrated in
Fig. 3.1 [83]. Other materials, of course, have different longitudinal and transverse
conductivities, as shown in Table 3.1 [5]. The reason that εR for graphite-epoxy is
indeterminate is because the fiber-to-fiber contact effectively shunts the capacitors
between fibers with a fairly low resistance path, making it impossible to measure
dielectric permittivities at frequencies less than 100 MHz, or so. Thus, in Fig. 3.1b,
which shows a possible AC equivalent circuit for eddy-current flow, the capacitors
are effectively short-circuited by the fiber-to-fiber resistors at the lower frequencies.

The anisotropy of the composite manifests itself in a complex-permittivity tensor,
the tensor being diagonal in a coordinate system (ξ1, ξ2, ξ3), where ξ1 is parallel to
the average fiber direction, ξ2 is perpendicular to the average fiber direction, but lies
in the plane of the composite layer, and ξ3 is perpendicular to both fibers and the
plane of the layer:

ε =
⎡
⎣

ε̂11 0 0
0 ε̂22 0
0 0 ε̂33

⎤
⎦ , (3.1)
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Fig. 3.1 How fiber-to-fiber contact allows transverse conduction (a). A possible AC equivalent
circuit for eddy-current flow (b)

Table 3.1 Summary of electrical properties of some composites [5]

Graphite-epoxy Boron-epoxy Kevlar

Permeability (μR) 1 1 1

Permittivity (εR) Indeterminate 5.6 3.6

DC Conductivity (S/m)

Longitudinal (σL) 2 × 104 30 6 × 10−9

Transverse (σT ) 100 2 × 10−8 6 × 10−9

Anisotropy ratio (σL/σT ) 200 1.5 × 109 1
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where ε̂ii = εii − jσii/ω, with j = √−1, and ω is the angular frequency.
The coordinate system just defined, for which the complex permittivity tensor
is diagonal, is not necessarily the laboratory system, (x, y, z), in which the
electromagnetic field vectors are defined. In any case, the tensor symbol will be
used, and the components in a particular coordinate system may be computed by
applying the usual rules for transforming Cartesian tensors.

From here on, we will consider only graphite-epoxy, for which ε11 = ε22 =
ε33 = ε0, σ11 = 2 × 104 S/m, and σ22 = σ33 = 100 S/m.

3.3 Example Calculations Using VIC-3D®

Figure 3.2 illustrates the response of a two-layered composite structure with the
bottom layer oriented at 0 and 90◦ with respect to the top layer. The principal-axis
conductivities of the two layers are [2 × 104, 100, 100] S/m, which is typical of
cfrp composites. The x-axis is aligned with the fibers, and the y- and z- axes are
transverse to this direction. There is enough fiber-to-fiber contact in the transverse
directions to yield a nonzero transverse conductivity. Excitation of this system is by
means of a circular coil. Each layer has dimensions of 6 × 6 × 0.25 in.

When the same composite structure of Fig. 3.2 is excited by a racetrack coil
at 1 MHz, the resulting response when the coil is rotated through 360◦ is shown
in Fig. 3.3. The relative ‘flatness’ of the reactance response between 60 and 120◦
for the situtation in which the bottom plate is rotated 90◦ relative to the top plate
suggests that this configuration is somewhat more ‘isotropic’ than the configuration
in which both plates are similarly oriented. This seems to be intuitively reasonable.
Another metric is the peak-to-peak change in response divided by the mean value of
the response. Again, this shows that the configuration in which the bottom layer is
rotated 90◦ yields a ‘more isotropic’ response than otherwise. Indeed, the purpose
of such a ‘lay-up order’ is to force the stress distribution within the structure to be
more isotropic than with a single plate, or with two plates aligned parallel to each
other. One result of the 0–90◦ order is that warping will be reduced.

A Second Example Using VIC-3D® Consider the preceding example with both
plates aligned parallel to each other, but excited by a T/R configuration comprising
a circular transmit and receive coil. The receive coil is raster-scanned in the
(x, y)-plane symmetrically about the transmit coil, which is excited at 1 MHz.
The host is isotropic with a conductivity of 100 S/m, and two types of anomalies
will be presented. The first is an isotropic patch with conductivity 20,000 S/m,
and the second a graphite-epoxy patch with the usual conductivity pattern of
[2 × 104, 100, 100] S/m.
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Fig. 3.2 Frequency response of a two-layered composite structure with the bottom layer oriented
at 0 and 90◦ with respect to the top layer. The principal-axis conductivities of the two layers are
[2 × 104, 100, 100] S/m, which is typical of cfrp composites. The x-axis is aligned with the fibers,
and the y- and z-axes are transverse to this direction. There is enough fiber-to-fiber contact in the
transverse directions to yield a nonzero transverse conductivity
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Fig. 3.4 Isotropic response of the T/R probe to the isotropic patch. The plotted data are the
magnitude of the transfer impedance, |Z|, measured by the receive coil

The results for the isotropic patch are shown in Fig. 3.4, and for the graphite-
epoxy patch in Fig. 3.5. These figures illustrate the the magnitude of the transfer
impedance, |Z|, measured by the receive coil. The response to the isotropic patch is
circular (isotropic), as expected, whereas the response to the graphite-epoxy patch
is strongly oriented in the x-direction, but also includes significant ‘side-lobes’
extending in the y-direction.

The side-lobes are much less apparent in the model consisting of the lay-up order
[0000000090]S shown in Fig. 3.6. The rest of the model is as shown in Fig. 3.5. By a
‘lay-up order of [0000000090]S’ we mean a structure consisting of eighteen layers,
the first eight of which are aligned in the 0◦ direction, the ninth rotated 90◦ relative
to the first eight, and the remaining nine symmetrically placed relative to the first
nine. This structure manifests itself as a sandwich in which the top and bottom
layers are identical with a conductivity tensor of [2 × 104, 100, 100] S/m and the
thin middle layer has a conductivity of [100, 2 × 104, 100] S/m. It is clear that the
middle layer of the sandwich produces a more isotropic structure, thereby reducing
the possibility of warpage. The electromagnetic response, therefore, shows a closer
similarity to the isotropic response of Fig. 3.4 than to Fig. 3.5.
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Fig. 3.5 Oriented response of the T/R probe to the graphite-epoxy patch with conductivity pattern,
[2 × 104, 100, 100] S/m. The plotted data are the magnitude of the transfer impedance, |Z|,
measured by the receive coil
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Fig. 3.6 Oriented response of the T/R probe to the graphite-epoxy patch with lay-up order
[0000000090]S . The rest of the model is as shown in Fig. 3.5. The plotted data are the magnitude
of the transfer impedance, |Z|, measured by the receive coil
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3.4 A Coupled-Circuit Model of Maxwell’s Equations

Maxwell’s dual equations are

∇ × E = −jωμ0(H + M)

∇ × H = jωεE + σE , (3.2)

where the first equation is Faraday’s law, and the second Ampere’s circuital law. We
call these ‘dual equations,’ in the sense that the sources of the first are magnetic
currents, and those of the second are electric currents. In representing fields by
means of electric circuits, we use duality in the same way. In a circuit, we would
represent the sum of magnetic effects (voltages) by a series circuit, since voltages
add in such a circuit, and the sum of electric currents by a parallel circuit, since
currents add in such a circuit.

Thus, we could use Fig. 3.7 as a coupled-circuit model of a coil inducing electric
currents within a composite plate. R0 and L0 are, respectively, the resistance and
self-inductance of the coil in freespace, and Lμ is the increased inductance of the
coil due to the permeability of the plate. L1 is the ‘virtual’ secondary inductance that
accounts for induction effects within the plate, M0 is the mutual inductance between
L0 and L1, and Mμ is the mutual inductance between Lμ and L1. R is the effective
‘secondary resistance’ that is due to the transverse electrical conductivity of the plate
and C is the effective ‘secondary capacitance’ that is due to the transverse electrical
permittivity of the plate. That there may be magnetic effects in composite structures
is made clear in [55, 56, 126, 139], at least in the case of composites made of carbon
nanotubes.
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Lμ
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1

R
0
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Mμ

in
Ζ
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Z L

Fig. 3.7 A coupled-circuit model of the coil in the presence of the composite plate. R0 and L0
are, respectively, the resistance and self-inductance of the coil in freespace, and Lμ is the increased
inductance of the coil due to the permeability of the plate. L1 is the ‘virtual’ secondary inductance
that accounts for induction effects within the plate, M0 is the mutual inductance between L0 and
L1, and Mμ is the mutual inductance between Lμ and L1. R is the effective ‘secondary resistance’
that is due to the transverse electrical conductivity of the plate and C is the effective ‘secondary
capacitance’ that is due to the electrical permittivity of the plate
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We are going to apply this coupled-circuit model to the analysis of carbon-fiber
refinforced polymers (cfrp), which do not exhibit ferromagnetic effects, so we will
drop Lμ from here on. Furthermore, our interest is in the transverse effects of the
electromagnetic interaction with the plate, i.e., effects that are orthogonal to the
direction of the fibers, as in Fig. 3.1. Elementary coupled-circuit theory yields an
expression for the driving-point impedance of the loaded coil:

Zin = R0 + jωL0 + ω2M2
0

ZL + jωL1
. (3.3)

From this we get the change in impedance due to the presence of the composite
plate:

δZin = Zin − R0 − jωL0 = ω2M2
0

ZL + jωL1

= ω2M2
0RL − jω2M2

0 (ωL1 + XL)

R2
L + (ωL1 + XL)2

, (3.4)

where RL and XL are the real and imaginary parts of the load impedance, ZL.
If XL ≥ 0 in (3.4), say due to a resistor or inductor, then δXin < 0, which is

Lenz’ law for inductively coupled circuits. If, on the other hand, XL ≤ 0, say due to
a capacitor, then the sign of δXin depends upon the relative value of ωL1 and XL.
In the case illustrated in Fig. 3.7, which in turn is suggested by the physical picture
of Fig. 3.1, we have a parallel RC circuit, for which

RL = R

1 + ω2R2C2

XL = − ωCR2

1 + ω2R2C2 . (3.5)

If ωL1 >
ωCR2

1 + ω2R2C2 , then δXin is negative in (3.4), as in Lenz’ law, but if

ωL1 <
ωCR2

1 + ω2R2C2
, then the change in reactance is positive. Finally, we have

the interesting result that if ωL1 = XL = ωCR2

1 + ω2R2C2 , then the reactance change

is zero, which is resonance.
A rigorous coupled-circuit model that includes the interactions between the

driver coil, host and anomaly is shown in Fig. 3.8. The analysis of this circuit leads to
the slightly more complicated expression for the driving-point impedance of (3.6),
compared to (3.4).
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Fig. 3.8 A coupled-circuit
model showing the three
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+ ω2M2
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ch
M2

ha

(Rh + jωLh)
[
(Rh + jωLh)(Ra + jωLa) + ω2M2

ha

] . (3.6)

3.5 Eddy-Current Detection of Prepreg FAWT

Now we want to apply the previous model to the question of eddy-current detection
of the fiber areal weight (FAWT) of graphite-epoxy prepreg.1 The FAWT, measured
in grams per square meter, is a way of expressing the fiber d e n s it y for a given
material thickness. By ‘fiber density’ we mean a number between zero and one
that indicates how densely distributed the fibers are in the material. If we know
the specific gravity of the fiber material and the thickness of the material, we can
convert FAWT to fiber density and vice-versa. The conversion between fiber density
and FAWT may not be a simple task; we must take into account the resin content.
Increasing the resin content is likely to increase the thickness of the material for a
given FAWT, which will probably decrease the fiber density. The thickness of the
material is not easily measured. Since the material is made up of many distributed

1Reference [130] should be consulted for more details on modeling and measurements for eddy-
current detection of prepreg FAWT that were performed at Sabbagh Associates for the Hercules
Company in 1990. That work did not use VIC-3D®, which was not fully developed at that time.
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fibers, the thickness at any spot is a random variable, and also depends on how much
pressure is applied to the layer.

It is not immediately clear exactly how changing FAWT changes the conduc-
tivity. We can make a few reasonable assumptions. First of all, we note that if the
FAWT reaches zero, there are no fibers, and we must have simply resin. As far
as eddy currents are concerned, the resin looks just like freespace. Therefore , we
conclude that as FAWT decreases, conductivity decreases toward zero (freespace).
If we take into account capacitive effects , we must look at the dielectric properties
of the resin. Capacitive effects should not come into the picture for eddy-current
inspection, as long as we keep the frequencies relatively low. As FAWT increases,
the prepreg begins to look more and more like a slab of solid carbon. An increasing
number of fibers contact, making the transverse conductivity increase. It seems
reasonable to assume that as FAWT increases, both the transverse and longitudinal
conductivity approach a limit determined by the conductivity of the graphite fibers.
We can probably improve somewhat on these simple-minded observations by using
models for graphite fiber interactions found in the literature.

We note that the transverse conductivity is likely to be more affected by a
change in FAWT than the longitudinal conductivity, assuming a nominal value of
60% fiber. A simple argument is based on our previous comments. Assuming that
the transverse conductivity, denoted σT , approaches the longitudinal conductivity,
σL, as the fiber density approaches 100%, and given a typical anisotropy ratio of
200:1 (based on 60% fiber density) , one can get an idea of how σT and σL must
change when the fiber density is increased toward 100%. We note that σT must
change by at least a factor of 200, while σL is known to change by only a factor
of about two. Such a refined estimate of conductivity change will be useful when
we assess the accuracy of the proposed method of measurement. For now, it will be
reasonable to assume that the conductivity scales by the same percentage change as
the FAWT (the transverse and longitudinal conductivities). Actually, it is suggested
that the change in transverse conductivity is a higher order than direct-proportion
relationship; the simple model used in the reference predicts a squared relationship.
If indeed the transverse conductivity depends on the FAWT squared, or a higher
power of FAWT, then we are in a good position to measure the FAWT change. We
know from our own experience and models that our laboratory measurements are
sensitive to conductivity changes in the material. All that remains to be discovered
is the relationship between conductivity and FAWT.

Resin content appears to affect the conductivity in a perhaps complicated way.
It appears that resin content can dramatically affect the transverse conductivity,
but may have little effect on the longitudinal conductivity. One way to explain the
physical reason for the conductivity change with resin content is to think of the resin
as an insulator partially shielding the adjacent fibers (“wires”) from contacting each
other, thereby reducing σT . Using this explanation also leads us to the conclusion
that σL is not significantly changed by resin content, assuming that the resin content
does not significantly change the overall volume of the material, since the “wires”
conduct equally well when they are surrounded by insulation.
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It is somewhat easier to predict the variation of a measured signal when the
conductivity of the sample is changed than it is to predict the variation of the signal
when the FAWT is changed. The problem is somewhat simplified if the sample
thickness is known a priori, but knowledge of the sample thickness should not be
a requirement; the information can presumably be extracted from multi-frequency
data. Our model is useful in generating the prediction of signal variation when the
conductivity changes. Another possible method, other than the computer model, for
determining the relationship between conductivity and measured signal would be to
measure the signal given known-conductivity samples. It is unlikely, however, that
we would have enough samples to accurately determine the response to conductivity
change using strictly experimental data. A useful approach might be to use the
model in conjunction with experimental data to determine a better approximation
of the relationship.

3.6 An Anisotropic Inverse Problem for Measuring FAWT

Following the previous discussion of eddy-current detection of prepreg FAWT, we
consider the transverse conductivities, σy and σz, to be the FAWT metric. A simple
model for inferring these conductivities using eddy-currents is shown in Fig. 3.9.
Data are taken at 11 frequencies equally logarithmically spaced between 1 and
100 MHz over the FAWT test region, and these data are then presented to NLSE,
VIC-3D®’s nonlinear least-squares estimator, for inversion. The unknowns are the
transverse conductivities.

As is usual in doing model-based inversions, we must generate a surrogate
interpolation table using nodes at prescribed values of the unknowns. The resulting
responses are called ‘blending functions’, and the objective is to determine what
combination of the functions best fits the measured data. For the proposed model
shown in Fig. 3.9, we assume that σy = σz = 100 is the unknown transverse
conductivity, and to infer this we use values of σy = σz = 25, 75, 125 to create
the interpolation table. The blending functions that correspond to these nodes are

1.5mmGraphite−EpoxyHost

σ   = 20000, σ  = 100,  σ  = 100x y zσ
x

= σ
y

= σ
z

= 100

FAWT Test Region

Probe Coil

Fig. 3.9 Illustrating the model problem for analyzing FAWT. The host graphite-epoxy slab is
isotropic, with the conductivities shown, whereas the FAWT region is anisotropic. The ratio of
the longitudinal to the two transverse conductivities is typical for a FAWT=60% for this particular
sample of graphite-epoxy. The probe coil is excited over a frequency range of 1–100 MHz in ten
equal logarithmic steps
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Fig. 3.10 Blending functions for the inverse problem of determining σy = σz in Fig. 3.9. The
nodes for the transverse conductivities are shown

shown in Fig. 3.10. These blending functions have a special structure that will be
discussed in connection with the equivalent circuit of Fig. 3.7 shortly.

The result of the inversion is shown in Table 3.2. The result gives a reliable
estimate that is off by 1.64%, with a reasonably low sensitivity coefficient as
described in Chap. 6.
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Table 3.2 Result of FAWT inversion for a 1.5 mm-thick slab: σy = σz = [25, 75, 125]
Φ σy /sensit σz/sensit No. pts.

0.212(3) 101.64/0.798 101.64/0.798 500

Table 3.3 Result of FAWT inversion for a 1.5 mm-thick slab: σy = [25, 75, 125], σz =
[25, 75, 125]
Φ σy /sensit σz/sensit No. pts.

0.206(3) 101.53/0.781 125.0/164.9 14

Table 3.4 Result of FAWT inversion for a 12.7 mm-thick slab: σy = σz = [25, 75, 125]
Φ σy /sensit σz/sensit No. pts.

0.239(3) 97.18/2.126 97.18/2.126 500

Table 3.5 Result of FAWT inversion for a 12.7 mm-thick slab: σy = [25, 75, 125], σz =
[25, 75, 125]
Φ σy /sensit σz/sensit No. pts.

0.183(3) 99.09/1.834 75.92/13.05 500

It seems reasonable to treat the transverse conductivities as a package in which
σy = σz. If, however, we wish to consider problems in which they may not be
equal, perhaps due to the presence of fiber tows, then the corresponding inverse
problem treats σy and σz as independent unknowns, so the inverse problem is two-
dimensional. If we use the same one-dimensional nodes as before, the interpolation
table becomes the Cartesian product [25, 75, 125] ⊗ [25, 75, 125]. Using the same
data, over the same frequency range as before, the result of the inversion is shown
in Table 3.3. While σy is reliably reconstructed, σz is not. It seems that the 1.5mm
thick sample is too thin to generate a significant Ez field that would be necessary
to interrogate the structure to produce σz. The challenge in measuring σz has been
discussed in [130].

To test this idea, we reran the inverse problem for a 12.7 mm-thick sample, using
the same data as before. The result for the restricted case of σy = σz, i.e., a one-
dimensional problem, is shown in Table 3.4. The results are still quite good, with
perhaps a little less certainty because of the larger sensitivity coefficient.

Finally, we consider the two-dimensional case with σy = [25, 75, 125], σz =
[25, 75, 125], independently. The result of this inversion is shown in Table 3.5. The
improvement here, over Table 3.3, is in the estimation of σz and its reliability, as
indicated by the much smaller sensitivity coefficient. This lends credence to the
hypothesis that there must be sufficient thickness in the sample to allow a significant
value of Ez to evolve. The manner in which such a component is derived can be
argued by the following simple model. In an infinite, homogeneous, isotropic plate,
the induced electric field has a vanishing z-component, where the z-direction is
normal to the surface, so the resulting eddy-currents flow in planes parallel to the
surface.
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Currents flowing orthogonally to the fiber direction penetrate more deeply into the sample.
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Fig. 3.11 Currents flowing orthogonally to the fiber direction penetrate more deeply into the
structure because of the extended skin depth
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Fig. 3.12 The ‘bent-plate’ phenomenon: currents flowing orthogonally to the fiber direction
penetrate more deeply into the structure because of the extended skin depth. This gives rise to
a z-directed current component. If the structure is thick enough in the z-direction, this component
should be large enough to produce a reliable estimate of the zz-component of the conductivity
tensor

In the anisotropic plate with which we are concerned, however, the x-component
of the electric field experiences a skin depth much smaller than that experienced
by the y-component (see Fig. 3.11), which means that the resulting eddy-currents
flow in a ‘bent-plate’ mode, as suggested by Fig. 3.12. This gives rise to a z-directed
field and current. It is this field, and the resulting current that allows us to infer the
zz-component of the conductivity tensor. We expect that the z-field becomes larger
with a thicker structure, allowing a more reliable estimate of σz.
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3.6.1 Return to an Analysis of Fig. 3.10

The blending functions of this figure exhibit a feature that supports the circuit model
of Fig. 3.7 and the analysis surrounding it, namely Eqs. (3.3)–(3.5).

The reciprocal of the conductivities shown in Fig. 3.10 corresponds to the
resistor, R, that shunts the capacitor, C, in Fig. 3.1. These two ‘circuit elements’ are
repeated in the load impedance, ZL, of Fig. 3.7. Hence, the smaller the conductance
value in Fig. 3.10, the larger is R, relative to C, which means that C will dominate
in ZL at a lower frequency. According to our analysis in (3.4) and (3.5) the driving-
point reactance, δXin, may go positive earlier than for larger conductivities, which
we clearly see in Fig. 3.10. In fact, we see what appears to be a resonance, following
the discussion of (3.5) at 80 MHz.

There is a caveat, however, and that is that δRin in (3.4) is always positive, as
we would expect for a passive system, whereas the resistance in Fig. 3.10 is, for the
most of the frequency range, negative. This is due to the fact that R and X in the
figure correspond to the ‘FAWT Test Region’ in Fig. 3.9, and VIC-3D® treats this
region as an ‘anomaly’ relative to the Graphite-Epoxy Host. Hence, the ‘true’ δZin
of (3.4) is the sum of the host response plus the responses shown in Fig. 3.10. This
response can be inferred in Fig. 3.13, where we plot the host response together with
the anomalous responses (the blending functions) of Fig. 3.10.

It is clear that when we add the host response to each of the blending functions,
we will get a positive R for all frequencies, but that X will not go positive in this
frequency range, though it is tending that way. When using this model in the lab, we
would subtract the host-only response from the total response to get the anomalous
response which contains the important information for determining the parameter
values in an inverse problem.

3.7 Further Results for Permittivity

To further test our ability to sense capacitive effects in the composite, we model
the problem shown in Fig. 3.9, except that we excite the coil from 0.1–10 GHz, and
we fix σy = σz = 25 S/m. We assume the dielectric constant of the composite to
be isotropic, since we have no justification for choosing an anisotropic model. We
choose principal values of the dielectric constant tensor to be [1, 3, 5], and compute
the response, which is shown in Fig. 3.14.

We clearly see a distinct difference in both R and X at the higher frequencies, as
we would expect for the small value of σy and σz. Had we chosen larger transverse
values, it is unlikely that we would see dielectric effects at these frequencies. The
oscillations in the responses over this large frequency range are due to the complex
frequency response of (3.6).
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Fig. 3.13 Showing the isotropic host response, together with the blending functions. The sum of
the host response with each of the blending functions produces the response of (3.4)
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Fig. 3.14 Anomalous response of the FAWT Test Region of Fig. 3.9 over the frequency range
0.1–10 GHz. The parameters are σx = 20000 S/m and σy = σz = 25 S/m. The test parameter is
the relative isotropic dielectric constant, which has values [1, 1, 1], [3, 3, 3], and [5, 5, 5]
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3.8 Comments and Conclusions

We should make clear at this point that the ‘permittivity’ that we are computing is
not that of the host polymer matrix. That can only be inferred by measurements on
a pristine sample before embedding carbon fibers within it. The VIC-3D® model
that we are using assumes a homogeneous sample of cfrp that is characterized by
a conductivity tensor and a scalar permittivity. The conductivity tensor allows an
anisotropy to be present due to the fibers, but we are assuming a scalar permittivity
because we have no justification not to. In any case, it is a trivial matter to add a
tensor permittivity.

Thus, we are talking about composite features, conductivity and permittivity, of
the composite material. In this sense we are treating the material as an ‘artificial
dielectric’, in which a number of identical conducting obstacles are arranged in a
regular pattern in a dielectric filler material. The net effect of such an arrangement
under the action of an applied electromagnetic field is to produce a net average
dipole polarization per unit volume, which increases the effective permittivity of
the system [26, Chapter 12]. With a regular arrangement of conductors, the system
will produce an anisotropic permittivity, which we have not considered in this paper.
The anisotropy will disappear with a random arrangement of conductors, which is
probably a more reasonable model of the cfrp composite in the first place. We will
attack the random model of cfrps in coming work.

We have demonstrated that rigorous electromagnetic models, supplemented with
equivalent electrical circuits, can be used to analyze carbon-fiber reinforced polymer
(cfrp) composites. The use of equivalent circuits facilitates the interpretation of
the field solution, especially when the ‘observable’ of each model is an electrical
impedance. The volume-integral code, VIC-3D®, is well suited for these analyses,
and we have further demonstrated that it is capable of providing useful results in the
gigahertz range, well out of the normal range for eddy-current models.

An important further result of this modeling effort is the demonstration that
simple eddy-current NDE models, even with a standard circular probe, can produce
useful results for characterizing certain properties, such as fiber-areal weight
(FAWT) of prepreg cfrp. VIC-3D® also has the capability of modeling more
complex probes, such as those that are designed to operate in the gigaherts or
terahertz range, which could also be useful in modeling and characterizing cfrp.

3.9 Eigenmodes of Anisotropic Media

The previous calculations in this chapter were based on a model in which the
anisotropy was a bounded anomaly within an isotropic host. This model allowed
us to use the usual isotropic Green’s function, which has been the basis of
our work to this point. There may be occasions in which one might wish to
generalize the model, so that the host, itself, is anisotropic, and any departures
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from this host would be anomalies that would be gridded by themselves, without
the need to grid the host anisotropy. Furthermore, one may be interested in other
problems of electromagnetic scattering from composite materials, without reference
to nondestructive evaluation. For these reasons, we will outline the development of a
Green’s function for aniostropic planar layered media, that follows closely the spirit
of [111, Chapter 2].

We will consider plane-parallel bodies of infinite extent in the (x, y) plane, which
are made up of layers of homogeneous, anisotropic material. To be specific, we
consider host materials that are characterized by the following biaxial generalized
electrical permittivity matrix:

εh =
⎡
⎣

εx εxy 0
εyx εy 0
0 0 εz

⎤
⎦ , (3.7)

where the entries are generalized permittivities ε + σ/jω.
Maxwell’s equations for an electrically anisotropic body are

∇ × E = −jωμhH − jω(μ(r) − μh)H

= −jωμhH + Jm

∇ × H = jωεh · E + jω(ε(r) − εh) · E
= jωεh · E + Je, (3.8)

where Jm and Je are anomalous magnetic and electric currents that account for the
presence of flaws, or anomalies, in the otherwise-uniform host material. From here
on we drop the subscript h on the generalized host permittivity and permeability.

Because of the material anisotropy, it is convenient to work with a matrix
formulation of these equations that has been useful in crystal optics, plasmas and
microwave devices [7–9, 17, 59–61, 115, 125]. If the body is homogeneous with
respect to (x, y), then Maxwell’s equations can be Fourier transformed with respect
to (x, y), and written as the following four-vector matrix differential equation in the
spectral domain:

d ẽ
dz

= S · ẽ + U · J̃ (3.9)

Ẽz = ky

εzω
H̃x − kx

εzω
H̃y + j

εzω
J̃ez (3.10)

H̃z = −ky

μω
Ẽx + kx

μω
Ẽy − j

μω
J̃mz, (3.11)
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where the tilde denotes a function defined in the transform domain (kx, ky), and

ẽ =

⎡
⎢⎢⎣

Ẽx

Ẽy

H̃x

H̃y

⎤
⎥⎥⎦ ; J̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J̃ex

J̃ey

J̃ez

J̃mx

J̃my

J̃mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.12)

The subscript e denotes an electric current, and m denotes a magnetic current. The
matrices in (3.9) are given by

S = −

⎡
⎢⎢⎣

0 0 a b

0 0 c d

α β 0 0
γ δ 0 0

⎤
⎥⎥⎦ ; U =

⎡
⎢⎢⎣

0 0 kx/ωεz 0 1 0
0 0 ky/ωεz −1 0 0
0 1 0 0 0 −kx/ωμ

−1 0 0 0 0 −ky/ωμ

⎤
⎥⎥⎦ . (3.13)

The entries of S are given in terms of the entries of (3.7) by

a = j

ωεz

kxky ; α = j

ωμ
(−μεyxω

2 − kxky)

b = j

ωεz

(μεzω
2 − k2

x) ; β = j

ωμ
(−μεyω

2 + k2
x)

c = j

ωεz

(−μεzω
2 + k2

y) ; γ = j

ωμ
(μεxω

2 − k2
y)

d = − j

ωεz

kxky ; δ = j

ωμ
(μεxyω

2 + kxky). (3.14)

When J̃ is a surface current confined to z = z′, i.e., J̃ = J̃sδ(z − z′), then
integration of (3.9) produces

ẽ(+) − ẽ(−) = U · J̃s . (3.15)

The superscript (+) denotes the limit as z approaches z′ from above, and the
superscript (−) denotes the limit from below. Equation (3.15) is used to compute
the Green’s dyad for a layered workpiece.

Starting with these equations, Roberts [90] has developed a fairly complete
theory of normal modes of biaxial anisotropic media. This work is based on, and
extends, earlier work performed at Sabbagh Associates [92, 93]. From here on we
specialize the theory developed in [90] to the case to be considered here, in which
the media involved are transversely isotropic to the x-coordinate. The generalized
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electric permittivity tensor, in its principal-axis coordinate system, then takes the
form

ε =
⎡
⎣

εx 0 0
0 ε 0
0 0 ε

⎤
⎦ , (3.16)

which is typical of many graphite-epoxy composites.
The eigenmodes are solutions of (3.9) with the input currents set equal to

zero, and are simply the eigenvalues of S. It is straightforward to compute these
eigenvalues, ±λ1 and ±λ3:

λ1 =
[
(εx/ε)k

2
x + k2

y − ω2μ0εx

]1/2
, λ3 =

[
k2
x + k2

y − ω2μ0ε
]1/2

. (3.17)

λ1 corresponds to the extraordinary wave, and λ3 to the ordinary wave. Clearly,
when εx = ε, then λ1 = λ3, and the extraordinary wave becomes ordinary, which
agrees with the results for an isotropic medium (such as free-space).

Corresponding to each eigenvalue is an eigenvector. We have some liberty in
choosing the two independent equations that generate the eigenvectors; hence, there
is some arbitrariness in choosing the eigenvectors. We choose the following because
of their simple structure:

v1 =

⎡
⎢⎢⎣

α1

α2

0
1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

−α1

−α2

0
1

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

0
1
γ1

−γ2

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

0
1

−γ1

γ2

⎤
⎥⎥⎦ , (3.18)

where

α1 = S14/λ1, α2 = S24/λ1, γ1 = S32/λ3, γ2 = S31/λ3 , (3.19)

and the Sij are defined in (3.13) and (3.14). v1 and v2 are associated with +λ1, −λ1,
respectively, whereas v3 and v4 are associated with +λ3, −λ3, respectively. The
second and fourth vectors are the two (+)-going modes, and the first and third are
the two (−)-going modes, in the z-direction. Corresponding functions in free-space
are designated by the subscript 0. Note that v1, v2 are transverse magnetic (TM) to
x, and v3, v4 are transverse electric (TE) to x.
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3.10 Computing a Green’s Function for a Layered
Workpiece

We now consider a layered workpiece of finite extent in the z-direction. We assume
that the source is at z′ > 0, the workpiece has a thickness, zw, satisfies −zw < z <

0, and is divided into, say, ten subregions, which are defined as follows:

Layer1 : z1 < z < z0 = 0
Layer2 : z2 < z < z1
...

...

Layer10 : −zw = z10 < z < z9

. (3.20)

The spectral-domain Green’s function is expanded in terms of the eigenvectors
of (3.18) as

G̃(z, z′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

av20e−λ0(z−z′) + bv40e−λ0(z−z′), z′ < z

cv10eλ0(z−z′) + dv20e−λ0(z−z′)

+ev30eλ0(z−z′) + f v40e−λ0(z−z′), 0 < z < z′

c(i)v(i)
1 eλ1(z−zi−1) + d(i)v(i)

2 e−λ1(z−zi−1)

+e(i)v(i)
3 eλ3(z−zi−1) + f (i)v(i)

4 e−λ3(z−zi−1), zi < z < zi−1, i = 1, . . . , 10

gv10eλ0(z+zw) + hv30eλ0(z+zw), z < −zw

(3.21)

Using the boundary conditions and the conditions at the source, we can find the
unknowns by solving (in the case of ten layers) a 44 × 44 system of equations for
d, f, c(1), e(1), d(1), f (1), . . . , c(10), e(10), d(10), f (10), g, h and then find
c, a, e, b. The form of the system is:

SX = Y , (3.22)

where

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 −S(1) 04×4 04×4 · · · 04×4 04×4 04×2

04×2 S(1)E(1) −S(2) 04×4 · · · 04×4 04×4 04×2

04×2 04×4 S(2)E(2) −S(3) · · · 04×4 04×4 04×2
...

...
...

...
. . . −S(9) 04×4 04×2

04×2 04×4 04×4 04×4 · · · S(9)E(9) −S(10) 04×2

04×2 04×4 04×4 04×4 · · · 04×4 S(10)E(10) −R2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)
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with

R1 = (v20, v40)

R2 = (v10, v30)

S(i) =
(
v(i)

1 , v(i)
3 , v(i)

2 , v(i)
4

)

E(i) =

⎡
⎢⎢⎣

eλ1hi 0 0 0
0 eλ3hi 0 0
0 0 e−λ1hi 0
0 0 0 e−λ3hi

⎤
⎥⎥⎦

hi = zi − zi−1

X =
(
d̃, f̃ , c(1), e(1), d(1), f (1), · · · , c(10), e(10), d(10), f (10), g, h

)T

d̃ = deλ0z
′

f̃ = f eλ0z
′

Y =
(−v10c − v30e

040×1

)
e−λ0z

′

.

(3.24)

Up to this point, we have assumed that all layers are oriented in the same direction
with respect to a global coordinate system. Let us now suppose that each layer can be
rotated. Since eigenvalues are unchanged and eigenvectors are merely transformed
by the rotation, it is straight forward to set up the equations for this situation. The
rotation matrix in this case is

T (θ) =
(
R(θ) 02×2

02×2 R(θ)

)
, (3.25)

where

R(θ) =
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)
. (3.26)

If we let θi be the angle of rotation of the ith layer with respect to the global
system, then the eigenvectors for this layer become
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v(i)′
1 = T (θi)v

(i)
1 , v(i)′

2 = T (θi)v
(i)
2 , v(i)′

3 = T (θi)v
(i)
3 , v(i)′

4 = T (θi)v
(i)
4 ,

(3.27)
and the only change in (3.23) is the definition of S(i), which becomes

S(i)′ =
(
v(i)′

1 , v(i)′
3 , v(i)′

2 , v(i)′
4

)
(3.28)

=
(
T v(i)

1 , T v(i)
3 , T v(i)

2 , T v(i)
4

)
. (3.29)

This is a general model for the computation of the Green’s function and the com-
putation of reflection coefficients that has been implemented in our computer codes.
In our model, we have assumed that the conductivities of each layer are the same.
The generalization to a model where each layer has its own conductivities could be
easily accomplished, however, by computing the eigenvalues and eigenvectors of
each layer in its own local coordinate system and then proceeding with the rotation
stage above.

3.11 An Example of the Multilayer Model

The multilayer model that was developed above has been applied to a number of
different configurations. Figure 3.15 shows one configuration that has been validated
experimentally. The figure illustrates the computed and measured EMF induced into
a probe coil due to a circular current loop above a graphite-epoxy workpiece, which
consists of eighteen unidirectional layers in a [0, 0, 0, 0, 0, 0, 0, 0, 90]S lay-up. By
this notation is meant that the first eight layers are aligned with each other, while the
ninth is rotated 90◦. The bottom nine layers form a mirror image of the top nine (the
‘S’ denotes a symmetrical configuration). Neither the conductivities of any of the
layers, nor the conductivity of the bulk workpiece, were known, but were inferred
by parameter-fitting. The peak computed value is 3.5 V, and the peak measured value
is 4.4 V. See [91] for more details on the development of the model and [128] for
the experimental validation.

3.12 A Bulk Model

A graphite epoxy panel is a layup of individual plies. We described in the
preceding section a method for computing electromagnetic interactions exactly
using a multilayer model. The multilayer model treats layers individually, and was
used to produce the results shown in Fig. 3.15. One alternative to modeling layers
individually is to model them in bulk with an equivalent single-layer slab. The bulk
model is acceptable when wavelengths (or skin depths) are larger than the thickness
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Fig. 3.15 EMF induced into a probe coil due to a circular current loop above a graphite-epoxy
workpiece. (See the text for details)

of a few plies. It is computationally more efficient to use the bulk model, rather
than the multilayer model, when the long-wavelength (long-skin depth) condition
is satisfied, because we model, typically, dozens of layers with just one equivalent
bulk layer.

Our bulk model computes interactions exactly for the most general stratified
conductor–one with off-diagonal terms in the conductivity matrix:

σ =
⎡
⎣

σxx σxy 0
σyx σyy 0
0 0 σzz

⎤
⎦ . (3.30)

The z-axis is the axis of stratification; that is, the plies are xy-planes at various
positions along the z-axis, which means that σxz and σyz are zero, because there is
no way that a z-directed field can produce an x-directed current, and vice versa.

The bulk model has been set up for the most general case of a stratified conductor,
namely one in which the conductivity elements can be positive, negative, or zero.
Only symmetric conductivity matrices (σxy = σyx), with nonnegative diagonal
elements, however, are associated with passive conductors, i.e., conductors that
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absorb energy. Furthermore, physical conductors are just one rotation removed from
having diagonal conductivity matrices:

σp =
⎡
⎣

σx 0 0
0 σy 0
0 0 σzz

⎤
⎦ , (3.31)

where σx, σy , and σzz are each ≥ 0, and φp is the rotation angle in the xy-plane,
given by

tan 2φp = 2σxy

σxx − σyy

. (3.32)

To summarize: the conductivity matrix of a physical conductor is a diagonal matrix,
plus a rotation.

The bulk model has been tested numerically and in the laboratory [100, 106].
In the tests reported there, a circular loop of current was placed above a ±22.5◦
layup of graphite epoxy, and an EMF-sensing probe coil was scanned over the
loop, in a transmit/receive configuration. The resulting plot illustrates the effect of
anisotropy, namely an elliptical response to a circular exciting current, much as in
Fig. 3.15. The model agreement with the measured data was not precise because the
conductivity parameters of the graphite-epoxy layup were not known, but had to be
estimated with about 50% uncertainty. Nevertheless, the utility of the bulk model
was confirmed.

Further discussion of the relation between the multilayer and bulk models is
given in [129], where a number of experimental verifications of each are given.
Experimental data are also given for graphite-epoxy when it is configured in a
‘satin-weave,’ in which the fibers are ‘woven,’ in this case ‘over four, under one.’
This paper demonstrates that eddy-current measurements can give indications of
fiber breakage, electrical conductivity, fiber density, layer thickness, and perhaps
delaminations. The layer-by-layer detail of the material is important in modeling
the electromagnetic field in the vicinity of the material.



Chapter 4
Application of the Set-Theoretic
Algorithm to CFRP’s

4.1 Background

A major milestone that we have demonstrated is that the set-theoretic algorithm
works well with anisotropic media, such as CFRPs. Such problems require at
least two variables to be reconstructed at each voxel, such as the longitudinal
and transverse conductivities. The details are described in Sects. 4.3.1–4.3.2 in the
context of measuring FAWT (Fiber Areal-Weight), which is an important parameter
during the manufacture of CFRP prepregs. An interesting corollary is shown in
Sect. 4.3.2, in which a single transmitting coil is used with the same receiver array
as before, and very good results were achieved. This suggests that less extreme
T/R-arrays can be used in the algorithm, with the possibility of using sparse-grid
interpolation to fill in gaps in the measured data.

We begin our study of microstructure quantification problems in Sect. 4.4 with an
investigation of detecting and measuring delaminations using the model shown in
Fig. 4.7. The objective was to estimate the smallest delamination that is probably
detectable. The results shown in Table 4.2 suggest that it may be difficult to
distinguish a delamination 7µm high from the background. There would appear
to be a better chance of detecting one that is 14µm tall, and probably a pretty good
chance of detecting one that is 21µm tall.

The problem suggested in Fig. 4.8 will be a major ’test-bed’ for applying set-
theoretic inversion to microstructure quantification. We have started the process
during this quarter by analyzing the model of Fig. 4.9, which represents the structure
of Fig. 4.8 without the voids. The host is as shown in Fig. 4.1, except that it is 0.4 mm
thick. The receive-array is 21×21, as before in the FAWT studies, so that Ns = 441,
and there are 11 × 11 = 121 transmit positions in the transmitter array. The
excitation is at a frequency of 10GHz. Data for setting up the set-theoretic algorithm
are being generated, and the actual inversion process will be completed during

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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the next quarter. The parameters in the VIC-3D®-file for solving this problem are
shown following Fig. 4.11.

The problem shown in Fig. 4.10 models Fig. 4.8 with a single void microcrack.
This structure is embedded in an isotropic graphite-epoxy host whose conductivity
is 20,000 S/m, and is 0.3 mm high. The objective of this study is to determine the
feasibility of detecting and determining the width, W , of the microcrack when
the structure is excited by the T probe shown in Fig. 4.7 as it is scanned past the
microcrack from −1.6 mm to +1.6 mm at a frequency of 1 GHz.

To that end, we apply model-based inversion, starting with the blending functions
that define the surrogate interpolation table. These are shown in Fig. 4.11 for the
nodal values W = (0.00, 0.025, 0.050) mm. The VIC-3D®-grid used to generate
these functions was Nx = 256, Ny = 8, Nz = 16, which was sufficient to capture
the variations in W . The test value of W was 0.030 mm.

The results of the inversion are shown in Table 4.3. Not only is the solution
virtually identical to the test value, but all 500 initial starting points in NLSE
converged to the same global minimum. The excellent quality of the inversion
testifies to the fact that the blending functions of Fig. 4.11 are highly sensitive to W .

4.2 Statistical Analysis of the Feasible Set

One of the principal efforts of research in Set-Theoretic Estimation is to determine
the number and nature of the experiments, (Z(v),E(i)

lmj (v)), and receiver scans,

E(n)
LMJ , that produce a good feasible set for statistical analysis. As might be expected,

this depends upon the complexity of the flaw that is to be reconstructed, and upon
the resolution desired in the reconstruction.

After deducing the feasibility set, we are then faced with the task of assigning a
single number for the conductivity of each cell; this is a problem of data analysis,
which uses robust regression, as described in Chapter 13 of [111]. The aim of the
statistical analysis of the feasible set is to fit a constant through the data, which
are produced by the algorithm described in the preceding section, for all views (or
experiments), v.

A beneficial feature of this algorithm is that the analysis of the data set for each
cell is done independently of every other cell; i.e., a decision is made on a cell-by-
cell basis. Since the decision to be made for each cell involves a nonlinear (robust)
estimator, the computational burden is greatly reduced when compared to using a
nonlinear estimator to solve for many cells jointly. (The bilinear conjugate-gradient
algorithm is an exception.) Furthermore, this leads us to a constrained iterative
(‘layer-stripping’) algorithm, that uses the known and accepted results for some
cells to determine the results for others at a later stage of the iteration.
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4.3 An Anisotropic Inverse Problem for Measuring FAWT

The model problem is shown in Fig. 4.1 excited at 40 MHz. First, a little background
on the physical model: As shown in Fig. 4.2, the fiber-to-fiber contact is random, so
that the two electrical parameters that define the contact, σy and σz, are essentially
average values that will be taken to be equal; i.e., it is impossible to distinguish the
direction of the contact between the fibers. Hence, we define only a single transverse
conductivity, σy = σz = σT = 100 S/m as listed in Table 4.1, even though the model
shows σy and σz separately. This is for the benefit of VIC-3D®, which requires
three values for the anisotropic conductivity tensor. Furthermore, the most general
expression for a biaxial conductivity tensor includes the off-diagonal terms, σxy =
σyx , but these will be taken to be zero in the model calculation since we have no
information as to what they might be (see Table 4.1).

4.3.1 First Set-Theoretic Result

The model consists of a 21 × 21 receiving array, so that Ns = 441, with an
11 × 11 transmitting array. This means that there will be 121 ‘experiments’ with
242 outcomes, the real and imaginary parts of (Ex, Jx) and (Ey, Jy) for each
conductivity (Figs. 4.3 and 4.4).

1.5mmGraphite−EpoxyHost

σ   = 20000, σ  = 100,  σ  = 100x y zσ
x
= σ

y
= σ

z
= 100

FAWT Test Region

Probe Coil

Fig. 4.1 Illustrating the model problem for analyzing FAWT. The host graphite-epoxy slab is
isotropic, with the conductivities shown, whereas the FAWT region is anisotropic. The ratio of the
longitudinal to the two transverse conductivities is typical for a FAWT = 60% for this particular
sample of graphite-epoxy

APPLIED FIELD

CURRENT PATH
FIBERS

RESIN MATRIX

C

R

EDDY−CURENT PATH

Fig. 4.2 How fiber-to-fiber contact allows transverse conduction (Left). A possible AC equivalent
circuit for eddy-current flow (Right)
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Table 4.1 Summary of electrical properties of some composites [5]

Graphite-Epoxy Boron-Epoxy Kevlar

Permeability (μR) 1 1 1

Permittivity (εR) Indeterminate 5.6 3.6

DC conductivity (S/m)

Longitudinal (σL) 2 × 104 30 6 × 10−9

Transverse (σT ) 100 2 × 10−8 6 × 10−9

Anisotropy ratio (σL/σT ) 200 1.5 × 109 1
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Fig. 4.3 Results for σxx for the cell located at coordinates (331). The dots are the ‘experimental
outcomes’, and the slope of the dotted line is the estimated anomalous conductivity, σxx =
19.900×103, obtained using the least-median-of-squares (LM) robust estimator. This is the correct
value of the anomalous σxx
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Fig. 4.4 Results for σyy for the cell located at coordinates (331). The dots are the ‘experimental
outcomes’, and the slope of the dotted line is the estimated anomalous conductivity, σyy =
0.2947 × 10−4, obtained using the least-median-of-squares (LM) robust estimator. This is nine-
orders of magnitude less than σxx , and is close to the correct value of zero for the anomalous σyy
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FIRST SET-THEORETIC σxx FOR BOTTOM LAYER:SCALE OF 1000 S/m

FIRST SET-THEORETIC σxx FOR TOP LAYER OF ANOMALY: SCALE OF
1000 S/m
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FIRST SET-THEORETIC σyy FOR BOTTOM LAYER OF ANOMALY: SCALE
OF 0.001 S/m

FIRST SET-THEORETIC σyy FOR TOP LAYER OF ANOMALY: SCALE OF
0.001 S/m
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4.3.2 Second Set-Theoretic Result

Proceeding as before, except with a single transmitting coil. Hence, one experiment
with two outcomes for each conductivity component (Figs. 4.5 and 4.6).
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Fig. 4.5 Results for σxx for the cell located at coordinates (331). The dots are the ‘experimental
outcomes’, and the slope of the dotted line is the estimated anomalous conductivity, σxx =
19.900×103, obtained using the least-median-of-squares (LM) robust estimator. This is the correct
value of the anomalous σxx
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Fig. 4.6 Results for σyy for the cell located at coordinates (331). The dots are the ‘experimental
outcomes’, and the slope of the dotted line is the estimated anomalous conductivity, σyy =
−0.9731 × 10−4, obtained using the least-median-of-squares (LM) robust estimator. This is nine-
orders of magnitude less than σxx , and is close to the correct value of zero for the anomalous σyy
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SECOND SET-THEORETIC σxx FOR BOTTOM LAYER:SCALE OF 1000 S/m

SECOND SET-THEORETIC σxx FOR TOP LAYER OF ANOMALY: SCALE OF
1000 S/m
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SECOND SET-THEORETIC σyy FOR BOTTOM LAYER OF ANOMALY:
SCALE OF 0.001 S/m

SECOND SET-THEORETIC σyy FOR TOP LAYER OF ANOMALY: SCALE OF
0.001 S/m
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4.3.3 Comment

In practice, we would not put receive sensors on the dense 21 × 21 grid suggested
in the model problems. They would be placed on a much sparser grid, and then
the dense data required would be generated by interpolation. This would also
hold for placement of the transmit sensors when they are placed over the entire
anomalous region. The idea is to use ‘sparse-grid’ methods to defeat the ‘curse of
dimensionality’ as described in Chap. 9.

4.4 Modeling Microstructure Quantification Problems

4.4.1 Delaminations

We begin the study of microstructure quantification with an investigation of detect-
ing and measuring delaminations. The model problem is shown in Fig. 4.7. Our
interest is in determining the minimum height, h, of the delamination that is likely
to be detectable. To that end, we perform a VIC-3D®-model with a grid of 16×16×

100mm x 100mm

0mm

0.125mm

0.250mm

Plastic sheath

0.8

1.2

5

3.2

unit : mm

0

90

Delamination

T R

h

Fig. 4.7 Illustrating a model of a delamination located between two layers of a composite
structure. The label, 0, indicates a ply oriented in the 0◦ fiber direction, and 90 indicates a cross-ply
oriented 90◦ relative to the first. The delamination is modeled as a void whose conductivity tensor
is diagonal with zero entries. The system is excited by a T/R-probe, shown in the bottom of the
figure [144], at 10 MHz. The graphite-epoxy host is identical to that in Fig. 4.1, except that it is
0.250 mm thick
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Table 4.2 Results of the model problem of Fig. 4.7

h, mm R, Ohms X, Ohms ‖Z‖, Ohms Phase, Deg. L, mH

0 0.043101 −0.013585 0.045191 −17.495 −2.1622E−7

0.007 0.042193 −0.012985 0.044146 −17.106 −2.0667E−7

0.014 0.041288 −0.012412 0.043113 −16.731 −1.9754E−7

0.021 0.04032 −0.011821 0.042017 −16.34 −1.8814E−7

500µm0°

0°

90°

100 - 200 µm

Fig. 4.8 Typical dimensions of the volume of a transverse ply in a laminated engineering
composite within which stress is modified when a single transverse microcrack forms. The
composite is loaded in tension along the 0◦ fiber direction. From [35]

256 cells and allow h to range over the values (0.0, 0.007, 0.014, 0.021) mm. The
results are shown in Table 4.2. They indicate that it will be difficult to distinguish a
delamination of h = 7µm from the background in which h = 0µm. There would
appear to be a better chance of detecting a delamination that is 14µm tall, and
probably a pretty good chance of detecting one that is 21µm tall, especially if we
use reactance, X, as the measured data. For the latter case, the change in reactance
is about 15%. For comparison, 1 mil = 25.4µm.

4.4.2 Transverse Ply with Microcrack

The problem suggested in Fig. 4.8 is a major ‘test-bed’ for applying set-theoretic
inversion to microstructure quantification. We start the process by analyzing the
model of Fig. 4.9, which represents the structure of Fig. 4.8 without the voids. The
host is as shown in Fig. 4.1, except that it is 0.4 mm thick. The receive-array is
21 × 21, as before in the FAWT studies, so that Ns = 441, and there are 11 × 11 =
121 transmit positions in the transmitter array. The excitation is at a frequency of
1 GHz.

The problem shown in Fig. 4.10 models Fig. 4.8 with a single void microcrack.
This structure is embedded in an isotropic graphite-epoxy host whose conductivity
is 20,000 S/m, and is 0.3 mm high. The objective of this study is to determine the
feasibility of detecting and determining the width, W , of the microcrack when
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152.4mm x 152.4mm

x yσ  = σ  = σ  = 100z

Fig. 4.9 Model for studying the laminated engineering composite structure shown in Fig. 4.8
without the voids

Microcrack W

0mm

0.1mm

0.2mm

0.3mm

0

90

0

0.5mm x 0.5mm

Fig. 4.10 Model for studying the laminated engineering composite structure shown in Fig. 4.8
with a single void microcrack. The width of the void is W , and the depth into the figure is 0.5 mm.
This structure is embedded in an isotropic graphite-epoxy host whose conductivity is 20,000 S/m,
and is 0.3 mm high

the structure is excited by the T probe shown in Fig. 4.7 as it is scanned past the
microcrack from −1.6 mm to +1.6 mm at a frequency of 1 GHz.

To that end, we apply model-based inversion, starting with the blending functions
that define the surrogate interpolation table. These are shown in Fig. 4.11 for the
nodal values W = (0.00, 0.025, 0.050) mm. The VIC-3D®-grid used to generate
these functions was Nx = 256, Ny = 8, Nz = 16, which was sufficient to capture
the variations in W . The test value of W was 0.030 mm.

