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Abstract We study the receptivity and resulting global instability of boundary lay-
ers due to free-stream vortical and acoustic disturbances at moderately supersonic
Mach numbers. The vortical disturbances produce an unsteady boundary layer flow
that develops into oblique instability waves with a viscous triple-deck structure in
the downstream region. The boundary layer fluctuations produced by the acoustic
disturbances evolve into oblique normal modes in a region that lies downstream
of the viscous triple-deck region but will still be fairly close to the leading edge
when the phase speed of these disturbances is small compared to the free-stream
velocity. We use asymptotic analysis to show that both the vortically and small
phase speed acoustically-generated disturbances ultimately develop into modified
Rayleigh modes that can exhibit spatial growth or decay depending on the nature of
the receptivity process.

1 Introduction

We are concerned with the effect of unsteady free-stream disturbances on laminar
to turbulent transition in supersonic boundary layer flows. For low free-stream dis-
turbances levels (say less than 1%) the transition usually results from a series of
events beginning with the so-called receptivity process that refers to the generation
of spatially growing instability waves by acoustic and/or vortical disturbances in the
free-stream. The most fundamental receptivity mechanism arguably results from the
nonparallel leading edge flow and the focus here is, therefore, on that case.

For incompressible flows, Goldstein [1] showed that there is an overlap domain
where appropriate asymptotic solutions to the forced boundary layer equationsmatch
onto the so-called Tollmien-Schlichting (TS) waves that satisfy the Orr-Sommerfeld
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equation further downstream. Ricco and Wu [2] extended the analysis of Goldstein
[1] to subsonic and supersonic boundary layers and showed that the coupling is more
intense in supersonic flows and that the instability can either be of the viscous TS
type or of the purely inviscid Rayleigh type when the mean boundary layer flow has
a generalized inflection point. The coupling mechanism can be of the viscous type
considered in [3] or of the inviscid type considered by Fedorov andKhokhlov [4]. The
latter mechanism tends to be dominant when the flow is hypersonic and the oblique-
ness angle θ of the disturbance differs from the critical angle θc = cos−1(M−1∞ ) by
an O(1) amount [4] (M∞ is the free-stream Mach number).

Reference [3] shows that the instability occurs too far downstream tobeof practical
interest at the moderately supersonic Mach numbers being considered here when
�θ = 0(1) but can occur much further upstream when �θ is sufficiently small.
Figure1 shows that the theoretical results of Fedorov and Khokhlov [4] are in good
agreement with experimental data when �θ = θc − θ = O(1) but the agreement
breaks down when θ → θc. Reference [3] extended that analysis to small values of
�θ and showed that the instability can occur much further upstream when �θ is
sufficiently small. But there is a smallest value of �θ for which the instability wave
coupling can occur.

Smith [5] showed that viscous instabilities exhibiting the same triple-deck struc-
ture as the subsonic TS waves can also occur at supersonic speeds when the oblique-
ness angle θ is larger than the critical angle θc. But their phase speeds are very small
and they must therefore be produced by a viscous wall layer mechanism identified
in [1]. It therefore makes sense to treat both the viscous and the small-�θ inviscid
mechanisms at the moderately supersonic Mach number considered here. Further
details can be found in [3, 6].

2 Free-Stream Disturbances

Since the boundary layer is believed to be convectively unstable, the receptivity
phenomena are best illustrated by considering a small amplitude harmonic distortion
with angular frequency ω∗ superimposed on a moderately supersonic Mach number
flow of an ideal gas past an infinitely thin flat plate with uniform free-stream velocity
U ∗∞, temperature T ∗∞, dynamic viscosityμ∗∞ and density ρ∗∞. The velocities, pressure
fluctuations, temperature and dynamic viscosity are normalized byU ∗∞, ρ∗∞U ∗∞, T ∗∞,
and μ∗∞, respectively. The time t is scaled by ω∗ and the Cartesian coordinates x , y,
and z are scaled by L = U ∗∞/ω with x being in the meanflow direction and y being
normal to the plate.

