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Abstract. k orthogonal line center problem computes a set of k axis-
parallel lines for a given set of points in 2D such that the maximum
among the distance between each point to its nearest line is minimized. A
2-factor approximation algorithm and a ( 7

4
, 3
2
) bi-criteria approximation

algorithm is presented for the problem. Both of them are deterministic
approximation algorithms, having sub-quadratic running time and not
based on linear programming.

1 Introduction

A classical problem in computer science is data clustering. One has to group a
given set of data points such that every point in the same group is similar with
respect to some optimizing criteria. This problem finds application in learning
theory, data-mining, spatial range searching, etc. [10]. k-line center problem for
a given set of points is a type of clustering problem. A set of points and a
positive integer k are given as input. A set of k lines needs to be computed such
that the maximum among the distances between each point to its nearest line
is minimized. These lines are called the line centers for the given set of points.
Many variants of this problem are well studied due to their enormous applications
in the domain of facility location [18,19], and machine learning [10], etc. In this
paper, we study one such variant, where axis-parallel line centers are computed
for a given point set in 2-dimension. We call this problem as k-ORTHOGONAL-
LINE-CENTER ( kOLC) problem. Some real-life applications of our problem
are designing transport networks, where the tracks are orthogonal to each other,
or to design circuit boards where the wires need to be embedded in orthogonal
orientations. The kOLC is stated as follows. Here the distance between a line
and a point is the perpendicular distance between them.
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Problem 1. k-ORTHOGONAL-LINE-CENTER (kOLC)
Input: A set S of n points in 2-dimensional plane and a positive integer
k.
Output: A set of k axis-parallel lines such that the maximum among the
distances from every point to its nearest line is minimized.

In order to solve kOLC we state another problem called k-ORTHOGONAL-
LINE-CENTER-WITH-RADIUS ( kOLCR) problem. In fact Lemma 1 shows
that kOLC can be solved in polynomial time whenever kOLCR can be solved
in polynomial time.

Problem 2. k-ORTHOGONAL-LINE-CENTER-WITH-RADIUS
(kOLCR)
Input: A set S of n points in 2-dimensional plane and a positive integer
k and a positive real number r.
Output: A set of k axis-parallel lines such that the maximum among the
distances from every point to its nearest line is at most r.

We state another problem to establish the hardness of kOLCR.

Problem 3. STABBING-AXIS-PARALLEL-SQUARES-OF-SAME-
SIZE (SASS)
Input: A set S of n axis-parallel squares of side length 2r and a positive
integer k.
Output: A set of k axis-parallel lines such that each square is intersected
with at least one line.

Consider the center of the squares (intersection point of two diagonals)
and half of the side length of the squares in a given instance of SASS as the
input point set and input radius to kOLCR respectively. Then SASS reduces to
kOLCR. Observe that kOLCR has a solution if and only if SASS has a solution.
SASS is known to be W[1]-hard [9]. This problem is a special case of a well
known NP-hard problem of rectangle stabbing [12]. In the problem of rectangle
stabbing, one has to find a set of lines for a given set of rectangles such that
each rectangle is intersected by at least one line. This problem is well studied due
to its applications in data analysis [8], sensor networks [14], radiotherapy [17]
etc. The best known constant factor approximation algorithm for this problem
is designed by Gaur et al [12], which uses linear programming (LP) to solve the
problem. Dom et al. [9] presented a (4k+1)knO(1) time fixed-parameter tractable
(FPT) algorithm for stabbing axis-parallel disjoint squares of the same size in
the same paper in which they proved the W[1]-hardness of SASS.

Agarwal and Procopiuc [1] studied the problem of covering a point set in
R

d with k cylinders. For d = 2, they designed an O(nk2 log4 n) expected time
randomized algorithm, when k2 log k < n to compute O(k log k) strips of width
at most w∗ that cover the given set of points. Here w∗ is the optimal radius of the
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cylinders for the problem. But the expected running time is O(n
2
3 k

8
3 log4 n) for

higher values of k. The expected time is O(n
3
2 k

9
4 polylog(n)), for d = 3. They also

presented an O(dnk3 log4 n) expected time randomized algorithm to compute a
set of O(dk log k) d-cylinders of diameter at most 8w∗ for points in R

d. Aggarwal
et al. [3] designed an O(n log n) expected time randomized algorithm to find k
cylinders of radius (1+ε)w∗ that cover a set of n given points in R

d. The constant
of proportionality depends on k, d and ε. Practical implementation and heuristics
for these problems are also well-studied [4–6,16]. Jaromczyk and Kowaluk [13]
presented a O(n2 log2 n) time algorithm for a special case like computing 2 line
center. An O(n(log n+ε−2 log 1

ε )+ε− 7
2 log 1

ε ) time (1+ε) approximation scheme
for computing 2 line center is designed by Agarwal et al. [2]. Feldman et al. [10]
presented a randomized linear time bi-criteria approximation for generalized k-
center, mean and median problems.

