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Abstract. An acyclic r-coloring of a directed graph G = (V, E) is a
partition of the vertex set V into r acyclic sets. The dichromatic number
of a directed graph G is the smallest r such that G allows an acyclic
r-coloring. For symmetric digraphs the dichromatic number equals the
well-known chromatic number of the underlying undirected graph. This
allows us to carry over the W[1]-hardness and lower bounds for running
times of the chromatic number problem parameterized by clique-width to
the dichromatic number problem parameterized by directed clique-width.
We introduce the first polynomial-time algorithm for the acyclic coloring
problem on digraphs of constant directed clique-width. From a param-
eterized point of view our algorithm shows that the Dichromatic Num-
ber problem is in XP when parameterized by directed clique-width and
extends the only known structural parameterization by directed modu-
lar width for this problem. Furthermore, we apply defineability within
monadic second order logic in order to show that Dichromatic Num-
ber problem is in FPT when parameterized by the directed clique-width
and r. For directed co-graphs, which is a class of digraphs of directed
clique-width 2, we even show a linear time solution for computing the
dichromatic number.

Keywords: Acyclic coloring · Directed clique-width · Directed
co-graphs · Polynomial time algorithms

1 Introduction

In this paper, we consider an approach for coloring the vertices of digraphs. An
acyclic r-coloring of a digraph G = (V,E) is a partition of the vertex set V into
r sets such that all sets induce an acyclic subdigraph in G. The dichromatic
number of G is the smallest integer r such that G has an acyclic r-coloring.
Acyclic colorings of digraphs received a lot of attention in [4,28,29] and also in
recent works [26,27,32]. The dichromatic number is one of two basic concepts
for the class of perfect digraphs [1] and can be regarded as a natural counterpart
of the well known chromatic number for undirected graphs.

In the Dichromatic Number problem (DCN) there is given a digraph G and an
integer r and the question is whether G has an acyclic r-coloring. If r is constant
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and not part of the input, the corresponding problem is denoted by DCNr. Even
DCN2 is NP-complete [12], which motivates to consider the Dichromatic Number
problem on special graph classes. Up to now, only few classes of digraphs are
known, for which the dichromatic number can be found in polynomial time. The
set of DAGs is obviously equal to the set of digraphs of dichromatic number 1.
Further, every odd-cycle free digraph [29] and every non-even digraph [27] has
dichromatic number at most 2.

The Dichromatic Number problem remains hard even for inputs of bounded
directed feedback vertex set size [27]. This result implies that there are no XP-
algorithms1 for the Dichromatic Number problem parameterized by directed
width parameters such as directed path-width, directed tree-width, DAG-width
or Kelly-width. The first positive result concerning structural parameterizations
of the Dichromatic Number problem is the existence of an FPT-algorithm2 for
the Dichromatic Number problem parameterized by directed modular width [31].

In this paper, we introduce the first polynomial-time algorithm for the
Dichromatic Number problem on digraphs of constant directed clique-width.
Therefore, we consider a directed clique-width expression X of the input digraph
G of directed clique-width k. For each node t of the corresponding rooted
expression-tree T we use label-based reachability information about the sub-
graph Gt of the subtree rooted at t. For every partition of the vertex set of Gt

into acyclic sets V1, . . . , Vs we compute the multi set 〈reach(V1), . . . , reach(Vs)〉,
where reach(Vi), 1 ≤ i ≤ s, is the set of all label pairs (a, b) such that the
subgraph of Gt induced by Vi contains a vertex labeled by b, which is reach-
able by a vertex labeled by a. By using bottom-up dynamic programming along
expression-tree T , we obtain an algorithm for the Dichromatic Number problem
of running time n2O(k2)

where n denotes the number of vertices of the input
digraph. Since any algorithm with running time in n2o(k)

would disprove the
Exponential Time Hypothesis (ETH), the exponential dependence on k in the
degree of the polynomial cannot be avoided, unless ETH fails.

