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Preface

The complex microbial communities that inhabit most external human surfaces play
a key role in health and diseases. Perturbations of host–microbe interactions by
pathogens can lead to altered host responses that promote cancers. My research
interests are host–microbiome interactions in inflammation and cancer. I have been
working on Salmonella infection and the risk of colon cancer for years. We have
identified Salmonella protein AvrA that manipulates host–bacteria interactions in
inflammation and infection. Our research has characterized Salmonella in regulating
intestinal stem cells and leading to cancer. Our ongoing studies also include inves-
tigating vitamin D receptor regulation of microbiome in intestinal homeostasis and
cancer and identifying dysbiosis and intestinal dysfunction in amyotrophic lateral
sclerosis (ALS).

In June 2017, I was contacted by Becky Zhan, a Senior Editor at Springer Nature.
She was interested in my research on host–bacteria interactions and asked if I had
any proposal suitable for a new Nature/Springer book. To my knowledge, there is no
book combining the topics on infection, inflammation, and microbiome in various
cancers and focusing the mechanisms and implications. About 20% of human
cancers are linked to infection by virus, bacteria, or parasites. However, the majority
of the research papers and books are focused on viral infection and cancer; limited
topics of bacterial infection in cancer are mainly aboutH. pylori and gastric cancer. It
would be very novel to highlight the progress of infection, inflammation, and
emerging roles of microbiome in the pathophysiology of cancers and outcomes of
therapy. Thus, I proposed a book project entitled Inflammation, Infection, and
Microbiome in Cancers: Evidence, Mechanisms, and Implications in 2018. This
book proposal was well received by peers and approved from the publisher. Later, it
was recommended to the American Physiological Society (APS) and approved as an
APS e-book.

I am very motivated by this opportunity to present the progress made in the field
by combining basic research and clinical application with tools of microbiology and
bioinformatics to address many fundamental and applied questions in infection and
cancer. It took me about 2 years to finalize the content. I have contacted peers around
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the world to get them excited about the book project and to become contributors to
the book. I identified some authors when attending the international meetings on
microbiome and cancer. Coincidently, in October 2019, I was invited to present my
research on Salmonella infection and colon cancer at an EMBO workshop entitled
“The impact of bacterial infections on human cancers.” This meeting is considered
as the very first meeting to bring researchers together in the bacterial infection and
cancer field. It also gave me an opportunity to recruit more authors for the ongoing
book project.

Our book is unique as it combines the global expertise and perspective from basic
researchers and physician scientists from American, Asian, and European countries.
In the final book, we are able to offer summary and discussion on the advances of
inflammation and infection in various cancers. We cover the classically known virus
in infection and cancers, novel roles of other pathogens (e.g., bacteria and fungi) in
cancer development, microbial biomarkers for diagnosis and therapy, and immune
therapy in cancer. We focus on mechanistic concepts (e.g., inflammation, cell death,
autophagy, and mitochondria) that underlie the complex relationships between host
and microbes. We highlight the research tools, such as organoid models and germ-
free animals in exploring the pathophysiology of infection and cancer. In addition to
discussing the individual pathogen and its role in cancer, we also highlight emerging
roles of microbiome as a microbial community in the pathogenesis of cancers and
outcomes of therapy. We discuss approaches that can inhibit infection, suppress
chronic inflammation, and reverse dysbiosis represented as reasonable strategies for
restoring the balance between host and microbes, metabolites, mitochondrial func-
tions, and immunity in cancer therapy. The integration of next-generation sequenc-
ing, “omics,” and mega data has expanded the horizons of biomedical research,
enabling the interrogation of complex systems. Furthermore, we have invited experts
to discuss the application of machining learning and statistical analysis in
microbiome research.

The main readers of this book will not only be cancer researchers, but also
physiologists, pathologists, immunologists, microbiologists, and gastroenterologists
working on the inflammatory diseases, infectious diseases, autoimmunity, and other
human diseases. Students will benefit from this book by learning about the progress
made in cancer research and gaps in the field of infection and microbiome.

During the journey of organizing this book project, I learned a lot from my peers.
I would like to thank all the contributors/authors for their generous support and
diligent work. Each chapter has been peer reviewed before we finalized the contents.
I greatly appreciate the constructive suggestions and professional commitment of
reviewers. Their expertise and support have helped us to improve the book. I would
like to thank editors from Nature/Springer for their support and help. It is a great
honor to publish my second APS e-book. I would like to thank APS for its
recognition and Dr. Dee U. Silverthorn for her support. My ongoing research is
supported by the NIH R01s, DOD breast cancer research awards, and a VA merit
award.

I am in debt to my family who has helped me to handle the stresses of academic
life. I would like to dedicate this book to my husband, sons, and parents. I thank them
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for supporting me to develop my skills in independent judgment, critical thinking,
and persistence in research. Since the beginning of 2020, the COVID-19 pandemic
has been a major challenge for our medical practice and to our research community.
We are in a world needing tolerance and facts. Hope my knowledge and training
could eventually help and support our society.

May the road rise up to meet you.
May the wind be always at your back.
May the sun shine warm upon your face;
the rains fall soft upon your fields. . .

May you find inspiration from this book for the future research direction.

Chicago, IL, USA Jun Sun
August 8th, 2020
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Chapter 1
Microbiome and the Hallmarks of Cancer

Rachel M. Bleich and Janelle C. Arthur

Abstract Microbes have long been linked to cancer: from studies on Epstein–Barr
virus (EBV) and lymphoma to Helicobacter pylori and gastric cancer. Although
single infectious agents were initially associated with carcinogenesis, technological
advances have broadened our knowledge of microbial communities that may impact
carcinogenesis, namely, the trillions of microorganisms that live in symbiosis with
humans. Commensal microbes (microbiota) live in close association with their
human hosts and impact host health, immunity, and homeostasis. Disruption to the
composition of these microbial communities can dysregulate host cellular processes
and promote the development of various diseases, including cancer. The “hallmarks
of cancer” is an important framework for understanding the processes of how normal
cells turn cancerous. This framework can also be applied to the mechanisms under-
lying how microbes and microbial communities influence carcinogenesis and cancer
development in their human hosts. This chapter uses the hallmarks of cancer as a
framework to discuss mechanisms for how microbiota promote tumorigenesis
through crosstalk with the host, interactions between other microbes, and the role
of microbial localization in relation to carcinogenesis.
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Abbreviations

AEEC Attaching and effacing E. coli
AIEC Adherent-invasive E. coli
AMP Antimicrobial peptide
AOM Azoxymethane
APC Adenomatous polyposis coli
BFT B. fragilis toxin
BGC Biosynthetic gene cluster
CDT Cytolethal distending toxin
COX-2 Cyclooxygenase-2
CRC Colorectal cancer
CTLA4 Cytotoxic T lymphocyte-associated protein 4
DSS Dextran sulfate sodium
EBV Epstein–Barr virus
EMT Epithelial to mesenchymal transition
EPEC Enteropathogenic E. coli
ERK Extracellular signal-regulated kinase
ETBF Enterotoxigenic Bacteroides fragilis
HDAC Histone deacetylase
HGF Hepatocyte growth factor
HPV Human papillomavirus
IBD Inflammatory bowel disease
IgA Immunoglobulin A
IL Interleukin
KSHV Kaposi sarcoma-associated herpesvirus
Lcn2 Lipocalin-2
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MDSC Myeloid-derived suppressor cell
c-MYC Myelocytomatosis
MyD88 Myeloid differentiation primary response gene 88
NFAT Nuclear factor of activated T cells
NK Natural killer
NF-κB Nuclear factor-κB
NLR NOD-like receptor
NOC N-nitroso compound
PCWBR2 Putative cell wall binding repeat 2
PD-L1 Programmed death-ligand 1
PI3K Phosphoinositide 3-kinase
pks Polyketide
ROS Reactive oxygen species
SCFA Short-chain fatty acid
SENP1 SUMO-specific peptidase 1
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SFB Segmented filamentous bacteria
SMO Spermine oxidase
SPF Specific pathogen free
Th17 T helper-17
TIGIT T cell immunoreceptor with Ig and ITIM domains
TLR Toll-like receptor
TNF-a Tumor necrosis factor alpha
VEGF Vascular endothelial growth factor

1.1 Introduction

The close interaction between microbes and humans has evolved into an important
symbiotic relationship impacting human health and survival. The presence of tril-
lions of microbes in close contact with their human hosts is beneficial for host
immunity and metabolism. However, shifts in microbial populations (dysbiosis) or
infection by microbial pathogens negatively impact human health through inflam-
mation, translocation to other body sites, and secretion of microbial products,
resulting in a variety of disease conditions.

1.1.1 Oncomicrobes

Dysbiosis has been associated with cancer development and progression (Schwabe
and Jobin 2013; Dzutsev et al. 2017); however the first links between microbes and
cancer came through single infectious agents. Microbes have been directly linked to
cancer over the past several decades. Helicobacter pylori (H. pylori), which causes
gastric adenocarcinoma, was the initial bacterial link to cancer and is the classic
example of an oncogenic bacteria (Vyshenska et al. 2017). Other oncogenic bacteria,
such as Fusobacterium and colibactin-producing Escherichia coli (E. coli), have
been emerging in more recent years. Even earlier, viruses have been directly linked
to cancer development. Epstein–Barr virus (EBV) was discovered in 1964 as the first
human-linked tumor virus and causes lymphoma (Moore and Chang 2010; Chen
et al. 2017). Since then several other viruses have been directly linked to cancer
including Hepatitis B and C viruses to liver cancer, human papillomavirus (HPV) to
cervical cancer, and Kaposi sarcoma-associated herpesvirus (KSHV) to Kaposi
sarcoma (Moore and Chang 2010; Chen et al. 2017). The fungus Candida albicans
has recently been linked to an increased risk of carcinogenesis and metastasis in
immunosuppressed patients (Ramirez-garcia et al. 2016). Additionally, several
parasites can also directly cause cancer. The parasitic flatworm Schistosoma
haematobium can cause urinary bladder cancer, and two other flukes (Clonorchis
sinensis and Opisthorchis viverrini) can cause biliary tree cancer (Chen et al. 2017).
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1.1.2 Hallmarks of Cancer

The “hallmarks of cancer” first proposed by Hanahan and Weinberg in 2000 and
expanded in 2011 comprise key biological capabilities acquired by normal cells as
they progress toward tumor development (Hanahan and Weinberg 2000, 2011). The
initial six hallmarks included sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality, inducing angio-
genesis, and activating invasion and metastasis. Two factors that enable these
capabilities, genome instability and mutation and tumor-promoting inflammation,
have been included among the hallmarks along with the more recently emerging
traits of avoiding immune destruction and deregulating cellular energetics. These
hallmarks provide a clear rationale for the multistep process of how neoplastic
disease develops through acquisition of traits cancer cells need to become tumori-
genic within the influence of the tumor microenvironment. At the end of their update
to the hallmarks of cancer, Hanahan and Weinberg note that understanding the
signaling circuitry and heterotypic interactions between the various cell types within
the tumor microenvironment would be an important area of research over the next
decade. Not only have interactions between cells within the tumor microenviron-
ment become a critical area of research but also understanding the interactions
between microbial cells and host cells within and without the tumor
microenvironment.

1.1.3 Microbiota and Cancer

Commensal microbiota, or the microbial communities that live in close association
with humans, play an important role in modulating host physiology and tissue
homeostasis (Dzutsev et al. 2017). Microbiota impact host metabolism, inflamma-
tion, immunity, and cellular proliferation, which are all processes that when
dysregulated become highly linked to tumorigenesis (Tibbs et al. 2019). Dysbiosis,
or microbial imbalance of the resident microbiota, disrupts these processes and can
promote the development of disease, including various cancers (Schwabe and Jobin
2013; Dzutsev et al. 2017). Ample evidence suggests that the microbiota can directly
impact tumor formation. Fecal transplants from human patients with colorectal
cancer (CRC) promote carcinogenesis in germ-free and conventional mice given
the colon-specific carcinogen azoxymethane (AOM) (Wong et al. 2017). Transfer-
ring the microbiota of tumor-bearing mice vs. non-tumor-bearing mice accelerates
the development and severity of tumorigenesis in the AOM/dextran sulfate sodium
(DSS) mouse model (Zackular et al. 2013). As more research emerges on microbial
mechanisms that directly impact carcinogenesis and tumor progression, our under-
standing of how our microbes and microbial communities influence most of the host
factors described in the hallmarks of cancer is growing. In 2017, Fulbright et al.
reviewed how specific members of the microbiota influence the hallmarks of cancer
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(Fulbright et al. 2017). Here we will review and expand on how the microbiota
promote tumorigenesis through crosstalk with the host, interactions between
microbes, and the role of microbial localization in relation to carcinogenesis
(Fig. 1.1).

1.2 Mechanisms of Microbes and the Hallmarks of Cancer

1.2.1 Cellular Proliferation

Normal tissues carefully regulate and control the release of growth-promoting and
death-inducing signals that guide progression through the cell cycle and maintain
proper tissue architecture and function. By deregulating these signals, cancer cells
are able to sustain cellular proliferation, which is one of the most fundamental
hallmarks of cancer. The primary route microbiota impact cellular proliferation is
through blocking cell-to-cell contact inhibition by targeting the adhesion molecule
E-cadherin, which activates the Wnt/ß-catenin pathway. Mutations in the ß-catenin
pathway are associated with numerous cancers; thus it is not surprising that this
pathway is a major target of procarcinogenic microbes. Enterotoxigenic Bacteroides
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Fig. 1.1 Microbiota and microbial metabolites influence many hallmarks of cancer through diverse
mechanisms and signaling. Fulbright LE, Ellermann M, Arthur JC (2017) The microbiome and the
hallmarks of cancer. PLoS Pathog 13(9):e1006480. https://doi.org/10.1371/journal.ppat.1006480.
g001
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fragilis (ETBF) secretes B. fragilis toxin (BFT), which is a zinc-dependent
metalloprotease that cleaves E-cadherin, releasing ß-catenin, leading to activation
of cell proliferation-regulating transcription factor c-MYC (myelocytomatosis) and
proliferation of colonic epithelial cells (Wu et al. 1998, 2003). Similarly,
Fusobacterium nucleatum (F. nucleatum) promotes colorectal cancer (CRC) prolif-
eration by binding its adhesin FadA to E-cadherin on CRC cell surfaces (Rubinstein
et al. 2019). The Salmonella effector AvrA activates Wnt/ß-catenin signaling intra-
cellularly by deubiquitinating ß-catenin and blocking its degradation. This signaling
upregulates c-MYC and cyclin D1 to promote proliferation, maintain the stem cell
compartment, and promote tumorigenesis (Liu et al. 2010; Lu et al. 2014). AvrA can
increase p53 acetylation in intestinal epithelial cells, which induces cell cycle arrest
at G0/G1 and leads to ß-catenin activation (Wu et al. 2010). The H. pylori effector
CagA promotes Wnt/ß-catenin signaling in gastric cancer by binding E-cadherin,
disrupting its complex with ß-catenin and GSK-3ß, and disrupting degradation of
cytosolic ß-catenin (Yong et al. 2015). CagA has also been shown to inactivate
tumor suppressor pathways, including p53 (Yong et al. 2015).

Other microbes and microbial components can activate additional signaling
pathways to promote cellular proliferation. F. nucleatum enrichment in CRC tumors
is mediated by binding of the adhesin, Fap2, to a disaccharide motif (Gal-GalNAc)
that is highly expressed on tumor cells (Abed et al. 2016; Brennan and Garrett 2019).
Recognition of F. nucleatum lipopolysaccharide (LPS) by toll-like receptor
4 (TLR4) activates nuclear factor-κB (NF-κB), resulting in the production of
microRNA-21 that then regulates the transcription of genes involved in proliferation
and invasion (Yang et al. 2017). Peptostreptococcus anaerobius (P. anaerobius)
also adheres preferentially to CRC cells via its cell surface protein PCWBR2
(putative cell wall binding repeat 2) by binding and activating α2/ß1 integrin, a
cell surface molecule abundant on cancer cells. Blocking this interaction with a
peptide, siRNA, or antibodies reduced P. anaerobius attachment and oncogenic
effects in ApcMin/+ mice (Long et al. 2019). Indeed, many members of the microbiota
induce cellular proliferation through well-known pathways including NF-κB, ERK
(extracellular signal-regulated kinase), and PI3K (phosphoinositide 3-kinase). Taken
together, these studies highlight that a common mechanism among members of the
microbial community is activating epithelial proliferation and initiating cancer
development.

1.2.2 Deregulating Cellular Energetics

The increased levels of cellular proliferation associated with neoplastic disease also
involve changes to energy metabolism to fuel the increased cell growth. Butyrate, a
short-chain fatty acid (SCFA) produced by gut microbiota through fermentation of
dietary fiber, has been linked to overall gut health and homeostasis. A decrease in
butyrate-producing bacteria has been observed in CRC cases vs. controls (Perrin
et al. 2001; Bultman 2014). While butyrate-producing bacteria can attenuate tumor
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burden in CRC-susceptible mice, colonization with a mutant strain that produces
reduced levels of butyrate fails to attenuate tumor burden to the extent of the wild-
type butyrate-producing strain (Donohoe et al. 2014; Sebastián and Mostoslavsky
2014). Additional supplementation with dietary butyrate rescues this protective
effect (Donohoe et al. 2014; Sebastián andMostoslavsky 2014). Normal colonocytes
rely on butyrate as an energy source, which undergoes ß-oxidation in the mitochon-
dria, providing the energy needed for rapid proliferation of the colonic epithelium
(Donohoe et al. 2011). CRC cells switch to glucose utilization as an energy source,
allowing butyrate to accumulate and function as an HDAC (histone deacetylase)
inhibitor, which regulates gene expression and reduces tumor burden (Vander
Heiden et al. 2009; Donohoe et al. 2012, 2014). The full tumor-suppressive effects
of butyrate are multifaceted and involve other hallmarks of cancer as well. Further
studies are needed to understand the broader impact of the gut microbial metabolome
on cellular energetics and the overall hallmarks of cancer

In response to aging and stressors, cells can stop dividing and enter cellular
senescence to halt proliferation. However, senescent cells promote tumorigenesis
by secreting growth factors that enable tumor growth. Senescent cells are metabol-
ically active and secrete various growth factors in addition to reactive oxygen species
(ROS), pro-inflammatory cytokines, and chemokines (Wang et al. 2017). In senes-
cent cells, metabolism is upregulated but altered to include an increase in glycolysis
and a reduction in oxidative phosphorylation and the TCA cycle, leading to a
characteristic decrease in intracellular NAD+ (Sabbatinelli et al. 2019). Colibactin-
producing E. coli help sustain tumor cell growth by inducing epithelial senescence
and enhancing production of hepatocyte growth factor (HGF) (Cougnoux et al.
2014; Dalmasso et al. 2015). The underlying mechanisms are not fully clear but
involve downregulating p53 SUMOylation through microRNA-20a-5p and SENP1
(SUMO-specific peptidase 1) (Secher et al. 2013; Cougnoux et al. 2014). Thus, by
deregulating cellular energetics in cells of the tumor microenvironment, colibactin-
induced senescent cells can promote tumor growth.

1.2.3 Avoiding Immune Destruction

The immune system keeps constant surveillance and is responsible for recognizing
and eliminating cancer cells. Thus, for tumorigenesis to occur, neoplastic cells must
avoid detection and destruction. Members of the microbiota can protect tumor cells
from immune-mediated detection and killing and, in combination with immunother-
apy and chemotherapy, may enhance antitumor immunity. Natural killer (NK) cells
kill non-self cells (i.e., virus-infected and tumor cells) via coordination of activating
and inhibitory receptors. Fusobacterium nucleatum inhibits NK cells by binding NK
cell inhibitor receptor TIGIT (T cell immunoreceptor with Ig and ITIM domains) via
the bacterial Fap2 adhesin, which allows tumor cells to evade immunosurveillance
(Gur et al. 2015). Additionally, Fusobacterium induces immunosuppressive
myeloid-derived suppressor cells (MDSCs), which can boost tumor formation by
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interfering with immune surveillance (Montero et al. 2012; Gur et al. 2015; Good-
man and Gardner 2018). Helicobacter pylori is able to subvert the adaptive immune
system, allowing the bacteria to establish an infection and promote gastric carcino-
genesis through several mechanisms. For example, it can induce T cell apoptosis by
upregulating Fas ligand on Fas-expressing T cells (Wang et al. 2001). The H. pylori
vacuolating toxin and virulence factor VacA inhibits T cell proliferation by blocking
interleukin (IL)-2 secretion via nuclear factor of activated T cells (NFAT), an
important transcription factor for T cell activation (Sundrud et al. 2004). H. pylori
reduces the immune response in the gastric epithelium by inducing Tregs, which
impair the response of memory T cells (Beswick et al. 2007). Finally, H. pylori
induces programmed death-ligand 1 (PD-L1) expression on gastric epithelial cells,
which regulates T cell programmed cell death and reduces T cell proliferation,
causing a loss of immune surveillance (Beswick et al. 2007; Silva et al. 2016;
Holokai et al. 2019).

A major area of current investigation relates to enhanced efficacy of immuno-
therapy and chemotherapy by members of the gut microbiota. Immune checkpoint
inhibitors target and block inhibitory receptors on T lymphocytes, thus permitting
robust T cell-mediated antitumor immunity. While these treatments have revolu-
tionized cancer therapy, many patients simply do not respond (Agrawal 2019).
Although the mechanisms are not yet well understood, several lines of evidence
suggest that immunotherapy efficacy is driven by the functional characteristics of the
microbiome, including “immunostimulatory” bacteria. It was first observed in 2013
that tumor-infiltrating myeloid cells were ineffective in germ-free and antibiotic-
treated mice harboring subcutaneous xenograph tumors (Iida et al. 2013). Two years
later, specific microbes were implicated. Administration of Bifidobacterium with an
immunotherapeutic targeting PD-L1 almost completely stops tumor growth in mice
(Sivan et al. 2015). Bifidobacterium promotes dendritic cell function and antitumor
abilities of cytotoxic T cells, which leads to reduced growth of subcutaneous
melanoma in a xenograft mouse model (Sivan et al. 2015). Likewise, Bacteroides
thetaiotaomicron and nontoxigenic B. fragilis improve anti-cytotoxic T lymphocyte-
associated protein 4 (CTLA4) immunotherapeutic efficacy in sarcoma, melanoma,
and colorectal cancer xenograft mouse models (Vétizou et al. 2015). This is driven
by microbe-specific T cell responses, as adoptive transfer of B. fragilis-specific T
cells is also protective (Vétizou et al. 2015). More recent studies demonstrate
protective effects of Akkermansia muciniphila (Routy et al. 2018), Bifidobacterium
longum (Matson et al. 2018), and Faecalibacterium prausnitzii (Gopalakrishnan
et al. 2018). In these studies, colonization of germ-free mice with “responder”
patient stool vs. “non-responder” stool combined with immunotherapy enhances
antigen presentation and activated T lymphocytes, leading to protective antitumor
effects. Indeed, supplementing non-responder stool with Akkermansia induces sim-
ilar protective effects (Routy et al. 2018). Although across these studies there is a
lack of common protective microbial signature, meta-analyses suggest that func-
tional attributes have more predictive power than taxonomy (Gharaibeh and Jobin
2019).
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1.2.4 Tumor-Promoting Inflammation

Almost every neoplastic lesion contains immune cells, with some tumors densely
packed. Once thought to be a solely antitumoral response, the inflammatory response
can enhance tumor progression and help neoplasias acquire additional hallmarks.
Inflammation can contribute to multiple hallmarks including cellular proliferation,
angiogenesis, invasion and metastasis, and limiting cell death. In fact, treatment with
anti-inflammatory drugs is effective in reducing colorectal cancer rates and death
(Lasry et al. 2016). Patients with inflammatory bowel disease (IBD), a chronic
immune-mediated inflammatory condition, are at a greater risk of developing colo-
rectal cancer. The close proximity of the microbiota and mucosal immune system
provides opportunity for resident microbes to elicit protumorigenic immune
responses. In the AOM/Il10�/� model of colitis-associated cancer, microbes are
required for inflammation and carcinogenesis (Uronis et al. 2009; Arthur et al. 2014).
In specific pathogen-free (SPF) housed ApcMin/+; Il10�/� mice, inflammation corre-
lates with colon tumorigenesis (Tomkovich et al. 2017).

Intestinal microbiota impact mucosal barrier integrity, which alters immune
responses (Bhatt et al. 2017). One layer of epithelial cells covered with a thick
layer of mucus is all that separates the gut microbiota from the mucosal immune
system. This physical barrier regulates interactions between the host and microbiota,
along with secreted molecules like mucins (mucus), antimicrobial peptides (AMPs),
and immunoglobulin A (IgA) (Yang and Jobin 2017). The microbiome of CRC
patients is usually enriched for pro-inflammatory opportunistic pathogens and
depleted of butyrate-producing bacteria that help maintain intestinal homeostasis
(Marchesi et al. 2011; Gao et al. 2015). Butyrate-producing bacteria promote barrier
function in part by upregulating the claudins and occludins involved in tight
junctions (Kelly et al. 2015). Disruption of intestinal epithelial homeostasis leads
to inflammation and tumorigenesis driven by bacterial translocation and the spread
of bacterial metabolites (Yang and Jobin 2017). Inflammation increases epithelial
oxygenation in the colon of mice, which can then drive expansion of E. coli through
aerobic respiration (Cevallos et al. 2019). This aerobic expansion of colibactin-
producing E. coli was required for the carcinogenic activity of this species in a
mouse model of CRC (Cevallos et al. 2019).

Generally speaking, toll-like receptors (TLRs) detect bacterial antigens and signal
through myeloid differentiation primary response gene 88 (MyD88) and NF-κB to
release pro-inflammatory cytokines and trigger an immune response (Kawasaki and
Kawai 2014). However, inflammation and tumorigenesis are modulated by cell type-
specific responses. This is exemplified by a study demonstrating that genetic deletion
of IL-1R1 (a cytokine receptor for the major pro-inflammatory cytokine IL-1) in
epithelial cells or T cells decreases inflammation and cancer, whereas IL-1R1
deletion in neutrophils enhances inflammation and cancer in the APC (adenomatous
polyposis coli) model (Dmitrieva-Posocco et al. 2019). Various aspects of NF-κB
signaling and IL-6 sensing and production also mediate cell type-specific responses.
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However, a common procarcinogenic immune signature involves IL-17 and T
helper-17 immunity (Wang et al. 2014).

T helper-17 (Th17) immunity is associated with worse prognosis in CRC and is
promoted by microbes and their metabolites (Grivennikov et al. 2012; Wang et al.
2014). Th17 immunity is trained as a protective host defense response under
conditions of homeostasis by epithelial, adherent bacteria, including segmented
filamentous bacteria (SFB) (Atarashi et al. 2015). However, these protective effects
can turn pathogenic in the setting of inflammation and cancer. ETBF toxin activates
Th17 T cell-mediated responses in ApcMin/+ mice, and blocking IL-17 reduces
inflammation and tumorigenesis in this model (Wu et al. 2009; Housseau et al.
2016). IL-17 is produced by immune cells and targets IL-17 receptor (IL-17RA) on
epithelial cells, triggering a signaling cascade through MAPK (mitogen-activated
protein kinases) and NF-κB pathways that promote proliferation particularly in
neoplastic cells (Wang et al. 2014). Alistipes are also implicated in inflammation-
related carcinogenesis through human metagenomic studies of CRC (Feng et al.
2015). Mouse modeling in Il10�/� Lcn2�/� (lipocalin-2) mice revealed that Alistipes
induces tumorigenesis associated with enhanced pro-inflammatory cytokine produc-
tion, STAT3 activation, and epithelial hyperplasia (Feng et al. 2015; Moschen et al.
2016; Tilg et al. 2018). Although IL-17 RNA and protein were elevated in the
epithelium, the dependence of IL-17 was not tested in this study. Instead, inflam-
mation and tumorigenesis were significantly reduced through genetic deletion of
IL-6, a cytokine that stimulates IL-17 production from Th17 cells (Moschen et al.
2016).

1.2.5 Genome Instability and Mutation

Many of the hallmarks of cancer are acquired through changes and mutations to the
genomes of neoplastic cells that confer growth and survival advantages. E. coli
expressing the genotoxin colibactin enhance tumorigenesis in mouse models and are
enriched in human CRC tissues (Arthur et al. 2012; Buc et al. 2013). Colibactins are
hybrid polyketide-nonribosomal peptides produced by Enterobacteriaceae harbor-
ing the 54 kilobase genomic polyketide (pks+) island (Nougayrède et al. 2006;
Homburg et al. 2007). Epithelial cells that encounter colibactin have DNA double-
strand breaks and are characterized by ɣ-H2AX foci, G2/M cell cycle arrest,
megalocytosis, and activation of ATM/CHK/CDC25/CDK1 DNA damage signaling
cascades (Nougayrède et al. 2006; Arthur et al. 2012). Colibactin works, at least in
part, by alkylating DNA to form adducts that cause DNA damage in colonic
epithelial cells in cellulo and in mice (Bleich and Arthur 2019; Wilson et al.
2019). Pks + E. coli have been shown to cause DNA cross-links directly on purified
DNA (Bossuet-Greif et al. 2018). E. coli lacking pks induce similar levels of
inflammation in Il10�/� mice, but fewer tumors and less invasion than mice colo-
nized with pks + E. coli (Arthur et al. 2012, 2014). Attaching and effacing E. coli
(AEEC; pks-negative) can also reduce expression of DNA mismatch repair proteins
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MSH2 and MLH1, which are mutated in hereditary nonpolyposis colorectal cancer
(Kim et al. 2002; Maddocks et al. 2009). Enteropathogenic E. coli (EPEC) inhibits
DNA repair in a pks-independent manner via NleE, a secretory cysteine
methyltransferase, that blocks DNA annealing helicase and endonuclease
ZRANB3 (Yao et al. 2014). However, AEEC and EPEC are generally acute path-
ogens, and their role in cancer development is not known.

Another bacterial toxin that damages DNA and is therefore thought to be related
to cancer development is cytolethal distending toxin (CDT). CDT is produced by
various Proteobacteria and induces DNA damage and activation of DNA damage
response in cells (Hassane et al. 2003; Thelestam and Frisan 2004). CDTs are
heterotrimeric toxins with three subunits (CdtA, CdtB, and CdtC) with different
functions (Song et al. 2013). CdtB can activate DNAseI, while CdtA and CdtC help
with binding of the toxin to the plasma membrane of host cells (Scuron et al. 2016).
In Salmonella, CdtB is also part of the typhoid toxin complex with pertussis-like
toxin A (pltA) and pertussis-like toxin B (pltB) (Rosadi et al. 2016). CdtB induces
DNA damage and cell cycle arrest, which is potentially linked to carcinogenesis in
the gallbladder upon chronic infection (Iyer et al. 2016; Di Domenico et al. 2017). In
Rag2�/� mice, CDT-producing Helicobacter hepaticus (H. hepaticus)
downregulates genes involved in DNA repair pathways (Mangerich et al. 2012).
The cancer-related activity of CDT is linked to chronic exposure at low doses as a
possible side effect of infection (Guidi et al. 2013; Rosadi et al. 2016).

In addition to interactions with bacterial products, gut microbes can cause DNA
damage through the formation of host-derived reactive oxygen species (ROS). This
can be mediated by inflammation caused by infection. For example, H. pylori can
induce a chronic inflammatory state with increased production of ROS, leading to
DNA strand breaks and genomic instability (Wong et al. 2019). Bacterial proteins
can also induce ROS formation. B. fragilis enterotoxin upregulates expression of
spermine oxidase (SMO), a polyamine catabolic enzyme that is induced by inflam-
matory stimuli (Goodwin et al. 2011). SMO induces ROS formation and DNA
damage, which is evidenced by increased ɣ-H2AX foci, indicative of double-strand
DNA breaks, in human colon cancer cells exposed to purified enterotoxin (Goodwin
et al. 2011). Enterococcus faecalis (E. faecalis) can induce ROS in epithelial cells
through generation of superoxide through interaction with macrophages (Huycke
et al. 2002; Wang et al. 2015). In vitro and in vivo studies have shown that
E. faecalis induces macrophages to generate superoxide and hydrogen peroxide
that damage epithelial cell DNA by forming DNA-protein cross-links, DNA breaks,
and DNA point mutations (Huycke et al. 1996, 2001, 2002; Huycke and Moore
2002; Ley et al. 2006; Wang et al. 2008). Gene knockout experiments identified
membrane-associated quinones as the source for superoxide (Ramsey et al. 2014;
Wang et al. 2017). Further studies have shown that when E. faecalis activates
macrophages and polarizes them to an M1-like phenotype, those macrophages can
then cause mutations and chromosomal instability in primary epithelial cells through
a bystander effect (Wang et al. 2015; Wang and Huycke 2015). This is at least
partially mediated by trans-4-hydroxy-2-nonenal (4-HNE), a highly reactive alde-
hyde produced by lipid peroxidation in macrophages that induces cyclooxygenase-2
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(COX-2) and inflammatory cytokines like tumor necrosis factor alpha (TNF-a) that
enhance procarcinogenic effects (Yang et al. 2012; Emerit 2007; Wang et al. 2012).

Additional byproducts of bacterial metabolism are implicated in tumorigenesis.
N-nitroso compounds (NOCs) can either be ingested through consumption of
processed meats or produced as products of bacterial transformation of nitrate into
nitrite, which reacts with other nitrogenous compounds in the body (Gill and
Rowland 2002; Dubrow et al. 2010). Many of these NOCs are DNA alkylating
agents that have been associated with gastrointestinal cancer (Loh et al. 2011).
Sulfate-reducing bacteria are anaerobic organisms that produce hydrogen sulfide
(H2S) by reducing sulfate and oxidizing organic compounds or molecular hydrogen
(Mandal 2018). Various species like Bilophila wadsworthia and Alistipes spp. are
abundant in some CRC patients and produce H2S that is toxic to epithelial cells and
causes DNA damage (Attene-Ramos et al. 2007; Yazici et al. 2017). Hydrogen
sulfide can also modulate gene expression, cell cycle progression, and DNA repair
(Wang et al. 2017). Elevated H2S is a feature of the microbiome of Crohn’s disease
patients, with Atopobium parvulum acting as a central hub of H2S-producing
microbes. Administering Il10�/� mice the H2S scavenger bismuth reduces
A. parvulum-induced colitis, but the impact on colorectal cancer is currently
unknown (Mottawea et al. 2016).

Eukaryotes and gut bacteria produce polyamines, small cationic molecules that
can damage DNA and induce oxidative stress (Gobert and Wilson 2017). Certain
bacterial strains, including ETBF and H. pylori, can upregulate polyamine produc-
tion in host cells (Pegg 2013). Polyamine oxidation by spermine oxidase, such as
upon H. pylori infection, causes hydrogen peroxide release, DNA damage in gastric
epithelial cells, and apoptosis of macrophages, leading to an increased risk of gastric
carcinogenesis (Hardbower et al. 2013). Polyamines can also target bacteria: a recent
study found that the polyamine spermidine is required for full genotoxic activity of
colibactin-producing E. coli (pks+) (Chagneau et al. 2019). Spermidine is required
for direct damage of DNA and may be involved in the regulation of the synthesis of
colibactin (Chagneau et al. 2019). Another polyamine, N(1), N(12)-
diacetylspermine, that regulates cellular proliferation is detected in metabolomic
analyses of biofilms from colon cancer patients (Hiramatsu et al. 2005; Johnson et al.
2015). The levels of this polyamine metabolite are higher in the proximal colon,
corresponding to a higher incidence of biofilms detected on CRCs in the proximal
colon (Allgayer et al. 2007; Dejea et al. 2014). This indicates the biofilm microbial
community may differentially produce cancer-associated metabolites (Dejea and
Sears 2016). Overall, bacterially produced or induced metabolites are influential in
promoting DNA damage and mutations that can help promote carcinogenesis and
fuel other hallmarks of cancer. Analysis of Human Microbiome Project data has
revealed several thousand biosynthetic gene clusters (BGCs) within human-
associated bacterial genomes (Donia et al. 2014). With such a widespread distribu-
tion of small-molecule metabolite biosynthesis systems, exploring their impact on
the process of carcinogenesis is an area we expect will grow rapidly in the near
future.
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1.2.6 Remaining Hallmarks

In addition to the previously discussed hallmarks of cancer, five more remain.
Although evidence exists these are impacted by the microbiome, it is an open area
of investigation into microbial mechanisms driving these hallmarks. These hall-
marks include evading growth suppressors, activating invasion and metastasis,
enabling replicative immortality, inducing angiogenesis, and resisting cell death.
These hallmarks are employed by cancer cells to avoid suppression and destruction
by the body while promoting their own spread and survival.

Epithelial to mesenchymal transition (EMT) is associated with invasion and
metastasis in CRC (Vu and Datta 2017). During EMT, cells lose epithelial traits
including cell-cell contact and gain mesenchymal traits like increased motility
(Vu and Datta 2017). Gut microbes can induce an epithelial-to-mesenchymal tran-
sition through various signaling pathways that lead to the suppression of tumor-
suppressor E-cadherin and thus increased tumor invasion and metastasis (Thiery
et al. 2009; Chandrakesan et al. 2014). The Salmonella effector, SopB, is linked to
EMT by increasing expression of EMT transcriptional activators and
downregulating E-cadherin (Knodler et al. 2005; Zavadil and Böttinger 2005;
Clevers 2006). SopB has been shown to do this through activation of the serine
and threonine kinase Akt (protein kinase B), which increases the transcriptional
activity of ß-catenin through phosphorylation, and activates the Wnt/ß-catenin
pathway (Knodler et al. 2005; Zavadil and Böttinger 2005; Clevers 2006). This
promotes proliferation and resistance to apoptosis, allowing transformed cells to
spread beyond the initial tumor (Knodler et al. 2005).

During normal development and under conditions of homeostasis, the gut
microbiota promotes angiogenesis responses through toll-like receptors (TLRs)
and NOD-like receptors (NLRs) (Schirbel et al. 2013). An early observation was
that germ-free mice developed fewer capillaries in their small intestinal villi
(Stappenbeck et al. 2002). Lipopolysaccharide (LPS), part of the cell wall of
Gram-negative bacteria that is recognized by TLR4, can increase angiogenesis and
metastasis by stimulating endothelial cells to produce vascular endothelial growth
factor (VEGF) and increase vasculature permeability (Harmey and Bouchier-Hayes
2002; Pollet et al. 2003). Cell wall extracts from Streptococcus gallolyticus can
induce IL-8 expression that promotes angiogenesis (Biarc et al. 2004). While we
have some mechanistic information linking the microbiota and these remaining
hallmarks of cancer, future studies will hopefully reveal further connections.
Although we have described these hallmarks individually, it is important to note
that many of these hallmarks of cancer work together and are influenced by one
another. Additionally, the microbial populations shift and respond to these hall-
marks, thereby driving other hallmarks. For example, increased inflammation leads
to changes in the microbial community, like increasing levels of pks + E. coli (Arthur
et al. 2012). Developing cancer impacts the transcriptome of intestinal pks + E. coli,
including genes of the pks island (Arthur et al. 2014) that may increase the likelihood
of developing mutations that promote tumorigenesis.
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1.3 Additional Microbial Factors that Influence Cancer

1.3.1 Establishing a Chronic Infection

In order to influence cancer development, some microbes need close proximity to the
host for extended periods of time. Several microbes can subvert the immune system
by hiding and surviving with host epithelial or immune cells. This allows the bacteria
to establish a chronic infection, increasing the ability to influence tumorigenesis. The
Salmonella effector AvrA helps the bacteria survive within macrophages and epi-
thelial cells by preventing apoptosis and promoting bacterial propagation (Wu et al.
2012). To further evade the immune system, Fusobacterium can live within cells, as
FadA binding to E-cadherin on epithelial cells enables cellular uptake. This may also
drive production of inflammatory cytokines (Rubinstein et al. 2013; Goodman and
Gardner 2018). Adherent-invasive E. coli (AIEC) can invade intestinal epithelial
cells and survive and replicate inside macrophages, helping them subvert the
immune system (Prorok-Hamon et al. 2014). E. faecalis is effective at evading
immune responses and is resistant to macrophage killing (Gentry-weeks et al.
1999). E. faecalis can survive intracellularly by preventing formation of vacuoles
needed for acidification of phagolysosomes, and it interferes with transport of
vacuoles to lysosomes (Zou and Shankar 2016). Microbes have evolved mechanisms
for their survival with the host, and chronic contact with the host cells can impact
possible carcinogenesis and cancer development.

1.3.2 Microbial Interactions

Although there has been progress in elucidating mechanisms of the role of individual
microbes in cancer development and progression, no single species is universally
present among cancer or CRC patients. There is also variation in microbial commu-
nities between individual patients, suggesting that different combinations of
microbes work together to drive or protect from tumorigenesis (Sears and Garrett
2014). Not only are host-microbe interactions important for understanding cancer
development, but microbe-microbe interactions influence host disease state and the
overall function of the microbial community.

In the gut, microbes are in close proximity and their interactions are important for
gut health and the development of cancer. One model of bacterial interactions in
CRC pathogenesis includes “driver” microbes that initiate CRC development that
are followed by “passenger” microbes that have a growth advantage in the tumor
microenvironment established by the drivers (Sears and Pardoll 2011; Tjalsma et al.
2012). This model suggests that disease progression changes the microenvironment,
which in turn, changes the microbial community to one that can perpetuate tumor
progression (Saus et al. 2019). Proteobacteria like E. coli, Shigella, Citrobacter, and
Salmonella are enriched in early stages of CRC and may function more as drivers,
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while Fusobacterium and other passengers are enriched in later stages (DuPont
2009; Lazarovitch et al. 2013). It is possible, although not proven, that drivers
may function primarily in the initiation stage of cancer and passengers may be
essential contributors to the promotion stage.

Furthermore, ample evidence exists that bacteria and viruses interact both directly
and indirectly via the host to impact oncovirus-driven cancers. Very little is known
about interactions between the virome—comprising all viruses including bacterio-
phages and eukaryotic viruses that are resident in and on a host—and these cancers.
Surely bacteriophages influence microbiome composition, and this may impact the
bacterial microbiome’s effect on cancer. There is some evidence of compositional
differences in the viromes of healthy vs. CRC individuals, with the cancer-associated
virome consisting of mainly temperate bacteriophages (Hannigan et al. 2018). The
impact of these viromes on cancer has not been experimentally investigated.

Additional inter-kingdom interactions have only recently been explored, such as
between bacterial microbiome and fungal mycobiome. A study exploring squamous
cell carcinoma of the tongue found alterations to the mycobiome, the consequences
of which are unknown (Mukherjee et al. 2017). Another study reports an increased
ratio of Basidiomycota-Ascomycota, increased Malasseziomycetes, and decreased
Saccharomycetes and Pneumocystidomycetes in CRC patients compared to health
controls (Coker et al. 2019). Principal component analysis reveals that these
mycobiome populations cluster according to stage of CRC, suggesting mycobiome
profiles are stage-specific (Coker et al. 2019). There is also evidence for synergistic
intrafungal and antagonistic bacterial-fungal correlations (Coker et al. 2019). It is
intriguing to consider that these inter-kingdom interactions and stage-specific clus-
tering of the mycobiome may be a cause or biomarker for the cancer.

1.3.3 Location and Tumorigenesis

We have microbiomes specific to all niches in and on our bodies (Huttenhower et al.
2012). Even within the gut microbiome, there exist functionally and compositionally
distinct communities. An example of these are communities residing in the lumen/
stool, mucus layer, adherent to the epithelial cells (mucosa), and intratumoral. In
future studies, rather than simply evaluating bulk stool samples, acquiring location-
specific information could be more helpful in making meaningful connections. This
is especially informative when combining multi-omics analyses such as microbiome,
host transcriptome, and metabolome. Yet proximity to a tumor may not be the only
way a microbe can influence tumor progression, as bacterial products and special-
ized metabolites can act as signaling molecules from more distal locations.

Tumors harbor their own microbial populations that thrive in the hypoxic envi-
ronment. Leaky vasculature can help bacteria enter the tumor and evade
immunosurveillance (Syed Khaja et al. 2017). Intratumoral bacteria can have immu-
nomodulatory functions, impacting immune responses to tumors and cancer immu-
notherapy (Kim et al. 2017; Zheng et al. 2017). In fact, intratumoral
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Gammaproteobacteria can produce an enzyme that inactivates gemcitabine in
pancreatic cancer (Geller et al. 2017). Due to their proximity to the gut microbiome,
CRC tumors have been studied most extensively. Not only are changes to the
microbial population restricted to cancerous tissue, but often times non-cancerous
adjacent tissue is impacted as well (Flemer et al. 2017). In CRC, there are differences
in microbial communities between proximal (right-sided, ascending colon) and
distal (left-sided, descending colon) tumors (Flemer et al. 2017; Gao et al. 2017).
There are also differences in the physiological state of the bacterial communities,
with biofilm-positive communities dominating proximal cancers and biofilm-
negative communities in distal cancers (Dejea et al. 2014, 2018; Drewes et al.
2017). In mouse models, biofilm communities from both CRC and healthy individ-
uals induce more tumorigenesis than non-biofilm communities (Tomkovich et al.
2019). Thus, the interactions and functions of the mucosal community have a greater
impact on carcinogenesis than donor host health status.

Differences in the microbiota have been observed between mucosal tissue from
tumors and adjacent “normal” tissue (Picardo et al. 2019). However, adjacent
“normal” mucosal microbiomes may still differ from that patient’s former healthy
state. The potential functional attributes of tumor-associated microbes may also be
altered. One study observed a decrease in Firmicutes and Actinobacteria and
increase in Fusobacterium, with LPS biosynthesis-associated microbial genes
enriched in tumor tissues (Gao et al. 2017). Fusobacterium itself is more highly
abundant in CRC patient tissue vs. healthy controls (Kostic et al. 2012, 2013;
Castellarin et al. 2012) and is most abundant in rectal tissue biopsies from patients
with adenocarcinoma vs. adenoma vs. healthy controls (McCoy et al. 2013).
Fusobacterium-containing tumors harbored microbiomes that were highly similar
to their Fusobacterium-positive distant metastases (versus Fusobacterium-negative
tumors) (Bullman et al. 2017), suggesting that Fusobacterium may be a hub for
multi-species procarcinogenic activities. Another study that found Fusobacterium
and ε-Proteobacteria enriched on tumors also found differences in metabolites,
including increased taurine, isoglutamine, choline, lactate, phenylalanine, and tyro-
sine and decreased lipids and triglycerides in tumor vs. adjacent tissue (Kinross et al.
2017). Taken together, the tumor microbiome and associated metabolites are very
likely to contribute to the hallmarks of cancer, as we have discussed in relation to
mainly the luminal microbiome. Greater precision in sampling and lower cost,
higher-throughput sequencing and analyses pipelines will surely accelerate our
understanding of how tumor-associated communities contribute to the hallmarks
of cancer.

1.4 Conclusion

The hallmarks of cancer provide an important framework to help understand the
complexities of cancer biology and the broad phenotypes discovered in cancer
research. We can also use the hallmarks as a framework to classify specific
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mechanisms by which microbes, microbial communities, and microbial metabolites
may impact cancer development. Individual microbes have been associated with
cancer for decades from studies with H. pylori to various viruses like HPV and EBV.
However, we now have a better understanding of not only host-microbe interactions
but also the microbe-microbe interactions that influence host physiology and micro-
bial community dynamics. Microbes act as a community and influence one another
both through physical (proximity) and chemical (metabolite) interactions and sig-
naling. There is also constant communication and feedback between members of this
community and the host. Dysbiosis occurs when this communication goes from a
nice conversation (homeostasis) to a heated argument (dysbiosis and disease).
Understanding this dialogue will improve our ability to prevent, diagnose, and
treat various microbially linked cancers in the future.

Initial studies primarily examined correlative data to define members of the
microbial community who were present or associated with specific disease states.
Continuing to define specific mechanisms by which microbial factors target these
hallmarks is crucial to further understanding cancer development. This includes both
host and microbial targets and how they are induced. For example, is it an insult from
the microbial community? Is it linked to the environment external to the host (stress,
diet, etc.) or internal to the host? When thinking about microbial targets, we need to
move beyond just bacteria and embrace emerging technology to detect and define the
mechanisms of other microbes: virus, fungus, and archaea. As we uncover the roles
of these less-characterized microbes, we need to consider the interspecies interac-
tions between these different microbial types. Finally, as we define microbial factors,
we need to examine evidence that link the specific microbial “lesions” (i.e., the DNA
alkylation due to colibactin) to human cancers. For example, we find viral genes
inserted into the genome that drive oncogenes, so we should be able to detect
molecular signatures that indicate a bacterially induced carcinogenic effect has
occurred. This would truly demonstrate that the lesion is linked to the disease and
could potentially be used in the near future to identify precursor lesions that direct
prognosis and treatment. In summary, treatment for cancers will become more
personalized and target specific components of the microbiota as we uncover specific
mechanisms by which microbes influence carcinogenesis and cancer development.
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Chapter 2
Microbiome in Human Gastrointestinal
Cancers

Olabisi Oluwabukola Coker and Jun Yu

Abstract Human gastrointestinal tract houses several millions of microbes, with
which they form complex symbiotic and mutualistic relationships. The resident
microbes encode unique genes that are important in several host beneficial pro-
cesses. As such, alteration of the optimal composition and ecology of human
gastrointestinal microbes can be detrimental to the host. Indeed, evidences of the
association of altered gut microbiome with gastrointestinal carcinogenesis including
esophageal, gastric, pancreas, and colorectal cancers are emerging. This chapter
details the essential roles of gut microbes including bacteria, fungi, viruses, and
archaea in the gut, shift of gut microbes in gastrointestinal cancers, and the potential
manipulation of the gut microbes in the prevention and treatment of human gastro-
intestinal cancers.

Keywords Gastric cancer · Colorectal cancer · Pancreatic cancer · Esophageal
cancer · Microbiome · Bacteria · Fungi · Archaea · Virus

2.1 Introduction

Human gut microbiome refers to the trillions of microorganisms, including their
genetic material, that reside within the gastrointestinal tract. These microorganisms
comprise of a dynamic community of species from the bacteria, fungi, virus, archaea,
and protozoa kingdoms (Bengmark 1998). Compared with other body sites, the
human gut hosts the largest numbers of microbial species whose composition is
acquired within 2 years after birth, followed by the establishment of mutualistic
relationships with the host (Dieterich et al. 2018). Site-specific microbiome have
also been determined for sections of the gastrointestinal tract subject to conditions
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such as oxygen concentration, pH, nutrient availability, and surface area available
for colonization (Donaldson et al. 2016). Majority of studies have focused on the
microbial composition of the intestine, due to the relative ease with which fecal
samples can be obtained. However, recent studies have revealed that several
microbes also form the normal microflora of the esophagus, stomach, and pancreas
of healthy human. The gastrointestinal microbes are alive, actively metabolizing and
engaging in dynamic ecological interactions among themselves. In a homeostatic gut
microbiome state, the products of the metabolic processes of the gut microbes or
direct host interactions impact host health positively (Jandhyala et al. 2015). How-
ever, when the composition of the normal flora is disturbed, the derivable positive
impacts of the gut microbes may be lost, while colonization of the gut by opportu-
nistic pathogens may be enhanced. This chapter details the essential roles of bacteria,
fungi, virus, and archaea in the gut, shift of gut microbes in gastrointestinal cancers,
and the potential manipulation of the gut microbes in the prevention and treatment of
human gastrointestinal cancers.

2.2 Microbiome in Gastrointestinal Health

The composition of the gut microbiome is largely unique to individuals (Franzosa
et al. 2015). However, gut microbes perform essentially similar direct and indirect
physiological functions which impact the gastrointestinal health of the host. Gut
bacteria, fungi, virus, and archaea reportedly play important roles in the gut. These
functions, among others, include food digestion, production of essential vitamins,
absorption of nutrients, immune modulation, and resistance of colonization by
pathogenic microbes (Fig. 2.1).

2.2.1 Functions of Bacteria in the Gastrointestinal Tract

Bacteria are the most abundant component of the gastrointestinal microbiome. The
distribution of bacteria varies along the gastrointestinal tract ranging from 101

colony-forming unit (CFU) per gram of contents in the esophagus and stomach to
1012 CFU per gram of contents in the colon and distal gut (O’Hara and Shanahan
2006). Human gut bacteria can be aerobic, facultative anaerobic, or strictly anaero-
bic, depending on the level of oxygen along the gastrointestinal tract. They mostly
belong to the Bacteroidetes, Firmicutes, and Proteobacteria phyla. Members of
Actinobacteria, Verrucomicrobia, Acidobacteria, and Fusobacteria phyla are also
present, although usually less than 1% of the bacterial population. Esophageal
bacteria have been demonstrated by many studies to be dominated by Streptococcus
(Corning et al. 2018), while gastric bacteria are dominated by Prevotella, Strepto-
coccus, Veillonella, Rothia, and Haemophilus (Nardone and Compare 2015).
Mucosa-associated bacteria from the colon are dominated by members of the
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Lachnospiraceae and Bacteroidetes (Sekirov et al. 2010; Dieterich et al. 2018). The
commensal bacteria in the gastrointestinal tract perform several essential functions
including nutrient metabolism, xenobiotic and drug metabolism, host immune mod-
ulation, gut barrier development, and prevention of pathogen colonization (Fig. 2.1).

Nutrient Metabolism Gut bacteria make essential contribution to the metabolism of
nutrients in the host through specific enzymes that are not encoded by the human
genome. They particularly aid in breaking down indigestible polysaccharides and
polyphenols. Bacteria aid in the digestion of carbohydrates into short-chain fatty
acids (SCFA) such as acetate, butyrate, succinate, and propionate which in turn are
beneficial to the host. Carbohydrates are digested into butyrate and propionate
mainly by Lachnospiraceae, Negativicutes, Clostridium, and Bacteroides species
and Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Ruminococcus

Fig. 2.1 Roles of gut microbes in human gastrointestinal health: functions of gut microbiota
include food digestion, production of essential vitamins, absorption of nutrients, immune modula-
tion, and resistance of colonization by pathogenic microbes

2 Microbiome in Human Gastrointestinal Cancers 29



obeum, and Roseburia inulinivorans (Macfarlane and Macfarlane 2003; Jandhyala
et al. 2015). Bacteroides species can express glycoside hydrolase, polysaccharide
lyases, and glycosyl transferases necessary for host carbohydrate metabolism
(Cantarel et al. 2012). Gut bacteria are also involved in lipid metabolism by
enhancing lipase activity (Jandhyala et al. 2015). For example, Bacteroides
thetaiotaomicron reportedly expresses a colipase, necessary for efficient lipid diges-
tion by pancreatic lipase (Hooper et al. 2001). Furthermore, gut bacteria can aid in
the synthesis of vitamins, including vitamin K and group B vitamins such as
pyridoxine, thiamin, riboflavin, biotin, cobalamin, and folates, which are essential
for human health. It was reported that human subjects on low vitamin K diets
coupled with gut bacteria depletion, by antibiotics treatment, showed significantly
suppressed prothrombin levels compared with subjects on low vitamin K diets alone
(Frick et al. 1967). The predominant producer of riboflavin and biotin are the
Bacteroidetes, Fusobacteria, and Proteobacteria, while the major producers of
vitamin B12 are members of the Fusobacteria phylum (Magnusdottir et al. 2015).
Moreover, gut bacteria, namely, B. intestinalis, B. fragilis, and Escherichia coli, can
deconjugate and dehydrate primary bile acids and convert them into secondary bile
acids such as deoxycholic and lithocholic acids in the human colon (Fukiya et al.
2009). Polyphenols present in diet are also metabolized into active molecules by the
gut bacteria. Flavanols in onions and grapes are metabolized by B. diastonis,
B. uniformis, and Eubacterium ramulus (Winter et al. 1989; Rechner et al. 2004;
Schneider et al. 2000), while chlorogenic acids in peach, plums, and coffee are
metabolized by E. coli, Bifidobacterium sp., and Lactobacillus gasseri (Couteau
et al. 2001).

Xenobiotic and Drug Metabolism Humans are continuously exposed to xenobi-
otics from dietary components, pharmaceuticals, and environmental chemicals.
Several studies have presented evidences for the gut bacteria in metabolizing
xenobiotics, which are unmetabolizable by human enzymes. In a global study,
850 bacteria genera with xenobiotic-metabolizing potential were identified. Notably,
lower bacteria diversity was associated with high rate of xenobiotic drug consump-
tion (Das et al. 2016). Comamonadaceae and Burkholderiaceae which are abundant
in the aerial gut environment possessed larger xenobiotic-metabolizing repertoire
(Das et al. 2016), an observation which can aid in issues related to drug bioavail-
ability, drug overdose, and side effects. Moreover, the gut bacteria contribute
broader range of glycosidases, sulfatases, lyases, and proteases which are important
in altering the physical properties and activities of xenobiotic compounds. For
example, gut bacterial C-S B-lyases could cleave polychlorinated biphenyls to
produce thiol metabolites for further methylation in host tissues (Claus et al. 2016).

Immune Modulation The gut bacteria can modulate both innate and adaptive
immunity in the gastrointestinal tract. Colonization of germ-free mice with a com-
munity of eight bacterial species comprising two Lactobacilli, one Bacteroides, one
Flexispira, and four Fusobacterium species, selected for their dominance in mice
microflora, resulted in compartmentalized expansion, activation, and de novo gen-
eration of mucosal Treg cells in the colon lamina propria. The induced Treg cells
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were important for homeostasis of CD4 T cells, reflected by the absence of mucosal
Th17 or Th1 cell responses (Geuking et al. 2011). Bacillus fragilis have also been
characterized to induce Treg cells via TLR2 signaling cascade. Also, germinal
centers and Peyer’s patches, which are major sites of gut immunoglobulin A immune
response generation, are induced by gut bacteria. The direct stimulation of Peyer’s
patches with bacterial products and retinoic acid enhanced the expression of che-
mokine CXCL13 (Suzuki et al. 2010). Metabolite indole-3-aldehyde, synthesized by
Lactobacillus, can stimulate innate lymphoid cells via the aryl hydrocarbon receptor
to induce the expression of interleukin 22, which in turn contribute to the mainte-
nance of gut homeostasis (Liu et al. 2016).

Gut Development and Barrier Integrity There are evidences that the gut bacteria
are important for gut permeability integrity. Gut bacteria can induce the expression
of angiogenin, a transcription factor important in the development of intestinal
microvasculature (Stappenbeck et al. 2002). Modulation of mucosal glycosylation
by gut bacteria is another means through which gut bacteria can protect the gut
barrier (Cayuela 2000). Germ-free mice generally have thin villi (Banasaz et al.
2002), increased cell cycle time (Alam et al. 1994), impaired peristalsis (Husebye
et al. 1994), and reduced villus capillary network (Jandhyala et al. 2015). For
example, B. thetaiotaomicron can stimulate the expression of fucose on epithelial
cell surface glycoconjugates (Hooper and Gordon 2001) and induce the expression
of small proline-rich protein 2A (sprr2A), required for maintaining desmosomes of
the epithelial villus (Lutgendorff et al. 2008). Moreover, peptidoglycan, the bacterial
cell wall component, can maintain tight junctions through TLR2-mediated signaling
(Cario et al. 2007). Furthermore, soluble proteins, namely, p40 and p75 produced by
Lactobacillus rhamnosus, can protect the gut by preventing cytokine-induced epi-
thelial cell apoptosis in a manner dependent on epithelial growth factor receptor
(EGFR) and protein kinase C (Shen et al. 2018).

Prevention of Colonization by Pathogens Enteric bacteria can also confer protec-
tion against colonization by pathogens. Certain commensal bacteria can secrete
molecules with bactericidal or bacteriostatic properties (Zipperer et al. 2016). Exam-
ples include bacteriocins by Gram-positive Enterobacteriaceae and microcins by
Gram-negative Enterobacteriaceae (Sassone-Corsi et al. 2016). Enterococcus
faecalis was demonstrated to produce plasmid-encoded bacteriocin to prevent infec-
tion of mice gastrointestinal tract by vancomycin-resistant Enterococcus
(Kommineni et al. 2015). R. obeum can prevent mice colonization by Vibrio
cholerae through the production of quorum-sensing signal AI-2, which disrupts
the expression of V. cholerae pilus operon needed for intestinal colonization
(Hsiao et al. 2014). Moreover, bacteria can metabolize host-derived molecules into
secondary metabolites that can confer protection against pathogens. Clostridium
scidens encodes 7a-hydroxysteroid hydrogenase enzyme, which converts primary
bile acids to secondary bile acids. C. scidens is associated with resistance to
Clostridium difficile infection (Buffie et al. 2015). Colonization of antibiotics-treated
mice with C. scidens increased intestinal secondary bile acids and improved the
survival of C. difficile-infected mice (Buffie et al. 2015). Furthermore, gut bacteria
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can prevent infection of the gastrointestinal tract by pathogens through nutrient
deprivation. It was demonstrated that the infection of mice gut with pathogenic
E. coli O157:H7 was severely impaired in mice pre-colonized with two commensal
E. coli HS and Nissle 1917 strains. This was reportedly due to competition for
important sugars needed for the growth of E. coli O157:H7 in the gut (Maltby et al.
2013).

2.2.2 Functions of Virus in the Gastrointestinal Tract

Human gastrointestinal virome comprises of nucleic acids including single-stranded
(ss) RNA, double-stranded (ds) RNA, ssDNA, and dsDNA that belong to viral-like
particles and resident in healthy human gut. Human endogenous retroviruses,
eukaryotic viruses, and bacteriophages have been described as part of the human
virome (Shkoporov et al. 2019). Although present in comparatively low proportions,
the adult colon-associated virome is stable and correlates with the bacteriome and
with varied diversities among individuals (Beller and Matthijnssens 2019;
Shkoporov and Hill 2019). Most bacteriophages from human gut belong to order
Caudovirales and families Myoviridae, Podoviridae, Siphoviridae, and
Microviridae (Beller and Matthijnssens 2019). Viral populations have also been
described in human esophagus (Deshpande et al. 2018b) and gastric compartment
(Hu et al. 2018b). Although viruses can infect the pancreas and the liver, commensal
virome has not been described in them. Gut viruses can be involved in host beneficial
functions with evidences from colon-associated virome.

Control of Bacteria Population The lytic and lysogenic life cycles of certain
phages can be linked with their potential to control the population of host bacteria.
Studies involving marine phages showed the ability of some phages to induce
bacterial reduction in response to temperature and radiation (Weinbauer and Suttle
1996). In human, the proportion and identity of strictly lytic and lysogenic enteric
phages have been shown to vary according to health status. It was therefore
speculated that maintenance of optimal bacterial population in the gut by bacterio-
phages is possible and may contribute to gut health (Santiago-Rodriguez and
Hollister 2019). Phages can lyse invading pathogenic bacteria and thus contribute
to innate immunity against infections (Barr et al. 2013). Additionally, gut phages in
healthy individuals were shown to correlate with the bacteriome (Shkoporov and
Hill 2019), further supporting their role in bacteria population control. Some phages
can change the fitness and phenotype of host bacteria by genetic transfer, resulting in
evolutionary advantages. Lysogenic conversion in the human gut may also promote
niche-specific bacterial colonization along the gastrointestinal tract, which is char-
acterized by varied competitive ecosystems (Santiago-Rodriguez and Hollister
2019).
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2.2.3 Functions of Fungi in the Gastrointestinal Tract

Enteric fungi are key components of the gut microbiome. Although the composition
of gut fungi has been shown to be lower and less stable compared to bacteria and
largely influenced by environmental factors, majorly diet (Hallen-Adams and Suhr
2017), enteric fungi do contribute to gastrointestinal and systemic health of the host.
Fungi in a healthy gut are usually dominated by the Ascomycota and Basidiomycota
phyla. The mostly widely reported fungi genera in the gastrointestinal tract include
Candida, Saccharomyces, Malassezia, Cladosporium, Cryptococcus, Fusarium,
Penicillium, Galactomyces, Pichia, Trichosporon, and Aspergillus (Hallen-Adams
and Suhr 2017; Coker et al. 2019). Enteric fungi have been described with the
capacity to calibrate host immunological responses. A recent study revealed that gut
mycobiota could recapitulate the protective effect of commensal bacteria in mice
(Jiang et al. 2017). Mice treated with broad-spectrum antibiotics developed more
severe dextran sodium sulfate (DSS)-induced colitis and generated reduced levels of
protective CD8+ T cells when infected with influenza A virus. However, gavage of
antibiotics-treated mice with Saccharomyces cerevisiae and Candida albicans
reversed the effect of bacterial depletion. The protective impact of the two fungal
species was demonstrated to be due to mannans, an abundant component of fungal
cell walls (Jiang et al. 2017). Innate immune receptors such as Dectin-1, a C-type
lectin receptor, specialize in the recognition of fungal B-1,3 glucan (Iliev et al.
2012). Dectin-1 activates intracellular caspase recruitment domain protein
9 (CARD9) which leads to induction of T helper 17 (TH17) immune responses
(Cheng et al. 2011; Gringhuis et al. 2012; LeibundGut-Landmann et al. 2007).
Increased disease susceptibility had been demonstrated in mice lacking Dectin-1
(Taylor et al. 2007). Human monocytes stimulated in vitro with β-glucan or chitin,
another fungal cell wall component, showed changes in their ability to secrete
pro-inflammatory cytokines (Rizzetto et al. 2016). However, variations have been
reported for the capacity of fungi and its components to modulate immunocytes
(Rizzetto et al. 2010, 2013; Wagener et al. 2017). The diverse enteric symbiotic
fungal species may, therefore, modulate homeostatic immune responses through
different mechanisms, subject to the composition of the mycobiota in each individ-
ual (Rizzetto et al. 2014). Notably, fungi were described as key drivers of secondary
lymphoid organ (Koslowski, #3) maturation in mice (Zhang et al. 2016). Antifungal,
but not antibiotics, treatment of mice dampened the migration of dendritic cells
(DCs) expressing retinol dehydrogenase enzyme (RALDH+ DCs) into SLOs, while
inoculation of neonates with a single species of murine indigenous mycobiota,
Candida tropicalis, augmented the numbers of RALDH+ DCs in lymph nodes
(Zhang et al. 2016). Enteric fungi can also promote T cell responses. Antibiotics-
treated mice colonized with C. albicans developed strong Th17 responses without
any obvious signs of intestinal inflammation (Atarashi et al. 2015; Leonardi et al.
2018). Moreover, antibiotics-treated mice inoculated with C. albicans produced
effector and memory T cells in the gut (Xin et al. 2014). In human, C. albicans-
specific T cells can secrete mixed Th1-Th17 phenotype IL-17A, IL-22, and IFN-γ
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(Zielinski et al. 2012) cytokines. As such, C. albicans may drive diverse and
functional T cell responses in the gut. It is possible that mycobiota-driven T cell
subsets can confer cross-protection against infections, since microbiota-induced T
cell subsets have been described to mediate heterologous protection against patho-
gens at the mucosal surface (Ivanov et al. 2009; Wang et al. 2019).

Moreover, fungi can secrete a variety of metabolites that can potentially modulate
host tissue function. One of the most frequently identified fungi in the gastrointes-
tinal tract is Malassezia. On cutaneous surfaces, members of Malassezia produce
metabolites that serve as potent ligands for the aryl hydrocarbon receptor (Ahr), such
as malassezin, pityriacitrin, and indolo[3,2-b]carbazole (Gaitanis et al. 2008; Mexia
et al. 2015). These metabolites can promote epithelial repair, melanogenesis, and
barrier homeostasis (Esser and Rannug 2015; Furue et al. 2014). Skin Malassezia
species also secrete lipases and phospholipases to convert skin triglycerides into
short-chain fatty acids (Velegraki et al. 2015; White et al. 2014). It is postulated that
the many undefined metabolites derived from the mycobiota may play similar role in
the gut. In addition to the colon, stable fungi populations have been found in the
esophagus (Deshpande et al. 2018b), the stomach (von Rosenvinge et al. 2013; Sam
et al. 2017), and the pancreas (Aykut et al. 2019b).

2.2.4 Functions of Archaea in the Gastrointestinal Tract

Archaea are a group of single-celled prokaryotes with unique molecular character-
istics such as lack of peptidoglycan and D-glycerol esters or fatty acids,
distinguishing them from bacteria and eukaryotes (Kandler and Konig 1998). Most
archaea are found in extreme acidophilic, alkaliphilic, halophilic, and thermophilic
ecosystem (Eme et al. 2018). However, some species are mesophilic (Brochier-
Armanet et al. 2008) and have been isolated from human skin, nose, lungs, oral
cavity, and vagina (Lurie-Weinberger and Gophna 2015). They are also reportedly
stable commensals of the gastrointestinal tract where they participate in host bene-
ficial biological processes. The most widely studied is the role of archaeal
methanogens such as Methanobrevibacter smithii, Methanosphaera stadtmaniae,
and Methanomassiliicoccus luminyensis in methanogenesis. Methanogenic archaea
are responsible for reducing carbon dioxide, produced during bacterial fermentative
nutrient digestion, into methane in the presence of hydrogen (Roccarina et al. 2010).
This process is essential to facilitate excess hydrogen removal from the gut, because
accumulated hydrogen can inhibit digestive processes and impair energy derivation
from food (Gaci et al. 2014). Archaea undergoes active metabolism and optimizes
the fermentation and metabolic pathways of fermentative bacteria in the human gut
(Nakamura et al. 2010). Archaea can also aid in the removal of trimethylamine
(Tanji, #17) from the gut. TMA is produced from bacteria digestion of dietary
choline, betaine, and carnitine. TMA is transferred to the liver and oxidized through
the action of flavin monooxygenase into trimethylamine-N-oxide (TMAO), a mol-
ecule that has been mechanistically linked to cardiovascular disease, atherogenesis,
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and fish odor syndrome (Koeth et al. 2013; Wang et al. 2011, 2015). It was reported
that Methanobrevibacter smithii, Methanosarcina mazei, and Methanomicrococcus
blatticola which could use TMA as growth substrates essentially reduced plasma
concentration of TMAO, with a atherosclerosis reduction tendency in mice
(Ramezani et al. 2018) and immune modulation (Brugere et al. 2014; Blais Lecours
et al. 2014). Moreover, just like commensal bacteria, gut archaea has also been
shown to be capable of activating antigen-specific adaptive immune responses and
may be important for maintaining immune homeostasis in human health (Bang and
Schmitz 2015).

2.3 Microbiome in Gastrointestinal Cancers

Cancers in the gastrointestinal tract account for more than 34% of cancer-related
deaths (Bray et al. 2018) and remain a serious global concern. Carcinogenesis is a
multifactorial process that involves both genetic and environmental factors. An
evolving prominent environmental factor in the pathogenesis of gastrointestinal
cancers is the gut microbiome. This is especially so because the entire length of
the gastrointestinal tract has direct contact with microorganisms whose genetic
capacities are largely unique and have been studied to influence host metabolic
processes as described above. Compositional and ecological alterations of the gut
microbiome are associated with esophageal, gastric, liver, pancreatic, and colon
cancers. Majority of studies on gut microbiota dysbiosis and gastrointestinal cancers
have been carried out on bacteria, apparently due to its high abundance and avail-
ability of comparatively more defined reference databases. With the advancement of
sequencing technologies, studies on the role of enteric fungi, virus, and archaea in
gastrointestinal cancers are emerging and are described below.

2.3.1 Microbiome Alteration in Esophageal Cancer

Esophageal cancer is multifactorial, developing from a complex interplay of host
genetic and epigenetic factors, host immune response, as well as environmental
factors, of which the microbiome is increasingly identified to be important (Yang
et al. 2009; Blackett et al. 2013; Macfarlane et al. 2007). Alteration of esophageal-
associated microbiome has been reported in esophageal adenocarcinoma (EAC)
patients as well as in patients with Barrett’s esophagus (BE), a high-risk group for
EAC development (Lv et al. 2019). Reduced bacterial diversity in esophageal
microbiome is associated with EAC. In particular, Gram-negative bacteria such as
Veillonella, Neisseria, Leptotrichia, Fusobacterium, Campylobacter, and
Capnocytophaga are most often enriched in EAC patients (Yang et al. 2009,
2014; Macfarlane et al. 2007). The shift from Gram-positive aerobic microbiota to
Gram-negative anaerobic microbiota may enhance the production of inflammatory
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cytokines and chemokines. Additionally, increased lipopolysaccharide (LPS) from
Gram-negative bacteria may stimulate toll-like receptors (TLRs) on host cell surface.
For example, the esophageal epithelial expression of TLR4, which could activate
nuclear factor kappa B (NF-κB) signaling cascade, was increased in both of BE and
EAC patients compared to control subjects (Yang et al. 2012). Gram-positive
Granulicatella, Rothia, and Lactobacillus are also associated with EAC (Yang
et al. 2012). Dysregulated lactate metabolism is one of the distinctive feature of
carcinogenesis (San-Millan and Brooks 2017; Flemer et al. 2018). Bacterial lactic
acid production pathways such as homolactic and heterolactic fermentation were
found increased in EAC subjects. In particular, Lactobacillus fermentum was found
enriched in EAC patients compared to control subjects.

Non-bacterial microbes including virus, fungi, and archaea have been reported in
healthy human esophagus, signifying commensal relationships with the host
(Deshpande et al. 2018a). However, changes in esophageal mycobiome and virome
in esophageal cancer have not been described. Infections with C. albicans were
described in esophageal squamous cell carcinoma (ESCC) patients (Rautemaa et al.
2007), while colonization with oral fungi, including Cladosporium cladosporioides,
increased the formation of esophageal cancer in mice model (Zhu et al. 2017). The
importance of fungi to the development of esophageal cancer was further demon-
strated by the prevention of ESCC in mice following antifungal treatment (Zhu et al.
2017). Moreover infections with human papillomavirus (HPV) and Epstein-Barr
virus (EBV) are associated with the development of ESCC (Xu et al. 2015).

2.3.2 Microbiome Alteration in Gastric Cancer

Helicobacter pylori is a well-established risk factor for gastric cancer (Kumar et al.
2019). H. pylori infects more than 50% of global population and induces gastric
inflammation, thereby increasing the risk of gastric diseases including cancer
(Ruggiero 2010). The chance of gastric cancer development is determined by the
pathogenic potential of the infecting H. pylori. The presence of cag pathogenicity
island (cag PAI), which comprise of genes encoding bacterial type IV secretion
systems, is a well-characterized virulence determinant of H. pylori. Strains of
H. pylori with cag PAI possess increased potential to promote severe gastritis,
atrophic gastritis, and gastric cancer compared to strains without cag PAI.
H. pylori virulence determinants also include its ability to express vacuolating
VacA toxin, adhesins, and virulence-associated outer membrane proteins (Sgouras
et al. 2015). Moreover, host factors such as genetic polymorphism that favor the high
expression of pro-inflammatory cytokines such as interleukin-1B (IL-1B) and tumor
necrosis factor alpha (TNF-alpha) or low expression of anti-inflammatory cytokines
including interleukin-10 (IL-10) are associated with the enhanced risk of gastric
cancer development in H. pylori-infected individual (Shanks and El-Omar 2009). In
addition to the virulence potential of infecting H. pylori strain and host genetic
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polymorphisms, high salt intake, helminth infection, and smoking can enhance the
chance of developing gastric cancer in infected individuals (Wroblewski et al. 2010).

Modern sequencing technologies have enabled the discovery of other commensal
bacteria that can thrive at the low pH condition of the stomach, in addition to
H. pylori. H. pylori dominate the gastric microbiota of infected individuals, reveal-
ing its ability to modulate the gastric microbiota (Gantuya et al. 2019; Noto and Peek
2017). Whether the suppression of other gastric microbes by H. pylori represents a
means to support its gastric cancer-promoting ability is yet to be defined. There are
evidences that non-H. pylori bacteria may be involved in promoting gastric cancer.
H. pylori infection concomitant with colonization by intestinal flora accelerated the
development of gastrointestinal intraepithelial neoplasia using insulin promoter
regulating the overexpression of gastrin (INS-GAS) mouse model, signifying the
importance of non-H. pylori gastric microbes in gastric cancer development
(Lertpiriyapong et al. 2014). Alterations of gastric microbiota along the stages of
human gastric carcinogenesis have been described, although there are inconsis-
tencies on the direction of change in bacterial diversity (Wang et al. 2016; Eun
et al. 2014; Ferreira et al. 2018; Aviles-Jimenez et al. 2014; Coker et al. 2018; Hu
et al. 2018a). Bacteria genera Streptococcus, Prevotella, Veillonella, and Lactoba-
cillus are recurrently identified to be more abundant in gastric cancer patients
compared to patients with superficial gastritis, atrophic gastritis, or precancerous
intestinal metaplasia (Coker et al. 2018; Jo et al. 2016; Wang et al. 2016; Aviles-
Jimenez et al. 2014; Ferreira et al. 2018). Moreover, an overgrowth of microbes of
potential oral origin was positively associated with gastric cancer (Castano-
Rodriguez et al. 2017; Coker et al. 2018). Oral microbes Peptostreptococcus
stomatis, Slackia exigua, Parvimonas micra, Streptococcus anginosus, andDialister
pneumosintes were indicated to be significantly important in gastric carcinogenesis,
from their significant contribution to gastric microbial ecology of gastric cancer
patients (Coker et al. 2018). The involvement of non-H. pylori oral microbes in the
development of gastric cancer was further demonstrated by the positive association
of Peptostreptococcus, Streptococcus, Parvimonas, Prevotella, and Granulicatella
with the emergence and persistence of gastric atrophy and intestinal metaplasia,
1 year after H. pylori eradication therapy (Sung et al. 2020). How the gastric cancer-
associated microbes function to promote carcinogenesis remains unclear. A widely
supported notion is that nitrosating bacteria may convert nitrogen compounds in
gastric fluid to potentially carcinogenic N-nitroso compounds (NOCs) (Mowat et al.
2000; Weng et al. 2019). Consistent with this view, nitrosating bacteria including
Veillonella, Neisseria, and Clostridium species were reportedly twofold enriched in
gastric cancer patients without H. pylori infection (Jo et al. 2016). Nitrospirae
bacteria were also found present in all 103 gastric cancer patients but absent in
212 chronic gastritis patients with chronic gastritis in a separate study (Wang et al.
2016), supporting a role for NOCs in gastric carcinogenesis.

Fungi such as Candida and Phialemonium are able to survive acidic ecosystem
and are present in gastric fluids (von Rosenvinge et al. 2013; Schulze and
Sonnenborn 2009). Compared to bacteria, the potential role of fungi in gastric
carcinogenesis is largely unexplored. However, gastric growth of yeast and
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pseudohyphae of Candida were observed in a patient with intestinal gastric adeno-
carcinoma (Subramanian et al. 2015), while fungal infection, worsened with
increased age, was associated with delayed gastric ulcer healing (Minoli et al.
1982). Given that impaired host immunity contributes to susceptibility to fungal
infections (Kumar et al. 2018), it is plausible that opportunistic gastric fungi may
play a role in gastric carcinogenesis under immunocompromised conditions.

2.3.3 Microbiome Alteration in Pancreatic Cancer

Pancreatic cancer is a lethal and devastating disease. Pancreatic ductal adenocarci-
noma (PDAC) patients have been characterized with distinct microbiome at oral,
gut, and pancreatic tissues, compared with healthy subjects (Wei et al. 2019). Due to
its high alkalinity and presence of several proteases, the pancreas was considered a
sterile organ. However, using shotgun metagenomics analysis, pancreatic cancer-
associated microbiome has been described, including about 1000-fold increase of
bacteria in pancreatic tissues of PDAC patients (Pushalkar et al. 2018; Dickson
2018). Direct comparison of the gut and pancreas microbiomes in PDAC patients
revealed increased translocation of Gram-negative Proteobacteria to the pancreas.
Prevotella and Bacteroides were more abundant in the gut of PDAC patients
(Pushalkar et al. 2018). Investigation of intratumoral microbiota in PDAC progres-
sion and immunotherapy response in mice revealed the enrichment of
Bifidobacterium pseudolongum, underscoring the significance of the intratumoral
microbiota in PDAC (Pushalkar et al. 2018). Mechanistically, PDAC-associated
microbiome was shown to drive suppressive monocytic cellular differentiation in
pancreatic cancer through selective TLR ligation leading to T-cell anergy. Bacterial
ablation protected against oncogenesis and reversed intratumoral immune tolerance
in mice (Pushalkar et al. 2018).

Moreover, the fungi composition and diversities in pancreatic tumor tissues of
PDAC patients were found to be distinct and about 3000-fold more than in healthy
control subjects (Aykut et al. 2019a). Gut fungi, enriched in Malassezia, infiltrated
the pancreas, both in human and mouse PDAC. Repopulation with Malassezia
species accelerated PDAC in mice, following antifungal treatment, signifying that
particular species of fungi may sufficiently promote the progression of PDAC and
that the mycobiome may be a new therapeutic target (Aykut et al. 2019b) in
pancreatic cancer therapy.

2.3.4 Microbiome Alteration in Liver Cancer

The liver does not contain its own microbiome; however, there are mounting
evidences that the gut microbiota plays important roles in the development of liver
diseases and the pathogenesis of hepatocellular carcinoma (HCC) (Weng et al.
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2019). The gut microbiota is crucial for the maintenance of gut barrier function and
host immunity. Therefore, alteration of the gut microbes affecting these functions
may be detrimental to distal organs including the liver, which connects to the gut
through the portal vein. Compromised gut permeability exposes the liver to micro-
bial metabolites, toxins, and microbiota-associated molecular patterns (Csak et al.
2011). These patterns are recognized by immune receptors on liver cells such as
Kupffer cells and hepatic stellate cells, which initiate and maintain inflammatory
cascades that can lead to liver damage, including HCC (Anand et al. 2016). Patients
with chronic liver diseases reportedly manifested shifts in the composition of the gut
microbiota when compared to healthy subjects (Anand et al. 2016). In a cross-
sectional study, fecal microbial diversity was observed to increase from cirrhosis
to HCC, while phylum Actinobacteria was increased in early HCC versus cirrhosis
(Gupta et al. 2019). Most commonly, healthy bacteria that promotes healthy gut are
reduced, while potentially pathogenic bacteria are increased. Ruminococcaceae and
Bacteroides were enriched, while Bifidobacterium was found to be depleted in HCC
patients compared to healthy subjects. Increased fecal counts of E. coli were also
observed in cirrhotic patients with HCC (Ponziani et al. 2019).

Hepatic chronic infection with hepatitis B or C virus (HBC or HCV) increases the
risk of HCC development (Zamor et al. 2017), with about 56% and 20% of liver
cancer attributed to HBC and HCV, respectively (Maucort-Boulch et al. 2018).
Studies have shown that the HBV and HCV proteins enhance the population of
hepatic cancer stem cells and modulate the epigenetic modification and cancer-
associated molecular pathways in the liver (Mani and Andrisani 2018; Sasaki et al.
2017). In addition to the direct role of HBV in inducing cancer formation in the liver,
the gut microbiota of HBV-infected HCC (HBV-HCC) patients were reportedly
distinct from non-HBV and non-HCV HCC patients in bacterial compositional and
functional profiles (Liu et al. 2019a). HBV-HCC patients exhibited increased bac-
teria richness, reduced pro-inflammatory Escherichia-Shigella and Enterococcus,
and increased Faecalibacterium, Ruminoclostridium, and Ruminococcus compared
with non-HBV HCC and non-HCV HCC patients and healthy subjects (Liu et al.
2019a). Moreover, compared with healthy subjects, HCV-HCC patients had reduced
bacteria diversity, with increased Streptococcus and Lactobacillus compared to
healthy subjects. Streptococci-encoded urease genes was found enriched in the
predicted metagenome of HCV-HCC patients during disease progression (Inoue
et al. 2018). These suggest that the gut microbiota could promote virus-induced
HCC in the liver.

Moreover, the involvement of the gut microbiota in the promotion and progres-
sion of HCC has been demonstrated in animal studies, in the absence of HCV and
HBV. An increase in plasma LPS levels was concomitant with increased tumor size
and number in diethylnitrosamine (DEN)-treated rats (Yu et al. 2010). Another study
demonstrated that the intestinal mucosa was damaged, leading to increased abun-
dance of Gram-negative bacteria, E. coli, Atopobium, Collinsella, Eggerthella, and
Coriobacterium, and decreased Lactobacillus, Bifidobacterium, and Enterococcus
after DEN treatment (Zhang et al. 2012). Translocation of bacteria and bacteria
products due to impaired gut barrier can trigger inflammatory response by activating
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liver TLRs. LPS from Gram-negative bacteria can stimulate TLR-4, while TLR-2
and TLR-5 can be activated by peptidoglycan and lipoteichoic acid from Gram-
positive bacteria (Kawai and Akira 2009, 2010). Chronic activation of TLRs can
lead to the production of inflammatory TNF-alpha, IL-1-beta, and IL-6, through
NF-κB pathway (Luedde and Schwabe 2011; Pikarsky et al. 2004). Activation by
IL-6 through the Janus kinase (JAK) or the STAT3 pathway can induce proliferation
and immortalization of hepatic cells, leading to HCC (Jung et al. 2015;
Hatziapostolou et al. 2011).

2.3.5 Microbiome Alteration in Colorectal Cancer

Compared to other gastrointestinal sites, a more complicated microbial community
covers the colon epithelial surface, participating in many host metabolic processes.
The most widely demonstrated index described in the gut microbiome of CRC
patients is the reduction in bacteria diversity (Yu et al. 2017; Ahn et al. 2013),
although certain studies reported the opposite (Hibberd et al. 2017). Dysbiotic gut
microbes play an active role in colon tumorigenesis. The causal relationship between
gut bacteria and CRC was demonstrated by a study which showed that transplanta-
tion of stools from CRC patients could promote colon tumorigenesis in both
conventional and germ-free mice (Wong et al. 2017). Normalization of the gut
microbiota close to healthy microbiota, after treatment of CRC patients, has also
been reported (Sze et al. 2017). Moreover, a multi-cohort study based on
526 metagenomic samples from China, Austria, the United States, Germany, and
France identified seven CRC-enriched bacteria, namely, Bacteroides fragilis,
Fusobacterium nucleatum, Porphyromonas asaccharolytica, Parvimonas micra,
Prevotella intermedia, Alistipes finegoldii, and Thermanaerovibrio
acidaminovorans, with a demonstrated area under the receiver operating character-
istics curve (AUC) of 0.80 across the different populations (Dai et al. 2018).
Moreover, 62 bacteria species, mainly probiotic bacteria including Streptococcus
thermophilus, Lactobacillus gallinarum, and S. salivarius, were found to be consis-
tently depleted across all cohorts (Dai et al. 2018). As in gastric cancer, microbes of
potential oral origin were highlighted to be consistently enriched in CRC patients
(Nakatsu et al. 2015; Flemer et al. 2018).

The mechanisms through which CRC-enriched bacteria including F. nucleatum,
P. anaerobius, and Bacteroides fragilis promote colon tumorigenesis have been
elucidated. F. nucleatum activates the E-cadherin/β-catenin signaling pathway
through its FadA adhesin protein, leading to cancerous transformation of colon
epithelial cells (Xu et al. 2007; Rubinstein et al. 2013). F. nucleatum could also
alter the tumor microenvironment (TME) by enriching myeloid-derived suppressor
cells (MDSCs) to support colon tumorigenesis (Rubinstein et al. 2013). Enterotoxi-
genic B. fragilis (ETBF), which possesses bft gene, encoding Bacteroides fragilis
toxin (BFT) is associated with CRC. BFT targets the epithelial cell tight junctions,
resulting in E-cadherin cleavage, impaired gut barrier, followed by Wnt/β-catenin
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and NF-κB signaling (Peloquin and Nguyen 2013), to promote colon cell
proliferation. P. anaerobius could promote CRC through the binding of its surface
protein, putative cell wall binding repeat 2 (PCWBR2) to host cell receptor integrin
α2/β1, thereby activating pro-carcinogenic PI3K-Akt-NF-κB signaling cascade
(Long et al. 2019).

Evidences of association between fungi and CRC are also emerging as with other
intestinal diseases such as IBD (Sokol et al. 2017). Although no significant change in
the fungal alpha diversity in CRC patients compared to control subjects,
Basidiomycota to Ascomycota ratio, a measure of fungi ecological dysbiosis was
higher in Chinese CRC patients than control subjects. Moreover, distinct fungal
composition characterized by increased Malasseziomycetes and decreased
Saccharomycetes was observed in CRC patients. Abundances of 14 fungal bio-
markers including species of Aspergillus, Malassezia, Rhodotorula,
Pseudogymnoascus, Kwoniella, Talaromyces, Debaryomyces, Moniliophthora,
Pneumocystis, and Nosema distinguished CRC patients from controls with an
AUC of 0.93 and validated AUCs of 0.82 and 0.74 in independent Chinese cohort
and European cohort, respectively (Coker et al. 2019). Moreover, abnormal immune
responses to fungi are frequently reported in IBD (Qiu et al. 2015) and ulcerative
colitis (Sokol et al. 2017), which are CRC risk factors. Such dysregulated immunity
may thus be present in CRC patients. Commensal gut fungi reportedly promoted
inflammasome activation during AOM-DSS-induced colitis, while antifungal treat-
ment exacerbated colitis and CRC in mice (Malik et al. 2018).

Changes in human virome have been reported in metabolic diseases. Many
studies have also found higher presence of viral DNA in CRC tumor tissues
compared to normal tissues in human. Individual virus infections with human
papillomaviruses (HPV) (Liu et al. 2011; Damin et al. 2007; Bodaghi et al. 2005),
human polyomaviruses (Mou et al. 2012; Lin et al. 2008), human herpesviruses
(Dimberg et al. 2013; Tafvizi and Fard 2014), human bocavirus (Schildgen et al.
2013), and Inoue–Melnick virus (Ito et al. 1992; Nishibe et al. 1990) were reportedly
associated with CRC. Moreover, untargeted metagenomic analysis revealed that the
taxonomic composition of gut virome was consistently associated with CRC in
multiple cohorts, including Chinese, Austrian, German, and French cohorts. Relative
increases in bacteriophage richness and diversity were observed in CRC-associated
gut metagenomes compared with those of control subjects (Nakatsu et al. 2018).
Differences in the colorectal cancer virome could have been driven by eukaryotic
viruses or by bacteriophages (Hannigan et al. 2018). A combination of four
CRC-enriched enteric viruses Betabaculus virus, Epsilon15likevirus, Mulikevirus,
and Punalikevirus was associated with high risk of mortality (Nakatsu et al. 2018).
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2.4 Gut Microbe Interactions in Gastrointestinal Health
and Cancer

The gut microbiome is a complex ecosystem that needs to be maintained in a
homeostatic state for a healthy gut. In the healthy stomach, complex networks of
bacteria interactions were reportedly formed among members of the Proteobacteria
and Firmicutes phyla, with Helicobacter being negatively correlated with
Prevotella, Bacteroides, Faecalibacterium, Phascolarctobacterium, and Roseburia
(Liu et al. 2019b). The positive interactions observed among gastric bacteria in a
normal stomach were reportedly absent in peritumoral and tumoral microbes in
gastric cancer patients (Liu et al. 2019b). Moreover, the correlation strengths
among gastric cancer-associated microbes were found to increase from superficial
gastritis to atrophic gastritis, intestinal metaplasia, and gastric cancer (Coker et al.
2018). These suggest that alteration of microbial ecology may promote gastric
carcinogenesis.

Compared to control subjects, polymicrobial ecological interactions were found
to be disturbed in CRC patients. Bacterial community ecology was observed with
lower strength of associations across stages, from normal to adenoma and to CRC at
the mucosal surface (Nakatsu et al. 2015). Intra-phylum interactions within the
Firmicutes phylum were higher in healthy subjects than in adenoma and CRC
patients (Nakatsu et al. 2015). Synergistic relationships between gut bacteria and
fungi have been indicated in healthy subjects, while antagonistic bacteria-fungi
associations were observed in CRC patients. Within the fungi kingdom,
co-occurring intra-kingdom relationships were found enhanced in CRC patients
compared with control healthy subjects (Coker et al. 2019). Alteration of gut bacteria
by antibiotic treatment has been shown to lead to fungi overgrowth and increased
colonization by Candida albicans, an opportunistic fungal pathogen associated with
gastrointestinal and systemic candidiasis (Kobayashi-Sakamoto et al. 2018).

Moreover, negative association determined between bacterial and viral commu-
nity diversities in control subjects was lost in CRC patients (Nakatsu et al. 2018),
supported by the role of bacteriophages in bacteria population control in a healthy
gut (Santiago-Rodriguez and Hollister 2019). The diversities of bacteria and archaea
in the colon were observed to be positive in healthy guts (unpublished data). This
may be explained by the role of archaea as electron acceptors for substrates origi-
nating from anaerobic digestive processes of gut bacteria (Gaci et al. 2014).
Although interactions among virus, fungi, and archaea in the colon are yet
unexplored, it is admissible that balanced fungal, bacterial, and viral ecological
interactions are important in a healthy gut but are disrupted in CRC (Fig. 2.2).
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2.5 Therapeutic Manipulation of the Gut Microbiome
for Prevention and Treatment of Gastrointestinal
Cancers

It is agreeable that gut microbiota imbalance plays significant role in the pathogen-
esis of gastrointestinal cancers. Thus, modulation of the gut microbiota toward
enhancing its gut protective functions is widely recommended as a promising
strategy in gastrointestinal cancer prevention and treatment (Wong and Yu 2019).

2.5.1 Fecal Microbiome Transplantation

Fecal microbiota transplantation (FMT) is a process of transplanting stools from
healthy donors into the gastrointestinal tract of recipients with the aim of gut
microbiota restoration. Successful application of FMT has been recorded in gastro-
intestinal diseases such as recurrent Clostridium difficile infection, irritable bowel
syndrome, constipation, and colitis through restoration of bacterial diversity, metab-
olites, and bile acid metabolism (Kelly et al. 2015; Konturek et al. 2015). The
concept behind FMT is the competitive niche exclusion of dysbiotic microbiome
by “normal” and beneficial microbiome. The active involvement of gut microbiota in
gastrointestinal carcinogenesis has been described for gastric cancer, pancreatic

Fig. 2.2 Ecological network depicting interactions among bacteria, fungi, virus, and archaea in
healthy gut and in colorectal cancer. Synergistic ecological relationship between bacteria and fungi
and between bacteria and archaea in healthy subjects is reversed or lost, respectively, in colorectal
cancer. Antagonistic relationship between bacteria and bacteriophages is lost in colorectal cancer
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cancer, liver cancer, and colorectal cancer. It is possible that the replacement of the
pro-carcinogenic microbial ecosystem with a healthy one may be important in
prevention and treatment of gastrointestinal cancers. The potential usefulness of
FMT in the treatment of pancreatic cancer has been demonstrated. FMT from
patients with long-term survival of pancreatic cancer, characterized by high bacterial
diversity, modulated the tumor microbiome and reduced tumorigenesis via immu-
nosuppression in mice (Riquelme et al. 2019). As a potential application in liver
cancer therapy, FMT alleviated precancerous steatohepatitis by inducing decreased
intrahepatic accumulation of lipid, triglyceride, and cholesterol in mice fed with
high-fat diet. This was described as a result of increased bacterial diversity and
abundance of beneficial Lactobacillus, Christensenellaceae, and butyrate concen-
tration facilitated by FMT (Zhou et al. 2017). A human pilot study also showed that
FMT increased survival and resolved ascites in patients with HCC-predisposing
severe alcoholic hepatitis. Moreover, the benefit of gut microbiota modulation by
FMT in the treatment of chronic hepatitis B, hepatic encephalopathy, and liver
cirrhosis in human has been reported (Ren et al. 2017; Bajaj et al. 2017). Mechanistic
studies have determined that the gut microbiota from CRC patients play direct role in
colon tumorigenesis by activating Wnt signaling pathway which play essential role
in tumor development (Wong et al. 2017; Li et al. 2019). The potential therapeutic
ability of healthy microbiome against colon tumorigenesis was demonstrated in the
improved fitness and resistance to CRC shown by laboratory mice transplanted with
stools from wild mice which had higher relative abundance of Bacteroides and
Proteobacteria and lower abundance of Firmicutes, Tenericutes, and
Verrucomicrobia (Rosshart et al. 2017).

Some undesirable outcomes ranging from abdominal tenderness, fatigue, nausea,
and potential transfer of diseases to recipients can occur following FMT (Russell
et al. 2018). A consortium of known beneficial gut bacteria can alternatively be
transferred to patients for potential modulation of the gut microbiome. It was
demonstrated that the transplantation of a bacterial consortium of 11 bacteria species
from Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and Bacteroides
phyla, purified from mouse stools, proffered comparable effects in the restoration
of barrier integrity in mice with microbiota dysbiosis (Li et al. 2015). With stan-
dardization of fecal material preparation, these evidences support the future appli-
cation of FMT in treatment of gastrointestinal diseases including cancer.

2.5.2 Phage Therapy

An alternative to antimicrobials in targeting known pathogenic microbes is phage
therapy. Bacteriophages inject their genome into bacterial cells through specific
recognition of protein receptors and replace the bacteria genome, thereby preventing
bacterial replication and infection. Bacteriophages are highly specific against strains
of bacteria. As such, risks of side effects and development of bacterial resistance are
reduced. Phage therapy has been used to reduce pathogenic bacteria. Patients can be
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administered multiple lytic phages or a combination of phages and antibiotics (Paule
et al. 2018; McCallin et al. 2013, 2018). Human studies have shown that oral
bacteria are important in esophageal, gastric, pancreatic, and colon cancers (Zhang
et al. 2019). The ecological analysis between oral bacteria and bacteriophages was
found to be altered in CRC patients compared to healthy control subjects. Strepto-
coccus phage K13, Streptococcus phage pH10, Streptococcus phage SpSL1, and
Erwinia phage phiEaH2 exhibited stronger positive correlation with oral bacteria in
healthy subjects, but not in late CRC patients (Nakatsu et al. 2018). Owed to the
bacterial population control ability of bacteriophages, restoration of depleted bacte-
riophages may be employed in gastrointestinal cancer therapy. Moreover, efforts
have been put to increase the specificity of certain phages in patients undergoing
phage therapy (Schooley et al. 2017). Bacteriophages may be engineered to carry
genes encoding metabolites such as SCFA that can positively modify commensal
bacteria toward prevention or treatment of gastrointestinal cancers (Paule et al.
2018).

2.5.3 Use of Antimicrobials

Antimicrobials against known pathogenic microbes may be effective in preventing
the initiation and progression of diseases. Antibiotics regimen targetingH. pylori can
reduce the incidence of gastric cancer (Kumar et al. 2020). The use of antimicrobials
can alter gut microbiota composition. Increased gastric bacterial diversities concom-
itant with reduced inflammation were observed in subjects afterH. pylori eradication
with 1 week regimen of clarithromycin omeprazole and amoxicillin (Sung et al.
2020). Long-term administration of antibiotics cocktail comprising ampicillin, met-
ronidazole, and vancomycin attenuated colon tumorigenesis in mice. Moreover,
antifungal treatment reduced tumor by up to 40% in mouse model of pancreatic
cancer (Aykut et al. 2019b). The use of antimicrobials for gut microbiota modulation
is, however, not recommended due to their nonspecificity and the fact that many
gastrointestinal microbes are unculturable and unknown. As such potential detri-
mental effects of antibiotics on unknown “beneficial” microbes are obscure. More-
over, uncontrolled used of antimicrobials can lead to the emergence of resistance.
For example, increased prevalence of H. pylori resistance to clarithromycin-based
therapy has been reported. Adoption of more effective empirical treatment such as
bismuth quadruple and levofloxacin and use of probiotics as adjuncts in H. pylori-
targeted eradication therapy are being recommended.

2.5.4 Probiotics and Prebiotics

Ingestion of probiotics or prebiotics promotes gut health and has the capacity to
prevent gastrointestinal diseases including cancers (Gorska et al. 2019). Many
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studies have revealed the beneficial impact of probiotic bacteria such as Lactobacil-
lus and Bifidobacterium in the modulation of the gut microbiota by inhibiting
inflammation and suppression of pathogenic bacteria, thereby abrogating their
pro-carcinogenic potentials (Azad et al. 2018). The potential usefulness of probiotics
in esophageal cancer prevention has been reported. Co-culture of two Barrett’s
esophageal cell lines with B. longum and Lactobacillus acidophilus resulted in
decreased expression of cancer-associated biomarkers including TNFα, IL-18, and
cyclooxygenase 2 (COX2) (Mozaffari namin et al. 2015). Probiotics use also holds
promise in gastric cancer prevention and treatment. Oral administration of Lactoba-
cillus reportedly accelerated gastric ulcer healing. Lactobacillus johnsonii No. 1088,
a highly acid-resistant strain of L. johnsonii, inhibited the growth ofH. pylori in vitro
and suppressed gastric acid secretion in mice by reducing the gastrin-positive cells of
the stomach. Moreover, probiotics diminished H. pylori-induced Th1 response,
dampened H. pylori-associated hypochlorhydria, and secreted bacteriocins in vitro.
In human, probiotic monotherapy with S. thermophilus, L. acidophilus, B. longum,
and L. plantarum for 10 days effectively reduced H. pylori load by up to 32.5%
(Rosania et al. 2012). However, the probability of subsequent recurrence was
reportedly high as H. pylori antigen test was no longer negative after 4 weeks
(Rosania et al. 2012). Probiotics can be used as adjunct in H. pylori eradication
therapy to increase the rate of successful elimination of H. pylori (Bhandari and
Crowe 2012) (55). As a complement to H. pylori eradication antibiotics regimen,
probiotics B. bifidum, L. acidophilus, L. rhamnosus, and L. salivarius were shown to
proffer inhibitory effects on H. pylori infection in many animal models (Zhu and Liu
2017). Moreover, probiotics supplement including L. gasseri, L. reuteri,
L. acidophilus, Saccharomyces boulardii, Streptococcus faecalis, Bacillus subtilis,
and Bifidobacterium sp. improved H. pylori eradication rate and reduced total
adverse effects in Asian patients (Zhu et al. 2014). A potential mechanism proposed
for the effect of probiotics of H. pylori eradication is that probiotics can colonize the
stomach temporarily, improve host immune response, and dampen the effect of
H. pylori-induced inflammation on the gastric mucosa (Du et al. 2012). The use of
antibiotics alone in the eradication of H. pylori toward prevention of gastric cancer is
often associated with emergence of antibiotics resistance (Savoldi et al. 2018) with
possibility of horizontal transfer to other gastric microbes (Pot et al. 2001). While
probiotics help replenish beneficial bacteria, probiotics alone may not proffer
sustained suppression of infection, given that H. pylori can modulate the gastric
microbiota and can successfully outcompete other gastric microbes (Gantuya et al.
2019). The use of probiotics as adjuncts in antibiotics therapy will be more beneficial
than either antibiotics or probiotics alone in H. pylori-targeted control of gastric
cancer.

The potential use of probiotics in prevention and treatment of pancreatic cancer
has also been indicated by studies showing that probiotics can prevent pancreatitis,
obesity, and pancreatic necrosis. The use of L. plantarum for 7 days reduced
pancreatic sepsis and the number of surgical interventions of severe acute
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pancreatitis (SAP) patients (Olah et al. 2002). Also, ingestion of B. longum,
L. bulgaricus, and S. thermophilus for 7 days alleviated abdominal pain, restored
serum amylase, and reduced the incidence rate of complications and hospitalization
of SAP patients (Javanmard et al. 2018). Moreover, B. longum, L. bulgaricus, and
E. faecalis for 14 days resulted in significant lowering of pro-inflammatory cyto-
kines, early restoration of gastrointestinal function, and decreased SAP complica-
tions (Cui et al. 2013). Additionally, probiotics use was demonstrated to inhibit
hepatocellular carcinoma (HCC) progression in mice. Feeding a probiotics mixture
to tumor-injected mice shifted the gut microbiota, reduced liver tumors, and
downregulated angiogenic factors (Li et al. 2016).

Reduction in CRC risks with probiotics intake was observed in several studies
including randomized placebo-controlled trials. Intake of L. rhamnosus and
Propionibacterium freudenreichii by healthy human subjects resulted in decreased
activity of beta-glucosidase which has potential colon carcinogenic activity (Hatakka
et al. 2008). In addition to colon cancer prevention, probiotics can alleviate the
symptoms and complications of CRC patients undergoing surgery and treatment.
CRC patients treated with a cocktail of Bifidobacterium lactis and Lactobacillus
acidophilus manifested increased gut bacterial diversity concomitant with increased
butyrate-producing Faecalibacterium and Clostridiales spp. in the tumor, non-tumor
mucosa, and fecal microbiota (Hibberd et al. 2017). Treatment of CRC patients
undergoing surgery with L. plantarum, L. acidophilus, and B. longum for 16 days
improved gut barrier integrity and decreased infection complications (Taremi et al.
2005). A separate study reported decreased postoperative major complication rate,
decreased TNF expression, and circulating IL-6 in CRC patients treated with four
probiotics regimen comprising L. acidophilus, L. plantarum, B. lactis, and Saccha-
romyces boulardii (Kotzampassi et al. 2015). Moreover, less diarrhea, abdominal
pain, and hospital care and radiation therapy-related toxicity were reported in
radiation-/chemotherapy-treated CRC patients that received probiotic
L. rhamnosus GG for 24 weeks (Osterlund et al. 2007).

The mechanisms employed by probiotics in conferring gastrointestinal health and
potential prevention of gastrointestinal cancers include production of SCFA, pro-
duction of antimicrobial products, modulation of microbiota, reduction of inflam-
mation, alteration of tumor gene expressions, modification of differentiation process
in tumor cells, inhibition of the pro-carcinogens, and activation of the host’s immune
system (Javanmard et al. 2018; Sanders et al. 2019; Rowland et al. 2018) (Fig. 2.3).
Overall, the results of clinical trials showed that probiotics can manipulate the
composition of gut microbiota, improve intestinal barrier integrity, inhibit pathogen
growth, and reduce metabolism of pro-carcinogenic substances (Javanmard et al.
2018).
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Chapter 3
The GutMicrobiome and Colorectal Cancer

Amy I. Yu and Grace Y. Chen

Abstract The gut microbiome, the consortium of bacteria, viruses, and fungi, that
reside in the gastrointestinal tract, has been linked to disease in recent years. Specifi-
cally, the gut microbiome can contribute to colon cancer development and severity.
Specific bacteria have been identified as promoters of colon tumorigenesis through a
variety of mechanisms, including promoting mutagenesis of tumor-related genes and
modulating immune responses. Additionally, metabolites produced by the gut
microbiome are also implicated in colon cancer development where microbial metab-
olites have both pro- and anti-tumor effects. Here, we discuss, in depth, the significance
of the gut microbiome, and in particular, gut bacteria, in colon cancer pathogenesis.

Keyword Microbiota · Colorectal · Cancer

3.1 Introduction

Colorectal cancer (CRC) is the third most common type of cancer and fourth leading
cause of cancer-related deaths worldwide (Arnold et al. 2017). While incidence and
mortality rates are declining in the USA, Western Europe, and Australia, likely due
to increased and improved screening and therapies, CRC incidence rates are rising in
Asia, Eastern Europe, and South America, some of which may be attributable to
westernization and economic transitioning of countries as a higher incidence of CRC
has typically been associated with economically developed countries (Keum and
Giovannucci 2019; Arnold et al. 2017). In addition, there has been a disturbing
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increase in incidence of young onset colorectal cancer and, in particular, rectal
cancer in individuals aged 50 years and younger. This rise in incidence cannot be
entirely explained by genetic predisposition and points to lifestyle and environment
factors potentially playing a role (Stoffel and Murphy 2019). Besides genetic
predisposition and inflammatory bowel disease (IBD), which account for a small
percentage of CRC, risk factors related to dietary and lifestyle habits include
smoking, obesity, increased alcoholic consumption, and a diet rich in red meat and
reduced whole grains and dairy (World Cancer Research Fund International/Amer-
ican Institute for Cancer Research. Continuous Update Project Report 2018).

Many of these factors—diet, nutrition, physical activity, and colorectal cancer—
can influence or be influenced by the composition of the microbiota (Li et al. 2019a;
Capurso and Lahner 2017; Turnbaugh et al. 2006, 2009; Song et al. 2019; Makki
et al. 2018). In addition, just as different parts of the colon are associated with
specific subtypes of CRC, the composition of the gut microbiota also changes with
anatomic location, further suggesting a potential link between the microbiota and
CRC pathogenesis (Keum and Giovannucci 2019; Flynn et al. 2018; Missiaglia et al.
2014; Kim et al. 2018). Thus, there has been increasing interest in understanding the
role of the gut microbiome in dictating CRC risk. Indeed, there is now significant
evidence that the gut microbiome composition is altered in patients with CRC and
that these perturbations from a healthy state, often referred to as dysbiosis, may
contribute to the development and/or progression of CRC.

The gut microbiome consists of trillions of bacteria comprising at least 1000
different species and plays an important role in promoting health and intestinal
homeostasis (Rajilic-Stojanovic and de Vos 2014). For example, the gut microbiota
is required for the digestion and provision of certain nutrients including resistant
starches and vitamins, the development and education of the host immune system,
and promotion of resistance against colonization by harmful pathogens (Rajilic-
Stojanovic and de Vos 2014; Roy and Trinchieri 2017; Savage 1977). The gut
microbiota is dominated by two phyla, Bacteroidetes and Firmicutes, but also
includes Actinobacteria, Fusobacteria, Proteobacteria, and Verrucomicrobia
(Arumugam et al. 2011; Eckburg et al. 2005). Although there is significant
interindividual heterogeneity in the composition of the gut microbiota such that a
“core” microbiome has not been identified, the human microbiome may be stratified
into specific enterotypes defined by the relative abundance of certain phylotypes,
such as Bacteroides, Prevotella, and Ruminococcus genera, as well as co-occurring
bacterial species found in the healthy human gut (Turnbaugh et al. 2009; Arumugam
et al. 2011; Costea et al. 2018; Ding and Schloss 2014). On the other hand, there is
much more similarity in the functional gene content of the gut microbiome and the
metabolic pathways they represent between individuals (Turnbaugh et al. 2009).
These observations suggest the possibility of using the composition of the
microbiota and the metabolites they produce as potential biomarkers or therapeutic
targets for disease. Indeed, when the microbiome is perturbed, the resultant dysbiotic
or imbalanced microbiome can promote colon inflammation and intestinal pathology
including infectious colitis, IBD, and CRC (Carding et al. 2015). There is now
significant evidence that CRC patients also have dysbiosis that may be associated
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with potential metabolic signatures (Thomas et al. 2019; Wirbel et al. 2019). In this
review, evidence supporting a role for dysbiosis, and in particular, gut bacteria,
which have been the best-studied, in promoting CRC and potential mechanisms by
which gut bacteria may modulate CRC risk will be presented.