The result of the inversion is shown in Table 4.3. Not only is the solution
virtually identical to the test value, but all 500 initial starting points in NLSE
converged to the same global minimum. The excellent quality of the inversion
testifies to the fact that the blending functions of Fig. 4.11 are highly sensitive
to W .
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Fig. 4.11 Blending functions for the model-based inversion of the microcrack shown in Fig. 4.10.
The nodal values are (0, 0.025, 0.050) mm

Table 4.3 Result of inversion to determine W in Fig. 4.10

Φ W /sensit No. pts.

0.322(−2) 0.0294/0.550(−3) 500

4.5 Layer-Stripping for Anisotropic Flaws

We want to extend the layer stripping algorithm used in conjuction with the set-
theoretic inversion algorithm to flaws with anisotropic conductivity. In this layer
stripping algorithm, we use our knowledge of the conductivity of some flaw cells to
construct constraint equations to be added to the data equation

∑
KLM

E
(i)(x)
KLM [ν]J x

KLM +
∑

KLM

E
(i)(y)
KLM [ν]J y

KLM = Z[ν]. (4.1)

where ν labels the ’views’ produced by different incident fields, E(i)[ν], of the
receiver coil. Solving the data equation with these constraints gives a feasible (J,E)

pair that is consistent with the known conductivities used to construct the constraint
equations. That is, it forces the set-theoretic algorithm to produce feasible (J,E)

pairs that give the correct conductivity for these cells.

4.6 Advanced Features for Set-Theoretic Microstructure
Quantification

We continue our application of the set-theoretic voxel-based inversion algorithm to
the study of microstructure quantification of CFRPs, in particular to the problem
shown in Figs. 4.8 and 4.9.
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Fig. 4.12 Results for cell (k, l,m) = (3, 3, 3) after pinning the bottom three layers to zero,
and allowing only the top layer to be free. The lines are an eyeball fit to the real values of the
‘experimental outcomes’, ignoring the imaginary values. Top: σxx . Bottom: σyy

Central to the study is an understanding of the role played by constraints on
the inversion process. It is clear, for example, that the model of Fig. 4.9 should
produce zeros for the anomalous conductivities in the bottom layer, since that layer
is host. Figures 4.12, 4.13, 4.14, and 4.15 illustrate the effect on cell (k,l,m) = (3,3,3)
of ‘pinning’ various layers to zero, i.e., on placing constraints on these layers.
Figures 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, and 4.23 illustrate the reconstruction,
using the LMS(least-median-of-squares)-estimator, of the entire structure when the
bottom layer is constrained to zero in both σxx and σyy .

Figures 4.24, 4.25, and 4.26 introduce a key feature of this, namely the applica-
tion of ‘inverse-quality metrics’ to the inversion process. This metric indicates the
quality of the inversion by showing the convergence to the minimum. In particular,
we see the advantage in establishing constraints where they are appropriate. This
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Fig. 4.13 Results for cell (k, l,m) = (3, 3, 3) after pinning the bottom two layers to zero, and
allowing only the top two layers to be free. The lines are an eyeball fit to the real values of the
‘experimental outcomes’, ignoring the imaginary values. Top: σxx . Bottom: σyy

reduces the number of unknowns, and stabilizes the inversion procedure. These
figures are typical of the convergence of a robust estimator, such as LMS, and
serve the same purpose as exploring configuration space for the minimum of a
least-squares problem. Typically, the sharper and deeper the minimum, the better
the solution.

So that raises the question: ‘How can we tell where the constraints lie?’ This
is a problem of classification theory, in which we want to assign regions of space
to the host material or to the anomalous region. The host, of course, carries zero
anomalous current, which results in a null anomalous conductivity. The result of
classifying the problem space is the creation of a ‘zero-cutoff threshold.’ Solutions
that are smaller than the threshold are assumed to be host material, and are ‘pinned’
to zero. We have developed a heuristic iterative scheme to classify the solution,
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Fig. 4.14 Results for cell (k, l,m) = (3, 3, 3) after removing all pins and allowing all currents
to be nonzero. The lines are the set-theoretic estimates, in which all ‘experimental outcomes’ are
used. Top: σxx . Bottom: σyy

and it is explained in the discussion before Fig. 4.27. Figures 4.27, 4.28, 4.29, 4.30,
4.31, and 4.32 illustrate the result of applying the heuristic scheme, starting with the
zeroth iteration and ending with the fourth. The results are quite good, and give us
confidence in the method. Nevertheless, we believe that it can be sharpened, and no
longer be ’heuristic’, by applying formal statistical decision theory.

The development of the layer-stripping algorithm that was described in Sect. 4.5,
together with the inverse-quality metric and the heuristic classifier are three
extremely important results of our research, as they strengthen the set-theoretic,
voxel-based inversion algorithm.
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Fig. 4.15 Results for cell (k, l,m) = (3, 3, 3) after pinning only the bottom layer and allowing
the top three layers to be free. The lines are the set-theoretic estimates, in which all ‘experimental
outcomes’ are used. Top: σxx . Bottom: σyy
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Fig. 4.16 Results for σxx in
the bottom layer. The zeros
are forced as a constraint
because the bottom layer is
host material

Fig. 4.17 Results for σxx in
the first layer, obtained using
the LMS-estimator:scale of
1000 S/m
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Fig. 4.18 Results for σxx in
the second layer, obtained
using the
LMS-estimator:scale of
0.001 S/m

Fig. 4.19 Results for σxx in
the third layer, obtained using
the LMS-estimator:scale of
1000 S/m
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Fig. 4.20 Results for σyy in
the bottom layer. The zeros
are forced as a constraint
because the bottom layer is
host material

Fig. 4.21 Results for σyy in
the first layer, obtained using
the LMS-estimator:scale of
0.001 S/m
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Fig. 4.22 Results for σyy in
the second layer, obtained
using the
LMS-estimator:scale of
1000 S/m

Fig. 4.23 Results for σyy in
the third layer, obtained using
the LMS-estimator:scale of
0.001 S/m
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Fig. 4.24 Comparing the inverse-quality metric for the LMS-estimator when applied to cell
(1,3,3). The curve labeled ‘No Pin’ is for the condition in which the currents in the zeroth layer are
not forced to zero, and the other curve is for the condition in which the currents are forced to zero
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Fig. 4.25 Comparing the inverse-quality metric for the LMS-estimator when applied to cell
(3,3,3). The curve labeled ‘No Pin’ is for the condition in which the currents in the zeroth layer are
not forced to zero, and the other curve is for the condition in which the currents are forced to zero
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0, 1 and 3 to zero
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Fig. 4.27 Results for σxx in the bottom (top left) to third layer (bottom right) after the zeroth
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zero, +0.000, indicates a
number that is very small but is above the zero-constraint threshold. The scale of these results
is 1000 S/m
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Fig. 4.28 Results for σyy in the bottom (top left) to third layer (bottom right) after the zeroth
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zeros, ±0.000, indicate
numbers that are very small but are above the zero-constraint threshold. The scale of these results
is 1000 S/m
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Fig. 4.29 Results for σxx in the bottom (top left) to third layer (bottom right) after the first
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zero, +0.000, indicates a
number that is very small but is above the zero-constraint threshold. The scale of these results
is 1000 S/m
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Fig. 4.30 Results for σyy in the bottom (top left) to third layer (bottom right) after the first
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zeros, ±0.000, indicate
numbers that are very small but are above the zero-constraint threshold. The scale of these results
is 1000 S/m



4.6 Advanced Features for Set-Theoretic Microstructure Quantification 113

Fig. 4.31 Results for σxx in the bottom (top left) to third layer (bottom right) after the fourth
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zero, +0.000, indicates a
number that is very small but is above the zero-constraint threshold. The scale of these results
is 1000 S/m
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Fig. 4.32 Results for σyy in the bottom (top left) to third layer (bottom right) after the fourth
iteration, obtained using the LMS-estimator at 10 GHz. The signed-zero, +0.000, indicates a
number that is very small but is above the zero-constraint threshold. The scale of these results
is 1000 S/m
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4.6.1 A Heuristic Iterative Scheme to Determine a Zero-Cutoff
Threshold

Our problems are largely due to errant
small values of J and E, so what follows is an approach to resolve
this problem, all
using the LMS estimator on the 10GHz data.

1) Run the calculation throwing out all (E,J) pairs for which
E is less than 20\% of the maximum size for each cell and
each experiment. We’ll call the outputs ’sigmaxx_0.txt’
and ’sigmayy_0.txt’.

2) Rerun the calculation throwing out (E,J) pairs with E less
than the 20\% threshold, and also pinning to zero all currents
associated with conductivity values in ’sigmaxx_0.txt’ and
’sigmayy_0.txt’ that are less than or equal to zero. We’ll
call the outputs ’sigmaxx_1.txt’ and ’sigmayy_1.txt’

3) Repeat 2) substituting ’sigmaxx_1.txt’ for ’sigmaxx_0.txt’
and ’sigmayy_1.txt’ for ’sigmayy_0.txt’ to obtain
’sigmaxx_2.txt’ and ’sigmayy_2.txt’

4) Continue in this manner until there are no negative
conductivity values in the output.

This converged after 4 iterations, the outputs for which are
attached. You can see that the first step (zeroth iteration)
gets us into the ball park (it’s much better than with no
threshold on the size of E). The results of the first iteration
are pretty good. The fourth iteration is very good.

This, of course, assumes that we know that there are no negative
anomalous conductivities, which will not always be the case,
so this is not a general algorithm. It also assumes that we
can throw out the small (E,J) pairs at a 20\% threshold, which
may also not be the case in general, so again it is not general
algorithm. But it may be that for any given problem a threshold
for (E,J) size and conductivity value can be found that will work.
If our threshold on conductivity is nonzero, we cannot pin the
currents to zero, but will have to rely on a constraint equation,
which is in development.
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4.7 Progress in Modeling Microstructure Quantification

The model shown in Fig. 4.33 is our ‘test-bed’ for microstructure quantification.
The model consists of this three-layer structure (with just one crack) embedded in
an isotropic host whose conductivity is 100 S/m (Fig. 4.34).

Figures 4.35, 4.36, 4.37, and 4.38 show the results of inverting the impedances
obtained for a transverse ply sample with 4 layers (m = 0, 1, 2, 3) and a crack with
zero conductivity running through the center of the upper middle layer (m = 2)
that is 2 cells wide and 8 cells long. The x and y components of the anomalous
conductivity were fixed to zero for the bottom layer (m = 0), which is host material.
The only cells of the anomalous region that were not perfectly reconstructed are
some of the crack cells, which should all have anomalous conductivity of −100 S/m
since the host conductivity is 100 S/m. Figures 4.39, 4.40, 4.41, and 4.42 show plots
of J versus E for a cell near the middle of the top (klm = 333) and the cracked
(klm = 332) layers.

500µm0°

0°

90°

100 - 200 µm

Fig. 4.33 Typical dimensions of the volume of a transverse ply in a laminated engineering
composite within which stress is modified when a single transverse microcrack forms. The
composite is loaded in tension along the 0◦ fiber direction. From [35]
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x yσ  = σ  = σ  = 100z

Fig. 4.34 Model for studying the laminated engineering composite structure shown in Fig. 4.33
without the voids
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Fig. 4.35 Anomalous σxx for
m = 1 or m = 3

Fig. 4.36 Anomalous σxx for
m = 2
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Fig. 4.37 Anomalous σyy for
m = 1 or m = 3

Fig. 4.38 Anomalous σyy for
m = 2
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4.8 Handling Rotations of Anisotropic Media

In this section, we develop an analytical procedure for inferring rotations in the set-
theoretic algorithm. It appears to be feasible to infer the rotation of a single ply, or
to infer the rotation of each voxel in the grid. The latter possibility might be useful
in studying the ’waviness’ of the fibers.

Let the host be anisotropic with principal-axis conductivity given by the usual

σ h =
⎡
⎣

σh1 0 0
0 σh2 0
0 0 σh3

⎤
⎦ , (4.2)

and the anomalous region have a biaxial conductivity tensor with distinct eigenval-
ues in its principal-axis system. Then the anomalous conductivity tensor is given in
the same coordinate system by

σ a(r) =
⎡
⎣

σ1(r) − σh1 0 0
0 σ2(r) − σh2 0
0 0 σ3(r) − σh3

⎤
⎦ , (4.3)

which is also biaxial.
We rotate the anomaly, leaving the host unrotated. Under this condition, the

anomalous conductivity tensor becomes

σ a(r) = M

⎡
⎣

σ1(r) 0 0
0 σ2(r) 0
0 0 σ3(r)

⎤
⎦MT −

⎡
⎣

σh1 0 0
0 σh2 0
0 0 σh3

⎤
⎦ =

⎡
⎣

Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

⎤
⎦ ,

(4.4)
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where

Σxx = σ1a + m2
12(σ2 − σ1) + m2

13(σ3 − σ1)

Σxy = m12m22(σ2 − σ1) + m13m23(σ3 − σ1)

Σxz = m12m32(σ2 − σ1) + m13m33(σ3 − σ1)

Σyx = m21m11(σ1 − σ2) + m23m13(σ3 − σ2)

Σyy = σ2a + m2
21(σ1 − σ2) + m2

23(σ3 − σ2)

Σyz = m21m31(σ1 − σ2) + m23m33(σ3 − σ2)

Σzx = m31m11(σ1 − σ3) + m32m12(σ2 − σ3)

Σzy = m31m21(σ1 − σ3) + m32m22(σ2 − σ3)

Σzz = σ3a + m2
31(σ1 − σ3) + m2

32(σ2 − σ3) , (4.5)

and σ1a(r) = σ1(r) − σh1, σ2a(r) = σ2(r) − σh2, and σ3a(r) = σ3(r) − σh3. Note
that this is a symmetric tensor in the rotated coordinate system, as can be shown by
making use of the orthonormality of the columns of M.

The mij are functions of the three Euler angles that define a three-dimensional
rotation of coordinate systems. We are only interested in rotations, φ, about the
z−axis, which simplifies the results of (4.5) considerably, as many of the terms
vanish. The result is

Σxx = σ1a + sin2(φ)(σ2 − σ1)

Σxy = − sin(φ) cos(φ)(σ2 − σ1)

Σxz = 0

Σyx = sin(φ) cos(φ)(σ1 − σ2)

Σyy = σ2a + sin2(φ)(σ1 − σ2)

Σyz = 0

Σzx = 0

Σzy = 0

Σzz = σ3a . (4.6)

Therefore, in the rotated coordinate system we have

Jx = ΣxxEx + ΣxyEy

Jy = ΣyxEx + ΣyyEy

Jz = σ3aEz . (4.7)
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The anomalous currents, Ji , are measured by the T/R-array, and the Ei are computed
in the usual manner for the set-theoretic algorithm, given the Ji . Thus, the only
unknown is the rotation angle, φ, which must be determined by solving (4.7), given
the expressions in (4.6).



Chapter 5
An Electromagnetic Model
for Anisotropic Media: Green’s Dyad
for Plane-Layered Media

5.1 Theory

The Green’s dyad, which is the electric-field response to a delta-function vector
current source, plays a principal role in volume-integral equations. In this chapter
we sketch the theory of the Green’s dyad for plane-parallel layered media as it is
applied to titanium and titanium-like alloys that possess 6 mm symmetry.

Eigenmodes of Anisotropic Media
We will consider plane-parallel bodies of infinite extent in the (x, y) plane, which
are made up of layers of homogeneous, anisotropic material. To be specific, we
consider host materials that are characterized by the following biaxial generalized
electrical permittivity matrix:

εh =
⎡
⎣

εx εxy 0
εyx εy 0
0 0 εz

⎤
⎦ , (5.1)

where the entries are generalized permittivities ε + σ/jω.

Maxwell’s equations for an electrically anisotropic body are

∇ × E = −jωμhH − jω(μ(r) − μh)H

= −jωμhH + Jm

∇ × H = jωεh · E + jω(ε(r) − εh) · E
= jωεh · E + Je, (5.2)
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where Jm and Je are anomalous magnetic and electric currents that account for the
presence of flaws, or anomalies, in the otherwise-uniform host material. From here
on we drop the subscript h on the generalized host permittivity and permeability.

Because of the material anisotropy, it is convenient to work with a matrix
formulation of these equations that has been useful in crystal optics, plasmas and
microwave devices [7–9, 17, 59–61, 115, 125]. If the body is homogeneous with
respect to (x, y), then Maxwell’s equations can be Fourier transformed with respect
to (x, y), and written as the following four-vector matrix differential equation in the
spectral domain:

d ẽ
dz

= S · ẽ + U · J̃ (5.3)

Ẽz = ky

εzω
H̃x − kx

εzω
H̃y + j

εzω
J̃ez (5.4)

H̃z = −ky

μω
Ẽx + kx

μω
Ẽy − j

μω
J̃mz, (5.5)

where the tilde denotes a function defined in the transform domain (kx, ky), and

ẽ =

⎡
⎢⎢⎣

Ẽx

Ẽy

H̃x

H̃y

⎤
⎥⎥⎦ ; J̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J̃ex

J̃ey

J̃ez

J̃mx

J̃my

J̃mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

The subscript e denotes an electric current, and m denotes a magnetic current. The
matrices in (5.3) are given by

S = −

⎡
⎢⎢⎣

0 0 a b

0 0 c d

α β 0 0
γ δ 0 0

⎤
⎥⎥⎦ ; U =

⎡
⎢⎢⎣

0 0 kx/ωεz 0 1 0
0 0 ky/ωεz −1 0 0
0 1 0 0 0 −kx/ωμ

−1 0 0 0 0 −ky/ωμ

⎤
⎥⎥⎦ . (5.7)

The entries of S are given in terms of the entries of (5.1) by

a = j

ωεz

kxky ; α = j

ωμ
(−μεyxω

2 − kxky)

b = j

ωεz

(μεzω
2 − k2

x) ; β = j

ωμ
(−μεyω

2 + k2
x)

c = j

ωεz

(−μεzω
2 + k2

y) ; γ = j

ωμ
(μεxω

2 − k2
y)
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d = − j

ωεz

kxky ; δ = j

ωμ
(μεxyω

2 + kxky). (5.8)

When J̃ is a surface current confined to z = z′, i.e., J̃ = J̃sδ(z − z′), then
integration of (5.3) produces

ẽ(+) − ẽ(−) = U · J̃s . (5.9)

The superscript (+) denotes the limit as z approaches z′ from above, and the
superscript (−) denotes the limit from below. Equation (5.9) is used to compute
the Green’s dyad for a layered workpiece.

Starting with these equations, Roberts [90] has developed a fairly complete
theory of normal modes of biaxial anisotropic media. This work is based on, and
extends, earlier work performed at Sabbagh Associates [92, 93]. From here on we
specialize the theory developed in [90] to the case to be considered here, in which
the media involved are transversely isotropic to the z-coordinate. The generalized
electric permittivity tensor, in its principal-axis coordinate system, then takes the
form

ε =
⎡
⎣

εt 0 0
0 εt 0
0 0 εz

⎤
⎦ , (5.10)

where, for pure titanium εt = ε0 − j2.205 × 106/ω ≈ −j2.205 × 106/ω, εz =
ε0 − j2.083 × 106/ω ≈ −j2.083 × 106/ω.

The entries in S now become

a = j

ωεz

kxky ; α = j

ωμ
(−kxky)

b = j

ωεz

(μεzω
2 − k2

x) ; β = j

ωμ
(−μεtω

2 + k2
x)

c = j

ωεz

(−μεzω
2 + k2

y) ; γ = j

ωμ
(μεtω

2 − k2
y)

d = − j

ωεz

kxky ; δ = j

ωμ
(kxky). (5.11)

Let’s introduce some notation: k2
x + k2

y = k2
t , ω2μεt = Ω2

t , ω2μεz = Ω2
z , ε =

εt/εz. Then the eigenvalues of S are

λ1 =
√

k2
t − Ω2

t λ2 = −λ1 λ3 = √
ε

√
k2
t − Ω2

z λ4 = −λ3 . (5.12)

The linearly-independent eigenvectors that correspond to these eigenvalues are:



126 5 An Electromagnetic Model for Anisotropic Media: Green’s Dyad for Plane-. . .

v1 =

⎡
⎢⎢⎣

−jωμ0ky

jωμ0kx

λ1kx

λ1ky

⎤
⎥⎥⎦ v2 =

⎡
⎢⎢⎣

−jωμ0ky

jωμ0kx

−λ1kx

−λ1ky

⎤
⎥⎥⎦ v3 =

⎡
⎢⎢⎣

λ3kx

λ3ky

jωεtky

−jωεtkx

⎤
⎥⎥⎦ v4 =

⎡
⎢⎢⎣

λ3kx

λ3ky

−jωεtky

jωεtkx

⎤
⎥⎥⎦ .

(5.13)
When kx = ky = 0, the following are linearly-independent eigenvectors:

v1 =

⎡
⎢⎢⎢⎢⎣

1
0
0

−
√

εt

μ0

⎤
⎥⎥⎥⎥⎦

v2 =

⎡
⎢⎢⎢⎢⎣

1
0
0√
εt

μ0

⎤
⎥⎥⎥⎥⎦

v3 =

⎡
⎢⎢⎢⎢⎣

0√
μ0

εt

1
0

⎤
⎥⎥⎥⎥⎦

v4 =

⎡
⎢⎢⎢⎢⎣

0

−
√

μ0

εt

1
0

⎤
⎥⎥⎥⎥⎦

. (5.14)

When we substitute v1, v2 of (5.13) into (5.4), with the source currents set to
zero, we find that Ẽz = 0; hence, v1, v2 are transverse electric (TE) modes, with
respect to z. Similarly, v3, v4 are transverse magnetic (TM) modes. Note that the TE
modes are orthogonal to the TM modes. This will facilitate the computation of the
Green’s dyadic. v1 and v3 are downward-traveling waves in the z-direction; i.e., they
represent waves that travel in the negative z-direction. v2, v4 are upward-traveling
waves (in the positive z-direction). We see from (5.4) and (5.5) that all modes are
TEM (transverse electric and magnetic) with respect to z for kx = ky = 0, which
is the condition for infinite plane-waves traveling in the z−direction. Furthermore,
under this condition λ1 = λ3, which means that the anisotropy does not manifest
itself. The effects of anisotropy are most pronounced on the TE and TM modes
when the transverse wave-number, kt >> Ωt and Ωz.

We can justify the interpretation of upward- and downward-traveling waves for
the various eigenvectors by returning to the fundamental differential equation (5.3),
which has the solution when J̃ = 0:

ẽ(z) = exp(zS) · ẽ0

= I · ẽ0 + zS · ẽ0 + z2S2

2
· ẽ0 + · · · , (5.15)

where ẽ0 is the solution at z = 0, and the second line defines the matrix exponential
operator, exp(zS).

Let ẽ0 = v1; then

ẽ(z) = ezλ1v1 , (5.16)

which follows upon substituting v1 into the second line of (5.15), and then making
use of the fact that v1 is an eigenvector of S with eigenvalue λ1. This result is in the
form of a wave propagating in the negative z-direction, and justifies our calling
v1 a downward-traveling TE wave. A similar analysis holds for the other three
eigenvectors.
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The formal solution of (5.3) defines the Green’s dyadic, G(z, z′):

ẽ(z) =
∫

G(z, z′) · J(z′)dz′ , (5.17)

where we are still working in the transverse Fourier-transform domain. The
computation of G(z, z′) makes use of the eigenvectors v1, · · · , v4, together with the
discontinuity condition, (5.9), as described in the references cited in this appendix.
Once we have G, we transform (5.17) back into the spatial domain, and work with
the spatial volume-integral equation, as is currently done in VIC-3D®.

Modeling Anisotropic Anomalies
The integro-differential equation to which we will apply the method-of-moments
is simply gotten by equating the total electric field, σ−1

a (r) · J(e)(r), to the sum of
the incident field, due to the coil, and the infinite-space and layered-space scattered
fields:

E(i)(r) = σ−1
a (r) · J(e)(r) − E(0)(r)[J(e)] − E(s)(r)[J(e)] , (5.18)

where σ a(r) = jω(ε(r) − εh) is the anomalous conductivity tensor.

Now, let’s talk about Euler Angles. Let a rotation about O carry the orthogonal
triad (I, J,K) into (i, j,k). We break this rotation into three rotations. First, rotate
about K so as to make the new position of the plane (I,K) contain k, say through
an angle φ; this gives a transformation

(I, J,K) → (I1, J1,K1)

⎧⎨
⎩

I1 = I cos φ + J sin φ

J1 = −I sin φ + J cos φ

K1 = K

⎫⎬
⎭ . (5.19)

Secondly, rotate about J1 to bring K1 to k, say through an angle θ ; this gives a
transformation

(I1, J1,K1) → (I2, J2,k)

⎧⎨
⎩

I2 = I1 cos θ − K1 sin θ

J2 = J1
k = I1 sin θ + K1 cos θ

⎫⎬
⎭ . (5.20)

Finally, rotate about k to bring I2 to i and J2 to j, say through an angle ψ ; this gives
the transformation

(I2, J2,k) → (i, j,k)

⎧⎨
⎩

i = I2 cos ψ + J2 sin ψ

j = −I2 sin ψ + J2 cos ψ

k = k

⎫⎬
⎭ . (5.21)
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The angles (θ, φ, ψ) are the Euler angles. Their values determine the position of
the triad (i, j,k) relative to (I, J,K). The angles range over the following values:

0 ≤ θ ≤ π

0 ≤ φ < 2π

0 ≤ ψ < 2π

. (5.22)

From the above equations of transformation, we can obtain the matrix M, that
defines orthogonal rotations. We use the notation, c = cos, s = sin and let the
subscripts, 1, 2, 3, refer to θ, φ,ψ , respectively:

i j k

I c1c2c3 − s2s3 −c1c2s3 − s2c3 s1c2

J c1s2c3 + c2s3 −c1s2s3 + c2c3 s1s2

K −s1c3 s1s3 c1

(5.23)

Now, we’ll apply this to the problem at hand. Let the host be transversely
anisotropic about the z-axis, with a diagonal conductivity tensor, σ h = jωεh, and
define σ (r) = jωε(r). In its rotated coordinate system, this conductivity tensor
becomes

σ (r) = M

⎡
⎣

σ1 0 0
0 σ1 0
0 0 σ2

⎤
⎦MT

=
⎡
⎣

σ1 + m2
13(σ2 − σ1) (σ2 − σ1)m13m23 (σ2 − σ1)m13m33

(σ2 − σ1)m23m13 σ1 + (σ2 − σ1)m
2
23 (σ2 − σ1)m23m33

(σ2 − σ1)m13m33 (σ2 − σ1)m23m33 σ1 + (σ2 − σ1)m
2
33

⎤
⎦ .(5.24)

We will restrict M to those Euler angles that leave σ (r) in its principal axes.
These are θ = 90◦, φ = 0◦, ψ = 0◦, for which

σ (r) =
⎡
⎣

σ2 0 0
0 σ1 0
0 0 σ1

⎤
⎦ , (5.25)
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and θ = 90◦, φ = 90◦, ψ = 90◦, for which

σ (r) =
⎡
⎣

σ1 0 0
0 σ2 0
0 0 σ1

⎤
⎦ . (5.26)

Actually, all we need is (5.25) because we can always orient the flaw or probe scan
appropriately to simulate (5.26).

Because the host and variable conductivity tensors are both diagonal, we can
write the anomalous conductivity as

σ a(r) =
⎡
⎣

σ1 − σx(r) 0 0
0 σ1 − σy(r) 0
0 0 σ2 − σz(r)

⎤
⎦

=
⎡
⎣

σx
a 0 0
0 σ

y
a 0

0 0 σz
a

⎤
⎦ . (5.27)

The reciprocal of this tensor is simply the reciprocal of the diagonal entries:

σ−1
a =

⎡
⎣

1/σx
a (r) 0 0
0 1/σ

y
a (r) 0

0 0 1/σ z
a (r)

⎤
⎦ . (5.28)

Now, we are at the same place as in the original formulation of the Q matrices,
except that we replace the scalar σ with σi , i = x, y, z. This yields the following
replacements for the original Qs:

Q
(xx)
kK = δxδyδz

6

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σx
klm

if K = k − 1

2

σx
klm

+ 2

σx
k+1,lm

if K = k

1

σx
k+1,lm

if K = k + 1

Q
(yy)
lL = δxδyδz

6

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σ
y
klm

if L = l − 1

2

σ
y
klm

+ 2

σ
y

k,l+1,m

if L = l

1

σ
y

k,l+1,m

if L = l + 1
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Q
(zz)
mM = δxδyδz

6

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σz
klm

if M = m − 1

2

σz
klm

+ 2

σz
klm+1

if M = m

1

σz
klm+1

if M = m + 1

(5.29)

The first entry in each of these matrices is the lower diagonal, the second the main
diagonal, and the third the upper diagonal.

The Q’s contain the reciprocals of the anomalous conductivities, which may
vanish when a flaw cell contains only host material. This condition forces the
corresponding unknowns to vanish, but we are still left with an indeterminate ‘zero
over zero’ expression to evaluate. In order to overcome this problem we form the
reciprocals of the diagonal entries of the Q’s of (5.29),

ν
(xx)
klm = 6

δxδyδz

σx
klmσx

k+1,lm

2(σ x
klm + σx

k+1,lm)

ν
(yy)
klm = 6

δxδyδz

σ
y
klmσ

y

k,l+1,m

2(σ
y
klm + σ

y

k,l+1,m)

ν
(zz)
klm = 6

δxδyδz

σ z
klmσ z

kl,m+1

2(σ z
klm + σz

kl,m+1)
, (5.30)

and multiply both sides of (5.18) by them. The resulting Q′ matrices are also tri-
diagonal, with the following non-zero entries:

Q
′(xx)
kK =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σx
k+1,lm

2(σ x
klm + σx

k+1,lm)
if K = k − 1

1 if K = k
σx

klm

2(σ x
klm + σx

k+1,lm)
if K = k + 1

Q
′(yy)
lL =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ
y

k,l+1,m

2(σ
y
klm + σ

y

k,l+1,m)
if L = l − 1

1 if L = l

σ
y
klm

2(σ
y
klm + σ

y

k,l+1,m)
if L = l + 1
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Q
′(zz)
mM =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σz
klm+1

2(σ z
klm + σz

klm+1)
if M = m − 1

1 if M = m

σz
klm

2(σ z
klm + σz

klm+1)
if M = m + 1

(5.31)

Note that if the anomalous conductivity in two adjacent cells vanishes, then the
indeterminate terms in the Q′’s are equal to 1/4. Also, if the conductivity of
either cell (or both) vanishes, then the corresponding νklm of (5.30) also vanishes.
This follows because the numerators of the ν’s vanish to a higher-order than the
denominators. The result is that the corresponding JKLM vanishes.

A Test Problem
Figure 5.1 shows the results for a problem in which a circular coil is placed on a
halfspace having σ11 = σ22 = σ33 = 6.04×105 S/m and containing a 12.7×12.7×
0.508 mm surface-breaking flaw with σ11 = 5.90 × 105, σ22 = σ33 = 6.04 × 105

S/m, and ε11 = ε22 = ε33 = 1. Figure 5.2 illustrates the setup. The angle Φ in
Fig. 5.2 goes from 0 to 360◦ as the center of the coil traces a circle around the center
of the flaw. The model uses a single grid of volume fractions, but in order to simulate
a region with randomly oriented (along x, y, or z) conductivities, we need 3 grids of
volume fractions, one for each direction.
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Fig. 5.1 Results for a problem with a circular coil excitation
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Fig. 5.2 Illustrating the setup
that produced the data of
Fig. 5.1
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Fig. 5.3 Freespace frequency response of the racetrack coil

5.2 Applications

Characterizing a Racetrack Coil Over Ti64
We have characterized a racetrack coil that measures 12.9 mm in length and 3.5 mm
in width in freespace and over a Ti64 host, while oriented parallel and perpendicular
to the host. The freespace impedance of the coil is shown in Fig. 5.3. Based upon
these results, we estimate that the low-frequency parameters of the coil are L0 =
90µH and R0 = 12.6�. The freespace resonant frequency is about 0.9345 MHz.

The frequency response of the probe when placed on the Ti64 host in the
‘parallel’ orientation is shown in Fig. 5.4 and in the ‘perpendicular’ orientation in
Fig. 5.5. The reference orientation is a very light machining of the host.
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It appears from Figs. 5.4 and 5.5 that there is virtually no distinguishable feature
that separates the parallel and perpendicular responses, but when we remove the
parasitic elements and the freespace coil response, we get the results shown in
Fig. 5.6 for the change in impedance, δZ for the two orientations as a function
of frequency. Two things are quite clear in this figure: the results are quite noisy
because of the poor coupling of the racetrack coil to the workpiece, and starting at
about 1.5 MHz there is a clear distinction in δX between the two orientations.

The frequency response of a VIC-3D® model of the probe with a ferrite core over
the Ti64 sample is shown in Fig. 5.7. Notice that the difference in the parallel and
perpendicular responses around 3 MHz in Fig. 5.7 is comparable to that in Fig. 5.6,
and suggests that the response of Fig. 5.6 may be due to crystalline ‘texturing,’ after
all. Keep in mind, however, that with the ferrite core, the freespace inductance of
the probe is 787.33µH, which is almost nine times greater than the 90µH that we
estimated earlier.

Figure 5.8 [108] shows a tangent coil over a flawed workpiece, corresponding to
the benchmark test of [20]. The 0◦ response shown in Fig. 5.7 is reminiscent of the
response of this tangent coil, as shown in Fig. 5.9. The magnetic-moment vector of
the tangent coil is along the long axis of the slot, which means that the ‘effective
conductivity’ of the slot within its host will be smaller than when the coil is rotated
90◦. This corresponds to the condition in Fig. 5.7 at 0◦. When the reactance at this
orientation in Fig. 5.7 is normalized to the freespace reactance of the coil, we get
an effective inductance that will be reasonably constant over most of the frequency
range, which is in agreement with the effective inductance shown in Fig. 5.9.
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Fig. 5.8 Illustrating a tangent coil over a flawed workpiece, corresponding to the benchmark test
of [20]

5.3 Some Inverse Problems with Random Anisotropies

We use the configuration shown in Fig. 5.10 of a host, anisotropic patch, and
racetrack coil to develop the model problems in this section. There are two models
for generating random anisotropies in VIC-3D®: (1) via random permutations of the
nonrandom principal conductivities, which in this case will be σ11 = 5.9×105 S/m,
σ22 = σ33 = 6.04 × 105 S/m, and (2) via random values assigned to the principal
axes, generated with either a uniform or Gaussian probability density function (pdf).

Figure 5.11 illustrates an ensemble of ten random functions produced with the
‘random permutations’ process. These are the inputs to a Monte Carlo run with
NLSE, with the intention of determining effective (nonrandom) values for σ11 and
σ22.

To begin the inversion process, we generate a 2 × 2 interpolation grid for σ11
and σ22 with nodal values of 5.5 × 105 S/m and 6.5 × 105 S/m. The blending
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Fig. 5.9 Comparison of VIC-3D® calculations with the frequency-scan benchmark data of [20].
The results shown here were obtained using a modest flaw grid of 128 × 2 × 4 cells, and a very
coarse grid of 2 × 4 × 4 cells for the probe

Table 5.1 Result of NLSE inversion of the ten functions in Fig. 5.11

Function Φ σ11/sensit σ22/sensit

1 0.3529(−1) 601488/1.653(−2) 603655/1.911(−2)

2 0.3626(−1) 601484/1.698(−2) 603888/1.963(−2)

3 0.3808(−1) 601426/1.784(−2) 603703/2.062(−2)

4 0.3632(−1) 601389/1.701(−2) 603866/1.966(−2)

5 0.3643(−1) 601480/1.706(−2) 603807/1.973(−2)

6 0.3792(−1) 601344/1.776(−2) 603788/2.053(−2)

7 0.3637(−1) 601561/1.703(−2) 603681/1.969(−2)

8 0.3646(−1) 601523/1.707(−2) 603861/1.974(−2)

9 0.3531(−1) 601346/1.654(−2) 603800/1.912(−2)

10 0.3729(−1) 601248/1.747(−2) 604021/2.019(−2)

AVG 0.3657(−1) 601429 603807

STD 0.008(−1) 289.6 330.1

(interpolation) functions at these nodes are shown in Fig. 5.12. Note that curves
A and D correspond to isotropic conditions, but the impedances vary because we
are seeing the edge effects of the anomalous patch. The result of passing each of the
ten functions in Fig. 5.11 through NLSE is shown in Table 5.1.
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Table 5.2 Result of NLSE inversion of the nonrandom function in Fig. 5.13

Φ σ11/sensit σ22/sensit

0.3424(−1) 591717/1.603(-2) 605798/1.856(−2)

Note that the degree of anisotropy induced by the random permutation process
is less than the combination of σ11 = 5.9 × 105, σ22 = σ33 = 6.04 × 105 S/m by
which the process was started. Note further that the result of Table 5.1, which we
can call an ‘effective (nonrandom) conductivity’ that produces the mean impedance,
is slightly larger than the mean conductivity produced by the permutation process.
This conductivity is equal to (5.9 × 105 + 2 × 6.04 × 105)/3 = 5.99 × 105 S/m.
This difference in the two conductivities is familiar to us from previous work with
random anisotropic grain noise, and is due to the fact that this is a nonlinear random
problem. We cannot expect the mean of the conductivity to produce the mean of the
output.

Using the same interpolation blending functions shown in Fig. 5.12 and the
nonrandom function shown in Fig. 5.13 as the input to NLSE, the inverted result
is shown in Table 5.2. The target solution for this problem is σ11 = 5.9 × 105 S/m
and σ22 = 6.04 × 105 S/m, so we have a good solution.

Figure 5.14 shows a sample function generated from the second process, ‘random
values of the conductivity assigned to the principal axes.’ In the example given
here, we assume a uniform pdf, with mean values of σ11 = 5.9 × 105 S/m, and
σ22 = σ33 = 6.04 × 105 S/m, with a standard deviation of 5200 S/m for all three
conductivities. The result of applying NLSE with this function as the input, and
using the same blending functions as before, is shown in Table 5.3. The values of
the function in Fig. 5.14 are much larger than those in the ten-sample ensemble
shown in Fig. 5.11, so the larger value for the norm of the residuals, Φ, in Table 5.3,
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Table 5.3 Result of NLSE inversion of the sample function in Fig. 5.14

Φ σ11/sensit σ22/sensit

0.2301 598203/5.375(−2) 608706/6.222(−2)

when compared to those in Table 5.1 is not unexpected. The results, however, along
with the small sensitivity parameters, suggest that we have a good inversion that
gives a reliable estimate of σ11 and σ22. (Keep in mind, however, that we have only
used a single sample function to draw this conclusion.)

5.4 Detectability of Flaws in Anisotropic Media: Application
to Ti64

In this section we will develop some simple models of notches in anisotropic Ti64.
In particular, we are interested in determining the effects of anisotropies on the
impedance response of a coil when scanned over a notch, and then using these
results as a basis for determining the effects that anisotropies can have on the
detectability of flaws.

Figure 5.15 illustrates the first model calculations. The host is isotropic with
a conductivity of σ = 6.04 × 105 S/m, which is typical of Ti64, and the two
anisotropic patches differ only in the exchange of σ11 and σ22. The values shown
correspond to Ti64 with 6 mm symmetry. The notch is aligned along the 2-axis,
which is also the direction of the coil scan. The patch dimensions are 0.1 × 0.1 ×
0.02in, and the notch measures 0.01 × 0.06 × 0.02in.

Figure 5.16 shows the impedance-plane response at 2 MHz when the notch
is omitted from Fig. 5.15. This will be referred to as the ‘patch only’ response.
The labels ‘Top’ and ‘Bottom’ in Fig. 5.16 refer to the top and bottom models in
Fig. 5.15. The anisotropy of the patch makes a significant impact in the responses.

When we introduce the notch back into the two models, we get the impedance-
plane response at 2 MHz shown in Fig. 5.17. It is clear, when comparing Figs. 5.16
and 5.17, that the ‘anisotropy’ induced by the 0.01 in-wide flaw dominates the
crystalline anisotropy of the host Ti64, in the sense that there is little difference
in the response when the notch is oriented along the 1-axis or 2-axis. When we
reduce the width of the flaw to 0.005 in, however, and redo the calculations, we get
the responses shown in Fig. 5.18. It is clear from this figure that the anisotropy of
the host plays a significant role in distinguishing the two responses. This suggests
that we will need to do a sensitivity study to determine the minimum detectable flaw
size when in the environment of a random crystalline anisotropy.
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Fig. 5.15 A model of a notch
in Ti64. The host is isotropic
with a conductivity of
σ = 6.04 × 105 S/m, which
is typical of Ti64. The two
anisotropic patches differ
only in the exchange of σ11
and σ22. These values are
those for Ti64 with 6 mm
symmetry
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Fig. 5.16 The impedance-plane response at 2 MHz for the ‘patch only’ configuration, in which
the notch is omitted in Fig. 5.15. The labels ‘Top’ and ‘Bottom’ refer to the top and bottom models
in Fig. 5.15
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Chapter 6
Stochastic Inverse Problems: Models
and Metrics

6.1 Introducing the Problem

Over the past 2 years, we have been developing a theory of uncertainty quantification
and propagation that is computationally feasible with large numbers of unknowns.
We have applied it to a problem of characterizing the eddy-current response of a
shot-peened surface, where the surface is modeled as a one-dimensional random
conductivity field with a known covariance function. We are currently extending
the model to more general materials characterization problems, such as modeling
two-dimensional random anisotropic grain noise in titanium alloys. In this case, we
assume the existence of a (two-dimensional) covariance function for the random
distribution of Euler angles that define the orientation of each crystallite within the
material.

With this background, we want to develop a theory of stochastic inverse problems
for more traditional eddy-current NDE flaw characterization and sizing. Instead of a
random material, we assume that the flaw can be characterized as a random process.
That this is a reasonable approach is suggested by reference to Fig. 6.1, which shows
the typical shape of fatigue-crack growth progression in cold-worked fastener holes.
Clearly, the ensemble of cracks cannot be modeled by a simple canonical shape with
three parameters, length, width, height, so we will need to invoke a stochastic model
for analyzing such cracks.

With such a stochastic model, we can draw parallels between ‘probability of
detection’ (POD) and ‘likelihood of inversion’ (LOI). In the former, we are given
a flaw, and ask ourselves, ‘Can we detect it, and what are the metrics that measure
our success?’ In the latter, we are given data, and ask ourselves, ‘Can we associate
a flaw with them, and what are the metrics that measure our success?’
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Fig. 6.1 Typical shape of fatigue-crack growth progression in cold-worked fastener holes. Images
courtesty of D. Forsyth, TRI/Austin

The stochastic model will be described later, but first we will develop some
background tools that are currently resident in VIC-3D®, and will be the basis of
our stochastic computational model.

6.2 NLSE: Nonlinear Least-Squares Parameter Estimation

Let

Z = g(p1, . . . , pN, f ) , (6.1)

where p1, . . . , pN are the N parameters of interest, and f is a control parameter at
which the impedance, Z, is measured. f can be frequency, scan-position, lift-off,
etc. It is, of course, known; it is not one of the parameters to be determined. To be
explicit during our initial discussion of the theory, we will call f ‘frequency.’

In order to determine p1, . . . , pN , we measure Z at M frequencies, f1, . . . , fM ,
where M > N :

Z1 = g(p1, . . . , pN, f1)

...

ZM = g(p1, . . . , pN, fM) . (6.2)
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The right-hand side of (6.2) is computed by applying the volume-integral code to
a model of the problem, usually at a discrete number of values of the vector, p,
forming a multidimensional interpolation grid.

Because the problem is nonlinear, we use a Gauss-Newton iteration scheme to
perform the inversion. First, we decompose (6.2) into its real and imaginary parts,
thereby doubling the number of equations (we assume the p1, . . . , pN are real).
Then we use the linear approximation to the resistance, Ri , and reactance, Xi , at the
ith frequency:
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where the superscript (q) denotes the qth iteration, and the partial derivatives are
computed numerically by the software. The left side of (6.3) is taken to be the
measured values of resistance and reactance. We rewrite (6.3) as

0 ≈ r + Jp , (6.4)

where r is the 2M-vector of residuals, J is the 2M × N Jacobian matrix of
derivatives, and p is the N -dimensional correction vector. Equation (6.4) is solved in
a least-squares manner starting with an initial value, (x

(0)
1 , . . . , x

(0)
N ), for the vector

of unknowns, and then continuing by replacing the initial vector with the updated
vector (x

(q)

1 , . . . , x
(q)
N ) that is obtained from (6.3), until convergence occurs.

We are interested in determining a bound for the sensitivity of the residual norm
to changes in some linear combination of the parameters. Given an ε > 0 and a unit
vector, v, the problem is to determine a sensitivity (upper) bound, σ , such that

‖r(x∗ + σv)‖ ≤ (1 + ε)‖r(x∗)‖ . (6.5)

We will derive an estimate of σ . Equation (6.5) is equivalent to

‖r(x∗ + σv)‖ − ‖r(x∗)‖ ≤ ε‖r(x∗)‖ . (6.6)

The left-hand side of (6.6) can be approximated to the second order in σ by the
second-order Taylor expansion:
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‖r(x∗ + σv)‖ − ‖r(x∗)‖ ≈ σv · ∇‖r(x∗)‖ + σ 2

2

∑
i,j

∂2‖r(x)‖
∂xj ∂xi

|x∗vivj , (6.7)

where ∇ is the gradient operator in N−dimensional space. Even though the gradient
vanishes at the minimum point, we will compute it to get the algebra started:
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where the superscript T denotes the transpose of a matrix (or vector), and e(x) =
r(x)/‖r(x)‖ is a unit vector.

The second derivative that we want is the gradient of (6.8):

∇∇‖r(x)‖ = −∇‖r(x)‖
‖r(x)‖2

⎡
⎢⎢⎢⎢⎣

f1
∂f1

∂x1
+ · · · + f2M

∂f2M

∂x1
...

f1
∂f1

∂xN

+ · · · + f2M

∂f2M

∂xN

⎤
⎥⎥⎥⎥⎦

T

+ 1

‖r(x)‖∇

⎡
⎢⎢⎢⎢⎣

f1
∂f1

∂x1
+ · · · + f2M

∂f2M

∂x1
...

f1
∂f1

∂xN

+ · · · + f2M

∂f2M

∂xN

⎤
⎥⎥⎥⎥⎦

T

. (6.9)

Before going further, we can immediately drop the first term in (6.9) because the
gradient of the norm vanishes at the solution x∗. Thus, (6.9) becomes, using index
notation,
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∇∇‖r(x)‖ = 1

‖r(x)‖
∂

∂xj

[
f1

∂f1

∂xi

+ · · · + f2M

∂f2M

∂xi

]
, i, j = 1, . . . , N

= 1

‖r(x)‖
∑
α

[
∂fα

∂xj

∂fα

∂xi

+ fα

∂2fα

∂xj ∂xi

]
, α = 1, . . . , 2M . (6.10)

Following [88, page 523], we discard the second-derivative term in (6.10) by
arguing that the residual vector for a good model fit should be small, which would
make the second derivative term small. Furthermore, it is likely that the residual
vector should have terms that are uncorrelated with each other and with the model,
thus tending to cancel the second derivative terms when summed over α. We will
call (6.10) the first-order curvature tensor, Γij , of the mapping (or deformation) of
the parameter space, {xi}, into the model-measurement space. If we call the ith
column of the Jacobian matrix, ci , then it follows from (6.10) that

Γij (x
∗) = ci(x

∗) · cj (x
∗)

‖r(x∗)‖ , (6.11)

where we are ignoring the second-derivative term in (6.10).

Digression on Computing Γ ij (x
∗) We can use the MINPACK code that is

already in NLSE to compute ci(x
∗) · cj (x

∗). The computation of the diagonal
elements is already available as the ‘self sensitivities,’ so that leaves the off-diagonal

elements. Consider ‖ci(x
∗)/

√
2 + cj (x

∗)/
√

2‖2 = ‖ci(x
∗)‖2

2
+ ci(x

∗) · cj (x
∗) +

‖cj (x
∗)‖2

2
. Hence, it follows that ci(x

∗) · cj (x
∗) = ‖ci(x

∗)/
√

2 + cj (x
∗)/

√
2‖2 −

‖ci(x
∗)‖2 + ‖cj (x

∗)‖2

2
, where the right-hand side is already calculable using

MINPACK in NLSE.

Substituting this result into (6.7) yields an upper bound for the quadratic term:

σ 2
∑
i,j

∂2‖r(x)‖
∂xj ∂xi

|x∗vivj = σ 2

‖r(x∗)‖
∑
α

⎡
⎣∑

i,j

∂fα

∂xi

vi

∂fα

∂xj

vj

⎤
⎦

x∗

= σ 2

‖r(x∗)‖ (J (x∗) · v) · (J (x∗) · v)

= σ 2

‖r(x∗)‖‖J (x∗) · v‖2 , (6.12)

and if we equate this to the right-hand side of (6.6), we get the final result

σv = ε1/2
( ‖r(x∗)‖

‖J (x∗) · v‖
)

. (6.13)



148 6 Stochastic Inverse Problems: Models and Metrics

Fig. 6.2 Showing sensitivity parameters for two system responses to xi . Response S is sensitive
to xi at x∗

i , whereas response I is not

We will call this the ‘first-order’ approximation, in the sense that we have truncated
the Taylor series expansion with the first nonzero term, and have ignored the second-
derivative terms in (6.10). This is the expression that is stated, but not derived, in
[77].

Note that if ‖J (x∗) · v‖ is small compared to ‖r(x∗)‖, then σ is large and the
residual norm is insensitive to changes in the linear combination of the parameters
specified by v. If v = ei , the ith column of the N × N identity matrix, then (6.13)
produces σi , the sensitivity bound for the ith parameter. Since σi will vary in size
with the magnitude of x∗

i , it is better to compare the ratios σi/x
∗
i for i = 1, . . . , N

before drawing conclusions about the fitness of a solution.
The importance of these results is that we now have metrics for the inversion

process: Φ = ‖r(x∗)‖, the norm of the residual vector at the solution, tells us
how good the fit is between the model data and measured data. The smaller this
number the better, of course, but the ‘smallness’ depends upon the experimental
setup and the accuracy of the model to fit the experiment. Heuristic judgement based
on experience will help in determining the quality of the solution for a given Φ.

The sensitivity coefficient, σ , is more subtle, but just as important. It, too, should
be small, but, again, the quality of the ‘smallness’ will be determined by heuristics
based upon the problem. If σ is large in some sense, it suggests that the solution
is relatively independent of that parameter, so that we cannot reasonably accept the
value assigned to that parameter as being meaningful, as suggested in Fig. 6.2, which
shows a system, S, for which the system is sensitive to variable, xi , at the solution
point, x∗

i , and another system, I , for which the system is insensitive to xi .
An example occurs when one uses a high-frequency excitation, with its attendant

small skin depth, to interrogate a deep-seated flaw. The flaw will be relatively
invisible to the probe at this frequency, and whatever value is given for its parameters
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will be highly suspect. When this occurs we will either choose a new parameter to
characterize the flaw, or acquire data at a lower frequency.

These metrics are not available to us in the current inspection method, in which
analog instruments acquire data that are then interpreted by humans using hardware
standards. The opportunity to use these metrics is a significant advantage to the
model-based inversion paradigm that we propose in this paper.

6.3 Confidence Levels: Stochastic Global Optimization

We can extend the previous results to obtain a statistical measure of confidence in
the solution. Referring to Fig. 6.2, we have the probability relation

Prob[x∗
i − σvv ≤ xi ≤ x∗

i + σvv] = Prob

[‖r(xi)‖ − ‖r(x∗
i )‖

‖r(x∗
i )‖ ≤ ε

]
. (6.14)

Arguing that
‖r(xi)‖ − ‖r(x∗

i )‖
‖r(x∗

i )‖ is a random variable allows us to transform the

inverse methods of [111] into the realm of ‘stochastic inverse problems.’
This approach is based on the current ‘Multi-Level Single Linkage’ algorithm

that is used in NLSE to reach the global minimum with probability one [21, 78,
89, 94], and also fits our concept of ‘stochastic inversion.’ Furthermore, it allows
us to use prior knowledge of the unknown parameters. Let the model parameters,
{xn}, be a set of independent random variables, each uniformly distributed over its
known range of values. We’ll sample the parameter space by choosing, say, 500
points randomly, in accordance with the distribution function of each parameter,
and compute the norm of the residual vector at each of the points, as in the first
step of NLSE. In NLSE, these points are trial initial points for the minimization
algorithm, (6.3), and the lowest of the resulting 500 minima is guaranteed to be the
global minimum with unit probability [21, 78, 89, 94].1

The random variable,
‖r(xi)‖ − ‖r(x∗

i )‖
‖r(x∗

i )‖ , in (6.14) is a continuous function

of {xi} defined on a compact set (the ‘prior feasible set’), so it achieves a finite
maximum on that set. This maximum, if it could be determined with probability one,
is precisely ε in (6.14), and when this is substituted into the transfer function, (6.13),
we would have determined the confidence level, σv , with unit probability. Later we
will relax any claims of unit probability in determining ε, but we are permitted to

1The Multi-Level Single Linkage method guarantees that the global minimum will be found within
a finite number of iterations with probability one, given a sufficiently large sample size of trial
points. Numerical experiments with model and laboratory data for a variety of inverse problems
over many years [111] suggest that 500 trial points yield a reliable estimate of the global minimum
for problems with the number of variables that we are considering.



