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Abstract Signal-based AE techniques use the entire transient waveform resulting
fromanAEevent.As such,more information is available allowing for improved inter-
pretation of fracture processes in amaterial or structure. Two signal-based approaches
are presented and discussed in this chapter:Waveform analysis and quantitative anal-
ysis. The former has received increasing attention due to the recent developments and
wide availability of machine learning algorithms. The latter is a classic approach that
has its origin in seismology. The main approach associated with quantitative analysis
is moment tensor inversion (MTI). While MTI requires accurate 3D source localiza-
tion from an extensive network of sensors, waveform analysis can theoretically be
performed with a single sensor. A comparison between signal- and parameter-based
AE analyses is presented first. Subsequently, the measurement process is explained
and its main influences on the recorded signals are discussed. Finally, waveform
analysis and quantitative analysis approaches are described in detail, along with
application examples from the literature.

Keywords Acoustic emission · Signal-based analysis · Waveform analysis ·
Quantitative analysis · Moment tensor inversion

1 Introduction

Approaches for recording and analyzing acoustic emission (AE) signals can be
divided into two main groups: parameter-based and signal-based AE techniques
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(AET). Both approaches are currently applied, with success for different applica-
tions. Therefore, it is useful to recognize their fundamental differences. A detailed
description of parameter-based techniques is provided in chapter “Parameter Anal-
ysis”. The reason that two approaches exist is related to the rapid developments in
microelectronics over the last few decades. Early on, it was not possible to record,
sample, and store a large number of waveforms (signals) over a sufficiently short
period of time, which is a requirement for signal-based techniques. Even though
significant technical advances have been made in recent years, it is still not feasible
to use some signal-based techniques to monitor large structures. For example, the
relatively high monetary cost due to the large number of sensors and associated data
recorder as well as the time required to apply quantitative analysis techniques, are
the main reasons why parameter-based techniques are still popular. However, some
of the AE recorders used for classical (parameter-based) AE analysis are now able to
store the waveforms of the detected AE signals, even though this is not the primary
function of these devices. For applications using quantitative analysis techniques,
multi-channel high-speed transient recorders are typically used. The best instruments
are those that can be adapted to different applications, and can record waveforms if
a signal-based approach is being taken, or record large numbers of AE hit signals if
a parameter-based approach is taken, which requires the statistical analysis of many
signals. In the following two sub-sections, the two analysis approaches are defined.
For a more detailed discussion about the differences between the different analysis
techniques, their strengths, and limitations, the reader is referred to chapter “AE
Monitoring of Real Structures: Applications, Strengths, and Limitations”, Sect. 1.6.

1.1 Parameter-Based Analysis

If AE events are recorded with one or more sensors, such that a set of parameters
are extracted from the signal and later stored but the signal itself is not stored, the
procedure is usually referred to as a parameter-based (or classical, qualitative) AET.
The idea is that the signals can be sufficiently described by the set of character-
istic parameters (or features), and storing this relatively small amount of information
consumes far less time and storage space compared to when entire wave-forms are
processed. Some typical parameters that can be automatically extracted by commer-
cial AE recording equipment (see, e.g. chapter “Sensors and Instruments”, Sect. 7)
are: arrival time (defined as the first crossing of a given amplitude trigger level, or
threshold), maximum signal amplitude, rise time (defined as the duration between
arrival time and time of maximum signal amplitude), and signal duration (defined by
the last crossing of a given amplitude threshold) (ASTM E610 1982; CEN 1330-9
2009).

Figure 1 illustrates these parameters on a hypothetical AE signal. Note that some
of the parameters are adopted from seismology. For example, maximum amplitude in
parameter-based AE analyses for civil engineering applications is usually defined as
the maximum value determined from the absolute value of the recorded signal (see,
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Fig. 1 Typical AE parameters illustrated on a hypothetical AE signal according to international
and national standards (ASTM E610 1982; Berger 1977; DGZFP SE-3 1991)

e.g. chapter “Parameter Analysis”, Fig. 1). The extracted AE parameters, and others
described in chapter “Parameter Analysis”, can then be plotted over time or statistical
analyses can be applied to them with the objective of capturing changes that might
be associated with fracture or degradation processes occurring in a structure. The
main advantages of parameter-based AET is that they can be performed with as few
as one sensor and in real-time. Because of this, they are the most cost-effective way
of monitoring a structure. On the other hand, taking this simplified approach only
provides a very limited view of the physics of the actual sources of AE. Additionally,
recording settings such as the trigger level and the type of sensor used directly affect
the parameters and their perceptionof how they changeover time.As such, parameter-
based AET are also referred to as qualitative, or relative, i.e. they allow capturing
changes over time for a specific structure or process. However, a comparison between
datasets of different projects is often difficult or impossible, because of the limitations
described above.

1.2 Signal-Based Analysis

Signal-based approaches have been adopted from seismology and introduced to AE
analysis in civil engineering to overcome some of the limitations of parameter-based
analysis. Using signal-based AE analysis, as many signals as possible are recorded
and stored, along with their full waveforms, which are sampled, i.e. converted from
analog-to-digital (A/D), at sampling rates typically in the MHz range. A more
comprehensive (and time-consuming) analysis of the data is possible using this
approach, but usually only in a post-processing environment, i.e. not in real-time.
This chapter discusses two signal-based analyses: Waveform analysis (see Sect. 3)



76 T. Schumacher et al.

and quantitative AE analysis (see Sect. 4). The fundamental difference between these
two is that the former can theoretically be performed with a single sensor; the latter
requires an extensive sensor network in order to localize and characterize AE events.

Waveformanalysis as discussed inSect. 3 refers to techniques that analyze, charac-
terize, and compare AEwaveforms over time. The concept is that changes observable
within recorded signals can be associated with changes in the structure being moni-
tored. In contrast to parameter-based techniques, entire waveforms are analyzed and
compared rather than only a few select parameters. Waveform analysis has received
increasing attention because of its suitability for application of machine learning and
artificial intelligence techniques.

The term ‘quantitative’, as it is used in conjunction with AE analysis, was intro-
duced by several authors (Scruby 1985; Sachse and Kim 1987) in the 1980s to
compare this approach with the classical, qualitative techniques based on waveform
parameters. The objective of quantitative AE analysis (see Sect. 4) is to describe the
nature of each AE source as accurately as possible, rather than concluding about their
effects measured at sensor locations away from the source. This approach requires
a network of high-fidelity sensors in conjunction with a sophisticated and time-
consuming analysis. While considered the most accurate approach, it is still mostly
only used in the laboratory, because of the significant requirements on equipment,
computation, and interpretation.

When discussing the pros and cons of these two approaches it is important to
keep the specific application in mind. This is true for the simple counting of the
number of AE occurrences in a material under load by a single sensor, as well as
for networks of many sensors used for locating and analyzing data in the time and
frequency domains. A more detailed discussion of the applications and limitations
of parameter and signal-based AE analysis techniques along with a comparison can
be found in chapter “AEMonitoring of Real Structures: Applications, Strengths, and
Limitations”, Sect. 1.6.

2 Measurement Setup and Process and Their Influence
on Signal-Based AE Techniques

Signal-based AE techniques depend on the characteristics of all parts of the measure-
ment setup used to record and analyze AE, in particular, the type of sensors used.
Therefore, and in addition to chapter “Sensors and Instruments”, some general
remarks about sensors are given in this section. Note that the terms “sensor” and
“transducer” are used interchangeably. Technically, a transducer is a device that can
both sense and actuate, while a sensor is a type of transducer that can only sense.
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2.1 The Concept of Systems Theory and Transfer Functions

AE originating from actual sources such as small fractures due to cracking are of low
magnitude compared to artificial sources imposed by the operator such as a pencil
lead break (PLB) or an ultrasonic transducer. Thus, the signals arriving at the sensor
are weak and must be amplified if they are to be detected at all. AE signals are
subject to a variety of influences such as variations in the material along the ray path
(heterogeneities, anisotropy) and the measurement setup (coupling, characteristics
of sensors and pre-amplifiers, etc.). Note that these also change over time due to
environmental factors as well as degradation processes. To consider the effects of
these influences on the recorded signals, methods used in systems theory can be
applied. This process is also known as linear filter theory, where an output signal is
described as a sequence of linear filters, which are characterized by their complex-
valued transfer functions, and are applied to an input signal. Each filter accounts
for some aspect of the wave propagation and measurement process. The AE source
represents the input signal and the recordedwaveforms are the output signal. To apply
systems theory, each of the known influences is assigned a different transfer function,
which each consist of a frequency and a phase response function. In AE applications
it is important to know or estimate the shape and importance of these functions as
a precondition to eliminate their influence, if possible. The different influences (or
system components) are depicted conceptually in Fig. 2, which is valid also for other
methods, such as ultrasonic testing.

