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Abstract. In liquid democracy, each voter either votes herself or del-
egates her vote to some other voter. This gives rise to what is called
a delegation graph. To decide the voters who eventually votes along
with the subset of voters whose votes they give, we need to resolve the
cycles in the delegation graph. This gives rise to the Resolve Dele-

gation to MinMaxWeight problem where we need to find an acyclic
sub-graph of the delegation graph such that the number of voters whose
votes they give is bounded above by some integer λ. Putting a cap on the
number of voters whose votes a voter gives enable the system designer
restrict the power of any individual voter. The Resolve Delegation

to MinMaxWeight problem is already known to be NP-hard. In this
paper we study the parameterized complexity of this problem. We show
that Resolve Delegation to MinMaxWeight is para-NP-hard with
respect to parameters λ, number of sink nodes and the maximum degree
of the delegation graph. We also show that Resolve Delegation to

MinMaxWeight is W[1]-hard even with respect to the treewidth of the
delegation graph. We complement our negative results by exhibiting FPT
algorithms with respect to some other parameters. We finally show that
a related problem, which we call Resolve Fractional Delegation, is
polynomial time solvable.

Keywords: Liquid democracy · Resolve Delegation to

MinMaxWeight · Parameterized complexity

1 Introduction

In a direct democracy, agents vote for a candidate by themselves. In liquid democ-
racy, the voters can delegate their votes to other agents who can vote on their
behalf. Suppose voter 1 delegates her vote to voter 2 and voters 2 and 3 delegate
their votes to voter 4. Then voter 4 has a voting power equivalent to 4 individual
votes. That is delegations are transitive. This particular feature can make liquid
democracy a disruptive approach to democratic voting system. This happens
because such a voting system can lead to what we call a super-voter who has a
lot of voting power. So now the candidates instead of trying to appease the gen-
eral public can do behind the closed door dealings with the super-voters and try
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to win the election in an unfair manner. In order to deal with this issue, a central
mechanism ensures that no super-voter has a lot of voting power. Formally we
do it as follows. We create a delegation graph where the set of vertices is the set
of voters and we have a directed edge from vertex i to vertex j if voter i delegates
her vote to voter j. We observe that delegation graph may contain cycles. Every
voter is also allowed to delegate her vote to more than one other voters and let
the system decide her final delegation. We use a central mechanism to find a
acyclic sub-graph of the delegation graph such that no super-voter (the vertices
having out-degree 0) has a lot of voting power. We call this problem Resolve

Delegation to MinMaxWeight.

1.1 Related Work

An empirical investigation of the existence and influence of super-voters was
done by [9]. They showed that the super-voters can be powerful although they
seem to act in a responsible manner according to their results. There have been
a few theoretical work in this area by [4,7] and [8]. A detailed theoretical work
especially on the approximation algorithms in this setting was done by [6]. Some
other important work in Liquid democracy includes [2] and [3].

1.2 Our Contribution

We study parameterized complexity of the Resolve Delegation to Min-

MaxWeight problem with respect to various natural parameters. In particular,
we consider the number of sink vertices (t), maximum allowed weight λ of any
sink in the final delegation graph, maximum degree (Δ), tree-width, number of
edges deleted in optimal solution (erem), number of non-sink vertices (|V\T|).
The number of sink vertices corresponds to the number of influential voters
which is often a small number in practice. This makes the number of sink ver-
tices an important parameter to study. Similarly, the parameter λ corresponds
to the “power” of a voter. Since the input to the problem is a graph, it is natural
to study parameters, for example, tree-width (by ignoring the directions of the
edges) and the number of edges that one needs to delete in an optimal solution.
We summarize our results in Table 1. We finally show that Resolve Delega-

tion to MinMaxWeight is polynomial time solvable if we allow fractional
delegations [Theorem 6].

