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Abstract. Let V = {v1, . . . , vn} be a set of n points in the plane and let
x ∈ V . An x-loop is a continuous closed curve not containing any point of
V , except of passing exactly once through the point x. We say that two
x-loops are non-homotopic if they cannot be transformed continuously
into each other without passing through a point of V . For n = 2, we give
an upper bound 2O(k) on the maximum size of a family of pairwise non-
homotopic x-loops such that every loop has fewer than k self-intersections
and any two loops have fewer than k intersections. This result is inspired
by a very recent result of Pach, Tardos, and Tóth who proved the upper

bounds 216k4
for the slightly different scenario when x �∈ V .

Keywords: Graph drawing · Non-homotopic loops · Curve
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1 Introduction

The so-called crossing lemma, which was proved independently by Ajtai,
Chvátal, Newborn, Szemerédi [1] and by Leighton [2], bounds the number of
crossings in any planar drawing of any graph with n vertices and m ≥ 4n
edges. The crossing lemma has many applications in discrete and computational
geometry and other fields. Very recently, Pach, Tardos, and Tóth [3] proved an
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interesting natural modification of the crossing lemma for multigraphs with non-
homotopic edges. In the proof of their result, Pach, Tardos, and Tóth [3] applied
a bound on the maximum size of certain collections of so-called non-homotopic
loops. In this paper, we show that their bound can be significantly improved for
a closely related problem.

For an integer n ≥ 1, let Vn = {v1, . . . , vn} be a set of n distinct points in the
plane R

2. Given x ∈ R
2, an x-loop is a continuous function f : [0, 1] → R

2 such
that f(0) = f(1) = x and f(t) �∈ Vn for t ∈ (0, 1). We will only consider x-loops
that do not pass through x, that is f(t) = x only for t ∈ {0, 1}. When x is
clear from the context we will also call an x-loop simply a loop. Two loops f0, f1
are homotopic (with respect to Vn), denoted f0 ∼ f1, if there is a continuous
function H : [0, 1]2 → R

2 (a homotopy) such that

H(0, t) = f0(t) and H(1, t) = f1(t) for all t ∈ [0, 1],

H(s, 0) = H(s, 1) = x for all s ∈ [0, 1].

and
H(s, t) �∈ Vn for all s, t ∈ (0, 1).

A self-intersection of a loop f corresponds to a pair {t, u} ⊂ (0, 1) of distinct
numbers such that f(t) = f(u), while an intersection of two loops f1, f2 corre-
sponds to an ordered pair t, u ∈ (0, 1) such that f1(t) = f2(u).

Given integers n, k ≥ 1 and x ∈ Vn, let g(n, k) be the largest number of pair-
wise non-homotopic loops such that every loop has fewer than k self-intersections
and any two loops have fewer than k intersections.

Pach, Tardos and Tóth [3] considered the same quantity, but for x outside
of Vn (they also added a restriction that no loop passes through x, which holds
trivially in our setting with x ∈ Vn). Although the two settings seem to be
very similar, we were able to obtain an upper bound on g(2, k) which is signif-
icantly smaller than the upper bound on f(2, k) obtained by Pach, Tardos and
Tóth [3]. In the setting of Pach, Tardos and Tóth [3] with x �∈ Vn, the largest
number of pairwise non-homotopic loops so that every loop has fewer than k self-
intersections and any two loops have fewer than k intersections is denoted by
f(n, k). The two aforementioned quantities are related by the following inequal-
ities.

Proposition 1. For every n, k ≥ 1 we have

g(n, k) ≤ f(n, k) ≤ g(n + 1, k). (1)

Proposition 1 is proved in Sect. 5.
Pach, Tardos and Tóth [3] showed that for n ≥ 2

f(n, k) ≤ 2(2k)2n (2)

and

f(n, k) ≥
{

2
√

nk/3, n ≤ 2k,

(n/k)k−1, n ≥ 2k.
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Also in [3] it was proved that if n = 1, then there are at most 2k + 1 non-
homotopic loops with fewer than k self-intersections (that is, if we do not bound
the number of intersections) implying f(1, k) ≤ 2k + 1.

In our main result we focus on the function g in case n = 2. Inequalities (1)
and (2) imply that g(2, k) ≤ 216k4

. The following theorem improves this bound
significantly.

Theorem 1. Let n = 2 and x ∈ V2. For any k, the size of any collection of
non-homotopic x-loops with fewer than k self-intersections is at most 2O(k). In
particular

g(2, k) ≤ 212k.

