
Moment Tensor Analysis

Masayasu Ohtsu

Abstract In order to determine kinematics of AE source, treatment of the moment
tensor analysis is essential, because nucleation of cracks can be represented by the
moment tensor. To this end, the SiGMA (Simplified Green’s functions for Moment
tensor Analysis) code is developed. Thus, crack kinematics on locations, types and
orientations are determined three-dimensionally. Basic treatment and theoretical
background are discussed, including the two-dimensional case. Theoretical back-
grounds, relative sensor calibration for the analysis, eigen-value analysis of the tensor,
visualization are comprehensively stated.

Keywords SiGMA code · Eigen-value analysis · Unified decomposition · Crack
orientation · Visualization of AE sources

1 Introduction

In seismology, linear inversion techniques were proposed to determine the moment
tensor component in both time and frequency domains (Stump and Johnson 1977;
Kanamori and Given 1981). Although all the components of the moment tensor must
be determined, the moment tensor inversion with constraints has been normally
applied to obtaining stable solutions in seismology (Dziewonski and Woodhouse
1981). This is partly because a fault motion of an earthquake is primarily associ-
ated with shear-slip motion, corresponding to only off-diagonal components in the
moment tensor. One application of the moment tensor inversion with constraints is
found in rock mechanics (Dai et al. 2000).

In contrast, both tensile motion of diagonal components and shear motion of
off-diagonal are definitely present in crack motions as an AE source. Consequently,
general treatment on the moment tensor components of diagonal and off-diagonal
components is discussed. Elsewhere, another procedure named the relative moment
tensor inversion is proposed (Dahm 1996).
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Fig. 1 Crack motion and equivalent tensor components

2 Theoretical Background

Asdiscussed in chap. “SourceMechanisms”,AEwavedue to cracking is theoretically
represented by the moment tensor Mpq as,

uk(x, t) = Gip,q(x, y, t)Mpq ∗ S(t) (1)

The components of the moment tensor consist of crack motion (dislocation
vector), the normal vector to the crack surface and crack the volume. Thus, crack
motion is kinematically modeled by the components of the moment tensor as
illustrated in Fig. 1.

To inversely solve Eq. 1 and to determine all the components of themoment tensor,
the spatial derivatives of Green’s functions are inevitably required. Accordingly,
numerical solutions are obtained by the Finite Difference Method (FDM) (Enoki
et al. 1986) and by the Finite Element Method (FEM) (Hamstad et al. 1999). These
solutions, however, need a vector processor for computation and are not readily
applicable to processing a large amount of AE waves. Consequently, based on the
far-filed term of P wave, a simplified procedure was developed (Ohtsu et al. 1998),
which is suitable for a PC-based processor and robust in computation. The procedure
is now implemented as a SiGMA (Simplified Green’s functions for Moment tensor
Analysis) code. A source code is currently available in the State-of-the Art report of
the RILEM Technical Committee 239-MCM (Ohtsu 2016).

3 Far-Field Approximation

Taking into account only Pwavemotion of the far field (1/R term) ofGreen’s function
in an infinite space, the displacement Ui(x,t) of Pwavemotion is obtained fromEq. 1.
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Ui (x, t) = 1

4πρv3
p

ri
R
rprqMpq

dS(t)

dt
(2)

Here ρ is the density of the material and vp is the velocity of P wave. R is the
distance between the source y and the observation point x, of which direction cosine
is r = (r1, r2, r3). In the case that we are interested in motions of AE waves at the
observation point, the first approximation could be an elastic wave in a half space.

In the case that Eq. 2 is applied to the moment tensor analysis, the discrepancy
between the half-space solution and the infinite-space solution should be examined.
Accordingly, Lamb’s solutions for buried pulse are compared with Green’s functions
in an infinite space.