2 Preliminaries

A directed graph G is a tuple (V,E) where E ⊆ {(x,y) : x,y ∈ V, x �= y}.
For a graph G, we denote its set of vertices by V[G], its set of edges by E[G],
the number of vertices by n, and the number of edges by m. Given a graph
G = (V,E), a sub-graph H = (V′,E′) is a graph such that (i) V′ ⊆ V, (ii)
E′ ⊆ E, and (iii) for every (x,y) ∈ E′, we have x,y ∈ V′. A sub-graph H of a
graph G is called a spanning sub-graph if V[H] = V[G] and induced sub-graph if
E[H] = {(x,y) ∈ E[G] : x,y ∈ V[H]}. Given an induced path P of a graph, we
define end vertex as vertex with 0 outdegree in P and start vertex as a vertex
with 0 indegree in P.
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Table 1. Summary of results.

Parameter Result

t para-NP-hard [Theorem 1]

(λ, Δ) para-NP-hard [Theorem 2]

(λ, t) quadratic vertex kernel [Observation 1]

tree-width W[1]-Hard [Theorem 3]

erem FPT by bounded search tree technique [Theorem 5]

|V\T| FPT by bounded search tree technique [Theorem 4]

Problem under AssumptionResult

fractional delegation Reduction to LP [Theorem 6]

DAG,Bipartite Graph W[1]-Hard w.r.t treewidth [Corollary 2]

DAG,Bipartite Graph para-NP-hard w.r.t λ, Δ [Corollary 1]

2.1 Problem Definition

We now define our problem formally.

Definition 1 (Resolve Delegation to MinMaxWeight). Given a
directed graph G = (V,E) (also known as delegation graph) with the set
T ⊆ V as its set of sink vertices and an integer λ, decide if there exists a
spanning sub-graph H ⊆ G such that

(i) The out-degree of every vertex in V \ T is exactly 1
(ii) For every sink vertex t ∈ T, the number of vertices (including t) in V

which has a path to t in the sub-graph H is at most λ

We denote an arbitrary instance of Resolve Delegation to Min-

MaxWeight by (G, λ).

In the spanning sub-graph H ⊆ G , if there is a path from u to v in H such
that all the vertices on this path except v has out-degree 1, then we say that
vertex u delegates to vertex v. In any spanning sub-graph H ⊆ G with the out-
degree of every vertex in V \ T is exactly 1 (we call sub-graph H a feasible
solution), weight of a tree rooted at the sink vertex u is the number of vertices
(including u) that have a directed path to u. We study parameterized complexity
of Resolve Delegation to MinMaxWeight with respect to t, λ, and the
maximum degree Δ of the input graph as our parameters. In the optimization
version of Resolve Delegation to MinMaxWeight, we aim to minimize λ.

3 Results: Algorithmic Hardness

Our first result shows that Resolve Delegation to MinMaxWeight is
NP-complete even if we have only 3 sink vertices. For that, we exhibit reduction
from the Two Vertex Disjoint Paths problem.
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Definition 2 (Two Vertex Disjoint Paths). Given a directed graph G =
(V,E), two pairs (s1, t1) and (s2, t2) of vertices which are all different from each
other, compute if there exists two vertex disjoint paths P1 and P2 where Pi

is a path from si to ti for i ∈ [2]. We denote an arbitrary instance of it by
(G, s1, t1, s2, t2).

We know that Two Vertex Disjoint Paths is NP-complete [5]. The idea
is to add paths containing large number of nodes in the instance of Resolve

Delegation to MinMaxWeight which we are creating using the instance
of Two Vertex Disjoint Paths. This key idea will make both the instances
equivalent.

Theorem 1. The Resolve Delegation to MinMaxWeight problem is
NP-complete even if we have only 3 sink vertices. In particular, Resolve Del-

egation to MinMaxWeight is para-NP-hard with respect to the parameter
t.

Proof. The Resolve Delegation to MinMaxWeight problem clearly
belongs to NP. To show its NP-hardness, we reduce from Two Vertex Dis-

joint Paths. Let (G = (V,E), s1, t1, s2, t2) be an arbitrary instance of Two

Vertex Disjoint Paths. Let n = |V|. We consider the following instance
(G′ = (V′,E′), λ).

