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Abstract. Given a set of points in the plane, we are interested in match-
ing them with straight line segments. We focus on perfect (all points
are matched) non-crossing (no two edges intersect) matchings. Apart
from the well known MinMax variant, where the length of the longest
edge is minimized, we extend work by looking into different optimization
variants such as MaxMin, MinMin and MaxMax. We consider both
the monochromatic and bichromatic versions of these problems and by
employing diverse techniques we provide efficient algorithms for various
input point configurations.
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1 Introduction

In the matching problem, given is a set of objects, the goal is to partition the
set into pairs such that no object belongs in two pairs. This simple problem is a
classic in graph theory, which has received a lot of attention, both in an abstract
and in a geometric setting. There are plenty of variants of the problem and there
is a great plethora of results.

In this paper, we consider the geometric setting where, given a set P of 2n
points in the plane, the goal is to match points of P with straight line segments,
in the sense that each pair of points induces an edge of the matching. A matching
is perfect if it consists of exactly n pairs. A matching is non-crossing if all edges
induced by the matching are pairwise disjoint. When there are no restrictions
on which pairs of points can be matched, the problem is called monochromatic.
In the bichromatic variant, P is partitioned into two sets B and R of blue and
red points, respectively, and only points of different colors are allowed to be
matched. When |B| = |R| = n, the bichromatic point set P is called balanced.
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1.1 Related Work

Geometric matchings find applications in many diverse fields, with the most
famous perhaps being operations research, where it is known as the assignment
problem. They are useful in the field of shape matching, when shapes are rep-
resented by finite point sets, see e.g., [30], and it is a fundamental problem in
pattern recognition. Among others, geometric matchings appear in VLSI design
problems, see e.g., [11], in computational biology, see e.g., [10], and are used for
map construction or comparison algorithms, see e.g., [16].

Requiring the matching to be non-crossing or perfect is rather natural. Given
a monochromatic or balanced bichromatic point set, a perfect non-crossing
matching always exists and it can be found in O(n log n) time by recursively
computing ham-sandwich cuts [20] or by using the algorithm of Hershberger
and Suri [18]. Many times though, not any perfect non-crossing matching is
sufficient and the interest lies in finding a matching with respect to some opti-
mization criterion.

A well-studied optimization criterion is minimizing the sum of lengths of all
edges, which we call the MinSum variant. It is also known as the Euclidean
assignment or Euclidean matching problem. It is interesting, and not difficult
to show, that such a matching is always non-crossing. For monochromatic point
sets, an O(n1.5 log n)-time algorithm was given by Varadarajan [29]. For bichro-
matic point sets, Kaplan et al. [19] recently presented an O(n2 log9 nλ6(log n))-
time algorithm, outperforming previous results [3,28]. When points are in convex
position, Marcotte and Suri [22] solved the problem in O(n log n) time for both
the monochromatic and bichromatic settings.

Another popular goal is to minimize the length of the longest edge, which
we call the MinMax variant and is also known as the bottleneck matching.
Given monochromatic points, Abu-Affash et al. [1] showed that finding such
a matching is NP-hard. This was accompanied by an O(n3)-time algorithm for
points in convex position. Recently this was improved to O(n2) time by Savić and
Stojaković [24]. For bichromatic points, Carlsson et al. [8] proved that finding a
MinMax matching is NP-hard. Biniaz et al. [7] gave algorithms with O(n3)-time
for points in convex position and O(n log n)-time for points on a circle. These
were improved to O(n2) and O(n), respectively, by Savić and Stojaković [25].

Several other optimzation goals have been studied. In a fair matching the
goal is to minimize the length difference between the longest and the shortest
edge, and in a minimum deviation matching, the difference between the length of
the shortest edge and the average edge length should be minimized, see [14,15].
Alon et al. [5] studied the MaxSum variant, where the goal is to maximize the
sum of edge lengths. They conjectured that the problem is NP-hard, and gave
an approximation algorithm, later improved by Dumitrescu and Toth [12].