150 6 Stochastic Inverse Problems: Models and Metrics
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Fig. 6.3 Showing the configuration of the one-dimensional pulse basis functions for parametrizing
a complex flaw. The nodes are located at depths of 0, 10, and 20 mils

make a strong statement about the confidence level, because in this formulation of
a stochastic inverse problem, we are assuming prior statistical constraints of the
unknown parameters, {xn}. This approach is quite ‘Bayesian’, in the sense that
we are combining prior information on the random variables with a likelihood
estimation (which follows from the least-squares inversion process) to get posterior
information on the variables.

Example: A Complex ‘Flaw’ The configuration of the problem is shown in
Fig. 6.3. The expansion of the flaw in the (Y, Z)−plane is given by

f (y, z) =
4∑

i=1

αiπ
(1)
i (y)π(1)(z) , (6.15)

where π(1) is a unit pulse function, and the expansion coefficients, {αi}4
i=1,

determine the magnitude of π(1)(z). These coefficients are the unknown degrees
of freedom of the problem, and will be modeled as independent random variables
with a uniform distribution over the range [0, 20]. They will be determined by
inversion of the data, which are impedances measured by a probe that is scanned
over −100 ≤ Y ≤ 100, X = 0. It should be understood that this formalism fixes
the resolution of the flaw in the Y−direction to be 25 mils, as well as the width of
the flaw in the X−direction to be 0.1 mil. These numbers are arbitrary, of course,
and can be changed to suit the problem. Furthermore, with the four blocks arranged
as shown, this configuration will be best suited for modeling and reconstructing
midbore, throughwall, and corner bolt-hole cracks.

Figure 6.4 illustrates a complex flaw extending over the entire range in Y . We
will use the output of a VIC-3D® model of this flaw to serve as the input data for
inversion. To illustrate the inversion process and the importance of the ‘surrogate’
interpolation table for the {αi}, we will perform a numerical experiment in which the
table has successively two, three and four nodes per dimension. In the first case, the
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Fig. 6.4 Showing the configuration of a complex flaw extending over the entire range of Fig. 6.3

Table 6.1 Results for the example problem vs. number of nodes per dimension

# Nodes ‖r(α∗)‖ α1/sensit α2/sensit α3/sensit α4/sensit # Points

2 0.319(−1) 11.47/4.12 20.0/3.4 16.80/3.58 4.64/4.46 272

3 0.405(−2) 10.18/0.53 19.86/0.698 15.87/0.558 3.9/0.444 226

4 0.159(−2) 11.19/0.125 20.11/0.216 15.56/0.212 6.06/0.1918 255

nodes are at [0, 20] , in the second, they are at [0, 10, 20], as in Fig. 6.3, and in the
third, [0, 7, 14, 21] (in this case, we assume a uniform distribution of the variables
over the range [0, 21]). Thus, the first table comprises 24 = 16 nodes, the second
34 = 81 nodes, and the last 44 = 256 nodes. A blending function for each node
is computed by VIC-3D®. We quickly see the ‘curse of dimensionality’ occurring.
This curse will be obviated through the use of sparse-grid interpolation techniques
to reduce the computational burden of building the new table.

The results of the experiment are shown in Table 6.1. The column labeled ’#
Points’ lists the number of the original 500 global starting points that are attracted
to the global minimum. These results show that increasing the number of nodes per
dimension yields improvements in reducing the norm of the residuals, Φ, and the
sensitivity coefficients of each variable. Figure 6.5 illustrates the results of Table 6.1,
and clearly indicates that increasing the number of nodes beyond 4 will have little
effect on the norm of the residuals, r , and only a slight reduction in the various
sensitivity coefficients, sensiti .

We ran NLSE four times, effectively sampling the {αi} space 2000 times,
yielding values of ‖r(α)‖max = 0.2545, 0.2689, 0.2351, and 0.265. The inverted
results of each of these runs were identical to those tabulated in Table 6.1, as we
expected, since the algorithm in NLSE ensures convergence to the global minimum
with probability one. Hence, using the data of the bottom row of Table 6.1 we have

‖r(α)‖max − ‖r(α∗)‖
‖r(α∗)‖ = 0.2689 − 0.00159

0.00159
= 168.12 = ε , (6.16)



152 6 Stochastic Inverse Problems: Models and Metrics

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  2.5  3  3.5  4

Nodes per Dimension

Stochastic Estimation Metrics vs. Number of Nodes

r
sensit1
sensit2
sensit3
sensit4

Fig. 6.5 The results of Table 6.1 indicate that increasing the number of nodes beyond 4 will have
little effect on the norm of the residuals, r , and only a slight reduction in the various sensitivity
coefficients, sensit(i). The sensitivity coefficients have been scaled downward by a factor of 20 to
make them commensurate with the norm of the residuals for clarity of visualization

and when this is substituted into (6.13), along with the sensitivity coefficients
tabulated in the bottom row of Table 6.1, we get the parameters of the confidence
intervals to be σ1 = 1.62, σ2 = 2.8, σ3 = 2.75, σ4 = 2.49. These effectively
define the posterior distribution of the {αi}, which is certainly much different than
the prior distribution.

We summarize the results for αi by claiming that we are ‘certain’ that αi − σi ≤
αi ≤ αi + σi , with the most likely value being α∗

i . In the case where one of the
posterior limits on αi exceeds the prior limit, we reject it in favor of the prior limit,
because if the crack actually exceeded the prior limit, the inversion process would
have been constrained at the prior limit of the interpolation table. For example,
17.31 ≤ α2 ≤ 21, rather than 17.31 ≤ α2 ≤ 22.91.

The Chebyshev Inequality We can improve the calculation of the confidence
level, and even make its definition more precise in our example, by resorting to
the Chebyshev inequality [63], which states that, if Z is a random variable, then, for
every ξ > 0,

P [|Z| ≥ ξ ] ≤ VAR(Z)

ξ2 = MAX UNCERTAINTY(ξ)
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Table 6.2 Results at 100 Hz–1 kHz for conductivity and permeability

Trial ‖r(x)‖max ‖r(x∗)‖ σ /sensit μ/sensit

1 0.2503 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

2 0.2509 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

3 0.2521 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

4 0.2552 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

5 0.2525 0.188(−2) 1.372(6)/2.32(4) 68.18/0.1504

MINIMUM CERTAINTY(ξ) = 1 − VAR(Z)

ξ2 , (6.17)

where ξ is the threshold or decision boundary for determining the confidence
interval. For example, if we want to be at least 95% confident in our assertion of

the probability of the first equality in (6.17), then 1 − VAR(Z)

ξ2 = 0.95, which

implies that ξ =
(

VAR(Z)

0.05

)1/2

.

To apply this theorem to our problem, we define Z = ‖r(α)‖max − ‖r(α)‖max,
where ‖r(α)‖max is a random variable whose sample value is the output of the
following ‘experiment’: run a 500-sample trial, as in the Multi-Level Single Linkage
algorithm, and choose the largest result for ‖r(α)‖max. Repeat the experiment for
the second sample, and so on. We have already given an example of this, with
the result after four trials that {‖r(α)‖max} = {0.2545, 0.2689, 0.2351, 0.265},
from which follow ‖r(α)‖max = 0.2559, VAR(Z) = 0.0001716, and ξ =
(0.0001716/0.05)1/2 = 0.0586 for 95% confidence level.

From the Chebyshev inequality we have, therefore, ‖r(α)‖max = 0.2559 +
0.0586 = 0.3145. This replaces ‖r(α)‖max = 0.2689 in (6.16), so that the 95%
upper bound is given by

‖r(α)‖max − ‖r(α∗)‖
‖r(α∗)‖ = 0.3145 − 0.00159

0.00159
= 196.8 = ε . (6.18)

The new values for the parameters corresponding to the 95% confidence interval
are {σ1 = 1.75, σ2 = 3.03, σ3 = 2.97, σ4 = 2.69}. The confidence intervals
for the four variables are, therefore: α1 : [9.44, 12.94], α2 : [17.08, 21], α3 :
[12.59, 18.53], α4 : [3.37, 8.75].
Joint Measurement of Conductivity and Magnetic Permeability We have taken
impedance measurements over the frequency range of 100Hz–1 kHz of a ferritic
heat-exchanger tube, with the intention of jointly determining the conductivity and
relative magnetic permeability of the tube. The interpolation table had the following
nodal values: σ : 1.0 × 106, 1.2 × 106, 1.4 × 106, 1.6 × 106, 1.8 × 106; μ :
50, 60, 70, 80, 90. We ran five trials of NLSE with the following results (Table
6.2):
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Table 6.3 Inverted results
for the width of a crack

Trial ‖r(x)‖max ‖r(x∗)‖ W/sensit

1 0.7979(−1) 0.2495(−1) 0.0793/0.0296

2 0.7990(−1) 0.2495(−1) 0.0793/0.0296

3 0.8024(−1) 0.2495(−1) 0.0793/0.0296

4 0.7941(−1) 0.2495(−1) 0.0793/0.0296

5 0.7999(−1) 0.2495(−1) 0.0793/0.0296

Following the procedure described above with respect to the Chebyshev inequal-
ity, we calculate a value of ε = 137, which yields σcond = 0.272 × 106, and
σμ = 1.76. Hence, we can say that the most likely value of the conductivity is
1.372 × 106, with a 95% confidence interval of [1.1 × 106, 1.644 × 106]. For the
permeability we get even tighter results; the most likely value is 68.18, with a 95%
confidence interval of [66.42, 69.94].

The fact that the permeability is well defined at these low frequencies has been
validated by use of the Cramer-Rao Lower Bound (CRLB), [111, pp. 407–410],
where it is also shown that the optimum frequency for estimating conductivity is
6.0 kHz.

Estimation of Width of a Long, Thin Crack We are given data at 200 kHz for a
crack in a bolt-hole. The data were obtained by a splitD probe with ferrite cores, and
the crack was 100 mils long and 18 mils deep. The objective was to determine the
width of the crack. The problem is described in greater detail in [111, Section 6.6].

The interpolation table for the width has nodes at 0, 0.125 mils, and 0.25 mils.
The inverted results after 5 trials are shown in Table 6.3.

These results yield a value of ε = 2.31 and σW = 0.045. The most likely value
of W is 0.0793 mils, and the 95% confidence interval is [0.0343, 0.1243]. We
should note that in these two examples, the confidence interval calculation becomes
more precise with an increase in the number of nodes in the interpolation table, as
indicated earlier.

6.4 Summary

We summarize the algorithm and process here.

1.
‖r(x)‖max − ‖r(x∗)‖

‖r(x∗)‖ = OBJ(x) is a random variable.

2. ‖r(x∗)‖ and the Jacobian, J (x∗), are determined with prob → 1 (Stochastic
Global Optimization via MLSL).

3. The set {x(ε)} � OBJ(x) ≤ ε is the ‘posterior feasible set at level ε’.
4. If OBJ(x) is parabolic (ellipsoidal in N-space), then the set {x(ε)} is called the

‘first-order posterior feasible set at level ε’.
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Fig. 6.6 Illustrating the interpretation and calculation of confidence intervals

5. σv = ε1/2
( ‖r(x∗)‖

‖J (x∗) · v‖
)

is a mapping from the ‘prior feasible set’ to the ‘first-

order posterior feasible set at level ε’.
6. If we choose ε to be at the 95% confidence level, as with the Chebyshev

Inequality, then the measure of {x∗ − σ ≤ x ≤ x∗ + σ } is at least 95% that
of the maximum first-order posterior feasible set, and x∗ is the most likely value
of x.

Figure 6.6 illustrates the algorithm.

A 2D Example The results just given are for the situation in which each parameter
is tested separately, while the others are fixed at the solution point. Now, we must
consider the general case in which the totality of variables are considered jointly.
This means operating in four-dimensional space. The tools that we have already set
up allow us to do that with no additional expense, except for a minor enhancement
to the NLSE code in VIC-3D®. Equation (6.13) is valid for arbitrary orientations
of the unit vector, v, and ε has already been computed using the entire four-
dimensional random parameter space in the MLSL stochastic global optimization
algorithm.

Consider the 2D example shown in Fig. 6.7, which is the projection onto the
(x1, x2)-plane of the four-dimensional hyperellipsoid associated with the complex
flaw example described earlier. Using NLSE, we compute the joint sensitivity
associated with the unit vector, v = [0.5, 0.5, 0.5, 0.5] to be 0.129. Then, using
ε = 196.8, as before, we compute σ0.5,0.5,0.5,0.5 = 1.81 from (6.13) for the
95%-confidence region for this combination of variables. It should be understood
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Fig. 6.7 A 2D ellipsoidal confidence region. The origin, (x∗
1 , x∗

2 ), is the solution of the optimiza-
tion problem

that NLSE already gives us the information to generate the entire N-dimensional
hyperellipsoid for a given problem. This would allow us to analytically calculate
such things as the volume of the ellipsoid, or cross-sectional areas, etc.



Chapter 7
Integration of Functionals, PCM
and Stochastic Integral Equations

7.1 Theoretical Background

The mathematical theory of functional integration was developed in the fifties to be
applied to problems in probability and quantum field theory. We’re not interested
in the formal theory [38], but in its more practical form which can actually be used
to generate numbers. In particular, it leads to the probabilistic collocation method
(PCM) and other techniques for high-dimensional model representation (HDMR)
[37, 42, 65, 69, 142], which we intend to apply to eddy-current nondestructive
evaluation (NDE), using the volume-integral code, VIC-3D®, as our vehicle.

Let σ(r) be a random conductivity field, which means that at each point, r, there
exists a random variable, σ(ω, r), with a probability density. Here, ω, denotes the
‘random-set’ parameter that defines the ‘outcome’ of the experiment to determine
σ(r).

Given σ(r), we use VIC-3D® to compute an impedance, Z(l, σ (r)), where l is
the position of the probe coil. Clearly, before we can compute Z, we must know
σ(r) at all of its field points, which are infinite in number (a continuous infinity!).
Hence, Z is a ‘functional’ of σ(r), and because σ(r) = σ(ω, r) is a random field, Z

becomes a random variable at each of the probe coil points, l. We should write this
as Z(l, [σ ]) to denote that Z is a function of l, and a functional of σ(r). We could
include the parameter, ω, in Z to remind us that Z is a random functional of σ(r),
but that would be gilding the lilly with symbols.

If we want to find the average value of Z(l, [σ ]), we form

[∫ ∞

−∞

]
Z(l, [σ ])p[σ ]d[σ ] , (7.1)
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where the brackets around the integral sign denote a continuous infinity of integrals,
one for each r, and p[σ ] is the probability density of σ(r) at each r. Equation (7.1)
is what mathematicians call an ‘integral of a functional’ or ‘functional integration.’

Clearly, we cannot compute infinitely many integrals, so we discretize the
problem by discretizing the anomalous region into N cells (voxels), and then
replacing σ(r) by σn, n = 1, . . . , N , where σn is a random variable associated
with the nth cell. If there are N voxels, then (7.1) becomes

∫ ∞

−∞
· · ·

∫ ∞

−∞
Z(l, σ1, · · · , σN)p(σ1, · · · , σN)dσ1 · · · dσN . (7.2)

N will generally be large, so we must consider high-dimensional numerical
quadrature routines to compute (7.2). This is where ‘Gaussian quadratures’ and
PCM come in [37, 42, 65, 69, 142].

The ‘quadrature rule’ determines a few points that are optimum for evaluating
(7.2), and these are the PCM points at which VIC-3D® must compute Z. That
is, the PCM points are points in (σ1, σ2, · · · , σN)-space that go into the VIC-
3D®-model. We hope that the number of points is not huge, and will yield a good
approximation with fewer runs than a Monte Carlo study. The PCM points will
depend upon the orthogonal polynomials that are used in the approximation of the
integrand, and these polynomials depend upon the nature of the density function
p(σ1, · · · , σN).

7.2 Probability Densities and Numerical Procedures

We will work with certain probability densities of interest to us in the context
of VIC-3D®. Anomalous regions in VIC-3D®-models are defined by volume-
fractions, VF, from which conductivities of the voxels are computed (see (7.62) of
Appendix 1). The standard model that we will use is one in which each of the VFs
is independent of the other, but each has the same density function. Thus, we have a
problem with independent, identically distributed (iid) random variables. Only the
density function will change from problem to problem.

Uniform Density The first statistical model is one in which each cell VF has a
uniform density. This is clearly the simplest one to analyze from a statistical point
of view, and it easily falls within the numerical-quadrature model described above,
because orthogonal polynomials and their zeros (‘Gauss points’) that are compatible
with the uniform density are known and tabulated. The ‘quadrature weights’ for the
uniform density are tabulated, as well.

Quadratic Density In Appendix 1 we describe a model for random anisotropic
grain noise that arises from the random orientation of crystals with, say, 6 mm
symmetry, as in Ti64. The important result is (7.63), and the conclusion that
V F = cos2 φ. In the model, however, it is cos φ that is uniformly distributed, so
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that VF is derived via a quadratic transformation. It can be shown, therefore [141,
pp. 61-62], that

pVF(α) =
⎧⎨
⎩

1

2
√

α

[
pcos φ(

√
α) + pcos φ(−√

α)
] ; α ≥ 0

0; α < 0.

=
⎧⎨
⎩

1

2
√

α
; 0 < α ≤ 1

0; otherwise.
, (7.3)

where the final result follows because pcos φ(α) = 1 for 0 ≤ α ≤ 1 and
vanishes elsewhere. pVF has a weak (integrable) singularity, but it does satisfy the
requirements for a probability density, namely that it is positive, and that its integral
is unity:

∫ 1

0
pVF(α)dα = 1

2

∫ 1

0

dα√
α

= 1 . (7.4)

7.3 Second-Order Random Functions

If we don’t know the a priori probability density for the volume-fractions or
conductivities, then we resort to the next best thing, namely certain second-order
properties of these random functions. The usual property that is either given, or
can be measured, is the covariance function, and this is the point of departure in
calculating properties of random surfaces in [2, 19, 53, 145].

We still need to transform knowledge of the covariance function into probability
densities for the volume fractions in a VIC-3D® model, and we use the Karhunen-
Loève expansion to do this. Using Loève’s notation [63, pp. 478–479] for a one-
dimensional problem, the expansion is given by the following

Theorem 7.1 (Proper Orthogonal Decomposition) A random function, X(t),
continuous in quadratic mean (q.m.) on a closed interval, I , has on I an orthogonal
decomposition

X(t) =
∑

λnξnψn(t) (7.5)

with

Eξmξ∗
n = δmn,

∫
ψm(t)ψ∗

n (t)dt = δmn , (7.6)

if, and only if, the λn are the proper (eigen-) values and the ψn(t) are the orthonor-
malized proper (eigen-) functions of its covariance. Then the series converges in
q.m. uniformly on I .
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The significance of this expansion is that it is a method for reducing the
infinite-dimensional random process, X(t), to a finite-dimensional one, {ξn}, n =
1, · · · ,M . This is another way of transforming expressions such as (7.1) into
(7.2), except that the appropriate joint probability density, p(σ1, · · · , σN), becomes
π(ξ1, · · · , ξM), where we expect that M << N . The joint density, π , yields the
PCM quadrature points.

7.4 A One-Dimensional Random Surface

The text, [143, pp. 47–50], contains a discussion of the Karhunen-Loève expansion
as it applies to the double-exponential covariance function. We will apply this theory
to the problem posed in [145], in which the authors postulate a pseudorandom real-
ization of a surface by using the spectral method of S. O. Rice, and then attempting
to fit it to the correlation function shown in Fig. 7.1. In this problem, we are given
the correlation function, and will use the K-L expansion to derive the realization
of the surface. We will be in a better position to look at numerical questions of
convergence of the approximations, as well as stability of computations.

The double-exponential correlation function shown in Fig. 7.1 is given by

C(x, x′) = exp(−|x − x′|/L) , (7.7)

and the appropriate equations out of [143] for the eigensolutions of the K-L
expansion for this covariance function are

λi =

⎧⎪⎪⎨
⎪⎪⎩

2L

1 + L2w2
i

, if i is even

2L

1 + L2v2
i

, if i is odd

ψi(x) =

⎧⎪⎪⎨
⎪⎪⎩

sin(wix)/

√
b − sin(2wib)

2wi

, if i is even

cos(vix)/

√
b + sin(2vib)

2vi

, if i is odd

Lw + tan(wb) = 0, if i is even
1 − Lv tan(vb) = 0, if i is odd

, (7.8)

where x ∈ [−b, b], and L is the correlation length of the double-exponential
function. We are changing notation from t in (7.5) and (7.6) so that x is our
independent variable, and the closed interval, I , in (7.5) and (7.6) is [−b, b].

With the expansion using (7.8) in hand, we can project the continuous eigen-
function solution onto the space spanned by unit pulse functions, and derive the
appropriate expressions for the volume-fractions that are assigned to the random
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Fig. 7.1 Double-exponential measured correlation function (dashed lines) in shot-peened copper
and the best-fitting exponential curves (solid lines) for two different peening intensities: top Almen
2A; bottom Almen 8A (from [145])

conductivity voxels. That’s relatively straightforward, but now we want to consider
a numerical version of the Karhunen-Loève expansion that may be easier to use in
the context of assigning volume-fractions for VIC-3D®.

For an arbitrary covariance, C(x, x′), the eigenvalue problem

∫ b

−b

C(x, x′)ψ(x′)dx′ = |λ|2ψ(x), x ∈ [−b, b] , (7.9)

can be transformed into the vector-matrix generalized eigenvalue problem

G · v = |λ|2H · v , (7.10)

where G and H are matrices and v is a column-vector. We’ll derive this result now,
but first we note that any covariance function is non-negative definite and Hermitian,
i.e., C(x, x′) = C∗(x′, x), where the asterisk, ∗, denotes the complex conjugate.
Because of its non-negative definiteness, it follows that the eigenvalues in (7.9) are
real and non-negative, which allows us to write them as shown.
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Let ψ(x) = ∑N
n=1 ψnfn(x), where {fn(x)} is a basis for ψ(x), and {ψn} are

expansion coefficients. Substituting this into (7.9) yields

N∑
n=1

ψn

∫ b

−b

C(x, x′)fn(x
′)dx′ = |λ|2

N∑
n=1

ψnfn(x) . (7.11)

Take moments of (7.11) by multiplying by fm(x) and then integrating over [−b, b]:
N∑

n=1

ψn

∫ b

−b

∫ b

−b

C(x, x′)fm(x)fn(x
′)dxdx′ = |λ|2

N∑
n=1

ψn

∫ b

−b

fm(x)fn(x)dx .

(7.12)
Upon calling the double integral on the left Gmn, and the integral on the right Hmn,
we have the result

N∑
n=1

Gmnψn = |λ|2
N∑

n=1

Hmnψn, m = 1, · · · , N , (7.13)

or, in vector-matrix notation

G · v = |λ|2H · v , (7.14)

where v = [ψ1, · · · , ψN ]T . This completes the derivation of (7.10). If {fn(x)} is
orthogonal, then H is diagonal, and if {fn(x)} is normalized to unity, then H is
the identity matrix, and the generalized eigenvalue problem, (7.10) reduces to the
standard form

G · v = |λ|2v . (7.15)

The discrete version of the K-L expansion then becomes

V =
N∑

n=1

λnξnvn , (7.16)

where {λn} and {vn} are the eigenpair solutions of (7.15), and {ξn} are uncorrelated
random variables, Eξmξ∗

n = δmn, that define the PCM points which we’ll talk about
later.

In order to make this theory amenable to VIC-3D® we will discretize the interval
[−b, b] into 2N cells, each of length δ = b/N , and let the basis functions, {fn(x)},
be unit pulses defined over this grid

fn(x) = π(x/δ −n) =
{

1, if nδ ≤ x < (n + 1)δ, −N ≤ n ≤ N − 1
0, otherwise

(7.17)
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Note that this system is also orthogonal.
Applying this to the double-exponential covariance function (7.7), we have for

the components of the matrix, G:

Gmn =
∫ b

−b

∫ b

−b

e−|x−x′|/Lπ(x/δ − m)π(x′/δ − n)dxdx′

=
∫ (n+1)δ

nδ

dx′
∫ (m+1)δ

mδ

e−|x−x′|/Ldx

= I1 + I2 + I3 + I4 , (7.18)

where [I1, I2, I3, I4] are given by [99, eqn(50c)]

I1 = −2x1L − L2e−x1/L, x1 > 0, x1 = (m − n)δ

= −L2ex1/L, x1 < 0

I2 = −2x2L − L2e−x2/L, x2 > 0, x2 = (m − n)δ

= −L2ex2/L, x2 < 0

I3 = 2x3L + L2e−x3/L, x3 > 0, x3 = (m − n − 1)δ

= L2ex3/L, x3 < 0

I4 = 2x4L + L2e−x4/L, x4 > 0, x4 = (m − n + 1)δ

= L2ex4/L, x4 < 0 .

(7.19)

When this is substituted into (7.18) we get the final expressions for Gmn:

Gmn = −2L2
(
1 − e−δ/L − δ/L

)
, m = n

= −2L2e−|n−m|δ/L (1 − cosh(δ/L)) , otherwise .

(7.20)

This is a symmetric Töplitz (convolution) matrix, whose critical parameter is the
ratio, δ/L. For this same system of expansion functions, the H matrix is diagonal
with the constant value of δ.

By referring to (7.20) we can draw some conclusions about the eigenvalues for
extreme cases of δ/L without solving the eigenvalue problem, (7.15). For example,
if δ/L ≈ 0, i.e., L is very large compared to the cell length, we can see from (7.20)
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that the exponentials in the bottom two equations tend to unity, and the expressions
within the parentheses in all three equations tend to the same approximate value of
−(1/2)(δ/L)2, as can be verified by expanding each expression in a Taylor series.
This means that in the limit of small δ/L, Gmn = δ2 for all −N ≤ m, n ≤ N .
Hence, this matrix is singular, and has a constant (normalized) eigenvector, vn =
1/

√
2N for all −N ≤ n ≤ N , and a single nonzero eigenvalue, λ2 = 2Nδ = 2b,

where 2b is the total length of the anomalous region. Thus, this process is fully
correlated, and the expansion, (7.16), has only a single term with just one random
variable. From the perspective of (7.9) the operator equation on the left-hand side is
a simple integrator, which means that the eigenfunction must be a constant.

On the other hand, in the limit of vanishing correlation length, for which δ/L

become very large, we have the opposite situation. In this case the off-diagonal
terms in (7.20) vanish to exponential order, and we are left with a diagonal matrix
that is a multiple of the identity matrix. Actually, the expression for Gmm in (7.20)
vanishes as L → 0, because the double-exponential covariance function vanishes
everywhere except at x = x′, where it is assigned the value of unity. The integral of a
function that vanishes everywhere except at one point is zero, unless at that one point
the function becomes ‘infinite’ in some manner. If we normalize the covariance by
dividing by 2L, then as can be seen from (7.20) the diagonal elements all take on
the value of δ as L → 0.

Thus, there are 2N identical eigenvalues, and 2N orthogonal eigenvectors that
can be chosen arbitrarily. The expansion, (7.16), therefore, has the full number of
terms with uncorrelated random variables; there will be no decay of the eigenvalues
with n. This is an example of an uncorrelated process, that we could call ‘discrete
white noise’; each voxel in the VIC-3D® grid is uncorrelated with each other voxel.
This is essentially the way that we are currently treating random problems with
VIC-3D®.

Figure 7.2 shows the normalized eigenvalue spectrum for a 32×32 matrix (7.20)
for three values of the ratio, L/δ. Clearly, our surmise is confirmed: the spectrum
dies out faster for larger values of this ratio, and this will have a profound effect on
the profile of conductivity, as will be discussed next.

In the preceding discussion of the eigenvalue spectrum, and in what follows,
we assume a one-dimensional grid that is 6.4 mm long and contains 32 cells, each
of length δ = 0.2 mm. Further, we assume that the correlation function shown
in Fig. 7.1 is multiplied by a variance, σ 2, to produce the covariance function
associated with the random surface.

The random conductivity profiles to be shown next are computed from (7.16),
with {ξn} being independent, identically distributed, zero-mean, unit-variance ran-
dom variables with a uniform density function. These are generated using the
Fortran RANDOM_NUMBER subroutine, as described in Appendix 2. The profile
shows the (uniform) conductivity of each cell, which is the basis for defining anoma-
lous regions in VIC-3D®. Sample functions for the case, L/δ = 0.1, are shown in
Fig. 7.3, while Fig. 7.4 shows three sample functions for the conductivity profile
when L/δ = 1, and Fig. 7.5 shows three sample functions for the conductivity
profile when L/δ = 3.
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Fig. 7.3 Three sample functions for the conductivity profile when L/δ = 0.1. These functions are
the departure from the mean value of σhost = 3.02 × 105 S/m. We assume a uniform probability
density function, centered at zero and with variance = 1, for the random variables, {ξi}, in the
Karhunen-Loève expansion
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Fig. 7.4 Three sample functions for the conductivity profile when L/δ = 1. These functions are
the departure from the mean value of σhost = 3.02 × 105 S/m. We assume a uniform probability
density function, centered at zero and with variance = 1, for the random variables, {ξi}, in the
Karhunen-Loève expansion

The increasing correlation between cell conductivities with L/δ is quite apparent.
This is consistent with the eigenvalue spectra shown in Fig. 7.2. Because the spec-
trum for L/δ = 0.1 is virtually constant (sort of a discrete ‘white noise’) it follows
that all of the independent random variables in (7.16) contribute almost equally
to the profile, thereby generating the greatest ‘chaos,’ in which the conductivity
jumps between positive and negative values from cell-to-cell. On the other hand,
the condition L/δ = 3 produces the greatest correlation between cells, thereby
maintaining positivity or negativity over more cells, yielding a less chaotic profile.

7.5 gPC and PCM1

Now that we have introduced the new random variables, {ξ1, · · · , ξM}, that are the
result of the K-L expansion, we can replace the impedance relationship in (7.2) with

1The theoretical treatment in this section largely follows [143]. A related problem of stochastic
electromagnetic modeling with uncertain dielectric properties is discussed in [140].
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Fig. 7.5 Three sample functions for the conductivity profile when L/δ = 3. These functions are
the departure from the mean value of σhost = 3.02 × 105 S/m. We assume a uniform probability
density function, centered at zero and with variance = 1, for the random variables, {ξi}, in the
Karhunen-Loève expansion

∫ ∞

−∞
· · ·

∫ ∞

−∞
Z(l, ξ1, · · · , ξM)πM(ξ1, · · · , ξM)dξ1 · · · dξM

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
Z(l, ξ1, · · · , ξM)π(ξ1) · · · π(ξM)dξ1 · · · dξM , (7.21)

where we are assuming that the {ξi}, i = 1, · · · ,M , are independent, identically
distributed random variables (iid), with the common density function, π(ξ). This
allows us to replace the joint M−dimensional density function, πM , with the
product of M copies of the univariate density function, π , in order to make the
following developments numerically feasible. Furthermore, we are free to decide
on π to suit the purposes of our problem; the K-L expansion specifies only that the
{ξi} are uncorrelated.

The generalized polynomial chaos (gPC) expansion of degree N for
Z(l, ξ1, · · · , ξM) is given by Xiu [143]:

Z(l, ξ1, · · · , ξM) =
∑

0≤|i|≤N

Ẑi1(l) · · · ẐiM (l)φi1(ξ1) · · · φiM (ξM) , (7.22)

where |i| = i1 +· · ·+ iM and {φk(ξi)}Nk=0 is the set of univariate gPC basis functions
in ξi of degree 0 ≤ k ≤ N . They are orthogonal polynomials associated with the
density function, π(ξ), in the sense that
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E[φm(ξi)φn(ξi)] =
∫

φm(ξ)φn(ξ)π(ξ)dξ = δmnγm, 0 ≤ m, n ≤ N , (7.23)

where γm is a normalizing constant.
The expansion, (7.22), is reminiscent of the method of separation of variables in

partial differential equations that results in solutions that are products of functions in
each of the independent variables. This form of the gPC expansion is a direct result
of the assumption of iid random variables, {ξi}M1 . It follows from the orthogonality
property, (7.23), that the expansion coefficients of (7.22) are given by the M−fold
integral

Ẑi1 (l) · · · ẐiM (l)

= 1

γi1 · · · γiM

∫
· · ·

∫
Z(l, ξ1, · · · , ξM)φi1 (ξ1) · · ·φiM (ξM)π(ξ1) · · ·π(ξM)dξ1 · · · dξM .

(7.24)

With this expansion in hand, we can calculate various statistical properties of
Z(l, ξ1, · · · , ξM) [143]. For example, letting i1 = · · · = iM = 0 in (7.24) yields
[Ẑ0(l)]M to be the average value of Z. This follows because the zero-order gPC
polynomials are unity, and the gammas are all unity as well. Similarly, the variance
and covariance are given by:

Var[Z(l, ξ1, · · · , ξM)] =
∑

0<|i|≤N

γi1 · · · γiM Ẑ2
i1
(l) · · · Ẑ2

iM
(l)

CZ(l1, l2) =
∑

0<|i|≤N

γi1 · · · γiM Ẑi1 (l1) · · · ẐiM (l1)Ẑi1 (l2) · · · ẐiM (l2) , (7.25)

where the sums exclude |i| = 0.
Now we must turn our attention to the probabilistic collocation method (PCM)

in order to develop practical schemes to numerically evaluate the integral in (7.24).
The most straightforward scheme is to adopt an integration rule based on the same
set of orthogonal functions, {φk(ξi)}Nk=0, that are already present in (7.24). Thus, we
have

Ẑi1 · · · ẐiM ≈ 1

γi1 · · · γiM

q1∑
j1=1

· · ·
qM∑

jM=1

Z(l, ξ
j1
1 , · · · , ξ

jM

M )φi1 (ξ
j1
1 ) · · ·φiM (ξ

jM

M )α
j1
1 · · ·αjM

M ,

(7.26)
where {ξji

i }qi

ji=1 are the nodes of the one-dimensional rule, and {αji

i }qi

ji=1 are the
corresponding weights.

Clearly, Q is the total number of nodal points required for the M−variate
integration rule, and if we choose the same number of points in each dimension,
q1 = · · · = qM = q, then Q = qM , which for M >> 1 can grow enormously. For
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Fig. 7.6 Showing Z as a function of normalized flaw conductivity for a flaw in an infinite host with
σH = 2×107 S/m. The resistance component is reasonably approximated by R = −0.12(2−σ̂f )2,
and the reactance by X = −0.44521σ̂f + 0.89042, where σ̂f = σf /107 is the normalized flaw
conductivity

example, if q = 3 and M = 10, then Q = 310 ≈ 5.9 × 104. If we keep M ≤ 5, we
can reduce Q ≤ 243, for the same q, which is quite reasonable.

The value of M depends upon the result of the K-L expansion, whereas q depends
upon the degree of the approximating polynomial. We know that in one dimension
the integration rule with q points is exact for any polynomial of degree ≤ 2q − 1. In
order to get some insight into the degree of the approximating polynomial that we
can expect, refer to Fig. 7.6, which shows a VIC-3D®-computed model impedance,
Z, as a function of normalized flaw conductivity for a flaw in an infinite host with
σH = 2 × 107 S/m. The resistance component is reasonably approximated by R =
−0.12(2 − σ̂f )2, and the reactance by X = −0.44521σ̂f + 0.89042, where σ̂f =
σf /107 is the normalized flaw conductivity. These results are typical of other model
results.

Thus, the expansion polynomials in (7.22) need be of second order, only, and,
therefore, the integrands in (7.24) are at most fourth-order polynomials. From what
was just stated, the number of nodal points to exactly compute the integral must be
q ≥ (p + 1)/2 = 5/2 = 2.5, or the minimum q = 3. We’ll leave gPC and PCM
at this point, but point out that the recently-developed Uncertainty Quantification
Toolkit (see [33] for references to the toolkit) contains software for executing
common algorithms for gPC and PCM.
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7.6 HDMR and ANOVA

High-dimensional model representation (HDMR) and analysis of variance
(ANOVA)2 seek to reduce the complexity of problems with a large number
of dimensions, and are the subject of considerable contemporary research in
computational methods [15, 37, 46, 65].

Instead of the gPC expansion of (7.22), we consider an ANOVA decomposition
as (we suppress the scan variable, l, to simplify notation):

Z(ξ1, · · · , ξM) = Z0 +
M∑
j1

Zj1(ξj1) +
M∑

j1<j2

Zj1,j2(ξj1, ξj2)

+
∑

j1<j2<j3

Zj1,j2,j3(ξj1, ξj2 , ξj3) + · · · + Zj1,··· ,jM
(ξj1, · · · , ξjM

) , (7.27)

where Z0 is a constant function, the {Zj1} are one-dimensional functions, {Zj1,j2}
are two-dimensional functions, and so on, yielding 2M different terms [46]. For
example, the expansion in five-dimensional space is given by

Z(ξ1, · · · , ξ5) = Z0 + Z1(ξ1) + Z2(ξ2) + Z3(ξ3) + Z4(ξ4) + Z5(ξ5)

+Z12(ξ1, ξ2) + Z13(ξ1, ξ3) + Z14(ξ1, ξ4) + Z15(ξ1, ξ5)

+Z23(ξ2, ξ3) + Z24(ξ2, ξ4) + Z25(ξ2, ξ5) + Z34(ξ3, ξ4)

+Z35(ξ3, ξ5)+Z45(ξ4, ξ5)+Z123(ξ1, ξ2, ξ3) + Z124(ξ1, ξ2, ξ4) + Z125(ξ1, ξ2, ξ5)

+Z134(ξ1, ξ3, ξ4) + Z135(ξ1, ξ3, ξ5) + Z145(ξ1, ξ4, ξ5) + Z234(ξ2, ξ3, ξ4)

+Z235(ξ2, ξ3, ξ5) + Z245(ξ2, ξ4, ξ5) + Z345(ξ3, ξ4, ξ5) + Z1234(ξ1, ξ2, ξ3, ξ4)

+Z1235(ξ1, ξ2, ξ3, ξ5) + Z1245(ξ1, ξ2, ξ4, ξ5) + Z1345(ξ1, ξ3, ξ4, ξ5)

+Z2345(ξ2, ξ3, ξ4, ξ5) + Z12345(ξ1, ξ2, ξ3, ξ4, ξ5) . (7.28)

The higher-order terms in (7.27) and (7.28) express the effects of correlations
between the random variables, and if only a few of them are non-negligible, then we
have a good shot at breaking the ‘curse of dimensionality’ that haunts approximation
theory in high-dimensional spaces, but first we will give an algorithm for generating
the terms in the ANOVA expansion [46], [42].

Define a one-dimensional projection operator

Pf (x) =
∫

f (x)dμ(x) , (7.29)

2ANOVA is often referred to in the mathematics literature as Kolmogorov’s superposition theorem.
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where, if the ‘density measure’ dμ(x) = dx, results in the usual expression for an
average

Pf (x) =
∫

f (x)dx . (7.30)

If dμ(x) = δ(x −a)dx, where δ(x −a) is the one-dimensional Dirac delta function
centered at x = a, then the average is simply given by the evaluation of f (x) at
x = a:

Pf (x) =
∫

f (x)δ(x − a)dx = f (a) . (7.31)

From here on we will work in the M−dimensional Dirac measure, δ(x1 −a1)δ(x2 −
a2) · · · δ(xM −aM) where a is the M−dimensional ‘anchor point’ of the expansion.

Decompose the M−dimensional identity operator into the tensor product of M

one-dimensional operators:

I (M) = ⊗M
j=1

(
Pj + (Ij − Pj )

)

=
∏
i

Pi +
∑

i

(Ii − Pi)
∏
i �=j

Pj

+
∑
i<j

(Ii − Pi)(Ij − Pj )
∏

k �=i,j

Pk + · · · +
∏
i

(Ii − Pi) , (7.32)

then each term of (7.27) is given by applying this operator to Z(ξ1, · · · , ξM):

Z0 = ∏
i PiZ

Zj1 = (Ij1 − Pj1)
∏

j1 �=k PkZ

...
...

...

Zj1,··· ,jM
= ∏

i (Ii − Pi)Z ,

(7.33)

where PiZ(ξ1, · · · , ξM) = Z(ξ1, · · · , ξi−1, ai, ξi+1, · · · , ξM).
This can be expressed in the following recursive form after expanding the

projection operators [46]:

Z0 = Z(ξ)|ξ=a

Zj1(ξj1) = Z(ξ)|ξ=a\ξj1
− Z0

Zj1,j2(ξj1, ξj2) = Z(ξ)|ξ=a\{ξj1 ,ξj2 } − Zj1(ξj1) − Zj2(ξj2) − Z0

· · · = · · ·
Zj1,··· ,jk

(ξj1, · · · , ξjk
) = Z(ξ)|ξ=a\{ξj1 ,··· ,ξjk

}
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−
∑

{i1,··· ,ik−1}⊂{j1,··· ,jk}
Zi1,··· ,ik−1(ξi1 , · · · , ξik−1)

−
∑

{i1,··· ,ik−2}⊂{j1,··· ,jk}
Zi1,··· ,ik−2(ξi1 , · · · , ξik−2)

...

−
∑
j1

Zj1(ξj1) − Z0

· · · = · · · (7.34)

where we have introduced the notation

Z(ξ)|ξ=a\{ξj1 ,··· ,ξjk
} = Z(a1, · · · , aj1−1, ξj1 , · · · , ξjk

, ajk+1, · · · , aM) . (7.35)

As an example, we’ll expand Z(ξ1, ξ2) = Z0 + Z1(ξ1) + Z2(ξ2) + Z12(ξ1, ξ2),
where:

Z0 = P1P2Z(ξ1, ξ2) = Z(a1, a2)

Z1(ξ1) = (I − P1)P2Z(ξ1, ξ2) = Z(ξ1, a2) − Z(a1, a2)

Z2(ξ2) = P1(I − P2)Z(ξ1, ξ2) = Z(a1, ξ2) − Z(a1, a2)

Z12(ξ1, ξ2) = (I − P1)(I − P2)Z(ξ1, ξ2) = Z(ξ1, ξ2) − Z(ξ1, a2) − Z(a1, ξ2) + Z(a1, a2)

= Z(ξ1, ξ2) − Z1(ξ1) − Z2(ξ2) − Z0 .

(7.36)

Thus, we see that (7.36), and by extension, (7.27), is a multi-scale expansion of an
M−dimensional function along points, lines, faces, hyperplanes, etc., which pass
through the anchor point, a.

We can draw some general conclusions from (7.36). First, we note that the mean
value of the higher-order terms (beyond Z0) is zero, which means that these terms
are orthogonal to Z0, a constant. It also means that Z0 is the mean value of Z.
Recall that to compute the mean, we simply replace the ‘free variable,’ ξi , by the
fixed anchor point, ai . Secondly, the correlation between each term vanishes; i.e.,
(7.27) is an expansion in orthogonal functions. Finally, it is easy to show that

Z2
1(ξ1) = Z2(ξ1, a2) − Z2

0

Z2
2(ξ2) = Z2(a1, ξ2) − Z2

0

Z2
12(ξ1, ξ2) = Z2(ξ1, ξ2) − Z2

1(ξ1) − Z2
2(ξ2) − Z2

0 , (7.37)

from which we draw the important conclusion that

Z2
1 + Z2

2 + Z2
12 = Z2 − Z2

0 = VAR[Z] . (7.38)
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Equation (7.38) allows us to identify the terms beyond Z0 as contributing partial
variances to the overall variance. With this we can define ‘global sensitivity indices’
as the ratio of each of these partial variances to the overall variance. These indices
describe the contribution of the corresponding inputs, {ξj1, · · · , ξjk

}, to the variance
of the output [46].

It is pointed out in [46] and [65], and the references therein, that there is a
close relationship between the multi-dimensional Taylor expansion and the ANOVA
expansion, (7.27). The infinite number of terms in the Taylor expansion

Z(ξ) = Z(a) +
∞∑

j=1

1

j !
M∑
i=1

∂jZ

∂ξ
j
i

(a)(ξi − ai)
j

+
∞∑

ji ,j2>0

1

j1!j2!
∑
i1<i2

∂j1+j2Z

∂ξ
j1
i1

∂ξ
j2
i2

(a)(ξi1 − ai1)
j1(ξi2 − ai2)

j2

+ · · · (7.39)

are partitioned into a finite number of groups, with each group corresponding to one
of the component functions of (7.27). For example, the first-order function, Zj1(ξj1),
is the sum of all of the Taylor series terms that contain only the variable, ξj1 , and so
on. This suggests that a truncated ANOVA expansion should be more accurate than
a truncated Taylor series of the same order [65].

7.7 Determining the ANOVA Anchor Point

There are a number of options for choosing the anchor point [37, 42, 46, 65]. We
will use the point in ξ -space that corresponds to the mean of a ten-sample Monte
Carlo run. This will require a straight-forward inverse problem of the type that
we have done before in other random-characterization problems. The idea is to
replace the random surface with an equivalent homogeneous (non-random) surface
that produces the mean output of the ten VIC-3D® runs. This procedure is called
‘homogenization,’ and is an active area of mathematics research [13].

We use the ten sample functions for L/δ = 1, shown in Fig. 7.7, as the input to
VIC-3D®, which then produces the ten-sample set of impedances responses, shown
in Fig. 7.8. The mean of these ten impedances is shown in Fig. 7.9, and this will be
the input to NLSE to finish the homogenization process.

The best fit to the data of Fig. 7.9 is given when the homogeneous conductivity of
the surface is σH = 2.8 × 105 S/m, and the resulting impedance response when this
conductivity is used is compared with the original data in Fig. 7.10. Clearly, there
is a good fit. Furthermore, we note that the equivalent homogeneous conductivity
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Fig. 7.7 Ten sample functions for L/δ = 1 that extend the set shown in Fig. 7.4, except that we
have restored the mean host conductivity, σhost = 3.02 × 105. These ten will be input to VIC-
3D® in order to generate ten samples for NLSE that will be used to determine the homogeneous
(nonrandom) conductivity of the surface

differs from the statistical mean conductivity of the surface, σhost = 3.02×105 S/m,
as is typical of nonlinear random problems.

In the language of probability theory [127], σhost is the ‘prior mean’ of the model
and σH is the ‘posterior mean’ of the model. The significance of the terms is that
the prior mean is a property of the known material, and is known at the outset of the
problem (‘a priori’), whereas the posterior mean is that equivalent homogeneous
conductivity that produces the mean of the impedances, or measured data. The
posterior mean is the more important concept when it comes to applying inverse
methods to characterize flaws in the random patch. In fact, the random patch will be
replaced by a homogeneous, nonrandom patch whose conductivity is σH.

The left-hand vector in (7.16) is the difference between two constant vectors,
[2.8 × 105]32 − [3.02 × 105]32 = [−0.22 × 105]32, where the notation implies a
32-row vector, each entry of which is the constant shown within the brackets. The
eigenvectors, {vn}, consitute a complete orthonormal system (cons) of basis vectors
for the 32-dimensional space, which means that the expansion coefficients are given
by the simple inner-product, λnξn =< [−0.22 × 105]32, vn >, from which we get
the anchor point in ξ -space

ξ anchor =
{

< [−0.22 × 105]32, vn >

λn

}32

n=1
. (7.40)
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Table 7.1 Coordinates for
the ANOVA anchor point, a,
in ξ -space. Coordinates for
even-numbered indices
vanish due to symmetry, so
coordinates for
odd-numbered indices only
are shown

Index an

1 −0.1917E+00

3 −0.6392E−01

5 0.3836E−01

7 −0.2738E−01

9 −0.2125E−01

11 −0.1730E−01

13 −0.1452E−01

15 −0.1241E−01

17 −0.1072E−01

19 −0.9277E−02

21 −0.7978E−02

23 −0.6742E−02

25 −0.5506E−02

27 −0.4227E−02

29 −0.2879E−02

31 −0.1461E−02

The eigenvectors with an even index are antisymmetric, so their inner-products
in (7.40) vanish, which leaves only inner-products with odd indices that contribute
to the anchor point. The resulting coordinates in ξ -space are shown in Table 7.1.
Note that they cluster near the origin, with the exception of a1, which means that
the response at σH = 2.8 × 105 S/m is not too different from the response at the
mean conductivity of 3.02 × 105 S/m. Calculations (not shown here) confirm this
conclusion.

7.8 Interpolation Theory Using Splines Based Upon
Higher-Order Convolutions of the Unit Pulse3

Consider a regular one-dimensional grid, whose spacing is h = 1. Relative to this
grid we define π(x) to be the unit pulse

π(x) =
{

1, if 0 ≤ x < 1
0, otherwise,

(7.41)

and πm+1(x) to be the mth-order convolution of π(x) (we define π1(x) = π(x)).
The πm+1(x) are shown in Fig. 7.11 for m = 0, 1, 2, 3.

3See [12, 101] for additional examples.
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Fig. 7.11 πm+1(x): (a) m = 0; (b) m = 1; (c) m = 2; (d) m = 3
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Table 7.2 Piecewise
polynomials, αk

m(x), in
πm+1(x) =∑m

k=0 αk
m(x − k)θ(x − k)

Order (m) αk
m(x) = ∑m

j=0 am(k, j)xj /j !
m = 0 α0

0(x) = 1

m = 1 α0
1(x) = x

α1
1(x) = 1 − x

m = 2 α0
2(x) = x2/2

α1
2(x) = 1/2 + x − x2

α2
2(x) = 1/2 − x + x2/2

m = 3 α0
3(x) = x3/6

α1
3(x) = 1/6 + x/2 + x2/2 − x3/2

α2
3(x) = 4/6 − x2 + x3/2

α3
3(x) = 1/6 − x/2 + x2/2 − x3/6

The higher-order convolutions of the unit pulse can be written in terms of the
piecewise polynomials, αk

m(x), as

πm+1(x) =
m∑

k=0

αk
m(x − k)θ(x − k),

where θ(z) is the characteristic function of the unit interval, and the αk
m(x) =∑m

j=0 am(k, j)xj /j ! are tabulated in Table 7.2. The coefficients am(k, j) satisfy
the recursion relation

am(k, j) = am−1(k, j − 1) − am−1(k − 1, j − 1), 1 ≤ k ≤ m − 1, 1 ≤ j ≤ m.

(7.42)
Numerical values for am(k, j), for 1 ≤ m ≤ 3, can be easily inferred from Table 7.2.
For example, a3(k, j) is given by the following matrix,

0 0 0 1
1/6 1/2 1 −3
4/6 0 −2 3
1/6 −1/2 1 −1.

Keeping in mind the polynomial relationship shown in Fig. 7.6, we will use
piecewise polynomials of the second order, which correspond to m = 2 in
Table 7.2, for interpolating within the ANOVA expansion. Hence, we write the
general expression

Z(ξ) = z0π3(ξ) + z1π3(ξ − 1) + z2π3(ξ − 2) , (7.43)

which is just a supersposition of π3(ξ) and its translates of unit amounts. The
expansion coefficients, z0, z1, z2, will be given in terms of computed values of
Z(ξ) at the nodes, ξ = 2, ξ = 2.5, ξ = 3.
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Over the interval, 2 ≤ ξ ≤ 3, the expansion, (7.43), is given by

Z(ξ) = z0

[
1/2 − (ξ − 2) + (ξ − 2)2/2

]
+ z1

[
1/2 + (ξ − 2) − (ξ − 2)2

]

+z2(ξ − 2)2/2

= z0+z1

2
+(z1−z0)(ξ − 2)+(z0 − 2z1+z2)

(ξ − 2)2

2
, 2≤ξ≤3 . (7.44)

Calling Z2 the computed nodal impedance at ξ = 2 and similarly Z2.5 and Z3 at the
other two nodes, we see immediately from (7.44) that

Z2 = z0 + z1

2

Z2.5 = z0

8
+ 3z1

4
+ z2

8

Z3 = z1 + z2

2
, (7.45)

which yields

z0 = 2.5Z2 − 2Z2.5 + 0.5Z3

z1 = −0.5Z2 + 2Z2.5 − 0.5Z3

z2 = 0.5Z2 − 2Z2.5 + 2.5Z3 . (7.46)

Substituting these results into (7.44) gives the result in terms of the nodal values of
the impedances:

Z(ξ) = Z2 −(3Z2 −4Z2.5 +Z3)(ξ −2)+2(Z2 −2Z2.5 +Z3)(ξ −2)2, 2 ≤ ξ ≤ 3 .

(7.47)
We will be interested in applying this expansion to the case in which ξ has a uniform
density between [−0.5,+0.5], so we will translate it to4

Z(ξ)=Z−0.5−(3Z−0.5−4Z0 + Z0.5)(ξ+0.5)+2(Z−0.5 − 2Z0+Z0.5)(ξ + 0.5)2,

− 0.5 ≤ ξ ≤ 0.5 . (7.48)

We can compute the quantities in (7.37) and (7.38) directly by integrating the
square of (7.48):

4Do not confuse Z0 in this expression with the impedance computed at the anchor point in (7.37)
and (7.38).
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∫ 0.5

−0.5
Z2(ξ)dξ = a2 + ab + 2ac + b2

3
+ bc

2
+ c2

5
, (7.49)

where

a = Z−0.5

b = −3Z−0.5 + 4Z0 − Z0.5

c = 2(Z−0.5 − 2Z0 + Z0.5) . (7.50)

With this result, we can calculate the partial variances (see (7.37) and (7.38)) due to
the one-dimensional functions defined in (7.27) and (7.34) associated with the six
random variables, ξ1, · · · , ξ5, ξ32, and plot the results in Fig. 7.12.

