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Abstract Quantitative methods in acoustic emission (AE) analysis require localiza-
tion techniques to estimate the source coordinates of the AE events as accurately as
possible. There are a number of different ways to localize AE sources in practice, i.e.
to obtain the desired point estimate in one, two, or three dimensions. This chapter
starts with approaches for automated onset detection since the travel time informa-
tion is one of the most critical input parameters for most localization approaches.
In general, most localization methods presented in this chapter have in common
that the travel time information from source to receiver is used for localizing an AE
source. Most of the methods of AE localization discussed here were developed in the
framework of earthquake seismology and GPS techniques. Array-type approaches,
whichwere designed especially for plate-like structures, are also discussed. Different
techniques for one, two and three dimensional source localization are described.
Approaches based on numerical inversions as well as grid search and array local-
ization approaches are discussed. Further concepts developed or adapted for the AE
localization problempresented in this chapter use, e.g., neural networks, probabilistic
approaches, or direct algebraicmethods fromGPS technology. Localization accuracy
is influenced by various factors. Therefore, how to determine localization errors and
some measures to ensure high localization accuracy are also listed and discussed.
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1 Introduction

Quantitative methods in acoustic emission (AE) analysis require localization tech-
niques to estimate the source coordinates of the AE events as accurately as possible.
There are many different ways to localize AEs in practice to obtain the desired point
estimate in one, two, or three dimensions. The most appropriate technique depends
on the objective of the experiment, the required resolution and on the geometric
shape.

Themethods ofAE localization presented in the following sectionwere developed
in the framework of earthquake seismology and GPS techniques. Further approaches
designed especially for plate-like structures are also discussed. The principal of earth-
quake source localization canbe applied directly toAEsource localizationwithminor
modifications. A detailed description of earthquake localization methods can be
found in, for example, Bormann (2002), Aki and Richards (1980) or Shearer (1999).
These are also the main references for this chapter. AE localization is applied to a
variety of constructionmaterials and even used inmedical and electrotechnical appli-
cations. Examples of AE localization applications can be found in Grosse (1996),
Zang et al. (1998), Ohtsu (1998), Köppel and Grosse (2000), Moriya et al. (2002),
Finck et al. (2003), Sellers et al. (2003), Finck (2005), Schechinger (2005), Kurz
(2005), Baxter et al. (2007), Schumacher et al. (2012), Kundu (2014), Kalafat and
Sause (2015), Kurz (2015), and Gollob et al. (2017).

Source localization as well as global positioning in space is an inverse problem.
Employing the arrival time differences of the elastic wave emitted by a source and
recorded at each sensor, the source location can be estimated. AE source parame-
ters consist of the origin time (e.g. initiation of a rupture) and the source position
in Cartesian coordinates (x0, y0, z0). The computed location represents the point in
space and time where the fracture initiated, i.e. a point source is assumed. The first
arrival time of the elastic wave at each sensor is the onset time of the compressional
wave (P-wave). If the onset of the shear wave (S-wave) is detectable, this information
can be used either in combination with or instead of the P-wave onset. However, the
S-wave is often difficult to identify in AE signals from civil engineering materials. If
the distance between source and receiver is only a few wavelengths, the onset of the
S-wave is hidden in the coda of the P-wave. In addition, due to the relatively short
source-sensor separation, near field effects can be present, i.e. P- and S-wave modes
are not yet completely separated (Finck andManthei 2004). Finally, since the particle
motion of an S-wave is normal to the propagation direction, and that of a P-wave
is parallel to the propagation direction, a P-wave sensor is not designed to detect
S-waves (see also chapter “Signal-Based AE Analysis”). The onset times, the coor-
dinates of each corresponding sensor and information regarding the velocities of the
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compressional and shear wave (if the shear wave can be detected) are needed for any
kind of localization (1-dimensional, 2-dimensional and 3-dimensional). Provided a
homogeneous and isotropic material, the direct (or straight) raypath between source
and sensor can be used for calculation of the source location. However, if a layered
or even a heterogeneous and anisotropic material is considered, or in the presence
of boundaries (e.g. air voids, cracks) with significant acoustic impedance differ-
ences, the effects of the material on wave propagation and the raypath must be taken
into consideration in order to achieve an accurate localization. Most of the methods
discussed in this chapter assume a homogeneous and isotropic material, an assump-
tion that is generally valid for AE analysis of construction materials. However, some
examples considering non-homogeneous and non-isotropic materials will also be
shown, for example, applications onwood and complex-shaped and cracked concrete
members.

The following section starts with a description of automatic signal onset detection
methods, which are critical when dealing with large data sets.

Different AE source localization techniques are discussed subsequently, begin-
ning with simple methods that provide a rough estimate of the source coordinates to
more complex methods that consider multiple factors affecting the wave propagation
process to achieve the highest possible accuracy.

2 Principal of Localization Procedures

2.1 Automatic Onset Detection

The determination of the onset time of a transient signal is an important task in many
fields of science and engineering. Seismology and AE studies are related fields that
use the phenomenon of stored elastic energy being released as elastic waves due to
sudden fractures in a rigid body (Spies et al. 2004). A strong relation exists between
localization techniques in both seismology and AE analysis because both fields place
similar importance on determining accurate onset times.

Accurate onset time determination can be carried out manually by an operator
or automatically by a picking algorithm and depends on the onset definition itself.
Leonard (2000) describes the true onset time of a seismic phase as the moment in
time when the first energy of a particular wave phase arrives at a sensor. However,
this definition is applicable to elastic waves in nearly all media. The onset time is
usually picked as the point where a difference between noise and actual signal can be
observed, although an experienced analyst will often extrapolate slightly back into
the noise (Leonard 2000). These are also the requirements to a reliable automatic
picker.

With some modifications, the algorithms used in seismology can be applied to
AE signals. Since the number of recorded AE signals can be up to several thousand
during one test, it is clear that automatic onset determination is a necessity.
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In this context, it is referred to the convention suggested by Allen (1982), pickers
are algorithms used to estimate the onset time of a phase and detectors are algorithms
used to detect a phase (phase refers to, e.g. longitudinal or transversal wave).

In seismology, a variety of automatic onset time picking approaches are used.
Two general approaches can be distinguished. On the one hand, a global strategy can
be used, where the entire recorded signal is scanned for the onset. On the other hand,
an iterative strategy can be employed, where a particular region is preselected first,
and from which the onset is then determined more accurately (Kurz et al. 2005). The
main trends are summarized subsequently.

The simplest form of onset picking is to use an amplitude threshold exceedance
picker. However, a fixed threshold approach is typically not applicable to signals with
small amplitudes and/or signals with a low signal-to-noise ratio (SNR) (Trnkoczy
2002). A widespread approach that uses a dynamic threshold, is the so-called
STA/LTA (STA: Short Term Average, LTA: Long Term Average) picker by Baer
and Kradolfer (1987). The approach is not applied to the raw signal directly, but a
characteristic function computed from the signal’s envelope. Here, the STAmeasures
the instantaneous amplitude of the signal and the LTA contains information about
the current average seismic noise amplitude. The difference between STA and LTA
function is further defined by multiplying the characteristic function with frequency
dependent parameters. Earle and Shearer (1994) chose a similar approach using a
different envelope function. Because signal and noise of AEs in concrete often lie
in the same frequency range (approximately 20 kHz up to 300 kHz), the STA/LTA
picker does not produce results with sufficient accuracy.

Joswig (1990) combined the STA/LTA picker with a sonogram analysis of the
seismic signal. This approach was tested by Kurz (2006) on AEs from concrete and
was found to produce acceptable results.

Dai and MacBeth (1995) used an artificial neural network (ANN) for automatic
picking of local earthquake data. The network was trained on noise as well as P-
wave segments. This method is also not applied to the raw signal directly, but to the
modulus of a windowed segment of the signal. The output of the ANN consists of
two values, i.e. the parameters of a function that accentuates the difference between
the actual output and ideal noise.

Modeling the signal as an autoregressive process is another approach for onset
time determination. A detailed description of theory and application for seismic
signals can be found in Sleeman and van Eck (1999), Leonard (2000) and Zhang
et al. (2003). Akaike (1974), as well as Kitagawa and Akaike (1978), showed that
a time series can be divided into locally stationary segments, each of which can
be modeled as an autoregressive process. To solve the seismological localization
problem, a seismic signal including the onset and a first estimate of the onset time is
needed. The intervals before and after the onset time are assumed to be two different
stationary time series. For a fixed order autoregressive process, the point at which the
Akaike Information Criterion (AIC) is minimized determines the separation point
of the two time series (noise and signal) and therefore the onset point (Sleeman and
van Eck 1999).
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In the domain of AE analysis Kurz et al. (2005) applied the principle of the
autoregressive AIC picker in an automatic onset detection procedure. The results of
the autoregressive AIC picker were then compared to manual picks and to an auto
picker based on the Hinkley criterion, which was developed for AE from concrete by
Grosse and Reinhardt (1999). Details and applications describing these approaches
and comparisons with other methods can be found in, e.g. Kurz et al. (2005) and
Schechinger (2005). In the following, only a short summary will be given. Further
investigations and improvements on automatic onset detection for AE signals were
carried out by, e.g. Sedlak et al. (2013), Mhamdi (2015), and Gollob (2017).

Furthermore, the SNR is affected by the degree of damage of the tested specimen
and therefore, by the deterioration process itself. Due to this dependency, the SNR of
AEs is generally not constant over the course of an experiment. Therefore, a reliable
automatic picker that can handle data of varying quality is needed.

An autoregressive AIC picker gives picks (where the term ‘picks’ refers to the
determined onset times) of higher quality when the AIC is only applied to the portion
of the signal that contains the onset (Zhang et al. 2003). Therefore, the onset is
defined initially by using the complex wavelet transform or the Hilbert transform.
Both transforms lead to an envelope of the signal. Herein, only the Hilbert transform
is used in the picking process (Fig. 1).

The Hilbert transform envelope is used for an initial pick of the onset using a fixed
threshold. Each envelope is squared and normed, so that a constant threshold value
can be applied to all signals (Fig. 1). A window of several hundred samples, e.g. 400

Fig. 1 Sample AE signal in the (top) time domain and (bottom) corresponding squared and normal-
ized amplitude calculated with the Hilbert transform. A fixed threshold is drawn on the envelope
for illustrative purposes
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before and 150 after this point, is then extracted from the signal. Within this signal
portion, the onset is determined using the AIC picker.