1.2 Problem Variants Considered and Our Contribution

In this work, we continue exploring similar optimization variants in different
settings and give efficient algorithms for constructing optimal matchings. We
only deal with perfect non-crossing matchings, so these properties will always be
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Fig. 1. Optimal MinMin1, MaxMax1, MinMax1, and MaxMin1 matchings of
monochromatic points. The edges realizing the values of the matchings are highlighted.

assumed from now on, without further mention. We consider four optimization
variants: MinMin where the length of the shortest edge is minimized, MaxMax
where the length of the longest edge is maximized, MaxMin where the length
of the shortest edge is maximized, and MinMax where the length of the longest
edge is minimized. See Fig. 1 for an illustration of these four variants.

To the best of our knowledge, except for MinMax, the other three variants
have not been considered before. Studying the MinMin and MaxMax variants
is motivated by the analysis of worst-case scenarios for problems where very
short or long edges are undesirable, but the selection of edges is not something
that we can control. More generally, the values of MinMin and MaxMax serve
as lower and upper bounds on the length of any feasible edge and can be helpful
in estimating the quality of a matching, with respect to some objective function.
The MaxMin variant, similar to MinMax, resembles fair matchings in the sense
that all edges have similar lengths, analogously to the variants studied in [14].

We study both the monochromatic and bichromatic versions of these vari-
ants in different point configurations. For bichromatic points, we assume that
P is balanced. We denote the monochromatic problems with the index 1, e.g.,
MinMin1, and the bichromatic with the index 2, e.g., MinMin2. In Sect. 2,
we consider monochromatic points in general position. In Sect. 3, points are in
convex position. In Sect. 4, points lie on a circle. In Sect. 5, we consider doubly

Table 1. Summary of results on the optimization of perfect non-crossing matchings.
The value of the matching can be obtained in the time not indicated with (*). The time
marked with (*) represents the extra time needed to also return a matching. h denotes
the size of the convex hull. ε denotes an arbitrarily small positive constant. Results
without reference are given in this paper.

Monochromatic MinMin1 MaxMax1 MinMax1 MaxMin1

General position O(nh + n log n),
O(n1+ε+n2/3h4/3 log3 n)

O(nh) + O(n log n)∗,
O(n1+ε+n2/3h4/3 log3 n)

NP-hard [1] ?

Convex position O(n) O(n) O(n2) [24] O(n3)

Points on circle O(n) O(n) O(n) O(n)

Bichromatic MinMin2 MaxMax2 MinMax2 MaxMin2

General position ? ? NP-hard [8] ?
Convex position O(n) O(n) O(n2) [25] O(n3)

Points on circle O(n) O(n) O(n) [25] O(n3)

Doubly collinear O(n) O(1) + O(n)∗ O(n4 log n) ?
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collinear bichromatic points, where the blue points lie on one line and the red
points on another line.

Table 1 summarizes the best-known running times for different matching vari-
ants including the contributions of this paper. For each variant, we study their
structural properties and combine diverse techniques with existing results in
order to tackle as many configurations as possible. The various open questions
that arise throughout the paper, pave the way for further research in this family
of problems. The proofs which are omitted due to lack of space, together with
extra details and suggestions for future work, can be found in our full paper [21].

2 Monochromatic Points in General Position

In this section, P is a monochromatic set of points in general position, where we
assume that no three points are collinear. We denote by CH(P ) the boundary
of the convex hull of P , by h the number of vertices of CH(P ), by q1, . . . , qh

the counterclockwise ordering of the vertices along CH(P ), and by d(v, w) the
Euclidean distance between two points v and w. We call an edge (v, w) feasible,
if there exists a matching which contains (v, w), and infeasible otherwise.

The following lemma gives us a feasibility criterion for an edge (v, w).

Lemma 1. An edge (v, w) is infeasible if and only if (1) v, w ∈ CH(P ) and
(2) there is an odd number of points on each side of (v, w).

Proof. Let l be the line through the points v, w and let A,B be the subdivision
of P \ {v, w} induced by l. For the if-part, let v, w ∈ CH(P ). Then each edge
(a, b) with a ∈ A, b ∈ B intersects (v, w) and thus cannot be in a matching with
(v, w). If further A,B have an odd number of points each, at least one point from
each set will not be matched if (v, w) is in the matching. So, (v, w) is infeasible.