One can devise a 2-factor approximation algorithm for solving kOLC by
using the LP-based approach of Gaur et al. [12]. In this paper, we present a
2-factor approximation algorithm for kOLC, which is not LP-based. Next, we
present a deterministic bi-criteria approximation algorithm for kOLC, based on
our 2-factor approximation algorithm. To the best of our knowledge, the only
deterministic bi-criteria approximation algorithm known for kOLC is a (32 , 16)
bi-criteria approximation by Chakraborty et al. [7], which is based on local search
technique.

The paper is organized in the following manner. Section 2 consists of some
definitions and the lemma showing the relation between the running times of
kOLC and kOLCR. We devise a 2-factor approximation algorithm for kOLC in
Sect. 3. A (74 , 3

2 ) bi-criteria approximation for the same is described in Sect. 4.

2 Preliminaries

A set of axis-parallel lines is said to be a set of line centers for a set of points
with radius r, whenever the maximum among the distances between each point
to its nearest line is at most r. Let C be a set of line centers for S with radius
r. For a point p of S, c(p) denotes the nearest member of C from p. We say that
this line center is assigned to the point p and p is served by this line center.
Thus Client set of a line center, l, where l ∈ C, denoted as s(l), is defined as
{p|p ∈ S and c(p) = l}.

A set of line centers is called an (α, β) bi-criteria approximate solution for
kOLC if the cardinality of the set is at most αk and the radius is at most β
times the optimal radius.

We show that the existence of a polynomial-time algorithm for kOLCR
implies the existence of a polynomial-time solution for kOLC.

Lemma 1. kOLC can be solved in O((T + n) log n) time, if kOLCR can be
solved in O(T ) time.

Proof. Let r∗ be the maximum among all the distances between the points and
the line centers in the optimal solution of kOLC. Consider a line center l∗ in
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the optimal solution of kOLC, such that the distance between the farthest point
from l in s(l) is r∗. Then there must be two such points in s(l) such that they are
at a distance r∗ from l∗. Otherwise, we can translate l∗ towards the farthest one
to reduce the distance. Thus the optimal radius is determined by two points in
the given set S. Since |S| = n, we have O(n2) possible candidates for the optimal
radius. We can perform a binary search on them to get the optimal solution for
kOLC by using the algorithm for kOLCR. We use the technique by Frederickson
and Johnson [11] to determine the median element in the binary search which
requires O(m log(2n

m )) time for a n × m sorted matrix. Since our matrix is of
order n × n the running time is O(n) in our case. Thus the lemma holds. ��

An (i, j, t)-grid is a set of i vertical and j horizontal lines where the distance
between two consecutive lines of same orientation is t. We call it simply a grid
and denote as W . Let l be a vertical line in a grid W and the x-coordinate of
every point on l be xl. A right-shift operation on l by an amount ξ produces
a new vertical line R(l) such that the x-coordinate of every point on R(l) is
lx + ξ. Similarly a right-shift operation on an (i, j, t)-grid W produces another
(i, j, t)-grid R(W ) where every vertical line of R(W ) is produced by performing
right-shift operation on the vertical lines of W . Similarly we define a left-shift
operation by an amount ξ on a vertical line l (or a grid W ) to produce a new line
L(l) (or a grid L(W )). We also define up-shift and down-shift operations on a
horizontal line l as well as on a grid W by translating the horizontal lines verti-
cally upward and downward respectively. The newly produced lines are denoted
as U(l) and D(l) respectively and the newly produced grids are denoted as U(W )
and D(W ) respectively. Furthermore we define the composition of two shift oper-
ations. They are performed one after another on a grid. So an up-right-shift on
a grid W produces a new grid UR(W ), where UR(W ) is obtained by perform-
ing an up-shift operation on R(W ). Similarly we define the other combinations.
Clearly these combinations are commutative and DU(W ) = UD(W ) = W and
RL(W ) = LR(W ) = W .