From a parameterized point of view, our algorithm shows that the Dichro-
matic Number problem is in XP when parameterized by directed clique-width.
Further, we show that the Dichromatic Number problem is W[1]-hard on sym-
metric digraphs when parameterized by directed clique-width. Inferring from
this, there is no FPT-algorithm for the Dichromatic Number problem parame-
terized by directed clique-width under reasonable assumptions. The best param-
eterized complexity, which can be achieved, is given by an XP-algorithm. Fur-
thermore, we apply defineability within monadic second order logic (MSO) in
order to show that Dichromatic Number problem is in FPT when parameterized
by the directed clique-width and r, which implies that for every integer r it holds
that DCNr is in FPT when parameterized by directed clique-width.

1 XP is the class of all parameterized problems which can be solved by algorithms
that are polynomial if the parameter is considered as a constant [9].

2 FPT is the class of all parameterized problems which can be solved by algorithms
that are exponential only in the size of a fixed parameter while being polynomial in
the size of the input size [9].
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Since the directed clique-width of a digraph is at most its directed modular
width [32], we reprove the existence of an XP-algorithm for DCN and an FPT-
algorithm for DCNr parameterized by directed modular width [31]. On the other
hand, there exist several classes of digraphs of bounded directed clique-width and
unbounded directed modular width, which implies that directed clique-width is
the more powerful parameter and thus, the results of [31] does not imply any
parameterized algorithm for directed clique-width.

In Table 1 we summarize the known results for DCN and DCNr parameter-
ized by width parameters.

Table 1. Complexity of DCN and DCNr parameterized by width parameters. We
assume that P �= NP. The “///” entries indicate that by taking r out of the instance
the considered parameter makes no sense.

Parameter DCN DCNr

Directed modular width FPT [31] FPT [31]

Directed clique-width W[1]-hard Corollary 1 FPT Corollary 5

XP Corollary 3

Directed clique-width + r FPT Theorem 4 ///

Directed tree-width �∈ XP [27] �∈ XP [27]

Directed path-width �∈ XP [27] �∈ XP [27]

DAG-width �∈ XP [27] �∈ XP [27]

Kelly-width �∈ XP [27] �∈ XP [27]

Clique-width of un(G) �∈ FPT by Corollary 1 open

For directed co-graphs, which is a class of digraphs of directed clique-width 2
[23], we even show a linear time solution for computing the dichromatic number
and an optimal acyclic coloring.

2 Preliminaries

We use the notations of Bang-Jensen and Gutin [2] for graphs and digraphs.

2.1 Directed Graphs

A directed graph or digraph is a pair G = (V,E), where V is a finite set of
vertices and E ⊆ {(u, v) | u, v ∈ V, u �= v} is a finite set of ordered pairs
of distinct vertices called arcs or directed edges. For a vertex v ∈ V , the sets
N+(v) = {u ∈ V | (v, u) ∈ E} and N−(v) = {u ∈ V | (u, v) ∈ E} are called
the set of all successors and the set of all predecessors of v. The outdegree of v,
outdegree(v) for short, is the number of successors of v and the indegree of v,
indegree(v) for short, is the number of predecessors of v.
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A digraph G′ = (V ′, E′) is a subdigraph of digraph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. If every arc of E with both end vertices in V ′ is in E′, we say that G′

is an induced subdigraph of digraph G and we write G′ = G[V ′].
For some given digraph G = (V,E) we define its underlying undirected graph

by ignoring the directions of the arcs, i.e. un(G) = (V, {{u, v} | (u, v) ∈ E, u, v ∈
V }). There are several ways to define a digraph G = (V,E) from an undirected
graph G′ = (V,E′). If we replace every edge {u, v} ∈ E′ by

– both arcs (u, v) and (v, u), we refer to G as a complete biorientation of G′.
Since in this case G is well defined by G′ we also denote it by

←→
G′ . Every

digraph G which can be obtained by a complete biorientation of some undi-
rected graph G′ is called a complete bioriented graph or symmetric digraph.

– one of the arcs (u, v) and (v, u), we refer to G as an orientation of G′. Every
digraph G which can be obtained by an orientation of some undirected graph
G′ is called an oriented graph.

For a digraph G = (V,E) an arc (u, v) ∈ E is symmetric if (v, u) ∈ E. Thus,
each bidirectional arc is symmetric. Further, an arc is asymmetric if it is not
symmetric. We define the symmetric part of G as sym(G), which is the spanning
subdigraph of G that contains exactly the symmetric arcs of G. Analogously, we
define the asymmetric part of G as asym(G), which is the spanning subdigraph
with only asymmetric arcs.