We require that the Reynolds number Re = ρ∗U ∗∞L∗/μ∗∞ be large or, equiva-
lently, that the frequency parameter F = Re−1 be small, and we use asymptotic
theory to explain how the imposed harmonic distortion generates oblique instabili-
ties at large downstream distances in the viscous boundary layer that forms on the
surface of the flat plate. The expansion parameter is taken to be ε = F−1/6. The
free-steam disturbances will be inviscid at the lowest order of approximation and
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Fig. 1 Comparison of the Fedorov/Khokhlov solution with experimental data [7]

can be decomposed into an acoustic component that carries no vorticity, and vortical
and entropic components that produce no pressure fluctuations. But only the first two
will be considered here.

The vortical velocity uv is given by

uv = {uv, vv,wv} = δ̂{u∞, v∞,w∞} exp [
i(x − t + γ y + βz)

]
, (1)

where δ̂ � 1 and u∞, v∞,w∞ satisfy the continuity condition

u∞ + γ v∞ + βw∞ = 0 (2)

but are otherwise arbitrary constants while the acoustic component is governed by
the linear wave equation which has a fundamental plane wave solution

{ua, pa} = {ua, va,wa, pa} = δ̂ p∞
1 − α

{α, γ, β, 1 − α} exp[i(αx + γ y + βz − t)],
(3)

for the velocity and pressure perturbations. More details are found in §2 of [3].
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3 Boundary Layer Disturbances Generated by
Free-Stream Vorticity

We begin by considering the fluctuations imposed on the boundary layer by the free-
stream vortical disturbance. These disturbances will generate oblique TS instability
waves which are known to exhibit a triple-deck structure in the vicinity of their lower
branch which lies at anO (

ε−2
)
distance downstream of the leading edge in the high

Reynolds number flow being considered here. They will have O (
ε−1

)
spanwise

wavenumbers and we therefore require that

β ≡ εβ = O(1) (4)

since the spanwise wavenumber is assumed to remain constant as the disturbances
propagate downstream. The continuity condition (2) and the obliqueness restriction
v∞/w∞ � 1 will be satisfied if we put

w∞ ≡ w∞
ε

= O(1), v∞ ≡ v∞
ε

= O(1), γ ≡ εγ = O(1). (5)

The vortical velocity (1) will then interact with the plate to produce an inviscid
velocity field that generates a slip velocity at the surface of the plate which must
be brought to zero in a thin viscous boundary layer whose temperature, density and
streamwise velocity, say T (η), ρ(η),U (η) respectively, are assumed to be functions
of the Dorodnitsyn-Howarth variable

η ≡ 1

ε3
√
2x

∫ y

0
ρ (x, ỹ) dy (6)

and are determined from the similarity equations given in Stewartson [8].
We begin by considering the flow in the vicinity of the leading edge where the

streamwise length scale corresponds to x = O(1). Since the inviscid velocity field
can only depend on the streamwise coordinate through this relatively long streamwise
length scale the solution for the velocity and temperature perturbation {u, v,w, ϑ}
in this region of the boundary layer is given by [2]

{u, v,w, ϑ} =
{
F ′(η),

ε3 T√
2x

(
ηcF

′ − F
)
, 0, T

}
+

δ̃
{
u0(x, η), ε3

√
2xv0(x, η), εw0(x, η), ϑ0(x, η)

}
ei(βz/ε−t),

(7)

where ηc ≡ T (η)−1
∫ η

0 T (η̃)dη̃.

The vector
{
u0(x, η), ε3

√
2xv0(x, η), εw0(x, η), ϑ0(x, η)

}
is determined by the

linearized boundary layer equations and
{
u0, v0,w0, ϑ0

}
can be divided into the

following two components [9]
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{
u0, v0,w0, ϑ0