As stated in chap. “Source Mechanisms”, a code for computing Lamb’s solution
due to buried pulse was already published (Ohtsu and Ono 1984). An infinite-space
solution is available in the literature (Aki and Richards 1980). Thus, a solution UNij

in an infinite space due to a step-function force H(t) is obtained as,

UNij(x, y, t) = (3rir j−δi j )/(4πμR)[{
(vs t/R)2−(

vs/vp
)2}

H(t−R/vp)/2 − {(vst/R)2−1}H(t−R/vs)/2
]

+ rir j/(4πμR)
{(

vs/vp
)2
H(t − R/vp)−H(t−R/vs)

}

+ δi jH(t−R/vs)/(π
2μR) (3)

Taking only the far-field term out of Eq. 3,

UFij(x, y, t) =rir j/(4πμR)
{(

vs/vp
)2
H(t − R/vp)−H(t−R/vs)

}

+ δijH(t−R/vs)(π
2μR) (4)

Here is the Lame constant and equivalent to shear modulus. vs is the velocity of
S wave.

In the x1–x2–x3 coordinate system in Fig. 2, it assumed that step-function force f
is applied in the x3-direction at the depth 6 cm, and elastic waves in the x3-direction
are detected at three locations A, B, and C on the stress-free surface. The velocity of P
wave is 4000 m/s and Poisson’s ratio μ is 0.2. In order to investigate the discrepancy
between the far-field approximation and the solutions in a half space, Lamb’s solution
G33, infinite-space solution UN33, and the far-field solution UF33 are computed.

Computed Green’s functions at location A near an epi-center are shown in Fig. 3.
Lamb’s solution due to a step-function force shows clear arrivals of P wave and S
wave again as denoted in Fig. 7.2a. The amplitude of the infinite-space solution is a
half of that of Lamb’s solution, while the far-field approximation is rather different
from Lamb’s solution, only show the dominant amplitude of P wave.

In the case that elastic waves are observed at a stress-free surface in a half space,
reflected waves are generated and also detected as well as incident waves. In the case
that incident S wave is reflected as P wave, a relationship between reflected angle θ
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Fig. 2 Wave motions at locations A, B, and C on the stress-free surface due to a buried force f

Fig. 3 Displacement motions detected at location A in a half space (solid curves in a) and b)),
compared with solutions in an infinite space (broken curve in a)) and of the far-filed (broken curve
in b))

of P wave and incident angle θ’ is derived from Snell’s law as,

sin θ

vp
= sin θ ′

vs
(5)

In the critical case of incident S wave, reflected P wave propagates along the
surface ( = /2), which is called SP wave and arrives at the observation point after
P-wave arrival right before S-wave arrival as shown in Fig. 7.2(b). The critical angle
θ’= θc is obtained from sin−1 (vs/vp).

Green’s functions at locations B and C are given in Figs. 4, and 5. In these cases,
the incident angles are over the critical angle (θc= 37.76°). Consequently, SPwave is
observed at both locations. As a result, the difference from the infinite-space solution
and the far-field solution is emphasized after P wave arrival.
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Fig. 4 Displacement motions detected at location B in a half space (solid curves in a) and b)),
compared with solutions in an infinite space (broken curve in a)) and of the far-filed (broken curve
in b))

Fig. 5 Displacement motions detected at location C in a half space (solid curves in a) and b)),
compared with solutions in an infinite space (broken curve in a)) and of the far-filed (broken curve
in b))

In all the cases, it is concluded that the amplitude of the first motion (P wave) in a
half space is almost as twice as the amplitudes of both the infinite-space solution and
the far-filed solution. The ratio of the amplitude in a half space to that of the infinite
space is equivalent to the reflection coefficient Re(t, r),

Re(t, r) = 2k2a(k2 − 2[1 − a2])
(k2 − 2[1 − a2])2 + 4a[1 − a2]√k2 − 1 + a2

(6)

Here t is the orientation vector of sensor sensitivity and k = vp/vs and a is the
scalar product of vector r and vector t. In the case that P wave is incident vertically
to the surface (a = 1), Re(t, r) becomes equal to 2.
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Consequently, it is found that the first motions of AE waves detected at the obser-
vation point can be approximated with the reasonable accuracy as the product of the
far-field solution and the reflection coefficient.