V′ = {av : v ∈ V} ∪ D1 ∪ D′
1 ∪ D2 ∪ D′

2 ∪ D3 where
|D1| = |D′

2| = 10n, |D′
1| = |D2| = 5n, |D3| = 15n

E′ = {(au,av) : (u, v) ∈ E} ∪ F

We now describe the edges in F. Each D1,D′
1,D2,D′

2 and D3 induces a path
in G′ and thus the edges in these paths are part of F. The end vertices of the
path induced on D1 and D2 be respectively d1 and d2. The start vertices of
the path induced on D′

1 and D′
2 be respectively d′

1 and d′
2. The end vertices

of the path induced on D′
1,D

′
2 and D3 be t′

1, t
′
2 and t′

3 respectively. The set F

also contains the edges in {(d1,as1), (d2,as2), (at1 ,d
′
1), (at2 ,d

′
2)}. F also contains

edge (av, t′
3) ∀v ∈ V. This finishes the description of F and thus the description

of G′. We observe that G′ has exactly 3 sink vertices, namely t′
1, t

′
2 and t′

3. Finally
we define λ = 17n. We claim that the two instances are equivalent.

In one direction, let us assume that the Two Vertex Disjoint Paths

instance is a yes instance. For all i ∈ [2], let Pi be a path from si to
ti in G such that P1 and P2 are vertex disjoint. We build the solution H

for Resolve Delegation to MinMaxWeight by first adding the set of
edges {(u, v)|outdegree of u is 1}. Then we add the paths P1 and P2. Then
we add the edges (at1 ,d

′
1), (at2 ,d

′
2). Then for each vertex u in the set Vr

= {av|v ∈ V}\V[P1 ∪ P2], add the edge (u, t′
3) to H.

We observe that the out degree of every vertex is exactly 1 in H except the
sink vertices in G′ (which are t′

1, t
′
2 and t′

3). Also since H contains the path Pi,
every vertex in Di has a path to t′

i for i ∈ [2]. Of course, every vertex in D′
i has

a path to t′
i for i ∈ [2] and every vertex in D3 delegates to t′

3. Hence ∀i ∈ [3],
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the number of vertices which has a path to ti in H′ is at most 16n which is less
than λ. Hence the Resolve Delegation to MinMaxWeight instance is a
yes instance.

In the other direction, let us assume that the Resolve Delegation to

MinMaxWeight instance is a yes instance. Let H′ = (V′,E′′) ⊆ G′ be a
spanning sub-graph of G′ such that (i) the out degree of every vertex which is
not a sink is exactly 1, (ii) there are at most λ (= 17n) vertices (including the
sink nodes) in H′ which has a path to t′

i for i ∈ [3]. Note that as1 must have
a path P′

1 to at1 in H′ otherwise at least 20n vertices have path to either t′
2

or t′
3 in H′ which is a contradiction (since λ = 17n). Similarly as2 must have

a path P′
2 to at2 in H′ otherwise at least 20n vertices have path to either t′

1

or t′
3 in H′ which is a contradiction (since λ = 17n). Since, for i ∈ [2], we

have a path P′
i from asi

to ati
in H′ and the out-degree of every vertex in H′

except t′
1, t

′
2 and t′

3 is 1, the paths P′
1 and P′

2 are vertex disjoint. We define
path Pi = {(u, v) : (au,av) ∈ P′

i} in G for i ∈ [2]. Since P′
1 and P′

2 are vertex
disjoint, it follows that P1 and P2 are also vertex disjoint. Thus the Resolve

Delegation to MinMaxWeight instance is a yes instance. ��
We next show that Resolve Delegation to MinMaxWeight is

NP-complete even if we have λ = 3 and Δ = 3. For that we exhibit a reduc-
tion from (3, B2)-SAT which is known to be NP-complete [1].