Fig. 2 Concept of transfer functions to characterize the AE measurement process (adapted from
Grosse and Schumacher 2013). The figure on the right shows recorded signals with picked P-wave
arrival times, stacked vertically according to the distance between the sensor that recorded the signal
and the estimated AE source. Note that this representation requires a preceding source localization.
The slope of the orange line represents the mean P-wave velocity
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Mathematically, the measurement process can be represented by the following
function:

Rec( f ) = S( f ) · TFG( f ) · TFS( f ) · TFR( f ) (1)

whereRec represents the recorded signal,S is the source function,TFG are theGreen’s
functions describing the wave propagation in a material, TFS is the transfer function
of the sensor (incl. coupling), and TFR is the transfer function of the data recorder.
As expressed here in the frequency domain, each complex-valued component is
linked through simple pointwise multiplication. In the time domain, the operation
linking the components would be convolution. In order to obtain a minimally-biased
representation of the source function, deconvolution is employed, which excludes
unwanted influences from the recorded signal. Most commonly, this would be done
to remove the influence of the sensor’s response on a recorded signal—if the transfer
function of the sensor is available (see Sect. 2.4 for more details).

In quantitative analysis, the source function, S is of great interest, because it repre-
sents the fracture type. Approaches to determine the fracture type are discussed in
Sect. 4. While the intention of non-destructive testing and structural health moni-
toring methods is the investigation of material parameters or degradation and failure
processes, and not the characterization of the measurement system, one has to mini-
mize the effects related to sensors, coupling, and the recording system as much as
possible. In the following subsections, components of the measurement process and
their influence on the measurement are described individually along with how they
can be quantified.

2.2 Sensors

Sensors (and transducers) represent the “ears” of a measurement process and can
have a significant effect on the measured entity, depending on their characteristics
and how they are coupled to a structure. Subsequently, an overview of sensors, how
they work, and their main characteristics are provided as they are relevant to signal-
based AET. Additional details about sensors and instruments are provided in chapter
“Sensors and Instruments”.

Working Principle and Relevant Characteristics

The type of transducers used almost exclusively in AET are sensors that exploit the
piezoelectric effect of lead zirconate titanate (PZT), which transforms displacements
into a voltage.While piezoelectric sensors and their design are described in numerous
books and papers (e.g. Krautkrämer and Krautkrämer 1986; Kino 1987; Hykes et al.
1992), some characteristics play an influential role in AE measurements and need
to be highlighted. These features are important for the sensitive recording of AE
(sensitivity) and the broadband analysis of the signals with reference to fracture
mechanics (frequency).
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To enhance the detection distance of piezoelectric sensors to AE sources, i.e.
detect smaller signals over longer distances, sensors are often operated in resonance,
i.e. the signals are recorded within a narrow frequency range due to the frequency
characteristics of the transducer. The disadvantage is that an analysis of the frequen-
cies present in the signal is of little or no value, because these frequencies are always
the same. Highly damped sensors, such as those used for vibration analysis, are
operated outside of their resonant frequency allowing high-fidelity analyses to be
performed, but are usually less sensitive to AE signals. Progress in the development
of AE techniques has led to the need for high sensitivity, wideband displacement
sensors that have a flat, i.e. high-fidelity, frequency response (i.e. the sensor gives
the same response over a wide frequency range).

There are many papers dealing with a solution of this problem. For many years,
a NIST (National Institute for Standards and Technology) conical transducer devel-
oped by Proctor (1982, 1986) out of a Standard Reference Material (SRM) and
mass-backed (600 gr.) was used as a reference for AE measurements. Several new
approaches have explored other transducer materials out of polyvinylidene fluo-
ride (PVDF) or copolymers (Hamstad 1994, 1997; Hamstad and Fortunko 1995;
Bar-Cohen et al. 1996) as well as embedded sensors (Glaser et al. 1998).

However, most sensors used currently for AE applications on concrete are manu-
factured in a more traditional way, showing either resonant behavior or several
discrete resonances. These sensors, which are called multi-resonance transducers,
have a higher sensitivity than sensors with a backward mass used outside of their
resonant frequency. Such sensors should not, however, be considered as (true) broad-
band and it is essential to know their transfer function, also referred to as calibration
curve (or instrument response). Otherwise, signal characteristics from the source are
not distinguishable from artifacts introduced by incorrect knowledge of the frequency
response.

Figure 3 shows frequency response functions for the select types of sensors
discussed above. As can be observed, there are significant differences between the
responses of different types of sensors. The resonant sensor, for which the response
is shown in Fig. 3 (top), is sensitive over a narrow frequency range around 40 kHz.
The multi-resonant sensor (shown in the middle) is sensitive over a broader range
between 120 and 350 kHz with resonances at approximately 140, 195, 230, 275,
290, and 330 kHz. The frequency response of the sensor shown at the bottom can
be considered high-fidelity and broadband, as it has a relatively flat response over a
wide range of frequencies.

A calibration of the sensors’ frequency response, as well as an understanding of
its direction sensitivity, is important for many AE applications and is discussed in
more detail in Sect. 2.4.

Coupling

Coupling between sensors and specimen is important because the amplitudes of AE
signals are usually small, and poor coupling can result in signal loss. In addition
to the different ways of coupling, various methods exist for adhering the sensors
to the structure. Adhesives or gluey coupling materials, and substances like wax or
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Fig. 3 Frequency response functions (or calibration curves) for select types of AE sensors.
Amplitudes are on a linear scale and have been normalized (Grosse 2021)

grease, are often used due to their low impedance. Impedance, which is defined as
the loss of signal energy as AE waves travel from the surface of the structure to the
sensor, is the most important factor in the selection of a coupling technique. If the
structure has a metallic surface, magnetic or immersion techniques are widely used.
Different methods using a spring mechanism or rapid cement can be applied for
other surfaces. In general, the coupling should reduce the loss of signal energy and
have lower acoustic impedance than the material being tested. In all cases, the total
volume of air between the sensor and the surface must be minimized. Some surface
preparation might be necessary to remove loose particles and create a flat surface
for optimal contact across the entire aperture of the sensor. Surface-coupled sensors
should be tested regularly to determine if the coupling conditions have changed.

For concrete applications, embeddable transducers can also be used. These can be
used both for new structures aswell as existing structures, where they are inserted into
a small borehole, which is then filled with expansive grout. An example of a recently
developed robust embeddable ultrasonic transducer is presented in Niederleithinger
et al. (2015). The advantage of these devices is that the coupling is likely to be more
reliable and consistent long-term compared to surface-coupled sensors. Also, the
strong surface waves, which usually mask the shear wave arrival (see Sect. 4.1), are
avoided. The challenge with embedded sensors is that their location might not be
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accurately known and, depending on their shape and size, the point of measurement
might vary and might have to be determined iteratively by locating the source first.

While commonly used in ultrasonic testing, contactless (or air-coupled) measure-
ments are an exception in the field of AEmonitoring due to the low signal amplitudes
of AE sources that make detection already challenging.

2.3 Preamplifiers and Data Recorders

Commercially available AE recorders differ from general transient recorders. Some
are also able to record AE events but must be treated as black-box devices—this
chapter deals mainly with devices based on transient recorders (TR) or plug-in TR-
boards.

As discussed in Sect. 2.2, piezoelectric sensors transform displacements into a
voltage and preamplifiers are usually used to intensify these signals. Because cables
from the sensor to the (primary) amplifier are subject to electromagnetic noise,
specially-coated cables of short length should be used. Preamplifiers with state-
of-the-art transistors should be used to minimize the amount of electronic noise.
Preamplifiers with a flat response in the frequency range of interest are optimal.
If available, transducers with integrated preamplifiers for an appropriate frequency
band are often desirable. Another issue is the large dynamic range of AE signals,
which demand gain-ranging amplifiers. Ideally they store the signal in its analog form
into a buffer for best amplification adjustment prior to digitization. Unfortunately,
such devices are still not yet available in commercial AE data recorders.