4 Sensor Calibration

Considering the effect of reflection at the surface, the amplitude of the first motion
Ao(x,t) in the far-field due to an applied force f (t) is derived from Eq. 4 and
represented as,

Ao = CsRe(t, r)
f (t)

R
(7)

where Cs is the magnitude of the sensor response including material constants. In
only the case that the sensors are absolutely calibrated, the coefficientsCs are known.
In a general case, relative coefficients are readily obtained by a pencil-lead break test.

After the sensors are attached onto a specimen, a test is conducted as illustrated in
Fig. 6. AEwaves are recorded due to a pencil-lead break and then relative coefficients
Cs are obtained from,

Cs = AoR/Re(t, r) (8)

Thus, the relative calibration coefficient Cs of equivalent sensitivity is obtained
for each sensor. In a few cases, absolutely calibrated sensors are available. In this

Fig. 6 Experiment for
relative sensor calibration
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respect, the moment tensor analysis to determine the relative tensor components is
preferable in practical applications.

5 SiGMA Procedure

Based on Eqs. 2 and 7, the amplitude of the first motion is simply represented as,

A(x) = Cs
Re(t, r)

R
rprqMpq (9)

This leads to a series of algebraic equations on unknown moment-tensor compo-
nents Mpq. The procedure to solve Eq. 9 is named SiGMA (Simplified Green’s
function for Moment tensor Analysis) (Ohtsu 1991, 2000). The algebraic equations
to be solved are shown as,

A(x) = Cs
Re(t, r)

R

(
r1 r2 r3

)
⎛
⎝
m11 m12 m13

m12 m22 m23

m13 m23 m33

⎞
⎠

⎛
⎝
r1
r2
r3

⎞
⎠ (10)

Since the moment tensor is a symmetric tensor of the 2nd rank, the number of
independent components is six asm11,m12,m13,m22,m23, andm33. These components
can be determined from the observation of the first motions at more than six sensor
locations. To solve Eq. 10, the coefficient Cs, the reflection coefficient Re(t, r), the
distance R, and its direction cosine vector r are necessary. The determination of Cs
and Re(t, r) is discussed in the previous sections. Other values can be obtained from
the source (flaw) location analysis. Thus, the location analysis is essential to perform
the moment tensor analysis.

In the SiGMA analysis, two parameters of the arrival time (P1) and the amplitude
of the first motion (P2) are visually determined from AE waveform as shown in
Fig. 7. In this respect, a computer-aided procedure was developed for automated
determination of the first P-wave arrival (Ouyang et al. 1992) and (Ohno and Ohtsu
2010).

In the location procedure, the crack location y is determined from the arrival time
differences ti between the observation xi and xi+1, solving equations,

Ri−Ri+1 = |xi−y| − |xi+1−y| = vpti (11)

Then, the distance R and its direction vector r are determined. The amplitudes of
the first motions P2 in Fig. 7 at more than 6 channels are substituted into Eq. 10,
and thus the components of the moment tensor are determined from a series of
algebraic equations. Since the SiGMA code requires only relative values of the
moment tensor components, the relative calibration coefficient Cs of AE sensors
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Fig. 7 Recorded AE waveform

Fig. 8 AE device equipped with the SiGMA code

is sufficient enough. The code is already implemented in the AE device (Mistras-
and Disp-TRA systems, PAC) as an example is shown in Fig. 8. A source code
is also available in the State-of-the Art report of the RILEM Technical Committee
239-MCM (2016).

