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face aquifer systems increased with climate
change as well as surplus usage of ground-
water in highly populated regions. Thus, in
present day, groundwater is the primary
resource for the sustainability of agriculture,
industries and domestic activities in arid and
semi-arid areas of the world. The overex-
ploitation of subsurface water initiates land
subduction. As water is the source of life on
Earth, so it is essential to monitor and predict
the capability of groundwater for secure
sustainable management of subsurface water
with the extreme climate conditions and
population growth. The traditional way of
keeping a check on groundwater level change
is considering in situ or point measurements
using the local network of well data. But these
measurements are insufficient as hydrological
models depend on the spatial data referring
over large areas. Global Positioning System
(GPS) and Gravity Recovery and Climate
Experiment (GRACE) mission are perfect
tools to overcome the drawbacks of the
traditional groundwater monitoring. It mea-
sures the change in ice sheets and glaciers,
near-surface and subsurface GWS changes, as
well as sea-level changes by GRACE 1
mission and GRACE, Follow on (FO) mission.
Most of the researches are based on GRACE
satellite data to monitor GWS changes over a
large-scale area as continental or regional
achieved successful consequences. Although
the past decade GRACE studies exhibited that
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GRACE solution is capable of developing
accurate quantitative estimations for GWS
scenarios with the high temporal resolution.
Still, it restricts only to continental or regional
scale studies. Therefore, most of the recent
studies took the step for effective downscaling
of GRACE data.

Keywords

GRACE - GPS - Groundwater - Total water
storage

14.1 Introduction

Groundwater is the most favourable and
demandable freshwater resource in the world.
The threat to surface water resources and sub-
surface aquifer systems increased with climate
change (Wada et al. 2010; Jasrotia et al. 2019a;
Bisht et al. 2020; Haque et al. 2020; Khan et al.
2020) as well as surplus usage of groundwater in
highly populated regions. Thus in present day,
groundwater is the primary resource for the
sustainability of agriculture, industries and
domestic activities in arid and semi-arid areas of
the world like North-West India (Taloor et al.
2020; Jasrotia et al. 2018, 2019b; Adimalla and
Taloor 2020b), Northern China, California in the
USA, and regions without surrogate water
resources like the Middle East and North Africa
(Chen et al. 2014). The overexploitation of sub-
surface water initiates land subduction like in San
Joaquin valley in California (Sneed and Brandt
2015) as well as some regions in North-West
India as Chandigath and some portions of
Rajasthan (Singh et al. 2017; Kim et al. 2018).
As water is the source of life on Earth, so it is
essential to monitor and predict the capability of
groundwater for secure sustainable management
of subsurface water with the extreme climate
conditions and population growth (Adimalla and
Taloor 2020a; Adimalla et al. 2020). The tradi-
tional way of keeping a check on groundwater
level change is considering in situ or point
measurements using the local network of well
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data (Miro and Famiglietti 2018; Verma and
Katpatal 2020). But these measurements are
insufficient as hydrological models depends on
the spatial data referring over large areas (Wes-
tern and Bloschl 1998). Even though the in situ
well data measurements have given high spatial
resolution estimations for local areas, it becomes
problematic in detecting groundwater level fluc-
tuations with limited observations over arid and
mountainous regions (Yin et al. 2018). So, it
requires better awareness about groundwater
table and geospatial distribution of pumping
wells. For instance, in the United States, a net-
work of 850,000 operating monitoring wells
providing  fundamental = measurements  of
groundwater quantity and quality (Taylor and
Alley 2001) are not quite sufficient for regional
and local level studies (Faunt 2009; Faunt et al.
2016; Miro and Famiglietti 2018). The networks
of groundwater observation wells in the world
often lack adequacy to provide spatial and tem-
poral coverage of Groundwater Storage
(GWS) change (Shah et al. 2000; Mogheir et al.
2005). Global Positioning System (GPS) and
Gravity Recovery and Climate Experiment
(GRACE) mission are perfect tools to overcome
the drawbacks of the traditional groundwater
monitoring like spatial limitations as sparsing,
uneven and time-consuming (Chen et al. 2019),
as the technologies mentioned above consist of
all-weather monitoring capability, high precision
and continuous space-time monitoring (Rodell
et al. 2007; Castellazzi et al. 2018).