In Sect. 3 we design an algorithm that produces a 2-factor approximation for
the kOLC problem in terms of the number of centers. The algorithm chooses a
subset of the grid lines which serve as line centers for the given set of points. Let
the difference between the x-coordinates of the leftmost and rightmost points
of S be w and the difference between the y-coordinates of the topmost and
bottommost points of S be h.

3 A 2-factor Approximation Algorithm

We begin with an instance of kOLCR, where the radius r is also given as input
along with all other input of kOLC. We construct a (� w

2r �, � h
2r �, 2r)-grid W .

The leftmost vertical line of the grid passes through the leftmost member of S
and the topmost horizontal line passes through the topmost member of S. Then
every point in S lies between two horizontal and two vertical lines which are 2r
distance apart from each other. This fact follows from the construction of the
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(� w
2r �, � h

2r �, 2r)-grid W . Thus each of the points is within a distance r from at
least one line of both orientations. Only the points which are equidistant from
both lines of the same orientation are within a distance r from two lines of the
same orientation. But a point can not be within a distance r from more than 2
lines of the same orientation as the lines are 2r distance apart from each other.
We state this fact as an observation.

Observation 1. Every point in S is within a distance r from at least one vertical
line and at least one horizontal line of the grid W . A point in S can be exactly
at a distance r from at most two horizontal lines and at most two vertical lines.

Our algorithm finds a subset of the grid W (ie. a set of lines from the grid
W ) and returns that as a set of axis-parallel line centers for S with radius r. So
for a line l, where l ∈ W , we define the client set of l in W as the set of points in
S such that they are within a distance r from l. We denote it by sW (l). It follows
from Lemma 1 that each point is assigned to at least one line of one orientation.
But in our algorithm we do not assign a point to more than one line of the same
orientation. In other words we want sW (li) ∩ sW (lj) = φ, for every li and lj of
the same orientation, i.e. both of them are either vertical or horizontal in W . It
follows from the definition of sW (l) that the points which are equidistant from
two lines of same orientation in W , belong to the client sets of both the lines.
We break the tie in the following manner.

Let Q be the set of points in S such that every member in Q is at a distance
r from two vertical lines of the grid W . We allot every points in Q in the client
set of the line which is serving more points other than the points in Q. In case
of tie we choose arbitrarily but we allot every member of Q to the same line.
Similarly we allot points of S which are equidistant from two horizontal lines.
Thus a point only belongs to client sets of one vertical and one horizontal line,
after this assignment.

Now we construct a graph with � w
2r � + � h

2r � vertices such that each vertex
represents a unique line of W . Let lv denote the corresponding line of W for a
vertex v of the graph. Two vertices u and v have an edge between them if and
only if they satisfy the following conditions:

1. lu and lv are of different orientations in W . In other words one of them is
vertical and the other one is horizontal.

2. sW (lu) ∩ sW (lv) �= φ, where sW (lu) and sW (lv) are the client set of the lines
of W , corresponding to u and v respectively.

We call this graph as the graph of W and denote it by G(W ).

Lemma 2. The graph G(W ), defined above, is a bipartite graph.

Proof. The edges of G(W ) are given between two vertices u and v if they cor-
respond to two lines of W in different orientations. We can divide the set of
vertices of G(W ) into two partitions, namely, the vertices corresponding to the
vertical lines of W and the vertices corresponding to the horizontal lines of W ,
with no edge between two vertices in the same partition. Thus the graph G(W )
is a bipartite graph. ��
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Now we show a relation between the vertex cover of G(W ) and a set of line
centers, chosen from W , for S. The following lemma states the relation, which
helps us to choose a set of line centers for S with radius r from the lines present
in W .

Lemma 3. A subset C of W is a set of line centers for S with radius r, if and
only if the vertices in G(W ), corresponding to the lines in C, form a vertex cover
of G(W ).

Proof. Every point of S is assigned to a unique set sW (l), where l ∈ W , in one
orientation. So exactly one horizontal and exactly one vertical line of W can
serve a point p, where p ∈ S, as a center. This fact together with the structure
of the graph G(W ) imply that each point can be assigned to a unique edge in
G(W ). Let pe denote the edge corresponding to a point p, where p ∈ S.

