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Abstract The effect of a single step-like surface irregularity on the spatial develop-
ment of Tollmien-Schlichting (TS) waves is investigated by the recently developed
Adaptive Harmonic Linearized Navier-Stokes (AHLNS) methodology. The steps
considered in the present work, forward- and backward-facing steps (FFS & BFS),
are varied not only in height but also in shape (rectangular and rounded). This work is
motivated by the growing interest in the aeronautical industry on the effect of surface
irregularities on the location of laminar-turbulent transition. The main contribution
of this paper is to present, for fixed flow conditions, the combined influence of the
height and shape of step-like irregularities on the expected transition location. A sec-
ond motivation of this paper is to demonstrate the AHLNS methodology used in the
course of this investigation as a perfectly suited stability analysis tool for performing
numerical studies on the effect of surface irregularities on the spatial development
of traveling instabilities with a relatively moderate computational effort.

1 Introduction

One of the key areas for present and future aircraft design is to achieve a significant
drag reduction by delaying the transition of the incoming free-streamair from laminar
to turbulent state. The presence of surface irregularities like steps, gaps, humps, etc.
introduces regions of localized strong streamwise gradients in the base flow quan-
tities. TS waves may lead to the onset of laminar-turbulent transition and therefore,
it becomes critical to correctly model their interaction with the above mentioned
surface irregularities.
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Techniques likeParabolizedStabilityEquations (PSE) are not suited for boundary-
layer instability analysis in the vicinity of those surface irregularities: its formula-
tion assumes that streamwise variations of base flow and disturbances quantities are
small (compared to surface-normal variations), allowing a marching procedure for
their resolution. Moreover, PSE is unable to resolve the very short-scale streamwise
variations in the base flow due to its step size limitations. On the other hand, tech-
niques like Linearized Navier-Stokes (LNS), Harmonic LNS (HLNS) and Direct
Numerical Simulation (DNS) do not impose any assumption regarding the nature
of the convective instabilities in streamwise direction. This fact implies that the
required numerical resources increase significantly. Alternatively, the Adaptive Har-
monic LNS (AHLNS) equations can also handle these large streamwise gradients by
using a fully-elliptic system of equations (similar to DNS). The AHLNS formulation
assumes a wave-like character of the instabilities (as in PSE), leading to a significant
reduction in the number of streamwise grid points required compared with LNS,
HLNS or DNS computations.

The effect of steps on the onset of laminar-turbulent transition has been extensively
studied, both numerically and experimentally. One of the first attempts was done by
Nenni and Gluyas [1], who provide a critical Reynolds number based on the step
height (for rectangular FFS & BFS). Smooth BFS steps were considered by Ragab
and Nayfeh [2] using LST (Local Stability Theory). Recently, Edelmann [3] studied
the effect of rectangular FFS by means of DNS. He found that there was a good
agreement between DNS and LST, assuming that a small region around the step is
omitted from the LST computations.

The present paper provides a systematic study of the effect of a single step (FFS
and BFS) on the spatial development of TS waves in a compressible subsonic flow.
The height and shape have been varied in order to provide a clearer understanding
how these parameters influence the base flow and the linear growth of the oncoming
TS waves. A similar work about the effect of a single hump on laminar-turbulent
transition has been recently published by Franco et al. [4]. To the authors’ knowledge,
there is no similar work published regarding the influence of a single step.

2 Problem Description

2.1 Setup

We study numerically the effect of a single step on boundary-layer transition of
a two-dimensional laminar flow on a flat plate. Figure1 shows schematically the
computational domain used in the present study, including the type of boundary
conditions imposed for computing the laminar base flow. All dimensional quantities
are marked with an asterisk *. The free-stream Mach number Ma∞ is set to 0.5 for
all cases. The shape of the step is defined by the expression
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Fig. 1 Schematic representation of the computational domain defined for the present study. The
labels at the edges of the domain indicate the type of boundary conditions used for the base flow
computations
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where the parameter H∗ indicates the height of the step (positive for FFS and neg-
ative for BFS). The center of the step is placed at x∗

c . The geometrical parameter
C defines the shape of the step. The rectangular shape can be considered the limit-
ing case when C → 0. Geometrical quantities are nondimensionalized with δ∗ (the
compressible boundary-layer displacement thickness at the x∗

c position for a flat plate
at zero pressure gradient (ZPG)). The Reynolds number based on δ∗ is defined as
Reδ∗ = ρ∗∞U ∗∞δ∗

μ∗∞
, where ρ∗∞, u∗∞ and μ∗∞ denotes the density, velocity and dynamic

viscosity at the boundary-layer edge, respectively. In the present study, the value of
Reδ∗ at the step location x∗

c is fixed to 1823. We will consider three values for the
geometric parameter C : 10, 50 and the rectangular-shaped case r , i.e. C → 0. For
the nondimensional height H , six values will be examined here: ± 0.4 (small), ±
0.8 (medium) and ± 1.2 (large). The combination of parameters H and C gives a
total of 18 types of surface irregularities, which are summarized in Table1.