The advantage using an envelope calculated by the wavelet transform is that even
for noisy signals the prearrangement of the onset by a threshold works consistently.
The reason for this is that the envelope is calculated only for one scale, which has
the most signal content, while most of the noise of is found in different scales.

However, if two or more signals of different amplitude and frequency superpose
each other, i.e. if AEs occur in such a fast succession that more than one signal
is recorded within the normal block length, the envelope calculated by the Hilbert
transform should be used. In such a case, the wavelet transform can identify the
wrong signal because of the automatic scaling.

The onset is determined by calculating the AIC function directly from the signal
according to Maeda (1985):

AIC(tw) = tw · log(var(Rw
(
tw,1

))+
(Tw − tw − 1) · log(var(Rw(1 + tw, Tw)))) (1)

The index w from the time series Rw indicates that not the whole time series is
taken, but only the chosen window containing the onset (described above). Tw is the
last sample of the curtate time series, tw ranges through all samples of Rw and var
denotes the variance function. The term Rw (tw, 1) means that the variance function
is only calculated from the current value of tw while Rw (1+ tw, Tw) indicates that all
samples ranging from 1 + tw to Tw are taken. The sample variance var or σ2

N − 1 is
defined as (Kreyszig 1993):

σ 2
N−1 =

1

1 − N

N∑

i=1

(Ri − Γ )2 (2)

where N denotes the length of the signal, Ri is sample, i of the time series, R and �

is the mean value of the whole time series, R.
In the ideal case, the global minimum of the AIC function corresponds to the

onset point of the signal (Fig. 2).
A comparison of the AIC-picker with the Hinkley picker shows that the AIC-

picker produces more accurate results (Fig. 3). The value of the deviation (in
percentage) between the localization using manual picks and the localization using
the AIC-picker greater than 5 mm is 11%. The Hinkley-picker produces a deviation
of up to 68% compared to the manual picks. The number of well-localized events
using the Hinkley-picker can be sufficient to visualize the general shape of the frac-
ture process. How-ever, this might not be valuable for all cases and a higher rate of
correct picks is recommended.

Taking into consideration that manual onset determination is also subject to
various errors, it was shown that the AIC-picker produces sufficiently reliable results
forAE source localizations. Therefore, theAIC-picker, or at least an iterative strategy,
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Fig. 2 TheAIC is used for onset determination only for the selected part of the signal containing the
onset, which is displayed by the solid line. The minimum of the AIC function, which is represented
by the dashed line, denotes the onset time of the signal

Fig. 3 Length of the mislocation vectors for (left) the comparison of the AIC-picker versus manual
picks and (right) the comparison of the Hinkley-picker versus manual picks

is generally recommended for automatic onset determination of AE signals. This can
be particularly effective when used in conjunction with source localization schemes
that weigh the residuals, as presented in Sects. 5.5 and 5.6. A theoretical discussion
and evaluation of arrival-time picking uncertainty can be found in Abakumov et al.
(2020).
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2.2 Zonal Localization

The simplest way to locate the source of AEs is the so-called zonal localization
method, where the exact source coordinates are not determined. Here, localization
means detecting a signal and the length (or in plate-like structures: the area) in
which the source is likely located. As a result, this is the most imprecise localization
method. For a particular sensor distribution, the sensor that records the arrival of
the elastic wave first is assumed to be the sensor closest to the source. The simplest
interpretation is that the source is assumed to be located within a length of ± s

2 of
the first-hit sensor, where s is the distance between adjacent sensors. If an AE is
detected by multiple sensors, the extracted signal amplitudes can be used to confine
the pinpoint location of the source further. An example for the case where the sensors
are located along a straight line on a structure is illustrated in Fig. 4. The AE was
generated by performing a pencil lead break (PLB).

The left side of Fig. 4 shows a concrete beam (height = 1 m) with eight sensors.
The signal emitted from breaking a lead at the surface of the beam and recorded by
each sensor is shown on the right side of Fig. 4. Sensors 4 and 5 (numeration top

Fig. 4 Sketch of the concrete beam with eight sensors (left) and recorded AE signals from a PLB
(right), which was located between Sensors 4 and 5. The amplitude of the signals shows that the
source was closer to Sensor 5
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detection ranges 
of sensors

growing crack

Fig. 5 Sample application of zonal localization for a plate-like structure (Grosse 2005)

down) are the first and second sensors to record the event. This is also the zone of
the lead break.

The method of zonal localization can also be applied for plate-like structures, i.e.
where the sensors are located on a plane. Figure 5 shows a sample application of
zonal localization of a crack in a steel plate.

2.3 One-Dimensional Localization

In this section, one-dimensional (1-D) localization is discussed, which requires at
least two sensors in order to calculate a 1-D point between two sensors (Fig. 6)
(Reinhardt andGrosse 1999). Thegeometry of the structure being tested can influence
the 1-D localization accuracy. For example, the dimension of a 1-Dwire-like structure
is significantly larger in one direction compared to the dimensions in the other two
directions.

If the distance, s between the two sensors is known, as well as the onset time at
each sensor and the wave velocity, v of the material is known, the source time, t0
and the 1-D source location, x0 can be calculated. The distances, x1 and x2 from the
source to the sensors can be expressed as:

Fig. 6 Principle of a 1-D localization on a wire like structure. The source location is marked by
the grey star
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v · (t1 − t0) = x2 (3)

v · (t2 − t0) = x1 (4)

Knowing x1 or x2 the 1-D source localization can be calculated by:

s = x1 + x2 (5)

Inserting Eq. 5 into Eq. 3 or 4 gives a linear system of two unknowns (t0 and x1 or
x2) that has to be solved. This gives the source time and the source location relative
to the two sensors can now be calculated using Eq. 5.

2.4 Two-Dimensional Localization

The next enhancement in localization accuracy can be achieved by performing a two-
dimensional (2-D) localization to determine the coordinates x0 and y0 of the source.
Since no information about the depth of the source is provided, this technique is
sometimes referred to as a planar localization. The planar localization technique is
applied to 2-D structures, where the thickness is small compared to the extent of the
object, and the source coordinates are only required in two directions. Another case
for using only 2-D localization could be that the sensor distribution is not usable
for three-dimensional (3-D) approaches. The equations for 2-D and 3-D localization
techniques that use compressional waves are similar and will be handled in the
next paragraph. For the case of waves having wavelengths longer than the thickness
of the structure, plate or Lamb waves have to be used and their group velocities
considered. The 2-D method to determine AE sources is usually applied when the
accuracy of the zonal technique is insufficient. Applications in civil engineering are
reported by authors dealing with the monitoring of large structures like bridge decks
(Kapphahn et al. 1993). Kundu (2014) gives an overview of recent developments
in AE localization in plate structures and Dubuc et al. (2018) describe an approach
using guided waves for AE localization in thin-walled pipes.

In seismology, a 2-D source location with no information about the depth of the
event is called epicenter, i.e. the epicenter represents the projection of the seismic
source to the earth’s surface. At least 3 sensors are needed for a 2-D localization.
Assuming constant velocity and three measured arrival times, t1, t2 and t3 of the
compressional wave, at three different sensors, the epicenter can be calculated by
the hyperbola method (Bath 1979; Pujol 2004). The epicenter must be located on a
curve forwhich the arrival time difference between two sensors, e.g. t2 – t1 is constant
(Fig. 7). Such a curve is a hyperbola with the corresponding sensor coordinates of
Sensors 1 and 2 as the foci.

Because generally one arrival time is greater than the other, e.g. t2 > t1, the
epicenter location is limited to one branch of the hyperbola. The hyperbolas of the
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Fig. 7 2-D localization
using the hyperbola method.
t1, t2 and t3 are the arrival
times of the compressional
wave at the corresponding
sensors

other station pairs (t1, t3 and t2, t3) are calculated in a similar way. The epicenter is
the intersection point of the three hyperbolas (Fig. 7). Due to measurement errors,
the three hyperbolas may not intersect at one point (see Sect. 3.5 for more details).
For such a case, using more than 3 sensors should improve the localization accuracy
and statistical methods must be applied. For example, Joswig (2004) uses a jackknife
test to improve the results of the hyperbola method in an overdetermined case.

Besides the hyperbola method, a circle method for 2-D manual localization that
uses only the arrival times of the compressional wave can be applied (Bath 1979).
Another circle method that requires the arrival times of both the compressional and
the shear waves (Havskov et al. 2002) can also be used.

3 High Order Localization Algorithms

3.1 Principal of Computational Localization Techniques

Several authors have worked on high order localization algorithms (Berthelot and
Robert 1987; Labusz et al. 1988; Grosse 1996; Köppel 2002; Tarantola 2005). The
principal is similar to the determination of earthquake hypocenter s in seismology
and uses the arrival of earthquake waves recorded at multiple seismometers. Another
approach, which is based on a comparable concept and usable for AE localization,
is 3-D positioning using GPS, where travel time differences to the satellites are used
(Kurz 2015). These algorithms can be adapted to the requirements inmaterial testing,
enabling the study of different specimen geometries, as well as taking into account
the number of transducers and their position around the object. The 3-D localization
problem is exactly determined when four travel times are available to calculate the
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three coordinates and the source time of an event. For a 2-D localization problem to
be exactly determined, only three travel times are necessary.

The use of more sensors than unknown source parameters results in the system
of equations being overdetermined, and statistical methods such as the methods of
least-squares can be used. Usually these methods improve the localization accuracy.

The fundamental concept of thatmost 3-D localization techniques use is described
subsequently. Arrival times are measured at each sensor and used as the reference
values for calculated arrival times. The calculated arrival times are computed from a
trial or a ‘guessed’ source location and a user-defined velocity model. The location
guess is corrected using the residuals (or difference) between the measured and
calculated arrival times, tc. The calculated arrival time, tci for sensor, i can be written
as:

t ci = t(xi , yi , zi , x0, y0, z0) + t0 (6)

The calculated arrival time, tci is composed of the travel time, t,which is a function
of the location of the sensor, (xi, yi, zi), the hypocenter (x0, y0, z0), and the source
time, t0. Since this equation consists of four unknowns, at least four arrival times
are needed to determine the hypocenter and the origin time; three arrival times are
necessary if only the epicenter and the arrival time are to be calculated. If n arrival
times from n sensors are measured, the system is over-determined because there are
more knowns than unknowns. An over-determined system has to be solved in a way
that the residuals, ri between calculated and measured arrival time, t0i at each sensor,
are minimized.

ri = t0i − t ci
!=min (7)

Several methods to solve this nonlinear inverse problem are discussed in the
following sections.