For the only-if-part, let (v, w) be infeasible and suppose that (1) or (2) is not
fulfilled. If (2) is not fulfilled, then A,B have an even number of points each.
Thus, we can find matchings of A and B independently without intersecting
(v, w). Hence, (v, w) is a feasible edge, a contradiction. If (1) is not fulfilled, then
not both of v, w are in CH(P ). So, l crosses at least one edge (x, y) of CH(P ),
with x ∈ A, y ∈ B, see Fig. 2a. But then, both A \ {x} and B \ {y} contain an
even number of points. Thus, there exist matchings of A\{x} and B \{y}, which
together with (v, w) and (x, y) form a matching of P , a contradiction. ��

Fig. 2. (a) Illustration for the proof of Lemma1. (b),(c) The weak radial ordering of p
with the points of P \ CH(P ) considered as unlabeled points.
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2.1 MinMin1 and MaxMax1 Matchings in General Position

The problems MinMin and MaxMax are equivalent to finding the extremal,
shortest or longest, feasible pair. A main challenge is to check the feasibility of
an edge according to Lemma 1. We propose two different approaches.

Using Radial Orderings. The radial ordering of a point p ∈ P is the counter-
clockwise circular ordering of the points in P \ p by angle around p. The radial
orderings of all p ∈ P can be computed in O(n2) total time using the dual line
arrangement of P , see e.g., [4,6].

Given a subset A ⊆ P , we define the A-weak radial ordering of a point
p ∈ P as the radial ordering of p where the points from A that occur between
two points from A := P \ A are given as an unordered set, see Figs. 2b and 2c.
We are interested in the CH(P )-weak radial orderings of the points in CH(P ).
These are of interest, as they allow us to check the feasibility of all pairs (qi, qj)
of points qi, qj ∈ CH(P ) in O(nh) total time using Lemma 1.

Lemma 2. Given a point set P and a subset A ⊆ P with |P | = n and |A| = k,
the A-weak radial orderings of all points in A can be computed in O(nk) time.

Proof. First, we use a point-line duality and compute the dual line arrangement
LA of A in O(k2) time [4,6]. We denote the dual line of a point p by lp. For
each edge e of LA, we initialize a set Xe := ∅, also in O(k2) total time. Then,
for each point p ∈ P \ A, we find the set Ep of edges of LA that are intersected
by lp and add p to all sets Xe with e ∈ Ep. Due to the zone theorem [4] this
takes O(k) time for each p. Finally, we can read off the weak radial ordering of
a point q ∈ A from LA and the sets Xe in the following way: Let p1, . . . , pk−1

be the ordering of the points in A \ q corresponding to the order of intersections
of lq with the other lines in LA. Further, let ei be the edge of LA between the
intersections of lq with lpi

and lpi+1 (with indices understood modulo k − 1).
Then the weak radial ordering of q is p1,Xe1 , p2,Xe2 , . . . , Xek−1 . ��

We use the feasibility criterion of Lemma 1 and the concept of weak radial
orderings to provide algorithms for MinMin1 and MaxMax1.

Theorem 1. If P is in general position, MinMin1 can be solved in O(nh +
n log n) time.

Proof. We initially construct CH(P ) in O(n log h) time [9]. Then, we compute
the CH(P )-weak radial orderings of the points in CH(P ) in O(nh) total time
using Lemma 2. Now we look for the shortest feasible edge.

We first consider edges (v, w) with v /∈ CH(P ) and we want to find m1 :=
min({ d(v, w) : v ∈ P \ CH(P ), w ∈ P }). By Lemma1, such edges are always
feasible. We can find m1 in O(n log n) time using a standard algorithm via a
Voronoi diagram. Now we consider edges (v, w) with both v, w ∈ CH(P ) and
we want to find m2 := min({ d(v, w) : v, w ∈ CH(P ) }). By Lemma1, an edge
(qi, qi+1) is always feasible and an edge (qi, qj+1) is feasible if and only if (i)
(qi, qj) is feasible and there is an odd number of points between qj , qj+1 in the
radial ordering of qi or (ii) (qi, qj) is infeasible and there is an even number of
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points between qj , qj+1 in the radial ordering of qi. Thus, we can find m2 in
O(nh) time, using weak radial orderings. So, we can find the overall minimum
msol = min(m1,m2), in O(n log n + nh) time. ��

Observe that using the same algorithm but considering the maximum feasible
values for m1,m2 and msol, also solves MaxMax1 in O(nh+n log n) time. Using
the following lemma we further improve the time complexity to O(nh).