}=u∞
{
u, v, 0, ϑ

} + iβ (w∞ + iv∞)
{
u(0), v(0),−iw(0)/β, ϑ

(0)
}

,

(8)

where
{
u(0), v(0),w(0), ϑ

(0)
}
satisfy the three-dimensional compressible linearized

boundary layer equations subject to the boundary conditions [2]

u(0) → 0, w(0) → eix , ϑ
(0) → 0 as η → ∞, (9)

while the two-dimensional solution {u, v, 0, ϑ} satisfies the two-dimensional lin-
earized boundary layer equations. The downstream asymptotic solutions to the
boundary-layer equations are discussed in detail in [3, 6]. A key point is that it is
only necessary to consider the lowest-order asymptotic mode because that is the only
one that matches onto a spatially growing oblique TS wave further downstream. The
receptivity problem can then be solved by combining the numerical boundary layer
solutions with appropriate matched asymptotic expansions to relate the instability
wave amplitude to that of the free-stream disturbance.

4 Boundary Layer Disturbances Generated
by the Fedorov/Khokhlov Mechanism at Near Critical
Obliqueness Angles

Fedorov and Khokhlov [4], whose focus was on hypersonic flows, analyzed the
generationofMackmode instabilities inflat plate boundary layers byoblique acoustic
waves of the form (3) where the incidence angle γ is equal to zero. They showed
that diffraction of the slow acoustic wave by the nonparallel mean boundary layer
flow can produce a first Mack mode instability in the downstream region where
x = O(ε−6) when its obliqueness angle θ is less than the critical angle cos−1(M−1∞ )

and the deviation �θ = θc − θ is O(1).
But as noted in the introduction the instability emerges too far downstream to be

of practical interest when scaled up to actual flight conditions at the low supersonic
Mach numbers being considered here. It will however emergemuch further upstream
when �θ � 1. Reference [3] extended the result of Fedorov and Khokhlov [4] to
the small-�θ regime and showed that

β = β1 = β̃

�θ
, α = α̃

�θ
+ α̃1 + ..., (10)

where α̃, β̃, α̃1 = O(1) and �θ � 1, which means that α and β become large when
�θ → 0. Reference [3] also shows that the relevant solution has a triple-deck struc-
ture: an outer diffraction region and a viscous wall layer in which the unsteady,
convective and viscous terms all balance and a main boundary layer region where
the solution is of the form
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{u, v,w, ϑ, p}={1, 0, 0, 1, 1}+δ̂
{
u2(x2, y2), ε

3/2v2(x2, y2),w2(x2, y2), ϑ2(x2, y2),

p2(x2)} exp
{

i

[(
α̃

�θ
+ α̃1

)
x + β̃z

�θ
− t

]}

,

(11)
where

x2 ≡ xε3 = O(1), y2 ≡ yε3/2 = O(1) (12)

and the surface pressure p2(x2) behaves like

p2
( ˜̃x2

)
∼ exp

[
γ 2
0 π

( ˜̃x2
)2

]
as ˜̃x2 → ∞, (13)

where

γ0 ≡
˜̃x2

(
α̃2 + β̃2

)
α̃1/2T 2

w

λ

√
2π i

(
M2∞ − 1

) . (14)

The acoustically and vortically generated boundary layer disturbance considered in
this section eventually evolve into propagating eigensolutions in regions that lie fur-
ther downstream. The resulting flow will have a triple-deck structure of the type
considered in [2, 5, 10] in the former (i.e. vortically generated) case. But the acous-
tically generated disturbance will only develop an eigensolution structure in a region
that lies much further downstream. This region will be closest to the leading edge
when �θ = O(ε2/3). We begin by considering the triple-deck region.