3.2 Dysbiosis and CRC

There are a growing number of studies that show differences in the composition of
the gut microbiome between individuals that are healthy or have CRC (Table 3.1).
However, identifying specific bacteria that are found in all cases of CRC that may be
used as potential biomarkers of disease development, has been more of a challenge
and may reflect the preexisting interindividual heterogeneity as well as the diversity
of molecular subtypes of CRC. Furthermore, the relatively small numbers of patients
examined to date, limitations in taxonomic resolution to the species level, differ-
ences in the source material used for sequencing analysis (e.g., tissue versus stool),
and differences in sequencing method have also made it difficult to identify universal
microbial signatures of CRC. Most studies evaluating the presence of dysbiosis in
CRC patients have been small case-control studies, typically less than 100 subjects
per group, comparing either fecal or tissue samples from CRC patients and normal,
healthy controls, some of which were performed with the goal of identifying
potential microbial biomarkers of disease. These studies have not shown significant
concordance on specific species that are predictive of or are associated with CRC;
however, CRC patients generally have altered gut microbiomes, characterized by
decreased Firmicutes and increased Bacteroidetes bacteria compared to healthy
controls (Wang et al. 2012; Ahn et al. 2013; Baxter et al. 2014; Zackular et al. 2014).

Despite the lack of significant concordance between studies on microbiome
differences between CRC and non-CRC control subjects to date, multiple studies
have reported an enrichment of Fusobacterium nucleatum as well as other oral
commensal and pathogenic bacteria in either the tissues or stool of CRC patients.
Although the reason behind this association is poorly understood, it has been posited
that the ability of oral bacteria to produce and reside in biofilms enables them to
colonize and adhere to the colon epithelium under predisposing conditions (e.g.,
during inflammation) that result in CRC development (Rajilic-Stojanovic and de
Vos 2014; Koliarakis et al. 2019). Consistently, the presence of biofilms is associ-
ated with the development of CRC particularly in the proximal colon, and consis-
tently, increased colonization of Fusobacterium has been observed in right-sided
colon cancers (Mima et al. 2016a). Despite the fact that Fusobacterium and other
oral microbes are repeatedly identified in colon tumor tissue, one study suggests that
the presence of these bacteria is still not predictive of CRC (Baxter et al. 2016).
Rather, the depletion of typically beneficial bacteria such as those capable of
producing butyrate and other short-chain fatty acids (e.g., Ruminococcaceae,
Lachnospiraceae, and Eubacterium spp.) was more strongly predictive of CRC
(Baxter et al. 2016). A meta-analysis identified eight taxa whose fecal abundance
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Table 3.1 Microbiome studies involving stool samples of individuals with colorectal cancer

Study Year Country No. of patients Sequencing Major findings

Sobhani
et al.

2011 France 6 CRC patients,
6 healthy
controls

V3/V4 region,
pyrosequencing

• Bacteroides/Prevotella
group bacteria are
increased in CRC
patients compared to
healthy controls

Wang
et al.

2012 China 46 CRC patients,
56 healthy
controls

V3 region,
pyrosequencing

• Bacteroidetes phylum
bacteria significantly
increased in healthy
controls and
Proteobacteria phylum
bacteria significantly
increased in CRC
patients
• Bacteroides,
Roseburia, Alistipes,
Eubacterium, and
Parasutterella genera
increased in healthy
controls
• Porphyromonas,
Escherichia/Shigella,
Enterococcus, Strepto-
coccus, and
Peptostreptococcus gen-
era increased in CRC
patients
• Healthy controls were
enriched in OTUs of
Alistipes,
Phascolarctobacterium,
Oscillibacter, unclassi-
fied genera of the order
Clostridiales, as well as
butyrate-producing
Roseburia and the
Lachnospiraceae family
• CRC patients were
enriched in OTUs from
Escherichia/Shigella,
Klebsiella, Streptococ-
cus, Enterococcus,
Peptostreptococcus,
Eggerthella,
Fusobacterium, and
Gemella genera, as well
as Citrobacter from the
Enterobacteriaceae
family

(continued)
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Table 3.1 (continued)

Study Year Country No. of patients Sequencing Major findings

Chen
et al.

2012 China Stool, 21 CRC
patients,
22 healthy con-
trols; lumen
swabs, 32 CRC
patients,
34 healthy
controls

V1-V3,
pyrosequencing

• Erysipelotrichaceae,
Prevotellaceae,
Coriobacteriaceae, and
Peptostreptococcaceae
family bacteria are
enriched in CRC patient
intestinal lumens com-
pared to healthy controls
• Peptostreptococcus,
Porphyromonas,
Mogibacterium,
Anaerococcus, Slackia,
Anaerotruncus,
Collinsella,
Desulfovibrio, Eubacte-
rium, and
Paraprevotella
genera bacteria are
enriched in CRC patient
stool compared to
healthy controls

Ahn et al. 2013 USA 47 CRC patients,
94 healthy
controls

V3-V4 region,
pyrosequencing

• CRC patients have
decreased community
diversity but no differ-
ence in community
evenness compared to
healthy controls
• CRC patients have
increased Bacteroidetes
and decreased
Firmicutes bacteria
• In the Firmicutes, the
Clostridia family, which
include butyrate pro-
ducers, are particularly
reduced in CRC patients
• Fusobacterium,
Atopobium, and
Porphyromonas genera
are increased in CRC
patients

Chen
et al.

2013 China 47 CRC
(advanced colo-
rectal adenoma)
patients,
47 healthy
controls

V1-V3 region,
pyrosequencing

• Clostridium,
Roseburia, and Eubac-
terium genera (butyrate
producers) are reduced
in CRC patients
• Enterococcus, Strepto-
coccus, and
Bacteroidetes genera are
enriched in CRC
patients

(continued)
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Table 3.1 (continued)

Study Year Country No. of patients Sequencing Major findings

Weir
et al.

2013 USA 11 CRC,
10 healthy
controls

V4 region,
pyrosequencing

• Several Bacteroides
and Prevotella spp. as
well as Dialister and
Megamonas spp.
enriched in healthy con-
trols
• Increased representa-
tion of Akkermansia in
colorectal cancer
patients

Zackular
et al.

2014 USA
and
Canada

30 CRC (carci-
noma) patients,
30 adenoma
patients,
30 healthy
controls

V4 region,
Illumina MiSeq
(16S rRNA
sequencing)

• CRC patients are
enriched for
Fusobacterium,
Porphyromonas,
Lachnospiraceae, and
Enterobacteriaceae bac-
teria and reduced
Bacteroides,
Lachnospiraceae, and
Clostridiales bacteria

Zeller
et al.

2014 France 53 CRC (carci-
noma) patients,
42 adenoma
patients,
61 healthy
controls

V4, Illumina
MiSeq (16S
rRNA sequenc-
ing); Illumina
HiSeq
(metagenome)

• Bacteroidetes,
Fusobacteria, and
Proteobacteria are
enriched in CRC
patients; Firmicutes and
Actinobacteria bacteria
are reduced in CRC
patients
• Healthy control
metagenomes are
enriched for fiber-
degrading enzymes and
fiber-binding domains
• CRC patient
metagenomes suggest an
increase in degradation
of host glycans and
amino acid uptake

Feng
et al.

2015 Austria 41 CRC patients,
42 adenoma
patients,
55 healthy
controls

Illumina HiSeq
(metagenome)

• Bacteroides and
Parabacteroides spp. as
well as Alistipes
putredinis, Bilophila
wadsworthia,
Lachnospiraceae bacte-
rium, and E. coli
enriched in CRC com-
pared with healthy and
advanced adenomas.
Fusobacterium,
Parvimonas micra,

(continued)
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Table 3.1 (continued)

Study Year Country No. of patients Sequencing Major findings

Gemella morbillorum,
and Peptostreptococcus
stomatis elevated in car-
cinomas and adenomas
compared with control
• Bifidobacterium
animalis and Strepto-
coccus thermophilus
decreased in feces from
adenoma or CRC
patients

Baxter
et al.

2016 USA
and
Canada

120 CRC
patients, 198 ade-
noma patients,
172 no colonic
lesions

V4, Illumina
MiSeq (16S
rRNA
sequencing)

• Depletion of
Lachnospiraceae and
Ruminococcaceae fami-
lies (butyrate producers)
in CRC
• Higher levels of
Fusobacterium,
Porphyromonas,
Parvimonas,
Peptostreptococcus, and
Prevotella in CRC

Flemer
et al.

2017 Ireland 59 CRC patients,
21 individuals
with polyps,
56 healthy
controls

V3/V4 region,
Illumina MiSeq
(16S rRNA
sequencing)

• CRC patients are
enriched for
Bacteroides, Roseburia,
Ruminococcus, and
Oscillibacter genera and
certain genera
containing known oral
pathogens such as
Fusobacterium and
Porphyromonas
• CRC patients enriched
for bacteria in the
Prevotella and pathogen
bacteria clusters and
positively correlated
with CXCL1,
SERPINE1, and IL-17a
and IL-23 genes
• Microbiota composi-
tion differed between
proximal and distal
colon tumors

Yu et al. 2017 China 74 CRC patients,
54 healthy
controls

Illumina HiSeq
(metagenome)

• Strong association
between Parvimonas,
Fusobacterium,
Solobacterium, and
Peptotreptococcus with
CRC
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was significantly associated with carcinomas, namely, Fusobacterium, Parvimonas,
Porphyromonas, and Peptostreptococcus, which are commonly found in the oral
cavity, and Clostridium, Enterobacteriaceae, Escherichia, and Ruminococcus with
decreases rather than increases in Clostridium and Ruminococcus associated with
CRC (Sze and Schloss 2018). Interestingly, no individual taxa were sufficient to
predict for the presence of cancer, suggesting that multiple bacterial populations
contribute to cancer susceptibility (Sze and Schloss 2018).

Whether the altered microbiomes observed in CRC patients cause the develop-
ment of CRC or occur as a result of carcinogenesis and cancer progression remains
unclear. In a longitudinal study of patients who developed CRC, the reversion of the
gut microbiome to that associated with a normal colon in patients after treatment of
their colorectal cancer suggests that a CRC-associated microbiome may in fact
contribute to disease (Sze et al. 2017). In addition, studies using germ-free
(GF) mice strongly suggest that dysbiosis directly contributes to colon tumorigenesis
(Zackular et al. 2013). A commonly used mouse model to study the effects of the
microbiota on colon carcinogenesis is the azoxymethane-dextran sulfate sodium
(AOM/DSS) model of inflammation-associated colon cancer in which mice are
treated with the experimental carcinogen azoxymethane followed by multiple rounds
of water containing dextran sulfate sodium which causes bacteria-driven inflamma-
tion in the colon by disrupting the epithelial barrier (Tanaka et al. 2003). This results
in the generation of adenomatous polyps, which, although are premalignant, can
eventually progress into adenocarcinomas and, therefore, have been used as a
surrogate marker for cancer (Tanaka et al. 2003). AOM/DSS treatment also causes
microbiome alterations similar to that observed in human CRC patients, including
reduced species richness and alpha diversity and significant shifts in beta diversity
(Zackular et al. 2013). Using this model, it was shown that the colonization of GF
C57BL/6 (B6) mice with the microbiome of tumor-bearing AOM/DSS-treated mice
resulted in significantly more and larger tumors compared to GF mice colonized with
the microbiota of healthy, untreated mice (Zackular et al. 2013). Similarly, conven-
tionalization of GF B6 mice with the fecal microbiome of five CRC patients also
resulted in increased tumors, intestinal dysplasia, and inflammation after injection of
a single dose of AOM compared to GF mice that were gavaged with stool from
healthy controls (Wong et al. 2017). ApcMin/+ mice, which spontaneously develop
intestinal tumors due to a mutation in the tumor suppressor gene Apc that occurs in
the majority of human CRC, developed more tumors after gavage of fecal contents
from CRC patients than from healthy controls (Li et al. 2019b). The potential
carcinogenicity of biofilm-associated microbiota was demonstrated in a study in
which GF Apc mutant mice developed significantly more tumors when gavaged with
the homogenates of biofilm-positive colon mucosa compared to biofilm-negative
colon mucosa (Tomkovich et al. 2019). However, in one study, GF B6 mice that
were gavaged with the stool from either three CRC or three healthy individuals had
different susceptibilities to colon tumorigenesis after AOM/DSS treatment that did
not correlate with donor cancer status, which may in part be due to incomplete
reconstitution of GF mice with human donor microbiota (Baxter et al. 2014). As
human-derived microbiota may not interact with the mouse immune system in the
same way as an indigenous mouse microbiome, studies involving “humanized” GF
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mice should still be interpreted with caution although remain one of the few methods
to evaluate causality between the microbiome and disease (Nguyen et al. 2015;
Chung et al. 2012).

3.3 CRC-Associated Microbiota

Although a microbial signature defining colorectal cancer has not yet been identified,
there are several commensal bacteria that have been repeatedly shown to be enriched
in CRC tissue compared to normal adjacent, which also have pro-tumorigenic
activities in mouse models of colon cancer. The most well-studied are
Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and Escherichia
coli. In addition, certain pathogenic species have also been associated with increased
incidence of CRC after infection, such as Streptococcus gallolyticus and Salmonella
enterica. It is important to note that none of these bacteria are universally present in
all CRCs, and therefore, it remains possible that these CRC-associated bacteria
represent opportunistic organisms that can thrive in the tumor microenvironment
or in preneoplastic lesions, but are capable of accelerating tumor growth. Evidence
supporting an association with these bacterial species and CRC will be
presented here.

3.3.1 Fusobacterium nucleatum

Fusobacterium spp. were first noted to be enriched in tumor compared to normal
adjacent tissue in a small study of six CRC patients (Marchesi et al. 2011). This was
further confirmed in a larger study of 95 paired tumor and normal tissues from CRC
patients in which there was overrepresentation of the Fusobacterium taxon, includ-
ing Fusobacterium nucleatum (Kostic et al. 2012). F. nucleatum is a Gram-negative,
anaerobic bacteria typically found in the oral cavity and was initially recognized to
promote gingivitis and periodontitis (Han 2015; Signat et al. 2011). Transcriptomic
analysis of tumor tissue from 11 matched pairs of CRC and adjacent normal tissue
revealed that Fusobacterium nucleatum was disproportionately increased in most
tumor tissue samples, although it was not more abundant in all cases (Castellarin
et al. 2012). Increased Fusobacterium spp. was also found to be increased in
premalignant adenomatous tissue compared to adjacent tissues, suggesting that
Fusobacterium may be involved in tumor progression. Indeed, oral gavage of
F. nucleatum into ApcMin/+ mice increased the growth and number of tumors that
developed (Kostic et al. 2013). Examination of over 1069 cases of CRC from 2 large
US prospective cohort studies, the Nurses’ Health Study and the Health Profes-
sionals Follow-up Study, revealed detectable F. nucleatum DNA in only 13% of
cases, although tissue fixation may have affected the detection of F. nucleatum in
this particular study (Lee et al. 2018). Interestingly, F. nucleatum DNA levels
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directly correlated with CRC-specific mortality, proximal tumor location, and poor
tumor differentiation (Mima et al. 2016a, b). Furthermore, higher levels of
F. nucleatum DNA correlated with microsatellite instability (MSI-high) and the
CpG island methylator phenotype (CIMP-high), which was also observed in a
second retrospective analysis of 246 Asian patients (Lee et al. 2018). F. nucleatum
was also more abundant in the tumor tissue of patients who had recurrences,
suggesting F. nucleatum can promote chemotherapy resistance (Yu et al. 2017).
Altogether, these studies suggest that the presence of F. nucleatum in CRC tissue
correlates with poorer prognosis. The link between F. nucleatum with microsatellite
instability is interesting given that F. nucleatum levels are otherwise associated with
poor prognostic features since patients with MSI-H tumors tend to have better
prognosis. This may reflect the fact that MSI-H tumors tend to be located in the
proximal colon which coincides with the preferential location of F. nucleatum in
biofilms that are dominant on the right side in both tumors and normal adjacent tissue
and not on the left (Dejea et al. 2014). Similarly, CIMP-high tumors also tend to be
locally proximally, which may also partially explain the association with F.
nucleatum, but unlike MSI-H CRC, CIMP-high tumors, can be associated with
worse prognosis, which may be dependent on the presence of certain mutations
(Kim et al. 2017; Chen et al. 2019). Regardless, it remains unclear why
Fusobacterium preferentially colonizes proximal tumors. How it affects tumor
biology and whether it contributes to the molecular phenotype of CRC is also not
fully understood; however, as it has been shown to preferentially bind to CRC cells
rather than precancerous adenoma cells and induces their cellular proliferation, it has
been suggested that it acts as a cancer promoter rather than as an initiator (Rubinstein
et al. 2019).

3.3.2 Enterotoxigenic Bacteroides fragilis

Enterotoxigenic B. fragilis (ETBF) is a strain of B. fragilis characterized by the
expression of the zinc-dependent metalloprotease toxin B. fragilis toxin (BFT).
ETBF causes inflammatory diarrhea in children and asymptomatically colonizes
20–35% of adults (Sears et al. 2008). However, a potential link between ETBF
and colon carcinogenesis was suggested by a study in which inoculation of ApcMin/+

mice with ETBF, but not non-toxigenic B. fragilis (NTBF), increased tumor num-
bers (Wu et al. 2009). Subsequently, at least two studies were able to identify
enhanced levels of ETBF and the BFT gene (bft) in the stool of CRC patients by
PCR although the numbers of patients evaluated were small (<100) (Toprak et al.
2006; Haghi et al. 2019). Interestingly, like F. nucleatum, B. fragilis and the bft gene
can be found in biofilms that largely occur in the proximal colon and are also
prevalent in patients with familial adenomatous polyposis (FAP), a hereditary
condition in which the Apc gene is mutated and universally leads to the development
of CRC, suggesting the interesting possibility that biofilm formation and aggregation
of cancer-associated microbiota may be a precursor to and predictive of malignant
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transformation (Dejea et al. 2014, 2018). In addition, like F. nucleatum, B. fragilis
was increased in biofilms associated with right-sided CRC (Drewes et al. 2017).
Also consistent with the enrichment of B. fragilis in right-sided colon tumors,
B. fragilis is more abundant in MSI-H tumors; however, in a study of 83 individuals
with CRC, there was no significant difference in the presence of the bft gene between
MSI-H and microsatellite stable (MSS) CRC (Hale et al. 2018).

3.3.3 Escherichia coli

Several studies suggest a possible role for E. coli in promoting CRC. In one study,
90–92% of CRC patients had tumor-associated bacteria compared to 3% of healthy
controls where E. coli was enriched in 62–77% of CRC patients (Swidsinski et al.
1998). Another study found 71% of CRC patients to have mucosa-associated
bacteria where the majority of the Gram-negative mucosa-associated bacteria were
E. coli (Martin et al. 2004). Finally, in a third study, mucosa-associated E. coli were
found in 50% of adenocarcinoma samples (Maddocks et al. 2009). E. coli in the B2
phylogenic group are enriched for the polyketide synthase (pks) genomic island
which encodes the genotoxin called colibactin (Nougayrede et al. 2006). A role for
pks+ E. coli, specifically, in modulating susceptibility for colon tumorigenesis was
discovered in a sentinel study by Arthur et al., in which increased pks+ E. coli was
observed in 21 CRC tissue specimens compared to 24 non-CRC controls
(66.7% vs. 20.8%) (Arthur et al. 2012). The accumulation of this bacteria in tumors
may, in part, be due to the presence of chronic inflammation as pks+ E. coliwere also
enriched in patients with IBD, a major risk factor for the development of colitis-
associated CRC. In mice, Arthur et al. found increased colonization of E. coli in
conventionalized GF Il10-/- mice, which developed spontaneous colitis in SPF
conditions, compared to that of conventionalized GF WT mice that do not develop
colitis (Arthur et al. 2012). This is consistent with the association of
Enterobacteriaceae and E. coli in IBD and suggests that inflammation promotes
the bloom of E. coli that occurs prior to frank carcinogenesis (Arthur et al. 2012;
Kuhn et al. 1993). More importantly, mono-association of GF Il10-/- mice treated
with the carcinogen AOM, which results in the development of inflammation-
associated colon tumors, with pks+ E. coli, but not pks-deficient E. coli resulted in
increased numbers of invasive adenocarcinomas. The ability of pks+ E. coli to
promote colon tumorigenesis was not necessarily due to an effect on inflammation
as GF Il10-/- mice mono-associated with pks-deficient E. coli or E. faecalis, both of
which induced similar levels of colitis as pks+ E. coli, did not result in any tumors
(Arthur et al. 2012). However, in the context of IL-10 deficiency, inflammation is
required for the tumor-promoting effects of pks+ E. coli, as Il10-/- mice that were
deficient in T cells and are non-colitic (Il10-/-;Rag2-/-) did not develop tumors after
AOM treatment despite the presence of similar levels of pks+ E. coli (Arthur et al.
2014). Subsequent studies, using other mouse models, namely, the AOM/DSS,
ApcMin/+, and human xenograft models of colon tumorigenesis, also demonstrated
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a tumor-enhancing effect for E. coli in specific pathogen-free (SPF) mice (Bonnet
et al. 2014; Cougnoux et al. 2014).

E. coli of the B2 phylotype is also capable of forming biofilms, which may
contribute to their ability to adhere to intestinal epithelium and colonize the gut
(Raisch et al. 2014). Consistently, pks+ E. coli was identified in the biofilms of FAP
patients in addition to B. fragilis (Dejea et al. 2018). Regardless, it is important to
note that pks+ E coli has not been consistently observed to be significantly elevated
in all CRC patient cohorts compared to non-CRC controls, and therefore other
bacteria likely contribute or are required for full malignant transformation (Dejea
et al. 2018; Raisch et al. 2014). Indeed, in GF genetically engineered mouse models
of CRC, colonization of mice with both B. fragilis and pks+ E coli resulted in
significant greater tumor induction including adenocarcinoma formation compared
to either strain alone (Dejea et al. 2018).

3.3.4 Streptococcus gallolyticus (Previously Known
as Streptococcus bovis Biotype I and II/2)

Streptococcus gallolyticus are Gram-positive, opportunistic pathogens that often
reside in the gut and have been linked to sepsis and endocarditis (Leport et al.
1987; Pasquereau-Kotula et al. 2018). The S. gallolyticus subspecies gallolyticus
(SGG) was previously known as S. bovis biotype I, while the S. gallolyticus sub-
species pasteurianus and macedonicus were identified as S. bovis biotype II/2
(Schlegel et al. 2003). Epidemiological studies since the 1970s have suggested a
correlation between SGG infection and CRC, and it has been reported that 25–80%
of patients with SGG bacteremia have colorectal tumors (Abdulamir et al. 2011;
Pasquereau-Kotula et al. 2018; Corredoira-Sanchez et al. 2012; Klein et al. 1977;
Kwong and Dove 2009; Boleij et al. 2011b; Ellmerich et al. 2000b). Patients with
higher levels of SGG in the blood were at higher risk for CRC compared to healthy
controls with no SGG in the blood (Kwong et al. 2018), and in a large case-
controlled study of 4210 CRC cases and 4210 matched controls, antibody responses
to a specific SGG protein was significantly associated with a 40% increase in CRC
risk in patients diagnosed within 10 years of testing, although the percentage of CRC
cases with seropositivity was low (Butt et al. 2018). Thus, patients who present with
SGG bacteremia are often referred for a colonoscopy. All three subspecies of
S. gallolyticus have been found to be increased in CRC tumor tissues compared to
non-tumor tissues (Abdulamir et al. 2010). Furthermore, an analysis of 148 tumor
and 128 normal adjacent tissues from CRC patients also demonstrated enrichment of
SGG in tumor tissues, which can be directly visualized by immunofluorescence
(Kumar et al. 2017). In a mouse model of CRC in which mice are injected with two
doses of the carcinogen AOM, mice orally gavaged with SGG developed signifi-
cantly more tumors compared to mice inoculated with a Lactobacillus strain or saline
(Kumar et al. 2017). In a separate study, it was determined that rats that were treated
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with two doses of AOM followed by administration of SGG also developed more
adenomas compared to rats treated with AOM alone (Ellmerich et al. 2000b).

How SGG becomes enriched in CRC remains to be fully elucidated. However,
increased colonization efficiency was observed in the tumors of mice that are
genetically predisposed to developing colon cancer via over-activation of Notch
signaling in the intestinal epithelium (Notch/APC mice) after oral administration of
SGG without any pretreatment of antibiotics (Aymeric et al. 2018). Specifically,
SGG was able to outcompete enterococci through the production of the antimicrobial
gallocin, enabling it to create a niche for colonization. The bactericidal activity of
gallocin was enhanced in vitro in the presence of secondary bile acids, which is more
abundant in CRC patients (Aymeric et al. 2018; Jia et al. 2018; Hill et al. 1975),
suggesting that the presence of colon neoplasia may produce a suitable environment
for SGG colonization. In addition, SGG is capable of forming biofilms particularly
on collagen-rich surfaces, which can be found at adenomatous tissue (Boleij et al.
2011a). Taken together, as with other CRC-associated bacteria, it has been proposed
that SGG colonizes the colon under preneoplastic conditions and acts to promote
rather than initiate the development of CRC (Pasquereau-Kotula et al. 2018).

3.3.5 Salmonella

Salmonella are Gram-negative bacterial pathogens that can cause gastroenteritis,
which is linked to an increased risk for developing IBD (Zha et al. 2019; Gradel et al.
2009; Axelrad et al. 2019). A nationwide registry-based study of Dutch residents that
were diagnosed with severe Salmonella infection (n ¼ 14,264) determined that
patients infected with Salmonella, especially with Salmonella enterica, had greater
risk for developing CRC and, in particular, cancers of the ascending and transverse
colon than that of the general population (Mughini-Gras et al. 2018). In particular,
the Salmonella effector protein AvrA that is injected by Salmonella into host cells
through a type III secretion system is detectable in the stool of CRC patients as well
as in CRC-adjacent tissue (Hardt and Galán 1997; Lu et al. 2017). Additional
evidence that Salmonella may be involved in colorectal carcinogenesis comes
from mouse studies. In the AOM/DSS model of colitis-associated CRC, all WT
mice infected with AvrA+ S. typhimurium developed colon tumors, whereas only
56% of WT mice infected with AvrA-S. typhimurium developed tumors (Lu et al.
2014b). In addition, infection of ApcMin/+ mice with S. typhimurium resulted in more
mice with malignant transformation compared to uninfected mice. Interestingly,
ApcMin/+ mice infected with mutant Salmonella that lacked a functional type III
secretion system and therefore unable to inject effector proteins, such as AvrA,
developed fewer adenocarcinomas similar to that of uninfected mice (Scanu et al.
2015).
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3.4 Mechanisms by Which the Gut Microbiome Contribute
to CRC

As discussed above, there are a number of well-studied bacteria that are linked to
CRC. Although the mechanisms by which CRC-associated bacteria and dysbiosis in
general promote CRC development remain to be fully elucidated, studies, largely in
mice, suggest a mechanism related to an effect on host immune responses, tumor
suppressor activity, epithelial transformation, and cellular proliferation via the pro-
duction of bacterial immunostimulatory molecules, microbial metabolites, and
genotoxins (Fig. 3.1). Pro-tumorigenic processes that are promoted by dysbiosis
will be reviewed in this section.

Fig. 3.1 Potential mechanisms by which the gut microbiome contribute to CRC. Dysbiosis can lead
to the accumulation of bacteria that have pro-inflammatory, DNA-damaging, and/or cellular
growth-promoting properties. For example, F. nucleatum, B. fragilis, S. bovis, and Salmonella are
capable of activating β-catenin to promote cellular proliferation. Recognition of pathobionts such as
F. nucleatum can activate NFκB to upregulate pro-tumorigenic, pro-inflammatory responses via
innate immune receptors. Activation of STAT3 by B. fragilis can also promote cellular proliferation,
and DNA-damage induced by genotoxic bacteria such as pks+ E. coli can lead to cellular transfor-
mation. Finally, dysbiosis may alter the production of specific metabolites, resulting in, for example,
an imbalance in SCFA and secondary bile acid levels, which can further contribute to tumorigenesis
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3.4.1 Modulation of Host Immune Responses

Chronic inflammation is a major risk factor for the development of CRC. An
inflammatory response arises when tissue homeostasis is disrupted and is character-
ized by the recruitment of inflammatory cells to damaged tissue and production of
soluble factors to promote tissue repair. These soluble factors promote cellular
survival and proliferation, angiogenesis, and matrix remodeling that are required
for effective tissue repair and regeneration (Coussens and Werb 2002). However,
with chronic inflammation that is not self-limited, these same factors can result in the
generation of DNA-damaging reactive oxygen species that can initiate tumorigene-
sis as well as promote a microenvironment that is conducive to tumor growth and
survival (Coussens and Werb 2002). Thus, patients with IBD, for example, have an
increased risk for developing CRC (Lutgens et al. 2013). Inflammation also plays a
role in the pathogenesis of sporadic CRCs as elevations in cytokines such as IL-8,
IL-8, IL-17, and IL-23 have been observed in the serum and tissue of CRC patients
(Johdi et al. 2017; Lu et al. 2014a; Yan et al. 2018; Grivennikov et al. 2012). In the
context of a breached epithelial barrier, the gut microbiome can further induce
inflammation by stimulating innate immune receptors, such as the Toll-like receptors
(TLRs) (Grivennikov et al. 2012). Indeed, in mice that harbor a mutation in the Apc
tumor suppressor gene, colon tumors exhibit increased intestinal permeability indic-
ative of a disrupted epithelial barrier, and the presence of intratumoral bacteria is
associated with upregulation of IL-17 and IL-23 expression that is TLR-dependent
(Grivennikov et al. 2012). Deficiency in either IL-17 or IL-23 ameliorated tumori-
genesis (Grivennikov et al. 2012). Thus, shifts in the microbial community that result
in the accumulation of bacteria that are highly immunostimulatory and
pro-inflammatory would be a potential mechanism by which dysbiosis and
CRC-associated microbiota can potentiate tumorigenesis. Consistently, treatment
of mice with antibiotics prior to the development of dysbiosis results in reduction in
tumor numbers in the AOM/DSS model of colon tumorigenesis (Zackular et al.
2013).

F. nucleatum also interacts with the immune system and stimulates cytokine
production through TLR4 and can be sensed by retinoic acid-inducible gene I
(RIG-I) (Liu et al. 2007; Lee and Tan 2014). In periodontal disease, NK cells can
recognize and bind to F. nucleatum via the NK killer receptor, NKp46 in humans, or
NCR1 in mice, which promotes a TNF-α inflammatory response that promotes
disease (Chaushu et al. 2012). Although F. nucleatum does not instigate or worsen
intestinal inflammation in mice, daily gavage of F. nucleatum into ApcMin/+ mice
resulted in expansion of tumor-infiltrating myeloid cells, which are capable of
promoting tumorigenesis, as well as upregulation of pro-inflammatory genes in
tumor tissue similar to what is observed in human CRC tissue (Kostic et al. 2013).

The induction of chronic inflammation is also a potential mechanism by which
ETBF promotes tumorigenesis as colonization of WT GF mice with ETBF results in
colitis (Rhee et al. 2009). ETBF-colonized ApcMin/+ also developed inflammation in
the colon, resulting in epithelial hyperplasia and neoplasia. Moreover, ETBF-

3 The Gut Microbiome and Colorectal Cancer 77



colonized ApcMin/+ mice had increased colonic IL-17 expression, which, in turn,
activates NF-κB signaling in colon epithelial cells to promote the production of the
chemokines CXCL1, CXCL2, and CXCL5, which are neutrophil chemoattractants,
in the distal colon (Wu et al. 2009; Chung et al. 2018). Consistently, ETBF-
colonized mice have increased colon and intratumoral neutrophils that are dependent
on IL-17 and CXCL2 signaling (Chung et al. 2018; Thiele Orberg et al. 2017). Loss
of IL-17 signaling either by antibody blockade or by genetic deletion in ApcMin/+

mice resulted in suppression of tumors after ETBF colonization (Wu et al. 2009;
Chung et al. 2018). Additionally, in several human intestinal epithelial cell lines,
BFT treatment induces IL-8 chemokine expression, which is increased in IBD
patient colons (Sanfilippo et al. 2000; Hwang et al. 2013; McCormack et al. 2001;
Kim et al. 2001). IL-8 secretion by BFT-treated HT29/C1 cells is NF-κB-dependent
via activation of ERK and p38 MAPK pathways (Kim et al. 2001; Wu et al. 2004).

The mechanism by which SGG promotes CRC development is not well-
understood; however, increased expression of NF-κB as well as COX-2 and
c-myc, all of which can promote colon tumorigenesis, was found in the tissue of
CRC patients that were seropositive for S. gallolyticus compared to seronegative
groups (Abdulamir et al. 2009, 2010; Greten et al. 2004). SGG also upregulates the
production of pro-inflammatory mediators such as IL-8 via stimulation of macro-
phages and epithelial cells, for example, which can lead to chronic inflammation
with persistent colonization (Ellmerich et al. 2000a; Boleij et al. 2011a).

Although chronically dysregulated inflammation can lead to tumorigenesis, an
effective immune response is also important for protecting against cancer develop-
ment as exemplified by the increased incidence of cancer in immunocompromised
patients. Immune responses can lead to the recruitment of immune cells, such as
cytotoxic lymphocytes, that can eliminate nascent transformed cells in a process
known as tumor immunoediting, or immune surveillance (Bui and Schreiber 2007).
Indeed, studies of biopsy samples from colon cancer patients suggest that a robust
immune response as measured by increased infiltration of activated T cells at the site
of the cancer is associated with better prognosis and less aggressive behavior of the
cancer (Galon et al. 2006; Pages et al. 2005). F. nucleatum has been shown to
promote an immunosuppressive environment. For example, F. nucleatum, when
measured in colorectal carcinoma tissue, was associated with lower density of CD3+
T cells, which may reflect reduced anti-tumor immunity resulting in worse prognosis
although the association between F. nucleatum and the density of CD8+, CD45RO+,
and FOXP3+ intratumoral T cells was not statistically different (Mima et al. 2015;
Hamada et al. 2018). Additionally, NK cells are less cytotoxic to F. nucleatum-
incubated tumor cells compared to tumor cells not incubated with F. nucleatum (Gur
et al. 2015). In addition, the F. nucleatum protein Fap2 interacts with the receptor T
cell immunoreceptor with Ig and ITIM domains (TIGIT) on intratumoral NK and T
cells to inhibit tumor cell killing (Gur et al. 2015). Finally, F. nucleatum-colonized
ApcMin/+ mice had increased intratumoral myeloid-derived suppressor cells
(MDSCs), which are capable of suppressing CD4 T cells (Kostic et al. 2013). In
ETBF-colonized ApcMin/+ mice, tumor-infiltrating neutrophils have a transcriptional
signature similar to MDSCs, including upregulation of iNOS, and were able
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suppress CD8 T cell proliferation in vitro, suggesting that B. fragilis may also affect
anti-tumor immunity (Thiele Orberg et al. 2017). Thus, CRC-associated microbiota
such as F. nucleatum and ETBF may not only accelerate tumorigenesis via
upregulating tumor-promoting pro-inflammatory mediators, but, also promote a
tumor environment that is deficient in anti-tumor activity. On the other hand, the
gut microbiota have also been implicated in activating immune responses that may
not only promote anti-tumor immunity, but also enhance the anti-tumor effects of
both chemotherapy and immunotherapy. For example, a mix of 11 strains of bacteria
isolated from human microbiota was shown to increase colon CD8+ IFNγ+ T cells in
the lamina propria (Tanoue et al. 2019). Importantly, this 11-strain mix was capable
of suppressing the growth of subcutaneously implanted MC38 cells as well as
synergize with anti-PD-1 immunotherapy, which did not occur with antibody deple-
tion of CD8+ T cells (Tanoue et al. 2019). MC38 cells harbor defects in DNA
mismatch repair proteins, a hallmark of MSI-H tumors that are responsive to
immunotherapy and is the only type of metastatic CRC for which immunotherapy
has been FDA approved (Efremova et al. 2018). The mechanism by which the gut
microbiota can upregulate CD8 T cell responses remains to be fully understood, but
may be related to intestinal epithelial-derived chemokine induction by specific
bacteria followed by the expansion and bacterial antigen-mediated differentiation
of CD8 T cells (Tanoue et al. 2019). Gut bacteria can also act on other cells to
enhance T cell-mediated tumor immunity. For example, oral gavage of
Bifidobacterium, A. muciniphila, or E. hirae into GF or antibiotic-treated mice
resulted in increased activation of dendritic cells, which, in turn, can prime T cells
to mount tumor-specific responses and augment the effects of immunotherapy
(Sivan et al. 2015; Routy et al. 2018). Besides immunotherapy, the gut microbiota
also enhanced the effects of oxaliplatin, a commonly used chemotherapy drug in the
treatment of locally advanced and metastatic CRC, via the induction of inflammation
and production of myeloid-specific reactive oxygen species that can have anti-tumor
effects (Iida et al. 2013). However, whether specific bacterial populations in CRC
patients actually influence therapeutic responses to either chemotherapy or immu-
notherapy remains to be determined.

3.4.2 Stimulation of Cellular Proliferation

CRC-associated bacteria can also act directly on the intestinal epithelium to activate
pathways involved in cellular proliferation. F. nucleatum is known to have adherent
and invasive properties via its FadA adhesin (Han et al. 2000; Xu et al. 2007), which
is highly expressed in human adenoma and adenocarcinoma tissues compared to
tissue from healthy patients (Rubinstein et al. 2013). FadA binds to E-cadherin
(CDH1), which is expressed by epithelial cells, enabling F. nucleatum’s invasion
into the host cell (Rubinstein et al. 2013). Furthermore, binding of FadA to
E-cadherin promotes E-cadherin’s phosphorylation and internalization into the
host cell, resulting in increased β-catenin translocation into the nucleus and increased
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transcription of Wnt signaling genes, including the oncogenes c-myc and cyclin D1
(Rubinstein et al. 2013), which are directly involved in cellular proliferation and
stem cell activity. Consistently, FadA increases the proliferative activity of multiple
human CRC cells in vitro and in vivo in a FadA-dependent manner (Rubinstein et al.
2013). FadA also upregulates the expression of annexin A1 (ANXA1), a
phospholipid-binding protein, in CRC cells via E-cadherin, and ANXA1 can engage
β-catenin to activate cyclin D1 to promote cellular proliferation (Rubinstein et al.
2019).

Other CRC-associated microbiota such as B. fragilis and Salmonella can affect
Wnt signaling to facilitate neoplastic transformation. In the case of B. fragilis,
treatment of the CRC cell line HT29/C1 with BFT resulted in the cleavage of
E-cadherin and activation of β-catenin, resulting in increased c-myc transcription
and cellular proliferation (Wu et al. 1998, 2003). AvrA+ S. typhimurium infection is
also associated with activated β-catenin signaling in colon epithelial cells (Lu et al.
2012). Furthermore, AvrA displays deubiquitinase activity and was able to block the
degradation of IκBα and β-catenin, resulting in increased c-myc protein expression
(Ye et al. 2007). Consistently, tumors from AOM/DSS-treated AvrA+
S. typhimurium-infected mice displayed increased phosphorylated c-myc expression
compared to AvrA- S. typhimurium tumors (Lu et al. 2014b). Infection with Strep-
tococcus gallolyticus also increased cellular proliferation in vitro and tumor growth
in vivo of certain, but not all, CRC cell lines, which was associated with increased
nuclear β-catenin, c-myc, and cyclin D1 expression in responsive cells; knockdown
of β-catenin abrogated this effect (Kumar et al. 2017). The responsiveness of CRC
cells to SGG was not related to the presence of preexisting mutations affecting the
β-catenin/Wnt pathway or to the ability to bind cells, but may reflect other down-
stream events that remain to be identified (Kumar et al. 2017).

Bacteria can also stimulate cellular proliferation via mechanisms that do not
necessarily involve Wnt signaling. For example, B. fragilis colonization of ApcMin/+

mice results in upregulated STAT3 signaling, which not only promotes Th17
differentiation, but can also drive epithelial proliferation such that loss of STAT3
signaling in epithelial cells resulted in significantly fewer tumors (Chung et al. 2018;
Grivennikov et al. 2009). Salmonella was capable of inducing cellular transforma-
tion of mouse embryonic fibroblasts (MEFs) harboring pre-transforming mutations
that lead to the inactivation of the tumor suppressor protein p53 inactivation or
overexpression of c-myc since infection resulted in anchorage-independent soft agar
growth and permitted tumor growth in immunocompromised mice (Scanu et al.
2015). This process was dependent on intact MAPK and Akt signaling (Scanu et al.
2015).

3.4.3 Promotion of DNA Damage

Another potential mechanism by which CRC-associated bacteria may facilitate the
development of CRC is the promotion of DNA damage as in the case with pks+
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E. coli (Arthur et al. 2012; Nougayrede et al. 2006), which produces colibactin that is
genotoxic. HeLa cells infected with pks+ E. coli exhibited signs of DNA double-
stranded breaks and cell cycle arrest (Nougayrede et al. 2006). This colibactin-
associated DNA damage induced DNA repair responses resulting in cells with
chromosomal instability, including chromosomal alterations (e.g., translocations,
ring chromosomes, etc.) and abnormal chromosome number (i.e., aneuploidy and
tetraploidy) (Cuevas-Ramos et al. 2010). Pks+ E. coli were able to induce carci-
nogenic mutations in infected HCT116 (human colon carcinoma), IEC-6 (rat
intestinal epithelial), and CHO (hamster ovarian epithelial) cells, revealing the
mutagenic and pro-tumorigenic ability of pks+ E. coli (Cuevas-Ramos et al. 2010).
Rat epithelial cells infected with pks+ E. coli also exhibited increased DNA
damage compared to cells infected with E. coli without the pks pathogenicity
island (E. coli Δpks) (Arthur et al. 2012). In vivo, AOM-treated GF Il10-/- mice
monocolonized with pks+ E. coli developed more tumors and had increased DNA
damage and cell cycle arrest compared to E. coli Δpks-monocolonized mice
despite no difference in inflammation, strongly suggesting that the tumor-
promoting effects of E. coli were related to its genotoxic rather than
inflammation-promoting effects (Arthur et al. 2012).

3.4.4 Production of Metabolites

There has been growing recognition that microbial-derived metabolites can affect
both health and disease including CRC. Specific metabolites, such as short-chain
fatty acids (SCFAs) and secondary bile acids, have received the most attention for
their role in modulating immune responses, epithelial homeostasis, and cell signaling
that can affect tumor susceptibility and will be briefly reviewed here.

3.4.4.1 Short-Chain Fatty Acids

Consistent with a potential significant role for SCFAs in CRC pathogenesis, patients
with CRC can have significant reduction in butyrate-producing bacteria (Wang et al.
2012; Baxter et al. 2016). Furthermore, risk for CRC is inversely associated with
intake of dietary fiber, which is a source of SCFAs via microbial metabolism of
resistant starches (Aune et al. 2011). SCFAs, which include butyrate, propionate,
and acetate, are generated from the digestion of dietary fibers, such as polysaccha-
rides from plant cell wells, by the gut microbiota, and are then absorbed by host cells
(Gill et al. 2006). In particular, butyrate is produced by Firmicutes bacteria and is an
energy source of epithelial cells and helps maintain colon epithelial integrity (Peng
et al. 2009). Notably, butyrate can inhibit histone deacetylaces (HDACs) in colon
epithelial cells and immune cells, which can have anti-tumorigenic effects, including
the downregulation of pro-inflammatory cytokines such as IL-6 (Candido et al.
1978; Davie 2003; Chang et al. 2014; Bolden et al. 2006). Increased histone

3 The Gut Microbiome and Colorectal Cancer 81



acetylation at the Foxp3 locus results in the differentiation of regulatory T cells
(Treg) (Furusawa et al. 2013). Consistent with members of Clostridia being rela-
tively high producers of butyrate, colonization of GF WT mice with either a cocktail
of 46 strains of Clostridium (clusters IV and XIVa) isolated from mice or 17
Clostridia strains isolated from a healthy human donor promoted colon Treg differ-
entiation in GFWT mice (Atarashi et al. 2011, 2013). The impact of SCFAs on Treg
differentiation may have implications on anti-tumor immunity and response to
therapy given its immunosuppressive effect although it remains to be determined
whether regulatory T cells play a significant role in colon carcinogenesis. SCFAs,
however, can promote intestinal homeostasis as the administration of SCFAs to GF
mice made them more resistant to the epithelial damaging effects of DSS
(Maslowski et al. 2009). Similarly, butyrate- or Clostridium-treated mice developed
less severe colitis compared to their control counterparts (Atarashi et al. 2011;
Furusawa et al. 2013). Deficiency in the receptor for butyrate that is expressed on
epithelial cells, Gpr109a, resulted in reduced numbers of Tregs and the anti-
inflammatory cytokine IL-10 as well as decreased susceptibility to DSS-induced
colitis (Chen et al. 2011; Zaki et al. 2010; Elinav et al. 2011; Singh et al. 2014).
GPR109A signaling was also required for butyrate-mediated epithelial expression of
IL-18, which is important for promoting epithelial repair and resistance to epithelial
injury-induced inflammation (Chen et al. 2011; Zaki et al. 2010; Elinav et al. 2011;
Singh et al. 2014).

Butyrate and SCFAs in general also have anti-tumor effects. Mice deficient in
GPR109a, for example, have increased tumor development in both AOM/DSS and
ApcMin/+ models (Singh et al. 2014). One mechanism, besides their anti-inflamma-
tory activity, is by sensitizing cancer cells to apoptosis. Cancer cells often express
Fas, the receptor for Fas ligand (FasL), but are able to evade apoptotic cell death
induced by Fas-FasL interactions by effector CD8 T cells and NK cells (Bonnotte
et al. 1998; Owen-Schaub et al. 1994; Owen-Schaub et al. 1995). Interestingly, in
several human CRC cell lines, the addition of soluble FasL and sodium butyrate to
the culture promoted increased CRC cell apoptosis compared to cells that were
incubated with sodium butyrate alone (Bonnotte et al. 1998). Similarly, many cancer
cells, including CRC cells, are able to evade apoptotic death induced by tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors, includ-
ing the death receptors DR4 and DR5 (Zhang and Fang 2004; Hernandez et al.
2001b; Zhang et al. 2000). TRAIL-resistant human colon cancer cell lines KM12C,
KML4A, and KM20 were incubated with TRAIL and with or without sodium
butyrate. Cells that received sodium butyrate displayed increased TRAIL-mediated
cell death (Hernandez et al. 2001a). Other mechanisms have been proposed includ-
ing downregulation of pathways involved in cellular proliferation, induction of
antioxidant pathways, and effects on microbiome composition (Ohara and Mori
2019; Sivaprakasam et al. 2016). However, microbial regulation of SCFA levels is
unlikely to be the main contributor to colon cancer risk as fecal SCFA levels were
not found to be predictive of either adenomas or carcinomas (Sze et al. 2019).
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3.4.4.2 Secondary Bile Acids

Primary bile acids are secreted by the liver into the gastrointestinal tract where they aid
in lipid digestion (Begley et al. 2005). Bile acids have antimicrobial properties and can
modify the gut microbiome composition (Begley et al. 2005; Islam et al. 2011).
Primary bile acids pass through and are mostly reabsorbed by the small intestine
without microbial alterations (Ridlon et al. 2006). However, about 5% of total bile
acids are not reabsorbed and enter the large intestine and undergo modification by the
gut microbiome via bile acid hydrolases to generate secondary bile acids (Begley et al.
2005; Ridlon et al. 2006). High levels of secondary bile acids have been measured in
CRC patients (Ou et al. 2012; Louis et al. 2014; Reddy et al. 1980). Interestingly, a
meta-analysis of eight fecal metagenomic studies of CRC encompassing 386 cancer
cases and 392 tumor-free controls demonstrated a significant enrichment of the bai
operon, which encodes bile acid-converting enzymes involved in secondary bile acid
production, in the stool of CRC patients (Wirbel et al. 2019).

Two well-studied secondary bile acids that have been linked to CRC are
deoxycholic acid (DCA) and lithocholic acid (LCA). They can induce reactive
oxygen and nitrogen species (ROS and RNS) production by human colon tissue
and human adenocarcinoma cells (Payne et al. 2007; Venturi et al. 1997; Casellas
et al. 1996; Bernstein et al. 2009). ROS and RNS induce DNA damage, and DCA
and LCA have been shown to induce DNA breaks in human adenocarcinoma cell
lines and human colon tissue (Venturi et al. 1997; Pool-Zobel and Leucht 1997;
Bernstein et al. 2009). Secondary and conjugated secondary bile acids can activate
multiple pathways, including Wnt, EGFR, MAPK, and NF-κB, which, in turn, can
stimulate the proliferation of CRC cells as well as induce tumor formation in mice
(Reddy et al. 1976; Cook et al. 1940; Magnuson et al. 1993; Cao et al. 2017; Cheng
and Raufman 2005; Pai et al. 2004; Liu et al. 2018; Dong et al. 2018; Cao et al.
2014). Administration of either primary (e.g., cholic acid, CA) or secondary bile
acids have also been associated with changes in the gut microbiome, which may
contribute to tumor promotion as gavage of feces from CA- or DCA-treated mice
into ApcMin/+ mice resulted in inflammation and tumorigenesis, respectively (Cao et
al. 2017; Wang et al. 2019). Specifically, DCA ingestion resulted in a reduction in
Firmicutes, including Lactobacillus and Roseburia, while Bacteroidetes, and certain
members of Proteobacteria, were increased in abundance (Cao et al. 2017).

3.5 Conclusion

Since the advent of 16S rRNA and metagenomic sequencing technologies and the
establishment of germ-free mouse modes, significant advances have been made in
our understanding of the role of the gut microbiome in the pathogenesis of colorectal
cancer. It has now become apparent that the presence of CRC is associated with
significant shifts in the microbial community compared to healthy individuals. The
exact nature and timing of these changes and whether these changes directly cause
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colorectal cancer in humans remain active areas of intense research and would require
a concerted effort by the scientific community to embark in large population studies
that are prospective in nature and involve the longitudinal analysis of stool or mucosal
tissue samples. Moreover, much research has focused on bacteria; however, the gut
microbiome also consists of fungi and viruses that have yet to be fully studied for their
role in colon carcinogenesis although early studies suggest this to be the case
(Anandakumar et al. 2019; Hannigan et al. 2018; Nakatsu et al. 2018). Regardless,
it has now become generally accepted that colon carcinogenesis is a multistep process
that requires the accumulation of genomic mutations that precipitate cellular transfor-
mation and that the gut microbiota can act either as tumor promoters or tumor
suppressors by modulating inflammation. Inflammation, in turn, can also allow the
bloom of harmful pathobionts that outcompete and deplete potential beneficial bacteria
to further facilitate tumor progression. Thus, it has become tantalizing to speculate that
identification of specific bacteria associated with CRC and/or preneoplastic lesions
(e.g., adenomas) would allow the establishment of microbial biomarkers to assess
colorectal cancer risk or identify strategies to manipulate the microbiome or target
specific microbes and their products for cancer chemoprevention. As we acquire more
information by applying multiomics approaches to microbiome research and continue
to improve models of colorectal cancer, efforts toward microbial therapeutics and
biomarker development will translate into reality.
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Chapter 4
The Impacts of Salmonella Infection
on Human Cancer

Ikuko Kato and Jun Sun

Abstract Non-typhoidal Salmonella enterica is the leading cause of foodborne
illnesses resulting over 153 million of incidence per year worldwide, while typhoidal
Salmonella infection disproportionally affects low- to middle-income countries.
Sufficient epidemiological data support causal association between typhoidal Sal-
monella infection and gallbladder cancer. The accumulated evidence suggests that
the risk associated with this infection disproportionally affects individuals who are
also susceptible to cholelithiasis. On the other hand, clinical and epidemiological
evidence to support a causal association between non-typhoidal Salmonella infection
and colorectal cancer has been modest. However, there have been several recent
intriguing findings indicative of carcinogenicity in humans, along with rather strong
biological data from experimental studies to support mechanistic pathways to
colorectal cancer. Due to greater burden of non-typhoidal Salmonella infection,
further studies are urgently needed to identify molecular signatures of potentially
oncogenic bacterial proteins in the carcinogenic pathway in human tissues as well as
to develop physiologically relevant experimental animal models and 3D in vitro
cultures, which can reflect the changes of chronic infection and bacterial-host
interactions in vivo.
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4.1 Introduction

The bacterial genus Salmonella (S) consists of two species, S. enterica and
S. bongori. We focus on S. enterica in the remaining section as it represents
99.5% of all Salmonella strains (Gossner et al. 2016), while S. bongori is largely
associated with reptiles (Fookes et al. 2011).

S. enterica is traditionally classified by serotype based on combinations of two
surface proteins, flagellar (H) and somatic (O) antigens. To date, more than 2600
serotypes have been reported (Gossner et al. 2016; Jajere 2019). These serovars are
also often grouped according to their clinical presentations in humans,
typhoidal vs. non-typhoidal. The former causes typhoid/enteric fever, a serious
systemic condition that is often life-threatening, and includes S. serovars Typhi
and Paratyphi A,B,C. The remaining serovars are considered non-typhoidal and
represent the major cause of foodborne illness (gastroenteritis/diarrhea disease)
(Jajere 2019). Many Salmonella serovars have a broad host range, infecting a wide
variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects,
while others are very limited in their host range (Silva et al. 2014; Jajere 2019).
Salmonella can also grow in plants and can survive in protozoa, soil, and water,
extending its transmission routes (Silva et al. 2014). Chronic asymptomatic carriage
of either type of Salmonella develops in some patients after initial infection, which is
more often documented for typhoidal Salmonella (Gal-Mor 2018).

Broad-host-range, ubiquitous/generalist, Salmonella pathogens are generally
non-typhoidal, but typhoidal serovars take only humans as the host (Silva et al.
2014; Jajere 2019). In the literature to date, two types of human cancer have been
under vigorous study in relation to Salmonella infection. These include colorectal
cancer by non-typhoidal Salmonella and biliary (gallbladder) tract cancer by
typhoidal Salmonella. In this chapter, we first update exposure data of each Salmo-
nella group worldwide, then present new findings on each cancer, which were
published in the past decade, and finally address gaps in the current research and
potential future developments in the field.

4.2 Human Exposure Data

4.2.1 Non-typhoidal Salmonella

Global and regional burden of various disease and health conditions has been
estimated by the World Health Organization (WHO) since the 1990s (Stein et al.
2007), and the WHO established the Foodborne Disease Burden Epidemiology
Reference Group (FERG) in 2007. Assembling an assortment of data, including
systematic reviews, cohort studies, surveillance studies, and other burden of disease
assessments, the group estimated the burden of 22 diseases around year 2010 (Kirk
et al. 2015). Illnesses due to non-typhoidal S. enterica infection resulted in the
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largest disease burden globally, reflecting the ubiquitous nature of non-typhoidal
Salmonella (regardless of geographical regions), causing over 153 million of inci-
dence worldwide (Kirk et al. 2015). This is reflected to the median incidence rate of
approximately 1% per year, implying that cumulative incidence over lifetime per
individual is substantial. Overall, a half was estimated to be foodborne, though this
fraction varies with the regions of the world, the rest from human to human, water,
and animal contacts (Hald et al. 2016). Poultry, pork, and eggs were major food
sources consistently found throughout the world, while other sources, such as dairy,
beef, and vegetables, were reported less frequently (Hoffmann et al. 2017). It is
important to note that these estimates concern symptomatic cases only. Sero-
surveillance is an alternative to laboratory-based passive surveillance, which has
been used in many developed countries but is known to be limited in sensitivity.
Using almost 10,000 serum antibody measurements against non-typhoidal Salmo-
nella, Mølbak et al. reported seroincidence around 2010 in 13 European countries,
which was lowest in Sweden (0.06 infections per person-year), Finland (0.07), and
Denmark (0.08) and highest in Spain (0.61), followed by Poland (0.55) (Mølbak
et al. 2014). These numbers were not correlated with the reported national passive
surveillance of Salmonella infection data, but were well correlated with prevalence
of Salmonella in laying hens, broilers, and slaughter pigs (Mølbak et al. 2014). These
numbers were also substantially higher than the incidence rate estimated by the
WHO (Kirk et al. 2015), suggesting much larger burden of non-typhoidal Salmo-
nella exposure in human populations.

4.2.2 Typhoidal Salmonella

In contrast to ubiquitous presence of non-typhoidal Salmonella worldwide,
typhoidal Salmonella infection has been essentially eliminated in high-income
countries over the past century, but it disproportionally affects low- to middle-
income countries with the highest incidence of typhoid fever in South and Southeast
Asia and sub-Saharan Africa (Gibani et al. 2018; Bhutta et al. 2018). The aforemen-
tioned WHO reports also covered typhoidal Salmonella infection, although the
majority was considered not foodborne but predominantly waterborne (Kirk et al.
2015; Hald et al. 2016). The estimated burden in 2010 was 25.8 million of incidence
worldwide (Kirk et al. 2015), which was in a close range of the estimates made by a
few others for the same time frame, using different methods (Mogasale et al. 2014).
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4.3 Association with Human Cancer

4.3.1 Colorectal Cancer and Its Precursor Lesions

In the past decades, several important studies have been published concerning the
association of non-typhoidal intestinal Salmonella infection with colorectal cancer or
its well-established precursor lesions, specifically inflammatory bowel disease
(IBD), patients with which are known to be at increased risk of colorectal cancer
(Lutgens et al. 2013; Jess et al. 2012). Evidence for IBD have been provided by
cohort linkage studies conducted in Scandinavian countries for extended follow-up
periods (>10 years) after infection (Gradel et al. 2009; Jess et al. 2011; Axelrad et al.
2019). Two of these studies from Denmark were based on laboratory-confirmed
infection with stool specimens (Kirk et al. 2015; Jess et al. 2011) and investigated
Salmonella as well as Campylobacter infections. These studies (Kirk et al. 2015;
Jess et al. 2011) pointed out detection bias within 1 year from the infection,
demonstrated by substantially heightened incidence of IBD in this period, which
was consistent with an earlier report (Helms et al. 2006). Excluding this period, the
standardized incidence ratio (SIR) was approximately 2 for individuals who were
positive to non-typhoidal Salmonella, compared to general population negative to
both types of infection (Kirk et al. 2015; Helms et al. 2006). In the newest study from
Sweden, Salmonella infection was identified via diagnostic codes from nationwide
inpatient and outpatient databases (Axelrad et al. 2019). Compared with the general
population without diagnosis of any infectious gastroenteritis, a history of
non-typhoidal Salmonella enteritis led to 70% increase in risk of IBD (Axelrad
et al. 2019). Although all estimates from these record linkages suggest a modestly
increased risk of IBD associated with non-typhoidal Salmonella infection, underes-
timation of the risk may be possible, given low sensitivity of laboratory-based public
heath surveillance of these infections, as discussed above. The second caveat is the
limited specificity of Salmonella as an causative agent, as these studies equally
reported similarly increased risk of IBD in the patients who had other types of
gastrointestinal infection, i.e., Campylobacter (Kirk et al. 2015; Helms et al. 2006)
or any other types of bacterial, viral, or parasitic gastroenteritis (Axelrad et al. 2019).
Thus, besides bacterial species-specific virulence factors, common pathological
pathways through persistent inflammatory reactions may be involved.

For colorectal cancer, a pioneer study in human subjects was a case-control study,
involving two countries, the USA and the Netherlands, using archived blood sam-
ples (Kato et al. 2013). They found that subjects with colorectal tumor (cancer and
polyps) had higher antibody titers against Salmonella enterica flagellin than con-
trols, showing a two- to threefold increase in risk of colorectal neoplasm in subjects
who had titers higher than the median level (Kato et al. 2013). Important points of
this study were observations made in the two independent samples as well as the
association with premalignant stage (e.g., polyps) of colorectal cancer, suggesting
potential etiological involvement. In addition, this study also suggested a possibility
of interactions between this bacterial infection and other colorectal cancer risk
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factors, such as smoking and red meat intake. However, the study had a major
weakness as case-control studies have an inherent limitation in addressing a tempo-
ral relationship between exposures and outcomes.

The same group also studied fecal carriage of Salmonella using a molecular
method, specially PCR to amplify Salmonella 16S–23S internal transcribed spacer,
demonstrating that Salmonella is commonly detected as a low-abundance bacterium
in healthy human feces (Lu et al. 2017). Most importantly, this study was the first to
report detection of a Salmonella-specific effector protein AvrA in actual human
tissue specimens (Lu et al. 2017). AvrA has been shown to modulate multiple key
oncogenic pathways, namely, Wnt/β-catenin (Wang et al. 2018; Sun et al. 2004; Sun
2009; Lu et al. 2012, 2014; Duan et al. 2007) and P53 (Wu et al. 2010b), in post-
transcriptional manners. Analyzing 155 tissue microarray cores ranging from normal
colorectal mucosa to metastasized cancer, they found that cancer adjacent mucosa
had a statistically significantly higher mean staining (P ¼ 0.018) than normal
mucosa without any colorectal pathology, while primary tumors themselves
exhibited a lower staining score (P ¼ 0.013). Benign lesions and lymph node
metastases showed equivalent staining to normal mucosa (Lu et al. 2017). Staining
of separate clinical samples clearly depicted dense red staining of AvrA in colorectal
cancer tissue, including nuclei, but no staining in the controls. Although the results
from this study provide strong evidence to support oncogenic potential of Salmo-
nella infection in humans, the retrospective nature of the study does not allow
inferring a causal association. Moreover, being a low-abundance pathogen, Salmo-
nella has not been reported in studies for colorectal cancer, using global
metagenomic sequencing of stool or tissue samples to date.

Further supporting evidence is derived from a recent prospective study based on
laboratory-confirmed Salmonella infection, which was linked to colon cancer inci-
dence data from the Netherlands Cancer Registry (Mughini-Gras et al. 2018). After
excluding cases diagnosed within 1 year from infection, the SIR compared with
general population was 1.54 (95% confidence interval: 1.09–2.10) for individuals
infected with Salmonella before age 60. In addition, there was a declining trend in
the SIRs with increasing age at infection, implying a long incubation time may be
required for development of colon cancer. The association was more pronounced for
right-sided colon cancer, infection with serovar Enteritidis, and enteric rather than
systemic infection (Mughini-Gras et al. 2018). It is noteworthy that the stronger
association with enteric infection is consistent with expression patterns of S. enterica
potential oncoprotein, AvrA, which is predominantly expressed in enteric infection,
but not often in systemic disease (Streckel et al. 2004).

4.3.2 Biliary Tract Cancer and Its Precursor Lesions

The association between typhoidal Salmonella infection and biliary tract (specifi-
cally gallbladder) cancer has been reported by a larger number of clinic
o-epidemiological studies. To date, there have been more than 20 studies and 2 recent

4 The Impacts of Salmonella Infection on Human Cancer 101



meta-analyses have estimated the summary risk (Koshiol et al. 2016; Nagaraja and
Eslick 2014). These two studies have produced very similar results, i.e., the overall
summary risk ratio of 4~5, although the summary risk estimates for some subgroups
varied considerably between these two analyses, due to different inclusion/exclusion
criteria (Koshiol et al. 2016; Nagaraja and Eslick 2014). Most, except three cohort
studies, were case-control studies, the majority were from Asian countries where
enteric/typhoid fever is/was endemic, and various methods were used for exposure
assessment, including bile/gallstones/blood/stool culture, serum antibody assays for
specific typhoidal Salmonella antigens, PCR, and medical history of enteric fever.
The association was confirmed not only by case-control studies but also by a limited
number of cohort studies, regardless of geographic locations (despite apparent over-
representation of studies from India), and the association was stronger for the studies
based on objective laboratory measurements rather than those based on medical
history (Koshiol et al. 2016; Nagaraja and Eslick 2014). Moreover, types of control
subjects had pronounced effects on the risk estimates for case-control studies. To
obtain culture specimens, many studies have used patients with gallstones or other
hepatobiliary conditions as controls. However, the comparison of gallbladder cancer
cases to these types of controls led to attenuated associations (Koshiol et al. 2016;
Nagaraja and Eslick 2014), which was credible given well-known associations of
gallstones with the risk of gallbladder cancer (Di Domenico et al. 2017). A more
recent case-control study not included in the meta-analyses replicated these associ-
ations using PCR to detect S. Typhi fliC and staA genes, reporting the odds ratios of
four compared with individuals with benign gallbladder disease and 51 compared
with those deceased without gallbladder disease (Scanu et al. 2015).

Interestingly, several recent studies have revealed that typhoidal Salmonella
produces biofilms on the surfaces of cholesterol gallstones and thus Salmonella
can survive and grow, encased within a macromolecular matrix of biofilms and
protected from antimicrobial properties of bile (Crawford et al. 2010; Gonzalez-
Escobedo et al. 2013; Marshall et al. 2014). This facilitates development of chronic
gallbladder carriage of typhoidal Salmonella, and approximately 90% of chronic
carriers in endemic areas have been reported to have gallstones (Di Domenico et al.
2017). Thus, the association of gallstones with gallbladder cancer is likely to be
mediated through protracted exposure to oncogenic virulence factors from typhoidal
Salmonella, such as cytolethal distending toxins (CDT) (Di Domenico et al. 2017),
and other Salmonella effectors, SopB, SopE, SopE2, and SptP, have been demon-
strated to activate MAPK and AKT pathways in the presence of cMYC
overexpression and pretransforming p53 mutations, which is crucial for sustained
transformation (Scanu et al. 2015). There was a report of detection of non-typhoidal
Salmonella DNA in a small number of gallbladder cancer tissues, but its etiological
involvement was uncertain (Iyer et al. 2016).
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4.4 Summary and Future Direction

There is sufficient epidemiological evidence to support causal association between
typhoidal Salmonella infection and gallbladder cancer. There have been consistent
robust associations across the studies. The accumulated data suggest that the risk
associated with this infection disproportionally affects individuals who are also
susceptible to cholelithiasis. In addition, typhoid toxin belongs to CDT toxins that
induce DNA damage and cell cycle alternations (Di Domenico et al. 2017) and bile
enhances virulence of typhoidal Salmonella, but not that of non-typhoidal Salmo-
nella (Johnson et al. 2018).

There is insufficient evidence in clinic-epidemiological studies to permit a con-
clusion as to a causal association between non-typhoidal Salmonella infection and
colorectal cancer. Compared with the strength of the associations observed for
gallbladder cancer, the magnitude of the association for colorectal cancer reported
in a limited number of human studies is lower.

However, there have been several recent intriguing findings indicative of carci-
nogenicity in humans, along with rather strong biological data from experimental
studies to support mechanistic pathways to colorectal cancer.

Despite the weaker association with colorectal cancer, due to highly ubiquitous
exposure in human populations, the percent population attributable risk to
non-typhoidal Salmonella infection for colorectal cancer is in fact larger than that
of typhoidal Salmonella infection for gallbladder cancer, if the association is deter-
mined to be causal. This is especially the case for developed countries, e.g., the USA
and European Union. Besides, due to much higher global incidence of colorectal
cancer than that of gallbladder cancer (Ferlay et al. 2019), the number of cases
attributable to non-typhoidal Salmonella infection becomes much larger than that
attributable to typhoidal Salmonella infection. Thus, future research priority should
be given to the effort to clarify carcinogenicity of non-typhoidal Salmonella in
humans.

There are several gaps in the current knowledge concerning Salmonella-induced
carcinogenesis in humans. First, little has been known about natural history of
non-typhoidal Salmonella infection in human intestine. The traditional method to
determine carriage of non-typhoidal Salmonella after acute episodes has been stool
culture, which has limited sensitivity, and not all carriers shed bacteria in the stool
constantly. Others and we have demonstrated that use of culture-independent,
DNA-based methods evidently increases Salmonella detection rates (Lu et al.
2017; Tack et al. 2019). In addition, most information about non-typhoidal Salmo-
nella infection has been derived from stains that caused conditions requiring medical
attention, and there are almost no data concerning long-term carriage following to
mild self-limiting non-typhoidal Salmonella infection. Certainly, long-term follow-
up studies with repeat molecular and/or serological monitoring in general population
are warranted.

Equally unknown are if there are specific histopathological changes associated
with sustained infection beyond inflammation, e.g., atrophy, meta/dysplasia, and
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aberrant crypt foci in human intestine, and if there are genetic and behavioral
changes in Salmonella to adopt the host during long-term colonization. Specifically,
we do not know whether non-typhoidal Salmonella forms biofilm on the intestinal
mucosa as typhoidal Salmonella does. While antibiotic use is a known risk factor for
non-typhoidal Salmonella infection (Crum-Cianflone 2008; Gal-Mor 2018), there is
little information about its social interactions with human intestinal commensals, i.e.,
whether certain types of gut microbiome or prebiotic diet prevent Salmonella long-
term colonization and whether Salmonella colonization alters gut microbiome struc-
ture. Thus far, evidence is limited to mouse models (Martz et al. 2015; Deatherage
Kaiser et al. 2013).

Based on the current progress of Salmonella infection and its contribution to
inflammation and cancer, we believe that Salmonella can cause chronic infection,
gut dysbiosis, and chronic inflammation resulting in DNA damage and genome
instability, which can be exasperated by external factors such as diet, obesity, and
inactivity. Ultimately, Salmonella can manipulate the host signaling, e.g., the
Wnt/β-catenin signaling pathway and P53 through AvrA and MAPK and AKT
pathways through SopB, SopE, SopE2, and SptP, thus leading to cell transformation
and development of cancer (Zha et al. 2019; Scanu et al. 2015) (Fig. 4.1). These
transformations are more likely to occur in the presence of pretransforming muta-
tions in tumor suppressors and oncogenes, such as KRAS, P53, and APC PAC. In
fact, mutations in these genes are linked to exposure to other environmental risk

Fig. 4.1 The working model of Salmonella infection and its progression and contribution to
inflammation and cancer. Salmonella can cause chronic infection, dysbiosis, and chronic inflam-
mation resulting in DNA damage and genome instability, which can be exasperated by external
factors such as diet, obesity, and inactivity. Ultimately, Salmonella can activate the host ontogenetic
signaling pathways, thus leading to cancer
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factors, such as diet, alcohol, and cigarette smoking (Kato et al. 2014). However, the
exact mechanisms of interplays between bacterial virulence factors and other envi-
ronmental risk factors in driving definitive transformation are unknown and warrant
further investigation.

To establish a causal association, detection and quantitation of actual Salmonella
proteins with oncogenic potential in well-characterized human tissue samples is
crucial. It is equally important to identify molecular signatures of such potentially
oncogenic bacterial proteins in the carcinogenic pathway in human tissues. The
majority of laboratory studies still focus on Salmonella Typhimurium. However,
Salmonella Enteritidis has emerged as one of the most important foodborne patho-
gens for humans, and it is mainly associated with the consumption of contaminated
poultry meat and egg (Patrick et al. 2004; Wright et al. 2016). Infection caused by
Salmonella Enteritidis is the second most common cause of bacterial gastroenteritis
in the developed world and results in significant economic loss to the poultry
industry and places a substantial burden on the healthcare system (Wright et al.
2016; Scallan et al. 2011; Majowicz et al. 2010). Thus, more studies are needed to
understand Salmonella Enteritidis, an important pathogen with a public health
concern (Lin et al. 2016). We need work on physiologically relevant experimental
models, which can reflect the changes of chronic infection in vivo (Lu et al. 2010;
Wu et al. 2010a). In vitro, we need to use the 3D or polarized epithelial cells (Zhang
et al. 2014; Sun 2017). We need to consider human organoids derived from intestinal
stem cells for studying Salmonella-host interactions (Zhang et al. 2019). Finally,
Salmonella possesses a myriad of virulence factors derived from multiple pathoge-
nicity islands (Hayward et al. 2014; Sabbagh et al. 2010; Hensel 2004; Kaur and Jain
2012; Kuhle and Hensel 2004; Phoebe Lostroh and Lee 2001). It is highly plausible
that there are synergistic and antagonistic interplays among these virulence factors in
modulating carcinogenic risk, which remains to be further investigated.
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Chapter 5
Biomarkers of Esophageal Cancers
and Precancerous Lesions

Manisha Bajpai and Zhongren (David) Zhou

Abstract Esophageal cancer is one of most deadly cancers worldwide although the
two subtypes differ in their geographical distribution and natural history. The
challenge is to intercept the disease in its premalignant stages to improve the curative
effect and survival rate. To this end, most efforts have been focused on finding
biomarkers for early diagnosis and early treatment of esophageal cancer. In this
chapter, we reviewed biomarkers of esophageal cancer and precancerous lesions that
have already been in clinical application as well as those that are in different stages of
discovery and validation. In addition, we briefly introduce the microbiome and other
less conventional biomarkers of esophageal cancers.

Keywords Esophageal cancer · Esophageal squamous cell carcinoma · Esophageal
adenocarcinoma · Barrett’s epithelium · Gastroesophageal junction · Biomarker ·
Microbiome
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EC Esophageal cancer
EGFR Epidermal growth factor receptor
ESCC Esophageal squamous cell carcinoma
FDA Food and Drug Administration
GCA Gastric cardia adenocarcinoma
GEJ Gastroesophageal junction
GERD Gastroesophageal reflux disease
GI Gastrointestinal
HER2 Human epidermal growth factor receptor 2
HGD High-grade dysplasia
IHC Immunohistochemistry
KEGG Kyoto Encyclopedia of Genes and Genomes
LGD Low-grade dysplasia
LncRNA Long non-coding ribonucleic acid
LOH Loss of heterozygosity
MSI Microsatellite instability
NE Normal esophagus
OCCAMS Oesophageal Cancer Clinical and Molecular Stratification
ORR Objective response rate
OS Overall survival
PD-1 Programmed cell death receptor 1
PD-L1/PD-L2 Programmed cell death receptor ligand 1 and 2
SCNA Somatic copy number alterations
TCGA The Cancer Genome Atlas
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
VOC Volatile organic compounds

5.1 Introduction

Every year, approximately 570,000 patients are diagnosed with esophageal cancers
(EC), and 500,000 patients die from this fatal disease worldwide. Although esoph-
ageal squamous cell carcinoma (ESCC) is the most common subtype of esophageal
cancer, the incidence of esophageal adenocarcinoma (EAC), the other subtype, has
increased 600–800% in the last three decades and continues to rise in the western
world (Pohl et al. 2010). The esophageal cancer has become the sixth leading cause
of cancer deaths in the United States (Njei et al. 2016). The esophageal cancer
researchers have been studying the biology of esophageal cancer development to
devise the best methods to prevent, monitor, and treat this disease for many years.
However, the answer remains pessimistic, and the 5-year survival rate is still
between 15% and 20% although many treatments including surgery, chemotherapy,
radiotherapy, targeted therapy, and immunotherapy are available for EC (Njei et al.
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2016). Cancer is an extremely heterogeneous disease with various genomic changes
including chromosomal aberrations, somatic mutations, and other genetic and epi-
genetic changes that remain to be discovered. Esophageal cancers present differently
in each patient; even the genomic changes from different areas of the same tumor are
heterogeneous (Junker and van Oudenaarden 2014; Li et al. 2018; Pectasides et al.
2018).

Both ESCC and EAC are known to arise from a background of chronic inflam-
mation triggered by underlying health conditions like gastroesophageal reflux dis-
ease or obesity in EAC and smoking/alcohol consumption in ESCC. Both subtypes
are more common in men and have overlapping risk factors (Table 5.1) compounded
by genetics, ethnicity, gender, and dietary preferences. The ESCC is more common
in Southeastern Africa, Asia, and South America, whereas EAC is prevalent in the
developed nations like Western Europe, North America, and Australia. Squamous
dysplasia is the precursor lesion of esophageal squamous cell carcinoma, and
Barrett’s esophagus is the precursor for EAC; these premalignant lesions provide a
window of opportunity to intercept the progression of the deadly disease. Effective
screening tools in the form of noninterventional methods and biomarkers with high
specificity and sensitivity are necessary to achieve success with early detection and
timely intervention. Thousands of cancer-related genomic changes have been iden-
tified in esophageal cancers (Dulak et al. 2013; Bandla et al. 2012; Kaz et al. 2015),
and the diversity of such observations has baffled the investigators and impeded the
development of universally acceptable methods for risk stratification.

In 1998, the National Institutes of Health Biomarkers Definitions Working Group
defined a biomarker as “a characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” (Goossens et al. 2015). In this chapter, we
provide a succinct review of the literature related to the biomarkers in esophageal
cancers and precancerous lesions. The review is organized into sections based on the
nature of the biomarkers and their stage of clinical development. The first section
discusses the biomarkers already in use in clinical applications; the second sec-
tion focuses on potential molecular biomarkers related to Barrett’s esophagus,
dysplasia, and esophageal cancers in the discovery stagesand the third section intro-
duces the microbiome and other less conventional biomarkers of EC. Our goal is to
systematically discuss the limitations of the currently available biomarkers and the
methods used to identify and evaluate newer, more sensitive and specific molecular
biomarkers. We hope this article will help clinicians, clinical and translational
researchers, as well as people with interest in the development and validation of
EC biomarkers understand the methods and challenges of early stage biomarker
discovery and the significance of the need for sensitive and specific biomarkers.
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Table 5.1 Studies identifying gene signatures for esophageal cancer and premalignant conditions

Study
(year)

Samples
in
discovery
set (n)

Histological
tumor type

Gene
signature

Samples in
signature
validation set
(n) Risk assessed

Hammoud
(2009)

89 AC 9 genes Not conducted Survival

Kim
(2010)

64 AC 10 genes 52 Disease-free survival

Peters
(2010)

75 AC 4 genes 371 Disease-free survival

Goh
(2011)

56 AC 4 genes 371 Disease-free survival

Rao (2011) 35 AC 165
genes

165 genes Disease-free survival

Rao (2011) 35 AC 113
genes

113 genes Response to CT
(epirubicin/cisplatin/
capecitabine) +
surgery

Wen
(2014)

28 AC 3 32 Response to CRT
(cisplatin/
vinorelbine/40Gy) +
surgery

Luthra 18 16 EAC
2 ESCC

3 genes Not conducted CRT (docetaxel/5-
FU/irinotecan/
50.4Gy) + surgery

Lu (2014) 10 ESCC 1 gene 198 Disease-free survival

Motoori
(2010)

25 ESCC 199
genes

10 CT (cisplatin/5-FU/
doxorubicin) + sur-
gery (17)

Schauer 47 EAC 1 gene
Ephrin
B3

Not validated Response to CT
(cisplatin/5-FU/
leucovorin) + surgery

Lagarde
(2008)

61 EAC 5 genes Lymph node
metastasis

Gao et al.
2014a, b

113 ESCC 70 genes Not validated Survival and thera-
peutic response

Maher
(2009)

13 10 EAC
3 ESCC

12 genes 27 Response to CRT
(cisplatin/5-FU/40.5-
44Gy) + surgery

Varghese 150 28
non-dysplastic
BE
10 low-grade
dysplasia
13 high-grade
dysplasia
8 EAC

90 genes 169 Risk for disease
progression

n number, AC adenocarcinoma, SCC squamous cell carcinoma, FU follow-up, OS overall survival,
DFS disease-free survival
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5.2 Biomarkers of Esophageal Cancer and Precancerous
Lesions in Clinical Application

5.2.1 Human Epidermal Growth Factor Receptor 2 or HER2

The human epidermal growth factor receptor 2 or HER2 (also known as ERBB2 or
HER2/neu) is a member of the epidermal growth factor receptor (EGFR) family and
encodes a 185-kDa transmembrane tyrosine kinase receptor (Iqbal and Iqbal 2014).
Functionally, the HER2 promotes cell proliferation, controls differentiation, or
suppresses apoptosis and is expressed in several tissues such as the nervous system,
epithelial cells, or the mammary gland (Iqbal and Iqbal 2014). HER2
overexpression/gene amplification results in excessive cell growth, angiogenesis,
and tumorigenesis. Aberrant HER2 levels are detected in breast cancer, lung cancer,
glioblastoma, head and neck cancer, pancreatic cancer, colorectal cancer, gastric
cancer, and EAC (Roskoski 2019; Gaibar et al. 2020). A humanized monoclonal
antibody trastuzumab that selectively targets the extracellular domain of the HER2
receptor has been used extensively in these cancers to attack the tumor cells via
antibody-mediated cellular cytotoxicity (Hudis 2007).

5.2.1.1 HER2 Amplification and Overexpression in Esophageal Cancer

In 2010, the clinical trial ToGA showed that the gastric cancer treatment by
trastuzumab, combined with chemotherapy improved the overall survival by
2 months compared to chemotherapy alone (Bang et al. 2010). Based on this trial,
the team at University of Rochester set out to investigate the status of HER2 in EC. A
tissue microarray containing 116 cases of esophageal adenocarcinoma, 34 cases of
BE, 18 cases of low-grade dysplasia (LGD), and 15 cases of high-grade dysplasia
(HGD) found HER2 amplification and overexpression in (18.10%; 21/116) EAC
tumor cells by immunohistochemistry (IHC) and chromogenic in situ hybridization
(CISH) methods (Hu et al. 2011). The amplification frequency was validated in an
independent set of 116 esophageal adenocarcinoma samples using Affymetrix SNP
6.0 microarrays (16.4%, 19/116). HER2 protein overexpression was observed in
12.1% (14/116) of esophageal adenocarcinoma and 6.67% (1/15) of HGD. It was
confirmed that HER2 amplification does not associate with poor prognosis in total
232 esophageal adenocarcinoma patients by CISH and high-density microarrays
(Hu et al. 2011). Since then multiple studies found HER2 gene amplification in
15–28% EC (Reichelt et al. 2007; Yoon et al. 2012, 2014; Subasinghe et al. 2018;
Plum et al. 2019; Brien et al. 2000; Phillips et al. 2013; Van Cutsem et al. 2015).
However, the association of HER2 amplification or overexpression with patients’
prognosis is controversial. While Brien et al. found that patients with HER2 ampli-
fication (n ¼ 11) had shorter survival durations compared to patients without
amplification of this gene (n ¼ 43) (Brien et al. 2000), some studies found that
HER2 amplification significantly associated with better prognosis (Plum et al. 2019)
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and improved overall survival (n ¼ 713); 35% of HER2-positive patients lived for
5 years as compared to 26% of patients who were HER2 negative (Yoon et al. 2012,
2014). On the other hand, some studies found no difference (Reichelt et al. 2007) or
very modest 2-month (23 months vs. 25 months) (Hu et al. 2011) survival difference
between the HER2 amplification and no HER2 amplification groups. In 2019, Plum
et al. confirmed that HER2 amplification is associated with better prognosis (Plum
et al. 2019).

5.2.1.2 HER2 Clinical Application in EAC

With the evidence of HER2 amplification or overexpression in EAC, multiple
clinical trials have been conducted to study the effect of treatment of EAC patients
with HER2 monoclonal antibody. ToGA clinical trials in patients with gastric
adenocarcinoma (trial vs. control: 236 vs. 243 patients) and gastroesophageal junc-
tion adenocarcinoma (trial vs. control: 58 vs. 48 patients) have shown a significant
survival benefit for patients treated with a combination of trastuzumab and standard
chemotherapy (Bang et al. 2010; Press et al. 2017). In the TRIO-013/LOGiC trial,
that accrued 545 patients (gastric, 87.3%; GEJ, 8.3%, and esophageal cancer, 4.4%)
and 487 patients (89%) were centrally confirmed as having HER2-amplified disease;
the lapatinib-treated Asian participants less than 60 years of age showed significant
improvement in progression-free survival (PFS), particularly the subgroup that had
5.01–10.0 and >10.0-fold amplification of HER2 in their tumors (Press et al. 2017).
A recent meta-analysis, of four cohort studies and one randomized controlled trial
(RCT) with 200 patients who received second-line trastuzumab plus chemotherapy
and 183 who received chemotherapy alone (Zaanan et al. 2018) showed that
trastuzumab plus chemotherapy did not prolong overall survival [HR ¼ 0.72, 95%
confidence interval (95% CI) ¼ 0.47–1.08, p ¼ 0.11). Progression-free survival was
longer with trastuzumab plus chemotherapy compared to chemotherapy alone
(HR ¼ 0.64, 95% CI ¼ 0.45–0.91, p < 0.05). The treatment outcomes of targeting
HER2 in EAC seems different from the outcomes observed in breast cancer. More
clinical trials are probably needed to get a more definitive conclusion for treating
EAC patients with HER2 inhibitors (Palle et al. 2020).

5.2.2 Programmed Cell Death 1 or PD-L1: Immunotherapy
and Expression in Esophageal Cancer

The checkpoint programmed cell death 1 (PD-1) protein is expressed in tumor-
infiltrating T lymphocytes, B lymphocytes, natural killer cells, monocytes, and
dendritic cells. The immune cells are engaged by the tumor cells that express the
ligands PD-L1 and PD-L2. PD-L1 increases the apoptosis of activated tumor-
reactive T cells and promotes the growth of tumor cells in vivo (Dong et al. 2002).

116 M. Bajpai and Z. (David) Zhou



The advent of immunotherapy, especially immune checkpoint inhibitors, opened a
new therapeutic venue for several human cancers, including melanoma (Hua et al.
2016; Ribas et al. 2016) and lung (Gettinger et al. 2016; Rizvi et al. 2016; Garon
et al. 2015; Fehrenbacher et al. 2016; Herbst et al. 2016; Hellmann et al. 2017),
bladder, (Bardoli et al. 2016; Sidaway 2016), and renal cancers (Wallin et al. 2016).
In Japan, PD-L1 antibody was also used to treat hepatocellular carcinoma and
esophageal squamous cell carcinoma (ESCC) in clinical trials (Kudo 2017; Kato
et al. 2019; Shah et al. 2019).

5.2.2.1 PD-L1 Immunotherapy in Clinical Application

Numerous studies have demonstrated association of PD-L1 tumor expression with
disease prognosis in patients with ESCC (Derks et al. 2015; Fan and Mao 2017;
Akutsu et al. 2018; Doi et al. 2018; Salem et al. 2018; Fassan et al. 2019; Kato et al.
2019; Kelly 2019; Konno-Kumagai et al. 2019; Shah et al. 2019; Yan et al. 2019;
Tamura et al. 2020). Based on these findings, the Food and Drug Administration
(FDA) approved the immunotherapy drug pembrolizumab (KEYTRUDA) to treat
patients with locally advanced or metastatic squamous cell carcinoma of the esoph-
agus (ESCC). The patients were selected for this drug treatment if they had certain
levels of the protein PD-L1 in their tumors and had failed to respond to one or more
lines of standard therapy (Doi et al. 2018; Kato et al. 2019; Shah et al. 2019). A
companion diagnostic test PD-L1 IHC 22C3 pharmDx was approved by FDA
measuring PD-L1 levels in the tumors (Shah et al. 2019).

The FDA approval was based primarily on two clinical trials, both sponsored by
the drug’s manufacturer, Merck. The first was KEYNOTE-180, a phase 2 clinical
trial that enrolled 121 patients with advanced, metastatic esophageal cancer that had
progressed even after two or more lines of standard therapy (Shah et al. 2019). In this
trial, the objective response rate was 14.3% (95% CI, 6.7–25.4%) among patients
with ESCC (9 of 63) and 5.2% (95% CI, 1.1–14.4%) among patients with adeno-
carcinoma (3 of 58). Among patients with PD-L1-positive tumors, the objective
response was 13.8% (95% CI, 6.1–25.4%) (8 of 58), while patients with PD-L1-
negative tumors have a response rate of 6.3% (4 of 63). In the KEYNOTE-180 trial,
35 patients with ESCC had a PD-L1 expression of 10 or greater with combined
positive score (CPS), and their overall response rate was 20%, ranging from approx-
imately 4 months to more than 25 months. The second clinical trial was KEYNOTE-
181, a phase 3 trial comprising 628 patients with advanced esophageal cancer that
had progressed on or after one line of treatment. In this study, the patients were
randomized to receive either pembrolizumab or the treating clinician’s choice of
three different chemotherapy regimens including paclitaxel and docetaxel (Metges
et al. 2019). The median overall survival in patients with PD-L1 expression of
tenfold or greater was 10.3 months with pembrolizumab versus 6.3 months for
patients receiving standard chemotherapy. The overall response rate in patients
who received pembrolizumab was 22%, compared with 7% in patients who received
alternative chemotherapy regimen (Metges et al. 2019).

5 Biomarkers of Esophageal Cancers and Precancerous Lesions 117

https://www.cancer.gov/about-cancer/treatment/drugs/pembrolizumab
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045955&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046595&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000797389&version=Patient&language=en
https://www.ncbi.nlm.nih.gov/pubmed/30570649
https://abstracts.asco.org/239/AbstView_239_265245.html
https://abstracts.asco.org/239/AbstView_239_265245.html
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000043983&version=Patient&language=en


KEYTRUDA® (pembrolizumab) was also approved for the treatment of recur-
rent, locally advanced or metastatic gastric or gastroesophageal junction (GEJ)
adenocarcinoma in patients whose tumors express PD-L1 [CPS�1] (as determined
by the PD-L1 IHC 22C3 pharmDx test). These patients were treated with
pembrolizumab as they were either nonresponsive to or their disease progressed
on or after two or more prior lines of therapy (including fluoropyrimidine- and
platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy)
(Fashoyin-Aje et al. 2019; Shah et al. 2019). Promising data from a global, multi-
center, non-randomized, open-label multi-cohort trial, KEYNOTE-059, accelerated
approval for KEYTRUDA. Observations of the study was based on 259 patients
with gastric or GEJ adenocarcinoma and whose disease progressed on at least two
prior systemic treatments for advanced GEJ adenocarcinoma. Fifty-five percent
(143/259) of the patients in this cohort had tumors that expressed PD-L1 with a
CPS� 1 and microsatellite stable (MSS) tumor status or undetermined microsatellite
instability (MSI) or mismatch repair (MMR) status. The objective response rate
(ORR) in these 143 patients was 13.3% (Fuchs, Doi et al. 2018).

Several clinical trials have studied the efficacy of PD-1/PD-L1 blockade by drugs
other than KEYTRUDA in advanced gastroesophageal cancers. CheckMate 032, a
phase I/II trial, studied the clinical impact of nivolumab (N), an anti-PD-1 mono-
clonal antibody, along with ipilimumab (I), a CTLA-4 inhibitor in 160 patients with
advanced gastroesophageal malignancy (Janjigian et al. 2018). The ORRs were 19%
with nivolumab alone, 40% with N1mg+I3mg combination, and 23% with N3mg
+I1mg combination. These ORRS were greater in cancers with PD-L1 expression;
however a modest response was noted in PD-L1-deficient malignancies as well (12%
nivolumab alone, 22% N1mg+I3mg, 0% N3mg+I1mg). ATTRACTION-02, a ran-
domized, double-blind, placebo-controlled phase III trial conducted in Japan, South
Korea, and Taiwan, studied 493 patients with refractory gastroesophageal cancer.
Patients were randomized (2:1) to receive either nivolumab 3 mg/kg or placebo, and
the primary endpoint was overall survival (OS). Nivolumab improved the median
OS to 5.26 months (95% CI, 4.60–6.37) compared to 4.14 months (95% CI,
3.42–4.86) in the placebo cohort. In addition, 12-month OS rates were 26.2%
(95% CI, 20.7–32.0) in the nivolumab arm compared with 10.9% (95% CI,
6.2–17.0) in the placebo cohort. In this study PD-L1 tumor status did not appear
to significantly impact OS of the 26 (14%) PD-L1-positive patients after an explor-
atory analysis. The median OS in tumors with PD-L1 positivity in experimental vs.
placebo arms was 5.22 months (95% CI, 2.79–9.36) vs. 3.83 (95% CI, 0.79–9.36).
This was not significantly different from the PD-L1-negative tumors that had a
median OS of 6.05 months (95% CI, 4.83–8.54) vs. 4.19 months (95% CI,
3.02–6.93) in experimental vs. placebo arms (Kang et al. 2017). Although it is
difficult to conclude how PD-L1 status may impact the choice of therapy, given
the small sample size, this study led to the approval of nivolumab in Japan for use as
third-line therapy in advanced gastroesophageal cancer.
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5.2.2.2 PD-L1 Expression in Esophageal Cancer

The PD-L1 expression in ESCC has been extensively studied in China and other
Asian countries (Ito et al. 2016; Leng et al. 2016; Qu et al. 2016; Chen et al. 2017;
Jesinghaus et al. 2017; Jiang et al. 2017a, b; Lam et al. 2017; Zhang et al. 2017,
2019; Guo et al. 2018a, b, 2019; Hsieh et al. 2018; Ng et al. 2018; Wang et al. 2018;
Fukuoka et al. 2019; Jiang et al. 2019; Rong et al. 2019). PD-L1-positive expression
ranging from 18.9 to 45% has been reported in ESCC tumor cells (Chen et al. 2016;
Ito et al. 2016; Lim and Soo 2016; Rong et al. 2019). These differences might be due
to several factors including type of neoadjuvant therapy, cutoff points, commercial
antibodies for different epitopes of PD-L1, and IHC methodology. For example,
Chen and his colleagues reported positive PD-L1 immunoreactivity in 45% of ESCC
tissues including neoadjuvant chemoradiotherapy-treated patients. Lim et al.
reported PD-L1 (5H1) expression increased in ESCC patients who received
neoadjuvant therapy (Lim and Soo 2016). The study by Rong et al. excluded the
patients who received neoadjuvant chemoradiotherapy and found that PD-L1 was
expressed on 29.9% (113/378) ESCC tumor cells and 40.2% (152/378) tumor-
infiltrating immune cells. Similarly, the method of scoring for PD-L1 expression
may have introduced variability. Ito S et al. found that 18.9% of ESCC tissues had
positive PD-L1 (LS-B480) expression (Ito et al. 2016). However, their study used
the scoring for PD-L1 expression based on adding both the proportion score and the
intensity score with cutoff as �7%, which is different from the current PD-L1
evaluation guideline from clinical application. Recently, pembrolizumab was
approved for the treatment of patients with recurrent locally advanced or metastatic
squamous cell carcinoma of the esophagus whose tumors express PD-L1 with
combined positive score [CPS] �10, as determined by a US Food and Drug
Administration (FDA)-approved test, with disease progression after one or more
prior lines of systemic therapy based on findings from the open-label phase III
KEYNOTE-181 trial (ClinicalTrials.gov identifier NCT02564263) and the phase
II KEYNOTE-180 trial (NCT02559687) (Shitara et al. 2018; Metges et al. 2019;
Shah et al. 2019). The FDA also approved a new use for the PD-L1 IHC 22C3
pharmDx kit as a companion diagnostic device for selecting patients for this
indication.

The related data for PD-L1 in EAC and ESCC in the United States is limited, with
only a few studies examining its expression in esophageal adenocarcinoma
(Ohigashi et al. 2005; Loos et al. 2011; Derks et al. 2015; Dislich et al. 2017). In a
study, of 109 EAC cases, 14 (13%) were positive for PD-L1 immunostain; of the
34 ESCC cases, 6 (18%) were positive for PD-L1 immunostain. The PD-L1 expres-
sion in EAC was significantly associated with age, T stage, and stroma/inflammatory
cell PD-L1 expression (Abu-Farsakh et al. 2017). PD-L1 expression in EAC showed
worse survival but was not statistically significant. Recently, Derks et al. reported
their PD-L1, PD-L2, and PD-1 immunohistochemistry study on EAC tissue micro-
array (Derks et al. 2015). They found that PD-L1 was expressed on only 2% of EAC
and on 18% inflammatory cells. However, we found that PD-L1 expression on tumor
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cells was about 11%, which is higher than the PD-L1 expression rate in their study
(Abu-Farsakh et al. 2017). Dislich et al. also found that PD-L1 expression was
detected in 8% of EAC and 51.8% of tumor-associated inflammatory cells. The rate
of PD-L1 expression (43%) in tumor-associated inflammatory cells in our study is
close to Distich’s results (51.8%), but it is higher than that in Derks’ data. Derks et al.
used the monoclonal antibody (PD-L1, clone 405.9A11) from Dr. Gordon
Freeman’s laboratory, Dana-Farber Cancer Institute (Derks et al. 2015), but Dislich
et al. used clones SP142 (Spring Bioscience, Pleasanton, CA) and E1L3N (Cell
Signaling Technology, Danvers, MA) antibodies. In our study, we used a commer-
cially available 22C3 PharmDx IHC kit from Dako with their Autostainer and
manufacturer protocols, which includes the antibody approved by FDA for evaluat-
ing lung non-small cell carcinoma for pembrolizumab (KEYTRUDA) in clinic. The
antibodies and protocols may contribute to the discrepancies.

The association between PD-L1 expression and clinicopathological features like
lymph node metastasis and tumor stages was reported in several studies (Chen et al.
2016; Ito et al. 2016; Lim and Soo 2016). PD-L1 expression was also found to be
associated with age and tumor differentiation (Rong et al. 2019). Older patients
(35%) had higher expression of PD-L1 than young patients (25%). Poorly differen-
tiated ESCC tumors had higher PD-L1 expression (42%) compared to well- (25%)
and moderately (27%) differentiated tumor groups (Chen et al. 2016; Yu and Guo
2018). Few meta-analysis reports convene to a similar conclusion that PD-L1
overexpression is associated with unfavorable outcomes and lower OS in patients
with ESCC, notably in Eastern Asian countries such as China, Japan, and South
Korea (Qu et al. 2016; Guo et al. 2018a, b). However, a limited number of studies
reported that increased PD-L1 expression is associated with improved disease-free
survival and OS (Jesinghaus et al. 2017, Jiang et al. 2019). This controversy may be
attributed to numerous factors, including different methodological approaches and
different assessment criteria to define high PD-L1 expression and heterogeneity of
PD-L1 expression. These factors may result in differing detection of infiltrating
lymphocytes in tumor from the biopsy or the postoperative pathological specimens.
However, staining cutoff values tumor proportion score (TPS) of 1 or 5% are
frequently used to define the positive rate of PD-L1 expression. Various studies
have defined the cutoff values differently. Most of clinical trials for KEYTRUDA
defined TPS�1% as a positive tumor PD-L1 protein expression as a cutoff (Katsuya
et al. 2016; Bodor et al. 2020), whereas other trials for atezolizumab or durvalumab
used TPS �5% as the threshold (Eckstein et al. 2019; Gennen et al. 2020).

5.2.3 Vascular Endothelial Growth Factor

Vascular endothelial growth factor (VEGF) is a secreted cytokine that plays a central
role in angiogenesis, the process of new blood vessel formation, and is essential for
numerous physiological processes such as embryonic development and wound
healing. VEGF receptor-2 (VEGFR-2) is a 200–230-kDa receptor for VEGF-A,
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VEGF-C, VEGF-D, and VEGF-E. VEGFR-2 is expressed by vascular and lym-
phatic endothelial cells and by other cell types such as megakaryocytes and hema-
topoietic stem cells (Katoh et al. 1995). VEGF and VEGFR-2-mediated signaling
and angiogenesis seem to have an important role in the pathogenesis of gastric
cancer. Ramucirumab is a fully human IgG1 monoclonal antibody VEGFR-2 antag-
onist that prevents ligand binding and receptor-mediated pathway activation in
endothelial cells (Fuchs et al. 2014).

5.2.3.1 VEGF Clinical Application in EAC

In 2014, ramucirumab, an angiogenesis inhibitor, was approved by the US FDA in
the second-line setting by itself or in combination with paclitaxel based on phase
3 REGARD clinical trials (Fuchs et al. 2014). Three hundred fifty-five patients with
advanced gastric or gastro-esophageal junctional adenocarcinoma were assigned to
receive ramucirumab (n ¼ 238) or placebo (n ¼ 117). Median overall survival was
5.2 months (IQR 2.3–9.9) in patients in the ramucirumab group and 3.8 months
(1.7–7.1) in those in the placebo group (hazard ratio [HR] 0.776). The survival
benefit with ramucirumab remained unchanged after multivariable adjustment for
other prognostic factors (multivariable HR 0.774). Ramucirumab by itself has only a
marginal effect, but the combination of ramucirumab with paclitaxel has a decent
efficacy profile (Fuchs et al. 2018). In the RAINBOW experimental arm, the overall
survival (OS) was significantly longer with the combination ramucirumab with
paclitaxel (median 9.6 months compared to paclitaxel alone at 7.4 months) (Wilke
et al. 2014). The combination of ramucirumab with paclitaxel significantly increases
overall survival compared with placebo plus paclitaxel and could be regarded as a
new standard second-line treatment for patients with advanced gastric cancer (Wilke
et al. 2014). The RAINBOW regimen is further recommended in the third-line
setting when patients fall out of the first-line therapy due to considerable neuropathy.

5.2.3.2 VEGF Expression in Esophageal Carcinoma

Vascular endothelial growth factors C (VEGF-C) and D (VEGF-D) are important
lymphangiogenic factors in several human cancers. High expression of VEGF-C and
VEGF-D were observed in 54.7% (40/73) and 65.7% (48/73) of resected esophageal
cancer specimens after immunohistochemistry. The higher expression correlated
positively with the histological grade of the tumors ( p ¼ 0.038) and lymph node
metastasis ( p¼ 0.018). Both VEGF-C and VEGF-D high expression correlated with
decreased overall survival, disease-free survival, and cancer-specific survival in this
patient cohort. This study confirmed that overexpression of VEGF-C and VEGF-D
in locally advanced disease may be useful in identifying patients who are more likely
to have a poor prognosis even after curative resection (Kozlowski et al. 2011).
However, an earlier study on 46 EAC patients concluded that clinicopathological
factors did not show any significant correlation with VEGF expression in the
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22 patients (47.8%) to be positive for VEGF, in that cohort. There was no significant
association between VEGF expression and long-term survival, reported in this study
(Cavazzola et al. 2009). Later, a systematic review of 31 studies (n ¼ 2387 patients)
and a meta-analysis of 30 studies (n ¼ 2345 patients) by Chen et al. investigated the
prognostic importance of elevated VEGF expression on overall survival among
patients with esophageal cancer (Chen et al. 2012). They reported that high VEGF
expression was associated with poor survival in esophageal squamous cell carci-
noma (HR, 1.81) and that there was no significant heterogeneity between the studies
published in literature (P ¼ 0.185). However, the data collected were not sufficient
to determine the prognostic value of VEGF in patients with esophageal
adenocarcinoma.

5.2.4 Other Biomarkers in Clinical Application for Diagnosis
of EAC and Precancerous Lesions

Due to interobserver variability in diagnosing LGD, the frequency of progression
from low-grade dysplasia (LGD) to high-grade dysplasia/carcinoma (HGD/CA) in
Barrett’s esophagus (BE) varies among studies. Skacel and colleagues analyzed the
immunohistochemical staining for p53 in patients diagnosed with LGD with known
clinical outcome and interobserver agreement data (Skacel et al. 2002). They
correlated p53 immunoreactivity with clinical progression and with the interobserver
agreement among three GI pathologists. In a 2–28-months’ follow-up of total
16 LGD cases, 8 patients progressed to HGD/CA. Of the eight patients progressed
to HGD/CA, seven cases stained positively for p53, but of the other eight patients
without progressing to HGD/CA, only two patients stained positively for p53. With
these observations, Skacel et al, claimed that p53 positivity resulted in improved
sensitivity (100%) with no change in specificity (75%) in predicting the progression
of LGD to HGD/CA when combined with complete interobserver agreement on
LGD among three experienced GI pathologists. Therefore, immunohistochemical
staining for p53 can be used as an adjunctive test, as it correlated with progression to
HGD/CA in this series (Skacel et al. 2002). Late multiple researchers confirmed their
finding and agreed that addition of p53 IHC significantly improves the histological
assessment of Barrett’s esophagus biopsies (Kaye et al. 2016; van der Wel et al.
2018). In one of the confirmatory studies, 10 GI pathologists assessed 60 referral BE
cases-single hematoxylin and eosin (HE) slide per case including 20 low-grade
dysplasia (LGD); 20 high-grade dysplasia (HGD); and 20 non-dysplastic BE refer-
ence cases. After a “washout” period, the same cases were reassessed with the
addition of a corresponding p53 IHC slide. It was concluded that addition of p53
IHC decreased the mean proportion of indefinite dysplasia diagnoses from 10 of
60 to 8 of 60 (P ¼ 0.071). The mean interobserver agreement, between the pathol-
ogists’ assessments, increased significantly from 0.45 to 0.57 (P ¼ 0.0021), and the
mean diagnostic accuracy increased significantly from 72% to 82% (P ¼ 0.0072)
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after p53 IHC addition (van der Wel et al. 2018). In another study 10 pathologists
from 4 other institutions were provided a brief training session in p53 staining
interpretation and then asked to review 72 cases encompassing the full spectrum
of BE. Each pathologist classified cases on hematoxylin and eosin alone using the
Vienna classification and assessed the p53 staining using a qualitative system. Using
the three recognized patterns, for p53 staining the unweighted kappa (interobserver
agreement) was 0.6 (confidence interval 0.58–0.63), while the weighted kappa
values varied from 0.27 to 0.69 with an average of 0.47. When cases were evaluated
with both H&E and p53 IHC, the average kappa was 0.61 for definite dysplasia
versus no definite dysplasia. Based on these observations, it was agreed that p53
immunohistochemistry interpretation is more reliable than dysplasia diagnosis, even
with limited training. Due to the fact that p53 IHC was predictive of prognosis and
improved diagnostic reproducibility, it is considered suitable for routine use by
pathologists as an adjunct to dysplasia diagnosis. The use of ancillary markers like
p53 IHC may help to prevent overdiagnosis of dysplasia in Barrett’s and inform
appropriate treatment for the patients based on their disease stage (Kaye et al. 2016).

Recently, two panels of biomarkers in BE were found to predict future risk of
progression and prevalent dysplasia, respectively (Bird-Lieberman et al. 2012; di
Pietro et al. 2015). The first panel includes a consensus diagnosis of LGD by experts,
presence of aneuploidy, and aspergillus oryzae lectin (AOL) immunohistochemistry
(IHC), which was applied to a retrospective nested case-control study (Northern
Ireland Barrett’s Registry) (Bird-Lieberman et al. 2012). Based on a risk score
created for individuals positive for one or more of these abnormalities, a reduced
biomarker panel was constructed. With each additional positive biomarker in the
reduced model, the odds for progression to EAC increased by fourfold (OR, 3.90;
95% CI, 2.39–6.37) in BE patients with LGD and by threefold (OR, 3.31; 95% CI,
1.81–6.05) in BE patients without LGD. The second panel, which comprises aneu-
ploidy, p53 (IHC), and cyclin A (IHC), was tested in a multicenter prospective study
(di Pietro et al. 2015). This panel predicts inconspicuous prevalent HGD/EAC with a
sensitivity of 100% and a specificity of 85%. Duits et al. combined two panels
together to investigate their powers for identifying high-risk BE patients. Their
nested case-control cohort comprised BE patients who progressed to high-grade
dysplasia (HGD)/EAC (n ¼ 130) and BE patients who never progressed (n ¼ 130),
in a 2-year follow-up, matched on age, sex, length of the BE segment, and duration
of endoscopic surveillance. This study confirmed that expert consensus LGD diag-
nosis, abnormal expression of p53, and abnormal expression of AOL all indepen-
dently predicted the risk of progression to HGD/EAC and this biomarker panel was
able to discriminate well (73%) between progressors and nonprogressors as
predicted by the ROC curve. Based on this study, a combination of these three
markers could help select patients for prophylactic ablation therapy or intensified
endoscopic surveillance (Duits et al. 2019).

Apart from molecular markers, Parasa and colleagues developed a scoring system
based on demographic data and endoscopic and histologic findings at the time of
index endoscopy (Parasa et al. 2018). This longitudinal study involved patients with
BE from five centers in the United States and one center in the Netherlands enrolled
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in Barrett’s Esophagus Study database from 1985 to 2014. Of the 4584 patients in
the database, 2697 were included in their analysis (84.1% men; 87.6% Caucasian;
mean age, 55.4� 20.1 years; mean body mass index, 27.9� 5.5 kg/m2; mean length
of BE, 3.7 � 3.2 cm). During the follow-up period, 154 patients (5.7%) developed
HGD or EAC, with an annual rate of progression of 0.95%. Male sex, smoking,
length of BE, and baseline low-grade dysplasia (changes in the appearance of the
cells in the esophageal epithelium) were found to be significantly associated with BE
progression. Using a scoring system, patients with BE at low, intermediate, and high
risk for HGD or EAC could be identified with 76% certainty as predicted by the
ROC curve (95% confidence interval, 0.72–0.80; P < 0.001). This scoring method
was validated in an independent cohort, and the calibration slope was 0.9966
(P ¼ 0.99), confirming the utility of this scoring system (Progression in Barrett’s
Esophagus score) based on the biopsy diagnosis, sex, smoking, and length of BE as
biomarkers for predicting the risk of patients to develop EAC (Parasa et al. 2018).

5.3 Molecular Markers in Development for Esophageal
Cancer and Precancerous Lesions

Due to limited success of existing therapeutic regimens in the management of
esophageal cancers, more comprehensive knowledge of the biology of the esopha-
geal cancers is necessary to design effective treatment plans. Efforts have been
directed to find molecular biomarkers that could not only diagnose early stages of
esophageal cancer (diagnostic markers) but also predict the patient’s risk of progres-
sion to cancer (progression marker), response to therapy (predictive marker), and
survival or prognosis (prognostic marker). Observations on genetic and epigenetic
changes in the esophageal cells from in vitro cell culture models (Bus et al. 2012)
including the BE carcinogenesis model (Das et al. 2011; Minacapelli et al. 2017), 3D
culture models (Whelan et al. 2018), and animal models (Kapoor et al. 2015; Nair
and Reddy 2016; Jiang et al. 2017a, b) have been instrumental in understanding the
molecular mechanisms of Barrett’s esophagus and esophageal carcinogenesis. How-
ever, all existing disease models have been criticized for not being physiologically
relevant to human esophageal pathobiology. Therefore, in this article we mostly
focus on the findings from primary human tissues.

Aberrant transcript levels resulting from epigenetic changes or mutations of
several genes were early events observed in the carcinogenesis process, even before
the appearance of malignant histological changes (Kalatskaya 2016). Several such
events were deemed to be potential biomarkers for early diagnosis (surveillance) and
prevention as well as therapeutic management in esophageal squamous cell carci-
noma (Gao et al. 2014a, b) and esophageal adenocarcinoma (Dulak et al. 2013).
However, data on genomic profiling and potential genetic biomarkers in esophageal
cancer are disparate between investigations from different centers. There is a critical
need for rigorous clinical validation and replication in independent cohorts before

124 M. Bajpai and Z. (David) Zhou



the molecular biomarkers can make the transition from bench to bedside. The
following sections describe in detail some of the outstanding efforts led by esoph-
ageal research consortia in the United States and European nations and other
innovative independent investigators in the discovery of molecular markers for
both ESCC and EAC.