We believe that the bound in Theorem1 can be further improved by reducing
the exponent to O(

√
k log k). We plan to address this in a follow-up paper.

2 Setup and Notation

Depending on the context, we will treat S := R
2 \ Vn either as the plane with

n points removed, or as a sphere with n + 1 points removed (where n of these
points is the set Vn = {v1, . . . , vn} and the last one, denoted by v0, corresponds
to the “point at infinity”). We refer to the points vi as obstacles.

For convenience, we will always assume the following properties of a finite
collection of loops:

1. the set of points of intersections and the set of points of self-intersections are
disjoint,

2. every (self-)intersection is simple (that is, no point in S belongs to more than
two loops and no loop passes through the same point more than twice),

3. every intersection between two loops is a crossing, that is, one loop “passes
to the other side” of the other loop (otherwise an intersection is called a
touching).

Assumptions 1–3 can be attained by infinitesimal perturbations without creating
any new intersections or self-intersections.

Given a drawing of the x-loops satisfying the above conditions, we choose
a closed curve on the sphere without self-intersections which goes through the
points v0, . . . , vn in this order (if x /∈ Vn, we choose this curve so that it avoids x).
We call this loop the equator. Removing the equator from the sphere, we obtain
two connected sets, which we arbitrarily name the top half and the bottom half.
We refer to the n + 1 sets into which the equator is split by excluding points vi

as gaps. We label the gaps by elements of An := {0, . . . , n}, assigning label i to
the gap between vi and vi+1, with indices counted modulo n + 1.

By a careful choice of the equator, we can assume the following conditions:

4. every x-loop in the collection intersects the equator a finite number of times,
5. each of these intersections (except for, possibly, the intersection at x) is a

crossing (as opposed to a touching),
6. no point of self-intersection or intersection (other than x) lies on the equator.
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Part of a given loop f between a pair of distinct intersections with the equator
(inclusively) is called a segment (it is a restriction of f to a closed subinterval of
[0, 1]). Whenever the two intersections defining a segment are consecutive (along
the loop f), the segment is called an arc. If some arc intersects itself, we can
remove the part of the arc between these self-intersections without changing the
homotopy class of the loop; this trivially does not increase the number of (self-)
intersections; therefore we can make yet another assumption about the family
of x-loops and the equator:

7. there are no self-crossings within any arc (i.e., between consecutive crossings
of the equator).

Given a x-loop �, we list the labels of gaps in the order they are crossed by
the loop. This way we obtain a word w over alphabet An. We say that � induces
w. The empty word corresponds to a trivial loop.

A segment that intersects the equator k times (including the beginning and
the end) consists of k−1 arcs, which we order in a natural way so that the segment
traverses the arcs in the increasing order. A segment is called a downsegment if
its first arc is contained in the bottom half, and an upsegment otherwise. If a
segment does not start nor end at x, by listing the labels of gaps that the segment
intersects, we obtain a word w in alphabet An, and call such a segment a w-
segment (or, more specifically, w-downsegment or w-upsegment, if we want to
specify the location of the first arc). For example, a loop with the first arc in the
top half that induces the word 01201 has a 01-downsegment and a 01-upsegment,
as well as a 012-downsegment but no 012-upsegment.

3 General n

In this section we state and prove several facts that are valid for general n,
including all prerequisites for the proof of Theorem1.

We start with a simple proposition which allows bounding the number of
non-homotopic loops in terms of the different words that they induce.

Proposition 2. Let x ∈ Vn and suppose that two x-loops �1 and �2 start with
an arc which belongs to the same half of the sphere. If they induce the same word
of length m, they are homotopic.

Proof. For i ∈ {1, 2} and k ∈ {1, . . . , m}, suppose that the kth arc of �i ends at
point pk

i (with pk
1 and pk

2 lying in the same gap). Let γk be a loop which first
goes along the first k arcs of �2, then goes along a gap from pk

2 to pk
1 and then

continues to x along the last m+1− k arcs of �1. Since the curved quadrilateral
consisting of kth arcs of the loops and the two parts of two gaps does not wind
around any obstacle, we have γk−1 ∼ γk for k = 2, . . . ,m. By a similar argument,
we have �1 ∼ γ1 and �2 ∼ γm. The proposition follows.
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Lemma 1. Let letters a, b, c ∈ An be distinct. If f1, f2 are two, not necessarily
distinct, x-loops, then any abc-downsegment in f1 and any abc-upsegment in f2
intersect.