5 The Viscous Triple-Deck Region

As shown by [2, 5, 10] the linearized Navier-Stokes equations possess an eigenso-
lution of the form

{u, v,w, p} = δ̂�(y, ε) exp

{
i

[
1

ε3

∫ x1

0
κ (x1, ε) dx1 + βz − t

]}
(15)

in the triple-deck region where

x1 ≡ ε2x = O(1) (16)

and z ≡ z/ε = z∗ω∗/(εU ∗∞) is a scaled transverse coordinate. As noted in [1], κ

has the expansion κ (x1, ε) = κ0 (x1) + εκ1 (x1) + ε2κ2 (x1) + ..., where the lowest
order term in this expansion satisfies the following dispersion relation
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κ2
0 + β

2 = 1

(iκ0)
1/3

(
λ√
2x1

)5/3 (
μw

T 7
w

)1/3

[
β
2 − (

M2∞ − 1
)
κ2
0

]1/2
Ai′ (ξ0)

∫ ∞
ξ0

Ai (q) dq
(17)

and

ξ0 = −i1/3
(√

2x1
κ0λ

)2/3 (
Tw
μw

)1/3

, (18)

which is easily obtained by rewritingEq. (5.2) of [2] orEq. (3.17) of [10] in the present

notation. The solution must satisfy the inequality 

{[

β
2 − (

M2∞ − 1
)
κ2
0

]1/2} ≥ 0

in order to exclude solutions exhibiting unphysical wall-normal exponential growth.
This requirement will be satisfied for all M∞ < 1 but will only be satisfied at

supersonic Mach numbers when the obliqueness angle θ is greater than the critical
angle θc = cos−1(M−1∞ ). Equations (17) and (18) can be satisfied at small values of
x1 if κ0 ∼ √

x1 and ξ0 → ζn for n = 0, 1, 2, ... as x1 → 0 where ζn is the nth root of

Ai′(ζn) = 0 for n = 0, 1, 2, 3..., (19)

as discussed in [3]. Inserting these expressions of κ0 and ξ0 into (17) shows that
κ0 → (2Twx1/ iμw)1/2 /λζ

3/2
n as x1 → 0, which, as shown in [2, 3], matches onto

the downstream asymptotic limit of the boundary layer solution.

5.1 Numerical Results

The dispersion relation (17), which determines the complex wavenumber of the
triple-deck instabilities, is expected to have at least one root corresponding to each of
the infinitely many roots of the Lam-Rott dispersion relation (19), as discussed in [3].
But only the lowest order n = 0 root can produce the spatially growingmodes of (17).
The wall temperature Tw and viscosityμw can be scaled out of this equation by intro-

ducing the rescaled variables κ
†
0 = κ0T

1/2
w μ

1/6
w , x†1 = x1T 2

w/μ
2/3
w , β

† = βT 1/2
w μ

1/6
w .

Figure2 are plots of the negative imaginary parts of the scaled wavenumber κ
†
0

as a function of the scaled streamwise coordinate x†1 calculated from (17) for M∞ =
2, 3, 4 and three values of the frequency scaled transverse wavenumber β

† ≥ 2. The
inset is included to more clearly show the changes at small x†1. The red dashed curves
in the inset denote the imaginary parts of the small-x†1 asymptotic formula found at
the end of §5. The composite Lam-Rott triple-deck eigensolution can undergo a
significant amount of damping before it turns into a spatially growing instability
wave at the lower branch with the amount of damping determined by the upstream
behavior of the triple-deck solution (15) since this solution actually contains the
Lam-Rott solution as an upstream limit. The inset in Fig. 2 is particularly relevant
because it shows that the length�x†1 = 0.01 of this upstream region is very short and
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Fig. 2 −�
(
κ
†
0

)
as a

function of the scaled
streamwise coordinate x†1
calculated from the
dispersion relation (17)
together with the asymptotic
initial condition found at the
end of §5 for M∞ = 2, 3, 4
(double dot dashed, dot
dashed, and solid lines,
respectively) and three
values of the scaled
transverse wavenumber
β
† ≥ 2

therefore that the damping is relatively small in the supersonic case being considered
here. The leading edge receptivity mechanism is therefore expected to be much more
efficient than in the incompressible case considered in [1].