Let C ′ a vertex cover of G(W ). Then pe must have an end vertex, v(say), in
C ′. Then from the structure of G(W ) it follows that p ∈ sW (lv). This fact holds
for all the points p ∈ S. Hence the lines in W corresponding to the vertices in
C ′ is a set of line centers with radius r.

Conversely let C be a set of line centers for S with radius r where C ⊆ W .
Consider an edge e of G(W ). There exists a point p in S such that e = pe. Now
C being a set of line centers with radius r, a line of W must be present in C
such that p ∈ sW (l). In other words, one end vertex of e is present in the set of
vertices corresponding to the lines in C. Since this fact holds for every edge of
G(W ), the vertices in G(W ) corresponding to the lines of C in W form a vertex
cover of G(W ). Thus the lemma holds. ��

Now we wish to choose a set of lines from the grid W to serve as centers for
S with radius r. We establish a relation between the lines in an optimal solution
to a given instance of problem kOLCR and the line centers that can be chosen
from the grid W for this instance. Let C∗ be an optimal solution consisting k
orthogonal line centers for S. The following lemma states the relation between
the lines in C∗ and a set of lines that can be chosen from W .

Lemma 4. Let l∗ be any line belonging to C∗. At most 2 lines of W are sufficient
to serve all the points in s(l∗) as centers with radius r, where these lines of W
have the same orientation as l∗. The vertices of G(W ), corresponding to these
lines also form a vertex cover.

Proof. Without loss of generality let l∗ has vertical orientation. If it coincides
with a vertical line of W then that line is sufficient to serve all members of s(l∗)
as centers with radius r. Now we assume that l∗ lies between two consecutive
vertical lines of the grid W , say, li and li+1. Let p be a point of S, such that
p ∈ s(l∗). Since p lies within a distance r from l∗, p must belong to either sW (li)
or sW (li+1). This imply s(l∗) ⊆ sW (li) ∪ sW (li+1). The property of forming a
vertex cover follows from Lemma 3. Thus the lemma holds. ��

Now we are in a position to devise an approximation algorithm to compute
k axis-parallel line centers with radius r for S. We compute the grid W as
mentioned above and compute the minimum vertex cover of the graph G(W ).
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It follows from Lemma 3 that a minimum set of lines of W , which can serve S
with radius r, form a minimum vertex cover of G(W ). Furthermore this minimum
vertex cover is of size at most 2k if there exists a solution for kOLCR, by Lemma
4. We check the cardinality of the minimum vertex cover of G(W ). For the
cardinality more than 2k, there does not exist a set of orthogonal line centers with
radius r for S, which has cardinality at most k. In that case, the algorithm returns
“NOT POSSIBLE”. Otherwise, it returns the lines of W which corresponds to
the vertices in the minimum vertex cover of G(W ) as our output. Algorithm 1
describes the steps to compute a solution for problem kOLCR. The following
lemma states the correctness of the algorithm as a 2-factor approximation for
kOLCR.

Input: S, k, r
Output: A set of axis parallel lines C
Construct the (� w

2r
�, � h

2r
�, 2r)-grid W and the graph G(W );

Compute the minimum vertex cover C′ of the graph G(W ), using the
algorithm described in [15] ;
if |C′| ≤ 2k then

C ← The lines of W which correspond to the vertices in C′ ;
return C

else
return ”NOT POSSIBLE”;

end

Algorithm 1: 2-FACTOR-kOLCR()

Lemma 5. Algorithm 1 returns a 2-factor approximation of the problem
kOLCR.

Proof. The proof follows from combining Lemma 3 and Lemma 4. ��
Now we analyze the running time of Algorithm 1. Although there are �w+h

2r �
grid lines, we compute only those grid lines which serve at least one point of S.
Thus we only deal with O(n) lines of W . Also note that the number of edges
in the graph is also O(n), since each member of S corresponds to at most one
edge. We can determine the graph by spending a constant amount of time with
each member of S. This takes O(n) time as well as O(n) space. Then using the
algorithm described in [15] we can compute the minimum vertex cover in O(n

3
2 )

time and O(n) space. The rest steps of the algorithm can be done in constant
time. So the overall running time of the algorithm is O(n

3
2 ). Hence we conclude

the following theorem.