5.3.1 Gene Mutations and Aberrant Expression
in Esophageal Cancer and Precancerous Lesions

5.3.1.1 Esophageal Adenocarcinoma

More than 8331 genes were found to be mutated in the 165 EACs after examining
exome sequencing datasets curated by our TCGA team (Dulak et al. 2013). How-
ever, 3639 genes were found to be mutated in two or more samples, and only
26 genes were significantly mutated (FDR q < 0.1) in this cohort. TP53 (72%)
had the highest mutation frequency followed by CDKN2A (12%). Twenty-six
cancer-related genes with mutation are present in more than 10% tumor. This led
the investigators to suggest that point mutations in specific genes may not provide
robust discrimination as predictors of progression to EA (Dulak et al. 2013). Around
the same time, our group found that genomic mutation load was a potential bio-
marker to differentiate EAC from BE and columnar metaplasia without goblet cells
(Bandla et al. 2014). In this study, we also highlighted for the first time that there was
significant difference in genomic changes between columnar cell metaplasia with
and without goblet cells. It indicated that goblet cells are the essential criteria for the
diagnosis of BE (Bandla et al. 2014).

The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Con-
sortium took a different approach: they identified inherent differences in the muta-
tional profiles from whole-genome sequencing analysis of 129 EAC cases and
classified them into three distinct subtypes of EACs. They are (1) enrichment for
BRCA signature and defects in the homologous recombination pathway; (2) domi-
nant T>G mutational pattern associated with a high mutational load and neoantigen
burden; and (3) C>A/T mutational pattern representative of aging. These signatures
when independently verified in another cohort of 87 patients and were suggested to
be clinically relevant for therapeutic decision (Secrier et al. 2016). In another recent
study, whole genome sequencing (WGS) was performed on 61 junctional adenocar-
cinomas across all three Siewert types (GEJ1: 26, GEJ2: 22, GEJ3: 13). Based on
transcriptome profiling and biological function (based on key gene networks iden-
tified on the basis of gene expression), the GEJ adenocarcinomas were classified into
three groups. Group 1 was enriched for pathways involved in cell turnover, Group
2 for metabolic processes, and Group 3 for immune-response pathways. Patients in
group 1 showed the worst overall survival ( p ¼ 0.019). The transcriptomic, muta-
tional, and protein expression signatures used to classify the subgroups were suc-
cessfully verified in independent transcriptomic data with clinical outcomes from
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four independent European and Asian datasets. The pooled analysis confirmed the
prognostic effect of the new subtypes (Bornschein et al. 2019). A comprehensive
integrative analysis combining clinical data with methylation, transcriptome, and
genome profiles of more than 400 BE and EAC tissues classified BE and EAC
tissues into four subtypes (described subsequently). The tissues classified as subtype
1 showed gain in methylation in CpG islands and enrichment of genes like GATA4,
CCND1, and others involved in DNA repair. Subtype 2 also had gained methylation
like the subtype 1 but with a unique pattern of unmethylation and enrichment for
genes associated with ATP synthesis, fatty acid metabolism, and oxidation pro-
cesses. Subtype 3 had increased presence of both myeloid and lymphoid cell
lineages in the tumor tissue, and subtype 4 was characterized by hypomethylation
and a high degree of genome stability from copy number alterations and structural
variants. Stratification into these subtypes informed potential therapeutic options
ideal for the characteristics of the particular tumor type, e.g., subtype 1 representative
of CIMP could possibly be sensitive to DNA methyltransferase and topoisomerase I
inhibitors and subtype 4 with hypermethylation to CDK2 inhibitors. Subtype 3 was
found to associate with poor prognosis due to immune cell involvement (Jammula
et al. 2020).

Genomic changes were also extensively studied as the predicating biomarkers for
the chemotherapy and prognosis. EACs were divided by two molecular subtypes
with disparate response to chemotherapy and characterized their somatic mutation
patterns as well as differential gene expression. They identified a subtype I, with
24 distinctive genes including SMAD4 gene. This subtype was less sensitive to
frontline chemotherapy compared to the subtype II EACs that presented a different
mutation profile comprising set of 30 different genes including ARID1A. Compared
to the subtype II, the gene expression in subtype I EACs was enriched for biological
processes including epithelial cell differentiation, keratinocyte differentiation, and
KEGG pathways including basal cell carcinoma (Guo et al. 2018a, b). Visser et al.
systematically compiled 22 peer-reviewed studies from literature that used RNA
next-generation sequencing to analyze transcriptional profiles of esophageal tumors
(Visser et al. 2017). Only four (three on EACs and one on ESCC discussed later)
studies that investigated gene expression profiles in relation to survival actually
validated their findings in independent cohorts (see Table 5.1). The first study led by
Peters et.al. used gene expression data derived from tumor tissue specimens of
75 patients and stringently selected 10 genes strongly associated with survival and
with the number of involved lymph nodes (a prognostic feature) using statistical
modeling. In the external validation dataset that consisted of 371 cases from
5 OCCAMS centers, patients with none of the 4 genes dysregulated (5-year survival,
58%) had better survival compared to those with 1–2 of 4 genes dysregulated (5-year
survival, 26%), who in turn did better than those with 3–4 of 4 genes dysregulated
(5-year survival, 14%) (Peters et al. 2010). The second validated study characterized
gene expression profiles in 75 EAC and 28 NE tissue samples from 64 patients.
Unsupervised hierarchical clustering analysis based on Pearson correlation coeffi-
cients identified three subclasses of EAC, each with a remarkable difference in the
clinical outcomes of these patients. Comparison of the differential gene expression
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patterns between the EAC subgroups revealed ten genes AKR1B10, CD93, CSPG2,
DKK3, LUM, MMP1, SOX21, SPP1, SPARC, and TWIST 1 that were more than
fourfold different between the poor prognosis and better prognosis groups. Among
these, AKR1B10 and SOX21 were protective genes associated with better survival
and the others are risk genes. Another two gene signatures comprising SPP1 and
SPARC had prognostic relevance and potential clinical utility (Kim et al. 2010). The
third study, by Goh et al., identified a cluster (32% of cohort) with differential log2
ratios of 16 CGH probes ( p < 4 � 10�7) using K-means clustering on a CGH array
of 56 EAC resection samples and found that the cluster was associated with worse
prognosis (median survival ¼ 1.37 years; p ¼ 0.015) (Goh et al. 2011). The fourth
study identified signatures in ESCC, discussed later in the text (Table 5.2).

Better response to chemotherapy in EAC was associated with overexpression of
Ephrin B3 (Schauer et al. 2010). A 165-gene signature in combination with endo-
scopic ultrasound and traditional staging reliably predicted overall survival (OS;
P < 0.01) and outcomes of resection after perioperative chemotherapy, with a poor
outcome group (N ¼ 17) (1 year OS 46.2%) and a good outcome group (N ¼ 18)
(1 year OS 1005). This set of genes is associated with the regulation of the TOLL
receptor-signaling pathway (Rao et al. 2011). Lower expression of gene sets asso-
ciated with arginine metabolism pathways and lipid metabolism pathways in general
and, particularly, argininosuccinate synthetase expression were reported to be cor-
related with (P ¼ 0.048) lymph node metastasis in EAC (Lagarde et al. 2008).
Another study found a set of 21 genes that were overexpressed in T1-2 compared
with T3-4 tumors (false discovery rate of 0). One of those genes could discriminate
between N+ and N0 tumors (false discovery rate of 0), and subset of nine correlated
with longer survival (Hammoud et al. 2009). The most interesting fact that emerges
from these studies is the heterogeneity of the EACs that could probably explain why
all the studies arrived at a different subset of prognostic genes. Only eight genes
ALDH1A3, BIN1, CSPG2, DOK1, IFIT1, IFIT3, PHB, SPP1 have been mentioned
in other two studies. Smaller sample sizes used in the studies, lack of external
validation, dissimilar endpoints (progression, response, survival, metastasis, etc.),
and methods used for arriving at gene signatures are other variables that complicate
the discovery of efficient biomarkers. In a systematic evaluation of published
literature on BE and EAC genome sequencing and genes implicated in BE progres-
sion, 77 genes names were extracted. Using an integrated text mining approach, six
genes, TP53, CDKN2A, β-catenin or CTNNB1, CDH1, GPX3, and NOX5, were
identified as the most frequently altered during BE carcinogenesis, because their
name appeared in two or more publications. All six genes prioritized by the text-
mining approach accumulate genomic, transcriptomic, and/or proteomic alterations
in the large subpopulation of EAC patients, and this subpopulation correlates well
with progression stage. It denotes that each of the six genes plays a certain role in BE
progression. In addition, all six genes are functionally interrelated, which might
indicate that they can serve as an essential core for BE progression (Kalatskaya
2016).
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Table 5.2 List of studies investigating epigenetic signatures for esophageal cancer and premalig-
nant conditions

Study Tumor Gene signature Risk assessed

Methylation

Jin
(2009)

145 nonprogressors and
50 progressors

p16, RUNX3, HPP1,
NELL1, TAC1, SST,
AKAP12, and CDH13

Neoplastic progression

Alvi
(2013)

22 Barrett’s esophagus
and 24 esophageal ade-
nocarcinoma
Validated in
98 samples;
60 non-dysplastic BE,
36 dysplastic Barrett’s,
and 90 early EAC

SLC22A18, PIGR, GJA12,
and RIN2,

Three risk groups based
on the number of genes
methylated (low risk, <2
genes; intermediate, 2;
and high, >2)

Dilworth
(2019)

67
20 progressors
47 nonprogressors
Validation set
32 patients (progressors
18, nonprogressors 14)

OR3A4 Risk of progression

Chettouh
(2018)

Pilot cohort (n¼ 20 cases,
n ¼ 10 controls) and a
validation cohort
(n ¼ 149 cases, n ¼ 129
controls)

TFPI2*, TWIST1,
ZNF345 and ZNF569,

Risk of progression

Wang
(2019)

80 patients (52 in the
training set; 28 in the test
set)

p16, HPP1, NELL1,
TAC1, and AKAP12

Risk of progression

Lu
(2019)

ABCD1, SLC5A10,
SPIN3, ZNF69, ZNF608

Risk of progression

Howarth 15 genes Progression to neoplasia

miRNA

Mallick
(2016)

miR-192, miR-194,
miR-203, miR-205, and
miR-215

Diagnosis and monitoring
of BE

Clark
(2018)

Regulatory miRNA con-
trolling BMP, NOTCH,
NF-κB, MAPK signaling
pathways, and CDX2
expression

BE progression to EAC

Li (2018) MIR7, MIR30a, MIR181a,
MIR192, MIR196a, and
MIR199a
or
MIR192, MIR196a,
MIR199a, and trefoil fac-
tor 3 (TFF3)

BE diagnosis

(continued)

128 M. Bajpai and Z. (David) Zhou



Table 5.2 (continued)

Study Tumor Gene signature Risk assessed

Craig
(2020)

11 miRNA signatures
including miR-29c-3p and
miR-193b-5p,

Risk prediction for EAC
development

Zhang
(2010)

miR-10a, miR-22,
miR-100, miR-148b,
miR-223, miR-133a, and
miR-127-3p miRNAs,

Discriminate between
stage I/II ESCC patients

Xie
(2012)

miR-10b*, miR-144, and
miR-451 detectable in
whole saliva and
miR-10b*, miR-144,
miR-21, and miR-451

Diagnosis of ESCC

Hirajima
(2013)

miR-18 Presence of tumor

Skinner
(2014)

mir-505*, mir-99b,
mir-451, and mir-145*

Response to neoadjuvant
therapy

LncRNAs

Fanelli
(2018)

EAC AFAP1-AS1 (actin
filament-associated protein
1-antisense RNA 1) and
LncRNA HNF1A-AS1
(hepatocyte nuclear factor
1 alpha-antisense RNA 1)

Progression

Dong
(2015)

GCA UCA1 (urothelial cancer-
associated 1), LSINCT-5,
and PTENP1

Survival in GC tumors

Wang
(2015)

ESCC MALAT1 (metastasis-
associated lung adenocar-
cinoma transcript 1)

Lymph node metastasis
and poor overall survival

Gupta ESCC HOTAIR (HOX transcript
antisense RNA)

Lymph node metastasis
and poor overall survival

Chen
(2014)

ESCC ANRIL (antisense lncRNA
in the INK4 locus)

Prognostic marker

Kang
(2018)

ESCC PART1 (prostate
androgen-regulated tran-
script 1)

Drug resistance

Fanelli
(2018)
Table 5.1

ESCC tumors and cell
lines

UCA1 (urothelial cancer-
associated 1); CCAT1,
2, and 3 (colon cancer-
associated transcript 1, 2,
and 3); PCAT-1 (prostate
cancer-associated ncRNA
transcript 1); H19;
POU3F3 (lnc-POU class
3 transcription factor 3);
TUG1 (taurine-
upregulated lncRNA);
SOX2-OT (SOX2

Disease progression, poor
clinical outcome disease
progression, poor clinical
outcomes and poor over-
all survival

(continued)
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5.3.1.2 Esophageal Squamous Cell Carcinoma

ESCC is the dominant histological type of esophageal cancer worldwide, and
cigarette smoking and alcohol consumption are the major population-attributable
risks in the United States (Cook et al. 2010); additionally genetic factors are also
known to contribute to ESCC etiology (Wu et al. 2012). The largest exome sequenc-
ing performed on 113 ESCC tumors and paired normal samples by Gao et al. in the
Chinese population identified a total of 9197 non-silent mutations and 2825 silent
mutations, and 70 genes were mutated in at least 5% of the samples including TP53,
CDKN2A, NFE2L2, KDM6A, PIK3CA, FBXW7, PTCH1, BRCA2, AJUBA, RB1,
NOTCH1, and NFE2L2 (Gao et al. 2014a, b). Other less frequently mutated genes
include KMT2D, FBXW7, PTCH1, KDM6A, PIK3CA, CREBBP, EP300, and
FAT1 (in �5% of cases) (Gao et al. 2014a, b). Cell cycle, apoptosis, and DNA
damage control pathways are unequivocally disrupted in 95% of ESCC tumors due
to TP53, CCND1, CDKN2A, NFE2L2, and RB1 mutations. The tumor suppressor
Hippo pathway with mutations on AJUBA and FAT1-4 genes and recurrent muta-
tions in histone modifier genes such as EP300 and KMT2D is another most fre-
quently affected pathway in ESCCs. Collectively these mutations have prognostic
and potentially therapeutic implications (Gao et al. 2014a, b). The TCGA sequenced
90 ESCC tumors and found novel focal deletions at 3p25.2 in ESCC, encompassing
the negative regulator of the Hippo pathway (VGLL4 and autophagy factor ATG7
(Cancer Genome Atlas Research et al. 2017)) and other recurring focal somatic copy
number alterations (SCNAs) including amplifications of SOX2, TERT, FGFR1,
MDM2, and NKX2-1 and deletion of RB1. Amplification or mutation of EGFR
and alterations of PIK3CA, PTEN, or PIK3R1 that lead to activation of the PI3K
pathway were found in 24% of ESCC tumors, thus making them targetable by kinase
inhibitors (Cancer Genome Atlas Research et al. 2017). Overexpression of cortactin

Table 5.2 (continued)

Study Tumor Gene signature Risk assessed

overlapping transcript);
CBR3-AS1 (carbonyl
reductase 3 antisense RNA
1; also known as
PlncRNA-1: prostate
cancer-upregulated long
non-coding RNA 1);
FOXCUT (LncRNA Fork
head box C1 Upstream
transcript); SPRY4-IT1
(sprouty 4 intronic tran-
script 1); CASC9 (cancer
susceptibility candidate 9);
and PEG10 (lcnRNA
paternally expressed gene
10)
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(CTTN) was observed in 126/198 (63.6%) of ESCC cases and was significantly
associated with lymph node metastasis, pathologic stage, and poor survival
(P < 0.001) of ESCC patients (Lu et al. 2014).

Due to the poor 5-year survival, and lack of markers to guide the best course of
therapeutic management, molecular properties of ESCCs have been studied elabo-
rately to predict their therapeutic sensitivity. Luthra et al. identified a three-gene
(PERP, S100A2, and SPRR3) differential expression pattern between pretreatment
cancer biopsies and patients with complete response to neo-CRT with 85% speci-
ficity (Luthra et al. 2006). Responders to chemo-radiotherapy in both ESCC and
EAC could be identified from nonresponders by five-gene signature (low expression
of EPB41L3, NMES1, RNPC1, STAT5B and overexpression of RTKN) with 95%
accuracy in a subset of patients (Maher et al. 2009). With the help of gene expression
profiling on 50 pretreatment biopsy specimens from 11 patients who responded and
14 patients who did not respond to first-line FAP chemotherapy (cisplatin combined
with doxorubicin and 5-fluorouracil), Motoori et al. developed a 199-gene predictive
diagnostic system that was able to predict response in the validation cohort with 82%
accuracy. They also reported that nonresponders to chemotherapy had reduced
expression of PERP combined with overexpression of four genes (PRDX6,
DAD1, SELPINB6, and SRF) (Motoori et al. 2010). A combination of reduced
expression of ClOrf226 and LIMCHI1 and overexpression of MMP1 was found to
be a signature predictive of responders to neo-CRT (radiotherapy with cisplatin and
vinorelbine concurrently) and was able to successfully predict the responders in
another independent cohort of ESCCs receiving the same regimen with 81% accu-
racy (Wen et al. 2014). Panels of genes to predict outcomes to therapy are still
experimental and need further confirmation for clinical application.

5.3.1.3 Molecular Gene Mutation: ESCC Versus EAC

The ESCC and EACs involve the same organ and share similar risk factors but have
very different histology and pathophysiology. The most common substitution muta-
tions in both EACs (46%) and ESCCs (35%) were C:G>T:A transitions but with
distinct spectra. Overall, A:T>C:G substitutions were more common in EACs,
whereas C:G>G:C transversions and indels were more frequent in ESCCs
(P < 0.0001) (Agrawal et al. 2012). Some known oncogenes like MCL1, EGFR,
CDK6, SMURF1, KRAS, ERBB2, CCNE1, VEGFA, MET, and IGF1R are amplified
in both ESCC and EAC at similar frequencies, while others like SOX2, CCND1,
MYC, and PIK3CA have a higher amplification frequency in ESCC, and GATA4 and
GATA6 are higher in EACs (Cancer Genome Atlas Research et al. 2017). In addition,
larger genomic changes like deletion of 13q12.2 was found in 20% of ESCC
samples, but the same region was amplified in 17% of the EAC tumors. Similarly,
chromosome 14 amplification was observed in 35% of ESCC cases but only 4% of
EAC (Bandla et al. 2012). The ESCC also shows frequent genomic amplifications of
TP63, the master regulator of squamous epithelial cell differentiation, and/or
CCND1 and SOX2 similar to squamous carcinomas of other organs (Cancer
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Genome Atlas Research et al. 2017). These molecular signatures were suggestive of
the distinct pathophysiology of the tumors and the need for different therapeutic
approaches, despite their anatomical overlap and similar risk factors.

5.3.2 Epigenetic Markers: Methylation, miRNA, and lncRNA

Epigenetic changes of the DNA are heritable changes in gene activity or function
that are not associated with any change of the DNA sequence itself (Table 5.2).

5.3.2.1 DNA Methylation

DNA methylation involves the transfer of a methyl group onto the C5 position of the
cytosine to form 5-methylcytosine. DNA methylation mediates the diversified gene
expression profiles in a variety of cells and tissues in multicellular organisms. Both
hypermethylation and hypomethylation can cause dysregulation of gene expression
by altering the binding of transcription factor(s) to DNA binding sites (Robertson
2005). Aberrant DNA methylation has been extensively studied as a tool for
stratifying Barrett’s esophagus patients’ risk of developing esophageal adenocarci-
noma. Selective hypermethylation of promoter regions of multiple genes such as
CDKN2A and APC has been reported as part of the neoplastic progression from
Barret’s esophagus to EAC (Kaz et al. 2011). Some exploratory studies also reported
global hypomethylation at the genomic level in the BE and EAC tissues compared to
normal counterparts (Agarwal et al. 2012). Gastric reflux-induced toxic acidic
environment was implicated as a cause of the aberrant methylation patterns that in
turn affected the gene expression levels in favor of carcinogenesis (Bajpai et al.
2013). Obesity and tobacco smoking, the other major risk factors for the develop-
ment of BE and EAC, were also found to have a statistically significant correlation
with aberrant methylation patterns observed in BE and EAC (Kaz et al. 2016). When
differentially methylated genes between Barrett’s esophagus and normal squamous
esophageal biopsies were identified from whole methylome data, a combination of
8-marker tissue methylation biomarkers panel (i.e., p16, RUNX3, HPP1, NELL1,
TAC1, SST, AKAP12, and CDH13) was found to accurately predict risk in
approximately half of HGDs and EACs (Jin et al. 2009). Such a methylation
biomarker-based panel had potential clinical value in improving both the efficiency
of surveillance endoscopy and the early detection of BE neoplasia. The methylation
of AKAP12 in particular seemed to be a specific biomarker for the early detection of
BE associated with EAC. Using an array-based approach, Alvi et al. discovered a
novel panel of genes that appear to be hypermethylated in HGD/EAC compared with
non-dysplastic BE (Alvi et al. 2013). Interestingly, this study did not find the genes
from the previously described eight-gene panel as being differentially methylated or
other previous candidates such as APC. Instead, they not only developed a new four-
gene panel that not only allowed diagnosis of BE and EAC but also facilitated risk
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stratification into three groups depending on the number of methylated genes in the
panel: <2 ¼ low risk, 2 ¼ intermediate risk, and >2 ¼ high risk. This panel
consisted of four markers, SLC22A18, PIGR, GJA12, and RIN2, and generated a
high AUC score (0.988), with 97% specificity and 94 % sensitivity to separate BE
and EAC. It was validated using pyrosequencing in a retrospective cohort that
spanned the BE, dysplasia, and EAC (60 non-dysplastic BE, 36 dysplastic Barrett’s,
and 90 early EACs). In a prospective multicenter study (n ¼ 98), the statistical
separation between the groups was maintained (Alvi et al. 2013). A more recent
study identified 44 methylation markers that may be able to discriminate
non-dysplastic Barrett esophagus that either progress to adenocarcinoma or remain
as nonprogressive disease (Dilworth et al. 2019). Hypomethylation of the tumor
suppressor OR3A4 (probe cg09890332) ranked at the top of the list among the
44 markers and was validated in a separate cohort of samples. Multivariable reverse
stepwise logistic regression analysis showed that OR3A4 probe cg09890332 can
predict progression to invasive carcinoma (with 70.8% sensitivity and 86% speci-
ficity). The positive predictive value being 85% and negative predictive value being
72.5%. However, in another validation test using bisulfite sequencing and a thresh-
old of 58%, the hypomethylation of OR3A4 demonstrated reduced sensitivity of
only 33.3% and specificity of 78.6%. The positive predictive value dropped to
10.5% with a negative predictive value of 94%, making this method not sensitive
enough for clinical application (Dilworth et al. 2019).

The methylation marker panels are being studied to reduce the need for upper
GI-endoscopic procedures performed during BE surveillance and to increase the
specificity of EA detection at earlier stages. A panel of four candidate genes, TFPI2,
TWIST1, ZNF345, and ZNF569, and a simple and cost-effective non-endoscopic
Cytosponge cell collection device showed promise as noninvasive diagnostic bio-
markers for Barrett’s esophagus (Chettouh et al. 2018). Another noninvasive method
of obtaining mucosal cells from the esophagus is the EsophaCap. Investigators were
able to differentiate BE samples from non-BE controls using a set of five methylation
biomarkers (p16, HPP1, NELL1, TAC1, and AKAP12) with 78.6% sensitivity (95%
C+I 48.8% ~94.3%) and 92.8% (95% CI 64.1% ~99.6%) specificity. The markers
were different from Chettouh et al. but were found to be significantly higher in BE
patients (Wang et al. 2019). Abnormal methylation patterns have also been studied
in ESCC with five other candidate genes (ABCD1, SLC5A10, SPIN3, ZNF69,
ZNF608) that were claimed to serve as independent prognostic biomarker for
ESCC (Lu et al. 2019).

5.3.2.2 MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small non-coding RNAs, about 18–25 nucleotides in
length that regulate gene expression by binding to the 30-untranslated regions
(30-UTR) of target mRNAs. Such binding may lead to inhibition of mRNA transla-
tion or facilitate their degradation. MiRNAs have been shown to regulate cell
growth, differentiation, and migration and are frequently dysregulated in cancer
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(Bartel 2004). Therefore, miRNAs have potential diagnostic and prognostic value as
disease biomarkers, and there is considerable interest in identifying miRNA signa-
tures characteristic of disease stage or therapeutic responsiveness. Serum miRNA
biomarkers have been of particular interest in diseases like EAC that are associated
with extended monitoring periods, poor early detection, and costly or invasive
methodologies. Distinct miRNA signatures associated with GERD and BE were
first described in 2008, and subsequent studies have expanded the list of miRNAs
dysregulated in BE to at least 105 miRNAs potentially associated with BE patho-
physiology. miR143, miR-145, miR-191, miR-192, miR-22, miR-25, miR-661, and
let-7 are upregulated in BE and are validated to target p53. miR-149, miR-210,
miR-32, and miR-378 are downregulated by p53, which is associated with progres-
sion to advanced neoplasia (Horvath et al. 2016). In addition, miR-192, miR-194,
miR-203, miR-205, and miR-215 have been identified as promising tissue bio-
markers for the diagnosis and monitoring of BE (Mallick et al. 2016).

The regulatory role of the miRNAs, such as mir-125b and mir-378 on Hedgehog
signaling and mir-200c, mir-130, and let-7c on BMP signaling, has been associated
with the activation of these pathways during the squamous to columnar transition.
The mir-21, mir-200c, mir-122-5p, and mir-146a target the NOTCH pathway and
promote the squamous to columnar transition. The mir-21 is also known to promote
intestinal metaplasia of the columnar epithelium by altering the CDX2 and MAPK
signaling. The mir-125b, miR-130b, miR-181b, and miR-501-5p are known to drive
inflammation through NF-κB by targeting the ubiquitin-specific processing protease
(CYLD), a known NF-κB suppressor during the development of EAC (Clark et al.
2018). However, longitudinal studies are necessary to better understand the role of
miRNAs in separating BE from HGD/EAC epithelia.

Ongoing efforts to reduce the need for endoscopic intervention for BE surveil-
lance have led to investigations on finding biomarker signatures in biospecimens
derived using minimally invasive methods. A panel of six miRNAs (MIR7, MIR30a,
MIR181a, MIR192, MIR196a, and MIR199a) identified BE patients from non-BE
with a sensitivity of 86.2% and specificity of 91.6%, and the results were not affected
by the method used to obtain the esophageal cells (conventional upper
endoscopy vs. Cytosponge). However, the investigators noted that the efficiency
of differentiating between the same set of BE and normal samples was improved
(93.1% sensitivity and 93.7% specificity) when three specific miRNA (MIR192,
MIR196a, MIR199a) expression levels were combined with that of trefoil factor
3 (TFF3) (Li et al. 2018). In another study, miRNA profiles were obtained after high-
throughput sequencing of miRNAs extracted from serum and tissue biopsies of
normal, GERD, BE, LGD, or EAC. Logistic regression modeling of the whole
miRNA profiles identified 11 miRNA signatures including miR-29c-3p and
miR-193b-5p that could differentiate between normal, GERD/BE, or LGD/EAC
and help stratify patients at risk of progressing to EAC (Craig et al. 2020).

After the first report of presence of miRNA in various bodily fluids (Weber et al.
2010), the possibility of testing serum and saliva samples has also been explored to
measure dysregulated miRNAs to diagnose ESCC patients. Markedly increased
levels of 7 miRNAs, miR-10a, miR-22, miR-100, miR-148b, miR-223, miR-133a,
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and miR-127-3p miRNAs were identified in serum samples of 25 ESCC patients.
The investigators claimed that this panel of miRNAs had a higher sensitivity (78.5%)
and sensitivity (87.0%) in distinguishing stage I/II ESCC patients samples from
healthy controls compared to the standard clinical marker carcinoembryonic antigen
(3.05 μg/L as the cutoff value) (13.4% sensitivity and 100% specificity) (Zhang et al.
2010). A panel of six other miRNAs, miR-10b*, miR-144, and miR-451 detectable
in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva superna-
tant, were also reported to be significantly increased in ESCC patients and had the
ability to discriminate between healthy and ESCC patients (Xie et al. 2012, 2013).
The miR-18a known to be highly expressed in the ESCC tumors was also detected in
the serum of the patients. The levels of miR-18a in the serum were reduced
significantly after surgical removal of the tumors (P ¼ 0.0076) (Hirajima et al.
2013). This association between tumor and serum levels of miR-18a established that
the miRNA levels of serum and tissue are comparable in the ESCC as also observed
in oral squamous cancer (Wiklund et al. 2011). Although inconsistent at this time,
the methods for measuring biomarkers from body fluids could potentially revolu-
tionize noninvasive esophageal cancer surveillance.

A predictive role of miRNAs in treatment response has been studied by Skinner
et al. They developed a miRNA expression profile (MEP) score derived from four
miRNAs (mir-505*, mir-99b, mir-451, and mir-145*) to predict complete response
to neoadjuvant chemoradiotherapy in patients with esophageal adenocarcinoma
(Skinner et al. 2014). Although available data are not conclusive, the possible
clinical application of miRNAs as biomarkers or as a potential target of treatment
in esophageal cancer deserves further investigation.

5.3.2.3 Long Non-coding RNAs (lncRNAs)

Long non-coding RNAs (lncRNAs) are becoming one of the next frontiers of cancer
research as the role of these non-coding RNAs in carcinogenesis and metastasis are
beginning to unfold. LncRNAs are RNA transcripts longer than 200 nucleotides
with almost no protein-coding capacity. These transcripts are known to regulate gene
expression at multiple levels through epigenetic regulation of DNA modification,
regulation of transcriptional factor binding, and post-transcriptional steps like splic-
ing and protein modifications. The lncRNAs are promising candidates as early-stage
diagnostic markers. They are known to have tissue-specific expression and thus a
high specificity. Just like the miRNAs, they are also detectable in body fluids,
including plasma or serum, gastric juice, saliva, cerebrospinal/peritoneal/pleural
fluid, and urine, making repeated noninvasive assessment feasible (Fanelli et al.
2018). The role of lncRNAs is not well studied in the EACs. Differential expression
of an lncRNA AFAP1-AS1 (actin filament-associated protein 1-antisense RNA 1)
and an LncRNA HNF1A-AS1 (hepatocyte nuclear factor 1 alpha-antisense RNA 1)
has been reported between BE and EAC, but the significance of this finding remains
to be elaborated (Fanelli et al. 2018). A microarray-based screening of gastric cardia
adenocarcinoma (GCA) that closely relates to EAC revealed that 1598 lncRNAs
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were significantly upregulated and 327 were significantly downregulated (fold
change �2.0) in the GCA compared to paired noncancerous tissue. These molecules
were associated with biological pathways involved in development, invasion, and
metastasis of GCA tumors, thus supporting a strong rational for their potential role as
biomarkers for the clinical diagnosis of and targets for further therapy in these
malignancies (Wang et al. 2014). Dong et al. studied the sera from 110 patients
with GC and 106 age- and sex-matched healthy subjects and identified three
lncRNAs UCA1, LSINCT-5, and PTENP1 to be significantly downregulated in
GC patients compared with the control group. The set of three lncRNAs correlated
with worse survival rates in the GC patients (Dong et al. 2015).

Several lncRNAs are known to be differentially expressed in the ESCC compared
to normal esophageal tissue. High levels of MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1) RNA expression was negatively correlated with
miR-101 or miR-217 expression in 42 ESCC samples compared to paired normal
controls and regulated the proliferation, migration, and invasion abilities of ESCC
cells. MALAT1 expression increases EZH2 enhancer of zeste homolog 2 (EZH2)
expression significantly in ESCC tissue and activation of the Wnt/β-catenin pathway
to increase lymph node metastasis and poor overall survival (Wang et al. 2015).
HOTAIR (HOX transcript antisense RNA) plays a role in chromatin remodeling of
the promoter region of the Wnt inhibitory factor-1 (WIF-1), thus shutting down its
expression and facilitating upregulation of the Wnt/β-catenin pathway. Due to its
epigenetic role, high HOTAIR expression is associated with an elevated risk of
mortality in ESCC and other cancers (Gupta et al. 2010; Ge et al. 2013). Several
other lncRNAs UCA1 (urothelial cancer-associated 1); CCAT1, 2, and 3 (colon
cancer-associated transcript 1, 2, and 3); PCAT-1 (prostate cancer-associated
ncRNA transcript 1); H19; POU3F3 (lnc-POU class 3 transcription factor 3);
TUG1 (taurine-upregulated lncRNA); SOX2-OT (SOX2 overlapping transcript);
CBR3-AS1 (carbonyl reductase 3 antisense RNA 1; also known as PlncRNA-1:
prostate cancer upregulated long non-coding RNA 1); FOXCUT (LncRNA Fork
head box C1 Upstream Transcript); SPRY4-IT1 (sprouty 4 intronic transcript 1);
CASC9 (cancer susceptibility candidate 9); and PEG10 (lcnRNA paternally
expressed gene 10) have been summarized from studies on ESCC cell lines and
human samples and are found to be associated with ANRIL (antisense ncRNA in the
INK4 locus) that acts as an oncogene, and blocking it prevents cancer cell prolifer-
ation which could be a good candidate prognostic biomarker and target for new
target therapy in ESCC (Chen et al. 2014). High levels of serum lncRNA PART1 in
ESCC patients were found to promote gefitinib resistance by regulating miR-129/
Bcl-2 pathway and be associated with poor response in these individuals (Kang et al.
2018).

The knowledge on the biological roles of the lncRNAs is constantly evolving.
Although levels of these molecules are discriminatory between disease and normal,
which makes them ideal for diagnostic purposes, several questions remain about
their stability and interaction with other molecules like the miRNAs, mRNAs, DNA,
and proteins. Since they are known to have complex regulatory and interactive
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networks, just like the miRNAs, using lncRNAs as therapeutic targets is still
debatable.

5.4 Microbiome Application in Esophageal Cancer
and Precancerous Lesion

The gastrointestinal (GI) microbiome comprises the complex symbiotic community
of some 1014 bacteria colonizing in the human GI tract (Abreu and Peek 2014).
More recent research has focused on characterizing these bacterial communities in
the gut and identifying global differences in healthy gut and disease conditions like
esophageal, gastric, and colorectal cancers (Schwabe and Jobin 2013; Fraher et al.
2012). Data on esophageal microbiome and dysbiosis during EAC and ESCC is still
very limited and controversial (Snider et al. 2016). Both oral and esophageal
microbiomes are influenced by diet and oral hygiene and have been associated
with the risk for development of EAC (Lagergren et al. 2013) and ESCC (Yamamura
et al. 2016). Using bacterial 16S ribosomal RNA gene sequencing, ~100 unique taxa
were identified in the esophageal microbiome. These bacteria belong to six major
phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria,
and TM7. Majority of the bacteria (39%) were Streptococcus; other major genera
were Prevotella (17 %) and Veillonella (14 %), among others (Pei et al. 2004). A
more recent study used mucosal brushings instead of traditional biopsy and found a
greater number of taxa in the esophageal microbiome (Gall et al. 2015). The use of
antibiotics and decrease in the incidence of H. pylori, an organism strongly impli-
cated in gastric cancer, have been linked with the increase in incidence of EAC (Polk
and Peek 2010); a study actually found protective effect ofH. pylori eradication to be
protective in BE (Lagergren and Lagergren 2013). The acidic environment in BE
and reflux esophagitis was reported to alter the microbial balance of the esophagus,
by reducing the relative abundance of the Gram-positive Streptococcus and increas-
ing the abundance of Gram-negative bacteria, including Fusobacterium, Neisseria,
Campylobacter, Bacteroides, Proteobacteria, and Veillonella taxa (Yu et al. 2014;
Gall et al. 2015). The altered abundance of several genera, including Bifidobacteria,
Bacteroides, Fusobacteria, Veillonella, Staphylococcus, and Lactobacilli, observed
in GERD and BE, reversed with progression to EAC and comparable to levels seen
in normal esophagus. Some species like Campylobacter had a reversed trend, with
low abundance in healthy and cancer patients but higher prevalence in GERD and
BE (Blackett et al. 2013). High relative abundance of Gram-negative bacterial
antigens like the lipopolysaccharide (LPS), in the reflux-associated esophagus, pro-
motes tissue inflammation via increased expression of NF-κβ that is implicated in the
progression from BE to EAC (Yang et al. 2012).

Studies have identified a decrease in alpha diversity (Yu et al. 2014) and a greater
abundance of Clostridiales and Erysipelotrichales and a specific bacteria called
F. nucleatum in esophageal cancer and dysplasia tissue specimens compared to
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normal esophageal mucosa (Yamamura et al. 2016). The F. nucleatum is known to
participate in colorectal cancer carcinogenesis via activation of the beta-catenin
pathway and epigenetic alteration of CpG methylation (Ito et al. 2015). Another
upper digestive tract study found microbial richness and β-diversity (pairwise
difference in microbiota among samples), and serum PGI/II ratio in the Cytology
Sampling Study 2 (CSS2), a cancer screening study in Linxian, China, a region with
very high rates of ESCC and gastric cancer. Microbial richness (number of bacterial
genera per sample) was significantly associated with lower PGI/II ratio (P ¼ 0.034)
and the presence of ESD (P ¼ 0.018). Collectively, these studies suggest that
microbiome alterations occur in ESCC, yet it is not clear if this is the cause or an
effect of the carcinogenesis process. Future studies are warranted to better under-
stand the role of the microbiome in esophageal carcinogenesis and to identify
potential risk biomarkers and therapeutic targets.

5.5 Other Promising Biomarkers for Esophageal Cancer

5.5.1 Circulating Tumor Cells

Circulating tumor cells (CTCs) are cancer cells that shed or break away from the
tumor into the blood vessels and are carried around the body via circulation. Liquid
biopsy is a technological advancement that will enable detection of CTCs from the
blood. However, this method is only investigational and is not in clinical use. The
number of CTCs in the blood of metastatic breast cancer patients after therapy is
strongly correlated with progression-free survival (Cristofanilli et al. 2004). Meta-
analysis of pooled data from 16 trials and 1260 patients showed that the presence of
CTCs was significantly associated with poor overall survival (HR ¼ 1.71, 95% CI
[1.30, 2.12], P < 0.001) and progression-free survival (HR ¼ 1.67, 95% CI [1.19,
2.15], P< 0.001) in EC patients especially if they were Asian and had a diagnosis of
ESCC (Qiao et al. 2016). The esophageal CTCs could also be examined for
cytokeratin markers and epithelial as well as mesenchymal markers like CK7,
CK8, and EpCAM, to evaluate their malignant potential and inform the staging of
tumor, without the need for invasive biopsy (Woestemeier et al. 2020). Further well-
designed prospective studies are needed to explore the clinical applications of CTCs
in patients with esophageal carcinoma.

5.5.2 Circulating Cell-Free DNA

Circulating cell-free DNA (cfDNA) detection of circulating cell-free tumor DNA
from blood samples has great potential as noninvasive “liquid biopsy” cancer
biomarker (Duffy 2019). In a small group of patients, it was found that the frequency
of BE-specific LOH and MSI markers was statistically higher in the dysplastic
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tissues compared to that of metaplastic BE (P ¼ 0.005). Among the examined
markers, those that map nearby TP53 gene were the most discriminant between
metaplastic and dysplastic BE. The frequency of LOH and MSI in the cfDNA
dropped after endoscopic treatment, suggesting potential use monitoring curative
effects (Rumiato et al. 2017). In a recent longitudinal study conducted on patients
with stage 1-4 EAC, the levels of cfDNA detected in the plasma of EAC patients and
the allele frequencies of the mutations correlated with disease burden and could be
used to predict recurrence or response to therapy (Egyud et al. 2019). Although
detection of circulating tumor DNA in early-stage EAC is challenging and may limit
diagnostic applications, the cfDNA has great promise as a dynamic biomarker for
monitoring real-time treatment efficacy in patients with EAC undergoing
neo-adjuvant drug therapy and immunotherapy (Kosovec et al. 2018).

5.5.3 Breath Volatile Organic Compounds

Breath volatile organic compounds (VOCs) have shown clinical utility as possible
biomarkers for lung, breast, prostate, colorectal, gastric, and, recently, esophageal
cancer (Yazbeck et al. 2016). Twelve VOCs, pentanoic acid, hexanoic acid, phenol,
methyl phenol, ethyl phenol, butanal, pentanal, hexanal, heptanal, octanal, nonanal,
and decanal, were present at significantly higher concentrations (P < 0.05) in
exhaled breath samples from patients in the esophageal cancer groups than in the
noncancer controls. These significant VOCs could discriminate esophageal and
gastric adenocarcinoma from those with normal upper GI tracts (Kumar et al. 2015).

5.6 Conclusion and Future Directions

Multiple cancer-related genomic changes are listed in this review including genomic
mutation, methylation, amplification, deletion, aberrant expression, miRNA,
mRNA, and lncRNA, which could be potential biomarkers for early stages of
esophageal cancer (diagnostic markers), predicting the patient’s risk of progression
to cancer (progression marker), responding to therapy (predictive marker for treat-
ment), and survival or prognosis (prognostic marker). As we know, the prognosis of
esophageal cancer has been not improved significantly in many years although the
various therapies are developed including surgery, chemotherapy, radiotherapy,
target therapy, and immunotherapy. Probably, it is time to change the direction to
focus on the prevention. The early detection of patients with high risk progressing to
EC could shed a light on the eradication of EC instead of focusing on treatment of
later stage of EC. Recently Fitzgerald and colleagues used Cytosponge with TFF3
immunohistochemistry and molecular biomarker tests to screen Barrett’s esophagus
which showed a high sensitivity and specificity in Europe (Chettouh et al. 2018;
Katzka and Fitzgerald 2020). Similarly, combining EsophaCap cytological method
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with MUC2 immunohistochemistry showed a reasonable sensitivity and higher
specificity to screen Barrett’s esophagus, dysplasia, and EAC in the United States
(Zhou et al. 2019). Innovative combinatorial approaches are in the horizon that will
provide cheaper, convenient nonendoscopic methods with objective biomarkers that
will help us find the high-risk patient populations with progressive disease. Such
improvements in surveillance with early intervention procedures including endo-
scopic mucosal resection and radiofrequency ablation for the high-risk patients
before the EC happens will make the esophageal cancer history.
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Chapter 6
Epithelial and Immune Cell Responses
to Helicobacter pylori That Shape
the Gastric Tumor Microenvironment

Meaghan Torvund, Jayati Chakrabarti, and Yana Zavros

Abstract Gastric cancer is the third most common cause of cancer-related death
worldwide with a 5-year survival rate of only 29%. The incidence of gastric cancer in
the United States is relatively low due to the diagnosis and treatment of the major
risk factor Helicobacter pylori (H. pylori). Even after H. pylori infection has been
eradicated, there is still a risk of developing gastric cancer. Gastric cancer is the final
clinical outcome that is often initiated by a sustained inflammatory response to
H. pylori infection and immune cell-epithelial crosstalk. The review focuses on
reporting the mechanisms by which the bacterium modulates the host’s innate and
adaptive immune response and the gastric epithelium as part of a strategy to create an
immunosuppressive microenvironment that ultimately leads to gastric cancer.

Keywords Helicobacter pylori · SPEM · CD44V9 · PD-L1 · HIF-1α · Hypoxia ·
Inflammation
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ALPK1 Alpha-protein kinase 1
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CagA Cytotoxin-associated gene A
CD44 Cluster of differentiation 44
CD8 Cluster of differentiation 8
c-MET Mesenchymal-epithelial transition factor
COX-1/2 Cyclooxygenase-1/2
CSC Cancer stem cell
CSF Colony-stimulating factor
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CTLA-4 Cytotoxic T lymphocyte-associated antigen 4
DC Dendritic cell
ECM Extracellular matrix
EMT Epithelial-to-mesenchymal transition
ENO1 Enolase 1
FAP Fibroblast activation protein
F-FDG Fluorodeoxyglucose (18F), fluorodeoxyglucose
FOXP3 Forkhead box protein 3
GCSF Granulocyte colony-stimulating factor
GLUT1 Glucose transporter 1
G-MDSCs Granulocytic MDSCs
GOF Gain-of-function
H. pylori Helicobacter pylori
HA Hyaluronic acid
HIF Hypoxia-inducible factor
HKII Hexokinase II
HRE Hypoxia response element
IL-1/6/8 Interleukin 1/6/8
IM Intestinal metaplasia
iNOS Inducible nitric oxide synthase
JAK Janus kinase
LDH Lactic acid dehydrogenase
MDSCs Myeloid-derived suppressor cells
MHC-1 Major histocompatibility complex �1
MIP2 Macrophage inflammatory protein 2
M-MDSCs Monocytic MDSCs
MMP-2/9 Matrix metalloproteinase 2/9
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor-kappa B
NKCs Natural killer cells
NOD1 Nucleotide-binding oligomerization domain-containing protein 1
NSAID Nonsteroidal anti-inflammatory drug
PD-1 Programmed death-1
PDK Pyruvate dehydrogenase kinase
PD-L1 Programmed death-ligand 1
PGE2 Prostaglandin E2
PHD Prolyl hydroxylase domain-containing enzyme
PKM2 Pyruvate kinase m2
PMN Polymorphonuclear leukocytes
PPRs Pattern recognition receptors
PTEN Phosphatase and tensin homolog
ROS Reactive oxygen species
Shh Sonic Hedgehog
SLFN 4/12 Schlafen 4/12
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SMA Smooth muscle actin
SPEM Spasmolytic polypeptide/trefoil Factor (TFF)2-expressing metaplasia
STAT Signal transducer and activator of transcription
T4SS Type 4 secretion system
TAM Tumor-associated macrophages
TCA Tricarboxylic acid cycle
TFF2 Trefoil factor 2
TGF-β Transforming growth factor -β
Th1/2 T helper cell 1/2
TLRs Toll-like receptors
TME Tumor microenvironment
TNF-α Tumor necrosis factor-α
Tregs Regulatory T cells
vacA Virulence factor A
VEGF Vascular endothelial growth factor
VHL Von Hippel-Lindau protein
xCT Cystine-glutamate transporter

6.1 Introduction: Helicobacter pylori and the Attributes
of Virulence

In the January 1983 issue of the British medical journal The Lancet, Australian
physicians Drs. Barry Marshall and Robin Warren, in a report titled “Unidentified
Curved Bacilli on Gastric Epithelium in Active Chronic Gastritis,” documented that
gastric ulcers were caused by a bacterial infection and not by excessive acidity
(Warren and Marshall 1983). The link between bacterial infection and ulcers was
initially considered a foolish idea, but given the tenacity of these physician scientists,
Dr. Marshall ingested the bacteria and documented that indeed the infection induced
gastric ulcers that were cured following treatment with a combination of antibiotics
and acid neutralization. In 1994, H. pylori was recognized as a type I carcinogen by
the World Health Organization and is recognized as the leading risk factor for
infection-related gastric cancers representing the third most common cause of
cancer-related death worldwide with a 5-year survival rate of only 29% (Ferlay
et al. 2015). In 2005 Drs. Warren and Marshall were awarded the Nobel Prize of
Medicine for their pioneering discovery linking bacterial infection and its role in
peptic ulcer disease and demonstrated the importance of perseverance in science.

The major cause of chronic inflammation in the normal, acid-secreting stomach is
Gram-negative bacterial pathogen Helicobacter pylori (H. pylori) (Correa et al.
1975). It is widely accepted that inflammation that is caused by H. pylori infection
is a trigger for the development of gastric cancer (Correa et al. 1975). An explanation
for the causal role of H. pylori infection in the pathogenesis of gastric cancer has
been described by disruption of differentiation of epithelia as a consequence of
elevated pro-inflammatory cytokines such as IFNγ, TNFα, and IL-1β (Moss et al.
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1994; Padol IT 2004; Sawai et al. 1999; Smythies et al. 2000; Zavros et al. 2003).
The cellular adhesion molecule CD44 is involved in multiple important physiolog-
ical functions including cell proliferation, adhesion, migration, hematopoiesis, and
lymphocyte activation. Our laboratory has shown that Cluster of differentiation
44 (CD44) mediates epithelial cell proliferation associated with H. pylori infection
(Bertaux-Skeirik et al. 2015). Eventually within the inflammatory environment of
the tumor, there is the presence of tumor-associated macrophages (TAMs), neutro-
phils, cancer associated fibroblasts, T and B cells, and myeloid-derived suppressor
cells (Chen et al. 2014a, b, c; Ding et al. 2016, 2020; Grivennikov et al. 2010;
Quante et al. 2013) (Fig. 6.1). These cells have tumorigenic properties via their
production of cytokines, growth factors, enzymes, and angiogenic mediators. The
immune cells promote not only proliferation but also an antitumor immune response
(Galon et al. 2006; Halama et al. 2011). While our knowledge of the gastrointestinal
tumor microenvironment is predominantly based on studies of colon cancer (Galon
et al. 2006; Halama et al. 2011), there is limited investigation of the gastric tumor
microenvironment (Houghton et al. 2004; Quante et al. 2011). The current review
focusses on the epithelial and immune cell responses to H. pylori infection that are
likely to initiate the progression from chronic inflammation to neoplasia. In addition,
we explore the early epithelial and immune responses immediately after the bacterial
infection that are likely to persist within the tumor microenvironment.

6.2 Early Epithelial and Immune Cell Responses
to Helicobacter Infection

The correlation between H. pylori infection and gastrointestinal diseases is facili-
tated by the complex interplay between bacterial virulence factors, host, and envi-
ronmental influence. Studies have demonstrated that the persistence of chronic
inflammation of gastric mucosa is directly associated with virulence factors
(vacA), cytotoxin-associated gene A (CagA), and its type 4 secretion system
(T4SS). The development of atrophic gastritis and intestinal metaplasia abruptly
increases the risk of developing gastric adenocarcinoma (Moyat and Velin 2014).
The Hedgehog family of proteins, mainly Sonic Hedgehog (Shh), plays an important
role in the development of multiple organ systems, including neuronal and gastro-
intestinal systems, and also has been found in a variety of solid tumors including
stomach cancer. The progression from inflammation to cancer includes the disrup-
tion of normal epithelial cell differentiation and the development of atrophic gastritis
and metaplasia. The loss of Shh during inflammation correlates with the atrophic
gastritis, which has recently been shown in vivo using a unique mouse model of
targeted gastric Shh deletion (Xiao et al. 2010). Based on earlier studies, it has been
shown that CagA-induced Sonic Hedgehog (Shh) signaling within parietal cells is
facilitated by the NF-kB signaling pathway (Schumacher et al. 2012, 2015). Impor-
tantly, H. pylori induces the secretion of Shh and activates its signaling pathway,
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which is crucial for initiation of gastritis (Schumacher et al. 2012). Chronic
H. pylori-induced inflammation ultimately leads to loss of the normal gastric muco-
sal architecture, destruction of gastric glands, and development of intestinal meta-
plasia. Atrophy of the acid-secreting parietal cells leads to the development of
spasmolytic polypeptide/trefoil factor (TFF)2-expressing metaplasia (SPEM)
(Nomura et al. 2004, 2005), which initiates neoplastic changes in the gastric
epithelium before the onset of gastric cancer (Petersen et al. 2014) (Fig. 6.1). In a
cohort of 47 gastric cancer patients, it has been observed that SPEM was present in
82% of the biopsies obtained prior to the diagnosis of cancer whereas intestinal
metaplasia was found adjacent to the tumor in 76% of cases. Immunostaining for
spasmolytic polypeptide suggested that SPEM is highly present in fundic biopsies of
patients who subsequently developed gastric adenocarcinoma, indicating an
increased risk for developing gastric adenocarcinoma (Halldórsdóttir et al. 2003).

The genetic heterogeneity of H. pylori arises upon adaptation to host’s gastric
environment, as well as to the distinct patterns of the host-mediated immune
response to H. pylori infection reviewed in Kuipers et al. (2000). The factors
regulating different immune cells against inflammatory responses due to H. pylori
infection still need further investigation. The persistence of H. pylori within the
stomach epithelium initiates pro-inflammatory signaling cascades via the production
of neutrophil-activating protein (NAP) (Chesney et al. 2017). HP-NAP, a major
virulence factor, plays important role in the gastric inflammatory response to
H. pylori infection. It also functions as a protective antigen by attracting neutrophils
and other immune cells to the infection site. The nucleotide-binding oligomerization
domain-containing protein 1 (NOD1) and alpha-protein kinase 1 (ALPK1) nega-
tively regulate expression of nuclear factor-kappa B (NF-κB) activation to prevent
intestinal metaplasia and gastric cancer (Evans et al. 1995; Viala et al. 2004). In a
review article, Lehours and Ferrero stated that H. pylori controls host immune
responses by altering cytokine signaling in epithelial and myeloid cells, increasing
proliferation of regulatory T cells (Tregs) and downregulating the effector T-cell
functions (Chesney et al. 2017; Lehours and Ferrero 2019). But this commensal
bacterium has developed extensive adaptations to sustain itself in the host stomach
and escape innate and adaptive immune response by reprogramming the immune
system toward tolerance. The rapid infiltration of macrophages post-infection is
essential for the innate immune response to H. pylori-induced signals and is crucial
to the development of gastritis (Kaparakis and Price 2008). During H. pylori infec-
tion, Shh also plays an immunoregulatory role during epithelial immune response by
acting as a macrophage chemoattractant (Schumacher et al. 2012). Following a
sustained increase in Shh secretion and signaling, macrophages are recruited to the
infection site (Schumacher et al. 2012). These macrophages secrete IL-1β, which
inhibits acid secretion causing atrophic gastritis and the atrophy of parietal cells
(Schumacher et al. 2012; Waghray et al. 2010). Programmed death-ligand 1 (PD-L1/
B7-H1) represents an adaptive immune resistance mechanism by binding with PD-1
and shutting down T-cell effector function (Reissfelder et al. 2015; Sun et al. 2007).
Our earlier studies demonstrate that Shh signaling induces PD-L1 expression as an
early epithelial response to H. pylori infection and a mechanism to evade the
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immune response (Holokai et al. 2019). We have shown the mechanism by which
PD-L1 is specifically localized to SPEM cells to survive chronic inflammation, for
the persistence of infection, and progression of the disease to cancer (Holokai et al.
2019; Wu et al. 2010) (Fig. 6.1).

H. pylori induces a strong immune response with infiltration of neutrophils and B
and T cells into the gastric mucosa that fails to clear the infection. Immune cells
predominantly express specialized receptors called pattern recognition receptors
(PPRs) and warn the body about the presence of potentially harmful pathogens.
H. pylori possess several mechanisms that prevent their recognition via Toll-like
receptors (TLRs), and by rearranging LPS and flagellin can prevent recognition of
the pathogen by immune cells (Cadamuro et al. 2015). It has been shown that the
H. pylori flagellin is not recognizable by the immune cell receptors, PRRs, and, as a
result, diminishes the primary host immune response mechanisms, such as phago-
cytosis and natural killer (NK) cell activity (Allen et al. 2000; Bäckhed et al. 2003). It
has been shown that TLR4 is expressed on antigen-presenting cells such as mono-
cytes and dendritic cells. Bacterial infection leads these monocytes to secrete
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-8 which, in turn, act as
local chemoattractants for granulocytic infiltration (Crabtree 1996). Adaptive immu-
nity is also impaired during H. pylori infection which induces macrophage apoptosis
and diminishes dendritic cell (DC) and macrophage maturation, leading to decreased
T-cell activation (Mnich et al. 2015). The function of PD-L1 on gastric epithelial
cells is to inhibit proliferation and differentiation of naïve T lymphocytes and
stimulate DCs to increase secretion of the anti-inflammatory cytokine IL-10. Mono-
cytes and macrophages are important controllers of innate immune responses to
pathogens. During H. pylori infection, they activate adaptive immunity along with
DCs, by producing factors such as IL-12 which stimulate Th1 cells, resulting in
production of cytokines such as IFN-γ (Haeberle et al. 1997; Meyer et al. 2003; Peek
et al. 2010).

In recent publications, our group has demonstrated that the host’s immune
response is an important driver of H. pylori pathogenesis. Data indicates that
H. pylori-induced PD-L1 expression within the gastric epithelium is mediated by
the Shh signaling pathway as an early response to infection. Using a patient tissue-
derived organoid model, we incorporated the patient’s immune cells with the gastric
epithelium in the absence and presence of H. pylori infection (Holokai et al. 2019).
Organoids infected with H. pylori were co-cultured with autologous CTLs and
treated with a PD-1 inhibitor. The data suggest that while bacterial infection results
in decreased CTL proliferation, inhibition of PD-L1/PD-1 interactions induces
proliferation of CTLs within the co-culture in the presence of H. pylori infection.
These results support the fact that once a patient progresses to a (Chen et al. 2016)
metaplastic state, the eradication of H. pylori does not decrease the risk of develop-
ing gastric cancer. Therefore, this organoid-immune cell co-culture model can be
used to develop a diagnosis for patients that have progressed to metaplasia or even to
discover new therapies for gastric cancer (Chakrabarti et al. 2018a, b; Holokai et al.
2019).
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6.2.1 Induction of Protective Responses

The immune response toward bacterial pathogens stems from either the innate or
adaptive immune system. Adaptive immune responses, which can be both protective
and damaging to the host, follow the failure of the innate immune response to
eliminate the pathogen. Chronic gastritis is linked to an increased CD4+/CD8+
T-cell ratio and accumulation of CD4+ T-helper lymphocytes in the gastric mucosa,
where H. pylori infection results in a Th1-predominant host immune response and
induction of IFN-γ-related genes. A Th1-predominant immune response is associ-
ated with elevated levels of the pro-inflammatory cytokines IL-12, IL-18, and TNF-α
(Tummala et al. 2004). Th17 cells, CD4+ T cells associated with infections and
inflammation in the gastric mucosa, are induced during both H. pylori infection and
gastric cancer and may be an important link between inflammation and carcinogen-
esis (Pinchuk et al. 2013).

DCs embody a critical bridge between the innate and adaptive immune responses
and have been identified as antigen-presenting cells as well as primary responders to
H. pylori infection (Chieppa et al. 2006). In a review article, Banchereau et al.
demonstrated that after activation of their TLRs, DCs may activate T cells in
different ways, by inducing either a Th1 or Th2/regulatory T cell (Treg) response
and by generating IL-12 or IL-10, respectively (Banchereau et al. 2000). Studies
have reported that in human blood monocyte-derived DCs, the activation and
maturation of DCs occur independently of the presence of the CagA and vacA
genotype and may be partially lipopolysaccharide dependent (Kranzer et al. 2005).
DCs also specialize in priming different types of effector T cells, CD4+ versus CD8+
T cells, and uniquely respond to distinct stimuli (Eisenbarth 2019). It has been shown
that DCs pulsed with H. pylori for 48 h show significantly attenuated ability of
IFN-ƴ production upon co-culture with naive T cells compared to 8 h activation, and
this suggests that continuous exposure of DCs to H. pylori results in a loss of
induction of the Th1 response that could contribute to the persistence of the infection
(Mitchell et al. 2007).

In the immune response to H. pylori, CD4+T cells are the key effector cells of
adaptive immunity, while the role of CD8+T cells has not been fully explored,
besides human. Clinical studies in humans have shown a positive correlation
between H. pylori colonization and increased CD8+ T-cell infiltration during the
development of gastric ulcers (Helmin-Basa et al. 2011; Kronsteiner et al. 2014).
H. pylori-induced immune response was originally considered as a Th1 response,
but other CD4+ T-cell subsets, including Th17 and Tregs, also play a major role
during infection (Bagheri et al. 2018). Earlier studies established that gastric lym-
phocytes from H. pylori-infected patients have increased IFN-ƴ-producing T cells,
consistent with a Th1 cytokine response (Bamford et al. 1998). Mucosal T cells
during H. pylori infection produce ample levels of Th1 cytokines, IFN-ƴ and IL-2,
and low levels of Th2 cytokines, IL-4, and IL-5 (Bamford et al. 1998). IFN-ƴ�/�
mice have shown impaired gastritis, and other H. pylori-infected mice lacking T and
B cells require an adoptive transfer of CD4+T cells to attenuate H. pylori

162 M. Torvund et al.



colonization and repair gastritis (Akhiani et al. 2002). Studies have demonstrated
that H. pylori infection induces CD4+CD25highFOXP3+ Tregs, suppresses circulat-
ing memory T-cell responses, and stimulates high levels of cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) protein, thus contributing to the persistence of the
infection (Lundgren et al. 2003) (Fig. 6.1).

6.2.2 Recruitment and Polarization of Macrophages

Macrophages and dendritic cells are the first responders to H. pylori-induced signals
from epithelial cells on the surface of the gastric mucosa that modulate inflammatory
responses. Monocytes and macrophages, along with DCs, control the immune
response to pathogens by producing factors like IL-12 that stimulate Th1 cells,
resulting in the production of cytokines such as IFN-ƴ (Meyer et al. 2003). Macro-
phages are also involved in the amplification of the inflammatory response by
producing various cytokines such as IL-1, TNFα, and IL-6, which is linked to
activation of TLR4, MAP kinase, and NF-κB signaling events (Pathak et al. 2006;
Schumacher et al. 2015).

During H. pylori infection, release of IL-8, macrophage inflammatory protein
(MIP2), and CXCL1/KC is necessary for lymphocyte and neutrophil recruitment
(Algood et al. 2007; Ferrero et al. 2008). The Sonic Hedgehog (Shh) signaling
pathway is activated during infection and regulates gastric epithelial differentiation
and function. Previous publications from our group demonstrated that the targeted
removal of Hedgehog signaling within macrophages resulted in a failure of
H. pylori-induced macrophage recruitment to the site of infection using bone
marrow chimera experiments on LysMCre/SmoKO mice (Schumacher et al. 2012).

Increased levels of reactive oxygen and nitrogen species that are released by
macrophages in the gastric mucosa are strongly associated with the
pro-inflammatory response during H. pylori pathogenesis (Pignatelli et al. 2001),
which may promote cancer development. Murine studies have suggested that mice
that are deficient for the enzyme inducible nitric oxide synthase (iNOS) have a
reduced incidence of gastric cancer after H. pylori infection compared to normal
mice (Nam et al. 2004). While iNOS contributes to the development of gastric
cancer, a high level of the chemokine CCL18 in gastric tumors is associated with
prolonged survival of gastric cancer patients (Leung et al. 2004). Interestingly,
Martinez et al. stated in a review article that iNOS is produced by naturally
activated/M1 macrophages, whereas CCL18 production is associated with alterna-
tively activated/M2 macrophages (Martinez et al. 2009). These findings suggest that
macrophage polarization may have an important role in the development of
H. pylori-associated gastric cancer. Wilson’s group has demonstrated that during
H. pylori infection, the l-arginine metabolic enzymes get induced in gastric tissue.
They have also stated that, H. pylori upregulates polyamine metabolism as a method
of survival to impair M1 macrophage responses and polarizes to an M2 phenotype
by increasing the rate of ROS-induced macrophage apoptosis, which enhances the
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risk of disease progression. This supports innate immunity by inducing polarization
of macrophages to a pro-inflammatory response (Latour et al. 2020).

The polarization of macrophages is controlled by the microenvironment. M1
macrophages usually play a role in the initial immune response for attacking
microorganisms and promote T helper (Th) 1 immunity, whereas CD163+ M2
macrophages are induced during tissue remodeling and promote Th2 immunity.
M1 macrophages are induced by IFN-γ and LPS, while M2 macrophages are
induced by Th2- or anti-inflammatory cytokines and growth factors, including
IL-4, IL-10, and TGF-β. During H. pylori infection, macrophages are recruited to
the gastric mucosa, where they contribute to the production of pro-inflammatory
cytokines and chemokines (Bergin et al. 2004; Dzierzanowska-Fangrat et al. 2008;
Fehlings et al. 2012) (Fig. 6.1).

One of the most common myeloid infiltrates in infection sites is composed of
polarized M2 macrophages which are recruited by chemo-attractants, such as
colony-stimulating factor (CSF), CC ligand 2 (CCL2), vascular endothelial growth
factor A (VEGFA), or CXCL12 (Cortez-Retamozo et al. 2012; Franklin et al. 2014;
Noy and Pollard 2014; Qian et al. 2011). In different review articles, the Mantovani
group discusses how most TAMs present M2 phenotypes and promote the suppres-
sion of effective antitumor activity via IL-10, TGF-β, and VEGFA signaling
(Mantovani and Marchesi 2014; Mantovani et al. 2002). These cells promote
tumor growth by several mechanisms, including their characteristic immunosup-
pressive activity, the involvement of epithelial-mesenchymal transition, and alter-
ation of cellular metabolism during infection.

6.2.3 Recruitment and Polarization of Myeloid-Derived
Suppressor Cells

H. pylori-induced gastritis shows increased infiltration of inflammatory cells, which
play a crucial role in protecting H. pylori from immune attack by damaging gastric
mucosa and inducing immune evasion and oncogenesis. Myeloid-derived suppres-
sor cells (MDSCs) have appeared as a new cell type which plays a crucial role in
controlling T-cell activity. In addition, H. pylori adheres to the cells of gastric
mucosa and secretes different molecules that can change gastric epithelial cell
function (Avilés-Jiménez et al. 2012) (Fig. 6.1).

MDSCs are precursors of granulocytes, monocytes, macrophages, and dendritic
cells. The reviews from Shipp et al. and Szebeni et al. demonstrated that murine
MDSCs are classified as Ly6C+ monocytic (M-MDSC) and Ly6G+ granulocytic
(G-MDSC) subpopulations. Human MDSCs consist of a phenotypically heteroge-
neous population of myeloid cell precursors, M-MDSC (CD11b+, HLA-DR+/low,
CD33+, CD14+, CD15-), and PMN-MDSC (CD11b+, HLA-DR+/low, CD33+,
CD15+, or CD66b+) (Movahedi et al. 2008; Shipp et al. 2016; Szebeni et al.
2016). PMN or granulocytic MDSC-derived ROS disrupts T-cell receptor (TCR),
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IL-2 receptor signaling, and MHC-TCR interactions (Nagaraj et al. 2007). The
depletion of L-arginine by H. pylori arginase decreases the expression of CD3 zeta
chains associated with the T-cell receptor, thus inhibiting T-cell activation and
proliferation (Zabaleta et al. 2004). MDSC-derived IL-10 and VEGF-A inhibit
dendritic cell maturation and promote the expansion and recruitment of Tregs,
which further skew the tumor-specific immune response into tolerance.

The Merchant research group has discovered that during chronic H. pylori infec-
tion, the Shh-derived myeloid cells become polarized to MDSCs in response to
tissue IFNα. Using stomach tissue-derived organoids and a patient-derived xenograft
model, they showed that this subset of MDSCs expresses the protein Schlafen4
(SLFN), a transcriptional target of GLI1. MiR130b, the endogenous small,
non-coding RNA produced by SLFN+ MDSCs, enhances T-cell suppression,
induces epithelial cell proliferation, and promotes metaplastic changes. SLFN4+

MDSCs, as well as their human orthologs SLFN12L+ PMN-MDSCs, express
VEGF, IL-1β, and TNF-α, known factors associated with MDSC regulation, and
create immunosuppression in the tumor microenvironment (TME) of gastric cancer
patients (Ding et al. 2016, 2020).

H. pylori infection is one of the known risk factors for gastric cancer, which is
also the second leading cause of cancer-related deaths worldwide. Tu et al. have
shown a link between IL-1β and gastric cancer, which implicates the importance of
MDSCs in the early stages of gastric carcinogenesis. Their data also shows a strong
correlation between MDSC infiltration and tumor progression and MDSC activation
in response to tumor-derived signals (Tu et al. 2008). Proliferation and activation
mechanisms of MDSCs can be triggered through distinct pathways (reviewed in
(Condamine et al. 2015)), mainly directed by STAT3, a transcription factor activated
by GM-CSF, G-CSF, and VEGF, as well as IL-6 (Song et al. 2005). STAT3, once
activated, induces expression of S100A8 and A9 (reviewed in (Foell et al. 2007)),
which block the differentiation of immature myeloid cells and cause MDSC prolif-
eration (Cheng et al. 2008). In vivo inhibition of STAT3 via receptor tyrosine kinase
inhibitors resulted in a decrease in MDSCs (Movahedi et al. 2008; Munera et al.
2010). Downstream, MDSC activation is mainly mediated by NF-κB, which is
induced by IL-1β and TNF-α or TLR signaling (Tu et al. 2008).

6.2.4 Induction of CD44V9 and Metaplasia

Helicobacter pylori colonization of human gastric mucosa damages gastric epithelial
cells and promotes epithelial progression to neoplasia. In mice with chronicH. pylori
infection, parietal and chief cell atrophy in the gastric mucosa can occur, leading to
spasmolytic polypeptide/trefoil factor (TFF)2-expressing metaplasia (SPEM) and
subsequently increasing the risk for progression to cancer (Nam et al. 2010; Nomura
et al. 2004, 2005) (Fig. 6.1). Studies have shown how bacterial toxins and their
effector proteins can provide insights into parietal cell physiology and the mecha-
nisms by which pathogens gain control of cellular activities and the immune
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response. Data from our laboratory has revealed the emergence of SPEM/TFF2
glands at the base of the ulcer margin in the stomach mucosa as the major reparative
lineage for healing after severe gastric injury (Bertaux-Skeirik et al. 2017; Wright
et al. 1990). We have also shown that to protect the tissue from further injury and
reinstate epithelial continuity from bacterial infection, epithelial cells migrate from
the ulcer margins via a process known as re-epithelialization (Bertaux-Skeirik et al.
2017).

The cell-surface glycoprotein CD44 is involved in various important physiolog-
ical functions including cell proliferation, adhesion, migration, and hematopoiesis.
The diverse physiological activity of CD44 embodies a number of diseases including
cancer, arthritis, bacterial and viral infections, interstitial lung disease, vascular
disease, and wound healing. During chronic H. pylori infection, the CD44 cell
surface receptor and its variable isoforms (CD44v9) have been implicated as key
players in malignant transformation (Engevik et al. 2016; Wada et al. 2013). The
emergence of SPEM along with CD44v9 expression significantly contributes to
defense against reactive oxygen species (ROS) (Ishimoto et al. 2011). CD44v9
interacts with the glutamate-cysteine transporter xCT, stabilizing the protein and
inducing defense against ROS by increasing glutathione (GSH), promoting tumor
growth (Bertaux-Skeirik et al. 2015, 2017; Ishimoto et al. 2011).

Using a gastric organoid orthotopic transplantation model, Bertaux-Skeirik et al.
demonstrated that CD44v9 emerges at the ulcer margin in response to injury and
contributes to the regeneration of the gastric epithelium (Bertaux-Skeirik et al.
2017). During H. pylori infection, SPEM expands into proliferative metaplasia,
and the infection leads to the development of intestinal metaplasia (IM), with loss
of parietal cells and inflammation throughout the mucosa (Bertaux-Skeirik et al.
2017). Infection with H. pylori is the greatest influencing factor for developing
gastric cancer; however, it has been found that IM occurs at an equal frequency in
patients with dysplasia and gastric cancer regardless of their H. pylori status.
Importantly, in the stomach of both mouse and human metaplastic tissues, M2
macrophages promote the advancement of SPEM, associated with the emergence
of CD44v9 in the presence of inflammation and parietal cell atrophy (Petersen et al.
2014) during gastric repair in response to infection and injury. It has been shown that
upon H. pylori infection, Mongolian gerbils progressively develop chronic gastritis,
followed by loss of parietal cells and metaplasia (Shimizu et al. 2016). Expression of
SPEM and intestinal metaplasia (IM) was observed on the gastric glands of those
gerbils after 1 year of infection. In humans there is evidence that suggests SPEM can
either progress directly to dysplasia or become IM in the presence of continuous
chronic inflammation (Goldenring et al. 2010). Single-cell transcriptional analyses
have shown that SPEM/Tff2 cells that lack mature chief cells remain highly pre-
served and not found in the normal mucosa. It has been found also that the
immunoregulatory phenotypes that emerge during chronic inflammation may play
a role in regulating downstream events such as intestinalization, dysplasia, and
carcinogenesis (Bockerstett et al. 2020).
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6.2.5 Induction of Programmed Death-Ligand 1 (PD-L1)

Gastric cancer is often preceded by a precancerous process, frequently initiated by
H. pylori infection, via series of events like chronic atrophic gastritis, intestinal
metaplasia, dysplasia, and eventually carcinoma. Checkpoint proteins, such as
programmed cell death-ligand 1 (PD-L1; B7-H1 or CD274), are a group of mole-
cules involved in immune evasion mechanisms and, consequently, are thought to
play an important role in the persistence of chronic infection. With the onset of
infection, H. pylori injects virulence factors, mainly CagA, directly into the gastric
epithelium. This event is highly associated with the development of gastric cancer.
One of the major signaling pathways induced by CagA upon entering a gastric
epithelial cell is the Sonic Hedgehog (Shh) signaling pathway which functions
during H. pylori infection to stimulate secretion of IL-1β, inhibit acid secretion
from parietal cells, induce atrophic gastritis and SPEM followed by intestinal
metaplasia and dysplasia, and finally boost the development of gastric cancer.
Unfortunately, clearance ofH. pylori does not decrease the risk of developing gastric
cancer once a patient has progressed to a metaplastic state. H. pylori infection
upregulates programmed death-ligand 1 (PD-L1) expression on the surface of gastric
epithelial cells. PD-L1 interacts with programmed death-1 (PD-1) on the surface of
cytotoxic T lymphocytes, diminishing their ability to induce apoptosis in infected or
cancer cells. Therefore, it is crucial to determine the Shh-mediated signaling path-
way responsible for PD-L1 expression to discover treatment modalities that prevent
expression, thereby improving patient outcome (Engevik et al. 2016; Holokai et al.
2019; Schumacher et al. 2012, 2015).

Various studies have shown that the gastric epithelium has been the target of
damage induced by infection (Jones et al. 1999). Specifically, gastric T cells
contribute to apoptosis of the epithelium by a Fas/Fas ligand and receptor expression
on T cells (Gobert et al. 2002; Wang et al. 2000) enabling persistence in the host.
Gastric biopsies have discerned that epithelial cells (GEC) infected with H. pylori
show higher PD-L1 expression compared with uninfected samples. T cells
co-cultured with these GEC showed decreased proliferation, IL-2 secretion, and
CD69 expression. However, the neutralization of PD-L1 with a specific antibody
reinstated the responses to levels close to those of T cells cultured alone. Synergistic
expression of IFN-ƴ by H. pylori happens as a result of the increased PD-L1
expression. An interesting possibility is that this mechanism could also
downregulate immune surveillance mechanisms needed to clear transformed cells
that arise within the site of infection. Interestingly, the apoptotic effect of B7-H1 was
suggested to be mediated by receptors other than PD-1. Although the H. pylori
virulence factor responsible for inducing PD-L1 expression is not clear, this may
open up new therapeutic targets against diseases associated with H. pylori infection
(Das et al. 2006; Freeman et al. 2000).
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6.3 Inflammation and Hypoxia

In response to bacterial or viral infection, the host immune system activates pro-
grams to facilitate wound healing, tissue homeostasis, and clearance of foreign
pathogens. These programs trigger the release of cytokines and chemokines to
activate and recruit lymphocytes to the site of infection (Korniluk et al. 2017).
However, persistence of these inflammatory conditions has been associated with
cancer development, as these actions can result in damage to normal tissues over
time. A number of pro-inflammatory molecules, such as TNF-α, IL-1, IL-6, and
IL-8, have been implicated in tumor progression (Aggarwal and Gehlot 2009;
Balkwill and Mantovani 2001; Pierce et al. 2009). An acute inflammatory response
is beneficial to the host, resulting in elimination of the inappropriate agent. However,
when the inflammatory response fails to resolve after clearance of an insult, as is
most often the case with H. pylori infection, prolonged activation can lead to a
chronic condition and present a predisposition to disease, such as cancer (Korniluk
et al. 2017; Niemela et al. 1995).

The prolonged availability of growth factors, cytokines, and chemokines associ-
ated with chronic inflammation may result from the dysregulation of a number of
pro-inflammatory and pro-growth signaling pathways. For example, aberrant acti-
vation of nuclear factor-kappa B (NF-KB), Janus kinase (JAK)/STAT signaling, and
hypoxia-inducible factor-1α (HIF-1α) have all been implicated in tumor growth,
proliferation, and angiogenesis, among others (Semenza 2002; Taniguchi and Karin
2018; Thomas et al. 2015). Many of the cells and molecules involved in chronic
inflammation are the same as those that respond acutely to tissue insult. How these
factors turn a beneficial function into a pathological one has been an active area of
study. Ongoing research using known instigators of inflammation, such as H. pylori
infection in the stomach, continues to provide insight into how the host inflammatory
response can be weaponized against the affected epithelial barrier.

NF-κBs are a family of transcription factors that regulate genes involved in innate
immunity, inflammation, and apoptosis (Ghosh et al. 1998). NF-κB signaling can be
activated by cytokines, infectious agents, and oncogenes (Ghosh and Karin 2002). In
the stomach, constitutively active NF-κB has been linked to gastritis, an inflamma-
tory condition that predisposes patients to gastric cancer (Isomoto et al. 2000; Keates
et al. 1997). Targets of NF-κB signaling include anti-apoptotic proteins, proliferative
proteins, and angiogenic factors. NF-κB activation, as well as many of its associated
target genes, has been intimately associated with multiple cancers, especially those
developing in inflammatory environments (Taniguchi and Karin 2018).

Prior to activation, NF-κB is bound to a set of IKB proteins that inhibit its activity.
Activity from cytokines, such as TNF-α and IL1, cause phosphorylation of IKB,
leading to its degradation and releasing NF-KB for nuclear translocation where it can
promote the expression of additional pro-inflammatory cytokines, such as iNOS, and
COX-2, TNF-a, and IL-1 (Ben-Neriah 2002; D’Ignazio et al. 2016; Hayden and
Ghosh 2004; Xie et al. 1994). Regular NSAID use is known to decrease GI cancer
risk partly through its modulation of the inflammatory response (Thorat and Cuzick
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2013). NSAIDs target COX-1 and COX-2, enzymes responsible for the rate-limiting
step in prostaglandin E2 (PGE2) synthesis. COX-2 has been implicated in tumori-
genesis in gastrointestinal tissues and measurements show elevated COX-2 expres-
sion in gastric adenocarcinomas, more significantly so in those that are H. pylori
positive (Gupta and Dubois 2001; Oshima et al. 2006; Ristimäki et al. 1997; Zhao
et al. 2017).

The recruitment of immune cells to sites of inflammation creates metabolic stress
that leads to hypoxia, as the demands of increased cell metabolism and proliferation
deplete available oxygen (DeBerardinis et al. 2008). Endothelial cells are critical to
the integrity of vascular architecture. H. pylori infection of the gastric epithelium
induces the expression of chemoattractants that attract neutrophils, often leading to
tissue damage (Fu 2014; Takemura et al. 1996; Wallace 1991). Neutrophils activated
by H. pylori have been shown to disrupt endothelial cell function in vitro, and
increased H. pylori infection is associated with greater neutrophil infiltration, ini-
tially operating in a positive feedback loop with the secretion of additional
pro-inflammatory signals (Fu 2014; Takemura et al. 1996). Epithelial tissue damage
resulting from H. pylori infection can allow the bacterium to spread to endothelial
cells themselves, leading to increased IL-8 secretion and microvascular leakage
(Aspholm et al. 2006; Kurose et al. 1994; Necchi et al. 2007; Tafreshi et al. 2018).
Furthermore, advances in endoscopic technology have developed methods to iden-
tify gastritis and potential H. pylori infection through changes in the mucosal surface
and in microvasculature patterns, suggesting broader scale vascular dysfunction in
infected individuals (Anagnostopoulos et al. 2007; Ji and Li 2014; Yagi et al. 2002).

Vasculature is often compromised in inflammation, leading to diminishing oxy-
gen supply, and hypoxic areas where oxygen is less than or equal to 1% (Bhandari
and Nizet 2014; Eltzschig and Carmeliet 2011; Palazon et al. 2014). While this is
problematic in normal cells and may lead to cell death, tumor cells often adapt and
thrive under hypoxic conditions. The occurrence of hypoxia in tumor cells has been
repeatedly demonstrated with different methodologies and more recently correlated
with metastasis and survival in several cancers (Höckel and Vaupel 2001; Vaupel
et al. 2002, 2007; Vaupel and Harrison 2004). Hypoxia can in turn regulate and
exacerbate inflammation. When gastric cancer cells are cultured with 1% oxygen,
expression of the cytokine IL-1α is upregulated, and tissue collected from gastric
cancer tumors also shows increased IL-1α expression. IL-1α serves as a prognostic
marker, correlating with poor survival in gastric cancer patients. Further study has
shown that IL-1α is a potentiator of proliferation, migration, and metastasis in gastric
cancers (Xuan and Wang 2017). Furthermore, the authors demonstrated that IL-1α
expression was regulated by the hypoxia-inducible factors, HIFs, whose activity was
directly due to the environmental effects of hypoxia.
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6.3.1 Regulation of Inflammation by Hypoxia-Inducible
Factors (HIFS)

As discussed previously, sites of inflammation, as well as solid tumors, often acquire
regions of hypoxia (Vaupel and Mayer 2007). HIFs are transcription factors that are
stabilized and activated under these hypoxic conditions (Huang et al. 1998b; Wang
et al. 1995). HIFs are basic helix-loop-helix transcription factors that regulate the
cell’s response to hypoxia by signaling as heterodimers consisting of an alpha and
beta subunit. HIF-1β is constitutively expressed and can associate with any of the
three alpha subunits, HIF-1α, HIF-2α, and HIF-3α. Of these subunits, HIF-1α seems
to be expressed ubiquitously in different tissue types, whereas the expression of
HIF-2α and 3α is more restricted (Wiesener et al. 2003; Wood et al. 1996).

Under normoxic conditions, key residues of HIF-1α are hydroxylated by an
oxygen-dependent, prolyl hydroxylase domain-containing enzyme (PHD), leading
to its ubiquitination by an E3 ubiquitin ligase, the von Hippel-Lindau (VHL) tumor
suppressor protein, and resultant proteasomal degradation (Bonicalzi et al. 2001;
Cockman et al. 2000; Huang et al. 1998b; Jaakkola et al. 2001; Kamura et al. 2000;
Ohh et al. 2000). As PHD protein activity uses O2 as a cofactor, hypoxia prevents
hydroxylation by PHD, stabilizing the alpha subunit and resulting in a functional
HIF heterodimer and nuclear translocation of the complex. In this way HIFs are
typically regulated not by expression levels but by protein stability. Dozens of HIF
target genes have been identified containing the requisite hypoxia response element
(HRE) (Semenza et al. 1994; Wang and Semenza 1993).

Experiments using gain-of-function (GOF) of HIF-1α in epithelial cells suggest a
reciprocal role in inflammation. Mouse keratinocytes altered to express GOF HIF-1α
show elevated chemokine production, resulting in elevated inflammatory cell accu-
mulation in affected epidermis (Scortegagna et al. 2008). HIF-1α GOF keratinocytes
also show elevated basal levels of NF-κB transcription, an important consideration
since elevated NF-κB signaling can lead to a hypersensitive reaction to inflammatory
stimuli.

In the intestinal epithelium, HIF-1α has been described to be both protective and
pro-inflammatory. Mice lacking HIF-1α in intestinal epithelial cells subjected to
epithelial lesion by sulindac sulfide developed milder inflammation in the colon than
their littermate controls (Mladenova et al. 2015). However, Karhausen et al. have
also demonstrated that the severity of colitis symptoms in a mouse model varied in
accordance with HIF-1α levels in deficient and overexpressing mice (Karhausen
et al. 2004). In a mouse model of chronic H. pylori infection, deletion of HIF-1α
from myeloid cells has been shown to exacerbate H. pylori-induced gastritis. These
myeloid cells were also less effective at killing H. pylori. While decreased IL-1β,
NOS2, and IL-6 levels were observed in gastric mucosa from mice with HIF-1-
α-deficient myeloid cells, tissue biopsies revealed increased proliferation which
correlated with the severity of the corresponding gastritis and pathological abnor-
malities (Matak et al. 2015). The importance of HIF signaling in myeloid cell
populations adds a degree of complexity to the HIF-1α signaling environment,
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further illustrating that each cell type in an environment needs to be considered to
fully understand the signaling implications.

Macrophages are found at higher frequencies in areas of hypoxia, such as
infection sites and tumors (Cramer et al. 2003; Murdoch and Lewis 2005). In this
hypoxic environment, macrophages upregulate HIF-1α and HIF-2α, switch to a
glycolysis-heavy metabolic program, and exhibit changes in surface receptor expres-
sion. Macrophages express both HIF-1α and HIF-2α in response to hypoxia, and
both play a role in upregulating transcriptional programs that promote inflammation
and angiogenesis, inducing expression of IL-1b and VEGF, both relevant factors in
tumor progression (Fang et al. 2009). Myeloid cell-specific HIF-1α depletion in mice
results in altered macrophage metabolism and impaired inflammatory responses in
response to acute skin challenge by TPA, a compound commonly used to initiate
skin inflammation (Cramer et al. 2003). Hypoxia-treated macrophage cell isolates
increase production of a number of pro-inflammatory cytokines and chemokines,
such as IL-1B, and angiogenic factor and VEGF. These effects are ameliorated when
either HIF-1α or HIF-2α is decreased.

6.3.2 HIFs and Cancer

While HIFs are normally regulated by oxygen-dependent degradation, HIF signaling
can be induced by a number of other mechanisms in a normoxic state (Semenza
2010). HIF-1α is a direct transcriptional target of NF-κB, allowing inflammatory
signaling to increase HIF-1α transcription and override its degradation kinetics,
resulting in downstream signaling (Frede et al. 2006; Rius et al. 2008). HIF activity
is targeted by several other inflammatory signaling components, such as TNF-α and
IL-1 (Albina et al. 2001; Jung et al. 2003). HIF-1α activity is increased with the loss
of function of certain tumor suppressors, such as PTEN and VHL (Li et al. 2005;
Pugh and Ratcliffe 2003; Zundel et al. 2000), and has also been shown to be
stabilized by multiple oncogenes in normoxia (Lee et al. 2008). Aberrant mTOR
activity can also lead to increased HIF-1a translation (Lang et al. 2007). ROS
generation in the gastric epithelia has been strongly implicated in gastric carcino-
genesis. In gastric cancer cells, nonmitochondrial ROS production induced by
H. pylori infection can lead to HIF-1α stabilization in normoxic conditions, demon-
strating a plausible mechanism by which HIF-1α could be elevated in vivo (Park
et al. 2003). More recently, Bhattacharya et al. have demonstrated that H. pylori-
induced ROS drives increased HIF-1α expression through apurinic/apyrimidinic
endonuclease 1 (APE1) and the transcriptional coactivator, p300 (Bhattacharyya
et al. 2010). HIF-1α induction in response to H. pylori has also been measured in
patient-derived gastric epithelia, further validating this relationship (Fig. 6.1)
(Griffiths et al. 2007). This is important, as HIFs aberrantly activated under
normoxia can still promote adaptive measures that are useful for tumor proliferation.

HIF-1α and HIF-2α are similar in structure and share some downstream targets.
Despite these similarities, multiple reports have also demonstrated that each has
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unique targets and sometimes even opposing functions (Holmquist-Mengelbier et al.
2006; Imamura et al. 2009; Rasheed et al. 2009; Song et al. 2009; Hu et al. 2003;
Raval et al. 2005). HIF-1α and HIF-2α also differ in tissue- and cell-type-specific
expression, complicating global inferences about the function of these proteins in all
tissue types (Talks et al. 2000). As such, an interpretation of the role of either of these
proteins in cancer depends heavily on the tissue of origin and context being
discussed. Initial reports identifying HIF-2α observed high expression in endothelial
cells, where its expression regulates vascularization (Tian et al. 1997). Its expression
has since been reported to be a prognostic factor in multiple cancers (Bangoura et al.
2007; Giatromanolaki et al. 2001; Koukourakis et al. 2006; Onita et al. 2002).
HIF-2α is also found in macrophages and has been identified in the parenchyma of
multiple organs (Wiesener et al. 2003).

Immunohistochemical analysis has shown that increased HIF-1α expression is
found in multiple cancers and neoplasms, including lung, breast, colon, and gastric
cancers (Zhong et al. 1999). HIF-1α protein expression was also found to signifi-
cantly correlate with Ki67 in multiple tumor types, suggesting that proliferation is
associated with HIF-1α activity. Given its role in the regulation of diverse, prolifer-
ative processes, such as angiogenesis, metabolism, invasion, and metastasis, HIF-1α
is well-placed to provide an adaptive advantage to cancer cells.

HIF-1α overexpression has been repeatedly linked to gastric cancer (Chen et al.
2014a, b, c; Sumiyoshi et al. 2006; Urano et al. 2006; Wang et al. 2010). Increases in
HIF-1α have been linked to tumor metastasis, and its expression is correlated with
other markers associated with aggressive tumor phenotypes, including VEGF and
TGF-β (Chen et al. 2014a, b, c). HIF-1α expression has repeatedly been correlated
with the development and severity of gastric cancer and has been shown to be
detrimentally associated with 5-year survival, invasion depth, and metastasis in
gastric cancer (Isobe et al. 2013; Kim et al. 2009; Rohwer et al. 2009; Sumiyoshi
et al. 2006). As such, it is considered a prognostic marker for gastric cancer and is
currently being investigated as a potential therapeutic target. This has particular
importance in gastric cancer, where it has been shown to be induced by the
carcinogen, H. pylori (Fig. 6.1) (Griffiths et al. 2007). Multiple studies have asso-
ciated HIF-1α overexpression with decreased survival in patients with various
cancers, including gastric. In an immunohistochemical study, HIF-1α was not
detected in normal gastric tissue but was induced with H. pylori infection and
often appeared in gastric tissues with various neoplastic pathologies (Griffiths
et al. 2007). Observations of HIF-1α expression suggest that it occurs in the early
stages of carcinogenesis, prior to apparent evidence of angiogenesis (Zhong et al.
1999).

HIF-2α expression has also been implicated in gastric cancer (Wang et al. 2010).
A recent report has shown that while normal gastric mucosa does not express
HIF-2α, tumor expression is linked to tumor stage, differentiation, metastasis, and
poor prognosis in gastric cancer. Follow-up experiments using knockdown and
overexpression of HIF-2a suggest that HIF-2α’s role in gastric cancer progression
occurs via regulation of survivin, cyclin D1, MMP2, and MMP9. Through these
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effectors, HIF-2α could potentially impact cell survival, proliferation, and motility
(Tong et al. 2015).

6.3.3 HIF Signaling Targets

To adapt to hypoxic environments, increased angiogenic signaling and changes in
metabolic programming are employed to ensure cell survival. HIFs regulate multiple
programs that stimulate adaptive functions to hypoxia, providing a crucial advantage
to tumor cells in hypoxic environments. Many of these changes are associated with
aggressiveness in tumors and therefore predict a poor prognosis in patients (Muz
et al. 2015; Rankin and Giaccia 2016). Dozens of transcriptional targets of HIF-1α
have been identified, many of which are important for tumor survival and prolifer-
ation. Snail is a transcription factor involved in inducing epithelial-mesenchymal
transition (EMT), a process by which epithelial cells acquire mesenchymal charac-
teristics and become more likely to metastasize. HIF-1α induction in gastric cancer
stem cells has been linked to increased Snail expression (Yang et al. 2017). In
addition, the cytoskeletal regulator RhoE, which has also been implicated in EMT,
has been identified as a direct target of HIF-1α (Zhou et al. 2011). Angiogenesis is a
key process for tumor proliferation, and VEGF is a critical factor for promoting the
proliferation of endothelial cells. VEGF overexpression has been linked to metasta-
sis and tumor progression, is frequently associated with poor prognosis, and is
regulated by HIF-1α (Macedo et al. 2017; Song et al. 2009). Taken together,
HIF-1a modulates the activity of a host of tumor-associated genes.

PD-L1
In recent years, much attention has been given to immune checkpoint inhibitors as
treatments for certain types of cancer (Darvin et al. 2018; Pico de Coaña et al. 2015).
Programmed death-1 (PD-1) is one such drug target, with treatment currently
approved for multiple cancers, including gastric adenocarcinoma (Smyth and
Thuss-Patience 2018). Generally, overexpression of PD-L1 is associated with
decreased overall survival in multiple cancers (Wu et al. 2015). A recent meta-
analysis of PD-L1 and gastric cancer has associated PD-L1 expression with tumor
infiltration depth, lymph node metastasis, and overall patient survival (Gu et al.
2017).

Like other cells in the TME, MSDCs (see Sect. 6.2.2) are regulated by hypoxia,
which promotes their differentiation into macrophages (Corzo et al. 2010). Basal
levels of PD-L1 in MDSCs are upregulated under hypoxia. The PD-L1 promoter has
an HRE, accounting for its upregulation during hypoxia in a HIF-1α-dependent
manner (Noman et al. 2014). HIF-1α is associated with decreased effectiveness of
multiple therapeutics. In fact, co-expression of PDL1 and HIF-1α in hepatocellular
carcinoma is linked to decreased survival (Dai et al. 2018).

As previously discussed, infection with H. pylori significantly increases PD-L1
expression in normal primary gastric epithelial cells (Wu et al. 2010). Furthermore,
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studies conducted using both iPSC-derived gastric organoids and human-derived
gastric monolayers have shown that PDL1 expression on the gastric epithelium is
induced by H. pylori infection in a Shh-dependent manner (Holokai et al. 2019).

While direct control of PD-L1 by HIF-1α has not yet been explicitly demon-
strated in gastric tissue, a recent study using a radioisotope-labeled glucose analog,
F-FDG, has correlated F-FDG accumulation with PDL1 expression in gastric cancer
tissues. Previous studies have linked F-FDG accumulation to HIF-1α activity, likely
through its relationship to glucose metabolism. Since the PD-L1 promoter has an
HRE and is regulated by HIF-1α in other cell types, it is possible that this report
demonstrates an indirect link of HIF-1α to PD-L1 gastric cancer (Chen et al. 2019).

CD44
CD44 has multiple functions in physiological processes, such as lymphocyte hom-
ing, growth signaling, and ECM organization (Ponta et al. 2003). Expressed on cells
with stem-like properties, CD44 labels cancer stem cells (CSC) in the tumor niche
through which tumor proliferation and differentiation is believed to occur (Batlle and
Clevers 2017). CD44 expression is increased by cytokine signaling in gastric cancer
cells, and its expression is enhanced in tissues from patients with gastritis (Fan et al.
1996; Mayer et al. 1993).

CD44 proteins are expressed in various isoforms due to insertions or alternatively
spliced exons in the extracellular domain, resulting in the expression of different
variants of the receptor (Screaton et al. 1992). The standard isoform, dubbed CD44s,
consists of the base set of 10 of the 19 exons that make up the CD44 gene. This can
be augmented by the presence of variable additional exons, dubbed “CD44v.”
Expression of these variant isoforms is linked to proliferation, as they are typically
found in tissues that are actively proliferating (Rudzki and Jothy 1997). The expres-
sion of multiple variants have been implicated in aggressive tumor phenotypes or
associated with poor prognosis in cancer patients (Kobayashi et al. 2016; Ozawa
et al. 2014; Yamakawa et al. 2017). Indeed, when antibodies are used to inhibit
CD44v binding in animal models, metastasis decreases (Guo et al. 1994; Seiter et al.
1993). CD44vs have been shown to convey different binding affinities for members
of the extracellular matrix ligands that CD44 interacts with, an alteration likely to
have downstream consequences for cancer progression (Dougherty et al. 1994).

In the gastric mucosa, CD44 marks a population of self-renewing cells that can
produce differentiated cell populations (Takaishi et al. 2009). In normal gastric
tissue, CD44s is the predominantly expressed CD44 transcript, with little to no
detectable levels of most CD44v. When CD44 levels are examined in gastric cancer
cell lines, CD44s expression is decreased, while CD44v expression appears to be
elevated. In gastric cancer, both CD44 and CD44v6 are linked to disease progression
and poor patient prognosis (Fang et al. 2016). While CD44v6 is expressed in normal
gastric mucosa, in gastric cancer tissue, increased CD44v6 is linked to gastric
dysplasia and has been connected to c-Met signaling, whose amplification promotes
invasion and metastasis in many cancers (Fan et al. 1996). The role of CD44v6 as a
co-receptor in c-Met signaling provides a potential mechanistic link between
increases in CD44v6 levels and aggressive phenotypes in gastric cancer.
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Generally, CD44 expression is increased in the gastric mucosa of individuals
infected with H. pylori (Fan et al. 1996). More particularly, CD44v9 has been
identified as factor emerging early following H. pylori infection in the gastric
epithelium (Bertaux-Skeirik et al. 2017; Fan et al. 1996). CD44v9 is of particular
importance for aberrant cell survival, as it has been shown to stabilize xCT, which
plays an important role in protecting the cell from ROS (Ishimoto et al. 2011).
Greater xCT expression can disrupt the redox balance and protect cancer cells, which
are often exposed to oxidative stress, from death (Trachootham et al. 2009).

In gastric cancer cells, CD44 mRNA and protein expression are increased in
hypoxia, and knockdown of HIF-1α mitigates these changes (Liu et al. 2016).
HIF-1α has been shown to regulate CD44 expression in breast cancer cells, with
hypoxia increasing the number of cells expressing CD44. Specifically, HIF-1α
induces expression of CD44v6 and CD44v8. This activity is unique to HIF-1α,
but not HIF-2α, making these CD44 variants unique targets of HIF-1α signaling
(Oliveira-Costa et al. 2011). Initial studies inH. pylori infected epithelia have shown
that CD44v6 is increased with infection (Fan et al. 1996). Given the relationship
between CD44v6 and c-Met activation, this provides a potential mechanistic link
between hypoxia and tumor aggressiveness (Orian-Rousseau et al. 2002).

6.3.4 HIF-1a and Increased Glycolysis in Tumor Cells

In the event of hypoxia, cells shift their metabolism from oxidative phosphorylation
to glycolysis (Rempel et al. 1996; Younes et al. 1996). In glycolysis, glucose is
metabolized into lactic acid, which is secreted from the cell. Glucose is an abundant
extracellular nutrient, and while the metabolism of a single molecule does not yield
as much ATP as oxidative phosphorylation, it produces ATP more quickly. This
means that cells predominantly using glucose metabolism can produce more ATP
over a short period of time than with oxidative phosphorylation. In addition to this
increased efficiency, metabolizing glucose while truncating the use of the TCA cycle
allows the cell to use many of the intermediates for alternative biosynthetic pathways
(Liberti and Locasale 2016). In this manner, glycolytic metabolism supports the need
for the production of nucleotides, lipids, and other materials for cell proliferation.

Typically, cells only engage in glycolysis in the absence of oxygen (DeBerardinis
et al. 2008). It was first noted by Otto Warburg that proliferating tumor cells depend
largely on glucose consumption, despite available oxygen (Warburg et al. 1927).
This characteristic, now recognized as a hallmark of cancer, has been defined as the
“Warburg effect.” Since HIF-1α can be stabilized in normoxia, much emerging
research has focused on its role in affecting the metabolic changes seen in the
Warburg effect (Stubbs and Griffiths 2010). Many glycolytic proteins are targets
of HIF-1α, but not HIF-2α (Song et al. 2009). Hypoxia response elements have been
found in the promoters of GLUT1, ENO1, PKM2, and LDH, among others (Firth
et al. 1995; Luo et al. 2011; Semenza et al. 1994, 1996).
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In gastric cancer, studies have reported increases in the expression of glucose
transporters and glycolytic enzymes. Specifically, gastric cancers have been shown
to have increased expression of GLUT1, LDHA, hexokinase II (HKII), pyruvate
kinase M2 (PKM2), pyruvate dehydrogenase (PDK), and enolase 1 (ENO1) (Kim
et al. 2004). GLUT1 is shown to have little to no expression in normal gastric tissue
yet is reported in gastric cancer, with some reports correlating its presence with poor
overall survival (Chen et al. 2017; Noguchi et al. 1999; Yu et al. 2017). HKII
catalyzes a rate-limiting step in glycolysis. Reports indicate that HKII is
overexpressed in gastric cancer and has been linked to poor patient prognosis
(Wu et al. 2017). It has been reported that H. pylori infection leads to increased
ENO1 expression, while ENO1 knockdown has been shown to increase potential
efficacy of cisplatin in gastric cells (Chen et al. 2014a, b, c). Both PKM2 and PDK
have been linked to infection with CagA-positive H. pylori, showing increased
expression in gastric cancer tissues (Shiroki et al. 2017). Furthermore, PKM2
knockdown in gastric cancer cells decreased proliferation and tumorigenicity
in vitro. This isoform of PKM2, the M2 isoform of pyruvate kinase, is associated
with cell proliferation and is known to be less active than PKM1, allowing for the
accumulation of glycolytic intermediates that may be important for adjacent anabolic
pathways (Christofk et al. 2008). Lactate dehydrogenase (LDH) catalyzes the
conversion of pyruvate to lactate. There are five isoforms of LDH, with LDH-5
expression found to be elevated in cancer cells (Koukourakis et al. 2003). LDH-5 is
frequently expressed at high levels in gastric cancer, and its expression correlates
with HIF-1α and VEGF, two proteins linked to aggressive cancer phenotypes (Kolev
et al. 2008). In addition to the metabolic changes observed in the Warburg effect,
gastric cancer cells show differences from normal cells in lipid and amino acid
metabolism. Overall, the metabolic profile of a gastric cancer cell differs signifi-
cantly from a healthy one and is in part altered by HIF-1α activity (Liu et al. 2019).
Since gastric cancer cells exhibit significant metabolic differences from their normal
counterparts, several drugs have been developed to target the activity of crucial
metabolic enzymes. Indeed, targeting the activity of glycolytic enzymes has shown
promise as a potential cancer therapeutic (Martinez-Outschoorn et al. 2017).

6.4 Impact of Early Epithelial and Immune Cell Responses
on the Gastric Tumor Microenvironment

6.4.1 Defining the Gastric Tumor Microenvironment

In addition to malignant cells, tumor tissues contain a stromal compartment
consisting of fibroblasts, endothelial cells, lymphocytes, and macrophages. A com-
plex network of associated extracellular matrix (ECM) and vascularization is also
found with these cell populations (Hanahan and Coussens 2012). Infection with
H. pylori can impact each of these components, creating an inflamed environment
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and paving the way for gastritis and neoplastic changes. H. pylori’s effect on
endothelial and immune cells resulting in increased cytokine secretion and
compromised vasculature was discussed in earlier sections (see Sects. 6.2 and
6.3.1). The relationship between the tumor and stromal cells is bidirectional, with
each releasing factors that impact the fates and behaviors of the other. Soluble factors
signal between stromal cells and the TME, resulting in local concentrations of active
molecules such as cytokines and growth factors. These interactions are often crucial
in determining the aggressiveness of the resident tumor, influencing processes such
as proliferation, inflammation, metastasis, angiogenesis, and epithelial-to-mesenchy-
mal transition (EMT) (Bhowmick et al. 2004; Brivio et al. 2017; Comito et al. 2012;
Olumi et al. 1999).

Fibroblasts in the tumor environment can be activated by growth factors or
cytokines to dynamically participate in tumor progression (Kalluri 2016). These
cancer-associated fibroblasts (CAFs) are typically characterized by the expression of
alpha-smooth muscle actin (SMA) or fibroblast activation protein (FAP). In addition
to activation by intrinsic factors, fibroblast activation can be induced by H. pylori in
a CagA-dependent manner (Krzysiek-Maczka et al. 2018; Zhang et al. 2013). These
activated CAFS can increase the expression of factors associated with gastric
carcinogenesis and EMT, such as IL-6 and TGF-β (Kinoshita et al. 2013). Increased
FAP expression has been observed in many cancers and is associated with invasion
and metastasis in gastric cancer (Puré and Blomberg 2018; Wang et al. 2013).
NF-κB activation by H. pylori can have additional consequences, also leading to
the activation of CAFs, along with its role in inflammation (Erez et al. 2010). By
producing ECM components, metalloproteinases, growth factors, and cytokines,
CAFs can promote growth, angiogenesis, and inflammation, as well as immune
suppression (Kwa et al. 2019; Mishra et al. 2011). In this way, H. pylori can have a
dramatic effect on the TME through fibroblast activation. Tumor stroma is thought to
be a result of a chronic, misplaced repair response from these activated fibroblasts
(Kalluri 2016; Schäfer and Werner 2008). Stroma proliferates in kind with the tumor
cells it populates, and CAFs secrete VEGF, and so can stimulate angiogenesis and
vascular permeability (Fukumura et al. 1998). Multiple reports have also shown
CAFs to produce matrix metalloproteinases (MMPs), which function to increase cell
motility by facilitating the degradation of ECM proteins (Das et al. 2017). As with
VEGF, expression of MMP-2 and MMP-9 is linked to tumor aggressiveness in
gastric cancer (Zheng et al. 2006). Some MMPs can also be produced by gastric
epithelial cells, and infection with H. pylori can induce the expression of MMP-1,
MMP-7, and MMP-9, which have each been implicated in gastric pathogenesis
(Bebb et al. 2003; Kundu et al. 2006; Mori et al. 2003; Pillinger et al. 2007;
Wroblewski et al. 2003).

A large portion of tumor mass is encompassed by tumor-associated macrophages
(Pollard 2004). Once recruited to tumors by chemoattractants, TAMs are often
polarized to an M2-like state (see Sect. 6.2.2). Once recruited to tumors by
chemoattractants, TAMs are often polarized to an M2-like state (see Sect. 6.2.2)
and can promote angiogenesis, tumor cell invasion, and metastasis (Pollard 2004).
Macrophages can interact with the ECM, clear apoptotic cells, and produce growth
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factors (Condeelis and Pollard 2006). In normal tissue, M2 macrophages function in
repair; however, their presence in the TME can interfere with T-cell activation
(Coussens and Werb 2002). This has been demonstrated in a mouse model of breast
cancer where genetic ablation of macrophages interfered with tumor progression,
while overexpression of the macrophage growth factor CSF-1 potentiated tumor
growth (Lin et al. 2001).

Regulatory T cells expressing the transcription factor Forkhead box protein P3
(FOXP3) are also found in the TME. Acting to inhibit immunological action against
“self,” Tregs suppress immune activity—a function that is exploited by tumors
(Beyer and Schultze 2006; Jonuleit et al. 2001; Ng et al. 2001; Sakaguchi et al.
2011). Conclusions about the impact of these cells on gastric tumor progression have
been mixed, with some groups correlating increased Treg expression with the poor
outcome while others find the opposite (Choi et al. 2016). Regardless of the
consensus on their therapeutic impact, immunohistochemical studies of gastric
tumors show a larger Treg population in gastric tumors than in normal gastric tissue
(Kashimura et al. 2012; Perrone et al. 2008). This is in agreement with what is found
in other cancers (Heimberger et al. 2008; Hiraoka et al. 2006; Wolf et al. 2005).
Indeed, as discussed above in Sect. 6.2.1, H. pylori infection can inhibit the memory
T-cell response in vivo (Lundgren et al. 2003). Whether or not Tregs contribute to
disease proliferation, the consistency of these findings suggests that the TME itself
promotes Tregs in gastric cancer.

Myeloid-derived suppressor cells are immature myeloid cells that are recruited to
the tumor environment by pro-inflammatory signals (Bunt et al. 2006; Ostrand-
Rosenberg and Sinha 2009). MSDCs can mediate immune suppression in the tumor
environment through several mechanisms, including ROS generation and Treg
induction (Corzo et al. 2010; Lindau et al. 2013). It has been shown that hypoxia
can induce PD-L1 expression in MDSCs through HIF-1α, providing a potential
mechanism of immune evasion through hypoxic activation (Noman et al. 2014).
Whether this activation can be achieved with oncogenic stabilization of HIF-1α has
not been shown. As discussed previously (Sect. 6.2.3), H. pylori infection is
associated with the induction of a differentiation factor that biases myeloid cells to
a suppressive MDSC phenotype, and MDSC influx has been observed in the gastric
mucosa from both H. pylori-infected patients and mice (Ding et al. 2016). Recent
work has linked a subset of MDSCs with tumor stage and decreased survival in
gastric cancer, further illustrating their importance in tumor progression (Mao et al.
2018).

Although H. pylori infects about 50% of the world’s population, only a small
percentage of these cases will go on to develop gastric cancer (Howlader et al. 2010).
This indicates that additional factors contribute to the development of gastric cancer
in an H. pylori-infected epithelium. While both genetic and macro-environmental
elements have been identified as risk factors in gastric carcinogenesis, more recently
the TME has also been highlighted for its importance in tumor progression and
resistance to therapy (Son et al. 2017; Trédan et al. 2007; Wu and Dai 2017). Stromal
cells are dynamically active in the TME and may secrete factors that contribute to
tumor proliferation, angiogenesis, or metastasis.
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For all cells, oxygen availability depends on the distance from the blood supply.
Because the availability of essential metabolites is limited by diffusion, the tumor
environment varies with distance from the vascular tissue that delivers these nutri-
ents. However, even in tumors with nearby capillaries, significant hypoxia is
detected. This decrease in O2 tension can be detected as little as 100 um from nearby
vasculature, adapting to hypoxic environments critical for tumor proliferation
(Helmlinger et al. 1997). This distorted vasculature further contributes to the hyp-
oxic microenvironment. Additionally, proliferating cells increase metabolic demand
due to the persistently increasing biomass incurred with each cell division, so highly
proliferative tumors can also create demands that deplete the oxygen supply of the
local environment (DeBerardinis et al. 2008). With tumor development, intratumoral
hypoxia becomes inevitable (Harris 2002). This hypoxia can further stimulate
HIF-1α stabilization and so can promote the expression of a number of factors that
promote proliferation and inhibit apoptosis, despite the hypoxic condition that might
otherwise induce death. Anaerobic conditions and increased transcription of glyco-
lytic enzymes shift the cell metabolism toward one favoring glycolysis, again
enabling survival and the production of essential amino acids and lipids for cell
survival. This element of the TME is critical to address, as it contributes to tumor
growth and metastasis and is related to poor prognosis in a number of cancers
(Lu and Kang 2010; Vaupel 2004).