Lemma 3. If (v, w) is a longest feasible edge, then one of v, w ∈ CH(P ).

Theorem 2. If P is in general position, MaxMax1 can be solved in
O(nh) time.

Proof. The algorithm is similar to the MinMin1, described in Theorem 1, with
two changes: The minimizations of m1,m2,msol are replaced by maximizations
and, to find m1, we only consider edges (v, w) with v ∈ P \ CH(P ) and w ∈
CH(P ). This is sufficient, due to Lemma 3, and reduces the time for finding
m1 to O((n − h)h), by simply comparing all (n − h)h edges. Hence, the overall
running time is reduced to O((n − h)h + nh) = O(nh). ��

Using Halfplane Range Queries. Now we take another approach to decide the
feasibility of a pair of points from CH(P ). The task of determining the number
of points of a given point set lying on one side of a given straight line is known
as halfplane range query and has been studied extensively over the last decades,
see e.g., [2]. Using these results to check the criterion of Lemma 1, we obtain
the following algorithms that are more efficient than those of Theorems 1 and 2,
when h = Ω(nc) for some constant c > 0.

Theorem 3. Let P be in general position. Then MinMin1 and MaxMax1 can
be solved in O(n1+ε +n2/3h4/3 log3 n) time where ε > 0 is an arbitrary constant.

Proof. We show that the feasibility of all pairs of points of CH(P ) can be decided
in the claimed running times. Then, with the aforementioned algorithm and an
additional effort of O(n log n) time, MinMin1 and MaxMax1 can be solved.

We distinguish two classes of values of h. Let h ≤ n1/4. According to [23],
halfplane range queries can be answered in O(n1/2) time after a preprocessing
step, costing O(n1+ε) time. We have to do

(
h
2

)
= O(h2) queries, so the time

needed for the queries is O(h2n1/2) = O(n). Therefore the preprocessing step
dominates the overall time needed, resulting in O(n1+ε) total time.

Now let h ≥ n1/4. We set m = n2/3h4/3. Then we have n ≤ m ≤ n2,
which is required by [23] for the following to hold: Halfplane range queries
can be answered in O( n

m1/2 log
3 m

n ) time after a preprocessing step costing
O(n1+ε + m logε n) time. Thus the time needed for the O(h2) queries is
O(n2/3h4/3 log3 n) and for the preprocessing is O(n1+ε + n2/3h4/3 logε n), so
O(n1+ε +n2/3h4/3 log3 n) time overall. Combining the two cases for h, the claim
follows. ��
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3 Points in Convex Position

In this section, we assume that the points in P are in convex position and
their counterclockwise ordering, p0, . . . , p2n−1, is given. For simplicity, we address
points by their indices, i.e., we refer to pi as i. Arithmetic operations with indices
are done modulo 2n. We call edges of the form (i, i + 1) boundary edges and we
call the remaining edges diagonals.

We remark that all four optimization variants, for both monochromatic and
bichromatic point sets, can be solved in O(n3) time by a dynamic programming
approach. This approach has also been used in [1,7,8] for MinMax problems.
We present more efficient algorithms for MinMin and MaxMax.

3.1 MinMin1 and MaxMax1 Matchings in Convex Position

We make use of the following two algorithms. Given two convex polygons P
and Q, Toussaint’s algorithm [27] finds in O(|P | + |Q|) time the vertices that
realize the minimum distance between P and Q. Analogously, Edelsbrunner’s
algorithm [13] finds in O(|P | + |Q|) time the vertices that realize the maximum
distance between P and Q.

Theorem 4. If P is in convex position, MinMin1 and MaxMax1 can be solved
in O(n) time.