Theorem 1. A 2-factor approximate solution for kOLC, described in Problem
1 for a given set with n points, can be computed in O(n

3
2 log n) time.

Proof. The proof follows from the above discussion and Lemma 1. ��
In the following section, we design a bi-criteria approximation algorithm using
the shifting of the grid W , as defined in Sect. 2.
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4 A (7
4
, 3
2
) bi-criteria approximation algorithm

We design a bi-criteria approximation algorithm in this section. We allow the
radius of the centers to be within a constant factor of the given radius to achieve
a tighter approximation factor in terms of the number of centers. We allow the
radius of this new set of line centers to be (r + r

2 ), ie. 3r
2 instead of r.

We begin with an instance of kOLCR as before. We initially construct a
(� 2w

3r �, � 2h
3r �, 3r)-grid, similar to the grid constructed in Sect. 3. The distance

between two lines of the same orientation is 3r instead of 2r like the previous one.
We denote this grid by W from now for notational simplicity. Clearly, these grid
lines can serve the members of S as centers with radius 3r

2 . Then we construct 8
more (� 2w

3r �, � 2h
3r �, 3r)-grids by performing the shift operations with amount r on

W , defined in Sect. 2. We construct the corresponding bipartite graphs and check
the cardinality of the minimum vertex covers. We return the lines corresponding
to the vertex cover, which has the minimum cardinality among them, as output.
We establish that this solution is a (74 , 3

2 ) bi-criteria approximation to kOLCR.
We use similar arguments as in Lemma 4 and conclude that at most two

lines of W (as well as the other grids constructed by shift operations on W ) are
sufficient to serve the client set s(l∗) of a line center l∗, present in the optimal
solution C∗ of the given instance of kOLCR. Now we wish to reduce this number
by locating a set of lines L, where L ⊆ C∗, such that only one line from a grid
is sufficient to serve s(l∗), for every l∗ ∈ L. We show that |L| ≥ |C∗|

4 for at least
one grid among all the nine grids we constructed. Note that the line centers in
the optimal solution to the problem serve the points of S with radius r and the
lines of the grids serve them with radius 3r

2 .
Now we analyze the changes in the client sets of the vertical lines when we

perform a right-shift operation on W to produce R(W ). Note that the client
sets of the horizontal lines remain the same for W and R(W ). Let C∗

v and C∗
h

denote the set of vertical and horizontal line centers present in C∗ respectively.
The following cases can happen in the shifted grid R(W ).

1. s(l∗), which was served by a single vertical line in W , is still being served by
a single vertical line in R(W ). We denote the set of these lines, present in C∗,
as C1.

2. s(l∗), which was served by a single vertical line in W , needs two vertical lines
in R(W ) to be served. We denote the set of these lines, present in C∗, as C2.

3. s(l∗), which was served by two vertical lines in W , can be served with by a
single vertical line in R(W ). We denote the set of these lines, present in C∗,
as C3.

4. s(l∗), which was served by two vertical lines in W , still requires two vertical
lines in R(W ) to be served. We denote the set of these lines, present in C∗,
as C4.

Since C1∪ C2∪ C3∪ C4 = C∗
v , we can conclude that the cardinality of at least

one of these four sets has at least one-fourth of the cardinality of C∗
v . Utilizing

this fact we show in Lemma 6 that the client set of the vertical line centers of
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the optimal solution can be served with at most 7
4 |C∗

v | vertical lines from one of
the grids among W , R(W ) and L(W ).

Lemma 6. There is at least one grid among W , R(W ) and L(W ) such that at
most 7

4 |C∗
v | vertical lines from that grid is sufficient to serve all the points in the

client set ∪l∗∈C∗
v
s(l∗).

Fig. 1. Proof of Lemma 6

Proof. We prove this lemma by considering the cardinalities of the sets C1, C2,
C3 and C4. The lemma holds for the grid W , if either |C1| ≥ |C∗

v |
4 or |C2| ≥ |C∗

v |
4 .

The lemma holds for the grid R(W ), if |C3| ≥ |C∗
v |
4 . The only case left to consider

is when |C4| ≥ |C∗
v |
4 and |C1| <

|C∗
v |
4 , |C2| <

|C∗
v |
4 , |C3| <

|C∗
v |
4 .