Regarding data acquisition, there are two main requirements concerning A/D
conversion and triggering. Fast A/D units have to be used to ensure that a large
number of events can be recorded—usually each channel of the recording unit is
equippedwith its ownA/Dconverter. This also ensures accurate time synchronization
between channels, which is key for quantitative analyses. Anti-aliasing (low pass)
filters are required to avoid aliasing so that signals can be properly transformed to
the frequency domain by means of Shannon’s Theorem (Rikitake et al. 1987).

If possible, applying different triggering conditions can reduce the amount of
noise that is recorded. Simple fixed-threshold triggers are usually not adequate for
signal-based AET because of their inability to accurately detect signals across a wide
dynamic range. More sophisticated techniques such as slew-rate, slope, or reference
band triggers are more appropriate. Note that the trigger time determined here is
usually not an accurate wave arrival (or onset) time and is thus not directly used for
source localization (see chapter “Source Localization”) or quantitative analysis (see
Sect. 4).

In modern AE systems, the time it takes to convert a signal from analog to digital,
and to store it to a hard disk, is in the range of microseconds, depending on signal
length and sampling rate. There are still many areas, however, where AE equipment
can be improved.
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2.4 Sensor Calibration

The objective of sensor calibration is to determine the inherent characteristics of
a sensor (or transducer), which is captured by its transfer function. Technically, a
calibration usually is done across the entire measurement system, including sensors,
preamplifiers, cabling, and data recorders. Since the term “sensor calibration” is
commonly used in the literature, it is used herein.

In the literature (e.g. Hsu and Breckenridge 1981; Wood and Harris 1982; Miller
and McIntire 1987) different methods of calibrating sensors and determining their
transfer (or frequency response) functions are described. Measurements used in
sensor calibration should include the frequency, as well as the phase response func-
tion. To demonstrate the basic principles, only the frequency domain is considered
in the following discussion.

Most calibrationmethods described in the literature are based on the ‘face-to-face’
method, in which two sensors of the same kind are coupled using one as a transmitter
and the other as a receiver. Another method of calibration is to use a defined sharp
pulse (e.g. by breaking a glass capillary rod) while the sensor is coupled to a large
block made of a homogeneous material (steel or aluminum) or to a steel rod.

Hatano andMori (1976) suggested the use of a reciprocity method, where sensors
are coupled onto a steel plate. This approach uses Rayleigh waves. Other methods
described in the literature suggest using a laser vibrometer to measure the displace-
ment of the free surface of the sensor, or a network analyzer (Weiler and Grosse
1995; Grosse 1996).

The sensor calibration process encounters several problems due to aperture effects
(diameter of the sensor element is of the order of the wavelength), the mass of the
sensor (which affects the measurement of the displacement) or the measurement
technique itself (recording of unidirectional motions instead of a three-dimensional
vector). Because of these factors, calibration is never fully absolute, and subject to
some simplifications.

Subsequently, the results of the face-to-face method are compared to measure-
ments of the displacement of the free oscillating surface of the sensor.

In Fig. 4, typical frequency response functions for a multi-resonant broadband
sensor are presented, where the top curve was obtained using a laser vibrometer and
the bottom one with the face-to-face method. The former calibration was obtained
by sweeping through a frequency range from 0 to 500 kHz (Lyamshev et al. 1995).
For the face-to-face measurements, a delta pulse was used containing all relevant
frequencies in a selected range. As can be observed, the two curves are comparable
and appear to be independent of the particular calibration technique with regard to
the position of the natural frequencies.

McLaskey and Glaser (2012) present a procedure for absolute calibration of AE
sensors, which is of particular interest for signal-based AET, in particular quanti-
tative analysis described in Sect. 4. The calibration was performed on a thick steel
plate for several different commercial AE sensors. The sources they used were steel
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Fig. 4 Examples of frequency response functions of a multi-resonant broadband sensor. The
frequency response functions were estimated using a laser vibrometer (top) and the face-to-face
method (bottom). Amplitudes are on a linear scale and have been normalized

ball impact and glass capillary fracture, which have well-established analytical solu-
tions. Therefore, transfer functions can be estimated from theory, without requiring
a reference transducer. Next, aperture effects are removed using an autoregressive-
moving average (ARMA) model, which allows to recover the actual displacement
time history response. The displacement time history is a key input if moment tensor
inversion (MTI) techniques are to be applied on the measured signal (see Sect. 4.3).

Frequency response functions on calibration documents provided by the sensor
manufactures are often displayed on a logarithmic scale. Resonances are more diffi-
cult to detect in this format and, therefore, it is advisable to ask for calibration curves
on both linear and logarithmic scales. The record of the frequency responses should
be available in digitized, in addition to paper, form to allow for the application of
deconvolution techniques. The result of a deconvolution is the source function, S,
which requires to availability of transfer functions of all components (see Eq. (1)).
For more information on deconvolution applied to AE signals, see, e.g. Simmons
(1991).

Additional information on sensor calibration can also be found in chapter “Sensors
and Instruments”, Sect. 4.

Effect of Incident Angle on Sensor Response

There are many other influences caused by sensor characteristics that affect an AE
signal. One example is that the sensitivity depends on the incident angle of the signal
with respect to the sensor orientation. The described measurement techniques for
frequency response assume that the signal has an angle of incidence perpendicular
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to the contact plane of the sensor. This assumption is often invalid for AE measure-
ments. Analyses based on amplitude calculations are thus inconsistent if the angle
dependence of the sensor is not taken into account. Note that in order to estimate
the incidence angle, a source localization is necessary (see chapter “Source Local-
ization”). This directivity effect varies from sensor to sensor, and can be measured
using a cylindrical aluminumprobe, as illustrated in Fig. 5. The piezo-electric sensors
evaluated can show a maximum response at 90° incidence of the signal and some
peaks at other incidence angles. Besides this, the aperture size of a sensor can have
an effect on the high frequency sensitivity. Unfortunately, data regarding the direc-
tional sensitivity pattern of commercial AE sensors are usually not available from
the manufacturer.

If the sensors are attached to the surface of a specimen, which is typically the
case, the P and S waveforms must be adjusted to account for the free surface ampli-
fication using the formulae from the work of Aki and Richards (1980). The surface
amplification is caused by the outgoing elastic wave constructively interfering with
the wave reflected back into the specimen. These formulae are based on a plane wave
incident on a plane surface. The free surface effect is a factor of 2 for SH waves, but
are a function of the incidence angle and frequency for P and SV waves.
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180
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Fig. 5 Examples showing measurements of the sensitivity of sensors to incident angle
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3 Waveform Analysis

In this section, approaches that consider entire AE waveforms are discussed. These
signal-based techniques do not rely on 3D localizations and can theoretically be
performedwith a single sensor. The basic premise is that AEwaveforms are recorded
and their changes over time are characterized and interpreted. If possible, it is still
recommended that events are localized so that signals can be grouped by their region
of origin. Waveform analysis can still be performed in conjunction with quantitative
analysis discussed in Sect. 4, as it might provide complementary information.

3.1 Frequency Analysis and Waveform Correlation

Frequency analysis and frequency-based correlation techniques are widely discussed
in the AE community. After the introduction of the Fast Fourier Transform (FFT)
in the 1960s, frequency analysis techniques became easy to apply and numerous
applications for AE testing have been suggested. These range from simple filtering
techniques to eliminate noise to more sophisticated approaches that aim to correlate
the frequency content of a signal to the source parameters to classify the signals in
terms of fracture mechanics.

For example, the similarity of two different AE waveforms can be assessed by
determining their coherence functions. Such an assessment is useful because similar
signals, having similar frequency content, can indicate that their source mechanisms
are also similar (assuming that the influence of the medium and transducer charac-
teristics are small). The similarity of two signals can be quantified using a mathemat-
ical tool called Magnitude Squared Coherence (MSC) (Carter and Ferrie 1979). By
applying aDiscrete Fourier Transform (DFT), the signals are converted from the time
to the frequency domain. Consider two transient signals, x and y (e.g. signals (a) and
(b) in Fig. 6). The auto spectral densities, Gxx and Gyy and the cross spectral density,
Gxy of the signals must first be calculated. Then, the coherence spectrum, Cxy is
defined by the squared cross spectrum divided by the product of the two autospectra,
as follows:

Ĉxy(ν) =
∣
∣Γxy(ν)

∣
∣
2

Γxx (ν) · Γyy(ν)
(2)

where ν indicates frequency. A complete derivation of the formulae can be found in
Balázs et al. (1993). Themean coherence, Ĉxy of the coherence functions is calculated
for all channels of two signals.