3.2 Grid Search

In a grid search, the test specimen is discretized or divided into a particular grid,
and the travel times from any point in the grid to each sensor are calculated. Since
the number of grid points depends on the available computer memory, the grid can
be made as fine as what is computationally possible. Comparison of the hypocenter
location and the origin time can be used to determine the point of best agreement
between the observed and calculated travel times, i.e. using Eq. 7. Several methods
can be used to measure the point of best agreement. Each of the methods has case
specific advantages and disadvantages and the user should decide from case to case
which approach should be taken.



Source Localization 129

A common approach is the method of least squares (L2 norm) which leads to root
mean squared residuals (where the residual is the difference between the observed
and calculated travel times). However, the use of least squares procedures requires
the assumption that the distribution of the residuals is of Gaussian nature (Mendecki
1997), which is generally not true. Furthermore, the least squares approach is sensi-
tive to residual outliers, i.e. data points that lie ‘far’ from themean ormedian.Another
possibility is to use the variance of the residuals. Since the variance is approximately
equal to the mean squared residuals, the problem with the non-Gaussian residual
distribution persists and the use of the L1 norm is preferable. The L1 norm mini-
mizes the absolute values of the residuals and is less sensitive to outliers. For further
approaches concerning the measurement of the best agreement between observed
and calculated travel time, refer to Ružek and Kvasnička (2001).

The point having the lowest misfit (L1 or L2 norm) is usually the best hypocenter
with the corresponding source time. Due to the possibility of there being multiple
similar minima, the misfit uncertainties of the solutions should be estimated. One
simple possibility is to investigate how the misfit value increases when moving away
from the minimum. A criterion for a good solution is a rapidly growing misfit value
(Hasvskov et al. 2002).

Dill-Langer et al. (2002) applied a 2-dimensional grid search localization
procedure for wood.

Wood is an anisotropic material and therefore the velocity is a function of the
angle of wave propagation and fiber direction (Fig. 8). By reducing the full 3D
problem to a 2D approximation, the complexity of the localization problem in an
anisotropic medium can be reduced. As many wooden building components can be
approximated as two-dimensional structures the 2D localization concept may deliver
valuable results in many cases.

Fig. 8 Empirically
determined ultrasound wave
velocity as a function of
angle ϕ between propagation
and fiber direction
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In order to lay the foundations for a verifiable localization of AE sources, the
ultrasound velocity of the compressional wave, which depends on the angle between
the wave propagation direction and the fiber direction, was measured (Fig. 8).

The investigated material was European spruce lumber (picea abies). The geom-
etry and dimensions of the shoulder-shaped specimens were the following: the width,
bT (perpendicular to grain, defined as x-direction) and the length, lT (parallel to grain
and loaddirection; defined as y-direction) of the actual test sectionwith reduced cross-
sectional width were, bT = 120 mm and lT = 500 mm. The width, b of the clamping
sections was 165 mm and the total length, l of the specimen was 2400 mm. Since the
thickness of the planed specimen was d = 25 mm, which was the distinctly smallest
dimension, the structure could be approximated as being a 2-D structure. The test
sections of the specimen contained zones with pronounced accumulations of knots.
The zone of highest knot density was located approximately at mid-length (Fig. 9).

Briefly summarized, it was found that more than 90% of the calculated source
coordinates were located within about ±8 mm from the actual pulse source location
in the x-direction and ±22 mm in the y-direction (parallel to grain).

Figure 9 gives a graphical overview of the 2-D results of the localized AEs source
compared to the location of the natural defects (knots). For the test specimen, the
majority of localized AE sources were quite well correlated with the location of the

Fig. 9 Comparative representations of AE sources and defects for specimen. Results of 2-D local-
ization of AE sources (left) in form of a density plot and locations of natural and artificial defects
(knots) and line of ultimate failure (right)
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two main knots near mid-length of the specimen. As anticipated, the vast majority
of AE sources were located around the two relatively large knots, where local fiber
deviations occurred. The fracture line was complex with both tension and shear
modes and was located predominantly slightly above the centers of the localized AE
clusters.

The results of the reported tests prove the feasibility of 2-D AE source localiza-
tion in wooden plane-like specimens, despite the pronounced anisotropy of wave
velocities in the plane parallel and perpendicular to the fiber direction and despite
some material inhomogenities.

A novel nonlinear approach that can take into account a heterogeneous velocity
model as well as non-straight wave propagation paths is described in Gollob et al.
(2017). Figure 10 illustrates why the assumption of straight wave travel paths can
lead to significant errors: While the difference between the actual and straight wave
travel path can be negligible for the case of small distributed air voids (lbp ≈ ld),
the presence of a discrete crack may significantly increase the actual wave travel
path between a source and a sensor (lbp � ld). These two cases are illustrated in
Figs. 10a, b, respectively. Furthermore, the presence of rock aggregates and steel
reinforcing bars introduces heterogeneity and anisotropic behavior, respectively. The
proposed algorithm called FastWay is capable of handling all of these challenges
simultaneously.

In FastWay, the structure to be tested is divided into finite cubes (or voxels), of
which each has its own velocity. This way, heterogeneity and anisotropy present in
a structure can be fully considered. The major difference between traditional AE

Fig. 10 Illustration of errors made when assumption of straight wave travel paths are used for
material with a small distributed air voids and b a discrete crack. Figure adapted from Gollob et al.
(2017)
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Fig. 11 Illustration of wave travel path assumptions for a traditional methods (shortest, straight
path) and b FastWay (fastest, non-straight multi-segment path)

source localization methods and FastWay is that it can consider non-straight multi-
segment wave travel paths allowing for the fastest rather than the shortest paths to be
used to estimate the location of a source (see Fig. 11). Dijkstra’s algorithm (Dijkstra
1959), which is a graphical searching algorithm used to solve single-source shortest-
path problems, was modified to compute the fastest path between two voxels. In
summary, arrival times are computed for each sensor between the sensor and each
voxel in a step-by-step process, in the process mapping the travel paths, as illustrated
in Fig. 11b. These maps, in form of matrices, are then used to determine the optimal
source location, which is done by comparing the precomputed mapped arrival times
with the measured ones. At least four arrival times have to be measured in order
to locate an AE source in three dimensions. The voxel associated with the smallest
numerical difference is assumed to contain the AE source.

The authors have evaluated FastWay using both numerical as well as experimental
tests. An example of a localization result for a simulated concrete prism with a
reinforcing bar at the center of the cross section and a vertical crack is provided in
Fig. 12. This numerical test specimen was discretized into 5 × 5 × 5 mm voxels,
differentiating between concrete, steel, and air. The P-wave velocity for air was set to
a near-zero valuewhile concrete and steelwere assigned values of 4000 and 4900m/s,
respectively. The relatively low P-wave velocity of steel is justified by the assumption
that the rebar acts like a wave guide, therefore having a lower apparent velocity. It can
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Fig. 12 Localization result for sample AE source in a simulated concrete prism. The green line at
the center represents a vertical crack. Figure source Gollob et al. (2017)

be observed that FastWay is able to pin-point to the simulated source very accurately,
despite the crack and reinforcing bar, demonstrating its capabilities. For comparison,
the traditional techniques (denoted as Geiger methods) have large errors due to the
assumption of straightwave travel paths. The coloring of the specimen corresponds to
the normalized error,which can be computed for each voxel.Note that the localization
uncertainty of FastWay is related to the voxel size, i.e. the source is assumed to be
located anywhere in the voxel. Full details of FastWay and all conducted tests are
provided in Gollob (2017).

While this novel algorithm promises to produce themost accurate source localiza-
tions, some limitations should be considered. First, an accurate velocity model needs
to be determined, i.e. each voxel needs to be assigned an individual P-wave velocity.
While this could be done based on detailed X-ray tomography or MRI images, this
would be expensive and prohibitive for larger specimens or in-service structures.
Also, the localizations are computationally expensive, requiring significant computer
hardware.

3.3 Array Localization

A further approach for 2-D localization of AEs is array localization. The term array
localization implies that an array (or group) of sensors is used to determine the origin
of AEs lying outside this array. In such a configuration the events have usually a large
epicentral distance compared to the aperture (extension) of the array – the distance
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between the center of the array and the epicenter is usually more than 2–3 times the
array aperture.

Array localization typically only provides an estimate of the direction and inci-
dence angle of the approaching elastic wave in the array’s plane (Fig. 13). The
techniques has found application with wireless sensor nodes to monitor large struc-
tures; the sensors of the array can be distributed around one or two nodes andmonitor
a relatively large area of the structure (Grosse et al. 2006). More details regarding
the application of this approach are included in chapter “AE in Masonry”. However,
the principle of array technology was first applied in electrical engineering (e.g. for
antenna arrays) and is also used in seismology (e.g. for monitoring purposes in the
frame of the nuclear test ban treaty). Due to the similarity between AE analysis and
seismology, and that in both cases elastic waves are investigated, the references of
this subsection are mainly of seismologic origin. Schweitzer et al. (2002), Rost and
Thomas (2002) and Capon (1969) provide an overview in theory and applications of
array seismology and are used as main references for this topic.

In a sensor array numerous sensors are placed at discrete points in a well-defined
configuration (Rost and Thomas 2002) as shown in Fig. 13 (right). The idea of
installing arrays of sensors is to improve the signal-to-noise ratio. The superior signal
detection capability of arrays is obtained by applying beam forming techniques,
which suppress the noise while preserving the signal, thus enhancing the signal-to-
noise ratio (Schweitzer et al. 2002). Furthermore, arrays allow the station-to-event
azimuth, called the back-azimuth, to be estimated.

The array methods presented here assume that a plane wave arrives at the array.
The wave must have traveled a certain distance depending on the wavelength for
this assumption to be acceptable. The direction of a propagating elastic wave can be
described by the vertical incidence angle, i (Fig. 13, left) and the back azimuth, �

Fig. 13 Left: cross section of the incident wave front (dashed line) crossing a linear array of 7
sensors (S1–S7) at an incidence angle, i. Right: horizontal plane of an incident plane wave front
(dashed line) arriving with a back-azimuth, � relative to the reference Sensor S4 at an arbitrary
array of 7 sensors (S1–S7)
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Fig. 14 Plane wave front
incident on a surface with
two sensors (S1 and S2). The
angle i is the incidence angle
defined in Fig. 13 (left)

(Fig. 13, right) which is measured relative to a designated reference sensor (here: S4
in Fig. 13, right) in the array.