Let l and l′ be two vertical lines of W , which are necessary to serve s(l∗),
for some l∗ ∈ C4, where l lies on the left of l∗. Let R(l) and R(l′) be the lines of
R(W ), which are necessary to serve s(l∗). This implies that l∗ is not lying within
a distance 3

2r from l. Since the distance between l and l′ is 3r, l∗ is lying within
a distance 3

2r form l′. This implies that L(l′) can serve all members of s(l∗).
Then the lemma holds for the grid L(W ). The scenario is depicted in Fig. 1. ��

We argue similarly and we can state the following lemma which states about
serving all the points which are served by the members of C∗

h.

Lemma 7. There is at least one grid among W , U(W ) and D(W ) such that at
most 7

4 |C∗
h| horizontal lines from that grid is sufficient to serve all the points in

the client set ∪l∗∈C∗
h
s(l∗).

Proof. Proof follows from similar arguments in Lemma 6. ��
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Now consider all the possible shifting operations on W which consist of left,
right, up, and down shifts as defined in Sect. 2. The following lemma states that
we can locate a grid among them where at most 7

4k lines are sufficient to serve
all the points as line centers with radius 3

2r.

Lemma 8. There is at least one grid among W , U(W ), D(W ), R(W ), L(W ),
LU(W ), RU(W ), LD(W ), RD(W ), such that at most 7

4k lines from that grid
is sufficient to serve all the points in the client set ∪l∗∈C∗s(l∗).

Proof. Proof follows by combining Lemma 6 and Lemma 7. ��
Now we devise our bi-criteria approximation algorithm to compute k axis-

parallel line centers with radius 3
2r for S. We compute the grid W as mentioned

in Sect. 3 but we keep 3r distance between two lines of the same orientation.
Then we compute all eight other grids, mentioned in Lemma 8, by performing
the shift operation on W . After that, we construct the nine corresponding graphs
and compute their minimum vertex covers. We take that one which has minimum
cardinality among all these nine sets. We return the lines of the corresponding
grid as our output if the cardinality of the minimum vertex cover is less than
or equal to 7

4k. Otherwise, we return “NOT POSSIBLE” as output as there
does not exist a set of orthogonal line centers with radius r for S, which has
cardinality at most k. Algorithm 2 describes the steps of the procedure. The
correctness of the algorithm as a ( 74 , 3

2 ) bi-criteria approximation for kOLCR
follows from Lemma 8.

Input: S, k, r
Output: A set of lines C
Construct the (� w

3r �, � h
3r �, 3r)-grids W , R(W ), L(W ), U(W ), D(W ),

RU(W ), RD(W ), LU(W ), LD(W ) ;
Construct the graphs G(W ), G(R(W )), G(L(W )), G(U(W )), G(D(W )),
G(RU(W )), G(RD(W )), G(LU(W )), G(LD(W )) and store them in an
array G;
H is an array to store the vertex covers ;
for each member G[i] of G do

H[i] ← Minimum vertex cover of G[i]
end
C ← the lines corresponding to the member of H with the minimum
cardinality ;
if |C| ≤ 7

4k then
return C ;

else
return ”NOT POSSIBLE” ;

end

Algorithm 2: BI-CRITERIA-kOLCR()

The running time analysis of Algorithm 2 is similar to Algorithm 1. We
compute the graphs and their vertex covers 9 times in the same way. So the
running time is still O(n

3
2 ). Thus we conclude the following theorem.
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Theorem 2. A ( 74 , 3
2 ) bi-criteria approximation algorithm for kOLC problem

can be computed in O(n
3
2 log n) time.

Proof. Proof follows from the above discussion combining with Lemma 1. ��

References

1. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective cluster-
ing. J. Algorithms 46(2), 115–139 (2003)

2. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1+ ε)-approximation algo-
rithm for 2-line-center. Comput. Geomet. 26(2), 119–128 (2003)

3. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for
a k-line center. Algorithmica 42(3), 221–230 (2005)

4. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering, p. 61–72. Association for Computing Machinery, New York,
June 1999

5. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimen-
sional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2000, pp. 70–81. Association for Computing
Machinery, New York (2000)

6. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. ACM SIGMOD Rec.
27(2), 94–105 (1998)

7. Chakraborty, B., Das, A.K., Das, S., Mukherjee, J.: Approximating k -orthogonal
line center. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS, vol. 12577, pp.
47–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64843-5 4
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