6 Unified Decomposition of Eigenvalue

In the SiGMA code, classification of a crack is performed by the eigenvalue analysis
of the moment tensor (Ohtsu 1991). From Eq. 7.27, a moment tensor for pure shear
motion is obtained as,

Mpq =
⎛
⎝

0 0 μ�V
0 0 0

μ�V 0 0

⎞
⎠ (12)
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From the eigenvalue analysis, three eigenvalues are obtained as �V, 0, and −
�V. Setting the ratio of the maximum shear contribution as X, three eigenvalues for
the shear crack are represented as X, 0, −X. In the case of a pure tensile crack, the
moment tensor is represented from Eq. 7.26,

Mpq =
⎛
⎝

λ�V 0 0
0 λ�V 0
0 0 (λ + 2μ)�V

⎞
⎠ (13)

Because this is the case where the direction of crack motion is parallel to the
coordinate axis, the matrix is already diagonalized, and diagonal components are
identical to three eigenvalues: λ�V, λ�V, (+ 2)�V. In the case of the shear crack,
the components of the tensor are deviatoric, as the sum of all components is equal to
zero (non-volumetric). Accordingly, the components in Eq. 13 can be decomposed
into the deviatoric (non-volumetric) components and the isotropic components as,

⎛
⎝

λ�V
λ�V

(λ + 2μ)�V

⎞
⎠ =

⎛
⎝

− 2μ�V
3

− 2μ�V
3

4μ�V
3

⎞
⎠ +

⎛
⎝

(λ + 2μ
3 )�V

(λ + 2μ
3 )�V

(λ + 2μ
3 )�V

⎞
⎠ (14)

Setting the ratio of the maximum deviatoric tensile component as Y and the
isotropic tensile as Z, three eigenvalues are denoted as −Y/2 + Z, −Y/2 + Z and
Y + Z. Then, it is assumed that the principal axes of the shear crack are identical
to those of the tensile crack. As a result, the eigenvalues of the moment tensor for
a general case are represented by the combination of the shear crack and the tensile
crack. The following decomposition is obtained as the relative ratios X, Y and Z,

1.0 = X + Y + Z,

the intermediate eigenvalue/the maximum eigenvalue = 0 − Y/2 + Z,

the minimum eigenvalue/the maximum eigenvalue = −X − Y/2 + Z. (15)

These are schematically shown in Fig. 9. It should be pointed out that the ratio
X becomes larger than 1.0 in the case that both the ratios Y and Z are negative
(Suaris and van Mier 1995). The case happens, if the scalar product lknk is negative.
Re-correcting the value of the scalar product, the three ratios are determined as
well-posed.

Another decomposition of the moment tensor is proposed elsewhere (Shah and
Labuz 1995), introducing the term of the volume change. As can be seen in Fig. 8,
however, the ratio Z clearly represents the volume change. Addition of other terms
is to be unnecessary.

The ratios X, Y, and Z aremathematically determined in an isotropic solid. Setting
the angle, c, between crack vector l and normal vector to the crack surface n, these
are obtained as,
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Fig. 9 Unified decomposition of eigenvalues of the moment tensor

X = [(1 − 2n) − (1 − 2n)cosc]/[(1 − 2n) + cosc],

Y = 4(1 − 2n)cosc/[3(1 − 2n) + 3cosc],
Z = 2(1 + n)cosc/[3(1 − 2n) + 3cosc], (16)

where cos c = lknk . The ratio X represents the contribution of shear motion. The raio
Y is the contribution of deviatoric component of tensile motion, and the ratio Z is that
of isotropic component. Hereinafter, the ratio X is called the shear ratio. Elsewhere,
the classification of cracks was conducted on the basis of the angle c between two
vectors l and n (Enoki et al. 1986). So, a relation between 1 - cos c and the shear
ratio X is plotted in the case that Poisson’s ratio = 0.2 in Fig. 8.10.