Definition 3 ((3,B2)-SAT). Given a set X = {xi : i ∈ [n]} of n variables and
a set C = {Cj : j ∈ [m]} of m 3-CNF clauses on X such that, for every i ∈ [n],
xi and x̄i each appear in exactly 2 clauses, compute if there exists any Boolean
assignment to the variables which satisfy all the m clauses simultaneously. We
denote an arbitrary instance of (3,B2)-SAT by (X,C).

For each literal and clause in (3, B2)-SAT we add a node in the instance of
Resolve Delegation to MinMaxWeight and we add some special set of
edges and nodes so that λ = 3 and both the out-degree and in-degree of every
vertex is at most 3

Theorem 2. The Resolve Delegation to MinMaxWeight problem is
NP-complete even if we have λ = 3 and both the out-degree and in-degree of every
vertex is at most 3. In particular, Resolve Delegation to MinMaxWeight

is para-NP-hard with respect to the parameter (λ,Δ).

Proof. The Resolve Delegation to MinMaxWeight problem clearly
belongs to NP. To show its NP-hardness, we reduce from (3, B2)-SAT. Let
(X = {xi : i ∈ [n]},C = {Cj : j ∈ [m]}) be an arbitrary instance of (3, B2)-
SAT. We define a function f : {xi, x̄i : i ∈ [n]} −→ {ai, āi : i ∈ [n]} as f(xi) = ai

and f(x̄i) = āi for i ∈ [n]. We consider the following instance (G = (V,E), λ).

V = {ai, āi,di,1,di,2 : i ∈ [n]} ∪ {yj : j ∈ [m]}

E = {(yj, f(l
j
1)), (yj, f(l

j
2)), (yj, f(l

j
3)) : Cj = (lj1 ∨ l

j
2 ∨ l

j
3), j ∈ [m]}

∪ {(di,2,di,1), (di,1,ai), (di,1, āi) : i ∈ [n]}

λ = 3
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We observe that both the in-degree and out-degree of every vertex in G is at
most 3. Also Δ = 3. We now claim that the two instances are equivalent.

Suppose the (3, B2)-SAT instance is a yes instance. Let g : {xi : i ∈ [n]} −→
{true, false} be a satisfying assignment of the (3, B2)-SAT instance. We define
another function h(g, j) = f(l), j ∈ [m], for some literal l which appears in the
clause Cj and g sets it to true. We consider the following sub-graph H ⊆ G

E[H] = {(di,2,di,1) : i ∈ [n]}

∪ {(di,1,ai) : i ∈ [n],g(xi) = false}

∪ {(di,1, āi) : i ∈ [n],g(xi) = true}

∪ {(yj,h(g, j)) : j ∈ [m]}

We observe that H is a spanning sub-graph of G such that (i) every non-sink
vertices in G has exactly one outgoing edge in H and (ii) for each sink vertex
in G, there are at most 3 vertices (including the sink itself) which has a path
to it. Hence the Resolve Delegation to MinMaxWeight instance is a yes

instance.
In the other direction, let the Resolve Delegation to MinMaxWeight

instance is a yes instance. Let H ⊆ G be a sub-graph of G such that (i) every
non-sink vertices in G has exactly one outgoing edge in H and (ii) for each sink
vertex in G, there are at most 3 vertices (including the sink itself) which has a
path to it. We define an assignment g : {xi : i ∈ [n]} −→ {true, false} as g(xi) =
false if (di,1,ai) ∈ E[H] and true otherwise. We claim that g is a satisfying
assignment for the (3, B2)-SAT instance. Suppose not, then there exists a clause
Cj = (lj1 ∨ l

j
2 ∨ l

j
3) for some j ∈ [m] whom g does not satisfy. We define functions

f1, f2 : {xi, x̄i : i ∈ [n]} −→ {di,1,di,2 : i ∈ [n]} as f1(xi) = f1(x̄i) = di,1 and
f2(xi) = f2(x̄i) = di,2. We observe that the sink vertex f(lji) is reachable from
both f1(l

j
i) and f2(l

j
i) in H for every i ∈ [3]. Since λ = 3, we do not have a

path from yj to any of f(li), i ∈ [3] which is a contradiction since the non-sink
vertex yj must have out-degree 1 in H. Hence g is a satisfying assignment for
the (3, B2)-SAT instance and thus the instance is a yes instance. ��
Corollary 1. Given that the input graph is both bipartite and directed acyclic
graph, the Resolve Delegation to MinMaxWeight problem is NP-complete
even if we have λ = 3 and both the out-degree and in-degree of every vertex is
at most 3 which concludes that Resolve Delegation to MinMaxWeight is
para-NP-hard with respect to the parameter (λ,Δ).