The total variances associated with these one-dimensional functions are plotted
in Fig. 7.13. These results are obtained by adding each of the variances shown in
Fig. 7.12, because, as we have already stated, these variances are independent of
each other.

Beyond the question of variances, these results are important because they
indicate the importance of the higher-order terms in (7.27). It seems clear that the
dominant variables are ξ1, ξ2, ξ3, and ξ5, at least in the middle of the scan, so that
helps in keeping the problem tractable. Indeed, from the pattern displayed in (7.28),
we see that there is a total of 16 terms in the expansion with these four variables.

7.9 Two-Dimensional Functions

In terms of these four variables, the two-dimensional functions to be computed in
(7.27) and (7.34) are Z12(ξ1, ξ2), Z13(ξ1, ξ3), Z15(ξ1, ξ5), Z23(ξ2, ξ3), Z25(ξ2, ξ5),

Z35(ξ3, ξ5). We will expand each of these functions over the unit-square centered at
the origin of the appropriate two-dimensional space. Using (7.44) as a template, the
expansion is given by the tensor product

Z(ξ1, ξ2) = z00P0(ξ1)P0(ξ2) + z01P0(ξ1)P1(ξ2) + z02P0(ξ1)P2(ξ2)

+ z10P1(ξ1)P0(ξ2) + z11P1(ξ1)P1(ξ2) + z12P1(ξ1)P2(ξ2)

+ z20P2(ξ1)P0(ξ2) + z21P2(ξ1)P1(ξ2) + z22P2(ξ1)P2(ξ2) , (7.51)

where

P0(ξ) = 1/2 − (ξ + 0.5) + (ξ + 0.5)2/2

P1(ξ) = 1/2 + (ξ + 0.5) − (ξ + 0.5)2

P2(ξ) = (ξ + 0.5)2/2 . (7.52)
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Fig. 7.12 Partial variances in resistance and reactance due to the one-dimensional functions
defined in (7.27) and (7.34) associated with the six random variables, ξ1, · · · , ξ5, ξ32
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interpolation nodes
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The interpolation nodes for the two-dimensional functions are the tensor product
of the one-dimensional nodes used above (see Fig. 7.14). With this in mind, we can
determine the expansion coefficients in (7.51) as the solution of the vector-matrix
equation:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z(−0.5,−0.5)

Z(0.0,−0.5)

Z(0.5,−0.5)

Z(−0.5, 0.0)

Z(0.0, 0.0)

Z(0.5, 0.0)

Z(−0.5, 0.5)

Z(0.0, 0.5)

Z(0.5, 0.5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25000 0.25000 0.00000 0.25000 0.25000
0.062500 0.062500 0.00000 0.37500 0.37500
0.00000 0.00000 0.00000 0.25000 0.25000
0.062500 0.37500 0.062500 0.062500 0.37500
0.015625 0.093750 0.015625 0.093750 0.56250
0.00000 0.00000 0.00000 0.062500 0.37500
0.00000 0.25000 0.25000 0.00000 0.25000
0.00000 0.062500 0.062500 0.00000 0.37500
0.00000 0.00000 0.00000 0.00000 0.25000

0.00000 0.00000 0.00000 0.00000
0.00000 0.062500 0.062500 0.00000
0.00000 0.25000 0.25000 0.00000
0.062500 0.00000 0.00000 0.00000
0.093750 0.015625 0.093750 0.015625
0.062500 0.062500 0.37500 0.062500
0.25000 0.00000 0.00000 0.00000
0.37500 0.00000 0.062500 0.062500
0.25000 0.00000 0.25000 0.25000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z00

z01

z02

z10

z11

z12

z20

z21

z22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.53)
We will apply the notion of the ‘impulse response,’ that is well-known in

linear system theory, to the solution of (7.53). The left-hand side of (7.53)
is replaced by nine ‘source impulses,’ which are simply the basis vectors,
[1, 0, · · · , 0], · · · , [0, 0, · · · , 1], and one then computes the nine responses,
[z00, · · · , z22], to each of these basis vectors. Then the response to a general
source vector is simply the superposition of the impulse responses weighted by
the appropriate coefficients. This follows because of the expansion of an arbitrary
vector in terms of the ‘impulse basis’:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z(−0.5,−0.5)

Z(0.0,−0.5)

Z(0.5,−0.5)

Z(−0.5, 0.0)

Z(0.0, 0.0)

Z(0.5, 0.0)

Z(−0.5, 0.5)

Z(0.0, 0.5)

Z(0.5, 0.5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Z(−0.5,−0.5)

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦+ · · ·+Z(0.5, 0.5)

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦ . (7.54)

Hence, the solution of (7.53) is given by
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Table 7.3 Impulse response of the linear system (7.53)

1 2 3 4 5 6 7 8 9

6.25 −5.00 1.25 −5.00 4.00 −1.00 1.25 −1.00 0.25

−1.25 1.00 −0.25 5.00 −4.00 1.00 −1.25 1.00 −0.25

1.25 −1.00 0.25 −5.00 4.00 −1.00 6.25 −5.00 1.25

−1.25 5.00 −1.25 1.00 −4.00 1.00 −0.25 1.00 −0.25

0.25 −1.00 0.25 −1.00 4.00 −1.00 0.25 −1.00 0.25

−0.25 1.00 −0.25 1.00 −4.00 1.00 −1.25 5.00 −1.25

1.25 −5.00 6.25 −1.00 4.00 −5.00 0.25 −1.00 1.25

−0.25 1.00 −1.25 1.00 −4.00 5.00 −0.25 1.00 −1.25

0.25 −1.00 1.25 −1.00 4.00 −5.00 1.25 −5.00 6.25

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z00

z01

z02

z10

z11

z12

z20

z21

z22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Z(−0.5,−0.5)M−1

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ + · · · + Z(0.5, 0.5)M−1

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦ , (7.55)

where M is the coefficient matrix in (7.53). The operation of M−1 on the basis
vectors is the ‘impulse response’ of the system, which is tabulated in Table 7.3.

The final expression for the expansion coefficients of (7.51) is obtained when the
results of Table 7.3 are substituted into (7.55):

z00 = 6.25Z(−0.5, −0.5) − 5.00[Z(0.0, −0.5) + Z(−0.5, 0.0)]
+1.25[Z(0.5, −0.5) + Z(−0.5, 0.5)]
−[Z(0.5, 0.0) + Z(0.0, 0.5)] + 0.25Z(0.5, 0.5) + 4.00Z(0.0, 0.0)

z01 = −1.25[Z(−0.5, −0.5) + Z(−0.5, 0.5)]
+[Z(0.0, −0.5) + Z(0.5, 0.0) + Z(0.0, 0.5)]
−0.25[Z(0.5. − 0.5) + Z(0.5, 0.5)] + 5.00Z(−0.5, 0.0) − 4.00Z(0.0, 0.0)

z02 = 1.25[Z(−0.5, −0.5) + Z(0.5, 0.5)] − [Z(0.0,−0.5) + Z(0.5, 0.0)]
+0.25Z(0.5, −0.5)

−5.00[Z(−0.5, 0.0) + Z(0.0, 0.5)] + 4.00Z(0.0, 0.0) + 6.25Z(−0.5, 0.5)

z10 = −1.25[Z(−0.5, −0.5) + Z(0.5, −0.5)] + 5.00Z(0.0, −0.5)

+[Z(−0.5, 0.0) + Z(0.5, 0.0) + Z(0.0, 0.5)] − 4.00Z(0.0, 0.0)

−0.25[Z(−0.5, 0.5) + Z(0.5, 0.5)]
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z11 = 0.25[Z(−0.5, −0.5) + Z(0.5, −0.5) + Z(−0.5, 0.5) + Z(0.5, 0.5)]
−[Z(0.0, −0.5) + Z(−0.5, 0.0) + Z(0.5, 0.0) + Z(0.0, 0.5)]
+4.00Z(0.0, 0.0)

z12 = −0.25[Z(−0.5, −0.5) + Z(0.5, −0.5)]
+[Z(0.0, −0.5) + Z(−0.5, 0.0) + Z(0.5, 0.0)]
−4.00Z(0.0, 0.0) − 1.25[Z(−0.5, 0.5) + Z(0.5, 0.5)] + 5.00Z(0.0, 0.5)

z20 = 1.25[Z(−0.5, −0.5) + Z(0.5, 0.5)] − 5.00[Z(0.0, −0.5) + Z(0.5, 0.0)]
+6.25Z(0.5, −0.5)

−[Z(−0.5, 0.0) + Z(0.0, 0.5)] + 4.00Z(0.0, 0.0) + 0.25Z(−0.5, 0.5)

z21 = −0.25[Z(−0.5, −0.5) + Z(−0.5, 0.5)] + [Z(0.0,−0.5) + Z(−0.5, 0.0)

+Z(0.0, 0.5)]
−1.25[Z(0.5, −0.5) + Z(0.5, 0.5)] − 4.00Z(0.0, 0.0) + 5.00Z(0.5, 0.0)

z22 = 0.25Z(−0.5, −0.5) − [Z(0.0,−0.5) + Z(−0.5, 0.0)] + 1.25[Z(0.5, −0.5)

+Z(−0.5, 0.5)]
+4.00Z(0.0, 0.0) − 5.00[Z(0.5, 0.0) + Z(0.0, 0.5)] + 6.25Z(0.5, 0.5) (7.56)

We compute the nine nodal responses for each of the six two-dimensional
functions listed above (7.51) using VIC-3D®, and in Fig. 7.15 we show ten
sample functions of R and X for Z12(ξ1, ξ2) computed following this procedure.
Figure 7.16 shows the variance computed from these ten sample functions.

In a similar manner, we compute the variances of Z13(ξ1, ξ3), Z15(ξ1, ξ5),
Z23(ξ2, ξ3), Z25(ξ2, ξ5), and Z35(ξ3, ξ5) using ten sample functions of each, and
plot the results in Fig. 7.17. It is interesting to note that only those pairs of random
variables that involve ξ2 contribute a non-null response, and this indicates why this
algorithm is referred to as ‘analysis of variance.’ It clarifies which variables, whether
singly or jointly, contribute significantly to the variance of the process.

The total variance associated with the one- and two-dimensional functions is
obtained by adding the results of Figs. 7.13 and 7.17, and is shown in Fig. 7.18.

7.10 Probability of Detection and the Chebychev Inequality

If we assume, as is typical, that a flaw is ‘detected’ if its response exceeds the
uncertainty in the background, as in Fig. 7.19, then it is clear from Fig. 7.18 that
a flaw whose peak signal is away from the center will be obscured by the random
clutter to a greater extent than a flaw whose peak signal is centered on the random
surface. We assume that the variance of a random process defines its uncertainty or
‘noise level.’
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Fig. 7.15 Ten sample impedance responses of Z12(ξ1, ξ2), computed according (7.34). Each
sample is computed analytically using the interpolation algorithm of (7.51)
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Fig. 7.16 Variance in Z12(ξ1, ξ2) computed using the ten sample functions of Fig. 7.15
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Fig. 7.17 Variance in Zij (ξi , ξj ) computed using ten sample functions. The legend denotes the
index-pair, ij

The problem that we are going to address in this section is that of determining
metrics for estimating the ‘detectability’ of a flaw located at, say, 1.625 mm in
Fig. 7.18, compared with one located at the center of the scan. This is a problem of
‘signal detection,’ as described, for example, in [48]. Following [48], we introduce
the notion of ‘hypothesis testing,’ in which we designate by H0 the ‘null hypothesis’,
that we have detected only random noise in our measurement, and the alternate
hypothesis that we have detected a flaw by H1. There is a probability associated
with a true response for each hypothesis, and that is what we will determine next.
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Fig. 7.19 Illustrating a situation in which one flaw, labeled 0.3125 mm, is ‘detectable’ against
background random noise, while the other, labeled 0.15625 mm, is not. The first flaw has a volume
four times greater than the second, and its peak extends significantly above the variance of the
background noise due to a random patch in an otherwise pristine workpiece. The smaller flaw’s
response is buried within the noise level. The figure is illustrative only, and the data shown are
completely unrelated to the models in this report
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We use the Chebychev Inequality [63] to quantify the probability of H0. This
inequality states that for a random variable, Z, and a real number, ε, we have

P [|Z| ≥ ε] ≤ VAR(Z)

ε2 . (7.57)

Z is the impedance measured due to the random surface, and the term on the right
side of (7.57) can be called the ‘maximum uncertainty’ associated with Z for a given
ε. This is the metric to be associated with H0.

Because H0 and H1 are complementary processes (their sample spaces are
disjoint), it follows that their probabilities must sum to unity. Hence, we can assign
a ‘minimum certainty’ metric to H1 by

Minimum Certainty(ε) = 1 − VAR(Z)

ε2 . (7.58)

By referring to this as the ‘minimum certainty,’ we are claiming that we are at least
this certain of a correct decision.

Figure 7.20 shows ‘probability of detection’ (POD) curves for the detectability
of a flaw located at two different points within the random surface. These curves
are plots of (7.58), in which ε plays the role of a ‘threshold variable’ or ‘decision
boundary,’ that will allow us to determine whether to choose H0 or H1 (see
Fig. 7.21).

As we suspected, a flaw located at the center of the random surface is much more
likely to be detected than one located away from the center, because its threshold
of detectability is much smaller. This does not address the question of how the size
of the flaw enters the picture. That can only be determined by solving a series of
forward problems for a given probe, frequency and size and shape of the flaw.

7.11 Consistency of Calculations

We know that the mean of the ANOVA expansion is obtained by substituting the
anchor point, a, for the generic point in ξ -space in the general ANOVA expansion.
We get the same result by analytically integrating the expressions for the first-
order and second-order functions given by the quadratic polynomial interpolation
expansions. This yields

Z(ξ) = (Z−0.5 + 4Z0 + Z0.5)/6 − Z(a)

Z(ξ1, ξ2) = (z00 + 4z01 + z02 + 4z10 + 16z11 + 4z12

+ z20 + 4z21 + z22)/36 − Z(ξ1) − Z(ξ2) − Z(a) . (7.59)

The mean values vanish when numerical values for Z−0.5, Z0, and Z0.5, as well as
z00, · · · , z22, as presented in (7.56), are used.
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Appendix 1: The Numerical Model

In its principal-axis coordinate system, the electrical conductivity tensor for hexag-
onal crystals, such as pure titanium and its most common alloys, is given by

σ =
⎡
⎣

σ11 0 0
0 σ11 0
0 0 σ33

⎤
⎦ , (7.60)

where σ11 is the conductivity in the basal plane (plane of isotropy), and σ33 is the
conductivity normal to the basal plane. Such a system is said to possess transverse
isotropy, and the crystal class is labeled 6 mm. This notation means that the crystal
contains a sixfold axis of rotational symmetry, as well as six mirror planes that
contain that axis.

For pure titanium, σ11 = 2.205 × 106 S/m, and σ33 = 2.083 × 106 S/m. If
φ denotes the angle between the electric field vector and the normal to the basal
plane, then the conductivity in the φ−direction can be represented by the ellipsoid
of revolution

σ(φ) = σ33 cos2 φ + σ11 sin2 φ . (7.61)

We will use (7.61) in establishing our numerical model. See the next section for a
further discussion and generalization of (7.61).

Consider a half-space host of pure titanium, whose crystal axis is oriented in the
z−direction, normal to the surface of the half-space. Lying at the surface of this host
is a rough patch of randomly oriented crystallites of titanium, as shown in Fig. 7.22.
The use of a single conductivity value for the host would be rigorously correct if the
coil were the only current source in the problem. The electric field induced into the
host by this source lies within the basal plane, so only the basal-plane conductivity,
2.205 × 106 S/m, enters the picture. The anomalous currents within the random
crystallites, however, produce a scattered field within the host that is not confined to
the basal plane, so the use of a single conductivity is an approximation.

We can use any number of cells in the model in order to get a statistically
reasonable answer. The value of the conductivity to be assigned each cell (or
crystallite or grain) is determined by randomly choosing cos φ in (7.61). We use
a uniform distribution function for this purpose. The volume-fractions for the
cells, from which the conductivities are determined, are computed off-line, and
then imported into VIC-3D® in a routine manner. After simulating the impedance
response of the bad patch, we can run several small slot responses to gain insight
into how deleterious the grain noise is to detecting a crack in its presence.

The relationship between volume-fractions, V F , and conductivity of a cell is
given by

σ = σmax + V F(σmin − σmax) , (7.62)
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Fig. 7.22 Illustrating the model setup for VIC-3D®. There is a second layer identical to the one
shown immediately below the one shown. This is due to the fact that VIC-3D® requires a minimum
of two cells in any direction of the grid

where σmax is the maximum conductivity in the region of interest (host plus
anomaly), σmin is the minimum conductivity, and 0 ≤ V F ≤ 1. As Fig. 7.22
indicates, σmax = σhost = 2.205 × 106 in this setup.

Returning to (7.61), we can easily determine a relationship for volume-fractions:

σ = σmax sin2 φ + σmin cos2 φ

= σmax(1 − cos2 φ) + σmin cos2 φ

= σmax + cos2 φ(σmin − σmax) , (7.63)

from which we conclude that V F = cos2 φ.

More Physics Let σ be the conductivity tensor of a material in an arbitrary
coordinate system, so that it will have (in general) nonzero off-diagonal entries.
In this coordinate system we still have J = σ · E, where J is the electric current
density, and E is the electric field. The electric power density dissipated within the
material is P = E · J = E · σ · E, which defines an ellipsoid in E-space.

By definition, the conductivity in the direction of the electric field, E, is given by

σE = P

E · E
= P

|E|2 , (7.64)
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which, because it comprises only dot-products, is a scalar under rotations. Hence,
it can be evaluated in any coordinate system, such as the principal-axis system
described in the Introduction. This means that (7.61) is rigorously correct when
applied to the randomly-oriented crystallites of the numerical model that we have
described earlier in this section.

We’ll apply this result to a crystal of lower symmetry, such that in its principal
axis system its conductivity tensor becomes:

σ =
⎡
⎣

σ11 0 0
0 σ22 0
0 0 σ33

⎤
⎦ . (7.65)

Therefore, J = σ11Exax + σ22Eyay + σ33Ezaz, where ax, ay, az are unit vectors
in the x, y, and z directions, respectively. The electric power dissipated per unit
volume is given by

P = E · J
= σ11E

2
x + σ22E

2
y + σ33E

2
z

= E2
(
σ11 sin2 φ cos2 θ + σ22 sin2 φ sin2 θ + σ33 cos2 φ

)
, (7.66)

where E is the magnitude of the electric-field vector, and θ, φ are the azimuthal
and polar angles in spherical coordinates, respectively.

Hence,

σE = σ11 sin2 φ cos2 θ + σ22 sin2 φ sin2 θ + σ33 cos2 φ . (7.67)

In this case, we require two variables, θ and φ, to define σE , and the calculation of
the volume-fractions requires a separate step. If σ11 < σ22 < σ33, then, from (7.62)

V F = σE − σ33

σ11 − σ33
. (7.68)

If σ11 = σ22 in (7.67), then we recover the case of transverse isotropy in (7.61).

Appendix 2: The Fortran RANDOM_NUMBER Subroutine

The Fortran 90 RANDOM_NUMBER Subroutine [34] returns uniformly dis-
tributed pseudorandom number(s) over the range 0 ≤ x < 1. This is the subroutine
that we use to generate the random variables that are required in the Karhunen-
Loève expansion. As such, it is necessary that we demonstrate that its output is
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consistent with the requirements of the expansion, namely that the random variables
are uncorrelated and have a unit variance.

First, we note that the variance of a random variable that is uniformly distributed
over [0, 1) is 1/12, so that we must multiply the output of RANDOM_NUMBER by√

12 in order to generate a unit-variance random variable. Secondly, we transform
the range of the output to [−0.5, 0.5) in order to generate a zero-mean random
variable, which will be useful in our later work.

In order to demonstrate that the output of RANDOM_NUMBER is uncorrelated,
we perform the following experiment. We generate a 32-element random vector
which is the output of RANDOM_NUMBER, and identify the 17th and 32nd
elements as two typical random variables. We repeat this experiment 10, 100, 1000,
10,000 and 100,000 times to generate five sample spaces. We then compute the
means and variances of each of the two random variables, as well as their covariance.
The results, obtained using the usual equations of statistics [18],

MEAN(17) = 1

N

N∑
i=1

RV17(i)

MEAN(32) = 1

N

N∑
i=1

RV32(i)

COV(17, 32) = 1

N

N∑
i=1

(RV17(i) − MEAN(17)) × (RV32(i) − MEAN(32))

VAR(17) = 1

B

N∑
i=1

(RV17(i) − MEAN(17))2

VAR(32) = 1

B

N∑
i=1

(RV32(i) − MEAN(32))2 , (7.69)

are shown in Table 7.4. It is clear that the required conditions are met, especially
the very small covariance and unit variances, with increasing sample size. Thus,
we can confidently use the Fortran RANDOM_NUMBER Subroutine to generate
numbers that are consistent with the statement of the Karhunen-Loève expansion.

Table 7.4 Convergence of the Fortran RANDOM_NUMBER Subroutine

Trials MEAN(17) MEAN(32) COV(17,32) VAR(17) VAR(32)

10 0.2664 0.3056 −0.2649 1.117 0.8505

100 −0.6011(−1) −0.2929 0.3290(−1) 1.056 1.031

1000 0.7366(−2) 0.3469(−1) −0.1442(−1) 1.004 1.027

10,000 −0.1173(−2) 0.5354(−2) 0.1377(−1) 0.9972 0.9926

100,000 0.7556(−2) 0.1951(−2) −0.4245(−2) 0.9962 1.001



Chapter 8
A Model for Microstructure
Characterization

8.1 Introduction

Titanium is noisy. Contrary to the situation discussed in Chap. 7 in which the
surface of an isotropic body, copper, is made artificially noisy through shot-
peening, titanium is intrinsically noisy because of its microstructure consisting of
a random distribution of anisotropic crystallites. Figure 8.1 illustrates this condition
by comparing the response of the same flaw in the alloy, Ti-6Al-4V, to aluminum,
which is isotropic.

Figure 8.2 contrasts noise in a titanium alloy with a large crack response. The
origin of the noise lies in the random, anisotropic microstructure of the alloy, and
the objective of the present chapter is to develop a model for computing this noise,
starting with a realistic model of the microstructure.

Figures 8.3 and 8.4 further illustrate the microstructure of a titanium alloy, in
this case, Ti-7Al. The clustering of grains of similar orientation in Fig. 8.4 produces
continuum effects that are different than those of the individual grains. We expect
to see conductivity variations that are smoothed and elongated in the direction of
the clusters, rather than chaotic from grain to grain. Thus, the grain size used for a
particular property model is no longer actually the grain size measured from optical
or backscattered electron (BSE) images.

8.2 Stochastic Euler Space

In Appendix 1 of Chap. 7 we pointed out that the anisotropic model was an
approximate one. In this chapter we intend to rectify that, and we will extend the
work of Chap. 7 to two dimensions, with the intention of developing an approach to
characterizing the microstructure of Ti and its alloys. We’ll start with Euler Angles.
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Fig. 8.1 Illustrating the
response of the same flaw in
‘noisy’ Ti-6Al-4V (right) and
‘noiseless’ Al. (Image
courtesy of M. Blodgett, Air
Force Research Laboratory)

Fig. 8.2 Contrasting noise in a titanium alloy (right) with a large (∼28 × 15 mils) crack response
(left). The sample has a duplex microstructure (∼50% spherical alpha, ∼50% lamellar secondary
alpha platelets) (Image courtesy of E. Shell, Wyle Labs)

Let a rotation about O carry the orthogonal triad (I, J,K) into (i, j,k). We break
this rotation into three rotations. First, rotate about K so as to make the new position
of the plane (I,K) contain k, say through an angle φ; this gives a transformation

(I, J,K) → (I1, J1,K1)

⎧⎨
⎩

I1 = I cos φ + J sin φ

J1 = −I sin φ + J cos φ

K1 = K

⎫⎬
⎭ . (8.1)

Secondly, rotate about J1 to bring K1 to k, say through an angle θ ; this gives a
transformation
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Fig. 8.3 Microstructure of Ti-7Al: backscattered electron image (Image courtesy of M. Cherry,
Air Force Research Laboratory)

Fig. 8.4 Microstructure of Ti-7Al: crystal orientation map (electron backscatter diffraction)
(Image courtesy of M. Cherry, Air Force Research Laboratory)
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(I1, J1,K1) → (I2, J2,k)

⎧⎨
⎩

I2 = I1 cos θ − K1 sin θ

J2 = J1
k = I1 sin θ + K1 cos θ

⎫⎬
⎭ . (8.2)

Finally, rotate about k to bring I2 to i and J2 to j, say through an angle ψ ; this
gives the transformation

(I2, J2,k) → (i, j,k)

⎧⎨
⎩

i = I2 cos ψ + J2 sin ψ

j = −I2 sin ψ + J2 cos ψ

k = k

⎫⎬
⎭ . (8.3)

The angles (θ, φ, ψ) are the Euler angles. Their values determine the position of
the triad (i, j,k) relative to (I, J,K). The angles range over the following values:

0 ≤ θ ≤ π

0 ≤ φ < 2π

0 ≤ ψ < 2π

. (8.4)

From the above equations of transformation, we can obtain the matrix, M, that
defines orthogonal rotations. We use the notation, c = cos, s = sin and let the
subscripts, 1, 2, 3, refer to θ, φ,ψ , respectively:

i j k

I c1c2c3 − s2s3 −c1c2s3 − s2c3 s1c2

J c1s2c3 + c2s3 −c1s2s3 + c2c3 s1s2

K −s1c3 s1s3 c1

(8.5)

Now, we’ll apply this to the problem at hand. Let the host conductivity have the
transverse isotropy associated with Ti-6Al-4V in its principal coordinate system:

σ (r) =
⎡
⎣

σ1 0 0
0 σ1 0
0 0 σ2

⎤
⎦ . (8.6)
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Data supplied by P. B. Nagy1 give values of σ1 = 6.04 × 105 S/m (1.04% IACS)
and σ2 = 5.90×105 S/m (1.02%IACS) for the basal plane and normal-to-the-basal-
plane conductivities, respectively.

In its rotated coordinate system, this conductivity tensor becomes

σ (r) = M

⎡
⎣

σ1 0 0
0 σ1 0
0 0 σ2

⎤
⎦MT

=
⎡
⎣

σ1 + m2
13(σ2 − σ1) (σ2 − σ1)m13m23 (σ2 − σ1)m13m33

(σ2 − σ1)m23m13 σ1 + (σ2 − σ1)m
2
23 (σ2 − σ1)m23m33

(σ2 − σ1)m13m33 (σ2 − σ1)m23m33 σ1 + (σ2 − σ1)m
2
33

⎤
⎦ .(8.7)

Note that this is a symmetric tensor, with components that are independent of ψ , in
the rotated coordinate system. We identify the Euler angles, θ and φ, as the random
variables that define the orientation of each grain (or voxel) of the anomalous region.
Once these two variables are given for each realization, the random conductivity
field follows from (8.7).

Preliminary Stochastic Calculations We will assume that θ and φ are indepen-
dent random variables whose first order probability densities are uniform over the
ranges shown in (8.4). The mean and variance of these two variables are easily
computed to be

θ = 1

π

∫ π

0
θdθ

= π

2

VAR(θ) = 1

π

∫ π

0
θ2dθ − π2

4

= π2

12

φ = 1

2π

∫ 2π

0
φdφ

= π

VAR(φ) = 1

2π

∫ 2π

0
φ2dφ − π2

= π2

3
(8.8)

1Private communication.
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Furthermore, we have the following results for the mean values of the random
coefficients of the conductivity tensor in (8.7):

m13m23 = 1

2π2

∫ π
0 sin2 θdθ

∫ 2π
0 sin φ cos φdφ ; m2

13 = 1

2π2

∫ π
0 sin2 θdθ

∫ 2π
0 cos2 φdφ

= 0 ; = 1/4

m13m33 = 1

2π2

∫ π
0 sin θ cos θdθ

∫ 2π
0 cos φdφ ; m2

23 = 1

2π2

∫ π
0 sin2 θdθ

∫ 2π
0 sin2 φdφ

= 0 ; = 1/4

m23m33 = 1

2π2

∫ π
0 sin θ cos θdθ

∫ 2π
0 sin φdφ ; m2

33 = 1

π

∫ π
0 cos2 θdθ

= 0 ; = 1/2
(8.9)

Thus, the mean value of the conductivity tensor is

σ (r) =
⎡
⎣

σ1 + 1/4(σ2 − σ1) 0 0
0 σ1 + 1/4(σ2 − σ1) 0
0 0 σ1 + 1/2(σ2 − σ1)

⎤
⎦

=
⎡
⎣

3/4σ1 + 1/4σ2 0 0
0 3/4σ1 + 1/4σ2 0
0 0 1/2(σ1 + σ2)

⎤
⎦ . (8.10)

This result indicates that stochastic mixing of the eigenvalues produces a slightly
less anisotropic host in the mean, with the difference in the eigenvalues given by
1/4(σ2 − σ1).

Expand the random variables, θ and φ, in the usual manner:

θ = θ + θ̂ = π/2 + θ̂

φ = φ + φ̂ = π + φ̂ , (8.11)

where ˆ denotes the random, zero-mean, residual that will be computed using
the Karhunen-Loève expansion to be discussed next. Substituting these into the
expressions for the random coefficients of the conductivity tensor yields:

m2
13 = sin2(π/2 + θ̂ ) cos2(π + θ̂ ) = cos2 θ̂ cos2 φ̂

m2
23 = sin2(π/2 + θ̂ ) sin2(π + φ̂) = cos2 θ̂ sin2 φ̂

m2
33 = cos2(π/2 + θ̂ ) = sin2 θ̂

m13m23 = sin2(π/2 + θ̂ ) sin(π + φ̂) cos(π + φ̂) = 1/2 cos2 θ̂ sin 2φ̂

m13m33 = sin(π/2 + θ̂ ) cos(π/2 + θ̂ ) cos(π + φ̂) = 1/2 sin 2θ̂ cos φ̂

m23m33 = sin(π/2 + θ̂ ) cos(π/2 + θ̂ ) sin(π + φ̂) = 1/2 sin 2θ̂ sin φ̂ . (8.12)
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As an aside, we note that if θ̂ = φ̂ = 0, then (8.12) gives us the values of
the coefficients at the mean of their random arguments, which, as can be seen by
comparison with (8.9), is not equal to the mean of the coefficients. This is due to the
fact that the random coefficients are nonlinear functions of their random arguments.

8.3 The Karhunen-Loève Model

The two-dimensional K-L expansion that corresponds to (7.9) for either variable is

∫ b

−b

∫ b

−b

C(x, x′; y, y′)ψ(x′, y′)dx′dy′ = λ2ψ(x, y) . (8.13)

We will deal only with stationary covariances that are separable in (x, x′) and
(y, y′): C(x, x′; y, y′) = Cx(x, x′)Cy(y, y′). Examples are:

Double-Exponential : C(x, x′; y, y′) = s2 exp[−|x − x′| + |y − y′|
L

]
= s2 exp[−|x − x′|

L
] exp[−|y − y′|

L
]

Gaussian : C(x, x′; y, y′) = s2 exp[− (x − x′)2 + (y − y′)2

L2
]

= s2 exp[− (x − x′)2

L2
] exp[− (y − y′)2

L2
] ,

(8.14)
where L is the correlation length of the process, and s2 is the variance of the random
variable, taking on the value π2/12 for θ , and π2/3 for φ (recall (8.8)). Obviously,
in the special cases of (8.14), we have Cx(., .) = Cy(., .).

We will follow our earlier one-dimensional development, as shown in (7.11)–
(7.17), to transform (8.13) into a discrete two-dimensional model. Let ψ(x, y) =∑N

m=1
∑N

n=1 ψmnfm(x)fn(y), where {fm(x)fn(y)} is a basis for ψ(x, y), and
{ψmn} are expansion coefficients. Substituting this into (8.13) yields

N∑
m=1

N∑
n=1

ψmn

∫ b

−b

Cx(x, x′)fm(x′)dx′
∫ b

−b

Cy(y, y′)fn(y
′)dy′ = |λ|2

N∑
m=1

N∑
n=1

ψmnfm(x)fn(y) .

(8.15)
Take moments of (8.15) by multiplying by fm′(x)fn′(y) and then integrating over

[−b, b] ⊗ [−b, b] (⊗ denotes the direct (or tensor) product of two entities):
N∑

m=1

N∑
n=1

ψmn

∫ b

−b

∫ b

−b

Cx(x, x′)fm(x)fm′ (x′)dxdx′
∫ b

−b

∫ b

−b

Cy(y, y′)fn(y)fn′ (y′)dydy′

= |λ|2
N∑

m=1

N∑
n=1

ψmn

∫ b

−b

fm(x)fm′ (x)dx

∫ b

−b

fn(y)fn′ (y)dy (8.16)
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Upon calling the double integrals on the left G
(x)

m′m, G
(y)

n′n, respectively, and the

integrals on the right H
(x)

m′m and H
(y)

n′n , respectively, we have the result

N∑
m=1

N∑
n=1

G
(x)

m′mG
(y)

n′nψmn = |λ|2
N∑

m=1

N∑
n=1

H
(x)

m′mH
(y)

n′nψmn, m′, n′ = 1, · · · , N ,

(8.17)
or, in vector-matrix notation

G · v = |λ|2H · v , (8.18)

where G = G(x) ⊗ G(y), H = H(x) ⊗ H(y), and v = [ψ11, · · · , ψNN ]T . For the
separable covariances shown in (8.14), we have G(x) = G(y). This completes the
derivation of the generalized eigenvalue problem. If {fn(x)} is orthogonal, then H
is diagonal, and if {fn(x)} is normalized to unity, then H is the identity matrix, and
the generalized eigenvalue problem reduces to the standard form

G · v = |λ|2v . (8.19)

We have already calculated the matrix elements for the double-exponential
function of (8.14) in (7.20), so we will proceed with the computation of the matrix
elements of the Gaussian function. Using the one-dimensional basis functions that
were defined in (7.17), we have

G
(x)

mm′ = s

∫ b

−b

∫ b

−b

e−(x−x′)2/L2
π(x/δ − m)π(x′/δ − m′)dxdx′

= s

∫ (m′+1)δ

m′δ
dx′

∫ (m+1)δ

mδ

e−(x−x′)2/L2
dx

= sL

∫ (m′+1)δ

m′δ
dx′

∫ (m+1)δ/L−x′/L

mδ/L−x′/L
e−u2

du

= s

√
π

2
L

∫ (m′+1)δ

m′δ

{
erf

[
x′/L − mδ/L

] − erf
[
x′/L − (m + 1)δ/L

]}
dx′

= s

√
π

2
L2

∫ (m′−m+1)δ/L

(m′−m)δ/L

[erf v − erf (v − δ/L)] dv , (8.20)

where the error function, erf, and its properties are defined in [81, Chapter 7].
We can get an explicit analytical expression for G

(x)

mm′ by substituting the power
series representation for erf z,
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erf z = 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)
, (8.21)

into (8.20):

G
(x)

mm′ = sL2
∞∑

n=0

(−1)n

n!(2n + 1)

∫ (m′−m+1)δ/L

(m′−m)δ/L

[
v2n+1 − (v − δ/L)2n+1

]
dv

= sL2
∞∑

n=0

(−1)n

n!(2n + 1)

[
v2n+2

2n + 2
− (v − δ/L)2n+2

2n + 2

](m′−m+1)δ/L

(m′−m)δ/L

= sL2
∞∑

n=0

(−1)n

n!(2n + 1)(2n + 2)

{
[(m′ − m + 1)(δ/L)]2n+2 − 2[(m′ − m)(δ/L)]2n+2

+[(m′ − m − 1)(δ/L)]2n+2
}

(8.22)

Note that the final term within the wiggly braces is the discrete second derivative
operator, which means that G

(x)

mm′ can be computed by evaluating, at the point (m′ −
m)(δ/L), the second derivative of the integral of the error function. Following this
logic, we see from (8.20) that this yields the derivative of the error function, which
is precisely the discrete version of the Gaussian kernel in (8.14). Thus,

G
(x)

mm′ = sL2 exp[−(m − m′)2(δ2/L2)] . (8.23)

This result, as with that for the double-exponential covariance function, is a
symmetric Töplitz matrix. For the same pulse basis functions, H(x) = H(y) is
diagonal with the constant value of δ. Therefore, in order to transform (8.18) into
(8.19), we must divide G by δ2; equivalently, we divide G(x) and G(y) each by δ.
Hence, (8.23) becomes

G
(x)

mm′ = sL2

δ
exp[−(m − m′)2(δ2/L2)] . (8.24)

Eigenfunction Results For the problem that we are considering here, with a 32×32
grid of cells for VIC-3D®, the eigenvalue problem becomes one with a 1024×1024
matrix. This yields 1024 eigenvalues, and 1024 normalized eigenvectors that form
a complete orthonormal system in a 1024-dimension vector space.

Figure 8.5 shows the first 100 normalized eigenvalues for the two-dimensional
Gaussian and double-exponential covariance functions with L/δ = 5. We note that
the spectrum of the Gaussian covariance converges to zero beyond 50 faster than
that of the double-exponential. This is due to the fact that the Gaussian covariance
is an analytic function whose derivatives of all orders exist, whereas the double-
exponential covariance is singular at the origin, in the sense that its first derivative
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Fig. 8.5 The normalized eigenvalue spectra for the two-dimensional Gaussian and double-
exponential covariance functions with L/δ = 5

is discontinuous there. To be sure, however, it would be reasonable to use either
function with the spectrum truncated at 50 for this particular value of L/δ.

Once we have the eigenvectors, we must assign their components to the spatial
grid in a manner consistent with the direct-product decomposition of (8.16) and
(8.17). Figure 8.6 shows the correct ordering. This is especially important when
we consider anisotropic covariances, in which the correlation lengths of each
component matrix will differ.

8.4 Anisotropic Covariances

If the correlation lengths in (8.14) are different in the orthogonal directions, x and y,
then we will call the covariances ‘anisotropic.’ We will need this level of generality
in our work, so we’ll consider it to be the default in what follows. The form for the
anisotropic covariances of (8.14) becomes:
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Fig. 8.6 Showing the ordering of the 1024-dimension eigenvector on the 32 × 32 spatial grid

Double-Exponential : C(x, x′; y, y′) = s2 exp[−
{ |x − x′|

Lx

+ |y − y′|
Ly

}
]

= s2 exp[−|x − x′|
Lx

] exp[−|y − y′|
Ly

]

Gaussian : C(x, x′; y, y′) = s2 exp[−
{

(x − x′)2

L2
x

+ (y − y′)2

L2
y

}
]

= s2 exp[− (x − x′)2

L2
x

] exp[− (y − y′)2

L2
y

] ,

(8.25)
where Lx and Ly are the correlation lengths in the x and y directions, respectively.
Note that these anisotropic covariances remain separable.

The form of the exponential for both covariances is

|x − x′|p
L

p
x

+ |y − y′|p
L

p
y

, where p =
{

1 for the double-exponential
2 for the Gaussian ,

(8.26)

and level curves for these functions are shown in Fig. 8.7.
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Fig. 8.7 Showing the level curves, |x−x′ |p
L

p
x

+ |y−y′ |p
L

p
y

= 1, for the covariances of (8.25); p = 1 for

the double-exponential function, and p = 2 for the Gaussian (See [127, p. 83] for similar curves
for other values of p)

8.5 The Geometric Autocorrelation Function

Adam Pilchak and Matt Cherry of the Air Force Research Laboratory2 have
used orientation imaging microscopy (OIM) to acquire data for determining the
‘geometric autocorrelation function’ for Ti-7Al(wt%) , with the aim of determining
the orientation and (average) size of the crystallites that make up Ti-7Al. This is
important in our modeling of the random crystallite noise, because Ti-7Al has an
anisotropic (6 mm) crystal structure, which we believe is the origin of this noise.
That is to say, we believe that the random orientation of these crystallites is the
source of the noise. Furthermore, we observe that there is a preferred ‘clumping’ of
these crystallites in a certain direction due to the rolling process which produces the
final workpiece.

There is a formal mathematical theory for generating the geometric autocorrela-
tion function of polycrystalline materials [68], which we will refer to shortly in order
to draw some conclusions from the data. The aim is to measure the probability that

2Private communication.
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Fig. 8.8 The probability that any two points at the head and tail of an arbitrary vector have
similarly oriented c-axes, within ±10.9◦. The x-axis labels the length of the vector

any two points at the head and tail of an arbitrary vector have similarly oriented c-
axes, within ±10.9◦, which is by definition the geometric autocorrelation function
of Ti-7Al. Figure 8.8 gives results for two orientations; the x-axis labels the length
of the vector. The result is closely approximated by an exponential function, at least
near the origin.

According to the theory developed in [68], the directional derivative of the
autocorrelation function in the direction, n, of the vector evaluated at the r = 0,
where r is the distance from the head of the vector, is equal to the negative of the
reciprocal of the mean linear intercept in the direction n. By ‘mean linear intercept’
is meant the length of all intercepts with the boundary of the crystallite; in short,
it gives us the mean size of the crystallite. Figure 8.9 depicts an application of this
theorem to Fig. 8.8, with the result that the nominal size of the crystallites in Ti-7Al
is ≈43µm. We will use this value in our model. By the way, this theorem is an
application of the well-known mathematical fact that the time-constant of a simple
RC circuit is given by the intersection of the slope at t = 0 with the time axis. Of
course, this holds because the response of a simple RC circuit is an exponential.

Figure 8.10 illustrates the geometric autocorrelation of Ti-7Al. The bright
circular center is essentially the size of the crystallite at the origin, which we are
taking to be 43µm (the scale of the axes is in micrometers). Of more interest,
however, is the very faint outline of a structure surrounding the center that shows the
approximate diamond shape of the level curve for the double-exponential function in
Fig. 8.7. Assuming a unit value for the level curve, we conclude that Lx = 430µm,
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Fig. 8.9 The dashed line is tangent to the probability curve at X = 0, and its intercept with the
X-axis is at a distance ≈43µm. This is what we will call the nominal size of the crystallite (see
[68])
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Fig. 8.10 Color graph of the geometric autocorrelation function of Ti-7Al. The circular center
gives the mean size of a crystallite. The faint outline surrounding the center appears to have the
diamond shape of the level curve of the double-exponential function of Fig. 8.7 with Lx = 430µm
and Ly = 1290µm (Image courtesy of M. Cherry, Air Force Research Laboratory)
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Fig. 8.11 Expanded view of the geometric autocorrelation function of Fig. 8.10 (Image courtesy
of M. Cherry, Air Force Research Laboratory)

Ly = 1290µm. An expanded view of Fig. 8.10 is given in Fig. 8.11, which confirms
our estimates of Lx and Ly .

8.6 Results for the Anisotropic Double-Exponential Model

Assuming that we are working with a double-exponential covariance function with
parameters Lx = 430µm, Ly = 1290µm, and δ = 43µm, we compute the
normalized eigenvalue spectrum shown in Fig. 8.12. It is clear that we can get good
results by using only 25 eigenvalues in our computations. Thus, we have already
achieved a reduction in the order of our problem from 1024 variables (32×32 cells)
to 25.

Using a 25-term eigenfunction expansion with the parameters of Fig. 8.12, we
have computed the random coefficients of the conductivity tensor of (8.7). The
results are that m2

13 is virtually unity for all cells, m13m23 and m13m33 are both
of the order of 10−4 to 10−5, and the remaining coefficients are four to five orders
of magnitude smaller. Therefore, the conductivity tensor becomes

σ (r) =
⎡
⎣

σ2 (σ2 − σ1)m13m23 (σ2 − σ1)m13m33

(σ2 − σ1)m23m13 σ1 0
(σ2 − σ1)m13m33 0 σ1

⎤
⎦ . (8.27)

Note that the diagonal elements differ from those of (8.7) in that they are the result
of rotations through the mean values of the Euler angles, φ and θ : φ = π and
θ = π/2 (see Fig. 8.13). It is clear from (8.27) that the stochastic properties of the
conductivity tensor are wrapped up in m13m23 and m13m33.
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Fig. 8.12 The normalized eigenvalue spectrum for the 2D double-exponential covariance with
Lx = 430µm, Ly = 1290µm, and δ = 43µm
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Fig. 8.13 Illustrating the Euler angle progression that leads to (8.27)
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Fig. 8.14 Sample functions of m13m23 and m13m33, over the 1st, 16th, and 32nd columns of
Fig. 8.6

Sample functions of the coefficients, m13m23 and m13m33, over the 1st, 16th, and
32nd columns of Fig. 8.6 are given in Fig. 8.14. The smooth behavior, which is due
to the large ratio of correlation length to cell size, stands in contrast to the behavior
shown in Figs. 7.3, 7.4, and 7.5.



Chapter 9
High-Dimension Model Representation
via Sparse Grid Techniques

9.1 Introduction

The question of high-dimension model representation (HDMR) is of increasing
importance in computational mathematics and science. We introduced this subject
in Chaps. 7 and 8, where we invoked the Karhunen-Loève expansion to reduce the
number of random parameters that are required to define the stochastic model. We
continue the discussion of HDMR in this chapter by turning our attention to the
question of determining a suitable surrogate model for computing the response of
the forward problem via VIC-3D®. This surrogate takes the form of an interpolation
table, which is then transformed into the conventional table used in NLSE for
solving inverse problems. The surrogate model that we seek falls under the rubric
sparse grids, and has been the subject of intensive research in a number of areas in
recent years [15, 22, 43, 44, 46, 57, 58, 73, 121, 123, 146]. We will apply it to solving
problems of model-based inversion as was developed in [111]. Sparse grids can also
be used to effectively calculate high-dimensional integrals of the form (7.2).

9.2 Mathematical Structure of the Problem

The problems in this set are based on Fig. 6.3, and required 81 VIC-3D® runs to
establish the interpolating grid. Thus, we say that the grid has 81 nodes in four-
dimensional space, speaking abstractly. Each variable (the slab depth in Fig. 6.3)
defines a dimension of the grid. The fifth problem introduced another variable,
the width, with three possible values, making the overall grid a hypercube of 243
nodes in five-dimensional space. As we add dimensions (variables), we will soon
encounter the ‘curse of dimensionality,’ because each node requires a VIC-3D®

run to produce the corresponding blending function. The question arises as to
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whether we can reduce the number of runs by reducing the number of nodes in
the interpolating grid. The answer lies in the notion of ‘sparse grids.’ This is an
important area of study in numerical methods, and we refer the reader to [43] for a
brief tutorial. We will follow the presentation and nomenclature of [43], using the
complex-flaw model of Fig. 6.3 as an example. Further interesting applications of
the sparse grid approach can be found in [44] and [146].

Referring to Fig. 6.3, we can define the mathematical structure of the problem
by the abstract formula (0, 10, 20) ⊗ (0, 10, 20) ⊗ (0, 10, 20) ⊗ (0, 10, 20),
where ⊗ represents the Cartesian or ‘direct’ or ‘tensor’ product. Thus, we have
a problem that is defined on a four-dimensional hypercube with 16 corner nodes,
given by (0, 20) ⊗ (0, 20) ⊗ (0, 20) ⊗ (0, 20) and 65 interior nodes given by the
‘direct-difference’ between the total nodes given above and the corner nodes. These
involve the intermediate 10mil levels in Fig. 6.3. The question then becomes, are
all of the interior nodes required for an accurate representation of the function, and
if not, how do we choose which ones to keep? The answer to this is given by the
sparse grid algorithm.

The sparse grid algorithm of [43] relies on a refinement of the interval of interest
through successive halving of the previous interval, and then using the ‘hierarchical’
basis system of Fig. 9.1 as the interpolants. This system comprises, of course, our
famous one-dimensional, first-order spline tent functions:

φl,j =
{

1 − |x/hl − jl |, x ∈ [(jl − 1)hl, (jl + 1)hl] ∩ |0, 1|;
0, otherwise,

, (9.1)

where hl is the length of an interval in the lth level, and jl = 0, . . . , 2l determines
the position of a node. It is assumed in [43] that the grid is defined on the unit cube,
which is the reason for the appearance of the interval, [0, 1]. For our problem, we
are only interested in levels 0 and 1 of the hierarchy, because we only use at most
two intervals for each dimension (variable) of the problem, as shown in Fig. 6.3.

Multidimensional functions are obtained by taking products of the one-
dimensional splines:

φl,j = Πd
t=1φlt ,jt (xt ) , (9.2)

where l = (l1, . . . , ld ) denotes the number of intervals at the lth level in each
dimension. Each entry is an integer. Similarly, j = (j1, . . . , jd), with jt =
0, . . . , 2lt , denotes the nodal ordering at the lth level in each dimension. Associated
with the multidimensional functions is the index set

Bl =
{

jt = 1, . . . , 2lt − 1, jt odd, t = 1, . . . , d, if lt > 0,

jt = 0, 1, t = 1, . . . , d, if lt = 0 .
(9.3)
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Fig. 9.1 Illustrating the
one-dimensional hierarchical
basis system for the function
space, V3. Each level has 2l

intervals and 2l + 1 nodes.
Note that in our current
problem, we are working in
V1, so that we are only
interested in l = 0, 1. These
are the usual tent functions
with which we are well
familiar from VIC-3D®. ‘R’
and ‘S’ denote ‘ramp’ and
‘slide’, respectively. The
numbers along the abscissa
refer to the values of the test
depths of Fig. 6.3.
Multidimensional functions
are obtained by taking
products of these functions
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We define two norms for discrete multi-index vectors: |l|∞ = max1≤t≤d lt , and
|l|1 = ∑d

t=1 lt . Using these norms, together with (9.3), we can define a full-grid
function as an expansion in terms of the basis system (9.2),

f (x) =
∑
l∞≤n

∑
j∈Bl

αl,jφl,j(x) , (9.4)

and a sparse-grid function similarly,

f (x) =
∑
l1≤n

∑
j∈Bl

αl,jφl,j(x) . (9.5)

Before we discuss either expansion in detail, let’s take a look at the distinction
between them, which is tied up with the definition of the norms above. In the
complex-flaw case that we are considering, we have d = 4 and n = 1. Hence, the
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Table 9.1 Four-dimensional
vectors satisfying |l|∞ ≤ 1.
The last column gives the
number of nodes associated
with each vector

0 0 0 0 16

1 0 0 0 8

0 1 0 0 8

0 0 1 0 8

0 0 0 1 8

1 1 0 0 4

1 0 1 0 4

1 0 0 1 4

0 1 0 1 4

0 0 1 1 4

0 1 1 0 4

1 1 0 1 2

1 0 1 1 2

0 1 1 1 2

1 1 1 0 2

1 1 1 1 1

Total 81

Table 9.2 Four-dimensional
vectors satisfying |l|1 ≤ 1.
The last column gives the
number of nodes associated
with each vector

0 0 0 0 16

1 0 0 0 8

0 1 0 0 8

0 0 1 0 8

0 0 0 1 8

Total 48

condition |l|∞ ≤ 1 is satisfied 16 ways, as shown in Table 9.1. The resulting total
number of nodes agrees with what we knew before for the Cartesian product of three
nodes in each of four variables, 34 = 81. Contrast this with the vector condition
for sparse grids shown in Table 9.2. It is clear that the sparse grid algorithm gives a
significant reduction in the number of nodes in the interpolation grid. The difference
is even more striking in the case of the five-dimensional complex flaw of Test
Problem No. 5. In that case the full grid had 243 nodes, whereas the sparse grid
has only 25 + 5 × 16 = 112, which is less than half the full-grid complement.

We’ll interpret Table 9.2 geometrically, using Fig. 6.3 to motivate the develop-
ment. The entries in Tables 9.1 and 9.2 are the exponents, l, that yield the number of
intervals, 2l , in each slab of Fig. 6.3. Hence, the first entry in Table 9.2 corresponds
to the situation in which the midpoint, 10 mil, is missing in each of the slabs
(yielding a single interval in each slab) and we are working with the Cartesian
product (0, 20) ⊗ (0, 20) ⊗ (0, 20) ⊗ (0, 20), which are the 16 corner points of
a four-dimensional hypercube of length 20 on a side.

The next entry in Table 9.2 indicates that we have introduced the 10-mil midpoint
in the first slab, yielding a slab with two intervals. Geometrically, this corresponds
to the intersection of the hyperplane, x1 = 10, with the four-dimensional hyper-
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cube, resulting in eight nodes at the boundaries of the hypercube. Similarly, the
third through fifth entries correspond to the intersection of hyperplanes with the
hypercube, resulting in eight nodes for each entry, yielding a total of 48 nodes. Each
node carries a blending function that VIC-3D® must compute using the appropriate
parameters of Fig. 6.3. For example, the blending function corresponding to the
second entry in the table would have the first slab of Fig. 6.3 fixed at 10 mils depth,
and the other three cycling through 0 and 20 mils, each, giving a VIC-3D® problem
with 8 range values.

We turn our attention, now, to the hierarchical structure of the algorithm, which
lies at the heart of (9.5). Using the format of Table 9.2, we expand (9.5) as follows:

f (x) =
∑

|l|1≤1

∑
j∈Bl

αl,jφl,j(x)

=
∑

j∈B0000

α0000,jφ0000,j(x) +
∑

j∈B1000

α1000,jφ1000,j(x) +
∑

j∈B0100

α0100,jφ0100,j(x)

+
∑

j∈B0010

α0010,jφ0010,j(x) +
∑

j∈B0001

α0001,jφ0001,j(x) . (9.6)

Because the expansion functions, {φl,j(x)}, are nonoverlapping for a given level, l,
and have a unit amplitude, the expansion coefficients, {αl,j}, are simply equal to the
blending function associated with the node of the appropriate function at level l.