An example of the mean coherence for two waveform pairs is given in Fig. 7.
This figure was generated using two events with high similarity (Fig. 6a, b) and two
others with less similarity (Fig. 6a, c). In the frequency range below the noise level
of this experiment, which is approximately 0 to 400 kHz, high coherence is found for
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Fig. 6 Three different AE waveforms, including a pair, (a) and (b), having similar characteristics,
as well as one waveform (c) that is quite different

the first signal pair (Fig. 7, left). Perfect coherence is only obtained by two identical
signals and would result in a coherence value of 1 over the entire frequency range.
For comparison, the coherence function of two less similar events (Fig. 7, right)
is shown. It is possible to find a value that represents the overall coherence of the
signals using the mean coherence function by computing the integral over a select
frequency range, as follows:

Ĉ (νmin/νmax)
xy = 1

νmax − νmin
·

νmax∫

νmin

Cxy(ν) dν (3)

For the case of discrete signals, Grosse (1996) suggested deriving a coherence
sum, Ĉxy that can be calculated as the area underneath the curves using numeric
integration (i.e. summation) over the range, νmin to νmax. Here the upper frequency
is chosen as the upper corner frequency where the signal is dominating compared to
noise. The lower frequency limit can usually set to zero, if there is no signal offset
in the data.

Selecting a frequencybandof 0–400kHz, a coherence sum, Ĉxy =0.533 and0.151,
respectively, is calculated using Eq. 3. Figure 8 gives an example for MSC analysis
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Fig. 7 MSC functions obtained from a waveform pair with high (left) and low (right) similarity

Fig. 8 MSC results obtained using the software Signal Similarity Analysis MSC (SiSimA-MSC,
University of Stuttgart)

using the software Signal Similarity Analysis MSC (SiSimA-MSC, University of
Stuttgart).

By transforming the waveforms to the frequency domain and calculating their
coherence functions, the degree of similarity between recorded waveforms can
be quantified and similar source mechanisms might be identified. This method is
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intended to allow for rapid, systematic classification ofAE signals to quantify similar-
ities and differences in signal patterns. One recent related application of this approach
is reported in Hafiz and Schumacher (2018) on active ultrasonic stress wave moni-
toring of concrete. In this work, the researchers use MSC to monitor internal stress
variations in concrete both on laboratory specimens as well as an in-service bridge.

An extension of the above approach is reported in Kurz et al. (2004) whereby
similarity matrices are constructed that allow a visual interpretation of a collection
of signals and their changes over time. The approachwas demonstrated on two small-
scale concrete specimens, one unreinforced and the other one fiber-reinforced. Addi-
tionally, cross-spectral coherence analysis was employed to determine the minimum
number of AE events required to sufficiently characterize a particular fracture type.

There are other signal classification approaches available that can be used to detect
different fracture mechanisms using various measures of signal similarity. These are
often referred to as ‘feature extraction algorithms’, and introduced next.

3.2 Time-Frequency Analysis

This family of techniques is well suited for non-stationary signals and includes the
Wavelet transform (WT) (see, e.g. Hamstad 2001; Vallen and Forker 2001; Pazdera
and Smutny 2001), short-time Fourier transform (STFT) (see, e.g. Kaphle 2012), and
Hilbert-Huang transform (HHT) (see, e.g. Lu et al. 2008). The wavelet transform
was developed in the 1980s by the Geophysicist Jean Morlet to generalize the STFT
(Daubechies 1996). An advantage of these techniques is that they are able to relate
changes in the frequency characteristics of a signal to the time domain. This is
particularly useful for AE experiencing dispersive characteristics, which is the case
for waves traveling in thin elements such as steel plates. Other applications are in
regard to a better onset detection of AE signals (Grosse et al. 2004).

3.3 Machine Learning-Based Approaches

Over the last couple of decades, many applications of artificial intelligence (AI)
techniques have been reported. A recent brief overview of machine learning (ML)
techniques, a subset of AI, used in the field of NDE is provided in Harley and
Sparkman (2019). The most common techniques that show promise for application
for AE waveform analysis are summarized subsequently.

Pattern recognition and clustering has been proposed to discriminate different
types of AE events (see, e.g. Nair et al. 2019; Anastasopoulos 2005; Rippengill et al.
2003). The goal is thatwaveformswith similar features are grouped (or clustered) that
correspond to different sourcemechanisms or failure types.A set of characteristics, or
parameters, are extracted from each signal, which is then considered by the algorithm
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to determine the clusters. An example of this approach evaluated on small fiber-
reinforced polymer (FRP) specimens is reported by Sause et al. (2012).

Matrix decomposition techniques such as singular value decomposition, inde-
pendent component analysis, and dictionary learning use the entire waveforms to
determine changes occurring over time. These techniques decompose the signals
into a set of components, with the objective to find the components that might be
related to physical processes of interest. Ideally, components exist that are represen-
tative of fracture processes, and at the same time insensitive to noise, and independent
of environmental variations. These techniques have found application in ultrasonic
guided wave monitoring but might also have potential in AE analysis.

Neural networks consist of an input layer and an output layer that are connected
via a number of hidden layers, all mathematically related via nonlinear relationships,
which must be estimated. Applications of neural networks for AE source localiza-
tion have been reported by, e.g. Kalafat and Sause (2015) and Ebrahimkhanlou and
Salamone (2018).

Combinations of ML techniques are also reported. For example, Emamian et al.
(2003) discuss an approach that aims to classify (or cluster) AE signals using neural
networks based on subspace projections of signals.

For additional information on ML techniques and their application to structural
health monitoring (SHM), the reader is referred to Farrar and Worden (2012).

3.4 Closing Remarks

AEwaveform analysis faces the problem that AE are usually only directly influenced
by the fracture process, in an undisturbed way, for a short part of the signal—the very
first coherent portion. Generally, the signal is dominated after a few oscillations by
side reflections or other influences related to the material (anisotropy, heterogeneity,
etc.), the propagation path or the sensor characteristics (sensor resonance, coupling,
etc.) rather than by the source itself (Köppel 2002). Similar limitations exist for
all of the aforementioned applications. First, effects due to instrumentation used,
the geometry, as well as wave travel path might dominate the characteristics of a
recorded waveform. For example, events from the same source region with similar
failure mechanisms would result in a very low coherence sum if they were recorded
with different types of sensors. Furthermore, recording these signals with sensors of
the same type at different locations influenced by different coupling or wave travel
conditions would also result in a low coherence sum. Without good knowledge of all
these influences, and properly accounting for them, signal classification algorithms
are of little value, especially if the material is complex in structure and geometry.

ML techniques, while promising, have three challenges (Harley and Sparkman
2019): The feature, black box, and data challenges. The first is related to accuracy,
which is highly dependent on the selected features of the waveform. The black box
challenge is a particular problem for neural network approaches that donot offermuch
insight into selected relationships. The third challenge is related to the significant
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amount data necessary to train ML algorithms reliably. All of these challenges are
perhaps an explanation why ML-based approaches have so far only been applied
to well-controlled experimental studies. In conclusion, waveform analysis, while
appealing and promising, needs to be applied with caution. While it might work well
for well-defined situations, i.e. for tests where the aforementioned conditions are
very similar, it does not provide a generally applicable solution.

4 Quantitative Analysis

Since quantitative analysis relies on inversion methods, it is worth introducing the
concept of inversion. Numerical modeling of data, d for a given set of model param-
eters,m is referred to as a forward problem, where F is an operator representing the
governing equations relating the model and data, as follows:

d = F(m) (4)

In the inverse problem, a model is assumed to approximate the physics of the
problem and the model parameters are determined from the data, as follows:

m = F−1(d) (5)

The forward problem starts with the causes and then calculates the effects, while
the inverse problem analyzes the effects and aims to estimate the causes. An entire
branch of mathematics known as inverse theory has emerged and is used to study
the solution of inversion problems and many algorithms are available to perform the
inversion. Examples include the singular value decomposition method (Lawson and
Hanson 1974) or the generalized linearized inversemethod (e.g. Barker and Langston
1982).

Through inversion, quantitative analysis techniques use parts of, or the entire,
AE waveforms recorded by a sensor network to determine information regarding
the nature of an AE source (Fig. 9). They rely on accurate 3D localization and
require signalswith a relatively high signal-to-noise ratio (SNR) to be successful. Two
inversion problems are discussed subsequently. The first is the source localization
problem where time arrivals are inverted for the 3D source localization. The second
problem is more involved where phase amplitudes and polarities are inverted to
determine the source mechanism through moment tensor inversion (MTI).