In practice, the incidence angle, i is not used, but the apparent velocity, which
is derived subsequently. The wave fronts arriving at, for example, two sensors at
time t and time t + dt are separated by distance ds along the raypath (Fig. 14). The
distances dx and ds are related to the incidence angle through (Shearer 1999):

ds = dx · sin i (8)

Assuming a uniform velocity in the material, v0 = ds/dt, Eq. 8 can be rewritten
as:

v0 dt = dx · sin i (9)

Equation 9 can be rearranged as:

dt

dx
=
sin i

v0
= s (10)

The slowness, s is the inverse of the apparent velocity of the wave front crossing
the array and defined as vapp = dx/dt. The apparent velocity is a constant for a specific
ray travelling through a material. If the slowness vector, s = (sx, sy, sz) is used rather
than the absolute value of the slowness s, the components of the slowness can be
expressed as functions of the back-azimuth, � and the incidence angle, i (Rost and
Thomas 2002):

s =
(
sinΘ

vapp
,
cosΘ

vapp
,

1

vapp tan i

)
(11)

Sensor arrays, as presented here, are used for the separation of coherent signals and
noise. The basic method used to separate the coherent and incoherent parts of a signal
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is known as ‘array beam forming’. Array beam forming enables the determination
of the back-azimuth of the incident wave. One sensor is chosen as a reference sensor
and all parameters are taken relative to this sensor (Fig. 14).

For most applications all sensors are in the same plane. In such a case, the vertical
component of the slowness vector, sz is zero. The special case where not all sensors
of the array are in one plane is considered in Schweizer et al. (2002).

The beam forming method uses the differential travel times of the plane wave
front for each source-receiver combination and depends on the particular slowness
and back-azimuth to individual array stations. Therefore, the main goal of array
beam forming is to find the best delay times for shifting the individual signals. If
the single-sensor recordings are appropriately shifted in time, for a certain back-
azimuth and slowness, all signals with the matching back-azimuth and slowness
will sum constructively (Rost and Thomas 2002). The delay times, τ j are the sensor
position vector, rj (relative to the reference sensor) multiplied by the slowness vector,
s:

τ j = r j · s (12)

The complete geometrical derivation of Eq. 12 for the sensors of an array can also
be found in Schweitzer et al. (2002).

An array beam, B(t) can be calculated using the following formula:

B(t) = 1

M

M∑

j=1

R j
(
t + τ j

)
, (13)

where Rj(rj , t) is the digital sample of the signal from sensor, j at time, t. Figure 15
shows an example of beam forming. The top trace shows an array beam that results
from applying the beam forming method to the other eight channels. This example
shows how the signal-to-noise ratio can increase during beam forming. The signal-
to-noise ratio of the array increases with the square root of the number of sensors of
the array and is significantly higher than the signal-to-noise ratio of a single sensor
(Rost and Thomas 2002).

When AEs are localized with a sensor array, the back-azimuths of the propagating
elastic waves are determined. The true beam can only be calculated for the correct
back-azimuth. However, the back-azimuth is the parameter we want to determine.
Equation 12 shows that any delay time for each sensor can be calculated by multi-
plying the coordinates of each sensor with a slowness vector. Since the slowness is
a function of back-azimuth and incidence angle (Eq. 11) it is possible to calculate
the true beam by beam forming calculations on a grid of different slowness values.
More specifically, a grid of sx and sy values is defined and for every combination of
the horizontal slowness values, the energy of the beam (integrating over the squared
amplitudes) is calculated. The maximum energy indicates the true beam since only
the coherent signals of a phase (e.g. compressional wave) superimpose construc-
tively. Searching for the true beam can be performed in the time domain, where the
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Fig. 15 Beam forming example, where the top trace is the beam of an artificial AE source. Note
the higher signal-to-noise ratio of the top trace compared with the traces below, which correspond
to the individual sensor measurements

method is called ‘beam packing’ (Fig. 16, left) and in the frequency domain, where
it is referred to as ‘frequency wavenumber analysis’ (Fig. 16, right).

Beam packing is directly applied to the signal in the time domain. Since a time
shift in the time domain is equivalent to a phase shift in the frequency domain, beam
packing is equivalent to frequency-wavenumber (f -k) analysis. The f -k analysis has
the advantage that its numerical calculation is faster than the corresponding procedure
in the time domain and it is more accurate.

The total energy of a record at an array is defined as:

E =
∞∫

−∞
B(t)2dt =

∞∫

−∞

⎡

⎣ 1

M

M∑

j=1

R j
(
t + τ j

)
⎤

⎦

2

dt (14)

Using Parseval’s theorem (Brigham 1974), Eq. 14 can be written in the frequency
domain:
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Fig. 16 Calculation of the back-azimuth of the same incomingwave using the beampackingmethod
(left) and f -k analysis (right). The cross indicates the calculated maximum energy for particular
slowness values, sx and sy. The back-azimuth is the angle between the center of the coordinate plane
and the point of maximum energy

E(ω, k − k0) =
∞∫

−∞
|B(ω)|2

∣∣∣∣∣
∣

1

M

M∑

j=1

eiωr j k

∣∣∣∣∣
∣

2

dω (15)

where B(ω) is the Fourier transform of B(t). The wavenumber vector, k is defined as
k = ω · s. The back-azimuth is calculated from an f -k diagram or a beam packing
diagram in the following way. It is assumed that the incident wave travels through
an imaginary half sphere beneath the array to a particular point. The half sphere
is projected to the surface in the corresponding diagram. Therefore, the slowness
and wavenumber are measured in polar coordinates and the back-azimuth can be
calculated as:

Θ = tan−1

(
kx
ky

)
= tan−1

(
sx
sy

)
(16)

A detailed description of the f -k analysis can be found in, for example, Capon
(1969), Smart and Flinn (1971) or Aki and Richards (1980).

Figure 17 shows a sketch illustrating the principle and results of a typical array
experiment. Three different source points of artificial sources were chosen, which
are marked by black crosses in Fig. 17, top left. The f -k analysis of the data from the
source perpendicular to sensor S1 shows that the back-azimuth is zero degrees (star
in Fig. 17, top right). The measured back-azimuth agrees exactly with the true value.
This is not the case for the two source points near the edges of the concrete plate.
Due to reflections from the sidewalls, the back-azimuth determined from the data of
the source on left side differs by an amount of 4.9° from the true value and the one
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Fig. 17 Top left: sketch of a typical array experiment. A sensor array, with reference sensor S1, is
placed on a concrete plate (2 m × 1.5 m × 0.3 m). Artificial sources (pencil lead breaks or small
impacts) are generated at one side of the concrete plate. The source points are marked by black
crosses. Top right: f -k analysis of the data from the source point perpendicular to sensor S1. The
maximum energy is marked by a cross. Bottom left and bottom right: results of the beam packing
analysis of the data from the left source point (left) and from the right source point (right). The
maximum energy is again marked by a cross

of the right side differs by 3.7° from the true value. For comparison, a beam-packing
analysis was also applied (Fig. 17, bottom). In addition, the array geometry can also
have an influence on the results because the quality of the results can depend on the
direction to the source. If more than one array is used, a 2D localization of the source
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Fig. 18 a Photo of the steel test specimen with two circular sensor arrays, b beam energy as a
function of incidence angle for Array A2, including proposed 95% peak beam energy uncertainty
measure, and c results of all localized pencil lead breaks (PLB). Blue ‘+’ and red stars represent
actual and mean estimated PLB locations, respectively. The pink quadrilaterals represent the area
of uncertainty. Ri is the distance between an array’s reference point and the source location. Figure
adapted from Mhamdi and Schumacher (2015)

of the incident wave can be applied, by calculating the point of intersection of the
two back-azimuth lines.

One of the limitations of traditional array localization, which uses a single array, is
that only the direction (or back-azimuth) of a source can be estimated with sufficient
accuracy. Mhamdi and Schumacher (2015) propose the use of two circular arrays
to determine the intersection of two back-azimuths, which represents the pinpoint
location of the source, to overcome this limitation. Figure 18a shows a photo of
the laboratory test specimen, which was made of structural steel having a geometry
following ASTM E647-11. The two sensor arrays consisted of eight lead zirconate
titanate (PZT) piezoelectric discs, each arranged in a circle with a diameter, a =
30 mm. The PZT discs had a diameter and thickness of 5 and 0.4 mm, respectively,
with a resonant frequency of 450 kHz. A printed circuit board (PCB) provided the
electrical connections between the PZT discs and the data acquisition system (DAQ).
PLBs were performed at 27 select locations lying outside of the array, shown with
blue ‘+’ in Fig. 18c. For each PLB location, mean incident angles, φ for both arrays
(i.e. A1 and A2) using time history-based beam packing as discussed earlier in this
section. The centers of the circular arrays were assumed as the array reference point
and incident angles were computed counter-clockwise from the local x-axes. In order
to represent a measure of location uncertainty, the 95% peak beam energy band was
proposed, as illustrated in Figs. 18b, c shows mean estimated PLB locations with
a red ‘*’ and the pink quadrilaterals represent the area of uncertainty. The authors
compared the mean location estimates with the ones obtained using a traditional
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2-D localization technique discussed in Sects. 2.3 and 4.1. They found that the
absolute source location errors using the proposed array-based approachwere overall
significantly smaller. The array-based approach outperforms the traditional technique
in particular for locations that lie outside of the array, which is expected, as traditional
localization techniques are known to produce large errors for sources that lie outside
of the sensor array. Finally, it should be noted that the phased array approach worked
accurately even for PLB sources that were close to the array, i.e. approaching R/a ≈
2, where the plane wave assumption is theoretically not appropriate.

3.4 Iterative Localization

The standard technique for 3-D localization is to linearize the problem. The standard
equations used to calculate a 3-D location (hypocenter or source of an AE) are based
on the assumptions that the material is homogeneous and isotropic and that the AE
source resembles a point source. If this is not the case, the following approach has
to be modified.

3-D localization requires the onset times from at least four sensors. The most
common approach is to use an iterative localization algorithm, which requires the
linearization of the problem.Todo this, a ‘first guess’ or trial hypocenter (x0, y0, z0, t0)
is required. This first guess hypocentermust lie relatively close to the true hypocenter,
which is not known. The travel time residuals ri of the first guess hypocenter are then
a linear function of the correction in hypocentral distance (Havskov et al. 2002).

