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Abstract. A defensive alliance in a graph G = (V,E) is a set of vertices
S satisfying the condition that every vertex v ∈ S has at least as many
neighbours (including itself) in S as it has in V \S. We consider the
notion of local minimality in this paper. We are interested in locally
minimal defensive alliance of maximum size. This problem is known to
be NP-hard but its parameterized complexity remains open until now.
We enhance our understanding of the problem from the viewpoint of
parameterized complexity. The three main results of the paper are the
following: (1) when the input graph happens to be a tree, Locally
Minimal Strong Defensive Alliance can be solved in polynomial
time, (2) Locally Minimal Defensive Alliance is fixed parameter
tractable (FPT) when parametrized by neighbourhood diversity, and (3)
Locally Minimal Defensive Alliance can be solved in polynomial
time for graphs of bounded treewidth.

Keywords: Parameterized complexity · FPT · Treewidth

1 Introduction

During the last 20 years, the Defensive Alliance problem has been stud-
ied extensively. A defensive alliance in an undirected graph is a set of ver-
tices with the property that each vertex has at least as many neighbours in
the alliance (including itself) as neighbours outside the alliance. In 2000, Kris-
tiansen, Hedetniemi, and Hedetniemi [10] introduced defensive, offensive, and
powerful alliances, and further studied by Shafique [7] and other authors. In this
paper, we will focus on defensive alliances. A defensive alliance is strong if each
vertex has at least as many neighbours in the alliance (not counting itself) as out-
side the alliance. The theory of alliances in graphs have been studied intensively
[2,5,6] both from a combinatorial and from a computational perspective. As
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mentioned in [1], the focus has been mostly on finding small alliances, although
studying large alliances do not only make a lot of sense from the original moti-
vation of these notions, but was actually also delineated in the very first papers
on alliances.

Note that defensive alliance is not a hereditary property, that is, a subset of
defensive alliance is not necessarily a defensive alliance. Shafique [7] called an
alliance a locally minimal alliance if the set obtained by removing any vertex
of the alliance is not an alliance. Bazgan et al. [1] considered another notion
of alliance that they called a globally minimal alliance which has the property
that no proper subset is an alliance. In this paper we are interested in locally
minimal alliances of maximum size. Clearly, the motivation is that big communi-
ties where every member still matters somehow are of more interest than really
small communities. Also, there is a general mathematical interest in such type
of problems, see [13].

2 Basic Notations

Throughout this article, G = (V,E) denotes a finite, simple and undirected
graph of order |V | = n. The subgraph induced by S ⊆ V (G) is denoted by G[S].
For a vertex v ∈ V , we use NG(v) = {u : (u, v) ∈ E(G)} to denote the (open)
neighbourhood of vertex v in G, and NG[v] = NG(v) ∪ {v} to denote the closed
neighbourhood of v. The degree dG(v) of a vertex v ∈ V (G) is |NG(v)|. For a
subset S ⊆ V (G), we define its closed neighbourhood as NG[S] =

⋃
v∈S NG[v]

and its open neighbourhood as NG(S) = NG[S] \ S. For a non-empty subset
S ⊆ V and a vertex v ∈ V (G), NS(v) denotes the set of neighbours of v in S,
that is, NS(v) = {u ∈ S : (u, v) ∈ E(G)}. We use dS(v) = |NS(v)| to denote the
degree of vertex v in G[S]. The complement of the vertex set S in V is denoted
by Sc.

Definition 1. A non-empty set S ⊆ V is a defensive alliance in G if for each
v ∈ S, |N [v] ∩ S| ≥ |N(v) \ S|, or equivalently, dS(v) + 1 ≥ dSc(v).

A vertex v ∈ S is said to be protected if dS(v) + 1 ≥ dSc(v). A set S ⊆ V is a
defensive alliance if every vertex in S is protected.

Definition 2. A vertex v ∈ S is said to be marginally protected if it becomes
unprotected when one of its neighbour in S is moved from S to V \ S. A vertex
v ∈ S is said to be strongly protected if it remains protected even if one of its
neighbours is moved from S to V \ S.

Definition 3. An alliance S is called a locally minimal alliance if for any v ∈ S,
S \ {v} is not an alliance.