4.1 Overview of Source Localization

Quantitative AE analysis relies on source localization to determine the spatial and
temporal coordinates of an AE source, to image fracture sources in a material or
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Fig. 9 Principle of forward modeling and inversion techniques

structure. The approach used to localize AE events depends on size and geometry of
the structure or element being tested or monitored, and whether a solution is required
in two or three dimensions.While a detailed description of these methods is the focus
of chapter “Source Localization”, a brief overview is provided in this section as it is
relevant for inversion techniques.

Determination of Onset Times and Amplitudes

Before the parameters of an AE source can be estimated, the onset (or arrival) times
of the wave modes of interest have to be determined for each recorded AE signal. In
seismograms from a mining environment, P- and S-wave arrivals are typically well
separated, and hence both can be picked. For the case of AE from civil engineering
materials where wave travel paths are comparatively short, this separation is typi-
cally small and also contains a strong surface (Rayleigh) wave component, which
follows the S-wave closely, which is a challenge for the case when surface-mounted
transducers are used (Linzer et al. 2015). Therefore, only the P-wave arrival time,
tP can usually be determined reliably. For inversion techniques such as MTI, the
amplitude of the P-wave, uP needs to be determined as well. Figure 10 shows an
example of a typical AE signal recorded from a large reinforced concrete beam test
(Mhamdi 2015).

Anumber ofwave arrival (or signal onset) picking algorithmshave been developed
for AE applications over the years and are discussed in detail in chapter “Source
Localization”, Sect. 2.1. During a routine test usually hundreds, or even thousands,
of events are recorded, and automatic picking algorithms to extract the arrival times
at each sensor are essential. Using a simple fixed threshold algorithm is not sufficient
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Fig. 10 Sample AE signal
recorded at sensor, i from a
large reinforced concrete
beam test. The inset shows
the picked arrival time and
amplitude for the P-wave, tP,i
and uP,i, respectively

in many cases. For signals with a high SNR (an example is shown in Fig. 10), the
precision of automatic algorithms should be within the range of several data samples.
A comparison between different pickers for application to concrete can be found in
Schechinger (2005). A multi-step process that starts with a fixed threshold pick, and
then estimates a more accurate onset time using an AIC-based picker has been found
to produce reliable results for concrete applications (Mhamdi 2015; Gollob 2017).

The reading of the P-wave amplitude, uP is done either in the time domain (as
illustrated in the inset of Fig. 10) or, alternatively, in the frequency domain. The latter
might provide more reliable results, especially for signals with a low SNR. The unit
and sign of uP are used as input for a time-domain MTI (see Sect. 4.3) and should
be either actual displacement or directly proportional to it.

3D Source Localization and Visualization

In order to employ quantitative analysis techniques on AE events recorded from
civil engineering structures, their locations need to be determined as accurately
as possible. While many 3D localization methods have been reported in the liter-
ature, the oldest and possibly still the most commonly used one is the so-called
Geiger method, which is an iterative approach developed by the German seismol-
ogist Ludwig Geiger (1910). The determination of the AE hypocenter (or source)
using the arrival times is an inverse problem, which has an exact solution when four
arrival times are used to calculate the four unknown source parameters: three spatial
coordinates and the source time of an event. When more than four arrival times are
available, the problem is overdetermined and the calculation is performed using an
iterative algorithm, where the coordinates are estimated by minimizing the errors
of the unknown source parameters (see e.g., Salamon and Wiebols 1974; Buland
1976). The more recordings are available, the more overdetermined the system is,
and the more reliable the evaluation will be. A detailed description of how iterative
localization works is provided in chapter “Source Localization”, Sect. 3.4.

Software to perform AE source localization should be able to calculate the stan-
dard deviations of the hypocenter and the source time, the weight of a single station
(or sensor), the number of iterations performed, and the residual of each sensor with
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respect to the determined best arrival time (e.g. Oncescu and Grosse 1998; Grosse
2000). The equations used generally assume that the material is homogeneous and
isotropic, and that the AE source can be modeled as a point source. If this is not the
case, e.g. for an anisotropic material like wood, the computational approach has to
be modified—this is covered in detail in chapter “Source Localization”, Sects. 3.2
and 5.6. Figure 11 shows an example of how AE source location estimates can be
visualized. Providing error information for location results is essential to interpret
the results. Without this information, there is no way to assess the reliability of a
result.

Accuracy and Reliability

The accuracy of AE localization estimates is affected by a number of factors, but
most significantly by the accuracy of the picked wave arrival times. In applications
where a detailed analysis of failure is required, the need for high location precision
is combined with a high AE event rate, and more advanced onset picking algorithms
should be used. The main trends are outlined in chapter “Source Localization”. The
reader is also referred to publications written by Landis et al. (1992), Zang et al.
(1998), Grosse and Reinhardt (1999) and Grosse (2000).

Fig. 11 Example of 3D source location visualizations from a large-scale reinforced concrete beam
test. For each AE event, the mean location as well as an error ellipsoid consisting of the principal
standard deviations, σ 1, σ 2, σ 3 are provided. Color indicates time of occurrence where blue and
red correspond to early and late AE events, respectively. Visible and hidden sensors are shown as
purple and empty circles, respectively. Figure adapted from Mhamdi (2015)
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Other factors include: number of sensors used, sensor arrangement, SNR of
recorded signals, assumed wave velocity. A detailed comparison of these factors
is provided in chapter “Source Localization”, Sect. 4.3.

Accuracy and reliability of source locations can also be improved by employing
weighting schemes to the used arrival times. The simplest approach is to completely
omit arrival times that come fromAE signalswith a lowSNRor that appear as outliers
(Mhamdi 2015). In a more refined approach, the differences between calculated
arrival times (based on estimated source location coordinates) and initially picked
arrival times, referred to as residuals, are used to compute weighting factors that are
essentially giving more importance (or weight) to signals recorded by sensors that
are located closer to the source and are thus likely more reliable (Spottiswoode and
Linzer 2005). This approach is presented in detail in chapter “Source Localization”,
Sect. 5.5.

4.2 Overview of Source Inversion Techniques

Introduction

Source inversion methods are used to estimate the fracture type and orientation of a
rupture (fault), as well as the seismic moment, which describes the rupture area that
is related to the released energy from the waveforms of the recorded AE events.

Using an inversion algorithm in combination with 3D location estimates, a fault
plane solution can be determined that enables the analysis of the fracture process in a
material. Another more comprehensive method of fracture analysis is the application
of MTI techniques.

Fracture types are of interest in fracture mechanics in understanding and clas-
sifying the way a material fails. Different terms are used to describe the cracking
behavior. In the following section the terms ‘opening crack’ and ‘Mode I’ are synony-
mous, as well as ‘Mode II’ and ‘Mode III’ for shear cracks, with forces parallel to
the crack (in-plane shear) or forces perpendicular to the crack (out-of-plane shear).
In seismology, shear dislocations are described by a double couple (DC) source
because the DC force representation allows simplification of some mathematics,
which is discussed in Sect. 4.3 in more detail.

Subsequently an overview of the three main approaches to estimate the fracture
type of an AE source is presented: First motion technique, moment tensor inversion
techniques, and full waveform inversion.

First Motion Technique

There are several ways to determine the crack type and orientation of AE sources.
One way is to use the polarities of initial P-wave pulses—this is known as the first
motion technique. The distribution of the two senses of the wave polarity around the
focus is determined by the radiation pattern of the source. Using the distribution of
the polarities, it is possible to estimate the orientation of the nodal planes (where
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Fig. 12 Radiation pattern of
a vertically oriented shear
crack showing variation of
polarities and amplitudes
with angle from the source

no displacement takes place) and thus the mechanism of the source. However, it is
important to bear in mind that, due to the symmetry of the radiation pattern, two
orthogonal planes can be fitted. These planes are often referred to as the ‘fault plane’
and the ‘auxiliary plane’.

Positive polarities would be measured at all sensors, in the case of an opening
crack (Mode I). In the case of a shear fracture (Modes II and III), the polarity of the
P-wave onset changes from positive (upward displacement of waveform) to negative
(downward displacement) according to the position of the sensor relative to the source
and the shear planes (Fig. 12). These two examples assume that the sensors have been
calibrated properly, so that a positive displacement in the signal indicates movement
away from the source (i.e. compression). If the radiation pattern of the source is to
be analyzed, it is important that the pattern is sampled adequately over the focal
sphere. This implies that many sensors are used, providing adequate coverage of
the focal sphere, i.e. a good distribution of sensors over all angles with respect to
the fault plane. For this technique, a minimum of 23 sensors is required to uniquely
characterize the mechanism (Lockner et al. 1993). For a smaller set of sensors, MTI
is more suitable (see Sect. 4.3) to estimate the failure mechanisms.