2.2 AHLNS Equations

The boundary-layer instability analysis of the abovementioned configurationswill be
done using theAdaptiveHarmonic LinearizedNavier Stokes (AHLNS) equations [5]
in combination with linear PSE [6], following a multi-zonal approach as described in
Fig. 2. Here, a brief introduction to the AHLNS methodology is given. For a detailed
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Table 1 Values of the nondimensional parameters H and C considered in the present study. The
case C = r refers to the rectangular-shaped step. The maximum slope of the wall is also included

Case name H C Max.
slope

Case name H C Max.
slope

FFS_H04_C50 0.4 50 0.26◦ BFS_H04_C50 −0.4 50 −0.26◦

FFS_H04_C10 0.4 10 1.29◦ BFS_H04_C10 −0.4 10 −1.29◦

FFS_H04_r 0.4 r 90◦ BFS_H04_r −0.4 r −90◦

FFS_H08_C50 0.8 50 0.52◦ BFS_H08_C50 −0.8 50 −0.52◦

FFS_H08_C10 0.8 10 2.58◦ BFS_H08_C10 −0.8 10 −2.58◦

FFS_H08_r 0.8 r 90◦ BFS_H08_r −0.8 r −90◦

FFS_H12_C50 1.2 50 0.78◦ BFS_H12_C50 −1.2 50 −0.78◦

FFS_H12_C10 1.2 10 3.87◦ BFS_H12_C10 −1.2 10 −3.87◦

FFS_H12_r 1.2 r 90◦ BFS_H12_r −1.2 r −90◦

Fig. 2 Sketch of the multi-zonal technique for boundary-layer instability analysis in the presence
of surface irregularities. The vertical dashed lines represent the inflow and outflow locations for
AHLNS computations. A TS wave of reduced frequency F = 20 is depicted (case FFS_H08_r)

description of this methodology, the readers are referred to Franco and Hein [5]. For
a complete explanation about the PSE methodology, the readers are referred to Hein
et al. [6].

The AHLNS equations are obtained from the compressible Navier-Stokes (NS)
equations linearized for small disturbances. All flow and material quantities q are
decomposed into a steady base flow q̄ plus an unsteady disturbance flow compo-
nent q̃, i.e. q(x, t) = q̄(x) + εq̃(x, t), with ε � 1. Here, t represents time. This
flow decomposition is introduced into the NS equations, then the base state solution
is subtracted and products of disturbance quantities are neglected. To further sim-
plify the analysis, it is assumed that the base flow is homogeneous in spanwise z
direction. Moreover, disturbances are assumed to be periodic in time t and in span-
wise z direction. The adaptive approach is introduced here: the disturbance flow
variables are divided into an amplitude function and a suitable, iteratively updated
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wave function, i.e. q̃(x, y, z, t) = q̂(x, y)ei�, where the wave function is defined as
� = ∫

α(x)dx + βz − ωt . The major advantage of the adaptive approach is that it
exploits the wave-like character of the convective instabilities in a similar fashion
as in the PSE method. However, unlike to the PSE approach [6], the streamwise
wavenumber α and the amplitude function q̂ are allowed to vary rapidly in stream-
wise direction.

2.3 N-factor envelope

The n-factor, which measures the accumulated growth of the disturbances, is com-
puted as n(x) = ln (A(x)/A0), where A0 denotes themaximum amplitude, in normal
direction, of the streamwise velocity component of the corresponding TSmode at the
streamwise position where the disturbance starts to grow. The n-factor is set to zero
if during the course of the calculation, the value of A becomes smaller than A0. Each
n-factor curve is computed for a single TS wave defined by a particular nondimen-
sional frequency F and spanwise wavenumber β. The nondimensional frequency F
is defined as F = 2π f ∗ μ∗∞

ρ∗∞(U ∗∞)2
× 106, where f ∗ is the physical frequency of the

disturbances. The envelope of all n-factor curves considered is called the N -factor
envelope, following the definition given by Arnal [7].