In a previous literature (Landis et al. 1992), crackswere classified as a tensile crack
(mode I) in the case 0° < c<15°, which corresponds almost to a pure tensile crack as
the shear ratio less than 5%. In contrast, shear cracks (mode II) were classified with
the condition 75° < c<90°, in which the shear ratio X is just over 50%. Thus, the
criterion on the crack classification based on the angle c seems to be not reasonable,
because the relationship between the angle c and the shear ratio X is nonlinear. In the
SiGMA code, AE sources of which the shear ratios are less than 40% are classified
into tensile cracks. The sources ofX>60%are classified into shear cracks. In between
40 and 60%, cracks are referred to as mixed mode.
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Fig. 10 Relation between
shear ratios X and crack
angles

7 Crack Orientation

From the eigenvalue analysis of the moment tensor, three eigenvectors e1, e2, e3 are
also obtained. These are presented by the two vectors l and n,

e1 = l + n

e2 = l × n

e3 = l−n. (8.17)

Here x denotes the vector product, and the vectors l and n are interchangeable.
In the case of the tensile crack, the vector l is parallel to the vector n. Thus, the
vector e1 could give the direction of crack opening, while the sum of e1 + e3 and
the subtraction e1 − e3 derive the two vectors l and n.

In the first version of SiGMA (Ohtsu 1991), the orientations of tensile cracks are
determined from the vector e1, and those of shear cracks are presented by two vectors
l and n, which are usually perpendicular.

One result whichwas analyzed in a hydro-fracturing test is shown in Fig. 11. Eight
AE events are analyzed and plotted in the elevation view. AE events are plotted at
their locations from the location analysis. Then, cracks are classified based on the
shear ratio. Tensile crack are indicated by arrow symbols, of which directions are
determined from the direction e1. Shear cracks are represented by cross symbols, of
which two directions correspond to the two vectors l and n. The event No. 14 was
classified into the mixed-mode cracking, and both orientations of the tensile and the
shear are indicated. Results are so successful that AE events are located along the
dip plane presumed from the dip angle. Remarkably, the directions of crack opening
of the tensile cracks are vertical to, and the orientations of the shear cracks seem
parallel to the dip plane.

According to the result in Fig. 10, a crack of which angle is over 60° could be
classified as the tensile crack, because the shear ratio is less than 40%. Consequently,
In another version of SiGMA (Ohtsu 2000), two vectors are always obtained and



208 M. Ohtsu

Fig. 11 Results of SiGMA analysis in a hydro-fracturing test

plotted. For the tensile crack, arrow symbol is employed. One result in a bending test
of a reinforced concrete beam is given in Fig. 12 (Ohtsu 1995).

8 Two-Dimensional Treatment

Asimilar treatment can be applied to two-dimensional (2-D) problems.Deformations
of the plate are classified into two motions. As illustrated in Fig. 13, one is in-plane
motion where a crack surface is generated as the normal vector to the crack plane is
vertical to the x3-axis and AE waves are detected at the edge of the plate. The other
is out-of-plane motion where the crack surface is created parallel to the x1−x2 plane.
In the case of in-plane motions, the x3-components in Fig. 8.14 of both the vector l
and n are equal to zero. Then, the moment tensor in an isotropic solid becomes,

Mpq =
⎛
⎝

λlknk + 2μl1n1 μ(l1n2 + l2n1) 0
μ(l1n2 + l2n1) λlknk + 2μl2n2 0

0 0 λlknk

⎞
⎠�V (18)
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Fig. 12 Results of SiGMA analysis in a reinforced concrete beam under bending

Fig. 13 AE detection in a plate specimen
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Fig. 14 AE detection
(in-plane) at the edge of the
plate

In the case that AE sensors are attached at the edge of the plate, the components
of the tensor in Eq. 18 are readily defined except m33 component, because no motion
in the x3-direction is detected. The m33 component is actually determined from the
following equation (Shigeishi and Ohtsu 1999),

m33 = llknk = l(m11 + m22)/(2l + 2m) = n(m11 + m22). (19)

In the case of in-plane observation in Fig. 14, the component of the moment
tensor: m11, m12, m22 are easily determined, solving the following equation,

A(x) = Cs
Re(t,r)

R

(
r1 r2

)(m11 m12

m12 m22

)(
r1
r2

)

Since the m33 component is readily obtained from Eq. 19, the unified decompo-
sition of the eigenvalues and the orientation analysis by the eigenvectors are to be
performed in the same manner as those of the 3-D problems.