Unfortunately, it is not possible to quantify the deviation from a pure shear dislo-
cation and to determine isotropic components of the source with this first motion
technique.

Fault plane solutions can also be used to infer stress orientations. This applies
to the case where new fractures develop in response to the ambient stress field (e.g.
mining-induced fracturing, failure in laboratory tests) but is limited in tectonic studies
since earthquakes often occur on preexisting faults that could have developed during
different stress regimes.

The stress directions are halfway between the nodal planes, so that the maximum
compressive stress (P-axis) can be found by bisecting the dilatational quadrant and
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the minimum compressive stress (T-axis) is located by bisecting the compressional
quadrant. The intermediate stress axis (B-axis) is orthogonal to the P and T-axes.

Moment Tensor Inversion–Overview

A number of moment tensor inversion (MTI) techniques have been proposed in the
literature. The methods applied differ greatly according to the available data and the
purpose of the study. For the purposes of this textbook, it is useful to distinguish
between the ‘absolute’ and ‘relative’ methods. These broad classes of inversion
techniques are based on methods used to estimate the Green’s functions, which
describe the wave propagation between a source and a receiver (sensor). A graphical
overview of differentMTI techniques is given in Fig. 13, followed by amore detailed
description of each method.

Moment Tensor Inversion–Absolute Method

In the absolute methods, the Green’s functions are evaluated theoretically, or deter-
mined empirically from observations and a known source. The most straightforward
approach is to use a homogeneous isotropic material model (Ohtsu 1991). However,
this is often not adequate for many of the materials used in civil engineering. More
suitable are approaches based on finite-difference methods (Fukunaga and Kishi
1986; Enoki and Kishi 1988; Napier et al. 2005; Hildyard et al. 2005), which can
take into account the heterogeneity of thematerials.Methods based on a combination
of the above mentioned techniques (Landis 1993; Landis and Shah 1995) are often
not sufficient due the attenuation of the material.

The absolute methods are often used in global seismology, but are difficult to
apply in environments where there are possible lateral inhomogeneities such as the
underground mining environment and in materials often used in civil engineering. In

Fig. 13 Overview of different MTI techniques. Figure adapted from Mhamdi (2015)
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these cases, it is not always possible to calculate the Green’s functions with adequate
accuracy, resulting in systematic errors being introduced into the moment tensor
solution.

For the absolute methods to be properly applied, the influence of material param-
eters must be well known. This is usually not the case for fractures in concrete, where
aggregates, reinforcement and air-filled pores are common. In addition, the sensor
characteristics must be well known (this is not a problem in geophysics where seis-
mometers with a flat response over the signal frequency range are usually used). Poor
coupling of transducers also limits the accuracy of absolute inversion techniques.

Moment Tensor Inversion–Relative Method

In contrast to the absolute methods, the relative inversion methods do not require the
computation of the theoretical Green’s functions for each event. Relative methods
are based on the concept of a common raypath between a cluster of seismic sources
and any sensor, and assume that all the events in the cluster experience the same
wave propagation effects to each sensor.

Figure 14 illustrates the applicability to clusters of AE events where the distance
between the hypocenters (AE event locations) of an AE cluster is small compared to
the length of the travel paths to the sensors.

In the relative methods, the Green’s functions of a well-known reference event(s)
can be used to compute the Green’s functions of the medium for other nearby events
(e.g. Patton 1980; Strelitz 1980; Oncescu 1986). This method also has its limitations
when only a few reference events are available or when their fracture mechanisms
are not well known.

In the relative method proposed by Dahm (1996), known as the relative method
without a reference mechanism, the path effects described by the Green’s functions

Fig. 14 Illustration of a
cluster of AE events with
approximately the same path
to the sensors; α indicates
the azimuth and � the
incidence angle (Grosse
et al. 1997a, b). Only two AE
events and sensors are shown
for simplicity
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are eliminated analytically—thereby completely avoiding the explicit use of the
Green’s functions. However, thismethod is applicable to clusters ofAE events having
different radiation patterns only and, because there is no absolute reference, any of
the six components of the moment tensor can be incorrect by an unknown scaling
factor. This syndrome can be reduced, but not eliminated, through reference to scalar
moment estimates. Furthermore, when the mechanisms are similar, the method is
extremely sensitive to noise. This is a serious disadvantage in cases where clusters of
recorded events might have very similar mechanisms. This problem is accentuated
when the method is applied to very small events having similar mechanisms and with
signals just above the noise level (Andersen 2001).

Moment Tensor Inversion–Hybrid Method

A problem common to both the absolute and relative MTI methods is their sensi-
tivity to noise/errors in the observations and their dependency on accurate Green’s
functions to describe the wave propagation effects. Factors such as the focusing and
defocusing of the raypaths due to the presence of lateral inhomogeneities in complex
materials, the degradation of the velocity model due to fracturing, the presence of
voids on the seismic raypaths, low SNR all have adverse effects on the accuracy of
the MTI solution. For example, the deviations in the raypaths due to the presence of
an inhomogeneity between a cluster of seismic sources and a particular sensor can
result in consistently high or low amplitudes being recorded at that sensor (for all
the events in a cluster). This would result in systematic errors being introduced into
the moment tensor elements. To compensate for such errors, hybrid MTI methods
were developed by Andersen (2001). These methods apply to clusters of AE events,
are iterative, and are a combination of the absolute and relative MTI methods.

The hybrid methods are essentially weighting schemes that aim to increase the
accuracy of the computed moment tensor by reducing the effect of noisy data on
the system of equations and correct for site effects. These methods can also be
used to enhance signals recorded near a nodal plane in the radiation pattern or to
decrease the influence of a low quality observation. Various weighting schemes,
which apply to individual events, have been proposed in the literature (Udias and
Baumann 1969; Šílený et al. 1992). The new aspect of the hybrid methods is that the
correction or weight applied to a particular observation is based on the residuals (for
a particular geophone site, channel and phase) calculated using all of the events in
the cluster—this constitutes the relative component of the hybrid methods.

Figure 15 shows stereonets of the radiation patterns, and nodal plane solutions,
computed using absolute MTI methods, and for data recorded from a small-scale
concrete beam reported by Linzer et al. (2015). The MTI Toolbox was used to
produce the results discussed subsequently (Linzer 2012). These ten events were
expected to have similar solutions because they all came from an opening crack. As
is evident from Fig. 15, there is a fair amount of scatter in the patterns. The effect of
the hybrid MTI method is a “sharpening” of the radiation patterns, which is achieved
iteratively, as discussed above. This is evident in particular for AE event 119, where
the normalized standard error of the solution reduced notably during the iteration
process (see Fig. 16).
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Fig. 15 Radiation patterns for a select cluster from moment tensors computed using a a single-
event absolute MTI method and b hybrid MTI method with median correction recorded from a
small-scale concrete beam test. Blue color represents movement towards the source (tension) and
red indicates movement away from the source (compression). Stereonets are projected on the X-Y
plane i.e. top-view of the beam. Figure source: (reuse with permission from publisher) Linzer et al.
(2015)

Full Waveform Inversion

This method uses the entire waveforms recorded at the sensors to estimate not only
fracture type and fault plane but the force-time function associated with the kine-
matics of the source. While this technique is established in seismology (see, e.g.
Virieux et al. 2017), it has found very little application in the study of AE from civil
engineering materials. An example of a closely related study was performed by To
and Glaser (2005) on artificial rock. The researchers used a piezoelectric disc, which
had been embedded in a gypsum plate, to generate a well-defined AE source.

The inversion in this case can be obtained bydeconvolution (i.e. solving the inverse
problem) or by setting the problem up as a forward problemwhere Green’s functions
are generated and adjusted from the estimated source origin until a solution is found
forwhich the difference between the recorded and estimated sensormeasurements are
minimized. The first approach can be difficult under noisy conditions and the second
approach is computationally expensive and might have non-unique solutions.
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Fig. 16 Decrease in normalized standard error with increasing iteration number during a hybrid
MTI for the AE cluster shown in Fig. 15. The normalized standard error is considered to be ‘low’
if it is less than 0.5. Figure adapted from Linzer et al. (2015)

4.3 Moment Tensor Inversion for AE Analysis

Concept of Moment Tensor

The seismic moment tensor is a useful concept because it can be used to completely
describe the wave radiation pattern and the strength of a source. The moment tensor,
M is defined by a combination of force couples and dipoles as:

M =
⎡

⎣

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎤

⎦ (6)

where each element of the matrix represents the force couples or dipoles as shown
in Fig. 17.