Figure 9.2 illustrates the situation in one dimension at levels 0 and 1. In this
example, we have α0,0 = BF(0), α0,20 = BF(20), α1,10 = SURPLUS, where
SURPLUS = BF(10) − 1/2(BF(20) + BF(0)). Hence, the expansion shown in
Fig. 9.2 is given by

f (x) = BF(0)φ0,0(x) + BF(20)φ0,20(x) + SURPLUSφ1,10(x) , (9.7)

where φ0,0(x) is the slide function, S(x), and φ0,20(x) is the ramp function, R(x),
in Fig. 9.2.

It is clear that the name ‘SURPLUS’ (called hierarchical surplus in [43])
denotes the excess in function value that the higher-order levels are supposed
to accommodate. It’s evaluation at level l requires only one additional blending
function to be computed, while using two previously computed at level l−1. This is
an advantage of the hierarchical structure of the algorithm. If SURPLUS=0, then the
interpolator would treat this function as being linear, instead of piecewise linear, in
this dimension. Thus, the expansion, (9.6), is reminiscent of a Taylor series, in which
the terms corresponding to higher levels of the hierarchy correspond to higher-order
polynomial terms in the Taylor series.

The full four-dimensional expansion of (9.6) is given next. The first term is:

BF(0, 0, 0, 0)S(x1)S(x2)S(x3)S(x4) + BF(20, 0, 0, 0)R(x1)S(x2)S(x3)S(x4) +
BF(0, 20, 0, 0)S(x1)R(x2)S(x3)S(x4) + BF(20, 20, 0, 0)R(x1)R(x2)S(x3)S(x4) +
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S

R

BF(0)

BF(20)

BF(10)
BF(0)

BF(20)

10 200

(a)

(b)

Surplus

Surplus

Fig. 9.2 Illustrating a one-dimensional example of the hierarchical expansion at levels 0 (a) and
1 (b). The blending functions, BF(), are labeled at the nodes of the one-dimensional simplex. The
‘Surplus’ value defines the magnitude of the level-1 spline

BF(0, 0, 20, 0)S(x1)S(x2)R(x3)S(x4) + BF(20, 0, 20, 0)R(x1)S(x2)R(x3)S(x4) +
BF(0, 20, 20, 0)S(x1)R(x2)R(x3)S(x4) + BF(20, 20, 20, 0)R(x1)R(x2)R(x3)S(x4) +
BF(0, 0, 0, 20)S(x1)S(x2)S(x3)R(x4) + BF(20, 0, 0, 20)R(x1)S(x2)S(x3)R(x4) +
BF(0, 20, 0, 20)S(x1)R(x2)S(x3)R(x4) + BF(20, 20, 0, 20)R(x1)R(x2)S(x3)R(x4) +
BF(0, 0, 20, 20)S(x1)S(x2)R(x3)R(x4) + BF(20, 0, 20, 20)R(x1)S(x2)R(x3)R(x4) +
BF(0, 20, 20, 20)S(x1)R(x2)R(x3)R(x4) + BF(20, 20, 20, 20)R(x1)R(x2)R(x3)R(x4) ;

(9.8)

the second:

SURPLUS(10, 0, 0, 0)φ1,10(x1)S(x2)S(x3)S(x4)

+SURPLUS(10, 20, 0, 0)φ1,10(x1)R(x2)S(x3)S(x4) +
SURPLUS(10, 0, 20, 0)φ1,10(x1)S(x2)R(x3)S(x4)

+SURPLUS(10, 20, 20, 0)φ1,10(x1)R(x2)R(x3)S(x4) +
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SURPLUS(10, 0, 0, 20)φ1,10(x1)S(x2)S(x3)R(x4)

+SURPLUS(10, 20, 0, 20)φ1,10(x1)R(x2)S(x3)R(x4) +
SURPLUS(10, 0, 20, 20)φ1,10(x1)S(x2)R(x3)R(x4)

+SURPLUS(10, 20, 20, 20)φ1,10(x1)R(x2)R(x3)R(x4) ;
(9.9)

the third:

SURPLUS(0, 10, 0, 0)S(x1)φ1,10(x2)S(x3)S(x4)

+SURPLUS(20, 10, 0, 0)R(x1)φ1,10(x2)S(x3)S(x4) +
SURPLUS(0, 10, 20, 0)S(x1)φ1,10(x2)R(x3)S(x4)

+SURPLUS(20, 10, 20, 0)R(x1)φ1,10(x2)R(x3)S(x4) +
SURPLUS(0, 10, 0, 20)S(x1)φ1,10(x2)S(x3)R(x4)

+SURPLUS(20, 10, 0, 20)R(x1)φ1,10(x2)S(x3)R(x4) +
SURPLUS(0, 10, 20, 20)S(x1)φ1,10(x2)R(x3)R(x4)

+SURPLUS(20, 10, 20, 20)R(x1)φ1,10(x2)R(x3)R(x4) ;
(9.10)

the fourth:

SURPLUS(0, 0, 10, 0)S(x1)S(x2)φ1,10(x3)S(x4)

+SURPLUS(20, 0, 10, 0)R(x1)S(x2)φ1,10(x3)S(x4) +
SURPLUS(0, 20, 10, 0)S(x1)R(x2)φ1,10(x3)S(x4)

+SURPLUS(20, 20, 10, 0)R(x1)R(x2)φ1,10(x3)S(x4) +
SURPLUS(0, 0, 10, 20)S(x1)S(x2)φ1,10(x3)R(x4)

+SURPLUS(20, 0, 10, 20)R(x1)S(x2)φ1,10(x3)R(x4) +
SURPLUS(0, 20, 10, 20)S(x1)R(x2)φ1,10(x3)R(x4)

+SURPLUS(20, 20, 10, 20)R(x1)R(x2)φ1,10(x3)R(x4) ;
(9.11)

and the fifth:

SURPLUS(0, 0, 0, 10)S(x1)S(x2)S(x3)φ1,10(x4)

+SURPLUS(20, 0, 0, 10)R(x1)S(x2)S(x3)φ1,10(x4) +
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SURPLUS(0, 20, 0, 10)S(x1)R(x2)S(x3)φ1,10(x4)

+SURPLUS(20, 20, 0, 10)R(x1)R(x2)S(x3)φ1,10(x4) +
SURPLUS(0, 0, 20, 10)S(x1)S(x2)R(x3)φ1,10(x4)

+SURPLUS(20, 0, 20, 10)R(x1)S(x2)R(x3)φ1,10(x4) +
SURPLUS(0, 20, 20, 10)S(x1)R(x2)R(x3)φ1,10(x4)

+SURPLUS(20, 20, 20, 10)R(x1)R(x2)R(x3)φ1,10(x4) .

(9.12)

The arguments of the BF and SURPLUS functions are the depth parameters of
the corresponding slabs in Fig. 6.3. Thus, BF(0, 20, 20, 20) is the blending function
computed by VIC-3D® when slab 1 has a depth of 0, and the other three slabs are
at a full depth of 20. In (9.9)–(9.12), we have

SURPLUS(10, a, b, c) = BF(10, a, b, c) − 1/2(BF(20, a, b, c) + BF(0, a, b, c))

SURPLUS(a, 10, b, c) = BF(a, 10, b, c) − 1/2(BF(a, 20, b, c) + BF(a, 0, b, c))

SURPLUS(a, b, 10, c) = BF(a, b, 10, c) − 1/2(BF(a, b, 20, c) + BF(a, b, 0, c))

SURPLUS(a, b, c, 10) = BF(a, b, c, 10) − 1/2(BF(a, b, c, 20) + BF(a, b, c, 0))

(9.13)

9.3 Clenshaw-Curtis Grids

The Clenshaw-Curtis family of grids [57, 58] are, for the most part, superior to
others of the genre that we have just described, in the sense that the number of points
in C-C grids increases more slowly with the level of refinement, while retaining the
same asymptotic error decay rate. Our presentation follows [58].

The points, xi
j , of the C-C grid in one dimension are defined as

mi =
{

1, if i = 1,

2i−1 + 1, if i > 1,

xi
j =

{
(j − 1)/(mi − 1) for j = 1, . . . , mi if mi > 1,

0.5 for j = 1 if mi = 1.
(9.14)

The index, i, is used to indicate a level of refinement of the grid in the appropriate
dimension. It is clear from (9.14) that the set of points, Xi , generated at the ith level,
is a subset of Xi+1: Xi ⊂ Xi+1. Furthermore, this implies that the multidimensional
sparse grid generated by the tensor product of the one-dimensional grids
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Fig. 9.3 Example of two point sets of the C-C grid. Left:X1 ⊗ X4. Right:X1 ⊗ X5. Note that
X1 ⊗ X4 is a subset of X1 ⊗ X5

Hq,d = ∪q−d+1≤|l|1≤q(Xi1 ⊗ · · · ⊗ Xid ) , (9.15)

also satisfies the inclusion property: Hq,d ⊂ Hq+1,d . The index, q, is associated
with the level of the dth dimension. The importance of this last relationship is that
it implies that those blending functions that have already been computed on the set
Hq,d can be used in Hq+1,d , with only the surplus blending-functions being needed
to be computed in Hq+1,d . When these surpluses are smaller than a threshold, we
can stop refining the grid. Figure 9.3 illustrates two point sets of the C-C grid, X1 ⊗
X4 and X1 ⊗ X5. The former is a subset of the latter, which is at the next level of
refinement.

An example of (9.15) for the case q = 6, d = 4 is given here:

H6,2 = ∪5≤i1+i2≤6X
i1 ⊗ Xi2

= X1 ⊗ X4 ∪ X1 ⊗ X5 ∪ X2 ⊗ X3 ∪ X2 ⊗ X4 ∪ X3 ⊗ X2 ∪ X3 ⊗ X3

∪ X4 ⊗ X1 ∪ X4 ⊗ X2 ∪ X5 ⊗ X0 ∪ X5 ⊗ X1 , (9.16)

with X0 = ∅. The C-C grid corresponding to (9.16) is shown in Fig. 9.4.
With Xi

Δ = Xi\Xi−1, namely those points in Xi that are not in Xi−1 (the
‘excess’ points), (9.15) can be expanded as

Hq,d = ∪|i|1≤q(X
i1
Δ ⊗ · · · ⊗ X

id
Δ) = Hq−1,d ∪ ΔHq,d , (9.17)

where

ΔHq,d = ∪|i|1=q(X
i1
Δ ⊗ · · · ⊗ X

id
Δ) , (9.18)
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Fig. 9.4 Sparse grid HCC
6,2 at level 4. There are a total of 65 points

Table 9.3 Number of grid
points at level n = q − d for
Clenshaw-Curtis grids

n d = 2 d = 4 d = 8 d = 16

0 1 1 1 1

1 5 9 17 33

2 13 41 145 545

and Hd−1,d = ∅. This is more convenient for expansion of the interpolant using
successive refinements of the grid with increasing parameter, q.

Table 9.3 shows the number of grid points at level n = q − d for Clenshaw-
Curtis grids of up to 16 dimensions. We see that the increase in grid points with
dimension is rather slow, which is a significant advantage of C-C grids. If we argue,
as we did earlier, that the complex flaw of Fig. 6.3 requires only three grid points per
dimension, then it follows from Table 9.3 that we may be able to get by with a total
of 33 points for 16 dimensions at level 1! This is due to the fact that the midpoint
is used at the 0th level, and the two end points at the first level, and is an incredible
savings. If we are conservative, and decide that we need to go to level 2, we can go
up to eight dimensions and require only 145 blending functions. If we used a full
grid for an eight-dimensional problem with three points per dimension, we would
need a total of 6561 points! The curse of dimensionality strikes again.

Klimke, [57, 58], allows one to compute the coordinates of a C-C grid, which
then allows the user to determine a priori what blending functions to compute for
an interpolation table. Table 9.4 lists the coordinates of hierarchical C-C grid points
for d = 4, n = 0 : 2. The table is arranged to show the grid points that are added
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Fig. 9.5 Illustrating nodal basis functions, φ3,j , x3,j ∈ X3 (left) and hierarchical basis functions,
φi,j , with their support nodes, xi,j ∈ Xi

Δ, i = 1, . . . , 3 (right) for the Clenshaw-Curtis grid (see
[58])

to the interpolant at level n. The total number of points is 41, and agrees with the
corresponding entry in Table 9.3.

Now that we have discussed the nature of C-C grids, it is time to address the
expansion of the interpolant in function space. Figure 9.5 illustrates the typical
piecewise nodal basis functions used in conventional interpolation schemes, as well
as the hierarchical basis functions used with Clenshaw-Curtis grids. Note that in the
C-C basis, the lowest level function in the hierarchy is simply a constant, whereas
the basis system in the next level are a slide (left) and ramp (right) which do not
span the entire line, but only one-half. Finally, the basis functions at level 2 are the
usual disjoint tent functions that we have seen before in Fig. 9.1.

Figure 9.6 illustrates how the two sets of basis functions are used in interpola-
tions. Our interest is in the hierarchical system shown at the bottom of the figure.
The wi,j denote the hierarchical surpluses that are the expansion coefficients for the
hierarchical interpolation formula:

U(x) = w1,1φ1,1(x) + w2,1φ2,1(x) + w2,2φ2,2(x) + w3,1φ3,1(x) + w3,2φ3,2(x) .

(9.19)
They are given by: w1,1 = f (0.5), w2,1 = f (0) − f (0.5), w2,2 = f (1) − f (0.5),
w3,1 = f (0.25)− 1/2(f (0)+f (0.5)), and w3,2 = f (0.75)− 1/2(f (1)+f (0.5)),
where f (x) is shown as the dashed curve in the figure. (The surpluses are the
expansion coefficients because the basis functions all have unit amplitude, and do
not overlap with each other at a given level.) Note the efficiency in the hierarchical
algorithm, in that function values computed at one level are reused in the next higher
level.

In reality, the nodal values in Fig. 9.6 are blending functions, comprising an entire
1- or 2-D scan impedance response. Here’s how we use the coordinate information
in Table 9.4 to determine the computation of the associated blending function in
Fig. 6.3. For n = 0, we set the boundary of each slab in Fig. 6.3 to be 10 mils
(recall that we are scaling the physical dimensions to fit into a unit hypercube in
4-space), and use VIC-3D® to compute the response. This, then, is the blending
function associated with the midpoint of the hypercube.
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Table 9.4 Coordinates of
hierarchical C-C grid points
for d = 4, n = 0 : 2

n = 0 0.5 0.5 0.5 0.5

n = 1 0.0 0.5 0.5 0.5

1.0 0.5 0.5 0.5

0.5 0.0 0.5 0.5

0.5 1.0 0.5 0.5

0.5 0.5 0.0 0.5

0.5 0.5 1.0 0.5

0.5 0.5 0.5 0.0

0.5 0.5 0.5 1.0

n = 2 0.25 0.5 0.5 0.5

0.75 0.5 0.5 0.5

0.0 0.0 0.5 0.5

1.0 0.0 0.5 0.5

0.0 1.0 0.5 0.5

1.0 1.0 0.5 0.5

0.5 0.25 0.5 0.5

0.5 0.75 0.5 0.5

0.0 0.5 0.0 0.5

1.0 0.5 0.0 0.5

0.0 0.5 1.0 0.5

1.0 0.5 1.0 0.5

0.5 0.0 0.0 0.5

0.5 1.0 0.0 0.5

0.5 0.0 1.0 0.5

0.5 1.0 1.0 0.5

0.5 0.5 0.25 0.5

0.5 0.5 0.75 0.5

0.0 0.5 0.5 0.0

1.0 0.5 0.5 0.0

0.0 0.5 0.5 1.0

1.0 0.5 0.5 1.0

0.5 0.0 0.5 0.0

0.5 1.0 0.5 0.0

0.5 0.0 0.5 1.0

0.5 1.0 0.5 1.0

0.5 0.5 0.0 0.0

0.5 0.5 1.0 0.0

0.5 0.5 0.0 1.0

0.5 0.5 1.0 1.0

0.5 0.5 0.5 0.25

0.5 0.5 0.5 0.75
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Fig. 9.6 Illustrating nodal
(top) versus hierarchical
(bottom) interpolation in one
dimension (see [58]). The
wi,j denote the hierarchical
surpluses that are the
expansion coefficients for the
hierarchical interpolation
formula:
U(x) = w1,1φ1,1(x) +
w2,1φ2,1(x) + w2,2φ2,2(x) +
w3,1φ3,1(x) + w3,2φ3,2(x).
They are given by:
w1,1 = f (0.5),
w2,1 = f (0) − f (0.5),
w2,2 = f (1) − f (0.5),
w3,1 =
f (0.25)−1/2(f (0)+f (0.5)),
and w3,2 =
f (0.75)−1/2(f (1)+f (0.5)),
where f (x) is shown as the
dashed curve in the figure
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The problem configuration for computing the blending function associated with
the first entry at n = 1 of Table 9.4 would have the depth of the first slab of Fig. 6.3
equal to zero, and the other three fixed at 10 mils. For the first entry at n = 2, the
depth of the first slab would be 5 mils, and the other three depths would be 10 mils,
and so on.

9.4 The TASMANIAN Sparse Grids Module

The Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN
is a robust library for high-dimensional integration and interpolation, as well as
parameter calibration. The code consists of several modules that can be used indi-
vidually or conjointly. The project is sponsored by Oak Ridge National Laboratory
Directed Research and Development as well as the Department of Energy Office for
Advanced Scientific Computing Research (see tasmanian.ornl.org/about.html).

Sparse Grids is a family of algorithms for constructing multidimensional quadra-
ture and interpolation rules from tensor products of one-dimensional rules. The
TASMANIAN Sparse Grid code implements a number of different quadrature
rules and basis functions (see [123] for details). The rules are grouped into three
categories:

www.tasmanian.ornl.org/about.html
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• Global Grids: suitable for globally smooth functions. Quadrature is based on
a number of rules, including Clenshaw-Curtis, and interpolation is based on
global Lagrange polynomials. Nodal point selection follows the same rules as
quadrature. These grids are most suitable for our use, and will be discussed in
more detail below.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp
behavior. Interpolation is based on hierarchical piecewise polynomials with local
support and user-specified order. These grids are suitable for local refinement.

• Wavelet Grids: are similar to local polynomials, except that it is assumed that
the order is either 1 or 3. When coupled with local refinement, these grids often
provide the same accuracy with fewer abscissas.

Lagrange Polynomial Interpolation Given nodal values, f (xi), the LP interpola-
tor is given by

f (x) =
N∑

i=0

li (x)f (xi) , (9.20)

where

li (x) =
N∏

j=0
j �=i

x − xj

xi − xj

, i = 0, . . . , N . (9.21)

The interpolating polynomials, {li (x)}, satisfy li (xj ) = δij . An example for N = 3
is given here:

l0(x) = x − x1

x0 − x1

x − x2

x0 − x2

x − x3

x0 − x3

l1(x) = x − x0

x1 − x0

x − x2

x1 − x2

x − x3

x1 − x3

l2(x) = x − x0

x2 − x0

x − x1

x2 − x1

x − x3

x2 − x3

l3(x) = x − x0

x3 − x0

x − x1

x3 − x1

x − x2

x3 − x2
. (9.22)

The nodal points, or knots, are located at the extrema (maxima or minima) of
Chebyshev polynomials. If mi > 1 is the number of knots at the ith level of
approximation in a given dimension, then the knots, over the interval [−1,+1],
are given by

xi
j = − cos

π(j − 1)

mi − 1
, j = 1, . . . , mi , (9.23)
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with xi
1 = 0 if mi = 1. In order for the knots to be nested at the next level of

approximation, we choose m1 = 1 and mi = 2i−1 + 1 for i > 1 [15]. The Lagrange
interpolator is an example of Eq. (1.3) in the TASMANIAN User Manual.

9.5 First TASMANIAN Results

In order to test the accuracy of interpolating high-dimensional models at various
levels,1 we start with a simple example in which we compare the interpolated result
at various levels with original data that are computed directly with VIC-3D® for
the complex flaw with ‘coordinates’ (20,0,0,0) shown in Fig. 9.7. These results are
shown in Figs. 9.8 and 9.9. Additional test results are shown in Figs. 9.10, 9.11,
and 9.12. It is clear from these tests that TASMANIAN works well as long as the
level is chosen correctly. It seems likely that one could determine a suitable level
for problems of a given dimension by using theoretical rates of convergence, but in
these tests we used an empirical approach to determine such levels.

9.6 Results for 4D-Level 8

We have done a number of numerical experiments to test TASMANIAN, and learn
more about the relationship between the number of dimensions in a grid and the level
of the grid. For example, we found that there was reasonable convergence from 8D-
Level3(593 points) to 8D-Level4(1953 points), but to use an eight-dimensional grid

1 42 3

Y

Z

20 mil

–25 mil 50 mil25 mil

Width of anomaly = 0.1mil

–50 mil

10 mil

Fig. 9.7 Showing a complex flaw extending over one-half of the first block of Fig. 6.3 and
vanishing elsewhere

1‘Level’, in the context of Lagrange interpolation with the Chebyshev rule, implies the highest
order polynomial that can be interpolated exactly.
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Fig. 9.8 Comparison of interpolated result with original data for the complex flaw with ‘coordi-
nates’ (20,0,0,0). (See Fig. 9.7.) The four-dimensional TASMANIAN sparse grid was generated at
level 2, and required 33 Chebyshev points

Fig. 9.9 Comparison of interpolated result with original data for the complex flaw with ‘coordi-
nates’ (20,0,0,0). (See Fig. 9.7.) The four-dimensional TASMANIAN sparse grid was generated at
level 4, with 145 points. Note the significant improvement over Fig. 9.8
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Fig. 9.10 Comparison of interpolated result with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The four-dimensional TASMANIAN sparse grid was
generated at level 2 (33 points)

Fig. 9.11 Comparison of interpolated result with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The four-dimensional TASMANIAN sparse grid was
generated at level 4 (145 points). Note the improvement over Fig. 9.10. The relative errors are less
than 7% in the real part (resistance), less than 3% in the imaginary part (reactance). The major part
of the relative error occurs when the real and imaginary parts, especially the imaginary part, are
both small. The relative error is calculated as the ratio of the difference of the ‘experimental data’
and the interpolated data to the experimental data. The absolute error is the absolute value of the
difference between the experimental and interpolated data
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Fig. 9.12 Comparison of interpolated results with original data for the complex flaw with
‘coordinates’ (20,40,30,10). (See Fig. 6.4.) The coordinates of the flaw in eight dimensions are
(20,20,40,40,30,30,10,10), because the length of each of the eight-dimensional slabs is one-half
that of the four-dimensional slabs. The eight-dimensional TASMANIAN sparse grid was generated
at level 3, with 593 Chebyshev points

Fig. 9.13 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8, with 1857 Chebyshev points
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Fig. 9.14 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.15 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

accurately would require even higher levels. Since the 8D-Level4 run took 12.5 h,
we decided not to go to higher dimensions, until we were absolutely forced to. In
fact, it is probably wiser to use voxel-based inverse methods when the number of
parameters needed to accurately model the geometry of the problem exceeds, say, 5
or 6.

We also studied the convergence of 4D-Level 6 to 4D-Level 8, and find excellent
results. Hence, the remainder of our study at this point will concentrate on 4D-
Level 8 situation. As a starter, we show in Figs. 9.13, 9.14, 9.15, 9.16, 9.17, 9.18,
9.19, 9.20, 9.21, 9.22, and 9.23 a comparison of interpolated results at 81 arbitrarily
selected points with the TASMANIAN grid at level 8 with 1857 Chebyshev points.
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Fig. 9.16 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.17 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Scaling may be a contributing factor to the occasionally poor fit of the real part,
since the real part is much smaller than the imaginary, but it is also likely that the
real and imaginary parts vary differently over this rather large range of the variables
in physical space, which may contribute to the challenge of accurately interpolating
each component.

Figure 9.24 shows the VIC-3D® model response of Fig. 6.4 when block 2 is
varied in depth from 0 to 20 mils in four equal intervals, and the other blocks remain
fixed at the values shown. Figure 9.25 shows a fourth-order polynomial fit to the
peak values of the impedance data of Fig. 9.24, and Table 9.5 lists the coefficients
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Fig. 9.18 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.19 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

of these fits. Clearly, there is a difference in the way that the real and imaginary
parts vary with this particular geometric feature of the model. In both Figs. 9.24
and 9.25, the legend indicates depths of 0–40, which is due to the fact that the
slabs are represented in VIC-3D® as canonical ‘blocks,’ whose reference coordinate
system is at the center of the block. The blocks are defined in VIC-3D® by the total
length of the unclipped block, so that when the clip plane passes through the origin
of the block, as in this case, the ‘length’ parameter that VIC-3D® uses, and which
is shown in the figures, is always twice the depth parameter shown in Fig. 6.4.
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Fig. 9.20 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.21 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

9.7 The Geometry of the 4D-Level 8 Chebyshev Sparse Grid

We show in Figs. 9.26, 9.27, 9.28, 9.29, and 9.30 the distribution of points in a
number of two-dimensional subspaces of the original four-dimensional grid.
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Fig. 9.22 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Fig. 9.23 Comparison of interpolated results at 81 arbitrarily selected points with the four-
dimensional TASMANIAN grid at level 8 (continued)

Table 9.5 Coefficients of the fourth-order polynomial fits of Fig. 9.25

Order R X

4 −2.89708333333331e − 09 9.79583333333349e − 09

3 6.61083333333314e − 08 −1.28541666666668e − 06

2 7.25370833333338e-06 4.77454166666668e − 05

1 −6.38808333333335e − 05 −9.69083333333310e − 05

0 0.00300550000000000 0.0116510000000000

9.8 Searching the Sparse Grid for a Starting Point for
Inversion

One of the applications of the sparse grid is as a surrogate for VIC-3D® in
choosing a starting point for inversion with NLSE. To demonstrate this, we took two
‘test data’ sets, one with coordinates (0,10,18,32), and the other with coordinates
(0,10,5,12). The first corresponds to a ‘good’ interpolation, as shown in the first
column of the third row of Fig. 9.13, and the second to a ‘not-so-good’ interpolation,
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Fig. 9.24 VIC-3D® model response of Fig. 6.4 when block 2 is varied in depth from 0 to 20 mils
in four equal intervals, and the other blocks remain fixed at the values shown

Fig. 9.25 Showing a fourth-order polynomial fit to the peak values of the impedance data of
Fig. 9.24

as shown in the first column of the first row of Fig. 9.13. The algorithm for finding
the starting point is to determine the ‘nearest neighbor’ to the test data among the
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Fig. 9.26 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8

Table 9.6 Nearest sparse grid neighbors for two test data sets

Test set Nearest neighbor/Φ Second nearest neighbor/Φ

(0, 10, 18, 32) (0, 5.8579, 20, 30)/9.42(−4) (5.8579, 5.8579, 20, 20)/1.17(−3)

(0, 10, 5, 12) (0, 10, 0, 10)/5.43(−4) (0, 0, 10, 10)/1.08(−3)

1857 sparse grid points by choosing that point with the smallest norm of the residual
impedance vector. The result of the experiment is shown in Table 9.6. The second
nearest point is also shown for each data vector. The nearest neighbor to (0,10,18,32)
lies in the subspace (d1, d2, 20, 30) in Fig. 9.27, and the second nearest neighbor lies
in the subspace (d1, d2, 20, 20) in the same figure. As for (0,10,5,12), its nearest
neighbor lies in the subspace (d1, d2, 0, 10) shown in Fig. 9.26, and the second
nearest neighbor lies in (d1, d2, 10, 10) in the same figure.
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Fig. 9.27 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

In this manner we can map the ‘most likely’ regions of the sparse grid in which
the data vector lies, and then compute a compact uniform grid for interpolation in
NLSE within these regions. If the uniform grid is much smaller than the sparse grid,
we would expect to get tighter estimations of confidence intervals when we perform
a stochastic inversion with NLSE.

9.9 A Five-Dimensional Inverse Problem

The proof-of-the-pudding with sparse grids is their ability to simplify the solution
of inverse problems that utilize internal interpolation tables as with NLSE. Our hope
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Fig. 9.28 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

is that we need to compute far fewer forward solutions with VIC-3D®, but then use
the resulting sparse-grid solution to compute a much more refined full Cartesian
grid which NLSE will then use to complete the inversion problem. This example
will demonstrate the validity of this approach.

The problem consists of a split-D probe of the type shown in Fig. 9.31, and which
was analyzed in [111, Section 6.6] that is scanned past a rectangular slot whose
dimensions are 1 mm × 2 mm × 3 mm. The probe is vertical to the surface of the
workpiece, but is rotated about its axis by 22◦. The two parameters that define the
orientation of the probe are the Euler angles shown in Fig. 9.32. These two angles,
together with the liftoff of the probe and the length and depth of the flaw are the five
parameters that are to be determined in the inverse problem. The ‘true’ values of the
parameters are: LO = 3.5,Θ = 0, Ψ = 22, L = 2, and D = 3.
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Fig. 9.29 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

The five-dimensional parameter space ranges over: LO = [0, 9.99],Θ =
[0, 9.99], Ψ = [0, 90], L = [1.7, 2.3], D = [2.7, 3.3], which at level 4 will be
covered by 311 Chebyshev points. These are the values that are presented to VIC-
3D® to generate the sparse interpolation table. The first NLSE full Cartesian table
consists of four points in each dimension, uniformly distributed over its range, which
yields 1024 nodes for NLSE. The results of the first inversion test are shown in
Table 9.7. The final column in the table gives the number of local minima generated
by the 500 random starting points that coalesce into the global minimum. In order to
improve the accuracy of the inversion of Ψ , we increase the number of NLSE nodes
in this parameter to 6, and get the result shown as Test 2 in Table 9.7. Clearly, this
parameter benefits from a denser nodal distribution because it covers a large range
of [0,90].
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Fig. 9.30 Showing the Chebyshev distribution of points in various two-dimensional subsets of the
four-dimensional grid at level 8 (continued)

The five-dimensional, level 4 inversion is quite good, but the important thing to
note is the ‘leverage-value’ of each test in Table 9.7, namely 1024/311 = 3.3 for the
first, and 4.94 for the second. This is significant because the time to compute the 311
points completely dominates the overall inversion process, whereas the computation
of function values for NLSE using the full Cartesian grid interpolation table derived
from these 311 points is much faster.
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IR = 9.34mm
OR = 18.4mm

HT = 9mm

Turns = 408

Transmit Coil:

Cores:
R = 7.34mm

2mm

Receive Coils:

IR = 7.34mm

OR = 8.34mm

HT = 9mm

μ=2000
HT=9mm

Turns = 100

Fig. 9.31 The split-D coil configuration

Fig. 9.32 Illustrating the two
Euler angles that define the
orientation of the split-D
probe in the test problem. The
probe axis is orthogonal to the
plane of Fig. 9.31. The input
model data for the inversion
are Ψ = 22◦ and Θ = 0◦

X

Z

Y

Θ
Ψ

Probe Axis

9.10 Noisy Data and Uncertainty Propagation

In developing the stochastic inverse model of Chap. 6, we assumed that the input
data were given, and that the only stochastic feature of the problem was the random
vector of unknown parameters that were to be determined. Each component of the
vector was uniformly distributed over a certain range.
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Table 9.7 Inversion results for the five-dimensional problem at level 4 with two different
interpolation tables for NLSE

Test Size (NLSE) Level No. Cal. No. Nodes φ No. Pts.

1 4 × 4 × 4 × 4 × 4 4 311 1024 0.639(−5) 87

2 4 × 4 × 6 × 4 × 4 4 311 1536 0.578(−5) 78

Test LO/Sensit Θ/Sensit Ψ /Sensit L/Sensit D/Sensit

1 3.5/2.24(−2) 5.46(−2)/4.17(−2) 20.4/0.47 1.99/4.25(−3) 2.98/0.28

2 3.5/2.02(−2) 0.11/3.71(−2) 21.51/0.36 1.99/3.83(−3) 2.99/0.25

-0.00025

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

-100 -50  0  50  100

R
es

is
ta

nc
e 

(O
hm

s)

Probe Position (mils)

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

-100 -50  0  50  100

R
ea

ct
an

ce
 (

O
hm

s)

Probe Position (mils)

Fig. 9.33 Illustrating the noise-free input to the five-dimensional inverse problem. Left: resistance,
Right: reactance

Now we want to extend the model to include the effects of Gaussian random
noise that is superimposed on the noise-free input, shown in Fig. 9.33, to the five-
dimensional inverse problem discussed in the preceding section. We consider two
levels of noise, one with an RMS value of 1 × 10−5 and the other with an RMS
value of 3 × 10−5. Figure 9.34 illustrates a sample function of the former process
superimposed on the noiseless data, and Fig. 9.35 illustrates a sample function from
the second process superimposed on the noiseless data.

Our interest is in determining how uncertainty in the input data is propagated
through the nonlinear least-squares filter into uncertainty in the output parameters.
To accomplish this, we do a Monte Carlo analysis, in which the data of Fig. 9.33
are corrupted by ten samples from each noise source, as in Figs. 9.34 and 9.35, and
then applied to NLSE using the interpolation table shown as Test 2 in Table 9.7.

The results are shown in Fig. 9.36, which depicts the relative error, defined to
be the ratio of the computed value to the ‘true’ value, except for Θ , which uses an
artificial value of 1 × 10−8 for zero. The ‘Noise Level’ in the figure is the ratio
of the RMS value of noise to the peak value of the noiseless resistance, 0.00025,
in Fig. 9.33. The ten sample points for each reconstructed parameter are shown as
small dots, and the mean of the results is shown as the large red dot. The large black
dot is the true value of the parameter. Note that many of the sample points are hidden
behind either of the large dots.
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Fig. 9.34 Illustrating the noise-free input to the five-dimensional inverse problem with a sample
function of noise at an RMS level of 1 × 10−5 superimposed. Left: resistance, Right: reactance
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Fig. 9.35 Illustrating the noise-free input to the five-dimensional inverse problem with a sample
function of noise at an RMS level of 3 × 10−5 superimposed. Left: resistance, Right: reactance

The mean values are in reasonable agreement with the true values, which
suggests that the inversions are reasonable with these levels of input noise. The
results for depth, D, may appear strange, in that the error in the mean value
for the 1 × 10−5 noise source is greater than that for the 3 × 10−5 source, but
keep in mind that the sensitivity coefficient for D in Table 9.7 is large, which,
following our discussion in Chap. 6, indicates that the inversion process alone
will introduce significant uncertainty in the estimated value of D. Our intuition
is restored, however, when we look at the distribution of the errors over the ten
samples: it is much larger for all five parameters when the noise level is 0.12. (Note
that there is a small dot at ±0.1 in D for Noise Level = 0.12.)
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Chapter 10
Characterization of Atherosclerotic
Lesions by Inversion of Eddy-Current
Impedance Data

10.1 The Model

Figure 10.1 shows a planar model of a type Vb lesion that could be situated in the
coronary arteries [122]. This lesion is the largest and most complex stable lesion that
can form, and is characterized by the formation of calcium of the outer cap, which
gives rise to the expression ‘hardening of the arteries.’ Because the vulnerability of
plaque is not closely correlated to plaque size, but rather to the overall composition,
we are interested in determining the amount of fibrous tissue, calcium, lipid core,
and smooth muscle that exists in the lesion, and to do this we return to Fig. 10.1.

We excite Eddy-currents in the layered medium by means of the exciting pancake
coil, and read the impedance of the coil. We then use NLSE, the nonlinear least-
squares parameter estimator in VIC-3D® to determine the thickness of each layer.
We assume that the conductivity of each layer is known, as shown in the figure.
Figure 10.2 illustrates the ‘standard conductivity model’ for a type Vb lesion. The
problem is to determine the widths, L1, · · · , L5 of each layer, given the conductivity
profile shown. If we assume that the vessel wall’s thickness, L5, is fixed at, say,
0.3 mm, then there are only four unknowns to be determined using NLSE.

The data for the standard model of Fig. 10.2 are shown in Table 10.1, which is
taken from [122]. In the model calculations, values for the calcified outer layer were
inferred from cancellous bone values (see Table 10.13). In [122] the conductivity
values for thrombus (fibrous material) and vessel wall were assumed constant up to
1 MHz. Beyond 1 MHz, however, it was assumed that the conductivity of thrombus
and vessel wall increased slightly, and these values were inferred as shown.
Additionally, it was assumed that fibrous tissue had relatively low capacitance due
to an extracellular matrix of various collagens. The capacitance of the vessel wall
was assumed to be mostly due to the smooth muscle, combined with the effects of
fat.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. A. Sabbagh et al., Advanced Electromagnetic Models for Materials
Characterization and Nondestructive Evaluation, Scientific Computation,
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Fig. 10.1 A planar model of a type Vb atherosclerotic lesion, showing the pancake Eddy-current
coil for taking impedance data and the conductivities of the various media
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Fig. 10.2 Standard conductivity model of a type Vb lesion
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Table 10.1 Values for conductivity and permittivity for type Vb lesions. Values marked with aa

are inferred

Conductivity (S/m)

log10(Freq) 3 5 6 7 8

Blood 0.70 0.70 0.70 1.00 1.49

Fat 0.025 0.025 0.030 0.040 0.060

Muscle 0.40 0.40 0.40 0.40 0.75

Fibrous material 0.24 0.24 0.24 0.29a 0.33a

Calcium 0.08 0.08 0.10 0.12 0.17

Vessel wall 0.58 0.58 0.58 0.67a 0.83a

Relative permittivity

log10(Freq) 3 5 6 7 8

Blood 4100 4000 2000 300 75

Fat 20,000 100 50 30 12

Muscle 400,000 10,000 8000 200 70

Fibrous material 2000a 500a 50a 5a 3a

Calcium 10,500 500 250 70 30

Vessel wall 100,000a 5000a 4000a 100a 30a

Table 10.2 Thickness of
each layer in variations of a
type Vb lesion. The vessel
wall is assumed to be 0.3 mm
in all cases

Thickness of type Vb lesion layers (mm)

Calcium Fibrous SMC Lipid

Initial 0.1 0.3 0.3 1.0

Variation 1 0.2 0.2 0.2 1.1

Variation 2 0.2 0.2 0.5 0.8

Variation 3 0.1 0.5 0.3 0.8

Variation 4 0.1 0.1 0.7 0.8

For starters, we will run the arrangements shown in Table 10.2. The coil has 1
turn, with an inner radius of 0.05 mm, outer radius 0.06 mm, a height of 0.01 mm,
and is excited over the frequency range of 95–100 GHz, in 21 steps.

Our interest in using Eddy-currents for the intravascular detection and character-
ization of vulnerable plaque, rather than the more conventional ultrasound, is that
the latter can detect calcifications but not the remaining plaque components. We will
show that Eddy-currents can do the entire job quite well.

10.2 Sample Impedance Calculations

Impedance calculations for the original lesion and the four variations listed in
Table 10.2 are shown in Fig. 10.3. It is clear that each of the configurations is
completely resolved over this frequency range. We have found this not to be true at
other frequencies, which is the reason that we have chosen this frequency range to
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Fig. 10.3 Frequency response of the original lesion and its four variations. Left: resistance; right:
reactance

do our inversions. We used the tissue data shown in the standard model of Fig. 10.2,
even though they are not correct in the GHz-frequency range. This will be corrected
shortly.

In these five models, the total length of the lesion is fixed at 1.7 mm, and we note
in Fig. 10.3 that the lesion with the most pronounced response, variation 1, has the
longest lipid layer. This means that the higher-conducting layers of variation 1 are
more concentrated, having a total length of 0.6 mm, which is smaller than any of the
other lesions.

Figure 10.4 shows the freespace frequency response of the same probe that
produced the data of Fig. 10.3. This figure, together with Fig. 10.3, indicate the
precision with which measurements must be taken. For example, in order to resolve
the differences shown in Fig. 10.3, when compared to the freespace response,
our instruments must be capable of resolving resistances to two significant digits
(40 dB dynamic range), but reactances must be measured to six significant digits
or so (120 dB dynamic range). This is typical of Eddy-current measurements on
biological tissue.

10.3 The Eight-Layer Inversion Algorithm

The eight-layer inversion algorithm was described in Chapter 20 of [111] in the
context of the nondestructive evaluation of coatings. In the present context it starts
by assigning a conductivity, σ , to each of the eight layers shown in Fig. 10.5.
The height of each layer, which defines the resolution of the algorithm, is L =
0.2125 mm, giving a total unknown region of 1.7 mm that contains the calcium,
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Fig. 10.4 Frequency response of the probe in freespace. Left: resistance; right: reactance
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Fig. 10.5 The eight-layer inversion algorithm. The objective is to determine σ1, . . . , σ8, given that
the resolution of the algorithm L = 0.2125 mm

fibrous tissue, smooth muscle cap, and lipid. Our objective is to determine the size
of the layer that contains each of these four materials. NLSE is used for this purpose.

The procedure utilizes simple rules involving average values of conductivities
and volume-fractions. Suppose that NLSE produces a value σ1 = 0.08 for the first
layer. This indicates that the thickness of the calcium layer within the lesion is at
least 0.2125 mm. To determine how much more it is, we must go to the second layer
and apportion σ2 between calcium and fibrous tissue. If, for example, σ2 = 0.15,
then we would calculate Lc, the volume-fraction of calcium in this layer by the
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Table 10.3 Results for eight-layer inversion algorithm of Fig. 10.5. The Levenberg–Marquardt
parameter is 0.01 for all five cases

Lesion no.

Layer Upper boundary (mm) Original 1 2 3 4

1 0 0.095828 0.098130 0.075263 0.094353 0.080461

2 −0.2125 0.46058 0.37017 0.48808 0.47237 0.59596

3 −0.425 0.30122 0.27370 0.34817 0.32965 0.40912

4 −0.6375 0.17525 0.13125 0.23358 0.21439 0.26295

5 −0.85 0.089613 0.060255 0.15365 0.13499 0.16217

6 −1.0625 0.041273 0.023305 0.10654 0.089338 0.10104

7 −1.275 0.026568 0.018184 0.089285 0.074301 0.07405

8 −1.4875 0.042713 0.043014 0.099406 0.087321 0.07723

following relationship: 0.15 = 0.08 × Lc + 0.24 × (1 − Lc). The solution of this
equation is Lc = 0.5625, which means that the actual amount of calcium in this
layer is lc = Lc × 0.2125 = 0.1195 mm. Hence, the total length of the calcium
layer is 0.2125+0.1195 = 0.3320 mm. In carrying out this algorithm, we implicitly
assume that no more than two different materials can occupy the same layer of
the grid in Fig. 10.5, or we cannot obtain a unique solution. This is a reasonable
assumption as long as the layer thickness (or resolution), L, is small.

We can refine the resolution of the calculated results by reapplying the eight-
layer algorithm to a modified model, after we have determined the length of some
of the layers of material within the lesion. The eight layers would now be applied to
the remaining unknown region, and the above volume-fraction algorithm would be
repeated.

The results when the eight-layer algorithm of Fig. 10.5 is applied to the lesions
are shown in Table 10.3. The numbers in the five columns to the right are the values
of the conductivity in S/m.

From these results it is clear that the reconstructions are following the standard
conductivity model of Fig. 10.2, in that an initial small step is followed by a longer
interval of large values, and ending in a much longer interval of very small values.
It is this final sequence of small values that interest us at the outset, for they clearly
model the lipid core, whose conductivity is 0.025 S/m.

Layers 5–8 of the Original column and column 1 of Table 10.3 clearly belong to
the lipid core, and layers 6–8 of columns 2–4 belong to the lipid core. Hence, we
can say that the lipid cores of the reconstructed original lesion and lesion no. 1 are
at least 4 × 0.2125 = 0.85 mm long.

Assuming that the smooth muscle cap and lipid core share the fifth layer for
lesions 2–4, we interpolate within the fifth layer for lesions 2–4 to get a better
approximation to the lipid core by using the volume fraction concept. Let L be
the volume fraction of the fifth layer that belongs to the lipid core, and (1 − L) be
the volume fraction that belongs to the smooth muscle cap. Then, using the data of
Table 10.3, we have the following results:
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Fig. 10.6 Grid for application of the eight-layer inversion algorithm during the first iteration. Left:
L = 0.10625 mm for the original lesion and lesion 1. Right: L = 0.12 mm for lesions 2–4

0.15365 = 0.0256L + 0.4 × (1 − L), or

L = 0.657 for lesion 2

0.13499 = 0.0256L + 0.4 × (1 − L), or

L = 0.707 for lesion 3

0.16217 = 0.0256L + 0.4 × (1 − L), or

L = 0.634 for lesion 4 . (10.1)

Keeping in mind that the length of each interval is 0.2125 mm, these results yield
values of l = 0.1396, 0.1501, 0.1348 mm for the length of the fifth layer occupied
by the lipid core in, respectively, the second, third, and fourth lesions. When added
to the ‘certain’ length of 3 × 0.2125 mm for the lipid core of each of these three
lesions, we get estimated values of 0.777, 0.788, and 0.772 mm for the total length
of the lipid core for, respectively, lesions 2, 3, and 4. This agrees well with the actual
value of 0.8 mm, each, for these three lesions (see Table 10.2). Nevertheless, we are
going to be conservative at this stage, and claim that the lipid core of these three
lesions is at least 0.74 mm.

Therefore, with the assumptions that the lipid core is at least 0.85 mm long for the
original lesion and lesion 1, and is at least 0.74 mm long for the other three lesions,
we use the grids shown in Fig. 10.6 for the next (first) refinement of the original
calculation.

From this point on, we will reconstruct only the original lesion, starting with the
grid on the left of Fig. 10.6. Using a value of the Levenberg–Marquardt parameter,
LM = 0.00025, we get the results shown in Table 10.4.
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Table 10.4 Results of
application of eight-layer
inversion algorithm using
Fig. 10.6. The
Levenberg–Marquardt
parameter is 0.00025

Lesion no.

Layer Upper boundary (mm) Original

1 0 0.079456

2 −0.10625 0.28272

3 −0.2125 0.34385

4 −0.31875 0.36084

5 −0.425 0.3445

6 −0.53125 0.29836

7 −0.6375 0.22236

8 −0.74375 0.11789
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Fig. 10.7 Grid for application of the eight-layer inversion algorithm to the original lesion during
the second iteration. L = 0.0734 mm

We recognize that the last layer is entirely lipid, and assume that the seventh
layer is shared between lipid and smooth muscle. Hence, for this layer we have the
volume-fraction relation 0.22236 = 0.025L + 0.40 × (1 − L), or L = 0.4737,
which means that the length of the seventh layer that is occupied by lipid is l =
0.4737 × 0.10625 = 0.0503 mm. Therefore, the total length of the reconstructed
lipid layer is 0.85 + 0.10625 + 0.0503 = 1.00655 mm, compared with its actual
length of 1.0 mm.

Furthermore, we attribute the entire calcium layer to the first layer in Table 10.4,
which means that calcium occupies 0.10625 mm in the reconstruction, compared
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Table 10.5 Results of
application of eight-layer
inversion algorithm using
Fig. 10.7. The
Levenberg–Marquardt
parameter is 0.0001

Lesion No.

Layer Upper boundary (mm) Original

1 −0.10625 0.31122

2 −0.17965 0.21456

3 −0.25305 0.26258

4 −0.32645 0.32472

5 −0.39985 0.37471

6 −0.47325 0.40568

7 −0.54665 0.41624

8 −0.62005 0.40678

Table 10.6 Results of
application of eight-layer
inversion algorithm using a
Levenberg–Marquardt
parameter 5 × 10−5. The
unknown parameters occupy
the region between 0 mm and
−0.39985 mm

Lesion no.

Layer Upper boundary (mm) Original

1 0 0.084

2 −0.05 0.083

3 −0.10 0.184

4 −0.15 0.246

5 −0.20 0.279

6 −0.25 0.290

7 −0.30 0.282

8 −0.35 0.258

with 0.10 mm in the original. Using these two results, therefore, we define the new
grid, shown in Fig. 10.7, which will be used to generate the second-iteration results.

The results for the second iteration are obtained using a value of the Levenberg–
Marquardt parameter, LM = 0.0001, and are shown in Table 10.5.

There is a slight oscillation in the results over the last four layers, but the
average value of the conductivities is 0.4009, which clearly identifies these layers
as belonging to the smooth muscle cap. The average of the first four layers is
0.278, which means that we associate these layers with the fibrous tissue. Hence, we
estimate that the smooth muscle cap extends from −0.39985 mm to −0.69345 mm,
making it 0.2936 mm long, and that the fibrous tissue extends from −0.10625 mm to
−0.39985 mm, making it also 0.2936 mm. The true length of each of these materials
is 0.3 mm, so we are in the ballpark.

As one final iteration, however, we put the eight layers extending from 0 mm to
−0.39985, and then fixed the smooth muscle cap from −0.39985 to −0.69345 mm,
leaving the remainder of the trial lesion as in Fig. 10.7. Now the results, as shown in
Table 10.6, are strikingly improved. We used a Levenberg–Marquardt parameter of
5 × 10−5.

The calcium layer now clearly occupies 0.1 mm, and the average of the remaining
six conductivities is 0.2565, which is a better fit to 0.24 than before. Hence, we
conclude that the fibrous tissue occupies the next 0.29985 mm, after the calcium.
The final results for the original lesion are summarized in Table 10.7.
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Table 10.7 Final results for
the reconstructed original
lesion

Thickness (mm)

Material Computed Original

Calcium 0.1 0.1

Fibrous Tissue 0.29985 0.3

Smooth Muscle 0.2936 0.3

Lipid 1.00655 1.0

Table 10.8 Results of
application of eight-layer
inversion algorithm using the
right-hand part of Fig. 10.6.
The Levenberg–Marquardt
Parameter is 0.00025

Lesion no.

Layer Upper boundary (mm) Variation 2

1 0 0.0791

2 −0.12 0.1758

3 −0.24 0.3072

4 −0.36 0.3822

5 −0.48 0.4092

6 −0.60 0.3951

7 −0.72 0.3463

8 −0.84 0.2687

10.4 Lesion 2

Now, we’ll go on to reconstruct Lesion 2, starting with the grid on the right-hand
side of Fig. 10.6. Using a Levenberg–Marquardt parameter value of 0.00025, the
results of the first iteration are shown in Table 10.8.

The first layer is clearly calcium, and the average of the fifth and sixth layer
conductivities is 0.402, which suggests that they are muscle. The average of the
fourth, fifth and sixth layers also suggest that they are muscle, but we prefer to
be conservative at this point, and assign muscle to only the fifth and sixth layers.
Hence, our second iteration will use a grid in which calcium is assigned to the region
between 0 and −0.12 mm, and muscle to the region between −0.48 and −0.72 mm.
The region between −0.12 mm and −0.48 mm will be divided into four layers of
0.09 mm, each, and the region between −0.72 mm and −0.96 mm will be divided
into four layers of 0.06 mm, each. The region below −0.96 mm will remain as in the
right-hand part of Fig. 10.6.

When we ran the second iteration, using this grid and a Levenberg–Marquardt
parameter of 0.0001, we got the results shown in Table 10.9. Layer 8 of Table 10.9 is
part of the lipid core, because its conductivity is quite low (in fact it is undershooting
the value of 0.025 during its descent from 0.393 in the seventh layer). The average
value of layers four through 7 is 0.400, so we are willing to state that the layer of
muscle extends from (at least) −0.39 mm to −0.90 mm. Thus, we are ready for the
third iteration, using a grid in which calcium is prescribed from 0 mm to −0.12 mm,
muscle is prescribed from −0.39 mm to −0.90 mm, and lipid from −0.90 mm to
−1.7 mm. The unknown region between −0.12 mm and −0.39 mm is divided into
eight layers of 0.03375 mm, each.
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Table 10.9 Results of
application of eight-layer
inversion algorithm during
the second iteration for lesion
2. The Levenberg–Marquardt
parameter is 0.0001

Lesion no.

Layer Upper boundary (mm) Variation 2

1 −0.12 0.128

2 −0.21 0.223

3 −0.30 0.310

4 −0.39 0.369

5 −0.72 0.427

6 −0.78 0.412

7 −0.84 0.393

8 −0.90 0.0

Table 10.10 Results of
application of eight-layer
inversion algorithm during
the third iteration for lesion 2.
The Levenberg–Marquardt
parameter is 5 × 10−5

Lesion no.

Layer Upper boundary (mm) Variation 2

1 −0.12 0.037

2 −0.15375 0.1523

3 −0.1875 0.2086

4 −0.22125 0.2345

5 −0.255 0.2414

6 −0.28875 0.2351

7 −0.3225 0.2209

8 −0.35625 0.1993

Table 10.11 Results of
application of eight-layer
inversion algorithm during
the fourth iteration for lesion
2. The Levenberg–Marquardt
parameter is 5 × 10−5

Lesion no.

Layer Upper boundary (mm) Variation 2

1 −0.12 0.047

2 −0.155 0.148

3 −0.190 0.202

4 −0.225 0.231

5 −0.26 0.244

6 −0.295 0.247

7 −0.33 0.242

8 −0.365 0.230

The results of the third iteration are shown in Table 10.10. It seems clear that
layers 1 and 2 are calcium, layer 3 is the transition from calcium to fibrous tissue,
and layers 4–8 are fibrous tissue. Note that the average value of the conductivities
of layers 4–8 is 0.226, which is not as close to 0.24 as we would like, so we will
change the separation interface between fibrous tissue and muscle to -0.4 instead of
-0.39, thereby hoping to get an average value closer to 0.24. When we do this, we
get the fourth-iteration results of Table 10.11, in which LM = 5 × 10−5.