For smaller specimens, the middle of the specimen is an adequate choice for the
first guess hypocenter. For other cases the center of the sensor network should be
chosen. For larger specimens, the sensorwhich recorded the event first can be chosen.

Assuming that the material is homogeneous and isotropic, the travel times for 3-D
localization can then be calculated using (see also Eq. 6):

ti =
√

(x − xi )
2 + (y − yi )

2 + (z − zi )
2

v
+ t0 (17)

The source coordinates, (x, y, z) represent the point for which the travel time to
each sensor location, (xi, yi, zi) is calculated, i.e. the first guess of the hypocenter.
The bulk wave velocity of the material is denoted by v and t0 is the first guess origin
time, which is taken as the center point of the specimen.

Due to the first guess hypocenter being a trial solution, the calculated travel time s
differ from the measured ones. A correction vector,
x(
x,
y,
z,
t) is computed
based on the first guess hypocenter to minimize the travel time residuals (see also
Eq. 7). If the necessary corrections are relatively small, the travel time function
(Eq. 17) can be linearized. Therefore, Eq. 17 can be approximated by a Taylor series,
from which only the first term is used. Equation 7 can be rewritten as:
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ri =
(

∂t

∂xi
· 
x

)
+

(
∂t

∂yi
· 
y

)
+

(
∂t

∂zi
· 
z

)
+ 
t (18)

In matrix form this is:

r = G · 
x (19)

G is the matrix of partial derivatives and 
x is the correction vector. Due to the
source time correction term, the last column of thismatrix is always 1.As an example,
the partial derivative of the x-component of Eq. 17 is:

∂ti
∂x

= (x − xi )

v
· 1
√

(x − xi )
2 + (y − yi )

2 + (z − zi )
2

(20)

To calculate the correction vector, Eq. 19 is solved by matrix inversion, e.g. by
calculating the Moore-Penrose generalized matrix inverse:


x = (
GTG

)−1
GT r (21)

If more than four sensors are used, this procedure is repeated and the correction
vector is minimized iteratively. Convergence criteria can be set for terminating the
iteration when a particular desired accuracy has been reached, or if the procedure is
diverging.

This localization algorithm also provides the possibility to correct the body wave
velocity iteratively. To do this, velocities are calculated from the travel time of all
events (e.g. recorded during a certain period of the experiment) and the distance calcu-
lated between sensor and hypocenter. The linear extrapolation of all these calculated
velocities gives a new average velocity for the localization. This procedure can be
performed iteratively, in combination with the localization.

The solution can be further stabilized by introducing a weight matrix,W to Eq. 19
(Thurber and Engdahl 2000). The data can be weighted according to the quality of
the recorded AE signals, sensor-source distance etc. The diagonal elements of the
weight matrix are equal to the square root of the weight value, which is normally
between 0 and 1:

Wr = WG · 
x (22)

3.5 Localization Errors

An error analysis is necessary for assessing the accuracy and reliability of any local-
ization result. There are different sources of errors that are not clearly separated.
Uncertainties in the determination of the arrival times generally depend on data
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quality, and how impulsive onsets are. In the presence of noise, low amplitude onsets
are easily overlooked. Estimated onset times then are too late or even according to
wrong phases. Moreover, the widely used assumption of a homogeneous behavior
of the wave propagation may not be correct for a tested structure.

For the iterative linearized localization method presented in Sect. 3.4, localization
errors are described by the symmetric covariance matrix C. In order to compute
C, at least five sensors (for the case with four unknown source parameters) with
corresponding onset times are required. For the least-squares inversion method, C
can be readily calculated from G, as (Flinn 1965):

C = σd
(
GTG

)−1
(23)

where σd is the data variance of the arrival times. The diagonal elements of C contain
the variances of the source coordinates in the direction of each coordinate axis.
Only spatial errors are of interest, which can be visualized by a 3-D-error ellipsoid
(Fig. 19). Its shape is defined by the eigenvectors and eigenvalues of C, which give
its orientation as well as its dimensions. For the 68%-error ellipsoid, the square of
the semi axis is given by scaling the eigenvalues by 3.53 (Press et al. 1992).

It is important to note that for a homogeneous material the shape of the error
ellipsoid is determined by geometrical relationships between source location and
sensor distribution only, as summarized in the matrix, G of the partial derivatives
(Eqs. 16 and 17). The data uncertainty, σd is assumed to obey Gaussian statistics and
acts as a scaling factor for C.

In the case where AE are expected to occur in certain regions of the test object,
different sensor arrangements should be evaluated to enable accurate localization
of these AE sources or to determine where additional sensors should be placed.
Localization accuracy is highest for events that have appropriate azimuthal coverage
by the sensors. This can be illustrated by the following theoretical examplewhere four
sensors, arranged in a square, are used to localize AE sources in two dimensions. The
arrangement is overdetermined allowing for error analysis. Assuming an AE source

Fig. 19 3-D-error ellipsoid
for visualization of the
spatial localization error s.
Errors, σx, σy and σz can be
found as the projections of
the ellipsoid in the direction
of x, y and z, respectively
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with a known location and time of origin, the arrival time s at the four sensors can be
calculated with the given wave velocity, υ. Inserting these arrival times into Eq. 16
yields three independent equations which can each be plotted as hyperbolas. These
intersect in one point, representing the AE source location as depicted in Fig. 20, left.
The top left figure shows a source that lies within and the bottom left figure a source
that lies outside the sensor array. In real applications, the arrival times contain some
amount of uncertainty and the hyperbolas will not intersect in one point but rather
an area. In the present example this is simulated by adding random errors between
+5 and –5 μs to the calculated arrival times. Figure 20, right demonstrates the effect
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Fig. 20 Theoretical example to demonstrate the effect of the sensor arrangement on the localization
accuracy. Top row: AE source within sensor array; bottom row: AE source outside sensor array. Left
column: accurate arrival times; right column: arrival times with an error of ± 5 μs. Wave velocity,
ν = 4500 m/s
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of the sensor arrangement on the localization result. In the diagram below, where
the AE source lies outside the sensor array, the hyperbolas intersect in a much larger
area compared to the case where the AE source lies within the sensor array.

In principal, the variances of the arrival time data are unknown unless they are
estimated for each signal by visual inspection of the waveforms. However, it is
possible to estimate σ2

d from the remaining discrepancies between observed travel
times t0i and calculated travel times tci after source localization, divided by the degree
of freedom of the problem with four unknown source parameters. For n observations
it is

σ 2
d = 1

n − 4

∑

i

(
t0i − t ci

)2
. (24)

Thus it is possible to visualize the localization results and to interpret them
according to their location uncertainties by defining a maximal spatial error as the
length of the major axis of the error ellipsoid.

Using the same theoretical example as mentioned above, Fig. 21 illustrates the
effect of a systematically erroneous arrival time on the source localization. For an
array of 40 by 40 AE sources, the theoretical arrival times at the four sensors were
calculated. To introduce an error, 5 μs were added to the arrival times of Sensor 1.
The iterative localization algorithm then yields AE-source locations that minimize
the travel time residuals and thus distribute the error in arrival times over all sensors.
Figure 21, top depicts the difference between the actual and the calculated AE-source
location, on the left side as error vectors and on the right side as a density function
of the error value. Figure 21, bottom left shows a density function of the minimized
travel time residuals (mean value over all sensors) and bottom right the major axis
of the error ellipsoid. In most cases the size and orientation of calculated location
uncertainties (bottom right) corresponds well to the actual error vector (top left).

Whether the calculated value ofσ corresponds to the usually unknownactual local-
ization error, depends on the source of error. While inaccurate localization results
due to erroneous arrival time determinations or sensor locations are well recognized
by high values of σ, a false assumption of the wave velocity, υ leads to low σ but
nonetheless wrong localization results. In practical application the value of σ still
proves to be the best indicator to distinguish reliable from erroneous localization
results.

4 Applications and Practical Considerations
of the Iterative Localization Method

AE source localization is used for a wide range of field applications as well as in
research. In field applications it is typically part of a monitoring process of civil
engineering structures allowing, for example, to detect and localize wire breaks in
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Fig. 21 Localization errors resulting from an erroneous arrival time (same arrangement as Fig. 20,
arrival time at sensor 1 altered by 5 μs) calculated and depicted for an array of 40 by 40 points. Top
left: actual localization errors as vector; Top right: actual localization error s as density function
(equidistance: 0.01 m); Bottom left: mean arrival time residuals as density function (equidistance:
0.25 μs); Bottom right: major axis of the error ellipsoid

cable stay bridges (1-D localization), in prestressed decks or in bridge girders (2- or
3-D localization). In research applications, source localization is often required as a
prerequisite for quantitative AE analysis with the aim of observing fracture processes
within the specimen or component (see chapter “Signal-based AE Analysis”).

The requirements for the testing equipment i.e. sensors and acquisition unit are
relatively low. At the same time the interpretation of the results is—at least at first
sight—unambiguous and requires little understanding.AEsource locations can easily
be depicted for example in a plan view of the observed structure. Commercially
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available analysis software or entire testing units allowing for the online localization
of AE sources are usually based on the iterative localization method described in
Sect. 3.4.

4.1 Reliability and Accuracy

In practical applications AE source localization is often applied to large amounts of
data. In order to interpret the result it is crucial to recognize erroneous source locations
and concentrate on the reliable portions of the data. As discussed in Sect. 3.5, this
distinction can, for example, be achieved based on the variance, σ of the location
result.

The AE source locations depicted in Fig. 22 were collected during pullout tests on
concrete cubes of 200× 200× 200 mmwith a rebar Ø 14 mm embedded centrically
and bonded only over the length of Ø 3 mm (Köppel and Vogel 2000; Köppel 2002).
During pullout, AE signals were recorded on eight sensors mounted on the concrete
surface. Figure 22, left displays 3639 AE events recorded on all eight channels
and localized with the iterative localization method described in Sect. 3.5. While
failure was observed in the bond region of the rebar only, AE events were localized
throughout the specimen i.e. also in places where the occurrence of cracks is highly
unlikely. The brightness of the dots marking the AE location indicates their accuracy.
Localization results with a high variance, σ, i.e. a low accuracy, are marked in light
gray and localization results with a low variance σ in black.