The first subscript of the force couple represents the direction of the two forces
and the second subscript gives the direction of the arm of the couple. For example,
the element, Mxy is a force couple comprising two forces acting in the +x and –x
direction on an arm parallel to the y-axis (Fig. 17, top row, middle column). The
magnitude of Mxy is called the ‘moment’ of the force couple. Another example,
element Mxx is a vector dipole consisting of two forces acting in the +x and –x
directions, where the arm is parallel to the x-axis (Fig. 17, top row, left column) and
hence has no moment.

In the case of a purely explosive source, the source mechanism can be described
by summing the diagonal components of the moment tensor, as shown in Fig. 18.



Signal-Based AE Analysis 101

x

y

z

Mxz

x

y

z

M xy

x

y

z

Mxx

x

y

z

Myy

x

Mzz

y

z

x

y

z

Myx

x

y

z

Mzx

x

y

z

Mzy

x

y

z

Myz

Fig. 17 Representation of the nine components of the moment tensor

Fig. 18 Example representation of purely explosive source: idealized radiation pattern and force
diagram (left), forces summed to describe source (middle), andmoment tensor representation (right)

The source mechanism of an idealized shearing source can be described by
summing the off-diagonal components, –(Mxy + Myx) of the moment tensor, as
is shown in Fig. 19.

Inversion for the moment tensor is possible because a linear relationship, first
noted by Gilbert (1973), exists between the ground displacement and the Green’s
functions (Fig. 20). Typical input data for a MTI consist of the network geometry
(location coordinates of the sensors), knowledge of sensor polarity (i.e. whether an
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Fig. 19 Example representation of idealized vertical shear source: radiation pattern and force
diagram (left), forces summed to describe source (middle), moment tensor representation (right)

Fig. 20 Relation between
the moment tensor and the
Green’s functions

upward displacement at the sensor indicates compression or tension), sensor orien-
tation, estimated AE source locations, P and/or S-wave displacement amplitudes
recorded at each sensor (time-domain inversion) or P and/or S-wave spectral ampli-
tudes (frequency-domain inversion), and the polarities of the wave phases. It should
be stressed that unbiased measurements are critical for an MTI to produce reliable
results. This means that either (1) high-fidelity sensors with a flat response curve
are used or (2) the sensor’s transfer function needs to be available and employed to
deconvolve the sensor’s influence from the recordings.

Summary of MTI Methodology

The goal of all MTI methods is to use observed values of ground displacement to
infer properties of the source, as characterized by the moment tensor. By using the
representation theorem for seismic sources (Aki and Richards 1980) and assuming
a point source, the displacement field, uk recorded at a receiver, k is given by:

uk(x, t) = Gki, j
(

x, t; ζ, t ′
) ∗ Mi j

(

ζ, t ′
)

(7)

whereGki, j
(

x, t; ζ, t ′
)

are the elastodynamicGreen’s functions containing the propa-
gation effects between the source,

(

ζ, t ′
)

and receiver, (x, t). The comma between the
subscript indices in Eq. (7) describes the partial derivatives at the source with respect
to the coordinates after the comma, i.e. Gki, j = ∂Gki

∂ξ j
. The Mi j (ξ, t) terms are the
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nine time-dependent components of the moment tensor. This equation can be simpli-
fied dramatically by assuming that the source time function is an impulse and that
all of the moment tensor components have the same time-dependency (synchronous
source approximation). In addition, since the equivalent body forces conserve angular
momentum, Mij = Mji, only six of the components are required. Applying these
assumptions, Eq. (8) reduces to the following linear relationship:

uk = Gki, j Mi j (8)

which can be written using matrix notation as:

u = Gm (9)

where u is a vector of dimension, n of sampled values of the integrated ground
displacement or spectral plateaus dependingonwhether a timeor a frequency-domain
approach is being taken; G is a n × 6 matrix of Green’s functions in the coordinate
system of the receivers; and m is a vector consisting of the moment tensor compo-
nents, M11, M22, M33, M12, M 13 and M23. In most cases the number of sensors, n
�6 and the system of equations is thus, in principle, overdetermined.

Vectors or matrices are denoted using bold letters, and vector or matrix elements
are given using the same letter but in italics. For example, ui is a vector of observed
amplitude data for event, i containing M elements of the form, ui j where the first
subscript, i indicates the event number and i = (1, 2, 3, . . . , N ) where N is the
maximum number of events, the second subscript, j denotes the site number where j
= (1, 2, 3, …, p) and p is the maximum number of geophone or sensors. Previously
published work by Andersen (2001) gives the equations for both triaxial recordings
of both P- and S-wave phases (which requires two additional indices). Since the
sensors used in quantitative AE analysis are uniaxial and only the P-waves are used,
because the P-S separation is very small, the equations can be simplified as follows.

The elements contained in vector, u are:

ui = [

ui1, ui2, ui3, . . . , uip
]T

(10)

The Green’s function matrix,Gi for the ith event consists of elements of the form,
G ji1,Gi j2,Gi j3, . . . ,Gi j6, where the third subscript describes the component of the
Green’s function.

Each element in the Green’s function is described by

Gi j1 = 1

4πρα3r

[

η j1
(

γ 3
i j1

) + η j2
(

γ 2
i j1

)

γi j2 + η j3
(

γ 2
i j1

)

γi j3
]

(11)

where γi j1 = xi−ξ j1

ri j
, γi j2 = xi−ξ j1

ri j
, and γi j3 = xi−ξ j1

ri j
are the direction cosines of

the source-receiver vector where source, i is positioned at xi = (xi1, xi2, xi3) and
receiver, j at ξ j = (

ξ j1, ξ j2, ξ j3
)

. The direction cosines, η j1, η j2, η j3 describe the
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orientation of each sensor, ρ indicates density, α is the P-wave velocity and r is the
source-receiver distance, r = |x − ξ |.

The great utility of Eq. (11) is that the Green’s functions are rotated into the coor-
dinate system of the sensors so that measurements from uniaxial directional sensors
can be used. This approach differs frommost derivations in crustal seismologywhere
the measurements are rotated into the P-Sh-Sv directions and the Green’s functions
are calculated for the P-Sh-Sv coordinate system.

The vector of moment tensor components for the ith event, mi is given by:

mi = [mi1,mi2,mi3, . . .mi6] (12)

where mi1 = M11, mi2 = M12, mi3 = M13, mi4 = M22, mi5 = M23, mi6 = M33 and
M11, M12, etc. are the Cartesian moment tensor components defined by Eq. (6) and
illustrated in Fig. 17 in the coordinate system of the seismic network.

To solve for the components of the moment tensor, m, Eq. (9) is written as an
inverse problem such that:

m = G−1u (13)

where G−1 is the generalized inverse of G. The system of linear equations can then
be solved using standard least-squares techniques.

In general, MTIs involve two major assumptions. Firstly, it is assumed that the
fault plane dimensions are shorter than the wavelength of the seismic waves used
in the inversion and, secondly, that the effect of the earth structure on the seismic
waves is modeled correctly. If either of these assumptions does not hold, the resultant
moment tensor may contain “false” components that do not represent the physics of
the source.

Interpretation of the Moment Tensor

Once the moment tensor has been estimated, a number of source parameters can be
computed to aid interpretation. The most basic of the source parameters is the scalar
seismic moment,Mo, which is a measure of the irreversible inelastic deformation in
the area of the rupture and is the root-mean-squared average of the moment tensor
elements:

Mo =
√
√
√
√

1

2

3
∑

i, j=1

M2
i j (14)

The scalar moment can be related to attributes of the source:

Mo = μAD̄ (15)

where μ is the rigidity (described by the Young or shear modulus of the medium), A
is the surface area of the rupture, and D̄ is the average final static displacement after
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the rupture. The rigidity modulus, μ has a relatively simple physical meaning and
measures the resistance of the elastic body to shearing deformation.