6.4.2 Resistance to Immunotherapy

Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic
efficacy in a variety of tumors, but resistance during treatment is still a major
issue—Dr. Tasuku Honjo was awarded the 2018 Nobel Prize in Medicine for his
work on PD-1 and checkpoint therapy. The biggest challenges for cancer immuno-
therapy are to understand the many complex resistance mechanisms and to develop
effective combination strategies to overcome that resistance. The resistance can be
primary, as in never responders, or acquired, which appears after a period of
response. However, in considering resistance mechanisms to immune-based thera-
pies, it is important to remember that the immune response is unique and constantly
evolving in each patient, either as a result of the patient’s own environmental and
genetic makeup or as a result of treatment modalities, including surgery, chemother-
apy, radiation therapy, and immunotherapy. Since tumor cells can adjust to this
acquired immune response by upregulation of PD-L1 expression, synergistic effects
can be expected when combining such immune stimulating therapies with anti-PD-
L1 antibodies in advanced stage gastric cancer. Recent studies have shown that
knocking down of PD-L1 expression in human gastric cancer cells significantly
inhibited tumor growth and improved the cytotoxic sensitivity to cytokine therapies
(Li et al. 2017). Kato et al. found that the median overall survival was longer with
330 nivolumab (PD-1 inhibitor)-treated patients versus 161 patients who received
placebo (5.4 months vs. 3.6 months) (Kato et al. 2019).
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Due to cancer immunosurveillance, immune cells usually serve as a barrier by
recognizing and protecting tissues from nascent tumor cells. But there are cases
where immune cells have a tumor-promoting action via cancer immunoediting.
Tumor cells sometimes maintain a state of dormancy, where the immune system
controls their outgrowth and alters their immunogenicity, but does not eradicate
them. But when this equilibrium is broken, tumor cells successfully escape and
become a poorly immunogenic tumor (reviewed in Vesely and Schreiber (2013)).
Loss of tumor antigen expression or MHC-I presentation is important for successful
immunoediting. Studies have shown that mouse primary sarcomas were edited in
such a way that they became less immunogenic through the selective outgrowth of
cells and were able to escape T lymphocyte attack (DuPage et al. 2012).
Pro-tumorigenic infiltrating immune cells that cause the immune suppressive micro-
environment are mainly M2 subtypes of macrophages, myeloid-derived suppressor
cells (MDSCs), neutrophils, FoxP3+ T regulatory cells (Tregs), and Th17 cells,
whereas the antitumor immune infiltrates are mainly antigen presenting dendritic
cells (DCs), macrophages of the M1 subtype, cytotoxic T lymphocytes (CTLs),
natural killer cells (NKCs), and Th1 cells. Helicobacter pylori infection has been
shown to reduce Th1 polarized immunological responses (Hou et al. 2007). Several
recent studies have demonstrated that H. pylori virulence factor vacA has the ability
to reprogram DCs to develop a tolerogenic phenotype to inhibit human T-cell
activation, fail to produce inflammatory cytokines, and prime Treg over Th1 or
Th17 responses (Oertli et al. 2013).

After analyzing data from a large cohort of human colorectal cancers, Pages et al.
documented that infiltration of cytotoxic memory T cells in the primary tumor site is
the strongest predictor for recurrence and metastasis, as well as disease-free survival
(Pagès et al. 2010). The Fridman group documented that inflammation is one of the
major components of human tumors, and chronic inflammation generally leads to
worse prognosis due to the presence of soluble IL-15 receptor in the plasma of the
patients with head and neck cancers (reviewed in (Fridman et al. 2011)). In addition
to MDSCs and Tregs, IDO1 is another immune checkpoint protein that promotes the
inhibition of T cells and may be related to T-cell infiltration (Heeren et al. 2018).
Furthermore, cytotoxic T cells can be suppressed by Tregs and MDSCs via IDO1,
promoting tumor immune evasion (Ladomersky et al. 2018). A decrease in effector
T cells in the tumor microenvironment also contributes to resistance to anti-PD-1
therapy. Tumors upregulate IL-6, granulocyte colony-stimulating factor (G-CSF),
and CLCX1 by increasing IL-17A expression, thereby promoting tumor prolifera-
tion and decreasing CD4+ and CD8+ T cells in the tumor microenvironment. IL-17A
+ tumor tissues are also significantly less reactive to PD-1 antibodies in clinical
samples (Akbay et al. 2017). Additionally, the absence of PTEN increases VEGF
expression which promotes abnormal tumor angiogenesis, causing a hypoxic envi-
ronment and inhibiting T-cell infiltration (George et al. 2017). Therefore, the
absence of PTEN may reduce the infiltration of CD8+ T cells by upregulating
VEGF, leading to resistance to PD-1 therapy (Zhu et al. 2017). MDSCs are nega-
tively correlated with CD4+ and CD8+ T-cell infiltration and are an important factor
in decreased T-cell infiltration (George et al. 2017). Additionally, the presence of
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immunosuppressive tumor stroma, especially in some solid tumors, makes it difficult
for T cells to infiltrate, limiting the efficacy of PD-1 blockade immunotherapy.

In addition to immune checkpoints and immune system activity, other techniques
can improve the efficacy of PD-1/PD-L1 blockade therapy, such as activating tumor
cell autophagy, and inhibit tumor angiogenesis and mesenchymal transition, in order
to achieve better results in combination therapy.

6.5 Conclusions

Our knowledge of H. pylori pathogenesis and gastric cancer development has
predominantly been based on data generated from gastric cancer cell lines or
in vivo animal models of inflammation. Animal models of H. pylori-induced disease
do not exhibit the same pathophysiological features as the human response to
infection, and gastric cancer cell lines lack the cellular and architectural complexity
of the gastric epithelium in vivo. There have been extensive efforts to develop
patient-derived models of H. pylori infection and gastric cancer (Bertaux-Skeirik
et al. 2015, 2019; Holokai et al. 2019). Given that organoids are capable of long-term
expansion in culture and remain phenotypically and genetically stable, these cultures
represent preferred preclinical models over existing immortalized cell lines and
patient-derived xenografts to study cancer (Dedhia et al. 2016; Steele et al. 2019).
To overcome species differences in the regional response to H. pylori infection,
gastric organoids, whether derived from patient tissue (Bertaux-Skeirik et al. 2015,
2017; Engevik et al. 2016; Holokai et al. 2019) or induced pluripotent stem cells
(McCracken et al. 2017, 2014), have allowed us to study these unique regional
differences of the human stomach in response to H. pylori infection. Recent
advances in organoid technology have also demonstrated the successful effort to
establish patient-derived organoid models of H. pylori pathogenesis in context with
the patient’s immune cells (Chakrabarti et al. 2018a, b; Holokai et al. 2019). The
timeline in human subjects from infection to complications arising from disease
progression can span months to years. Of greater concern is the gap in our under-
standing of the mechanisms that shift the composition of the immune environment
and subsequently the response by the epithelium. The appearance of chronic atrophic
gastritis indicates that the epithelial population of the stomach is responding to the
persistent inflammatory infiltrate. Subsequently, there is the development of meta-
plasia. Although immune cells likely initiate the epithelial changes, other stromal
populations participate, e.g., fibroblasts, endothelial, and neural cells. Collectively,
the inflamed microenvironment restructures the epithelium and drives a phenotype
conducive of progression to neoplasia (Fig. 6.1). Studies focused around identifying
the early epithelial and inflammatory changes of the gastric environment in response
to infection will continue to provide information related to immune surveillance and
persistence and early epithelial changes contributing to the progression of disease.
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Chapter 7
Gut Microbiome and Liver Cancer

John C. McVey, Qianfei Zhang, Tim F. Greten, and Chi Ma

Abstract Liver cancer is amajor cause of cancer-related death, and its incidence keeps
rising. The liver is exposed to gut microbial products and metabolites via portal blood
and influenced by the gut microbiome. Alteration of the gut microbiome is commonly
observed in high-risk factors for liver cancer such as obesity, nonalcoholic fatty liver
disease, and cirrhosis. The association between dysbiosis and liver cancer has been
suggested. Importantly, animal studies provide direct evidence that the gut microbiome
promotes liver cancer. The current knowledge of the gut microbiome’s contribution to
liver cancer and the reported mechanisms will be reviewed in this chapter.

Keywords Chronic viral hepatitis · Hepatocellular carcinoma · Helicobacter
pylori · Gut-liver axis · Liver fluke infection · Virus · Parasites · Obesity ·
Nonalcoholic fatty liver disease · Microbiome

7.1 Liver Cancer Types and Risk Factors

7.1.1 Hepatocellular Carcinoma

Liver cancer is a leading cause of cancer-related death worldwide, and its incidence
is rising (Tanaka et al. 2010; Mokdad et al. 2017; Forner et al. 2018; Lauby-Secretan
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et al. 2016; Villanueva 2019). Hepatocellular carcinoma (HCC), the most frequent
(~80%) primary liver cancer, ranks as the sixth most common malignancy and
mainly occurs in men. HCC is closely related to chronic liver diseases, arises
frequently in patients with cirrhosis, and is considered a typical inflammation-linked
cancer (Capece et al. 2013; Colotta et al. 2009). Although early HCC can be
potentially cured by surgical resection or liver transplantation, most HCC patients
are diagnosed with unresectable disease. Despite the great improvement of modern
cancer treatments and increased survival in many cancers, the mortality rate of HCC
is still rising (Tanaka et al. 2010; Mokdad et al. 2017; Forner et al. 2018; Lauby-
Secretan et al. 2016; Villanueva 2019).

Currently, hepatitis C infection and excessive alcohol consumption are the main
risk factors for HCC. In recent years, excessive body weight or obesity has been
linked to higher risk of cancer at several organ sites including the liver (Lauby-
Secretan et al. 2016; Tyson and El-Serag 2011; Calle et al. 2003). Significantly
higher incidence and mortality from liver cancer is observed in people with high
baseline body mass index (Calle et al. 2003; Campbell et al. 2016). Besides a chronic
low-grade inflammation with insulin resistance and metabolic abnormalities,
roughly one third of obese patients present an accumulation of large amounts of
lipids inside the liver, a disease condition called nonalcoholic fatty liver disease
(NAFLD). NAFLD is a spectrum of liver diseases characterized by excessive
accumulation of triglycerides in hepatocytes without heavy alcohol consumption,
which range from simple steatosis to hepatic triglyceride accumulation with inflam-
mation and liver damage (nonalcoholic steatohepatitis [NASH]) and finally hepatic
fibrosis and cirrhosis (Brunt 2010; Michelotti et al. 2013; Wree et al. 2013). NAFLD
has been established as an important risk factor for HCC (Brunt 2010; Michelotti
et al. 2013; White et al. 2017; Kanwal et al. 2018; Anstee et al. 2019). In NAFLD
patients, retrospective assessments support the association between metabolic syn-
drome, diabetes, and HCC (Siegel and Zhu 2009). In contrast to the success in
preventing and controlling of viral hepatitis with hepatitis B vaccination and curable
treatments for hepatitis C, the worldwide prevalence of obesity is continuing to rise.
Accompanying the increasing prevalence of obesity, NAFLD has become the most
common cause of liver dysfunction globally (Li et al. 2018). The attribution of
metabolic syndrome and NAFLD to HCC is expected to increase in the future
(Streba et al. 2015).

7.1.2 Intrahepatic Cholangiocarcinoma

Intrahepatic cholangiocarcinoma (ICC) is the second most common (~10%–20%)
primary hepatic malignancy and arises from the bile ducts within the liver paren-
chyma (Tanaka et al. 2010; Tyson and El-Serag 2011; Razumilava and Gores 2014;
Banales et al. 2016). Established risk factors for ICC are primary sclerosing
cholangitis, choledochal cysts, fibropolycystic liver disease, hepatolithiasis, parasitic
infection, and toxic exposure such as the radiologic contrast agent thorotrast (Tanaka
et al. 2010; Tyson and El-Serag 2011). However, the majority of ICC patients do not
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present any of these risk factors. Many other less-established risk factors have been
suggested such as inflammatory bowel disease, hepatitis C, hepatitis B, cirrhosis,
obesity, diabetes, alcohol consumption, and tobacco use (Tanaka et al. 2010; Tyson
and El-Serag 2011; Welzel et al. 2007). Surgery remains the only curative treatment
option, but most ICC patients present with unresectable disease at the time of
diagnosis with a median survival of less than 3 years.

7.1.3 Metastatic Liver Malignancies

Metastases are responsible for majority of cancer-related death (Lambert et al. 2017).
The liver is a common site to form metastatic spread especially from cancers of the
gastrointestinal tract, breast, and lung. It is often overlooked that secondary hepatic
malignancies (liver metastases) account for the majority (95%) of all hepatic cancers
(Disibio and French 2008). Treatment for liver metastasis is often difficult, and
patients have a poor prognosis.

7.2 Carcinogenesis of Liver Cancer

7.2.1 Oncogenic Pathways in HCC

HCC tumors are highly complex and heterogenous with multiple signaling pathways
contributing to hepatocarcinogenesis. Epidermal growth factor (EGF) signaling is
one of the most thoroughly evaluated proliferation cascades in human HCC. EGF
upregulation is an important signature for predicting late HCC recurrence after
surgical resection (Hoshida et al. 2008). Insulin-like growth factor (IGF) signaling
is an essential regulator of liver growth and development. Overexpression of IGF2 is
frequently observed in HCC and even found in preneoplastic lesions (Breuhahn et al.
2006). Hepatocyte growth factor (HGF), the ligand for the MET receptor, is a potent
mitogen for hepatocytes. Upon EGFR, IGFR, or MET activation, extracellular
signals can be transduced through AKT or MAPK pathways (Johnson and Lapadat
2002). Molecules belonging to both signaling cascades (such as KRAS or AKT)
have been identified as oncogenes in human cancer. Although RAS mutations are
infrequent, overexpression of RAS is often found in human HCC (Calvisi et al.
2006). AKT phosphorylation has been described as a predictor of tumor recurrence
after surgical resection (Nakanishi et al. 2005). Inhibition of MTOR, one of the most
important molecules downstream of AKT, demonstrates antitumor function in
experimental HCC models (Treiber 2009), which further increases the relevance of
this pathway. TheWNT/β-catenin pathway is not only involved in liver development
and differentiation but also implicated in cell proliferation and metabolism (Thomp-
son and Monga 2007). β-catenin is encoded by the CTNNB1 gene. Mutations in
CTNNB1 and AXIN1 (important for β-catenin ubiquitination and subsequent degra-
dation) are frequently found in HCC (Villanueva et al. 2007). Nuclear accumulation
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of β-catenin induces upregulation of genes for cell differentiation and proliferation
(Boyault et al. 2007). The hedgehog pathway is involved in the embryonic liver
development, and its reactivation plays a substantial role in sustaining cancer cell
growth and progression in HCC (Tada et al. 2008). Chronic inflammation is closely
associated with HCC. Inflammatory interleukin 6 (IL-6) signaling has been
suggested to be responsible for the gender disparities of HCC incidence (Naugler
et al. 2007). IL-6/STAT3 has been identified as a major pathway in maintaining
stem-cell-like features in HCC (Lin et al. 2009). Substantial evidence supports the
important role of NF-κB signaling in inflammation-related HCC (Elsharkawy and
Mann 2007). Vascular endothelial growth factor (VEGF) and fibroblast growth
factors (FGFs) have been revealed as the major drivers for angiogenesis in HCC
(Imura et al. 2004). Mutation of tumor suppressor P53 has also been associated with
HCC progression (Lowe et al. 2004). The oncogeneMYC encodes a protein which is
involved in nucleic acid metabolism. The activation of the MYC oncogene is
considered to be an important mechanism of tumor evolution in HCC. Amplification
of MYC can be detected in all the HCC stages and is considered an important driver
for HCC disease progression (Kaposi-Novak et al. 2009). Nuclear receptors are
ligand-modulated transcription factors that play diverse roles in cell differentiation,
development, proliferation, and metabolism. Nuclear receptors such as farnesoid X
receptor (FXR) are associated with liver cancer (Huang et al. 2015). FXR is
considered to be a multifunctional tumor suppressor and tightly controls bile acids
synthesis (Claudel et al. 2005). Significant reduction of FXR expression was found
in human HCC. FXR�/� mice develop spontaneous HCC with disrupted bile acid
metabolism as the major defect (Yang et al. 2007). Overload of bile acids due to the
depletion of the FXR gene is the causative factor for induction of chronic liver
inflammation, enhancement of hepatocyte proliferation, and development of liver
tumors. In FXR�/� SHP�/� double knockout mice, the sharply elevated bile acid
levels lead to the activation of YAP protein (Anakk et al. 2013), which is a core
component of the Hippo pathway and considered as a crucial promoter of
hepatocarcinogenesis (Lu et al. 2010). In addition, FXR shows anti-inflammation
function. Activation of FXR inhibits NF-κB transcriptional activity through
decreased DNA binding of NF-κB (Wang et al. 2008).

7.2.2 Oncogenic Pathways in Cholangiocarcinoma

Chronic inflammation and cholestasis contribute to cholangiocarcinoma through a
complex process involving multiple genomic alterations and signaling pathway
deregulations. KRAS and P53 mutations are commonly found in
cholangiocarcinoma with relative low mutations in BRAF and EGFR (Andersen
et al. 2012; Borad et al. 2014; Simbolo et al. 2014). Overlapping molecular profile
between subclasses of cholangiocarcinoma and HCC has been found, indicating that
these two cancer types may share a common ancestor such as hepatic progenitor cells
(HPCs) (Hoshida et al. 2009; Roskams 2006; Woo et al. 2010). Alterations in the
Hippo pathway components in the liver (such as YAP, SAV1, MST1/2) expand
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progenitor-like cells and lead to the development of both HCC and
cholangiocarcinoma in animal models (Lu et al. 2010). Gain-of-function IDH
mutations are often reported in cholangiocarcinoma (Saha et al. 2014; Wang et al.
2013). The expression of these IDH mutations inhibited hepatocyte differentiation
and expanded HPCs in mice. Furthermore, the concurrence of IDH and KRAS
mutations in mice shows pronounced oncogenic cooperation and led to the devel-
opment of premalignant biliary lesions and subsequent progression to
cholangiocarcinoma (Saha et al. 2014). Recent studies have suggested the emerging
roles for NOTCH and WNT signaling in cholangiocarcinoma pathogenesis. The
NOTCH signaling pathway plays an important role during embryonic development
and is essential for liver regeneration and repair (Zender et al. 2013). NOTCH
pathway deregulation has been implicated in the induction of inflammation and
the development and progression of cholangiocarcinoma. In human
cholangiocarcinoma, the upregulation of NOTCH1 and NOTCH4 has been com-
monly observed (Wu et al. 2014). Liver-specific expression of NOTCH1 intracellu-
lar domain in mice resulted in the formation of cholangiocarcinoma (Zender et al.
2013). The WNT pathway is highly activated in the tumor epithelium of human
cholangiocarcinoma (Boulter et al. 2015). Tumor surrounding macrophages have
been demonstrated to be responsible for this highly activated WNT signaling status
(Loilome et al. 2014). Mimicking human cholangiocarcinoma, the progressive
activation of WNT pathway during the course of cholangiocarcinoma has been
demonstrated in animal models (Boulter et al. 2015). Furthermore, WNT singling
inhibition successfully controlled tumor growth in the tumor-bearing animals
(Boulter et al. 2015).

7.3 Infectious Disease and Liver Cancer

7.3.1 Chronic Viral Hepatitis and HCC

Currently chronic HBV and HCV infections still represent the leading cause for
HCC. The majority of viral hepatitis-related HCC arise from cirrhosis and are closely
associate with liver inflammation and tissue damage. However, a significant propor-
tion of HBV-related HCC arise in the absence of liver inflammation, indicating that
the virus directly contributes to hepatocarcinogenesis (Kew 1998). The HBV
genome can randomly integrate into the host genome. Although random integration
rarely leads to direct oncogene activation or inactivation of tumor suppressor genes,
HBV integration contributes to the genetic instability (Robinson 1994). In addition,
several HBV viral proteins have been identified to promote hepatocyte transforma-
tion including the HBV envelope and HBx protein (Twu and Schloemer 1987;
Paterlini et al. 1995; Sunami et al. 2016). HBV envelope proteins induce endoplas-
mic reticulum stress and cause liver cancer when expressed in mice (Xu et al. 1997).
HBV-DNA sequences coding for a C-terminally truncated envelope protein are
frequently found integrated in HCC. This truncated envelope protein induces the
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activation of c-Raf-1/Erk2, Ap-1, and NF-κB pathways and increases hepatocyte
proliferation (Hildt et al. 2002). The HBx protein, which is essential for initiating and
maintaining HBV virus replication, has been linked to chromatin modulation. With
these intrinsic carcinogenic characters, up to 20% of HBV-related HCC cases occur
in the absence of cirrhosis (Chayanupatkul et al. 2017).

HCV is classified into seven genotypes. Genotypes 1b and 3 are associated with
an increased risk of developing HCC (Kanwal et al. 2014; Raimondi et al. 2009).
Even after virus elimination by antiviral treatment, the history of infection with HCV
genotype 3 confers an increased HCC risk in patients with advanced fibrosis or
cirrhosis (El-Serag et al. 2016). The reported DNA methylation of enhancers in
HCV-associated HCC tumors highlights a role for HCV to influence host transcrip-
tion (Okamoto et al. 2014). HCV stabilizes hypoxia-inducible factor-1α to induce
de-differentiation through regulating the epithelial-to-mesenchymal transition
(Wilson et al. 2012). HCV core transgenic mice show an imbalance in the oxidant/
antioxidant state and develop HCC. HCV-encoded polymerase NS5B has been
reported to bind the tumor suppressor protein Rb and induce its degradation through
host ubiquitin (Munakata et al. 2005). Despite the many potentially oncogenic
features of HCV infection, unlike HBV, the HCV-related HCC almost exclusively
occurs in cirrhosis. An altered gut microbiome has been discovered in chronic HBV
infection (Zhu et al. 2019; Wang et al. 2019). However, whether the gut microbiome
affects disease progression of viral hepatitis and its impact on HCC development is
currently unknown.

7.3.2 Liver Fluke and Cholangiocarcinoma

Liver fluke infection is a well-known risk factor for cholangiocarcinoma. Liver
flukes are parasitic worms that live in the bile ducts and the liver of the infected
host. Currently, liver fluke infection remains a major public health problem in East
Asia and Eastern Europe. The prevalence of Opisthorchis viverrini (Southeast Asian
liver fluke) infection has a strong positive correlation with the incidence of
cholangiocarcinoma in Thailand and Laos (Sripa et al. 2011; Sriamporn et al.
2004), whereas such relationship cannot be found in HCC. Liver fluke-related
cholangiocarcinoma is generally considered to be caused by chronic inflammation
(Holzinger et al. 1999). Fluke feeding activity and migration contribute to biliary
damage (Bhamarapravati et al. 1978). Fluke eggs entrapped in the periductal tissue
induce granulomatous inflammation. The liver fluke can secrete or excrete metabolic
products, some of which are highly immunogenic (Wongratanacheewin et al. 1988).
Oxygen radicals such as nitric oxide (NO) released from activated immune cells
contribute to biliary cell damage (Pinlaor et al. 2004). Furthermore, an in vitro
co-culture study found that Opisthorchis viverrini induces murine fibroblasts to
produce growth-promoting proteins such as transforming growth factor, which
contributes to cell proliferation and tumor development (Thuwajit et al. 2006). It
has been reported that liver fluke infection changes the gut and biliary microbiome
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(Xu et al. 2018). However, its contribution to cholangiocarcinoma development is
unknown.

7.4 Overview of Gut Microbiome and Cancer

The human gastrointestinal (GI) tract is colonized with a large and immensely
complex community of commensal microbials termed the gut microbiome
(Donaldson et al. 2016; Gilbert et al. 2018). While the gut microbiome mostly
consists of bacteria, it also contains fungi, protozoa, archaea, and viruses. It is
estimated that in total there is about 1014 bacteria present in an adult’s intestine,
but that number varies greatly among individuals (Sender et al. 2016). The number
and type of microbes also vary dramatically from site to site within the GI tract
(Donaldson et al. 2016; Human Microbiome Project 2012; Hillman et al. 2017).
Largely due to the bactericidal activity of gastric acid, microbial density increases
from the stomach to the distal aspect of the GI tract (Hunt et al. 2015). In healthy
individuals, stomach and proximal small intestine contain only a very limited
amount of microbes with a density around 101 to 103 cells per gram of lumen
content, most of which are aerobes and facultative anaerobes. In sharp contrast,
the microbial density in the colon can reach up to 1012 cells per gram content and
predominantly present as strict anaerobes. Bacterial diversity also increase along the
GI tract from proximal to distal (Hillman et al. 2017).

It is estimated that a typical person harbors 500–1000 bacterial species within the
GI system (Lloyd-Price et al. 2016). Surprisingly, all the bacteria belong to only a
few phyla, with the majority classified under Firmicutes and Bacteroidetes. Minor
representation includes Proteobacteria, Verrucomicrobia, Actinobacteria,
Fusobacteria, and Cyanobacteria (Donaldson et al. 2016; Human Microbiome
Project 2012; Huse et al. 2008; Rajilic-Stojanovic and de Vos 2014). Due to the
large variations in both taxonomic composition and abundance of shared taxa among
healthy individuals, using a universally “core” set of microbial taxa to define a
“healthy” gut microbiome is believed to be unpractical (Lloyd-Price et al. 2016). In
contrast, the abundance of metabolic pathways or the “functional core” of gut
microbiome seems considerably consistent across people and remains stable over
time after establishment in early life (Human Microbiome Project 2012; Lloyd-Price
et al. 2016; Turnbaugh and Gordon 2009; Abubucker et al. 2012). The combined gut
microbiome genome contains more than five million genes and has a large capacity
to provide diverse metabolic activities, some of which are essential for host biology
such as production of essential vitamins and fermentation of polysaccharides indi-
gestible by the host (Rowland et al. 2018). A healthy gut microbiome covers a core
set of functions and is likely to be ecologically diverse. Conversely, decreased
diversity within the gut microbiome is associated with diseases such as obesity,
inflammatory bowel disease, and diabetes.

The gut microbiome has a profound influence on maintaining structure, function,
and tissue homeostasis of the GI tract, development of the intestinal immune system,
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and defense against opportunistic pathogens (Gilbert et al. 2018; Thaiss et al. 2016;
Gopalakrishnan et al. 2018a). The association between the gut microbiome and
cancer development was discovered a while ago (Gopalakrishnan et al. 2018a). In
recent years, various cancer-associated bacteria have been identified, and both pro-
and antitumor functions of these bacteria have been alluded to. So far, the most clear
and direct evidence for the contribution of intestinal bacteria to carcinogenesis was
the discovery of Helicobacter pylori as the strongest known risk factor for gastric
cancer (Boland et al. 2005; Wroblewski et al. 2010; Sepulveda 2013). Helicobacter
pylori produces a protein called cytotoxin-associated gene A, a class I carcinogen,
which can induce proteasome-mediated p53 degradation in gastric epithelial cells
and promote gastric cancer formation (Hatakeyama 2014). GI cancers also have a
strong link with chronic inflammatory diseases that demonstrate changes in the gut
microbiome. Inflammatory bowel disease, in particular Crohn’s disease, is associ-
ated with the development of colorectal cancer (CRC) (Axelrad et al. 2016; Cipe
et al. 2015; Jahani-Sherafat et al. 2018). Inflammatory bowel diseases present with
an imbalance of gut microbial community or dysbiosis. Independent of inflammatory
bowel disease, many bacteria such as Bacteroides fragilis, Clostridium septicum,
Enterococcus faecalis, Fusobacterium spp., and Streptococcus bovis have been
suggested to contribute to CRC (Gagniere et al. 2016; Purcell et al. 2017; Mirza
et al. 2009; Shang and Liu 2018; Abdulamir et al. 2011). Potential carcinogenic
functions of many bacterial products have been discovered such as Fusobacterium
nucleatum effector adhesin A and Bacteroides fragilismetalloproteinase toxin. Both
of these toxins are capable of interacting with host’s epithelial E-cadherin, disrupt
the intercellular junctions, and activate β-catenin signaling which triggers cell
proliferation and potentially malignant transformation (Rubinstein et al. 2013; Boleij
et al. 2015).

Besides their pro-tumor functions, a number of microbial-derived products show
antitumor activity (Zitvogel et al. 2016). The microbial-derived short-chain fatty
acids (SCFAs) such as butyrate and propionate have been found to inhibit tumor
histone deacetylases and suppress CRC and lymphoma (Scheppach et al. 1995;
Hinnebusch et al. 2002; Gorres et al. 2014). Monophosphoryl lipid A (MPL) from
Salmonella enterica has been used as adjuvant in the vaccine formulation for
cervical carcinoma (Monie et al. 2008). Bacillus Calmette-Guerin (BCG) vaccine,
a weakened form of Mycobacterium bovis, has been used as immunotherapy in
patients with bladder cancer (Kawai et al. 2013).

The GI tract and the liver have a close anatomical and functional relationship
which is termed the “gut-liver axis.” It is important to note that the communication in
the gut-liver axis is bidirectional (Fig. 7.1) (Tripathi et al. 2018; Wiest et al. 2017).
The liver produces and secretes bile into the intestine which contains bile acids,
immunoglobulin A, and antimicrobial molecules. The bile not only helps fat diges-
tion and absorption but also maintains intestinal hemostasis and regulates microbial
number and composition (Wiest et al. 2017; Urdaneta and Casadesus 2017). On the
other hand, the intestine also influences liver function by providing nutrient-rich
blood via the portal vein. The single thin layer of intestinal epithelium not only
facilitates nutrient absorption but also makes it easy for small microbial components
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to cross and enter the blood stream. The blood supply to the liver carries both
nutrients from digestion and also a large number of microbial components, metab-
olites, and even intact bacteria. Many of the intestinal metabolites function as
signaling messengers regulating metabolic processes in the liver (Levy et al.
2016). In addition, the liver prevents harmful microbial products from entering the
systemic circulation and thus serves as a critical “filter” to clear and detox microbial
toxins such as lipopolysaccharide (LPS) (Tripathi et al. 2018; Wiest et al. 2017). Due
to this close relationship, the liver is under great influence from the gut microbiome.
Many important risk factors for liver cancer such as NAFLD, ALD, and cirrhosis
commonly present with dysbiosis (Leung et al. 2016; Mokhtari et al. 2017; Da Silva
et al. 2018; Sharpton et al. 2019; Rao 2009). It has been suggested that there is an
association between alterations within gut microbiome and liver cancer (Zitvogel
et al. 2016; Llorente and Schnabl 2015; Yu and Schwabe 2017). Importantly,
preclinical animal models demonstrate that commensal intestinal bacteria play a
critical role in the regulation of liver cancer development (Shalapour et al. 2017;
Dapito et al. 2012; Yoshimoto et al. 2013; Singh et al. 2018; Ma et al. 2018). The
relevant basic knowledge of the liver and its interaction with the gut microbiome,
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Fig. 7.1 The interaction between liver and the gut microbiome. The liver secretes bile into the
intestine which not only helps fat digestion but also modulates the microbiome composition. In the
intestine, the gut microbiome mediates many metabolic processes such as primary to secondary bile
acid conversion and SCFA production. Bile acids, SCFA, and many microbial products such as LPS
are absorbed and travel to the liver through portal blood circulation. Portal blood mixes with arterial
blood and passes through liver sinusoids; during the process, nutrients are taken up, and microbial
products are detoxicated by hepatocytes. The liver is heavily populated by immune cells, including
Kupffer cells, NKT, T cells, and myeloid cells. Immune cells and other nonhepatic cells such as
LSEC and HSC make up ~30% of the total cell population in normal liver
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current findings, and proposed mechanisms of intestinal bacteria in liver tumor
development will be discussed below.

7.5 Relevant Liver and GI Features for the Gut-Liver Axis

7.5.1 Intrahepatic Circulation

The liver has a characteristic blood flow system (Fig. 7.1). About 75% of the blood
supply to the liver is from the intestine venous system via the portal vein, which
contains a significant amount of intestinal microbial products and metabolites
(Abdel-Misih and Bloomston 2010). Arterial and portal vein blood mixes and passes
through the thin-walled sinusoids which are lined by a single layer of liver sinusoidal
endothelial cells (LSECs). Due to the small diameter, sinusoidal blood flow rate is
low and often static which helps nutrient extraction and detoxification of harmful
substances (Vollmar and Menger 2009).

7.5.2 Liver as an Immunological Organ

The liver is heavily populated by immune cells, and non-hepatocytes make up ~30%
of the total cell population in normal livers (Fig. 7.1) (Racanelli and Rehermann
2006; Bogdanos et al. 2013; Heymann and Tacke 2016; Robinson et al. 2016).
Macrophages are phagocytic innate immune cells and play an essential role in host
defense. The liver harbors the largest population of tissue-resident macrophages,
known as Kupffer cells, in the body. Kupffer cells comprise ~20% of the
non-hepatocytes population and have multiple functions within the liver (Dixon
et al. 2013; Toth and Thomas 1992; Bilzer et al. 2006). For example, they play an
important role in tissue homeostasis, liver inflammation, and liver tumor progres-
sion. LSECs make up the lining of sinusoids and are in directly contact with mixed
portal and arterial blood. LSECs act as efficient antigen presenting cells (APCs) and
express MHC class I and II, CD1, MR1, and the co-stimulatory molecules CD40,
CD80, and CD86 (Bogdanos et al. 2013; Crispe 2011; Knolle and Wohlleber 2016).
The slow blood flow rate inside sinusoids lengthens the contact between immune
cells and APCs, including LSECs, which promotes leukocyte extravasation. In mice,
hepatic natural killer T (NKT) cells make up ~30% of the total lymphocyte popu-
lation in the liver (Gao et al. 2009; Bandyopadhyay et al. 2016; Crosby and
Kronenberg 2018). NKT cells are innate-like lymphocytes which recognize lipid
antigens presented on CD1 molecules, which is expressed on various APCs includ-
ing Kupffer cells and LSECs. Although the endogenous lipid ligand for NKTs are
still elusive, lipid components of intestinal bacteria have been suggested to be able to
activate NKT cells (Brennan et al. 2014; Wolf et al. 2015; Zajonc and Girardi 2015;
An et al. 2014). Upon stimulation, NKT cells rapidly release cytokines to initiate
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diverse immune responses and act as a bridge between innate and adaptive immunity
(Terabe and Berzofsky 2008; Nishimura et al. 2000). The role of NKT cells in acute
liver inflammation, alcoholic steatohepatitis, NASH, fibrosis, liver regeneration, and
tumor growth has been reported (Gao et al. 2009; Bandyopadhyay et al. 2016).
MAITs are MR1 molecule-restricted lymphocytes that share several characters with
NKT cells (Le Bourhis et al. 2011; Toubal et al. 2019). Interestingly, MAITs
recognize and are activated by metabolites derived from bacterial vitamin B2
(riboflavin) biosynthesis and are thus affected by intestinal bacteria. MAITs are
specifically enriched in the intestinal system and can make up ~50% of the hepatic
lymphocyte population in humans. The functional study of MAITs has just began,
and the knowledge is very limited. In the lung, the potential role of MAITs in
controlling Mycobacterium tuberculosis infection has been suggested (Gold et al.
2015).

Facing the continuous exposure of microbial products and the potential challenge
of microbial infection from the GI tract, the liver local immune system is skewed
toward a unique tolerance stage in order to avoid reacting with non-harmful antigens
but is still able to recognize pathogens (Crispe 2003; Tiegs and Lohse 2010; Horst
et al. 2016). Accumulating evidence shows that alternation of the gut microbiome
has profound influences on hepatic immune cells. The role of immune cells in the gut
microbiome-regulated liver tumor developed will be discussed below.

7.5.3 Pattern Recognition Receptors

One method by which the host sense the presence of microbes is through pattern
recognition receptors (PRRs) which recognize pathogen-associated molecular pat-
terns (PAMPs). PAMPs are various microbial-specific molecules including bacterial
carbohydrates (such as LPS), bacterial or viral nucleic acids, bacterial peptides (such
as flagellin), peptidoglycans, lipoteichoic acid, and fungal glucans (Zitvogel et al.
2016; Chu and Mazmanian 2013; Takeuchi and Akira 2010; Mogensen 2009).
Based on localization, PRRs can be grouped into membrane PRRs including Toll-
like receptors (TLRs) and C-type lectin receptors and cytoplasmic PRRs including
NOD-like receptors and RIG-I-like receptors. PRRs recognize specific PAMPs and
trigger anti-pathogenic responses through different signaling pathways. TLRs, the
most well-studied PRRs, contain ten members. TLR1, 2, 4, 5, 6, and 10 are
expressed on the cell membrane, while TLR3, 7, 8, and 9 are found in the endosomal
compartment (Janssens and Beyaert 2003). TLR4 is a major component of the
receptor complex recognizing LPS (Park and Lee 2013). TLR5 recognizes flagellin
(Andersen-Nissen et al. 2007). TLR2 forms homodimers or heterodimers with
TLR1, 6, and 10 to recognize protozoa, bacteria, fungi, and viruses (Oliveira-
Nascimento et al. 2012). The intracellular TLRs (TLR3, 7, 8, and 9) sense nucleic
acids. TLR3 recognizes double-stranded RNA and the synthetic analog
polyriboinosinic polyribocytidylic acid (poly(I:C)) (Matsumoto and Seya 2008).
TLR9 recognizes unmethylated CpG motifs of DNA (Ramirez-Ortiz et al. 2008).
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After stimulation most TLRs induces MyD88-dependent downstream signaling
often involving the NF-κb pathway to trigger various cytokine production (such as
interferons) and co-stimulatory molecule expression (Kawasaki and Kawai 2014;
Bagchi et al. 2007; Kawai and Akira 2007). TLRs are widely expressed in liver cells
(Mencin et al. 2009; Seki and Brenner 2008). Hepatocytes and biliary epithelium
express mRNA for all TLRs. LSECs constitutively express TLR4. Kupffer and
hepatic stellate cells express functional TLR2 and TLR4 and produce
proinflammatory cytokines upon stimulation with TLR2/4 ligands. Intrahepatic T
cells and NK cells are rich in TLR1, 2, 4, 5, and 9. Although the expression and the
functional role of TLRs in the liver has not been fully delineated, TLRs have been
found to play a critical role in liver tissue homeostasis and various pathologic
conditions including acute liver failure, ischemia-reperfusion injury, viral hepatitis,
ALD, liver regeneration, fibrosis, and liver cancer (Chen and Sun 2011; Schwabe
et al. 2006; Zhang and Lu 2015; Petrasek et al. 2010; Yang and Seki 2012).

7.5.4 Intestinal Barrier

The intestinal lumen microbes, especially the large amount of colon bacteria, pose a
continuous threat to the host. In order to deal with this threat, a multilayer barrier has
been developed to retain intestinal microbes inside the lumen (Bischoff et al. 2014;
Groschwitz and Hogan 2009). The mucus layer is the first defense line separating the
gut microbiome from the host, which primarily composes of a thick gel-like poly-
saccharide called mucin secreted from goblet cells. The colon has two layers of
mucus of which the inner layer is impermeable to the luminal bacteria and has
protective function. Below the mucous layer lies the intestinal epithelial layer, which
is organized in crypt and villus structure to increase surface area. The intestinal
epithelial cells form an extremely close lining through intercellular connections with
tight and adherens junctions (Peterson and Artis 2014). Besides the physical barrier,
an immune barrier exists in the lamina propria which contains gut-associated
lymphoid tissue, IgA-producing plasma cells, resident macrophages, neutrophils,
dendritic cells, effector cells, and regulatory T cells (Tregs) (Turner 2009). Macro-
phages in the intestinal lamina propria are highly phagocytic and responsible for
clearing the “leaked” bacteria (Smith et al. 2011). Intestinal dendritic cells (DCs)
sample lumen microbes by extending projections beyond the epithelial layer or via
specialized microfold cells (Lelouard et al. 2012; Chieppa et al. 2006). Instead of
immediate killing, DCs can hold living bacteria and transport them to mesenteric
lymph nodes (MLN) and subsequently present microbial antigens to the immune
system (Macpherson and Smith 2006). The primed local immune system can elicit
quick responses against a microbial invasion if ever there is barrier dysfunction. The
lamina propria also contains regulatory T cells whose development is under great
influence from the intestinal bacteria (Zeng and Chi 2015; Smith et al. 2013). The
presence of regulatory T cells is critical to limit unwanted inflammatory responses
and avoid tissue damage.
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7.5.5 Bacterial Translocation

The impairment of barrier function increases intestinal permeabilization which pro-
motes paracellular transportation of microbial products such as LPS and even intact
bacteria under severe conditions. The movement of bacteria across the intestinal
barrier is termed bacterial translocation. Bacterial translocation is influenced by
several factors including intestinal bacterial overgrowth, physical barrier impair-
ment, and immune system functional status (Brenchley and Douek 2012). Rodent
studies show that intestinal epithelia cells can uptake and transport latex particles
similar in size to E. coli, suggesting that there is a continuous low-level trafficking of
bacteria across the intestinal epithelial layer (Howe et al. 2014; Hodges et al. 1995;
LeFevre et al. 1978). Most of the crossed microbes will be immediately destroyed by
the intestinal phagocytes such as macrophages. Other bacteria will be taken up by
DCs and transported to MLNs for training of the adaptive immune system. Clinical
meaningful bacterial translocation often requires intestinal bacterial overgrowth and
rarely occurs in its absence. Under bacteria overgrowth conditions and physical
barrier damage, more bacteria enter the intestinal tissue and are subsequently carried
to MLNs by immune cells. MLNs are often the first site to detect live translocated
bacteria (Berg 1995). If there is a sufficient functional immune system, the
translocated bacteria will be localized and controlled. In an immunocompromised
state, uncontrolled bacteria will spread via the blood or lymphoid circulation (Berg
1995). Inside the intestinal blood stream, the translocated bacteria can move to the
liver via the portal vein and even progress further to the systemic circulation. The
uncontrolled bacteria inside MLNs can pass through the lymphoid vessels and enter
the systemic circulation via the thoracic duct. Opposite to the low oxygen tension in
the intestinal lumen, especially inside the colon, tissue and the blood stream contain
relative high oxygen levels which decrease the survival of anaerobic bacteria.

Increased intestinal permeability and bacteria translocation are commonly
observed in chronic liver diseases and contribute to hepatic inflammation. Consump-
tion of high fat-containing diets are associated with increased intestinal
permeabilization and elevated LPS levels in portal blood (Yoshimoto et al. 2013;
Moreira et al. 2012). The critical role of elevated LPS in low-grade systemic
inflammation, insulin resistance, and metabolic syndrome has been proposed.
Importantly, the elevated LPS has been connected to liver carcinogenesis in animal
studies (Dapito et al. 2012). The significance of bacterial translocation in liver
tumors is still not clear. However, recent reports show that bacterial 16s rRNA can
be detected from pancreatic cancer tumor tissue and metastatic liver tissue
(Pushalkar et al. 2018; Sethi et al. 2018). Importantly, bacterial taxa composition
of metastatic liver tissue can also be influenced by oral antibiotic treatment. This
finding suggests that translocated bacteria can directly interact with the liver tumor
environment. Its role in liver cancer development needs to be investigated further.
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7.6 Gut Microbiome and Liver Cancer-Associated
Conditions

Intestinal bacterial overgrowth and dysbiosis are commonly seen in risk factors for
liver cancer such as obesity, NAFLD, ALD, and cirrhosis. The current knowledge of
the gut microbiome in these conditions will be discussed below.

7.6.1 Obesity

Intestinal microbiomes play a critical role in regulation of energy extraction from
food and in part affect obesity (Krajmalnik-Brown et al. 2012). The link between the
gut microbiome and obesity was initially suggested from studies using germ-free
mice, which are raised in sterile conditions and free of microorganisms. Compared to
regular specific pathogen-free (SPF) mice, germ-free mice have less body fat content
even though they consume more food (Backhed et al. 2004). Transferring fecal
bacteria from SPF mice to germ-free mice causes a quick increase in body fat content
without any change in food consumption (Ridaura et al. 2013). Importantly, germ-
free condition provides a protective function against diet-induced obesity (Ley et al.
2005; Turnbaugh et al. 2006, 2008). The gut microbiome can promote energy intake
through several mechanisms such as breakdown of plant polysaccharides and com-
plex carbohydrates which normally cannot be digested by the host (Flint et al. 2012).
As expected, lower caloric release from dietary plant polysaccharides was observed
in germ-free mice (Turnbaugh et al. 2008). Interestingly, host metabolic processes
such as energy deposition in adipocytes, hepatic fatty acid oxidation, de novo fatty
acid biosynthesis, and glycogen utilization are affected by germ-free conditions and
favor catabolism (Backhed et al. 2007). These studies demonstrate that the gut
microbiome not only affects energy uptake from food but also influences energy
expenditure and storage.

The composition of the gut microbiome has been suggested to be important in
obesity development. Increase of Firmicutes especially some Clostridium clusters is
involved in harvesting energy from diet (Clarke et al. 2012). Genetically obese (ob/
ob) mice have been reported to contain higher proportion of intestinal Firmicutes
and parallel enrichment of microbial genes for polysaccharide degradation compared
to their lean siblings (Ley et al. 2005). Fecal transplantation studies demonstrate that
germ-free mice who receive microbiota from obese humans develop higher adiposity
compared to controls (Ridaura et al. 2013). Antibiotics, especially those with broad
spectrum, affect intestinal microbiome composition. Early-life usage of penicillin
causes a long-lasting effect on mouse body composition including increased fat mass
and hepatic expression of adipogenesis genes (Cho et al. 2012). This supports the
hypothesis that antibiotic use maybe contributing to the obesity epidemic. In
humans, low fecal bacterial diversity has been found to associate with high adiposity
and dyslipidemia (Le Chatelier et al. 2013). High Firmicutes and low Bacteroidetes
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have been reported in obese people (Koliada et al. 2017). Interestingly, in obese
volunteers who lost body weight by consuming a low fat and carbohydrate diet for a
year showed a reversal of the Firmicutes and Bacteroidetes populations in the colon
(Wu et al. 2011). Of note the reduction of Firmicutes/Bacteroidetes ratio is not
always present in obese people likely due to large interpersonal variations and the
large influence diets have on the intestinal bacterial community (Singh et al. 2017).
Probiotics are live microorganisms and can confer a health benefit to the host.
Animal research suggests that administration of various lactobacillus may reduce
weight gain in response to a high-fat diet (Kobyliak et al. 2016). However, in
humans the data is less consistent.

7.6.2 Nonalcoholic Fatty Liver Disease

NAFLD is an import high-risk factor for HCC. Excessive ROS production, inflam-
matory cytokines, endoplasmic reticulum (ER) stress, circadian dysregulation, and
immune cells have been suggested to contribute to the NAFLD-promoted
hepatocarcinogenesis. In a lipid-rich environment, excessive ROS causes lipid
peroxidation and generation of highly reactive aldehydic derivatives including
4-HNE and malondialdehyde (MDA), which subsequently causes DNA damage
and promotes hepatocyte malignant transformation. Increased ROS production in
NAFLD liver and its contribution to disease progression from NASH to HCC have
been described in animal models (Kathirvel et al. 2010; Sutti et al. 2014; Gandhi
et al. 2015). NAFLD presents an increase of inflammatory cytokines including
TNF-α and IL-6 (Dowman et al. 2010). Both TNF-α and IL-6 have been demon-
strated to play a critical role in obesity-/NAFLD-enhanced HCC through enhancing
cell proliferation and preventing apoptosis of hepatocytes in mice (Park et al. 2010).
Hepatic ER stress is common in NAFLD and can be observed in NAFLD animal
models and NASH patients (Puri et al. 2008). Its critical role in promoting NAFLD
to HCC has been demonstrated in HFD-fed MUP-uPA mice through increasing
macrophage TNF production and the subsequent activation of TNFR1-IKKβ-NF-κB
pathway in the HCC progenitor cells (Nakagawa et al. 2014). Importantly, the
HFD-fed MUP-uPA mice develop spontaneous HCC even without carcinogen
treatment, which mimics the clinical disease progression from NASH to HCC.
Circadian dysregulation has been demonstrated to cause dysfunction of hepatic
metabolic pathways such as in mice with jet lag (Adamovich et al. 2014). Its
contribution to NASH and HCC has been suggested (Kettner et al. 2016). The
liver of jet-lag mice shows a genome-wide deregulation of gene expression, and a
global metabolic disruption with cholesterol, bile acid, and xenobiotic metabolism
are the most affected pathways. Disrupting the hepatic metabolic pathways has been
shown to promote HCC in the context of NAFLD; however, the underlying mech-
anisms are complex. Ablation of farnesoid X receptor (FXR), one of the key
regulators of bile acid metabolic pathway, increased liver bile acids and enhanced
the tumor-promoting effect of jet lag in NAFLD-HCC, while the opposite effect was
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found after deletion of constitutive androstane receptor (CAR), a critical modulator
of xenobiotic and endobiotic metabolism (Kettner et al. 2016). The liver is rich in
various immune cells. The contribution of different immune cells in NAFLD-HCC
progression has been reported. An increase of hepatic NKT cells has been reported to
promote steatosis through secreting LIGHT (TFNSF14), a ligand for lymphotoxin β
receptor (LTβR), which acts LTβR on hepatocyte and causes enhanced lipid uptake
(Wolf et al. 2014). In addition, LIGHT also activates NF-κB signaling in hepatocytes
and promotes malignant transformation. The increase of IL-17-producing Th17 cells
has been found in both NAFLD animal models and NASH patients (Paquissi 2016).
Increased IL-17 acts on IL17RA-expressing myeloid cells and leads to release of
FFAs from white adipose tissues, which promotes NASH progression and HCC
formation (Gomes et al. 2016). Blocking Th17 cells decreases NASH and delays
HCC (Gomes et al. 2016).

Emerging evidence suggests that the gut microbiome is an important environ-
mental factor that contributes to NAFLD development (Leung et al. 2016; Mokhtari
et al. 2017; Da Silva et al. 2018; Sharpton et al. 2019). Germ-free mice fed with high-
fat diet are resistant to hepatic steatosis and dyslipidemia (Rabot et al. 2010; Cani
et al. 2008). NAFLD is transmissible to germ-free mice by fecal microbial trans-
plantation, and two bacterial strains Barnesiella intestinihominis and
Lachnospiraceae have been positively associated with the development of metabolic
features (Le Roy et al. 2013). NASH patients display frequent intestinal bacterial
overgrowth (Augustyn et al. 2019). In humans, the association between dysbiotic
environment and NAFLD has been discovered (Schnabl and Brenner 2014), and
many NAFLD disease-associated bacteria have been reported. Children with
NAFLD have been found to display higher presentations of Gammaproteobacteria
and Epsilonproteobacteria than heathy lean and obese children (Michail et al. 2015).
Increased Proteobacteria has also been observed in NASH patients compared to
obese individuals (Zhu et al. 2013). However, so far, no single bacterial species has
been identified to mechanistically associate with the development of fatty liver. In
addition, some of the correlation studies yield controversial results. Lower percent-
age of Bacteroidetes was found in NASH patients compared to healthy controls
(Mouzaki et al. 2013). In contrast, higher Bacteroidetes has also been linked with
NASH patients (Boursier et al. 2016). In a different report, no change in
Bacteroidetes was found when comparing NASH with healthy controls (Wong
et al. 2013). The discrepancy is likely due to cofounding factors such as diet
which plays a more important role in shaping the microbiome than genetic factors.

Several mechanisms have been suggested for the effects the gut microbiome has
on NAFLD progression including regulation of intestinal protein expression, intes-
tinal barrier breakdown, inflammatory responses, and changes in metabolites.
Dysbiosis is linked with reduced synthesis and secretion of fasting-induced adipose
factor (FIAF) in enterocytes, which leads to increased uptake of fatty acids in the
liver and adipose tissue and ultimately favors hepatic steatosis and expansion of
adipose tissue (Backhed et al. 2004; Mandard et al. 2006). NAFLD has been
suggested to be associated with increased intestinal permeability. A meta-analysis
comprehensively assessing the association between intestinal permeability and risk
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of developing NAFLD has been performed (Luther et al. 2015). Indeed, NAFLD
patients had enhanced intestinal permeability (Luther et al. 2015; Miele et al. 2009).
The underlying mechanism is still not clear, but bacteria involvement has been
suggested. Bacterial toxic metabolites such as acetaldehyde and ethanol are associ-
ated with gut permeability. With the increased intestinal permeability and the
presence of dysbiosis, the liver is exposed to more bacterial products via portal
blood, which will be recognized by liver PRRs such as TLRs and leads to the
production of inflammatory cytokines. A positive correlation between plasma
inflammatory cytokines and blood LPS has been found (Ceccarelli et al. 2015). In
addition, plasma inflammatory cytokines have been reported to be negatively corre-
lated with intestinal Bifidobacteria count (Okada et al. 2009; Cani et al. 2007). High-
fructose diet is considered to be a significant risk factor for NAFLD (Lim et al.
2010). Chronic intake of fructose is associated with bacterial overgrowth and an
increase in blood LPS (Vos and McClain 2009). Fat consumption promotes produc-
tion of chylomicrons, which facilitate the translocation of LPS toward other organs.
All these findings suggest a link between dysbiosis, microbial products, and the
inflammatory component of NAFLD.

Choline deficiency is related to NAFLD pathogenesis (Corbin and Zeisel 2012).
As a methyl group donor, choline contributes to the synthesis of phosphatidylcholine
which is required for the synthesis and secretion of very-low-density lipoprotein
(VLDL) which transports lipids from the liver to the peripheral organs (Yao and
Vance 1988). Although it can be synthesized in the body, choline is considered an
essential nutrient, and dietary intake is required. Reduction of choline bioavailability
is associated with increased ROS, hepatic lipid accumulation, and reduced hepatic
VLDL (Zhu et al. 2014). In humans, rigorously controlled choline deficiency diet
leads to hepatic lipid accumulation (Spencer et al. 2011). Recently, it was discovered
that intestinal bacteria can convert dietary choline to a variety of metabolites such as
trimethylamine, thus reducing choline bioavailability (Romano et al. 2015). Several
choline-metabolizing bacteria have been identified, and a low level of colonization
of trimethylamine-producing bacteria species can induce significant reduction of
host choline levels (Romano et al. 2015). In mice, high-fat diet increases choline-
metabolizing microbes and leads to the development of hepatic steatosis (Boutagy
et al. 2015). Interestingly, in the liver, trimethylamine can be converted to
trimethylamine-N-oxide which is associated with atherosclerosis and cardiovascular
disease (Janeiro et al. 2018). The association between trimethylamine-N-oxide and
hepatic lipid metabolism in addition with the microbe-host interactions has been
suggested, and its role in NALD needs further investigation (Chen et al. 2016a).

7.6.3 Alcoholic Liver Disease

Alcoholic liver disease is the most prevalent chronic liver disease worldwide and
accounts for ~30% of HCC cases and HCC-specific death (Ganne-Carrie and Nahon
2019). Alcohol consumption is an independent risk factor for HCC and has been
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associated with a high risk of serval other malignancies starting at a dose as low as
10 g/1 unit/day (Testino et al. 2014; European Association for the Study of the Liver
2018). Alcohol is classified as a group 1 carcinogen. Although not fully understood,
several mechanisms have been found to contribute to the alcohol-induced
hepatocarcinogenesis. Alcohol is mainly metabolized in hepatocyte cytoplasm to
acetaldehyde, which is subsequently oxidized to acetate in the mitochondria (Lieber
2005). After consumption of a large amount of ethanol, cytochrome P450 2E1
(CYP2E1) also contributes to the metabolization of alcohol to acetaldehyde (Lieber
and DeCarli 1968). Acetaldehyde has been shown to be a carcinogen in animal
studies (Seitz and Homann 2007). Acetaldehyde interacts with DNA and proteins to
form adducts which plays an important role in carcinogenesis. The formation of
adducts with O6-methylguanine methyltransferase causes DNA repair system dys-
function (Collier et al. 1996). The CYP2E1-dpendent alcohol metabolization process
generates various ROS, such as hydroxyethyl, superoxide anion, and hydroxyl
radicals (Haorah et al. 2008). The increased ROS leads to the generation of lipid
peroxidation products, such as malondialdehyde and 4-hydroxy-2-nonenal, and
causes DNA damage. 4-hydroxy-2-nonenal has been found to cause a mutation at
codon 249 of the p53 gene which is commonly found in HCC (Hu et al. 2002). In
addition to the mutagenic effects on DNA, ROS can act as an important mediator of
tumor angiogenesis and metastasis. It has been shown that alcohol-induced ROS can
activate NF-kB signaling and upregulate VEGF and MCP-1 (Liu et al. 2016).
Aberrant DNA methylation and protein methylation are involved in HCC develop-
ment. It has been reported that alcohol inhibits the synthesis of S-adenosyl-L-
methionine (SAMe), which is a universal methyl group donor. The generation of
SAMe is mediated by the enzyme methionine adenosyltransferase (MAT). MAT1A
knockout mice develop SAMe deficiency, fatty liver, and HCC (Santamaria et al.
2006). Furthermore, decreased hepatic MAT activity and MAT1A gene expression
have been found in ALD patients (Tsukamoto and Lu 2001). ALD presents hepatic
activation of innate immunity and increased proinflammatory cytokines (Kasztelan-
Szczerbinska et al. 2015; Kawaratani et al. 2017). The involvement of the altered
immune system in ALD-induced HCC needs further investigation.

ALD is mainly due to the accumulation of acetaldehyde, a toxic metabolite of
ethanol, in hepatocytes which causes liver inflammation and fibrosis (Setshedi et al.
2010). Recently, the gut microbiome has been found to contribute to ALD devel-
opment, and a growing body of evidences suggest that LPS is closely associated with
ALD (Rao 2009). Chronic ethanol consumption leads to bacterial overgrowth and
dramatic changes within intestinal bacterial composition (Malaguarnera et al. 2014).
Specifically, there is an increase in gram-negative bacteria such as Proteobacteria
which are the main source of LPS (Purohit et al. 2008). ALD patients display
increased intestinal permeability (Zhou and Zhong 2017). Although ethanol can
directly disrupt the intestinal barrier, its concentration is relatively low inside the
intestine. Intestinal bacteria can metabolize ethanol to produce acetaldehyde, and a
significant amount of evidences indicates that microbial-derived acetaldehyde plays
a crucial role in the disruption of the intestinal barrier function in ALD (Ferrier et al.
2006). Acetaldehyde-induced disruption of tight and adherens junctions was

216 J. C. McVey et al.



validated in human colonic mucosa (Basuroy et al. 2005). The increased intestinal
permeability and more abundant gram-negative bacteria contribute to increased
absorption of LPS. Numerous studies demonstrate that ALD patients have elevated
plasma LPS compared to healthy individuals (Fujimoto et al. 2000; Bala et al. 2014;
Fukui et al. 1991). LPS itself fails to mimic ethanol-induced steatosis or hepatitis.
However, LPS shows a synergistic effect with ethanol to exacerbate liver damage
(Pennington et al. 1997). The mechanism involves multiple factors inducing
downregulation of IL-10-mediated protection, ROS production, and adrenergic
stimulation (Hill et al. 2000). TLR4 knockout studies suggest that TLR4 plays a
critical role in LPS-promoted live damage (Soares et al. 2010). LPS-/TLR4-medi-
ated stimulation of different liver cells including Kupffer cells, LSECs, stellate cells,
neutrophils, and hepatocytes induces secretion of proinflammatory cytokines,
chemokines, and ROS which subsequently leads to liver damage and inflammation
(Duryee et al. 2004; Quiroz et al. 2001; Adachi et al. 1994). In a more recent report,
cytolysin, an exotoxin secreted by Enterococcus faecalis, has been shown to con-
tribute to hepatocyte death and liver injury in ALD (Duan et al. 2019). ALD patients
have increased level of Enterococcus faecalis. Importantly, the presence of
cytolysin-positive Enterococcus faecalis correlates with the severity of liver disease.
Using humanized mice colonized with fecal bacteria from ALD patients, it has been
demonstrated that targeting cytolysin-positive Enterococcus faecalis correlates with
bacteriophages and attenuates ethanol-induced liver disease. This study offers a
novel therapeutic approach for ALD through precisely editing the gut microbiome.

7.6.4 Cirrhosis

Cirrhosis represents the final stage of liver fibrosis and is characterized by distortion
of liver parenchyma associated with fibrous septa and nodule formation as well as
alterations in blood flow. Bacterial translocation is often observed in cirrhosis, and
cirrhotic patients have increased susceptibility to bacterial infections, most com-
monly spontaneous bacterial peritonitis (Alexopoulou et al. 2017; Bonnel et al.
2011; Jalan et al. 2014). About 10% of cirrhotic patients without selective intestinal
decontamination show MLN bacterial translocation (Cirera et al. 2001). In addition,
a positive correlation between cirrhosis disease severity and bacterial translocation
has been reported (Alexopoulou et al. 2017; Cirera et al. 2001). Consistent with the
correlation results, experimental cirrhotic animals show an increase in intestinal
permeability, and ~40% of cirrhotic rats with ascites have MLN bacteria transloca-
tion (Giannelli et al. 2014). Bacteria strains isolated from MLN have been shown to
be genetically identical to strains causing spontaneous bacterial peritonitis in the
same animal supporting the process of bacterial translocation to infection (Bert et al.
2010).

Several pathologic changes in cirrhosis promote the bacterial translocation
including bacterial overgrowth, intestinal barrier dysfunction, and impaired immune
function (Pijls et al. 2013). Bacterial overgrowth and dysbiosis are often present in
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cirrhotic patients (Fukui 2017). Bacterial overgrowth can even be found in the
proximal small intestine likely due to a shift toward to alkaline gastric secretions
(Chen et al. 2016b). In cirrhosis, a marked decrease in intestinal luminal concentra-
tion of bile acids and increased deconjugation by bacteria have been observed
(Ridlon et al. 2013). In addition to its role in digestion, bile acids limit microflora
proliferation and contribute to maintaining the integrity of the small intestine.
Obstruction of bile flow in humans or rodents causes bacterial overgrowth and
mucosal injury followed by bacterial translocation (Inagaki et al. 2006). Oral
administration of conjugated bile acids in cirrhotic rats results in a reduction of
intestinal bacterial overgrowth, bacteria translocation, and endotoxemia (Lorenzo-
Zuniga et al. 2003). The impaired intestinal barrier function in cirrhosis is often
associated with portal hypertension-related structural and functional alterations
including vascular congestion, edema, widened intracellular spaces in the intestinal
wall, and functional abnormalities such as reduced small bowel motility (Kalaitzakis
2014). Advanced liver diseases often display impaired chemotaxis, phagocytosis,
and intracellular killing by polymorphonuclear leukocytes and monocytes (Andrews
and Sullivan 2003). Cirrhosis is accompanied by impaired reticuloendothelial sys-
tem (RES) which is the main defensive system against bacteremia. Most of the RES
activity is located in the liver where Kupffer cells are the major component.
Portosystemic shunting that bypasses the liver (escaping the action of RES) and
impaired Kupffer cell phagocytic activity leads to not only the failure to clear
bacteria but also failure to clear bacterial products such as endotoxins and cytokines
(Moller et al. 2014; Pinzone et al. 2012).

7.6.5 Autoimmune Hepatitis

Autoimmune hepatitis (AIH) is an immunologic mediated, chronic, and progressive
inflammatory liver disease of uncertain cause. Without appropriate treatment, AIH
can lead to cirrhosis and HCC (Teufel et al. 2009). Genetics have been implicated as
susceptibility factors for AIH. Recent evidence suggests that there is an association
between the gut microbiome and AIH (Lin et al. 2015). AIH patients are reported to
have increased intestinal permeability, dysbiosis, and bacterial translocation, which
correlates with disease severity (Lin et al. 2015; Cai et al. 2017; Czaja 2016).

The intravenous injection of the plant lectin concanavalin A (Con A) is a well-
established hepatitis model for investigating T cells and macrophage-dependent liver
injury in mice (Wang et al. 2012). The model mimics pathological features of AIH
patients and is considered the best experimental model for AIH research so far.
Recently, several studies have shown that the gut microbiome has a profound impact
on Con A liver injury (Celaj et al. 2014; Chen et al. 2014). Severity of Con A liver
injury varies greatly among genetically identical mice raised in different environ-
ments harboring distinct microbiota. BALB/c mice from TAC, NCI, and JAX show
clear vendor-specific Con A liver damage. Germ-free and co-housing studies show
that manipulating the intestinal flora alters susceptibility to Con A liver injury (Celaj
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et al. 2014). In addition, administration of pathogenic bacteria such as Salmonella
and Streptococcus exacerbates Con A liver injury (Chen et al. 2014). In contrast,
depletion of gut gram-negative bacteria alleviated Con A liver injury. Several
mechanisms have been proposed, such as the ability of the gut microbiome to
regulate the sensitivity to Fas-induced liver injury from TLR/MyD88 signaling
(Celaj et al. 2014). Other proposed mechanism suggests that the presence of path-
ogenic bacteria stimulates dendritic cells, enhances NKT cell cytotoxicity, and
exacerbates liver damage (Chen et al. 2014).

7.7 Gut Microbiome Regulates Liver Cancer

Emerging evidences suggest that there is an association between altered intestinal
bacteria and the presence of HCC following advances in bacterial sequencing and
profiling techniques (Yu and Schwabe 2017; Mima and Baba 2019; Gupta et al.
2019). Enriched Actinobacteria was observed in early HCC compared to cirrhosis
(Ren et al. 2019). Increased Bacteroides and decreased Bifidobacterium were also
found in HCC patients (Ponziani et al. 2019). Compared to non-HCC cirrhotic
patients, HCC patients presented with high levels of fecal E. coli (Grat et al.
2016). Building on this evidence and the close association between dysbiosis and
HCC risk factors, the gut microbiome has been suggested to play a critical role in
liver cancer development.

Recently, direct evidence showing that intestinal bacteria contributes to liver
cancer has emerged using preclinical animal models mainly focusing on HCC
(Shalapour et al. 2017; Dapito et al. 2012; Yoshimoto et al. 2013; Singh et al.
2018; Ma et al. 2018; Sethi et al. 2018; Loo et al. 2017). A profound influence of the
gut microbiome on liver cancer has been demonstrated in gut bacteria-depleted mice
using antibiotic cocktails or germ-free mice. Although through different mecha-
nisms, a consistent liver tumor-promoting effect of the gut microbiome has been
observed from several research groups using various liver tumor models (Fig. 7.2
and Table 7.1). The current findings are discussed below.

7.7.1 Lipopolysaccharides

Lipopolysaccharides, also known as endotoxins or lipoglycans, are the main com-
ponents of the outer membrane of gram-negative bacteria (Alexander and Rietschel
2001). LPS are a group of large molecules consisting of three parts: O polysaccha-
ride, core oligosaccharide, and lipid A. Intestinal epithelial cells internalize LPS and
transport them to the Golgi complex where LPS bind and form complex with newly
generated chylomicrons (Ghoshal et al. 2009). LPS have a high affinity for chylo-
microns, and chylomicron formation promotes LPS transportation. Under healthy
condition, most intestinal-absorbed LPS are present on chylomicron remnants within
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the blood. Intestinal barrier damage enhances unbound LPS absorption through
paracellular movement. LPS is recognized by pattern recognition receptor TLR4 in
association with protein partners such as MD2 and CD14, which signal through two
major pathways: MyD88/ NF-κB and TRIF/IRF3 (Park and Lee 2013). LPS can
induce a massive production of proinflammatory cytokines and even septic shock in
extreme conditions (Yamamoto et al. 2011). TLR4 is expressed by hepatocytes and
various cell types in the liver (Mencin et al. 2009; Chen and Sun 2011). Indeed, the
liver is a critical organ responsible for clearing LPS from blood circulation. Due to its
continuous exposure, the liver immune system is tolerant to low levels of LPS. The
exact mechanism of LPS tolerance is still not fully understood but the immunomod-
ulatory cytokine IL-10 and other molecules such as SHIP-1, A20, and IRAK-M are
believed to be critical (Bagchi et al. 2007; Xiong and Medvedev 2011).

Elevated blood LPS is present in many conditions considered to be high risk for
liver cancer. Increased serum LPS has been found in NAFLD patients (Miele et al.
2009; Harte et al. 2010). Excessive alcohol consumption is correlated with gram-
negative bacteria overgrowth and high LPS in the circulation (Fujimoto et al. 2000;
Bala et al. 2014; Fukui et al. 1991). Consumption of high fat-containing diets is
associated with increased intestinal permeabilization with elevated LPS level in the
portal blood (Pendyala et al. 2012). Importantly, the TLR4/MyD88 pathway, a major
pathway downstream of LPS signaling, has been linked to carcinogenesis in colo-
rectal cancer (Wang et al. 2010, 2018). In addition, LPS promotes liver metastasis of

Table 7.1 Mechanisms of how bacterial products promote liver cancer

Bacterial product Source
Mechanisms to promote
carcinogenesis

Lipopolysaccharides
(LPS)

Outer membrane component of
gram (�) bacteria

Induces mitogen epiregulin produc-
tion and secretion from hepatic stellate
cells to promote cell proliferation
(Dapito et al. 2012)
Decreases caspase 3 activation and
inhibits hepatocyte cell death (Dapito
et al. 2012)

Lipoteichoic acid
(LTA)

Cell wall component of gram
(+) bacteria

Increase PGE2 production through
TLR2-COX2 pathway, to suppress
immune responses (Loo et al. 2017)

Deoxycholic acid
(DCA)

Bacteria-mediated primary to
secondary bile acid metabolism,
mainly in colon

Induces senescence-associated secre-
tory phenotype (SASP) in hepatic
stellate cells to promote HCC (Kang
et al. 2011)
Decreases CXCL16 expression of
hepatic sinusoidal epithelial cells to
reduce liver NKT cells (Ma et al.
2018)

Short-chain fatty
acids (SCFA)

Bacteria-mediated fermentation
of dietary fibers, mainly in
colon

Induces live inflammation, hepatocyte
proliferation, and fibrosis. The cellular
and molecular mechanisms are
unclear (Singh et al. 2018)
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colorectal cancer by directly acting on TLR4 expressed in tumor cells (Hsu et al.
2011). All these findings suggest LPS as a potential link between the gut microbiome
and liver cancer.

The research group led by Robert Schwabe was the first to demonstrate the crucial
role of LPS in liver carcinogenesis using animal models (Fig. 7.2) (Dapito et al.
2012). In their studies, spontaneous mouse HCC was induced by early-life exposure
to the chemical carcinogen diethylnitrosamine (DEN) followed by chronic treatment
with the hepatotoxin, carbon tetrachloride (CCL4) (Dapito et al. 2012). The model
demonstrates a pattern of chronic liver inflammation, fibrogenesis, and increased
blood LPS level which mimics features of the microenvironment from which the
majority of human HCC tumors arise. To test the role of the gut microbiome in
DEN-CCL4-induced HCC, a TLR4 mouse strain carrying a nonfunctional mutant
TLR4 was chosen. Interestingly, a TLR4 functional deficiency causes a robust
reduction in both HCC tumor number and size. The finding was recaptured in
gut-sterilized mice treated with an oral antibiotic cocktail and in germ-free mice,
which proves that the commensal gut microbiome is responsible. Furthermore,
prolonged low nontoxic LPS exposure increases HCC size and number which
directly confirms that LPS promotes HCC.

The liver is rich in immune cells and is considered a lymphoid organ (Racanelli
and Rehermann 2006). TLR4 is expressed on different cell types within the liver
(Mencin et al. 2009; Chen and Sun 2011; Soares et al. 2010). Besides hepatocytes,
liver non-parenchymal cells such as hepatic stellate cells and various immune cells,
particularly Kupffer cells, express TLR4 and can respond to LPS. The contribution
of liver immune cells or parenchyma cells to gut microbiome-enhanced HCC was
investigated using bone marrow chimeric study. Notably, the chimeric study was
combined with Kupffer cell depletion to exclude the potential contribution of liver
resident macrophages. Using this chimeric protocol, the study clearly demonstrated
that the non-Kupffer resident liver cells mediate the gut microbiome-enhanced HCC.

Another interesting finding of the Dapito et al. paper was that the gut microbiome
does not affect the initiation of carcinogenesis in the DEN-CCL4 HCC model
(Dapito et al. 2012). Microarray analysis showed no difference in expression of
cancer stem cell markers, suggesting the regulation of hepatocarcinogenesis is not
likely from progenitor cells. Unexpectedly, the time frame seems to be critical for the
gut microbiome’s influence on hepatocarcinogenesis. Early sterilization followed by
antibiotic treatment withdrawal does not affect hepatocarcinogenesis. In contrast, gut
sterilization at the time when tumors start to appear greatly reduces tumor number
and size. Cell proliferation was investigated, and it was demonstrated that TLR4
functional deficiency strongly reduced cell proliferation. Consistent with the chime-
ric results, NF-κB activation, a surrogate for LPS response, was mainly observed in
the hepatic stellate cells and a large percentage of hepatocytes in DEN-CCL4 mice.
Furthermore, epiregulin, a mitogen which can stimulate cell proliferation, was found
to be significantly affected by TLR4 status and gut sterilization. In vivo LPS
challenge significantly upregulates epiregulin in the hepatic stellate cells. As
expected, epiregulin-deficiency inhibits DEN-CCl4-induced hepatocarcinogenesis.
Besides the altered cell proliferation, a significant increase in cleaved-caspase3
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positive cells within nontumor hepatocytes was observed in both gut-sterilized and
TLR4 mutant mice. Importantly, hepatocyte apoptosis is inversely correlated with
tumor number and size. Together, the data supports the mechanism that LPS act on
hepatic stellate cells to produce epiregulin which enhances proliferation of malignant
hepatocytes and LPS directly act on hepatocytes and promote their survival during
malignant transformation.

The work described above is the first to provide direct evidence that the gut
microbiome controls liver cancer. Using LPS, a common structural component of
gram-negative bacteria, the gut microbiome modulates proliferation and survival of
hepatocytes through targeting liver-resident cells, thus promoting HCC. It is well
accepted that chronic inflammation contributes to cancer, but the underlying mech-
anism is still not clear (Colotta et al. 2009; Boland et al. 2005). Robert Schwabe’s
work demonstrates that gut bacteria-derived LPS is an important factor in malig-
nancy and helps shed light on the contributions of chronic liver inflammation’s role
in hepatocarcinogenesis.

7.7.2 Bile Acids

The liver metabolizes cholesterol to produce primary bile acids which are conjugated
with glycine or taurine in hepatocytes (Chiang 2013). Bile acids are secreted into the
small intestinal lumen to help digestion and absorption of fat and lipid-soluble
vitamins. In the presence of bacteria, the primary bile acids are converted into
secondary bile acids with the main transformation steps being deconjugation and
dehydroxylation (Ridlon et al. 2006, 2016; Dawson and Karpen 2015).The
deconjugation step is the hydrolysis of the glycine or taurine from the steroid nucleus
of primary bile acids which is catalyzed by bacterial bile salt hydrolases (BSH). BSH
are mainly expressed in gram-positive bacteria but have also been found in some
gram-negative bacteria such as Bacteroides spp. (Urdaneta and Casadesus 2017).
Following deconjugation, free primary bile acids are converted into secondary bile
acids through 7α/β-dehydroxylation. Unlike BSH, only a small number of bacterial
species belonging to Clostridia have the 7α/β-dehydroxylation activity, and the
7α/β-dehydroxylation reaction mainly occurs in the colon (Ridlon et al. 2006,
2016). The body will then reuse the bacteria-modified bile acids with close to 95%
of colonic bile acids being reabsorbed and shuttled back to the liver through
enterohepatic circulation (Hofmann 2009).

Bile acids can activate signaling cascades and transcriptional networks and
significantly influence liver function by binding to bile acid receptors such as
farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D3 receptor
(VDR), constitutive androstane receptor (CAR), and membrane-bound G protein-
coupled bile acid receptor1 (GPBAR1, also known as TGR5) (Copple and Li 2016;
Schaap et al. 2014). Many target genes in the transcriptional networks are involved
in metabolism of bile acids, cholesterol, lipid, and carbohydrates as well as inflam-
mation, fibrosis, and carcinogenesis (Li and Chiang 2014). Each bile acid receptor
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shows different affinity for individual bile acids, thus changes in bile acid compo-
sition fine tune bile acid receptor signaling. Through controlling primary-to-second-
ary bile acid conversion, intestinal bacteria can influence liver function. On the other
hand, bile acids also regulate the size and composition of the bacterial community.
Bile acids have antibacterial function through multiple mechanisms including dis-
ruption of bacterial membranes, denaturing proteins, chelation of iron and calcium,
and causing oxidative damage to DNA (Urdaneta and Casadesus 2017). Overgrowth
of enteric bacteria is presented in cirrhotic patients with low levels of fecal bile acids.
In addition, bile acids in part control growth of pathogenic bacteria such as Clos-
tridium difficile (Allegretti et al. 2016; Sorg and Sonenshein 2008).

The contribution of bile acids to carcinogenesis has long been suggested (Phelan
et al. 2017). As early as the 1930s, injection of deoxycholic acid (DCA), a secondary
bile acid, has been found to cause malignant tumors at injection sites in mice. High
level of bile acid exposure induces the generation of reactive oxygen species in cells
which leads to disruption of the cell membrane, mitochondrial dysfunction, and
DNA damage (Perez and Briz 2009). In addition, by binding to bile acid receptors,
bile acids can regulate the expression of a lot of genes, many of which are involved
in inflammation and carcinogenesis (Schaap et al. 2014; Li and Chiang 2014).
Substantial evidences suggest that bile acids, especially secondary bile acids, pro-
mote colon cancer (Ajouz et al. 2014).

Naoko Ohtani’s group was the first to demonstrate that the secondary bile acid
DCA acts as a critical messenger linking obesity-associated dysbiosis with liver
cancer (Fig. 7.2) (Yoshimoto et al. 2013). High-fat diet (HFD)-fed mice with
chemical carcinogen exposure recapitulates the liver tumor-promoting effect of
obesity in humans (Park et al. 2010). In a study from Naoko Ohtani’s group, mice
received a single injection of the chemical carcinogen DMBA (7,12-dimethylbenz[a]
anthracene), which causes oncogenic Ras mutation, and were fed HFD (Yoshimoto
et al. 2013). In line with other reports, HFD-fed obese mice develop marked increase
of HCC. Interestingly, depleting intestinal bacteria with an oral antibiotic cocktail
greatly reduced obesity-enhanced HCC, suggesting that the gut microbiome is
critical in this process. In contrast to the findings of Robert Schwabe’s group
(Dapito et al. 2012), TLR4 deficiency does not influence HCC in HFD-fed DMBA
mice, suggesting that LPS is not involved in this setting. Obesity was associated with
dysbiosis and a dramatic increase in gram-positive bacteria. Oral vancomycin
treatment, which preferentially targets gram-positive bacteria, is sufficient to block
HCC development. Serum metabolites were analyzed, and the secondary bile acid
DCA was substantially increased in HFD mice. Lowering DCA reduces whereas
DCA-feeding increases obesity-enhanced HCC. Intriguingly, DCA feeding alone is
sufficient to enhance HCC in lean mice. As expected, HFD feeding causes expansion
of cluster XI Clostridium which is a gram-positive bacteria and contains the majority
of 7α/β-dehydroxylation required for primary-to-secondary bile acid conversion
(Ridlon et al. 2006, 2016).

Cellular senescence is a process occurring in normal cells in response to telomere
erosion or oncogene activation (Kuilman et al. 2010). This process is a barrier to
tumorigenesis by acting through checkpoint activation and cell-cycle arrest. The
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important role of senescence in hepatocarcinogenesis has been reported (Kang et al.
2011; Lujambio et al. 2013). The livers of HFD-fed DMBA mice show a strong
increase of senescence mainly in hepatic stellate cells (HSCs), which can be blocked
by either an oral antibiotic cocktail or vancomycin treatment. In recent years,
senescent cells have been found to present a secretory profile composed mainly of
inflammatory cytokines chemokines and proteases (Acosta et al. 2013; Kuilman
et al. 2008). Some of the senescence-associated secretory phenotype (SASP) have
cell-autonomous activities which reinforce cell cycle arrest and promote clearance of
senescent cells, whereas other SASP factors are associated with inflammation and
tumorigenesis promotion. Depending on the stage of tumor development, SASP can
be tumor-inhibiting or tumor-promoting (Eggert et al. 2016). The HFD-DMBA
mouse study shows that DCA provokes SASP phenotype in hepatic stellate cells
with increased IL-6, Gro-a, and CXCL9. Next the role of SASP in HCC was tested.
Inflammasome activation and subsequent IL1β can act as an upstream regulator of
SASP. IL1β knockout greatly reduces SASP expression of HSCs and subsequent
liver tumor development. In addition, depleting senescent HSC significantly reduces
HCC. Importantly, the study demonstrates that it is SASP but not cell-cycle arrest
that regulates obesity-associated HCC. Together, the study suggests that the
DCA-SASP axis in stellate cells are a key regulator in obesity-associated HCC.

The HFD-DMBA mouse study suggests that DCA is a potential target to treat
liver cancer. Lowering DCA by decreasing 7α-dehydroxylation activity with
difructose anhydride III or stimulating bile acid secretion with ursodeoxycholic
acid (UDCA) inhibits HCC in HFD-fed DMBA mice. Cholestyramine, a bile acid
sequestering resin that promotes bile acid excretion, has been reported to inhibit
HCC in a different mouse model (Singh et al. 2018). The findings have clinical
implication since UDCA is commonly used to treat patients with primary sclerosing
cholangitis and cholestatic diseases (Lindor et al. 2009). UDCA usage has been
reported to be associated with reduced mortality in colorectal cancer patients (Pardi
et al. 2003). A possible association between UDCA usage and lower HCC incidence
has been reported in patients with hepatitis C-associated cirrhosis (Tarao et al. 2005).
The potential benefit of bile acid-targeting therapy approaches for liver cancer
treatment should be investigated.

7.7.3 Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) are a group of saturated fatty acids containing less
than six carbon molecules and include acetate, propionate, butyrate, pentanoic acid,
and hexanoic acid. Intestinal SCFAs are produced by bacteria through fermentation
of dietary fibers such as non-starch polysaccharides and oligosaccharides that cannot
be digested by host enzymes (den Besten et al. 2013). Lacking a gut microbiome
causes the significant reduction of SCFAs in germ-free mice (Hoverstad and
Midtvedt 1986). The proximal colon has the highest concentration of SCFAs
(70–140 mM) with acetate, propionate, and butyrate being the major components
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(Topping and Clifton 2001; Cook and Sellin 1998). A wide range of bacteria can
generate acetate, whereas the production of propionate and butyrate seems more
specific. Akkermansia muciniphila is believed to be the major propionate-producing
bacteria (Louis and Flint 2017). In the colon, the molar ratio of acetate, propionate,
and butyrate is roughly 60:25:15, respectively. This ratio, however, can be affected
by many factors such as diet and bacterial composition. SCFAs are readily absorbed
by the host. Butyrate serves as an energy source for colon epithelial cells (Hamer
et al. 2008), and propionate is metabolized by hepatocytes. Acetate can pass through
the liver in portal blood and reach the systemic circulation (Bloemen et al. 2009).

SCFAs influence host systems both at the cellular and molecular levels through
two major mechanisms. First, SCFAs can directly inhibit histone deacetylases
(HDACs) to regulate gene expression (Waldecker et al. 2008). Second, SCFAs
regulate signaling through G-protein-coupled receptors (GPCRs) (Husted et al.
2017). The major GPCRs activated by SCFAs includes GPR41, GFPR43, and
GPR109A. Extensive evidence shows that SCFAs are important for host health
and affect the pathogenesis of a wide range of diseases including allergies, metabolic
disorders, neurological diseases, and cancer (Koh et al. 2016). SCFAs promote the
differentiation of anti-inflammatory regulatory T cells (Smith et al. 2013). GPR43
activation by SCFAs is necessary for the normal resolution of certain inflammatory
responses (Maslowski et al. 2009). Butyrate and propionate at low amounts exert
beneficial effects, including prevention of oxidative stress, inflammation, and lipid
oxidation in hepatocytes (McNabney and Henagan 2017).

In contrast to the numerous reported beneficial effects of SCFAs, recently Matam
Vijay-Kumar’s team demonstrates that SCFAs can exert a detrimental function and
promote HCC (Fig. 7.2) (Singh et al. 2018). Initially, the team investigated the
influence of dietary fiber fermentation and SCFA production on metabolic changes
in TLR5 knockout mice which are prone to develop metabolic syndrome. Inulin, a
soluble fiber, was supplemented to the mice in the diet. Consistent with other reports
that inulin ameliorates low-grade inflammation, insulin resistance, and obesity (Zou
et al. 2018), inulin feeding lowered obesity incidence and improved the indices of
metabolic syndrome in the TLR5 knockout mice. Unexpectedly, some inulin-fed
mice had hyperbilirubinemia, hepatic injury and inflammation, and impaired liver
detoxification functions. Perhaps most interesting, prolonged inulin feeding caused
primary HCC in the TLR5 knockout mice. Dietary fiber can be broadly categorized
as insoluble or soluble. By comparing different types of dietary fibers, the study
concluded that soluble fibers, but not fermentable insoluble fibers, induce HCC.
Importantly, soluble fiber-induced HCC only occurs in mice with dysbiosis, not in
TLR5 mice with balanced gut microbiome. Cohousing and cross-fostering studies
demonstrate that the soluble fiber-induced HCC is transmissible between mice
exchanging intestinal microbes. Germ-free TLR5 KO mice fed with irradiated
soluble fiber diet failed to develop hyperbilirubinemia and HCC, confirming that it
is gut microbiome dependent. A high-fat diet causes dysbiosis in mice (Murphy et al.
2015). Consistently, combining soluble fiber with HFD induced HCC in a small
portion of wild-type mice, suggesting the phenomena is generalizable. Unlike
insoluble fibers, soluble fibers can be fermented by the gut bacteria to produce
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SCFAs. HCC-prone TLR5 KO mice display gut dysbiosis characterized by an
increase in fiber-fermenting bacteria and Proteobacteria. As expected, blocking
microbial fermentation by depleting SCFA-consuming bacteria or plant-derived
β-acids protects mice from soluble fiber-induced HCC. Although it causes
hyperbilirubinemia, liver inflammation, enhanced hepatocyte proliferation, and
fibrosis, single SCFA butyrate feeding fails to induce HCC, suggesting other factors
are required.

In this model HCC is closely associated with hyperbilirubinemia caused by
chronic liver inflammation. Mice with hyperbilirubinemia show higher liver expres-
sion of pattern recognition receptor NLRC4, the important inducer of inflammasome
(Duncan and Canna 2018), and TLR4 signaling. However, knockout of TLR4 or
NLRC4 has no influence on HCC incidence, suggesting that LPS and the
inflammasome pathway are not important in this setting. Higher serum levels of
bile acids were found in mice that developed HCC following soluble fiber feeding.
Furthermore, cholestasis is closely associated with dietary fiber-induced HCC,
suggesting the contribution of bile acids in HCC development. Clostridia members,
particularly Clostridium cluster XIVa, are the main producers of butyrate and
secondary bile acids (Van den Abbeele et al. 2013; Riviere et al. 2016). Supporting
these findings, bacterial taxa analysis shows that Clostridia predominantly distin-
guishes hyperbilirubinemia mice, which develop HCC, from other groups. Indeed,
lowering bile acid levels using cholestyramine suppresses HCC formation from
dietary fiber feeding. The study is in line with the finding from Naoko Ohtani’s
group that the gut bacteria-controlled secondary bile acid DCA promotes HCC
(Yoshimoto et al. 2013).

The finding is surprising since dietary fibers and SCFAs are known to have
antitumor function. It has been well recognized that dietary fiber consumption is
associated with reduced risk of colon cancer (Hinnebusch et al. 2002). Importantly,
two clinical studies reported that high intake of fiber has a protective effect against
HCC (Fedirko et al. 2013; Yang et al. 2019). In the EPIC cohort of Western
Europeans, dietary fiber from cereals and cereal derivatives has been found to
have a significantly inverse association with HCC risk (Fedirko et al. 2013). In a
separate study using large NHS and HPFS cohorts of US adults, increased intake of
whole grains and possibly cereal fiber has been suggested to be associated with a
reduced risk of HCC (Yang et al. 2019). However, this study showed that in the
presence of a dysregulated intestinal microbiome, soluble fibers and SCFAs have
opposite effects and promote HCC development, suggesting that the benefit of
soluble fibers and SCFA is context dependent. The finding has important implica-
tions. Half of US adults consume dietary supplements to improve health. However,
adverse effects caused by dietary supplement consumption have been reported
(Ronis et al. 2018). More studies are needed to improve the safety and appropriate
usage of dietary supplements.
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7.7.4 Immune Cells

The liver contains a large number of immune cells with particular concentrations of
Kupffer cells, NKT, and MAIT cells (Racanelli and Rehermann 2006). HCC is a
typical inflammation-related cancer, and HCC patients often have underlying
chronic liver inflammation (Michelotti et al. 2013; Anstee et al. 2019; Ganne-
Carrie and Nahon 2019; Ponziani et al. 2019). The important role of immune
surveillance in liver cancer has been recognized. In mice, removing the adaptive
immune system promotes carcinogen in DEN-induced HCC (Schneider et al. 2012;
Mossanen et al. 2019). Together with macrophages, CD4 T cells remove senescent
hepatocytes to prevent malignant transformation (Kang et al. 2011). In addition, the
liver immune cells play a critical role in obesity-/NAFLD-promoted HCC. Several
mechanisms have been identified including hepatic activation of NKT, CD8 T cells,
IgA-producing B cells, Th17 cells, and loss of liver CD4 T cells (Shalapour et al.
2017; Wolf et al. 2014; Gomes et al. 2016; Ma et al. 2016). In humans, adoptive
T-cell therapy using tumor-specific CD4 T cells induced a strong antitumor response
and complete eradication of tumor lesions in a late-stage cholangiocarcinoma patient
(Tran et al. 2014). The patient is still alive 10 years after diagnosis. Based on the
promising results, immune checkpoint inhibitors nivolumab and pembrolizumab
have recently been approved by FDA to treat HCC patients (Okusaka and Ikeda
2018).

The gut microbiome has been established as a modulator for antitumor immunity
(Gopalakrishnan et al. 2018a). Emerging evidences suggest that the gut microbiome
plays a critical role in regulating liver local antitumor immune responses. In a
follow-up study by Naoko Ohtani’s group, lipoteichoic acid (LTA), a gram-positive
bacterial component, has been shown to contribute to obesity-enhanced HCC in
accordance with the bile acid DCA (Loo et al. 2017). Unlike DCA, LTA is a major
ligand for TLR2. Indeed, TLR2-deficient mice have reduced HCC in the
HFD-MDTA model. Interestingly, the binding of LTA to TLR2 leads to increased
COX2 activity, which subsequently enhances the production of prostaglandin E2
(PGE2). Tumor tissues upregulate PTGER4, the receptor for PGE2 (Sugimoto and
Narumiya 2007), which is predominately expressed on immune cells particularly on
T cells, but not on hepatocytes or HSCs. In vitro culture experiments show that
PGE2 attenuates the proinflammatory cytokines IFNγ and TNFα but increases anti-
inflammatory cytokines IL10 and IL6. High production of COX2 and PGE2 can be
detected in noncirrhotic NASH-associated HCC patients. To our knowledge, it is the
first publication which links the gut microbiome and liver tumor development
through inhibition of the immune system.

A recent mouse study from Vikas Dudeja’s group investigated the effects of the
gut microbiome on tumor growth (Sethi et al. 2018). An oral antibiotic cocktail was
applied to remove intestinal bacteria, and the subsequent influence on growth of both
subcutaneous tumors and liver metastases was tested. Enhanced tumor development
in both compartments were found after removing the gut microbiome. Interestingly,
the tumor-promoting function of the gut microbiome depends on adaptive immunity
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and disappears in Rag1 knockout mice which lack mature T, B, and NKT cells.
Removing intestinal bacteria induces higher T-cell activation and production of
proinflammatory cytokines such as IFNγ in the tumor microenvironment, which
correlates with improved survival. This report provides direct evidence that the
adaptive immune system in involved in the gut microbiome-modulated HCC.

Our group also studies the influence of the gut microbiome on liver cancer
(Fig. 7.2) (Ma et al. 2018). Consistent with previous observations, removing gut
bacteria using oral antibiotic cocktail reduces liver tumor formation (Shalapour et al.
2017; Dapito et al. 2012; Sethi et al. 2018). The effect is not only observed in
primary HCC but also seen in liver metastatic models with nonhepatic tumors.
Interestingly, removing the gut bacteria causes a seemingly location-dependent
opposite effect on the growth of metastatic lesion from the same tumor line in the
liver compared to the lung. This observation suggests that the gut microbiome-
influenced liver environment is crucial for controlling tumor growth. We focused on
the changes within the liver immune system to understand the mechanism. A
prominent increase in liver CXCR6+ NKT cells was found in the oral antibiotics-
treated mice or germ-free mice. Importantly, either NKT cell deficiency or disrupting
liver accumulation of NKT cells by knocking out CXCR6 eliminated the influence
of the gut bacteria on liver tumor growth. In addition, hepatic NKT cells from
antibiotic-treated mice are more active and produce higher levels of IFNγ, an
important cytokine to induce antitumor immunity, after in vivo stimulation. Together
these results suggest that there is a critical role of NKT cells in gut microbiome-
controlled liver tumor growth.

NKT cells are a group of innate-like lymphocytes and serve as a bridge between
the innate and adaptive immune system (Gao et al. 2009; Bandyopadhyay et al.
2016; Terabe and Berzofsky 2008; Nishimura et al. 2000). With limited TCR
repertoire, NKT cells recognize lipids presented on CD1 molecules, which leads to
a quick release of a larger amount and various cytokines that help initiate a variety of
immune responses. NKT cells are enriched in the liver and make up ~30% of
intrahepatic lymphocytes in mice (Bandyopadhyay et al. 2016; Terabe and
Berzofsky 2008). The endogenous lipid ligands for NKT are still elusive, but studies
have shown that the lipid components of gut bacteria can activate NKT cells
(Brennan et al. 2014; Wolf et al. 2015; Zajonc and Girardi 2015), which suggest a
potential role for gut bacteria regulation of liver NKT cells. It is well-known that
NKT cells have antitumor functions (Terabe and Berzofsky 2008). NKT cells are
reported to be important in controlling liver metastasis (Cullen et al. 2009). A recent
publication demonstrates that NKT cells play an important role in preventing
DEN-induced HCC (Mossanen et al. 2019). NKT cells can exert antitumor function
by either directly killing tumor cells or an indirect function through secreting
cytokines. The exact mechanism of how liver NKT cells mediate gut microbiome-
controlled liver tumor formation is not clear and still under investigation.

Next, we focused on how the gut microbiome regulates the intrahepatic NKT cell
population. Removing gram-positive bacteria is sufficient to increase NKT cells.
Liver accumulation of NKT cells is mediated by CXCR6 receptor which recognizes
its ligand CXCL16 (highly expressed on LSECs) (Geissmann et al. 2005) in the
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lining of liver sinusoids. Removing gut bacteria or selectively targeting gram-
positive bacteria increases CXCL16 expression in LSECs. Bacteria responsible for
primary-to-secondary conversion of bile acids are gram-positive. For this reason, we
tested the possible link between bile acids and NKT cells. Interestingly, secondary
bile acids decreased whereas primary bile acid increased CXCL16 expression.
Feeding secondary bile acids to mice inhibits liver CXCL16 expression and reduces
NKT cells in the liver. Colonization of mice with Clostridium scindens, a bacteria
species well-known for primary-to-secondary bile acid conversion (Studer et al.
2016), accelerates the dropping of liver NKT cells following antibiotic withdrawal.
Importantly, Clostridium scindens colonization increases liver tumor burden. Next,
we checked whether the finding in mice can also be replicated in humans. Indeed, in
nontumor liver tissues of HCC patients, a positive association between primary bile
acid CDCA and CXCL16 mRNA level was found. In contrast, secondary bile acid
DCA is negatively associated with CXCL16 mRNA levels, suggesting the bile
acids/CXCL16 axis also exists in humans. Our study clearly demonstrated that the
gut bacteria use bile acids as a messenger to regulate liver NKT cells thus influencing
liver antitumor immunity.

Our understating of the gut microbiome’s effects on liver cancer is still in its
infancy. Most of the studies still focus on HCC, the major type of primary liver
cancer. The influence of the gut microbiome on cholangiocarcinoma has not been
reported, although there are reports of the association between intrahepatic
cholangiocarcinoma and chronic inflammatory bowel diseases which display
dysbiosis (Tyson and El-Serag 2011). In addition, the majority of patients with
primary sclerosing cholangitis, a well-established risk factor for
cholangiocarcinoma, have a concomitant inflammatory bowel disease (Gulamhusein
et al. 2016). Our study with liver metastatic models suggests that the gut microbiome
regulates liver antitumor immunity and the tumor regulatory function is not limited
to HCC but also apply to other liver cancer types including liver metastasis.

7.8 Gut Microbiome and Immunotherapy

Immunotherapies, particularly immune checkpoint inhibitors, have shown promis-
ing effects in treating patients with solid tumors (Khalil et al. 2016). The gut
microbiome plays a fundamental role in the development and functional regulation
of the host immune system. Importantly, alternation of the gut microbiome has been
found to influence the efficacy of many types of immunotherapies for cancer
including immune checkpoint inhibitors (Routy et al. 2018a). In patients with
metastatic melanoma, non-small cell lung cancer, or renal cancer, the presence of
intestinal bacteria such as Faecalibacterium prausnitzii, Bifidobacterium longum, or
Akkermansia muciniphila has been linked to better anti-PD-1 responses (Routy et al.
2018b; Matson et al. 2018; Gopalakrishnan et al. 2018b; Frankel et al. 2017; Pinato
et al. 2019). As expected, usage of antibiotics, especially the ones with broad
spectrum, has been connected with impaired efficacy of checkpoint blockade in
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these studies. The timing of antibiotic application seems to be important. Prior, but
not concurrent, administration of broad-spectrum antibiotic with anti-PD1 therapy is
associated with worse overall survival and a higher risk of tumor refractory (Pinato
et al. 2019). Of note, no close taxonomic relationship has been associated with
improved efficacy of anti-PD1/PD-L1 therapy, suggesting that multiple bacteria-
controlled pathways are involved or these bacteria are functionally related. Besides
immunotherapy, proper immune responses are required for many chemotherapies to
reach full-treatment potency such as cyclophosphamide- and platinum-based thera-
pies. In mouse studies, the optimal antitumor efficacy of cyclophosphamide and
oxaliplatin has been found to be dependent on intact gut commensal bacteria and is
significantly dampened in germ-free mice or mice received antibiotic cocktails (Iida
et al. 2013). Although the crucial role of intestinal bacteria in tumor immunotherapy
has been established, the underlying mechanisms are still largely unknown.

Following the advancements of immunotherapy for solid tumors in the past few
years, there is a global interest in immunotherapies for HCC (Hou et al. 2019;
Johnston and Khakoo 2019; Floudas et al. 2019; Xie et al. 2018). Most HCC patients
diagnosed with advanced disease are not eligible for curative approaches such as
surgical resection, liver transplantation, or local percutaneous tumor ablation. Sys-
temic treatments for HCC constitute mostly of multitargeted tyrosine kinase inhib-
itors (TKIs) with sorafenib being the only FDA-approved drug until 2017 (Johnston
and Khakoo 2019; Floudas et al. 2019). Although additional TKIs have been
approved for HCC treatment recently, its overall survival benefit is limited.
Recently, nivolumab and pembrolizumab, two immune checkpoint inhibitors, have
been approved by the FDA to treat HCC patients. Besides immune checkpoint
inhibitors, other immune-based approaches for HCC are under investigation includ-
ing DC vaccines, oncolytic viruses, adoptive cell therapy, antigen-targeting anti-
bodies, and blocking inhibitory cytokines (Floudas et al. 2019; Xie et al. 2018).
Currently, the influence of the gut microbiome on immunotherapy for liver cancer is
unknown. A recent mouse study reported the impact of the gut microbiome on anti-
PD1 therapy for pancreatic adenocarcinoma (PDA) which is a deadly GI malignancy
(Pushalkar et al. 2018). Similar to liver cancer, the gut microbiome promotes PDA
development. Interestingly, removing the gut bacteria sensitizes PDA tumors to anti-
PD1 therapy accompanying an enhanced adaptive T-cell response. The observation
is contradictory to many reports that the gut microbiome is needed for the success of
anti-PD1 therapy (Routy et al. 2018b; Matson et al. 2018; Gopalakrishnan et al.
2018b; Pinato et al. 2019). Further investigations are needed to clarify the potential
influences the gut microbiome has on immunotherapy against GI cancers.

7.9 Summary

Liver cancer is a deadly disease, and its incidence is rising. Following the success of
controlling viral hepatitis and global pandemic of obesity, the major risk factors for
HCC are shifting toward obesity and chronic metabolic dysregulation conditions
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such as NAFLD. Obesity and NAFLD are closely associated with the alteration of
the gut microbiome. Together with the finding of liver cancer-associated bacteria, it
has been suggested that the gut microbiome contributes to liver cancer formation.
Importantly, animal studies prove direct evidence that the gut bacteria promote HCC
development. The potential strategies targeting the gut microbiome to treat liver
cancer, and the influence of the gut microbiome on available liver cancer treatment,
especially immunotherapies, should be further investigated.
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Chapter 8
The Microbiome and Urologic Cancers

In “Inflammation, Infection, and Microbiome in
Cancers: Evidence, Mechanisms, and Implications”

Mithunah Krishnamoorthy, Saman Maleki Vareki, and Jeremy P. Burton

Abstract Cancers of the urinary system are likely to be influenced by both the
urinary and gut microbiotas. While commensal organisms do not densely colonize
the urinary system, those present still play a significant role in health and disease.
Like other organs, there is always a potential for malignancy to occur when
microorganisms cause chronic inflammation. Additionally, the urinary system is
commonly exposed to the waste products in the body, including those microbial
metabolites from the gut which have entered the circulation. It is, therefore, possible
that the microbiota of different sites contributes to the process of carcinogenesis
through metabolic toxification and detoxification as well as immune interactions.
The emerging clinical evidence also suggests a prominent role for microbiota in
affecting the efficacy of cancer therapeutics, including chemotherapy and immuno-
therapy agents.
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8.1 Introduction

The microbiome is quickly emerging as an essential factor in determining the
prognosis of various cancers (Routy et al. 2018; Riquelme et al. 2019;
Gopalakrishnan et al. 2018). The microbiome refers to not only the organisms
inhabiting an environment but also includes the factors that they produce (Whiteside
et al. 2015). As there are thought to be approximately ten times more bacterial cells
than host cells in the human body, the human microbiome has significant impacts on
overall health (Turnbaugh et al. 2007; Round and Mazmanian 2014). Notably,
without the microbiome, the development of the immune system is impaired.
Germ-free mice were found to have deficits in antibody production and are more
susceptible to bacterial infections (Round and Mazmanian 2014). The immune
system has evolved to protect the body against foreign entities and neoplastic
cells; therefore, the microbiome is needed to support the antitumor capabilities of
the immune system. The microbiome is initially populated by the flora of the
mother’s vaginal canal in neonates, where it is then shaped by diet and the environ-
ment. Bacteria encounter the host at several sites, including the mucous membranes
and the skin. To date, most research has focused on the gut microbiome, and much
less is known about the microbiome of the urinary tract. The urine shares 23.6% of
the same bacteria as the gut microbiome (Morand et al. 2019). However, bacteria
present in the urine can only give an idea of the bacterial composition of the entire
urinary system. A recent study suggests that the bladder tissue and the urine have
different compositions of bacteria, and these compositions change when the tissue
becomes neoplastic (Pederzoli et al. 2020). Urological cancers refer to the family of
cancers that include bladder, kidney, prostate, and testicular cancer. Here, we briefly
discuss how the microbiome impacts the process of tumorigenesis and cancer
progression and affects the treatment of urological cancers.

8.2 The Urinary System

The intestinal tract is designed for nutrient absorption for the human body and then
waste disposal of the exhausted components. The urinary tract’s role, however, is
only to remove waste products from circulation, and it subsequently has a one-way
flow out of the body. While both the urinary and intestinal tracts have exposure to
bacteria at their epithelial barriers, these occur at different bacterial densities, types
of microbes, and in the presence of various host cell types. The urinary system has
specially evolved to filter waste from the blood then followed by systems to collect
and then expel the liquid waste without leakage. Despite being the size of a human
fist, both kidneys receive 20% of the cardiac output and filter approximately 125 mL
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of blood per minute (Scott and Quaggin 2015). With the highest blood flow per
100 g of tissue, the kidneys have a disproportionately higher exposure to toxins than
other organs (Vervaet et al. 2017). The nephrons within the kidneys retain any
molecules above ~50 KDa, filtering out water, salt, amino acids, and certain metab-
olites (Kurts et al. 2013). These metabolites are in contact with the urothelium for
extended periods of time; if carcinogenic, they may also lead to tumorigenesis. The
gut microbiota is a significant source of metabolites, and many of these enter hepatic
circulation and ultimately are filtered out through the urinary system. It illustrates
why bacteria at other sites can influence the urinary system, even if they are distant to
this site, as the small metabolites easily disseminate beyond where they originated.

Several carcinogenic metabolites are produced by gut microbes, including poly-
amines, ammonia, and N-nitroso compounds (Louis et al. 2014). These are produced
during the breakdown of proteins by microbes in the gut, where some are transferred
to the bloodstream via the intestinal mucosa (Tofalo et al. 2019). These compounds
can induce inflammation which may lead to malignancies (Louis et al. 2014).
Metabolites such as polyamines are also produced endogenously and are necessary
for eukaryotic cell growth. However, the overabundance of polyamines is toxic. The
carcinogenic effects of polyamines are due to its catabolism that releases large
amounts of reactive oxygen species (ROS) which can lead to destructive DNA
damage (Casero et al. 2019). Notably, the polyamine spermine concentration in
urine was found to be a biomarker for prostate cancer (Tsoi et al. 2016). This study,
however, did not determine if the source of spermine was bacterial or host derived.
Bacteria also produce N-nitroso compounds (NOCs) in the gut, which correlated
with a high incidence of colorectal cancer in European populations (Loh et al. 2011;
Kobayashi 2018). As NOCs can enter the urinary system via the blood, they can
potentially induce urinary cancers as well. Indeed, and increase in nitrate (NOC
precursor) consumption correlated with incidence of renal cell carcinoma (Dellavalle
et al. 2013). On the other hand, some metabolites such as short-chain fatty acids
(SCFAs) are anti-inflammmatory and limit tumorigenesis by suppressing inflamma-
tion. SCFAs are the by-products of insoluble carbohydrate fermentation in the gut
and promote the differentiation of CD4+ T cells into immunosuppressive regulatory
T cells (Tregs) (Park et al. 2015). Tregs play a key role in suppressing inflammation
in tissues by limiting the proliferation of pro-inflammatory immune cells (Corthay
2009).

The urinary system, especially in women, is proximal to the terminal gastroin-
testinal tract and carries a greater risk of infection given the high number of microbes
at this site. Many gut microbes end up in the urogenital tract, especially in women
via transfer across the perineum, vagina, and then to the urethra, which in women is
closer to the bladder than men. This closer proximity contributes to the higher risk of
infection in women. Some of these bacteria include uropathogenic Escherichia coli
(UPEC), a highly heterogenous group especially adapted to survive in the urinary
tract (Foxman 2010). Notably, a study found a higher prevalence of mucosal binding
UPEC in tissue samples from colorectal cancer patients than patients with divertic-
ulosis (noncancerous pouches that form on the colon wall) (Buc et al. 2013). These
strains of E. coli produced cyclomodulin and genotoxin, which regulate cell cycle
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progression and damages DNA, respectively. Therefore, the presence of these
bacterial strains in the urinary tract may induce tumorigenesis as well. Toxic
metabolites may also be degraded by specific microbiota that inhabit the urinary
system. Potentially, by altering the microbiota, one can remove toxic compounds,
thus limiting exposure. Alternatively, specific bacterial metabolites may pose a
threat and promote tumorigenesis once in the hepatic system. Future studies must
explore how microbial composition affects the breakdown of compounds and how
these breakdown products impact overall health.

Microbiomes have been implicated in the transformation of healthy cells into
malignant cells, particularly in the gastrointestinal tract. The most well-known being
the chronic infection of Helicobacter pylori and the development of gastric cancer.
Three percent of patients with H. pylori infections develop gastric adenocarcinoma
(Wroblewski et al. 2010). Helicobacter pylori secretes virulence factors that induce
chronic inflammation, which subsequently leads to the production of ROS and then
carcinogenesis (Wroblewski et al. 2010). As a similar phenomenon occurs in the
colon as well, one might assume that infections in the urinary system may also lead
to formation of cancers. Indeed, meta-analysis of eight studies showed that exposure
to urinary tract infections (UTI) favored in risk of non-schistosomiasis-related
urinary bladder cancer (UBC). Surprisingly, analysis of female only data did not
show a correlation between UTIs and UBC (Bayne et al. 2018). Nevertheless, the
occurrence of UBC or other urinary cancers has not yet been associated with specific
bacteria. One study did find that the genus Streptococcus was more abundant in the
urine samples of females with urothelial carcinoma compared to healthy individuals
(Xu et al. 2014). Whether the abundance of Streptococcus induced an inflammatory
response prior to tumor formation was not investigated in this study. These studies
suggest that chronic inflammation of the urinary tract may predispose individuals to
tumor development.

The epithelial cells along the urinary tract are the first line of host defense against
pathogens, expressing pattern recognition receptors (PRRs) that trigger anti-
inflammatory signaling cascades upon binding bacterial components like lipopoly-
saccharide. The epithelial cells secrete cytokines such as IL-6 and IL-8 in order to
recruit macrophages and dendritic cells to the site of infection. These cells are crucial
for phagocytosing bacteria and clearing infection. At homeostasis, the kidney is
residence to dendritic cells and macrophages, which are restricted to the space
external to the nephrons (Kurts et al. 2013). Upon infection, resident dendritic
cells secrete chemokines to attract neutrophils which directly kill pathogens via
phagocytosis or release of antimicrobial agents. The dendritic cells themselves can
also uptake apoptotic cell remnants and present the peptides which activates T cells.
Activated T cells can secrete cytokines that support macrophage activity. Unlike the
intestines, the urinary system does not have a dedicated set of lymphoid organs that
can continuously monitor bacterial populations. Instead, it depends on the ability of
the epithelial cells to recruit immune cells. An essential subset of immune cells are
cytotoxic T cells, which can detect non-self cells and directly kill them. Studies have
shown that mice with depleted cytotoxic T cells are unable to slow tumor growth,
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highlighting the importance of cytotoxic T cells in tumor control (Fan and Edgington
1989; Sivick et al. 2018).