In Fig. 22 it can be observed, that the localization results with a low σ tend to
be located around the boundary between rebar and concrete, which is where AE
sources are expected in this test. If a high number of AE locations are available,
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Fig. 22 AE source locations of 3639 AE events obtained during a pullout test. The variances, σ =
1/3(σx + σy + σz) of the location results are indicated via gray tone. Plausible AE sources in the
bond region correspond to AE-Source locations with a low σ
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Fig. 23 Localization results of three pullout tests displayed as density functions. Regions of high
AE activity correlate with the ribs of the rebar

displaying only those with low σ increases the reliability of the result and facilitates
the interpretation.

If regions (or clusters) of high AE activity rather than the exact location of single
events are of interest, visualizing localization results as density functions instead of
data points facilitates the interpretation. Assuming erroneous localization results to
be distributed uniformly while correct locations are concentrated in actual fracture
regions, this procedure increases also the accuracy of the result. In Fig. 23, the AE
locations of three pullout tests are displayed as density function s. It can be observed
that AEs are located in the bond region and clearly concentrated at the ribs of the
rebar.

4.2 Limitations

Like all high order localizationmethods, the iterative localizationmethodworks with
arrival times of certain wave types like P-waves, S-waves, surface waves or Lamb
waves. A complex test specimen with irregular boundaries and an inhomogeneous
structure causes reflections or scattered waves, which interfere in the signal and thus
have no obvious onsets. The first onset usually is the clearest one and is therefore
in most cases used for the localization. It corresponds to the compressional P-wave,
which has the highest propagation velocity, but may not be detectable in a noisy
environment or over long distances in concrete due to its relatively high attenuation.

As a result, AE sources can only be reliably localized over a limited distance
and as long as the assumption of a homogenous media is valid for the considered
wavelength. While inhomogenities due to the reinforcement or tendons have limited
impact on the localization result, crack smay introducewave barriers and thus restrict
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the regions where localization is possible. AE sources beyond existing cracks can
typically not be localized. The following two examples of large-scale laboratory
experiments demonstrate this effect.

The AE localization results displayed in Fig. 24 were recorded during the loading
of a 21 m long prestressed bridge girder (Köppel and Vogel 2000; Zwicky and Vogel
2000). This member was removed from a bridge and subjected to a three-point-
bending test in an outdoor facility at the ETH Zürich. To provoke shear failure, the
load was applied close to one of the support. AE were recorded by eight sensors
located in close vicinity on both sides of the girder in the shear region.

All AE sources localized with a satisfying accuracy, i.e. with a variance σ <
15 mm, can be attributed to the two cracks adjacent to the sensor array. AE sources
originating from beyond those cracks could not be properly localized.

As another example for the application of the iterative localization method, loca-
tion results of AE during the loading of a reinforced concrete beam are documented
by Schechinger (2005). An overview of the test setup can be seen in Fig. 25 (top).
The specimen had a cross section of 440× 440 mm and a total length of 4.50 m. The
beam was assembled with four steel reinforcement bars of 22 mm diameter and an
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Fig. 24 AE sources registered and localized during the three-point bending of a 21 m long
prestressed bridge girder. Depicted are only localization results with σ < 15 mm
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Fig. 25 Overview of the four-point-bending experiment (top), cross section of the reinforced
concrete test beam (bottom left side) and elevation view of the experimental setup (bottom right
side). All measurements in (mm)

ungrouted steel duct of 93/99 mm diameter located at the center of the cross section
(Fig. 25, bottom left side). The experiment was carried out as a symmetric four-
point-bending test, as shown in Fig. 25 (bottom right side). The maximum bending
stress occurred between the two loading points on a length of 0.96 m. In that region,
eight AE sensors were mounted to the concrete surface to record AE signals from
the expected bending cracks. AE events were localized if arrival times of at least six
sensors were available.

Figure 26 shows the localized AE events that occurred from the initial loading up
to the time when the cracking load was reached. First hairline crack s were visible on
the bottom side where the bending causes tension of the concrete. Only those results
are displayed that satisfy a selected criterion for “good localization”, which here is
that the mean residuum for each event has to be smaller than 10 μs. Localized AE
coincide with the topography of two evolving cracks. Results from a later loading
step, where sudden crack growth occurred, are shown in Fig. 27. Numerous AE
events were detected and localized around one opening crack. Further active cracks,
however, were not localizable. The reason for this is, and was discussed earlier, stress
wave propagation is disrupted by open cracks in a specimen and therefore the source
localization method fails.
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Fig. 26 Localization results during initial crack formation. Top view (top), elevation view (bottom,
with cracks seen from the front side), and cross section (bottom right) of the loaded part of the test
beam

Fig. 27 Localization results during crack growing. Top view (top), elevation view (bottom, with
cracks seen from the front side), and cross section (bottom right) of the loaded part of the test beam
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In the example given above it becomes apparent that only a subset of all AE could
be detected and even be localized with acceptable accuracy. Results thus only repre-
sent a portion of the actual fracture processes. The localization capability decreases
with increasing damage (i.e. cracking) of the test specimen, especially when cracking
of the material occurs in some regions and elastic waves are scattered and reflected.

4.3 Measures to Ensure High Localization Accuracy

The localization accuracy is influenced by various factors. In Table 1, somemeasures
to ensure high localization accuracy are listed and discussed.

5 Further Methods

The methods described in this section were so far only partly applied to AEs. Since
some of them are related to the approaches described in the preceding sections, they
should be highly applicable to the AE localization problem. Numerous applications
of these slightly more advanced methods, which e.g. consider clusters of sources
rather than individual sources, exist in seismology. Further approaches developed
or adapted for the AE localization problem presented in this section use e.g. neural
networks or direct algebraic methods from GPS technology to localize AE sources.
However, all methods presented in this chapter have in common that the travel time
information from source to receiver is used.

5.1 Relative Localization Methods

If lateral velocity variations, which are common in the earth’s structure, are present
within a test region, and lead to uncertainties in the measured travel times at distant
stations, the application of a relative localization procedure can improve the localiza-
tion accuracy. This procedure can be only applied to a local region, i.e. the inter-event
distances must be small compared to the event-receiver distance. The events within
this region are relocalized relative to one particularly well-localized event, called
master event. It is assumed that these velocity variations have nearly the same effect
on all events from the local region (Shearer 1999). Equation 7 can be rewritten as:

rreli = t0i − tmaster
i (25)

The master event is used as the first guess location and Eq. 19 can be easily
rewritten as:
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Table 1 Factors influencing the accuracy of AE results

Measure Effect

Data acquisition Use of adequate number of
sensors

Using more sensors than
necessary, the localization
algorithm is over determined and
the variance, σ can be calculated
as a measure of accuracy of the
result. In general, the localization
accuracy increases with increasing
number of sensors employed
Due to the limited reach of AE
sensors, high numbers of sensors
are needed to cover real-life
structures. If only a certain
number of sensors is available,
concentration on areas of
particular interest is recommended

Appropriate sensor arrangement Uniform azimuthal coverage of
AE sources ensures that errors in
arrival time determination do not
lead to high uncertainties in the
AE localization
Limitations to the optimal sensor
arrangement are posed by the
specimen geometry

Minimization of noise The minimization of noise
improves the SNR and therefore
also the accuracy of the arrival
time determination. This is
achieved by using high-quality
data acquisition components,
proper shielding of cabling and
electronics, and appropriate
sensor coupling

Material model and
localization approach

Determination of the wave
speed, ν in advance

Determining the wave speed, ν in
advance can be done without
much effort, e.g. by performing
PLBs at known locations.
Applying the iterative localization
method with a wrong ν leads to
systematic mislocalizations that
might not manifest in high values
of σ

(continued)
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Table 1 (continued)

Measure Effect

Considering inhomogeneous
material properties

By excluding sensors beyond
known inhomogenities such as
cracks, the accuracy of the
localization result can be
improved. The sensors to be
excluded can be determined by
evaluating station residuals, i.e.
differences between calculated
and measured arrival times after
the source location has been
estimated. The sensors with the
largest station residuals are the
ones that are excluded
This method requires an iterative
procedure and the use of a greater
number of sensors. Results can be
significantly improved when
source localization techniques that
consider heterogeneous material
models are used

Use of additional wave modes
(other than P-waves)

For surface-near sources or planar
localization, the use of surface
waves, which are not as much
attenuated as P-waves, increases
the reach of the sensors. Using P-
and S-waves, the accuracy of 3-D
localizations can be improved
The onsets of surface- and
S-waves are generally difficult to
detect in the recorded signals
because they are hidden in the
coda of the P-wave

Arrival time
determination

Appropriate choice of threshold
value

If the arrival time is determined
using a fixed threshold
exceedance criterion, the choice
of the threshold value is crucial to
the accuracy of the result
For AE signals with a large
variation of signal amplitudes, this
method is not appropriate

Use of sophisticated methods for
arrival time determination

The use of sophisticated methods
such as the AIC Picker (see
Sect. 2.1) leads to a higher
localization accuracy, in particular
for signals that have a wide range
of SNR

(continued)
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Table 1 (continued)

Measure Effect

Manual arrival time
determination

For AE signals with a low SNR, a
manual determination is necessary
to obtain reasonable localization
results. For AE signals with a high
SNR, the localization accuracy
can be increased significantly
The time needed for manual
arrival time determination
increases exponentially and can
only be justified if few AE events
have to be localized accurately for
further analysis

rrel = G · 
x (26)

The correction vector, 
x must still be relatively small so that the linearization
of the problem is valid. Since the principle of the relative localization procedure
does not differ from the iterative one, the relative localization of AEs should also
be possible. Further information about relative localization methods can be found in
Deichmann and Garcia-Fernandez (1992), Mendecki (1997) or Shearer (1999).

5.2 Joint Hypocenter Determination

The relative localizationmethod and joint hypocenter determination are both efficient
ways to account for lateral velocity variations. However, in contrast to the relative
localization method, the joint hypocenter determination method locates a group of
events simultaneously to obtain a common set of sensor corrections. The following
short overview of the method is referenced to the detailed outline of Pujol (2000).

The only difference between the single-event localization described in Sect. 3.4
and the joint hypocenter determination is that a correction term 
s for each sensor
is added.

The system of i = 1, …, n sensors and j = 1, …, m events has to be solved
simultaneously. Therefore, Eq. 19 can be rewritten as:

r j = G j · 
x j + 
s (27)

The system of linear equations for joint hypocenter determination (Eq. 25) can
be very large if many sensors and a large number of events are used. However, Pujol
(2000) describes several methods in detail for an efficient solution of this problem.