Now we see that the average of layers 4–8 is 0.239, which is much closer to
0.24, and further, that the variance of the data about the mean is much smaller.
Hence, we conclude that layers 4–8 are fibrous tissue, and that the transition between
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Table 10.12 Final results for
the reconstructed lesion 2

Thickness (mm)

Material Computed Original

Calcium 0.198 0.2

Fibrous tissue 0.202 0.2

Smooth muscle 0.5 0.5

Lipid 0.8 0.8

calcium and fibrous tissue occurs in layer 3, as before. When we calculate volume-
fractions of the different tissue types within layer 3, we conclude that calcium
occupies 0.008 mm and that fibrous tissue occupies 0.027 mm. Hence, the total
thickness of the calcium layer is 0.190 + 0.008 = 0.198 mm, and of fibrous tissue
0.027 + (0.40 − 0.225) = 0.202 mm. The total length of muscle is, of course, 0.90–
0.40 = 0.50 mm, and of the lipid core 1.70–0.90 = 0.80 mm. The final results for
lesion 2 are shown in Table 10.12.

10.5 Noninvasive Detection and Characterization of
Atherosclerotic Lesions

The preceding discussion and inversion example assume that one is using a catheter
that has been inserted into the vessel. This, of course, is invasive, though ‘minimally’
so. Furthermore, the model inversions were used to characterize well-formed, or
reasonably well-formed lesions for the purpose of distinguishing them from the
surrounding healthy tissue so that they can be properly treated.

A noninvasive scheme for detecting and characterizing atherosclerotic lesions
would be highly useful, and the results of a very interesting paper [95] suggest that
such a scheme may be quite feasible using our Eddy-current technology. First, a bit
of physiology: phagocytes are cells that engulf and digest cells, microorganisms, or
other foreign bodies in the bloodstream and tissues, and macrophages are large (very
large) molecules that devour things, usually bad things. In [95], rabbits were injected
with ultrasmall superparamagnetic particles of iron oxides (USPIOs), and it was
observed that these USPIOs were phagocytosed by macrophages in atherosclerotic
plaques of the aortic wall in a quantity sufficient to cause susceptibility effects
detectable by MRI, and all of this, mind you, before luminal narrowing is present,
which means that such lesions might not even show up on an angiogram. Our interest
is in detecting the presence of the USPIOs noninvasively by simple Eddy-current
means.

Figure 10.8 shows a test setup for modeling. In Fig. 10.9 we show responses to
the test setup for varying permeabilities of the sperical lesion, which is centered
1 cm beneath the surface of the serum half-space and has a radius of 1 mm. The
coil has one turn, an inner radius of 1 mm, an outer radius of 1.1 mm, a height of
0.1 mm, and is excited at 1 GHz. We see a clear distinction between the response of
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Serum: Fatty Lesion:σ = 1.19 σ = 0.07S/m S/m

Coil

Fig. 10.8 Model of an Eddy-current coil scanned past a fatty lesion embedded in serum
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Fig. 10.9 Response of lesions of varying magnetic permeability at 1 GHz. Left: resistance, right:
reactance

a nonpermeable lesion, with μ = 1.0, and two permeable lesions with μ = 1.1 and
μ = 2.0. The distinction is much clearer in the reactance.

10.6 Electromagnetic Modeling of Biological Tissue

In electromagnetic imaging, our goal is to directly determine the electromagnetic
state of the body, from which we infer its physiological state, which could even
include determining the change in temperature of tissue noninvasively. This is
done by inverting impedance measurements to infer the electromagnetic constitutive
properties of the body, from which other state variables can be determined.
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Maxwell’s equations of electromagnetics are completed when there is a con-
stitutive relationship established between the electric current density, J, and the
electric field, E. In the sinusoidal steady-state, the simplest relationship is the
linear one, J(r) = jωε0ε̂(ω)E(r), which defines the complex generalized (relative)
permittivity, ε̂. Research over the last 60 years into electromagnetic effects on
biological tissue has shown that this permittivity may be written

ε̂(ω) = ε∞ +
∑
n

Δεn

1 + (jωτn)(1−αn)
+ σdc

jωε0
, (10.2)

where ε∞, σdc, Δεn, τn, and αn, are empirically determined (Cole–Cole) parame-
ters. ε∞ is the infinite-frequency limit of ε̂, and σdc is the zero-frequecy (dc) limit.

The triplet (Δεn, τn, αn) defines the nth dispersion, of which there are generally
three observed: α, β and γ , going from lowest to highest frequencies. If αn = 0,
then each dispersion could be modeled by a simple series connection of a resistor
and capacitor, and (10.2) could be modeled by a parallel combination of linear,
lumped, bilateral, passive circuit elements. This would not lead to significant
simplifications, however, because these element values would still have to be
determined empirically, and it is quite easy to work with (10.2) as it is.

The dielectric properties of biological tissue result from the interaction of
electromagnetic radiation with its constituents at the cellular and molecular level.
The mechanisms of the interaction are well understood and discussed in the review
articles mentioned in [39]. Following [39], we can say that the main features of the
dielectric spectrum of biological tissue are as follows:

• The relative permittivity of a tissue may reach values of up to 106 or 107 at
frequencies below 100 Hz

• It decreases at high frequencies in three main steps known as the α, β, and γ

dispersions. Other dispersions may also be present.
• The γ dispersion, in the gigahertz region, is due to the polarization of water

molecules.
• The β dispersion, in the hundreds of kilohertz region, is due mainly to the

polarization of cellular membranes which act as barriers to the flow of ions
between the intra and extra cellular media. Other contributions to the β dispersion
come from the polarization of protein and other organic macromolecules.

• The low frequency α dispersion is associated with ionic diffusion processes at
the site of the cellular membrane.

• Tissues have finite ionic conductivities commensurate with the nature and extent
of their ionic content and ionic mobility.

Gabriel et al. [39–41] have tabulated the dielectric properties of tissues over the
frequency range 10 Hz to 20 GHz and have determined the Cole–Cole parameters
that cover the entire range of dispersions, and they are listed in Table 10.13.
Table 10.14 lists values of the conductivity and dielectric permittivity of a number
of biological tissues, using the data of Table 10.13.
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Table 10.13 Parameters of (10.2) used to predict dielectric properties of tissues [41]

Tissue type ε∞ Δε1 τ1 (ps) α1 Δε2 τ2 (ns) α2

Blood 4.0 56.0 8.38 0.10 5200 132.63 0.10

Bone (cancellous) 2.5 18.0 13.26 0.22 300 79.58 0.25

Bone (cortical) 2.5 10.0 13.26 0.20 180 79.58 0.20

Brain (grey matter) 4.0 45.0 7.96 0.10 400 15.92 0.15

Brain (white matter) 4.0 32.0 7.96 0.10 100 7.96 0.10

Fat (infiltrated) 2.5 9.0 7.96 0.20 35 15.92 0.10

Fat (not infiltrated) 2.5 3.0 7.96 0.20 15 15.92 0.10

Heart 4.0 50.0 7.96 0.10 1200 159.15 0.05

Kidney 4.0 47.0 7.96 0.10 3500 198.94 0.22

Lens cortex 4.0 42.0 7.96 0.10 1500 79.58 0.10

Liver 4.0 39.0 8.84 0.10 6000 530.52 0.20

Lung (inflated) 2.5 18.0 7.96 0.10 500 63.66 0.10

Muscle 4.0 50.0 7.23 0.10 7000 353.68 0.10

Skin (dry) 4.0 32.0 7.23 0.00 1100 32.48 0.20

Skin (wet) 4.0 39.0 7.96 0.10 280 79.58 0.00

Spleen 4.0 48.0 7.96 0.10 2500 63.66 0.15

Tendon 4.0 42.0 12.24 0.10 60 6.37 0.10

Tissue type Δε3 τ3 (μs) α3 Δε4 τ4 (ms) α4 σdc

Blood 0.0 0.0 0.7000

Bone (cancellous) 2.0 × 104 159.15 0.20 2.0 × 107 15.915 0.00 0.0700

Bone (cortical) 5.0 × 103 159.15 0.20 1.0 × 105 15.915 0.00 0.0200

Brain (grey matter) 2.0 × 105 106.10 0.22 4.5 × 107 5.305 0.00 0.0200

Brain (white matter) 4.0 × 104 53.05 0.30 3.5 × 107 7.958 0.02 0.0200

Fat (infiltrated) 3.3 × 104 159.15 0.05 1.0 × 107 15.915 0.01 0.0350

Fat (not infiltrated) 3.3 × 104 159.15 0.05 1.0 × 107 7.958 0.01 0.0100

Heart 4.5 × 105 72.34 0.22 2.5 × 107 4.547 0.00 0.0500

Kidney 2.5 × 105 79.58 0.22 3.0 × 107 4.547 0.00 0.0500

Lens cortex 2.0 × 105 159.15 0.10 4.0 × 107 15.915 0.00 0.3000

Liver 5.0 × 104 22.74 0.20 3.0 × 107 15.915 0.05 0.0200

Lung (inflated) 2.5 × 105 159.15 0.20 4.0 × 107 7.958 0.00 0.0300

Muscle 1.2 × 106 318.31 0.10 2.5 × 107 2.274 0.00 0.200

Skin (dry) 0.0 0.0 0.0002

Skin (wet) 3.0 × 104 1.59 0.16 3.0 × 104 1.592 0.20 0.0004

Spleen 2.0 × 105 265.26 0.25 5.0 × 107 6.366 0.00 0.0300

Tendon 6.0 × 104 318.31 0.22 2.0 × 107 1.326 0.00 0.2500
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Table 10.14 Values of conductivity and permittivity for various tissues, using parameters of
Table 10.13. Entries marked witha are inferred

Conductivity (S/m)

log10(Freq) 3 4 5 6 7 8 9 10 11

Blood 0.7 0.7 0.7 0.82 1.1 1.23 1.58 13.13 63.35

Bone (cancellous) 0.08 0.08 0.08 0.09 0.12 0.17 0.36 3.86 16.04

Bone (cortical) 0.02 0.02 0.02 0.02 0.04 0.06 0.16 2.14 8.66

Brain (grey matter) 0.1 0.11 0.13 0.16 0.29 0.56 0.99 10.31 53.24

Brain (white matter) 0.06 0.07 0.08 0.1 0.16 0.32 0.62 7.3 38

Fat (infiltrated) 0.04 0.04 0.04 0.04 0.05 0.07 0.12 1.71 10.63

Fat (not infiltrated) 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.59 3.56

Heart 0.11 0.15 0.22 0.33 0.5 0.73 1.28 11.84 59.86

Kidney 0.11 0.14 0.17 0.28 0.51 0.81 1.45 11.57 57.08

Lens cortex 0.33 0.34 0.34 0.42 0.75 0.92 1.23 9.78 49.55

Liver 0.04 0.05 0.08 0.19 0.32 0.49 0.9 9.39 42.95

Lung (inflated) 0.08 0.09 0.11 0.14 0.23 0.31 0.47 4.21 21.38

Muscle 0.32 0.34 0.36 0.5 0.62 0.71 0.98 10.62 62.52

Skin (dry) 0 0 0 0.01 0.2 0.49 0.9 8.01 39.45

Skin (wet) 0 0 0.07 0.22 0.37 0.52 0.88 8.95 46.11

Spleen 0.1 0.11 0.12 0.18 0.51 0.8 1.32 11.38 57.34

Tendon 0.38 0.39 0.39 0.39 0.41 0.49 0.76 10.34 34.9

Fibrous material 0.24 0.24 0.24 0.24 0.29a 0.33a 0.36a 0.39a 0.45a

Vessel wall 0.58 0.58 0.58 0.58 0.67a 0.83a 0.92a 1.1a 2.0a

Relative Permittivity

log10(Freq) 3 4 5 6 7 8 9 10 11

Blood 5258 5248 5120 3026 280 77 61 45 8

Bone (cancellous) 12,320 1658 474 249 71 28 21 13 4

Bone (cortical) 2702 522 228 145 37 15 12 8 3

Brain (grey matter) 164,060 22,241 3222 860 320 80 52 38 8

Brain (white matter) 69,811 12,468 2108 480 176 57 39 28 7

Fat (inflitrated) 19,287 912 101 51 30 13 11 9 4

Fat (not infiltrated) 24,105 1085 93 27 13.8 6.1 5.4 4.6 3

Heart 352,860 70,057 9846 1967 293 91 59 42 8

Kidney 212,900 38,747 7651 2251 371 98 58 40 8

Lens cortex 107,550 10,318 4038 2717 339 66 48 36 7

Liver 85,673 28,927 7499 1536 223 69 46 32 7

Lung (inflated) 141,520 17,174 2581 733 124 32 22 16 4

Muscle 434,930 25,909 8089 1836 171 66 55 43 9

Skin (dry) 1136 1134 1119 991 362 73 41 31 6

Skin (wet) 32,135 29,012 15,369 1835 222 66 46 34 7

Spleen 106,840 13,891 4222 2290 441 91 57 41 8

Tendon 302,710 5336 472 160 103 54 46 29 6

Fibrous material 2000a 1000a 500a 50a 5a 3a 2.0a 1.2a 1.0a

Vessel wall 100,000a 22,000a 5000a 4000a 100a 30a 15a 3a 1a
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Fig. 10.10 Frequency response of the five lesions in the vicinity of 1 GHz. Both conductivity and
permittivity effects are included. Left: resistance; right: reactance
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Fig. 10.11 Frequency response of the five lesions in the vicinity of 10 GHz. Both conductivity and
permittivity effects are included. Left: resistance; right: reactance

10.6.1 The Lesions Revisited

With the data of Table 10.14 in hand we can redo the calculations of the lesions that
were described in Sects. 10.1–10.3, this time correctly accounting for the dispersive
properties of the tissue. Earlier, we had used data that were only good in the
megahertz range to a model problem set at 100 GHz! Further, we only included
conductivity; now we can include dielectric permittivity, though we cannot yet invert
both parameters, because VIC-3D® is not set up to do so. The correct response for
the lesions at 1–100 GHz are shown in Figs. 10.10, 10.11, and 10.12.
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Fig. 10.12 Frequency response of the five lesions in the vicinity of 100 GHz. Both conductivity
and permittivity effects are included. Left: resistance; right: reactance
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Fig. 10.13 Frequency response of the coil in the vicinity of 1 GHz. Left: resistance; right:
reactance

The freespace response of the coil at 100 GHz has already been given in Fig. 10.4.
The corresponding results at 1 GHz and 10 GHz are given in Figs. 10.13 and 10.14.

10.7 Determining Coil Parameters

Figure 10.15 is the equivalent circuit of a real coil. VIC-3D® can only model the
inductor, L0, and ZW , the change in the impedance due to the presence of the
workpiece. The remaining parameters must be inferred by measurement. Because
VIC-3D® can model only the right-hand branch, we must subtract the effects of Yp
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Fig. 10.14 Frequency response of the coil in the vicinity of 10 GHz. Left: resistance; right:
reactance

Fig. 10.15 Equivalent circuit
of a real coil. It is assumed
that Yp → 0 as f → on the
left. The equivalent
capacitance, C0, in the circuit
on the right accounts for the
self-resonance of the coil
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(or C0) from the circuit. This is easily done, once we have measured values of the
driving-point impedance, Zin, seen at the left-hand terminal-pair.

Consider the situation in which the coil is in air, located well away from the
workpiece; then ZW = 0. L0 is the low-frequency inductance of the coil, and
R0 is the low-frequency resistance of the coil. Each of these parameters is known
empirically, with the former perhaps computed by VIC-3D® if the coil data are
known. Then we have

Yp(ω) = 1

ZA
in(ω)

− 1

R0 + jωL0
, (10.3)

where ZA
in is the input impedance measured in air.

We assume that Yp is unchanged in the presence of the workpiece. Therefore, in
order to calculate ZW(ω), we simply subtract out everything that we know about
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Fig. 10.16 The most general circuit representation of a coil and its connections

the coil and its impedance in air:
1

R0 + jωL0 + ZW(ω)
= 1

ZW
in (ω)

−Yp(ω), which

after rearrangement becomes

ZW(ω) = ZW
in (ω)

1 − ZW
in (ω)Yp(ω)

− R0 − jωL0 , (10.4)

and ZW
in is the input impedance measured over the workpiece.

The most general equivalent circuit of a coil and its connections includes the two-
port network shown in Fig. 10.16. A two-port is defined by its open-circuit driving-
point and transfer impedances, z11, z22, z21 = z12, where the latter follows if
the two-port is reciprocal. Clearly, the parallel admittance configuration shown in
Fig. 10.15 is a special case of Fig. 10.16 when z11 = z22 = z12 = 1/Yp.

With the two-port loaded as shown in Fig. 10.16, the driving-point impedance
when the coil is over the workpiece is

ZW
in (ω) = z11 − z12 + z12 (z22 − z12 + R0 + jωL0 + ZW)

z22 + R0 + jωL0 + ZW

, (10.5)

which yields an expression for the change in impedance due to the workpiece:

ZW(ω) = z2
12(ω) − z11(ω)z22(ω) + ZW

in (ω)z22(ω)

z11(ω) − ZW
in (ω)

− R0 − jωL0 . (10.6)

If z11 = z22 = z12 = 1/Yp then (10.6) gives the same result as (10.4).
In order to determine Yp(ω) we needed only one measurement in air. Now,

we need two additional independent measurements to determine the other two
independent impedances of the two-port. These are obtained by measuring ZW

in (ω)

when the coil is over two known workpieces, then using VIC-3D® to compute ZW

for these workpieces and finally computing the remaining network parameters from
(10.5).
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Fig. 10.17 Freespace
impedance of a 21.6 mm
single-turn loop
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10.7.1 Application to the 21.6mm Single-Turn Loop

Figure 10.17 shows the freespace impedance of a 21.6 mm single-turn loop,
measured using the HP8720ET over the frequency range of 50–500 MHz.

The inductance at 50 MHz is 0.0595µH, and at 68 MHz it is 0.0599µH, which
differ by less than 1%. Hence, we can call 50–68 MHz the ‘low-frequency’ range
for this coil, in that the inductance remains reasonably constant, unaffected by
resonance or other effects due to Yp. Thus, L0 = 0.0595 × 10−6 in Fig. 10.15.
The average of the resistances over the low-frequency range is 0.121 �, which we
will take to be R0 in Fig. 10.15. These are the data that we need in order to compute
Yp using (10.3).

Table 10.15 lists the results for a few of the lower frequencies and the highest
frequencies. Clearly, Yp is capacitive because its imaginary part is positive, and
it is also lossy, because its real part is positive. It is not important that either the
conductance or capacitance remain fixed with frequency, because we do not intend
to synthesize Yp with circuit elements, but it is interesting to note that at the highest
frequencies the value of the capacitor remains stable at about 1.32 pF.

10.8 Measuring the Frequency Response of Saline

Using the results of the Yp calculation in (10.4), we compute ZW(ω) when the
21.6 mm single-turn coil is placed above a bag of saline (Fig. 10.18). Impedance
data were taken using the same configuration as above with the HP8720ET network
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Table 10.15 Yp for the
21.6 mm single-turn loop.
The frequency is in MHz

Freq. Re Im

59.000 7.68299869E-05 8.89377407E-05

61.250 6.22287553E-05 1.93887259E-04

63.500 2.16324188E-05 2.83220172E-04

65.750 4.39594660E-05 1.97137473E-04

68.000 1.19457676E-04 2.75384256E-04

482.00 1.71300489E-04 4.02158825E-03

484.25 1.64257421E-04 4.02043480E-03

486.50 1.66601327E-04 4.04098304E-03

488.75 1.59304051E-04 4.05691052E-03

491.00 1.54539463E-04 4.07911092E-03

493.25 1.56246097E-04 4.09630826E-03

495.50 1.56481488E-04 4.11793403E-03

497.75 1.59386982E-04 4.13913047E-03

500.00 1.57347269E-04 4.16233204E-03

21.6 mm

frequency = 50−500MHz

Single−Turn Coil

Saline: σ, ε

Fig. 10.18 Illustrating a single-turn coil over a saline half-space

analyzer. These data comprise the input impedance, ZW
in , of (10.4), but are not listed

here. The result of the computation is shown in Fig. 10.19. Note that there are two
resonances in the figure, one at about 260 MHz and the other at about 460 MHz.
These resonances are not present in the freespace probe response, so they are a
property of the saline, but we don’t yet know their origin.
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Fig. 10.19 Frequency response of ZW for the 21.6 mm single-turn loop when placed above a bag
of saline. Upper: resistance; lower: reactance
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10.9 Determining the Constitutive Parameters of Saline

With the results of Fig. 10.19, we can use VIC-3D® to determine the constitutive
parameters, σ and ε, of saline. We first develop a model of the experiment, and
then run VIC-3D® with various values of these parameters in a simple inversion
process. We model the current loop as a single-turn coil of inner radius 8.8 mm
and an outer radius 8.9 mm, with a height of 0.1 mm. The coil is placed 0.55 mm
above the saline, which is modeled as a half-space. We then applied NLSE to
determine the best values of the electromagnetic parameters to be σ = 1.016 S/m,
ε = 219.79ε0. Figure 10.20 shows the result of this inversion. The result suggests
that there are two independent mechanisms at work in the saline, one that produces
the two resonances that were described above, and one that apparently produces a
third resonance beyond 500 MHz. We now want to discuss these phenomena from a
circuit-theoretic viewpoint, mixed in with a little field analysis.

10.10 Comments and Discussion

Maxwell’s second equation, which is Ampere’s circuital law in differential vector
form, is

∇ × H = σE + jωεE

= Jc + Jd , (10.7)

where σ is the conductivity of the medium, ε the dielectric constant, J the con-
duction current density, and Jd the displacement current density. When we induce
a current into a workpiece for Eddy-current NDE, we can develop an analogous
equivalent circuit, as in Fig. 10.21, to help understand what is happening. This figure
shows a simple coupled circuit whose secondary has a load impedance, ZL, and
whose primary is the exciting coil. When the workpiece is weakly conducting, and
has a significant dielectric constant, then the total current, which is the sum of the
conduction and displacement currents, can be thought of as flowing in the equivalent
load impedance that consists of a shunt capacitor and conductance. These elements
represent, respectively, the displacement current and conduction current of (10.7).

The equations for the circuit of Fig. 10.21 are:

E0 = I0(R0 + jωL0) − jωMI1

0 = −jωMI0 + I1(jωL1 + ZL) , (10.8)
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Fig. 10.20 Result of inversion of measured impedance data of saline. The resulting values are
σ = 1.016 S/m, ε = 219.79ε0. Upper: resistance; lower: reactance
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Fig. 10.21 Equivalent circuit for Eddy-current NDE. The resistor accounts for the conduction
current, and the capacitor for the displacement current of (). The second load circuit includes
elements that account for resonances (if they exist)

which can be easily solved to yield

Zin = E0

I0
= R0 + jωL0 + ω2M2

jωL1 + ZL

. (10.9)

The first term in (10.9) is the freespace impedance of the coil, whereas the second
term is δZW , the change in impedance due to the presence of the workpiece. This is
the term that we’re interested in:

δZW = ω2M2

jωL1 + ZL

= ω2M2
(
Z∗

L − jωL1
)

|ZL|2 + ω2L2
1 + 2�(jωL1Z

∗
L)

, (10.10)

where * denotes the complex conjugate, and � denotes the ’real part’ of a complex
number.

If, as in the upper-right of Fig. 10.21, ZL = 1/ (GL + jωCL), then

δZW = ω2M2
[
GL + jωCL

(
1 − Z2

0G2
L − (ω/ω0)

2
)]

1 − (ω/ω0)2
(
2 − Z2

0G2
L

) + (ω2/ω2
0)

2
, (10.11)
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where Z2
0 = L1/CL is the ‘characteristic impedance’ and ω2

0 = 1/L1CL is the
resonant frequency of the parallel tank circuit comprising L1, GL, and CL. This
result, which is plotted as ‘model’ in Fig. 10.20, indicates that the displacement
current in the host (saline) will eventually resonate with the virtual inductance, L1,
as long as GL isn’t too large. Of course, in a metal GL is huge, so that the load
consists of L1 and GL, and there is no resonance. In this case, we can set ω0 = ∞,
and ignore all terms involving ω/ω0. The result is that

δZW ≈ ω2M2
[
GL + jω(CL − L1G

2
L)
]

≈ ω2M2GL(1 − jωL1GL) . (10.12)

This shows that in the usual situation when inspecting a metallic workpiece, the
change in reactance is always negative, which is an obvious manifestation of Lenz’
law, that states that the induced current always produces a flux to oppose the incident
flux due to L0.

Now, let’s consider the case in which ωL1 << |ZL|, which means that we are
well below the resonant frequency, ω0. Then, from (10.10) we have

δZW ≈ ω2M2

ZL

= ω2M2

[
GL + jωCL + ω2RaC2

a + jωCa(1 − ω2/ω2
a)

(1 − ω2/ω2
a)2 + ω2R2

aC2
a

+ ω2RbC2
b

+ jωCb(1 − ω2/ω2
b
)

(1 − ω2/ω2
b
)2 + ω2R2

b
C2

b

]
,

(10.13)

where ω2
a = 1/LaCa, ω2

b = 1/LbCb are the resonant frequencies of the two series-
resonant branches in Fig. 10.21. If we are well below either of these two resonances,
then

δZW ≈ ω2M2(GL + jωCL) , (10.14)

from which we conclude that at low frequencies, the change in resistance is
quadratic in ω, and the change in reactance is cubic, and both changes are positive,
exactly as in Fig. 10.20 ‘model.’ Thus, at low frequencies, we see only the effects
of the conduction current, as manifested in GL, and the displacement current, as
manifested in CL. This agrees with the results of the saline experiment in the
low-frequency range of 50–150 MHz. The first (small) resonance in the saline
experiment occurs around 260 MHz, and the second resonance, which is much
larger, occurs around 460 MHz.

When we are at resonance, however, such that ω = ωa , or ω = ωb, then if
these frequencies are reasonably well-separated, (10.13) indicates that the reactance
is given simply by jωaCL or jωbCL, which are the same as if the resonances
were not present. Because this appears to closely follow the model and measured
results of Fig. 10.20, we conclude that Fig. 10.21 is a reasonably faithful model of
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the saline experiment. We cannot yet explain the origin of the two resonances, but
we are satisfied that they are not due to cavity resonances, because there are no finite
boundaries in the model.

Now, when we consider frequencies beyond the second resonance (which we
assume to be the last), which is the end of our experimental data, we return to
the condition of (10.11). We can only model this condition with VIC-3D®, since
we have no experimental data for it, and we do that spanning the frequency range
500 MHz to 1 GHZ, with the results shown in Fig. 10.22. We used the same values
of σ = 1.016 S/m, ε = 219.79ε0 for the computation. Note that the response is as
predicted in (10.11); the resistance continues to increase, but the reactance reaches
its peak at about 640 MHz, and then descends through zero at roughly 875 MHz.
From (10.11), therefore, we estimate ω0 ≈ 875 MHz.

Eventually, of course, the resistance will go to zero, but the frequency at which
this occurs may be so high that the coil may actually begin to radiate, and the
equivalent circuit of Fig. 10.21 will no longer be valid. In fact, a careful look at
the reactance curve of Fig. 10.22 will show a slight ‘glitch’ at 620 MHz and a more
pronounced one at about 1 GHz. There is a similar glitch in the resistance curve at
about 1 GHZ. These indicate that the circuit model may be breaking down in this
frequency range.

Finally, we show corresponding results when the saline is assumed to lie within
a slab of 38 mm (1.5 in) in Fig. 10.23. The results are virtually indistinguishable
from those of a halfspace over the frequency range 50–500 MHz, for which we
have experimental data. Beyond 500 MHz, however, there are little wiggles in the
computed response, which we believe are actuall cavity resonances that are strongly
damped due to the large conductivity of the saline. In any case, the qualitative shape
is the same as for the halfspace, so we will continue to rely on the halfspace model,
and the equivalent circuit of Fig. 10.21 to anlalyze the results of this experiment.

10.10.1 Summary

The circuit diagram of Fig. 10.21 has four independent parameters: the mutual
inductance, M , the virtual secondary inductance, L1, and the load elements, GL

and CL. From a field-theoretic viewpoint, which is what VIC-3D® looks at, there
are also four independent parameters: the lift-off of the coil over the workpiece, the
depth of the workpiece, and the electromagnetic parameters of the saline, σ and ε.
By matching the VIC-3D®-model with the measured data, we have found that the
lift-off is 0.55 mm, the workpiece extends to infinity in depth, i.e., that it is indeed a
half-space, and that σ = 1.016 S/m, ε = 219.79ε0. The reason that we can easily
move between circuit models and field models is that the measurable is impedance,
which is equally at home in each model.
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Fig. 10.22 Extending the model results of Fig. 10.20 to 1 GHz. The same values of σ =
1.016 S/m, ε = 219.79ε0 are used in computing the response from 500 MHz to 1 GHz. Upper:
resistance; lower: reactance
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is 38 mm high. The same values of σ = 1.016 S/m, ε = 219.79ε0 are used in computing the
model response. Upper: resistance; lower: reactance
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Appendix: The Levenberg–Marquardt Parameter
in Least-Squares Problems

The objective function to be minimized is

Φ(p|Z) = |Z − g(p)|2 + λ|p − p|2 , (10.15)

where λ is the Levenberg–Marquardt parameter. It stabilizes the solution by forcing
it to remain close to p, which is assumed to be known a priori. The degree
of ’closeness’ is determined by the magnitude of λ. The Levenberg–Marquardt
parameter is introduced in [111, p. 263].



Part III
Quantum Effects



Chapter 11
Spintronics

11.1 Introduction

The materials that have been considered thus far in the book are ’classical,’ in the
sense that their electromagnetic properties are easily stated as parameters that can
be easily measured in the laboratory, or can be computed and understood using
’classical’ physics. This is true whether the materials are ’structural’ or ’biological’.
Furthermore, we have shown that materials of these two classes can be characterized
using the same classical electromagnetic models.

In order to expand our understanding and application of electromagnetic models
to materials, we must consider cases in which the above statements do not hold, and
one must resort to more sophisticated physical models that incorporate quantum
mechanical principles just to understand the interaction of the electromagnetic field
with the material. There are a number of common and novel materials in which this
is true. For example, the interaction of an electromagnetic field in a microwave solid-
state maser can only be understood through the application of the quantum theory of
paramagnetism and electron spin dynamics [117]. Another well-known example is
nuclear magnetic resonance (NMR), in which the spin of the proton in the nucleus
of atoms provides the interaction that leads to magnetic resonance imaging (MRI).

11.2 Paramagnetic Spin Dynamics and the Spin Hamiltonian

In order to fully understand the possibilities of using paramagnetic phenomena to
detect lesions noninvasively, we must review a bit of electron-spin physics. Our
interest is in the dynamic response of spins to time-varying fields. These fields are

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. A. Sabbagh et al., Advanced Electromagnetic Models for Materials
Characterization and Nondestructive Evaluation, Scientific Computation,
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either applied electromagnetic fields or fluctuating fields due to random vibrations of
the crystalline surroundings of the spin system.1

The system of equations used to describe spin dynamics is derived from
Schrödinger’s wave equation of quantum mechanics, and is given by

dρmn

dt
= j

h̄

∑
k

(ρmkHkn − Hmkρkn) +
∑
pq

Rmn,pq

(
ρpq − ρ(T )

pq

)
, (11.1)

where ρmn is the density matrix connecting energy states um and un of the
unperturbed system, Rmn,pq are real numbers that account for spin-lattice relax-
ation, and the superscript, T , denotes the thermal equilibrium density matrix.
Hjk = H0jk + H1jk(t), where H0jk is the unperturbed, time-independent spin-
Hamiltonian associated with the crystalline field, and H1jk(t) = ghβ [H(t) · S]jk

is the time-dependent perturbation. Here g is a constant, hβ the Bohr magneton,
h Planck’s constant, h̄ = h/2π , H(t) the time-dependent (rf) magnetic field, and
S = Sxax + Syay + Szaz is the vector spin operator.

Because {um} is an orthonormal system of eigenstates of H0, it follows
immediately that H0mm = Em, and all off-diagonal elements of H0mn vanish.
Furthermore, in order to get a linear (i.e., first-order in H(t)) response for the overall
system, we must set the diagonal terms of (11.1) to their thermal equilibrium values,
ρmn(t) = ρ

(T )
mn , and solve the off-diagonal terms to first-order in H(t):

dρmn

dt
=
(

jω0mn − 1

τmn

)
ρmn + j

h̄

(
ρ(T )

mm − ρ(T )
nn

)
H1mn(t) , (11.2)

where ω0mn = En − Em

h̄
, and the relaxation times, τmn, replace the Rmn,pq of

(11.1).

For a sinusoidally time-varying field, we have H1mn(t) = gβh

2

(
Hejωt+

H∗e−jωt
) · Smn. If we assume solutions of (11.2) of the form ρmn = Amne

jωt +
Bmne

−jωt , then the coefficients of the positive-frequency terms, Amn, and negative-
frequency terms, Bmn, are given by

Amn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (−ω + ω0mn) τmn

Smn · H

Bmn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (ω + ω0mn) τmn

Smn · H . (11.3)

1This discussion follows [96], which deals with spin dynamics in the crystalline field of a solid-
state maser. Later we will discuss the changes that occur when the spin system is in a noncrystalline
environment, such as biological tissue.
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The magnetic dipole-moment operator for each spin is gβhS, which means that
the average dipole-moment for each spin is m = Tr [ρgβhS], where Tr is the trace
of an operator (sum of the diagonal elements of its matrix representation). The
macroscopic dipole-moment per unit volume, M, is obtained by multiplying m by
the number density, N , of spins. Upon evaluating the trace, we find

M = γ 2
∑
j<k

SkjSjk

(
N

(T )
j − N

(T )
k

)

τjk

[(
j/h̄

1 − j (ω0jk − ω)τjk

− j/h̄

1 + j (ω0jk + ω)τjk

)
Hejωt

+
( −j/h̄

1 + j (ω0jk − ω)τjk

− −j/h̄

1 − j (ω0jk + ω)τjk

)
H∗e−jωt

]
, (11.4)

where we have discarded the time-independent static dipole terms, Smmρ
(T )
mm, and

have set γ 2 = g2h2β2. N
(T )
j is the number of spins per-unit-volume occupying the

j th energy level when the system is in thermal equilibrium at temperature T . If N is

the total number of spins (or systems) in the crystal, then N
(T )
j = N

Z
exp(−Ej/kT ),

where Z = ∑J
j=1 exp(−Ej/kT ) and J is the total number of energy states.

Thus, at thermal equilibrium (at positive temperatures), the lower energy states are
more densely populated than the higher energy states.

The absorption spectrum, A(ω), is given by μ0 times the imaginary part of the
generalized magnetic susceptibility, which is the coefficient of Hejωt in (11.4). In
the vicinity of the resonant frequency, ω0jk , the absorption spectrum is

A(ω) ≈ μ0
γ 2

2

∑
j<k

|Skj |2
(
N

(T )
j − N

(T )
k

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

= μ0
γ 2

2

N

Z

∑
j<k

|Skj |2
(
e−Ej /kT − e−Ek/kT

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

. (11.5)

This spectrum consists of ‘lorentzian’ curves (resonant curves) centered at the
frequencies ω0jk , with line-width 1/τjk . The peak of each resonance is proportional
to τjk , and this gives us the familiar trade-off between bandwidth and magnitude

of absorption (or magnitude of gain). The term N
(T )
j − N

(T )
k yields the population

difference per unit volume of the j th and kth energy levels when the system is in
thermal equilibrium at temperature T . This population difference will be small if
the energy differential, Ek − Ej , is small compared to the thermal energy, kT , as
is the usual case for paramagnetic spin systems at normal temperatures. In addition
to τjk , an important parameter is the ‘line-strength’, |Skj |2, or the transition matrix
element connecting the j th and kth states. It determines the ease with which pump
power is absorbed by the spins, or it determines the gain at signal frequencies.
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11.2.1 Application to Fe3+ : TiO2

The five unpaired electrons in Fe3+ are each in the 3d state, meaning that the ion
is in an S-state, with a spin, S = 5/2. The total number of spin-states, therefore, is
Ns = 2S + 1 = 6. The spin-Hamiltonian, H0, for the Fe3+ : TiO2 complex is [96]

H0 = gβH0 · S+D
(
S2

z −35/12
)

+E
(
S2

x−S2
y

)
+(a/6)

(
S4

x+S4
y+S4

z −707/16
)

+ (7/36)F
(
S4

z − (95/14)S2
z + 81/16

)
, (11.6)

where the nominal values of the derived constants are g = 2.0, D =
20.35 GHz, E = 2.21 GHz, a = 1.1 GHz, F = −0.5 GHz, and H0 is the dc
magnetic field. Sx, Sy , and Sz are 6×6 Pauli spin-matrices. This Hamiltonian gives
us frequency directly, rather than energy. The D term has axial symmetry (about
the z-axis), and corresponds to the ion having an electric quadrupole moment, that
is acted upon by the crystalline electric fields. The E term represents and additional
nonaxially symmetric anisotropy in the xy plane, and corresponds to the ion’s
possessing an electric moment of higher order than quadrupolar. These are the main
terms, as the size of D and E would suggest; the remaining terms are due to the fact
that S > 2 and that the crystal symmetry is complicated. Clearly, these latter terms
are less important, but must be included for completeness.

The eigenvalue equation that determines the unperturbed energy levels (or
frequencies in this case) is

H0u = Eu , (11.7)

and when this equation is solved as a function of H0 = Haz, we get the six curves
shown in Fig. 11.1. The zero-field energies occur in pairs (Kramers’ doublets), as
is typical of a system with an odd number of electrons in an electric field (the
crystalline field).

Consider the system at H = 1.78 kilogauss; the eigenvalues of H0 are

E1 = −58.20 × 109h E2 = −54.15 × 109h E3 = −19.60 × 109h

E4 = −5.64 × 109h E5 = 56.14 × 109h E6 = 81.05 × 109h
, (11.8)

from which we derive the resonant frequencies (in GHz)

ω012 = 4.05 ω023 = 34.55 ω034 = 13.96 ω045 = 61.78 ω056 = 24.91
ω013 = 38.60 ω024 = 48.51 ω035 = 75.74 ω046 = 86.69
ω014 = 52.56 ω025 = 110.29 ω036 = 100.65
ω015 = 114.34 ω026 = 135.20
ω016 = 139.25

,

(11.9)
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Fig. 11.1 Six-fold energy
levels (in frequency units) for
Fe3+ : TiO2, as a function of
the z-directed magnetic field,
H
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and the transition-matrix elements

Sx12 = 0.8 Sx23 = 0 Sx34 = −0.69 Sx45 = 0 Sx56 = 0
Sx13 = 1.66 Sx24 = −1.50 Sx35 = 1.08 Sx46 = 1.10
Sx14 = 0 Sx25 = −0.31 Sx36 = 0
Sx15 = 0 Sx26 = 0
Sx16 = 0

Sy12 = −j0.8 Sy23 = 0 Sy34 = −j0.53 Sy45 = 0 Sy56 = 0
Sy13 = −j1.66 Sy24 = −j1.02 Sy35 = −j1.08 Sy46 = j1.10
Sy14 = 0 Sy25 = j0.31 Sy36 = 0
Sy15 = 0 Sy26 = 0
Sy16 = j0.19

Sz12 = 0 Sz23 = 0.54 Sz34 = 0 Sz45 = 0 Sz56 = 0
Sz13 = 0 Sz24 = 0 Sz35 = 0 Sz46 = 0
Sz14 = 0.33 Sz25 = 0 Sz36 = 0
Sz15 = 0 Sz26 = 0
Sz16 = 0

.

(11.10)
From these results we can conclude, for example, that a transition between states

1 and 2 (4.05 GHz) has a ‘strength’ of (0.8)2 for either x- or y-polarized radiation at
that frequency, but cannot occur for z-polarized radiation. Similarly, we can answer
the question of pump transitions. There are only two possible pump transitions,
the 1–4 transition at 52.56 GHz and the 2–3 transition at 34.55 GHz, if one uses
z-polarized pump radiation. If, however, we wish to amplify a signal at 4.05 GHz
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Fig. 11.2 Absorption
spectrum in vicinity of
4.05 GHz, with
τ12 = 5.305 × 10−9 s. The
half-power width is 60 MHz
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(1–2 transition) we must pump between the first level and the third or higher level.
Hence, we consider pumping only the 1–3 or 1–4 transition if we wish to remain
below 100 GHz. The only possible 1–4 transition uses z-polarized radiation and has
a strength of (0.33)2. If we pump at 38.60 GHz (the 1–3 transition) we may use
x- or y-polarized radiation (or both, as in circular polarization) and improve the
absorption strength to (1.66)2.

The width of the absorption curve for the 1–2 (4.05 GHz) transition of
Fe3+ : TiO2 is 60 MHz. Hence, the spin-lattice relaxation (or simply the transverse
relaxation) time for the off-diagonal element, ρ12, is τ12 = 1/2π × 30 × 106 =
5.305 × 10−9 s. Figure 11.2 shows the absorption spectrum in the vicinity of
4.05 GHz with this value of τ12.

This example illustrates the utility of the eigenstates in determining the frequency
response of a maser. It relies, as we have noted, on knowledge of the crystalline-field
environment of the iron ion. It is this information that is lacking when we consider
electron-paramagnetic spin systems in biological tissue, and is the basis for one of
our research proposals.

11.2.2 Ho++ : CaF2

Holmium is a type 4f rare earth, which means that the divalent Holmium ion has
its unpaired electrons in the 4f shell where they are effectively screened from their
crystalline surroundings by electrons in the outer shells. Therefore, as a reasonable
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approximation to the effective spin-Hamiltonian we may discard any terms that
represent the crystalline field. We must, however, include the spin-spin interaction
between the unpaired electrons and the nucleus because these electrons are relatively
close to the nucleus. Thus, we use the following spin-Hamiltonian

H0 = gβH0 · S + AI · S , (11.11)

where g = 5.91, β = 0.0014 GHz/gauss, A = 3.924 GHz, S is the electron spin
operator, with effective spin 1/2, and I is the nuclear spin operator with spin 7/2.

Because we are dealing with a system of two particles (electron plus nucleus)
we cannot simply form matrix products in order to evaluate H0, but must use the
direct product of the appropriate Pauli spin matrices of I and S. Because there are
two possible electron spin-states (“spin up” and “spin down” relative to, say, the
axis of H0) and 2 × 7/2 + 1 = 8 possible spin states of the nucleus, we have
a composite system of 16 possible states. This means that the combined spin-
Hamiltonian, (11.11), will be represented by a 16 × 16 matrix. When this matrix
is written out, and its eigenvalues determined as a function of magnetic field, we get
the plot of Fig. 11.3.

A comparison of Figs. 11.1 and 11.3 shows that Ho++ has a much more uniform
variation of energy (and, hence, resonant frequency) with H than does Fe3+. This
follows, as has been mentioned before, because the unpaired electrons in Ho++ are
screened from the crystalline field, whereas those of Fe3+ are not. Hence, Ho2+
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Fig. 11.3 Sixteen-fold energy levels (in frequency units) for Ho++ : CaF2, as a function of the
z-directed magnetic field, H
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behaves, for H greater than 3 kilogauss, as a free spin in an external magnetic field.
We would expect this same qualitative behavior for many of the 4f rare earths,
no matter what the crystal lattice is. This suggests that if we use 4f rare-earth
spin-systems, it may not be necessary to know anything about the electric-field
environment of the biological tissue.

11.3 Superparamagnetic Iron Oxide

This is what started this discussion of paramagnetic spin-systems. Iron oxide,
whether it is γ − Fe2O3, called ‘maghemite,’ or, perhaps magnetite, Fe3O4 ([95]
is not clear on this), is ferromagnetic. Because of the small size of the particles
(∼10 nm), their ferromagnetic properties manifest themselves in a single domain,
and such single domain particles can behave magnetically in a manner analogous to
the paramagnetism of moment-bearing atoms [16]. The main distinction is that the
moment of the particle may be 105 times the atomic moment, because of the 105

atoms ferromagnetically coupled by exchange forces within the single domain.2,3

Two Spins We’ll make a simple quantum-mechanical calculation of a system of
two electrons coupled through the exchange interaction in a static magnetic field,
H0. The Hamiltonian is

H = −gβH0 ·
(
S(1) + S(2)

)
− 2JexchS(1) · S(2) , (11.12)

where gβ = g × 0.0014 GHz/gauss = 2.8 GHz/kgauss, if we take g = 2. Jexch is
the exchange energy, with a nominal value of 2.1 × 10−21 J. Dividing by Plancks
constant, h, gives us the result in frequency units: Jexch/h = 2.1 × 10−21/6.626 ×
10−34 = 3169.3 GHz. Hence, the normalized Hamiltonian for the system becomes

H = −2.8H0 ·
(
S(1) + S(2)

)
− 6338.7S(1) · S(2)

= −2.8H0

(
S(1)

z + S(2)
z

)
− 6338.7S(1) · S(2) , (11.13)

where we assume that the static field is along the z-direction.

2Additional References on Superparamagnetic and Ferromagnetic Effects: [6, 23, 25, 49, 67, 75,
76, 116, 119, 124, 136].
3By a ‘single domain particle,’ we mean a particle that is in a state of uniform magnetization at any
magnetic field[16].
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The Pauli spin-matrices for a single electron in a z-directed magnetic field are

sx = 1

2

[
0 1
1 0

]
sy = 1

2

[
0 −j

j 0

]
sz = 1

2

[
1 0
0 −1

]
, (11.14)

and the eigenstates of sz are

[
1
0

]
,

[
0
1

]
, with the first one corresponding to ‘spin

up’ (parallel to the magnetic field), and the second to ‘spin down’ (antiparallel to
the magnetic field).

Since we have two coupled spins, we must work in the four-dimensional direct-
product space of the operators of (11.14):

S(1)
x S(2)

x = 1

4

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

S(1)
y S(2)

y = 1

4

⎡
⎢⎢⎣

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎦

S(1)
z S(2)

z = 1

4

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦

S(1) · S(2) = S(1)
x S(2)

x + S(1)
y S(2)

y + S(1)
z S(2)

z

= 1

4

⎡
⎢⎢⎣

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎤
⎥⎥⎦ . (11.15)

The four-dimensional representations of Sx, Sy, Sz are obtained by taking the
left- and right-direct products of the single-electron Pauli spin-matrices, (11.14),
with the two-dimensional identity matrix. The results are
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S
(1)
x = 1

2

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ S

(1)
y = 1

2

⎡
⎢⎢⎣

0 0 −j 0
0 0 0 −j

j 0 0 0
0 j 0 0

⎤
⎥⎥⎦ S

(1)
z = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

S
(2)
x = 1

2

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ S

(2)
y = 1

2

⎡
⎢⎢⎣

0 −j 0 0
j 0 0 0
0 0 0 −j

0 0 j 0

⎤
⎥⎥⎦ S

(2)
z = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦

(11.16)
for the two particles. Note that these two-particle spin matrices satisfy the general

commutation relations
[
S

(p)
x , S

(q)
y

]
= jδpqS

(p)
z . Note further that the product of

these matrices gives the same results that we obtained independently in (11.15).
The eigenvectors of the matrix, S

(1)
z + S

(2)
z , in (11.16) are the direct products of

the eigenstates of the two-dimensional Pauli spin-matrix, sz:

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (11.17)

The first eigenvector in (11.17) corresponds to both spins in the ‘up’ position (both
parallel to the magnetic field), the second to ‘spin up; spin down,’ the third to ‘spin
down; spin up,’ and the fourth to ‘spin down; spin down.’

With this background, we can now write down the matrix representation of the
normalized spin-Hamiltonian (11.13):

H =

⎡
⎢⎢⎣

−2.8H0 − 1584.7 0 0 0
0 1584.7 −3169.4 0
0 −3169.4 1584.7 0
0 0 0 2.8H0 − 1584.7

⎤
⎥⎥⎦ (11.18)

The eigenspectrum of (11.18) is plotted as a function of H0 in Fig. 11.4. The
left-hand figure shows all four solutions, and the right-hand the bottom three
eigenvalues. The two parallel branches have a constant separation of 6338.7, which
is exactly 2Jexch, where Jexch is the exchange energy. It is important to note that
the transition (resonant) frequency between states 2 and 3 is the same between as
between 3 and 4, for all values of H0: ω023 = ω034 .

The eigenstates corresponding to the spectrum of Fig. 11.4 are, from the largest
to the smallest eigenvalue (in magnitude):
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(1) (2) (3) (4)

⎡
⎢⎢⎣

0.0
−0.707
+0.707

0.0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0
0.0
0.0
0.0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.0
0.707
0.707

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.0
0.0
0.0
1.0

⎤
⎥⎥⎦

, (11.19)

where state 1 corresponds to the eigenvalue, 4754.1, in the left-hand part of
Fig. 11.4, and the other eigenvalues are listed in the right-hand part of the figure.

Clearly, state 2 corresponds to both spins being parallel to the static magnetic
field, because this gives the lowest energy level, whereas state 4 corresponds to
both spins being anti-parallel to the field. States 1 and 3 correspond to linear
combinations of spin 1 being parallel and spin 2 anti-parallel, and the converse.
The higher-energy state involves a sum and difference of the parallel-anti-parallel
combination, whereas the lower-energy state involves only the sum of two such
combinations. We’ll see this again in the three-electron calculation.

The transition matrix elements of the lowest three energy levels are
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Fig. 11.4 Eigenspectrum of spin-Hamiltonian with exchange interaction. Left: complete spec-
trum. Right: expanded version of bottom three eigenvalues
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Sx23 = u2 ·
(
S

(1)
x + S

(2)
x

)
· u3 = 0.707

Sx34 = u3 ·
(
S

(1)
x + S

(2)
x

)
· u4 = 0.707

Sy23 = u2 ·
(
S

(1)
y + S

(2)
y

)
· u3 = −j0.707

Sy34 = u3 ·
(
S

(1)
y + S

(2)
y

)
· u4 = −j0.707

Sz23 = u2 ·
(
S

(1)
z + S

(2)
z

)
· u3 = 0.0

Sz34 = u3 ·
(
S

(1)
z + S

(2)
z

)
· u4 = 0.0

, (11.20)

where the orthonormal eigenvectors, {ui}, are given in (11.19), and the spin oper-
ators are given in (11.16). These results indicate that one cannot induce transitions
by using z-directed AC magnetic fields, as we suspected, and that transitions are
equally likely with x- or y-directed AC fields (or with circularly polarized AC
fields).

When (11.20) is substituted into the expression, (11.5), for the absorption
coefficient and use is made of the fact that ω023 = ω034 = ω0 and τ23 = τ34 = τ ,
we get, after summing over the bottom three energy-states,

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E4/kT

) τ/h̄

1 + (ω0 − ω)2τ 2 . (11.21)

The response is as if the two coupled spins behave as a single spin-system transiting
from ‘spin-up’ (state 2) to ‘spin-down’ (state 4), which is what we would expect of
a two-level (spin-1/2) system.

For comparison, we write down the result for two non-interacting spin-1/2
particles:

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E3/kT

) τ/h̄

1 + (ω0 − ω)2τ 2
. (11.22)

Hence, the effect of the exchange interaction is to increase the density of spins in the
thermal term by eliminating the middle energy term, exp(−E3/kT ). Because there
is a greater differential in the energies than there was before, we have effectively
a greater population difference between the two energy states 2 and 3 that are
separated by h̄ω0. Clearly, the more interacting spins we have, the greater this
population difference becomes, and the greater the absorption spectrum becomes.
Because of these two effects, with something of the order of 105 spins interacting
through the exchange integral, the spectrum becomes significantly larger than in the
simple paramagnetic case, giving rise to the name ‘superparamagnetism.’ We’ll give
a further example of this next.

Three Spins We’ll extend the previous model to include three electrons interacting
through the exchange integral. The Hamiltonian now becomes
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H = −2.8H0

(
S(1)

z +S(2)
z +S(3)

z

)
−6338.7

(
S(1) · S(2)+S(1) · S(3)+S(2) · S(3)

)

(11.23)

where the various three-particle spin-matrices are obtained by taking three-fold left-
and right-direct products of the Pauli spin matrices, s, with the two-dimensional
identity matrix, I2:

S(1) = s ⊗ I2 ⊗ I2 S(2) = I2 ⊗ s ⊗ I2 S(3) = I2 ⊗ I2 ⊗ s . (11.24)

The results are:

S
(1)
x = 1

2

[
04 I4

I4 04

]
S

(2)
x =

[
S

(1)′
x 04

04 S
(1)′
x

]
S

(3)
x =

[
S

(2)′
x 04

04 S
(2)′
x

]

S
(1)
y = 1

2

[
04 −jI4

jI4 04

]
S

(2)
y =

[
S

(1)′
y 04

04 S
(1)′
y

]
S

(3)
y =

[
S

(2)′
y 04

04 S
(2)′
y

]

S
(1)
z = 1

2

[
I4 04

04 −I4

]
S

(2)
z =

[
S

(1)′
z 04

04 S
(1)′
z

]
S

(3)
z =

[
S

(2)′
z 04

04 S
(2)′
z

]

(11.25)

where the primed,’, submatrices refer to the corresponding 4×4 matrices in (11.16),
and I4, 04 are the four-dimensional identity and null-matrices, respectively.