8.3 Bladder Cancer and Microbes

The disproportionate members of men with bladder cancer is thought to be due to
industrial or lifestyle exposure, rather than other causes such as infection. However,
there is mounting evidence that microbes may play a role in the precancerous
conditioning of tissue (Burger et al. 2013). Bladder cancer is the fourth most
common cancer in men and the eleventh most common malignancy in women
(Kamat et al. 2016). From the 1800s until 2012, a healthy bladder was believed to
be devoid of any microorganisms, as most bacteria from the urine could not be
cultured using techniques that were available at the time (Wolfe et al. 2012). These
techniques were unsuitable to identify the slow-growing anaerobic bacteria that are
now known to exist in the bladder. However, with the development of 16S rRNA
sequencing technology and fluorescent microscopic techniques, bacteria in the
bladder could be readily identified, disproving the paradigm of sterility (Wolfe
et al. 2012; De Nisco et al. 2019).

While there is some variation from study to study, notably, males and females are
thought to harbor different compositions of microbiota. While female bladders were
colonized largely by Lactobacillus and Gardnerella, males’ bladder were described
to be colonized by Corynebacterium, Staphylococcus, and Streptococcus (Pearce
et al. 2015; Shrestha et al. 2018). The difference in bacteria between the sexes may
contribute to the increasing instances of bladder cancer observed in males compared
to females. In females, a large proportion of bacteria may originate from the vagina,
where the most prevalent genus of bacteria is Lactobacillus, which is usually a
marker of good health (Zhong et al. 2013). Notably, Lactobacillus casei, an intes-
tinally associated lactobacilli, had been shown to reduce tumor size in mice inocu-
lated with the TC-1 (lung cancer model). This study showed that L. casei had
antitumor properties as it induced dendritic cells to secrete IL-2 (Jacouton et al.
2019). IL-2 is a pro-inflammatory cytokine that can recruit cytotoxic T cells and
natural killer cells which can then directly kill tumor cells (Mortara et al. 2018).
Also, IL-2 is an FDA-approved therapy for melanoma when administrated intrave-
nously (Tsao et al. 2004). In a study where L. casei was administered orally to males
with superficial bladder cancer in a double-blinded study, the 50% time-to-recur-
rence rate was 1.8 times longer than untreated patients, suggesting that L. casei may
be used as a probiotic to reduce bladder cancer recurrence. Of note, certain species of
lactobacilli like L. casei in the bladder of women can lower the concentration of ATP
in their environment (Abbasian et al. 2019). Since the tumor interstitial space has a
high concentration of ATP that is used by cancer cells to drive cell growth and
proliferation, L. casei may potentially slow tumor growth by decreasing ATP
concentrations (Qian et al. 2016).
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In preliminary studies with a relatively limited number of subjects, male bladder
cancer patients were shown to have a different composition of bacteria than those
who are healthy (Bučević Popović et al. 2018). Although the species diversity was
not significantly different, urine collected from bladder cancer patients had increased
proportions of Fusobacterium, Actinobaculum, Facklamia, and Campylobacter
(Bučević Popović et al. 2018). Interestingly, Fusobacterium nucleatum has been
prevalent in colorectal cancer tissues as well (Castellarin et al. 2012). When Apcmin/+

mice that lack the tumor suppressor gene APC are fed F. nucleatum, the develop-
ment of tumors is accelerated in the colon. This was accompanied by an increase of
myeloid-derived suppressor cells in the tumor, which have been shown to suppress
T-cell activity (Kostic et al. 2014). Thus, F. nucleatum may induce an environment
that fosters the growth of tumors and may only require small pockets of persistence
in the bladder tissue to induce tumorigenesis.

It is well-known that infection with the parasite Schistosoma haematobium—
schistosomiasis—is associated with an increased risk of bladder cancer.
S. haematobium implants its eggs into the bladder wall, leading to inflammation
and urothelial hyperplasia, a potentially precancerous lesion (Ishida and Hsieh
2018). However, not all who have schistosomiasis developed carcinomas. Whether
or not schistosomiases will lead to carcinogenesis may depend also upon microbiota
present in the bladder. Bacterial taxa such as Fusobacterium, Sphingobacterium, and
Enterococcus, which are also known immunostimulants, have been found in patients
with urogenital schistosomiasis-induced bladder pathologies (Adebayo et al. 2017).
Additionally, NOCs were commonly found in high concentrations in patients with
schistosomiasis (Mostafa et al. 1999). NOCs are highly carcinogenic and are pro-
duced by certain strains of bacteria which may induce tumor formation (Markowski
et al. 2019).

Inflammatory events involving bacteria can induce crystallizations that can form
the initial nidus of bladder and kidney stones. The occurrence of bladder stones may
also predispose patients to bladder cancer (Fernando et al. 2017; Cho and Holley
2013; Chung et al. 2013). The mechanical irritation caused by stones can increase
the proliferation of cells in the bladder wall, leading to an increase in the mutation
frequency (Takahashi et al. 2000). This ultimately may lead to the formation of
bladder cancers (Takahashi et al. 2000). Biofilms of bacteria may also grow on the
stones themselves. Whether these are disease causing or not is yet to be understood
(Schwaderer and Wolfe 2017). However, the bacteria do seem to promote the
aggregation of crystals. One study showed that the growth of calcium oxalate
crystals increased in the presence of Escherichia coli and Klebsiella pneumoniae
(Chutipongtanate et al. 2013). Perhaps the presence of these bacteria promotes the
growth of crystals, which subsequently promotes tumorigenesis.

Surprisingly, the administration of bacteria can have therapeutic effects. For the
past 50 years, Bacillus Calmette–Guérin (BCG) has been used to treat non-muscle-
invasive bladder cancer (NMIBC) and remains the most effective intravesical
treatment; even with a 50% recurrence rate. BCG is a live, attenuated form of the
slow-growing, aerobic bovine tuberculosis bacterium,Mycobacterium bovis (Kamat
et al. 2015). For the BCG immunotherapy to be effective, the bacterium is postulated
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to bind to the bladder wall in a fibronectin-facilitated manner (Ratliff et al. 1987).
The attachment of BCG to the bladder wall immediately recruits different types of
lymphocytes, including CD8+ cytotoxic T cells and CD4+ helper T cells (Kates et al.
2018). This influx of lymphocytes is transient and returns to pretreatment levels
3 weeks after BCG treatment (Kates et al. 2018). Whether or not the patient responds
to the treatment is dependent on which populations of lymphocytes are recruited to
the tumor microenvironment. Compared to responders, nonresponders of BCG
treatment had threefold more FOX3P+ regulatory T cells and tumor-associated
macrophages recruited to the tumor. Both FOX3P3+ regulatory T cells and tumor-
associated macrophages contribute to the suppression of T-cell activation (Pichler
et al. 2016; Pathria et al. 2019). BCG is often used in combination with other
therapies, such as chemotherapy and transurethral resection, to maximize
progression-free survival (Deng et al. 2017; Hinotsu et al. 2011).

Given the high occurrence rate with BCG therapy, we ponder the relationship that
the microbiome has on the efficacy of this treatment. Members of commonly found
urinary system inhabitants interact with proteins such as fibronectin (McMillan et al.
2013) This may competitively prevent the adhesion of the Mycobacterium bovis to
the bladder, thus reducing the efficacy of the vaccine. More importantly, commensal
and probiotic bacterium are known to reduce pro-inflammatory responses at various
exposed epithelial surfaces including urogenital tract, oral cavity, and gut which may
also reduce vaccine efficacy (McMillan et al. 2013; Cosseau et al. 2008; Plaza-d
et al. 2017). There may be other interactions such as co-aggregation with commensal
species which removes its ability to interact with the host surface directly.

8.4 Renal Cell Carcinoma

Renal cell carcinoma (RCC) is a malignancy of the proximal convoluted tubule in
the kidney. RCC is less often diagnosed in its early stages due to the lack of clinical
symptoms, leading to 20% of patients presenting with metastatic disease (Choueiri
and Motzer 2017). Several different variations of RCC exist, clear cell renal cell
carcinoma (CCRCC) being the most prevalent; 70% of all RCC patients have
metastatic CCRCC. Notably, urinary tract infections positively correlate with
instances of RCC. Male current smokers with recurrent urinary tract infections
(UTIs) constitute the highest proportion of RCC patients (Parker et al. 2004). This
might imply that constant inflammation may lead to tumor formation.

Targeted therapies, such as vascular endothelial growth factor receptor-targeted,
tyrosine kinase inhibitors (VEGF-TKIs), have been the standard line of treatment in
the past decade. While VEGF-TKIs decrease tumor size quickly, patients often
become resistant to treatment within months and on average have a median survival
of 26.9 months (Heng et al. 2014; Beacham and Deatrick 2008). A large proportion
of patients undergoing VEGF-TKI treatment have diarrhea as a side effect. Notably,
16S RNA gene sequencing of patient stool samples showed a difference between the
bacterial composition of those who have diarrhea and those who do not. Bacteroides
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spp. was enriched in stool samples from patients with diarrhea, while Prevotella was
enriched in the non-diarrhea group (Pal et al. 2015). Additionally, another study has
shown that administering a Bacteroides-specific antibiotic prevents diarrhea while
also prolonging progression-free survival by 10 months in RRC patients treated with
VEGF-TKIs (Hahn et al. 2018). This suggests that the dysbiosis of gut microbiota
can cause diarrhea which may be managed by the administration of a bacteria-
specific antibiotics or probiotics. Colitis-like side effects may also be managed by
fecal microbiota transplant (Wang et al. 2018).

More recently, combination treatment with checkpoint immunotherapies against
programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4)
has become the first line of treatment for intermediate- and poor-risk RCC. These
immunotherapies work by blocking the receptors that trigger T-cell inactivation
(Pardoll 2012). When compared to sunitinib, a VEGF-TKI, the combination of
nivolumab (PD-1 inhibitor) and ipilimumab (CTLA-4 inhibitor) was much more
effective as the median overall survival was not reached with nivolumab and
ipilimumab. In contrast, the median overall survival for sunitinib was 26.0 months
(Motzer et al. 2018). The effectiveness of immunotherapy was recently associated
with the gut microbiome (Routy et al. 2018; Riquelme et al. 2019). Indeed, a study
following a large cohort of RCC patients showed that the median progression-free
survival was 2.9 months in antibiotic users and 8.1 months in non-antibiotic users
that were treated with anti-PD-1 therapy (Lalani et al. 2019). This suggests that
disturbing the gut microbiota with antibiotics is detrimental to the effectiveness of
immunotherapy. Surprisingly, antibiotics have a less profound impact on VEGF-
TKI therapy, interferon therapy, and mammalian target of rapamycin (mTOR)
inhibitors than immunotherapy (Lalani et al. 2019). Antibiotics can drastically
change the gut microbiome, lowering the number of observed species by 60–75%
and may selectively eliminate helpful bacteria while allowing for the expansion of
less desirable microbiota (Suez et al. 2018). It is unclear what composition is needed
to elicit the best response to immunotherapy, but, generally, patients with more
diverse microbiota are better responders. Stool samples from RCC patients who
responded better to anti-PD-1 therapy were found to have enriched populations of
Akkermansia muciniphila (Routy et al. 2018). When fecal matter from responding
patients was transplanted into germ-free mice, tumor burden decreased more when
treated with anti-PD-1 compared to mice transplanted with nonresponder feces. In
these mice, there was an upregulation of the Th1 response, evidenced by the increase
of tumor-infiltrating CXCR3+CD4+ T cells (Routy et al. 2018). CXCR3+CD4+ T
cells are essential as they secrete cytokines that activate dendritic cells, which in turn
promotes the proliferation of cytotoxic T cells (Yoon et al. 2009). The underlying
mechanism of the protective effect of A. muciniphila is still unclear.
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8.5 Prostate Cancer

One probable risk factor for developing prostate cancer is inflammation. As the
prostate is in close proximity to the urinary tract, inflammatory pathogens may enter
due to urine reflux and lead to infections. In a study that compared the urinary
microbiome between prostate cancer patients and healthy volunteers, patients with
prostate cancer had pro-inflammatory uropathogenic bacteria. This population
included Streptococcus anginosus, Anaerococcus lactolyticus, Anaerococcus
obesiensis, Actinobaculum schaalii, Varibaculum cambriense, and
Propionimicrobium lymphophilum (Shrestha et al. 2018). These bacteria are associ-
ated with prostatitis, UTIs, bacterial vaginosis, and sexually transmitted infections
(STIs). Pathogenic bacteria may initially recruit macrophages and neutrophils that
release reactive oxygen species and pro-inflammatory cytokines that destroy DNA.
Repeated bacterial infections may lead to proliferative inflammatory atrophy, which
is recognized as a benign lesion that has the potential to become cancerous
(Woenckhaus and Fenic 2008).

Whether the prostate itself has a microbiome or not has been debated. Some
studies argue that in a healthy prostate, prostatic fluid is antibacterial, which prevents
the growth of bacteria (Porter et al. 2018; Com et al. 2003). Other studies have found
bacterial DNA in prostatic fluid. Ma et al. have shown that the prostatic fluid showed
differences in bacterial composition between healthy volunteers and prostate cancer
patients. While the species present were similar between the two groups in this study,
prostate cancer patients had less microbial diversity and evenness (Ma et al. 2019).

The growth of some prostate cancers is dependent on androgens, such as testos-
terone. Therefore, androgen ablation therapy has been the conventional treatment in
preventing the growth of tumors (Feldman and Feldman 2001). Commensal bacteria
in the gut have been found to catabolize testosterone. In one study, the comparison of
free testosterone levels in the gut between germ-free and conventional mice showed
that germ-free mice have higher testosterone levels (Colldén et al. 2017). Con-
versely, certain bacteria can also promote the production of testosterone. Lactoba-
cillus reuteri increased serum concentrations of testosterone when supplemented in
the diets of mice (Poutahidis et al. 2014). Besides, members of the intestinal
microbiota, such as Clostridium scindens, can produce androgens from compounds
often administered to cancer patients such as glucocorticoids such as cortisol (Ridlon
et al. 2013). We have shown that bacteria can directly utilize chemotherapeutic drugs
such as abiraterone acetate, an inhibitor of the androgen receptor CYP17A, to
suppress the production of testosterone (Abdur-Rashid et al. 2019). Potentially, the
gut microbiota composition can determine the growth rate of prostate cancer and
impact the efficacy of hormone therapies (Porter et al. 2018).
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8.6 Gut Microbiome and Urinary Cancers

The urinary microbiome can be influenced by the gut microbiome. Indeed, a 1%
abundance of Enterococcus in the gut microbiota of kidney transplant patients
increased the risk of Enterococcus bacteriuria and urinary tract infection (Magruder
et al. 2019). How pathogenic bacteria from the gut initially seeds the urinary tract
was not described in this study. Whether an increase in gut bacteria that support
tumor growth (ex. F. nucleatum) can subsequently change the urinary microbiome
composition and induce malignancies in the urinary system should be explored in
future.

The gut microbiome can also have indirect impacts on the urinary system. As
mentioned previously, effectiveness of cancer immunotherapy for renal carcinoma
was correlated to enrichment of A. muciniphila in the gut. The presence of
A. muciniphila can induce immune activation that subsequently reduces tumor
burden (Routy et al. 2018). This suggests that modifying the microbiome of cancer
patients may improve responses to immunotherapy. Currently, several clinical trials
are using fecal microbiota transplant (FMT) to test this (NCT03341143,
NCT03353402, NCT03772899, and NCT04116775). A. muciniphila was also
found to be increased in the feces of prostate cancer patients undergoing androgen
receptor therapy compared to those who were not. This suggests that future lines of
treatment, like immunotherapy, may have better antitumor responses in patients
undergoing androgen receptor therapy (Sfanos et al. 2018).

8.7 Conclusion

While not the only factor that affects prevention, causation, and treatment of
urological cancers, the microbiota from the urinary system plays a critical role in
health and disease. These microbes contribute to the toxification and detoxification
of compounds, including pharmaceutical agents which may enter hepatic circulation.
The microbiota is also becoming more recognized as an important regulator of the
immune system and antitumor immunity. While there is still more to elucidate about
the role of the microbiota in urinary cancers, new developments are being made,
especially in the context of immuno-oncology and how we can manipulate the
microbiome to improve existing therapies.
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Chapter 9
Role of Infections and Tissue Inflammation
in the Pathology of the Fallopian Tube
and High-Grade Serous Ovarian Cancer

Mirjana Kessler

Abstract High-grade serous ovarian cancer (HGSOC) is the deadliest gynecolog-
ical malignancy, with a 5-year survival rate of 30–40%, caused by late detection,
high recurrence rate, and pervasive resistance to platinum chemotherapy. Moreover,
the heterogeneous clinical presentation of this occult disease and failure to determine
actionable molecular and genetic subtypes hampers the development of targeted
novel therapies. A majority of HGSOC cases originate from the neighboring
fallopian tube epithelium (FT), but the exact mechanisms of cellular transformation
and early metastasis to the ovary remain elusive, and our knowledge about the
interplay of risk factors remains rudimentary. Recent data from the novel in vitro
models of chronic Chlamydia trachomatis infection in human fallopian tube
organoids and patient-derived cultures from cancer tissue deposits suggest there is
a molecular link between the regulation of stemness and differentiation in the
epithelium and tumor drivers of HGSOC. The chapter focuses on this complex
relationship between pathogens, tissue renewal, and inflammation in the upper
genital tract and provides an overview of current knowledge about the cellular
mechanism of cancer development. The inflammatory microenvironment influences
both early carcinogenesis and the progression of advanced disease, thus these
discoveries have important implications for the development of diagnostic tools
and innovative lines of therapy.
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9.1 Introduction

Despite great improvements in cancer treatments in recent years, ovarian cancer
remains a great challenge for medical professionals in the twenty-first century,
especially its most aggressive and occult type, high-grade serous ovarian cancer
(HGSOC). While a range of factors has been associated with increased risk for this
malignancy, there is no clear understanding of when and why it develops. During
their lifetime 1 in 75 women will develop ovarian cancer, and a vast majority of
cases are sporadic without clear hereditary risk. Only 2.5% of women diagnosed
with cancer are ovarian cancer patients, but the disease is responsible for over 5% of
cancer deaths due to extraordinarily high mortality (Torre et al. 2018). Several
comprehensive reviews in recent years covered different aspects of advances in
HGSOC research and therapy, including the development of new models, signaling
interactions between tumor and the surrounding healthy tissue, mechanisms of
platinum resistance development, and testing of new lines of immunotherapy
(Maru and Hippo 2019; Pogge von Strandmann et al. 2017; Damia and Broggini
2019; Lee et al. 2013). This chapter outlines current research concepts and the most
important questions relating to the early stages of HGSOC carcinogenesis and
focuses on the role of the local microenvironment in this process. This includes
the interplay of physiological, hormonal factors, ageing, and the potential involve-
ment of pathogens and other inflammatory microbial agents. Infections by patho-
genic bacteria and viruses and the presence of the microbiota as part of the normal
flora recently became a focal point of the broader field of cancer research. Several
studies in recent years revealed previously overlooked signatures that are indicative
of a microbial contribution to cellular transformation in human malignancies and
could explain the context that favors the expansion of specific malignant phenotypes
in human colon (Pleguezuelos-Manzano et al. 2020; Wilson et al. 2019; Cougnoux
et al. 2014). This chapter pays special attention to the potential contribution of
sexually transmitted disease (STD) pathogens to the carcinogenesis of HGSOC. In
this context, the chapter reviews advances in using novel patient-derived organoid
models to identify and assess in vitro the critical molecular events that cause the
development of malignancy. Organoid models, a pioneer methodology, made it
possible to preserve and maintain in vitro the inherent capacity of mucosal surfaces
to regenerate over time, thus creating an opportunity to study key features of human
tissue homeostasis. Thereby, early cellular changes in the fallopian tube epithelium
that precede the development of tubal pathology sequels can be analyzed in a
controlled experimental system, previously impossible feat due to the inaccessibility
of the fallopian tube. Also, the realization that epithelial progenitor stem cells of the
fallopian tube and the ovarian mucosa regenerate the epithelial surface in response to
tissue damage has provided a new angle of research. An increasing body of exper-
imental data is emerging, which supports a model that adult tissue stem cells and
tissue mechanisms that control their function are likely central players in the process
of cellular carcinogenesis in general. Cancer tissue maintains a hierarchical organi-
zation, and the population of cancer stem cells powers its growth, a common
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characteristic of all solid malignancies (Kreso and Dick 2014). Though further
studies are necessary, it is becoming increasingly clear that epithelial cells “remem-
ber” infections and that these changes extend to the level of genome regulation and
regulation of stemness. Therefore, frequent exposure to the genital pathogens of the
fallopian tube mucosa should be considered as a risk factor within postulated models
of HGSOC development. In addition to infection-related changes in the epithelial
homeostasis, inflammatory processes associated with infections and long-term con-
sequences likely contribute to the immunogenic profile of the tumor. A better
understanding of the biology of the inflammation and immune system activation in
the genital tract is essential to improve the response to checkpoint inhibitor-based
immunotherapies in HGSOC patients. In this context, the chapter will discuss the
role of tissue inflammation as a potential niche that confers selection pressure and
favors the survival of the malignant cells in the fallopian tube at the expense of the
healthy epithelium. Deciphering early steps in HGSOC carcinogenesis is also of
pivotal importance to identify sensitive and specific biomarkers of tissue pathology
and thereby improve strategies for timely cancer detection and diagnosis. Taken
together, the chapter aims to provide a comprehensive overview of different per-
spectives on HGSOC development based on the data from epidemiology, clinical
practice, and fundamental molecular studies. With a focus on the complex relation-
ship between inflammation, infection, microbiome, and cancer, the goal is to
describe the current knowledge and discuss new research directions that could
help to improve the management of this deadly disease.

9.2 Classification of Epithelial Ovarian Cancer

Ovarian cancer is a heterogeneous malignant disease of highly versatile clinical
presentation, unspecific symptoms that lead to delayed diagnosis, and limited ther-
apeutic options. Each year around 240,000 women worldwide are diagnosed with a
disease. The 5-year survival rate remains between 30–40% despite improvements in
surgical management and best efforts to optimize therapeutic regimens. The vast
majority of ovarian cancers originate from the epithelium (90%), and the remaining
10% derives from the stromal compartment (5–6%) or germ cells (3–4%). Epithelial
ovarian cancer (EOC) includes five histological subtypes which are characterized by
substantial differences in tissue morphology and molecular profile: high-grade
serous (70%), endometrioid, (10%), clear-cell (10%), mucinous (3%), and
low-grade serous borderline (5%). Variability is likely caused by distinct etiologies
and mechanisms of cellular transformation of each subtype (Fig. 9.1). Based on the
mutational profile, the existence of known precursors and clinical progression EOC
can be classified into (1) low-grade serous and (2) high-grade serous. Low-grade
ovarian cancer originates from the surface of the ovary, develops slowly in a gradual
transition from benign neoplastic tissue toward borderline tumors and slow invasive
malignancy. Endometrioid and clear-cell carcinoma are typical representatives of
type I cancers that likely develop as the sequel of benign cysts of the ovary or
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underlying endometriosis, a prevalent, benign condition of hyperproliferative and
ectopic endometrium (Dawson et al. 2018; Banet and Kurman 2015). Mucinous
carcinoma and low-grade serous cancer also belong to the type I group low-grade
malignancies (Kelemen and Kobel 2011) and are histologically similar to colonic
and tubal epithelium, respectively. On the genomic level, type I EOCs are charac-
terized by the frequent presence of a set of somatic mutations: PTEN, K-RAS,
BRAF, ERBB2, ARIDA, and specific for endometrioid CTNNB1 (Koshiyama

Fig. 9.1 (a) Classification of epithelial ovarian cancer based on stages. International Federation of
Gynecology and Obstetrics (FIGO) criteria. (b) Classification of epithelial ovarian cancers based on
the tissue of origin
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et al. 2014). Low-grade ovarian cancers normally express wild-type TP53, and this
property can be used in the differential diagnosis as a distinction from high-grade
EOC. HGSOC, type II epithelial ovarian cancer, is almost uniformly mutated for
TP53 and harbors a set of other genomic alterations that are highly diverse between
patients. Genomic or epigenomic inactivation of BRCA1/2 genes is found in ~50%
of cases. HGSOC is the most frequent (~67%) and aggressive form of EOC as>70%
of patients are diagnosed >stage III (Fig. 9.1). At this stage, the 5-year survival rate
is <40%, making HGSOC the most lethal gynecological malignancy.

9.3 HGSOC: Molecular Characteristics, Origins, and Main
Risk Factors

Late diagnosis of the primary tumors and chemoresistant phenotypes in recurrent
disease strongly limit therapeutic options and cause high mortality in HGSOC
patients. The inability to identify clearly defined premalignant precursors on the
surface of the ovary raised fundamental questions about the origins of this cancer
type. Several competing models were proposed during the past decades to explain
carcinogenesis of HGSOC: the transformation of cortical inclusion cysts, direct
transformation of ovarian epithelial cells, and transformation of fallopian tube
epithelial cells. Today, experts in the field, scientists and clinicians, have reached a
broad consensus that accepts the central importance of the fallopian tube for the
development of HGSOC. It is now presumed that HGSOC is in essence a peritoneal
malignancy of complex etiology that originates from the fallopian tube epithelium,
with ovarian localization representing the preferable route of the metastasis. Due to
the exceptional heterogeneity of the disease, it cannot be excluded that some
HGSOC cases do arise from the ovarian surface epithelium (OSE) or metastasize
from other regions of the genital tract, but fallopian tube involvement appears
essential in the majority of cases (Vaughan et al. 2011; Bowtell et al. 2015).

Advances in next-generation sequencing (NGS) and other omics technologies
(proteomics, transcriptomics, phenomics, etc.) enabled detailed molecular profiling
of human cancers and big data analysis of cellular networks that drive cancer growth.
The Cancer Genome Atlas (TCGA) Program, a large platform funded by the
National Institute of Health (NIH) and the National Cancer Institute (NCI),
performed detailed molecular profiling of over 20,000 cancer samples from 33 dif-
ferent cancer types to date, among them 489 HGSOC cases (Cancer Genome Atlas
Research, N 2011). Sequencing confirmed the great variability in the landscape of
somatic mutations in HGSOC tissues, as only TP53 (96%) and BRCA1/2 (20%) are
mutated in more than 10% of the patients. However, broader network analysis that
integrated transcriptomics data, as well as genomic copy number variations, revealed
that PI3 kinase and RB1 pathways are deregulated in 67% and 45% of cases,
respectively. The study classified HGSOC samples into four subtypes based on
their global gene expression profile: differentiated, immunoreactive, mesenchymal,

9 Role of Infections and Tissue Inflammation in the Pathology of the. . . 275



and proliferative. However, despite the progress made in the understanding of the
biological variations in HGSOC phenotypes, the direct clinical relevance of this
study remained modest. Except for BRCA 1/2 mutation status, all attempts to stratify
HGOSC patients based on the tumor characteristics, including the effort by the
TCGA, failed to show a clear benefit in the clinical setting. As a result, the main
components of the treatment in HGSOC patients have not changed for decades, and
all patients receive platinum-based therapy in combination with debulking or inter-
val surgery.

Numerous studies of candidate risk factors associated with HGSOC development
failed to establish a clear causative relationship for any of them or explain the
cascade of molecular events that lead to malignancy. The occurrence of HGSOC
is more likely in women who had many undisrupted ovulatory cycles, suggesting
that hormonal milieu is an important factor during carcinogenesis. Nevertheless,
HGSOC is a disease of menopausal age (average age of >55 years at the time of the
first diagnosis), usually detected at a time where the active ovarian function has
already subsided. The inaccessible location of the ovaries and fallopian tubes, tucked
within the abdomen, represents a major hurdle to develop noninvasive surveillance
strategies. Also, available biomarkers such as CA125 have limited specificity.
CA125 belongs to the mucin protein family (MUC16), expressed in the healthy
fallopian tube epithelium, but patients with advanced stages of HGSOC have
strongly increased levels of the secreted form in the circulation. However, CA125
is increased in only ~60% of stage I HGSOC cases and is also found elevated in
benign conditions such as endometriosis (van Haaften-Day et al. 2001; Kitawaki
et al. 2005). Consequently, screening in the general population causes a high rate of
false positives leading to unnecessary invasive treatments without improvement in
early HGSOC detection rates (Henderson et al. 2018). Thus there is no effective
medical procedure to screen for HGSOC in asymptomatic women, and in many
countries mandatory ultrasound examinations combined with CA125 levels have
been abandoned. There is also no systematic effort to follow the impact of genital
infections on the pathology in the upper genital tract including the development of
HGSOC. The high prevalence of sexually transmitted infections (STI) means that the
majority of women have been exposed to genital pathogens at some point during
their reproductive active years. Harald zur Hausen was awarded Nobel Prize in
medicine in 2008 for the discovery that HPV viruses are the central culprit behind
the development of cervical cancer (Boshart et al. 1984; zur Hausen 2002). This
breakthrough in cancer research had an immensely positive impact on women’s
health. Regular screenings, the Pap smears, and vaccination against oncogenic HPV
strains represent a successful example of efficient public health policy which resulted
in declining rates of cervical cancer. By contrast, for a myriad of reasons, improve-
ment in the diagnosis and management of serous ovarian cancer has been minimal.
The role of infections in HGSOC etiology has for a long time been a matter of
controversy. The unique methodological challenges of STI serology in connection
with HGSOC will be discussed in more detail below, but inconsistencies led to wide
skepticism about a role for pathogens in HGSOC development.
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Still, regardless of these problems, the role of pathogens causing tubal pathology,
in general, is supported by a large body of experimental and epidemiological
evidence and as such has to be revisited in light of the “tubal origins” of HGSOC
hypothesis.

Independent of the type of risk studied, hormonal, hereditary, or infection-related,
it would be exceptionally important to identify molecular events that connect risk
factors with the process of cellular transformation in a causative fashion. To achieve
that, understanding of the basic regulatory mechanisms of the healthy fallopian tube
mucosa is necessary.

9.4 The Fallopian Tube as a Tissue of Origin of Ovarian
Cancer

Histological characteristics of the HGSOC tissue such as serous papillary structure
and PAX8 expression are reliable diagnostic tools to distinguish ovarian cancer from
other mesothelial malignancies (Laury et al. 2010). Also, its phenotype is much more
similar to the healthy fallopian tube epithelium than to the ovarian surface epithe-
lium. The fallopian tubes develop from an embryonic structure called Müllerian
tract, which is Pax8 positive. They connect the ovary to the uterus and provide a
niche for the first phase of human embryo development. Conception occurs in the
fimbrium, the distal segment of the tube. Afterward, the embryo takes 3–4 days to
travel toward the uterus where it implants, 7–10 days after fertilization of the oocyte.
Fallopian tube mucosa is made of polarized epithelial cells which are either secretory
(PAX8+) or ciliated (PAX8�). The columnar monolayer is organized into many
longitudinal folds (plicae) particularly in the distal region facing the ovary. The
proper function of the fallopian tube mucosa, the beating of the ciliated cells, and
tubal peristalsis are important for the transport of the gametes and reception of the
released oocyte (Lyons et al. 2006). The surface of the ovary, which develops from
the gonadal ridge (intermediary mesoderm), is covered with flat cuboidal PAX8—
epithelium. Despite the failure to identify precursor lesions or clear preneoplastic
stages on the surface of the ovary, many models of HGSOC carcinogenesis postu-
lated that the malignancy originates locally due to a clear presentation of tumor
masses at the time of the diagnosis. Diverging cellular phenotypes between the
healthy ovary and the cancer were explained by the presumptive conversion/
transdifferentiation from simple cuboidal ovarian surface epithelium (OSE) into
the more structured columnar epithelium of HGSOC. Proof of concept that such
transdifferentiation is possible was shown in transgenic mice by ectopic expression
of HOXa9, HOXa7, and HOXa11 genes in OSE cells (Cheng et al. 2005) that drove
differentiation into distinct histological types. The cortex of human ovaries is known
to include cortical cysts (CIC) that contain either PAX8+ epithelial cells or OSE
cells. CICs likely develop by a process of epithelial invasion at the time of post-
ovulatory injury (Banet and Kurman 2015). CICs are considered as prime candidates
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among putative locations where transdifferentiation could occur. One study reported
mixed types of cysts identified in BRCA1/2 carriers based on incidental
co-expression of Pax8 and the mesothelial marker calretinin (Park et al. 2018).
Yet, no cascade of cellular events and transition phenotypes in patient samples has
been identified so far that could fully explain the carcinogenesis of HGSOC at the
surface of the ovary, although OSE epithelium remains a candidate tissue for at least
a subset of cases.

At the turn of the century, carriers of the BRCA1/2 mutation who had cancer risk-
reducing surgeries were shown to have distinct neoplastic regions in the epithelium
of the distal fallopian tubes. The existence of these atypical cellular clusters termed
small tubal intraepithelial carcinoma (STIC), was confirmed in numerous
multicentric studies at a frequency of 2–8%, providing the first comprehensive and
consistent clinical evidence of HGSOC precursor lesions (Powell et al. 2011). STICs
are characterized by a TP53 mutant phenotype, polymorphonuclear atypia, high
Ki-67 index, and several additional markers that distinguish them from the surround-
ing healthy fallopian tube epithelium (Lee et al. 2007). It remains unclear if all STICs
progress to cancer and if an isolated STIC finding warrants clinical intervention
(Meserve et al. 2017), but the majority of patients with advanced malignant disease
have STICs in their fallopian tubes (Carlson et al. 2008). A recent detailed analysis
by NGS sequencing confirmed continuity in the lineage between STICs and genomic
profiles of the advanced cancer tissue in the HGSC patients (Labidi-Galy et al.
2017). Interestingly, based on the analysis of somatic single-copy DNA alterations,
lineage continuity could be established between fallopian tube epithelium and
malignant HGSOC deposits even in the patients where STICs were not found.
Interpretation of these findings implies that STIC formation is not a necessary
intermediary step in the HGSOC development and that independent transformation
routes of fallopian tube epithelium exist (Ducie et al. 2017).

Competing models of HGSOC development have been tested in the mouse
model. Induction of HGSOC malignant transformation by concomitant mutant
TP53 and SV40 expression, in parallel setup, revealed that cancer can originate
from both ovarian surface and fallopian tube epithelium. Experiments with targeted
tissue-specific in vivo genetic inactivation of the RB pathway (by expression of
SV40) in a TP53 mutant background of the ovary or fallopian tube epithelium
showed that in both locations genetic manipulation leads to the development of
malignancy (Zhang et al. 2019). The existence of different tissues of origin could
also explain the great heterogeneity of the disease that is observed in clinical
practice. Interestingly, although the underlying genomic perturbation was identical,
tumors arising from the FT epithelium and OSE epithelium exhibited differences in
phenotype, gene expression pattern, and response to drug treatment. Fallopian tube
tumors grew faster and disseminated more profusely compared to ovarian tumors but
appeared to be more sensitive to carboplatin which is the first line of treatment for
HGSOC patients. Again, it can be concluded that tumor development has to be
analyzed in the broader context of cell-cell communication and the local tissue
environment. Nevertheless, critical pieces of the puzzle are missing to understand
under which conditions transformation occurs and what are the key molecular events
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that lead to the development of malignancy from either of these two locations. Also,
the complexity of the ovarian surface epithelium reprogramming remains difficult to
prove. Notably, although PAX8 is one of the most reliable diagnostic markers of
HGSOC, OSE-induced tumors in this study showed only weak PAX8 positivity.
Thus it is not clear if this animal system adequately recapitulates the mechanism of
the human disease.

9.5 Epidemiology Studies of HGSOC Prevalence and Main
Risk Factors

9.5.1 Model of “Incessant” Ovulation as the Main Driver
of HGSOC

During the process of spontaneous ovulation, the oocyte release is accompanied by
follicular fluid release. This fluid contains a complex mixture of gonadotropins
(FSH, LH), estradiol, progesterone, prolactin, inhibin, corticoids, growth factors of
the TGF-β family, interleukins, and reactive oxygen species (ROS) (Revelli et al.
2009). The fluid is released into the abdomen, in a distinct recto-uterine region,
termed pouch of Douglas, and can be used as reliable sonographic evidence of
ovulation. Due to the anatomical proximity, a fraction of the fluid is flushed into the
distal fallopian tube along with the oocyte. Thus, the epithelial surface of the ovary
and the lining of the fallopian tube are exposed to direct stimulation with hormones
and ROS regularly in each cycle. This was recognized early as a potential risk factor
for cancer development in the upper genital tract and led M.F. Fathalla to postulate
the theory of “incessant ovulation” as the main driver of the HGSOC carcinogenesis
as early as 1971 (Fathalla 1971). More than four decades later, epidemiological
studies have provided ample evidence that the hypothesis is valid at least as an
important contributing factor in the multistage process of HGSOC development.
Virtually no other individual physiological event is as consistently connected with
an increased risk for ovarian cancer than ovulation. Early menarche and late men-
opause, ovulation-inducing treatments, and nulliparity all cumulatively result in a
higher number of ovulatory cycles and have consistently been shown to be inde-
pendent factors that elevate risk (Titus-Ernstoff et al. 2001). In agreement with this,
long periods of suppression of ovulation such as pregnancies and hormonal birth
control that inhibit the function of the ovary have protective effects and reduce the
risk (Tworoger et al. 2007). There are many potential explanations and interpreta-
tions of these epidemiological facts. The exact mechanism of how ovulations
promote transformation is still poorly understood and participation of ROS is likely
to be only one of the contributing factors.

The regeneration potential of the ovarian epithelium surface is activated monthly
in cycling women, to repair the epithelial injury triggered by follicular rupture. This
somewhat abrupt process, is associated with a cascade of physiological events that
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resemble a strong inflammatory reaction. It has been shown that ROS play an
essential role in ovulation, as exposure of the follicles to antioxidant agents at the
time of the LH surge strongly reduces the number of released oocytes (Shkolnik et al.
2011). The study also convincingly showed in the mouse model that inhibition of
ROS signaling prevents the LH-induced rise in progesterone synthesis, a critical
luteinization signal in the preovulatory follicle. Indeed, the presence of ROS in the
follicular fluid likely has a direct effect on the oocyte itself influencing fertilization
and early embryo development. Studies in the field of assisted reproduction that
investigated the putative association between levels of ROS in the follicular fluid of
retrieved oocytes and the outcome of the subsequent in vitro procedure could show
that there is indeed a window of ROS concentration that supports optimal fertiliza-
tion and early embryo development (Attaran et al. 2000; Jozwik et al. 1999). While a
certain basal level of ROS in the follicular fluid is necessary for the development of a
healthy oocyte, the elevation of ROS above a defined threshold has a strong negative
effect (Wiener-Megnazi et al. 2004). The study also found a correlation between
rising ROS levels and the age of the women, which could help to explain the
mechanism behind a sharp reduction in the quality of produced oocytes in patients
over 40 years of age (Huang et al. 2015).

The detrimental effect of ROS exposure on the fallopian tube epithelium could be
demonstrated in a study that analyzed the in vitro physiological properties of
11 samples of follicular fluid from IVF patients. Treatment with samples containing
high ROS concentration caused an increase in double-stranded DNA breaks and
intracellular ROS production in the culture of primary human fallopian tube
explants. The study also confirmed that follicular fluid has a general tumor-
promoting potential as injection of ROS high fluid triggers faster onset of tumor
formation in TP53�/� mice. The second study from the same group established a
positive effect of hemoglobin in the follicular fluid on the survival of fallopian tube
cells that have been damaged by ROS or have depleted p53 levels (Huang et al.
2016). This report proposes a potentially interesting and significant concept of
pro-tumorigenic action via the rescue of damaged cells.

9.5.2 The Inheritable Risk Associated with BRCA1/2 Status

In the general population, HGSOC is a rare disease that affects approx. 1 in
70 women during their lifetime. In stark contrast, women who carry germline
mutations in the BRCA1 or BRCA2 genes that regulate DNA homologous recom-
bination have a >50% lifetime risk of developing HGSOC and breast cancer,
depending on the exact type and position of the nucleotide changes (Miki et al.
1994). Also, BRCA1/2 mutation carriers have a 2–5 times higher risk to develop
pancreatic cancer in comparison to the general population (Greer and Whitcomb
2007). BRCA1 and BRCA2 proteins are involved in one of the core mechanisms that
preserve genome integrity, with each having their own unique and non-redundant
function. BRCA1 is recruited to DNA double-stranded breaks (DSB) and involved
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in the regulation of the G2/M and S—checkpoints and correction of mistakes in
nucleotide base incorporation during DNA replication. BRCA2 is a component of
the core machinery of homologous recombination which is the main mechanism for
correcting DSBs (Roy et al. 2011). HGSOC cancers in germline BRCA1/2 carriers
exhibit almost uniform loss of heterozygosity (LOH) (Maxwell et al. 2017). This is a
process whereby a wild-type copy of the gene initially present at one of the
chromosomes in the germline is eliminated from the genome in the cancer tissue.
This convincingly demonstrates the critical importance of inactivation of DSB repair
in the process of carcinogenesis of HGSOC (Hilton et al. 2002). The sensitivity of
the “BRCAness” cancer phenotype to the increase in DSBs was confirmed by the
discovery of PARP1 inhibitors. The PARP1 protein regulates single-strand DNA
repair constituting the first line of the defense that protects genome integrity. Its
inhibition unavoidably leads to an increase in unrepaired single-strand DNA breaks,
and thus the higher activity of DSB repair mechanisms is required to maintain DNA
integrity. Cells competent for DSB repair function with wild-type BRCA1/2 can
functionally compensate for the defect, while mutant cells die. This genetic
phenomenon called “synthetic lethality” has been successfully adopted for the
implementation of PARP inhibitors in clinical practice for the treatment of
BRCA1/2-deficient HGSOC patients (Lord et al. 2015; Fong et al. 2009).

The enormous and specific inheritable burden that germline carriers of BRCA1/2
mutation have for the development of breast and ovarian cancer is suggestive of a
role of endocrinological factors in the selection process of transformed clones.
Although DNA homologous repair is part of the core housekeeping functions in
the cell, heterozygote defects in the BRCA gene can be functionally compensated in
most tissues. The mechanism behind this extraordinary context-specific risk is yet to
be understood, although it has recently been reconfirmed by a large-scale NGS study
across a set of malignancies. Genomic profiling of more than 17,000 patients of
55 different cancers and corresponding germline controls revealed that BRCA1 and
BRCA2 mutations occur sporadically in other cancer types (2.7% and 1.8%, respec-
tively) but follow a clear pattern of passenger mutations. Loss of heterozygosity,
biallelic inactivation, and sensitivity to PARP inhibitors are detected exclusively in
the cancers for which BRCA1/2 is known to be a heritable risk. This is also
confirmed by enrichment in the genomic homology-directed repair (HDR) signature.
Exon sequencing conclusively showed that defects in DNA homologous repair
undergo positive selection in HGSOC, breast, and to some extent in pancreatic
cancer (Jonsson et al. 2019) while other malignancies remain HDR competent,
even in the presence of BRCA1/2 heterozygous mutations.

The folliculogenesis phase of the menstrual cycle is associated with rising levels
of unopposed estradiol. Nevertheless, experience from hormone replacement ther-
apy treatments also shows an increased risk for HGSC development regardless of the
type of hormones used (Zhou et al. 2008) (single-agent estradiol or double agent in
combination with progestins). This suggests that there is a more complex connection
of the hormonal milieu with this malignancy and no definitive classification of any of
the hormones as “carcinogenic” is justified. It is necessary to point out that hormones
not only regulate homeostasis of the mucosal surfaces of the uterine tract but also
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have an impact on immune system activity. Therefore, a whole range of indirect
effects related to changes in the endocrinological environment may play a role and
would require focused studies to determine their relevance for HGSOC
development.

In breast cancer, the role of estradiol has been extensively studied. A subtype of
this malignancy, tumors that express estradiol receptor ER are strongly dependent on
the estradiol signaling to maintain growth. Overall, roughly two thirds of all breast
cancers are ER-positive, and while the majority of BRCA1-mutated cancers are
triple-negative (ER-/PR-/HER-), 10–35% do express ER (Atchley et al. 2008). This
was recognized early and has been exploited successfully for over five decades by
the addition of tamoxifen in breast cancer treatment (Jaiyesimi et al. 1995). Tamox-
ifen is a nonsteroidal triphenylethylene derivative that blocks the ER receptor
function by competitive binding and thereby inhibits proliferative estradiol signals
in the breast tissue (Coezy et al. 1982). The molecular action of tamoxifen is
complex and involves targeting both epithelial cells and the stromal compartment
(Colletta et al. 1990). One of the most potent growth restricting actions of tamoxifen
is the induction of TGFβ1 in the stromal compartment (Butta et al. 1992). Interest-
ingly this phenomenon is not restricted to ER + patients and could perhaps explain
the certain protective effect of tamoxifen also in the hormone receptor-negative
breast cancers (Yang et al. 2012).

Antitumorigenic properties of tamoxifen in the breast have also been confirmed in
the early stage of cancer development, as continuation of therapy greatly reduces the
risk of occurrence of the contralateral malignancy in BRCAmutation carriers (Narod
et al. 1998). Wider implementation of tamoxifen as a prophylactic therapy has been
contraindicated due to significant side effects such as endometrial cancer or pulmo-
nary embolism (van Leeuwen et al. 1994).

Despite significant parallels between breast and ovarian cancer in the profile of
risk factors for malignant transformation, including the hereditary risk mediated by
BRCA1/2, tamoxifen is not effective at suppressing the growth of the serous ovarian
cancer (Shirey et al. 1985). And although endocrine therapy has been continuously
evaluated and could provide limited benefits for some advanced patients, this is not
comparable to the high effectiveness of tamoxifen in breast cancer (Paleari et al.
2017). This is the case despite the fact the ERα receptor is expressed in >50% of
HGSOC cases (Pujol et al. 1998). And despite of a clear association between the
follicular phase of the menstrual cycle, which is high in estradiol signaling, and the
risk for HGSOC development. This stark difference in the response of these two
malignancies to endocrinological therapy is a powerful illustration of the complex
molecular etiology of cancer development and progression in each tissue.
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9.5.3 Recurrent Episodes of Infection and the Risk
of HGSOC Development

Sexually transmitted diseases, caused by pathogenic bacteria and viruses that fre-
quently colonize the lower genital tract, are extremely frequent with more than 377
million new infections annually, according to estimates of WHO (Newman et al.
2015). The most prevalent causative agents are Chlamydia trachomatis (>100
million), Neisseria gonorrhoeae, Treponema pallidum (syphilis), trichomoniasis,
and herpes simplex virus 2 (HSV-2). STIs represent a major burden for public health,
as problems in timely diagnosis and treatment can lead to the development of more
complex pathological sequels, with infertility being the most widely recognized
long-term morbidity.

Chlamydia trachomatis (Ctr), a gram-negative obligatory intracellular pathogen,
is the most frequent STD-causing bacterium and the major causative factor of
preventable infertility in women today. Ctr infection is efficiently cleared with the
administration of doxycycline or azithromycin therapies (Lau and Qureshi 2002),
but the absence of symptoms in the majority of cases prevents appropriate diagnosis
and therapeutic intervention. It is estimated that roughly 10% of Ctr infections pass
the cervix and colonize the uterus and fallopian tubes, causing inflammation,
scarring, and sustained tissue damage. Asymptomatic chronic salpingitis, inflamma-
tion of the fallopian tubes, is mainly caused by Ctr and is the main risk factor for the
development of tubal occlusion that prevents conception. Accordingly, past Ctr
infection strongly increases the odds of ectopic pregnancy (Chow et al. 1990). The
complication of salpingitis, termed hydrosalpinx, where the closure of the distal tube
causes a characteristic accumulation of fluid represents a strong negative prognostic
factor for the success of in vitro fertilization cycles, thus surgical removal is
indicated before the procedure (Strandell et al. 2001). Recurrent episodes of pelvic
inflammatory disease (PID) and Ctr-driven salpingitis are well documented; how-
ever, there are indications that a certain degree of protective immunity develops
during Ctr infection, at least in some individuals. This conclusion is based on the fact
that despite improvements in screening and rising numbers of early intervention and
treatments, the number of infections continues to rise (Batteiger et al. 2010),
sometimes at levels that surpass initial infection rates. Interpretation of these data
from large population cohorts suggests that early detection and antibiotic treatment
interferes with effective adaptive immunity reaction, making reinfections upon new
exposures more likely than in patients where the infection is encountered only with
natural immunity.
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9.5.4 The Serologic Evidence of Chlamydia Infection
in Cancer Patients

The adaptive immune response to a Ctr challenge shows significant individual
variability among patients, while a decline in the IgG titers over time complicates
epidemiological studies and interpretation of data (Henry-Suchet et al. 1994). There
is a strong correlation between the level of Ctr antibodies and the probability of tubal
pathology (Mardh 2004). However, the statistical analysis of the putative connection
between Ctr infection and diseases that occur later in life such as ovarian cancer
remains challenging. Overall, past studies have provided mixed results. The key
obstacle for epidemiological analysis is the selection of suitable serological bio-
markers to discriminate the patients who had only vaginal Ctr infection from the
group that developed ascending infections and associated pathology sequels, pelvic
inflammatory disease (PID), and salpingitis.

A large retrospective population study from Thailand determined an increased
risk for the development of ovarian cancer in patients with recurrent PID episodes
(hazard ratio O.R 2.46 for 5 episodes) (Lin et al. 2011). Repeated analysis with a
longer follow-up period and slightly altered inclusion criteria failed to establish the
connection between the two (Shen et al. 2016). One of the critical differences
discussed by the authors is the inclusion of patients who had cervical, vaginal, and
vulvar inflammatory disease in the first study and shorter follow-up periods that
could explain the discrepancy in the outcome.

Epidemiological studies that directly analyzed serology parameters related to Ctr
infection also provided conflicting accounts. Ness and colleagues performed two
studies and compared the frequency of positivity to Ctr antibodies against elemen-
tary bodies and heat shock protein (HSP60) among high-grade serous patients and
healthy controls. The first study involving 117 subjects found a significant correla-
tion (Ness and Cottreau 1999), but the effect was exactly the opposite in the second
larger cohort of 521 patients (Ness et al. 2003). The problem of specificity and
sensitivity of the selected serological markers is highlighted as a potential
confounding factor. Also, these studies involved ovarian cancer patients without
classification of the cancer histological type. Considering the large differences in
clinical presentation and disease characteristics between low-grade and high-grade
cancers, it is likely that this could also contribute to the fluctuations in the results. A
genome-wide screen of the Ctr proteome based on recognition by sera of Ctr
infected patients revealed 27 candidates as immunodominant antibodies that were
recognized in >50% of cases (Wang et al. 2010). Among them, an antibody against
Pgp3, plasmid-encoded secreted protein emerged as one of the most stable bio-
markers of the sustained host response to Ctr despite failure to provide protective
immunity in humans (Chen et al. 2010). A new study of two independent patient
populations, one retrospective and one prospective nested-case control study,
established an increased risk for ovarian cancer development by using Pgp3 sero-
positivity (Trabert et al. 2019). Interestingly, the study also compared Ab-Pgp3
against other Ctr antibodies (anti-MOMP, anti-Tarp, and anti-HSP60) and found it
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superior in its predictive power. Analysis of risk odds for ovarian cancer in infections
with other pathogens (Mycoplasma genitalium, HPV, herpes simplex virus 2, hep-B,
hep-, EBV, and CMV) failed to show any significant positive association in these
two study groups.

9.5.5 Coinfections and HGSOC

STIs are frequently being transmitted not as a single-agent disease but include
simultaneous co-infection with different pathogens. In some cases, this has signif-
icant ramifications for the development of disease and the risk of further transmis-
sion. For example, the risk of HIV transmission is much greater in individuals who
are positive for STD pathogens than in noninfected individuals (Galvin and Cohen
2004). There is also no clear understanding of what are the critical factors that
mediate ascending vaginal STI infections and the passing of the cervical barrier.

The potential contribution of co-infections with different pathogen species further
complicates association studies in connection with HGSOC carcinogenesis. Several
studies reported an increased incidence of HHV-6 virus sequences integration in
ovarian cancer tissue in comparison to matched healthy controls (Banerjee et al.
2017). It has also been shown that Ctr infection has the potential to reactivate the
expression of HHV-6 sequences from the genome of host cells (Prusty et al. 2013).
At the same time, co-infection with HHV-6 in 2D Hela cells model promoted Ctr
persistency, a form of aberrant infection process that reversibly arrests bacterial
development (Prusty et al. 2012). More studies in primary cell culture infection
models and better characterization of available clinical samples are needed to assess
the significance of these phenomena for the development of tubal pathologies
in vivo. But the data raises the important concept of interference and synergy
between different pathophysiological mechanisms. Mycoplasma genitalium and
Neisseria gonorrhea (N. gonorrhea) are also known as potent colonizing pathogens
of the fallopian tube that cause salpingitis, scarring, and infertility (Svenstrup et al.
2008).

Currently, Ctr is significantly more prevalent than N. gonorrhea, as the gono-
coccal disease declines worldwide, but there is compelling evidence that the two
bacteria thrive in the co-infection setting. A prospective 2-year study in five STD
clinics in the USA found that among patients with a confirmed positive diagnosis for
Neisseria, the incidence of Ctr co-infection was 19% in men and 42% in women,
much higher than in the control group negative for Neisseria (7% in men and 9% in
women, respectively) (Lyss et al. 2003). This finding is in line with similar studies in
other centers (Dicker et al. 2003; David et al. 1997). The observed difference among
sexes is especially interesting. It is suggestive of increased susceptibility to Ctr in the
presence of N. gonorrhea and the existence of specific co-infection conditions in the
female genital tract.

Moreover, the incidence of M. genitalium was found to be twofold higher in Ctr-
positive patients than in the control Ctr negative group (Chernesky et al. 2017;
Harrison et al. 2019). The common belief is that this epidemiological correlation
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could be an important factor in the recent dramatic increase in the resistance of
M. genitalium to macrolide therapy (average 40% globally). Because Ctr is usually
treated with single-dose azithromycin, when co-infection exists, selection pressure
builds for the propagation of M. genitalium mutations which confer resistance to
macrolides (Mondeja et al. 2018), due to the higher minimal inhibitory concentration
that is required to eliminate this pathogen. As is the case with Ctr, M. genitalium
infections are usually asymptomatic, and there are no medical procedures that
investigate effects on the host tissue in the patient groups beyond the eradication
of the bacteria. Consequently, there are no available studies on potential differences
in the tubal pathology depending on the type and combination of pathogens that
caused salpingitis.

Also, co-infections have so far not been tested in in vitro models of the fallopian
tube. Bacterial pathogens co-exist together in all compartments of the genital tract,
and it is entirely possible and indeed likely that one would need to identify niche-
specific aspects to establish a definitive connection with the development of ovarian
cancer.

9.5.6 Contribution of the Microbiota to the Inflamed
Environment

The vaginal microbiome is essential for the establishment and maintenance of the
healthy physiological niche in the lower female genital tract. Species of gram-
positive Lactobacillus (L. crispatus, L. gasseri, L. inners, and L. jensenii) are
responsible for the acidification of the local environment (pH 4.5) which has an
important protective function. Changes in the composition of the vaginal
microbiome have been investigated as part of the infertility evaluation. A prospec-
tive cohort study identified a prediction model to stratify patients based on types and
frequency of Lactobacillus species to predict the patients with a low chance of
embryo implantation (accuracy 94%, sensitivity 26%, specificity 97%) in IVF- and
IVF/ICS cycles (Koedooder et al. 2019). The second study identified changes in
bacterial vaginosis scores (BV) to be predictive of the cycle outcome (Haahr et al.
2016, 2019). The prospective case control trial compared microbiomes of ovarian
cancer patients, healthy controls, patients with benign gynecological conditions, and
healthy BRCA1/2 mutation carriers (Nene et al. 2019). Two types of microbiota,
community type L (>50% Lactobacillus species) and community type O (<50% of
Lactobacillus species), are found to be unequally distributed within the groups. O
type is found to be significantly more frequent in cancer patients and BRCA1/2
women than in age-matched controls. These examples reveal the great potential of
microbiome characterization for improving or complementing diagnostic procedures
in gynecology. Much more work remains to be done to elucidate the putative
involvement of the microbiome in the development of infertility or cancer. As
microbiota are always present and changes are often only subtle quantitative changes
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in proportions and dynamic of expansion of certain strains, it is challenging to
distinguish with certainty coincidence from correlation or causative relationship.
Early neoplastic changes in cellular phenotypes could enhance the proliferation of
one microbiota species at the expense of the other, while at the same time change in
the microbiome could provide selective pressure and create an environment that
favors the growth of cancer.

9.5.7 Infertility and Risk of HGSOC Development

Among the potential candidate factors that were studied in association with HGSOC
development, infertility was found to be consistently positively correlated. In the age
of the great expansion of assisted reproduction technologies (ART), much of the
focus has been placed on the potential link between hormonal stimulation protocols
that are the central part of IVF protocols and the risk for ovarian cancer. However,
similar to other questions related to ART outcomes, it is exceptionally difficult to
distinguish to which extent procedure or underlying infertility contributes to the risk.
Indeed, when IVF patients are compared with a control group of infertile patients
instead of a healthy fertile group, the increase in HGSOC risks often disappears
(Siristatidis et al. 2013). Analysis of medical records of the large group of infertile
patients (12,183) concerning the causes of infertility found a strong association
between endometriosis and tubal disease as risk factors for ovarian cancer develop-
ment (RR ¼ 2.3 and RR ¼ 2.2, respectively). Also, it needs to be noted that a
relatively high risk has been identified for the group of women with “unexplained”
infertility (Runnebaum and Stickeler 2001) (odds ratio 2.76) illustrating great gaps in
our knowledge of the links between physiological functions of reproductive organs
and molecular mechanisms of disease development.

9.6 Infection of the Fallopian Tube Pathogen-Host
Interaction and Long-Term Changes in Homeostasis

The ability of Ctr to colonize fallopian tube epithelium and cause protracted
asymptomatic inflammation of the tube has been well-known for many decades,
but its clinical relevance was only considered important in the field of reproductive
biology. As advances in assisted reproduction technology development and the
broad availability of IVF treatments rendered tubal patency nonessential to achieve
pregnancy, the biology of the tubal disease became less relevant. The discovery that
high-grade serous cancer originates from the tubal epithelium fundamentally altered
this attitude. Retrospective analysis of the long term follow-up of patients after
hysterectomies with and without the removal of both adnexa (tubes) clearly showed
that a great risk reduction for ovarian cancer development later in life occurs in the
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subset of patients with removed tubes. This led to the gradual change in clinical
guidance to mandate it whenever is possible in postmenopausal patients (Tamhane
et al. 2019; Falconer et al. 2015). A prophylactic salpingo-oophorectomy, complete
removal of ovaries and fallopian tubes, is now offered as the standard of care to
BRCA1/2 mutation carriers even earlier in life, due to their extraordinarily high risk
for cancer development (Kauff et al. 2002). The procedure efficiently reduces the
cancer risk but is considered a radical solution due to serious side effects. Oopho-
rectomy triggers immediate menopause and thereby causes considerable morbidity.
The inaccessibility of the upper genital tract and absence of any specific biomarkers
make better stratification of the patients in whom surgery could be safely postponed
virtually impossible. In general, it can be said that the cytological and histological
status of the fallopian tube mucosa of any patient is unknown prior to the surgery and
pathological analysis of sections. Therefore, it is impossible to know when the first
premalignant changes occur in BRCA1/2 mutation carriers.

The relatively low prevalence of HGSOC in the general population does not
justify any invasive procedures before menopause because of the disproportional
risk-benefit analysis. As a consequence, there is almost no data about the types and
distribution of tissue phenotypes in the fallopian tube from salpingitis patients,
although ascending infections are relatively frequent.

As the majority of Ctr salpingitis cases are either asymptomatic or receive
antibiotic therapy, pathogen-host interaction in the human model could only be
studied in ex vivo infection systems. One of the first such studies in organ culture
of FT fragments infected with Ctr reported structural damage of the epithelium, loss
of microvilli, and disruption of intact junctions as observed by electron microscopy
(Cooper et al. 1990). The inflammatory cytokine IL-1 has been identified as a major
regulator of structural damage in the fallopian tube (Hvid et al. 2007) and upstream
of IL-8 production which serves as a potent chemoattractant of neutrophils. Infection
in ex vivo tissue models provided a novel opportunity to investigate bacterial
infection in the context of the fully differentiated and intact epithelial monolayer.
Intact cell–cell communication plays a central role in the regulation of tissue
homeostasis; thus, a response to infection involves the reaction of both directly
infected cells and neighboring cells in the epithelium. Indeed, strong activation of
paracrine pathways is found to be one of the hallmarks of Ctr infection of the
fallopian tube tissue (Kessler et al. 2012). Disruption of epithelial integrity evident
by the loss of apicobasal polarity is compensated by the increase in proliferation of
noninfected epithelial cells. The induction of the Wnt signaling pathway in response
to Ctr is shown to be an important regulator of the changes in global gene expression
and a homeostatic defense mechanism—as the addition of porcupine inhibitor IWP2
enhances Ctr replication and suppresses induction of EpCAM and OLFM4. The
study highlighted the necessity to analyze the consequences of Ctr infection in the
broader tissue context. The infected epithelium also represents a changing microen-
vironment in which cell communication and long-distance signals coordinate the
response. Although important and informative, ex vivo tissue infection models have
serious limitations, mostly due to the short time window of viability in culture (max
96 h) and the inability to apply molecular biology and gene editing techniques. Thus,
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the discovery of the stem cells in the adult mucosa and the development of the
organoid model was of pivotal importance for studying the properties of human
primary tissues in vitro.

9.7 Patient-Derived Organoids: In Vitro Diseases Modeling
and Translational Applications

The limited life span and expansion potential of primary cell culture isolates
represented for many decades a great methodological limitation for utilization of
human tissue samples in the lab. Fundamental requirements for high reproducibility,
robust design, and permissivity for experimental manipulation of the studied models
could only be fulfilled by immortalized or cancer-derived cell lines which found
universal usage in almost all areas of biomedical research. Analysis of human tissue
probes was restricted to largely descriptive approaches that capture properties of the
cellular state at the time of the sample collection (imaging, proteomics, NGS)
without the possibility to analyze the functional properties of the cells. This para-
digm was changed by John B. Gurdon who showed that cell differentiation state can
be reversed and the discovery of induced pluripotency by Shinya Yamanaka who
showed that any somatic cell in the body can be reprogrammed to revert to the
pluripotent state by transitional expression of a set of cellular factors (Takahashi
et al. 2007). This research created a basis of iPS cell technology, a revolutionary
approach of de novo in vitro development of any human tissue of choice whose
importance was acknowledged in 2012 as Yamanaka and Gurdon were awarded
Nobel prize in medicine. In parallel, the lab of Hans Clevers was successful in the
identification and molecular characterization of Lgr5+ positive long-lived stem cells
in the intestine of mice that give rise to all different epithelial cell types as shown by
lineage tracing experiments. It was the work of Toshiro Sato in the same lab that
demonstrated that these unique features of adult stem cell longevity and differenti-
ation potential can be preserved in vitro by seeding in 3D matrix and supplementing
with an optimal paracrine signaling environment to generate mini epithelial organs
in the dish, termed organoids. Patient-derived organoid models have since been
successfully established for tissues of the gastrointestinal tract (intestine (Sato et al.
2011), stomach (Bartfeld et al. 2015), liver (Huch et al. 2015), pancreas (Wang et al.
2020)), reproductive tract (prostate (Drost et al. 2016), breast (Rosenbluth et al.
2020), fallopian tube (Kessler et al. 2015), endometrium (Turco et al. 2017)), and
others. Importantly, it was found that malignant tissue that originates from the same
organ also maintains the underlying concept of tissue renewal, thus leading to the
establishment of organoid cultures for many solid tumors: colon cancer, breast
cancer, prostate cancer, stomach cancer, etc. Organoids can be expanded in long-
term culture while preserving genomic and phenotypic stability, cryopreserved, and,
importantly, modified by gene editing methodology (Matano et al. 2015), all prop-
erties which are essential for downstream experimental applications. While long-
term stable expanding organoids from healthy mucosa enable in vitro studies of
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disease development such as the design of new infection models, cancer organoids
provide an opportunity to generate “living biobanks” of patient samples (van de
Wetering et al. 2015; Yan et al. 2018; Sachs et al. 2018) as a valuable tool to study
personalized therapy approaches and test system of novel targeted therapies.

9.8 Regulation of the Epithelial Renewal in the Upper
Genital Tract

9.8.1 Stem Cells of the Ovary

The Wnt signaling pathway plays a central role in the regulation of epithelial
homeostasis in the fallopian tube and the ovary, just as in the tissues of the intestinal
tract and skin (Barker et al. 2007; Snippert et al. 2010). Since these tissues originate
from different embryonic layers, this illustrates the degree of conservation of the
process of epithelial regeneration programs across germ layers of ectoderm, endo-
derm, and mesoderm. Stem cells of the ovary (Lgr5+ ALDH1+) are localized in the
hilum region, an anatomic structure where nerves and blood vessels enter the organ
and give rise to the cells of the surface epithelium as shown by lineage tracing
experiments in the mouse (Flesken-Nikitin et al. 2013). The existence of Lgr5+ adult
stem cells in the junctional region between the ovary and the fallopian tube was also
confirmed in the study of Ng and colleagues who investigated in more detail the
pattern of Lgr5 expression at different stages of embryonic development, neonatal
period, and in adult animals (Ng et al. 2014). The study, however, could not confirm
the role of ALDH1 as a specific stem cell marker, rather showing its broader
expression in the epithelial cells on the surface of the ovary. Moreover, detailed
analysis of Lgr5+ cell populations by Lgr5_EGFP_ires_CreERT2 (Lgr5-KI)
reporter mice revealed broad expression of Lgr5+ in the ovary and fallopian tube
epithelia during development but the more localized expression in the adult tissue to
the regeneration active domains. Interestingly, in addition to the hilum region, Lgr5+
cells are localized at the surface of the adult ovary around pre-ovulatory growing
follicles and corpora lutea suggesting a functional importance for the repair of tissue
injury after the oocyte release. Lgr5+ cells are also described to be exclusively ID2
negative which indicates the low activity of BMP signaling in these cells, as ID2 is
one of the classical target genes of the BMP pathway. While the importance of the
Wnt pathway for the development of the fallopian tube was well-known for a long
time since Wnt4 was identified as one of the determiners of the female sex in the
early embryo (Vainio et al. 1999), it was not clear which role it plays in the
maintenance of homeostasis in the adult epithelium. As models of ovarian cancer
development postulate expansion of the secretory cells as the hallmark of the initial
transformation events, it was of interest to see which function they have in the tissue
hierarchy of the healthy mucosa.
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9.8.2 Stem Cells of the Fallopian Tube- Pax8+ Progenitors

Lineage tracing experiments in the mouse model (Ghosh et al. 2017) demonstrated
that Pax8+ secretory cells represent the progenitor population capable of self-
renewal that gives rise to the differentiated ciliated cells. Stem-cell progenitor
potential of the secretory cells is dependent on Wnt pathway activity as ablation of
the β-catenin gene leads to a reduction of the secretory cells, and accordingly
overexpression induces proliferation.

The existence of bipotent cells in the mucosa of the human fallopian tube adult
tissue has been confirmed, as single EpCAM+ cells sorted from mucosal tissue give
rise in vitro to organoids (Fig. 9.2a) comprised of two different cell types: ciliated
and secretory cells (Kessler et al. 2015). Indeed, early organoids contain only Pax8
positive cells, while ciliated cells differentiate during the second week in culture.
The generation and growth of organoids in vitro are supported by exogenous
supplementation of Wnt agonists Wnt3a and RSPO1. Inhibition of the BMP signal-
ing cascade by noggin, which chaperones BMP molecules away from receptors, is
also required for the preservation of longevity, similar to organoid models from the
gastrointestinal tract (Sato et al. 2011). This high-Wnt, low-BMP environment in
addition to an active EGF and FGF10 axis and blockade of TGFβ signal via Alk4/5
receptor ensures that the progenitor potential can be preserved in vitro almost
indefinitely (>1 year) and continuously produces differentiated progeny, mimicking
the in vivo renewal mechanisms of the epithelial homeostasis. The organoid epithe-
lium closely resembles the cellular composition (Fig. 9.2b) of the native fallopian
tube mucosa, and the number of ciliated cells depends on the activity of NOTCH
signaling. Organoid cultures were also successfully derived from endometrial
mucosa, with the same underlying growth requirements (Turco et al. 2017). It
remains to be determined which LGR receptor regulates progenitor populations in
the adult fallopian tube as functional redundancy is well-known among family
members (de Lau et al. 2011).

9.9 Chronic Chlamydia Infection in Human Fallopian Tube
Organoids

The development of the organoid model from human fallopian tube provided a
unique opportunity to establish in vitro infections to study long-term interaction
between Ctr and the tubal mucosa. This type of longitudinal experimental setting
under controlled conditions was able to provide insight into the infection process
extended beyond the initial 72 h of the Ctr life cycle for the first time. The ability of
organoids to preserve critical features of epithelial homeostasis also enables studies
of the effect of pathogen-host interactions on tissue renewal mechanisms. Ctr readily
infects organoids and established a productive replicative niche comparable to
standard 2D models. However, in addition to a robust inflammatory response at
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72 h post-infection, organoids react by activation of paracrine signaling networks
that control cell proliferation, cell fate, and integrity of the epithelial surface. In this
model, the extrusion of inclusions from infected cells, previously described in 2D as
an occasional phenomenon, represents the major mechanism of bacterial clearance
and tissue defense. Within 72–96 h post-infection, the vast majority of the bacteria-
containing inclusions are being expelled into the lumen of the organoid prior to
rupture of the membrane and release of infectious elementary bodies (EBs). In this
model, Ctr undergoes multiple infection rounds, mimicking chronic infection that

Fig. 9.2 (a) Fallopian tube organoids originate from single EpCAM+ bipotent cells isolated from
tissue. (b) Organoid epithelium is polarized and contains ciliated (dTub) and secretory cells
(PAX8). (c) Ctr readily infects organoids and establishes replicative niche within inclusions.
Inclusions containing bacteria can be found for months after initial infections took place. Images
were taken from original publications (Kessler et al. 2015, 2019) and adapted based on Creative
Commons Attribution 4.0 International License
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occurs in vivo (Fig. 9.2c, showing presence of inclusions at 24 days post-infection).
The analysis of infected Ctr organoids that were continuously expanded for 9 months
in culture revealed several important and previously unknown consequences of
chronic infection of the FT epithelium on cellular phenotypes (Kessler et al.
2019). Phenotypic analysis showed that chronic infection causes a significant shift
in the cell-type composition and reduction in the number of ciliated cells. These
findings strongly suggest the existence of Ctr-driven changes in epithelial homeo-
stasis toward a less differentiated state. Indeed, chronically infected organoids
acquired increased organoid-forming capacity consistent with an increase in
stemness potential. Analysis of the changes in the distribution pattern of methylated
CpGs over time by the BeadChip method showed that the genome of the organoids
ages in culture. Differentially methylated CpGs are not randomly distributed but
rather belong to repressed genomic regions that are known to be regulated by the
polycomb complex. It can be concluded that organoid genome ages during the
9-month-long cultivation and that strikingly this process appears to be accelerated
in the presence of Ctr infection. These highly significant molecular data strongly
suggest that the consequences of chronic Ctr infection are much more far-reaching
than structural damage to the tube. Moreover, a permanent fingerprint in the genome
of the host epithelial cells, as Ctr-infected organoids age faster, raises the prospect
that salpingitis episodes could leave patients with a substantially altered mucosa that
is more vulnerable to carcinogenic stimuli. This certainly warrants further molecular
studies on the contribution of chronic Ctr infection as a risk factor for the develop-
ment of ovarian cancer. Of course, although epithelium is the primary targeted tissue
for Ctr infection, and HGSOC is an epithelial tumor, the broader context of inflam-
matory tissue phenotype also needs to be considered. In the organoid model, global
analysis of the gene expression changes that persisted after chronic Ctr infection has
been cured revealed sustained deregulation candidates that are likely to affect the
interaction of the epithelium with the immune system (SPP1, TNFSF14 up, and
CCR7, IGF1, IL17 RB, SULF1 downregulated). This data, which needs to be
followed up within a more complex co-culture experimental model including the
presence of immune cells, could be helpful to understand the complex field of Ctr
infection-associated immunity and explore the potential involvement of past infec-
tions in the development of ovarian cancer via altered immunosurveillance (Swann
and Smyth 2007).

9.10 Patient-Derived HGSOC Organoids: Evidence
of Early Changes in Regulation of the Stem-Cell Niche

Ctr infection of the in vitro organoid model confirmed the potential of this patho-
genic bacterium to achieve a sustained impact on the fallopian tube epithelium.
Despite this, the cultivation conditions required to facilitate long-term expansion of
the infected organoids remained unchanged. This suggests that core cellular
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mechanisms of stemness maintenance and controlled epithelial differentiation
remained intact despite the shifts in phenotype and increase in stemness potential.

Interestingly, simultaneous depletion of the three tumor suppressor genes
p53/PTEN/RB1 by lentivirus-mediated shRNA knockdown does cause growth
arrest of fallopian tube organoids. Phenotypic characterization revealed that the
process is accompanied by the progressive loss of stemness markers and irreversible
cell differentiation. This important observation implies the existence of a functional
connection between the tumor driver genes p53/PTEN and RB1 and cellular path-
ways that control the maintenance of stemness potential in the fallopian tube
epithelium. Indeed, systematic testing of conditions for the stable in vitro expansion
of patient-derived organoids from HGSOC solid deposits revealed a substantial
change in the composition of paracrine signals that support cancer organoid growth
in vitro in comparison to the healthy epithelium. Most significantly, exogenous
activation of canonical Wnt signaling by the addition of agonists (Wnt3a and
RSPO1) which is an essential component of the adult stem cell-based organoid
cultures from healthy mucosa has a negative effect on the preservation of stemness in
HGSOC cancer organoids. The negative impact of conditional medium containing
Wnt3a, initially observed during the establishment of the first biobank of ovarian
cancer organoids (Kopper et al. 2019), was more closely investigated in a parallel
study focused on HGSOC deposits from patients who have not been exposed to
chemotherapy (Hoffmann et al. 2020). A fundamental shift in the requirement for
growth factors between healthy organoids and cancer organoids were discovered and
characterized in detail, revealing an important novel biological concept. In contrast
to healthy epithelium organoid cultures, the low-Wnt environment is proved essen-
tial for stable expansion of HGSOC organoids, all of which were cultured in the
absence of exogenous Wnt ligand and only two required RSPO1. It was shown that
the addition of Wnt agonists leads to the reduction in surface expression of the
stemness marker CD133, strongly induces differentiation, and causes growth arrest
(Hoffmann et al. 2020). Moreover, BMP signaling, which is actively suppressed by
the presence of noggin in the medium for healthy organoids, promotes the formation
and long-term expandability of HSGOC cultures. Indeed, addition of exogenous
BMP2 ligand further amplifying BMP signalling was found to improve organoid
forming efficiency even further in some primary isolates. These important changes in
the paracrine signaling environment, required for the formation and expansion of
HGSOC organoid cultures in vitro, indicate that analogous changes in in vivo tissue
could potentially provide selection pressure and create conditions that favor initial
tumor outgrowth. Further analysis of the in vivo tissue microenvironment at different
stages of the cancer development is necessary to discover the mechanism and cell
types that regulate this shift in signaling niche composition. This is a rather difficult
task, keeping in mind the complete absence of exploratory invasive gynecological
procedures in asymptomatic women. Interestingly, WNT4 and RSPO1 were identi-
fied among six new susceptibility loci for ovarian cancer development as a result of
the large GWAS study, in agreement with findings from the organoid model.
Kuchenbaecker and colleagues investigated the association of 11 million different
genomic variants with EOC, based on computed data from the 1000 genomes project
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on samples from over 15,000 patients and 30,000 controls. The WNT4 locus showed
increased association with EOC in general and the RSPO1 variant conferred risk for
the development of HGSOC (Kuchenbaecker et al. 2015). The identified shift in a
niche requirement is a highly significant finding as it alters the concept of cancer as a
tissue of unrestricted growth potential, obtained at the time of the transformation that
is achieved in a cell-autonomous intrinsic fashion. Loss of dependence on niche
factors has been previously described as a late-phase event in the metastatic spread
of colon and pancreatic cancer (Fujii et al. 2016; Seino et al. 2018). Data from
engineered fallopian tube organoids, by contrast, strongly argues that in HGSOC this
change occurs early in carcinogenesis and could be part of a critical mechanism that
allows for the initial expansion of transformed cells at the expense of surrounding
healthy epithelium.

9.11 Wnt Signaling in Health and Disease

Implications of the findings of reduced Wnt pathway activity in HGSOC cancer
tissue are far-reaching. The Wnt paracrine pathway is well-known as an essential
component of embryo development in eukaryotes and is indispensable for the
development of the female genital tract. WNT4 has been identified as the master
regulator of the formation of the reproductive system in females. WNT4 mutant mice
don’t have organs deriving from the Mullerian duct (Vainio et al. 1999), and WNT4
is required for the normal folliculogenesis in the ovary (Boyer et al. 2010). Its
expression in early gonads is regulated by RSPO1 and represents an early marker
of female sex determination in developing embryos which are initially indistinguish-
able regardless of the genetic sex. Indeed RSPO1 mutations can lead to sex XX
reversal phenotype (Parma et al. 2006) syndrome which has been described in
humans in 46, xx males in affected families or, depending on the mutation type,
be a monogenic cause of true hermaphroditism (Tomizuka et al. 2008; Tomaselli
et al. 2008).

Robust advances in basic cancer research in the last half of the century were
propelled by key discoveries in the field of molecular and cell biology. It became
clear that in many cases tissue malignancy occurs because of changes in the
pathways that control normal development. Among them, perturbations of Wnt
signaling are proven to be the culprit behind almost 90% of colorectal cancer
cases. Constitutive hyperactivation of the Wnt signaling pathway due to impaired
function of the beta-catenin degradation complex has been identified in families with
adenomatous polyposis coli (APC) mutations and causes familial adenomatous
polyposis (FAP) syndrome which greatly increases the risk for colon cancer devel-
opment (Jasperson et al. 2010). In addition to a large spectrum of different APC
mutations, other Wnt-activating mutations have been found to be associated with
sporadic colon cancer cases (RNF43, TCF4, AXIN1, AXIN2), as well as epigenetic
inactivation by methylation of Wnt inhibitors, DKK2, and WIF1 (Segditsas and
Tomlinson 2006). Increased activity of Wnt signaling is also found to be significant
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for the progression of breast cancer, leukemia, and other malignancies mostly in the
context of the recurrent disease and resistance to therapy (Khramtsov et al. 2010; Lu
et al. 2004). In contrast to endometrioid adenocarcinoma where Wnt signaling
activating mutations are found in 40% of the cases (Schwartz et al. 2003), somatic
activating mutations inWnt pathway components in HGSOC cases are exceptionally
rare. There is some evidence that in aggressive forms of advanced disease, and
patients resistant to platinum therapy, Wnt pathway activity is increased (Nagaraj
et al. 2015). Correlation is found between the stemness potential of CSC defined by
expression of CD117+ with an increase of resistance to the chemotherapy and
activation of the Wnt pathway (Chiu et al. 2015). In vitro experiments in low
attachment spheroid cultures of cancer cell lines and ascites cells demonstrated
that β-catenin directly transcriptionally regulates ALDH1A1, an enzyme associated
with CSC phenotype (Condello et al. 2015). However, analysis of the properties of
patient-derived organoids from primary HGSOC tissue from chemo-naive patients
convincingly demonstrated the negative influence of high-WNT environment on the
formation and growth of cancer organoids in culture. Though these findings might
appear contradictory, they likely illustrate the complexity of the cellular organization
of the HGSOC tissue and growth mechanisms at different stages of disease progres-
sion. This underlines the necessity to analyze cancer biology not as an isolated entity
of individual cells but as an integral part of the microenvironment which changes
over time driven by novel selection pressures. Indeed, defects in HDR DNA repair
mechanisms are a major driver of HGSOC carcinogenesis, while recurrent disease
stages are frequently accompanied by the diverse mechanisms of reacquired HDR
proficiency which greatly limits therapeutic options (Sakai et al. 2008; Weigelt et al.
2017).

9.12 Tissue Inflammation as a Precursor of the Tumor
Microenvironment

Carcinogenesis is frequently described as a complex multistage process driven
mainly by the mutations in a small number of key tumor-driving genes that accu-
mulate in the cell until the transformation threshold is reached (Vogelstein et al.
2013). Other numerous mutations and genomic alterations abundant in all cancers
are passenger hits that contribute to cancer diversity but do not provide a growth
advantage. Interestingly, several recent NGS studies that analyzed clonal
populations of epithelial cells from healthy individuals revealed the prominent
occurrence of tumor-driving mutations in healthy tissues (skin, esophagus, colon)
at a much higher rate than the incidence of malignancy (Martincorena et al. 2018;
Lee-Six et al. 2019). It has been shown that around 1% of colonic crypts in each
individual between 50 and 60 years of age carry hot spot colorectal cancer mutations
even though colorectal cancer develops in only 5% of the people. These studies
convincingly demonstrated that many critical conceptual questions regarding the
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early stages of cancer development remain unanswered, in particular questions
regarding the influence of the microenvironment, clonal selection, and the mecha-
nisms underlying metastasis and immunosurveillance. Though the model of driver
mutations introduced by Vogelstein remains an important pillar of our understanding
of carcinogenesis, it is also clear that the process is not linear and that there are
multiple complex layers of regulation of tissue homeostasis and protective mecha-
nisms which act to prevent malignant transformation. In the case of HGSOC,
investigation of the disease origins is particularly difficult, due to the occult nature
of the malignancy and the inability to detect or sample the early stages of the
neoplastic changes. While STICs are considered the first stage of the neoplastic
disease, the incidental finding does not warrant a change in the clinical management
of the patients, as no data is available about frequency and risk of the progression to
HGSOC. The occurrence of TP53 signatures, sets of at least 12 secretory cells
harboring distinct p53 nuclear staining and increased DNA damage, was identified
as a potential first stage of an “abnormal” histological phenotype (Lee et al. 2007) in
the distal fallopian tube. However, it is found with equal frequency in tissue sections
of BRCA germline mutation carriers and healthy controls, raising the prospect that
the p53 “signature” falls within the scope of normal physiological responses and that
additional events are needed to drive the development of the tumor (Folkins et al.
2008). It also shows that the selection of p53 mutations in the FT epithelium is
independent of BRCA status, which needs to be taken into account when consider-
ing putative transformation sequels and the exact cellular mechanism behind early
carcinogenesis. Profiling of uterine lavages (Utl) by ultrasensitive deep sequencing
demonstrated high efficiency for the detection of cancer-related P53 mutations
(80%) in the group of ovarian cancer patients. However, pathogenic mutations
were also detected in the healthy control group albeit at very low frequency. This
is an important finding, in line with the previously cited studies from other tissues,
and demonstrates that the occurrence of pathogenic TP53 driver mutations alone is
not sufficient to trigger malignant transformation in the genital tract.

Taken together, histological evidence and molecular genomic data support the
conclusion that a complex yet undetermined set of physiological stimuli/environ-
mental factors provide critical selection pressure that leads to the expansion of
mutant cells in the fallopian tube epithelium and development of HGSOC. Espe-
cially interesting is the very low incidence of the primary tubal cancer, estimated to
be ~100� fold less frequent than HGSOC (40 vs. 4500 cases, respectively, per year
in the UK) (Pectasides et al. 2006). Primary fallopian tube cancer is rarely asymp-
tomatic, in contrast to HGSOC, which could reflect the fact that a fast-growing mass
within a narrow tube is more disruptive than malignant tissue on the surface of the
ovary.

How and why HGSOC cells metastasize to the ovary remains one of the most
significant open questions. The proximity of the distal fimbria and ovarian surface
exposes tubal epithelium not only to the follicular fluid but could also be within a
range of the local gradients of signaling molecules. The frequent bilateral clinical
presentation of the malignancy, already involving both ovaries at the stage IB, is also
an interesting phenomenon that needs to be understood to explain the mechanisms of
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monoclonal origin and early growth. The main route of HGSCOC dissemination is
thought to be via direct shedding of the transformed fallopian tube cells to the ovary
and/or peritoneum. Clinical data supported by experiments in animal models also
showed a significant contribution of hematogenous spread and lymphovascular
invasion (LVI) to the progression of the advanced disease (stage III and IV). At an
early stage of the disease, a minority of patients have LVI (17% and 32% at stage I
and stage II, respectively), and this group has significantly worse progression-free
survival (PFS) and overall survival (OS) than LVI negative cases (Chen et al. 2015).
The ability of the cancer cells to disseminate to the omentum by hematogenous
metastasis has been shown to correlate with the expression levels of the ErbB3
receptor on the tumor cells and its activating ligand neuregulin-1 on the surface of
the omentum in the parabiosis mouse model by injecting SKOV3 ovarian cancer
line. Endoglin (CD105) a member of the TGF beta receptor family has also been
identified as a potential mediator of the hematogenous spread to ovary (Bai et al.
2019). It has been found that STIC lesions show an increased level of CD105
compared to the surrounding epithelium, which raises the interesting possibility
that this pathway is also activated during early tumorigenesis. The propensity of
CD105+ cells to metastasize to the ovary through the bloodstream is demonstrated in
the mouse model, again by using the SKOV3 cancer line. These findings create new
potentially promising therapeutic opportunities to specifically target dissemination
mechanisms, although more comprehensive studies are needed to confirm the
functional relevance of these signaling pathways for disease progression. The
induction of a pro-inflammatory environment is considered an important mechanism
that enhances the metastatic potential of the tumor (Wu and Zhou 2009). Experi-
ments in an orthotopic xenograft mouse model that tested the peritoneal spread of
cancer cells to the omentum showed the accumulation of neutrophils in the target
tissue before metastasis (Lee et al. 2019) occurs. Moreover, neutrophils were
activated and underwent netosis, i.e., releasing NETs—fibers of extracellular chro-
matin and proteins. It was shown that NETs facilitate homing and attachment of the
incoming cancer cells to the omentum, and depletion of the neutrophil pool strongly
reduces the rate of cancer metastasis (~70%). Significantly, the study could validate
the principle findings of neutrophil accumulation in paraffin sections from omentum
in patients diagnosed with stage I–II HGSOC.

9.13 Tumor Heterogeneity and Local Microenvironment

Broad and early dissemination across the peritoneal cavity is one of the hallmarks in
the clinical presentation of the HGSOC. Due to the lack of symptoms, or their
unspecific nature, cancer is rarely detected before FIGO stage III and >75% of
diagnosed patients are > stage III when large tumor deposits are already present
outside of the primary localization to the ovary. Interestingly despite the extensive
dissemination potential within the peritoneal cavity and large tumor masses that
usually require large, high-risk debulking surgeries to achieve “tumor-free”
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resection, serous ovarian cancer metastasizes to distant organs only in a minority of
cases (35%) even in the absence of any therapy. The main locations of
extraperitoneal spread are the lungs and liver (Dauplat et al. 1987). It remains unclear
which cellular mechanisms are responsible for this remarkable restriction of malig-
nant potential. The TP53 mutation status has been shown to correlate with a
propensity for distant metastasis. As the sequence of this important tumor suppressor
gene is altered in almost all HGSOC cases (TCGA study), more than two third
involve point mutations that cause overexpression, while one third results in the
complete absence of the protein termed “null mutants”. It is this latter group of
missing TP53 which is at significantly higher risk for distant metastasis as well as
overall worse prognosis (Sood et al. 1999; Shahin et al. 2000). The differential effect
was confirmed in the mouse model of tumorigenesis, as p53 null mutants showed
significantly stronger metastatic potential than point mutations alleles when crossed
in the APC�/�/Pten�/� genomic background as histopathology showed spread to the
parenchyma of the liver and the kidney. On the other hand, several studies found a
significant association between the presence of the overexpressing p53 mutant and
the development of resistance to platinum chemotherapy as well as shortened
disease-free survival period after first-line therapy. Aggregation of p53 molecules,
either by modification of the cellular turnover machinery or by expression of
stabilized mutants that obtain prion-like properties (Silva et al. 2018) are proposed
to be conditions that promote resistance to chemotherapy (Yang-Hartwich et al.
2015) in the group of affected patients. Nevertheless, the exact clinical classification
and prediction of disease progression solely based on the type of detected TP53
mutation remain elusive (Reles et al. 2001).

Numerous studies confirmed great tissue heterogeneity of ovarian cancer at
different sites in the body, and functional importance of the local tumor microenvi-
ronment has been asserted by many experts in the field. Tumor deposits vastly differ
in the composition of the infiltrating immune cells and stromal compartment,
although clonal evolution of the mutational profile of the epithelial cancer cells
remains relatively straightforward. A study of 135 samples from 14 patients, using
genome-wide SNP arrays, showed that all main populations detected in the relapse
are already present in the primary tumor (Schwarz et al. 2015). Detailed phyloge-
netic analysis by whole genome sequencing (WGS) of 68 samples from 7 patients
showed that the majority of patients exhibited monoclonal and unidirectional
seeding, while 2 patients had polyclonal composition and mode of spread indicating
the existence of at least 2 different mechanisms how HGSOC spreads in the body
(McPherson et al. 2016). Despite fast progress in documenting variations in tumor
composition by implementing new tools of molecular analysis and expansion of
bioinformatics and system biology approaches to integrate the data, there is still only
limited understanding of how this heterogeneity is generated, which are the orga-
nizing principles, and most importantly which unifying common properties should
be targeted to improve clinical responses. Novel immunogenomic approaches made
it possible to perform detailed analysis on the single-cell level of the diverse
metastatic niches in an HGSOC patient over the extended course of 2 years
(Jimenez-Sanchez et al. 2017). This heavily treated patient had several metastases
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that regressed in response to therapy, while others were resistant to treatment. It was
shown that advanced metastases exhibited low immunogenic profile and oligoclonal
expansion of T cells was prominent in regressing tumors. However, exome sequenc-
ing has not confirmed the relationship between the increased mutational burden of
the tumor and local immune response, questioning one of the popular hypotheses
that novel neoepitopes that arise in heterogeneous malignant disease define the
immunogenic profile of the particular deposit.

9.14 Inflammation and Response to Immunotherapy

Chronic infection processes in the fallopian tube mucosa raise the prospect of subtle
yet sustained changes in the adaptive immunity repertoire which could also have
significant implications in the long-term immunosurveillance capacity of tissue and
influence metastatic capacity of the tumor. A recent study in a mouse model showed
that a range of inflammatory stimuli (wound healing, ovulation, and aging) increases
the efficiency of cancer cell metastasis (Jia et al. 2018). Interestingly, however, PD-1
and PD-L1 molecules are expressed in HGSOC tissue, and expression level corre-
lates with a stage of the disease (Drakes et al. 2018) making it a potentially good
candidate for checkpoint immunotherapies. The clinical response rate so far has been
rather modest, and the administration of single-agent PD-L1 therapy achieved a
complete response in only 15% of patients (Hamanishi et al. 2015). Thus, it can be
assumed that the biology of HGSOC cancer includes additional potent mechanisms
for immunoevasion which render the blockade of the PD1/PDl-1 signaling ineffec-
tive. A putative connection between inflammatory and infection processes in the
upper genital tract and increased risk for cellular transformation warrants investigat-
ing interferon signaling and its contribution in the context of the pathology devel-
opment (Zitvogel et al. 2015). Adaptations of interferon signaling in cancers have
been implicated as one of the important cellular mechanisms that can influence
response to immunotherapies and could explain resistance to treatment and success-
ful immune evasion strategies that enable disease progression.

Type I interferon signaling is a cell defense mechanism mediated by interferon α
and β upon activation of pathogen recognition receptors (PRR) after recognition of
intracellular pathogens, usually viruses. The stimulator of interferon genes (STING)
is a transmembrane protein localized to the intracellular organelle membranes (e.g.,
endoplasmic reticulum), a potent activator of the interferon type I (IFNI) response
upon recognition of foreign DNA and/or invading pathogens. Notably, STING plays
a crucial role in the innate immune response to tumor development and the estab-
lishment of efficient adaptive T-cell response (Woo et al. 2014) as it recognizes
tumor DNA released into the environment. In this context, the function of the
STING complex is unique, as other upstream mediators of the INF I response
MY88, TLR4, TLR9, P2X7R, TRIF, or MAVS did not influence T CD8+ antitumor
population. Activation of the INF I response and strong chemokine profile, together
with T-cell infiltration, are hallmarks of an “inflamed” cancer phenotype and have
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positive clinical prognostic value in melanoma, breast cancer, gastrointestinal stro-
mal tumor, renal cancer, and ovarian cancer (Gajewski et al. 2013). Numerous
clinical trials are ongoing that try to exploit this important correlation to improve
response to checkpoint inhibitor therapies, by improving the immunity of the tumor
and convert “cold” to “hot-inflamed” tumors. Experimental models of ovarian
cancer suggest that the STING pathway can be induced by various means including
standard cisplatin chemotherapy (Grabosch et al. 2019). Treatment with PARP
inhibitors increases the amount of unrepaired single-strand DNA, a signal that also
triggers STING activation (Shen et al. 2019). Therefore, a combination of existing
lines of therapy and new immunotherapeutics could be a promising possibility to
improve the response of ovarian cancer to checkpoints inhibitors, but this hypothesis
is yet to show a clear benefit in large clinical trials. Functional redundancy between
innate immunity pathways activated during infections and the immune response to
malignancy is being investigated for the development of novel therapeutic strategies
in a form of new vaccines as adjuvants to checkpoint inhibition. A new class of
cyclic lipids has been identified as a vehicle for delivery of mRNA vaccines that
specifically induce STING pathway response and thereby improves the effectiveness
of PD-L1 treatment in melanoma and E6/E7 mouse tumors models (Miao et al.
2019).

Big data analysis also revealed a potential link between expression of human
endogenous retroviral elements (hERV) in renal cancer tissue and cancer immuno-
genicity (Smith et al. 2018). In silico characterization based on two mechanisms,
activity of RIG-I receptor signaling for pathogen recognition and retroviral activa-
tion of adaptive immunity, correctly predicted response to immunotherapy. Interest-
ingly, high expression of hERV elements is identified in ovarian cancer, but in the
group of low-grade histotype while HGSOC tissues showed a lower median level
than healthy tissue control (Wang-Johanning et al. 2007). Studies are ongoing to
explore if it is possible to improve the responses to immunotherapy by reactivating
hERV sequences in advance disease (Kong et al. 2019).

9.15 Contribution of the Microbiota to Disease Progression
and Response to Immunotherapy

Analysis of the involvement of microorganisms in the development of malignancies
or their influence on patient outcomes by influencing patients’ response to therapy
requires the distinction of two separate classes based on their location within the
organism. Throughout this chapter, numerous examples have been provided about
the effects of local microorganisms that colonize the genital tract both as the
pathogens and commensal species. Besides, it is increasingly clear based on accu-
mulating experimental evidence in different models that the composition of the gut
microbiome has a powerful influence on the response of the body to cancer progres-
sion and response to therapy. For example, the gut microbiome strongly influences
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the effectiveness of the cancer drug cyclophosphamide which induces antitumor
activity of the immune system as demonstrated in a mouse model. Cyclophospha-
mide in combination with cisplatin was used as the first-line therapy for ovarian
cancer before the discovery of paclitaxel and is today used in late-stage maintenance
therapy. Also, healthy commensal bacteria species such as Bifidobacterium or
Akkermansia muciniphila appear to be a positive factor in determining response to
new checkpoint inhibitor-based immunotherapies in the kidney, lung tumor, and
melanoma patients (Routy et al. 2018). However, studies also give a picture of rather
complex and sometimes contradictory findings where more detailed and better
controlled clinical studies are needed before the microbiome can be used as a reliable
biomarker or point of intervention in new therapeutic strategies (Gong et al. 2019).

In the research field of malignancies in female tissues that are responsive to
estradiol stimulation, there is a great interest in the potential modulating role of the
gut microbiota by species that produce the β-glucuronidase enzyme. This enzyme
deconjugates estradiol from the bile excretion products leading to its reabsorption
and return to the circulation, thereby influencing the level of this hormone in the
circulation. Thus, intestinal dysbiosis can enhance the pathologic effects of low
estrogen levels or, conversely, increase hyperestrogenic states such as endometriosis
or PCOS (polycystic ovarian syndrome) in cases of increased proliferation of these
species Baker et al. 2017. Bacteroidetes and Firmicutes phyla among others have
been shown to express β-glucuronidase at dynamic levels that can vary based on the
diet or density of bacteria in the gut (Lampe et al. 2002). The effect of the gut
microbiota on estradiol levels, termed in the literature as estrabolome, thus repre-
sents an important field of research that is likely to provide valuable insight and a
better understanding of complex physiological factors that participate in hormone-
driven disease and potentially affect tumorigenesis, disease progression, and
immune response.

9.16 Future Directions in the Research of Tubal Pathology
and HGSOC Development

Robust induction of an interferon type I response is a hallmark of acute Ctr infection,
as observed in infected FT organoids. As an obligatory intracellular pathogen that
establishes a replicative niche with a cytoplasmic vacuole, it can be argued that Ctr
elicits host responses that are very similar to the response to virus infections in other
models. Interestingly, the requirement of Wnt signaling for optimal induction of the
INF I pathway is a part of the antiviral response for vesicular stomatitis virus (VSV),
herpes simplex virus HSV-1, and Sendai virus (Yang et al. 2010; Khan et al. 2015).
The consequences of beta-catenin activation during the infections appear to be
context-dependent. Bearing in mind the characteristics of the patient-derived
HGSC organoids model, and the requirement of low-Wnt environment for the
maintenance of long-term growth upon depletion of key tumor drivers in fallopian
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tube organoids, the molecular link between Wnt signaling and the interferon
response could have exceptionally important implications for cancer development.
STING pathway activation and the subsequent INF I response, as discussed above,
are important components of the cancer “inflamed” phenotype as a mediator of
T-cell recruitment. Therefore, a putative shift toward a low-Wnt microenvironment
in the HGSOC tissue could lead to reduced INF I pathway activity and thereby
contribute to the modest response to checkpoint inhibitor immunotherapy, but at this
stage, this hypothesis remains a theoretical possibility and requires in-depth exper-
imental research. Currently, there is no data about the cellular mechanisms that
mediate in vivo the change in the microenvironment in the fallopian tube tissue at the
time of malignant HGSC transformation. The organoid models discussed here
provide an important in vitro readout about changes in the regulation of the epithelial
renewal mechanisms in response to infection or depletion of the tumor suppressors
in vitro. Patient-derived HGSOC organoids reveal and preserve the intrinsic cellular
composition of malignant tissue of each patient and pave the way for personalized
therapy approaches. Nevertheless, it remains unclear which cell types provide Wnt
ligands in vivo in healthy tissue and under which circumstances the paracrine
environment changes to favor outgrowth of cancer clones. It is tempting to speculate
that chronic infection of the fallopian tube, by Ctr and other pathogens and
microbiota, leading to the shift in epithelial homeostasis, also alters the way the
mucosa interacts with the surrounding environment, both parenchyma and immune
cells, and thereby additionally affects broader tissue response to other physiological
or environmental challenges. Comprehensive studies are needed to investigate
several different scenarios that could plausibly occur in vivo regarding the interplay
of infection, microbiota, and interferon signaling. Also, it is of critical importance to
identify the factors that provide a growth advantage to the cells that harbor
preexisting mutations. As discussed above, rare p53 mutant cells do occur sponta-
neously in the mucosa of healthy women without direct negative consequences. It
would be interesting to know how and if the occurrence of this “mosaic” phenotype
influences the outcome of chronic infections and local inflammation, both in terms of
priming of the immune response and potential consequences on the dynamics of
epithelial renewal and distribution of different clones.

Finally, new patient-derived organoid models create an opportunity to sample the
primary tissues and analyze the functional properties of the epithelium in vitro. This
greatly expands the possibilities for improvements in the diagnostic procedures and
could lead to the discovery of reliable early phenotypic markers of the neoplastic
changes. This line of research is still in its infancy but could pave the way for the
long-awaited improvement in early detection of HGSOC.
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Chapter 10
Commensal Microbes and Their
Metabolites: Influence on Host Pathways
in Health and Cancer

Roberto Mendez, Sulagna Banerjee, and Santanu Banerjee

Abstract Commensal microbial homeostasis has been associated with the health of
an individual for centuries. Microbial dysbiosis (alteration of microbial composition,
with expectation of adverse outcome) in disease, infection, and chronic metabolic
disorders are associated with distinct comorbidities, hitherto known, and yet poorly
understood. With extensive use of sequence-based molecular phylogeny, we now
understand the commensal microbial association with the diseases, their manifesta-
tion, and pathogenesis. Microbiome and its metabolic products continuously interact
with the host, both immunologically and biochemically in health and disease. This
interaction can be beneficial or adversarial, depending on its nature of participation
in the host metabolic process. In this chapter, we have discussed the major microbial
metabolites that dominate the metabolic landscape of gut microbiota (the cancer
microbiome) and influence cancer pathogenesis and chemotherapeutic efficacy.

Keywords Microbiome · Microbial metabolism · Cancer microbiome ·
Inflammation · Pathways · Cancer

10.1 Introduction

The human gut microbiome consists of all microbial organisms within the gastroin-
testinal tract. The role of the gut microbiome in health has been elucidated by recent
developments in sequencing technology. The effects of microbial composition in
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this regard extend beyond those of direct infections by pathogenic species. Com-
mensal bacteria have an important role in host health as modulators of immune
response and producers of vital metabolites. In mammals, initial shaping of the gut
microbial composition is dependent on the dietary components of mother’s milk
(Al Nabhani et al. 2019). The transition from mother’s milk to solid food marks a
significant remodeling of gut microbiome yet again, with associated changes in
microbial metabolism (Al Nabhani et al. 2019; Beaumont et al. 2020), leading to
adjustments and eventual maturation of the intestinal barrier (Beaumont et al. 2020;
Oliphant and Allen-Vercoe 2019). Throughout the age of the mammal, depending on
geography, diet, and hygiene, gut microbes and their metabolites continually influ-
ence and modulate host systemic and immune functions in health and disease
(Oliphant and Allen-Vercoe 2019). As ecological studies have shown, microbial
metabolic processes can be powerful enough to reshape components of specific
ecosystems (Lu et al. 2020). Within the body, microbes have a similar level of
control on the health of their host through the production of metabolites. The
microbiota of the human gut is especially important in production of biomolecules,
such as polyamines, trimethylamine (TMA), short-chain fatty acids (SCFAs), and
kynurenine, to mention a few (Oliphant and Allen-Vercoe 2019; Jacobs and Braun
2014).

Understandably, the microbiota of the gut is not static in composition. This
community is in a constant flux as it interacts with incoming chemical components
of diet, new bacteria introduced by the environment outside the host, and immune
responses generated by the host. As the composition and environment of the
microbiota change, so do the metabolites produced by the microbiome. However,
there may be instances where change in overall composition of microbiome triggers
changes in metabolic “behavior” in microbes that may or may not be altering in their
relative abundance. In any case, the metabolic influence of the microbiota on the host
is manipulatable and, possibly, exploitable for amelioration of primary disease
conditions and associated comorbidities (Jacobs and Braun 2014).

Alteration of gut microbiota (“microbial dysbiosis”) is strongly implicated in
systemic inflammation, leading to carcinogenesis and cellular dysplasia (Helmink
et al. 2019). Microbial dysbiosis and resultant inflammation leads to immune escape
and production of pro-tumorigenic metabolites (Silbergleit et al. 2020), often asso-
ciated with mucosal barrier compromise and bacterial translocation and associated
innate immune activation. In fact, gut microbial dysbiosis is always associated with
low- to high-level systemic inflammation, depending on the primary cause of the
said dysbiosis (Jacobs and Braun 2014). It is hence perceivable that microbial
dysbiosis and associated inflammation create an environment within the host that
promotes the initiation and onset of carcinogenesis, maintenance of cancer through
immune escape, and resistance to therapy. All of these factors are achieved by
changes in microbial composition (gram-positive or proteobacterial skew), exposure
of surveilling immune cells to microbial cell-wall products (lipopolysaccharides,
LPS; lipoteichoic acid, LTA; etc.), and specific flux of metabolites that can affect
immune cells in terms of polarity and activity. For both gastrointestinal (GI)-
associated and non-GI-associated malignancies, there is strong evidence of antibiotic
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use (and microbial dysbiosis by association) and disease onset and progression
(Boursi et al. 2015). In colorectal cancer (CRC), where the major premise of “cancer
microbiome” was established, studies have shown a distinct dysbiotic microbial
composition compared to controls (Sears and Garrett 2014; Kwong et al. 2018; Hale
et al. 2018; Allen and Sears 2019; Yoon and Kim 2018). Additionally, it has been
shown that engraftment of CRC-associated dysbiotic microbiome in naïve animals
can induce colonic polyp formation that goes on to establish symptomatic CRC in
the recipients (Wong et al. 2017). Similarly, many bacterial genera are now
established as carcinogenic, notably Salmonella and Helicobacter, that are impli-
cated in biliary cancer, gastric adenocarcinoma, and mucosa-associated lymphoid
tissue (MALT) lymphoma (Di Domenico et al. 2017; Wang et al. 2014). Apart from
being the initiator of tumorigenesis, there is ample evidence that dysbiotic
microbiome can exacerbate tumorigenesis. Work from our own laboratory has
shown that bacterial polyamines can promote tumorigenesis in pancreatic ductal
adenocarcinoma (PDAC) and that bacterial metabolites do play a role in diabetes-
induced chemoresistance in PDAC (Mendez et al. 2019; Kesh et al. 2020).

In this chapter, we have discussed major commensal microbial metabolites that
have known influence in various cancers. The influence of commensal microbial
metabolites on cancer biology (both progression and therapy) is a rapidly evolving
field. Hence, while the current knowledge base is limited, the possibilities and its
ramifications on cancer biology are enormous.

10.2 Microbe-Derived Metabolites

Metabolic interactions within gut microbes and that between microbes and
multicellular host are one of the predominant modes of interspecies interaction in
nature. In fact, interspecies participation of metabolites in homeostatic physiological
processes is the foremost denominator for the establishment of mutualistic and
commensal relation between two different species. In the current context, metabolite
sensing among different microbial species determines the composition of biofilms on
the mucosal surfaces, and their sensing and uptake by the host establish the threshold
of commensalism between the two in healthy conditions (McCarville et al. 2020).
The microbial presence within the mammalian gut is an example of an overtly
complex ecosystem. The constituents are at continuous flux with the chemical
environment presented by proximal host tissue, as well as the metabolic secretome
of the surrounding microbes (Sanchez and Gore 2013; Sung et al. 2017). At
homeostasis, the microbes thrive by utilizing host, diet, and other microbe-derived
metabolic products (Sung et al. 2017; Russell et al. 2013). In disease-associated
microbial dysbiosis, there are profound changes in the metabolic landscape, with
clear consequences for disease progression, manifestation, and therapy (Jacobs and
Braun 2014). This section is dedicated to the discussion of few of the metabolites
that are essential for homeostasis and influence disease processes in host upon
microbial dysbiosis and thematically summarized in Table 10.1.

10 Commensal Microbes and Their Metabolites: Influence on Host Pathways in Health. . . 315



Table 10.1 Microbial metabolites and interactions with host pathways

Microbes Metabolites
Interacting pathways in
host signaling References

Salmonella typhi Produces variety
of glucuroni-
dases from pri-
mary bile acids

Bile acid metabolism
pathways

Di Domenico et al.
(2017), Tsuchiya et al.
(2018)

Salmonella typhi Produces nitroso
compounds
from primary
bile acids

Bile acid metabolism
pathways

Di Domenico et al.
(2017), Tsuchiya et al.
(2018)

Salmonella typhi Cytolethal
distending toxin
(CTD)

Bile acid metabolism
pathways; promotes car-
cinogenesis in proximal
host tissue

Di Domenico et al.
(2017), Tsuchiya et al.
(2018)

Gut bacteria like
Firmicutes

Deoxycholic
acid

Secondary bile acid
metabolism that promotes
hepatocyte inflammation
and liver carcinogenesis

Jia et al. (2018), Jones
et al. (2014), Ridlon and
Bajaj (2015), Hylemon
et al. (2006), Ridlon et al.
(2014, 2016)

Gut bacteria like
E. coli

Produce
queuosine

Altered T-RNA base,
promotes proliferation of
cancer cells by inducing
unfolded protein response

Ishiwata et al. (2001),
Pathak et al. (2008),
Fergus et al. (2015),
Zhang et al. (2020)

Firmicutes and
Proteobacteria

Trimethylamine
(TMAO)

Choline metabolism
pathway; involved in ath-
erosclerosis and kidney
diseases as well as
increased risk of colorec-
tal cancer

Koeth et al. (2013),
Romano et al. (2015)

Gut bacteria Kynurenine Tryptophan metabolism
pathway

Puccetti et al. (2015)

Bacteroides and
Fusobacteria

Polyamine
(putrescine and
cadaverine)

Nucleic acid synthesis,
chromatin modification

Kesh et al. (2020)

Akkermansia,
Bacteroides,
Bifidobacterium,
Prevotella, and other
gut bacteria

Acetate Acetylation of proteins
and chromatin
modification

Morrison and Preston
(2016), Rey et al. (2010)

Bacteroides, Salmo-
nella, and other gut
bacterial

Propionate Inflammatory pathways Louis et al. (2014)

Coprococcus and
other gut bacteria

Butyrate Energy homeostasis,
HDAC inhibition, and
regulation of gene
transcription

Zeng et al. (2017)
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10.2.1 Bile Acids

In certain well-studied instances (e.g., hepato-enteric recirculation of bile acids
(Dawson and Karpen 2014, 2015; Banerjee et al. 2016)), microbial fermentation
of host-derived metabolites (in this instance, primary bile acids) is an essential step
to complete the metabolic cycle (Dawson and Karpen 2014, 2015). On the other
hand, any perturbation in the composition of bile-converting microbial genera would
essentially disrupt bile recirculation cycle (Banerjee et al. 2016). In gallbladder
(GB) cancer, for instance, colonization and biofilm production by commensal
Salmonella typhi have been particularly implicated for disease onset and progression
(Di Domenico et al. 2017; Tsuchiya et al. 2018). Once colonized, S. typhi utilizes
primary bile acids to produce a variety of glucuronidases, nitroso compounds, and a
group of cytolethal distending toxins (CTDs), that promote carcinogenesis in the
proximal host tissues (Fowler et al. 2017; Nath et al. 2010). Treatment of mice with
antibiotics has shown marked reduction in GB, colon, and liver cancer tumorigenesis
(Jia et al. 2018). One of the major secondary bile acids, deoxycholic acid (DCA), is a
microbial fermentation product of cholic acid (CA) within the gut. DCA is known to
promote hepatocyte inflammation and, by association, liver carcinogenesis (Jia et al.
2018). Recent report suggests that the primary to secondary bile acid balance and the
resultant CXCL16 could be a determinant of liver tumor growth. Indeed, depletion
of gram-positive phylum Firmicutes decreased CXCL16 levels, deactivating
CXCR6 on liver sinusoidal endothelial cells, thereby enhancing recruitment of
NKT cells and reduction in tumorigenesis (Ma et al. 2018). Additionally, the role
of bile acids in hepatocellular carcinoma (HCC) and colorectal cancer (CRC) is well
described and currently the target of research in the context of microbial dysbiosis
(Jia et al. 2018; Jones et al. 2014; Ridlon and Bajaj 2015; Hylemon et al. 2006;
Ridlon et al. 2014, 2016).