3 Numerical Results

3.1 Base Flow Computations

The laminar steady two-dimensional flow on a flat plate in the presence of a sin-
gle step was computed numerically. We used the compressible Navier-Stokes solver
TAU [8], developed at DLR. Grids were generated using the structured grid generator
MEGACADS, also developed at DLR. A schematic representation of the computa-
tional domain and the boundary conditions imposed for computing the base flows is
depicted in Fig. 1. Farfield boundary conditions were enforced sufficiently far from
the surface irregularity (about 5000 δ∗ in both streamwise and normal directions).

3.2 Base Flow Results

The base flow pressure p̄ is made nondimensional by twice the incoming dynamic
pressure, i.e. ρ∗∞(U ∗∞)2. Figure3 shows the contours of p̄ and streamlines for large
steps. For FFS (Fig. 3-a),-c),-e)), the flow field remains attached for smooth steps,
while for the rectangular-shaped case, a tiny recirculation area appears in front of the
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step. For BFS (Fig. 3-b),-d),-f)), the parameter C has a crucial influence on the pres-
ence and size of the recirculation area. In particular, for very smooth steps (C = 50)
the flow remains attached. If the shape parameterC is reduced (cases BFS_H12_C10
and BFS_H12_r), a large bubble appears right after the step. The size of the bubble
increases the more the shape of the step approaches the rectangular one.

In terms of pressure contours, it is interesting to notice that for BFS the pressure
contours barely change with the shape of the step. However, for FFS the pressure
gradients in the vicinity of the step becomemore intense as the step shape approaches
that of a rectangular step.

3.3 Instability Analysis

The computation of the spatial development of a broadband spectrum of TS waves
(each one computed individually as explained in Sect. 2.3) is described in this section.
The spatial growth in amplitude of each TS wave is collected in the corresponding
n-factor curve.

The instability analysis is performed in the domain (x − xc) ∈ [−500, 2000].
An initial investigation done on a flat plate using PSE for several frequencies F
and spanwise wavenumbers β revealed that two-dimensional (β = 0) TS waves of
frequencies F ∈ [20, 75] produce the highest n-factor curves in the domainmentioned
above. When a surface irregularity is present, the multi-zonal approach described in
Sect. 2.2 is applied. The interfaces betweenPSEandAHLNSare placed at (x − xc) =
±165, sufficiently far away from the recirculation regions (see Fig. 3). The following
results were obtained considering incoming two-dimensional TS waves (β = 0) with
frequencies in the range F ∈ [20, 75].

3.4 Effect of Step Height and Shape

3.4.1 Forward-Facing Steps

Figure 4 compares the N -factor envelope curves when small (-a)),medium (-c)) and
large (-e)) FFS are considered. In the vicinity of the step, the development of the TS
waves is driven by the pressure gradients that the presence of the step introduces into
the flow field. It is well known (see Drazin and Reid [9]) that an acceleration in the
flow usually has a stabilizing effect. Figure 5 shows the nondimensional pressure
distribution at the wall p̄wall when small (-a)), medium (-c)) and large (-e)) FFS
are considered. The flat plate case is also included for comparison. For all cases,
there is an initial deceleration of the flow (adverse pressure gradient) followed by
a very rapid acceleration. This effect explains why in the step region x ≈ xc there
is a small increase in the N -factor curves followed by a reduction. The favorable
pressure gradient around xc increases with the height of the step, but it is also very
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Fig. 3 Pressure p̄ contours and streamlines for cases a FFS_H12_C50; b BFS_H12_C50; c
FFS_H12_C10; d BFS_H12_C10; e FFS_H12_r; f BFS_H12_r. Flow direction is from left to
right. Axes are not to scale
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dependent on the shape of the step. Downstream, around (x − xc) ≈ 50, the pressure
distribution starts to recover the ZPG, and the N -factor curves grow nearly parallel
to the flat plate case.

3.4.2 Backward-Facing Steps

Figure 4 compares the N -factor envelope curves when small (-b)),medium (-d)) and
large (-f)) BFS are considered. Similar to the abovementioned FFS, the development
of the TS waves is driven by the pressure gradients that the presence of the step intro-
duces into the flow field. Figure 5 shows the nondimensional pressure distribution
at the wall p̄wall when small (-b)), medium (-d)) and large (-f)) BFS are considered.
For all cases, there is an initial acceleration of the flow (favorable pressure gradient)
followed by a very rapid deceleration. This is the reason of the small reduction in
the N -factor curves followed by a large increase in the vicinity of the step x ≈ xc.
The adverse pressure gradient around xc increases with the height of the step, but
it is also very dependent on the shape of the step. Next, around (x − xc) ≈ 50, the
pressure distribution starts to recover the ZPG, and the N -factor curves grow almost
parallel to the flat plate case.