Proof. The corollary follows as the resulting graph G from reduction of (3, B2)-
SAT instance in Theorem 2 is bipartite as V can be partitioned into 2 indepen-
dent sets V1 = {yj : j ∈ [m]} ∪ {di,1 : i ∈ [n]} and V2 = {ai, āi,di,2 : i ∈ [n]}. Also
G is Directed Acyclic graph as it doesn’t have directed cycles. ��
Definition 4. A (positive integral) edge weighting of a graph G is a mapping
w that assigns to each edge of G a positive integer.
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Definition 5. An orientation of G is a mapping Λ : E(G) → V(G) × V(G)
with Λ((u, v)) ∈ {(u, v), (v,u)}.

Definition 6. The weighted outdegree of a vertex v ∈ V(G) w.r.t
an edge weighting w and an orientation Λ is defined as d+

G,w,Λ(v) =∑
(v,u)∈E(G) with Λ((v,u))=(v,u) w((v,u)).

Definition 7. (Minimum Maximum Outdegree). Given a graph G, an edge
weighting w of G in unary and a positive integer r, is there an orientation Λ of
G such that d+

G,w,Λ(v) � r for each v ∈ V(G)?

Lemma 1. [10] Minimum Maximum Outdegree is W[1]-hard when parame-
terized by the treewidth of the instance graph.

We now show that Resolve Delegation to MinMaxWeight is W[1]-
hard when parameterized by the treewidth of the instance graph. We reduce
from Minimum Maximum Outdegree with instance graph G to Resolve

Delegation to MinMaxWeight by first creating a replica of the G and then
taking an edge (u, v) with weight w and replacing it with a path of w nodes
with the end vertex having edges to u and v.

Theorem 3. Resolve Delegation to MinMaxWeight is W[1]-hard when
parameterized by the treewidth of the instance graph

Proof. To prove W[1]-Hardness we reduce from Minimum Maximum Outde-

gree to Resolve Delegation to MinMaxWeight. Let a graph G(V,E) with
an edge weighting w in unary and a positive integer r be an arbitrary instance of
Minimum Maximum Outdegree. Minimum Maximum Outdegree is con-
sidered to be a YES instance if the weighted outdegree of every vertex is upper
bounded by r. Now using the instance of Minimum Maximum Outdegree we
create an instance (H, r + 1) of Resolve Delegation to MinMaxWeight.
Let us construct a graph H = (V,E) where V = V1 ∪ V2. V1 = {bu : u ∈ V}.
∀(u, v) ∈ E add the set of vertices {auv1 ,auv2 , . . . ,auvw(u,v)

} to V2. ∀(u, v) ∈ E,
(auv1 ,bu) ∈ E, (auv1 ,bv) ∈ E and ∀i ∈ [w(u, v)] \ {1}, (auvi

,auvi−1) ∈ E.
This completes the construction of H with V1 as the sink nodes. It is trivial to
observe the fact that tw(H) � tw(G) + 2. We now prove that the Minimum

Maximum Outdegree is an YES instance iff the Resolve Delegation to

MinMaxWeight is an YES instance

Let Minimum Maximum Outdegree be a YES instance. Let Λ be the ori-
entation of G which makes Minimum Maximum Outdegree an YES instance.
We consider the following sub-graph H ′ ⊆ H

E[H ′] = {(auvi
,auvi−1) : i ∈ [w(u, v)] \ {1}, (u, v) ∈ E}

∪ {(auv1 ,bu) : (u, v) ∈ E,Λ((u, v)) = (u, v)}

We observe that H′ is a spanning sub-graph of H such that (i) every non-sink
vertices in H has exactly one outgoing edge in H′ and (ii) for each sink vertex
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in H, there are at most r+1 vertices (including the sink itself) which has a path
to it. Hence the Resolve Delegation to MinMaxWeight instance is a yes

instance.