Using the results of (11.25), we easily compute the dot-product matrices:

S(1) · S(2) = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 2 0 0 0
0 0 0 −1 0 2 0 0
0 0 2 0 −1 0 0 0
0 0 0 2 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S(1) · S(3) = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 −1 0 0 2 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 2 0
0 2 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 2 0 0 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



296 11 Spintronics

S(2) · S(3) = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 −1 2 0 0 0 0 0
0 2 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 2 0
0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.26)

from which we get the final expression for the Hamiltonian of (11.23):

H = −2.8H0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

2
1

2
1

2
−1

2
1

2
−1

2
−1

2
−3

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−6338.7

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0 0 0
0 −1 2 0 2 0 0 0
0 2 −1 0 2 0 0 0
0 0 0 −1 0 2 2 0
0 2 2 0 −1 0 0 0
0 0 0 2 0 −1 2 0
0 0 0 2 0 2 −1 0
0 0 0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.27)

The diagonal matrix in (11.27) is the projection onto the z−axis (the magnetic
field) of the combined system of particles. It’s eigenvectors are
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(3/2) (1/2) (1/2) (1/2) (−1/2) (−1/2) (−1/2) (−3/2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(• • •) (• • ◦) (• ◦ •) (◦ • •) (• ◦ ◦) (◦ • ◦) (◦ ◦ •) (◦ ◦ ◦)

, (11.28)

where • denotes a spin-up state (parallel to the magnetic field), and ◦ denotes a
spin-down state.

The eigenspectrum of (11.27), plotted as a function of the static magnetic field,
is shown in Fig. 11.5. As is the case with the two-electron problem, the separation
between the lowest energy levels is constant and equal to 2.8H0 GHz where H0 is
in kGauss. This is identical to the result for a single electron with a spin of 1/2.

The eigenvectors corresponding to the eigenvalues of Fig. 11.5 are:
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Fig. 11.5 Eigenspectrum of spin-Hamiltonian with exchange interaction for three electrons. Left:
Spectrum of bottom four eigenvalues. Right: Spectrum of two largest (degenerate) eigenvalues.
The separation of the average value of each spectral cluster is 9508.2 = 3 × Jexch for all H0
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(1) (2) (3) (4) (5) (6) (7) (8)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.5774

0.5774

0.0

0.5774

0.0

0.0

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.5774

0.0

0.5774

0.5774

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.8165

−0.4082

0.0

−0.4082

0.0

0.0

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.7071

0.0

−0.7071

0.0

0.0

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.8165

0.0

−0.4082

−0.4082

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0

0.0

0.0

0.0

0.0

0.7071

−0.7071

0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11.29)
where we note that vectors 5 and 6 correspond to the same eigenvalue, as do 7 and 8.

When we use (11.25) and (11.29), we compute the following transition matrix
elements for the lowest four levels:

Sx12 = 3 × 0.5774

2
Sx23 = 3 × 0.6667

2
Sx34 = 3 × 0.5774

2

Sy12 = −j3 × 0.5774

2
Sy23 = −j3 × 0.6667

2
Sy34 = −j3 × 0.5774

2

Sz12 = 0 Sz23 = 0 Sz34 = 0

(11.30)

The absorption coefficient for this system is obtained by substituting (11.30) into
the general expression, (11.5):

A(ω)=μ0γ
2

4Z

[
3
(
e−E1/kT −e−E4/kT

)
+
(
e−E2/kT −e−E3/kT

)] τ/h̄

1+(ω0−ω)2τ 2 .

(11.31)

Consider the left-parenthetical term, 3
(
e−E1/kT − e−E4/kT

) = 3e−E1/kT(
1 − e−(E4−E1)/kT

)
, of (11.31), where E4−E1 = 3h̄ω0. Under the usual conditions

of room (or body) temperature, and a magnetic field of a few kGauss, the exponent,
(E4 − E1)/kT is of the order of 10−3, which means that the term in parenthesis is
approximately equal to 3 × h̄ω0/kT , so that the absorption coefficient in (11.31) is
approximately equal to

A(ω) ≈ 9μ0γ
2

4Z
e−E1/kT h̄ω0

kT

τ/h̄

1 + (ω0 − ω)2τ 2

= μ0g
2h2(3β)2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (11.32)

where β is the Bohr magneton (the magnetic dipole of a single spin). Therefore, we
can conclude from (11.32) that the exchange interaction causes individual spins
to align themselves parallel to each other, thereby producing an atomic system
of spin-1/2, but with an equivalent dipole three times that of a single spin-1/2
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particle. As indicated in (11.31), the effect of the AC field is to cause this single
macrospin system to transit from spin-up to spin-down, with all individual spins
remaining parallel to each other. In contrast, three noninteracting spins would have
an equivalent absorption coefficient of

A(ω) = 3μ0γ
2

4Z

(
e−E1/kT − e−E2/kT

) τ/h̄

1 + (ω0 − ω)2τ 2

≈ 3μ0γ
2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (11.33)

which is much smaller than (11.32). We can imagine what happens when 105

particles interact under exchange effects. This confirms, once again, that the
exchange interaction associated with ferromagnetic single-domain particles gives
rise to the notion of ‘superparamagnetism.’

This model of superparamagnetism results from the large value of Jexch, because
that isolates the upper energy levels of Figs. 11.4 and 11.5 from the lower levels
for all (reasonable) values of H0. The upper energy levels may be degenerate, as in
Fig. 11.5 for the three-spin problem, but the lower levels are always nondegenerate,
and have the same number of equal intervals as the number of spins. Furthermore,
the large value of the exchange energy ensures that the upper levels will be virtually
unpopulated compared to the lower levels. These facts are crucial to the theory.

We can gain further insight into the physics of the problem by considering
the combined spin operator S = S(1) + S(2) + S(3), where the matrices are defined
in (11.24) and (11.25). It is straightforward to form S2, which corresponds to the
length-squared of the spin of the composite system of three spin-1/2 particles. The
eigenvalues of S2 give the squares of the lengths when the system is in its allowed
states. There are two eigenvalues, 3.750 and 0.750, each four-fold degenerate. Thus,
there are two allowed lengths of the composite spin system, 3.7501/2 and 0.7501/2.
The first corresponds to all three spins being parallel to each other, and the second
to two spins being parallel and the third antiparallel. The ‘length’ of a spin operator
is [S(S + 1)]1/2, so in the first case S = 3/2 and in the second S = 1/2. Clearly,
the first case corresponds to three spin-1/2 particles being aligned in parallel to each
other, and the second to two aligned in parallel and the third oppositely aligned,
yielding an effective single spin-1/2 particle.

The eigenvectors of S2 are precisely those shown in (11.29), with the first four
corresponding to the eigenvalue, 3.75, and the last four to the eigenvalue 0.75. In
the first case, as we stated above, all spins are aligned with each other, yielding
a preferred energy state under the effect of the exchange interaction, whereas the
second case corresponds to one particle being oppositely aligned to the other two.
This results in a significant energy increase due to the large exchange interaction,
and this is exactly what we saw in Fig. 11.5. We can further interpret the left-
hand spectrum in Fig. 11.5 as being due to the composite system of three parallel
spins oriented so that the net component along the magnetic field is maximum
(level 1), 1/2 maximum (level 2), 1/2 maximum, but oriented opposite to the field
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(level 3), and maximum orientation opposite to the field (level 4). This supports our
earlier conclusion that under the effects of the exchange interaction the three spins
behave as a single large moment, as far as the transitions of the lower energies are
concerned.

For the two-spin problem, the eigenvalues of S2 are 2.000, 2.000, 2.000, and
0.000. The eigenvectors corresponding to the first (degenerate) eigenvalue of 2.000
are the second through fourth eigenvectors listed in (11.19), and the eigenvector
corresponding to the eigenvalue 0.000 is the first eigenvector listed in (11.19).
The interpretation of the two-spin system follows that of the three-spin system; an
eigenvalue of 2.000 means that the two spins are parallel to each other in each of the
states shown in the right-hand of Fig. 11.4, whereas the zero eigenvalue means that
the two spins are oppositely aligned, thereby cancelling each other, resulting in a
zero spin, and no energy variation as H0 is varied in the top curve of the left-hand of
Fig. 11.4. The middle curve on the right-hand part of the figure corresponds to the
situation in which the ‘macrospin’ (both spins aligned with each other) is exactly
orthogonal to H0, meaning that there is no energy variation as H0 is varied. This
explains why states 1 and 3 are constant with respect to H0. Figure 11.6 summarizes
the physics of the problem for the two- and three-spin-1/2 systems.

11.4 Fe3+ and Hund’s Rules

The models that we have considered so far for superparamagnetism comprised two
and three independent electrons, coupled through an exchange interaction only. Real
systems contain atoms or ions, which comprise collections of electrons, but whose
electrons are not independent. We’ll give an example of an important ion, triply-
ionized iron [97].

The five unpaired electrons in Fe3+ are each in the 3d state. This means that
the ion itself is in an orbital S state, i.e., L = 0, where L is the orbital angular
momentum quantum number. To prove this we use Hund’s rules together with the
Pauli exclusion principle. Hund’s rules are:

1. Assign maximum S (spin) consistent with the Pauli principle.
2. Assign maximum L (orbital angular momentum) consistent with the S. L is

defined to be the maximum value of the sum of the z-components of orbital
angular momentum for the group of electrons.

Thus, each electron has the same energy quantum number, 3, the same orbital
angular momentum quantum number, 2 (corresponding to the d-state), and, if we
are to assign maximum spin to the electron group, the same spin quantum number,
1/2. If there is to be no violation of the Pauli principle, therefore, each electron must
have a different quantum number, m, corresponding to the z-component of orbital
angular momentum. Because l = 2 for a d-state, we have m = 2, 1, 0, −1, −2.
Thus, electron number 1 has m = 2, number 2 has m = 1, etc., to number 5 having
m = −2. The total M = m1 +m2 +m3 +m4 +m5 = 0. But since any arrangement
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Fig. 11.6 Illustrating the energy levels and states corresponding to two spin-1/2 particles (left)
and three spin-1/2 particles (right) in the presence of a magnetic field, H0. The labeling of the
energy eigenstates (E) corresponds to Fig. 11.4 for the two-particle system, and to Fig. 11.5 for the
three-particle system. S2 labels the eigenvalues of the S2 operator for each of the systems

of the five electrons among the five m-states always yields M = 0, we conclude that
L = 0 (recall that L = Mmax). Thus, Fe3+ is in an S-state (L = 0) with a spin equal
to 5/2. The fact that L = 0 means that the orbital angular momentum is ‘quenched,’
and cannot contribute to magnetic effects of the ion. Spin is the sole contributor
of magnetic effects, and these effects are manifest through the spin-Hamiltonian
(Figs. 11.7, 11.8, and 11.9).

The Pauli spin-matrices for a spin-5/2 system are the 6 × 6 matrices:

σx = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√

5 0 0 0 0√
5 0

√
8 0 0 0

0
√

8 0 3 0 0
0 0 3 0

√
8 0

0 0 0
√

8 0
√

5
0 0 0 0

√
5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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σy = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −j
√

5 0 0 0 0
j
√

5 0 −j
√

8 0 0 0
0 j

√
8 0 −j3 0 0

0 0 j3 0 −j
√

8 0
0 0 0 j

√
8 0 −j

√
5

0 0 0 0 j
√

5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

σz = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11.34)

The direct-product spin-matrices for the two-ion system are given by S(1) =
σ ⊗ I6, S(2) = I6 ⊗ σ , where I6 is the six-dimensional identity matrix. Spelled out,
these are:

S(1)
x = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

06
√

5I6 06 06 06 06√
5I6 06

√
8I6 06 06 06

06
√

8I6 06 3 06 06

06 06 3 06
√

8I6 06

06 06 06
√

8I6 06
√

5I6

06 06 06 06
√

5I6 06

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

S(1)
y = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

06 −j
√

5I6 06 06 06 06

j
√

5I6 06 −j
√

8I6 06 06 06

06 j
√

8I6 06 −j3I6 06 06

06 06 j3I6 06 −j
√

8I6 06

06 06 06 j
√

8I6 06 −j
√

5I6

06 06 06 06 j
√

5I6 06

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

S(1)
z = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5I6 06 06 06 06 06

06 3I6 06 06 06 06

06 06 1I6 06 06 06

06 06 06 −1I6 06 06

06 06 06 06 −3I6 06

06 06 06 06 06 −5I6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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S(2)
x = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σx 06 06 06 06 06

06 σx 06 06 06 06

06 06 σx 06 06 06

06 06 06 σx 06 06

06 06 06 06 σx 06

06 06 06 06 06 σx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

S(2)
y = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σy 06 06 06 06 06

06 σy 06 06 06 06

06 06 σy 06 06 06

06 06 06 σy 06 06

06 06 06 06 σy 06

06 06 06 06 06 σy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

S(2)
z = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σz 06 06 06 06 06

06 σz 06 06 06 06

06 06 σz 06 06 06

06 06 06 σz 06 06

06 06 06 06 σz 06

06 06 06 06 06 σz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11.35)

11.5 Crystalline Anisotropy and TiO2

Now we need to include the effects of crystalline anisotropy. The only spin-
Hamiltonian that we have for the interaction of a crystal field with Fe3+ is for
TiO2, and is given in (11.6). When we add the D-term of the crystal field to
the spin-Hamiltonian for the Zeeman and exchange interactions, and compute the
eigenvalues, we get the results shown in Fig. 11.10 for the lowest eleven frequencies,
the ‘A-section’ of Fig. 11.9. The spectrum of the other five sections of Fig. 11.9
are shown in Figs. 11.11, 11.12, 11.13, 11.14, and 11.15. Clearly, the spectrum is
altered significantly by the crystal-field interaction, and that is why this interaction
is so important to us. In order for us to ‘tune’ the system to the proper frequency of
operation by adjusting the external magnetic field, we must know the nature of the
environment of the iron ion, and how this environment reacts with the ion.

In the example just computed, we see that the lowest energy levels, 1 and 2 in the
A-spectrum, have a small separation as H0 is varied. The frequency interval, ω012,
varies between 100 MHz and 1.5 GHz, and the transition-matrix element, Sy12, is
relatively close to ±j4.8 over this range. This is a considerably larger value of the
transition-matrix element than those given in (11.10) for a single, noninteracting
spin, and, once again, demonstrates the effect of the exchange interaction.
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Fig. 11.7 Energy-levels (in GHz) for the system comprising two Fe(3+) ions connected through
the exchange interaction Jexch. The numbers just inside the vertical line indicate the number of
energy levels associated with that branch of the spectrum; the spacing between consecutive pairs
of levels is equal to 2.8H0, where H0 is in kGauss. The letters, A-F, correspond to the physical
arrangement of the ten electrons in the coupled system, as shown in Table 11.1. S2 are the
eigenvalues of the magnitude-squared spin-operator, S2, and the β-values indicate the number of
Bohr magnetons in the various arrangements of parallel spins

Table 11.1 Spin
arrangements for Fig. 11.7.
The bullets, •, correspond to
spins that are parallel to the
z−axis, and the circles, ◦, to
spins that are anti-parallel

A • • • • • • • • •• S = 5 : 2S + 1 = 11

B • • • • • • • • •◦ S = 4 : 2S + 1 = 9

C • • • • • • • • ◦◦ S = 3 : 2S + 1 = 7

D • • • • • • • ◦ ◦◦ S = 2 : 2S + 1 = 5

E • • • • • • ◦ ◦ ◦◦ S = 1 : 2S + 1 = 3

F • • • • • ◦ ◦ ◦ ◦◦ S = 0 : 2S + 1 = 1

The eigenvalues (in GHz) corresponding to the lowest eleven energy levels (the
‘A-section’ spectrum of Fig. 11.10) are listed here in the order, E1 to E11, left-to-
right, for H0 = 1 kGauss:

h = 1.000000000000000
A-section spectrum
-39662.7967 -39661.1857 -39580.6189 -39558.0700 -39525.8847 -39453.1469
-39436.4784 -39306.8435 -39284.5805 -39098.4235 -39070.4491
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Fig. 11.8 Positions of the
10-spin magnetic dipole that
produce the ‘A-spectrum’ of
Fig. 11.7. The numbering of
the energy levels, E1 · · ·E11,
corresponds to that of
Fig. 11.9

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

The resonant frequencies (in GHz) associated with transitions between these
eigenvalues are:

h = 1.000000000000000
A-section resonant frequencies
1.6109 82.1777 104.7267 136.9120 209.6497 226.3183 355.9532
378.2162 564.3732 592.3476

80.5668 103.1157 135.3010 208.0388 224.7073 354.3423 376.6052
562.7622 590.7366

22.5489 54.7342 127.4720 144.1405 273.7755 296.0384 482.1954 510.1698
32.1853 104.9231 121.5916 251.2266 273.4895 459.6465 487.6209
72.7377 89.4063 219.0412 241.3042 427.4612 455.4356
16.6685 146.3035 168.5665 354.7234 382.6978

129.6350 151.8979 338.0549 366.0293
22.2630 208.4200 236.3943

186.1570 214.1314
27.9744
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Fig. 11.9 Variation of A-section spectrum of Figs. 11.7 and 11.8 as a function of the magnetic
field

The transition-matrix elements, Sxij
, Syij

, Szij
, with i < j , for the lowest eleven

energy levels (the ‘A-spectrum’) are shown next for H0 = 1 kGauss. The Syij
are

complex–in this case pure imaginaries.

h = 1.000000000000000
transx
0.0340 2.3641 0.0000 0.0000 -0.3188 -0.3458 0.0000 0.0000 0.0104 0.0083
0.0000 2.2114 -0.2267 0.0000 0.0000 -0.0881 0.0708 0.0000 0.0000
0.4898 3.4479 0.0000 0.0000 -0.2023 -0.1794 0.0000 0.0000
0.0000 2.3182 -1.2585 0.0000 0.0000 -0.0475 0.0315
1.5273 2.5256 0.0000 0.0000 -0.0396 -0.0480
0.0000 2.3001 -0.2578 0.0000 0.0000
0.2658 2.2929 0.0000 0.0000
0.0000 1.6855 -0.0044
0.0044 1.6823
0.0000
transy
0.0000 4.8024 0.0000 -0.0927 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3642
0.0000 0.2450 0.0000 0.0000 0.0000 0.0000 0.0000 0.0096 0.0000 -0.0077
0.0000 0.0000 0.0000 0.1411 0.0000 0.8497 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0777 0.0000 -0.0633 0.0000 0.0000 0.0000 0.0000
0.0000 3.2101 0.0000 -0.5124 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1786
0.0000 0.1571 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.3829 0.0000 1.2520 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0435 0.0000 -0.0289
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Fig. 11.10 Modification of the A-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

0.0000 1.5732 0.0000 -1.6175 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0360
0.0000 0.0438
0.0000 0.0000 0.0000 1.9029 0.0000 0.2246 0.0000 0.0000 0.0000 0.0000
0.0000 0.2310 0.0000 -1.9156 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.4797 0.0000 0.0039
0.0000 0.0039 0.0000 -1.4829
0.0000 0.0000
transz
0.0000 0.0000 -0.9531 0.1054 0.0000 0.0000 0.0335 -0.0271 0.0000 0.0000
1.0827 0.0000 0.0000 -0.1526 -0.1637 0.0000 0.0000 0.0038 0.0030
0.0000 0.0000 -0.5122 0.3721 0.0000 0.0000 0.0089 -0.0076
1.7013 0.0000 0.0000 -0.1711 -0.1161 0.0000 0.0000
0.0000 0.0000 -0.1487 0.1827 0.0000 0.0000
0.6668 0.0000 0.0000 -0.0964 -0.0108
0.0000 0.0000 -0.0114 0.0935
0.0208 0.0000 0.0000
0.0000 0.0000
0.0002

Let’s use these results to calculate the peak value of the absorption coefficient
for those transitions that occur with a frequency less than 50 GHz. According to the
table of ‘A-section resonant frequencies,’ there are six such transitions: 12, 34, 45,
67, 89, 1011. According to (11.5), the peak value of the absorption coefficient is
given by
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Fig. 11.11 Modification of the B-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

A(ω0jk
) ∝ |Skj |2

(
N

(T )
j − N

(T )
k

)
τjk/h̄

= |Skj |2Nj

(
1 − e−(Ek−Ej )/kT

)
τjk/h̄

≈ |Skj |2Nj

(
Ek − Ej

)
kT

τjk

h̄

= |Skj |2Nj

h̄ω0jk

kT

τjk

h̄

= |Skj |2Nj

ω0jk
τjk

kT
. (11.36)

We will assume that the temperature is 98.6 ◦F, which is 310 ◦K, so that kT =
4.2811×10−21 J. To express this in terms of frequency, divide by Planck’s constant,
6.626 × 10−34 J, and get 6.461 × 1012Hz = 6461.1 GHz. Since this number is
much greater than the resonant frequencies, we are permitted to carry out the
approximation in the third line of (11.36). The transition matrix elements in (11.36)
include Sx, Sy, and Sz (transx, transy, transz, respectively), and from here on we
will assume that the relaxation frequency, τjk , is fixed for all transitions.
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Fig. 11.12 Modification of the C-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

The following table lists important data for the calculations:

Transition ω0j (GHz) Transx Transy Transz Nj/N1 ω0j /ω01

12 1.6109 0.0340 j4.8024 0.0 1 1

34 22.5489 0.4898 j3.2101 0.0 0.987 14.0

45 32.1853 0.0 0.0 1.7013 0.984 19.98

67 16.6685 0.0 0.0 0.6668 0.968 10.35

89 22.2630 0.0 0.0 0.0208 0.946 13.82

10,11 27.9744 0.0 0.0 0.0002 0.916 17.37

It turns out that the first three absorption lines are much stronger than the
others, and these are plotted in Fig. 11.16. This is an example of how we can
‘tune’ our system to achieve a design feature once we have the physics in the
form of a mathematical model. Even though the two higher-frequency lines are
stronger, practical considerations would lead us to use the response at 1.6109 GHz
for noninvasive probing for lesions.
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Fig. 11.13 Modification of the D-section spectrum of Fig. 11.9 due to the D-term of the crystal
field spin-Hamiltonian of TiO2 shown in (11.6)

11.5.1 Application to a ‘Magnetic Lesion’

Consider the model shown in Fig. 11.17, which corresponds to Fig. 10.8, except that
the background is tissue with a conductivity that is the average of that found in the
body, and the lesion is nonconducting, but is magnetically permeable. If we assume
that the same coil is used as in the model of Fig. 10.8, and that the lesion is much
deeper, being 5 cm beneath the surface, and that the coil is excited at 1.6 GHz, which
corresponds to the lowest transition frequency described above, then the response
of the probe to the lesion, whose permeability (at 1.6 GHz) is μ = 2, 10, and 100,
is shown in Fig. 11.18.

11.6 Static Interaction Energy of Two Magnetic Moments

The spin-Hamiltonian that we have worked with so far includes only the Zeeman
term and the exchange interaction. There are other terms that reflect certain
physical processes that need to be included, as well. One such term corresponds
to the static interaction energy of two magnetic moments [72, p. 412]: H ′ =
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Fig. 11.14 Modification of the E-section spectrum of Fig. 11.9 due to the D-term of the crystal
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μ0

4πr3

[
m1 · m2 − 3

(m1 · r) (m2 · r)
r2

]
, where m1 and m2 are the magnetic moments

of the dipoles, and r is the vector separation between the two dipoles. This
energy term manifests itself in the following spin-Hamiltonian for three interacting
electrons:

Hdd = μ0

4π
4β2

0

[
S1 · S2

r3
12

+ S1 · S3

r3
13

+ S2 · S3

r3
23

−3
(r12 · S1) (r12 · S2)

r5
12

− 3
(r13 · S1) (r13 · S3)

r5
13

− 3
(r23 · S2) (r23 · S3)

r5
23

]
,(11.37)

where β0 = 9.2731 × 10−24 amp − meters2 is the Bohr magneton, and the various
vector spin-matrices have been defined earlier. If we assume that the spins lie at the
vertices of an equilateral triangle of side 6 × 10−10m, as in Fig. 11.19, then we can
expand (11.37) to get

Hdd = 0.24
[
S1 · S2 + S1 · S3 + S2 · S3 − 3S(1)

x S(2)
x − 0.75

(
S(1)

x S(3)
x + S(2)

x S(3)
x

)
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Tissue: σ=0.5
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Nonconducting, PermeableS/m
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Fig. 11.17 Model of an eddy-current probe scanned past a nonconducting, magnetically perme-
able lesion embedded in tissue of an averaged conductivity
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Fig. 11.18 Response of probe to a lesion whose permeability (at 1.6 GHz) is μ = 2, 10, and 100
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)]
, (11.38)

where the units of Hdd in (11.38) are in GHz. This matrix operator is added to that
in (11.27) to get the overall spin-Hamiltonian for Zeeman + Exchange + Dipolar
effects.
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Fig. 11.19 Illustrating three
magnetic dipoles, labeled as
spin operators, S, situated on
the vertices of an equilateral
triangle, for the purpose of
computing the dipole-dipole
interaction
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Chapter 12
Carbon-Nanotube Reinforced Polymers

12.1 Introduction

Our goal in this chapter is to develop electromagnetic models for the inspection of
carbon-nanotube reinforced polymers (CNRPs), along the lines of our work with
CFRPs. Electromagnetic models for carbon nanotube structures are of considerable
current interest. In [134] terahertz wave reflection and transmission from carbon
nanotubes are investigated. The interesting feature is that the dielectric properties
are dispersive, i.e., the permittivity and conductivity are frequency dependent. We
will see that shortly in the next section. In the THz regime, the frequency response
is affected by the number of tube walls, thickness, aspect ratio, filling factor, and
geometrical factor during growth. An extended Drude-Lorentzian model, [31], [66],
is used in [134] to simulate the relative dispersive permittivity of carbon nanotubes
at THz frequencies:

εr = εc − ω2
p

ω(ω − jΓ )
+ ω2

p1

−ω2 + jωΓ1 + ω2
1

, (12.1)

where εc is the dielectric constant at infinite frequency, ωp, ω1, and ωp1 are the
electron plasma, phonon, and oscillator frequency, respectively. Γ and Γ1 are the
relaxation rate and spectral width, respectively. If we write εr = ε + σ/jω, where ε

and σ are real, then it is easy to show that

ε = εc − ω2
p

ω2 + Γ 2 + ω2
p1(−ω2 + ω2

1)

(−ω2 + ω2
1)

2 + ω2Γ 2
1

σ

ε0
= ω2

pΓ

(ω2 + Γ 2)
+ Γ 2

1 ω2
p1ω

2

(−ω2 + ω2
1)

2 + ω2Γ 2
1

. (12.2)
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Table 12.1 Drude-Lorentz parameters for various CNT structures [134]

Structure εc ωp ωp1 ω1 Γ Γ1

SWCNT 8.41 2π × 23 THz 2π × 38.9 THz 2π × 5.9 THz 2π × 24.5 THz 2π × 29.6 THz

DWCNT 5.76 2π × 10.5 THz 2π × 32.2 THz 2π × 5.5 THz 2π × 24.3 THz 2π × 23.3 THz

H-doped
CNT

6.25 2π × 7.42 THz 2π × 4.69 THz 2π × 1.53 THz 2π × 34.29 THz 2π × 3.27 THz

Both parts are even functions of ω, and σ > 0, thereby satisfying the Kramers-
Kronig relations for a passive linear system. From (12.2) we get the DC conductivity
to be σ(0) = ε0ω

2
p/Γ .

Examples of these parameters are tabulated in Table 12.1.
The quantum origin of these parameters is not given in [134], but will be needed

in our work, if we are not given these data in the literature. We’ll say more about
this in a later section when we discuss nanographene (see Eq. (12.3) and Fig. 12.2).

12.2 Modeling Piezoresistive Effects in Carbon Nanotubes

12.2.1 The Structure of CNTs

A nanotube is constructed by rolling a graphene sheet along the direction of the
chiral vector, Ch, as in Fig. 12.1 [114]. The ‘chirality,’ determines the electrome-
chanical properties of the tube, and is defined in terms of the indices, (m, n),
associated with the nanotube unit vectors, a1, a2, of Fig. 12.1. In particular,
it determines the electronic band structure, and, therefore, the conductivity. For
example, n = m tubes have a zero band gap, and are therefore metallic, while n �= m

have some band gap and are semiconducting, though the subset, n−m = 3q, with q

an integer, has only a small gap induced by the curvature of the graphene sheet. This
makes this subset semimetallic, quasi-metallic, or small-gap semiconducting (SGS).
Within the semiconducting and SGS groups, the band gap of the specific tube varies
inversely with the diameter or the square of the diameter, respectively [47]. The
dependence of the electronic properties on the structure implies that mechanical
deformations can alter the band structure, which results in, among other things,
piezoresistivity [47].

12.3 Electromagnetic Features of CNTs

The distinguishing electromagnetic features of carbon nanotube (CNT) structures
are superparamagnetism and piezoresistivity. It appears that each requires quantum
mechanical calculations to generate parametric values: spin Hamiltonians for
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Fig. 12.1 The unrolled honeycomb lattice of a carbon nanotube. A nanotube is constructed when
site O is connected to A, and B is connected to B ′. OA defines the chiral vector, Ch, and OB
defines the translational vector, T, which lies along the axis of the tube. The rectangle, OAB ′B,
defines the unit cell of the nanotube, and R denotes a symmetry vector. The figure corresponds
to Ch = (4, 2), T = (4,−5), and R = (1,−1), where the components refer to the basis vectors
a1, a2 (Taken from [114])

superparamagnetism [16] and linear combination of atomic orbitals (lcao) for
piezoresistivity [70]. We have already done considerable modeling of paramag-
netism, as will be shown shortly, as well as in [96–98]. In this section, we will
concentrate on developing computational models for piezoresistive effects.

12.4 Quantum-Mechanical Model for Conductivity

The formula for electrical conductivity of nanographene is [70]

σ(ω) =
(

(2πe/h)2

3Vf

)∑
i,f

(Ef − Ei)
2| < f |r|i > |2δ(Ef − Ei − hf ) , (12.3)

where Ei and Ef are the energies of the initial valence eigenstates, |i >, and
the final unoccupied conduction eigenstates, |f >, respectively. This is akin to
‘pumping’ from one energy level to a higher one in masers, and accounts for
the loss of energy. It can be shown ([70]) that only the diagonal elements of the
position matrix elements survive, so that < f |r|i >= ∑

j,l c
(f )∗
j,l c

(i)
j,l < l|r|l >=∑

j,l c
(f )∗
j,l c

(i)
j,lr , where the index, l, runs over both initial and final states. The c

(f ),(i)
j,l

are expansion coefficients for the LCAO expansion of the |i > and |f > eigenstates
into atomic states (orbitals). The DC conductivity is obtained by taking the limit ω
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Fig. 12.2 (a). Conductivity
of 3D-NG (red curve)
compared to that of a
graphene layer (green curve),
of a low-density a-C cell
(blue curve), and of a
tetrahedral a-C cell
(light-blue curve). (b).
Optical absorption of the
above materials. The
frequency range is [0,
7.25 × 1014 Hz] (From [70])

(or E)→ 0 in (12.3). The result, (12.3), is obtained through the use of tight-binding
molecular dynamics (TBMD) simulations.

The model that leads to (12.3) was executed using the Slater-Koster tight-binding
framework that was developed at the Naval Research Laboratory [84].

Figure 12.2 illustrates the conductivity as a function of energy (or frequency)
as calculated from (12.3). The frequency range corresponding to these energies is
[0, 7.25 × 1014] Hz. The spiral coils that are defined and analyzed in [111, Chapter
7] have been accurately modeled out to 1.5×1012 Hz, which, according to Fig. 12.2
is still virtually ‘DC’ (Fig. 12.3).

12.5 What Are We Looking At?

There is a clear distinction in the network-like structure of the nanographene sheet,
Figs. 12.4 and 12.5, and the yarn-like structure of the CNT sheets of Fig. 12.3.
The current version of VIC-3D® allows us to model anisotropic and random
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Fig. 12.3 FE-SEM images of (a and b) as-received, (c and d) 31.2% stretched pristine CNT sheets,
and BMI/stretched CNT sheet nanocomposites cured by (e and f) thermal and (g and h) RHAI
followed by post-thermal cure. Inset: rose plots of the histogram of angular orientation obtained
from each FE-SEM image (From [55])
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Fig. 12.4 Undulations and rippling of the graphene layer at 300◦K, as reproduced by TBMD
simulations using the NRL Hamiltonian. The height of the ripples is ∼ 1Å. (From [70])

anomalies, given the complex conductivity and permeability, of the anomaly. We
will investigate the enhancements needed to analyze problems of the type shown in
these figures. The analyses described in [35, 109, 110, 112] will be appropriate here.

12.6 An Example of a Bianisotropic System

In [137, 138] and Fig. 12.6 we have an example of a bianisotropic system in which
the electrical characteristics of the system are partially controlled by a magnetic
field operating through magnetic spins. To be specific, this is a four-terminal carbon
nanotube sensor for magnetic field measurements that relies upon spin-coherent
electron transport in single-wall carbon nanotubes.

The Landauer formula for the conductance of the FM-SWCNT-FM magnetic
tunnel junction system is [137]

G = 2e2

h

∑
σ

T r
[
Im(Σr

L)Gr Im(Σr
R)Ga

]
σσ

, (12.4)

where σ(↑↓) is the spin index. The retarded (advanced) Green’s functions, Gr(a),
are given by

Gr(a)(E) = 1

E − Htube − Σ
r(a)
L − Σ

r(a)
R

, (12.5)

where the self-energies are



12.6 An Example of a Bianisotropic System 321

Fig. 12.5 (a) Model of a 3D-NG network, with periodic boundary conditions, composed of curved
graphene nanoplatelets. The density is 0.5g/cm3. Pore size is of the order of 1–2 nm. Grey, orange,
and magenta denote sp2, sp3, and sp1 bonding, respectively. (b) Experimental model of 3D-NG
derived from a polymer-based top-down approach. (c) Experimental model of 3D-NG derived by
assembly of graphene-oxide sheets (From [70])

Fig. 12.6 Carbon nanotube magnetic junction model system (From [137])
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Σr
α(E) = R̂α

[
Σr

α↑ 0

0 Σr
α↓

]
R̂†

α, R̂α =
⎡
⎢⎣

cos
θα

2
sin

θα

2
− sin

θα

2
cos

θα

2

⎤
⎥⎦ , (12.6)

where α = L,R. The nanotube Hamiltonian, Htube, is a nearest neighbor π−orbital
tight-binding model with bond potential, Vppπ = 2.75 eV:

Htube = −Vppπ

∑
<ij>

a
†
i aj + c.c. . (12.7)

This is another example of a tight-binding calculation that could be executed
using the NRL Slater-Koster framework. The general class of bianisotropic materi-
als is defined in (12.8) [135]:

D(x) = ε0ε
bi

· E(x) + (
√

ε0/μ0)α
bi

· B(x)

H(x) = (
√

ε0/μ0)β
bi

· E(x) + (1/μ0)χ
bi

· B(x) . (12.8)

The dispersive (frequency dependent) parameters, α
bi

and β
bi

, in addition to

ε
bi

and χ
bi

, are needed in VIC-3D® in order to work with bianisotropic materials.

12.7 Modeling Paramagnetic Effects in Carbon Nanotubes

Carbon nanotube reinforced polymers (cnrp) have excellent electromagnetic prop-
erties [55, 56, 126, 139], which means that one should be able to characterize
and evaluate them nondestructively in much the same way as for carbon fiber
reinforced polymers [30, 54, 70, 117]. There is a significant difference between
the two advanced composites, however, and that is that CNRPs display significant
magnetic effects that can be used to characterize them, and that are missing in
CFRPs [55, 56, 126, 139].

A single-wall carbon nanotube (SWCN) can have either a paramagnetic or
diamagnetic response to an applied magnetic field depending upon the tube’s
diameter, chirality, Fermi energy level, and the direction of the magnetic field
relative to the tube axis [126].

The more interesting magnetic effect occurs because nanotubes, and their
constituents can form with sizes smaller than the smallest ferromagnetic domain that
can occur in these materials, as suggested in Fig. 12.7 [126]. Hence, the result is that
the material behaves paramagnetically as a ‘single-domain particle’, and because
there will be a number of atoms with unpaired spins in the lattice structure, we say
that superparamagnetism results [6, 11, 16, 23, 25, 28, 30, 49, 55, 56, 67, 70–72, 74–
76, 97, 113, 116–119, 124, 126, 136, 139, pp.410–418]. The magnetic particles
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Fig. 12.7 Magnetization of a single-wall CNT sample as a function of magnetic field (left) and
magnetic field/temperature (right) at constant temperatures. The fact that no coercivity is observed
at temperatures above 100 K (left) and that there is overlapping of curves (right) suggest that we are
seeing the effects of single magnetic domains in the magnetic particles that were used as catalysts
for the growth of the CNTs, and remained with the CNTs during processing and synthesis of the
nanocomposites (From [126])

that we are observing were used as catalysts for the growth of the CNTs, and
remained with the CNTs during processing and synthesis of the nanocomposites
[126]. The right-hand curve in Fig. 12.7 follows closely the familiar Langevin
function, L(x) = coth x − 1/x, where x = μH/kT . For low fields this function is
approximately μH/3kT , whereas for high fields it gives 1 − kT /μH for the form
of the approach to saturation [16].

We have studied paramagnetic effects for modeling masers [3, 29] and for
possible applications to biomedical imaging for atherosclerosis (unpublished).
We give an example of how paramagnetic and superparamagnetic effects can be
modeled and included in VIC-3D®, or even used as a ‘quantum sensor’, in the next
section.

12.7.1 Paramagnetic Spin Dynamics and the Spin Hamiltonian

In order to fully understand the possibilities of using paramagnetic phenomena to
characterize CNT structures noninvasively, we must review a bit of electron-spin
physics. Our interest is in the dynamic response of spins to time-varying fields.
These fields are either applied electromagnetic fields or fluctuating fields due to
random vibrations of the crystalline surroundings of the spin system. The discussion
in this subsection and the next follows [96], which deals with spin dynamics in the
crystalline field of a solid-state maser. Later we will discuss the changes that occur
when the spin system is in a noncrystalline environment, such as biological tissue.

The system of equations used to describe spin dynamics is derived from
Schrödinger’s wave equation of quantum mechanics, and is given by
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dρmn

dt
= j

h̄

∑
k

(ρmkHkn − Hmkρkn) +
∑
pq

Rmn,pq

(
ρpq − ρ(T )

pq

)
, (12.9)

where ρmn is the density matrix connecting energy states um and un of the
unperturbed system, Rmn,pq are real numbers that account for spin-lattice relax-
ation, and the superscript, T , denotes the thermal equilibrium density matrix.
Hjk = H0jk + H1jk(t), where H0jk is the unperturbed, time-independent spin-
Hamiltonian associated with the crystalline field, and H1jk(t) = ghβ [H(t) · S]jk

is the time-dependent perturbation. Here g is a constant, hβ the Bohr magneton,
h Planck’s constant, h̄ = h/2π , H(t) the time-dependent (rf) magnetic field, and
S = Sxax + Syay + Szaz is the vector spin operator.

Because {um} is an orthonormal system of eigenstates of H0, it follows
immediately that H0mm = Em, and all off-diagonal elements of H0mn vanish.
Furthermore, in order to get a linear (i.e., first-order in H(t)) response for the overall
system, we must set the diagonal terms of (12.9) to their thermal equilibrium values,
ρmn(t) = ρ

(T )
mn , and solve the off-diagonal terms to first-order in H(t):

dρmn

dt
=
(

jω0mn − 1

τmn

)
ρmn + j

h̄

(
ρ(T )

mm − ρ(T )
nn

)
H1mn(t) , (12.10)

where ω0mn = En − Em

h̄
, and the relaxation times, τmn, replace the Rmn,pq of

(12.9).

For a sinusoidally time-varying field, we have H1mn(t)=gβh

2

(
Hejωt+H∗e−jωt

)·
Smn. If we assume solutions of (12.10) of the form ρmn = Amne

jωt + Bmne
−jωt ,

then the coefficients of the positive-frequency terms, Amn, and negative-frequency
terms, Bmn, are given by

Amn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (−ω + ω0mn) τmn

Smn · H

Bmn =
(j/h̄)

(
ρ

(T )
mm − ρ

(T )
nn

)
τmngβh/2

1 − j (ω + ω0mn) τmn

Smn · H . (12.11)

The magnetic dipole-moment operator for each spin is gβhS, which means that
the average dipole-moment for each spin is m = Tr [ρgβhS], where Tr is the trace
of an operator (sum of the diagonal elements of its matrix representation). The
macroscopic dipole-moment per unit volume, M, is obtained by multiplying m by
the number density, N , of spins. Upon evaluating the trace, we find

M = γ 2
∑
j<k

SkjSjk

(
N

(T )
j − N

(T )
k

)
τjk
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[(
j/h̄

1 − j (ω0jk − ω)τjk

− j/h̄

1 + j (ω0jk + ω)τjk

)
Hejωt

+
( −j/h̄

1+j (ω0jk−ω)τjk

− −j/h̄

1−j (ω0jk+ω)τjk

)
H∗e−jωt

]
, (12.12)

where we have discarded the time-independent static dipole terms, Smmρ
(T )
mm, and

have set γ 2 = g2h2β2. N
(T )
j is the number of spins per-unit-volume occupying the

j th energy level when the system is in thermal equilibrium at temperature T . If N is

the total number of spins (or systems) in the crystal, then N
(T )
j = N

Z
exp(−Ej/kT ),

where Z = ∑J
j=1 exp(−Ej/kT ) and J is the total number of energy states. Thus,

at thermal equilibrium (at positive temperatures), the lower energy states are more
densely populated than the higher energy states.

The absorption spectrum, A(ω), is given by μ0 times the imaginary part of the
generalized magnetic susceptibility, which is the coefficient of Hejωt in (12.12). In
the vicinity of the resonant frequency, ω0jk , the absorption spectrum is

A(ω) ≈ μ0
γ 2

2

∑
j<k

|Skj |2
(
N

(T )
j − N

(T )
k

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

= μ0
γ 2

2

N

Z

∑
j<k

|Skj |2
(
e−Ej /kT − e−Ek/kT

) τjk/h̄

1 + (ω0jk − ω)2τ 2
jk

. (12.13)

This spectrum consists of ‘lorentzian’ curves (resonant curves) centered at the
frequencies ω0jk , with line-width 1/τjk . The peak of each resonance is proportional
to τjk , and this gives us the familiar trade-off between bandwidth and magnitude

of absorption (or magnitude of gain). The term N
(T )
j − N

(T )
k yields the population

difference per unit volume of the j th and kth energy levels when the system is in
thermal equilibrium at temperature T . This population difference will be small if
the energy differential, Ek − Ej , is small compared to the thermal energy, kT , as
is the usual case for paramagnetic spin systems at normal temperatures. In addition
to τjk , an important parameter is the ‘line-strength’, |Skj |2, or the transition matrix
element connecting the j th and kth states. It determines the ease with which pump
power is absorbed by the spins, or it determines the gain at signal frequencies.

12.7.2 Application to Fe3+ : TiO2

The five unpaired electrons in Fe3+ are each in the 3d state, meaning that the ion
is in an S-state, with a spin, S = 5/2. The total number of spin-states, therefore, is
Ns = 2S + 1 = 6.

The spin-Hamiltonian, H0, for the Fe3+ : TiO2 complex is [96]
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H0 = gβH0 · S+D
(
S2

z − 35/12
)

+E
(
S2

x − S2
y

)
+(a/6)

(
S4

x+S4
y+S4

z − 707/16
)

+ (7/36)F
(
S4

z − (95/14)S2
z + 81/16

)
, (12.14)

where the nominal values of the derived constants are g = 2.0, D =
20.35 GHz, E = 2.21 GHz, a = 1.1 GHz, F = −0.5 GHz, and H0 is the dc
magnetic field. Sx, Sy , and Sz are 6×6 Pauli spin-matrices. This Hamiltonian gives
us frequency directly, rather than energy. The D term has axial symmetry (about
the z-axis), and corresponds to the ion having an electric quadrupole moment, that
is acted upon by the crystalline electric fields. The E term represents and additional
nonaxially symmetric anisotropy in the xy plane, and corresponds to the ion’s
possessing an electric moment of higher order than quadrupolar. These are the main
terms, as the size of D and E would suggest; the remaining terms are due to the fact
that S > 2 and that the crystal symmetry is complicated. Clearly, these latter terms
are less important, but must be included for completeness.

The eigenvalue equation that determines the unperturbed energy levels (or
frequencies in this case) is

H0u = Eu , (12.15)

and when this equation is solved as a function of H0 = Haz, we get the six curves
shown in Fig. 12.8. The zero-field energies occur in pairs (Kramers’ doublets), as
is typical of a system with an odd number of electrons in an electric field (the
crystalline field).

Consider the system at H = 1.78 kilogauss; the eigenvalues of H0 are

E1 = −58.20 × 109h E2 = −54.15 × 109h E3 = −19.60 × 109h

E4 = −5.64 × 109h E5 = 56.14 × 109h E6 = 81.05 × 109h
, (12.16)

from which we derive the resonant frequencies (in GHz)

ω012 = 4.05 ω023 = 34.55 ω034 = 13.96 ω045 = 61.78 ω056 = 24.91
ω013 = 38.60 ω024 = 48.51 ω035 = 75.74 ω046 = 86.69
ω014 = 52.56 ω025 = 110.29 ω036 = 100.65
ω015 = 114.34 ω026 = 135.20
ω016 = 139.25

.

(12.17)
The width of the absorption curve for the 1–2 (4.05 GHz) transition of

Fe3+ : TiO2 is 60MHz. Hence, the spin-lattice relaxation (or simply the transverse
relaxation) time for the off-diagonal element, ρ12, is τ12 = 1/2π × 30 × 106 =
5.305 × 10−9 s. Figure 12.9 shows the absorption spectrum in the vicinity of
4.05 GHz with this value of τ12.

This example illustrates the utility of the eigenstates in determining the frequency
response of a maser. It relies, as we have noted, on knowledge of the crystalline-field
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environment of the iron ion. It is this information that is lacking when we consider
electron-paramagnetic spin systems in CNT composites, and is the subject of current
research.

12.7.3 Superparamagnetic Iron Oxide

This is what started this discussion of paramagnetic spin-systems. Iron oxide,
whether it is γ − Fe2O3, called ‘maghemite,’ or, perhaps magnetite, Fe3O4 ([79]
is not clear on this), is ferromagnetic. Because of the small size of the particles
(∼ 10nm), their ferromagnetic properties manifest themselves in a single domain,
and such single-domain particles can behave magnetically in a manner analogous to
the paramagnetism of moment-bearing atoms [80]. The main distinction is that the
moment of the particle may be 105 times the atomic moment, because of the 105

atoms ferromagnetically coupled by exchange forces within the single domain.1

Two Spins

We’ll make a simple quantum-mechanical calculation of a system of two electrons
coupled through the exchange interaction in a static magnetic field, H0. The
Hamiltonian is

H = −gβH0 ·
(
S(1) + S(2)

)
− 2JexchS(1) · S(2) , (12.18)

where gβ = g × 0.0014 GHz/gauss = 2.8 GHz/kgauss, if we take g = 2. Jexch is
the exchange energy, with a nominal value of 2.1 × 10−21 J. Dividing by Plancks
constant, h, gives us the result in frequency units: Jexch/h = 2.1 × 10−21/6.626 ×
10−34 = 3169.3 GHz. Hence, the normalized Hamiltonian for the system becomes

H = −2.8H0 ·
(
S(1) + S(2)

)
− 6338.7S(1) · S(2)

= −2.8H0

(
S(1)

z + S(2)
z

)
− 6338.7S(1) · S(2) , (12.19)

where we assume that the static field is along the z-direction. The eigenspectrum
of (12.19) is plotted as a function of H0 in Fig. 12.10. The left-hand figure shows
all four solutions, and the right-hand the bottom three eigenvalues. The two parallel
branches have a constant separation of 6338.7, which is exactly 2Jexch, where Jexch

is the exchange energy. It is important to note that the transition (resonant) frequency

1A ‘single-domain particle’ is a particle that is in a state of uniform magnetization at any magnetic
field [80].
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Fig. 12.10 Eigenspectrum of spin-Hamiltonian with exchange interaction. Left: complete spec-
trum. Right: expanded version of bottom three eigenvalues

between states 2 and 3 is the same between as between 3 and 4, for all values of H0:
ω023 = ω034 .

The absorption coefficient for the coupled two-spin system is

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E4/kT

) τ/h̄

1 + (ω0 − ω)2τ 2 . (12.20)

The response is as if the two coupled spins behave as a single spin-system transiting
from ‘spin-up’ (state 2) to ‘spin-down’ (state 4), which is what we would expect of
a two-level (spin-1/2) system.

For comparison, we write down the result for two non-interacting spin-1/2
particles:

A(ω) = 2 × μ0
γ 2

4

1

Z

(
e−E2/kT − e−E3/kT

) τ/h̄

1 + (ω0 − ω)2τ 2 . (12.21)

Hence, the effect of the exchange interaction is to increase the density of spins in the
thermal term by eliminating the middle energy term, exp(−E3/kT ). Because there
is a greater differential in the energies than there was before, we have effectively
a greater population difference between the two energy states 2 and 3 that are
separated by h̄ω0. Clearly, the more interacting spins we have, the greater this
population difference becomes, and the greater the absorption spectrum becomes.
Because of these two effects, with something of the order of 105 spins interacting
through the exchange integral, the spectrum becomes significantly larger than in the
simple paramagnetic case, giving rise to the name ‘superparamagnetism.’ We’ll give
a further example of this next.
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Fig. 12.11 Eigenspectrum of spin-Hamiltonian with exchange interaction for three electrons. Left:
Spectrum of bottom four eigenvalues. Right: Spectrum of two largest (degenerate) eigenvalues. The
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Three Spins

We’ll extend the previous model to include three electrons interacting through the
exchange integral. The Hamiltonian now becomes

H = − 2.8H0

(
S(1)

z +S(2)
z +S(3)

z

)
−6338.7

(
S(1) · S(2)+S(1) · S(3)+S(2) · S(3)

)
,

(12.22)

where the various three-particle spin-matrices are obtained by taking three-fold left-
and right-direct products of the Pauli spin matrices, s, with the two-dimensional
identity matrix, I2:

S(1) = s ⊗ I2 ⊗ I2 S(2) = I2 ⊗ s ⊗ I2 S(3) = I2 ⊗ I2 ⊗ s . (12.23)

The eigenspectrum of (12.22), plotted as a function of the static magnetic field,
is shown in Fig. 12.11. As is the case with the two-electron problem, the separation
between the lowest energy levels is constant and equal to 2.8H0 GHz where H0 is
in kGauss. This is identical to the result for a single electron with a spin of 1/2.

The absorption coefficient for this system is:

A(ω)=μ0γ
2

4Z

[
3
(
e−E1/kT −e−E4/kT

)
+
(
e−E2/kT −e−E3/kT

)] τ/h̄

1+(ω0−ω)2τ 2
.

(12.24)
Consider the left-parenthetical term, 3

(
e−E1/kT − e−E4/kT

) = 3e−E1/kT(
1 − e−(E4−E1)/kT

)
, of (12.24), where E4−E1 = 3h̄ω0. Under the usual conditions
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of room (or body) temperature, and a magnetic field of a few kGauss, the exponent,
(E4 − E1)/kT is of the order of 10−3, which means that the term in parenthesis is
approximately equal to 3 × h̄ω0/kT , so that the absorption coefficient in (12.24) is
approximately equal to

A(ω) ≈ 9μ0γ
2

4Z
e−E1/kT h̄ω0

kT

τ/h̄

1 + (ω0 − ω)2τ 2

= μ0g
2h2(3β)2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (12.25)

where β is the Bohr magneton (the magnetic dipole of a single spin). Therefore, we
can conclude from (12.25) that the exchange interaction causes individual spins
to align themselves parallel to each other, thereby producing an atomic system
of spin-1/2, but with an equivalent dipole three times that of a single spin-1/2
particle. As indicated in (12.24), the effect of the AC field is to cause this single
macrospin system to transit from spin-up to spin-down, with all individual spins
remaining parallel to each other. In contrast, three noninteracting spins would have
an equivalent absorption coefficient of

A(ω) = 3μ0γ
2

4Z

(
e−E1/kT − e−E2/kT

) τ/h̄

1 + (ω0 − ω)2τ 2

≈ 3μ0γ
2

4Z

e−E1/kT

kT

ω0τ

1 + (ω0 − ω)2τ 2
, (12.26)

which is much smaller than (12.25). We can imagine what happens when 105

particles interact under exchange effects. This confirms, once again, that the
exchange interaction associated with ferromagnetic single-domain particles gives
rise to the notion of ‘superparamagnetism.’