By
−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)}), n ≥ 2, we denote the directed

path on n vertices, by
−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)}), n ≥ 2,

we denote the directed cycle on n vertices.
A directed acyclic graph (DAG) is a digraph without any

−→
Cn, for n ≥ 2, as

subdigraph. A vertex v is reachable from a vertex u in G if G contains a
−→
Pn as a

subdigraph having start vertex u and end vertex v. A digraph is odd cycle free
if it does not contain a

−→
Cn, for odd n ≥ 3, as subdigraph. A digraph G is planar

if un(G) is planar.
A digraph is even if for every 0-1-weighting of the edges it contains a directed

cycle of even total weight.

2.2 Acyclic Coloring of Directed Graphs

We consider the approach for coloring digraphs given in [29]. A set V ′ of vertices
of a digraph G is called acyclic if G[V ′] is acyclic.

Definition 1 (Acyclic graph coloring [29]). An acyclic r-coloring of a
digraph G = (V,E) is a mapping c : V → {1, . . . , r}, such that the color classes
c−1(i) for 1 ≤ i ≤ r are acyclic. The dichromatic number of G, denoted by �χ(G),
is the smallest r, such that G has an acyclic r-coloring.

There are several works on acyclic graph coloring [4,28,29] including several
recent works [26,27,32]. The following observations support that the dichromatic
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number can be regarded as a natural counterpart of the well known chromatic
number χ(G) for undirected graphs G.

Observation 1. For every symmetric directed graph G it holds that �χ(G) =
χ(un(G)).

Observation 2. For every directed graph G it holds that �χ(G) ≤ χ(un(G)).

Observation 3. Let G be a digraph and H be a subdigraph of G, then �χ(H) ≤
�χ(G).

Name: Dichromatic Number (DCN)
Instance: A digraph G = (V,E) and a positive integer r ≤ |V |.
Question: Is there an acyclic r-coloring for G?

If r is a constant and not part of the input, the corresponding problem is
denoted by r-Dichromatic Number (DCNr). Even DCN2 is NP-complete [12].

3 Acyclic Coloring of Directed Co-graphs

As recently mentioned in [31], only few classes of digraphs for which the dichro-
matic number can be found in polynomial time are known. The set of DAGs is
obviously equal to the set of digraphs of dichromatic number 1. Every odd-cycle
free digraph [29] and every non-even digraph [27] has dichromatic number at
most 2. Thus, for DAGs, odd-cycle free digraphs, and non-even digraphs the
dichromatic number can be computed in linear time. Furthermore, for every
perfect digraph the dichromatic number can be found in polynomial time [1].

We next show how to find an optimal acyclic coloring for directed co-graphs,
which are defined below, in linear time.

Definition 2 (Directed co-graphs [8]). The class of directed co-graphs is
recursively defined as follows.

1. Every digraph with a single vertex ({v}, ∅), denoted by v, is a directed co-
graph.

2. If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint directed co-graphs, then
(a) the disjoint union G1 ⊕G2, which is defined as the digraph with vertex set

V1 ∪ V2 and arc set E1 ∪ E2,
(b) the series composition G1 ⊗ G2, which is defined by their disjoint union

plus all possible directed edges between V1 and V2, and
(c) the order composition G1 � G2, which is defined by their disjoint union

plus all possible directed edges from V1 to V2, are directed co-graphs.

Every expression X using the four operations of Definition 2 is called a di-co-
expression. For every directed co-graph we can define a tree structure denoted
as di-co-tree. This is an ordered rooted tree whose leaves represent the vertices
of the digraph and whose inner nodes correspond to the operations applied on
the subexpressions defined by the subtrees. For every directed co-graph one can
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construct a di-co-tree in linear time [8]. Directed co-graphs are interesting from
an algorithmic point of view since several hard graph problems can be solved in
polynomial time by dynamic programming along the tree structure of the input
graph, see [3,18,19].

Lemma 1 (�3). Let G1 and G2 be two vertex-disjoint directed graphs. Then,
the following equations hold:

1. �χ(G1 ⊕ G2) = max(�χ(G1), �χ(G2))
2. �χ(G1 � G2) = max(�χ(G1), �χ(G2))
3. �χ(G1 ⊗ G2) = �χ(G1) + �χ(G2)

Lemma 1 can be used to obtain the following result.