Slightly more complicated analyses involve decomposing the moment tensor into
its isotropic and deviatoric components, which represent the volume change and
shearing contributions to the source mechanism. To do this, the moment tensor is
first diagonalized and the deviatoric component is calculated by subtracting the one
third of the trace from each of the eigenvalues:

Mdev =
⎡

⎣

e1 − 1
3 tr(M) 0 0
0 e2 − 1

3 tr(M) 0
0 0 e3 − 1

3 tr(M)

⎤

⎦ (16)

where tr(M) is the trace of the moment tensor, and is equal to the sum of the eigen-
values: tr(M) = e1 + e2 + e3. The trace is a measure of the volume change at the
source and the sign of tr(M) gives the direction of motion relative to the source
with positive being outward. For example, a negative value of tr(M) indicates an
implosion.

The deviatoric component can be further decomposed into a variety of eigenvalue
combinations that represent simple arrangements of equivalent body forces, adapted
from fracture mechanics, like that of an opening crack (Mode I) or of shear cracks
(Mode II or III) (Fig. 21).

The coseismic volume change at the source can be calculated using:

�V = tr(M)

(3λ + 2μ)
(17)

where λ and μ are Lamé’s elastic moduli (McGarr 1992). The constant, λ is not
simply related to experimentally observed quantities and its value is usually calcu-
lated from those of μ and one of the other experimentally determined coefficients.
As an example, for quartzitic strata, 3λ + 2μ = 1.63 × 105 MPa (McGarr 1992).

The deviatoric moment tensor can also be expressed as a sum of double-couples,
M1 and M2:

Mdev =
⎡

⎣

M1 0 0
0 0 0
0 0 −M1

⎤

⎦ +
⎡

⎣

0 0 0
0 M2 0
0 0 −M2

⎤

⎦ (18)

Each of the double-couple terms has a scalar seismic moment defined by Eq. (14).
Therefore, the total shear deformation can be computed using:

Mo = μAD̄ = M1 + M2 (19)

Perhaps one of the most useful parameters that can be computed from the devia-
toric moment tensor is the fault plane solution. This consists of the orientations of the
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Fig. 21 Physical models represented by fault plane movements (left column of sketches) and the
associated P-wave radiation patterns (right column of sketches)

two planes (usually expressed as strike, dip and rake, Fig. 22) that can be fitted to the
deviatoric moment tensor along which zero displacement takes place (i.e. the nodal
planes). The moment tensor components for a double-couple of arbitrary orientation
are given by Aki and Richards (1980) as:

Mi j = Mo
(

sin j + s jni
)

(20)

where s is a unit slip vector lying in a fault plane and n is a unit vector normal to
the plane. Since the moment tensor, M is symmetric, Mij = Mji, the vectors s and
n can be interchanged, which means that the vector normal could be the slip vector
to the other plane, and vice versa. These two nodal planes are called the fault plane
and auxiliary plane, and together are called the fault plane solution. The fault plane
solution indicates the type of faulting that is taking place in the source area (Fig. 23).
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Fig. 22 Definition of fault orientation parameters: strike, dip and rake (Andersen 2001)

Fig. 23 Triangle diagram for displaying the focal mechanism projections, also referred to as stere-
onets, for common fault types. The three vertices correspond to pure strike-slip (top), reverse (right)
and normal fault (left)mechanisms. Planes, a and b represent either the fault plane or auxiliary plane.
Shaded regions (++) indicate compressional P-wave motions (Andersen 2001)

Fault plane solutions can also be used to infer stress orientations. This applies
to the case where new fractures develop in response to the ambient stress field (e.g.
mining-induced fracturing, failure in laboratory tests) but is limited in tectonic studies
since earthquakes often occur on preexisting faults that could have developed during
different stress regimes. The stress directions are halfway between the nodal planes,
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Fig. 24 Simplistic
relationship between the
maximum (P) and minimum
(T) principal stresses and
fault planes (modified from
Stein and Wysession 2003)

so that themaximum compressive stress (P-axis) can be found by bisecting the dilata-
tional quadrant and the minimum compressive stress (T-axis) is located by bisecting
the compressional quadrant. The intermediate stress axis (B-axis) is orthogonal to
the P and T-axes.

In Fig. 24 illustrates the relationship between fault planes and the maximum
and minimum compressional stresses, and Fig. 25 shows the same relationship for
different fault types.

Note that these directions ofmaximumandminimumcompressive stress discussed
above are 45° to the slip plane, which is simplistic. Laboratory experiments show that
the fracture plane is often about 25° from the maximum principal stress direction.

A plethora of decompositions are possible, but many are physically implausible.
It is important to have an idea of the likely failure modes, and apply the relevant
decomposition. Reports are available illustrating different ways to decompose the
moment tensor (e.g. Jost and Hermann 1989).

Another parameter that can be calculated is the deviation, ε, of the seismic source
from that of a pure double-couple:

ε =
∣
∣
∣
∣

e∗
3

e∗
1

∣
∣
∣
∣

(21)

where e∗
1 and e

∗
3 are the maximum and minimum deviatoric eigenvalues with

∣
∣e∗

1

∣
∣ ≥

∣
∣e∗

2

∣
∣ ≥ ∣

∣e∗
3

∣
∣; ε =0 for a pure double-couple source, and ε =0.5 for a pure compensated

linear vector dipole (CLVD) (Dziewonski et al. 1981). The percentage of double-
couple contributions, %DC, to the deviatoric moment tensor can be calculated from
ε using:

%DC = 100(1 − 2ε) (22)
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Fig. 25 Simplistic relationship between the P- and T-axes and normal, reverse and oblique slip
fault types. The P and T axes can be obtained by drawing a meridian line that connects the poles to
the fault planes. The points halfway between the nodal planes are the P- and T-axes (modified from
Stein and Wysession 2003)

(Jost and Hermann 1989). The percentage of CLVD contributions, %CLVD, to
the deviatoric moment tensor can be calculated from ε using:

%CLV D = 200ε (23)

The sum of %DC and %CLVD should be 100.
Another measure of the nature of the moment tensor is the R-ratio introduced

by Feignier and Young (1992). R is essentially the ratio of volumetric to shear
components and is defined as:

R = 100
tr(M)

|tr(M)| + ∑3
k=1

∣
∣e∗

k

∣
∣

(24)

where e∗
k are the deviatoric eigenvalues. If R > 30, the event is considered to be

dominantly tensile; if –30 ≤ R ≤ 30, the event is a dominantly shear event; if R <–30
the event is dominantly implosive. An event could show implosive components if
there is collapse towards a void, for example, closure of an underground excavation.
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Fig. 26 Elevation view (top) and R-ratios versus AE events plot for select cluster (bottom) from
large-scale reinforced concrete beam test. Figure adapted from Mhamdi (2015)

An example of the R-ratios computed for AE events recorded during a large-scale
reinforced concrete beam test is presented in Fig. 26.As can be observed, themajority
of AE events have R-ratios between –45 and +30, and thus lie in what is considered
the shear region. Note that the events in Cluster 1 originated from an inclined crack in
the high shear region of the beam. Details of the test are reported in Mhamdi (2015).

4.4 Concluding Remarks

While MTI has been used in seismology and mining to characterize ground motion
for many decades, it has still not found widespread application and acceptance in
fracture monitoring of civil engineering materials. Some of the reasons might be
associated with the wave characteristics being easier to interpret in the larger scale
media of the earth. Also, instrumenting civil engineering structures with many high-
fidelity sensors and recording hardware is expensive, cumbersome, and requires
highly-specialized expertise for analyzing and interpreting the data.

The MTI Toolbox is a software package that was originally developed for the
mining environment (Andersen 2001; Linzer 2012) but has proven itself for quanti-
tative analysis of AE from civil engineering materials (Mhamdi 2015; Linzer et al.
2015; Finck et al. 2003). Once AE locations and wave mode amplitudes have been
estimated, this software can be used to perform MTI using the absolute, relative,
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or hybrid method. A plethora of parameters are provided along with stereonets to
interpret the results. Figure 27 shows a screen shot of the input mask and Fig. 28
shows a sample result.

The derivation presented in this chapter has been adapted for application to AE
analysis of civil engineering materials, i.e. for P-wave measurements by uniaxial
sensors. The difference between this derivation and those given in crustal seismo-
logical texts is that the Green’s functions are rotated into the coordinate system of
the sensors whereas, in crustal seismology, the Green’s functions are calculated for

Fig. 27 Screenshot of input mask from MTI Toolbox (Linzer 2012)
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Fig. 28 Screenshot of results provided by MTI Toolbox (Linzer 2012)

the P-Sh-Sv coordinate system which require triaxial data that can be rotated into
the same system.
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