This model of superparamagnetism results from the large value of Jexch, because
that isolates the upper energy levels of Figs. 12.10 and 12.11 from the lower levels
for all (reasonable) values of H0. The upper energy levels may be degenerate, as in
Fig. 12.11 for the three-spin problem, but the lower levels are always nondegenerate,
and have the same number of equal intervals as the number of spins. Furthermore,
the large value of the exchange energy ensures that the upper levels will be virtually
unpopulated compared to the lower levels. These facts are crucial to the theory.
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12.8 Inverse Problems

12.8.1 Inverse Problem No. 1

Piezoresisivity manifests itself quantum-mechanically through the change, due to
material strain, in the band-gap between the valence and conduction bands. If, as we
assume, the atomic-orbital wave functions that go into the conductivity expression,
(12.3), depend upon the band structure, then it follows that the conductivity can
be directly computed as a function of strain from (12.3). This means that we can
determine the state of strain throughout a region of the structure by determining the
conductivity throughout that region. This is a classical problem of ’eddy-current’
nondestructive evaluation (NDE) by either model-based inversion or voxel-based
inversion [111]. This is what VIC-3D® was designed to solve. The inclusion of
quantum models such as (12.3)into VIC-3D® is under development.

The inversion is a two-step process. First, we generate a family of red curves as
in Fig. 12.2, each parameterized by a known value of band-gap. Depending upon
the frequency of excitation of the ‘eddy-current’ probe, we may use much of the
frequency range of Fig. 12.2, or more likely frequencies that are essentially DC. We
create an interpolation table with given values of band-gap, and generate ‘forward
responses’ for the measured impedance using the given σ(ω) corresponding to the
nodal values of band-gap in the interpolation table. The forward response table,
which we will call the ‘surrogate model’, is computed using VIC-3D® with the
appropriate σ(ω). If the frequency range is large, then σ(ω) will not be constant, and
we will develop a new data type for VIC-3D® to accomodate frequency-dependent
electromagnetic parameters.

Once we have inverted the measured impedance data to determine the band-
gap, we must still go through a second step to infer the strain. The procedure is
reasonably straightforward, and we paraphrase the theoretical model described in
[29], which is also based on a tight-binding model. The change in the band-gap for
small strains is given by

ΔEgap = sgn(2p + 1)3t0[(1 + ν)ε cos 3θ + γ sin 3θ ] , (12.27)

where p = −1, 0, or 1, depending upon the value of mod (n−m, 3), and n, m are
the chiral indices of the CNT. t0 is the tight-binding transfer integral, ν is Poisson’s
ratio, ε is the axial strain, γ is the torsional strain, and θ is the chiral angle.

Equation (12.27) works well for semiconducting and armchair CNTs with
diameters larger than 1nm. For smaller CNTs, and for primarily metallic CNTs,
curvature may play a role in accounting for the band-gap. Using a similar tight-
binding approach, it can be shown that for primarily metallic CNTs

ΔEgap = −sgn

(
t0a

2

4d2 − ab
√

3

2

)
ab

√
3

2
ε cos 3θ , (12.28)
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where a is the length of the graphene lattice unit vector, d is the diameter of the
CNT, and b is the change in the transfer integral with change in bond length.

The zero-strain band-gap, E0
Gap, is

E0
Gap = 2t0a√

3d
(12.29)

for a semiconducting CNT, and

E0
Gap = 0 (12.30)

for metallic CNTs.
To summarize: given the various quantum factors and the solution of (12.3), we

can generate a surrogate model for the two state parameters, ε and γ , as well as
the material parameter, ν, such that we can invert measured impedance data and
reconstruct these three parameters using model-based inverse methods. This allows
us to describe the distribution of these parameters in space. We can also use voxel-
based inverse methods to solve the inverse problem.

12.8.2 A Thermally-Activated Transport Model

Rather than go through a full-blown analysis typified by (12.3), we can simplify the
model with no loss of accuracy if we have empirical knowledge of a ‘standard cnt.’
We use a thermally activated transport model of conductivity to write [29, 80]

σ(Eg) = C

1 + exp(Eg/kT )
, (12.31)

where Eg is the band gap (the Fermi level is assumed to lie at the top of the valence
band), C is a factor to be determined, k is Boltzmann’s constant, and T the absolute
temperature. If we know the conductivity at a given band gap energy, E0, and
temperature, T0, to be σ0, then we can determine C to be σ0 (1 + exp(E0/kT0)),
and write

σ(Eg) = σ0

[
1 + exp(E0/kT0)

1 + exp(Eg/kT )

]
. (12.32)

This, then, replaces (12.3), and allows the rest of the inversion process to proceed as
before. Alternatively, we can compute σ0 using (12.3) (assuming we know the E0
that went into the model), and then use (12.32) to compute the other members of the
surrogate interpolation table entries, and continue the inversion process.
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Fig. 12.12 Showing the input model impedance data for σ = 3500 S/m
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Fig. 12.13 Showing the interpolating impedance functions parameterized by nodal conductivity
values listed in the legend

12.8.3 A Simple Inverse Problem

Assume that σ0 = 5000 S/m in (12.32), and that E0 = 0. This value of σ0
is consistent with the ‘zero-frequency’ result for the red curve in Fig. 12.2. Our
objective is to determine Eg from a reconstruction of the conductivity, σ(Eg),
using the setup suggested in Fig. 12.17. The probe will be excited at 11 frequencies
covering the range 0.1 GHz to 10 GHz, and the ‘measured’ impedance response is
shown in Fig. 12.12 for σ(Eg) = 3500 S/m. These data will be submitted to NLSE,
the nonlinear least-squares estimator in VIC-3D®, after we have developed the
surrogate interpolating system. This is done by modeling the responses at five values
of conductivity: σ = 1000, 2000, 3000, 4000, 5000 S/m, which then become the
nodal values for the interpolation table. The interpolating impedance responses are
shown in Fig. 12.13.

The result of the inversion produces an estimate of σ(Eg) to be 3531 S/m, which
is quite close to the true value. If we assume that the ’experiment’ that produced
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the measured data in Fig. 12.12 was performed at T = 300◦ K, then we can solve
(12.32) for Eg

Eg = kT ln[2σ0/σ(Eg) − 1]

= 0.02586 ln

[
10000

σ(Eg)
− 1

]

= 0.0157eV . (12.33)

Now, assuming that all other parameters in (12.28) are known, we can solve for ε

by inserting ΔEgap = −0.0157 into the left-hand side.
This example illustrates the fact that we can apply the methods of eddy-current

NDE to carbon nanotubes once we have rigorous models for computing the elec-
tromagnetic properties of these tubes. These models require quantum-mechanical
calculations. Further examples of more complicated model-based inverse problems,
in which a number of variables are jointly determined, are given in [111].

We can scan the system of Fig. 12.17 and apply voxel-based inverse methods to
map out Eg throughout the region using the models in Chap. 2.

12.8.4 Voxel-Based Inversion: A Surface-Breaking
Checkerboard at 50MHz

In this experiment we consider the complex checkerboard flaw that is shown in
Fig. 12.14, and perform a 16×16 raster scan with the transmitter and receiver probes
at 50 MHz. The number in each voxel is the anomalous conductivity, which is the
actual conductivity minus the host conductivity, divided by the host conductivity.
Thus, a zero indicates that that voxel contains host material, whereas −1 indicates
that the actual conductivity is zero.

The checkerboard is a difficult anomaly to reconstruct, because the ‘scene’
changes so rapidly; i.e., it contains high spatial frequencies and the receiver scan
must be fine enough to reconstruct these frequencies. The reconstruction using the
LMS-estimator is quite good (corresponding results were obtained using the S-
estimator and classical estimator). We show the reconstruction of the middle row
and column in Fig. 12.15.

12.8.5 Voxel-Based Inversion: A Buried Checkerboard

When we bury the checkerboard below a layer of host material we get the added
complication of increasing the number of unknowns that are to be determined during
the reconstruction. This, together with the fact that the checkerboard scene contains
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Fig. 12.14 A surface-breaking checkerboard

Fig. 12.15 Reconstruction of
the middle row and column of
the surface-breaking
checkerboard
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high spatial-frequencies, suggests that we use a 31 × 31 raster scan for the receiver
probe, rather than the 16 × 16 scan that was used in the preceding example, but
covering the same area. The resolution of the receiver scan was thereby improved to
0.2 mm over 0.4 mm.

When we do this we get an excellent reconstruction; the top layer is reconstructed
exactly (zero anomalous conductivity), and the reconstructions of the middle row
and column of the bottom layer are shown in Fig. 12.16.

Now, we can repeat our earlier calculation to determine the band-gap distribution
within the anomalous region. Clearly, where the solution is zero, the band-gap is also
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Fig. 12.16 Reconstruction of
the middle row and column of
the buried checkerboard
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zero, as is the strain, ε, in (12.28). On the other hand, when the solution is −1, then
(12.32) indicates that Eg >> kT = 0.02586, and, therefore, that ε is quite large.

12.8.6 Spatial Imaging Using Embedded CNT Sensors

These two examples of inverse methods that are available to us via VIC-3D®
indicate that we can efficiently produce highly accurate numerical results that also
include sophisticated stochastic reliability metrics that are not easily achieved using
other methods. (See [111] for more on these metrics with model-based inverse
methods.)

Our interest is in NDE of CNT structures, in which we exploit the piezoresistivity
of the structure itself. We use external inductive sensors typically used in eddy-
current NDE. This differs from the use of CNT sensors embedded within a
composite structure to measure the damage, as in structural health monitoring
(SHM). We believe that our approach yields more reliable estimates of the state
of the structure, and would have to be done, even if an embedded sensor indicated
an anomaly within the structure.

Wan et al. [133] have developed an approach to damage analysis of 3D braided
composite materials using embedded CNT thread sensors. They cast the problem
of thread distribution within the braided structure as a combinatorial optimization
problem, and use particle swarm optimization (PSO) to solve it. They point out
the possibility in some of their experiments that the sensor, itself, may have
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been damaged, rather than the composite structure. This is a continuing reliability
problem with SHM.

Dai et al. [32] use a different approach, in that a separate CNT-array sensor
is embedded within the composite structure, and an inverse problem is used to
determine the state of the structure. In this sense, their approach is similar to ours
in philosophy, except that we are not embedding our sensors. Furthermore, [32] use
electrical impedances as the measured data for inversion, which is what we do, but
their approach is based on electrical impedance tomography (EIT) to acquire and
invert the data. The sensor array used in EIT is conductive and not inductive, as
in eddy-current inversion. By conductive, we mean that the sensor is in electrical
contact with the structure. The resulting electromagnetic model produces a rather
ill-posed inverse problem that is sensitive to modeling errors and measurement
noise. For that reason, [32] uses a simplified linear process that uses the maximum
a posteriori (MAP) algorithm to solve the inverse problem. Furthermore, this
approach does not appear to be amenable to more complex (and realistic) problems
that include anisotropies and random distributions of anomalies.

12.8.7 Inverse Problem No. 2: Characterizing the CNT via
ESR

We can use electron-spin resonance (ESR) as a method of characterizing the CNT,
in much the same way that nuclear magnetic resonance (NMR) maps biological
structures. That would be a straightforward application of the spintronics theory
that we just developed. The method would work at GHz frequencies, rather than
MHz, as in MRI, but we expect to work at GHz and higher for NDE of CNT in any
case. This would be an interesting application of our spiral coil models in VIC-3D®.
Information from the absorption curve of Fig. 12.9 could be used for this. It seems
likely that if the environment of the spins changes, perhaps because of stresses, then
the crystal-field would also change, causing the spin-Hamiltonian to change with it.
This would cause the eigenvalues to change to some degree that would have to be
determined numerically, thereby shifting the center of the absorption curve.

12.8.8 What Does VIC-3D® Need?

Refer to Fig. 12.17. The anomalous region, which will be the CNT structure,
is embedded in a host, which at this time is isotropic and could be air. VIC-
3D® expects to be given the usual electromagnetic parameters, namely complex
conductivity and magnetic permeability, that are to be assigned to each voxel in
the anomalous region. The parameters can be (bi)anisotropic and stochastic and
even frequency dependent. The results of the quantum-mechanical models are
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Fig. 12.17 Illustrating the model setup for VIC-3D®. There is a second layer identical to the
one shown immediately below the one shown. This is due to the fact that VIC-3D® requires a
minimum of two cells in any direction of the grid

translated into these EM parameters off-line and then read into VIC-3D®. The
system is excited by one of a number of different EC probes, as stated above, and
the computed observable is the change in impedance that the probe sees for the
anomalous region relative to the host.

The absorption coefficient developed in the note on paramagnetic effects
(Eq. (12.13), Fig. 12.9) is the imaginary part of the magnetic permeability, and
is called ‘magnetic loss’ in the current version of VIC-3D®. It is frequency-
dependent. Similarly, the σ described in the discussion of nanographene (Eq. (12.3))
is frequency dependent, and is modeled in VIC-3D®.

We can simulate the spin-coherent transport feature of the magnetic tunnel
junction system of Fig. 12.6 by letting adjacent voxels of Fig. 12.17 carry spin
systems that are tied together stochastically by a correlation function with a
relatively large correlation length. The problem can then be treated stochastically
as is done in our treatment of random surfaces [110].



References

1. A. Abubakar, T.M. Habashy, Near well-bore imaging of the triaxial induction logging data
using the multiplicative regularized contrast source inversion method, in 23rd Annual Review
of Progress in Applied Computational Electromagnetics, March 19–23, Verona (Applied
Computational Electromagnetics Society, 2007), pp. 653–660

2. B.A. Abu-Nabah, P.B. Nagy, Lift-off effect in high-frequency eddy current conductivity
spectroscopy. NDT&E Int. 40, 555–565 (2007)

3. N.H. Alamusi, H. Fukunaga, S. Atobe, Y. Liu, J. Li, Piezoresistive strain sensors made from
carbon nanotubes based polymer nanocomposites. Sensors 2011(11), 10691–10723 (2011)

4. J. Allen, et al., A technology plan for electromagnetic characteristics of advanced composites.
Rochester Institute of Technology, Prepared for Rome Air Development Center (1976)

5. J.L. Allen, et al., Electromagnetic properties and effects of advanced composite materials:
measurement and modeling. RADC-TR-78-156, Phase Report (ADA 05804) (1978)

6. P.D. Allen, T.G. St. Pierre, W. Chua-anusorn, V. Ström, K.V. Rao, Low-frequency low-field
magnetic susceptibility of ferritin and hemosiderin. Biochimica et Biophysica Acta 1500,
186–196 (2000)

7. C. Altman, A. Schatzberg, Appl. Phys. B26, 147–153 (1981)
8. C. Altman, A. Schatzberg, Appl. Phys. B28, 327–333 (1982)
9. C. Altman, A. Schatzberg, K. Suchy, IEEE Trans. Antennas Propag. AP-32(11), 1450–1450

(1984)
10. G. Angiulli, T. Isernia, S. Tringali, Modeling realistic contrast maps from MRI images for

microwave breast cancer detection. IEEE Antennas Propag. Mag. 53(1), 113–122 (2011)
11. J.-P. Ansermet, Classical description of spin wave excitation by currents in bulk ferromagnets.

IEEE Trans. Magn. 40(2), 358–360 (2004)
12. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems (Wiley, New York, 1972)
13. H.T. Banks, D. Cioranescu, A.K. Criner, W.P. Winfree, Parameter estimation for the heat

equation on perforated domains. J. Inverse Ill-posed Problems 19, 825–857 (2011)
14. S. Barkeshli, D.J. Radecki, H.A. Sabbagh, On a linearized inverse scattering model for a

three-dimensional flaw embedded in anisotropic advanced composite materials. IEEE Trans.
Geosci. Remote Sens. 30(1), 71–80 (1992)

15. V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse
grids. Adv. Comput. Math. 12, 273–288 (2000)

16. C.P. Bean, J.D. Livingston, Superparamagnetism. J. Appl. Phys. 30(4), 120S-129S (1959)
17. D.W. Berreman, J. Opt. Soc. Am. 62(4), 502–510 (1972)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. A. Sabbagh et al., Advanced Electromagnetic Models for Materials
Characterization and Nondestructive Evaluation, Scientific Computation,
https://doi.org/10.1007/978-3-030-67956-9

341

https://doi.org/10.1007/978-3-030-67956-9


342 References

18. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences
(McGraw-Hill Book Company, New York, 1992)

19. M.P. Blodgett, C.V. Ukpabi, P.B. Nagy, Surface roughness influence on eddy current electrical
conductivity measurements. Mater. Eval. 61, 765–772 (2003)

20. S.K. Burke, L.R.F. Rose, Proc. Roy. Soc. 418A, 229–246 (1988); also Appl. Comput.
Electromagn. Soc. Newsl. 6(1), 30–34 (1991)

21. R.H. Byrd, C.L. Dert, A.H.G. Rinnooy Kan, R.B. Schnabel, Concurrent stochastic methods
for global optimization. Math. Program. 46, 1–29 (1990)

22. C. Cai, M. Lambert, Sparse grid-nested sampling for model selection in eddy-current
testing, in Conference Paper, 20th International Workshop on Electromagnetic Nondestructive
Evaluation (ENDE 2015), Sendai (2015)

23. R. Casañas, H. Scharfetter, A. Altes, A. Remacha, P. Sarda, J. Sierra, J. Rosell, In-vitro
measurement of iron concentration in human hepatic tissue by magnetic induction methods,
in 2001 Proceedings of the 23rd Annual EMBS International Conference, October 25–28,
Istanbul, Turkey (2001), pp. 2971–2974

24. Y. Censor, Row-action methods for huge and sparse systems and their applications. SIAM
Rev. 23, 444–446 (1981)

25. S.B. Chaves, L.M. Lacava, Z.G.M. Lacava, O. Silva, F. Pelegrini, N. Buske, C. Gansau,
P.C. Morais, R.B. Azevedo, Light microscopy and magnetic resonance characterization of
a DMSA-coated magnetic fluid in mice. IEEE Trans. Magn. 38(5), 3231–3233 (2002)

26. R.E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960)
27. P.L. Combettes, The foundations of set theoretic estimation. Proc. IEEE 81(2), 182–208

(1993)
28. B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy

Rare-Earths (Academic Press, London, 1977)
29. M.A. Cullinan, M.L. Culpepper, Carbon nanotubes as iezoresistive microelectromechanical

sensors: theory and experiment. Phys. Rev. B 82, 115428 (2010)
30. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972)
31. E. Dadrasnia, S. Puthukodan, H. Lamela, Terahertz electrical conductivity and optical

characterization of composite nonaligned single- and multiwalled carbon nanotubes. J.
Nanophoton. 8, 1–10 (2014)

32. H. Dai, G.J. Gallo, T. Schumacher, E.T. Thostenson, A novel methodology for spatial damage
detection and imaging using a distributed carbon nanotube-based composite sensor combined
with electrical impedance tomography. J. Nondestructive Eval. 35, 26 (2016)

33. B.J. Debusschere, H.N. Najm, P.P. Pébay, O. Knio, R.G. Ghanem, O.P. LeMaítre, Numerical
challenges in the use of polynomial chaos representations for stochastic processes. SIAM J.
Sci. Comput. 26, 698–719 (2006)

34. T.M.R. Ellis, I.R. Phillips, T.M. Lahey, Fortran 90 Programming. (Addison-Wesley, Harlow,
1994)

35. T. Fast, A.E. Scott, H.A. Bale, B.N. Cox, Topological and euclidean metrics reveal spatically
nonuniform structure in the entanglement of stochastic fiber bundles. J. Mater Sci. 50, 2370–
2398 (2015)

36. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, Hoboken, 1987)
37. J. Foo, G. Karniadakis, Multi-element probabilistic collocation method in high dimensions.

J. Comput. Phys. 229, 1536–1557 (2010)
38. K.O. Friedrichs, H.N. Shapiro, et al., Integration of Functionals. Institute of Mathematical

Sciences (New York University, New York, 1957)
39. C. Gabriel, S. Gabriel, E. Corthout, The dielectric properties of biological tissues: I. Literature

survey. Phys. Med. Biol. 41, 2231–2249 (1966)
40. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: II. Measure-

ments in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1966)
41. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III.

Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293
(1996)



References 343

42. Z. Gao, J. Hesthaven, On ANOVA expansions and strategies for choosing the anchor point.
Appl. Math. Comput. 217(7), 3274–3285 (2010)

43. J. Garcke, Sparse grid tutorial. http://en.wikipedia.org/wiki/Sparse-grid
44. J. Garcke, M. Griebel, Data mining with sparse grids using simplicial basis functions. http://

en.wikipedia.org/wiki/Sparse-grid
45. W. Graf, J. Hamm, J.E. Nanevicz, D.E. Tremain, Engineering effects of advanced composite

materials on avionics. SRI International, prepared for U.S. Army Avionics R&D Command
(ADA 104015) (1981)

46. M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems,
in Proceedings Foundations of Computational Mathematics 2005, (FoCM05), Santander, ed.
by L. Pardo, A. Pinkus, E. Suli, M. Todd (Cambridge University Press, Cambridge, 2006),
pp. 106–161

47. R. Grow, in Carbon Nanotubes: Properties and Applications, ed. by M. O’Connell (Taylor &
Frances, New York, 2006)

48. J.C. Hancock, P.A. Wintz, Signal Detection Theory (McGraw-Hill Book Company, New York,
1966)

49. R. Hergt, W. Andrä, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.-G. Schmidt,
Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34(5),
3745–3754 (1998)

50. G.T. Herman, L.B. Meyer, Algebraic reconstruction techniques can be made computationally
efficient. IEEE Trans. Med. Imag. 12(3), 600–609 (1993)

51. G.T. Herman, A. Lent, H. Hurwitz, A storage-efficient algorithm for finding the regularized
solution of a large, inconsistent system of equations. J. Inst. Math. Appl. 25, 361–366 (1980)

52. M. Hestenes, Conjugate Direction Methods in Optimization. (Springer, New York, 1980)
53. K. Kalyanasundaram, P.B. Nagy, A simple numerical model of the apparent loss of eddy

current conductivity due to surface roughness. NDT&E Int. 37, 47–56 (2004)
54. A.C. Katageri, B.G. Sheeparamatti, Carbon nanotube based piezoresistive pressure sensor for

wide range pressure sensing applications - a review. 4(08), 665–671 (2015). ISSN: 2278-0181
55. J.-W. Kim, G. Sauti, E.J. Siochi, J.G. Smith, R.A. Wincheski, R.J. Cano, J.W. Connel,

K.E. Wise, Toward high performance thermoset/carbon nanotube sheet nanocomposites via
resistive heating assisted infiltration and cure. Appl. Mater. Interfaces 6, 18832–18843 (2014)

56. J.-W. Kim, G. Sauti, R.J. Cano, R.A. Wincheski, J.G. Racliffe, M. Czabaj, E.J. Siochi,
Structural CNT composites part II: assessment of CNT yarns as reinforcement for comosite
overwrapped pressure vessels. Paper Number 1500, (2015)

57. A. Klimke, Sparse grid interpolation toolbox user’s guide, V. 5.1 (2008). http://www.ians.uni-
stuttgart.de/spinterp

58. A. Klimke, B. Wolhmuth, Algorithm 847: spinterp: piecewise multilinear hierarchical sparse
grid interpolation in matlab. ACM Trans. Math. Softw. 31(4), 561–579 (2005)

59. C.M. Krowne, IEEE Antennas Propagation Symposium Digest, Boston, MA, June 25–29
(1984), pp. 569–572

60. C.M. Krowne, IEEE Trans. Microwave Theory Tech. MTT-32(12), 1617–1625 (1984)
61. C.M. Krowne, IEEE Trans. Antennas Propag. AP-32(11), 1224–1230 (1984)
62. C.L. Lawson, R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs,

1974)
63. M. Loève, Probability Theory (D. Van Nostrand, New York, 1955)
64. D.L. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley,

Boston, 1973)
65. X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique

for the solution of stochastic partial differential equations. J. Comput. Phys. 229, 3884–3915
(2010)

66. I. Maeng, C. Kang, S.J. Oh, J.-H. Son, K.H. An, Y.H. Lee, Terahertz electrical and optical
characteristics of double-walled carbon nanotubes and their comparison with single-walled
carbon nanotubes. Appl. Phys. Lett. 90, 1–3 (2007)

http://en.wikipedia.org/wiki/Sparse-grid
http://en.wikipedia.org/wiki/Sparse-grid
http://en.wikipedia.org/wiki/Sparse-grid
http://www.ians.uni-stuttgart.de/spinterp
http://www.ians.uni-stuttgart.de/spinterp


344 References

67. S. Maenosono, S. Saita, Theoretical assessment of FePt nanoparticles as heating elements for
magnetic hyperthermia. IEEE Trans. Magn. 42(6), 1638–1642 (2006)

68. C.-S. Man, R. Paroni, Y. Xiang, E.A. Kenik, On the geometric autocorrelation function of
polycrystalline materials. J. Comput. Appl. Math. 190, 200–210 (2006)

69. Y. Marzouk, D. Xiu, A stochastic collocation approach to Bayesian inference in inverse
problems. Commun. Comput. Phys. 6(4), 826–847 (2009)

70. C. Mathioudakis, P.C. Kelires, Modelling of three-dimensional nanographene. Nanoscale Res.
Lett. 11, 151 (2016)

71. R.D. McMichael, P. Krivosik, Classical model of extrinsic ferromagnetic resonance linewidth
in ultrathin films. IEEE Trans. Magn. 40(1), 2–11 (2004)

72. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)
73. E.K. Miller, Adaptive sparse sampling to estimate radiation and scattering patterns to a

specified uncertainty with model-based parameter estimation. IEEE Antennas Propag. Mag.
103–113 (2015)

74. G. Mone, E. Svoboda, Precision-Guided Tumor Killers. Popular Science (2006), p. 56
75. P.C. Morais, E.C.D. Lima, D. Rabelo, A.C. Reis, F. Pelegrini, Magnetic resonance of

magnetite nanoparticles dispersed in mesoporous copolymer matrix. IEEE Trans. Magn.
36(5), 3038–3040 (2000)

76. P.C. Morais, G.R.R. Gonçalves, K.S. Neto, F. Pelegrini, N. Buske, Study of particle-particle
interaction in magnetic fluids using magnetic resonance. IEEE Trans. Magn. 38(5), 3225–
3227 (2002)

77. J.J. Moré, B.S. Garbow, K.E. Hillstrom, User Guide for Minpack-1, ANL-80-74, Argonne
National Laboratory (1980)

78. M. Nakhkash, Y. Huang, M.T.C. Fang, Application of the multilevel single-linkage method to
one-dimensional electromagnetic inverse scattering problem. IEEE Trans. Antennas Propag.
47(11), 1658–1668 (1999)

79. Nanoparticles beat back atherosclerosis, Science News, June 11, 2016
80. W. Obitayo, T. Liu, A review: carbon nanotube-based piezoresistive strain sensors. J. Sens.

2012, 652438 (2012)
81. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical

Functions (Cambridge University Press, Cambridge, 2010)
82. C.N. Owston, Carbon fibre reinforced polymers and non-destructive testing. Br. J. NDT 15(6),

2–11 (1973)
83. C.N. Owston, Eddy current methods for the examination of carbon fibre reinforced epoxy

resins. Mater. Eval. 34, 237–250 (1976)
84. D.A. Papaconstantopoulos, M.J. Mehl, The Slater-Koster tight-binding method: a computa-

tionally efficient and accurate approach. J. Phys. Condens. Matter 15, R413–R440 (2003)
85. J.L. Phelps, In-service inspection methods for graphite-epoxy structures on commercial

transport aircraft (NASA-CR-165746). Final Report, Boeing Commercial Airplane Co.,
Seattle (1981)

86. R. Prakash, Non-destructive testing of composites. Composites 11, 217–224 (1980)
87. R. Prakash, C.N. Owston, Eddy-current method for the determination of lay-up order in cross-

plied Crfp laminates. Composites 7(2), 88–92 (1976)
88. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn.

(Cambridge University Press, Cambridge, 1992). Reprinted 1997
89. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods part II: Multi

level methods. Math. Program. 39, 57–78 (1987)
90. T.M. Roberts, Explicit eigenmodes for anisotropic media. IEEE Trans. Magn. 26(6), 3064–

3071 (1990)
91. T.M. Roberts, H.A. Sabbagh, A model for eddy-current interactions with advanced com-

posites, in Conference Proceedings: Review of Progress in Quantitative Nondestructive
Evaluation ed. by D.O. Thompson, D.E. Chimenti, vol. 5B (Plenum Press, New York, 1986),
pp. 1105–1111



References 345

92. T.M. Roberts, H.A. Sabbagh, L.D. Sabbagh, Electromagnetic interactions with an anisotropic
slab. IEEE Trans. Magn. 24(6), 3193–3200 (1988)

93. T.M. Roberts, H.A. Sabbagh, L.D. Sabbagh, Electromagnetic scattering for a class of
anisotropic layered media. J. Math. Phys. 29, 2675–2681 (1988)

94. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods part i: Clustering
methods. Math. Program. 39, 27–56 (1987)

95. S.G. Ruehm, C. Corot, P. Vogt, S. Kolb, J.F. Debatin, Magnetic resonance imaging of
atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyper-
lipidemic rabbits. Circulation 103, 416–422 (2001)

96. H.A. Sabbagh, Maser spin dynamics, Goddard Space Flight Center, Greenbelt, X-523-66-448
(1966)

97. H.A. Sabbagh, Notes on the Spin-Hamiltonian, Goddard Space Flight, Greenbelt, X-520-66-3
(1966)

98. H.A. Sabbagh, Thermal noise in spin-phonon systems. IEEE Trans. Sonics Ultrasonics SU-
16(3), 147–156 (1969)

99. H.A. Sabbagh, A model of eddy-current probes with ferrite cores. IEEE Trans. Magn. MAG-
23(3), 1888–1904 (1987)

100. L.D. Sabbagh, et al., A computational model for electromagnetic interactions with advanced
composites, in Proceedings, 4th Annual Review of Progress in Applied Computational
Electromagnetics, Monterey, CA, March 22–24 (1988)

101. H.A. Sabbagh, Splines and their reciprocal-bases in volume-integral equations. IEEE Trans.
Magn. 29(6), 4142–4152 (1993)

102. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive
evaluation, in Nonlinear Phenomena in Electromagnetic Fields, ed. by T. Furuhashi, Y.
Uchikawa (Elsevier, Amsterdam, 1992), pp. 177–180

103. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive
evaluation. Int. J. Appl. Electromagn. Mater. 3, 253–261 (1993)

104. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive
evaluation, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O.
Thompson, D.E. Chimenti, vol. 13 (Plenum Press, New York, 1994), pp. 911–918

105. H.A. Sabbagh, L.D. Sabbagh, S.N. Vernon, Verification of an eddy-current flaw inversion
algorithm. IEEE Trans. Magn. 22(6), 1881–1886 (1986)

106. H.A. Sabbagh, T.M. Roberts, L.D. Sabbagh, A computational model for electromagnetic
interactions with advanced composites, in Proceedings, 2nd Annual Review of Progress in
Applied Computational Electromagnetics, Monterey, CA, March 18–20 (1986)

107. H.A. Sabbagh, D.J. Radecki, S. Barkeshli, B. Shamee, J.C. Treece, S.A. Jenkins, Inversion
of eddy-current data and the reconstruction of three-dimensional flaws. IEEE Trans. Magn.
26(2), 626–629 (1990)

108. H.A. Sabbagh, E.H. Sabbagh, R.K. Murphy, Recent advances in modeling eddy-current
probes, in Review of Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E.
Chimenti, vol. 21 (American Institute of Physics, College Park, 2002), pp. 423–429

109. H.A. Sabbagh, R.K. Murphy, E.H. Sabbagh, J.C. Aldrin, J.S. Knopp, M.P. Blodgett,
Stochastic-integral models for propagation-of-uncertainty problems in nondestructive eval-
uation, in 39th Annual Review of Progress in QNDE, Denver, Colorado, July 15–20 (2012)

110. E.H. Sabbagh, R.K. Murphy, H.A. Sabbagh, M. Cherry, A. Pilchak, J.C. Aldrin, C. Annis,
Stochastic-integral models for characterizing random grain noise in titanium alloys, in 40th
Annual Review of Progress in QNDE, Baltimore, July 21–26 (2013)

111. H.A. Sabbagh, R. Kim Murphy, E.H. Sabbagh, J.C. Aldrin, J.S. Knopp, Computational
Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy-Current Non-
destructive Evaluation (Springer, New York, 2013)

112. H.A. Sabbagh, R.K. Murphy, E.H. Sabbagh, J.C. Aldrin, C. Annis, J.S. Knopp, Stochastic
inverse problems: models and metrics, in 41st Annual Review of Progress in QNDE, Boise,
July 20–25 (2014)



346 References

113. V.L. Safonov, H.N. Bertram, Impurity relaxation mechanism for dynamic magnetization
reversal in a single domain grain. Phys. Rev. B 61(22), R14893–R14896 (2000)

114. R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial
College, London, 2005)

115. A. Schatzberg, C. Altman, J. Plasma Phys. 26(part 2), 333–344 (1981)
116. M.P. Sharrock, Measurement and interpretation of magnetic time effects in recording media.

IEEE Trans. Magn. 35(6), 4414–4422 (1999)
117. A.E. Siegman, Microwave Solid-State Masers (McGraw-Hill Book Company, New York,

1964)
118. T.J. Silva, C.S. Lee, T.M. Crawford, C.T. Rogers, Inductive measurement of ultrafast

magnetization dynamics in thin-film permalloy. J. App. Phys. 85(11), 7849–7862 (1999)
119. L.B. Silveira, J.G. Santos, F. Pelegrini, C. Gansau, N. Buske, P.C. Morais, Magnetic resonance

study of zero-field-frozen magnetite-based biocompatible magnetic fluid. IEEE Trans. Magn.
39(5), 2642–2647 (2003)

120. C.D. Skouby, Electromagnetic effects of advanced composites. McDonnell Aircraft Com-
pany, prepared for Office of Naval Research (ADA 010882) (1975)

121. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Math. Dokl. 4, 240–243 (1963)

122. D.K. Stiles, B. Oakley, Simulated characterization of atherosclerotic lesions in the coronary
arteries by measurement of bioimpedance. IEEE Trans. Biomed. Eng. 50(7), 916–921 (2003)

123. M. Stoyanov, User manual: TASMANIAN sparse grids. Oak Ridge National Laboratory
(2013)

124. R. Street, D.C. Crew, Fluctuation aftereffect in magnetic materials. IEEE Trans. Magn. 35(6),
4407–4413 (1999)

125. K. Suchy, C. Altman, J. Plasma Phys. 13(part 3), 437–449 (1975)
126. K.J. Sun, R.A. Wincheski, C. Park, Magnetic property measurements on single wall carbon

nanotube polyimide composites. J. Appl. Phys. 103(2), (2008)
127. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society

for Industrial and Applied Mathematics, Philadelphia, 2005)
128. J.C. Treece, T.M. Roberts, S.D. Schunk, Electromagnetic imaging for reconstruction of flaws

in advanced composites, in Conference Proceedings: Review of Progress in Quantitative
Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, vol. 7A (Plenum Press,
New York, 1988), pp. 349–356

129. J.C. Treece, T.M. Roberts, D.J. Radecki, S.D. Schunk, Detecting micro-structures and flaws
in composites using eddy-current instrumentation, in Conference Proceedings: Review of
Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti,
vol. 8B (Plenum Press, New York, 1989), pp. 1519–1526

130. J.C. Treece, H.A. Sabbagh, B.F. Shamee, Final report: eddy-current detection of prepreg
FAWT. Sabbagh Associates, SA/TR-1/90 (1990)

131. P.M. van den Berg, A. Abubakar, Contrast source inversion method: state of art. Prog.
Electromagn. Res. PIER 34, 189–218 (2001)

132. V. Volpe, Conductivity and electromagnetic shielding characteristics of graphite/epoxy
laminates. J. Compos. Mater. 14, 189–197 (1980)

133. L. Wan, Y. Ma, J. Guo, Damage analysis of 3D braided composite material using embedded
carbon nanotube thread sensors. Mater. Eval. 74(6), 919–928 (2016)

134. Y. Wang, M.N. Afsar, R. Grignon, Complex permittivity and permeability of carbonyl iron
powders at microwave frequencies. IEEE Antennas Propag. Soc. Int. Symp. 4, 619–622
(2003)

135. W.S. Weiglhofer, A. Lakhtakia, Waves and fields: from uniaxial to biaxial mediums, in
between and beyond, in 8th International Conference on Electromagnetics of Complex Media,
Lisbon, 27–29 September 2000. Avaiable through DTIC, ADP011588 (2000)

136. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE
Trans. Magn. 35(6), 4423–4439 (1999)



References 347

137. R.A. Wincheski, M. Namkung, S.M. Paik, J. Smits, Carbon nanotube based magnetic tunnel
junctions for electromagnetic nondestructive evaluation. Mater. Res. Soc. Symp. Proc. 721,
E6.10.1–E.6.10.5 (2002)

138. R.A. Wincheski, M. Namkung, P. Williams, J. Smits, Four terminal carbon nanotube sensor
for magnetic field measurement, in Presented at 2004 MRS Spring Meeting, April 14, San
Francisco (2004)

139. R.A. Wincheski, J.-W. Kim, G. Sauti, E. Wainwright, P. Williams, E.J. Siochi, Nondestructive
evaluation techniques for development and characterization of carbon nanotube based
superstructures, in Presented at the Annual Review of Progress in Quantitative Nondestructive
Evaluation (2014)

140. M.-F. Wong, J. Carette, A. Hadjem, J. Wiart, Stochastic electromagnetic modeling with
uncertain dielectric properties using FDTD, in 24th Annual Review of Progress in Applied
Computational Electromagnetics, ACES, Niagara Falls (2008), pp. 450–455

141. J.M. Wozencraft, I.M. Jacobs, Principles of Communication Engineering (Wiley, New York,
1965)

142. D. Xiu, Efficient collocational approach for parametric uncertainty analysis. Commun.
Comput. Phys. 2(2), 293–309 (2007)

143. D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach
(Princeton University Press, Princeton, 2010)

144. X. Xu, J. Qiu, H. Ji, T. Takagi, Detection of delamination in laminated CFRP composites using
eddy current testing: simultion and experimental study. Int. J. Appl. Electromagn. Mech. 57,
177–192 (2018)

145. F. Yu, P.B. Nagy, Numerical method for calculating the apparent eddy current conductivity
loss on randomly rough surfaces. J. App. Phys. 95, 8340–8351 (2004)

146. N. Zabaras, Solving stochastic inverse problems: a sparse grid collocation approach, in
Computational Methods for Large-Scale Inverse Problems and Quantification of Uncertainty,
ed. by People on Earth (Wiley, Hoboken, 2001)

147. R. Zorgati, et al., IEEE Trans. Magn. 27(6), 4416–4431 (1991)



Index

A
Absorption curve of Feˆ:TiO_2, 284
Advanced microstructure quantification, 102
Analysis of figure 3.10, 77
Analysis of variance (ANOVA), 170
An anisotropic inverse problem for measuring

FAWT, 73, 91
Anisotropic double-exponential and Gaussian

covariances, 202
Anisotropic double-exponential model, 207
Application of the set-theoretic algorithm to

CFRP’s, 89
Application to aircraft structures, 43
Application to Feˆ:TiO_2, 321
Artificial dielectric, 80

B
Bianisotropic system, 316, 318
Bilinear conjugate-gradient inversion

algorithm, 3
Bilinear conjugate-gradients, 6
Born approximation, 17
Bulk model, 86
A buried checkerboard, 39
Buried void at 50 MHz, 36

C
Characterizing CNT via electron-spin

resonance (ESR), 334
Chebyshev inequality, 152, 186
Chirality vector, 312
Clenshaw-Curtis grids, 218

Cole-Cole parameters, 258
Confidence levels: stochastic global

optimization, 149
Constitutive parameters of saline, 268
Constitutive relations for advanced composites,

61–63
A coupled-circuit model of Maxwell’s

equations, 69
Crystalline anisotropy, 299

D
Decision boundaries in sample space, 191
Delaminations, 98
Detectability of flaws in anisotropic media:

application to Ti64, 129, 140
Determining coil parameters, 262–264
Determining the ANOVA anchor point, 173
Dielectric properties of tissues, 259
Distribution of Chebyshev points, 234–238
A double checkerboard, 41
Double-exponential correlation function, 160
Drude-Lorentzian model, 311

E
Eddy-current detection of prepreg FAWT, 71
Eigenfunction results for stationary

covariances, 201
Eigenmodes of anisotropic media, 80, 123
Eigenvalue spectrum of Feˆ:TiO_2, 283
Eigenvalue spectrum of Hoˆ:CaF_2, 323
Eight-layer inversion algorithm, 248
Electromagnetic model equations, 21

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. A. Sabbagh et al., Advanced Electromagnetic Models for Materials
Characterization and Nondestructive Evaluation, Scientific Computation,
https://doi.org/10.1007/978-3-030-67956-9

349

https://doi.org/10.1007/978-3-030-67956-9


350 Index

Electromagnetic modeling of biological tissue,
257

Electromagnetic model of atherosclerotic
lesions, 245

Electromagnetic models for carbon-nanotube
reinforced polymers (CNT), 311

Estimation of width of a long, thin crack in a
bolt hole, 154

Euler angles, 112, 127, 193
Example calculations using VIC-3D(R), 64
Example of the multilayer model, 86
Example: raster scan at three frequencies, 15

F
Fatigue-crack growth in cold-worked fastener

holes, 143
Feasible set, 31
FE-SEM images of pristine CNT sheets, 315
First set-theoretic result, 91
First TASMANIAN results, 225
Five-dimensional inverse problem, 237
Fletcher-Reeves, 13
Fletcher-Reeves with restart, 14
Fortran RANDOM_NUMBER subroutine,

164, 194
Frequency response of saline, 265
Functional integration, 157
Further results for permittivity, 77

G
Gaussian noise, 17
Generalized electrical permittivity matrix, 82
Generalized polynomial chaos (gPC), 167
Geometric autocorrelation function of Ti-7Al,

204, 206, 207
Geometry of 4D-Level 8 Chebyshev Sparse

grid, 231
Green’s function for a layered workpiece, 84,

123

H
Heuristic iterative scheme for determining

zero-cutoff threshold, 103
Heuristic rule for host and anomalous cells, 47
High-dimensional model representation

(HDMR), 155, 157, 170, 211
High-dimensional numerical quadrature, 158
Hoˆ:CaF_2, 284
Hund’s rules, 296
Hybrid 1, 14
Hybrid 2, 14

I
Integration of functionals, PCM and stochastic

integral equations, 157
Interaction energy of two magnetic moments,

306
Interpolation theory using splines, 177
Inverse problem no.1, 327
Inverse problems with random anisotropies,

135
Inverse-quality metric, 111, 112

J
Jacobian matrix of derivatives, 145

K
Karhunen-Loève expansion, 160, 161
Karhunen-Loève model, 199
Kolmogorov’s superposition theorem, 170
Kramers-Kronig relations for a passive linear

system, 312

L
Laminated engineering composite structure,

118
Landauer formula for conductance, 316
A layer-stripping algorithm, 31
Layer-stripping for anisotropic flaws, 101
Least median of squares (LMS) estimator, 45
Lesion 2, 254
Levenberg-Marquardt parameter, 253, 275
Logarithm of the median-of-the squares

inversion reliability metric, 38
‘Lorentzian’ resonant curves, 321

M
‘Magnetic Lesion’, 306
Measured and model results for frequency

response of saline, 269, 273, 274
Microstructure of Ti-7Al, 195
Microstructure quantification problems, 86, 98
Microwave solid-state maser, 279
Modeling composite structures, 61
Modeling microstructure quantification, 106
Modeling rotations of anisotropic media, 127
Multi-level single linkage method, 149

N
Nanographene sheet structure, 316
Noisy data and uncertainty propagation, 241
Noninvasive detection and characterization of

atherosclerotic lesions, 256



Index 351

Nonlinear least-squares parameter estimation
(NLSE), 144

Normal modes of biaxial anisotropic media, 82
Nuclear magnetic resonance (NMR), 279
Numerical model for titanium, 192

O
A one-dimensional random surface, 160
Optimization via nonlinear least-squares, 3

P
Paramagnetic effects in CNT, 318
Paramagnetic spin dynamics, 319
Paramagnetic spin dynamics and the spin

Hamiltonian, 279
Pauli spin-matrices, 297
Piezoresistive effects in CNT’s, 312
‘POD’ curves, 191
Polak-Ribiere, 14
Probabilistic collation method (PCM), 168
Probabilistic collocation method (PCM), 157
Probability densities and numerical procedures,

158
Probability of detection (POD), 186
Problem No. 1: fastener with multisite damage

in a slab, 46
Problem No. 2: layer-stripping using

multifrequencies, 46
Problem No. 3: fastener with multisite damage

in bottom plate of a double-plate
system, 51

Problem No. 4: another layer-stripping
example using multifrequencies, 53

Proper orthogonal decomposition, 159

Q
QR-decomposition, 30
Quadratic density, 158
Quantum-mechanical model for conductivity,

313

R
Racetrack coil over Ti64, 132
Results for 4D-level 8, 225

S
Sample impedance calculations for lesions,

247
Scale (S) estimator, 45
Schrodinger wave equation, 319
A second example using VIC-3D(R), 64

A simple inverse problem for conductivity, 329
Second-order random functions, 159
Second set-theoretic result, 92
Sensitivity bound of solution, 145, 148
Sensitivity parameters for system response,

148
Set-theoretic estimation, 28
‘Single domain particle’, 324
Single-wall carbon nanotube (SWCN), 318
Slater-Koster tight-binding framework, 314
Sparse grid algorithm and hierarchal basis

system, 212, 213
Sparse grid starting point for inversion, 235
Spatial imaging using embedded CNT sensors,

332
Spin Hamiltonian, 319
Spin-Hamiltonian for Zeeman and exchange

interactions, 299
Statistical analysis of the feasible set, 31, 90
Steepest descent, 13
Stochastic Euler space, 193
Stochastic inverse problems, 143
Structure of CNT’s, 312
A surface-breaking checkerboard at 50 MHz,

38
A surface-breaking slot at 50kHz, 33
Summary of inversion algorithm, 142, 155
Superparamagnetic iron oxide, 324
Superparamagnetism in CNT’s, 312

T
Tangent coil over flawed workpiece, 135
TASMANIAN sparse grids module, 223
A test problem, 131
Thermally-activated transport model, 329
Tight-binding molecular dynamics (TBMD),

314
Transverse Ply with microcrack, 99, 106
‘Two-cell’ hypothesis, 27, 53, 54
Two-dimensional spline interpolation, 181
2D ellipsoidal confidence region, 156

U
Uniform density, 158

V
Voxel-based inversion via set-theoretic

estimation, 21

Z
Zero-cutoff threshold, 102


	Preface
	Acknowledgments
	Contents
	Part I Voxel-Based Inversion Algorithms
	1 A Bilinear Conjugate-Gradient Inversion Algorithm
	1.1 Optimization via Nonlinear Least-Squares
	1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals
	1.3 The Algorithm
	1.4 Example: Raster Scan at Three Frequencies

	2 Voxel-Based Inversion Via Set-Theoretic Estimation
	2.1 The Electromagnetic Model Equations
	2.2 Set-Theoretic Estimation
	2.3 Statistical Analysis of the Feasible Set
	2.4 A Layer-Stripping Algorithm
	2.5 Some Examples of the Inversion Algorithm
	2.6 Application to Aircraft Structures


	Part II Materials Characterization
	3 Modeling Composite Structures
	3.1 Background
	3.2 Constitutive Relations for Advanced Composites
	3.3 Example Calculations Using VIC-3D®
	3.4 A Coupled-Circuit Model of Maxwell's Equations
	3.5 Eddy-Current Detection of Prepreg FAWT
	3.6 An Anisotropic Inverse Problem for Measuring FAWT
	3.6.1 Return to an Analysis of Fig.3.10

	3.7 Further Results for Permittivity
	3.8 Comments and Conclusions
	3.9 Eigenmodes of Anisotropic Media
	3.10 Computing a Green's Function for a Layered Workpiece
	3.11 An Example of the Multilayer Model
	3.12 A Bulk Model

	4 Application of the Set-Theoretic Algorithm to CFRP's
	4.1 Background
	4.2 Statistical Analysis of the Feasible Set
	4.3 An Anisotropic Inverse Problem for Measuring FAWT
	4.3.1 First Set-Theoretic Result
	4.3.2 Second Set-Theoretic Result
	4.3.3 Comment

	4.4 Modeling Microstructure Quantification Problems
	4.4.1 Delaminations
	4.4.2 Transverse Ply with Microcrack

	4.5 Layer-Stripping for Anisotropic Flaws
	4.6 Advanced Features for Set-Theoretic Microstructure Quantification
	4.6.1 A Heuristic Iterative Scheme to Determine a Zero-Cutoff Threshold

	4.7 Progress in Modeling Microstructure Quantification
	4.8 Handling Rotations of Anisotropic Media

	5 An Electromagnetic Model for Anisotropic Media: Green's Dyad for Plane-Layered Media
	5.1 Theory
	5.2 Applications
	5.3 Some Inverse Problems with Random Anisotropies
	5.4 Detectability of Flaws in Anisotropic Media: Application to Ti64

	6 Stochastic Inverse Problems: Models and Metrics
	6.1 Introducing the Problem
	6.2 NLSE: Nonlinear Least-Squares Parameter Estimation
	6.3 Confidence Levels: Stochastic Global Optimization
	6.4 Summary

	7 Integration of Functionals, PCM and Stochastic IntegralEquations
	7.1 Theoretical Background
	7.2 Probability Densities and Numerical Procedures
	7.3 Second-Order Random Functions
	7.4 A One-Dimensional Random Surface
	7.5 gPC and PCM
	7.6 HDMR and ANOVA
	7.7 Determining the ANOVA Anchor Point
	7.8 Interpolation Theory Using Splines Based Upon Higher-Order Convolutions of the Unit Pulse
	7.9 Two-Dimensional Functions
	7.10 Probability of Detection and the Chebychev Inequality
	7.11 Consistency of Calculations
	Appendix 1: The Numerical Model
	 Appendix 2: The Fortran RANDOM_NUMBER Subroutine

	8 A Model for Microstructure Characterization
	8.1 Introduction
	8.2 Stochastic Euler Space
	8.3 The Karhunen-Loève Model
	8.4 Anisotropic Covariances
	8.5 The Geometric Autocorrelation Function
	8.6 Results for the Anisotropic Double-Exponential Model

	9 High-Dimension Model Representation via Sparse GridTechniques
	9.1 Introduction
	9.2 Mathematical Structure of the Problem
	9.3 Clenshaw-Curtis Grids
	9.4 The TASMANIAN Sparse Grids Module
	9.5 First TASMANIAN Results
	9.6 Results for 4D-Level 8
	9.7 The Geometry of the 4D-Level 8 Chebyshev Sparse Grid
	9.8 Searching the Sparse Grid for a Starting Point for Inversion
	9.9 A Five-Dimensional Inverse Problem
	9.10 Noisy Data and Uncertainty Propagation

	10 Characterization of Atherosclerotic Lesions by Inversion of Eddy-Current Impedance Data
	10.1 The Model
	10.2 Sample Impedance Calculations
	10.3 The Eight-Layer Inversion Algorithm
	10.4 Lesion 2
	10.5 Noninvasive Detection and Characterization of Atherosclerotic Lesions
	10.6 Electromagnetic Modeling of Biological Tissue
	10.6.1 The Lesions Revisited

	10.7 Determining Coil Parameters
	10.7.1 Application to the 21.6mm Single-Turn Loop

	10.8 Measuring the Frequency Response of Saline
	10.9 Determining the Constitutive Parameters of Saline
	10.10 Comments and Discussion
	10.10.1 Summary

	Appendix: The Levenberg–Marquardt Parameter in Least-Squares Problems


	Part III Quantum Effects
	11 Spintronics
	11.1 Introduction
	11.2 Paramagnetic Spin Dynamics and the Spin Hamiltonian
	11.2.1 Application to Fe3+:TiO2
	11.2.2 Ho++:CaF2

	11.3 Superparamagnetic Iron Oxide
	11.4 Fe3+ and Hund's Rules
	11.5 Crystalline Anisotropy and TiO2
	11.5.1 Application to a `Magnetic Lesion'

	11.6 Static Interaction Energy of Two Magnetic Moments

	12 Carbon-Nanotube Reinforced Polymers
	12.1 Introduction
	12.2 Modeling Piezoresistive Effects in Carbon Nanotubes
	12.2.1  The Structure of CNTs

	12.3 Electromagnetic Features of CNTs
	12.4 Quantum-Mechanical Model for Conductivity
	12.5 What Are We Looking At?
	12.6 An Example of a Bianisotropic System
	12.7 Modeling Paramagnetic Effects in Carbon Nanotubes
	12.7.1 Paramagnetic Spin Dynamics and the Spin Hamiltonian
	12.7.2 Application to Fe3+:TiO2
	12.7.3 Superparamagnetic Iron Oxide
	Two Spins
	Three Spins


	12.8 Inverse Problems
	12.8.1 Inverse Problem No. 1
	12.8.2 A Thermally-Activated Transport Model
	12.8.3 A Simple Inverse Problem
	12.8.4 Voxel-Based Inversion: A Surface-Breaking Checkerboard at 50MHz
	12.8.5 Voxel-Based Inversion: A Buried Checkerboard
	12.8.6 Spatial Imaging Using Embedded CNT Sensors
	12.8.7 Inverse Problem No. 2: Characterizing the CNT via ESR
	12.8.8 What Does VIC-3D® Need?



	References
	Index