Theorem 1. Let G be a directed co-graph. Then, an optimal acyclic coloring
for G and �χ(G) can be computed in linear time.

The clique number ωd(G) of a digraph G is the number of vertices in a
largest complete bioriented subdigraph of G and the clique number ω(G) of a
(-n undirected) graph G is the number of vertices in a largest complete subgraph
of G. Since the results of Lemma 1 also hold for ωd instead of �χ we obtain the
following result.

Proposition 1. Let G be a directed co-graph. Then, it holds that

�χ(G) = χ(un(sym(G))) = ω(un(sym(G))) = ωd(G)

and all values can be computed in linear time.

4 Parameterized Algorithms for Directed Clique-Width

For undirected graphs the clique-width [7] is one of the most important param-
eters. Clique-width measures how difficult it is to decompose the graph into a
special tree-structure. From an algorithmic point of view, only tree-width [30] is
a more studied graph parameter. Clique-width is more general than tree-width
since graphs of bounded tree-width have also bounded clique-width [5]. The tree-
width can only be bounded by the clique-width under certain conditions [22].
Many NP-hard graph problems admit polynomial-time solutions when restricted
to graphs of bounded tree-width or graphs of bounded clique-width.

For directed graphs there are several attempts to generalize tree-width such
as directed tree-width, DAG-width, or Kelly-width, which are representative for
what people are working on, see the surveys [16,17]. Unfortunately, none of
these attempts allows polynomial-time algorithms for a large class of problems
on digraphs of bounded width [16, Table 2]. This also holds for DCNr and DCN
since even for bounded size of a directed feedback vertex set, deciding whether a
3 The proofs of the results marked with a � are omitted due to space restrictions, see

[20].
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directed graph has dichromatic number at most 2 is NP-complete [27]. This result
rules out XP-algorithms for DCN and DCNr by directed width parameters such
as directed path-width, directed tree-width, DAG-width or Kelly-width, since
all of these are upper bounded by the feedback vertex set number.

Next, we discuss parameters which allow XP-algorithms or even FPT-
algorithms for DCN and DCNr. The first positive result concerning structural
parameterizations of DCN was recently given in [31] using the directed modular
width (dmw).

Theorem 2 ([31]). The Dichromatic Number problem is in FPT when param-
eterized by directed modular width.

By [16], directed clique-width performs much better than directed path-
width, directed tree-width, DAG-width, and Kelly-width from the parameter-
ized complexity point of view. Hence, we consider the parameterized complexity
of DCN parameterized by directed clique-width.

Definition 3 (Directed clique-width [7]). The directed clique-width of a
digraph G, d-cw(G) for short, is the minimum number of labels needed to define
G using the following four operations:

1. Creation of a new vertex v with label a (denoted by a(v)).
2. Disjoint union of two labeled digraphs G and H (denoted by G ⊕ H).
3. Inserting an arc from every vertex with label a to every vertex with label b

(a �= b, denoted by αa,b).
4. Change label a into label b (denoted by ρa→b).

An expression X built with the operations defined above using k labels is called
a directed clique-width k-expression. Let digraph(X) be the digraph defined by
k-expression X.

In [23] the set of directed co-graphs is characterized by excluding two digraphs
as a proper subset of the set of all graphs of directed clique-width 2, while for
the undirected versions both classes are equal.

By the given definition every graph of directed clique-width at most k can
be represented by a tree structure, denoted as k-expression-tree. The leaves of
the k-expression-tree represent the vertices of the digraph and the inner nodes
of the k-expression-tree correspond to the operations applied to the subexpres-
sions defined by the subtrees. Using the k-expression-tree many hard problems
have been shown to be solvable in polynomial time when restricted to graphs of
bounded directed clique-width [16,23].

Directed clique-width is not comparable to the directed variants of tree-width
mentioned above, which can be observed by the set of all complete biorientations
of cliques and the set of all acyclic orientations of grids. The relation of directed
clique-width and directed modular width [32] is as follows.