Let Resolve Delegation to MinMaxWeight be a YES instance. Let H′

be the spanning sub-graph of H which make Resolve Delegation to Min-

MaxWeight a YES instance. Let the edges in H′ be denoted by E′. We consider
the following orientation Λ of G

Λ((u, v)) =
{
(u, v) if (auv1 ,bu) ∈ E ′

(v,u) otherwise
Clearly weighted outdegree of every vertex in G is atmost r. Therefore Minimum

Maximum Outdegree is an YES instance.
This concludes the proof of this theorem. ��
Corollary 2. Resolve Delegation to MinMaxWeight is W[1]-hard when
parameterized by the treewidth even when the input graph is both Bipartite and
Directed Acyclic Graph.

Proof. In the instance of Resolve Delegation to MinMaxWeight created
in Theorem 3, graph H is Bipartite as there is no odd cycle in the underlying
undirected graph. Also graph H is Directed Acyclic Graph (DAG) as there is no
directed cycle. ��

4 FPT Algorithms

We now prresent our FPT algorithms.

Observation 1. There is a kernel for Resolve Delegation to Min-

MaxWeight consisting of at most λt vertices. In particular, there is an FPT
algorithm for the Resolve Delegation to MinMaxWeight problem param-
eterized by (λ, t).

Proof. If the number n of vertices in the input graph is more than λt, then the
instance is clearly a no instance. Hence, we have n � λt. ��

In this section we define the notion of weights for the nodes in the subgraph
H of the delegation graph G. We define weight of all nodes u in G to be 1. To get a
notion of weight of a vertex u in a subgraph H, it can be considered as a number
which is one more than the number of nodes who have delegated their vote to u

and then have been removed from the graph G during the construction of H. If
H is a forest such that every non-sink node has an outdegree 1, then clearly the
weight of the tree rooted at a sink node say t is sum of the weights of the nodes
in the tree. We now show Resolve Delegation to MinMaxWeight is FPT
w.r.t number of non-sink nodes by using the technique of bounded search tree
by the branching on set of vertices satisfying some key properties.
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Theorem 4. The Resolve Delegation to MinMaxWeight problem has a
FPT with respect to the parameter k which is the number of non-sink nodes in
G (delegation graph).

Proof. Let us denote the problem instance by (G, λ,k). Now we present the
following reduction and branching rules.

Reduction RD.1. If there is a vertex v in V with only one outgoing edge to a
vertex u (u, v are distinct), delete v from graph and increase weight of u by the
weight of v. The incoming edges which were incident on v (except the self loops
if any) are now incident on u.

Safeness of Reduction RD.1. is trivial as a node v with single outgoing edge
can only delegate the votes it has got (this includes v’s own vote and the votes
of other nodes who have delegated to v so far) to the only neighbor u it has got.

Reduction RD.2 Remove self loops if any.
Safeness of Reduction RD.2. follows from the fact that no non-sink node can
delegate to itself

Reduction RD.3. If G contains a non-sink node v with outdegree more than
2(k − 1) and indegree 0, delete v from G. The new instance is (G − v, λ,k − 1)
Safeness of Reduction RD.3. is due to the fact that if we have a vertex v with
outdegree greater than 2(k − 1), it implies that it has an outgoing edge to at
least k sink nodes. Let us denote these sink nodes by set S. So, irrespective of
the delegations made by other vertices, there will exist one sink node t ′ ∈ S such
that none of the other k − 1 non-sink nodes have delegated to t ′ and hence we
can delegate v to t ′ and still not increase the maximum weight of the sink node.