6 The Inviscid Triple-Deck Region

The acoustically driven solution will only match onto an eigensolution in a region
that lies downstream of the viscous triple-deck region considered above and will
have an inviscid structure. The relevant dispersion relation is given by

κ0
2 + β

2 =
λ

[
β
2 − (

M2∞ − 1
)
κ2
0

]1/2

κ0

√
2x̂1T 2

w

(20)

where the square root

[
β
2 − (M2∞ − 1)κ2

0

]1/2

is required to remain finite as ε → 0.

Our papers [3, 6] show that the lowest order wave number κ0 is purely real, which
means that exponential growth (if it occurs) can only occur at higher order. The key
result is that the acoustically generated instabilities will be less significant than the
vortically-generated instabilities that are generated upstream.
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Fig. 3 |� (ᾱ) | versus β̂

calculated from the reduced
Rayleigh solution. The
dashed lines in the inset are
|� (ᾱ) | = C β̂, where the
following values for the scale
factor C were obtained by
optimizing the fit to the
computations: C=36 for
M∞=2, C=129.4 for M∞=3,
and C=340.1 for M∞=4

7 Next Stage of Evolution

References [3, 6] also show that the viscous and the inviscid triple-deck solutions both
evolve into reduced Rayleigh modes further downstream. The wall-normal velocity
component satisfies the reduced Rayleigh equation

d

dη

(
1

T 2

dv

dη

)
+

[
α

1 − αU

(
U ′

T 2

)′
−

(
β
√
2x1

)2
]
v = O (

ε2(1−r)
)
, (21)

and the following boundary conditions

v ∼ e−β y for y → ∞ and v = 0 at y = 0. (22)

Figure3 shows the downstream evolution of the growth rate at different Mach num-
bers. The red dashed lines demonstrate how the Rayleigh solutions match the triple-
deck solutions as the leading edge is approached.

8 Conclusions

This paper uses high Reynolds number asymptotics to study the nonlocal behavior of
boundary layer instabilities generated by small amplitude free-stream disturbances at
moderately supersonic Mach numbers. The appropriate small expansion parameter
turns out to be ε = F−1/6, where F denotes the frequency parameter. The oblique
first Mack mode instabilities generated by free-stream acoustic disturbances are
compared with those generated by elongated vortical disturbances. The focus is on
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explaining the relevant physics and not on obtaining accurate numerical predictions.
The free-stream vortical disturbances generate unsteady flows in the leading edge
region that produce short spanwise wavelength instabilities in a viscous triple-deck
region which lies at an O(ε−2) distance downstream from the leading edge. The
mechanism was first considered for two-dimensional incompressible flows in refer-
ence [1], but the instability onset occurs much further upstream in the supersonic
case and is, therefore, much more likely to be important at the higher Mach numbers
considered in this paper. The lowest order triple-deck solution does not possess an
upper branch and evolves into an inviscid first Mack mode instability with short
spanwise wavelength at anO(ε−4) distance downstream. Fedorov and Khokhlov [4]
used asymptotic methods to study the generation of inviscid instabilities in super-
sonic boundary layers by fast and slow acoustic disturbances in the free streamwhose
obliqueness angle θ deviated from its critical value by an O(1) amount and showed
that slow acoustic disturbances generate unsteady boundary layer disturbances that
produceO(1) spanwise wavelength inviscid first Mack mode instabilities at a much
larger O(ε−6) distance downstream. But the calculations in our paper [3] show that
the physical streamwise distance x∗(U ∗∞)3/(ω∗)2ν∗∞ corresponding to this scaled
downstream location is at least equal to about 7m for the typical supersonic flight
conditions at M∞ = 3 (U ∗∞ = 800, ν∗∞ = 0.000264m2/s) end an altitude of 20km
with an upper bound of 100 kHz for the characteristic frequency. This means that
this instability occurs too far downstream to be of any practical interest at the mod-
erately low supersonic Mach numbers considered here. But, the inviscid instability,
which first appears at an O(ε−(4+2/3)) distance downstream when �θ is reduced to
O(ε−(4+2/3) can be significant when scaled to flight conditions. We therefore com-
pared the vortically-generated instabilities with the instabilities generated by oblique
acoustic disturbances with obliqueness angles in this range.
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