Lemma 2 ([32]). For every digraph G it holds that d-cw(G) ≤ dmw(G).
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On the other hand, there exist several classes of digraphs of bounded directed
clique-width and unbounded directed modular width, e.g. even the set of all
directed paths {−→

Pn | n ≥ 1}, the set of all directed cycles {−→
Cn | n ≥ 1}, and the

set of all minimal series-parallel digraphs [33]. Thus, the result of [31] does not
imply any XP-algorithm or FPT-algorithm for directed clique-width.

Corollary 1. The Dichromatic Number problem is W[1]-hard on symmetric
digraphs and thus, on all digraphs when parameterized by directed clique-width.

Proof. The Chromatic Number problem is W[1]-hard when parameterized by
clique-width [13]. An instance consisting of a graph G = (V,E) and a positive
integer r for the Chromatic Number problem can be transformed into an instance
for the Dichromatic Number problem on digraph

←→
G and integer r. Then, G has

an r-coloring if and only if
←→
G has an acyclic r-coloring by Observation 1. Since

for every undirected graph G its clique-width equals the directed clique-width
of

←→
G [23], we obtain a parameterized reduction. ��
Thus, under reasonable assumptions there is no FPT-algorithm for the

Dichromatic Number problem parameterized by directed clique-width and an
XP-algorithm is the best that can be achieved. Next, we introduce such an XP-
algorithm.

Let G = (V,E) be a digraph which is given by some directed clique-width
k-expression X. For some vertex set V ′ ⊆ V , we define reach(V ′) as the set of
all pairs (a, b) such that there is a vertex u ∈ V ′ labeled by a and there is a
vertex v ∈ V ′ labeled by b and v is reachable from u in G[V ′].

Within a construction of a digraph by directed clique-width operations only
the edge insertion operation can change the reachability between the present
vertices. Next, we show which acyclic sets remain acyclic when performing an
edge insertion operation and how the reachability information of these sets have
to be updated due to the edge insertion operation.

Lemma 3 (�). Let G = (V,E) be a vertex labeled digraph defined by some
directed clique-width k-expression X, a �= b, a, b ∈ {1, . . . , k}, and V ′ ⊆ V be an
acyclic set in G. Then, vertex set V ′ remains acyclic in digraph(αa,b(X)) if and
only if (b, a) �∈ reach(V ′).

Lemma 4 (�). Let G = (V,E) be a vertex labeled digraph defined by some
directed clique-width k-expression X, a �= b, a, b ∈ {1, . . . , k}, V ′ ⊆ V be an
acyclic set in G, and (b, a) �∈ reach(V ′). Then, reach(V ′) for digraph(αa,b(X))
can be obtained from reach(V ′) for digraph(X) as follows:

– For every pair (x, a) ∈ reach(V ′) and every pair (b, y) ∈ reach(V ′), we extend
reach(V ′) by (x, y).

For a disjoint partition of V into acyclic sets V1, . . . , Vs, let M be the multi
set4 〈reach(V1), . . . , reach(Vs)〉. Let F (X) be the set of all mutually different
4 We use the notion of a multi set, i.e., a set that may have several equal elements.

For a multi set with elements x1, . . . , xn we write M = 〈x1, . . . , xn〉. The number
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multi sets M for all disjoint partitions of vertex set V into acyclic sets. Every
multi set in F (X) consists of nonempty subsets of {1, . . . , k} × {1, . . . , k}. Each
subset can occur 0 times and not more than |V | times. Thus, F (X) has at most

(|V | + 1)2
k2−1 ∈ |V |2O(k2)

mutually different multi sets and is polynomially bounded in the size of X.
In order to give a dynamic programming solution along the recursive struc-

ture of a directed clique-width k-expression, we show how to compute F (a(v)),
F (X ⊕ Y ) from F (X) and F (Y ), as well as F (αa,b(X)) and F (ρa→b(X)) from
F (X).

Lemma 5 (�). Let a, b ∈ {1, . . . , k}, a �= b.

1. F (a(v)) = {〈{(a, a)}〉}.
2. Starting with set D = {〈〉}×F (X)×F (Y ) extend D by all triples that can be

obtained from some triple (M,M′,M′′) ∈ D by removing a set L′ from M′

or a set L′′ from M′′ and inserting it into M, or by removing both sets and
inserting L′ ∪L′′ into M. Finally, we choose F (X ⊕Y ) = {M | (M, 〈〉, 〈〉) ∈
D}.