In the case of the out-of-plane observation, in contrast, only the case that a tensile
crack is generated parallel to the x1–x2 plane in Fig. 14 can be treated. Even though
the shear motion exists, theoretically no information can be recovered.

To locate AE sources, 5-channel system is at least necessary for three-dimensional
(3-D) analysis. Since 6-channel system is the minimum requirement, 6-channel
system is required for SiGMA. In contrast, 3-channel system is available for the 2-D
analysis. One application is given in Fig. 15 (Shigeishi and Ohtsu 1999). Uniaxial
stress is applied vertical to the plate specimen made of concrete, which contains a
through-thickness slit. 4-channel systemwas employed for themeasurement. Results
show the case that slit angle to the loading axis is equal to 45°.

9 Estimation of Crack Volume

From the representation of the moment tensor, it is found that the trace components
of the moment tensor is obtained as,
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Fig. 15 Results of an
in-plane problem
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Mkk = (3l + 2m)lknk DV . (20)

One parameter in damage mechanics is defined (Kachanov 1980) as,

D =
∫

ni
(
bin j

)
n jdS = DVlknk = Mkk/(3l + 2m) (21)

From Eqs. 20 and 21, the crack volume can be derived as,

DV = Mkk/[(3l + 2m)lknk]. (22)

where Mkk represents the trace components of the moment tensor. As mentioned,
and are Lame constants.

Equation 22 implies that the process of damage evolution due to expansionof crack
volumes is also estimated from the moment tensor analysis. One example is given
in Fig. 16. From moment tensors determined in bending tests of concrete specimens
with a notch (Ohtsu andOhtsuka 1998), the damage evolution due to accumulation of

Fig. 16 Damage evolution
analyzed from the moment
tensor analysis



Moment Tensor Analysis 213

crack volumes is estimated. In the case of the center-notched specimen (type CC), the
damage suddenly increases, while the damage evolution is gradual in the off-center
notched specimen (type OC).

10 Error Estimation

Estimation of errors in the moment tensor analysis is fairly difficult (Landis et al.
1992). In the analysis of Fig. 11 (Ohtsu 1991), the conditioning numbers were esti-
mated. As an attempt, error estimation was conducted, assuming the errors. It was
found that the error estimation was such a complicated task that the errors were really
dependent on spatial relations between located sources and observation points. In this
regard, a post analysis was proposed (Ohtsu 2000), where AE waves to be detected
at the observation points were synthesized from the source location and the moment
tensor. For the simulation analysis of theoretical AE waves, the technique discussed
in chap. “Source Mechanisms” is available.

By using the same size of a PMMA plate as given in Fig. 15, the leakage test
was conducted (Ohno et al. 2006) 102 AE events with detectable first arrivals were
analyzed by the two-dimensional SiGMA analysis. Results are classified by the shear
ratio X (%) and listed in Table 1. It is clearly found that almost 60% events have
the shear ratios over 60%. This implies that dominant source motions at the slit-
like defect due to leakage are of in-plane shear-type. It was, however, realized that
AE sources were distributed widely on the specimen, not concentrated around the
slit. These might result from the fact that only large AE events were identified as
the burst-type and readable for the analysis. In addition, determination of both the
amplitude of the first motion and the arrival time was actually not an easy task. This
implies that some errors are unwillingly contained in results of the SiGMA analysis.

Consequently, the post analysis was performed. AEwaveforms at sensor locations
were synthesized in an infinite space, taking into the source location and the moment
tensor components. The reflection coefficientwas taken into consideration to simulate
the waveforms. The SiGMA procedure was applied to synthetic waveform set as the
post analysis. Results are also given in Table 8.1. Because one event was located
out of the specimen, results of 101 events are shown. In these results, location errors
between the SiGMA analysis and the post analysis were within 1 mm. But, the shear
ratio changed drastically as found in the table. Following the post analysis, events

Table 1 Results of
SiGMA-2D analysis

Shear ratio
(%)

0–40 (%)
tensile

40–60 (%)
mixed-mode

60–100 (%)
shear

SiGMA
analysis

20 20 62

Post
analysis

12 10 79
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Table 2 Reliable solution
selected after the post analysis

Shear ratio
(%)

0–40 (%)
tensile

40–60 (%)
mixed-mode

60–100 (%)
shear

No. of events 10 3 33

Fig. 17 Results of the post
analysis

of the shear ratio less than 10% different from those of the SiGMA analysis were
selected as reliable solutions. 46 events were selected and are listed in Table 8.2.