Certain restrictions have also to be considered before a joint hypocenter determi-
nation can be applied. If the events are clustered very tightly, the solution will be
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affected by intrinsic numerical errors (Pujol 2000). The joint hypocenter determi-
nation is used when unmodeled velocity variations are to be considered by deter-
mining station corrections. However, if the joint hypocenter should improve single
event localization, the velocity variations need to be restricted to the portions of
the raypath close to the sensor. Therefore, for improved results to be obtained, each
station correction has to approximately represent the same travel time anomaly.

5.3 ΔT Source Localization

The �T source localization method (Baxter et al. 2007) was developed for the local-
ization of AEs in a predefined area of interest. It was developed for plate-like struc-
tures. Therefore, the idea behind this approach is somehow related to the ideas of
the relative localization and grid search methods with the possibility of considering
non-linear material effects.

The application of the �T source localization method requires the generation of
a grid on the surface of the component. With the help of artificially generated AEs,
e.g. Hsu-Nielsen PLB sources, the time of arrival for each sensor is determined at
the nodes of the grid. Then, for each sensor pair from each artificial source, the
difference in time of arrival named “�T” is calculated. This leads to an interpolated
�T map based on an average (5 events minimum) source difference for each node
point. With the help of interpolation methods, the grid density can be increased.
For localizing an AE event, 
T is calculated for each sensor pair. Mapping these
differences in time of arrival, while the time of arrival is determined by a threshold
or a more advanced criterion, possible source locations are displayed. This leads to
a convergence point representing the source of the AE. With increasing number of
sensor pairs considered, the accuracy of the location is increased. A minimum of
three sensors is required. The localization error is given as one grid square.

Similar to the approach from Baxter et al. (2007), the input data for the artificial
neural network (ANN) localization approach of Kalafat and Sause (2015) is also
based on the time of arrival differences, �T. In their study, a grid was applied to the
specimen under investigation, which represents the locations of artificial AE sources
of different frequency content. The resulting �T values were used to train the ANN.
ANNs are a further tool that can be used for the localization of AE sources. Kalafat
and Sause (2015) developed this approach especially for acoustic anisotropic and
inhomogeneous fiber-reinforced materials.

A thorough discussion of the localization accuracy of this approach can be found
in Kalafat and Sause (2015).

More recently, Al-Jumaili et al. (2016) present an efficient automatic iterative �T
mapping technique using unsupervised clustering capable of locating AE sources
in complex structures. They demonstrate that the accuracy is better than traditional
time-of-arrival approach, as well as previous �T techniques.
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5.4 Direct Algebraic Solvers

Direct algebraic solvers are common for global positioning systems (GPS) and are
also based on a linearization of the localization approach. For the 3-D case, the point
of intersection of hyperboloids is determined assuming a constant velocity. The
application to AE source localization described in Kurz (2015) is based on the GPS
approach developed by Bancroft (1985), which allows to solve the overdetermined
case and calculate localization accuracies.

The basic equations for applying direct algebraic solvers are given in Eq. 28,
which describes the transform of Eq. 17 into a form of so-called pseudo ranges, pi
and represents the hyperbolic surface of the position.

pi =
√

(x − xi )
2 + (y − yi )

2(z − zi )
2 + v · t0 (28)

Equation 17 can be rearranged to the form shown in Eq. 29 describing the time-
space continuum of the Minkowski space. Using mathematical matrix operations as
described in Bancroft (1985) or Kurz (2015), the source point-location is obtained
by ultimately solving a quadratic equation, i.e. two solutions exist containing the
source coordinates and the pseudo-source time. The travel time residuals (differ-
ence between measured and calculated travel time) of the two solutions will differ
significantly. Therefore, they are a measure for identifying the correct solution.

0 = (x − xi )
2 + (y − yi )

2(z − zi )
2 − v2 · (ti − t0)

2 (29)

Direct algebraic solvers are fast since the applied mathematical operations are
simple. Numerical instabilities cannot occur, however, criteria have to be defined to
verify the plausibility of the results. One essential boundary condition regarding the
application is that this approach requires the assumption of constant velocity and
the onset times have to be determined. This has to be considered when applying this
solver.

Besides of using the Bancroft solver for all onset times of all sensors for one event,
the high speed of the numerical solver allows to divide the onsets of one event into
subgroups. One such approach is described by Kurz (2015), where from 8 available
onsets only 5 are taken for inversion. Building all five-event combinations leads to
56 localizations for one event. It is assumed and a requirement for the application of
a refinement analysis that the resulting AE locations are clustering and condensing
towards the correct location, i.e. incorrectly determined onsets can be figured out
by statistical means. Here the median of the received localization coordinates (each
axis separately) is determined and the difference between median and each event
is calculated. This defines the extension of the event cluster and the source point is
assumed as the center of mass of the resulting cluster.
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5.5 Advanced Nonlinear Methods

Besides the iterative localization method, which is based on a linearization of the
problem, and still one of the most frequently used methods, several nonlinear
approaches exist for 3-D localization. Subsequently, three methods are summa-
rized. The referenced papers contain further information about nonlinear source
localization methods.

One approach to the nonlinear localization problem is the differential evolution
algorithm by Ružek and Kvasnička (2001). The differential evolution algorithm is
structured like a genetic algorithm and works efficiently and reliably. It is a robust
global optimizer that does not use the linearized form of the problem, but minimizes
Eq. 5 using a nonlinear approach.

As described in Sect. 5.1, a number of relative localization methods have been
proposed in recent years. Thesemethods apply to clusters of events and aim to reduce
the hypocentral scatter of an event cloud. A popular method known as the double-
difference method and developed by Waldhauser and Ellsworth (2000), considers
both the P- and S-wave differential travel times, derived from cross-spectral methods,
with travel time differences calculated for pairs of events. The method simultane-
ously determines inter-event distances between clusters of correlated events while
determining the relative locations of other clusters and uncorrelated events. The
double-difference earthquake localization algorithm allows the simultaneous relo-
calization of large numbers of events over large distances without the need of station
corrections (see also joint hypocenter determination).

The residuals between the observed and calculated travel times between the two
events, i and j recorded at site k, is defined by Waldhauser and Ellsworth (2000) as
the double-difference and can be expressed as:

ri jk = (
tik − t jk

)obs − (
tik − t jk

)th
(30)

Waldhauser and Ellsworth (2000) use a two-step iterative solution procedure,
where a priori weights describing data quality are first applied to the arrival times.
Once a stable solution is obtained, the data are reweighted by multiplying the a priori
quality weights with values that depend on the misfit of the data from the previous
iteration and on the offset between events (to downweight event pairs with large
inter-event differences).

The double-difference method has been further developed by Spottiswoode and
Linzer (2005). This method is referred to as the hybrid method because it is a combi-
nation of the double difference method and absolute (single event) methods, and
is similar to the approach taken by Andersen (now Linzer) (2001) for moment
tensor inversions (MTI). The hybrid method has evolved from the approach used
by Spottiswoode and Milev (1998), who only considered groups of similar events.

One important enhancement is that events with additional constraints on their
locations, such as explosions produced when developing a tunnel underground, are
used to constrain the hybrid localizations. Another enhancement is that themedian of
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the distribution of residuals is used toweight the data. Experience gained byAndersen
(2001) suggests that the use of median corrections is both more stable and more
accurate even while the localization of individual events is based on weighted least-
squares minimization. Additionally, the data recorded from closer sensors is given
a greater weight, when absolute locations are computed using classical methods, to
reduce errors caused by velocity errors from long ray paths.

For events i and j recorded at site k, Spottiswoode and Linzer (2005) define the
residual as:

(
ri jk

)2 =wABS
[
tobsik − t thik

]2

+ w2D
[(
tobsik − t thik

) − median
(
tobsik − t thjk

)]2

+
∑

2

wLI N E
[
di

/
vk

]2
(31)

where di is the distance of event i from either of two planes through a known line
of events (in an underground mining context, such a line could be the line of explo-
sions produced when mining a tunnel), and vk is the velocity assumed for the wave
phase along the ray path. Equation 31 uses a reference line of events because this
information was available. This formulation could be extended to include reference
points, rather than lines. Although Eq. 31 may appear complicated, it is of a similar
form to Eq. 30 if the travel times are regrouped as:

ri jk = (
tobsik − t thjk

) − (
tobsjk − t thjk

)
(32)

The first term in Eq. 31 is the absolute location component; the second term has
the form of the double difference described by Eq. 30, and the last term represents
the distance from two planes (oriented vertically and horizontally) that describe the
reference line of events. The procedure is iterative and the weighting factors, (wABS ,
w2D, wLINE) control the influence of each term on the system of equations and are
recalculated for each iteration. The arrival time differences between all pairs of events
are used to obtain hybrid locations by minimizing the weighted sum of squares of
all arrival-time differences. Minimization is done using the standard Gauss-Newton
method (Press et al. 1990).

The hybrid localization procedure is being used successfully on data recorded
in deep level mines in South Africa. A number of case studies are presented in
Cichowicz et al. (2005).

5.6 Probabilistic Methods

Another alternative to standard iterative linearized localization methods is the proba-
bilistic inversion approach of Tarantola and Valette (1982). In recent years, software
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packages have become available that combine efficient, nonlinear, global search algo-
rithms (e.g.NonLinLoc, Lomax et al. 2000). Thismethod gained in importance for the
precise localization of earthquake hypocenters (Husen et al. 2003) and can be adapted
to the needs of AE localization with little modifications (Schechinger 2005). Results
are more accurate and reliable compared to that of linearized localization methods
and show more stability when linearized methods fail for events recorded outside
of a sensor network. The nonlinear localization method can be easily applied with
high-contrast 3-D-varying velocity models, because localization algorithms need no
calculation of partial derivatives.

While standard linearized localization methods produce a single point solution
and uncertainty estimates (Schechinger and Vogel 2006), the result of the nonlinear
method is a probability density function (PDF) over the unknown source location
coordinates. The optimal location is taken as the maximum likelihood point of the
PDF. The PDF explicitly accounts for a priori known data errors, which are assumed
to be Gaussian.

The model of the test specimen is discretized by a 3-D grid. For all grid nodes,
travel times of the first arrivals to each sensor position have to be available. In
NonLinLoc, a finite-difference scheme is used to calculate the travel time s for the
given velocity model (Podvin and Lecomte 1991), but in principle, any method can
be used. Different approaches are used for estimating the PDF. A systematic grid
search algorithm over nested grids can be very time consuming but provides exhaus-
tive coverage of the search region. The faster stochastic Metropolis-Gibbs sampling
approach or the Oct-Tree Importance sampling algorithms are more practical for
routine analysis (Lomax et al. 2000).