3. F (αa,b(X)) can be obtained from F (X) as follows. First, we remove from
F (X) all multi sets 〈L1, . . . , Ls〉 such that (b, a) ∈ Lt for some 1 ≤ t ≤ s.
Afterwards, we modify every remaining multi set 〈L1, . . . , Ls〉 in F (X) as
follows:
– For every Li which contains a pair (x, a) and a pair (b, y), we extend Li

by (x, y).
4. F (ρa→b(X)) = {〈ρa→b(L1), . . . , ρa→b(Ls)〉 | 〈L1, . . . , Ls〉 ∈ F (X)}, where we

use ρa→b(Li) = {(ρa→b(c), ρa→b(d)) | (c, d) ∈ Li} and ρa→b(c) = b, if c = a,
and ρa→b(c) = c, if c �= a.

Since every possible coloring of G is realized in the set F (X), where X is a
directed clique-width k-expression for G, it is easy to find a minimum coloring
for G.

Corollary 2. Let G = (V,E) be a digraph given by a directed clique-width k-
expression X. There is a partition of V into r acyclic sets if and only if there is
some M ∈ F (X) consisting of r sets of label pairs.

Theorem 3. The Dichromatic Number problem on digraphs on n vertices given
by a directed clique-width k-expression can be solved in n2O(k2)

time.

Proof. Let G = (V,E) be a digraph of directed clique-width at most k and T be
a k-expression-tree for G with root w. For some vertex u of T we denote by Tu

the subtree rooted at u and Xu the k-expression defined by Tu. In order to solve

how often an element x occurs in M is denoted by ψ(M, x). Two multi sets M1 and
M2 are equal if for each element x ∈ M1 ∪ M2, ψ(M1, x) = ψ(M2, x), otherwise
they are called different. The empty multi set is denoted by 〈〉.
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the Dichromatic Number problem for G, we traverse k-expression-tree T in a
bottom-up order. For every vertex u of T we compute F (Xu) following the rules
given in Lemma 5. By Corollary 2 we can solve our problem by F (Xw) = F (X).

Our rules given Lemma 5 show the following running times. For every v ∈ V
and a ∈ {1, . . . , k} set F (a(v)) can be computed in O(1). The set F (X ⊕Y ) can

be computed in time (n + 1)3(2
k2−1) ∈ n2O(k2)

from F (X) and F (Y ). The sets

F (αa,b(X)) and F (ρa→b(X)) can be computed in time (n + 1)2
k2−1 ∈ n2O(k2)

from F (X).
In order to bound the number and order of operations within directed clique-

width expressions, we can use the normal form for clique-width expressions
defined in [11]. The proof of Theorem 4.2 in [11] shows that also for directed
clique-width expression X, we can assume that for every subexpression, after
a disjoint union operation first there is a sequence of edge insertion operations
followed by a sequence of relabeling operations, i.e. between two disjoint union
operations there is no relabeling before an edge insertion. Since there are n leaves
in T , we have n− 1 disjoint union operations, at most (n− 1) · (k − 1) relabeling
operations, and at most (n − 1) · k(k − 1) edge insertion operations. This leads

to an overall running time of n2O(k2)
. ��

The running time shown in Theorem3 leads to the following result.

Corollary 3. The Dichromatic Number problem is in XP when parameterized
by directed clique-width.

Up to now there are only very few digraph classes for which we can compute
a directed clique-width expression in polynomial time. This holds for directed co-
graphs, digraphs of bounded directed modular width, and orientations of trees.
For such classes we can apply the result of Theorem 3. In order to find directed
clique-width expressions for general digraphs one can use results on the related
parameter bi-rank-width [24]. By [2, Lemma 9.9.12] we can use approximate
directed clique-width expressions obtained from rank-decomposition with the
drawback of a single-exponential blow-up on the parameter.

Next, we give a lower bound for the running time of parameterized algorithms
for Dichromatic Number problem parameterized by the directed clique-width.

Corollary 4. The Dichromatic Number problem on digraphs on n vertices
parameterized by the directed clique-width k cannot be solved in time n2o(k)

,
unless ETH fails.