Proof. Choose a cyclic orientation of the equator such that gaps appear in the
order a, b, c. Let s1 be an abc-downsegment of f1, and s2 be an abc-upsegment
of f2 and, for contradiction, suppose s1, s2 do not intersect.

By removing the point of intersection with s1 from the gap b, we obtain two
disjoint sets, and name them B′ and B′′ so that — in the same orientation of
the equator — gap a is followed by set B′ followed by B′′ followed by gap c. The
bc-arc of s1 partitions the top half into two connected components. Note that
gap a and B′′ belong to different components. Since the ab-arc of s2 belongs to
the top half, s2 must intersect the gap b in B′. Similarly, ab-arc of s1 partitions
the bottom half into two components, so that B′ and c belong to different com-
ponents. Since the bc-arc of s2 traverses the bottom half, s2 must intersect the
gap b in B′′. Since B′ and B′′ are disjoint, we obtain a contradiction.

Corollary 1. Given three distinct letters a, b, c ∈ An, suppose that loop f1 has
i disjoint abc-downsegments and loop f2 has j disjoint abc-upsegments. Then
the number of intersections between f1 and f2 is at least i · j. In particular, if
f1 = f2, the number of self-intersections is at least i · j.

In the following lemma we chose x = v1 for simplicity, since in the application
we can choose x = v1 without loss of generality. The proof of Lemma2 shows
that if x = vi, then the set {2, . . . , n} should be replaced by the set of gaps not
incident to x, that is {0, . . . , n} \ {i − 1, i}.

Lemma 2. Let n ≥ 1 and assume x = v1. Any family of non-homotopic x-
loops can be redrawn without increasing the number of self-intersections and
intersections so that every x-loop induces a word such that (i) no two consecutive
letters are equal and (ii) the first and the last letter belongs to {2, . . . , n}.
Proof. By an ear we mean a segment inducing a word aa for any letter a. Taking
into account that the gaps 0 and 1 are incident to x = v1, by x-ear we mean a
segment, which corresponds to a letter 0 or 1 at the start or end of the word: that
is, an x-ear has x as one of its endpoints and a crossing of the gap 0 or the gap
1 as its other endpoint. We will remove ears in the first step (thus deleting the
consecutive pairs of equal letters) and x-ears in the second step (thus deleting
the wrong letters at the beginning or the end).

For the first step, we choose an ear in some loop (between two points of some
gap a) and denote its endpoints by u and v. By uv-gap denote the set of points
in the gap a strictly between u and v. An ear is minimal if there is no other ear
with both endpoints in the uv-gap. We remove ears one by one, always picking
a minimal ear.

The chosen ear partitions one of the halves of the sphere into two simply
connected sets, one of which, that we denote by P , contains the uv-gap in its
boundary.
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We remove the chosen ear by continuously transforming it to a path which
closely follows the uv-gap inside the other half of the sphere, as shown on Fig. 1.
By choosing the new path sufficiently close to the equator we can make sure that
if a new (self-)intersection with some loop � appears, then by tracing � from that
(self-)intersection in a certain direction we cross the uv-gap, thus entering the
set P .

P

u v
u v

� �

Fig. 1. Removal of a minimal ear

Since x /∈ P , by tracing � further we must leave P . This cannot happen by
crossing the uv-gap again, since that would contradict the fact that we picked a
minimal ear. Hence we leave P by crossing the original path of ear. This gives a
way to assign, for each newly created intersection with �, a unique intersection
with � that was removed, showing that the transformation of the ear does not
increase the total number of intersections with �. In particular the number of self-
intersections does not increase since we can choose � to be the loop containing
the ear in question.

The second step, removing x-ears, is similar to the first one, except that we
have to deal with the endpoint x separately. Let v be the point where an x-ear
crosses a gap a incident to x (either 0 or 1). Similarly as for ears, by xv-gap we
mean the points of gap a strictly between x and v. An x-ear is minimal, if no
other x-ear crosses gap a through the xv-gap. We will remove the x-ears one by
one, always picking a minimal x-ear.