Although the pressure gradients around the step are less intense for BFS than for
the corresponding FFS, the presence of a relatively large recirculation region, whose
size depends strongly on the step shape as already described in Sect. 3.2, increases
significantly the growth of the TS waves (see e.g. Hein [10]). Therefore, when a
separation region is present in a BFS, the N -factors are considerably larger than for
the FFS counterpart.

3.5 Prediction of Transition Location

The N -factor results of Fig. 4 can be used to assess the effects of the different surface
irregularities on the transition location. Without having any further information, it is
very common [11] to set the expected transition location xtr as the closest point to
the leading edge where the amplification curves reach the threshold value of Ntr =
9. The corresponding streamwise location is defined as the expected location where
the transition to turbulence takes place. The resulting expected transition locations
xtr for the different cases are summarized in Fig. 6. In this figure, the expected
transition location for a flat plate is named xtr0 . The abscissa (xtr -xc)/(xtr0 -xc) relates
the downstream distance of the expected transition from the step position xc to the
downstream distance without any surface irregularity.

Costantini et al. [12] used the loss of laminarity 
s (%) as the counterpart of the
parameter (xtr -xc)/(xtr0 -xc). In this sense, the maximum 
s for small steps is about
14% (i.e. (xtr -xc)/(xtr0 -xc) = 0.86, case BFS_H04_r). However, for large steps the
maximum 
s is about 94% (case BFS_H12_r), i.e. transition is expected to occur
in the vicinity of the step. Interestingly, the effect of smoothing the step can reduce
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Fig. 4 Effect of shape parameterC on N -factor envelope curves for cases a FFS_H04; bBFS_H04;
c FFS_H08; d BFS_H08; e FFS_H12; f BFS_H12. Vertical dashed lines indicate the location of
the interfaces between PSE and AHLNS methodologies. The grey line represents the position of
the step. The N -factor envelope curve for a flat plate (black line) is included as reference

the loss of laminarity up to only 17% (case BFS_H12_C50). Clearly, for large steps
the impact of smoothing the shape of the step has a much stronger influence on the
expected transition location. For medium steps the situation depends on the type of
the step: for FFS the expected transition location is relative unaffected by the shape
of the step, while for BFS the loss of laminarity can be reduced from 39% (case
BFS_H08_r) to 10% (case BFS_H08_C50).

4 Summary and Conclusions

The spatial linear stability analysis of Tollmien-Schlichting waves in the presence of
a large variety of forward- and backward-facing steps on a flat plate in a compressible
flow is presented here. In order to reduce the scope of all possible parameter com-
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Fig. 5 Effect of shape parameterC on pressure distribution at thewall p̄wall for cases aFFS_H04;b
BFS_H04; c FFS_H08; d BFS_H08; e FFS_H12; f BFS_H12. The grey line represents the position
of the step. The pressure distribution for a flat plate (black line) is included as reference

Fig. 6 Expected transition
location xtr , referred to the
expected transition location
for a flat plate xtr0 , for all
steps considered in the
present work. The eN

methodology, with a
transition N -factor of 9, is
applied
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binations, unit Reynolds number, Mach number and step location were kept fixed.
The geometrical parameters which define the step (height and shape) were system-
atically varied. The recently developed AHLNS methodology was used to compute
the N -factor envelope curve for each step.

A physical interpretation of the instability results, based on the changes in pressure
distribution introduced by the presence of the step is also described in detail. The
results of the stability analysis were related with an expected transition location via
the eN methodology, assuming that a value of Ntr=9 triggers the onset of transition
to turbulence. It is shown that, for small steps (in terms of the displacement thickness
at the step location xc) the expected transition location is barely affected by the shape
of the step (rounded or rectangular). However, for large steps the expected transition
location for rectangular steps can be significantly delayed by smoothing the shape
of the step. This effect was noticed for both forward- and backward-facing steps.
However, further parametric studies which extend the scope of the present work are
required in order to be able to describe completely all possible laminar-turbulent
transition scenarios.

The AHLNS methodology presented here is very well suited for such parametric
studies as it can be applied to other types of surface irregularities like humps, gaps,
porous walls and suction slots, both in two-dimensional and quasi-three dimensional
boundary layers. Quantifying the influence of such irregularities on the location of
laminar-turbulent transition represents one of themajor tasks in the design of laminar
wings for future aircraft.
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