Proof. In order to show the statement we apply the following lower bound for
the Chromatic Number problem parameterized by clique-width given in [14].
Any algorithm for the Chromatic Number problem parameterized by clique-
width with running in n2o(k)

would disprove the Exponential Time Hypothesis.
By Observation 1 and since for every undirected graph G its clique-width equals
the directed clique-width of

←→
G [23], any algorithm for the Dichromatic Num-

ber problem parameterized by directed clique-width can be used to solve the
Chromatic Number problem parameterized by clique-width. ��
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In order to show fixed parameter tractability for DCNr w.r.t. the parameter
directed clique-width one can use its defineability within monadic second order
logic (MSO). We restrict to MSO1-logic, which allows propositional logic, vari-
ables for vertices and vertex sets of digraphs, the predicate arc(u, v) for arcs of
digraphs, and quantifications over vertices and vertex sets [6]. In [16, Theorem
4.2] it has been shown that for every integer k and MSO1 formula ψ, every
ψ-LinEMSO1 optimization problem (see [16]) is fixed-parameter tractable on
digraphs of clique-width k w.r.t. the parameters k and length of the formula |ψ|.
Next, we will apply this result to DCN.

Theorem 4. The Dichromatic Number problem is in FPT when parameterized
by directed clique-width and r.

Proof. Let G = (V,E) be a digraph. We can define DCNr by an MSO1 formula

ψ = ∃V1, . . . , Vr :

⎛
⎝Partition(V, V1, . . . , Vr) ∧

∧
1≤i≤r

Acyclic(Vi)

⎞
⎠

with

Partition(V, V1, . . . , Vr) = ∀v ∈ V : (
∨

1≤i≤r v ∈ Vi)∧
�v ∈ V : (

∨
i�=j, 1≤i,j≤r(v ∈ Vi ∧ v ∈ Vj))

and

Acyclic(Vi) = ∀V ′ ⊆ Vi, V
′ �= ∅ : ∃v ∈ V ′(outdegree(v) = 0 ∨ outdegree(v) ≥ 2)

For the correctness we note the following. For every induced cycle V ′ in G it
holds that for every vertex v ∈ V ′ we have outdegree(v) = 1 in G. This does not
hold for non-induced cycles. But since for every cycle V ′′ in G there is a subset
V ′ ⊆ V ′′, such that G[V ′] is a cycle, we can verify by Acyclic(Vi) whether G[Vi]
is acyclic. Since it holds that |ψ| ∈ O(r), the statement follows by the result of
[16] stated above. ��
Corollary 5. For every integer r the r-Dichromatic Number problem is in FPT
when parameterized by directed clique-width.

5 Conclusions and Outlook

The presented methods allow us to compute the dichromatic number on directed
co-graphs in linear time and on graph classes of bounded directed clique-width
in polynomial time.

The shown parameterized solutions of Corollary 3 and Theorem 4 also hold
for any parameter which is larger or equal than directed clique-width, such as
the parameter directed modular width [32] (which even allows an FPT-algorithm
by [31,32]) and directed linear clique-width [21].
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Further, the hardness result of Corollary 1 rules out FPT-algorithms for the
Dichromatic Number problem parameterized by width parameters which can be
bounded by directed clique-width. Among these are the clique-width and rank-
width of the underlying undirected graph, which also have been considered in
[15] on the Oriented Chromatic Number problem.

From a parameterized point of view width parameters are so-called structural
parameters, which are measuring the difficulty of decomposing a graph into a
special tree-structure. Beside these, the standard parameter, i.e. the threshold
value given in the instance, is well studied. Unfortunately, for the Dichromatic
Number problem the standard parameter is the number of necessary colors r and
does even not allow an XP-algorithm, since DCN2 is NP-complete [27]. A posi-
tive result can be obtained for parameter “number of vertices” n. Since integer
linear programming is fixed-parameter tractable for the parameter “number of
variables” [25] the existence of an integer program for DCN using O(n2) variables
implies an FPT-algorithm for parameter n, see [20].

It remains to verify whether the running time of our XP-algorithm for DCN
can be improved to n2O(k)

, which is possible for the Chromatic Number problem
by [10]. Further, it remains open whether the hardness of Corollary 1 also holds
for special digraph classes and for directed linear clique-width [21]. Additionally,
the existence of an FPT-algorithm for DCNr w.r.t. parameter clique-width of
the underlying undirected graph is open.
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