Since the x-ear is contained in one of the halves of the sphere, it partitions
it into two simply connected sets, one of which, that we denote by P , has the
xv-gap in its boundary. We remove the x-ear by continuously transforming it
into a path that closely follows the xv-gap in the opposite half of the sphere,
as shown on Fig. 2. By choosing the new path sufficiently close to the equator,
we can make sure that if a new (self-)intersection with some loop � appears,
then by tracing � from that (self-)intersection in a certain direction we cross the
xv-gap, thus entering set P . Tracing � further we must eventually leave the set
P , since x /∈ P . This cannot happen by crossing the xv-gap again, since that
would contradict the fact that we removed all ears in the first step. It also cannot
happen by crossing x, since this would contradict that we chose a minimal x-ear.
Hence we leave P by crossing the original path of the x-ear, which determines
an intersection with the loop � that was removed by transforming the x-ear.

Similarly as in the first step this assigns a unique removed intersection with �
to each new intersection with �, showing that removal of a minimal x-ear does
not increase the number of (self-)intersections.
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v

x

v
P

C
x
C

� �

Fig. 2. Removal of a minimal x-ear

We recap what we have proved: by repeatedly removing minimal ears in the
first step and removing minimal x-ears in the second step we end up with a
drawing which does not have any ears nor x-ears, proving the lemma.

Note that the following lemma holds for n = 1 vacuously, since neither of the
two conditions can be satisfied.

Lemma 3. Let n ≥ 1 and assume x ∈ Vn. Suppose that a, b are adjacent distinct
gaps, i.e., b = a + 1 or b = a − 1 modulo n + 1. Let � be an x-loop that induces a
word in which no two consecutive letters are equal. Let s be an aba-segment in �.
If either (i) x is not a shared endpoint of a and b or (ii) � crosses gaps different
from a, b before and after the segment s, then s intersects some other segment
of �.

Proof. Let y be the obstacle incident to gaps a and b. Let u and v be the
endpoints of the segment s (thus distinct and both in the gap a) and label them
so that u is closer to y than v. Let yu-gap and uv-gap denote part of the a-gap
between respective points (or obstacle). The union of s and the uv-gap forms a
closed curve without self-intersections (neither the ab arc of segment s nor the
ba arc has any self-intersections and the arcs are on the opposite halves of the
sphere),which divides the sphere into two parts. Let P be the part of the divided
sphere which contains vertex y. As P contains y and its border intersects gap a
and gap b, we can partition P by the equator into parts P1 and P2, where P1

denotes the part incident to v, as depicted on Fig. 3.

b gap

a gap
u

v
y

P1

P2

Fig. 3. An aba-segment forces a self-intersection if x �= y or the loop crosses a gap
different from a, b both before and after the segment
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Choose an orientation of � so that v precedes u. After passing through u, the
loop enters into P1. Loop � must eventually leave P due to the assumption of
the lemma: in the case (i) this is because x �= y and therefore x /∈ P while in the
case (ii) it has to reach some gap c /∈ {a, b} which does not intersect P . Before it
leaves the set P , it may cross the equator several times, but only through gaps
a and b. Since by assumption � does not cross the same gap twice in a row, the
location of the loop before leaving set P is determined by the last crossed gap:
it always enters set P1 after crossing the gap a and enters set P2 after passing
through the gap b.

If the loop leaves P through s, we obtain the desired self-intersection. Oth-
erwise � leaves P through the uv-gap (it cannot leave through point u, since by
assumption self-intersections do not occur on the equator). As leaving P through
the uv-gap is only possible from set P1, we obtain that � crosses gap a twice in a
row (once to enter P1 and then to leave through the uv-gap), contradicting the
assumption.

4 Case n = 2

From now on, we focus on the task at hand and assume that n = 2 (meaning
that we have exactly 3 obstacles on a sphere, one of which is x), in which case
words use letters 0, 1 and 2.

Proof (of Theorem 1)
Without loss of generality assume that x = v1 and fix an x-loop �. By Lemma 2,
we can assume that � induces a word w starting and ending in 2 and with
no two consecutive equal letters. Lemma 3 implies that for any two distinct
letters a, b in w every aba-segment participates in a self-intersection: for aba ∈
{121, 212, 020, 202} this is because x is not incident to both a and b, while for
aba ∈ {010, 101} this is because the word induced by the loop starts and ends
in 2.

Since every self-intersection is simple, it occurs in at most two disjoint seg-
ments. We claim that the word w induced by � has fewer than 12k letters. For
contradiction, assume the contrary and partition the first 12k letters of w into
2k disjoint subwords of length 6. Each of these subwords either contains an aba
subword or the word is of the form abcabc. Segments in the form abcabc contain
an abc-upsegment and an abc-downsegment (for the same word abc) which by
Lemma 1 forces a self-intersection. Segments which contain aba subword partici-
pate in an intersection. As each intersection may cause at most two participations
of disjoint segments, it follows that � has at least k self-intersections, giving a
contradiction.