GRACE is a collaborative mission of NASA’s
Jet Propulsion Laboratory (JPL), the German
Aerospace Center (DLR), the Center for Space
Research at the University of Texas at Austin
(CSR) and Germany’s National Research Center
for Geosciences, Potsdam (GFZ), launched on 17
March 2002 (Sarkar et al. 2020). It measures the
change in ice sheets and glaciers, near-surface
and subsurface GWS changes, as well as sea-
level changes by GRACE 1 mission and
GRACE, Follow on (FO) mission (Chen et al.
2019). Most of the researches based on GRACE
satellite data to monitor GWS changes over a
large-scale area as continental or regional
achieved successful consequences (Swenson
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et al. 2003; Su et al. 2020). Also, the studies
about the accuracy of GRACE derived GWS
variations proved that the error of GRACE
derived solutions over the study realm is larger
than 400,000 km? but less than 1 cm (Swenson
et al. 2003). Although the past decade GRACE
studies exhibited that GRACE solution is capable
of developing accurate quantitative estimations
for GWS scenarios with the high temporal reso-
lution. Still, it restricts only to continental or
regional scale studies. Therefore, most of the
recent studies took the step for effective down-
scaling of GRACE data (Gautam et al. 2017;
Kannaujiya et al. 2020).

14.2 Study Realm

The Mehsana district lies between 23° 15° to 23°
53’ North and 72° 07’ to 72° 26’ East in the
Northern part of the Gujarat alluvium plains. The
semi-arid Mehsana district significantly depends
on the subsurface water resource and the rate of
groundwater development 151.17%. It segre-
gates into the alluvial plain, dissected hilly ter-
rain and piedmont plain with inselbergs.
A narrow belt of 20-30 km width in North-
Eastern portion of the district specializes with
moderate relief alluvium, gravel beds and occa-
sional inliers of older. The aquifer system of the
district comprises multi-layers and formed
beneath the Precambrian hard rocks,
consolidated Mesozoic and tertiary formations
and unconsolidated quaternary alluvial deposits
(Gupte 2011) as confined, semi-confined and
phreatic. The groundwater occurs as fissured
formation (hard rock) as well as porous forma-
tion (sedimentary) in the district. The soft rock
formation of groundwater occurs consists of two
major upper layer aquifer units in unconfined
condition, denoted as A. But some regions of the
aquifer system are semi-confined to confine. The
lower layer of the soft rock groundwater forma-
tion is located a few hundred metres below as
alternate clay and sand layers. The lower for-
mation subdivides into B, C, D and E units

semi-
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composed of coarse to fine-grained sand and
occasional post-Miocene gravel beds. The F and
G units of the lower aquifer system comprises
fine to medium-grained sand, sandstone with
interbedded clay and Miocene siltstone sedi-
ments. The groundwater in the alluvium plain is
extensively developed through dug wells, tube
wells and dug cum bore wells (Table 14.1).

14.3 Methodology
14.3.1 Effective Downscaling
of Grace Data

The previous studies, based on effective down-
scaling of GRACE TWS pixels, suggest two main
methods for spatial reductions that are statistical
downscaling and dynamic downscaling method
(Chen et al. 2014). The dynamic model has used
complex data which have been obtained from
multiple resources to generate high spatial resolu-
tion regional numerical models. The long term
linear or non-linear relationship between two data
sets develops a statistical downscaling model (Yin
et al. 2018). Also, some additional data are required
for multivariate statistical regression records (Piles
et al. 2011). Therefore, with respect to dynamic
models, statistical models are widely used due to
simple and less time-consuming. The researches
based on statistical downscaling employs linear,
non-linear, multivariate and machine learning
techniques to support vector machine model, Arti-
ficial Neural Network (ANN) and Random Forest
(RF) model. Support vector machine model which
had been proposed initially by Vapnik based on
classification machine learning algorithms are
based theoretically on Vapnik Chervonenks
dimension (VC) and structural risk minimized
inductive (Vapnik 1999). ANN is a processing
system to identify non-linear information which
stands on the simulation of the human brain, sim-
plification and the abstraction (Ghorbani et al.
2013). The effective downscaling of GRACE-
derived TWS employs a statistical regression
model (Ning et al. 2014).
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Table 14.1 Ob.served District Phreatic aquifer Semi-confined aquifer Confined aquifer
water table decline over (m) (m) (m)
Mehsana and surrounding
districts Mehsana 5-7 12-23 18-50