10.2.2 Mediators of Oxidative Stress

Our recently published study shows that in models of type 2 diabetes, there was a
distinct enrichment of bacterial population that metabolize antioxidants and thus
contribute to therapy resistance in pancreatic cancer (Kesh et al. 2020). Other studies
implicated glutathione, an antioxidant that is responsible for reactive oxygen species
scavenging, in reducing oxidative stress in the intestine (Wanders et al. 2020).
Studies have shown that germ-free mice have lower levels of intestinal glutathione
synthesis compared to conventionally raised mice (Mardinoglu et al. 2015). Defi-
ciency of queuosine, another microbial metabolite, has been shown to promote
Warburg metabolism and reversal of mitochondrial ATP synthase in HeLa cells
(Hayes et al. 2020). Role of queuosine in cancer is not well understood, but studies
have shown its role in affecting growth and progression of multiple cancers (Ishiwata
et al. 2001; Pathak et al. 2008; Fergus et al. 2015; Zhang et al. 2020).
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Trimethylamine (TMA) is a bacteria-derived metabolite that is converted to
trimethylamine-N-oxide (TMAO) in the host liver by flavin-containing
monooxygenase 3 (FMO3). TMA is produced in the gut by bacterial conversion
of dietary choline and L-carnitine (Koeth et al. 2013). TMAO has been associated
with atherosclerosis and kidney disease. Inhibition of gut microbial TMA showed
significant improvement in atherosclerosis model (Wang et al. 2011). FMO3, the
enzyme responsible for conversion of TMA to TMAO, has been closely linked with
gut microbiome. There are five functional FMO (FMO1-5) in humans. Among these,
FMO3 is instrumental in catalysis of TMA to TMAO (Lang et al. 1998). FMO3 is
thus a host enzyme that participates in the metabolic interactions between the host-
gut microbiome (Shih et al. 2015). In a study by Romano et al. (2015), it was
observed that upon in vitro incubation in mice gut medium supplemented with
choline, a significant part of gut bacteria produced TMA. These bacteria were
predominantly of the Firmicutes and Proteobacteria phyla since they were the
ones that had the enzymes required for conversion of L-carnitine to TMA. Interest-
ingly, even though Bacteroidetes is among the most common bacterial phyla, they
were absent in this study since they lacked this enzyme, and production of TMA was
is not only reliant on the choline and L-carnitine intake, but also the relative ratio of
Firmicutes and Bacteroides in the gut.

There have been a few studies linking TMA and cancer. Plasma TMAO levels
have been positively correlated with CRC risk in women (Bae et al. 2014) as well as
in prostate cancer (Mondul et al. 2015) and oral squamous cell carcinoma (Bag et al.
2015). The exact mechanism that would link cancer to TMA/TMAO is unknown.
One hypothesis is that the link is merely a correlation and that the true increased risk
factor is disruption of the gut barrier, which allows for the transportation of TMA
from the gut to the liver, where it is oxidized. Studies also show that cell cycle
progression is tied to TMAO production (Janeiro et al. 2018), which can suggest a
possible link to carcinogenesis. Oxidative stress is strongly associated with cancer. It
has also been implicated as one of the factors linking TMAO and cancer. Increased
level of circulating TMAO was shown to promote oxidative stress by inducing
production of superoxides. Accumulation of reactive oxygen species or ROS and
induce superoxide production, a reactive oxygen species (ROS) is linked to oxida-
tive stress (Li et al. 2017). Studies have shown TMAO to be associated with
generation of N-nitroso compounds that can lead to DNA damage and contribute
to carcinogenesis (Chan et al. 2019).

Another metabolic pathway that is instrumental in modulation of oxidative stress
and maintenance of the host-microbe symbiosis is the tryptophan metabolism
pathway. Tryptophan catabolism by indoleamine-2,3-dioxygenase-1 (IDO1) feeds
into the kynurenine pathway and is vital for the production of NAD. Kynurenine is
associated with oxidative stress, DNA replicative stress, and modulator of mito-
chondrial function (Castro-Portuguez and Sutphin 2020). Activity of this pathway in
increased in HIV-positive individuals and correlates to increased relative abundance
of specific bacteria genera in these patients (Favre et al. 2010; Vujkovic-Cvijin et al.
2013). While this correlation is in part due to the upregulation of the kynurenine
pathway in host cells, some of these bacteria possessed homologs of human
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tryptophan catabolism genes and are likely directly converting tryptophan to
kynurenine (Vujkovic-Cvijin et al. 2013). Kynurenine, itself, has been identified
as an oncometabolite (Venkateswaran and Conacci-Sorrell 2020). The kynurenine
has been shown to accumulate in breast and colon cancer. Additionally, this increase
was not associated with an increase in host IDO1 expression, which may indicate
bacterial production (Puccetti et al. 2015).

Lignans are polyphenols derived from dietary fibers. Conversion of dietary
lignans to enterolignans by gut bacteria has been investigated for its impact on
health, with several studies indicating a role in cancer development. Gut microbes
are responsible for metabolism of lignans to enterolactone and enterodiol
(Adlercreutz 2007; Wang et al. 2010). Intestinal and urine enterodiol and
enterolactone were undetectable in germ-free rats, but after the introduction
enterolignan-producing bacteria, these metabolites were present (Mabrok et al.
2012). This indicates a strong role for the gut microbiome in production of
enterolignans.

10.2.3 Polyamines

Polyamines are low-molecular-weight aliphatic polycations, highly charged and
ubiquitously present in all living cells. Interest has been increasing during the last
30 years in the naturally abundant polyamines putrescine (diamine), spermidine
(triamine), and spermine (tetraamine), which were demonstrated to be involved in a
large number of cellular processes. In eukaryotic cells, the polyamines support cell
growth and survival. Additionally, they are associated with nucleic acid biosynthe-
sis, maintenance of chromatin conformation, regulation of specific gene expression,
ion-channel regulation, maintenance of membrane stability, provision of a precursor
in the synthesis of eukaryotic translation initiation factor 5A (EIF5A), and free-
radical scavenging. In addition to their de novo polyamine synthesis, cells can take
up polyamines from extracellular sources, such as cancer tissues, food, and intestinal
microbiota. Decreased levels of polyamines are associated with disturbance of the
cell cycle and induction of apoptosis. High levels of polyamines are associated with
tumor growth, and inhibitors of polyamine biosynthesis have been used to treat
cancer (Polyamines 1999). Main bacterial contributors of polyamines in the human
gut include members of the Bacteroides and Fusobacterium genera (Noack et al.
2000; Tofalo et al. 2019). In a spontaneous mouse model for pancreatic cancer using
the KRASG12DTP53R172HPdxCre (KPC) mice, we observed development of a
dysbiotic microbiome over the course of their disease progression. Predictive
metabolomic analysis of this altered microbiota indicates an increase in microbe-
derived polyamines (Mendez et al. 2019). This finding correlates with increased
plasma polyamine levels in KPC mice. As previously stated, increased polyamine
levels are associated with cancer development and tumor progression, since they are
actively involved in nucleic acid metabolism. These findings highlight the gut
microbiome as drivers of pancreatic cancer progression. In breast cancer, studies
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have indicated that breast tissue has its own microbiome in healthy and diseased
states (Hieken et al. 2016; Urbaniak et al. 2014). Additionally, new evidence is
emerging that shows the gut microbiome is an important player in disease progres-
sion. Cadaverine, a polyamine produced by gut bacteria, was found to be effective in
treating cancer in a mouse model, as well as reducing stemness in cultured breast
cancer cell lines (Kovács et al. 2019). Additionally, breast cancer patients had lower
fecal DNA content for cadaverine-producing enzymes compared to healthy controls.
Thus, cadaverine is considered to be a regulator of early breast cancer.

10.2.4 Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate are produced
from dietary fiber including non-starch polysaccharide and oligosaccharides through
bacterial fermentation in the colon. They are a fundamental energy source for gut
epithelial cells. Acetate constitutes about ~60% to 75% of the total SCFAs and is
generated by many bacterial groups via reductive acetogenesis (Morrison and
Preston 2016). A large spectrum of bacteria produce acetate. These include
Akkermansia, Bacteroides spp., Bifidobacterium spp., Prevotella spp.,
Ruminococcus spp., Blautia hydrogenotrophica, Clostridium spp., and Streptococ-
cus spp. (Rey et al. 2010) that are commonly present in the gut. The other SCFAs
like butyrate and propionate are produced by more specialized bacteria. The main
propionate-producing bacteria, apart from the commonly occurring Bacteroides
spp., are Phascolarctobacterium succinatutens, Megasphaera elsdenii, Veillonella
spp., Dialister spp., Coprococcuscatus, Roseburia inulinivorans, Salmonella spp.,
and Ruminococcus obeum (Louis et al. 2014). The main butyrate-producing bacteria
are Coprococcus comes, Coprococcus eutactus, Eubacterium hallii,
Faecalibacterium prausnitzii, Eubacterium rectale, Anaerostipes spp.,
Coprococcuscatus, and Roseburia spp. While the primary role of the SCFA are to
produce energy, studies have shown that SCFAs can influence colonocyte growth
and differentiation.

Butyrate is selectively taken up by the monocarboxylate transporters (MCT1) in
the colonic epithelium and is used by colonocytes for their energy homeostasis at a
low concentration. At higher concentration, butyrate acts as a HDAC inhibitor and
regulates gene transcription by influencing the epigenetic machinery of the cell
(Zeng et al. 2017). This further influence multiple signaling pathways and affects
the cell cycle of the colonocytes. In osteosarcoma cells, butyrate acts in an
antiproliferative role and induces expression of anti-inflammatory mediators (Perego
et al. 2018). Role of butyrate as an antineoplastic agent is being evaluated. Like
butyrate, propionate also affects proliferation of cells. Studies have shown that gut
microbiome-produced propionate can induce cell cycle arrest and apoptosis in lung
cancer cells in vitro (Kim et al. 2019). Independent studies show that gut microbiota
derived propionate can also abrogate experimental colitis in mice via regulation of
Reg3 mucosal lectins. Dietary fructose is converted to acetate by the gut bacteria and
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is routed to the liver. In the liver, it is used for hepatic lipogenesis. Studies using
in vivo isotope tracing show that liver-specific deletion of ATP citrate lyase or
ACLY in mice is unable to suppress fructose-induced lipogenesis, confirming the
involvement of microbial metabolites in this process (Zhao et al. 2020).

While in vitro studies indicated that SCFAs may have antineoplastic properties,
recent studies indicate that SCFAs may be associated with immune evasion and
resistance to checkpoint inhibitor therapy. In mouse models, butyrate was found to
inhibit anti-CTLA4 induced upregulation of CD80/CD86 on dendritic cells as well
as inhibit ICOS on T cells. Further, butyrate also prevented accumulation of tumor-
specific T cells and memory cells. Similarly, in patients, high blood butyrate levels
ameliorated ipilimumab-induced accumulation of memory and ICOS + CD4 + T
cells and IL-2 infiltration. These observations indicated that SCFAs like butyrate
may confer immune suppression to cancer cells and negate the effect of checkpoint
inhibitor therapy (Coutzac et al. 2020).

10.3 Future Directions

In the last two decades, the role of gut microbiome in regulating health and disease
has become clear. However, the specific implications of the changes in diversity of
the microbial population in the disease stage has still remained an enigma. It now
appears that the microbiome influences the host inflammatory and immune pathways
in multiple ways. The most obvious modulators are the microbial metabolites. These
compounds arising from breakdown products of the dietary components synergize
with the host metabolism to fuel critical signaling pathways. In cancer, the need for
heightened proliferation requires efficient nucleic acid and protein biosynthesis;
efficient means to combat the oncogenesis-induced stress and upregulation of
resistance mechanisms. These needs are often met by the microbial metabolites
produced in the gut. Increased polyamine production assists purine and pyrimidine
production that feeds into the nucleic acid biosynthesis pathway. The bacterial
polyamines supplement the host polyamines in cancer to meet the increased need.
Similarly, oncogenesis-associated enhanced proliferation leads to activation of stress
pathways in the transformed cells. Bacterial metabolites like queuosine and
kynurenine help in protection from these altered redox state by decreasing accumu-
lated reactive oxygen species. Thus, it is possible that during tumor progression, the
host and its microbiome enter into a positive synergy that is conducive for tumor
growth and progression. The effectiveness of chemotherapeutic drugs has been
linked to microbial presence, and some drugs, such as gemcitabine, have been
found to have increased effectiveness when used in combination with antibiotics
(Imai et al. 2019). A 2017 study found that human colorectal cancer cells grown in
culture with bacteria were resistant to gemcitabine treatment. Further inquiry
revealed that the bacteria responsible for this possessed a form of the cytidine
deaminase gene that is capable of directly degrading gemcitabine (Geller et al.
2017). The combination of this finding with the previously known combinatory
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effect of the drug with antibiotics tells the story of microbial influence in chemo-
therapeutic response variation. The previously mentioned presence of bacteria in the
tumor microenvironment also indicates the potential for microbial degradation of
chemotherapeutic agents in the gut or at the tumor site (Pushalkar et al. 2018).

Interestingly, depleting microbiome has not always resulted in tumor regression.
In a study published in Science in 2017, Routy et al. found that antibiotic adminis-
tration to patients in conjunction with immunotherapy was associated with shorter
progression-free survival (PFS) and shorter overall survival (OS) (Routy et al. 2018).
Similarly, the use of probiotics as treatment for microbial deficiencies has been met
with mixed results. Fecal microbiome transplantation has emerged as another mech-
anism for modulating gut microbiome and microbial metabolome. This has proven
effective as method of microbial community engraftment. This method has been
used clinically to significantly improve the clinical cure rates of recurrent Clostrid-
ium difficile infection (Kelly et al. 2016; Khoruts and Sadowsky 2011). Given the
previously discussed alterations of the gut microbial communities associated with
the diseased state and potential of these altered communities to impact pathology and
treatment efficacy, engraftment of a microbial community may be an effective
measure in the treatment.

These observations indicate that more in-depth research is required to specifically
understand the role of microbial metabolites on host signaling pathways. Despite a
large number of studies being done in this area, the relationship between the different
bacterial communities in the gut and their collective relationship with the host
remains an enigma. Without understanding this, attempts to modulate the
microbiome in hope of tackling diseases like cancer may be premature. Another
difficulty in the field is that the whole paradigm of microbiome and microbial
metabolism is dependent on high-throughput platforms and expensive and requires
extremely specific analytical skillsets. Both microbial sequencing and mass
spectrometry-based metabolomic analysis have numerous analytical variables, that
may lead to slightly different results from a single dataset. In recent times, the
Human Microbiome Project (https://www.hmpdacc.org/) has specified the parame-
ters that are recommended for end-to-end analysis of microbiome for both 16s
pyrosequencing and shotgun metagenomics. However, the metabolomics landscape
in the context is still very chaotic and requires a concerted effort for formulating
unifying guidelines for measuring and annotating microbial metabolites. While the
San Diego GNPS effort (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) is
a positive step in this regard, additional streamlining of the processes is required to
improve quality and consistency of analysis pipelines to generate meaningful data.
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Chapter 11
Diet, Microbiome, Inflammation,
and Cancer

Xiaotao Zhang and Carrie R. Daniel

Abstract Interactions between host nutrition, microbiota, and inflammation is an
area of intense and growing interest to prevent or halt cancer. In complement to
recent reviews focusing on the experimental evidence and the potential mechanisms
underlying these relationships, this book chapter focuses on human observational
and interventional studies of the microbiome as it relates to dietary patterns and key
dietary factors with established links to inflammation and inflammation-driven
cancers. Toward establishing causality in humans and the development of broadly
beneficial targets, human prospective and interventional data bolster experimental
models demonstrating that dietary components or patterns, at least in part, shape the
composition of the gut microbiome and that diet and the gut microbiome, indepen-
dently and collectively, modulate localized and systemic inflammation, as well as
other critical pathways to cancer initiation and progression. Thus, dietary interven-
tions, if capable of achieving timely and sufficient long-term behavior change, could
theoretically be used to “improve” microbiome community structure and function
and/or displace or reduce bacteria that promote cancer. Research focused on various
parameters of microbiome-based personalized nutrition in cancer prevention and
treatment is likely to continue to inform important targets and interactions that will
shape clinical and public health practice.
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11.1 Introduction

The human gut harbors diverse and abundant microbes, creating a complex ecolog-
ical system that interfaces with both the host and the environment and facilitates
biologically relevant interactions between the two. The gut microbiome (collective
genome of microorganisms in an environment) or microbiota (a community of
microorganisms) comprise the “hidden” organ supporting host immunity, energy
homeostasis, and nutrient metabolism (Klement and Pazienza 2019). The breadth of
the gut microbiome’s capacity is reflected in the over three million genes it encodes,
as well as the thousands of metabolites it produces (if not more, yet unknown). These
microbial metabolites facilitate various physiological functions including modulat-
ing oxidative stress, the integrity of the intestinal barrier, and inflammation in the
host (Singh et al. 2019).

The role of the microbiome in cancer risk and outcomes, and how to modulate
this process, is an area of intense and growing interest (Scott et al. 2019; Schwabe
and Jobin 2013; Daniel and McQuade 2019), with estimates suggesting that micro-
bial agents may cause ~20% of the global cancer burden (Pevsner-Fischer et al.
2016). The relationship between the microbiome and cancer is multifactorial and,
likely, bidirectional. Cancer-associated changes in the microbiome may occur as a
result of the emergence or presence of a tumor and may also contribute to cancer
progression—both early and over the course of treatment (Vivarelli et al. 2019).

The link between host nutrition or dietary habits, microbiota, inflammation, and
cancer risk is also growing stronger (O’Keefe 2016). In a groundbreaking trial,
O’Keefe and colleagues found that reciprocal changes in traditional diets (modulat-
ing both fiber and fat) in African Americans and native Africans over just 2 weeks
resulted in dramatic changes in the composition and structure of the gut microbiome,
as well early markers of cancer risk or cell proliferation within the colorectal
epithelium (O’Keefe et al. 2015). In prospective studies using tissue samples and
data from the Nurses’ Health Study and Health Professionals Follow-Up Study,
Ogino and colleagues found that a prudent diet rich in plant food sources of dietary
fiber, as compared to a typical Western diet, is associated with lower risk of
Fusobacterium nucleatum-positive colorectal tumors (Mehta et al. 2017), but no
association was observed with cancer arising from F. nucleatum-negative tumors.
Ogino and colleagues also recently reported that the inflammatory potential of the
diet modulates risk of F. nucleatum-positive colorectal tumors, particularly in the
proximal colon (Liu et al. 2018). The presence of F. nucleatum has also been linked
to a microenvironment that promotes the progression of colorectal neoplasia
(Wu et al. 2019) by inhibiting T cell-mediated immune responses against colorectal
tumors (Hamada et al. 2018).

Although several studies suggest that the microbiome plays an important role in
diet, inflammation, and cancer development, the mechanisms involved in these
processes are not fully understood or established as causal in human data. In
complement to recent reviews focusing on the experimental evidence and potential
mechanisms underlying these relationships (Zitvogel et al. 2017a; Whisner and
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Aktipis 2019; Bultman 2017; Tilg et al. 2020), this book chapter focuses on human
observational studies and clinical trials to examine the association between diet,
microbiome, inflammation, and cancer (Fig. 11.1). We searched the literature for the
following terms: “diet,” “nutrition,” “dietary pattern,” “dietary index,”
“microbiome,” “microbiota,” “inflammatory,” “inflammation,” “cancer,” “carcino-
genesis,” “carcinoma,” and “adenocarcinoma” with respect to studies conducted in
2009–2019. We focused on dietary factors or eating patterns (not supplements) that
have previously been linked to cancer and inflammatory mechanisms (World Cancer
Research Fund and American Institute for Cancer Research 2018).

11.2 Microbiome, Inflammation, and Cancer

The gut microbiome plays an essential role in gut and systemic inflammation.
Chronic inflammation is a maladaptive version of acute inflammation in which the
immune response persists for extended periods of time and is characterized by
elevated levels of tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and
C-reactive protein (CRP) (Buford 2017). Markers of gut dysbiosis have been linked
to several circulating inflammatory cytokines in human and experimental data and
suggest that a sustained dysbiotic state leads to dysregulation of various key func-
tions, which, in turn, contribute to the development of autoimmune conditions such
as inflammatory bowel disease, systemic inflammatory arthritis, multiple sclerosis,
and systemic lupus erythematosus (Clemente et al. 2018).

Inflammatory diets may contribute to the development of dysbiosis by decreasing
beneficial microorganisms or their metabolites and/or promoting the growth of
harmful bacteria (Fig. 11.1) (Brown et al. 2012; Lachnit et al. 2019). Interactions
between inflammatory, or high-fat and low-fiber diets, and microbes modulate the
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Fig. 11.1 Diet, microbiome, inflammation, and cancer: working model for chapter
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balance of functional metabolites, including short-chain fatty acids (SCFA), bile
acids, and products of mucin degradation (den Besten et al. 2013; Koropatkin et al.
2012). Several commensal bacteria, including members of the Enterobacteriaceae
family, the Bacteroides and Porphyromonas genus, Akkermansia muciniphila, and
Clostridium ramosum species have been associated with inflammation (Belkaid and
Hand 2014; Wang et al. 2018).

Several gram-positive and opportunistic pathogenic bacteria directly induce
inflammation. A recent randomized double-blinded, placebo-controlled crossover
trial conducted in healthy adults, found that consumption of E. coli-targeting bacte-
riophages, is associated with reduced levels of circulating IL-4. The researchers
postulated that phage treatment resulted in lower levels of bacterial lipopolysaccha-
ride (LPS), which decreased IL-4 expression and, consequently, reduced systemic
inflammation (Febvre et al. 2019). Facultative aerobe, Escherichia coli, and strictly
anaerobic Bacteroides fragilis (described below), are linked with the development of
inflammatory bowel disease (IBD), as well as colorectal cancer (Wang et al. 2007).
Enterococcus, a frequent contaminant in foods, is also associated with inflammation
(Gonzalez-Navajas et al. 2008).

Conversely, certain fractions of gut microbiota are less prone to inducing inflam-
mation and may even inhibit systemic inflammation. In particular, bacteria with the
capacity to produce butyrate, short-chain fatty acids (SCFA) and preferred energy
source for other potentially beneficial and “gate keeping” bacteria, exhibit anti-
inflammatory properties. Faecalibacterium prausnitzii exerts anti-inflammatory
effects by secreting metabolites, including butyrate, that block the NF-κB pathway
and IL-8 secretion (Quévrain et al. 2016). Eubacterium spp., another butyrate
producer, is involved in stimulating enterocyte turnover and in maintaining tight
barrier junctions (Gobert et al. 2016). Butyrate-producing Clostridium cluster XIVa
is also inversely correlated with systemic inflammation (Duytschaever et al. 2013;
Van den Abbeele et al. 2013). Significant reductions in these bacterial populations
are associated with (and may precede) the development of inflammatory conditions
within the gastrointestinal tract (and beyond). When a healthy and stable gut
microbial community is compromised, gram-negative bacteria meet little resistance
and are able to “take over.” These changes in the microbiome increase intestinal
permeability and/or the release of proinflammatory endotoxins, leading to the
development of leaky gut syndrome and chronic inflammation (Hakansson and
Molin 2011).

Microbiota exert proinflammatory and immunosuppressive effects to subvert
anticancer immunosurveillance (Vivarelli et al. 2019; Zitvogel et al. 2017b). A
dysregulated microbiome and its products favor the generation of trophic growth
factors with microbiota-mediated alterations in circulating metabolites initiating a
cascade that promotes tumor growth (Fessler et al. 2019). Pathobiotic and patho-
genic bacteria promote CRC by inducing colonic chronic autoimmune inflammation.
In both cases, chronic inflammation elicits repeated cycles of tissue damage and
regeneration and then generates oxidative stress. This results in accumulated DNA
damage in epithelial cells, eventually leading to tumor development in the gut (Chen
et al. 2017). For example, infection with H. pylori increases the risk of non-cardia

332 X. Zhang and C. R. Daniel



gastric cancer by injecting a toxin (produced by cytotoxin-associated gene A) and
altering the structure of epithelial cells lining the stomach, allowing the bacteria to
infiltrate or attach (Polk and Peek 2010; Ryoo et al. 2019). Long-term exposure to
the toxin causes chronic inflammation. Similarly, B. fragilis and E. coli produce
colibactin, a bacterial genotoxin that promotes colon tumors (Wilson et al. 2019;
Dejea et al. 2018). Several other bacterial pathogens have been associated with
colorectal cancer (Shmuely et al. 2014; Wei et al. 2016), including Fusobacterium
nucleatum (Nosho et al. 2016; Ye et al. 2017; Yu et al. 2016; Kostic et al. 2013),
Peptostreptococcus anaerobius (Tsoi et al. 2017; Hibberd et al. 2017), and
sulfidogenic bacteria (Yazici et al. 2017; Hale et al. 2018). Chronic/persistent
Salmonella infection has also been linked to the development of colitis-associated
colorectal cancer (Lu et al. 2014).

The gut microbiota also encounters antigens, carcinogens, or their substrates via
diet (Zhernakova et al. 2016; Falony et al. 2016). Diet has long been linked to the
development of different human gastrointestinal tract (GIT) tumor types and appears
to do so largely via effects on microbial metabolites or via pro-carcinogenic activ-
ities of specific pathogens (Louis et al. 2014). For example, secondary bile acids
induce inflammation and DNA damage (Nguyen et al. 2018; Zeng et al. 2019), while
butyrate pathways suppress inflammation and inhibit neoplastic changes (Morrison
and Preston 2016).

11.3 Diet and Microbiome Interactions

Recent observational studies and dietary intervention trials targeting the gut
microbiome have shown that of all exogenous factors affecting the gut microbiome
in healthy individuals, long-term diet appears to exert one of the strongest effects
(Xu and Knight 2015). While investigating changes in the microbiota during and
after dietary intervention may ultimately inform the design of effective nutrition
therapies (Xu and Knight 2015), the microbiome is a resilient environment (Xu and
Knight 2015). Extreme changes in diet can induce rapid alterations in the relative
abundance of different bacteria with the gut; however, predominant phyla and
overall structure of the microbial community are largely determined by inter-
individual variation and long-term diet (David et al. 2014). Therefore, dietary
interventions designed to establish long-term behavior change or maintainable
dietary habits could theoretically be used to modulate microbiome community
structure and function to improve health and, through healthy competition, to
displace or decrease bacteria previously demonstrated to be causally related to
disease.

In this book chapter, we focus on the key diets or dietary factors known to shape
the microbiome with links to both inflammation and cancer (Fig. 11.1). These
include measures of overall dietary patterns or diet quality, as well as key tenants
of a high-quality and microbiome-enriching diet, including dietary fiber and other
plant-derived bioactive components. Various types of fat and protein and the food
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groups they arise from are also reviewed. As detailed in major reports and evidence-
based recommendations from the World Cancer Research Fund/American Institute
for Cancer Research and American Cancer Society, as well as our recent commen-
tary, a diet that supports a reduced risk of inflammation and cancer is largely
composed of plant foods (vegetables, fruits, whole grains) and low in processed
foods (refined grains, added sugars, trans fats) with protein primarily derived from
fish and plant sources (pulses and legumes) (Daniel and McQuade 2019; World
Cancer Research Fund and American Institute for Cancer Research 2018; Kushi
et al. 2012).

11.3.1 Diet Pattern

Shifts in multiple dietary components or patterns, e.g., Western, Mediterranean,
prudent, animal-based, and plant-based diet patterns, are linked to shifts in the
diversity and composition of the gut microbial community (Bhat and Kapila 2017;
Telle-Hansen et al. 2018). The Western dietary pattern, characterized by high intake
of sweets, refined grains, and red and processed meat, is associated with increased
levels of inflammatory proteins, gut dysbiosis, and a dysregulated immune signature
(Song and Chan 2017; Hills et al. 2019). Several observational studies have exam-
ined how different diet patterns or diet quality indices contribute to the inter-
individual variability in microbiome composition and diversity.

A large cross-sectional study of 2070 participants from the TwinsUK cohort
examined associations of fecal microbiota diversity with three different defined
dietary indices representing food diversity and adherence to US dietary recommen-
dations (Healthy Eating Index [HEI]) or the Mediterranean diet (MD). They
observed that each of these diet indices explained a reasonable proportion of the
observed variation in α diversity (microbial richness and/or evenness), but the HEI
performed the best (Bowyer et al. 2018). Maskarinec and colleagues also examined
diet quality as assessed by HEI-2010, Alternative HEI-2010, MD, and Dietary
Approaches to Stop Hypertension (DASH) in relation to fecal microbial diversity
and community structure within a subset of the Multiethnic Cohort study. Across all
four indices, higher diet quality was associated with higher microbial diversity and
lower levels of Collinsella. Fiber-fermenting bacteria, such as Faecalibacterium,
Lachnospira, and Ruminococcus were also consistently associated with higher diet
quality (Maskarinec et al. 2019). Another recent cross-sectional study assessed
overall diet quality (HEI) in relation to the colonic mucosa-associated gut
microbiome of 34 healthy participants who provided 97 samples. They found that
Alistipes, Barnesiella, Bifidobacterium, Fusicatenibacter, and Odoribacter were
associated with high diet quality. Conversely, low diet quality was associated with
lower α-diversity; lower abundance of Roseburia, Subdoligranulum, and
Parabacteroides; and higher abundance of Fusobacterium and Escherichia (Liu
et al. 2019).
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Adherence to the MD in relation to the gut microbiome has been examined in
several observational studies and limited trials. A European cross-sectional study of
healthy adults found that adherence to MD diet was not associated with microbial
diversity as measured by the Shannon index (representing biodiversity or both
richness and evenness) but was positively associated with gut microbial richness,
alone (as measured by the Chao index). Garcia-Mantrana and colleagues conducted
a cross-sectional study to determine the effect of nutrient compounds, as well as
adherence the MD, on the gut microbiome of healthy adults living in the Mediter-
ranean region. They found that a higher MD score was related to a lower Firmicutes/
Bacteroidetes ratio, as well as higher levels of Catenibacterium genus. Lower
adherence to the MD and higher consumption of animal proteins, saturated fats,
and simple sugars was associated with decreased microbial richness and diversity,
while higher consumption of plant-based nutrients, such as plant protein, polysac-
charides, and dietary fiber, was associated with higher levels of Bifidobacterium and
total fecal SCFA (Garcia-Mantrana et al. 2018). A cross-sectional study among
healthy Italians compared a group of individuals following a modern Paleolithic
Diet (PD) for at least a year to those following a Mediterranean Diet (MD) (Barone
et al. 2019). Faecalibacterium, Bacteroides, and Prevotella were higher in the PD,
as compared to the MD group. Microbial diversity was much higher in the PD group
than MD group and comparable to that observed among Hadza hunter-gatherers
from Tanzania. These results indicate that returning to a modern PD composed of
natural (and region-specific) foods but excluding dairy, grains, refined sugar, and
other processed foods could counteract the loss of microbiome diversity observed in
Western societies.

Zimmer and colleagues compared fecal samples from omnivores, vegetarians,
and vegans compared to omnivores and found that Bacteroides spp.,
Bifidobacterium spp., Escherichia coli, and Enterobacteriaceae spp. were signifi-
cantly lower in vegan samples than in controls (Zimmer et al. 2012). An omnivorous
diet versus vegetarian diet has also been linked to increased urinary levels of
trimethylamine N-oxide (TMAO), a gut microbiota-derived choline metabolite asso-
ciated with increased risk for heart disease and colorectal cancer (CRC) (Wu et al.
2016).

Within the last decade, groundbreaking controlled feeding studies showed that
short-term, dramatic swaps or shifts in diet patterns resulted in significant shifts in
the gut microbiome. As described previously, the O’Keefe trial found that adminis-
tration of a traditional African, high-fiber and low-fat diet among African Americans
was associated with a significant decrease in the levels of Bilophila wadsworthia.
Conversely, a Western, low-fiber, high-fat diet administered to native Africans was
associated with increased levels of Fusobacterium nucleatum (O’Keefe et al. 2015).
David and colleagues conducted a controlled 30-day crossover interventional study
and found that a change in diet to either an exclusively animal-based or plant-based
diet resulted in significant changes in gut microbiota diversity within 5 days (David
et al. 2014). A 2-week dietary intervention trial conducted among a Russian urban
population targeted increased consumption of specific healthy food products under-
represented in the volunteer’s long-term diet and decreased consumption of
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overrepresented “junk foods.” They found that a higher intake of vegetables and
fruits was associated with increased levels of butyrate-producing Clostridiales and
community richness. In addition, the dietary intervention produced profound
changes in community structure, and Methanobrevibacter, Bifidobacterium, Clos-
tridium, and Lachnospiraceae increased (Klimenko et al. 2018).

11.3.2 Key Components of Inflammation-Related Diet

Numerous studies have examined how individual dietary components, such as fiber,
fat, and protein type, affect the gut microbiome.

11.3.3 Dietary Fiber

Dietary fiber influences gut transit (Muller et al. 2018) and shapes the composition
and metabolic or functional capacity of the gut (fecal) microbiome (Vandeputte et al.
2016). High dietary fiber intake is associated with increased levels of butyrate-
producing genera such as Clostridium, Eubacterium, Roseburia, and Anaerostipes
(Bach Knudsen et al. 2018). The gut microbiome exhibits a strong preference for
fiber-based substrates. In the absence of dietary fiber, a compensatory shift involving
increased levels of mucin-degrading bacteria and enzymes occurs (Desai et al.
2016). Garcia-Mantrana et al. observed that higher intake of dietary fiber in the
context of the MD was associated with increased levels of Methanobrevibacter
genus, whereas low consumption of dietary fiber was related to a predominance of
Blautia and Bulleidia (Garcia-Mantrana et al. 2018). Another observational study
evaluated associations of dietary fiber intake with the gut microbiome among
colorectal adenoma patients vs. healthy controls and reported that a high-fiber
dietary pattern in conjunction with bacteria that produce butyrate is associated
with lower risk of advanced adenomas (Chen et al. 2013).

In the O’Keefe trial, a high-fiber/low-fat diet was associated with increased levels
of potential butyrate producers (such as Eubacterium rectale and Clostridium
symbiosum) and bacteria associated with the utilization of complex carbohydrates,
such as Oscillospira guilliermondii (O’Keefe et al. 2015). A recent randomized
crossover clinical trial conducted in 60 Danish adults at risk for metabolic syndrome
testing an increase in whole grains reported that while a whole grain-rich diet did not
appear to significantly affect the diversity and composition of the gut microbiome, it
reduced body weight and systemic low-grade inflammation (Roager et al. 2019).
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11.3.4 Fat

Accumulating evidence in animal models and limited human data suggests that
overall, a high-fat diet, particularly from animal sources, promotes an inflammatory
milieu in the gut, characterized by an overgrowth of inflammatory and bile-tolerant
bacteria, decreased numbers of beneficial or butyrate-producing bacteria, and con-
current promotion of tumorigenesis via activation of the TGFB1/SMAD3 and
NF-κB signaling pathway (Zhang et al. 2018; Agus et al. 2016). Types of fat or
fatty acid composition also affect microbiome diversity and composition. Omega-3
polyunsaturated fatty acids (PUFA) from seafood, nuts, and seeds are associated
with higher diversity of intestinal microbiota. An omega-3 PUFA-rich diet may also
be useful to ameliorate gut dysbiosis induced by antibiotics or omega-6 PUFA
(Menni et al. 2017). Other studies suggest that the ratio of saturated fatty acids and
MUFAs, rather than overall fat amount, may also affect the microbiome (Lang et al.
2018).

A total of 88 UK adults at increased risk of metabolic syndrome were fed a high
saturated fat diet (HS) for 4 weeks (baseline) and then randomized to one of five
experimental diets for 24 weeks: HS, high monounsaturated fat (MUFA)/high
glycemic index (GI) (HM/HGI); high MUFA/low GI (HM/LGI); high carbohydrate
(CHO)/high GI (HC/HGI); and high CHO/low GI (HC/LGI). High-MUFA diets did
not affect individual bacterial population numbers but reduced total bacteria and
plasma total and LDL cholesterol. The low-fat, HC diets increased fecal
Bifidobacterium and reduced fasting glucose and cholesterol compared to baseline
(Fava et al. 2013).

11.3.5 Protein

The effects of protein intake vary with respect to the type and the source, e.g., plant-
based protein versus animal-based protein and intake of red/processed meats versus
poultry or fish. Meat is a rich source of sulfur-containing amino acids such as
cysteine and methionine. Red meat provides a bioavailable source of heme iron
and processed meat typically contains inorganic salt curing agents or preservatives
including nitrites and sulfites (Brosnan and Brosnan 2006).

When comparing meat-eaters to non-meat eaters (vegetarians/vegans), individ-
uals that derive majority of their protein from animal sources exhibited reduced
levels of butyrate-producing bacteria such as Roseburia, Ruminococcus bromii, and
Eubacterium rectale (David et al. 2014; Riviere et al. 2016), while a diet high in red
meat was associated with increased fecal levels of Bacteroides, Fusobacterium,
Streptococcus bovis, Clostridium, and Helicobacter pylori (Zimmer et al. 2012).

The David et al. short-term feeding study reported that consumption of plant
protein was associated with increased Lactobacillus and Bifidobacterium, decreased
levels of Clostridium and Bacteroides, and increased production of fecal SCFAs
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(David et al. 2014). In the Animal and Plant PROtein and Cardiovascular Health
(APPROACH) trial, results suggested that inter-individual differences outweighed
the influence specific 4-week dietary changes on the microbiome and that moderate
changes in saturated fat level and protein source correspond to modest changes in the
microbiome (Lang et al. 2018).

11.3.6 Micronutrients and Bioactive Components
of Plant Foods

In addition to providing dietary fiber, plant-based protein, and healthy fatty acid
profiles of mono- and polyunsaturated fatty acids, plant foods, such as colorful fruits
and vegetables, whole grains, legumes, nuts, and seeds, contain other bioactive
components with varied effects on the gut microbiome and metabolites. These
include numerous vitamins (A, B, C, D, E, K), flavonoids, indoles, inositol, poly-
phenols, terpenes, and carotenoids, to name a few (Pandey and Rizvi 2009). As
reviewed previously, several observational studies examined the associations of
micronutrients (Biesalski 2016); however, gut microbiota associated with
fat-soluble vitamins, such as vitamin A, K, and D, remain unclear.

Walnuts are rich in omega-3 fatty acids, phytochemicals, fiber, phenolic com-
pounds, folate, and vitamin E, and their effect on the gut microbiota was assessed in
a randomized crossover controlled feeding study in 18 healthy participants. Walnut
consumption was associated with increased Firmicutes, including butyrate-
producing Clostridium clusters XIVa and IV, Faecalibacterium, and Roseburia,
and with reduced levels of microbially derived proinflammatory fecal secondary
bile acids and LDL cholesterol. However, walnut consumption was also associated
with decreased Ruminococcus, Dorea, Oscillospira, and Bifidobacterium (Holscher
et al. 2018).

Other common polyphenol-rich foods include tea, cocoa products, and wine.
Polyphenols have been linked to enrichment of Bifidobacterium and Lactobacillus,
yielding increased production of fecal SCFA (Sun et al. 2018) with anti-pathogenic
and anti-inflammatory effects (Singh et al. 2017). A recent cross-sectional study of
three large—TwinsUK, the Flemish Gut Flora Project (FGFP), and American Gut
Project (AGP)—has shown that red wine consumption is associated with higher α
diversity of the gut microbiome. This association may be attributable to high content
of polyphenols, such as anthocyanin, resveratrol, and gallic acid (Le Roy et al.
2020).
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11.3.7 Diet and Oral Microbiome

Less in known about the oral microbiome that inhabits the gateway to the body and
GI tract, representing the first encounter with food, antigens, and early carbohydrate
digestion. In one cross-sectional study, intake of saturated fatty acids (SFA) was
positively associated with the relative abundance of oral phyla Proteobacteria and
Fusobacteria; and higher glycemic load was positively associated with
Lactobacillaceae (Kato et al. 2017). In a larger cross-sectional study of the American
Cancer Society Cancer Prevention Study II (ACS CPS-II) and the National Cancer
Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (NCI
PLCO) cohorts, high tea intake was associated with increased richness and diversity
of oral microbiota, as well as differences in overall community composition. How-
ever, no such associations were observed with coffee intake. Additionally, tea intake
was associated with increased abundance of Fusobacteriales and Shuttleworthia
satelles and decreased abundance of Bergeyella and Kingella oralis. Coffee intake
was associated with greater abundance of Granulicatella (Peters et al. 2018).

11.4 Cancer Related to Diet, the Microbiome,
and Inflammation

Cancers known to be related to diet, inflammation, and the microbiome include
colorectal, liver, and pancreatic cancer (Fig. 11.1). Several studies suggest that
inflammatory diets trigger local intestinal inflammation, which eventually leads to
the breakdown of epithelial barriers that separate microbiota from immune cells in
the lamina propria. This causes translocation of intestinal microbiota and exposes
immunogenic microbial components to both antigen-presenting and epithelial cells.
These immunogenic vesicles and enterotoxins lead to mutations in tumor-
suppressing and DNA repair genes involved in colorectal carcinogenesis (Zitvogel
et al. 2017a; Brennan and Garrett 2016; Tabung et al. 2017). Anti-inflammatory diets
suppress tumorigenesis by activating chloride channels and increasing the abun-
dance of beneficial bacteria (Liu et al. 2018).

11.4.1 Colorectal Cancer

Gut microbiota plays a key role in mediating the influence of diet on CRC risk.
Dramatic differences are observed in gut microbial structures of populations con-
suming different diets (Conlon and Bird 2014). High abundance of Bacteroides
fragilis and Fusobacterium nucleatum is also associated with poor survival in
patients with CRC (Wei et al. 2016), while the presence of Faecalibacterium
prausnitzii is associated with a reduced CRC risk (Huang and Liu 2019; Ganesan
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et al. 2018). Although inflammation is an essential trigger for CRC, inflammation
alone is not sufficient to promote tumorigenesis—complex interactions among gut
microbiota, host genetics, inflammation, and environmental exposure are involved
(Armstrong et al. 2018). In the colon, excess chronic exposure to hydrogen sulfide is
associated with key drivers of carcinogenesis including DNA damage, inflammation,
epithelial hyperproliferation, changes in the populations and function of immune
cells, and impaired colonocyte nutrition (Singh and Lin 2015). Considering the
critical role of diet in the production of bacterial metabolites and configuration of
gut microbiotal communities, diet likely influences the risk for CRC by modulating
the composition and metabolic activities of the gut microbial community. This, in
turn, shapes immune response, leading to chronic inflammation and tumor develop-
ment (Song and Chan 2017, 2019; Tilg et al. 2018).

11.4.2 Liver Cancer

The liver is uniquely exposed to intestinal bacterial components and to their metab-
olites and byproducts via the portal venous system. These factors are associated with
inflammatory changes and hepatotoxicity, which can eventually lead to carcinogen-
esis (Tripathi et al. 2018). Microbiotal modification of primary bile acids, produced
by the liver, and conversion to secondary bile acids, such as deoxycholic acid
(DCA), can cause hepatotoxicity, DNA damage, and carcinogenesis (Chiang and
Ferrell 2018; Wahlstrom et al. 2016). Moreover, gut microbiota are also associated
with response to infectious hepatitis, development of obesity and nonalcoholic
steatohepatitis (NASH), and other pathologies, all of which can lead to cirrhosis
and contribute to the development of HCC, the most common type of liver cancer
(Minemura and Shimizu 2015; Meng et al. 2018). Increased levels of Proteobacteria
and decreased levels of Firmicutes are observed during progression of nonalcoholic
fatty liver disease (NAFLD) (Loomba et al. 2017), while patients with NASH show
considerably lower levels of Bacteroidetes compared with patients with simple
steatosis and healthy individuals (Mouzaki et al. 2013). This suggests that gut
dysbiosis is associated with NAFLD/NASH, both of which are major risk factors
for HCC. Heavy alcohol intake is also associated with unique features of the
microbiome and is a major risk for HCC. Patients with alcoholic hepatitis
(AH) exhibit high levels of Streptococcus, Bifidobacterium, Enterobacter, and
Atopobium species (Llopis et al. 2016).

11.4.3 Pancreatic Cancer

Pancreatic cancer, one of the most aggressive and deadly cancer types, is the
quintessential example of an inflammation-driven cancer (Ilic and Ilic 2016). Two
meta-analysis studies have shown that H. pylori, a common pathogen residing in the
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upper gastrointestinal tract, is associated with pancreatic carcinogenesis
(Trikudanathan et al. 2011; Signoretti et al. 2017). However, the causal relationship
between infection with H. pylori and pancreatic inflammation in the upper gastro-
intestinal tract remains unclear. A recent population-based nested case-control study
within the ACS CPS-II and NCI PLCO cohorts found that oral pathogens
Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are associ-
ated with higher risk of pancreatic cancer, while Fusobacteria and its genus
Leptotrichia are associated with lower risk (Fan et al. 2018). Toll-like receptors
(TLR) play a vital role in pancreatic cancer, and gut microbe, Parabacteroides
distasonis, exerts anti-inflammatory and anticancer effects by reducing TLR signal-
ing/Akt activation in mouse models (Zambirinis et al. 2014). Alcohol consumption
is linked to dysfunction of the intestinal barrier function and overgrowth of gram-
negative bacteria in the intestine. This leads to elevated systemic levels of lipopoly-
saccharide (LPS), a gut microflora metabolite, which increase the risk for pancreatic
cancer (Yan and Schnabl 2012). Overall alterations in oral microbial composition
linked to pancreatic cancer are predominantly attributable to Proteobacteria,
Firmicutes, Actinobacteria, and the Cytophaga-Flavobacterium-Bacteroides group
(Farrell et al. 2012). Fusobacterium species in the oral cavity are also prevalent in
patients with pancreatic cancer. Although these species are not associated with any
disease-related gene mutation or epigenetic alterations, their presence is indepen-
dently associated with poor prognosis (Mitsuhashi et al. 2015).

11.4.4 Other Malignancies

Several studies have shown a link between gut dysbiosis and other malignancies. A
recent nested case-control study, which included 122,004 participants from ACS
CPS-II and NCI PLCO, found that oral abundance of commensal Corynebacterium
and Kingella is associated with decreased risk of head and neck squamous cell
carcinoma (HNSCC) (Hayes et al. 2018). The presence of periodontal pathogen
Tannerella forsythia is associated with higher risk of esophageal adenocarcinoma
(EAC), while depletion of Neisseria and Streptococcus pneumoniae is associated
with lower risk of EAC. Periodontal pathogen Porphyromonas gingivalis is associ-
ated with esophageal squamous cell carcinoma (ESCC) (Peters et al. 2017). A
secondary analysis of stool samples collected from prostate cancer patients enrolled
in a randomized pre-surgical weight-loss trial reported that Clostridium and Blautia
were associated with Gleason sum (a clinical predictor of progression). Blautia was
also associated with increased red meat intake from baseline (Fruge et al. 2018).

In summary, advancements in microbiome screening techniques may uncover
more links between diet, microbiota, and various types of cancer. Further preclinical,
epidemiological, and clinical studies together will ultimately uncover the relation-
ship between diet, dysbiosis, and cancer.
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11.5 Conclusions and Clinical Implications

In this book chapter, we discussed the microbiome and its relationship with diet,
inflammation, and cancer and described recent human observational and interven-
tional studies evaluating these relationships. Overall, this research suggests that
diverse microbial and metabolic responses to different dietary patterns or dietary
interventions, as well as high inter-individual variability, may continue to challenge
our ability to find clear and consistent results across studies. Similar to the progress
made in understanding the impact of human genetic and metabolic variation in
nutrition and cancer, basal microbiome composition and inter-individual variation
may also influence the physiological effects of specific foods and responses to
dietary intervention (Zeevi et al. 2015; Korem et al. 2017). Research focused on
various parameters of microbiome-based personalized nutrition in cancer preven-
tion, and treatment is likely to be important for future applications and overall impact
(Hills et al. 2019). Numerous ongoing studies are focused on diet, microbiome,
inflammation and cancer. In the next decade, we will likely have more information
on these important targets and interactions to inform clinical and public health
practice.
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Chapter 12
Autophagy and Cancer: Current Biology
and Drug Development

Arianne L. Theiss

Abstract Autophagy is a catabolic pathway that degrades and recycles cytoplasmic
components through lysosomal degradation to sustain survival in response to cellu-
lar stressors. Autophagy defects are associated with the etiology of numerous
diseases including cancer. The role of autophagy in cancer is complex and
context-dependent, with opposing roles of preventing tumor initiation and promot-
ing tumor progression. Recent evidence suggests involvement of selective
autophagy of mitochondria, called mitophagy, in tumorigenesis. Understanding the
roles of autophagy and mitophagy in cancer stem cells, cancer immunosurveillance,
cancer metabolism, and iron homeostasis will influence development of emerging
anti-cancer therapeutics targeting autophagy.

Keywords Macroautophagy · Mitophagy · Ferroptosis · Cancer stem cells ·
Metabolic reprogramming

Abbreviations

AMPK 50-AMP-activated protein kinase
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OMM Outer mitochondrial membrane
OXPHOS Oxidative phosphorylation
PI3-P Phosphatidylinositol 3-phosphate
ROS Reactive oxygen species
VDR Vitamin D receptor

12.1 Introduction

Since autophagy was first described in 1963 (Klionsky 2007), we have gained
important insights into how this evolutionarily conserved catabolic pathway modu-
lates health and disease states. Basal autophagy plays an important role in cell
homeostasis through quality control removal of damaged organelles or protein
aggregates that can cause genotoxic stress. This role of autophagy plays an important
role in tumor suppression, preventing cell transformation and the initiation of
tumorigenesis. Autophagy also serves as a cellular mechanism for adaption to
stresses, such as starvation or oxidative stress, rendering the cell able to tolerate
hostile conditions. Autophagy adaption response to cellular stress is a well-
established feature of cancer cells key to their survival, proliferation, and metastasis
in the hypoxic and nutrient deficient tumor microenvironment. In this regard, the
tumor suppressive properties of autophagy are context-dependent, occurring at the
initial stage of tumor development, which in turn facilitate tumor aggression after
malignant transformation has occurred. Autophagy of mitochondria, called
mitophagy, enhances tumorigenesis by influencing cancer cell metabolism and
protecting against mitochondrial dysfunction and immune cell recognition.

Therapeutic strategies aimed to manipulate autophagy in many types of cancer
are the focus of multiple current clinical trials, with most testing the pharmacological
inhibitors of autophagy, chloroquine (CQ), and its derivative hydroxychloroquine
(HCQ), as adjuvant to chemotherapeutic drugs. A current limitation of these clinical
trials in understanding the anti-cancer potential of autophagy inhibition is that CQ
and HCQ target pathways beyond autophagy. At this time, autophagy- or
mitophagy-specific drugs are lacking. However, preclinical models utilizing genetic
deletion of essential autophagy genes demonstrate the potential of targeting
autophagy as cancer therapy. Here, we will discuss the current understanding of
the role of autophagy in tumorigenesis and how this relates to drug development.
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12.2 Autophagy Pathway

12.2.1 Autophagy Overview

Autophagy is a “self-eating” catabolic pathway that removes cytoplasmic compo-
nents through lysosomal degradation (Mizushima et al. 2008). Three types of
autophagy have been described in mammalian cells: macroautophagy,
microautophagy, and chaperone-mediated autophagy. Although each of these has
distinct molecular pathways, all three lead to delivery of cargo to the lysosome for
degradation and recycling of the breakdown products back into the cytosol.
Microautophagy and chaperone-mediated autophagy sequester cargo directly into
the lysosome. During microautophagy, the lysosomal membrane extends or
envaginates to engulf a portion of cytosol to be degraded (Oku and Sakai 2018).
Chaperone-mediated autophagy only degrades protein as cargo identified by the
pentapeptide KFERQ motif. Specific chaperones transport these proteins directly
across the lysosomal membrane one by one thereby playing a central role in protein
quality control (Kaushik and Cuervo 2018). Macroautophagy (herein referred to as
autophagy), which is the best characterized type of autophagy, involves de novo
synthesis of double-membrane lipid bilayer vesicles that sequester cargo, called
autophagosomes, and fuse with the lysosome where the cargo is degraded
(Fig. 12.1).

Autophagy is controlled by complex signaling events and occurs in a multistep
process. Basal levels of autophagy occur in all cells. Autophagy is induced to
promote cell survival and restore homeostasis in response to cellular stressors such
as starvation, damaged organelles, or the invasion of microorganisms. Autophagy
can also eliminate apoptotic cells (Qu et al. 2007). The molecular mechanisms and
signal induction pathways for basal autophagy and stress-induced autophagy likely
have distinctions but are not well-characterized. Investigation predominantly in
yeasts identified autophagy-related (Atg) genes involved in the formation and
recycling of the autophagosome. The fundamental mechanism of autophagy is
conserved across organisms such as yeast, plants, and mammals and involves related
Atg genes (Klionsky 2007). The autophagic process can be divided into stages such
as initiation of phagophore formation, expansion, and elongation of the
autophagosome membrane, cargo selection, and fusion with the lysosome.

12.2.2 Initiation of Phagophore Formation

A cellular stress response, such as loss of nutrients, will initiate the autophagy
pathway. Mammalian target of rapamycin (mTOR) kinase is a sensor of cellular
stressors and is the major negative regulator of autophagy. Cellular stress inactivates
mTOR kinase. 50-AMP-activated protein kinase (AMPK), another nutrient sensing
kinase, can activate autophagy directly or by inactivating mTOR (Lee et al. 2010).
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Both mTOR and AMPK regulate autophagy via inhibition or activation, respec-
tively, of the ULK1 complex composed of ULK1 [also known as autophagy-related
1 (ATG1)], ULK2, ATG13, RB1-inducible coiled coil 1 (RB1CC1), and ATG101.
ATG1 binds ATG17, which, along with ATG13, regulates the kinase activity of
ATG1 (Suzuki et al. 2014). ATG1 regulates the transmembrane protein ATG9
which acts as a phagophore initiator by recruiting lipids from cellular sources such
as the endoplasmic reticulum (ER), mitochondria, and endosomes (Simonsen and
Tooze 2009). ATG1, ATG13, and RB1CC1 may further facilitate autophagy
machinery recruitment via LC3 interaction regions (LIR) (Corona Velazquez and
Jackson 2018).

Fig. 12.1 Stages of the autophagic process. During autophagy, cytosolic cargo is sequestered into a
double-membrane lipid bilayer vesicle formed via de novo synthesis through conjugation of pro-
teins and lipids in a complex, multistep process. Upon the induction of autophagy, the phagophore
membrane begins to form and LC3I is conjugated to phosphatidylethanolamine, producing the
lipidated form LC3II that is incorporated into the forming membranes. Selective autophagy targets
specific cargo to be incorporated into the autophagosome for degradation. Selective autophagy is
mediated by adapter molecules such as p62/Sequestosome 1 (SQSTM1), which recognizes and
binds to polyubiquitinated cargo such as damaged mitochondria or protein aggregates and also
binds to forming vesicle membranes via its direct binding to LC3II. Bulk autophagy is a
nonselective process, engulfing cytoplasmic material at random. The phagophore membrane elon-
gates, and once the vesicle is closed, it is called an autophagosome. The autophagosome fuses with
the lysosome, called an autolysosome, where the cargo and adapter molecules such as p62 are
degraded and recycled or used as metabolic fuel to promote cell survival
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12.2.3 Expansion and Elongation of the Autophagosome
Membrane

Elongation of the phagophore occurs when the Beclin 1 complex is activated to
produce phosphatidylinositol 3-phosphate (PI3-P) lipids. The Beclin 1 complex is
composed of Beclin 1, ATG14, phosphatidylinositol 3-kinase catalytic subunit type
3 (PIK3C3), and phosphatidylinositol 3-kinase regulatory subunit 4 (PIK3R4). The
ULK1 complex phosphorylates Beclin 1 and ATG14, promoting their association
and the formation of PIK3C3 complexes to convert phosphoinositide (PI) to PI3-P
lipids. Microtubule-associated light chain 3 (LC3) is processed by ATG4 to produce
LC3I. ATG3 interacts with LC3I producing the lipidated form conjugated to phos-
phatidylethanolamine, called LC3II (Levy et al. 2017). This membrane-bound
LC3BII is incorporated into the autophagosome membrane and is often used to
mark or measure autophagosome formation. The autophagosome is completed when
two distinct inner and outer bilayers are formed and the double-membrane vesicle is
closed.

12.2.4 Cargo Selection

Autophagy was long thought to be an indiscriminant process, engulfing cytoplasmic
material at random. In more recent years, molecular mechanisms have been identi-
fied whereby specific cargo is selected during autophagy (Fig. 12.1). Autophagy
machinery and the growing phagophore membrane are recruited to sites of bacterial
invasion, damaged organelles, or protein aggregates, promoting their uptake as cargo
and degradation by autophagy. Emerging studies have identified adaptor molecules
that serve to flag and facilitate the uptake of specific cargo. Through interactions with
autophagy machinery, adaptor molecules bring specific cargo into the forming
phagophore to be eventually surrounded by the expanding membrane in a completed
autophagosome. The best characterized adaptor molecule involved in selecting cargo
is p62/Sequestosome 1 (SQSTM1) which is an ubiquitin-binding scaffold protein
and promotes degradation of polyubiquitinated cargo such as protein aggregates or
damaged mitochondria via its direct binding to LC3II (Sanchez-Martin and Komatsu
2018). In this way, p62 links ubiquitinated proteins to the autophagic machinery.
Since p62 is degraded along with the cargo during autophagy, its accumulation
indicates inhibition of autophagy, whereas decreased levels indicate induction of
autophagy, making it a common marker to measure autophagic flux (Sanchez-Martin
and Komatsu 2018).

NOD1 and NOD2 provide another example of adapter proteins involved in the
autophagic response with a role specific to invading bacteria. NOD1 and NOD2 are
intracellular receptors that recognize muramyl dipeptide, a component of the bacte-
rial cell wall, and interact with and recruit ATG16L1 to the site of bacterial entry into
the cell (Travassos et al. 2010). This interaction facilitates the incorporation of
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invading bacteria into the forming autophagosome. Mutant NOD2 is unable to
recruit ATG16L1 and bacterial engulfment into autophagosomes is impaired
(Travassos et al. 2010).

12.2.5 Fusion with the Lysosome

The fully formed autophagosome migrates along microtubules to a lysosome where
small GTPases such as Rab7, SNAREs, and endosomal sorting complex required for
transport (ESCRT) facilitate the fusion of the outer autophagosome membrane with
the lysosome, known as an autolysosome. In certain circumstances such as starva-
tion, autophagosomes may fuse with late endosomes (called amphisomes) prior to
fusion with lysosomes. The acidic lysosomal components degrade the cargo as well
as adapter molecules such as p62 and LC3II present on the inner autophagosome
membrane. LC3II located on the autolysosome membrane can be converted back to
LC3I. The degraded contents are recycled back into the cytosol or used to fuel
metabolic pathways, thereby promoting cell survival.

12.3 Dual Roles of Autophagy in Cancer Initiation Versus
Progression

12.3.1 Autophagy and Cancer Suppression

Like many molecular pathways in cancer, the role of autophagy in cancer is complex
and demonstrates tumor suppressor and tumor promoter functions (Fig. 12.2). Such
opposing outcomes are attributed to context dependency including stage of tumor,
type of tumor, presence of tumor genetic mutations, and therapies. The tumor
suppressive function of autophagy is largely summed up as preventing malignant
transformation. As the outcome of autophagy is quality control via the elimination of
damaged organelles, invading bacteria, or protein aggregates or via “self-eating” to
produce metabolic fuel during starvation, autophagy function is crucial in
maintaining cell homeostasis. Loss of quality control provided by autophagy leaves
cells susceptible to genotoxic stress, a known inducer of tumor initiation. This has
been demonstrated in various mouse models deficient in autophagy exhibiting
enhanced tumor initiation (Cianfanelli et al. 2015; Marino et al. 2007; Mathew
et al. 2009; Qu et al. 2003; Rao et al. 2014a, b; Takamura et al. 2011). Furthermore,
autophagy plays an essential role in the maintenance of stem cells, including
embryonic, hematopoietic, neural, and mesenchymal stem cells (Rodolfo et al.
2016). Autophagy is required for the maintenance of stemness in normal stem
cells and cancer stem cells (CSCs). The role of autophagy in CSCs will be discussed
in Sect. 12.3.3.
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The molecular mechanism whereby autophagy protects against early oncogenesis
involves regulation of the capacity of the immune system to eliminate or retard the
growth of cancers. The immune system constantly surveils for cancer cells for their
destruction, called immunosurveillance. Autophagy has been shown to influence the
abundance of T-cell subtypes, specifically FoxP3+ regulator T cells (Tregs) and
CD8+ cytotoxic T cells, in the tumor microenvironment. Deletion of Atg5 in the
KrasG12D mouse model of non-small cell lung cancer increased infiltration of early
adenomas with FoxP3+ Tregs (Rao et al. 2014b). Tregs function as anti-
inflammatory T cells, resulting in immunosuppression and accelerated oncogenesis.
Enhanced autophagic flux in human breast cancer cells was associated with favor-
able prognosis, increased abundance of CD8+ cytotoxic T cells, and decreased
abundance of FoxP3+ Tregs (Ladoire et al. 2016). A key stimulant of the immune
response is extracellular adenosine triphosphate (ATP), which is generated via
autophagy through lysosomal ATP release (Martins et al. 2014). Extracellular

Fig. 12.2 Dual roles of autophagy in cancer. Autophagy suppresses tumor initiation by providing
cellular quality control and defense against genotoxic stress. Extracellular ATP release generated
via autophagy stimulates and recruits immune cells, initiating an anti-cancer immune response.
Autophagy in immune cells modulates the release of cytokines and danger signals and is important
for activation and survival of immune cells crucial for tumor immunosurveillance. Once malignant
transformation has occurred, autophagy promotes tumor growth and invasion. Enhanced autophagy
and mitophagy in CSCs drives characteristic features of CSCs such as self-renewal potential,
stemness, epithelial-to-mesenchymal transition (EMT), and chemoresistance. Autophagy and
mitophagy in CAFs enhance secretion of metabolic fuel for neighboring tumor cells, which in
turn drives their aggressive behavior via metabolic reprogramming, proliferation, EMT, and
invasion. Additionally, enhanced extracellular matrix (ECM) secretion including collagen contrib-
utes to a dense tumor microenvironment that can hinder anti-cancer drug access and efficacy
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ATP recruits dendritic cells, natural killer cells, and CD8+ cytotoxic T cells to attack
the cancer. During autophagy deficiency, this ATP release and immune stimulation
are deficient, and cancer cells evade immune recognition. The anti-cancer immune
response can be reestablished by restoring extracellular ATP release via alternate
pathways (Michaud et al. 2011; Rao et al. 2014a). Immunosurveillance is also
essential for the induction of anti-cancer immune responses by chemotherapy
treatments anthracyclines or oxaliplatin. Cancer cells that develop means to inhibit
autophagy, thereby preventing release of ATP and immunosurveillance, are refrac-
tory to these chemotherapeutic drugs (Pietrocola et al. 2017).

12.3.2 Autophagy and Cancer Progression

Once malignant transformation has occurred, autophagy takes on a fundamental role
in cancer cell survival, proliferation, and metastasis allowing adaptation to cellular
stress present in the tumor microenvironment, including hypoxic, metabolic, and
inflammatory stress. In addition, autophagy affects cell motility and EMT, important
contributors to cancer invasion and metastasis (Marcucci et al. 2017). This provides
rationale for targeting autophagy as a chemosensitizing agent alongside current
cancer treatments to improve therapeutic response. Autophagy is upregulated in
human cancers, but this is generally not driven by genetic mutations in essential
autophagy genes which are infrequently mutated in tumors (Lebovitz et al. 2015).
Instead, commonly occurring cancer mutations in tumor suppressor genes, such as
RAS and p53, are thought to drive autophagy upregulation in tumor cells (Zhang
et al. 2017).

Various mouse models of spontaneous tumorigenesis have demonstrated the
crucial role of autophagy in promoting cancer progression. Crossing these mouse
models of spontaneous tumorigenesis with mice deficient in crucial autophagy genes
provide a method to determine the role of autophagy under physiological conditions
including a functional immune system and tumor microenvironment. Deletion of
Atg5 in the KrasG12D mouse models of pancreatic ductal adenocarcinoma or lung
cancer decreases tumorigenesis (Rao et al. 2014a; Rosenfeldt et al. 2013; Yang et al.
2014a). Similar results were demonstrated during Atg7 deletion in the BrafV600E/
Pten�/� model of melanoma or Pten�/� model of prostate cancer (Santanam et al.
2016; Xie et al. 2015). Atg7 deletion in the BrafV600E non-small cell lung cancer
model compromised tumor growth and progression due to defects in mitochondrial
metabolism (Strohecker and White 2014). Deletion of Atg7 in intestinal epithelial
cells prevented tumorigenesis in the Apcmin/+ mouse model of colorectal cancer due
to metabolic stress in tumor cells but not normal cells (Levy et al. 2015). In Lkb1-
deficient Kras-driven lung cancer, deletion of Atg7 decreased tumor initiation and
growth due to altered mitochondrial metabolism and energy crisis normally
sustained by autophagy (Bhatt et al. 2019).

A pitfall of these studies is the use of models with complete loss of autophagy,
which rarely occurs in human patients. A recent study used heterozygous Atg5+/�
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mice alongside Atg5�/� mice to determine the dose effect of autophagy in the
KrasG12D mouse model of pancreatic ductal adenocarcinoma (Gorgulu et al.
2019). Surprisingly, loss of 1 allele of Atg5 enhanced tumorigenesis and metastasis,
whereas complete loss of Atg5 inhibited tumorigenesis. Monoallelic loss of Atg5
induced cell intrinsic changes involving mitochondrial homeostasis and enhanced
autophagy that altered the tumor microenvironment to favor aggressive pancreatic
cancer (Gorgulu et al. 2019). A similar result was demonstrated during heterozygous
intestinal epithelial cell-specific deletion of Sirt1, which activates autophagy by
deacetylating Atg5, Atg7, and Atg8 (Lee et al. 2008), in the azoxymethane-dextran
sodium sulfate mouse model of colorectal cancer. Sirt1+/� mice exhibited increased
colorectal cancer development, whereas homozygous Sirt1 deletion suppressed
tumorigenesis (Ren et al. 2017). These findings suggest a dose-dependent regulation
of tumorigenesis by autophagy.

Autophagy in multiple cell types present in the tumor microenvironment influ-
ences tumor progression. Induction of autophagy in cancer-associated fibroblasts
(CAFs) increases their secretion of amino acids such as alanine used as metabolic
fuel in neighboring cancer cells (Sousa et al. 2016) and secretion of extracellular
matrix such as collagen, contributing to density of the tumor microenvironment that
can hinder anti-cancer drug access and efficacy (Chen et al. 2019b). Autophagy in
immune cells modulates the release of cytokines and danger signals and is important
for activation and survival of myeloid and lymphoid cells crucial for tumor
immunosurveillance (Germic et al. 2019). In addition, ample evidence has emerged
demonstrating the important role of autophagy in promoting survival of self-
renewing and chemoresistant CSCs.

12.3.3 Autophagy and Cancer Stem Cells

CSCs are a population of tumor cells that are resistant to apoptosis and conventional
chemotherapeutics, are highly invasive and tumor-propagating, and give rise to
cancer heterogeneity through their immense self-renewal and limited differentiation
capabilities. The origin of CSCs is not completely elucidated, but it has been
demonstrated that EMT can give rise to CSCs (Mani et al. 2008). Furthermore, it
is well-established that CSCs are often characterized by upregulation of autophagy
that in turn drives pluripotency, resistance to hypoxia and nutrient deficiency in the
tumor microenvironment, resistance to anti-cancer therapies, enhanced migration
and invasion, and immunosurveillance evasion. A seminal role of autophagy in CSC
maintenance and expansion was demonstrated by loss of tumorigenicity in nude
mice by breast CSCs deficient in Beclin 1 (Gong et al. 2013). Autophagy
upregulation has been demonstrated in many types of CSCs including from breast,
colon, ovarian, pancreatic, gastric, esophageal, hepatic, lung, renal, and glioblastoma
cancers (Lee et al. 2015; Nazio et al. 2019; O’Donovan et al. 2011; Singla and
Bhattacharyya 2017). In fact, upregulated autophagy has been proposed as a
distinguishing trait for CSCs versus EMT tumor cells (Marcucci et al. 2017).
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Many signaling pathways have emerged as drivers of autophagy upregulation in
CSCs. FOXO transcription factors, known to be central regulators of cellular quality
control pathways, modulate transcription of many genes involved in autophagy such
as ATG5, ATG8, Beclin 1, LC3, and ULK1. FOXO3 deficiency increased self-
renewal of prostrate, ovarian, breast, liver, colon, and glioblastoma CSCs (Nazio
et al. 2019). Interestingly, FOXO3a/VEGF/CCL2 signaling has been shown to
stimulate the transformation of normal fibroblasts into CAFs, enhancing tumor
growth and metastasis in lung cancer (Shen et al. 2016). Signal transducer and
activator of transcription 3 (STAT3) regulates autophagy via transcriptional control
of autophagy genes as well as interaction with autophagy-related signaling mole-
cules including FOXO1 and FOXO3. STAT3 also localizes to the mitochondria
depending on its phosphorylation status and modulates mitophagy of damaged
mitochondria (You et al. 2015). STAT3 is overexpressed in CSCs and is a proposed
molecular marker of autophagy dependency in triple-negative breast cancer
(Hajimoradi et al. 2016; Liu et al. 2018; Maycotte et al. 2014; Shiraiwa et al.
2019). Other studies suggest that cross talk between molecular pathways controlling
EMT and autophagy also plays an important role in CSC maintenance (Chen et al.
2019a). For instance, TGFβ, a cytokine often elevated in the plasma and the tumor
microenvironment, induces CD44, a CSC marker, and vimentin expression giving
rise to a mesenchymal phenotype (Cufi et al. 2011). EMT signaling is a key feature
of enhanced migration of CSCs and is modulated, at least in part, by autophagy as
demonstrated by loss of CSC migration and invasion capacity during autophagy
inhibition (Apel et al. 2008).

12.4 Mitophagy: Adaptation to Drive Tumor Progression

12.4.1 Mitophagy Overview

Selective autophagy of mitochondria, termed mitophagy, is crucial in mitochondrial
quality control via elimination of damaged or dysfunctional mitochondria and
restoration of the mitochondrial pool. Mitochondrial dysfunction [depolarization,
excessive misfolded proteins, mitochondrial-derived reactive oxygen species
(ROS)] stimulates outer mitochondrial membrane (OMM)-localized autophagy
receptors to incorporate mitochondria into the autophagosome (Fig. 12.3; Jin and
Youle 2013; Wang et al. 2012). For instance, the kinase PINK1 is stabilized on the
OMM of damaged mitochondria and recruits the E3 ubiquitin ligase Parkin. Some
autophagy receptors are dependent on Parkin, which forms polyubiquitinated chains
on OMM proteins (such as MFN1, MFN2, and VDAC1) that are then recognized by
an autophagy receptor, thereby incorporating the mitochondrion into the autophagy
pathway for degradation. Other autophagy receptors act independently of Parkin and
localize to the OMM and bind to autophagy machinery such as LC3 via their
LC3-interacting region (Ding and Yin 2012).
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Currently, nine autophagy receptors have been identified to target mitochondria
and are categorized into two groups: (1) PINK1/Parkin-dependent, (1) p62,
(2) NBR1, (3) AMBRA1, (4) optineurin, and (5) NDP52 bind polyubiquitinated
targets (which include mitochondria and many other targets) via their ubiquitin-
binding domain, and (2) Parkin-independent, (6) Bnip3, (7) Nix/Bnip3L,
(8) FUNDC1, and (9) BCl2L13 contain transmembrane domains and upon expres-
sion constitutively localize to the OMM and interact with autophagy factors such as
LC3II, ULK1, DFCP1, andWIPI1 (Hamacher-Brady and Brady 2016; Lazarou et al.
2015). Expression of BNIP3 and Nix is controlled by the transcription factors
Hypoxia-inducible factor 1 alpha (Hif1α), NF-κB, or FOXO3, suggesting hypoxia,
inflammation, or autophagy quality control pathways, respectively, are involved in
mitophagy induction (Bellot et al. 2009; Chaanine et al. 2016; Dhingra et al. 2013;
Sowter et al. 2001). Given the hypoxic and inflammatory tumor microenvironment,
alteration of these transcription factors during tumorigenesis could result in powerful
effects on mitophagy. Additional posttranslational regulation of BNIP3, Nix, and
FUNDC1 by phosphorylation in the LIR domain increases their affinity for LC3II
binding, suggesting that phosphorylation regulates their pro-mitophagy activity
(Lv et al. 2017; Rogov et al. 2017; Zhu et al. 2013).

Fig. 12.3 Targeting mitochondria for mitophagy. In Parkin-dependent mitophagy, Pink1 is stabi-
lized on the OMM of damaged mitochondria, which recruits the E3 ubiquitin ligase Parkin to add
polyubiquitin chains to OMM proteins such as MFN1 or VDAC1. The autophagy adapter proteins
p62, NBR1, or AMBRA1 function as a bridge between binding the polyubiquitin chains and LC3II,
thereby incorporating damaged mitochondria into the forming autophagosome. Parkin-independent
mitophagy involves upregulation of expression of Bnip3, Nix, or FUNDC1 upon mitochondrial
damage, which constitutively localizes to the OMM and directly binds LC3II, with enhanced
affinity for LC3II binding by phosphorylation in their LIR domain
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12.4.2 Mitophagy and Cancer Metabolism

Alteration of cellular metabolism is fundamental to transformation, selected for
during tumorigenesis, and does not occur passively as a response to damaged
mitochondria or reduction in ATP concentration (Ward and Thompson 2012).
Mitochondrial reprogramming alters cellular metabolism to enhance anabolic pre-
cursors such as reduced carbon, reduced nitrogen, and cytosolic NADPH critical in
supplying the increased requirements of tumor growth. Cancer cells exhibit a hybrid
metabolic state, utilizing both oxidative phosphorylation (OXPHOS) and glycolysis
allowing adaptation to changing microenvironments (Yu et al. 2017). In a dynamic
process, the function of tumor mitochondria is complemented to the metabolic needs
necessary to achieve rapid cell growth and enhance metastatic potential.

Mitochondrial metabolism, function, and ROS generation (as a by-product of
OXPHOS) play critical roles in stem cell fate and self-renewal (Berger et al. 2016;
Ito et al. 2006; Khacho et al. 2016; Morshead et al. 1994). Active stem cells of
frequent turnover tissues requiring more bioenergetic activity, such as the intestinal
epithelium, rely on OXPHOS metabolism (Rodriguez-Colman et al. 2017). Simi-
larly, CSCs rely on OXPHOS for enhanced energy production that is linked to
stemness, self-renewal, and anti-cancer resistance (Peixoto and Lima 2018). Block-
ade of OXPHOS alters CSC properties in pancreatic ductal adenocarcinoma (Fabian
et al. 2019), esophageal cancer (Liu et al. 2019), breast cancer (Gao et al. 2018), and
ovarian cancer (Nayak et al. 2018). Increased ROS production derived from
enhanced OXPHOS can cause genotoxic damage; however, CSCs elicit upregulated
antioxidant defenses to prevent ROS-induced cell death. For instance, inhibition of
Nrf2, the master transcriptional antioxidant activator, sensitizes mammospheres
(breast cancer cells with stem/progenitor cell properties) to chemotherapeutics and
inhibits growth (Wu et al. 2015).

In addition to antioxidant defenses, CSCs rely on mitophagy as protection against
mitochondrial dysfunction. A recent study demonstrated that endolysosomal Rab5-
and Rab7-mediated mitophagy is essential for survival and chemoresistance of
colorectal cancer CSCs (Takeda et al. 2019). Mitophagy is crucial for the mainte-
nance of stemness and self-renewal capacity of hepatic CSCs by directly removing
the tumor suppressor p53 that localizes to mitochondria and suppresses transcription
of NANOG, a key transcription factor driving CSC properties (Liu et al. 2017).
Inhibition of mitophagy in leukemia stem cells results in loss of self-renewal
potential and stem cell properties (Pei et al. 2018). Chemoresistance of colorectal
cancer CSCs is dependent on Bnip3-mediated mitophagy (Yan et al. 2017). Survival
of glioblastoma CSCs requires Nix-induced mitophagy regulated by Hif1α in the
hypoxic tumor microenvironment (Jung et al. 2019). In fact, hypoxic signaling
mediated by Hif1α as a response to conditions inside the tumor is a key signaling
pathway driving CSC metabolic reprogramming and mitophagy induction via tran-
scriptional control of Bnip3 and Nix (Sowter et al. 2001).

Emerging evidence suggests that mitophagy in cells beyond CSCs is important in
tumorigenesis. In colorectal cancer, mitophagy in intestinal epithelial cells controls
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the immunosurveillance response by CD8+ T cells (Ziegler et al. 2018). Mitophagy
in intestinal epithelial cells induces iron (II)-accumulation in epithelial lysosomes
causing permeabilization of the lysosomal membrane and release of proteases
(cathepsins) into the cytoplasm. This, in turn, enables antigen processing directly
in intestinal epithelial cells and contributes to enhanced CD8+ T-cell activation
(Ziegler et al. 2018). In this way, mitophagy in intestinal epithelial cells enhances
antitumor immunity in colorectal cancer patients, in which increased tumor CD8+ T
cells is associated with prolonged survival (Fridman et al. 2012). A recent study
demonstrated that Nix-dependent mitophagy upregulation in breast cancer CAFs
drives metabolic reprogramming favoring lactate production (Sung et al. 2019).
Conditioned medium from these CAFs promoted proliferation, EMT, and invasion
of breast cancer cells (Sung et al. 2019). Thus, mitophagy in multiple cell types
present in the tumor microenvironment influences tumorigenesis.

12.4.3 Mitophagy and Iron Homeostasis

Iron is essential for cellular homeostasis and growth. Cellular iron levels are tightly
regulated with excess cellular iron stored in ferritin. Mitochondria play a central role
in iron homeostasis as the site of heme synthesis and iron/sulfur clusters. Emerging
evidence suggests that cancer exhibits dysregulated mitochondrial iron trafficking.
Many types of cancer accumulate iron to sustain cell proliferation. A recent study
demonstrated that mice with deletion of PINK1 and Parkin exhibited enhanced
KRAS-driven pancreatic tumorigenesis mediated by metabolic reprogramming
induced by mitochondrial iron accumulation via importers SLC25A37 and
SLC25A28 (Li et al. 2018a). Using the STAT3 loss of function sporadic intestinal
tumorigenesis model, mitophagy was shown to drive iron accumulation in lyso-
somes of intestinal epithelial cells, which in turn lead to lysosomal membrane
permeabilization, antigen processing by dendritic cells, and CD8+ T-cell antitumor
immune response (Ziegler et al. 2018). These studies support the role of mitophagy
in iron trafficking which influences cancer cell fate such as metabolic
reprogramming and susceptibility to tumoral immune cells.

Mitochondria are also involved in ferroptosis, a form of cell death distinct from
apoptosis or necrosis driven by iron-dependent oxidative degeneration of lipids
(lipid peroxidation) causing the accumulation of lipid ROS. Sensitivity to ferroptosis
is dependent on multiple cellular processes including redox signaling, metabolism of
amino acids, iron, polyunsaturated fatty acids, and the biosynthesis of glutathione,
NADPH, and phospholipids (Stockwell et al. 2017). Lipid peroxidation can be
initiated by hydroxyl radical and hydroperoxyl radical, which are formed by the
Fenton reaction (ferrous iron (Fe2+) interacts with hydrogen peroxide). Ferroptosis
occurs as a result of lipid peroxidation, although the exact mechanism whereby this
leads to cell death is not fully elucidated (Dodson et al. 2019). Treatment of leukemia
with dihydroartemisinin or typhaneoside induces ferroptosis dependent on mito-
chondrial dysfunction, mitochondrial-derived ROS accumulation, and autophagy
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degradation of ferritin (Du et al. 2019; Zhu et al. 2019). p53 has been shown to
promote ferroptosis via repression of transcription of SLC7A11, a gene that encodes
system Xc� cysteine/glutamate antiporter and is overexpressed in several forms of
cancer including colorectal, liver, and kidney cancers (Jiang et al. 2015). Interest-
ingly, the CSC marker CD44v associates and stabilizes system Xc�, and therefore it
has been proposed that tumor cells with high CD44v expression may be susceptible
to ferroptosis induction via system Xc� inhibition (Toyokuni et al. 2017). In
colorectal cancer, a transcription-independent role of p53 in inhibiting ferroptosis
via blockade of DPP4 and NOX1-induced lipid peroxidation was recently reported
(Xie et al. 2017). Given that p53 localizes to mitochondria, it is tempting to speculate
that p53 may play a role in ferroptosis from within the mitochondria by regulating
iron trafficking, but this has yet to be demonstrated.

12.5 Autophagy-Targeted Drug Development for Cancer
Therapy

12.5.1 Clinical Trials Targeting Autophagy for Cancer
Therapy

Many compounds inhibit autophagy at different stages of the autophagic process;
however, the only FDA approved autophagy inhibitor is chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ), which inhibit autophagosome fusion with
the lysosome. Preclinical and early-stage clinical trials using CQ or HCQ have been
reported for pancreatic, breast, liver, and lung cancers (Marinkovic et al. 2018).
HCQ monotherapy in metastatic pancreatic cancer demonstrated negligible thera-
peutic efficacy (Wolpin et al. 2014). Current Phase I and II clinical trials are testing
the combination of HCQ with the chemotherapeutic drugs capecitabine or Abraxane
in pancreatic cancer. Results from the CQ-gemcitabine combination Phase I study
reported a clinical response in patients with metastatic or unresectable pancreatic
cancer (Samaras et al. 2017). Phase I and II clinical trials in metastatic breast cancer
are currently testing CQ or HCQ in combination with ixabepilone or taxane. Single-
agent CQ treatment was not associated with any effect on breast cancer cell prolif-
eration in a recently reported Phase II clinical trial (Arnaout et al. 2019). HCQ in
combination with transarterial chemoembolization or sorafenib for unresectable or
advanced hepatocellular cancer, respectively, is being tested in current Phase I and II
trials, but results have not yet been reported. HCQ in combination with erlotinib in
advanced non-small cell lung cancer was shown to be well-tolerated in a Phase I trial
(Goldberg et al. 2012). A Phase II trial was recently completed in non-small cell lung
cancer patients testing HCQ in combination with paclitaxel, carboplatin, or
bevacizumab (NCT01649947). CQ in combination with 5-FU, vorinostat, or
bortezomib has demonstrated promising results in preclinical mouse models of
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colorectal cancer and cell lines, but this has not yet advances to clinical trials
(Marinkovic et al. 2018).

Sirolimus and everolimus, which are mTORC1 inhibitors and therefore activators
of autophagy, are being tested in clinical trials for various cancers. Sirolimus and
everolimus are being tested in Phase II and III clinical trials for advanced hepato-
cellular cancer in patients whose disease progressed while on sorafenib or to prevent
recurrence. Results reported so far suggest that everolimus did not improve overall
survival (Zhu et al. 2014), efficacy (Koeberle et al. 2016), or recurrence-free survival
beyond 5 years (Geissler et al. 2016) compared to sorafenib alone. Combined
sirolimus and gemcitabine therapy did not alter clinical response in a Phase I/II
trial of patients with metastatic pancreatic cancer (Karavasilis et al. 2018).
BOLERO-2, BRAWO, and 4EVER clinical trials reported that in postmenopausal
women with HR+/HER2� advanced breast cancer, everolimus in combination with
exemestane increased median progression-free survival versus exemestane alone
and was well-tolerated (Fasching et al. 2014; Tesch et al. 2019).

12.5.2 Targeting Autophagy in CSCs

It is proposed that relapse following anti-cancer therapy can be driven by intrinsi-
cally chemoresistant CSCs. This forms the basis of logic to combine cytotoxic drugs
and autophagy inhibitors as an adjuvant treatment to sensitize CSCs to chemother-
apy. Using preclinical models or cell culture experiments, multiple studies have
shown autophagy blockade to enhance therapeutic efficacy via decreased survival of
CSCs. Combined 5-FU and CQ treatment decreased cell viability of gastric CSCs
(Li et al. 2018b). In fact, CQ ablates CSCs from multiple types of gastrointestinal
cancers including esophageal, gastric, and colon cancers (Kim et al. 2017). JAK2-
induced autophagy was shown to preserve stemness and drive resistance to cisplatin
by bladder cancer CSCs; combined treatment with JAK2 inhibitors and CQ induced
cell death of cisplatin-resistant bladder cancer CSCs (Ojha et al. 2016). Atg7
deficiency or treatment with CQ renders breast CSCs susceptible to salinomycin or
carboplatin (Bousquet et al. 2017; Liang et al. 2016; Yue et al. 2013). Autophagy
inhibition by CQ inhibited stemness and cisplatin resistance in lung CSCs, resulting
in immense tumor growth suppression (Hao et al. 2019). Similar results were found
in pancreatic CSCs during autophagy inhibition resulting in chemosensitivity to
gemcitabine (Yang et al. 2015; Zhang et al. 2019).

It is important to note that although CQ and HCQ are well-established inhibitors
of late stage autophagy, recent evidence demonstrates that CQ ability to suppress
tumor growth is not dependent on its autophagy inhibiting activities. Instead, it has
been proposed that the mechanism of CQ anti-cancer activity involves altered tumor
cellular metabolism (Weyerhauser et al. 2018). Unfortunately, the only autophagy
inhibitor approved for clinical trials is CQ/HCQ so comparison to other autophagy
inhibitors is lacking. Despite multiple actions of CQ in cancer cells, studies utilizing
models deficient in essential autophagy genes (as discussed in Sects. 12.3.2 and
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12.3.3) support the essential role of autophagy in tumor progression and CSC
stemness and survival. Further studies are necessary to elucidate the importance of
autophagy inhibition in adjuvant anti-cancer therapies in human clinical trials.

Metallic nanoparticles, including silver, gold, zinc oxide, iron oxide, and copper
oxide, are potent modulators of autophagy and are emerging as a strategy for anti-
cancer therapy (Cordani and Somoza 2019). The nanoparticle itself has direct effects
to modulate autophagy and can also promote the efficacy of chemotherapeutics
carried as nanoparticle cargo via enhanced delivery to bulk tumor cells as well as
CSCs (Sun et al. 2016a).

12.5.3 Targeting Mitophagy

Drugs such as CQ and HCQ that inhibit late stage autophagy will also inhibit
mitophagy, and therefore it is difficult to distinguish the specific role of mitophagy
inhibition using these drugs. However, genetic deletion or knockdown studies
specific to essential mitophagy regulators provide evidence to support targeting
mitophagy as anti-cancer therapy. Parkin deficiency enhanced the sensitivity of
breast cancer cells to radiation during hypoxia (Zheng et al. 2015). Knockdown of
Rab9a, which localizes to the mitochondrial membrane and is essential for
mitophagy induction during loss of Atg7 expression, induced apoptosis of leukemia
cells associated with elevated ROS levels and DNA damage (Wang et al. 2016).
Colorectal CSCs resistant to doxorubicin were shown to exhibit enhanced
mitophagy, which when suppressed by silencing of Nix caused CSC
chemosusceptibility (Yan et al. 2017). Similar results were reported during knock-
down of FUNDC1 in cervical cancer cells which decreased proliferation, increased
apoptosis, and enhanced the sensitivity to cisplatin and radiation (Hou et al. 2017).
Lung cancer cells commandeer PINK1-mediated mitophagy to promote tumor
resistance to cisplatin treatment (Villa et al. 2017). A recent study revealed that
multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR were rendered
susceptible to apoptosis by a betulinic acid analog, B5G1, during knockdown of
PINK1 (Yao et al. 2019). Thus, mitophagy provides a mechanism whereby cancer
cells can resist anti-cancer therapy. It has been proposed that mitophagy accom-
plishes this pro-cancer role by preserving mitochondrial fitness to match metabolic
needs of tumor cells (Vara-Perez et al. 2019). It remains unknown which specific
mitophagy proteins play an essential role in chemotherapy and radiation resistance,
and further studies are necessary to develop mitophagy-specific therapeutic strate-
gies against cancer.

364 A. L. Theiss



12.5.4 Targeting Ferroptosis

Since drug resistance cancer cells are particularly vulnerable to ferroptosis, influenc-
ing iron homeostasis via mitophagy is an emerging pathway for cancer therapy.
Small molecules that activate ferroptosis such as erastin, sulfasalazine, artesunate,
typhaneoside, dihydroartemisinin, or sorafenib may be effective against a variety of
cancers such as leukemia, pancreatic, kidney, and liver cancers (Du et al. 2019;
Wang et al. 2019; Yang et al. 2014b; Yu et al. 2015; Zhu et al. 2019). The majority of
these ferroptosis-inducing agents are inhibitors of system Xc� or glutathione perox-
idase 4 (GPX4), a phospholipid hydroperoxidase that prevents ferroptosis by reduc-
ing lipid peroxides to lipid alcohols (Dodson et al. 2019). A complexity of this
strategy presents with cancer cell adaptation to ferroptosis by increasing antioxidant
responses to quench elevated ROS and lipid peroxidation (Toyokuni et al. 2017).
Recent studies suggest that the master antioxidant gene transcriptional activator,
Nrf2, plays a central role in cancer cell evasion of ferroptosis as demonstrated by
knockdown of Nrf2 sensitizing cancer cells to ferroptosis (Roh et al. 2017; Sun et al.
2016b). A combination of pharmacological inducers of ferroptosis and inhibitors of
Nrf2 may show therapeutic promise against resistance cancer cells (Dodson et al.
2019). A recent study demonstrated that autophagic degradation of the circadian
clock protein ARNTL prevented activation of the transcription factor Hif1α and
favored ferroptosis tumor cell death (Yang et al. 2019). This too suggests that
combination therapy of inhibiting ARNTL and activating ferroptosis may provide
a more effective anti-cancer outcome.

12.5.5 Vitamin D and Autophagy

Epidemiological data suggests that sufficient vitamin D is protective against cancer
(Garland et al. 2006). This is not a recent observation, and more current studies have
elucidated the molecular mechanism of vitamin D protection. Activation of the
vitamin D receptor (VDR) by the hydroxylated, biologically active form of
vitamin D, 1,25-dyhydroxyvitamin D3, is an important regulator of cancer cell
proliferation and death by modulating autophagy (Tavera-Mendoza et al. 2017).
This effect of vitamin D was shown to involve its modulation of autophagy in
non-transformed cells such as macrophages, neurons, and intestinal epithelial cells
and in breast and skin cancer cells (Bristol et al. 2012; Jang et al. 2014; Lu et al.
2019; Tavera-Mendoza et al. 2017). VDR was shown to be an important transcrip-
tional regulator of autophagy genes including ATG16L1 andMAP1LC31B (encodes
LC3) (Sun 2016; Tavera-Mendoza et al. 2017). Interestingly, vitamin D induced an
autophagy gene signature in normal mammary gland cells, thereby increasing basal
autophagy that was lost during the progression to breast cancer (Tavera-Mendoza
et al. 2017). Overexpression of VDR is associated with PIK3CA or KRAS mutations
in colorectal cancer (Kure et al. 2009). Expression of VDR can be regulated by the
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tumor suppressor gene p53, with mutated p53 altering the effect of vitamin D on
breast cancer cells to be anti-apoptotic (Stambolsky et al. 2010). Similar results
based on p53 mutation status were demonstrated in colorectal cancer cells treated
with a combination of vitamin D and metformin resulting in decreased proliferation
via a mechanism involving increased autophagy that was specific to wild-type versus
mutant p53 status (Abu El Maaty et al. 2017). Although the role of vitamin D in
cancer prevention is not fully elucidated, these studies suggest vitamin D levels
should be considered in patients enrolled in clinical trials testing therapeutics that
modulate autophagy.

12.6 Conclusions/Perspectives

The role of autophagy in cancer is complex, and our current understanding remains
vastly incomplete. A dual role of autophagy in suppressing tumor initiation and in
promoting tumor growth and invasion are supported by current investigations.
However, why is autophagy inhibition monotherapy not effective to induce clinical
response in clinical trials of various cancer types? If autophagy serves to fuel cancer
cells during nutrient depletion and protect from hypoxia and inflammatory stress,
why does autophagy-targeted monotherapy fail? A likely answer is our limited
understanding of even basal autophagy in various tissues, which is further compli-
cated in tumors due to the genetic heterogeneity of cancers. We currently do not
know how complex genetic mutations common in cancer alter autophagy or
response to autophagy-targeted therapeutics. Future studies aimed at better under-
standing the molecular mechanisms of autophagy and influence of genetic mutations
will facilitate more effective, personalized therapies targeting autophagy. Further-
more, an understanding of the role of selective autophagy, such as mitophagy, may
provide additional therapeutic targets that may be more specific than CQ or HCQ.

Currently, 68 international clinical trials are testing autophagy modulation as
therapy for cancer, with the majority investigating autophagy inhibition as a
chemosensitizing agent alongside current cancer treatments to improve therapeutic
response. Most preclinical and Phase I and II clinical trials have reported promising
results, but further study is needed. This again reflects the complexity of cancer in
which the targeting of more than one molecular pathway is often necessary for
effective therapy. Ideally, these studies will combine clinical outcome data with
genetic mutation status and analyses of tumor cell and molecular biology to better
understand the role of autophagy in patients who respond to autophagy modulation
versus patients who are non-responders. Considering the influence autophagy plays
on cell fate decisions in various cell types during health and disease, autophagy
provides an exciting target in the pursuit of cancer therapies that we are only
beginning to harness.
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Chapter 13
Mitochondrial Regulation of Inflammation
in Cancer

Joseph Inigo, Jordan Woytash, Rahul Kumar, and Dhyan Chandra

Abstract Inflammation can occur in response to transient or chronic conditions.
Transient inflammation is beneficial during injury or invasion of pathogens. Chronic
inflammation presents an unresolved response which can have harmful conse-
quences to the host system. Inflammation is prevalent in multiple human diseases.
Current studies provide a strong association between inflammation and cancer.
Mitochondrial dysfunction augments the production of mitochondrial reactive oxy-
gen species (mtROS) to support inflammation and proliferation via release of various
cytokines. Inflammation, in turn, can further induce mitochondrial dysfunction and
reactive oxygen species (ROS) to create a feedback loop of inflammatory insult,
which supports the growth and survival of tumor cells. Current pharmacological
agents seek to exploit this process by targeting either the mitochondria or down-
stream targets of the mitochondria which promote inflammation. This chapter delves
into the origins of mitochondrial dysfunction and the corresponding signaling
pathways that regulate inflammation in cancer.

Keywords Mitochondrial dysfunction · Inflammation · Reactive oxygen species ·
Hypoxia · Cytokines

13.1 Introduction

Inflammation is a physiological response to infection and tissue injury, which is
typically mediated by immune cells, cytokines, and chemokines (Medzhitov 2008).
Once activated, immune cells act in tandem to mobilize and eliminate the infectious
threat. For example, neutrophils can eliminate pathogens by releasing toxic contents
such as ROS (Rosin et al. 1994; Nathan 2006). However, due to the lack of
discrimination between foreign agents and local cells, damage to host tissue is
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inevitable (Nathan 2002). The inflammatory response must then be resolved, or
chronic inflammatory insult will develop serious consequences (Medzhitov 2008)
such as development of various types of cancer. Colorectal and lung cancers are the
most extensively studied cancers with ties to chronic inflammation (Kamp et al.
2011). There are various mechanisms/conditions that contribute to inflammation
(Table 13.1), and some key causes are discussed in this chapter.

13.2 Mitochondrial ROS

ROS provides the association between chronic inflammation and cancer (Ohshima
and Bartsch 1994; Rosin et al. 1994; Weitzman and Gordon 1990). Mitochondria are
believed to be the major source of ROS (Murphy 2009; Balaban et al. 2005), mainly
due to the activity of the electron transport chain (ETC). Complexes of the ETC
couple the transfer of electrons with the transfer of protons across the mitochondrial
membrane to create an electrochemical proton gradient, which helps produce ATP
(Huttemann et al. 2007). However, electrons can escape from the mitochondria to
interact with oxygen and form mtROS as a byproduct (Murphy 2009). These highly
reactive species include superoxide, hydrogen peroxide, and hydroxyl radicals
(Murphy 2009). These reactive species can each cause oxidative damage to DNA,
proteins, and lipids (Evans et al. 2004). Enzymes of the tricarboxylic acid (TCA)
cycle, present in the mitochondrial matrix, have been shown to generate mtROS. For
example, 2-oxoglutarate dehydrogenase, branched-chain 2-oxoacid dehydrogenase,
and pyruvate dehydrogenase complexes are also capable of producing superoxide
and hydrogen peroxide (Quinlan et al. 2014).

Various systems act to regulate the levels of ROS, as both normal and cancer cells
require a redox balance to preserve cellular health. Antioxidant enzymes such as

Table 13.1 Causes of inflammation

Mitochondrial
mutations

Accumulation of mutations in mtDNA leads to irregular activity of the
electron transport chain, creating an abundant pool of mtROS which can
directly or indirectly induce inflammation

Mitochondrial
ROS

Inhibit MAPK phosphatases and promote the transcription of IL-6, IL-8,
IL-10, and TNF-α
When damaged mitochondria gather, mtROS oxidizes mtDNA. This
mtDNA is released from the mitochondria into the cytosol to activate
inflammasomes

Local immune
cells

Directly release ROS into the tumor microenvironment (e.g., macrophages
and neutrophils) to induce DNA damage in neighboring cells including
cancer cells

Release pro-inflammatory cytokines which stimulate mtROS production by
the electron transport chain

Hypoxic
conditions

Under low-oxygen conditions, mitochondria produce greater quantities of
mtROS that stabilize HIF-1α which, in turn, increases levels of
pro-inflammatory cytokines and chemokines
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superoxide dismutase (SOD), catalase, and glutathione peroxidase contribute to the
attenuation of various toxic ROS (Weydert and Cullen 2010). SODs catalyze the
dismutation of superoxide radicals into hydrogen peroxide and oxygen, while
catalase and peroxidases further process hydrogen peroxide into water (Weydert
and Cullen 2010). However, when levels of ROS exceed the capacity of these
antioxidant systems, oxidative damage is more likely to occur (Evans et al. 2004).

13.3 Mitochondrial Dysfunction

Throughout the lifespan of an organism, mitochondrial DNA (mtDNA) is a key
target of oxidative damage due to its proximity to mtROS production (Wei et al.
2001). The vulnerability of mtDNA is compounded by a lack of protection offered
by histones as well as a deficiency in repair mechanisms relative to nuclear DNA
(Alexeyev et al. 2013). Consequently, the rate of mutations formed in mtDNA is
greater than those found in nuclear DNA and can include point mutations, insertions,
deletions, and changes in mtDNA copy number (Larsen et al. 2005). This produces
dysfunctions in the mitochondria which can give way to further mutations in mtDNA
as well as nuclear DNA (Escames et al. 2012). Mutations in mtDNA can alter the
function of the ETC to exacerbate mtROS generation. For example, mutations which
decrease the activity of Complex IV of the ETC can impact the efficiency of previous
Complexes, raising the probability of superoxide production from Complexes I, II,
and III (Shidara et al. 2005). In leukemic cells, a missense mutation in the ND1 gene
of Complex I is believed to disturb electron transfer and increase mtROS formation
(Piccoli et al. 2008). In Lewis lung carcinoma, mutations in the ND6 gene of
Complex 1 lead to a reduction in Complex I activity and overproduction of ROS
(Ishikawa et al. 2008). A heteroplasmic mutation can interfere with the synthesis of
the ND5 subunit of Complex I and consequently disrupts the assembly of Complex I
(Hofhaus and Attardi 1995). This specific mutation was previously identified in
colorectal tumors (Polyak et al. 1998) and later found to increase mtROS levels (Park
et al. 2009). These mutations, particularly those found in mtDNA encoding proteins
of the ETC, ultimately result in mitochondrial dysfunction and enhanced mtROS
production (Theurey and Pizzo 2018).

13.4 Mitochondrial ROS and Dysfunction Promote
Inflammation

Due to the higher ROS content in cancer cells relative to normal cells (Liou and Storz
2010), the events described above in which mitochondrial dysfunction occurs is
exacerbated in tumors. This sets the stage for the creation of an abundant supply of
mitochondrial ROS, which can then contribute to inflammatory activity (Sabharwal

13 Mitochondrial Regulation of Inflammation in Cancer 379



and Schumacker 2014), as will be discussed in the following sections. This is further
escalated by the presence of local immune cells, as tumorigenesis involves the
recruitment of inflammatory immune cells to the tumor microenvironment. These
cells can directly contribute to oxidative stress by releasing ROS into the tumor
microenvironment (Frenkel 1992; Shacter et al. 1988). For example, macrophages
and neutrophils can release superoxide, hydrogen peroxide, and hydroxyl radicals to
cause DNA damage in neighboring cells (Trush and Kensler 1991). Furthermore,
these immune cells can also secrete pro-inflammatory signals via cytokines to further
impair mitochondrial functions. Cytokines such as Il-1β, TNF-α, and interferon-γ
(IFN-γ) can stimulate production of mtROS by the mitochondria (Cao et al. 2013;
Yang et al. 2007) through various mechanisms. IL-1β induces depolarization of the
mitochondria and inhibits Complex I of the ETC (Lopez-Armada et al. 2006).
Increases in mtROS, in turn, can increase the expression of IL-1β (Shi et al. 2018).
Chronic exposure to TNF-α alters mitochondrial energetics to decrease mitochon-
drial membrane potential, decrease ATP turnover, and increase proton leak (Hahn
et al. 2014). Additionally, TNF-α can decrease the mRNA expression of transcrip-
tion factors crucial to mitochondrial biogenesis, such as peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α) and endothelial nitric oxide synthase
(eNOS) (Hahn et al. 2014). IFN-γ induces the loss of mitochondrial membrane
potential and subsequent release of cytochrome c to drive cells toward apoptosis
(El Jamal et al. 2016). Overall, the resulting mitochondrial dysfunction then gives
way to highly enhanced levels of mitochondrial ROS, which can play a role in
various signaling and transcriptional processes to propagate a tumor-supporting
inflammatory scenario (Fig. 13.1).

13.5 Mitochondria and Cellular Signaling During
Inflammation

The ensuing mitochondrial dysfunction has shown to further increase the response to
cytokine-induced inflammation through ROS production and NF-κB activation
(Vaamonde-Garcia et al. 2012). High-mobility group box 1 (HMGB1) is
upregulated in tumor cells and supports inflammation once released into the extra-
cellular space (Tang et al. 2010). Upon interaction with the receptor for advanced
glycation end products (RAGE), ERK1/2 is phosphorylated and prompts the mito-
chondrial localization of RAGE where it can phosphorylate Complex I to enhance
ATP production and meet the metabolic demands of tumor growth (Kang et al.
2014). A high-fat diet (HFD) accelerates inflammation-associated pancreatic
intraepithelial neoplasm (PanIN) development in mice with oncogenic KRAS acti-
vation (Khasawneh et al. 2009). To keep pace with the increased energetic needs of
early tumor promotion, a rise in mitochondrial fatty acid β-oxidation is observed
(Khasawneh et al. 2009). In patients with inflammatory bowel disease, protein
kinase R (PKR) amplifies the phosphorylation of eukaryotic translation initiation
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factor (eIF) 2α and c-Jun to induce transcriptional activation of stress-related genes
such as the mitochondrial component heat shock protein 60 (HSP60) and preserve
mitochondrial health (Rath et al. 2012).

MtROS itself can directly participate in cellular signaling events. Hydrogen
peroxide can oxidize the thiol side chain of cysteine groups to produce conforma-
tional and functional changes in proteins (Garcia-Santamarina et al. 2014). For
example, phosphatases such as the tumor suppressor PTEN and MAPK phospha-
tases can be inactivated by hydrogen peroxide in this manner (Kwon et al. 2004;
Kumar et al. 2018). The inhibition of constitutively active PTEN and MAPK
phosphatases can assist with the accumulation of phosphatidylinositol 3,4,5-
trisphosphate (PIP3) and MAPK to a level which is sufficient for triggering down-
stream signaling (Kwon et al. 2004), thereby influencing targets such as the Akt and
MAPK pathways to promote the growth and survival of cancer cells (Chalhoub and
Baker 2009; Chetram and Hinton 2012). Production of mtROS, specifically by
Complex III, is necessary for KRAS-mediated MAPK/ERK signaling for cell
proliferation and tumorigenicity (Weinberg et al. 2010). The forkhead box, class O
(FoxO) family of transcription factors, is also reported to regulate antioxidant levels
through crosstalk with mtROS (Klotz et al. 2015). Oxidation of protein tyrosine
phosphatases (PTPs) by ROS inhibits FoxO and promotes tumorigenesis (Harris
et al. 2014).
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Fig. 13.1 Mitochondrial dysfunction in cancer cells. Complexes of the electron transport chain,
mainly Complexes I and III, generate ROS, which damage mtDNA. This event promotes mutations
in mtDNA, which encode proteins of the ETC, leading to mitochondrial dysfunction and further
increased ROS. Immune cells in the tumor microenvironment contribute to ROS and release
cytokines, which can further impair the mitochondria and augment ROS production
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13.6 Hypoxia and Inflammation

Hypoxia, defined as a deficiency in oxygen levels, is common in various malignan-
cies (Muz et al. 2015). Hypoxia-inducible factor-1α (HIF-1α) is a key component of
these activities (Semenza 2010). HIF-1α is destabilized by prolyl hydroxylases
(PHDs) during oxygen-rich conditions (Huang et al. 1998). Consequently, hypoxic
conditions lead to the inhibition of PHD activity and stabilization of HIF-1α, which
in turn can promote angiogenesis, metastasis, and resistance to therapy, leading to
disease progression (Muz et al. 2015). During inflammation, various mechanisms
such as those involving signal transducer and activator of transcription 3 (STAT3)
(Pawlus et al. 2014) and NF-κB (van Uden et al. 2008, 2011) lead to HIF-1α
induction. HIF-1α itself can directly enhance the inflammatory response by regulat-
ing the levels of pro-inflammatory cytokines and chemokines (D’Ignazio et al.
2016). This cross talk between inflammation and hypoxia is partially mediated by
the mitochondria. Mitochondria increase the production of mtROS during hypoxia,
largely at Complex III, which helps stabilize HIF-1α and activate the expression of
several cytokines including vascular endothelial growth factor (VEGF) (Chandel
et al. 1998, 2000a) and platelet-derived growth factor (PDGF) (Yoshida et al. 2006).
Furthermore, mtROS is shown to induce NF-κB DNA-binding and increase TNF-α
gene transcription during hypoxia (Chandel et al. 2000b).

13.7 Mitochondria and Cytokine Production via
Inflammasomes

Cell death can lead to release of damage-associated molecular patterns (DAMPs),
thereby propagating an inflammatory response (Krysko et al. 2011). These DAMPs
act upon receptors termed pathogen-associated molecular patterns (PAMPs), which
include NOD-like receptors (NLRs) (Krysko et al. 2011). Mitochondria have been
identified as a source of DAMPs, which may be mediated by mtROS and mtDNA.

Several studies demonstrate that mtROS can drive the production of
pro-inflammatory cytokines. In a TNFR1-associated periodic syndrome (TRAPS)
model, mtROS functions to induce the transcription of IL-6, IL-8, IL-10, and TNF-α
by inhibiting negative regulators of mitogen-activated protein kinase (MAPK)
signaling such as MAPK phosphatases (Bulua et al. 2011). Together, findings by
Nakahira et al. (2011) and Zhou et al. (2011) illustrate that when damaged mito-
chondria accumulate in the absence of autophagy, mtROS increases and activates the
NLRP3 inflammasome, one of the most well-studied NLRs. NLRP3 catalyzes the
activation of pro-caspase-1, leading to cleavage of pro-IL-1β to form mature IL-1β
which can be exported from the cell. A further study clarifies the method by which
mtROS influences NLRP3 to induce IL-1β production. During mitochondrial dys-
function, mtDNA is oxidized by mtROS and released into the cytosol where it binds
and activates NLRP3 (Shimada et al. 2012).

382 J. Inigo et al.



Cytokine products such as those derived from inflammasomes display oncogenic
effects. In a murine model, transgenic expression of fibroblast growth factor receptor
1 induces breast cancer in association with localized IL-1β production (Reed et al.
2009). In another model, stomach-specific expression of IL-1β drives gastric inflam-
mation and tumorigenesis (Tu et al. 2008). IL-1β recruits and activates myeloid-
derived suppressor cells (MDSCs) through the interleukin-1 receptor (IL-1R) and
NF-κB pathway. IL-1R antagonism consequently suppressed the mobilization of
MDSCs and development of gastric cancers. IL-1β expression in lung cancer
induces infiltration of macrophages to the tumor microenvironment, where these
cells can enhance angiogenesis and tumor growth (Nakao et al. 2005). Constitutive
activation of the NLRP3 inflammasome in human melanoma cells leads to continual
release of IL-1β (Okamoto et al. 2010). IL-1β signaling was again shown to attract
macrophages and promote angiogenesis due to secretion of cytokines IL-6, IL-8, and
MCP-1. Overall, the mitochondria can activate inflammasomes by various means to
ultimately promote inflammation and tumorigenesis (Fig. 13.2).