Definition 4. An alliance S is globally minimal alliance or shorter minimal
alliance if no proper subset is an alliance.
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Fig. 1. A graph G with AL(G) = 10 and A(G) = 3; S = {7, 2, 9, 3, 11, 4, 13, 5, 15, 6}
is a locally minimal defensive alliance of size 10 and {1, 2, 3} is a globally minimal
defensive alliance of size 3.

A defensive alliance S is connected if the subgraph induced by S is connected. An
alliance S is called a connected locally minimal alliance if for any v ∈ S, S \ {v}
is not a connected alliance. Notice that any globally minimal alliance is also
connected. As introduced in [1], we use AL(G) for the cardinality of the largest
locally minimal defensive alliance in a graph G, and A(G) for the cardinality
of the largest globally minimal defensive alliance in a graph G (Fig. 1). In this
paper, we consider Locally Minimal Defensive Alliance problem under
structural parameters. We define the problem as follows:

Locally Minimal Defensive Alliance
Input: An undirected graph G = (V,E) and an integer k ≤ |V (G)|.
Question: Is there a locally minimal defensive alliance S ⊆ V (G) such that
|S| ≥ k?

Our results are as follows:

– Locally Minimal Strong Defensive Alliance problem is polynomial
time solvable on trees.

– Locally Minimal Defensive Alliance problem is FPT when parameter-
ized by neighbourhood diversity of the input graph.

– Locally Minimal Defensive Alliance problem is polynomial time solv-
able for graphs with bounded treewith.

Known Results: The decision version for several types of alliances have been
shown to be NP-complete. Carvajal et al. [3] proved that deciding if a graph
contains a strong defensive alliance of size at most k is NP-hard. The defen-
sive alliance problem is NP-complete even when restricted to split, chordal and
bipartite graph [8]. Bazgan et al. [1] proved that deciding if a graph contains a
locally minimal strong defensive alliance of size at least k is NP-complete, even
when restricted to bipartite graphs with average degree less than 3.6; deciding
if a graph contains a connected locally minimal strong defensive alliance or a
connected locally minimal defensive alliance of size at least k is NP-complete,
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even when restricted to bipartite graphs with average degree less than 2 + ε, for
any ε > 0.

3 Locally Minimal Strong Defensive Alliance on Trees

Recall that a defensive alliance is strong if each vertex has at least as many
neighbours in the alliance (not counting itself) as outside the alliance. Finding
a locally minimal (strong) defensive alliance of maximum size is believed to be
intractable [1]. However, when the graph happens to be a tree, we solve the
problem in polynomial time, using dynamic programming. It may be observed
that if S is a locally minimal strong defensive alliance, then for every vertex
v ∈ S, at least one of its neighbours in S is marginally protected. A vertex
v ∈ S is said to be good if it has at least one marginally protected neighbour
in S, otherwise it is called a bad vertex. Let v be a non-leaf node with children
v1, v2, . . . , vd. Then v ∈ S is marginally unprotected by its children if �d+1

2 	 − 1
of its children are in S; thus the parent of v must be in S for protection of v.
Vertex v is strongly protected by its children if at least �d+1

2 	 + 1 of its children
are in S. We define different possible states of a vertex v as follows:

– 0: vertex v is not in the solution.
– 1̂b: vertex v is marginally unprotected by its children and none of its children

are marginally protected.
– 1̂g: vertex v is marginally unprotected by its children and if v has children

then at least one of them is marginally protected.
– 1mg: vertex v is marginally protected by its children and at least one of its

children is marginally protected.
– 1sb: vertex v is strongly protected by its children and none of the children is

marginally protected.
– 1sg: vertex v is strongly protected by its children and at least one of its

children is marginally protected.

Here is the algorithm: Start by rooting the tree at any node v. Each node
defines a subtree, the one hanging from it. This immediately suggests sub-
problems: Av(s) = the size of the largest locally minimal defensive alliance of
the subtree rooted at v and the state of v is s. Our final goal is to compute
max

{
Ar(0), Ar(1sg), Ar(1mg)

}
where r is the root of T .

Leaf Node: For a leaf node v, we have Av(0) = 0, Av(1̂b) = 1; Av(1̂g) =
Av(1mg) = Av(1sb) = Av(1sg) = −∞.