It is easy to see that there are fewer than 212k−1 permitted words with fewer
than 12k letters. By Proposition 2 at most two non-homotopic x-loops induce
the same word. Therefore we conclude that g(2, k) ≤ 212k.
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5 Proof of Proposition 1

We denote Vn = {v1, . . . , vn} the set of points removed from the plane. To see
the first inequality in (1), let x ∈ Vn, and fix a family of x-loops that attains the
maximum g(n, k). Since the number of (self-)intersections is finite, by continuity
of loops, there is a circle centered at x such that (i) each loop intersects it at
exactly two distinct points, (ii) inside the circle there are no intersections (other
than those at x) and no self-intersections, and (iii) inside the circle there are no
points of Vn (other than x). Property (iii) implies that we can homotopically
transform the loops inside the circle so that between the circle and x they form
straight lines.

Pick a point x′ on the circle so that neither x′ nor its antipodal point lie
on any x-loop. Denoting the points where a loop � crosses the circle by pl while
‘departing’ and ql while ‘returning’, replace each � by an x′-loop �′ in which p�x
and q�x are replaced by straight segments p�x

′ and q�x
′. Since the pairs p� and

q� are pairwise disjoint, this does not create additional intersections, see Fig. 4.

x′

x

H′(1, δ)

p�1

p�0

H′(0, δ)

H′(s, δ)

Fig. 4. Constructing homotopy for modified loops, showing only the ‘departing’ ends
of the loops, i.e., for the argument t close to 0.

It remains to check that no two of the resulting x′-loops are homotopic (with
respect to Vn). Assuming for contradiction that H ′ is a homotopy between x′-
loops �′

0 = H ′(0, ·) and �′
1 = H ′(1, ·), we will construct a homotopy between

original loops �0 and �1. Pick ε > 0 such that there are no obstacles in a ball of
radius ε around x′. Elementary analysis implies that there is δ = δ(ε) such that

max
s∈[0,1]

|H ′(s, t) − x′| < ε, t ∈ [0, δ] ∪ [1 − δ, 1]. (3)

Fix s ∈ [0, 1] and define a function H(s, t) as follows. Set H(s, t) = H ′(s, t) for
t ∈ [δ, 1−δ]. On the interval [0, δ] connects x and H ′(s, δ) by a straight line, that
is, set H(s, t) = x(1 − t) + tH ′(s, δ), and symmetrically on [1 − δ, 1] connects x
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and H ′(s, 1 − δ) by a straight line, that is, set H(s, t) = xt + (1 − t)H ′(s, 1 − δ).
By (3) and choice of ε none of these two segments hits any obstacle other than
x.

Assuming δ is small enough we can make sure that for i ∈ {0, 1}, H ′(i, δ) and
H ′(i, 1− δ) lie inside the circle on the straight segments of the loop �′

i. It is easy
to see that H is a homotopy with respect to Vn, so H(0, ·) ∼ H(1, ·). By replacing
the two initial straight segments of H(0, ·) (namely x to H ′(0, δ) and H ′(0, δ) to
p�0) by the segment from x to pl0 (and similarly the final two segments at the
other end of the loop) we obtain the loop �0. The three segments form a triangle
with no elements of Vn inside it (and similarly for the triangle at the other end),
which implies that H(0, ·) ∼ �0. By the same argument H(1, ·) ∼ �1. Recalling
that H(0, ·) ∼ H(1, ·), we obtain �0 ∼ �1, a contradiction.

To see the second inequality in (1), we choose a family of x-loops that attains
the maximum f(n, k). Since none of the x-loops passes through x, they are also
x-loops with respect to Vn+1 := Vn ∪ {x}. To show that this family of x-loops
gives a lower bound to g(n + 1, k), we observe that if two x-loops f0, f1 are
non-homotopic with respect to Vn, then they are non-homotopic with respect
to Vn+1. Indeed, assuming for contradiction that that there is a homotopy H
between f0 and f1 satisfying H(s, t) /∈ Vn+1 for all s, t ∈ (0, 1), it trivially
satisfies H(s, t) /∈ Vn for all s, t ∈ (0, 1), and thus f0 ∼ f1 with respect to Vn−1,
giving a contradiction.

This completes the proof of Proposition 1.
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