13.8 Targeting Inflammation and the Mitochondria

Targeting of inflammasomes and corresponding cytokines is currently being studied
for the prevention and treatment of human cancers (Thi and Hong 2017). The
cytokine release inhibitory drug 3 (CRID3) inhibits NLRP3 activation and reduces
IL-1β and IL-18 production (Ludwig-Portugall et al. 2016). A selective
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Fig. 13.2 Mitochondrial induction of inflammasomes. Mitochondrial ROS oxidize mtDNA. Once
released into the cytosol, mtDNA activates NLRP3 inflammasomes, which in turn, activate caspase-
1. Caspase-1 cleaves pro-IL-1β to form IL-1β. IL-1β attracts immune cells such as macrophages and
myeloid-derived suppressor cells (MDSCs), which enhance angiogenesis and support tumor growth
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small-molecule inhibitor of NLRP3, MCC950, is another potential therapy for
NLRP3-associated diseases (Coll et al. 2015). Monoclonal antibodies and recombi-
nant derivatives which neutralize both IL-1α and IL-1β are available (Dinarello
2011). Anakinra, an IL-1β receptor antagonist, inhibits IL-6 production in vitro
and increases progress-free survival in myeloma patients (Lust et al. 2009). Anakinra
reduces the growth of mammary tumors and metastatic lesions due to inhibition of
proliferation and angiogenesis (Holen et al. 2016) and was recently utilized in a pilot
clinical trial of breast cancer patients (Wu et al. 2018). It has also shown to block
IL-1β-mediated IL-6 production in Castleman’s disease, a rare lymphoproliferative
disorder (El-Osta et al. 2010).

Interestingly, IL-1 inhibitors may prove to be useful in moderating the side effects
of chemotherapy. Anthracyclines such as doxorubicin can activate the NLRP3
inflammasome to produce undesirable reactions. Anakinra reduces doxorubicin-
induced cardiac dysfunction and apoptosis (Zhu et al. 2010; Sauter et al. 2011).
Treatment with 5-fluorouracil increases IL-1β expression, leading to intestinal
mucositis and apoptosis. The use of anakinra attenuates these effects (Wu et al.
2011). Anakinra diminishes bleomycin-induced inflammation and pulmonary fibro-
sis (Gasse et al. 2007).

Studies suggest that dietary intake of antioxidants may lower the incidence of
inflammatory-associated diseases such as cancer (Griffiths et al. 2016). In line with
this ideology, the grape-derived antioxidant, resveratrol, mitigates oxidative stress to
improve mitochondrial function and reduce inflammation (Catalgol et al. 2012). The
effects of resveratrol can be attributed to the ability to restore the proper activity of
Complex III, a major source of mtROS, and upregulate the expression of antioxi-
dants SOD2 and glutathione (Xu et al. 2012; Ungvari et al. 2009). As a result,
resveratrol has been shown to have chemopreventive and chemotherapeutic effects
in various cancers (Catalgol et al. 2012). Isothiocyanates (ITCs), derived from the
metabolism of glucosinolates, can act as anti-inflammatory agents (Waterman et al.
2014; Davaatseren et al. 2014) and are believed to be a source of cancer-preventive
effects of cruciferous vegetables such as broccoli, cauliflower, cabbage, and kale
(Keck and Finley 2004; Murillo and Mehta 2001). Studies demonstrate that ITCs
accelerate the metabolism of carcinogens to promote their elimination (Wattenberg
1981), inhibit NF-κB (Jeong et al. 2004; Youn et al. 2010), induce cell cycle arrest
(Singh et al. 2004; Chen et al. 2010), and promote apoptosis in association with
decreases in mitochondrial membrane potential (Park et al. 2007; Choi and Singh
2005; Sehrawat et al. 2017). The Withania somnifera plant is commonly used in
Ayurveda medicine (Baliga et al. 2013). An extract from the roots and leaves of this
plant, withaferin A, displays cancer-preventive properties (Hahm et al. 2013; Li et al.
2016; Samanta et al. 2017; Sehrawat et al. 2017, 2019). Withaferin A promotes
apoptosis by reducing mitochondrial membrane potential to cause release of cyto-
chrome c and activation of caspase-3 (Mandal et al. 2008) and by inducing chro-
mosome instability in cancer cells (Das et al. 2014). Withaferin A impedes
maturation and reduces secretion of pro-inflammatory cytokines such as IL-1β and
IL-18 (Dubey et al. 2018). One potential use of withaferin A is highlighted by a
study in which chemotherapy-induced fatigue was reduced in patients with breast
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cancer (Biswal et al. 2013). Altogether, dietary use of vegetables and herbs to obtain
the anticancer and anti-inflammatory benefits of derived metabolites such as ITCs
and withaferin A is recommended.

Another strategy is to further impair the mitochondria as a form of treatment.
Metformin, a first-line therapy for diabetes (Rojas and Gomes 2013), displays
anticancer effects in breast cancer (Alimova et al. 2009), ovarian cancer (Rattan
et al. 2011), and colorectal cancer (Nguyen et al. 2019). This effect has shown to be
associated with a suppression of the inflammatory response (Hirsch et al. 2013;
Nguyen et al. 2019). And there is evidence that this occurs due to the ability of
metformin to directly act upon and inhibit Complex I of the mitochondria (Hirsch
et al. 2013). Sulindac, classically known as an anti-inflammatory agent (Huskisson
and Scott 1978), inhibits tumorigenesis in colorectal cancer (Boolbol et al. 1996;
Rao et al. 1995) and has shown pro-apoptotic effects in breast cancer cells (Sui et al.
2018). Studies suggest that sulindac enhances the selective targeting and elimination
of cancer cells by promoting mitochondrial dysfunction and ROS production
(Ayyanathan et al. 2012).

13.9 Conclusion

Inflammation is a normal biological process which, when prolonged, can compro-
mise the health of an organism. This condition is prevalent in various cancers and
can aid both tumorigenesis and tumor progression. Inflammation can be mediated by
the mitochondria, largely via mitochondrial ROS, to influence various signaling
pathways and regulate targets such as NF-κB, Akt, MAPK/ERK, PTEN, HIF-1α,
VEGF, PDGF, TNF-α, IL-6, IL-8, IL-10, IL-18, and Il-1β. As a result, inflammation
is further propagated, and a tumor-supporting inflammatory environment is gener-
ated. Due to the extensive role of inflammation and the mitochondria in cancer,
corresponding therapeutics are under investigation. These include agents which
either stabilize or further impair the mitochondria or agents which target components
downstream of the mitochondria such as inflammasomes and cytokines.

However, caution is advised as we move forward with these studies. Direct
targeting of mitochondria using metformin has the potential to cause mitochondrial
dysfunction and lactate overproduction of human platelets (Protti et al. 2012). Use of
monoclonal antibodies presents several challenges in the clinic. Due to the molecular
size of antibodies, uptake of antibodies by solid tumors has been a prevailing issue
(Thurber et al. 2008). Nevertheless, developments in the engineering of antibodies
such as site-directed mutagenesis of the Fc region and defucosylation are now being
used to increase the affinity of antibodies for their intended targets (Desjarlais et al.
2007; Yamane-Ohnuki et al. 2004; Wang et al. 2018). Bioavailability of natural
compounds such as withaferin A also remains a key concern (Devkar et al. 2015).
But synthesis of receptor-targeted nanoparticles housing withaferin A holds great
promise in pacifying this concern (Agarwalla et al. 2016). Finally, modulating
inflammasomes could predispose patients to infections and auto inflammatory
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diseases (Karki et al. 2017). For example, human studies using inflammasome
inhibitors such as canakinumab and rilonacept shows adverse events such as urinary
tract infections and upper respiratory tract infections (Thompson and Nidorf 2018;
Kapur and Bonk 2009). MCC950, a potent inhibitor of the NLRP3 inflammasome,
displays less immunosuppressive effects compared to canakinumab and rilonacept
(Coll et al. 2015; Ren et al. 2018). MCC950 has a shorter half-life, and treatment
could therefore be discontinued more rapidly if unwanted reactions such as infec-
tions were to occur (Coll et al. 2015). Further studies are necessary to uncover the
full breadth by which inflammasomes affect cancer progression, with a focus on how
the tumor microenvironment is affected in conjunction with the tumor. Therefore,
defining the role of mitochondria in inflammation and cancer biology will provide
unique advantages to developing novel techniques and therapies.
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Chapter 14
Modern Germ-Free Study Designs
and Emerging Static Housing Technology
in a Growing “Human Microbiome”
Research Market

Alex Rodriguez-Palacios

Abstract Germ-free (GF) animals and the housing systems necessary to maintain
animals as GF during breeding, or as “gnotobiotic” (GN) during specifically
designed experiments, have been based on a traditional electrically pressurized
ventilation system that influx HEPA-filtered air into the housing units that have
existed since at least the 1940s. Since their proposition, these systems remain in
principle unmodified, and thus they abound as gold-standard GF housing system in
research institutions. Initially used as metallic “pressurized bubbles” to house a set of
cages where animals were maintained and handled through rubber portable gloves,
these systems were made more significant in size, during the 1960s, to allow the
entrance of humans into GF spaces (e.g., “trailers”) to conduct experiments and
perform animal husbandry. After a period of decline, great learning, and the near
disappearance of the word GF from the literature, the importance of GF research
(GFR) resurged during the late 1990s with the realization that the human
microbiome drives health or promotes disease, often as a secondary factor dependent
on dietary habits, genetics, geography, and behavior. An increased number of studies
and the resurgence of GF research were facilitated by the HEPA pressurization of
individually ventilated cages, which are maintained on rack systems as traditionally
occurs with specific-free pathogen (SFP) animals in research facilities. This chapter
serves as a source of key referent publications in GF and emphasizes fundamental
concepts of biology that are relevant to GF animals and modern study designs.
Lastly, this chapter introduces a novel simplified concept of ventilation based on
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nonelectrical non-pressurized passive filtration, enabling the expansion of GF stud-
ies to a broader range of laboratory settings.

Keywords GF · Gnotobiotics · Gnotobiology · Nested Isolation · NesTiso ·
Isolators · Husbandry · Mice

14.1 Introduction

The term “human microbiome” refers to the aggregate of all microbes (e.g., bacteria,
viruses, fungi) that reside on, or within, the human organs or fluids and which are
increasingly known to determine how we feel and how healthy we are. Acquired
especially during birth, the human microbiome has become a hallmark for research
worldwide to find the cure to many diseases. Laboratory animals, especially mice,
have been critical for scientists to understand how the human microbiome works
(Shek et al. 2015). Of all laboratory animal models, the best to study microbes is
when scientists raise mice in “isolation bubbles” where unwanted germs (microbes)
cannot enter. These so-called germ-free (GF) animals have become the workhouse of
microbiome scientists (Kubelkova et al. 2016; Yuan et al. 2017), since their first
attempts in the early 1900s. Germ-free science reached its peak in the 1960s
(Heneghan 1973; Luckey 1963) but declined thereafter. After a resurgence, a second
peak, occurring with hundreds of papers published on a yearly basis (which has been
steadily growing over the last 10 years), indicates there is a need to broaden the
implementation of modern GF models to decipher how microorganisms (individu-
ally and as communities) modulate mental health (Grover et al. 2019) and diseases
such as cancer and immune-mediated chronic inflammatory conditions, namely,
inflammatory bowel diseases and even rheumatoid arthritis (Maeda et al. 2016a, b)
and conditions mediated via the gut-immune-skeletal axis (McGinty and Mallon
2018).

Germ-free facilities are rare in general, but growing interest exists in
implementing more of them worldwide. GF facilities are always at risk of contam-
inations due to breaches in the GF system or microbial barrier integrity, a problem
that (sporadically and often unpredictably) occurs in all facilities (Rodriguez-
Palacios 2016). GF housing technologies seek to prevent the contamination of GF
animals with environmental germs. If contaminated, the airborne or otherwise spread
of such microbes into, and within, GF colonies is catastrophic (Rodriguez-Palacios
2016; Yuan et al. 2017). Re-derivation of animals and the reinitiation of colonies are
costly both in terms of material losses and time. To date, virtually all GF facilities
rely on technologies that use pressurized “germ-free isolator bubbles” or animal
“isolation cages” with highly efficient (HEPA) filtered pressurized air (Heneghan
1973). Unfortunately, such GF isolation systems require pressurization via costly
laborious instruments, which limits access for most scientists cyclical (Rodriguez-
Palacios et al. 2018a, b). High costs accompanied with the need of specialized
facilities and training limit large-scale production of GF animals (Fig. 14.1).
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Fig. 14.1 Since the 1930s, GF housing technologies based on pressurized electrical ventilation
(to provide GF air to animals) had been the only housing strategy available to scientists until
2018 when we reported that passive ventilation can be used effectively to maintain GF animals. In
HEPA-pressurized multi-cage “bubble isolators,” technicians handle GF animals with gloves
attached to isolators. (a) Photograph from W. Eugene Smith, (Man in protective helmet and rubber
gloves holding mouse, J.A. Reyniers’ Laboratories of Bacteriology at the University of Notre
Dame, Indiana), 1949. Source, International Center of Photography (Smith 1949). (b) Excerpt from
article in the Proceedings of the Natural Academy of Sciences 2014 (Williams 2014). (c) First
isolators were designed in steel. Original photograph, 1960 press photo of technicians working at St
Petersburg FL Germfree Life Research Center Isolator. Source, A. Rodriguez-Palacios. (d) Appear-
ance of first flexible film isolators. Original photograph, 1967 press photo Dr. James Heneghan at a
germ-free unit at Louisiana State University. Dr. Heneghan was editor of a collection of 97 studies
published as proceedings in 1973 (Heneghan 1973). (e) GF mice facility at the National Institute of
Allergy and Infectious Diseases, initiated by Yasmine Belkaid and Randy Elkins in 2008 with
12 isolators, for a capacity of 5 cages/each, and 5 mice/cage (60 mice total), at the Comparative
Medicine Branch to support investigators on campus. Public domain image, downloaded from
reference (Wu 2011). (f) Illustration of ventilation and air filtration in housing systems commer-
cially available for mice. Use unmodified from Rodriguez-Palacios et al., under Creative Commons
Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ (Rodriguez-
Palacios et al. 2018a, b)
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Driven by the market and scientific demands, scientists, especially those with no
access to GF facilities, could benefit with alternatives for improving GF research
efficiency while reducing the risk of catastrophic contaminations common with
traditional GF systems, while reducing husbandry costs. This chapter serves as a
non-exhaustive source of peer-reviewed published modern concepts on GF biology
and study designs and illustrates the novel contributions that GF experiments have
made to our understanding of immunity and microbiome in nutrition, intestinal
health, microbiota, and various cancers. Since GF research requires housing of
such GF animals using specialized isolators which are primarily based on a design
originating from the 1940 to 1950s (Miyakawa and Luckey 1968), this chapter
discusses the available technologies and introduces a novel simplified concept of
animal housing and isolation based on nonelectrical non-pressurized passive filtra-
tion/ventilation (Rodriguez-Palacios 2016; Rodriguez-Palacios et al. 2018a, b) that
is enabling the expansion of GF studies to a broader range of laboratory settings,
outside of specialized GF facilities (Basson et al. 2019a, b; Menghini et al. 2019).

14.2 Market Value and Exponential Growth of the GF
and the Human Microbiome Industry

A 2019 report from the Business Communications Company Research on “Labora-
tory Animal Models, 3D Cultures, and Organoids,” predicts that by 2023, the global
market for laboratory animal models will reach $7.8 billion, from $5.9 billion in
2018, indicating a compound annual growth rate of 5.6% (Kubeš 2019). Of this total,
mouse models alone (which provide a valuable tool for studying diseases since
humans and mice have >99% of DNA similarity) is expected to reach US$1.75
billion by 2023.

The unprecedented modern growth rate for GF research and science worldwide
can also be evidenced by the number of publications on “germ-free,” “mouse,” and
“microbiome” data. Comparatively, the number of publications using GF has had a
much faster growth rate compared to publications on microbiome and mice, as
illustrated by the curve slopes computed over the 10 last years in Fig. 14.2. The
number of peer-reviewed publications focusing on GF animal research has histori-
cally reached two peaks in history, one in the 1970s and one in 2019, the latter of
which is expected to project far beyond 2020. Continuous growth is expected owing
to the support arisen from national governments via programs of federal funding for
microbiome research and the emergence of global consumer markets (e.g., on
probiotics and “microbiome and health”) supported via startups and significant
venture investments. According to a 2019 study report, the human microbiome
market will have a 21.7% compound annual growth rate by 2014 in terms of revenue
considering the market share of vital companies in the human microbiome business.
The same study also estimated that the global market size will reach US$481.9
million in 5 years, from US$219.9 million estimated for 2019 (Market 2019). Similar
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projections indicate that a compound annual growth rate of 22.5% will lead to an
estimated global value of US$1.731 billion by 2027, evenly expanding in major
regions, namely North America, Europe, and Asia-Pacific, with a slower participa-
tion by other regions of the world (Market 2020).

Favoring the academic and entrepreneurial expansion of human microbiome
research, it is the continued interest of scientists to engage in more GF studies
(Carter and Foster 2006; Shek et al. 2015; Yuan et al. 2017). Their ultimate goal is
to identify patentable innovations that could be translatable into the commercializa-
tion of products or methods that could alleviate diseases or improve human and
animal health. In a recent survey of professionals conducted by our group Basson
et al., in 2019, interrogating members affiliated to three professional organizations of
scientists, veterinary, and laboratory animal practitioners (DDRCC, AALAS, and
The Gnotobiotic Listserv), demonstrated that 89% of active users of GF want to
continue using GF, while approximately 40% with no access want to start
conducting GF research, for a net growth and expected positive retention of scien-
tists attracted to GF research and innovation (Fig. 14.3) (Basson et al. 2019a, b).
Considering that every mouse needs housing, GF cages/husbandry requires physical
space and is a major fraction of research expenses, which is steadily growing as a GF

Fig. 14.2 Unprecedented modern growth rate for germ-free (GF) research worldwide. Count
statistics of peer-reviewed publications in PubMed. The number of publications by scientists in
GF has two peaks in history, one in the 1970s, and one in 2019. Comparatively, the number of
publications using GF has had a much faster growth rate compared to publications on microbiome
and mice (see slopes, computed over 10 last years)
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field worldwide. More space-efficient and portable GF housing systems that are
financially viable and cost-effective for all researchers are in growing high demand.
Cost-efficient scalable GF systems are relevant given the increased need of GF
research to understand and promote health. For practical insights on the development
of a business plan for GF and gnotobiotic facilities, refer to George Langan and Betty
Theriault’s discussion from The University of Chicago (Langan and Theriault 2017).

At the institutional level, the market and research opportunity for ~5300 colleges
in the USA, with 3026 dedicated to 4-year programs, and an average of one animal
facility per university, combined with an estimated of 7750 active research facilities
in the USA alone (Liljegren 2016), the number of potential studies based on GF
models worldwide is too large to summarize in this manuscript. The sections below
provide representative examples of modern study designs that may serve as referent
for future studies. With very few recent exceptions using the emerging portable
non-pressurized housing (Basson et al. 2019a, b; Menghini et al. 2019), most GF
studies have been conducted using anchored pressurized systems.

14.3 Basic Animal Germ-Free Biology and Gnotobiology
from Studies in the 1960s

In terms accessible to the public, the Encyclopedia Britanica, in its 250th anniversary
described a “germ-free life” as a “biological condition characterized by the complete
absence of living microorganisms. While ‘Gnotobiology’ comprises the study of GF
plants and animals, as well as living things in which specific microorganisms, added
by experimental methods, are known to be present. When one or more known
species of microorganisms are added experimentally to a GF plant or animal, the
host, of course, is no longer GF; both the host and the introduced species are
gnotobiotic, however, since all added species are known to the investigator. Precise
comparisons between germfree and conventional animals cannot be made unless
both are isolated from the environment and fed the same sterile diet” (Parrott-Sheffer
et al. 2018).

The first attempts to propagate GF animals date back to 1895 at the Hygiene
Institute of Berlin, with guinea pigs (Parrott-Sheffer et al. 2018; Smith 1949).
However, successful GF vertebrate experiments were conducted with chicks only
toward 1912. Shortly thereafter, GF goats were kept alive for 2 months. Advances
during the 1920–1930s led to the routine raising of GF animals. By the 1960s
internationally established associations and meetings existed where world-renowned
groups discussed experiments. Findings were regularly published as formal book
format proceedings. Available examples include the 1967 proceedings, which gath-
ered scientist contributing to 97 studies on various aspects of technology, imple-
mentation in the practice of human medicine and surgery, and preclinical medicine
expanding our knowledge on the biology of animals living without germs. Some of
the key discoveries during initial GF studies include the identification of nutritional
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deficits that occur as a consequence of autoclaving of diets and the lack of microbial
metabolites (Luckey 1963; Miyakawa and Luckey 1968). Initial observations
revealed that GF animals have larger ceca, smaller livers, and seemingly under
sized and developed lymphoid organs, which are used today to help phenotype GF
animals (Luckey 1963; Rodriguez-Palacios et al. 2018a, b).

In context, the interest in GF research started a few decades after Louis Pasteur
and Robert Koch collectively fathered the era of bacteriology and the infectious
principles of various epidemic diseases of plants and animals. Koch’s postulates
describe the necessary steps to experimentally define a microorganism as a causal
agent responsible for the occurrence of a pathological effect in a host. Louis
Pasteur’s pasteurization experiment illustrates the fact that the spoilage of liquid
was caused by particles in the air rather than the air itself. These experiments were
important pieces of evidence supporting the germ theory of diseases in which the
central dogma states that infectious microorganisms need to be in direct contact with
the host to cause disease and that air is necessary for airborne microbes. Therein, air
filtration and provision of GF air to the animals in their GF environment are the
hallmarks of GF facilities.

14.4 Retroviruses and mdr1a May Influence
Pharmacodynamic/Microbiome Studies in GF Mice

The only infectious agents acceptable in GF settings are primarily retroviruses,
because they self-integrate in the host genome, and there are no accessible means
to eradicate them once integrated. Although retroviruses are challenging to grow
in vitro, their presence can be indirectly inferred using serum antibody titers.
Retroviruses referred to as “endogenous viruses” depend on the host to replicate.
Therefore, retroviruses can influence the biological performance of GF models.
Retrovirus insertions may affect the GF physiology if insertions affect genomic
elements directly interfering with gene sequences or indirectly affecting epigenetic
mechanisms.

Several examples of animals affected with endogenous viruses exist, one of
which includes AKR/J mice, a genetic line that has been used to generate numerous
sublines (Takeda et al. 1981). AKR/J mice are viremic from birth and express the
ecotropic retrovirus AKV in all tissues (Jackson-Laboratory 2020). The AKR/J line
(carriers of the Thy1.1 “theta AKR” haplotype antigen) suffers from leukemia
(60–90% incidence), and, thus, it is one of the lines with the shortest life span.
AKR/J were one of the first mouse lines raised under GF conditions, but the
worsening of disease susceptibility and (“preleukemic syndrome”) morbidity expe-
rienced by AKR mice under GF conditions, first reported at the Lobund Laboratory,
Department of Microbiology, University of Notre Dame, makes raising productive
GF AKR/J mouse colonies challenging (Pollard 1967, 1969). Such limitations are
particularly notable when GF AKR are required as a putative control, such as for
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senescence-accelerated prone/resistant (SAMP/SAMR) mouse, a mouse line derived
from inbreeding and selection of the AKR/J (Pizarro et al. 2011). Senescence-prone
strains (SAMP) have earlier onset of loss of passivity and reactivity, loss of skin
glossiness and increased coarseness, hair loss, periophthalmic lesions, and increased
lordokyphosis of the spine (Takeda et al. 1981).

As a second example, AKV retroviruses have also been reported triggering
sudden deleterious effects in the genome of various SAMP lines, which can be
now studied under GF conditions (Zhang et al. 2008). Zhang et al. explained that the
enhanced susceptibility that some SAMP sublines to suffer drug toxicity is due to a
retroviral insertion affecting the drug transported gene mdr1 (currently designated as
abcb1a). The mdr1 gene is clinically relevant because retroviral-disrupted mdr1
leads to a dysfunctional transmembrane pump (a P-glycoprotein) in the blood-brain
barrier that excretes medications outside of the brain cells to prevent
neurocytotoxicity. Such dysfunctionality in several SAMP lines causes increased
susceptibility to ivermectin, making animals prone to suffer neurologic signs
because the neuronal cells are prone to toxicity. Ivermectin and similar moxidectin
and selamectin are considered “parasite- specific” macrocyclic lactones, medically
derivative from soil microorganisms of the genus Streptomyces, used as antiparasitic
to treat mites in mice as they act as potent agonist of glutamate-gated chloride ion
channel activity in the CNS of the parasite, which leads to parasite paralysis and
death (Nashat et al. 2018).

Increased susceptibility to topical moxidectin has also been described in SAMP8
and SAMR1 sublines (Takeda et al. 1981), with 14–18 times higher concentrations
of the drug in the brain, while normal concentrations are present in the serum. Since
ivermectin may affect behavioral and consumption or preference phenotypes (Davis
et al. 1999; Yardley et al. 2012), it is important to consider that in any given GF
experimental design, the susceptibility mechanism that explains ivermectin-depen-
dent neurological signs (Kanwar and Varshneya 1995) may unknowingly affect
other neuropharmacological aspects of GF research, for instance, the response to
stress or to altered gut-microbiome-brain axis. The importance of this P-glycoprotein
in study designs also should be considered in all the lines known to have this 8.5-kb
spontaneous retroviral insertional mutation right before exon 23 in the ATP-binding
cassette, subfamily B (MDR/TAP), member 1A (Abcb1a). Specifically, the AKR/J
sublines SAMR4, SAMR5, SAMP1, SAMP6, SAMP7, and SAMP9, and the mice
Crl:CF1-Abcb1a mice, which may have a possible distant common ancestor (Zhang
et al. 2008). Of interest, this mutation is absent in the other contemporary sublines
SAMP3, SAMP8, SAMP10, and SAMP11, and their putative parental genetic line
AKR/J, and also in other common laboratory strains including 129/SvJ, SJL/J,
SWR/J, A/J, BALB/c, C3H/He, C57BL/6J, DBA/2, NZB/N, ddy, CD-1/Crj, and
the ICR/Jcl.

Of relevance to study designs, the induction of a homozygous disruption of this
gene (replacement of exons 6–7 by a hygromycin phosphotransferase cassette) in
C57BL/6 mice has resulted in threefold increased susceptibility to carcinostatic drug
vinblastine, which in context is less pronounced than the 100-fold increased suscep-
tibility conferred to ivermectin (Schinkel et al. 1994). Relevant to cancer and
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microbiome GF studies, it is important to consider, as described by Schinkel et al.,
that P-glycoproteins confer multidrug resistance by actively extruding a wide range
of structurally unrelated amphiphilic hydrophobic drugs from the cell (Schinkel et al.
1994). Many of such compounds can be toxic in nature and occur naturally in plant
fungi and bacteria or be semisynthetically originated for immune suppression and
chemotherapy purposes and which can be studied in GF systems, namely, vinca
alkaloids, actinomycin D, taxanes, epipodophyllotoxins, cyclosporin A, and FK506,
or FK866, among several others which can influence cancer research and GF biology
(Ogino et al. 2019; Schinkel et al. 1994; Čižmáriková et al. 2019).

As an advancement to our understanding of mdr1 glycoproteins and GF biology,
more recently, Cao et al. in Mark Sundrud’s laboratory at The Scripps Research
Institute determined that the mdr1 gene is essential for specific (CD4+ effector)
T-cells, outside of the nervous system (Cao et al. 2017), in a study that has been
elegantly summarized as “Mdr1 saves T cells from bile” (Izcue and Pabst 2017).
Relevant to IBD, dysfunctional mdr1 expression in T cells drives in part the
susceptibility to toxicity to bile acid exposure, which occurs readily in the gut wall
of the ileum as T cells migrate into the tissue to complete differentiation and gain
immunotolerance. As a consequence, T-helper cells with abnormal mrd1 gene upon
exposure and before dead release signaling molecules that trigger an excessive
inflammatory reaction by other cells in the proximity. Our groups, at Case Western
Reserve University, are currently examining the role of bile transport blockade in the
prevention of inflammatory bowel disease, and its dependence on the animal
microbiome. As we improve our understanding of retrovirus integration in new
GF lines, it is essential to determine how these retroviral mediated mechanisms
could modulate diseases that may co-occur independently of the gut microbiome. Of
importance, SAMP1-IBD-ileitis, which occurs in both SPF and GF conditions
(therefore it is independent of gut microbiota), is not believed to be due to retroviral
insertions, since other SAMP lines, having the same mrd1mutations, do not develop
IBD (i.e., Crohn’s disease-like ileitis) (Rodriguez-Palacios et al. 2015a, b).

14.5 Mechanism of Disease in Modern GF Study Designs

Germ-free animals are an excellent disease model tool for studying the biology of
different conditions in both animals and humans, including cancer and gastrointes-
tinal disorders or their interdependence with environmental microbes. Studies have
demonstrated the value of GF animals in deciphering the role of the human gut
microbiota in gut physiology and development of the wall integrity in preterm
infants and in cancer development (Sommer and Bäckhed 2013; Yu et al. 2016).
The number of manuscripts published on GF and cancer, every year, has been
steadily increasing over the past decade. The use of conventional mice for the
study of microbiome principles derived from the human microbiome, although
critical to increase external validity, may produce confounded data (which may be
irreproducible across laboratories due to large microbiome differences across animal
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facilities and seasons) and makes it difficult to precisely identify mechanisms solely
linked to human-derived microbes. Below is a series of contributions made to
modern biology enabled or strengthened by the use of GF mice. Several of the
referent studies cited below may serve as guide to design modern experiments
requiring GF systems to study several diseases including colorectal cancer (CRC)
and IBD. Several examples of study designs and basic concepts of GF biology can
be found in all-time referent books from the 1960 to 1970s (Heneghan 1973; Luckey
1963).

14.5.1 The Gut Microbiota of Preterm Infants Has a Unique
Effect in the Gut of GF Animals

Germ-free animals, namely, mice and piglets, owing to their genetic and omnivorous
functional/anatomical proximity to the human biology have been used as surrogates
to understand diseases in children and preterm infants. Bovine calves have also been
used as GF models, despite their larger size, for the study of enteric viruses, namely
rotavirus and coronavirus. Of historical relevance, after GF research was well-
perceived for experimental purposes using a wide variety of animals in the early
1960s, pressurized GF technologies were used in clinical application (Heneghan
1973). The most remarkable clinical justification was their use to protect infants with
severe combined immunodeficiency (SCID). In the USA, the most historical case
was when a newborn (David Vetter, the ‘Bubble Boy’) was transferred and
maintained in isolation in a pressurized GF isolator until he died 12 years later as
a consequence of receiving a bone marrow transplant from a donor (his sister)
infected with Epstein-Barr virus (Fig. 14.4) (Kirk 2012a, b). Today, GF technologies
are primarily used for research combined with animal models to help determine the
role of the microbiome in infant infectious diseases and malnutrition and increas-
ingly important in conditions linked to severe immune disorders.

Using body weight gain as a marker for gut health in GF C57BL/6 J mice, Yu
et al., at the University of Chicago, recently documented that microbial communities
from infants have differential effects on intestinal development (Yu et al. 2016).
Specifically, microbiota from a preterm infant with normal weight gain induced
desirable microscopic phenotypes in the gut lining with increased villus height and
crypt depth, active cell proliferation, more goblet and Paneth cells, and tight junc-
tions compared to the microbiota from a preterm infant affected with poor weight
gain. Microdissection and gene expression showed that the normal infant induced in
GF mice increased stem cell activity (Lgr5), Paneth cells (Lyz1) and crypt
populations (Cryptdin5), and more goblet cell and mature enterocytes (Muc3) in
the villi. In contrast, the ill-thrift infant failed to promote such microbiome-mediated
changes in the gut wall, making the gut wall more similar to the GF status.

In addition to determining that GF mice have decreased numbers of Paneth and
goblet cells (Yu et al. 2016), earlier studies with GF mice led by McMaster
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University and Harvard University identified that the lack of microbial stimulus (via
maternal epigenetics or colonization at birth) leads to increased intestinal perme-
ability (Smith et al. 2007) and decreased intestinal epithelial cell migration, prolif-
eration, and renewal (Rakoff-Nahoum et al. 2015). Neonatal piglets and calves have
also provided tremendous insights into the biology of human infectious diseases and
increasingly common their interaction with the human microbiome (Vlasova et al.
2019; Wen et al. 2012). How the lack of certain immunological features or the
microbiota in GF animals affects the resistance to parasitic infections is currently
under investigation. Using as example the tapeworm Hymenolepis diminuta, Shute
et al., at the University of Calgary (Shute et al. 2020), determined in vitro analysis
that the worm extract enhances the growth of anaerobic bacteria and that infection in
mice promoted Th2 immune responses, with increased colonic levels of IL10, IL-25,
Muc2, trefoil factor 3, and β2-defensin mRNA. However, despite the effect of the
tapeworms, the study found no evidence that resistance to parasitic infestation is due
to the gut microbiota or the unprimed/primed gut immunity in GF mice (Shute et al.
2020).

Fig. 14.4 In the 1970s GF pressurized systems were promoted and used for human clinical and
surgical purposes (Heneghan 1973). Left, original photograph. Source, A. Rodriguez-Palacios
[1972 Press Photo Baby David (Bubble Boy) lives entire life in plastic bubble. By Tom Colburn,
for Chronicle Magazine, October 29, 1972]. Excerpt on back of photo reads: “It was the idea of
doctors, an effort to save his life. They have been so successful that not only has his germ-free
environment kept him free of disease; it has allowed him to grow faster that other babies”. Right
photo, [David Vetter speaks with Dr. William Shearer during preparations for the experimental
bone marrow transplant in 1983. (Photo Credit: Baylor College of Medicine) Source, Houston
Public Media] Public domain, downloaded from reference (Feibel 2016)
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14.5.2 The Human Gut Microbiota from Cancer Patients
Induce Cancer in GF Animals

The pathogenesis of CRC is complex, progressive, and multifactorial. Evidence
suggests that environmental factors, chronic inflammation, gut microbiota, and
genetic predisposition influence CRC progression, with ~95% of lesions originating
from adenomas (Housseau et al. 2016; Li et al. 2019). The use of azoxymethane
(AOM) as a mutagenic agent, which can be injected aseptically to GF mice, has
facilitated the study of inflammation-dependent and independent mechanisms of
colon carcinoma (Neufert et al. 2007) and its modulation by the human gut
microbiota. In 2017, a study of fecal microbiota from patients with colorectal cancer
(CRC) transplanted to mice by oral gavage twice a week for 5 weeks, at the Chinese
University of Hong Kong, demonstrated that cancer lesions are exacerbated in
conventional (male C57BL/6) mice by the human gut microbiota in animals
pre-treated with azoxymethane (10 mg/kg) and oral antibiotics to induce colon
neoplasia (0.2 g/L of drinking water of ampicillin, neomycin, metronidazole;
0.1 g/L vancomycin; 2 weeks) (Wong et al. 2017). Remarkably, this outcome
demonstrated, testing five patients, that CRC microbiota has a pro-cancer role.

Although the use of conventional mice has been universal and experimentally
critical to validate the connection between susceptibility to chronic inflammation,
dysbiosis, and CRC (Li et al. 2019; Menghini et al. 2017) and the notion that IL17
itself has a primary role in colon carcinogenesis and not necessarily the cell types
that produce IL17 (Housseau et al. 2016), the presence and interaction between the
“naturally occurring” resident mouse microbiota and the transplanted human
microbiota within the mouse gut often benefit or requires validation in GF models.
As pursued by Wong et al., GF mice have helped to determine with precision the
inflammatory pathways and molecular mechanisms associated with cancer lesion
induction and worsening as an exclusive consequence of human gut microbes
(Wong et al. 2017). GF experimentation has determined that the gut microbiota
from CRC patients induces in the mouse colon a higher induction of proliferating
(Ki-67-positive) cells, T-helper 1 (Th1) and Th17 cells, and proinflammatory cyto-
kines, including C-X-C motif chemokine receptor 1, C-X-C motif chemokine
receptor 2, interleukin 17A (IL17A; 2.25 vs. 0.44%), IL22, and IL23A. Collectively,
real-time polymerase chain reaction arrays revealed enhanced genes involved in cell
proliferation, apoptosis, angiogenesis, invasiveness, stemness, and metastasis linked
to CRC-derived fecal microbiota. Microbiome analysis revealed enrichment of
B. fragilis at 32 weeks, with depletion of Faecalibacterium prausnitzii, Clostridia,
and various Lachnospiraceae at 8 and 32 weeks after gavage.

Other examples of GF experimentation in CRC include the use of genetically
modified mice (often related to the C57BL/6 J strain, used as the reference for the
mouse genome) that are derived under GF conditions. Tomkovich et al. at Jobin’s
laboratory, University of Florida, have characterized the effect of CRC-derived
microbiota on carcinogenesis using the mouse model ApcMin/+ raised as GF and
after exposure to various types of CRC-derived bacteria or microbiota. Studies have
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also indicated that the microbiota and inflammation are critical to colon tumorigen-
esis. However, locoregional effects drive the severity of intestinal cancer pathologies
with different intensity depending on mouse genetics, animal age, and organ loca-
tion. In the context of IL10 deficiency, mice ApcMin/+ were more prone to have
significant colonic lesions compared to IL10-competent mice. In contrast, tumori-
genesis in the small intestine was, however, pronounced in ApcMin/+ mice as a
function of age, regardless of the status of the IL10 genetic background (Tomkovich
et al. 2017). In density terms, the tumor burden (more, larger tumors) in all cases was
higher in GF mice exposed to CRC-patient microbiota compared to conventional
mice, supporting the concept that commensal microbes increase the risk of cancer
lesions. Others have repeatedly highlighted how the intestinal tracts of GF animal
models are influenced when exposed to carcinogenic human microbiota (Zhan et al.
2013).

Germ-free studies have also facilitated the study of digestive biofilms when
present in humans. Studying the severity of colon tumor formation in three mouse
colon tumor models (GF ApcMinΔ850/+;IL10�/� or GF ApcMinΔ850/+ and specific
pathogen-free ApcMinΔ716/+ mice), it has been demonstrated that mucous-invasive
bacteria, present in gut biofilms of CRC patients and healthy controls undergoing
colonoscopies when present, induce more colon inflammation and tumors compared
to donors free of biofilm formation (Tomkovich et al. 2019).

Germ-free experimentation can enable the study of innate and unexpected novel
mechanisms of disease modulation triggered by microbes, for further validation in
humans, as well as to determine the epigenetic nature of DNA alterations induced by
human microbes. In a recent study conducted by Sobhani et al., CRC-associated
dysbiosis in humans caused unique alterations in the mouse DNA. Stool samples
from CRC patients transferred into GF mice caused aberrant crypt foci, DNA
alteration, and luminal microbiota alterations when animals were examined at
7–14 weeks post-colonization. Microbiota associated with CRC induced large
number of hyper-methylated genes in GF mice (Sobhani et al. 2019). Several gene
promoters including SFRP1,2,3, PENK, NPY, ALX4, SEPT9, and WIF1 promoters
were hypermethylated in CRC. Mechanistically, the GF mouse model helped to
determine that CRC microbiota from patients induces epithelial cell proliferation
(K167 marker), which is augmented with AOM, and increased expression (1.7–19
fold) of transcription factors HES1, KLF4, and ELF3, but not of MATH1. Increased
inflammation was reflected by higher IL1β, IL6, and MIP2α and lower IL10, IL23,
and INFγ. In transplanted mice, Fusobacteria, Parvimonas, Butyrivibrio, Gemella,
and Akkermansia were increased, while Ruminococcus, Bifidobacterium,
Eubacteria, and Lachnospira were reduced. Such dysbiotic microbiota caused
more incidences of mutations at global exon/intron level in the colonic tissue of
GF mice compared to spleen and to healthy control microbiota. The findings in GF
mice were then validated in humans.
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14.5.3 The Human Microbiome Modulates Immunotherapies
and Side Effects in GF Animals

Research on animals raised in GF environments are becoming an important biomed-
ical tool to understand the role that human microbes may have on therapies, the
induction of side effects, and the promotion or suppression as modulators on
anticancer immune responses. For instance, Vannucci et al. at the Academy of
Sciences of the Czech Republic demonstrated that GF rats developed fewer tumors
than conventional rats following a similar protocol of CRC induction, with GF rats
showing a better immune reaction against cancer lesions through B, CTL, NK, and
NKT cell responses (Vannucci et al. 2008). Such study indicates that an effective
absent antigenic challenge and the absent baseline state of “physiological inflam-
mation” in GF animals (caused by commensal intestinal microbes) enhances the
ability of GF models to mount more effective immune responses against cancer. In
studies conducted at the University of Florida with Campylobacter jejuni, the most
frequent bacterial cause of human gastroenteritis, GF preclinical APCmin/+ models
(and 1% DSS) helped to determine that rapamycin diminish the tumorigenic capa-
bility of C. jejuni in susceptible hosts (He et al. 2019).

Among the variables that could contribute to interpatient heterogenous response
to anticancer therapies is the differential composition of the patients’ microbiome,
which has been shown to affect antitumor immunity and immunotherapy efficacy in
preclinical mouse models (Matson et al. 2018). A study conducted at the University
of Chicago, trying to determine why anti-PD-1-based immunotherapy, which has
had a major impact on cancer treatment, only benefits some patients, also suggested
that the commensal microbiome modulated anticancer immune responses in cancer
patients, studying feces from metastatic melanoma patients before treatment. Germ-
free mice reconstituted with fecal gut microbiota obtained from patients that
responded to therapy were enriched with Bifidobacterium longum, Enterococcus
faecium, and Collinsella aerofaciens, which resulted in tumor control, enhanced
T-cell response, and increased efficacy of anti-PD-1 therapy in mice (Matson et al.
2018; York 2018).

Germ-free mice are also fundamental to mechanistically understand the side
effects of cancer treatments where excessive pain perception in patients occurs
secondarily to therapy. As described by Shen et al. at Harvard Medical School,
chemotherapy-induced pain is a dose-limiting condition that affects 30% of patients
undergoing chemotherapy (Shen et al. 2017). By using GF mice and chemothera-
peutic agent oxaliplatin, the authors demonstrated that the gut microbiota is critical
for the induction of pain, being inducible in animals as mechanical hyperalgesia.
Remarkably, their study revealed that GF mice had no pain compared to microbiota-
carrying mice. Of clinical value, conventional mice receiving antibiotics also
exhibited less pain, suggesting for the first time that the microbiota determines the
severity of pain a cancer patient could feel during cancer treatment. After restoring
the GF mice with microbiota, the GF protection to the chemotherapy-induced pain
was abrogated. Mechanistically, comparative GF experiments allowed determining
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that the administration of antibiotics did not alter the distribution of the drug. Most
importantly, the “tunable” expression of TLR4 receptors on the surface of hemato-
poietic cells, e.g., macrophages, partly mediated the presence of such a phenotype of
pain (Shen et al. 2017).

Targeting CTLA4 (negative regulator of T-cell activation) through specific anti-
bodies (Ab) is a successful mechanism employed for protection against cancer.
Elegant studies conducted by Vetizou et al. in a multi-institutional collaboration in
France revealed that gut microbiota is essential for the antitumor properties of
CTLA4 blocking through antibodies (Vétizou et al. 2015). Studies in human patients
and mice demonstrated that distinct species of Bacteroides (e.g., B. thetaiotaomicron
or B. fragilis) are crucial for the antitumor effects of CTLA4 blockade. Of relevance
to modern GF study designs, the CTLA4 blockade had no effect on tumors in GF
mice, but the colonization of the same GF mouse line with B. fragilis reestablished
the expected antitumoral effect of the CTLA4 blockade effect on tumor cells. Of
interest the effect was also rescued by immunization of mice with B. fragilis poly-
saccharides or by adoptive transfer of B. fragilis-specific T cells (Vétizou et al.
2015). Although antibiotic-treated mice were also unresponsive to the blockade,
thanks to the GF model system authors were able to confidently establish that
Bacteroides have a crucial role in the immune antitumoral modulatory effects of
CTLA4 blockade (Vétizou et al. 2015).

14.5.4 The Variable Human Microbiota May Induce
Inflammatory Bowel Disease in GF Models

One of the important unknowns in IBD is how the diet and the microbiome interact
to modulate disease. As a modern influential example, a 2012 study conducted by
Devkota el al., at Eugene B. Chang Laboratory, University of Chicago, showed
employing GF mice deficient in IL10 that the consumption of a diet high in saturated
milk-derived fat, but not polyunsaturated safflower oil fat, changed the microbiome
assemblage promoting the abundance of sulfite-reducing pathobiont Bilophila
wadsworthia (Devkota and Chang 2015; Devkota et al. 2012). Remarkably,
mono-association infections in such GF mice could only occur with the consumption
of the milk fat diet, promoting taurocholic acid, Th1 response, and the expected
development of the IL10 colitis as an experimental surrogate model for human IBD.

Our Digestive Health Research Institute, at Case Western Reserve University,
specializes in digestive and liver diseases and so herein this section provides some of
the numerous examples in which GF animals have facilitated the study of small
intestinal models relevant to IBD (Basson et al. 2019a, b; Menghini et al. 2019;
Rodriguez-Palacios et al. 2018a, b; Rodriguez-Palacios et al. 2015a, b; Rodriguez-
Palacios and Cominelli 2018a, b). Recently, GF mice were critical to characterize
and confirm that the anti-inflammatory effect induced by an anti-IL1A antibody in a
mouse line (SAMP1/YitFc) prone to spontaneous Crohn’s disease-like ileitis
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depends on the microbiome (Menghini et al. 2019) and the important discovery that
the fecal microbiome of a person either normal or suffering IBD (Crohn’s disease,
ulcerative colitis) during periods of disease inactivity (remission) may unpredictably
carry a microbiome that has the potential to induce inflammation in the small
intestine or suppress it upon transfer to GF mice prone to Crohn’s-like ileitis
(Basson et al. 2019a, b). The latter discovery fuels a preclinical strategy to use GF
mice to identify the best personalized anti-inflammatory microbiome for ulterior use
by patients during periods of IBD flare-ups.

Of remarkable similarity to the study conducted by Vetizou et al. on CTL4
blockade in cancer models, our group has identified that the blockade of the pro-
inflammatory cytokine IL-1α has no detectable anti-inflammatory effect in chronic
intestinal inflammation in the GF SAMP Crohn’s disease-like prone mouse model
SAMP1/YitFc, as expected, in contrast to the anti-inflammatory effect observed in
microbiota-colonized mice (Menghini et al. 2019), further supporting the role of the
gut microbiome in modulating immune and biological therapies (Alderton 2016;
Sivan et al. 2015; Snyder et al. 2015). With respect to the anti-IL1-alpha therapy, the
antibody blockade induced significant changes in the gut microbiome compared to
dexamethasone or control isotypes, with remarkable reduction in the Proteobacteria
to Bacteroidetes ratio, Helicobacter, and increased Mucispirillum schaedleri and
Lactobacillus salivarius (Menghini et al. 2019). With the recognition that the
microbiota plays an important role, potential microbial indicators of a promising
anti-inflammatory response due to the IL1-A blockade in humans are under
investigation.

Other groups have used various genetic mouse models of IBD under GF condi-
tions. At the University of Michigan Medical School, Gabriel Nunez’s laboratory
has demonstrated, for instance, that neonatal acquisition of Clostridia, but not
Bacteroidales, protects GF mice against colonization by bacterial pathogens, includ-
ing pathogenic Citrobacter rodentium and a strain of Salmonella enterica serovar
Typhimurium deficient in the type III secretion system encoded by the pathogenicity
island 2 (DspiA), which replicates normally in the intestine but is deficient in
systemic spread (Kim et al. 2017).

14.5.5 Nutrients and Microbial Metabolites Enhance
Therapeutic Efficacy of Immunomodulators

GF animals have also been relevant to determine the impact of nutrition in health
independently from microbes (Luckey 1959, 1963; Luckey et al. 1955; Miyakawa
and Luckey 1968). A recent study funded by the Sugar Research Foundation (SRF)
demonstrated interesting findings linking fructose-containing sugar (sucrose) to
cancer and hyperlipidemia. This study utilized GF rodents to prove their hypothesis.
Further, the microbiota was shown to have a crucial role in hypertriglyceridemia
induced by carbohydrates. Conventional rats fed with high-sugar diet were
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compared to a group fed high-starch diet, and it was observed that sucrose con-
sumption leads to elevated levels of beta-glucuronidase, which is known for having
an increased association with bladder cancer in humans (Kearns et al. 2017).

Evidence is accumulating proposing a critical association of maternal obesity
with enhanced risk of obesity and nonalcoholic fatty liver maladies in children.
Soderborg et al. at the University of Colorado Anschutz Medical Campus led an
exploration that compared GF mice exposed to fecal microbiota from 2-week-old
infants born to obese mothers compared to normal-weight mothers. GF mice colo-
nized with stool microbes of infants from obese mothers had increased expression of
liver genes for endoplasmic reticulum stress pathways. Also, gene expressions for
innate immunity combined with periportal inflammation histological signs were
additionally elevated. These mice showed impaired macrophage function and
enhanced intestinal permeability. Accelerated nonalcoholic fatty liver disease
(NAFLD) and gain in weight were observed in mice with microbiota derived from
obese mother infants when exposed to the western diet. Functional evidence
supported the casual role of infant dysbiosis (through obese mothers) in child obesity
and NAFLD (Soderborg et al. 2018). Cai et al. at Pennsylvania State University
earlier contributed to our understanding of how the gut microbiota influences obesity
and related metabolic disorders, by studying the antioxidant “tempol,” which
reduced weight gain in mice by modulating the microbiota (Cai et al. 2016). The
oral antioxidant decreased cecal bacterial fermentation and increased fecal energy
excretion in a dose-dependent manner testing three doses (1, 10, and 50 mg/kg, for
5 days). By using serum and liver (1-H NMR) metabolomics in conventional mice,
the authors identified a dose-dependent decrease in glycogen and glucose, enhanced
glucogenic and ketogenic activity (phenylalanine, tyrosine), and glycolysis pathway
activation, all features of glucose catabolism, with upregulation of antioxidant
metabolic gene networks (Pepck and G6pase activation and Fabp1, Hnf4a,
ChREBP, and Cd36 mRNA reduction). Of interest, no significant changes in liver
and serum profiles were observed in GF animals, defining a modulation role for the
intestinal microbiota over the catabolic state induced by the antioxidant in conven-
tional mice. Therein, results illustrate that therapeutic modification of metabolic
pathways can be triggered via alterations in the gut microbes. GF mice are uniquely
critical to identify medications that exert biological effects in a dose-/microbiota-
dependent matter that significantly shift the host toward catabolic (body weight
losing) states (Cai et al. 2016).

In a study conducted at the University of Alabama at Birmingham, Paul et al. used
humanized GF mice with transplanted gut microbiota from breast cancer patients
before and after chemotherapy to identify the effect of dietary “genistein”
(a polyphenol, isoflavone found in soy) on the inhibition of tumor progression
(Paul et al. 2017). Genistein induced in humanized GF mice differs in microbial
composition compared to control diet (increase genera Lactococcus and Eubacte-
rium and families Verrucomicrobia, Lachnospiraceae, and Ruminococcaceae) in
GE-fed mice. In two of three patients, the post-chemotherapy microbiota yielded the
disappearance of propionic acid conjugates (4-ethylphenol and 2-4-hydroxyphenol).
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GE showed lower tumor burden and increased the latency of breast tumor reducing
tumor growth (Paul et al. 2017).

The gut microbiota has a role in fermenting fiber in to short-chain fatty acids such
as butyrate. Butyrate has been shown to have a crucial role in tumor suppressing
properties in CRC cell lines. A study conducted by Donohoe et al. at the University
of North Carolina Chapel Hill showed how a gnotobiotic mouse model was used to
demonstrate that dietary fiber protects against colorectal tumorigenesis in a
microbiota- and butyrate-dependent manner. Tested in vivo, using GF mice colo-
nized with mutant and wild-type strains of butyrate-producing bacteria, the authors
established that dietary fiber has a critical role in tumor suppression in a mechanistic
fashion that is dependent on both the microbiota and the production of butyrate
(Donohoe et al. 2014). Remarkably, the GF study showed that due to the Warburg
effect, butyrate is metabolized less in tumors where it accumulates to act as a histone
deacetylase inhibitor, which in turn promotes histone acetylation affecting cell
proliferation and apoptosis. Validated in human cancer, Donohoe et al. demonstrated
increased butyrate and histone acetylation in CRC lesions.

With respect to organic acids from the Krebs’ cycle, capillary electrophoresis
time-of-flight mass spectrometry metabolome analysis of cecal content has shown
that the amounts of succinate are very low in GF mice and that only reconstitutions
with certain bacteria (e.g., Bacteroidales) result in increased amounts in the mouse
gut (Kim et al. 2017), a mechanism that is attuned to the ability of such specific
phylum to produce large amounts of succinate as recently reviewed (Basson et al.
2016). Similar effects have been observed in GF mice colonized with complex
microbiotas, with differences depending on age in neonates. Further, the oral
administration of organic acids, for instance, succinate, but not acetate or lactate,
promotes the colonization of Clostridia IV and XIVa clusters (4–5 logs), while in
contrast, the administration inhibits S. Typhimurium (DspiA, by ~100-fold in GF
mice receiving a Clostridia consortium). By unclear reasons, succinate also seems to
reduce the concentration of oxygen in the intestine of GF mice (Kim et al. 2017).

14.5.6 Germ-Free Models Enable the Study of NAFLD
and Oral and Lung Cancer

Nonalcoholic fatty liver disease is common among obese people and is frequent
manifestation of metabolic syndrome; however, not all individuals with obesity
develop NAFLD. Le Roy et al. in a study led by the Institut National de la Recherche
Agronomique (INRA), in France, demonstrated that the gut microbiota plays a
critical role in NAFLD using GF animals. Of mechanistic interest, the study showed
that among obese C57BL/6 J mice, the mice that developed NAFLD (but not the
obese with normal livers) had a very distinct microbiota capable of inducing the liver
disease in other GF when feces were transplanted (Le Roy et al. 2013).
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To date, no single oral microbial composition profile has been definitely linked to
the risk of developing oral squamous cell carcinoma. Recent studies conducted by
Stashenko et al. in a multi-institutional collaboration lead by the University of
Florida College of Dentistry provided a better understanding of the oral
microbiome’s role in the oral lesions. Similar as in colon cancer, findings in GF
mice revealed that different oral microbial populations enhance tumorigenesis and
tumor burden. Metatranscriptomic analysis and 16S rRNA gene sequence analysis
were applied to characterize the longitudinal alterations in profile and function of
oral microbiome in 4-nitroquinolin-1-oxide (4-NQO)-induced model of OSCC in
germ-free mice (Stashenko et al. 2019). Although promising, in context, it is
important to highlight that in Japan, studies have shown that pathobionts and
commensals could have comparable and innocuous systemic effects on GF mice,
despite orally administered periodontitis-associated bacteria induce pathological
changes in the liver and intestine which are relevant for periodontitis (Yamazaki
et al. 2020). Gopalakrishnan et al. conducted a study to examine gut and oral
microbiome of melanoma patients encountering anti PD 1 therapy. When responder
patient’s microbial profiles were compared with nonresponders, a notable difference
was found in composition and diversity of microbiome. Increased antitumor activity
was noted in responder patients. In GF-recipient mice, fecal microbiome transplan-
tation (FMT) experiment was done to examine the relation between gut microbiome
and reaction to the immune checkpoint inhibitor. Mice transplanted with anti-PD-1
therapy responder stool samples showed reduced tumor development when com-
pared with mice with stool transplant of nonresponders (Gopalakrishnan et al. 2018).

Germ-free models are also becoming critical to study other organs known for
having simpler microbial communities, compared to the gut. Rega et al. carried out a
research to explain the antitumor effect of lipopolysaccharide (in dose-dependent
manner) in mouse model of B16-F10-induced metastatic lung cancer. It was
established from this study that in low-dose lipopolysaccharide-treated tumor-
bearing mice, tumor burden was higher in the lung due to ablation of plasmacytoid
dendritic cells that resulted in decreased immunosuppressive environment in the
lung. On the other hand, such dendritic cells from the lungs of high-dose lipopoly-
saccharide-treated tumor-bearing mice facilitated Th1 and cytotoxic cells to arrest
the tumor development (Rega et al. 2013).

In another immunological study conducted at the Massachusetts Institute of
Technology, by Jin et al., revealed that in contrast to the gut microbiota, the lung
microbiota (commensal microbiota) activate lung resident γδ T cells and thus
provoke the lung adenocarcinoma-associated inflammation. The lung is exposed to
microbial variety through inhalation. In this study, authors studied the interaction
between host microbiota and lung cancer development by utilizing a genetically
engineered mouse model. The model that mimics the histopathological and genetic
features of human lung adenocarcinoma was developed by a Kras point mutation
and p53 loss. Findings of this study revealed that GF mice were protected from
development of lung cancer induced by p53 loss and Kras mutation. It was observed
that local microbiota could promote cancer progression and provoke inflammation
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via lung resident γδ T cells. Depleting the microbiota effectively suppressed the lung
cancer development (Jin et al. 2019).

14.5.7 Modern Germ-Free Models Provide Insight
on Muscle-Skeletal, Mental, and Brain Health

The gut microbiota also influences the skeletal muscle mass and function. Skeletal
muscle is important not only for locomotion but also for regulating metabolism.
Lahiri et al. studied the interactions between the gut microbiota and skeletal muscle
in mice (Lahiri et al. 2019). They identified genes and signaling pathways that
regulate skeletal muscle mass and function in response to the gut microbiota.
Biochemical functional analysis revealed the microbiota alters the function of
neuromuscular junctions. These findings open the door to a better understanding
of the role of gut microbes in the mechanisms underlying loss of muscle mass (Lahiri
et al. 2019). More recently, Li et al. at Emory University showed that bone formation
dependent on the parathyroid hormone requires butyrate production by the gut
microbiota (Li et al. 2020). Remarkably, butyrate was found to be required for
parathyroid hormone PTH to increase the number of bone marrow Tregs, which in
turn stimulated the production of the osteogenic Wnt ligand (Wnt10b) by bone
marrow CD8+ T cells, which activated Wnt-dependent bone formation (Li et al.
2020).

GF mice have aided in the understanding of how the gut microbiome is linked to
behavior and mental health. Clinically enduring, Tang et al. discovered in an
unprecedented study that Toll-like receptor 4 (TLR4) in the vascular endothelium,
together with the microbiome, determines the risk of suffering actual morphological
lesions in the cerebrum (called “cerebral cavernous malformations” in humans), by
studying GF mice (Tang et al. 2017). Cerebral cavernous malformations cause stroke
and seizures for which no treatment exists. Such lesions result from the loss of an
adaptor complex that downregulates MEKK3-KLF2/4 signaling in brain endothelial
cells. Tang et al. discovered for the first time that endothelial TLR4 and the gut
microbiome are critical upstream signaling stimulants for the formation of such
cavernous lesions. They also showed that TLR4 activation by Gram-negative bac-
teria or lipopolysaccharide speeds lesion development, while genetic or pharmaco-
logic blockade of TLR4 signaling prevents such lesions in GF animals. Validation in
humans led scientists to identify polymorphisms that favor TLR4 gene expression
(or that of its co-receptor CD14) in association with higher lesion burden in patients
with cerebral cavernous malformations. Of utmost relevance, GF mice were
protected from such pathology, and a single dose of antimicrobials altered the
susceptibility in animals. These studies are critical to understand and identify
strategies for disease treatment (Ridler 2017; Starke et al. 2017; Tang et al. 2017).
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14.5.8 Sex-dependent Microbiome-driven Vascular, Immune
Cell Biology, and Disease Gender Bias

To further complement the array of possibilities with GF models, studies could be
conducted to determine to what extent the genetic sex of any given species, i.e.,
mice, determine basic mechanisms of functional biology that varies markedly
between males and females as a function of age (Edwards et al. 2020; Scott et al.
2020), osteoporosis (Locantore et al. 2020), serotonin (Lyte et al. 2020; Walsh et al.
2020), or how the microbiome positively influence healing (neointimal hyperplasia)
after vascular injury (Chen et al. 2020). As an specific example, a study of vascular
resistance, recently conducted by Edwards et al. at the University of Toledo, showed
that male and female GF mice presented a decrease in contraction of resistance
arteries compared to conventional mice, with more pronounced changes in GF
males, which have increased vascular stiffness (inferred from leftward shift in the
stress–strain vessels curve data) and inward hypotrophic remodelling as a feature of
a derived chronic reduction in blood flow (Edwards et al. 2020). Studying oxidative
stress, the same investigators showed that the generation of reactive oxygen species
(ROS) from bone marrow-derived neutrophils is augmented in GF male mice
(Edwards et al. 2020), suggesting that immune cells could have different fundamen-
tal microbiome-dependent differences in response to comparable stimuli (Locantore
et al. 2020), which could explain in part why numerous diseases have sex-bias in
severity and complications as in IBD (Greuter et al. 2020), spondyloarthritis
(Rusman et al. 2018), or in more recently relevant COVID-19 (Jin et al. 2020;
Palaiodimos et al. 2020).

14.5.9 Single Bacterial Genes Modulate the Intestinal
Phenotype in GF Models

Despite the gain in knowledge, these types of studies, where entire microbial
communities or samples are used to examine the effect on the host biology, do not
reflect the impact of individual bacteria or their interactions with their host. To
elucidate such interactions and identify more specific target therapeutics, the use of
GF can be uniquely advantageous over in vitro systems based on a few cells
functioning ex vivo (e.g., organoids on a chip).

Some of the earlier studies deciphering the role of Wnt signaling and bacterial
genes in IBD originated from the studies on E. coli and cultured epithelial cells by
R. Balfour Sartor, University of North Carolina at Chapel Hill, and Jun Sun,
University of Rochester (Liu et al. 2012). AsWnt2 inhibits enteric bacterial-induced
inflammation (IL-8) in intestinal epithelial cells, interestingly the protein AvrA
(an anti-inflammatory bacterial molecule) from E. coli and Salmonella normalized
the expression of Wnt2 in vivo. In GF, the E. coli strain F18 expressing AvrA
promoted and changed the distribution ofWnt2 expression by the intestine (Liu et al.
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2012). Subsequent studies have helped decipher the role of vitamins, yersiniabactin
and long adhesin A from E. coli, and iron on the modulation of intestinal pathogens
and fibrosis (Ellermann et al. 2019, 2020; Schmitz et al. 2019; Sun 2018). More
recently, gnotobiotic studies, where GF are colonized with single or well-known
simple microbial communities, helped to reveal that while Fusobacterium nucleatum
isolates with FadA and Fap2 adhesins failed to induce inflammation and tumorigen-
esis, pks + Escherichia coli promoted tumorigenesis in the ApcMin/+; Il10�/�
model in a colibactin-dependent manner, suggesting that bacterial genes, specifically
colibactin, in the apc min model are drivers of carcinogenesis (Tomkovich et al.
2017).

Another example of bacteria genes mediating CRC in preclinical GF models,
C. jejuni81–176 was shown to increase the tumor burden compared with uninfected
GF APC min/+ mice. Mechanistically, C. jejuni with a mutated cdtB subunit, a
cytolethal distending toxin, attenuated the severity of tumors induced by the human-
derived strain of C. jejuni in vivo (and decreased DNA damage in cell/enteroids
in vitro). Out of several upregulated colonic genes, 22 depended on the presence of
the cdtB gene. The gene mutation also influenced the microbial gene expression
(metatranscriptomic) profile and the accompanying (microbiome screened) commu-
nities in the infected mice (He et al. 2019). In France, an elegant study showed the
complex interaction between the Listeria monocytogenes bacteriocin Lmo2776 and
the gut microbiome. Of interest, bacteriocin targets the intestinal commensal
Prevotella copri and modulates intestinal infection and inflammation in mice in a
microbiome-independent fashion (Claus 2019; Rolhion et al. 2019).

Clostridioides difficile infections (CDI) in humans, the most frequent and lethal
nosocomial gastrointestinal pathogen in hospitals and the community, have cost the
life of countless patients affected with debilitating conditions including cancer and
immunosuppressive conditions and IBD. Such infections known to be facilitated by
the consumption of antimicrobials and gut microbiome disruptions (dysbiosis) have
also been studied in GF models. One of the latest studies functionally determined
that the GF mice transplanted with fecal samples from patients with dysbiosis at
Mayo Clinic showed increased gut amino acid concentrations and greater suscepti-
bility to CDI (Battaglioli et al. 2018). At the same time, a mutant C. difficile strain
unable to use proline as energy source failed to colonize mice regardless the
dysbiosis state of the patients studied. Diets low in proline and protein prevented
CDI, suggesting that amino acids are driven by the microbiome and essential for
CDI. Because diet can promote dysbiosis depending on the genetic background and
disease susceptibility of the host (Rodriguez-Palacios et al. 2018a, b), because
genetics determine the pattern of structural damage in the gut (Rodriguez-Palacios
et al. 2015a, b), because foods may harbor toxigenic C. difficile (Hoover and
Rodriguez-Palacios 2013; Rodriguez-Palacios et al. 2006, 2007, 2009, 2013,
2020a; Rodriguez-Palacios and Lejeune 2011), because diet may influence the
colonization of certain commensals, including Enterococcus faecalis which may
inhibit other gut microbes (Rodriguez-Palacios et al. 2018a, b), studies in GF models
are now important to further identify risk factors linked to microbiome dysbiosis and
CDI among the most susceptible individuals (Battaglioli et al. 2018).
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14.5.10 Human Enteroviral Infections Induce Microbiome
Changes in Humanized GF Models

Thus far, the studies mentioned have been conducted in laboratory rodents; however,
the relevance of other gnotobiotic systems and also pressurized housing systems like
GF calves and piglets has provided tremendous insights into the biology of human
viral infections, including norovirus and other enteroviruses like rotavirus, which
may be difficult to culture in the laboratory. Important examples include Linda J
Saif’s group at the Ohio State University (Vlasova et al. 2019; Ward et al. 1996;
Yuan et al. 1996) and Lijuan Yuan at the Virginia-Maryland College of Veterinary
Medicine (Lei et al. 2019; Liu et al. 2013; Yuan et al. 2017). Earlier studies, for
instance, demonstrated that probiotic LGG mono-association modifies and sup-
presses virus-induced autophagy in the ileum of gnotobiotic pigs (Liu et al. 2013;
Wu et al. 2013). In a recent study, 16S rRNA gene sequencing demonstrated that
human norovirus infection (genotype GII.4) is markedly altered by the intestinal
human microbiota in GF pigs. Enhanced viral infection was observed due to the
presence of the human gut microbiota, at the same time that the infection altered the
gut microbiota. Alterations occurred at the phylum level for Firmicutes,
Proteobacteria, and Bacteroidetes and at the genus level for Bifidobacterium,
Enterococcus, Clostridium, Anaerococcus, Ruminococcus, Lactobacillus, and
Bacteroides (Lei et al. 2019).

14.5.11 GF Animals as Models to Study the Biology and
Filtration Materials Against COVID-19

With the recent emergence of the COVID-19 respiratory pandemic, numerous in
vitro studies were either cited from past efforts or reformulated to determine to what
extent materials proposed for medical or nonmedical masks were effective at
controlling the dispersion of aerosolized particles or liquid microdroplets. As a
more functional experimental based test, in vivo, we proposed the use of germ-
free mice, and the principles of multilayer filtration to support the in vivo testing and
biological study of microorganisms dispersed in microdroplets to help understand
and communicate the ability of two-layer filtration systems to protect the environ-
ment and mice from bacteria carried in microdroplets (Rodriguez-Palacios et al.
2020b, c). The study consisted in covering GF Nestiso cages with GF mice sprayed
with and without filtration materials and determine if animals were colonized over
time under various conditions. The study showed remarkably 100% protection by a
textile material suitable for community-based mask fabrication.
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14.6 Historic Evolution of Germ-Free Housing
Technologies

Today, all available housing options to raise GF mice continue to use the same
pressurized technologies that were pioneered in the 1940s (Smith 1949; Vowles
et al. 2015), which have been extensively documented since the 1960s (Heneghan
1973; Luckey 1959, 1963; Luckey et al. 1955).

As recently illustrated by Betty Theriault at the University of Chicago at the 2019
Annual Midwest DDRCC Alliance Meeting in Chicago (with permission), in the
1960s, the interest in re-deriving mice as GF using flexible film isolator technology
was critical to producing new mouse colonies absent of adventitious pathogens
prevalent at the time. Newly re-derived mouse colonies produced by commercial
vendors were then inaugurated as SPF (specific pathogen-free) colonies thanks to the
colonization of GF animals with the so-called Schaedler flora and later “altered
Schaedler flora.” The latter flora is a defined community of eight bacterial species
believed to be fully commensal (four oxygen-sensitive (EOS) Fusobacterium spe-
cies, two Lactobacilli, one spiral bacteria of the Flexistipes genus, and one
Parabacteroides; AYGZ00000000.1, AQFT00000000.1, AYJP00000000.1,
AQFU00000000.1, AQFV00000000.1). An additional advantage to the invention
of plastic and design of the flexible film isolator was that it allowed the production of
flexible film isolator prototypes. These proved to be less cost prohibitive for pur-
chase and operation than its stainless steel predecessors. Reduction in equipment and
operational costs as well as the sharing of flexible film isolator technology within the
laboratory animal community facilitated the creation and implementation of GF
units in new academic centers. Concurrently, molded plastic became available
which together with polyester Reemay filters for passive ventilation of plastic
shoe-size boxes improved mouse housing toward the mid-1990s.

To further protect animals from adventitious pathogens, housing based on ven-
tilated cages, with docking systems providing HEPA-filtered ventilated air, became
common in the late 1990s and early 2000s. The combination of barrier practices,
ventilated housing, and the use of biosafety cabinets helped to control the dissem-
ination of diseases. While genetically engineered mouse models with specific
pathogen-free status accelerated in usage, the usage of gnotobiotic and GF mouse
models declined. Toward the mid-2000s, only a few commercial GF centers
remained, owing to the low demand of GF animals. With the emergence of
microbiome science, the GF and gnotobiotic mouse model interest resurged. Ini-
tially, flexible film isolator housing was used; however, to accommodate increased
demand on space and resources, hermetic-sealed, positive pressure-ventilated caging
systems began to be marketed and used for GF housing.
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14.7 Portable Emerging Non-pressurized Housing GF
Technology

As a very competitive solution to traditional pressurized isolation systems (Fontaine
et al. 2015; Vowles et al. 2015), which are anchored to electrical outlets and backup
generator systems (in the event of power failure), a new strategy has been proposed
and validated (Rodriguez-Palacios et al. 2018a, b) (Fig. 14.5). Referred to as “double
cages” initially but formally on its first publication as Nested Isolation (NesTiso),
this system of GF housing is based on nonelectric passive air filtration for efficient
cage ventilation and effectiveness and solves several of the problems encountered
with multi-cage or pressurized isolators. Using an innovative design based on the
“chimney effect,” where hot air around the animals floats and moves upward, Case
Western Reserve University is prototyping a highly functional version of the patent-
protected housing system for GF animals. As an advantage to existing systems,
NesTiso complements the electricity-dependent, HEPA-filtered ventilation systems
available today. This environmentally friendly, green technology also reduces cost
of energy and maintenance of electrical equipment.

As a differentiation engineering advancement, such recent technology, Nested
Isolation, has helped scientists at Case Western Reserve University to conduct
recently published GF and Fecal matter transplantation experiments in Garious
germ-free models (Basson et al. 2019a, b; Menghini et al. 2019). Supported with
more than 150,000 mouse days’ worth of published data (Rodriguez-Palacios et al.
2018a, b), there are ongoing efforts to make such a portable technology accessible to
a broader range of scientists, including those that have had no previous access to GF
research. The ability to mass-produce such a caging GF system will enable large
numbers of scientists to breed and use GF animals. Although testing and validation
would be required for every particular scenario and isolation facility and regulations,

Fig. 14.5 New germ-free housing system based on multilayer passive filtration and Nested
Isolation (“NesTiso”). With the simple principle of one cage nested inside a larger cage functioning
as a “bubble barrier,” this housing system is portable and scalable and allows the rearing/mainte-
nance of mice GF without the need of pressurized ventilation. Commercial prototyping and
validation studies are patent-pending and under way at Rodriguez-P. laboratory, Case Western
Reserve University. Images unmodified from Rodriguez-Palacios et al. (2018a, b), Creative Com-
mons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/
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the use of the portable system could also enable the study of BSL-3 pathogens under
the same room as is not permissible under modern biosafety and biosecurity regu-
lations, because this multilayer isolation system prevents the movement of microbes
in both directions, in and out of the compartment housing the animal host or the
microbe of interest.

14.8 Conclusion

In conclusion, the above investigations support the notion that GF animals and
specifically GF mice played an essential role in understanding the molecular mech-
anisms of cancer development and the cancer response to immunotherapy. With the
increase of publications indexed in the Public Library of Medicine and the need to
understand with precision the role of the microbes in human disease, it is expected to
see a reemergence of GF facilities throughout the globe to help scientists better
characterize host-pathogen interactions. Despite the progress, most studies have
used C56BL7 GF-derived mice. With the expansion of GF system technologies
and the portability of passive ventilation strategies, it is expected that more genes or
genetic line models will be used in the future. With over 400 papers publish in
“germ-free” in 2019, the present chapter only seeks to highlight a sample of several
notable studies to centralize the listing of an array of experimental possibilities that
can be explored using GF biology to advance our understanding of human, animal,
and even plant diseases, given that microbes are adapted to the gut environment and
the diet we consumed which is in great proportion plant matter.
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Chapter 15
Machine Learning in Identification
of Disease-Associated Microbiota

Derek Reiman, Ulises Sosa, and Yang Dai

Abstract Metagenomic studies of the microbiome community have revealed asso-
ciations of the microbiome community to host disease state. The detection of these
associations can rely on statistical analyses identifying differentially abundant taxa
between diseased and healthy populations. Accurate prediction of the host pheno-
type from a metagenomic sample and identification of the associated microbial
markers are important in understanding potential host-microbiome interactions
related to disease initiation and progression. However, associations of individual
microbes to a particular disease have shown contradictory results in past studies,
possibly due to dynamic and complex natures of different microbes. To handle the
complex nature of the microbiome, machine learning methods have begun being
employed. Machine learning algorithms are a set of methods in which a model learns
intrinsic patterns in data and use them to predict labels of data. In this chapter, we
introduce the commonly used machine learning methods in metagenomic studies.
We show readers how to use the currently available tools found in Python libraries.
Our purpose is to demonstrate the proper training and analysis of machine learning
models for microbiome researchers, who may not have experience in machine
learning or Python programming.

Keywords Microbiome · Machine learning · Python · Jupyter

15.1 Introduction

Machine learning (ML) models have become increasingly applied to modeling the
human microbiome for identification of microbial biomarkers and assisting the
diagnosis of many diseases (Knights et al. 2011; LaPierre et al. 2019; Pasolli et al.
2016; Vangay et al. 2019). The access to many ML tools has made possible for
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researchers to explore the potential of these models. However, training and testing a
ML model require following the adequate protocol, an aspect that may not be
familiar to researchers without data science background. In this chapter, we will
use open-source tools to obtain the predictive models in a step-by-step fashion for
microbiome researchers. Jupyter notebook is an open-source service for interactive
computing and mark down documentation using Python (https://jupyter.org/). It can
be installed through a conda environment manager such as Anaconda (https://www.
anaconda.com/). We will then employ Python’s scikit-learn package in order to
build and train machine learning models (Pedregosa et al. 2011).

15.2 Materials

15.2.1 Software

The Anaconda environment manager can be installed following the instruction at the
Anaconda website. We recommend the use of the Python 3 version for this analysis.
We will use Anaconda to set up an environment that we will work out of, and we will
name it tutorial. We will then install Jupyter Notebook and the scikit-learn package
through conda. Conda is an open-source package and environment management
system that runs on Windows, macOS, and Linux operating systems. It quickly
installs, runs, and updates packages and their dependencies. In addition, we will also
install the pandas library which provides the functionality of constructing data frame
structures in Python (McKinney 2011).

$ conda create --name tutorial
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

environment location: /anaconda3/envs/tutorial

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate tutorial
#

(continued)
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# To deactivate an active environment, use
#
# $ conda deactivate

$ conda activate tutorial
(tutorial) $ conda install jupyter scikit-learn pandas
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

environment location: /anaconda3/envs/tutorial

added / updated specs:
- jupyter
- pandas
- scikit-learn

Next, we use the terminal to navigate to the folder where the dataset of interest is
located and start a local Jupyter Notebook server using the command jupyter
notebook. Your browser should open a new tab showing the Jupyter layout.

(tutorial) Springer Book Chapter $ jupyter notebook
[I 19:40:57.406 NotebookApp] The Jupyter Notebook is running at:
[I 19:40:57.406 NotebookApp] http://localhost:8888/?
token=22f02f588ad3a4cf65ce44d382f1555c631c81e96397dda8
[I 19:40:57.406 NotebookApp] or http://127.0.0.1:8888/?
token=22f02f588ad3a4cf65ce44d382f1555c631c81e96397dda8
[I 19:40:57.407 NotebookApp] Use Control-C to stop this server and
shut down all kernels (twice to skip confirmation).
[C 19:40:57.423 NotebookApp]

To access the notebook, open this file in a browser:
file:///Users/derek.reiman/Library/Jupyter/runtime/nbserver-
84962-open.html
Or copy and paste one of these URLs:
http://localhost:8889/?
token=22f02f588ad3a4cf65ce44d382f1555c631c81e96397dda8
or http://127.0.0.1:8889/?
token=22f02f588ad3a4cf65ce44d382f1555c631c81e96397dda8

From the Jupyter layout, we can create a new notebook for our analysis by
selecting from the top right of the window New ! Python 3 Notebook. This will
open a new notebook file from which we will perform our analyses.
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15.2.2 Datasets

For our analyses, we will focus on a dataset of 57 patients with invasive breast cancer
and 21 healthy patients from Wang et al. (2017). The microbiome samples were
taken from three separate sites: breast tissue, oral cavity, and urine. For each site, 16S
rRNA genes were amplified and sequenced. The sequencing data were processed
using the QIIME pipeline (Bolyen et al. 2019; Caporaso et al. 2010).

To run the tutorials, each dataset should contain two files: an abundance table and
metadata. In our analyses, we will structure the data in tab-delimited files such that
each row in the abundance table represents an operational taxonomic unit (OTU) or
microbial feature and each column is a sample. For simplicity, our metadata will just
contain the disease status of the patient that the microbiome sample came from,
whereas the order of the rows in this file matches the order of the columns of the
abundance table with respect to the samples. The datasets were obtained from Wan
et al. (2017). This includes 67, 269, and 135 OTUs in breast tissue, oral cavity, and
urine, respectively (Table 15.1).

Each of the three datasets is treated as a dataset with binary classes. In the
following tutorials, we will consider patients with cancer to be of class 1 and healthy
patients to be of class 0. We can do this by checking if a value in the list is equal to
“Cancer Patient,” resulting in a value of True. All other values, which here would be
“Healthy Patient,” result in False. We then cast them as integers, converting True
values to 1 and False values to 0 by typing:

breast_labels = (beast_labels == “Cancer Patient”).astype(int)

oral_labels = (oral_labels == “Cancer Patient”).astype(int)

urine_labels = (urine_labels == “Cancer Patient”).astype(int)
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15.3 Methods

15.3.1 Data Import

In this tutorial, we will use Python’s pandas library to import our data files. To use
the library’s functionality, first import it using the import command. The abbrevia-
tion pd is set as the reference to call the library’s functions. Then we can import our
data using the read_csv function. This function requires that the first parameter is the
filename. In addition, we can specify that the file is tab-delimited with sep¼“\t” and
that the first column should be our data frame index using index_col¼0, and since
these files have no headers, we use header¼None as the following:

import pandas as pd
breast_abundance = pd.read_csv(“BC_Tissue/abundance.tsv”, sep = “\t”,
index_col = 0, header = None)
breast_labels = pd.read_csv(“BC_Tissue/labels.txt”, sep = “\t”,
header = None)
oral_abundance = pd.read_csv(“BC_Oral/abundance.tsv”, sep = “\t” ,
index_col = 0, header = None)
urine_abundance = pd.read_csv(“BC_Urine/abundance.tsv”, index_col =
0, sep = “\t”, header = None)
urine_labels = pd.read_csv(“BC_Urine/labels.txt”, sep = “\t”, header =
None)
breast_abundance.head(5)

Table 15.1 Abundance table and metadata
(tutorial) BC_Oral $ head -n 2 abundance.tsv 

Other genus (class Ac�nobacteria) 0.0 4.23e-06 4.49e-05 0.0 0.0 0.0 1.49e-05 3.98e-05 0.0 0.0
0.0 0.0 0.0 0.0 5.39e-06 0.0 0.0 0.0 7.67e-06 0.0 3.66e-05 0.0
0.0 0.0 0.0 2.02e-05 0.0 0.0 5.62e-06 0.000622996 0.0 0.0 0.0
0.0 0.0 2.09e-05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 9.08e-06 3.71e-05 0.0 0.0 0.0 0.0 0.0 2.54e-05 6e-06
0.0 1.7800000000000002e-05 0.0 0.0 0.0 0.0 7.18e-06 0.0 0.0 0.0
0.000195981 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Other genus (order Ac�nomycetales) 0.0 4.23e-06 0.0 1.21e-05 5.87e-06 0.0 0.0 4.42e-06 0.0
0.0 0.0 0.0 0.0 0.0 0.0 5.94e-06 0.0 1.28e-05 0.0 0.0 5.23e-

06 0.0 6.29e-06 0.0 0.0 0.0 0.0 8.950000000000001e-05 0.0 0.0 6.99e-
06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.07e-06 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.2e-05 0.0 0.0 7.87e-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 4.67e-06 0.0 0.0 0.0 0.0 0.0 0.0

(tutorial) BC_Oral $ head labels.txt

Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
Cancer Pa�ent
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15.3.2 Data Preprocessing

Before training machine learning models, it is important to preprocess the data. This
includes removing features (OTUs in this case) that are rarely found in samples as
well as making sure that the features are of similar scale. We will do this using the
preprocessing module of the scikit-learn library in two steps.

import numpy as np
from sklearn.preprocessing import StandardScaler

# Filter rare OTUs
breast_num_samples = len(breast_abundance.columns) # Number of
Samples

breast_otu_num_pos = (breast_abundance > 0).astype(int).sum(axis = 1)
# Number of non-zeros in each OTU

breast_otu_prop_pos = breast_otu_num_pos/breast_num_samples
#Proportion of non-zeros in each OTU

filt_breast_abundance = breast_abundance.loc[breast_otu_prop_pos >
0.1] # Keep all OTUs present in over 10%

# Log Normalize Data
log_breast_abundance = np.log2(filt_breast_abundance +1) #Log2
transform data
norm_breast_abundance = StandardScaler().fit_transform
(log_breast_abundance.transpose()) # Z-Norm transformed data
# Restructure Data Frame
norm_breast_abundance = pd.DataFrame(data = norm_breast_abundance,
columns = log_breast_abundance.index.values)

norm_breast_abundance.head(5)

Step 1: We remove the features that are only found in at least certain percent
of the samples
Here we choose 10% as the threshold. In order to do this, we first determine the
number of samples in the dataset by calculating length (len function) of the list of
columns in the abundance table. Since the columns represent the samples, this gives
the total number of samples. Next, we count the number of nonzero values in each
feature. To do this, we set all positive values to 1 and all zero values to 0 using
(breast_abundance>0).astype(int) and then add the values in each row by
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appending sum(axis¼1), resulting in the number of positive values in each row or
feature. Then, we divide these values by the total number of samples to get the
proportion of positive values. Lastly, we only keep the rows in which the proportion
of positive values is greater than 0.1 using breast_abundance.loc
[breast_otu_prop_pos>0.1].

Step 2: First we log-normalize the data by adding 1 to every value and then
taking the log2 transformation
The value 1 is added as a pseudocount. Then, we use the StandardScaler from scikit-
learn to normalize all features with 0 mean and unit variance. Notice that we
transpose the data before the normalization. This is because the scaler will normalize
each column across rows.

We will keep this orientation for the data since the following machine learning
methods will require that each row represents a sample and each column represents a
feature. Lastly, we reconstruct a data frame using the normalized data, specifying
that the names of the columns are the OTU features from the previous data frame. In
the examples below, we use the breast tissue dataset to demonstrate the procedure of
training and testing.

15.3.3 Random Forest

Random forest (RF) is ML models based on learning an ensemble of decision trees
(Breiman 2001; Tin Kam Ho 1998). Given a set of samples ¼ {x1, x2, . . ., xn } with
k classes, the model trains a set of decision trees and takes the average of the trees to
give a single robust decision tree. Each tree is trained using a bootstrapped subset of
the training data. While growing each tree, a decision rule is made at each node by
selecting the best feature from a random subset of features that best splits the data
into two subsets. Decision rules are evaluated using entropy or the Gini impurity
metric. In our tutorial, we will use the Gini impurity for making decisions. For a set
of samples with k classes, let pi be the proportion of samples of class i for i 2 {1 . . .
k}. The Gini impurity of the set is calculated as

IG pð Þ ¼ 1�
Xk
i¼1

p2i ð15:1Þ

Once a RF model is trained, features can then be evaluated using the mean
decrease impurity. For each node, an importance score for the feature being split
upon is calculated as the decrease in the Gini impurity from before and after the split

15 Machine Learning in Identification of Disease-Associated Microbiota 439



weighted by the proportion of total samples that were split. A feature’s overall
importance is then calculated by averaging the weighted scores of that feature over
all the decision trees in the ensemble by typing:

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimator = 500)
clf.fit = ( norm_breast_abundance, breast_labels)
feature_scores = pd.DataFrame(data =clf.feature_importance_, index =
norm_breast_abundance.columns.values, columns = [“ Scores”])

Score

Corynebacterium 0.072384

Methylobacterium 0.046329

Unknown genus (family Alcaligenaceae) 0.045717

Atopobioum 0.040944

Lactobacillus 0.039113

Prevotella 0.030204

Unknown genus (family Enterobacteriaceae) 0.029979

Actinomyces 0.028474

Lysinibacillus 0.027738

Peptoniphilus 0.027178

We train the RF model using the RandomForestClassifier in the ensemblemodule
of scikit-learn. In this example, we will set the number of decision trees (n_estima-
tors) in the ensemble to be 500. We then fit the model using the fit function, passing
it both the dataset and the class labels. Once the model is trained, we obtain the
feature scores with featrure_importances_ and collect them into a data frame for
easy viewing. These scores represent how well a feature can separate the data.
However, the RF model does not tell us which class a feature is more important in.

Another characteristic of the RF models that we will look at is to determine how
generalizable the model is. Since each tree is trained with a bootstrapped set of the
training data, we will have a subset of samples that were not used for building the
tree. These samples are called the out-of-bag (OOB) samples, and they can be used
to evaluate the accuracy of their respective tree, giving an OOB score. By adding the
parameter oob_score¼True to our RandomForestClassifier, we tell our model to
keep track of this score for each decision tree, and we can retrieve the average OOB
score after training our classifier with oob_score_. This score tells us how well each
decision trees predicted its OOB samples and can give us a sense of how general-
izable the model is. This is achieved by typing:
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clf = RandomForestClassifier(n_estimator = 500, oob_score = True)

clf.fit(norm_breast_abundance, breast_labels)

print(“OOB Accuracy: %.3f” % clf.oob_score_)

OOB Accuracy: 0.635

15.3.4 Support Vector Machine

Support vector machines (SVMs) are ML models by learning the best hyperplane
separating data into classes (Cortes and Vapnik 1995). The orientation and position
of this hyperplane are determined by a subset of data points, called support vectors,
which lie close to the hyperplane. The hyperplane will be determined by a set of
weights (w) and an intercept (b) through model training. The class of a microbiome
sample xi represented by m features can then be predicted as

byi ¼ sign wTxi þ b
� � ð15:2Þ

Note that each weight wj represents the importance of a feature j in determining
the class label.

In this tutorial, we will use the linear kernel, which considers the distance
between two points as the inner product, K(xi, xj) ¼ hxi, xji ¼ xi

Txj. However,
SVMs can also use nonlinear kernels to separate data (Hastie et al. 2009). We restrict
this tutorial to the linear kernel since nonlinear kernels are less interpretable by
typing:

from sklearn.svm imort SVC
from sklearn.model_selection imort GridSearchCV
parameters = { ‘kernel’ : [‘linear’] , ‘C’ : [0.01, 0.1, 1, 10, 100]}
clf = GridSearchCV(SVC() , parameters, cv = 5 )
clf.fit(norm_breast_abundance, breast_labels)
feature_scores = pd.DataFrame(data = clf.best_estimator_.coef_.
reshape(-1) , index = norm_breast_abundance.colums.values, columns =
[“ Scores”])

Score Score

Unknown genus (family
Alcaligenaceae)

0.103387 Corynebacterium �0.163195

Sphingomonas 0.099258 Atopobium �0.142976

Stenotrophomonas 0.089988 Acinetobacter �0.099129

(continued)
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Score Score

Lactobacillus 0.084507 Actinomyces �0.078393

Pesudomonas 0.083216 Unknown genus (class
TM7-3)

�0.074532

Unknown genus (family
Enterobacteriaceae)

0.081090 Catonella �0.073821

Peptoniphilus 0.077492 Ochrobactrum �0.072328

Unknown genus (family
Oxalobacteraceae)

0.076875 Sporocarcinia �0.070317

Burkholderia 0.074705 Rhizobium �0.058156

Unknown genus (order Streptophyta) 0.063486 Veillonela �0.053397

We train the SVM model using SVC from the svm module of scikit-learn.
Because SVM models can be trained with different kernels, where each kernel has
different sets of hyper-parameters, we use a grid search strategy to find the best
values for the hyper-parameters. In the linear kernel, there is one hyper-parameter C,
which helps regularize (i.e., control the size of) the model by balancing the tasks of
maximizing the margin and minimizing the misclassification rate. For each selected
value of C, we train the model using the fit function on both the dataset and the class
labels in a cross-validated fashion. This means that we split the data into partitions of
equal size and use all but one partition to train a model. We then use the left-out
partition to evaluate the model. This is repeated such that each partition is held out
once, resulting in multiple models. In our example we split the data into five
partitions by specifying cv ¼ 5. The default evaluation of scoring for SVC is
accuracy; however, different metrics can be specified using the score parameter
when constructing the SVC object. The best hyper-parameters are chosen based on
the average score over the cross-validated models over the set of hyper-parameters.
The best set of hyper-parameters is then used on the full set of data to train the final
SVM model.

Once the full model is trained, we obtain the best model using best_estimator_
and then extract the weights w from that model with coef_, collecting them into a
data frame for easy viewing. Using these weights, we can look at how impactful each
OTU feature was in the prediction. The OTUs with the more negative weights are
more predictive of the negative class (here healthy patients). Likewise, the OTUs
with the more positive weights are more predictive of the positive class (here cancer
patients).

15.3.5 Logistic Regression

Logistic regression is a ML model that uses a logistic function to model a binary-
dependent variable (Sperandei 2014). Given a set of samples X ¼ {x1, x2, . . ., xn}, a
logistic regression model predicts the class of a sample by using a threshold value
(e.g., 0.5) on the value
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byi ¼ 1
1þ e� β0þβxið Þ ð15:3Þ

Here β0 is a bias value, and β represents the vector of weights to be multiplied by
the vector of features. During training, we can penalize these weights in order to
regularize the model, helping to prevent overfitting. The two most common forms of
regularization are the L1 and L2 regularizations,

L1 βð Þ ¼
X
j

β j

�� �� ð15:4Þ

L2 βð Þ ¼
X
j

β2j ð15:5Þ

The L1 regularization technique will penalize the weights in such a way that many
weights will become 0, effectively removing the respective feature from the predic-
tive model. On the other hand, the L2 regularization technique will penalize the
weights in order to prevent any large weights, which could lead to unstable pre-
dictions. These regularizations are used in other linear models as well. Least absolute
shrinkage and selection operator (LASSO) regression models use least squares
regression in conjunction with L1 regularization (Tibshirani 1996). Additionally,
ridge regression is a least squares regression model that uses L2 regularization (Hoerl
and Kennard 1970). We type:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
parameters = {‘C’ : [0.01, 0.1, 1, 10, 100]}
clf = GridSearchCV(LogisticRegression(penalty = “12”), parameters, cv
= 5)
clf.fit(norm_breast_abundance, breast_labels)
feature_scores = pd.DataFrame( data = clf.best_estimator_.coef_.
reshape(-1), index = norm_breast_abundance.columns.values, columns =
[“Score”])

Score Score

Pseudomonas 0.822503 Corynebacterium �0.751704

Unknown genus (family Alcaligenaceae) 0.818542 Atopobium �0.732263

Unknown genuse (family Oxalobacteraceae) 0.788776 Ochrobactrum �0.661831

Other genus (family Phyllobacteriaceae) 0.608472 Rhizobium �0.660642

Dialister 0.580910 Bacillus �0.522599

Stenotrophomonas 0.576248 Actinomyces �0.507828

Other genus (family Bacillaceae) 0.565256 Acinetobacter �0.435300

Unknown genus (family Enterobacteriaceae) 0.538462 Catonella �0.382062

Capnocytophaga 0.484344 Lysinibacillus �0.336528

Peptoniphilus 0.453498 Sporocarcinia �0.252696
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We train the logistic regression model using LogisticRegression from the
linear_model module of scikit-learn. Similar to training an SVM model, logistic
regression has a hyper-parameter (C) that needs to be tuned. We create a list of
potential C values stored in a variable, parameters. The GridSearchCV object will
perform model selection using during fit and return the model using the best value.
More specifically, it will perform cross-validation similar to the hyper-parameter
selection in SVM models. The default value for cross-validation is fivefold cross-
validation, meaning that the data is partitioned into five sets. Each value of C is
evaluated using the average accuracy of the five cross-validated models and the
Cwith the best score is used to fit the entire dataset. In addition, we specify the use of
L2 regularization with penalty¼“l2”; however, you could pass the value “l1” here to
use L1 regularization.

In order to extract the features from the logistic regression model, we consider
positive weights to be applied to OTUs predictive of the positive class and negative
weights to be applied to OTUs predictive of the negative class (cancer patients and
healthy patients respectively). Similar to the case for SVM, we obtain the best model
using best_estimator_ and then extract the weights with coef_.

15.3.6 Multi-layer Perceptron Neural Network

The value of a perceptron is a linear combination of the values from the previous
layer that is then passed to a nonlinear activation function (Dreyfus 1990; Haykin
1994). This allows neural network models to uncover nonlinear relationships within
data. More explicitly, the values of the lth hidden layer hl is calculated as

hl ¼ Ψ WT
l hl�1 þ bl

� � ð15:6Þ

Here hl � 1 are the values from the previous hidden layer. Wl are the weights
connecting hl � 1 to hl and bl is a bias value. Lastly, Ψ is a nonlinear activation
function applied to the perceptrons. This nonlinear transformation can be applied
over multiple hidden layers.

We train the neural network using the MLPClassifier from the neural_network
module of scikit-learn. We construct a model containing a single hidden layer of
100 perceptrons (hidden_layer_sizes). In addition, we choose to use the limited-
memory BFGS (L-BFGS) solver since we are working with a smaller dataset. In
application, neural networks contain many hyper-parameters that should be tuned,
including number of hidden layers, hidden layer sizes, activation functions, learning
rate, and regularization penalties. This leads to an enormous amount of combinations
for hyper-parameters, and there are various methods designed to handle this optimi-
zation (Bergstra et al. 2011; Olden et al. 2004). However, we will not be discussing
that in this tutorial. Instead, we use the default settings and fit the model, giving a
model with a single hidden layer of 100 nodes and one output node. The sigmoid
activation is applied to this output node to squish all numbers between 0 and 1 by
typing:
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from sklearn.neural_network import MLPClassifier
clf = MLPCassifier(hidden_layer_sizes = (100, ), solver = “lbfgs”)
clf.fit (norm_breast_abundance, breast_labels)

scores = np.matmul(clf.coefs_[0], clf.coefs_[1] )

feature_scores = pd.DataFrame(data = scores.reshape(-1), index =
norm_breast_abundance.columns.values, columns = [“Scores”])

Score Score

Unknown genus (family Oxalobacteraceae) 5.073471 Corynebacterium �4.284834

Unknown genus (family Alcaligenaceae) 3.798394 Atopobium �3.745294

Other genus (family Phyllobacteriaceae) 3.603175 Ochrobactrum �3.681576

Pseudomonas 3.546305 Acinetobacter �2.938242

Peptoniphilus 2.842468 Rhizobiyum �2.731692

Porphyromonas 2.820974 Lysinibacillus �2.072285

Unkonwn genus (family Enterobacteriaceae) 2.641882 Catonella �1.982853

Sphingomonas 2.518721 Actinomyces �1.644902

Lactopbacillus 2.227284 Bacillus �1.520352

Capnocytophaga 2.046131 Sporocarcinia �1.454132

We then evaluate each feature by looking at its cumulative impact on prediction.
This is done by multiplying the weight matrices of the first and last layer, resulting in
a vector of scores with the same length as the number of features (Olden et al. 2004).
We consider that positive values increase the value of the output node toward
1 (cancer patients) and negative values decrease the value of the output node toward
0 (healthy patients).

15.3.7 Model Evaluation

When training machine learning models, it is important to evaluate how robust the
model is. That is, we want to make sure that the model is not overfitting the data. We
can do this by evaluating our model in a cross-validated manner. Specifically, we
partition the data into multiple sets, training the model on all but one of the partitions
and then testing the model on the held-out partition.

To train the machine learning models in a cross-validated fashion, we will use
StartifiedKFold from the model_selection module of scikit-learn. This will partition
our data stratified by class in order to keep the class proportions similar in each
partition. This will require us to specify the number of splits to partition the data into
(n_splits), and in this case we choose a value of 5 in order to perform fivefold cross-
validation. Before training, we will also set up a data frame in order to store
evaluation metrics. Here, we will evaluate models based on the area under the
receiver operating characteristic curve (AUC-ROC). The ROC curve is a way of
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measuring a model’s diagnostic capabilities through plotting the true-positive rate
(TPR) against the false-positive rate (FPR) at various thresholds where

TPR ¼ TP
P

ð15:7Þ

FPR ¼ FP
N

ð15:8Þ

Here TP represents the number of the positive samples that were correctly
predicted, P represents the total number of true-positive samples, FP represents
the number of the samples that were incorrectly predicted as positive, and
N represents the number of the negative samples. In addition, we evaluate models
using recall, precision, and F1 score. These metrics are defined as

Recall ¼ TPR ¼ TP
P

ð15:9Þ

Precision ¼ TP
TPþ FP

ð15:10Þ

F1 Score ¼ 2 � Recall � Precision
Recall þ Precision

ð15:11Þ

We also construct lists to store the true-positive rates for different machine
learning models, which will be used for visualizing AUC-ROC plots later in order
to help view the difference in model performance. We type:

from sklearn.model_selection import StratifiedKFold
from sklearn.metrics imports roc_auc_scores, f1_score,
precision_score, recall_score, roc_curve
from scipy import interp

# Data frame to store evaluation metrics
metrics = pd.DataFrame(index = “AUC”, “Precision”, “Recall”, “F1”],
columns = [“RF”, “SVM”, “Logistics”, “MLPNN”]).fillna(0.0)

# Model parameter search space for SVM and Logistics Regression
svm_parameters = {‘kernel’ : [‘linear’], ‘C’ : [0.01, 0.1, 1, 10, 100]}
logistic_parameters = {‘C’ : [0.01, 0.1, 1, 10, 100]}
alphas = np.logspace(-10, 1, 400)

# Feature importance vectors
rf_feature_scores = []
svm_feature_scores = []
logistic_feature_scores = []
mlpnn_feature_scores= []

# Stratified-K-fold splitting
num_splits = 5
skf = StratifiedKFold(n_splits= num_splits)
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# Lists for AUC-ROC visualization
rf_tprs = []
svm_tprs = []
logistic_tprs = []
mlpnn_tprs =[]
mean_fprs = np.linspace(0, 1, 101)
x = breast_abundance.transpose( ).values
y = breast_labels.values

Next we will use the split function on our StratifiedKFold object, passing both the
dataset and the class labels. We will iterate over the training and testing partitions
using a for loop. For each iteration, we subset the data and labels using the training
and testing indices. We then perform the log-transformation and standard normali-
zation in the same manner as in the Data Preprocessing section. Note that the
normalization function is only fit to the training set in order to prevent any bias
from the testing set. We then use the training set to train the ML models and store
their predictions of class probabilities using the predict_proba function, which takes
just the probability of being a positive class. This way a value of 0 indicates the
negative class, and a value of 1 indicates a positive class. Note that in order to use
this function for the SVM model, we must set probability¼True as a model
parameter. We type:

for train_index, test_index in skf.split(x,y):

# Set up train and test sets
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]

# Log transform data
x_train = np.log2(x_train +1)
x_test = np.log2(x_test+1)

# Train a scaler on the training set ONLY, then transform train and test
set using scaler
scaler = StandardScaler().fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)

# Fit machine learning models
rf = RandomForestClassifier(n_estimator = 500).fit(x_train, y_train)
svm= GridSearchCV (SVC(probability = True) , svm_parameterm, cv=5).fit
(x_train, y_train)
logistic =GridSearchCV(LogisticRegression(penalty = “12”),
logistic_parameters, cv =5).fit(x_train, y_train)
mlpnn = MLPClassifier(hidden_layer_sizes =(100, ), solver = “lbfgs”).fit
(x_train, y_train)

# Model test predictions
rf_pred = rf.predict_proba(x_test)[: , 1]
svm_pred = svm.predict_proba(x_test) [: , 1]
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logistic_pred = logistic.predict_proba(x_test) [: , 1]
mlpnn_pred = mlpnn.predict_proba(x_test)[: ,1]

# Model feature scores
rf_feature_scores.append(rf.feature_importances_)
svm_feature_scores.append(svm.best_estimator_.coef_.reshape(-1))
logistic_feature_scores.append(logistic.best_estimator_.coef_.
reshape(-1))
mlpnn_feature_scores.append(np.matmul(mlpnn.coefs_[0], mlpnn.
coefs_[1]))

Next, we calculate various evaluation metrics for the models using this testing
partition and store them in the data frame. All of these functions come from the
metrics module from scikit-learn. The function roc_auc_score uses the true class
labels and the probabilities of the positive class to calculate the AUC-ROC. The
other functions, precision_score, recall_score, and f1_score require the true class
labels and predicted class labels. Therefore, we round the probabilities such that
values greater than 0.5 become the positive class label and values lower become the
negative class label. We type:

# Store metrics
metrics.loc[“AUC”][“RF”] += roc_auc_score(y_test, rf_pred)
metrics.loc[“ Precision”][“RF”] += precision_score(y_test, np.round
(rf_pred))
metrics.loc[“Recall”][“RF”] += recall_score(y_test, np.round
(rf_pred))
metrics.loc[“F1”][“RF”] += f1_score(y_test, np.round(rf_pred))

metrics.loc[“AUC”][“SVM”] += roc_auc_score(y_test, svm_pred)
metrics.loc[“ Precision”][“SVM”] += precision_score(y_test, np.round
(svm_pred))
metrics.loc[“Recall”][“SVM”] += recall_score(y_test, np.round
(svm_pred))
metrics.loc[“F1”][“SVM”] += f1_score(y_test, np.round(svm_pred))

metrics.loc[“AUC”][“Logistic”] += roc_auc_score(y_test,
logistic_pred)
metrics.loc[“ Precision”][“Logistic”] += precision_score(y_test, np.
round(logistic_pred))
metrics.loc[“Recall”][“Logistic”] += recall_score(y_test, np.round
(logistic_pred))
metrics.loc[“F1”][“ Logistic”] += f1_score(y_test, np.round
(logistic_pred))

metrics.loc[“AUC”][“MLPNN”] += roc_auc_score(y_test, mlpnn_pred)
metrics.loc[“ Precision”][“ MLPNN”] += precision_score(y_test, np.
round(mlpnn_pred))
metrics.loc[“Recall”][“ MLPNN”] += recall_score(y_test, np.round
(mlpnn_pred))
metrics.loc[“F1”][“ MLPNN”] += f1_score(y_test, np.round
(mlpnn_pred))
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Next we calculate the true-positive and false-positive rates for each model and
different thresholds using the roc_curve function from themetricsmodel from scikit-
learn. We then interpolate the true-positive rates across the range (0,1), making sure
that the first value is 0 and the last value is 1. The lists of true-positive rates are stored
for each model separately. We type:

fpr, tpr, _ = roc_curve(y_test, rf_pred)
rf_tpr = interp(mean_fprs, fpr, tpr)
rf_tpr[0] = 0.0
rf_tprs.append(rf_tpr)

fpr, tpr, _ = roc_curve(y_test, svm_pred)
svm_tpr = interp(mean_fprs, fpr, tpr)
svm_tpr[0] = 0.0
svm_tprs.append(svm_tpr)

fpr, tpr, _ = roc_curve(y_test, logistic_pred)
logistic_tpr = interp(mean_fprs, fpr, tpr)
logistic_tpr[0] = 0.0
logistic_tprs.append(logistic_tpr)

fpr, tpr, _ = roc_curve(y_test, mlpnn_pred)
mlpnn _tpr = interp(mean_fprs, fpr, tpr)
mlpnn _tpr[0] = 0.0
mlpnn _tprs.append(mlpnn _tpr)

After training, we can look at the average statistics by dividing the data frame by
the number of splits used by typing:

breast_metrics = metrics/num_splits
breast_metrics

RF SVM Logistic MLPNN

AUC 0.736429 0.770714 0.804286 0.767857

Precision 0.709848 0.772338 0.793651 0.789286

Recall 0.850000 0.821429 0.671429 0.696429

F1 0.760255 0.779919 0.701279 0.728333

We can visualize the ROC for the different models using the stored true-positive
rates. To do so, we take the mean of the true-positive rates within each machine
learning model using the mean function where axis¼0 indicates that we are taking
the mean across the first dimension of the matrix. Then, we can use the pyplot
module from the matplotlib Python library (which we will denote as plt) for
visualization. We begin by setting up a figure that is 8 � 8. We then plot the false-
positive rates as the x-axis and the true-positive rates as the y-axis in order to generate
the ROC for that machine learning model. For each plot, we specify a different color
and label, which will be displayed in our legend. Lastly, we annotate the plot’s title
and axes and then show the figure by typing:
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import matplotlib.pyplot as plt
breast_mean_rf_tprs = np.array(rf_tprs).mean(axis = 0)
breast_mean_svm_tprs = np.array(svm_tprs).mean(axis = 0)
breast_mean_logistic_tprs = np.array(logistic_tprs).mean(axis=0)
breast_mean_mlpnn_tprs = np.array(mlpnn_tprs).mean(axis = 0)

plt.figure(figsize = (6, 6))
plt.plot(mean_fprs, breast_mean_rf_tprs, color = ‘purple’, label = “RF
(AUC = % .2f )” % breast_metrics.loc[“AUC”][“RF”])
plt.plot(mean_fprs, breast_mean_svm_tprs, color = ‘gold’,label=“SVM
(AUC = % .2f )” % breast_metrics.loc[“AUC”][“SVM”])
plt.plot(mean_fprs, breast_mean_logistics_tprs, color = ‘red’, label =
“Logistic (AUC = % .2f )” % breast_metrics.loc[“AUC”][“Logistic”])
plt.plot(mean_fprs, breast_mean_mlpnn_tprs, color = ‘green’, label =
“MLPNN (AUC = % .2f )” % breast_metrics.loc[“AUC”][“MLPNN”])
plt.legend( loc = “ lower right”)
plt.xlabel(“False Positive Rate”)
plt.ylabel(“True Positive Rate”)
plt.title(“ROC AUC (Breast Tissue)”)
plt.show( )
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In addition, we can aggregate the feature scores across all models. To do this, we
take the average feature score within each machine learning model across all cross-
validation partitions. We will then store these scores into a data frame for later
analysis. We type:

feature_score_df = pd.DataFrame (index = breast_abundance.index.
values, columns = [“RF”, “SVM” , “Logistic”, “MLPNN”]).fillna(0.0)

feature_score_df[“RF”] = np.array(rf_feature_scores).mean(axis=0)
feature_score_df[“SVM”] = np.array(svm_feature_scores).mean(axis=0)
feature_score_df[“Logistic”] = np.array(logistic_feature_scores).
mean(axis=0)
feature_score_df[“MLPNN”] = np.array(mlpnn_feature_scores).mean
(axis=0)
feature_score_df.to_csv(“BC_Tissue/feature_scores.tsv”, sep = “\t”)
feature_score_df.head(10)

RF SVM Logistic MLPNN

Actinomyces 0.025336 �0.070658 �0.368613 �2.061236

Corynebacterium 0.075407 �0.130724 �0.336228 �3.415127

Micrococcus 0.009830 0.021898 �0.192237 �0.119093

Rothia 0.013275 0.035389 0.286142 0.819886

Mycobacterium 0.009282 0.020795 �0.037772 0.062156

Propionibacterium 0.020436 0.009804 �0.129734 0.364447

Yaniella 0.008952 0.041797 0.249778 1.571067

Bifidobacterium 0.011247 0.020922 �0.127679 0.581296

Unknown genus (family
Coriobacteriaceae)

0.006055 0.002321 �0.149301 �0.041508

Atopobium 0.037604 �0.120209 �0.206812 �3.250947

Next, we take the scores from each model and create a data frame where each
column is the ranked list based on the feature importance. Since SVM, logistic
regression, and MLPNN models have negative values, which can indicate important
features, we first take the absolute values of the scores. We then sort the features
based on the descending order of the absolute values within each ML model and
store the ordered row names as a column in a new data frame by typing:

feature_ranks = feature_score_df.abs().rank(ascending = False)
breast_feature_ranking_df[“RF”] = feature_ranks[“RF”].sort_values
().index.values
breast_feature_ranking_df[“SVM”] = feature_ranks[“SVM”].sort_values
().index.values
breast_feature_ranking_df[“Logistic”] = feature_ranks[“Logistic”].
sort_values().index.values
breast_feature_ranking_df[“MLPNN”] = feature_ranks[“MLPNN”].
sort_values().index.values

breast_feature_ranking_df.head(10)
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RF SVM Logistic MLPNIN

0 Corynebacterium Corynebacterium Unknown genus
(family
Alcaligenaceae)

Unknown genus
(family
Oxaiobacteraceae)

1 Methylobacterium Atopobium Pseudomonas Corybacterium

2 Unknown genus
(family
Alcaligenaceae)

Acinetobacter Ochrobactrum Atopobium

3 Lactobacillus Unknown genus
(family
Alcaligenaceae)

Unknown genus
(family
Oxaiobacteraceae)

Unknown genus
(family
Alcaligenaceae)

4 Atopobium Sphingomonas Actinomyces Pseudomonas

5 Prevotella Unknown genus
(family
Enteraobacteriaceae)

Other genus (family
Bacillaceae)

Ochrobactrum

6 Lysinibacillus Actinomyces Corynebacterium Other genus (family
Phyllobacteriaveae)

7 Unknown genus
(family
Enterobacteriaceae)

Pseudomonas Acinetobacter Acinetobacter

8 Sphingomonas Lactobacillus Bacillus Peptoniphilus

9 Actinomyces Peptoniphillus Unknown genus
(family
Enterobacteriaceae)

Unknown genus
(family
Enterobacteiaceae)

15.3.8 Feature Aggregation

As shown above we can obtain average feature scores for each ML model using the
model parameters. However, since each set of scores is on different scaled, it is not as
appropriate to combine the scores across ML models. In order to obtain a single
unified list in this tutorial, we will use a rank aggregation technique, which creates a
rank list that minimizes the dis-concordance with the individual rank lists. For this,
we will use the RankAggreg package from R (Pihur et al. 2009).