Proof. A pair (i, j) is feasible if and only if i and j are of different parity. This
suggests that we can split P into two sets, Peven and Podd, one containing the even
and the other containing the odd indices. Then, any edge (v, w) with v ∈ Peven
and w ∈ Podd is feasible. Considering Podd and Peven as convex polygons, we
apply Toussaint’s algorithm [27] for MinMin1 or Edelsbrunner’s algorithm [13]
for MaxMax1. All steps can be done in O(n) time. ��

3.2 MinMin2 and MaxMax2 Matchings in Convex Position

We now combine the monochromatic algorithms with the theory of orbits [25],
a concept which captures well the nature of bichromatic matchings in convex
position. More specifically, P is partitioned into orbits, which are balanced sets

(a) (b) (c)

Fig. 3. MinMin2 for P in convex position. (a) Find orbits. (b) Find the shortest edge
between the blue and red polygon of an orbit. (c) Extend to a perfect matching. (Color
figure online)
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of points, and the colors of the points along the boundary of the orbit are alter-
nating, see Fig. 3a. An important property is that a bichromatic edge (b, r) is
feasible if and only if b and r are in the same orbit [25].

Theorem 5. If P is in convex position, MinMin2 and MaxMax2 can be solved
in O(n) time.

Proof. We first compute all orbits in O(n) time [25]. Due to the alternation
of red and blue points along the boundary of the orbits, a single orbit can be
considered as a set of points in the monochromatic setting, with respect to the
feasibility of the edges. Thus, for MinMin2, we can select for each orbit the
shortest edge in O(n) time using Theorem 4. The shortest edge out of all these
selected edges is the shortest overall feasible edge of P , see Fig. 3b. Selecting the
maximum edges instead solves MaxMax2. ��

To construct, in O(n) time, optimal matchings from Theorems 4 and 5 after
finding an extremal feasible edge (i, j), we can apply the following lemma to
the sets {i + 1, . . . , j − 1} and {j + 1, . . . , i − 1}, see Fig. 3c. The idea is to pair
consecutive edges along the boundary of the convex hull or each orbit.

Lemma 4. If P is in convex position, we can construct an arbitrary matching
in O(n) time, both in the monochromatic and bichromatic case.

4 Points on a Circle

In this section, we assume that all points lie on a circle. Obviously, the points
are in convex position, so all the results from Sect. 3 also apply here. We present
algorithms with a better time complexity. We use the notation from Sect. 3.

In addition to convexity, the results in this section rely on a property of
points lying on a circle, which we call the decreasing chords property. A point
set has this property if, for any edge (i, j), in at least one of its sides, an edge
between any two points on that side is not longer than (i, j) itself, see Fig. 4a.

Due to the decreasing chords property, we can easily infer the following.

Lemma 5. Any shortest edge of a matching on P is a boundary edge.

4.1 MaxMin1 Matching on a Circle

Lemma 5 suggests an approach for MaxMin by forbidding short boundary edges
and checking whether we can find a matching without them. Let some boundary
edges be forbidden and the remaining be allowed. A forbidden chain is a maximal
sequence of consecutive forbidden edges. A forbidden chain has endpoints i, j if
the edges (i, i+1), . . . , (j−1, j) are forbidden and the edges (i−1, i) and (j, j+1)
are allowed. Refer to Fig. 4b for an illustration.

Lemma 6. Given a set of forbidden edges, there exists a matching without for-
bidden edges if and only the length of a longest forbidden chain is less than n.



New Variants of Perfect Non-crossing Matchings 159

Fig. 4. (a) The decreasing chords property. (b) A forbidden chain with endpoints i, j.
(c) Proof of Lemma 6. (Forbidden edges are dashed and allowed edges are solid.)

Proof. If the boundary edges are either all forbidden or all allowed, then the
statement trivially holds. So, let us assume that there exists at least one forbid-
den and at least one allowed boundary edge.

Consider a forbidden chain of length l which has endpoints i and j. First, we
assume that l ≥ n. Then, at least one matched pair (a, b) has both endpoints in
{i, . . . , j}. Thus, either (a, b) is a forbidden boundary edge or it splits P in a way
that all points on one side of the line through (a, b) lie completely in {i, . . . , j}.
So, there exists a matched boundary edge inside {i, . . . , j} and, thus, a matching
without forbidden edges does not exist.

Now let us assume that l < n. We construct a matching without forbidden
edges using a recursive approach. We match the pair (i − 1, i) and consider the
set P ′ = P \ {i − 1, i}, see Fig. 4c. In P ′, (i − 2, i + 1) is an allowed boundary
edge since it is a diagonal in P . We show that P ′ can be matched by showing
that the condition of the lemma holds for P ′.