Patan 2.5-9 25-36 13-45

Banaskantha ~ 9-18 21-28 15-111

Source Central Groundwater Board, Ahmedabad, Sinha (2014)

14.3.2 Detailed Process
of Downscaling

The present study emphasizes the statistical
downscaling model that has been developed
based on the regression relationship between
GRACE SH-derived TWS, and water mass bal-
anced equation manipulated TWS. The time lag
effect of GRACE data is reduced by using two
months later, GRACE SH data for considering
the month of the hydrological fluxes. The steps
of developing downscaling equation are as
follows:

e The spatial resolution of GLDAS hydrological
parameters are 0.25° (P 0.25°), 0.25° (ET
0.25°) and 0.25° (SR 0.25°) for precipitation,
evapotranspiration and storm surface runoff,
respectively. These parameters have been
aggregated to the low spatial resolution of
GRACE SH as P 1°, ET 1° and SR 1° by
using average pixel method.

e Calculate monthly TWS change (AS1°) with
the water mass balance equation.

AS" =P’ —ET.| —SR.] (14.1)
where i1° denotes the spatial resolution in degree
and t represents the month.

e JTevel 3 JPL, CSR and GFZ model data of
RLO6 data product have been average to
derive GRACE SH TWS 1°. The level 3 data
of RL 06 data product pre-processed as TWS
anomaly based on time-mean of 2004-2009
and the data has been multiplied by the

corresponding scaling factor to minimize the
leakage error. The missing month’s data are
calculated with linear interpolation of the
relevant contiguous months.

e Estimate a linear empirical regression in
between hydrological cycle derived AS1° and
GRACE SH-derived TWS 1°. Liner regres-
sions have been obtained from the several
trials and select the equation which has given
dominant highest R? value in all trails.
Therefore, the estimated equation is only
applicable to the post-monsoon season of the
period from 2003 to 2019.

y =B x+p (14.2)
GRACE! , = AS' .B. + B, (14.3)
GRACE! , = 0.656 - AS! +0.034  (14.4)

where i° denotes the spatial resolution in degree,
t denotes the month, x or AS% is regressor (pre-
dictor), y or GRACEiO +» 1s dependent (predictor),
B, is slope and B. is the intercept of the linear
regression equation.

e Manipulating AS0.25° with Eq. (14.1) by
using P 0.25°, ET 0.25°, and SR 0.25° and
then calculate GRACE SH-related TWS 0.25°
from Eq. (14.4).

e In the downscaling process, removing system
residual is an essential step. The results gen-
erated from Eq. (14.4) are subtracted from the
system residual derived from the difference
between GRACE TWSA 1° obtained from AS
1° and GRACE SH directly derived TWS 1°.
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14.4 Implications from Grace Data
Downscaling in Mehsana

District, Gujarat

The results of downscaled high spatial resolution
GRACE SH pixels (0.25° x 0.25°) gets vali-
dated with the results procured from JPL mascon
solution pixels (0.5° x 0.5°) of GRACE and
groundwell data from the Mehsana district
(Fig. 14.1). This downscaled GRACE-derived
GWSA (Fig. 14.2a) varies from —7.00 £ 5.00 to
45.00 = 5.00 mm/year, and JPL mascon derived
GWSA (Fig. 14.2¢) varies from —80.00 £ 5.00
to —0.00 £ 5.00 mm/year. According to the
distribution of both solutions, Mehsana district
experiences groundwater depletion throughout
the considered period. But downscaled GRACE
SH-derived GWS distribution has exhibited
detailed picture with respect to JPL mascon-
derived GWS distribution. GRACE -derived
TWS solutions consist of uncertainties due to
inherent data errors and data leakage errors.
Therefore, GRACE-derived GWS solutions in-
clude GRACE errors and error accumulated
within the global land surface (GLDAS) model.
Figure 14.2b and d represents two-dimensional
maps of GWSA-related uncertainties of down-
scaled GRACE SH and JPL mascon, respec-
tively. The maximum uncertainty accumulation
of downscale GRACE SH derived-GWSA is +
15.04 mm/year, and JPL Mascon-derived
GWSA is £8.50 mm/year.