Branching B.1. Pick a vertex v such that the outdegree is more than 2(k− 1)
and indegree is k ′ > 0. Note that k ′ � k−1. Each of k ′ nodes having an outgoing
edge to v can either delegate to v or not delegate it. So we have 2k′

possibilities
and hence we can create 2k′

subproblems. In each possibility if a node u1 is
delegating to v then we delete all the outgoing edges of u1 expect (u1, v) and if
we have a node u2 which doesn’t delegate to v then we delete the outgoing edge
from u2 to v. In each of the 2k′

instances of graph created first apply R.D.1,
then R.D.2, and then finally R.D.3. Now solve the problem recursively for each
of the 2k′

instances created by considering each of them as a subproblem. If a
non-sink node u has delegated to v then u gets deleted due to R.D.1 and if none
of the non-sink nodes delegate to v then v gets deleted to R.D.3. So therefore,
the new parameter (number of non-sink nodes) for the smaller subproblems gets
reduced by at least 1.

Given a directed delegation graph G, the algorithm works as follows. It first
applies Reductions RD.1., RD.2.,RD.3. and Branching Rule B.1 exhaustively
and in the same order. The parameter (number of non-sink nodes) decreases by
at least 1 for each of the subproblems as explained earlier. If we can’t apply the
branching rule B.1 to a given subproblem it implies that there is no non-sink
node such that the outdegree is more than 2(k− 1) and indegree is greater than
0. Also due to R.D.3 we don’t have any non-sink node with outdegree more than
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2(k − 1) and indegree equal to 0. So we can do a brute force by considering
every possible delegations and solve this instance in O(kk ·nO(1)) running time.
Note that our algorithm will only look at the feasible solutions of Resolve

Delegation to MinMaxWeight while brute forcing for a subproblem.
Also since every node of bounded search tree splits into at most 2k−1 subprob-

lems and height of the tree is O(k), we get f(k) leaves (where f(k) is a function
of k only). Clearly the time taken at every node is bounded by g(k) · nO(1)

where g(k) is a function of k only. Thus, the total time used by the algorithm is
at-most O(f(k) ·g(k) ·nO(1)) which gives us an FPT for Resolve Delegation

to MinMaxWeight. ��
We now show Resolve Delegation to MinMaxWeight is FPT w.r.t

number of edges to be deleted from delegation graph by using the technique
of bounded search tree by the branching on set of edges satisfying some key
properties.

Theorem 5. The Resolve Delegation to MinMaxWeight problem has a
FPT with respect to the parameter k which is the number of edges to be deleted
from delegation graph.

Proof. The parameter k is the number of edges to be deleted. Given any instance
G of problem , every feasible solution graph GT is a forest with trees with set of
roots as set of all sink nodes T. Clearly then k = |E|− |V|+ |T|. Let us denote the
problem instance by (G, λ,k).

Observation 2. If k > 0 and only the sink nodes have outdegree 0, then there
is a non-sink node with outdegree atleast 2.

Proof. Sum of outdegree of all the non-sink nodes is greater than |V|− |T|. Hence
the observation follows from pigeon hole principle.

Branching B.1. Let k > 0. Consider the vertex with maximum outdegree. If
l is the outdegree of one such vertex v, delete one of the two groups of edges
{1, . . . , 
l/2�} and {
l/2� + 1, . . . , l} outgoing from v. Then solve the problem
recursively for two new subproblems with new parameter k

′ � k − 1.
Now we describe why the Branching B.1 is safe. Note that the Branching B.1

is triggered only when k > 0. It follows from Observation 2 that outdegree of v

is at least 2. Consider the degree of v to be l and the corresponding outgoing
edges from v to be {1, . . . , l} . Since v can delegate only to exactly one of its
neighbours connected by {1, . . . , l}, other l − 1 edges need to be deleted from
delegation graph as they can not be a part of feasible solution. If we partition
the set of edges into two disjoint sets {1, . . . , 
l/2�} and {
l/2� + 1, . . . , l} , only
one out of the two groups can be a part of feasible solution. This allows us to
delete the other half set say {
l/2� + 1, . . . , l}. As we know that |l| � 2 which
comes from the fact that outdegree of vertex v is at least 2. The problem now
reduces to a smaller instance G