To use the RankAggreg package, we first save the feature ranking data frame
using the to_csv function from pandas. Then, after making sure RankAggreg is
installed in R, which can be done using install.packages, we load the package using
library(“RankAggreg”). We type:

feature_ranking_df.to.csv(“BC_Tissue/ranked_feature.tsv”, sep =
“\t” )

> install.packages("RankAggreg", dependencies = TRUE, repos = "http://
cran.us.r-project.org")
> library("RankAggreg")
> setwd("/Users/derek.reiman/Desktop/Springer Book Chapter/")
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> ranked_features <- read.table("BC_Tissue/ranked_features.tsv",
sep="\t", header=T,
colClasses="character", row.names=1)
> top_10_features <- RankAggreg(t(as.matrix(ranked_features)),
10, method="CE",
distance="Spearman", verbose=F)$top.list

> print(top_10_features)
[1] "Corynebacterium"
[2] "Atopobium"
[3] "Unknown genus (family Alcaligenaceae)"
[4] "Methylobacterium"
[5] "Actinomyces"
[6] "Unkonwn genus (family Enterobacteriaceae)"
[7] "Pseudomonas"
[8] "Acinetobacter"
[9] "Lactobacillus"
[10] "Rhizobium"

Next, we have to switch to the directory where our datasets are using the setwd
function. From here, we can load the data frame using read.table, making sure to
specify that we are using tab-delimited tables and that the table contains a header.
We can then pass this table to the function RankAggreg; however, we need to make
sure to cast it as a matrix using as.matrix and to transpose this matrix using t. The
next parameter specifies how many features we want in our top list, which here we
choose a value of 10. This function allows the user to choose between a cross-
entropy Monte Carlo algorithm and a genetic algorithm for selecting the top ranked
features. We will use the cross-entropy algorithm by specifying method¼“CE”. We
then specify that we want to minimize the Spearman correlation between our
proposed top features and the ranked lists our machine learning models found by
specifying distance¼“Spearman”. Lastly we store the top ranked aggregated fea-
tures by adding $top.list at the end of the function and print out our aggregated list.

Additionally, we have developed a tool Meta-Signer that will perform the
machine learning model training and evaluation as well as feature aggregation,
providing a summarized report of the evaluations and feature rankings. The tool
uses an expanded architecture for MLPNN models using the TensorFlow Python
libraries and can be found at https://github.com/YDaiLab/Meta-Signer.

15.4 Results

Finally, we briefly provide results for the three datasets using the methods outlined in
this tutorial. Users can use our script and datasets provided at https://github.com/
YDaiLab/Book-Chapter-Tutorial to generate the results.

First, we report the mean AUC-ROC, precision, recall, and F1 score as evaluation
metrics and generate the ROC plots over tenfold cross-validation. We observed that
different models had different predictive performance considering different metrics.
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For example, logistic regression models had higher precision but lower recall among
the machine learning methods. However, no single method consistently outperforms
other models, suggesting the need of evaluating multiple models for prediction of
host phenotype. In addition, the aggregated list of features may help us identify a
robust assessment on their association to disease (Fig. 15.1) (Table 15.2).

In addition, we generated the top 10 features generated through rank aggregation
for the three datasets considering the average feature scores of the four machine
learning methods discussed in this tutorial (Table 15.3).

15.5 Summary

In this tutorial, we demonstrated the training of several a machine learning models
and an approach to feature evaluation based on the learned models in microbial
datasets using Python and R packages. Both Python and R are open-source scripting

Fig. 15.1 ROC plots over tenfold cross-validation

Table 15.2 AUC, precision,
recall, and F1 results for
breast, oral, and urine

RF SVM Logistic MLPNN

Breast AUC 0.736 0.770 0.804 0.768

Precision 0.710 0.772 0.794 0.789

Recall 0.850 0.821 0.671 0.696

F1 0.760 0.780 0.701 0.728

Oral AUC 0.711 0.639 0.703 0.675

Precision 0.742 0.735 0.811 0.778

Recall 0.982 0.909 0.709 0.800

F1 0.844 0.812 0.754 0.782

Urine AUC 0.659 0.411 0.584 0.540

Precision 0.723 0.704 0.762 0.701

Recall 0.911 0.933 0.611 0.631

F1 0.805 0.801 0.666 0.654

The number in bold indicates the highest value in a row
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tools that provide powerful statistical and machine learning libraries. We outlined a
workflow on how to train four common machine learning models (RF, SVM, logistic
regression, and MLPNN) as well as how to evaluate and rank features using each
model’s parameters. Lastly, we aggregated the ranked lists into a single ranked list
using the RankAggreg package in R. We performed this workflow on datasets
representing the breast, oral, and urinary microbiome of patients with breast cancer
versus healthy patients from a study by Wang et al. (2017).

Machine learning approaches allow the exploration of datasets in a nonlinear
approach, allowing for the identification of more complex combinations of features
associated to health status. By aggregating multiple ranked lists across machine
learning models, we believe that one can obtain a more robust feature ranking. In
addition, statistical methods such as ANCOM (Mandal et al. 2015) can be used to
generate ranked lists that can be incorporated into the aggregation as well. However,
the approach based on machine learning models is limited in the fact that although it
allows for features to be ranked and aggregated, it is difficult to determine the
significance of these features or how to determine a cutoff for the top ranked
features.
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Chapter 16
Mediation Analysis of Microbiome Data
and Detection of Causality in Microbiome
Studies

Yinglin Xia

Abstract Microbiome research has basically focused on three factors: environment,
microbiome, and host. The interactions among these three factors are dynamic and
complicated. Three general hypotheses have been developed to detect these interac-
tions. Among these hypotheses, testing the mediated effects of environmental factors
and host mediated by microbiome is the most often designed, because mediation
analysis of the human microbiome in these dynamic and very complicated relation-
ships could potentially provide insights into the role of the microbiome in health and
the etiology of disease and, more importantly, lead to novel clinical interventions by
modulating the microbiome.

However, microbiome data are high-dimensional, structured as phylogenetic tree,
sparse, non-normally distributed, and are often characterized by the presence of a
large portion of zero values and hence are skewed to the right and heteroscedastic.
Thus, the suitable methods for mediation analysis of microbiome data are rare.
Several methods for mediation analysis of microbiome data were just developed in
most current years. In this book chapter, we first introduce traditional mediation
models and mediation models in omics studies as backgrounds and then focus on
describing and reviewing specifically designed mediation models in microbiome
studies. Traditional mediation models include two broad types of frameworks for
mediation analysis: one is structural equation modeling (SEM)-based mediation
analysis, which covers “product method” or “product of coefficients method” and
“difference of coefficients method”, respectively. Another is counterfactual-based
mediation analysis, which uses “potential outcomes” or “counterfactual outcomes”
method.

The data features and statistical issues of microbiome studies are more similar to
those in other omics studies, such as high dimensionality and sparsity; thus the
mediation models from omics studies provide more insights and motivations to
develop the mediation models in microbiome studies, such as how to test multiple
putative mediators simultaneously using permutation (MultiMed), how to reduce
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high-dimensional mediators through regularization or penalization (HIMA), and
how to transform high-dimensional mediators into low-dimensional and
uncorrelated mediators using the spectral decomposition (CausalMM). This book
chapter mainly aims to introduce seven specifically designed mediation models in
microbiome studies. They are (1) distance-based omnibus test of mediation effect
(MedTest), (2) multivariate omnibus distance mediation analysis (MODIMA),
(3) causal compositional mediation model (CCMM), (4) isometric log-ratio trans-
formation for microbiome mediation (IsometricLRTMM), (5) sparse microbial
causal mediation model (SparseMCMM), (6) mediation analysis for zero-inflated
mediators (MedZIM), and (7) nonparametric entropy mediation (NPEM). All these
models were developed to target specific data structure and features of microbiome
data (e.g., dimensionality, compositionality, sparsity, zero-inflated) through either
SEM-based or counterfactual-based mediation frameworks. We complete this chap-
ter with comments on current mediation models for microbiome data analysis and
how to understand establishing causality in microbiome studies.

Keywords Mediation analysis · Features of microbiome data · Omics studies ·
SEM-based mediation analysis · Counterfactual-based mediation analysis · Entropy
mediation analysis · Statistical mediation models for microbiome data

16.1 Introduction

Microbiome research basically focuses on three factors: environment, microbiome,
and host. The interactions among environment (or genetic), microbiome, and host
are dynamic and very complicated. To detect the dynamic interactions among these
three factors, three general hypotheses are generally developed. Among these three
hypotheses, testing the mediated effects of environmental factors and host mediated
by microbiome is often designed. Mediation analysis of the human microbiome is
very important because it can address more central hypothesized linkage and the
mechanisms among these three dynamic and very complicated factors, which could
potentially provide insights into the role of the microbiome in health and the etiology
of disease and, more importantly, lead to novel clinical interventions by modulating
the microbiome.

The relative abundance of microbiome often have several distinct features (Xia
et al. 2018a, b, c, d): (1) structured as a phylogenetic tree, (2) high-dimensional and
underdetermined, (3) compositional, (4) often sparse along the presence of a large
portion of zero values, (5) right skewed and heteroscedastic, and thus (6) over-
dispersed and (7) non-normally distributed. All these features of microbiome data
pose major challenges for developing methods for mediation analysis of microbiome
data (Xia et al. 2018a, b, c, d). Several methods for mediation analysis of
microbiome data were just developed in most current years.

Five motivating applications are considered in this book chapter to describe the
use of these models. In such a study, the tri-variate associations among environment,
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microbiome, and host are measured especially to test whether the independent
variables predict the outcome variable is mediated by the microbiome. The first
example is a cross-section analysis of 98 healthy volunteers on diet, BMI, and gut
microbiome composition (Wu et al. 2011). In this testing, the associations between
diet and BMI, between the gut microbiota and BMI, and between diet and the gut
microbiota are all statistically significant. The mediation analysis was to test whether
the association between diet and BMI is mediated by the gut microbiota. The second
example is antibiotic use data (Cho et al. 2012). The data have a total of 96 samples
(50 cecal and 46 fecal) across 50 animals with four antibiotic uses and one control.
The mediation analysis was to test whether the association between antibiotic use
and percent fat is mediated by the microbial composition. The third example is a
longitudinal analysis of 67 pregnant women to investigate arsenic exposure in
pregnant women (environmental factor) impacts the health of their children (Farzan
et al. 2013). In the third example, the mediation analysis was to examine whether
maternal arsenic exposure (total in utero arsenic level) impacts treated cough effect
of their children mediated by gut microbiome of infants (Nadeau et al. 2014). There
is a presence of a large portion (54%) of zero values in this microbiome data. The
fourth example consists of totally 24 mice with 10 treated with a commercially
available probiotic cocktail and other 14 as control (Arthur et al. 2013). This
example was used to test whether the effects of treatment probiotic cocktail on
outcome variable dysplasia score (abnormality of cell growth) are mediated by the
relative abundance of each microbiome OTU (Li et al. 2019). The fifth example is
also an antibiotic treatment (Schulfer et al. 2019). This murine microbiome exper-
iment was to investigate whether sub-therapeutic antibiotic treatment would alter gut
microbiome composition and whether this change would influence the body weight
gain later in life. The data have a total of 58 mice (21 females, 12 antibiotic
treatments and 9 controls, and 37 males, 24 antibiotic treatments and 13 controls)
at day 21 and 28. The mediation analysis was to test whether the role of
sub-therapeutic antibiotic treatment in body weight gain is mediated by the gut
microbiome.

The remaining of this chapter is organized this way. We will first review two
traditional mediation models including SEM-based and counterfactual-based medi-
ation analyses in Sect. 16.2, which we hope will provide a solid knowledge back-
ground for understanding the development of mediation models in microbiome
studies. Then, we present more current developed mediation models in omics studies
in Sect. 16.3. Due to similar data structures and features, the mediation models in
omics studies provide more insight and motivations to develop the mediation models
in microbiome studies. In Sect. 16.4, we will introduce and describe seven mediation
models in microbiome studies including distance-based omnibus test of mediation
effect (MedTest), multivariate omnibus distance mediation analysis of microbiome
(MODIMA), causal compositional mediation model (CCMM), isometric log-ratio
transformation for microbiome mediation (IsometricLRTMM), sparse microbial
causal mediation model (SparseMCMM), mediation analysis for zero-inflated medi-
ators (MedZIM), and nonparametric entropy mediation (NPEM), respectively. At
the end of this section, we will comment on current mediation models for
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microbiome data analysis. In Sect. 16.5, we will discuss detecting causality and how
to understand establishing causality in microbiome studies from philosophic ontol-
ogy (metaphysics), methodology, and specifically from a statistical theory of
probability.

16.2 Traditional Mediation Models

As a background for mediation analysis of microbiome data, in this section, we will
introduce the basic notions and frameworks for two broad types of traditional
mediation analysis: (1) using structural equation modeling (SEM), which covers
“product method” or “product of coefficients method” and “difference of coefficients
method”, respectively, and (2) through “potential outcomes” or “counterfactual
outcomes” method.

Researchers may have different definitions of mediation analysis in their fields;
however, mediation analysis generally is referred to as a set of techniques that assess
direct and indirect effects (i.e., mediated effects) to explain the relationship among
tri-variates: independent variable(s), mediator(s), and outcome(s). Distinguishing
from typical regression approaches, the power of mediation analysis lies in its
capability to estimate and test the mediated effects. In the research fields, several
sets of variables have been used to describe the three-variable relationship, such as
independent variable (predictor, treatment, initial variable, antecedent variable,
causal ancestor, program exposure)-mediating variable (mediated, intervening or
intermediate variable, process variable, mediator, surrogate or intermediate end-
points in medical literature, intermediate endpoint, proximal measure)-dependent
variable (criterion variable, outcome variable, consequent variable, causal descent,
ultimate endpoint, distant measure). In this book chapter, we use their combinations
exchangeably. However, to keep consistent, we mostly use independent variable
(exposure)-mediator-outcome (response) to label the three-variable relationship. In
the case, treatment is differentiated from the independent variable, we also use the
variable treatment. Other variables or terms that are often used in literatures are
moderator (interaction variable, effect modifier, effect measure modifier), con-
founder, and covariate.

16.2.1 Typical Features of SEM-Based Mediation
Framework

Modern mediation analysis began with Wright’s theory and method of path coeffi-
cients (Wright 1920, 1921, 1923, 1934). In path analysis, Wright quantified medi-
ation mechanisms and described the path analysis methods for mediating processes
among other variables in system of relations. Wright’s path analysis opened the
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approach of modern SEMmediation analysis. Now path analysis of mediation model
is reviewed as a special case of SEM mediation approach.

SEM is referred as to a system of regression-type models linked together a
conceptual model, path diagram to analyze complex, and dynamic relationships
among observed and unobserved variables. A typical SEM model consists of a
measurement model and a structure model.

Although similar in appearance, SEM is fundamentally different from traditional
regression. For example, in traditional regression variables are mandated to clearly
distinct whether are dependent (effect-receiving) or independent (effect-imparting),
whereas in SEM models, one key feature is that one variable could be independent
and dependent variables. To avoid confusion, in SEM literatures, endogenous and
exogenous variables are often used instead. In the SEM equations or matrices,
exogenous variables always represent independent variables, endogenous variables
serve as dependent variables, and at least one endogenous variable is needed for
specifying SEM. In SEM models, mediators could be both endogenous and exoge-
nous variables. It is precisely this type of reciprocal role a variable plays that enables
SEM to infer causal relationships (Xia et al. 2012a).

16.2.1.1 Product of Coefficients Method

The framework of Barron and Kenny approach had antecedents such as in psychol-
ogy (Woodworth 1928), in cognitive dissonance (Brehm and Cohen 1962), in
industrial and organizational psychology (James and Brett 1984), and in mediational
hypothesis testing (Judd and Kenny 1981a, b; Fiske et al. 1982; Sobel 1982; James
and Brett 1984). However, the framework of product of coefficients method for
mediation analysis was clearly depicted in Baron and Kenny’s landmark paper
(1986), which deserves a first introduction in this beginning stage of SEM mediation
framework coverage. It is the work of Baron and Kenny landmark paper (Baron and
Kenny 1986) that makes mediation analysis very popular first in psychology and
social sciences and then extended to epidemiology, biomedicine, and other fields.

This paper has contributed toward the development of SEMmediation framework
in several ways. Among them, the following four notions and techniques are very
important.

First, this paper describes causal pathways of a three-variable system (indepen-
dent variable, mediator, and outcome variable) via a diagram of path analysis. The
framework of Baron and Kenny’s mediation analysis is based on the single-mediator
model (SMM). The role of a mediator variable is conceptualized in the causal path
diagram in Fig. 16.1.

SMM is a three-variable system depicting three paths. Path a is from the inde-
pendent variable to the mediator (αxm). Paths b and c are two causal paths: Path b is
the effect of the mediator on the outcome variable (βmy), and Path c is the direct
effect of the independent variable on the outcome variable (γxy). Based on these two
causal pathways, we can write a SEM mediation model for testing the causal
relationship in terms of two linear regressions:
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Mi2 ¼ α0 þ αxmXi1 þ εmi ð16:1Þ
Yi3 ¼ γ0 þ γxyXi1 þ βmyMi2 þ εyi ð16:2Þ

Equation (16.1) describes the effect of the independent variable on the mediator;
Eq. (16.2) describes the effect of both the independent and mediator variables on the
outcome. Combining (16.1) and (16.2) represents a mediation model that describes
an underlying mediation relation of the independent variable (Xi1) to the mediator
(Mi2) to outcome (Yi3), where α0 and γ0 are the interceptors and εmi and εyi are error
terms.

Second, it is in this paper that a hypothesis testing mediation is proposed. Baron
and Kenny adopted Sobel’s hypothesis testing method for the indirect effect (Sobel
1982) and specifically modified the formula of standard error for estimating medi-
ated effect by production of coefficients αxm and βmy(αxmβmy). This method for
estimating mediation is named as “product method” or “product of coefficients
method.”

The standard error of product αxmβmy based on Sobel (1982) can be written as:

Sbαxmbβmy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bα2xmS2bβmy þ bβ2myS2bαxm

r
ð16:3Þ

Baron and Kenny (1986) use the exact standard error of product αxmβmy:

Sbαxmbβmy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bα2xmS2bβmy þ bβ2myS2bαxm þ S2bαxmS2bβmy

r
ð16:4Þ

But the added term S2bαxmS2bβmy is negligible, so most commonly used covariance

structure software such as EGS, Mplus, and LISREL still use Sobel’s formula.
The hypothesis testing of mediated effect or indirect effect is called product of

coefficients method for testing mediation or “product of coefficients tests”

Mediator
Mi2

Independent 
Variable

Xi1

Outcome
Variable

Yi3

xmα myβ

xyγ

miε

yiε

Fig. 16.1 Path diagram for the SEM mediation model
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(MacKinnon 2008). We can perform the hypothesis testing of the mediated effect
using confidence intervals, which is based on the estimated standard error such as
from a t-test. In the mediation model of Fig. 16.1, γxy represents the direct effect that
describes the pathway from the independent variable Xi1 to the outcome Yi3, while
controlling for the mediator Mi2. The indirect effect describes the pathway from the
independent variable to the outcome through the mediator. The total effect is the sum
of the direct and indirect effects of the independent variable on the outcome without
considering other covariates.

Third, this paper comprehensively discussed the assumptions, qualifications of
mediation, and steps to establish mediation. According to Baron and Kenny, two
assumptions are required for the mediational model (Baron and Kenny 1986): (1) the
mediator has no measurement error (otherwise the mediated effect tends to be
underestimated while the direct effect tends to be overestimated when all coefficients
are positive), and (2) the dependent variable does not cause the mediator (otherwise
the feedback bias will occur in mediational chains). Baron and Kenny described the
qualifications of mediation and steps to establish mediation in a series of causal tests:
(1) the independent variable should be significantly related to the presumed medi-
ator; (2) the presumed mediator should significantly affect the outcome when the
independent variable is controlled; (3) the independent variable should significantly
affect the outcome when only the independent variable is included; and (4) when
controlling for the mediator, the direct effect from the independent variable to the
outcome should be reduced, or nonsignificant, and with a completely mediated, the
direct effect should be zero. The qualifications of (1) and (2) have generally been
considered as important for accepting to establish mediation. However, the steps
(3) and (4) are often criticized for not correct, or not accurate thus not necessary
(MacKinnon 2008; VanderWeele 2015). Although the controversies exist in the
literature regarding to qualifications of mediation and steps to establish mediation,
the descriptions by Baron and Kenny have opened a wide discussion and enabled a
path for later researches.

Fourth, it is in this paper that the moderator and mediator variables have been
distinguished conceptually and strategically as well as statistically in social psychol-
ogy. The moderator-mediator distinction provides an opportunity to develop
methods for both mediation and interaction, particularly for interaction analysis,
although the framework of Barron and Kenny is mainly single-mediator model
(SMM). Both moderator and mediator variables are the functions of a third variable;
the mediator “represents the generative mechanism through which the focal inde-
pendent variable is able to influence the dependent variable of interest,” whereas the
moderator “partitions a focal independent variable into subgroups that establish its
domains of maximal effectiveness in regard to a given dependent variable” (Baron
and Kenny 1986). The antecedent for distinction of moderator and mediator and for
testing mediation under the appearance of moderator may be back to James and Brett
(1984). The method for estimating moderated mediation by using the product
method and the approaches for hypothesis testing of moderated mediation were
proposed by Preacher et al. (2007). Various topics about mediation and moderation
were discussed in more details in (MacKinnon 2008; Hayes 2013). However, the
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Preacher et al.’s mediation approach was criticized for lacking of decomposition
property (the sum of direct and indirect effects equals to a total effect) (VanderWeele
2015).

In terms of which standard error and critical value are calculated, several variants
of standard error of product of coefficients exist in literatures, including Goodman’s
unbiased standard error (Goodman 1960), Bobko and Rieck’s standardized vari-
ables’ regression coefficients and partial regression coefficient (Bobko and Rieck
1980), and MacKinnon and colleagues’ three alternative methods (MacKinnon et al.
1998, 2002).

The causal-step methods have been reviewed having several limitations
(MacKinnon et al. 2002) including (1) underpowered to detect small effects unless
the effect or sample size is large, (2) do not have a joint test of all the three pathways,
(3) cannot directly estimate the magnitude of the indirect effect of the independent
variable on the outcome (Baron and Kenny 1986; Kenny et al. 1998), (4) not feasible
to extend the causal step method to conduct multiple mediation analysis (West and
Aiken 1997; MacKinnon et al. 2000), and (5) the requirement of significant rela-
tionship between the independent and outcome does not consider the situation of
cancel-out total effects when indirect effect and direct effect have opposite directions
as in “inconsistent” mediation models (MacKinnon et al. 2000).

16.2.1.2 Difference of Coefficients Method

Decomposing a total effect into direct effect and indirect effect is another most often
used approach in mediation analysis. This method for testing mediation is called
difference method or “difference in coefficients tests” (MacKinnon 2008). In
Eqs. (16.1) and (16.2), summing the direct (γxy) and indirect (αxmβmy) effects is the
total effect. To obtain the coefficient of total effect, we need to fit additional model,
an outcome model with independent variable but without adjusting mediator:

Yi3 ¼ θ0 þ θxyXi1 þ εxyi ð16:5Þ

The mediated or indirect effect equals the difference of the independent variable
coefficients (θxy � γxy) in the two regression models (Alwin and Hauser 1975; Judd
and Kenny 1981a, b; Mackinnon and Dwyer 1993).

The difference method has been used as early as 1970s (Susser 1973; Alwin and
Hauser 1975) and the substantial discussion in (Mackinnon and Dwyer 1993;
MacKinnon et al. 2002). The standard error of the difference method for determining
mediation derived by McGuigan and Langholtz (1988) (McGuigan and Langholtz
1988; Mackinnon and Dwyer 1993; Mackinnon et al. 1995; MacKinnon 2008) is
given as:
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Sbθxy�bγxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2bθxy þ S2bγxy � 2rSbθxySbγxy

r
ð16:6Þ

where the covariance between bθxy and bγxy, rSbθxySbγxy is the mean square error (MSE) in

Eq. (16.2) divided by the sample size times the variance of the independent variable
(MSE= N � S2xi1

� �
).

The simulation studies show that the difference method and the product method
are closely related and yield identical estimates of mediated effect when the outcome
is continuous, whereas when the outcome is a binary and a logistic regression is
used, the standard error is inflated relative to the true standard error and has worse
performance compared to product methods (Mackinnon and Dwyer 1993;
Mackinnon et al. 1995).

The difference methods also have several variants differing in using regression or
correlation coefficients, including Freedman and Schatzkin’s difference between the
adjusted and unadjusted regression coefficients (Freedman and Schatzkin 1992),
Clogg et al.’s standard error of difference (Clogg et al. 1992), and Olkin and Finn’s
difference between the simple and partial correlation (Graf and Alf 1999).

Similar as the product method, the framework of the difference method has been
reviewed having several limitations that (1) the underlying model does not appro-
priately use the non-directional correlations for testing the difference between simple
and partial correlation, (2) does not provide a clear framework for generalizing
hypothesis testing in models with multiple mediators (MacKinnon et al. 2002),
and (3) the standard error is inflated when the outcome is a binary and a logistic
regression is used.

16.2.1.3 Remarks

The approach of structural equation modeling was opened by Wright and
rediscovered by Duncan (1966). Most statistical methods developed before 2008
were summarized and introduced in MacKinnon’s mediation analysis book
(MacKinnon 2008). This book is one of fundamental resources on the mediation
analysis and especially for the mediation analysis from the SEM approach. A brief
overview of SEM beginnings, historical development, statistical and philosophical
(theoretical) controversies, and its applications in the social sciences has been
conducted in the paper (Tarka 2018).

Although modern mediation analysis started with Wright, it was Barbara Burks
who first explicitly represented a mediator with a diagram in 1926 and believed it
was she who actually invented path diagrams independently of Sewall Wright. She
was ahead of Wright and others in regard to mediation (Pearl and Mackenzie 2018)
(p. 304). Blalock (1971) developed the more general methods in covariance structure
modeling. The covariance structure modeling has been continually developed
through the works of Jöreskog (1970, 1973), Keesling (1972), Wiley (1973), and

16 Mediation Analysis of Microbiome Data and Detection of Causality in. . . 465



others. In the meanwhile various statistical methods in covariance structure model-
ing have been developed as well as including methods for non-normal data (Browne
1984); ordinal, limited, and discrete variables (Muthén 1983, 1984); model specifi-
cations (Bentler and Weeks 1982; McArdle and McDonald 1984); bootstrap esti-
mation of direct and indirect effects (Bollen and Stine 1990); and comparisons of
mediation testing (MacKinnon et al. 2002).

The SEM-based mediation analysis has many advantages.
First advantage lies on SEM’s conceptual model and framework. Through a

conceptual model, path diagram, and system of linked regression-style equations,
SEM is able to analyze complex and dynamic relationships among observed and
unobserved variables. Specifically, SEM is feasible to estimate measurement errors
by using multiple indicator latent factors, test complex mediational mechanisms by
decomposition of effects, and test moderation mechanisms through multiple group
analysis or interaction terms. Thus, SEM has been reviewed as a second generation
of multivariate statistical techniques (Fornell 1983). Theses statistical techniques
provide an alternative approach to general linear modeling (GLM) such as the t-test,
ANOVA, ANCOVA, MANOVA, MANCOVA, or multiple regression (Tarka
2018).

Second, the most appealing benefits of using SEM lie on its mediation framework.
For example, SEM is designed to test mediation hypotheses in a single analysis,
whereas in traditional regression, several linear models need to be specified. In SEM,
multiple independent variables, mediators, or outcomes can be easily implemented.

Third, SEMs allow for estimating direct and indirect effects by modeling covari-
ance and correlation matrices.

However, the SEM methodologies that were developed until recently are usually
restricted in linear parametric settings. “No comparable methodology has been
devised to extend its capabilities to models involving dichotomous variables or
nonlinear dependencies” (Pearl 2010). It is not appropriate to use the methodologies
developed in SEM to model with interactions or nonlinearities (Robins and Green-
land 1992; Pearl 2001).

First, although decomposition of total effects into a direct and an indirect effect in
linear models has been extended to nonlinear models [see the books Fosen et al.
(2006), MacKinnon (2008), and Hayes (2013)], the approach in SEM nonlinear and
nonparametric models is not always justified. This is because in SEM nonlinear
models, (1) it is not clear and sometimes even flawed to use decomposition to
precisely interpret association parameters as direct and indirect effects (Vansteelandt
2012). (2) The distinction between causal parameters and their regression interpre-
tations can easily be conflated and produced distorted results since where the direct
and indirect effects are defined in terms of structural or regression coefficients in
nonlinear models (MacKinnon et al. 2007; Pearl 2010). (3) The association between
the mediator and outcome could be confounded by another factor other than the
independent variable. When a confounder exists, we will create spurious associa-
tions between the independent variable and outcome through the confounder even
when there is no direct effect of the independent variable on the outcome (Pearl
1998, 2010; Cole and Hernán 2002). Thus, SEM methodologies are often criticized
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for not adequately addressing issues of confounding/endogeneity in inferring causal
relationships (VanderWeele 2015) (Chap. 2, p. 30).

Second, the SEM methodologies have not well-addressed mediation issues in
nonparametric models. The limitations of Barron and Kenny approach include the
following: (1) the framework of Barron and Kenny mainly is single-mediator model
(SMM), and (2) no covariate can be included in the regression model.

Third, the SEM methodologies are difficult to accommodate zero-inflated medi-
ators. This is because the linear model formulation does not work well with
mediators that have two-part distributions under the traditional linear mediation
framework.

Fourth, the product and difference methods have different performances when
the outcome is binary. The differentiation between these two methods are reviewed
as one limitation of SEM approach for testing mediated effect (VanderWeele 2015).

16.2.2 Counterfactual-Based Mediation Framework

16.2.2.1 Lewis’ Counterfactual Model

Microbiome and host may have causative interactions. The microbiome research
community now tries to understand the causal role of microbiota in the underlying
molecular mechanisms (Xia and Sun 2017; Fischbach 2018). To understand the
causal effects of microbiome on host, recently several mediation models for
microbiome analysis have been developed under the counterfactual (contrary to
fact) framework. In this subsection, we will review the development of counterfac-
tual framework to provide some preliminaries to understand mediation models of
microbiome data from the counterfactual perspective.

Causation analyses have become popular in the last 50 years, especially since the
development in the 1970s of possible world semantics for counterfactuals. In
metaphysics of causation, David Lewis is best known for his theory on counterfac-
tual analysis of causation (Lewis 1973a, b, c) because he most thoroughly elaborated
counterfactual theory of causation. Lewis employed possible world semantics for
counterfactuals. His theory states truth conditions for counterfactuals in terms of
similarity relations between possible worlds. It related to comparative similarity of
worlds (Lewis 1973a, b): “One world is said to be closer to actuality than another if
the first resembles the actual world more than the second does.”

We do not know specifically whether or not the counterfactuals theory of possible
world and actual world in metaphysics had impacted the development of counter-
factuals theory in statistics. But it is clear that both counterfactual theories link the
similarity and connection between two counterfactuals. In the counterfactual litera-
ture, the basic counterfactual model was recognized rooting in Lewis’ “counterfac-
tual model” (Robins and Greenland 1992).

16 Mediation Analysis of Microbiome Data and Detection of Causality in. . . 467



16.2.2.2 Rubin’s Counterfactual Framework

The causal framework in statistics was developed by Donald Rubin and Paul
Holland in the 1970s (Rubin 1974, 2005; Holland 1986). The potential outcome
idea was rooted in Neyman’s work (1923). The causal framework was established
through the concept called counterfactual. It is the counterfactual concept that makes
it statistically or methodologically possible to estimate causal effects of treatments in
nonrandomized data. Let y(E) and y(C) be the measured values that the unit received
the experimental Treatment E and that the unit received the control Treatment C,
respectively, and then, based on Rubin (1974), the causal effect of the E versus
C treatment on Y for that trial is y(E) � y(C). Since we can never observe both y(E)
and y(C) for the same unit, measuring y(E) � y(C) is impossible. Thus, it is
reasonable to extend the measurements to multiple (M ) trials and take the “typical”
causal effect of the E versus C treatment for the M trials, i.e., to average the causal
effects for the M trials:

1
M

XM
j¼1

y j Eð Þ � y j Cð Þ� �
, ð16:7Þ

where yj(E) � yj(C) is the causal effect of the E versus C treatment for the jth trial.
Since 2000, a causal modeling era has started because in the early 2000s, a

paradigmatic shift began to take from the Lewisian counterfactual theory and
traditional statistical methodology to the approaches that sought to precisely coun-
terfactual relationships within formal structural equations modeling.

16.2.2.3 Counterfactual-Based Mediation Framework

The interesting thing is that at the beginning, the proposers of counterfactual-based
causal inference were not optimistic for mediation analysis (MacKinnon 2008; Pearl
and Mackenzie 2018). For example, although Robins and Greenland (1992) pro-
posed the concept of counterfactual-based mediation analysis, their negative options
on mediation analysis have affected the literature until 2000. Rubin created the
counterfactual causal inference framework, but he thought that mediation analysis
is “deceptive” (Rubin 2004) although he dismissed this idea shortly in the next year
(Rubin 2005). The substantial works of mediation methods and models from coun-
terfactual perspective are from Pearl and later developments from VanderWeele
(Pearl 2001; VanderWeele and Vansteelandt 2009, 2010; VanderWeele 2009).

The counterfactual-based mediation framework has been achieved through
redefining mediation analysis, addressing the issues raised in SEM and generalizing
the analytic approaches from linear parametric models to nonlinear and nonpara-
metric models in counterfactual model settings. We summarize the main works of
these developments as below.
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Redefine Causality as a Statistical Methodology Rather than Philosophical
Ontology

First of all, causal inference is a descriptive methodology about natural conditions of
causal action rather than a theory on experimental conditions. Causal mediation is a
method of the prescriptive and descriptive interpretations of direct effects and
indirect effects (Pearl 2001). In other words, we should review causal mediation as
a statistical methodology, and specifically as a statistical method on probability of
causation. Based on Pearl if an effect comes from the descriptive perspective, then it
is a natural effect, and if it comes from the prescriptive perspective, then it is the
controlled effect.

Redefine Causal Direct and Causal Indirect Effects

SEM-based mediation analysis is often biased using controlling variables to estimate
direct effects and in practice is difficult to estimate indirect effects in nonlinear
models. To overcome the bias and difficulty, counterfactual-based mediation
approach defines a more natural type of direct and indirect effects without control-
ling variables on the remaining paths. The concepts of natural direct and indirect
effects were introduced in Robins and Greenland (1992) through numerical exam-
ples (Robins and Greenland 1992) and were deemed problematic (Pearl and Mac-
kenzie 2018) (p. 401). Pearl (2001, 2009a, b) formalized natural direct and indirect
effects, which leads to the mediation formula (Pearl and Mackenzie 2018) and
generalized the SEM-based definitions of direct and indirect effects in the
counterfactual-based settings.

The controlled direct effect of X of the transition from X ¼ x to X ¼ x0 on Y can
roughly be defined as:

CDEm≜P Y jX ¼ x,M ¼ mð Þ � P Y jX ¼ x0,M ¼ mð Þ ð16:8Þ

or equivalently using structural counterfactual notation:

CDEm≜E Yxmð Þ � E jYx0mð Þ ð16:9Þ

In the case M, take the specific values of 0 or 1, which may be easily understood
by some readers; the formula of controlled direct effect can be written as:

CDE 0ð Þ ¼ P Y ¼ 1jX ¼ 1,M ¼ 0ð Þ � P Y ¼ 1,X ¼ 0,M ¼ 0ð Þ ð16:10Þ

where the outcome of Y is the change in X (say from X ¼ x to X ¼ x0) while keeping
all other accessible variables at their initial value. The “0” in CDE(0) indicates that
the value of the mediator was forced to take zero. Similarly, when M ¼ 1, we can
write the formula as:
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CDE 1ð Þ ¼ P Y ¼ 1jX ¼ 1,M ¼ 1ð Þ � P Y ¼ 1,X ¼ 0,M ¼ 1ð Þ ð16:11Þ

In above two versions of the controlled direct effect, we may be confused which
one is correct and is chosen to report. To avoid the pitfalls of this overcontrolled
experiment, Robins and Greenland used the concepts of “pure” direct and natural
indirect (Robins and Greenland 1992), while Pearl used the concepts of “natural”
direct and natural indirect. As Pearl stated in Pearl (2010):

When the direct effect is sensitive to the levels at which we hold Z (here M), it is often more
meaningful to define the direct effect relative to some ‘natural’ baseline level that may vary
from individual to individual, and represents the level of Z (here M) just before the change
in X.

The reason that called the direct effect and indirect effect as “natural” is that in
Pearl’s counterfactual setting, the mediator is allowed for choosing its “natural”
value: “let the mediator choose the value it would have, for individual, in the
presence of treatment.” The natural direct effect is defined as:

NDEx,x0 Yð Þ ¼ E Yx0 ,Mxð Þ � E Yxð Þ ð16:12Þ

The specific case can be written as:

NDE ¼ P YM¼M0 ¼ 1jX ¼ 1ð ÞÞ � P YM¼M0 ¼ 1jX ¼ 0ð Þ, ð16:13Þ

where Yx0 ,Mx represents the value that Y would attain under the operation of setting
X ¼ x0 and, simultaneously, setting M to whatever value it would have obtained
under the setting X ¼ x.

Pearl (2001) showed under certain assumptions of “no confounding” the natural
direct effect can be reduced to:

NDEx,x0 Yð Þ ¼
X
m

E Yjx0,mð Þ � E Y jx,mð Þ½ �p mjxð Þ ð16:14Þ

The intuitive interpretation is that the natural direct effect is the weighted average
of the controlled direct effect, using the causal effect p(m| x) as a weighing function.

The natural indirect effect of the transition from x to x0 is defined as:

NIEx,x0 Yð Þ≜E Y jx,mx0ð Þ � E Yxð Þ½ � ð16:15Þ

It is the expected change in Y affected by holding X constant, at X ¼ x, and
changing M to whatever value it would have attained had X been set to X ¼ x0. The
NIE in the specific case is defined as:

NIE ¼ P YM¼M1 ¼ 1jX ¼ 0ð Þ � P YM¼M0 ¼ 1jX ¼ 0ð Þ ð16:16Þ
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Pearl (2001, 2010) showed that the total effect of a transition in general is
TEx,x0 Yð Þ≜E Yx0 � Yxð Þ ¼ DEx,x0 Yð Þ � IEx,x0 Yð Þ, and in linear systems, the standard
additive formula TEx,x0 Yð Þ ¼ DEx,x0 Yð Þ þ IEx,x0 Yð Þ can be obtained when reverse
transitions amounts to negating the signs of their effects.

Generalize the Counterfactual Mediation Analysis

The general formula for mediation effects in the counterfactual-based settings can be
written as: NIEx,x0 Yð Þ ¼ P

m
E Y jx,mð Þ P mjx0ð Þ � P mjxð Þ½ � , and the specific formula

can be written as:

NIE ¼
X

m
P M ¼ mjX ¼ 1ð Þ � P M ¼ mjX ¼ 0ð Þ½ �

� P Y ¼ 1jX ¼ 0,M ¼ mð Þ: ð16:17Þ

Owning to its generality and ubiquity, Pearl (2010) called this expression as the
“mediation formula,” which consists two formula: the natural direct effect and the
natural indirect effect. This general formula for mediation effects is applicable to
nonlinear and nonparametric models as well as any type of variables. First, it does
not need to make any assumptions for X, Y, and M. So it can be used in nonlinear
models. For example, when the outcome Y is binary, the ratio (1� IE/TE) represents
the fraction of direct effect and (1 � DE/TE) represents the fraction of mediated
effect. Second, it can be extended to perform nonparametrical data (VanderWeele
2009; Pearl 2010).

Allow for the Presence of Independent Variable-Mediator Interactions

Mediation analysis in the presence of interaction is one of important topics in the
SEM-based mediation literatures (Preacher et al. 2007; MacKinnon 2008; Hayes
2013). However, within the SEM-based mediation framework for a linear causal
model, the formula of indirect effect equals to total effect minus direct effect cannot
work out in the models that involve interaction or moderation (Pearl and Mackenzie
2018) (p. 322).

One of important developments in counterfactual framework is to extend the
SEM-based mediation formulae to allow for the presence of independent variable or
exposure-mediator interactions (VanderWeele and Vansteelandt 2009, 2010;
VanderWeele 2010, 2013, 2014; Valeri and VanderWeele 2013). The works from
the counterfactual framework are to develop the interaction methods and provide
appropriate interpretations. The development is still within the decomposition set-
ting: decomposing total effect into a direct and indirect effect. For example,
VanderWeele and Vansteelandt (2009, 2010) derived methods for estimating direct
and indirect effects in linear and logistic regressions with the independent variable
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(exposure)-mediator interaction. These works extended causal mediation analysis
for parametric models with interactions from Pearl’s mediation formula (Pearl 2001)
and generalized SEM-based regression approach proposed by Baron and
Kenny (1986).

Add No-Confounding Assumptions to Ensure a Casual Interpretation

Robins and Greenland (1992) not only showed that the SEM-based method through
adjusting for the mediator to estimate direct effects is biased but also demonstrated
that further assumptions must need to obtain a valid estimate of the direct and the
indirect effects.

The counterfactual framework adopted the sufficient cause framework in statis-
tics, philosophy, and other sciences (Cole and Maxwell 2003). Based on the
discussions in SEM-based mediation analysis (Judd and Kenny 1981a, b; James
and Brett 1984; MacKinnon 2008), the researchers in counterfactual-based media-
tion analysis thought that no-confounding assumptions could ensure a casual inter-
pretation for controlled direct effect and natural direct and natural indirect effects.
The no-confounding assumptions are (1) no unmeasured confounding of the
treatment-outcome relationship, (2) no unmeasured confounding of mediator-
outcome relationship, (3) no unmeasured confounding of the treatment-mediator
relationship, and (4) no mediator-outcome confounder that is affected by the treat-
ment. The first two assumptions are needed to ensure identifiability of controlled
direct effect, while the last two assumptions are for the identifiability of natural direct
and indirect effects (Valeri and VanderWeele 2013). An extensive discussion of the
assumptions necessary for causal inference can be found from Holland (1988),
including randomization, linear effects, and the fully operated treatment effect
(i.e., no partial intervening variable effect).

Final Check with a Sensitivity Analysis

When you are aware that unmeasured confounding may be an issue in your study,
the researchers in counterfactual-based mediation analysis typically recommend you
make a final check with the sensitivity analyses (Imai et al. 2010a, b; VanderWeele
2010, 2015).

16.2.2.4 The Linking of Counterfactual-Based and SEM-Based
Mediation Analyses

Counterfactual-based mediation framework in its early development has begun
adopting the formal interpretation and symbolic machinery for analyzing such
counterfactual relationships from structural equation models (Pearl 2010). The
researchers in the field of counterfactual or causal inference explicitly recognized
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the connections between counterfactuals and structural equations (Simon and
Rescher 1966; Balke and Pearl 1995; Pearl 2009a, b). Currently, the SEM frame-
work and central issues including distinction of mediator and moderator and causal
pathways have been widely adopted by counterfactual-based mediation analysis.
The counterfactual-based researchers have focused on developing the tools to reduce
confounding, emphasizing the assumptions and generalizing the approaches that
developed in linear parametric models to nonlinear and nonparametric models.

First, methodological principles of causal inference have been developed using
structural modeling approach. Under the structural theory, every causal relationships
should be investigated following four structured steps (Pearl 2010): (1) define the
target quantity, (2) assume causal relationships along with graphics to represent
pathway structure, (3) identify the target quantity, and (4) estimate or approximate
the target quantity. The first priority in SEM is to define the target quantity as “causal
effect,” “mediated effect,” “effect on the treated,” or “probability of causation.” The
second most important thing in SEM is to explicate causal assumptions, which is
highly evaluated by counterfactual researchers as having removed the lingering
difficulty for causal analysis (Pearl 2010).

Second, through defining controlled direct effects, natural direct and natural
indirect effects, and their implements, counterfactual-based mediation analysis shifts
the mediation analysis into causal mediation analysis under the counterfactual
framework. For example, counterfactual-based mediation analysis emphasizes the
importance of defining direct effect. Having been affected by the sufficient cause
framework, the approach of counterfactual-based mediation analysis focuses on
“holding the mediating variables fixed” to define the controlled direct effects.
Through defining the controlled direct effect, the pathway from independent variable
to outcome is directly linked regardless of whether confounders are present and
whether the error terms are correlated or not (Pearl 2010).

Third, mediation in counterfactual-based mediation setting can be defined and
implemented in nonlinear models and even can be performed in nonparametric
estimation through a two-step regression. However, when multiple mediators
appear, the mediated effects need to be estimated through a parametric approxima-
tion (VanderWeele 2009).

16.2.2.5 Typical Features of Counterfactual-Based Mediation
Framework

The counterfactual theories of causation basically tell us that the meaning of causal
claims can be explained in terms of counterfactual conditionals of the form “If A had
not occurred, C would not have occurred.”

In summary, counterfactual-based mediation analysis has following features:

1. Emphasize on the no-confounding assumptions and conceptual definitions of
causal effects (VanderWeele 2015) (p. 30).

2. Use the counterfactual framework to translate the SEM approach.
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3. Avoid simple linear models and allow for nonlinearities and interactions.
4. Create the notions of natural direct and the natural indirect effects and the

decomposition property: a total effect ¼ natural direct and the natural indirect
effects.

5. Emphasize the importance and advantages of decomposition property: under the
counterfactual mediation framework, a total effect can be decomposed into a
direct effect and an indirect effect even when under the context of interactions and
nonlinearities. For example, when an independent variable-mediator interaction
is presented and when the outcome is binary (VanderWeele 2015) (p. 34), the
decomposition property is still valid.

6. Emphasize sensitivity analysis for mediation.

16.3 Mediation Models in Omics Studies

Recently, with the advent of high-throughput biomedical data generated by new
technologies, such as microarrays, next-generation sequencing, and high-throughput
metabolomics, a few mediation models have been proposed to analyze multiple
mediators in high-dimensional data setting. We briefly review them as below
(Table 16.1).

16.3.1 Test Multiple Putative Mediators Simultaneously
Based on Permutation (MultiMed)

Boca et al. (2014) proposed a permutation-based approach to test multiple putative
mediators between a known risk factor and a disease in omics studies while
controlling the family wise error rate. The permutation tests start with testing for a
single association and then extend to test multiple associations based on either the
coefficient of independent variable or the correlation coefficients between the inde-
pendent variable and outcome. Both permutation methods for testing a single
mediator and the extensions for testing multiple mediators within the SEM-based
mediation framework are described.

Basically the testing framework states that for a significant effect of the indepen-
dent variable on the outcome to exist, the correlation between the two has to be
nonzero, ρ(X, Y ) > 0. Furthermore, if the relationship is in fact mediated byM, both
the correlation between the independent variable and the mediator and the condi-
tional correlation of the mediator and the outcome, given the independent variable,
should be nonzero, ρ(X,M ) > 0 and ρ(rM|X, rY|M ) > 0, respectively. Here, rM|X
and rY|X denote the residuals of the conditional correlation on regression of X on
M and X on Y, respectively. Some strategies of extension to non-normally distributed
models are also discussed such as using the counterfactual-based approach proposed
in (VanderWeele and Vansteelandt 2010) for binary outcome.
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16.3.2 Reduce High Dimensionality of Mediators Through
Regularization or Penalization (HIMA)

Zhang et al. (2016) extended the multiple mediator model to the high-dimensional
setting, which was motivated by an epigenome-wide DNA methylation study. In this
study the authors applied their developed model to study how the high-dimensional
DNA methylation markers mediate the relationship between smoking and lung
function. For high-dimensional data, one of the most important statistical challenges
is how to deal with the large p and small n (the number of variables larger than the
sample size) problem. The proposed method takes three key steps to ensure that the
mediation model is appropriate for modeling the high-dimensional omics data.

First, the proposed method employs the sure independence screening (SIS) (Fan
and Lv 2008) to identify those mediators with large absolute effect and reduce the
very large pool of potential mediators to the number of less than the sample size so
that the dimensionality of the mediators is reduced and the mediators can be
modeled. Second, the proposed method conducts the variable selection through

Table 16.1 Main techniques used in omics mediation models

Model/
study

Mediation
framework

Mediator, exposure,
and outcome

Method for
testing
mediation
effect

Technique for
reducing
dimensionality

MultiMed
(2014)
(Boca et al.
2014)

SEM-based Single and multiple
(or high-
dimensional), biolog-
ical mediators (genes
or metabolites); con-
tinuous or discrete
exposure; and contin-
uous and binary
outcomes

Nonparametric
permutation
test

Correlation

HIMA
(2016)
(Zhang
et al. 2016)

SEM-based Multiple (or high-
dimensional), biolog-
ical (DNA methyla-
tion) mediators; single
continuous exposure;
and continuous
outcome

Joint signifi-
cance test

Sure independence
screening and regu-
larization/penaliza-
tion (i.e., minimax
concave penalty)

CausalMM
(2016)
(Huang and
Pan 2016)

Counterfactual-
based

Single and multiple
(or high-
dimensional), contin-
uous biological medi-
ators (genes); single
continuous exposure
(microRNA); and
continuous and
dichotomous
outcomes

Monte Carlo
testing
procedure

Spectral
decomposition
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regularization or penalization with the minimax concave penalty (MCP) (Zhang
2010) to most likely identify important mediators. Third, it carries out joint signif-
icance testing for mediation effects based on the MCP-penalized estimate in Step
2 to increase the power of hypothesis testing.

16.3.3 Transform High-Dimensional Mediators into
Low-Dimensional and Uncorrelated Mediators Using
the Spectral Decomposition (CausalMM)

Except through regularization or penalization to reduce high dimensionality of
mediators as above Zhang et al.’s approach, another way of reducing high-
dimensional continuous mediators is to transform the correlated high-dimensional
mediators into a series of causal mediation models with single continuous mediator.
For example, Huang and Pan (2016) used spectral decomposition to transform high-
dimensional gene expression mediators into low-dimensional and uncorrelated
mediators. Different from the approach proposed by Zhang et al. (2016), which
was developed based on SEM framework, this approach was developed under a
causal mediation model, and the mediation effect is defined with counterfactual
notation (such as, natural indirect effect). Thus CausalMM can include the interac-
tion of independent variables and mediators. To ensure to appropriately identify the
estimates of mediation effects, CausalMM also discussed and proposed the sufficient
model assumptions.

16.3.4 Remarks

All above three models were proposed to deal with multiple mediators, and the last
two were also to target reducing high dimensionality. They may be appropriate to
address some features of omics data such as high-dimensional and under-sampled
issues. Because the proposed methods were developed for high-dimensional omics
data, they could inspire the researchers in the field of microbiome to develop their
own methods. For example, the proposed methods could provide the insights for
microbiome researchers into how to model multiple mediators, how to reduce
dimensionality, and how to use counterfactual-based framework to include the
interaction of independent variable and mediator. However, there exist limitations
in the proposed methods because the data features and structures between
microbiome and omics are not completely the same: except for high dimensionality,
microbiome data are also compositional and over-dispersed. Thus, it is still difficult
to generalize the applications of the methods developed in omics to microbiome
data. Additionally, almost all the mediation approaches in omics studies were
developed within linear regression-based framework. Thus, they describe the
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relationship between the independent variable (X), mediator (M ), and outcome (Y ) in
terms of linear regressions. However, microbiome data are structured as a phyloge-
netic tree, high-dimensional, compositional, and highly skewed and often with many
zeros, which violates the basic assumptions (e.g., normality or linearity) of existing
methods. Thus a linear-based mediation model is not appropriate for
microbiome data.

Specifically, both Boca et al.’s and Zhang et al.’ approaches are restricted to the
SEM-based mediation setting. The normal assumptions among independent vari-
able, mediator, and outcome are challenging in omics studies. Like other SEM-based
mediation approaches and counterfactual-based causal mediation approach, the
implementation of Boca et al.’s approach needs to assume that the casual paths
exist, while no unmeasured confounders exist. An R package called MultiMed
(with the function name medTest) is included in online supplementary material.
The R package called HIMA for implementing the approach by Zhang et al. (2016)
is available at https://github.com/YinanZheng/HIMA. The R code called MedTest
for implementing the approach by Huang and Pan (2016) is available from the
supplement materials of the paper. Other mediation models were also proposed in
omics studies, such as Bayesian regularized mediation analysis with multiple expo-
sures (Wang et al. 2019) and high-dimensional mediation analysis, to identify causal
genes (Zhang 2019).

16.4 Specifically Designed Mediation Models
in Microbiome Studies

Statistically, both traditional mediation model and related mediation models in other
omics studies provide the frameworks, concepts, procedures, and notations for
newly proposed mediation models of microbiome data. However, neither traditional
mediation models nor related mediation models in other omics studies can fit the
unique features of microbiome data, as indicated in the motivating examples. In
current years, several mediation models have been specifically designed for analysis
of microbiome data. We will focus on introducing the frameworks and methods of
mediation analysis of microbiome data throughout the rest of the review book
chapter below (Table 16.2).

16.4.1 Distance-Based Omnibus Test of Mediation Effect
(MedTest)

16.4.1.1 MedTest Method

Chen and his colleagues (Zhang et al. 2018) proposed a distance-based approach for
testing the mediation effect of the human microbiome. The method was developed to
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Table 16.2 Main techniques used in microbiome mediation models

Model/study
Mediation
framework

Mediator,
exposure and
outcome

Method for
testing mediation
effect

Technique for
reducing
dimensionality

MedTest (2018)
(Zhang et al. 2018)

SEM-based Multiple
(or high-
dimensional),
distance-based
microbiome
mediators (either
continuous or
binary); single
continuous
exposure; and
single continu-
ous outcome

Permutation test
of the overall
mediation effect

Sample-wise
multiple dis-
tance metrics
(phylogenetic
tree-based and
non-tree-based
distances)

MODIMA (2019)
(Hamidi et al.
2019)

SEM-based Single mediator
and multiple
(or high-
dimensional),
multivariate
distance-based
microbiome
mediators; multi-
variate continu-
ous and binary
exposures, and
multivariate con-
tinuous outcome

Permutation test Pearson dis-
tance correla-
tion and partial
distance
correlation

CCMM (2019)
(Sohn and Li 2019)

Counterfactual-
based

Multiple
(or high-
dimensional) and
compositional
microbial media-
tors; single con-
tinuous or binary
treatment (expo-
sure); and single
continuous
outcome

An extension of
the Sobel test and
a bootstrap test

Log contrast
compositional
regression

IsometricLRTMM
(2019) (Zhang
et al. 2019)

SEM-based High-dimen-
sional and com-
positional, spe-
cific isometric
log-ratio-
transformed
mediator; single
continuous
exposure and
continuous
outcome

Joint significance
test of the expo-
sure and on the
mediator, and the
mediator on the
outcome

Isometric log-
ratio-based
transformation
and de-biased
Lasso technique

(continued)
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analyze the biological and high-dimensional mediation effects. An R package called
MedTest was developed for fitting the proposed distance-based omnibus test of
mediation effect model. Hereinafter, we refer to this method as the MedTest method.
The MedTest method uses the sample-wise distance matrices (both the phylogenetic
tree-based and non-tree-based) instead of working with the original OTU data. The
purposes of using distance matrices as input data are for dimension reduction and for
implicitly capturing the (nonlinear) transformation of the OTU abundances. This
method also uses permutation test for adjusting the potential non-normally distrib-
uted test statistic and thus can properly control the type I error.

Table 16.2 (continued)

Model/study
Mediation
framework

Mediator,
exposure and
outcome

Method for
testing mediation
effect

Technique for
reducing
dimensionality

SparseMCMM
(2020) (Wang et al.
2020)

Counterfactual-
based

Multiple
(or high-
dimensional) and
compositional
microbial media-
tors; single
binary treatment,
and single con-
tinuous outcome

Permutation tests
and, in particular,
linear log con-
trast regression
model and
Dirichlet regres-
sion model are
used to estimate
the causal direct
effect of treat-
ment and the
causal mediation
effects of
microbiome at
both the commu-
nity and individ-
ual taxon levels

Regularization
techniques

MedZIM (2020)
(Li et al. 2020)

Counterfactual-
based

Single mediator
(microbial
taxon); single
binary exposure;
and single con-
tinuous outcome

Delta method,
Riemann-Stieljes
integration, and
bootstrapping

Not available

NPEM (2020)
(Carter et al. 2020)

SEM-based Multiple
(or high-
dimensional)
mediators
(microbial taxa);
multiple continu-
ous exposures
and single
dichotomous
outcome

Iterative
one-sided
Extreme
Studentized
Deviate test and
the chi-square
test

Feature reduc-
tion techniques
of information
theory and
Mahalanobis
distance
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16.4.1.2 Using Distance Metrics to Reduce High Dimensionality

In this approach, the mediator M is microbiome feature vector defined as f lð Þ
M ¼

l ¼ 1, . . . , Lð Þ or, more generally, defined as a scalar function of the original OTU
abundance vector f lð Þ

M : ℝm ! ℝ where microbiome feature presents the abundance
or prevalence of a taxonomic group, the weighted average of several functionally
related OTUs, or even the richness of the entire microbial community. The mediation
model can be written as:

Y ¼ Xγ� þ ε

f lð Þ
M ¼ Xαl þ ε0l l ¼ 1 . . . Lð Þ

Y ¼
XL

l
f lð Þ
M βl þ Xγ þ ε00

ð16:18Þ

with the null hypothesis H0 : αlβl ¼ 0 for 8 f lð Þ
M where the coefficient vectors γ� and γ

represent the total effect and the direct effect of the independent variable X on the
outcome Y, respectively, and ε, ε0l, and ε

00 are random error terms that are independent

of X and the scalar function f lð Þ
M . Potential confounders can be included, as in general

multivariate model given a predictor vector X. There are two distinctive features of
this method: (1) it jointly analyzes all OTUs based on community-level analysis and
uses principal coordinate analysis (PCoA) on a distance matrix to incorporate the
tree structure information of microbiome data. Thus, this approach not only captures
the variation of evolutionarily related OTUs but also avoids multiple testing issues.
(2) The mediation effects are tested through a distance-based test statistic and a
nonparametric permutation test, which accommodates the non-normally distributed
microbiome data.

16.4.1.3 Remarks

MedTest highlights the importance of omnibus test based on multiple distance
measures such as unweighted, weighted, and generalized UniFrac distances and
Jaccard and Bray-Curtis distances over a specific distance measure. Given the
multivariate, non-normality, sparsity features of microbiome data and mediating
microbiome taxa are unknown a priori, the proposed distance-based omnibus test
of mediation effect model is an appropriate alternative approach to fit mediation
effects of microbiome data. However, the model also has disadvantages such as
(1) this mediation model only teats microbiome features (taxa) as mediators but does
not fit the mediation analysis that treats microbiome as independent variables or
outcomes and other factors (environmental, genetic, or disease) as mediators.
(2) This model is unable to differentiate direct effect from indirect effect because it
does not directly test mediation effects for individual taxa. The package MedTest is
freely available at https://github.com/jchen1981/MedTest. The paper on MedTest
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method was cited in these studies (Koh 2018; Hamidi et al. 2019; Leong 2019;
Zhang et al. 2019; Zitnik et al. 2019).

16.4.2 Multivariate Omnibus Distance Mediation Analysis
(MODIMA)

16.4.2.1 MODIMA Method

The framework of MODIMA (Hamidi et al. 2019) is also distance-based multivar-
iate omnibus test, which incorporates an entire omics assay as a mediator. In contrast
to the approach of distance-based omnibus test of mediation effect model (MedTest),
which uses the sample-wise distance matrices (PCoA) to reduce dimensions and to
capture the nonlinearity of OTUs, MODIMA analyzes the multivariate exposure-
mediator-response triples through partial distance correlation.

MODIMA method consists of two components: MODIMA test statistic and
permutation test. The MODIMA approach is under the framework of Pearson
correlations and partial correlations, but it uses distance correlation and partial
distance correlation statistics to ensure the correlation between vector-valued ran-
dom variables instead of between random variables. The idea is similar to MedTest
method, which uses a sample-wise distance matrix to reduce dimensionality. By
using a distance metric (such as Euclidean distance or specialized distance for
microbiome data), MODIMA develops a test statistic to test the dependences
among independent variables (X), mediator variables (M ), and outcome variables
(Y ) within each random vector. The test statistic is written as:

Sd dX Xð Þ, dM Mð Þ, dY Yð Þð Þ ¼ dCor dX Xð Þ, dM Mð Þð ÞpdCor dY Yð Þ, dM Mð ÞjdX Xð Þð Þ,
ð16:19Þ

where d(.) present appropriate pairwise distance matrices computed from the poten-
tially multivariate observations of independent variables (X), mediator variables
(M ), and outcome variables (Y ). Equation (16.19) indicates that distance matrices
for independent variables dX(X) mediator variables dM(M ), and outcome variables
dY(Y ) are the input data for both distance correlation between the independent
variables and mediator variables and partial correlation between the mediator vari-
ables and the outcome variables.

16.4.2.2 Permutation Testing of Mediation Effects

Following from Boca et al. (2014), MODIMA method takes the permutation testing
approach. The test statistic is:
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P ¼ 1
q

Xq

i¼1
1 Sd � Sd ið Þð Þ, ð16:20Þ

where Sd is the MODIMA test statistic under the null hypothesis; P is the p-value of
the observed Sd; Sd(i) is the re-computed test statistic when the correlation between
the independent and mediator variables is smaller than the partial correlation
between the outcome and the mediator variables; and q is the number of
permutations.

16.4.2.3 Remarks

The mediation approach of MODIMA is built on that of Boca et al. (2014) and
extends it to the high-dimensional data through correlating the distance matrices
between the independent and mediator variables and partially correlating the dis-
tance matrices between the mediator and the outcome variables given the matrices of
independent variables. Compared to traditional approaches and distance-based
omnibus test of mediation effect, MODIMA allows for multivariate exposures and
responses. It was shown that MODIMA methods are robust and sensitive and
increasing empirical power compared to the methods of Boca et al.’s permutation-
based testing and Zhang et al.’s sample-wise distance matrices (Hamidi et al. 2019).

Currently, mediation models for microbiome data are still rare; MODIMA is an
alternative method that works on a specific distance metric. However, MODIMA
methods also have some limitations. For example, (1) the development of MODIMA
was based on distance correlation and partial distance correlation methods. Further
research is necessary to conclusively validate on their appropriateness of application
to a given microbiome dataset. (2) The comparisons of MODIMA versus MultiMed
and MedTest were conducted in the single-mediator model, and the comparisons of
MODIMA versus MedTest were conducted in the multiple mediator model. How-
ever, the data that were used to compare the different models may not be appropriate
or at least not optimal because the data simulated by MODIMA assuming normal
distribution and linear correlations for independent, mediator, and outcome vari-
ables. MODIMA also set the mediator parameters based on Dirichlet-multinomial
distribution and a mixture of two datasets (saliva and tonsils) from the Human
Microbiome Project to model over-dispersion of microbiome data. Microbiome
data are typically not normal, not linear, and the dissimilarities between taxa are
not Euclidean distances. Thus, the assumptions of normal distributions, linearity,
and Euclidean distance do not typically present the features of microbiome data.
(3) The comparisons between MODIMA and MedTest conducted by MODIMA
were based on the Euclidean distance and three dissimilarity matrices: Bray-Curtis,
Jensen-Shannon divergence (JSD), and UniFrac. The performances may not be
comparable because the matrices used in MODIMA are not exactly same as those
used in MedTest. And (4) compared to MedTest, one more limitation of MODIMA
is that it has works on a specific distance metric rather than pooling analyses from
multiple metrics (Hamidi et al. 2019). The R package “energy” can be used for
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calculating the distance correlation of the independent-mediator variables and partial
distance correlation of mediator-outcome variables (Székely and Rizzo 2018). The R
package MODIMA test is available at https://github.com/Alekseyenko/MODIMA.

16.4.3 Causal Compositional Mediation Model (CCMM)

16.4.3.1 CCMM Method

CMM (Sohn and Li 2019) presents compositional mediation model. The R package
developed for CMM is called “ccmm” presenting causal compositional mediation
model. The model takes the compositional approach to estimate the causal direct and
indirect effects when mediators are high-dimensional and compositional. CMM
consists of two components (Sohn and Li 2019): (1) a sparse compositional medi-
ation model aiming to estimate the causal direct and indirect (or mediation) effects in
the simplex space and (2) tests of total and component-wise mediation effects using
bootstrap. The framework of CMM was developed using two components of
techniques: compositional estimation methods (Aitchison 1982; Billheimer et al.
2001) and the linear log contrast regression (Lin et al. 2014; Shi et al. 2016). The
techniques of composition and linear log contrast ensure the compositional data
“legally” in Aitchison’s simplex space and have desirable properties. The composi-
tional mediation model is written as:

Mi ¼ m0

M
aTi

M
hXi

� �M
U1i, ð16:21Þ

Yi ¼ c0 þ cTi þ logMið ÞTbþ gXi þ U2i, subject to bT1k ¼ 0, ð16:22Þ

where m0 and c0 are the baseline composition for Mi and Yi, respectively; a, b and
c are path coefficients; h and g are nuisance coefficients corresponding to the
covariate X; and 1k is a vector of k ones. The distribution of U1i is not specified,
while the distribution of U2i is assumed as normally distributed with U2i~N(0, σ

2).
With the baseline composition m0, composition parameter a, and nuisance h, the

formulations in Eq. (16.21) are to express how a treatment perturbs a composition
from the baseline composition. The main goal of Eq. (16.21) is thus to ensure all the
calculations within the simplex space and therefore have an intuitive interpretation.
Equation (16.22) is a typical regression model which links a treatment and a
composition to an outcome in this case. The distinctive feature is the imposed linear
constraint, bT1k ¼ 0, which plays a key role for ensuring the estimated regression
coefficients have desirable properties for compositional data.

16 Mediation Analysis of Microbiome Data and Detection of Causality in. . . 483

https://github.com/Alekseyenko/MODIMA


16.4.3.2 Hypothesis Testing of Mediation Effects

Through formulating the equations of (16.21) and (16.22) under the mediation
framework, the model decomposes the total effect of Ti on Yi into the direct effect,
c, and the total indirect effect, (loga)Tb. CMM is developed for the compositional
data. It has the compositional and additive properties: the total indirect effect equals
to the sum of the component-wise indirect effects. We can write the null hypothesis
of no total compositional mediation effect as below:

H0 : log að ÞTb ¼ 0 ð16:23Þ

The null hypothesis of no component-wise mediation effect can be written:

H0 : log ka j

� �
b j ¼ 0, 8 j 2 1, 2,⋯, kf g: ð16:24Þ

because the different mediators may have positive or negative mediation effects,
which results in the total mediation effect not correctly presenting the actual medi-
ation effect. The authors of this model suggest testing both hypotheses to avoid a
misleading conclusion about the mediation effect.

The null hypotheses (16.23) and (16.24) are tested by an extension of the Sobel
test (Sobel 1982) and a bootstrap approach with the later to avoid imposing an
assumption of normality for the indirect effect (Sohn and Li 2019). With a sensitivity
analysis, a causal total indirect effect is developed. However, we have no intention to
introduce the development here. The interested readers can reference the original
paper for the details.

16.4.3.3 Remarks

CCMM method has been the first to introduce compositional techniques in media-
tion analysis and may effectively avoid large p and small n problem (i.e., the
parameter space larger than the sample size). Furthermore, CCMM may have higher
power in detecting mediating taxa when no zero counts exist (Carter et al. 2020).
However, CCMMmethod has been reviewed having limitations. For example, (1) as
a common strategy in compositional data analysis, CCMM replaces zero counts by
arbitrary error term of 0.5. This is a limitation, which fails to address the zero-inflated
data structure (Xia et al. 2018a, b, c, d; Li et al. 2019). Actually, CCMM could fail to
converge when the proportion of zeros is high and number of taxonomic units is
large (Carter et al. 2020). (2) CCMM could result in much higher false-positive rates
to detect the associations between exposure variables and taxonomic abundance
because this method does not correct for correlation between exposure variables
(Carter et al. 2020). Moreover, CCMM method only considers univariate (i.e., a
single) exposure variable (Zhang 2019; Carter et al. 2020) and is proposed for
continuous response, though theoretically it could handle a binary response via a

484 Y. Xia



logit link function (Carter et al. 2020). The R package “ccmm” is available at https://
rdrr.io/cran/ccmm/. Examples of using CCMM method are available in this study
(Tang et al. 2019). Papers of citing the CCMM method can be found from these
publications (Li 2019; Srinivasan et al. 2019; Wang et al. 2019; Zhang et al. 2019;
Zitnik et al. 2019; Walter et al. 2020).

16.4.4 Isometric Log-Ratio Transformation for Microbiome
Mediation (IsometricLRTMM)

16.4.4.1 IsometricLRTMM Method

Zhang et al. (2019) proposed a mediation method for microbiome data using
isometric log-ratio transformation. The motivation of this development is that
current mediation methods are incapable of inferencing for a specific mediator in
the presence of high-dimensional nuisance confounders. The proposed method has
two main steps: first, uses the isometric log-ratio transformation (Egozcue et al.
2003) to transform the relative abundance (RA) of microbiome data, and then uses
ilr-transformed variables as the mediator variables (compositional mediators). Sec-
ond, uses the de-biased Lasso technique (Zhang and Zhang 2014) to estimate and
test the mediation effect of a mediator of interest among a large number of mediators.
The proposed method was developed under the SEM-based mediation framework.

16.4.4.2 Inference on the Ilr-Transformed Mediation Effect

Since the proposed method was developed within the SEM-based mediation frame-
work, it uses the product coefficient (αkβk) method to inference the mediated effects.
Where αk represents the relation between independent variable (X) and mediators
(M ), βk is the regression coefficient vector representing the relation between medi-
ators (M ) and outcome (Y ) adjusting for the effects of X and the covariates (Z ). The
null hypothesis of testing for mediation effect can be written as below:

H0 : α1β1 ¼ 0 vs:H1 : α1β1 6¼ 0: ð16:25Þ

In above hypothesis testing, the effects of X on M (α1) can be estimated via
ordinary least squares (OLS) estimator; however, one big challenge of analyzing
microbiome data is the issue of high dimensionality, which results in large p and
small n problem (in this case, the number of mediators p is larger than the sample
size n). To solve this problem, the proposed method utilizes the de-biased Lasso
technique to estimate β1. Next, the mediation effect α1β1 is tested through the joint
significance test developed by the same authors (Zhang et al. 2016).
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16.4.4.3 Remarks

Zhang et al. (2019) differentiate their ilr-transformation method from CCMM
method in three aspects: first, the framework of CCMM method is established
directly in the simplex space, while the high-dimensional mediation model of
ilr-transformation method is constructed in the Euclidean space via using the
ilr-transformed mediators. Second, the techniques that these two methods used to
transform mediators (M ) are different: CCMM method uses the additive log-ratio
(alr) transformation, while the ilr-transformation method utilizes the isometric
log-ratio transformation. Because these two approaches use different transforma-
tions, their mediation models have different capabilities: CCMM method can be
used to detect the mediation effect of individual composition, whereas
ilr-transformation method can be used to find the relative mediation effect of a
specific composition versus the rest of compositions. Third, their statistical methods
for testing compositional mediators are different: CCMMmethod uses the Sobel test
(Sobel 1982), whereas the ilr-transformation method employs the joint significance
test (Zhang et al. 2016).

The proposed ilr-transformation method targets two features of microbiome data:
compositionality and high dimensionality. This presents one direction of newly
developed statistical methods for analyzing microbiome data. However, the pro-
posed method has some limitations: first, the ilr-transformation is an orthonormal
isometry, which addresses certain difficulties of additive log-ratio (alr) and centered
log-ratio (clr) transformations, but its interpretability is subject to the selection of its
basis (Xia et al. 2018a, b, c, d) (p. 338). For example, the relative mediation effect is
difficult to interpret biologically, which may limit its application in microbiome data.
Second, similar to other compositional data analyses, the proposed method replaces
zero counts by the maximum rounding error 0.5. Microbiome data are sparse, which
is mainly due to zeros and small values in read counts. Replacing zero values with
small nonzero counts cannot solve sparsity problem; rather it makes the sparsity
problem even more complicated (Xia et al. 2018a, b, c, d) (p. 389). Third, as Zhang
et al. (2019) stated, the joint significance test method of medication effects is not a
robust inference method because the p-values calculated for the exposure and
ilr-transformed mediators and the outcome variable and ilr-transformed mediators
are both based on the normal distribution assumptions. The proposed method paper
was cited in this publication (Srinivasan et al. 2019).

16.4.5 Sparse Microbial Causal Mediation Model
(SparseMCMM)

16.4.5.1 Casual Mediation Model

Similar to CCMM, SparseMCMM (Wang et al. 2020) was specifically designed for
analyzing causal microbiome effects and identifying the specific microbial agents in
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the high-dimensional and compositional microbiome data. However, the focuses of
these two approaches have some differences. In CCMM (Sohn and Li 2019), the
package that implements the CCMM method is named as “ccmm” presenting
“causal compositional mediation model,” and the sufficient causal assumptions for
detecting causal effects are discussed; however, the model is called as “composi-
tional mediation model (CMM),” in which “causal mediation” is only implicated.

In contrast, the SparseMCMM (Wang et al. 2020) was named as “microbial
causal mediation model” and explicitly stated that the method follows
VanderWeele’s causal counterfactual mediation framework.

The SparseMCMM was designed to detect the association among three factors:
treatment (T, binary variable), microbiome (M, a vector of compositional microbial
mediators), and outcome (Y, continuous variable). The log-ratio analysis (Aitchison
1982) and Dirichlet regression (Hijazi and Jernigan 2009) are the two available
methods to analyze compositional (relative abundance) data. The distinctive feature
of SparseMCMM lies on its combining these two compositional methods together
and then assessing the causal mediation effect of microbiome on the outcome under
the counterfactual mediation framework (VanderWeele and Vansteelandt 2009,
2010; VanderWeele 2016). SparseMCMM consists of two basic regression models:
compositional or log-ratio analysis model and Dirichlet regression.

Compositional (Log-Ratio Analysis) Model

The compositional (log-ratio analysis) model is written as:

Yi ¼ α0 þ αTTi þ αTM log Mið Þ½ � þ αTC log Mið Þ½ �Ti þ αTXXi

þ εi; subject to αTM1

¼ 0, and αTC1 ¼ 0, ð16:26Þ

where α0 is the intercept, αT is the coefficient of treatment, respectively; αM ¼
αM1 , . . . , αMp

� �T
and αC ¼ αC1 , . . . , αCp

� �T
are the vectors of coefficients of micro-

bial mediators and interactions between treatment and mediators, respectively;
αX ¼ αX1 , . . . , αXq

� �T
is the vector of coefficients of covariates; and εi~N(0, σ

2) is
the error term. With this formulation, this model is able to model the outcome that is
determined by the treatment, compositional mediators, interactions between the
treatment, and mediators and covariates. The two constraints terms αTM1 ¼ 0 and
αTC1 ¼ 0 ensure that the analysis within the compositional domain.

Dirichlet Regression

The Dirichlet regression in the generalized linear model fashion is written as below:
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E Mij

� � ¼ γ j Ti,Xið Þ
Pp
m¼1

γm Ti,Xið Þ
,

log γ j T i,Xið Þ	 
 ¼ β0j þ βTjTi þ βTXjXi

ð16:27Þ

where β0j is the intercept and βTj and βXj are the coefficients of treatment and
covariates for the jth taxon, respectively. The Dirichlet regression has two specific
assumptions: (1) given treatment and covariates, mediators are distributed as
Dirichlet regression; and (2) their microbial relative means are linked by treatment
and covariates. Given above formulation, this model is able to model the microbial
relative abundance as a function of treatment and covariates.

16.4.5.2 Hypothesis Testing of Microbiome Mediation Effects

To determine the direct and mediation effects, three additional equations are formu-
lated under the counterfactual framework:

DE ¼ αT þ αTCE log Mð Þ½ �T ¼ 0,X�, ð16:28Þ

ME ¼ αTM þ αTC
� �

E log Mð ÞjT ¼ 1,X½ � � E log Mð ÞjT ¼ 0,X½ �f g ð16:29Þ

¼
Xp
j¼1

αM j þ αC j

� �
E log M j

� �jT ¼ 1,X
� �� E log M j

� �jT ¼ 0,X
� �	 


¼
Xp
j¼1

ME j

Summing DE and ME gives the total effect of the treatment on the outcome:

TE ¼ DEþME ¼ E YT¼1,M T¼1ð Þ � YT¼0,M T¼0ð ÞjX
� �

: ð16:30Þ

where DE is the expected difference of the outcome between the treatment and
without treatment when the mediators take the value under without treatment. ME
presents the mediation effect (summation of the individual mediation effects from
each taxon), which is the expected difference of the outcome between the mediators
(microbiome composition) under treatment given covariates and the mediators under
without treatment given covariates.

The term MEj is the product of two coefficients αM j þ αC j

� �
: the jth main effect’s

microbial coefficient and the interaction effect coefficient of this taxon and the
treatment on the outcome; and {E[log(Mj)| T ¼ 1,X] � E[log(Mj)| T ¼ 0,X]}
represents the treatment effect on the jth taxon.
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The hypothesis tests for microbiome mediation effects are developed at both
community and taxon levels. The null hypothesis of no overall mediation effect
(OME) at the community level H0 : ME ¼ 0 is defined as:

OME ¼ bαTM þ bαTC� � bE log Mð ÞjT ¼ 1,X½ � � bE log Mð ÞjT ¼ 0,X½ �
n o

� f bα,bβ� �
, ð16:31Þ

and the null hypothesis of taxon levels is to test whether at least one component-wise
MEj is significantly nonzero: H0 : MEj ¼ 0, 8 j 2 {1, . . ., p}.

By considering the high dimensionality of the mediators, it is defined as:

CME ¼
Xp
j¼1

ME2
j � g bα,bβ� �

: ð16:32Þ

It is challenge to estimate the parameters. To obtain parameter estimation, several
strategies were proposed, including estimating log-likelihood function from the
models with the nonlinearity and constraints, high dimensionality of microbiome
data, linear log contrast, and Dirichlet regressions. How to derive the asymptotic
distributions of the mediation test statistics was also discussed. The interested
readers can reference the original paper for details (Wang et al. 2020).

16.4.5.3 Remarks

SparseMCMM has the advantages: (1) compared to other microbiome medication
models, it has capability of estimating microbiome mediation effects at both the
community and taxon levels through rigorous statistical modeling framework. (2) It
provides an approach to deal with the issues of compositional and high-dimensional
mediators through log contrast regression and regularization techniques. (3) It is
explicitly instrumented with covariates; therefore, this model is more feasible to be
used for hypothesis testing of advanced and complicated microbiome mediations.

Especially, to compare SparseMCMM and MedTest, the different focuses and
strengths have been noticed: MedTest focuses on detecting an overall mediation
effect by using an ensemble of distance measures, whereas SparseMCMM has the
capability of testing mediation effects at both community and taxon levels, and in the
situation of both positive and negative component-wise mediation effects being
present, its test of component-wise mediation effects (individual mediation effects
from each taxon) is more powerful. SparseMCMM and CCMM share two general
features: (1) they both were developed under the causal mediation framework with
assuming that the mediators are compositional and high-dimensional. (2) Both
methods emphasize that performing hypothesis testing at both total community-
and component-wise mediation effects is important and are capable of conducting
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hypothesis testing of total compositional and component-wise mediation effects.
CCMM also provides a clear interpretation of component-wise indirect effects (Sohn
and Li 2019). By considering that the opposite directions of different component-
wise mediation effects could disguise the actual total mediation effect, CCMM also
suggests conducting both total and component-wise mediation effects testing to
avoid misleading results of medication effects. However, these two methods differ-
entiate them from each other in several essential ways (Wang et al. 2020), for
example, (1) either using Dirichlet regression (SparseMCMM) or using the algebraic
structure of a composition under the simplex space to characterize the relationship
between treatment and microbiome composition; (2) whether it is flexible
(SparseMCMM) or not flexible (CCMM) to handle the interaction between treat-
ment and microbiome to address potential concerns regarding the bias due to
neglecting the presence of interaction effects; and (3) either selecting casual taxa
using regularization techniques (SparseMCMM) or identifying the key taxa using
confidence interval estimates (CCMM). The R package SparseMCMM has been
developed for this proposed causal mediation models. It is available from https://
sites.google.com/site/huilinli09/software and https://github.com/chanw0/
SparseMCMM.

16.4.6 Mediation Analysis for Zero-Inflated Mediators
(MedZIM)

16.4.6.1 MedZIM Method

MedZIM (Li et al. 2020) was developed under the potential outcomes
(PO) framework to address the challenges of modeling mediation effects of the
zero-inflated microbiome data structure. The goals of this method are to (1) disen-
tangle the confusion of mediation effect due to zeros and (2) identify the observed
zero-valued data to differentiate structural zeros (true zeros) from false zeros. The
MedZIM method takes the approach of modeling the zero-inflated data as two-part
distributions to decompose the mediation effect of a zero-inflated mediator into two
components: a unit change of positive counts or continuous values and a discrete
jump from zero to a positive value. Thus, based on this method, the total mediation
effect is obtained by summing each of the estimated and tested mediation effects
from these two components.

MedZIM consists of two equations and is written as:

Y ¼ β0 þ β1M þ β21 M>0ð Þ þ β3X þ β4X1 M>0ð Þ þ β5XM þ ε1 :ð Þ, ð16:33Þ
T θð Þ ¼ υ0 þ υ1X, ð16:34Þ

where Eq. (16.33) presents a general form of linear parametric zero-inflated distri-
butions, such as zero-inflated beta (ZIB), zero-inflated log-normal (ZILoN), and
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zero-inflated Poisson (ZIP). The term of 1(.) is an indicator function, and ε is the
random error term assuming normally distributed. The βs are regression coefficients.
This model is able to model exposure-mediator interactions owning to including the
two interaction terms: X1(M > 0) and XM in Eq. (16.33). The function T(θ) in
Eq. (16.34) models the association between mediator (M ) and independent variable
(X) (i.e., treatment or risk factor) through the parameter θ of the mediatorM and two
K-dimensional regression coefficients υ0 (intercept vector) and υ1 (slope vector).

16.4.6.2 Mediation Effect and Direct Effect Under
the Counterfactual-Based Framework

The mediation analysis for zero-inflated mediator is implemented through a crucial
Limit of Detection (LOD) mechanism for observing zero value of the mediator
called as “LOD mechanism.” LOD mechanism describes two types of zeros in the
observed abundance data: true abundance of zero (i.e., absence) and abundance that
is reported as zero as a consequence of the measurement procedure.

P M� ¼ 0 M,Ljð Þ ¼ 1 ML<1ð Þ ð16:35Þ

where M� denotes the observed value of the mediator M. L is the library size (i.e.,
sequencing depth), and the product ML presents the sample absolute abundance
(SAA) of the taxon in a sample. Under the LOD mechanism, a value of zero is
observed when all SAA below 1: LOD.

The full formulation of direct and mediation effect or indirect effects is compli-
cated. Briefly they are formulated under counterfactual-based framework using
Riemann-Stieljes integration (ter Horst 1986). The model defines three equations:
NIE (natural indirect effect), NDE (natural direct effect), and CDE (controlled direct
effect). Summing NIE and NDE equals to the total effect:

NIE ¼ E Yx2Mx2 � Yx2Mx1ð Þ, ð16:36Þ

NDE ¼ E Yx2Mx1 � Yx1Mx1ð Þ, ð16:37Þ

CDE ¼ E Yx2m � Yx1mð Þ, ð16:38Þ

where NIE, NDE, and CDE are average values from changing x1 to x2. Mx is the
value ofM when the independent variable X ¼ x, and Yxm is the value of Y when (X,
M ) ¼ (x,m).

By plugging Eqs. (16.33) and (16.34) into the above definitions of NIE, NDE,
and CDE and using Riemann-Stieljes integration, Li et al. (2020) showed that the
natural indirect effect is determined by the mediation effect due to the change of the
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mediator on its numeric scale (NIE1) and the mediation effect due to the discrete
binary change of the mediator from zero to a nonzero status (NIE2). The mediation
effect and direct effect and their confidence intervals (CI) for ZIB are obtained using
the delta method and an alternative approach bootstrapping (Efron and Tibshirani
1986).

16.4.6.3 Remarks

MedZIM model has the advantages: (1) taking into account the zero-inflated struc-
ture of the mediator and (2) considering the mechanism for observing false zero
values of the mediator (Li et al. 2020). It was shown that the proposed model
outperforms the causal mediation analysis approach which was developed under a
PO framework and implemented in R package “mediation” (Imai et al. 2010a, b;
Tingley et al. 2017) with simulated data for the mediators of zero-inflated beta (ZIB),
zero-inflated log-normal (ZILoN) and zero-inflated Poisson (ZIP), and two real
datasets with ZIB. However, the MedZIM model also has some limitations. First,
the proposed approach was only illustrated through ZIB, ZILoN, and ZIP. More
evidences from other zero-inflated distributions are needed to prove the appropri-
ateness of the proposed approach because the literatures have shown that zero-
inflated negative binomial (ZINB), zero-hurdle negative binomial (ZHNB), and
even negative binomial (Zitnik et al. 2019) are all better than ZIP in modeling
zero-inflated and over-dispersed data including microbiome data (Xia et al. 2012b,
2018a, b, c, d; Xu et al. 2015; Xia and Sun 2017). Second, the proposed method
takes a single-mediator approach analyzing each individual mediator one by one and
then adjusting for multiple testing using the FDR method. This approach is not an
effective approach for high-dimensional mediation analysis. Third, the approach of
MedZIM analyzing each taxon as a mediator one by one cannot handle high
dimensionality and cannot adjust the correlation due to hierarchical structure of
phylogenetic tree (Li et al. 2020). Fourth, a sensitivity analysis is needed to check
and validate the model robustness and assumptions (Li et al. 2019).

16.4.7 Nonparametric Entropy Mediation (NPEM)

16.4.7.1 NPEM Method

Currently, An and her colleagues (Carter et al. 2020) proposed a nonparametric
framework called nonparametric entropy mediation (NPEM) utilizing information
theory for mediation analysis of high-dimensional metagenomic data. As reviewed
in Sect. 16.2, the SEM-based mediation methods require standard regression
assumptions, including linearity, additivity, no collinearity, and sample size larger
than parameter space. while the counterfactual-based mediation methods often limit
to either a single exposure variable and a linear relationship between parameters or
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binary exposures or continuous responses. The counterfactual-based mediation
approach also requires no-confounding assumptions to ensure a casual interpretation
and to confirm unmeasured confounders via a sensitivity analysis.

However, many of these assumptions are often violated when counts data are
used in the context of genomics and metagenomics studies. The aim of NPEM is to
utilize information theory to detect significant mediation effects with high-
dimensional exposures and mediators and varying data types while avoiding stan-
dard regression assumptions (Carter et al. 2020).

16.4.7.2 Hypothesis Testing of Mediation Using Mutual Information

NPEM model is constructed based on a multivariate stochastic process and the
mutual information (MI) theory. NPEM is a nonparametric framework using feature
reduction techniques of information theory to construct tri-variate mediation model
on the SEM structure.

First, NPEM describes the mediation model as a multivariate stochastic process.
The mediation model assumes that the set of exposure variables (X ¼ a vector of

exposures), the set of microbial taxa (M ¼ a vector of mediators), and a clinical
outcome Y are generated from a multivariate stochastic process. And the relationship
between variables from the stochastic processes can be examined using the mutual
information.

Second, NPEM uses feature reduction techniques of information theory to define
the contributed information to capture the unique mutual information from a
variable X.

Information theory is a theory of communication that defines definite,
unbreachable limits on precisely how much information can be communicated
between any two components of any system, regardless of whether this system is
man-made or natural (Shannon 1948; Shannon and Weaver 1949; Reza 1994; Stone
2015).

Information can be measured by Shannon entropy and mutual information
(MI) (Shannon 1949). Shannon entropy is defined as:

H Xð Þ ¼ �
X

x2Xp xð Þ log p xð Þ, ð16:39Þ

where p(x) represents the probability of observing X ¼ x.
The joint Shannon entropy is defined as:

H X,Yð Þ ¼ �
X

x2X
X

y2Yp x, yð Þ log p x, yð Þ, ð16:40Þ

which presents Shannon entropy of a multivariate process between two variables
X and Y where p(x, y) represents the probability of observing X ¼ x and Y ¼ y.
Mutual information (MI) is defined as:
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MI X,Yð Þ ¼ H Yð Þ þ H Xð Þ � H X, Yð Þ
¼

X
x2X

X
y2Yp x, yð Þ log p x, yð Þ

p xð Þp yð Þ ,
ð16:41Þ

which presents the overlap of information produced by multiple stochastic pro-
cesses. In NPEM, Carter et al. (2020) applied information theory to compare joint
distributions of exposure, mediator, and outcome variables with the marginal distri-
butions of subsets to measure association between these three variables. They
assumed that exposure, mediator, and outcome variables are generated in a multi-
variate stochastic process and used mutual information to measure the dependency
between these three variables. If the two variables are independent, then the infor-
mation metric is zero. To further capture the unique mutual information from a
variable X, the contributed information is additionally defined as:

C X, Y ,Wð Þ ¼ MI X,Yð Þ �
X

w2W
MI X,wð Þ

Wk k2 , ð16:42Þ

where W presents a set of measured variables.
Third, NPEM uses mutual information to represent the tri-relationships between

the exposure and mediator and outcome.
The NPEMmodel is constructed based on SEM structure in Fig. 16.1. The NPEM

model can be visualized in Fig. 16.2 through Venn diagram to represent information
content and model effects.

In above Venn diagram, β(¼β1 + β2) represents the overlap in information
contained by M and Y, β1 represents the overlap of α and β, and β2 represents the

Fig. 16.2 Venn diagram representing information content and mediation effects within
SEM-framework. In the diagram, the areas represent the model effects, for example, α (i.e., the
intersection of blue circle and red circle) represents the relationship between the exposure and
mediator, and β1 (i.e., the intersection of three circles) represents the relationship between all three
variables, while β2 (i.e., the area of intersection of red and yellow circles, but not in blue) represents
the relationship between the mediator and response excluding the exposure, and γ0 (i.e., the overlap
of blue and yellow circles) represents the total effect
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unique information from M. The existence of mediation effects can be captured by
measuring α and β2. The two relationships α and β2 can be expressed in terms of
mutual information as MI(X, M ) and MI(M, Y ), respectively as shown in Fig. 16.2.
The mediation effects exist only when β2 6¼ 0. Because when both β1¼ 0 and β2¼ 0,
then M does not offer any information about Y, and there is no mediation effect,
when β1 6¼ 0 and β2 ¼ 0; all information M provides about Y is also contained in X;
this scenario is not considered as a mediation effect due to perfect collinearity
between exposure X and mediator M. Thus, this Venn diagram shows that the
overlap of all variables is not sufficient to define a mediation effect and any scenario
where β2 ¼ 0 would not be considered a mediation effect (Carter et al. 2020).

NPEM model uses two approaches to test mediation using mutual information.

Univariate Entropy Measure

A univariate entropy measure (i.e., do not separate the zero and nonzeros counts for
each taxon) is the single kernel approach, in which a single Gaussian kernel is used
to estimate the distribution of OTU abundance and to calculate the contributed
information.

Since microbiome data have a large number of taxa and generally only some of
them play mediating effect, in other words, a vast majority of the signals observed
are due to the bias effect. Thus, a true relationship between variables should be
substantially higher than the expected bias. NPEM model is developed under this
very general assumption. For each taxon j, the null hypothesis of no mediation effect
is written as:

H0 : C Xi,M j, S
� � � φα,j,8i 2 1, . . . , If g or C M j,Y ,T

� � � φβ2
: ð16:43Þ

The alternative hypothesis is written as:

Ha : ∃i 2 1, . . . , If g : C Xi,M j, S
� �

> φα,j and C M j,Y , T
� �

> φβ2
: ð16:44Þ

where φα, j and φβ2
represent the expected bias for contributed information with a

fixed taxon j and Y, which are conservatively estimated as the mean contributed
information scores for taxon j, respectively:

φα,j ¼
X

Xi2 X�Sð Þ
C Xi,M j, S
� �
j X � Sð Þj , ð16:45Þ

φβ2
¼

X
M j2 M�Tð Þ

C M j,Y ,T
� �
j M � Tð Þj , ð16:46Þ

where X � S represents the set of exposure variables which are currently unselected
and M � T represents the set of OTUs which are currently unselected. A greedy
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search algorithm for univariate test of mediation effects is developed using an
iterative one-sided Extreme Studentized Deviate (ESD) test (Grubbs 1950), which
was developed for unusually high value detection.

Based on these hypotheses of mediation effect, (1) for a particular taxon ( j) to be
a mediating taxon, there must be significant relationships from at least one exposure
from the set of X variables, through this taxon ( j) to the response Y; and (2) the
mediation effect for each mediator must be evaluated across all exposures simulta-
neously within each fixed taxon j. Under this mediation paradigm, a FDR corrected
p-value pα, j is obtained by the ESD test of the α relationship between the full
exposure set X and an individual microbial taxon (Mj); and a FDR corrected p-value
pβ, j is obtained by the ESD test of the β2 relationships between the set of all
microbial taxa M and the clinical response (Y ). The final p-value for testing the
mediation effect of taxon j is conservatively composited as pj ¼ max ( pα, j, pβ, j).

Bivariate Entropy Measure

A bivariate entropy measure is two-kernel approach to separately calculate contrib-
uted information metrics for both presence-absence and nonzero counts. In bivariate
approach, an Aitchison-Aitken kernel is used to estimate presence-absence data, and
a Gaussian kernel is used to estimate the distribution of nonzero counts of OTU
abundance. Finally both contributed information scores are leveraged.

A general hypothesis testing whether a relationship is significant or not is
proposed as:

H0 :k C
* k� φ vs: Ha :k C

* k> φ, ð16:47Þ

where k C
* k represents any norm or distance metric for the vector of two contributed

information metrics and C
*

represents from zero and nonzero counts. Mahalanobis
distance (Mahalanobis 1936) is used to measure the difference in scale and correla-
tion between presence-absence and nonzero counts.

MD C
*� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
* � μ

*
� �0X�1

C
* � μ

*
� �r

, ð16:48Þ

where μ
* represents the vector of means for C

*
and ∑ represents the covariance of the

two contributed information scores in C
*
. Mahalanobis distance normalizes each axis

to a mean value of zero and variance of 1; a correlation between scores does not need
to be conducted. The general hypothesis can be rewritten using the distance from
expected bias:
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H0 : MD C
*� �

� φ vs: Ha : MD C
*� �

> φ: ð16:49Þ

For a particular taxon ( j) to be a mediating taxon, similar to the univariate entropy
measure, a significant mediation structure must bridge from at least one exposure
through the taxon to the clinical response; and within each fixed taxon j, all
exposures must be simultaneously evaluated.

For each fixed taxon j, the null and alternative hypotheses terms of Mahalanobis
distance can be written as follows:

H0 : MD *Cα,i,j
� � � φα,j,8i 2 1, . . . , If g or MD *Cβ2,j

� � � φβ2
, ð16:50Þ

Ha : ∃i 2 1, . . . , If g : MD *Cα,i,j
� �

> φα,j and MD *Cβ2,j
� �

> φβ2
: ð16:51Þ

A chi-square test is used to compare the two dimensions (i.e., for zero and
nonzero parts) of Mahalanobis distance with 2 degrees of freedom to identify
unusually high contributed information values (De Maesschalck et al. 2000).

A greedy search algorithm for bivariate test of mediation effects is developed
same as the univariate test by evaluating the contributed information twice, once for
the presence-absence data and once for nonzero counts data. And the final p-values
are obtained also same to the univariate test approach.

16.4.7.3 Remarks

NPEM model mainly has two benefits, owing to using information-based methods:
(1) does not need the assumptions of underlying distributions of data types of
genomic or metagenomic data and response variable (e.g., clinical outcome) and
(2) is flexible and capable in handling nonlinear or nonadditive relationships
between variables. NPEM can handle any data types of variables such as continuous,
discrete, or mixed. It was also showed that NPEM outperforms the nonparametric
test (MultiMed) (Boca et al. 2014) and count-based regression model (iGWAS)
(Huang et al. 2015) in terms of power and type I error (Carter et al. 2020). Thus,
NPEM could be an alternative to the existing mediation analyses for integrating
multiple omics datasets. However, the NPEM model has some limitations: (1) the
performance of NPEM depends on the data characteristics and selected test statistic
(Carter et al. 2020). For example, the optimal use of the univariate and bivariate tests
is mainly determined by the signal strength in the data. The optimal use of a singular
test and a sequential test is also affected by the proportion of zeros in the data. In
practice, all these are hard for the users to choose the test methods to use if there is no
procedure to test the signal size. (2) The singular Grubb’s test is designed to select
singular outliers, whether or not it is appropriate or optimal for testing
multidimensional microbial taxa needs further researches to validate. (3) Mediation
effects of microbial taxa could be positive or negative. However, Mahalanobis
distance metric does not consider directionality; thus, not only the unusually low
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signals may also be selected (Carter et al. 2020), but also the bidirectional mediation
effects may be missed using the Mahalanobis distance metric. (4) The Gaussian
kernel assumes normal continuous properties of the data. Although this assumption
appears reasonable in many studies, including the one considered here, there may
have examples in which they are not met. Unfortunately, any model assumptions are
rarely checked in practice; and in fact, it would be extremely difficult to check them.

16.4.8 Some Comments About Current Mediation Models
for Microbiome Data Analysis

16.4.8.1 Direction of Mediation Methods in Microbiome Studies

Currently, the direction of proposed mediation methods for microbiome data is
correct because all these methods try to address some issues of microbiome data
structure and features from their perspectives. However, as we reviewed in 2018 that
mediation methods for microbiome data were in infant stage (Xia et al.
2018a, b, c, d), now it still in the developing period because some main issues
have not been solved by these proposed methods, for example, detecting causality
and generalizing the methods to all kinds of microbiome data. There is still lack of
mediation models that treat environmental or host factors as mediation effects.
Microbiome taxa have different levels. The phylogenetic tree can provide informa-
tion of the taxonomical and evolutionary relationships among taxa and thus is
another causal pathway to interpret mediation effects among treatment, microbiome,
and outcome. Although currently MedTest includes the phylogenetic tree in com-
puting dissimilarity matrix, and SparseMCMM adds an option to use the phyloge-
netic tree information, however, it still is a challenge to clearly clarify the causal path
based on phylogenetic tree. Thus, the current medication models either do not have
phylogenetic tree information or not directly use it. For example, MedTest uses
phylogenetic tree-based distances, and SparseMCMM defers its choice of phyloge-
netic tree option.

16.4.8.2 Who Are Mediators: Microbial Taxa, Host, or Environment
Factors?

Currently, microbiome mediation models all focus on microbiome as mediators.
Actually, in real microbiome data, host or environment factors also could be
mediators. For example, gut microbiome is increasingly recognized as an environ-
mental factor that can shape the brain through the microbiota-gut-brain axis, and the
host’s metabolism mediates the causal role of dysbiosis of the gut microbiome on
depression (Zheng et al. 2016).
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16.4.8.3 Modeling Mediation Effects of Microbiome Data Is a Real
Challenge

Generally, different mediation models only address partial issues or challenges of
modeling mediation effects of microbiome data. Thus, it is challenge to confirm the
true mediation effects of microbial taxa based on different mediation models.
Typically, when we apply the different proposed models to the same dataset, we
often obtain controversial results about mediation effects. For example, in above
reviewed seven models, four of them used diet, BMI, and gut microbiome compo-
sition data (Wu et al. 2011) to illustrate their proposed methods. However, only
MedTest obtains omnibus testing significant mediation effect, both MODIMA and
CCMM fail to detect mediation effects. The ilr-transformation method identified
three significant taxa without adjusting for multiple testing; however, after adjusting
by FDR, none of taxa is significant.

16.4.8.4 Developing Longitudinal Mediation Models for Microbiome
Data Analysis Is Difficult

It is a big challenge to develop mediation models for microbiome data analysis under
the framework of longitudinal data setting. Thus, currently it still lacks of a longi-
tudinal mediation model for microbiome data. The association among environmental
factors, microbiome, and host is dynamic and very complicated. The more real and
true microbiome data should have a temporal dimension, and thus mediational
analysis of microbiome data should be performed within longitudinal data setting.
However, it is a real challenge to accommodate the high-dimensional and compo-
sitional microbiome data into longitudinal and causal mediation model (Xia et al.
2018a, b, c, d).

16.4.8.5 Multicollinearity Especially Challenges the Mediation Analysis
of Microbiome Data

Multicollinearity problems are common in multivariate analysis. However, multi-
variate taxa in microbiome data are compositional, which further complicates the
issue of multicollinearity in microbiome research and especially in mediation anal-
ysis of microbiome data.

16.4.8.6 Model Fitting Assumptions and Modeling Issues Need to be
Considered

When developing mediation methods for microbiome data, we need consider not
only the specific features of microbiome data but also the common assumptions of
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model fitting and issues of modeling mediation analyses. For example, in regression-
based mediation model, the inferential assumptions include temporal precedence,
measure timing, normality of independent variable, mediator and outcome, normal-
ity of product of coefficients, omitted inference, causal inference, and
theoretical vs. empirical mediator.

16.4.8.7 Incorporating Multilevel SEM Modeling into Mediation
Methods

Currently, mediation methods for microbiome data have not incorporated multilevel
SEM modeling techniques. Microbial taxa have multiple ranks, to secure consis-
tently estimating standard errors, and to test statistics due to dependence within the
clusters, a mediation model for microbiome data may need to incorporate these
different ranks of taxa in multilevel SEM modeling. Thus, an alternative approach to
develop mediation methods for microbiome data is to incorporate multilevel SEM
modeling techniques. In SEM, the development of latent growth curve modeling
(LGCM) is the last milestone. The longitudinal microbiome data can be modeled in
LGCM. In LGCM the analysis is based on repeated measures, in which the changes
of microbiome are conceptualized as latent variables and the dependence of the
repeated measures on these unobservable changes of microbiome are represented
and interpreted by the factor loadings. LGCM is often used in the social sciences. Of
course, using LGCM to analyze microbiome is more challenge, and imbedding a
mediation model in LGCM to model microbiome data is even more difficult.

16.4.8.8 Mediation Analysis Is Not Causation Analysis Yet

Mediation analysis is not fully equal to causation analysis. In above reviewed
mediation models, some are called “causal mediation” models. Actually we should
note that mediation analysis and causal analysis are not completely overlapped.
Because any statistical mediation models still subject to the same rules as associa-
tion, that does not prove causality. To prove its causality, the mediation model
depends on many assumptions such as no unmeasured confounders. For example,
distance mediation does not suggest causal relationship (Zhang et al. 2018), and
CCMM need meet several model assumptions to identify the causal direct and
indirect effects (Sohn and Li 2019).

16.5 Detecting Causality in Microbiome Studies

Causality is a concept of both philosophy and statistics. Causality is a philosophic
ontology or metaphysics and also a methodology. Causality is philosophic theory
that meets scientific practice (Illari and Russ 2014).
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16.5.1 Causality as a Philosophic Ontology or Metaphysics

First of all, causality is a philosophic ontology or metaphysics. Early in the third-
century BC, Aristotle discussed how a thing comes about in his Metaphysics on
efficient cause. This book was thought as the beginning of mediation analysis. He
stated that “Plainly we are seeking the cause. And this is the essence (to speak
abstractly), which in some cases is the end, e.g., perhaps in the case of a house or a
bed, and in some cases is the first mover; for this also is a cause. But while the
efficient cause is sought in the case of genesis and destruction, the final cause is
sought in the case of being also” (Book Z, 17) (translated by W. D. Ross).

Inferring causality is really challenging from philosophic theory. Thus, skeptical
about causality always exists since beginning of creating this concept until nowa-
days (Pearson 1900; Russell 1912; Norton 2003; Lipton and Ødegaard 2005; Briggs
2012). As a skeptical empiricist, Hume adopted the tradition of skepticism on
causality. Thus, he argued persons are able to identify causes but can observe the
regularity of events. His regularity definition of causation was given in Section VII
of his book An Enquiry Concerning Human Understanding in 1748 when he talked
about “the idea of necessary connection.” Where he wrote: “We may define a cause
to be an object followed by another, and where all the objects, similar to the first, are
followed by objects similar to the second.” Surprisingly it was also Hume who first
gave the explicit definition of causation in terms of counterfactuals (Menzies 2014)
immediately following the first definition. Where he wrote: “Or, in other words,
where, if the first object had not been, the second never had existed.” These two
definitions of cause are very different.

In contrast, Kant argued that causation is a mere sensibility itself; but its nature is
unknowable (see his major work Critique of Pure Reason in 1781) (Kant 1781). In
this work, he took a synthesized way over traditional rationalists and empiricists
attempting to explain the relationship between reason and human experience. Kant
thus moved beyond the traditional metaphysics on causation. His theory of causation
is totally different from Hume’s skepticism.

Starting with J. S. Mill (1843: A System of Logic) (Menzies 2014), the counter-
factuals were analyzed “metalinguistically” in terms of implication relations between
statements. However, as empiricists, both Hume and Mill among other empiricists
had no interest and hence did not try to explain causation via counterfactuals. Thus,
the true conditions of counterfactuals were not clear until the development of
possible world semantics in the early 1970s (Menzies 2014), although there were
rigorous counterfactual analyses of causation in the late 1960s. The most popular
approaches to causation in the 1960s generally focused on formulating causation in
terms of necessity and sufficiency of causes for their effects, which treat causation as
a natural law (Bernstein 2019). Such “sufficient cause” approach of causation first
appeared in philosophy (Hempel 1965; Mackie 1965) and then impacted and
extended to other fields such as in epidemiology (MacMahon and Pugh 1970;
Rothman 1976), law (Wright 1988), and psychology (Cheng 1997; Novick and
Cheng 2004) until early 2000s. The idea behind these approaches is the determinism.
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Although in 1960s, there existed argues regarding whether or not successful causal
claims require involvement of lawful regularity and broad natural laws (Scriven
1962), however, the paradigm shift of the causation theories occurred until early
1970s. In 1973, Lewis believed that the logical connection between cause and effect
should be something besides necessity, sufficiency, or lawful regularity. His theories
of causation became the seminal statement of the counterfactual approach (Bernstein
2019).

16.5.2 Causality as a Methodology and Specifically
a Statistical Theory of Probability

Second, causality is also a methodology and specifically a statistical theory of
probability.

Although there could be various differences on causation between SEM and
counterfactual mediation approaches, the largest common feature they share is that
both approaches focus on how to model causation. In other words, they treat
causation as a statistical method.

SEM approach of modeling causation has been popular since Baron and Kenny’s
work; its root may be back to Wright’s path analysis method (1921, Correlation and
Causation) (Wright 1921). Counterfactual causation theory began at Rubin’s early
1970s work. Although Rubin himself emphasized that it rooted from or inspired by
Mill, Neyman, Fisher’s works, actually Rubin’s counterfactual causation theory was
also developed under the context of Lewis’ philosophy of causation and sufficient
and necessary theory. The development from association to causality (Freedman
1999) has taken a long time, and there exist many arguments; however, casual
inference has showed that it is possible to establish causality statistically for both
randomized and non-randomized studies (Rubin 1974). Actually, the approach of
casual inference has been continuing on statistical method. For example, counter-
factual mediation analysis provides the opportunity to adjust covariates to reduce the
confounding effects based on or cooperated SEM’s strengths: path and equation and
the modeling techniques. Counterfactual mediation analysis emphasizes the
no-confounding assumption because it has also absorbed the sufficient and necessary
idea of “necessary approach.” Counterfactual mediation analysis further emphasizes
that it can overcome the SEM’s two limitations in modeling interactions and non-
linearities. In summary, all these efforts of counterfactual mediation analysis have
focused on methodology of causality.
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16.5.3 How to Understand Establishing Causality
in Microbiome Studies

The question is how to understand establishing causality in microbiome studies.
First, it is necessary and possible to re-establish causality in statistics for

microbiome studies. Although causality has been always skeptical in philosophic
ontology and never gained the status of a “law” or “principle” in physics (D’Ariano
2018), we need to re-establish causality in statistics. In statistics, causality is
meaning in terms of probability, not like the determination stated by Max Planck,
the founding father of quantum theory: “An event is causally determined if it can be
predicted with certainty” (Planck 1941). As a theory of probability, the causal
counterfactuals generally do two things to ensure the causal pathway works: one is
sensitive analysis, and another is through assumptions of the models.

Second, although counterfactual approach has opened a way to re-establish
causality in statistics, it is still a challenge to establish causality in microbiome
studies due to very complicated microbiome data features. For example, how to
correctly specify and test the causal models and rely on sensitivity analysis from both
SEM and counterfactual approaches is arguable.
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