The research work carried out recently over
Ahmedabad and Gandhinagar using integrated
GRACE SH (Level 3) and GPS study exhibits the
GWS depletion rate of —0.6 mm/year and defor-
mation rate of —5.20 mm/year from 2009 to 2017
(Chopra et al. 2013). The current research values
obtained from JPL mascon for GWS change are
5.71 &£ 5.50 mm/year, —8.14 £ 5.50 mm/year and
—1.43 £ 5.50 mm/year for 2003-2007, 2008-2013
and 2014-2019, respectively, which correlates very
well with the GPS measurements of the previous
work. Whereas for the same periods the downscaled
GRACE SH pixels-derived GWS changing rates are
—39.30 & 7.04 mm/year, —80.2 &+ 7.04 mm/year
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and —10491 £ 7.04 mm/year showing more
enhanced measurements with respect to GPS,
GRACE SH and JPL mascon (Table 14.2).

Based on early facts and history, GRACE
solution doesn’t share direct analogue with the
ground-based values. Still, in recent research, it
has been justified that GRACE solution does
correlate with in situ well data, mainly over
water-stressed regions in India (Sarkar et al.
2020). So, downscaled GRACE SH and JPL
mascon-derived GWSA correlates with in situ
well data-derived groundwater level change
anomaly, across Mehsana district from 2005 to
2015. With respect to JPL mascon-derived
GWSA, the downscaled GRACE SH-derived
GWSA has shown great accord with groundwa-
ter level change anomaly along with the same
upliftment and depletions (Fig. 14.3). But due to
high temporal resolution of GRACE solution, it
has not coincided with the real-time, and the
upliftment or depletion observed by ground well
data got detected one year later by GRACE. The
same phenomena repeat the observations also for
the low altitude areas (Ning et al. 2014). A pos-
sible cause is that in tropical regions precipitation
is the most significant component for TWS
change, and the combined effect of precipitation,
evapotranspiration and surface runoff does not
complete in a short period like GRACE temporal
resolution (Fig. 14.3).

14.5 Conclusion

Though JPL mascon has provided the regional
scale solution for TWS change, it is not sufficient
to derive GWSA for water management scale
studies. Effective downscaling of GRACE pixels
enhanced sensitivity of the data, and those data
have more capability to measure GWS change
accurately for water management. The present
study develops a model for the post-monsoon
season of the 15 years based on linear statistical
regression implication between GRACE SH
obtained TWS and hydrological parameters
derived TWS. The comprehensive studies about
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Fig. 14.1 The map represents the study realm (red rectangle) covering the Mehsana district, and a significant part of

North Gujarat. (Source Authors Contribution)

Table 14.2 Downscaled GRACE SH and Mascon JPL manipulated groundwater storage change as flux and as

quantity over Mehsana and surrounding districts

Time Trends as flux Trends as storage

period Downscale GRACE SH Mascon JPL Downscale GRACE SH Mascon JPL
+7.04 mm/year +5.50 mm/year +0.54 km®/year +0.43 km’/year

2003-2007 —39.38 =5.71 —-3.05 -0.44

2008-2013 —80.22 -8.14 -6.22 —-0.63

2014-2019 —104.91 —1.43 —8.13 —-0.11

(Source GRACE data)

the capability of different GRACE solutions with
the different basin sizes, climate, and intensity of
usage of irrigation water had shown various merits
with the mentioned variabilities. As an example,
CSR mascon had shown higher uncertainty for

large-scale basins with respect to JPL mass.
Therefore, the current study has suggested inno-
vating new downscaling models with different
GRACE solutions based on different basin-scales,
irrigation indexes and climate conditions.
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Fig. 14.2 a and c represents GWS change rate across SH and JPL MASCON derived GWS change over the
Mehsana and surrounding districts in the post-monsoon same area and the same period, respectively (Source
season for a period of 2003-2019. b and d represents GRACE data)

uncertainty distribution related to downscaling GRACE
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