′
with edges E

′
[G′] = E[G]\{
l/2� + 1, . . . , l} and

parameter number of edges to be deleted as k
′ � k − 1. Thus way we get a

bounded search tree with only constant number of subproblems at each branch
such that at each recursive step the height of search tree reduces by at least one.
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Given a directed delegation graph G, the algorithm works as follows. As long
as k > 0, Branching Rule B.1 is applied exhaustively in the bounded search tree.
Note that Branching Rule B.1 brings down the parameter k in every call by at
least 1. Whenever the parameter k becomes 0, we have a feasible solution as the
non-sink nodes have the outdegree of 1. Now we can easily check in polynomial
time whether the feasible solution is a YES instance or a NO instance. At every
recursive call we decrease the parameter by at least 1 and thus the height of the
tree is at most k. Also since every node of bounded search tree splits into two,
we get O(2k) leaves. Clearly the time taken at every node is bounded by nO(1).
Thus if f(k) = O(2k) be the number of nodes in the bounded search tree, the
total time used by the algorithm is at most O(2knO(1)) which gives us an FPT
for Resolve Delegation to MinMaxWeight. ��

5 Structural Results

Theorem 6. There exists a linear programming formulation for the optimiza-
tion version of Resolve Delegation to MinMaxWeight where fractional
delegation of votes is allowed. Thus the fractional variant is solvable in polyno-
mial time.

Proof. We consider the fractional variant of Liquid Democracy Delegation Prob-
lem where it is allowed to fractionally delegate votes of a source (delegator) to
multiple nodes such that total number of votes being delegated is conserved at
the delegator. We formally define conservation while formulating the LP for the
problem.
LP formulation follows similar to the LP formulation of flow-problems (e.g. Max-
FLow-MinCut etc). We assign xu,v as weight to every edge (u, v) ∈ E[G] which
corresponds to the fractional weight of votes delegated from vertex u to v ( for
all u, v ∈ V[G]. For all other xu,v where (u, v) pair doesn’t correspond to an
edge of delegation graph we assign value 0. It immediately follows that for all
sink nodes t ∈ T[G] , total weight of fractional votes being delegated to each
sink-node t (including that of the sink node t) is

∑

v∈V\T

xv,t + 1 ∀t ∈ T . For all

other non-sink nodes s ∈ V\T , node s obeys conservation as follows :
∑

u∈V\T

xu,s + 1 =
∑

v∈V

xs,v,∀s ∈ V\T

Our aim is to minimize the maximum weight of votes delegated to any sink node
(including that of the sink node). The corresponding LP formulation is:

minimize z

z �
∑

v∈V\T

xv,t + 1, ∀t ∈ T

∑

u∈V\T

xu,s + 1 =
∑

v∈V

xs,v , ∀s ∈ V\T [Follows from conservation]

xu,v � 0 ,∀(u, v) ∈ E[G]
xu,v = 0 ,∀(u, v) /∈ E[G]

��
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6 Conclusion and Future Direction

We have studied the parameterized complexity of a fundamental problem in
liquid democracy, namely Resolve Delegation to MinMaxWeight. We
considered various natural parameters for the problem including the number of
sink vertices, maximum allowed weight of any sink in the final delegation graph,
maximum degree of any vertex, tree-width, the number of edges that one deletes
in an optimal solution, number of non-sink vertices. We also show that a related
problem which we call Resolve Fractional Delegation is polynomial time
solvable.

An important future work is to resolve the complexity of Resolve Dele-

gation to MinMaxWeight if the input graph is already acyclic or tree. We
know that there exists a Ω(log n) lower bound on the approximation factor of
optimizing the maximum allowed weight of any sink [6]. It would be interest-
ing to see if there exists FPT algorithms achieving a approximation factor of
o(log n).
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