Kinematics of these 46 events are plotted in Fig. 8.17. Here, shear and mixed-
mode cracks are indicated with cross symbol, and tensile cracks are denoted by arrow
symbol. In the all cracks, directions of crack normal and crack motion are illustrated.
It is found that AE sources of tensile types are mostly concentrated inside the pipe,
where water pressure is applied. The opening directions of tensile cracks are almost
vertical to the slit surface, suggesting that water flow due to leakage expands the slit.

11 Visualization of SiGMA Results

Visualization of the SiGMA results are to be made by employing softwares commer-
cially available. By applying VRML (Virtual Reality Modeling Language), crack
modes of tensile, mixed-mode and shear are given in Fig. 18. Here, an arrow vector
indicate a crack motion vector, and a circular plate corresponds to a crack surface,
which is perpendicular to a crack normal vector.

Experiments were conducted by using the same reinforcement concrete beams
as shown in Fig. 12. As shown in Fig. 19a, at the first stage, a few tensile cracks
(green) and mixed-mode cracks (red) are mostly observed near reinforcement at the



Moment Tensor Analysis 215

(a) tensile crack (b) shear crack (c) mixed-mode

Fig. 18 3-D display models for tensile, shear, and mixed-mode cracks

(a) 1st stage

(b) Intermediate Stage

Fig. 19 Results of SiGMA analysis visualized by VRML
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(c) Final stage

(d) Visualization from an inclined angle. 

Fig. 19 (continued)

central region. Then, delamination between concrete and reinforcement occurred.
Activity of cracking increased as the increase in mixed-mode cracks. Bending cracks
were visually observed. The tips of cracks extended upward, penetrating into the
compressive zone of the upper half. Thus, at the intermediate stage in Fig. 19b, AE
cluster expands upward, increasing the number of shear cracks (blue). The cracks
then stopped due to compression, and the beam reached final failure of diagonal-shear
failure or concrete crashing at the upper half. Approaching the final stage in Fig. 19c,
d, cluster of AE sources further expands and nucleation of cracks is really mixed
up of tensile, mixed-mode, and shear cracks. Cracks distribute widely, probably
corresponding to nucleation of diagonal shear cracks between the loading point and
the support. Locations and orientations of the source can be visually identified.

Another example of the SiGMA results is visuallized in Fig. 20. In a reinforced
concrete (RC) beam, diagonal-shear failure was generated in the shear span without
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Fig. 20 Visualized results of the SiGMA analysis in diagonal-shear failure of RC beam

stirrup reinforcement (Ohno and Ohtsu 2010). AE measurement was conducted by
using 8 sensors, which were arrayed in the one-side of shear spans. It is clearly
observed that final AE cluster is in remarkable agreement with the failure surface of
diagonal-shear.

12 Concluding Remarks

Nucleation of cracks can be kinematically analyzed by the moment analysis.
Applying the SiGMA (Simplified Green’s functions for Moment tensor Analysis)
code, crack kinematics on locations, types and orientations are determined three-
dimensionally. Basic treatment and theoretical background are discussed, including
the two-dimensional case.

For the two-dimensional solution, in-plane motions of AE waves are treated. As
a practical application, AE waves due to water leakage from a slit are detected and
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analyzed. The reliable solutions are selected by the post analysis. Because visualiza-
tion of results is desirable, 3-D visualizations of the SiGMA results are illustrated
and discussed.
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