Let i′ and j′ be the endpoints of a longest forbidden chain in P ′, going
counterclockwise from i′ to j′, and let l′ be its length. If l′ < n−1, a matching of
P ′ without forbidden edges can be computed recursively. Otherwise, if l′ ≥ n−1,
from l′ ≤ l < n we infer that l′ = l = n−1. Since l = l′, the new longest forbidden
chain is disjoint from {i + 1, . . . , j}, so it is contained in {j + 1, . . . , i − 2}, see
Fig. 4c. But since |P ′| = 2n − 2 and |{i + 1, . . . , j}| = n − 1, we have |{j +
1, . . . , i − 2}| = n − 1 and thus l′ < n − 1, a contradiction. ��

MaxMin is equivalent to finding the largest value μ such that there exists
a matching with all edges of length at least μ. By Lemma5, it suffices to search
for μ among the lengths of the boundary edges. By Lemma 6, this means that
we need to find the maximal length μ of a boundary edge such that there are
no n consecutive boundary edges all shorter than μ. An obvious way to find μ
is to employ binary search over the boundary edge lengths and check at each
step whether the condition is satisfied or not, which yields an O(n log n)-time
algorithm. A faster approach to find μ is as follows. Consider all 2n sets of n
consecutive boundary edges and associate to each set the longest edge in it.
Then, out of the 2n longest edges, search for the shortest one. This can be done
in O(n) time using a data structure for range maximum query, see e.g., [17].
However, our approach fits under the more restricted sliding window maximum
problem, for which several simple optimal algorithms are known, see e.g., [26].
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Theorem 6. If P lies on a circle, MaxMin1 can be solved in O(n) time.

We can also construct an optimal matching within the same time complexity,
as the following lemma states.

Lemma 7. Given a value μ > 0, a matching consisting of edges of length at
least μ can be constructed in O(n) time if it exists.

4.2 Other Matchings on a Circle

Theorem 7. If P lies on a circle, MinMax1 can be solved in O(n) time.

Proof. We show that there exists a MinMax1 matching using only boundary
edges. Suppose we have a MinMax1 matching M containing a diagonal (i, j).
Assume, without loss of generality, that all edges with endpoints in {i, . . . , j} are
at most as long as (i, j). We construct a new matching M ′ by taking all matched
pairs in M that are outside of {i, . . . , j} together with edges (i, i+1), (i+2, i+
3), . . . , (j − 1, j). The longest edge of M ′ is not longer than the longest edge of
M , proving our claim. There are only two matchings consisting only of boundary
edges and in O(n) time we choose the one with the shorter longest edge. ��

Points on a circle are in convex position, so, both MinMin1 and MinMin2
can be found in O(n) time using Theorems 4 and 5. Instead, we can do it much
simpler by finding the shortest feasible boundary edge. By Lemma 5, the shortest
edge of a matching is a boundary edge in both settings. This can then be extended
to a perfect matching using Lemma 4.

5 Doubly Collinear Points

In this section, we consider a doubly collinear setting. A bichromatic point set
P is doubly collinear if the blue points lie on a line lB and the red points lie on
a line lR. We assume that lB and lR are not parallel and that the ordering of
the points along each line is given. Let x = lB ∩ lR and assume, for simplicity,
that x /∈ P . Lines lB and lR are split at x into two half-lines, and the plane is
subdivided into four sectors. We call a sector small, if its angle is acute.

Let l ∈ {lB , lR}. Then, for two points a, b on l, we denote by (a, b) the
open line segment connecting a and b. Further, if a 
= x, we denote by (a→x→),
x···(a→) ⊂ l the open half-lines starting at a that contain x and do not contain
x, respectively. If we use square brackets, e.g., in x···[a→), (a, b], or [a, b], the
corresponding endpoint is contained in the set.

The following lemma gives us a feasibility criterion for an edge (r, b), see
Fig. 5a and 5b, which can be checked in O(1) time. We give a constructive proof
that also indicates an algorithm which, given a feasible edge (r, b), returns a
matching containing (r, b) in O(n) time.