Solutions for two sample AE events, E1 and E2, are shown in Fig. 28. They were
recorded in a loading test of a reinforced concrete beam described in Sect. 4.2. The

Fig. 28 Nonlinear localization results (using NonLinLoc) compared to linearized localization
results. The 68% error ellipsoid estimated by the standard linearized localization method is plotted.
See Fig. 25 for the experimental setup
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Fig. 29 Cross section of the
3-D velocity model with an
air-filled void representing
the ungrouted duct in the
length axis of a concrete
beam

results of the nonlinear localization (confidence volumes and maximum likelihood
source coordinates, indicated by gray scales andwhite stars) are compared to the point
source solution (white circles). The 68% error ellipsoids estimated by the standard
linearized localization method is also plotted. In both cases, a constant propagation
velocity was assumed. For the well observed Event E1, the two solutions are almost
identical. Event E2 occurred at the edge of the sensor network and therefore has a
greater localization error. There are slight deviations between the error ellipsoid and
the shape of the PDF, because the nonlinear relationship between source coordinates
and travel times is taken into account. For this reason, the PDF can have a more
irregular shape in the case of a 3-D velocity model.

The nonlinear localization method was further tested using a 3D velocity model
on some events close to an ungrouted duct in the length axis of the concrete beam.
Figure 29 shows the cross section of the model with an air-filled cylindrical void,
along its length axis, that disturbs the direct wave propagation and hence the travel
times.

The AE locations obtained with the linearized method for a homogeneous model
of plain concrete differ from the results of the nonlinear localization with the 3-
D model (Fig. 30). Ongoing work is investigating in detail how AE localization
results are improved by the nonlinear approach. Possibilities for applications would
be structures with large-scale inhomogeneities like hollow-cores.

ABayesian probabilisticmethodology developed specifically forAE localizations
in concrete is presented in Schumacher et al. (2012) and Schumacher and Straub
(2011). The authors developed a Bayesian framework using Monte Carlo Markov
Chain (MCMC) simulation where the model parameters are represented by proba-
bility density functions (PDF). The premise of a Bayesian network approach is that
these PDFs can be updated once events are observed that provide new information
about them. Also, it is straight forward to include additional data and relationships to
improve the prediction of future events. The authors used the open source program
WinBUGS, a statistical software for Bayesian analysis using MCMC methods, for
their localization methodology (Lunn et al. 2000). Before source localization can be
performed using a predictive model, model parameters have to be estimated based
on an inference model.
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Fig. 30 Nonlinear localization results considering an air-filled duct (confidence levels in gray scales
andmaximum likelihood solution as stars) compared to linearized results for a plain concrete model
(black circles as point source with error ellipsoid). Figure adapted from Schechinger (2005)

The equation to calculate the arrival time, ta at sensor k can be expressed as follows
(equivalent to Eq. 6):

ta[i, j,k] = t0[i, j] + sp[i,k]d[i,k] + ε[i, j,k] (33)

where t0 is the unknown event time, sp is wave slowness (inverse of wave speed, cp,
assumed constant), d is the wave travel distance between the source and sensor k
(assumed as straight), and ε is an error termmodeled as a Gaussian variable with zero
mean and precision, τ (inverse of standard deviation, σ). Indices, i, j, and k denote
source locations, events at the same source location (used for PLBs), and sensors,
respectively, imposing a distinct hierarchy in the model. The wave travel distance is
calculated as:

d[k] =
√

(x[k] − x0)2 + (y[k] − y0)2 + (z[k] − z0)2 (34)

where x[k], y[k], and z[k] are the coordinates of sensor, k and x0, y0, and z0 are the
unknown source coordinates.

Alternatively, Eq. 33 can be expressed as a probabilistic model, as follows
(Schumacher and Straub 2011):

Ta[i, j,k] ∼ N
(
t0[i, j] + sp[i,k]d[i,k], τε[i, j,k]

(
A[i, j,k], α

))
(35)

where A is the signal amplitude and α is a global parameter that relates the precision
of the errors in the observed arrival times τ with the signal amplitude. Following
examination of arrival time picking errors, 
t and shifted signal amplitude, A-Amin,
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it was observed that the variance of the picking error decreases with increasing signal
amplitude. Hence, the following relationship was employed in the model:

τε[i, j,k] = A[i, j,k]α (36)

The graphical representations of the inference model and the prediction model
are provided in Figs. 31 and 32. Round and rectangular nodes represent random vari-
ables and constants, respectively. In order to estimate the model parameters (round
nodes), prior distributions have to be defined. The authors used weakly informative
priors, corresponding to normal distributions with low precisions. Once the model
parameters are estimated and bounds (e.g. to keep predictions within the specimen’s
geometric boundaries) are defined, localizations can be performed on newly available
data, i.e. arrival times.

Results can be visualized in form of a point cloud colored according to density
and the optimal point solution can be computed using a mean-shift algorithm, repre-
senting the highest density point of the cloud. A sample localization result from a
PLB test performed on a reinforced concrete specimen with overall dimensions, 0.61
× 0.61 × 1.83 m is shown in Fig. 33.

Fig. 31 Graphical representation of the inference model
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Fig. 32 Graphical representation of the prediction model

A comparison of 22 PLB applied on the x-z front face of the specimen showed that
the Bayesian probabilistic source localization outperformed the traditional iterative
technique significantly. An advantage is that additional information and relationships
can be readily in included in themodel to further improve the accuracy. Finally, spatial
as well as temporal source location parameters are available in probabilistic form,
providing an improved measure of uncertainty compared to the error ellipsoid.

A limitation of this methodology is that it assumes a constant wave velocity and
straight wave travel paths.

A robust hypocenter localization code called BEMIS (Bayesian Estimation of
Mine Induced Seismicity—see Martinsson 2013) is currently being tested at Kiruna
mine in Sweden.Kirunamine has one of theworld’s largest in-mine seismic networks
consisting of >300 triaxial and uniaxial geophones and records >10,000 seismic
events every day. The mining-induced stress changes are relatively slow and an
average of 2700MW ≥ 0 seismic events are recorded every year, with the largest event
recorded on May 18, 2020 having a moment magnitude, Mw 4.3 (Dahner-Lindkvist
and Dineva 2020).

BEMIS is designed to increase the accuracy and precision of the hypocenters that
have poor, inconsistent, and insufficient phase arrival times by introducing heavy-
tailed distributions and an informative prior distribution of the seismicity (Martinsson
2013). Arrival time outliers can be caused by a variety of influences, for example,
velocity changes due to the fracture zone, weak emergent arrivals, etc. Previous
studies have shown that travel time residual distributions often do not follow normal
distributions with respect to the occurrence of extreme values and outliers, and
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Fig. 33 Sample localization result: aKernel density estimates for predicted source location param-
eters and b visualization using point density cloud with optimal solution shown as white pentagram.
Figure adapted from Schumacher and Straub (2011)
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suggest distributions with heavier tails (e.g. Buland 1986; Grand 1990) and multi-
modal (Bondár et al. 2004) characteristics. A number of deterministic approaches
have been considered applying different norms of the equation error (e.g. Prugger
and Gendzwill 1988; Blair 1993; Mendecki 1993).

Martinsson (2013) also applied a Gaussian Mixture Model (GMM) to increase
the robustness against poor, inconsistent, or insufficient arrivals. The GMM uses
a hypocenter prior distribution to describe the seismically active areas, where the
parameters are estimated based on previously localized events in the region. The prior
distribution is truncated to constrain the localization solution to valid geometries, for
example below the ground surface, excluding known mined out voids and fracture
zones.

To reduce the sensitivity to outliers, Martinsson evaluated different heavy-tailed
distributions to model the likelihood distribution of the arrivals given the hypocenter
and the origin times. Themultivariate t-distribution was shown to produce the overall
best performance, where the tail-mass adapts to the observed data. Markov Chain
Monte Carlo (MCMC) techniques were then applied to determine hypocenter and
uncertainty region estimates.

Underground seismic networks have an advantage over AE tests in the laboratory
because the velocitymodel can be continually updated using blasts from known loca-
tions. In laboratory tests, this could bemimicked by either periodically (a) performing
PLBs on the specimen surface or (b) by transmitting pulses from each transducer in
the network one-by-one.

The BEMIS processing chain is fully automated and the P- and S-wave arrival
times with corresponding uncertainties are estimated from the seismograms using
simplemultivariate autoregressive (MAR)descriptions of the seismograms following
Basseville and Nikiforov (1993). The MAR technique produces a 46% reduction in
the average localization errorwhen compared against the currently used deterministic
localization technique based onmanual estimation of the P- and S-wave arrival times.

5.7 Time Reversal Methods

Kocur (2012) developed an AE source localization method for application on struc-
tural concrete based on time reverse modeling (TRM). The central idea behind TRM
is that if AE signals recorded from an event are reversed in time and reemitted into
the test specimen, they should constructively interfere at their location of origin.
The source location emerges as a region of concentrated energy. While the recorded
signals can be either from physical experiments or numerical simulations, the time
reversal part is always performed by numerical wave simulation. A detailed numer-
ical model of the test specimen containing information on a finite grid regardingwave
mode velocities and density is the basis for the wave simulation. Kocur first estab-
lished the general methodology using numerically simulated signals that employed
a realistic numerical concrete model. This model was developed by performing
segmented X-ray tomography on a real concrete specimen (Kocur et al. 2010).
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To prove that the approach works for localizing AE signals, Kocur tested a 0.12×
0.12× 1.70 m reinforced concrete beam to failure (Kocur et al. 2016). The specimen
was equipped with eight AE transducers attached to the surface. To verify the AE
source location maps, segmented X-ray tomography was performed throughout the
test to establish detailed crack maps and to provide data for the material model
required to apply the technique. The TRM localization maps were then overlaid with
the crack maps for comparison.

The TRM approach opens exciting avenues not only for improved localization of
events but under some circumstances it might even be possible to gain insight into
the source mechanism of an event. Kocur showed this for the case of numerically
simulated signals in his work where he was able to visualize the radiation pattern of
different source mechanisms under simplified conditions (Kocur 2012). The chal-
lenges with TRM is that it relies, similar to Gollob’s approach described in Sect. 3.2,
on a detailed numerical model of the test specimen. Establishing an accurate 3D
material model, which is unique for every structure, is not only time consuming
but in many cases might not be possible. Additionally, the wave simulations are
computationally expensive, requiring super computers to complete localizations in
a reasonable time.
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