Lemma 8. An edge (r, b) is feasible if and only if |(r, x) ∩ P | ≤ |(b→x→) ∩ P |
and |(b, x) ∩ P | ≤ |(r→x→) ∩ P |.
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Fig. 5. (a) A feasible edge (r, b). (b) An infeasible edge (r, b). (c) An optimal MinMax2
matching of the type described in Lemma 10.

5.1 MinMin2 and MaxMax2 Matchings on Doubly Collinear
Points

Let l′R and l′B be a red and a blue half-line, respectively. The following lemma
is a consequence of Lemma 8. It allows us to find, for each point in l′R ∩ P , the
closest point in l′B ∩ P it induces a feasible edge with, in O(n) total time.

Lemma 9. Let r ∈ R and r′ ∈ x···(r→)∩P . Let b, b′ ∈ l′B ∩P be closest to r and
r′, respectively, such that (r, b) and (r′, b′) are feasible. Then b′ ∈ x···[b→) ∩ P .

Theorem 8. If P is doubly collinear, MinMin2 can be solved in O(n) time.

We call a point p ∈ P an extremal point if |x···(p→) ∩ P | = 0. We show that
the longest edge between points in R and B is realized by extremal points, so
there are O(1) candidate edges. Hence, we can find the longest feasible edge in
O(1) time. This can later be extended in O(n) time to an optimal matching,
using the algorithm which appears in the constructive proof of Lemma 8.

Theorem 9. If P is doubly collinear, MaxMax2 can be solved in O(1) time.

5.2 MinMax2 and MaxMin2 Matchings on Doubly Collinear
Points

We start by considering the one-sided doubly collinear case, where all red points
are on the same side of lB . Then, we turn to the general (two-sided) case. Finally,
for the general case, we present improved results for some special cases.

One-Sided Doubly Collinear. Observe that, in this case, the extremal red point
must be matched with one of the two extremal blue points. Thus, using dynamic
programming, all four optimization variants can be solved in O(n2) time.

Theorem 10. If P is one-sided doubly collinear, MinMax2 and MaxMin2
can be solved in O(n2) time.

For MinMax2, we show that there exists (also in the two-sided case) an
optimal matching of a special form, described in the following lemma, allowing
us to design a faster algorithm. It can be obtained from an arbitrary optimal
matching by applying local changes that do not change the objective value.
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Lemma 10. There exists an optimal matching for MinMax2 of the following
form. For each half-line l′, the points of l′ ∩ P that are matched in the small
incident sector are consecutive points, see Fig. 5c.

Theorem 11. If P is one-sided doubly collinear, MinMax2 can be solved in
O(n log n) time.

General Doubly Collinear. We return to the two-sided case and look at the
MinMax2 variant. By only considering matchings of the form described in
Lemma 10, enumerating all possible choices for the decision which blue point
is matched through which sector, and applying Theorem 11 for the two resulting
one-sided subproblems, we obtain the following.

Theorem 12. If P is doubly collinear, MinMax2 can be solved in O(n4 log n)
time.

Special Angles of Intersection. Let α be the angle of intersection lB and lR, with
α ∈ (0, π

2 ]. We prove the existence of optimal matchings having a special form,
and we then use these to derive improved algorithms for these cases as follows.

Theorem 13. If α = π
2 , MinMax2 and MaxMin2 can be solved in O(n) time.

Theorem 14. If α ≤ π
4 , MinMax2 can be solved in O(n) time.

6 Conclusions and Future Work

We considered new variants for perfect non-crossing matchings. In most Min-
Min and MaxMax variants, we came up with optimal algorithms by exploiting
structural properties of the point sets, combined with existing techniques from
diverse problems. On the contrary, the MaxMin variant exhibits a significant
difficulty. Designing efficient algorithms even for simple configurations, as cocir-
cular or doubly collinear, is not at all obvious and thus quite interesting on
its own. Throughout the paper many open questions have arisen. For instance,
regarding convex bichromatic point sets, can orbits help to improve the MaxMin
algorithms? Regarding arbitrary point sets, is there a polynomial time feasibil-
ity check for a bichromatic edge? Are the MaxMin variants NP-hard as their
MinMax counterparts? It would be interesting to see how Table 1 can be filled
with improved algorithms or hardness results.
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