Non-leaf Node: Let v be a non-leaf node with the set C = {v1, v2, . . . , vd} of
children. Suppose we know Avi

(s) for all children vi of v. How can we compute
Av(s)? We now consider the following cases:

Case 1: Let the state of v be 0. Then

Av(0) =
∑

x∈C
max

{
Ax(0), Ax(1sg), Ax(1mg)

}
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Case 2: Let the state of v be 1̂b or 1sb. Let (v1, v2, . . . , vd) be a descending
ordering of C according to values max{Avi

(1sg), Avi
(1sb)}, that is,

max{Av1(1sg), Av1(1sb)} ≥ . . . ≥ max{Avd
(1sg), Avd

(1sb)}.

Let C� d+1
2 �−1 = {v1, v2, . . . , v� d+1

2 �−1} and C� d+1
2 �+1 = {v1, v2, . . . , v� d+1

2 �+1}.
Then

Av(1̂b) = 1 +
∑

x∈C� d+1
2 �−1

max
{

Ax(1sg), Ax(1sb)
}

+
∑

x∈C\C� d+1
2 �−1

Ax(0),

and
Av(1sb) = 1 +

∑

x∈C� d+1
2 �+1

max
{

Ax(1sg), Ax(1sb)
}

+
∑

x∈C\C� d+1
2 �+1

max
{

Ax(0), Ax(1sg), Ax(1sb)
}

Thus, in this case, v must have at least �d+1
2 	 + 1 non-leaf children, otherwise,

Av(1sb) = −∞.

Case 3: Let the state of v be 1̂g, 1mg or 1sg. Let (v1, v2, . . . , vd) be a descending
ordering of C according to values max{Avi

(1̂g), Avi
(1̂b), Avi

(1sg), Avi
(1sb)}. Let

Ck,i be the set of first k children from the ordering (v1, v2, . . . , vd) except vertex
vi. We have the following recurrence relations:

Av(1̂g) = max
vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

x∈C� d+1
2 �−2,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

x∈C\
(
C� d+1

2 �−2,i
∪{vi}

)
Ax(0)

}
,

for d ≥ 2, and Av(1̂g) = 1 for d = 1. Here v ∈ S is good and marginally
unprotected by its children, that is, exactly �d+1

2 	 − 1 of its children are in S

and at least one of them is labelled 1̂g or 1̂b so that v is adjacent to at least one
marginally protected child. Next, we have

Av(1mg) = max
vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

x∈C� d+1
2 �−1,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

x∈C\
(
C� d+1

2 �−1,i
∪{vi}

)
Ax(0)

}
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Here v ∈ S is good and marginally protected by its children, that is, exactly
�d+1

2 	 of its children are in S and at least one of them is labelled 1̂g or 1̂b so
that v is adjacent to at least one marginally protected child. Finally, we have

Av(1sg) = max
non-leaf vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

non-leaf x∈C� d+1
2 �,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

non-leaf x∈C\
(
C� d+1

2 �,i∪{vi}
)
max{Ax(0), Ax(1̂g), Ax(1̂b), Ax(1sg)}

}
.

Here v ∈ S is good and strongly protected by its children, that is, at least �d+1
2 	+1

of its children are in S and at least one of these �d+1
2 	 + 1 children is labelled

1̂g or 1̂b so that v is adjacent to at least one marginally protected child. It may
be noted that if vi is a leaf node then vi cannot be in S. The reason is this;
vi’s only neighbour is its parent v, which is strongly protected, therefore vi will
never have a marginally protected neighbour. Thus, in this case, v must have at
least �d+1

2 	+1 non-leaf children, otherwise, Av(1sg) = −∞. For computation of
Ar(1mg) and Ar(1sg), we replace d by d − 1 in the above recurrence relations as
the root node r with d children has degree d, whereas other non-leaf node with
d children has degree d + 1.

The running time of this algorithm is easy to analyze. At each node v ∈ V (T ),
we compute Av(s) where s is a state of v. The time required to get descending
ordering of the children of v is O(d log d), where d is the number of children of
vertex v. The number of subproblems is exactly the number of vertices in T . The
total running time is therefore equal to c

∑
di log di ≤ c log n

∑
di = cn log n =

O(n log n), where c is a constant.

4 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for Locally Minimal Defen-
sive Alliance problem parameterized by neighbourhood diversity. We say two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.
The relation of having the same type is an equivalence relation. The idea of
neighbourhood diversity is based on this type structure.

Definition 5. [11] The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer k for which we can partition the set V of vertices
into k classes, such that all vertices in each class have the same type.

If neighbourhood diversity of a graph is bounded by an integer k, then there
exists a partition {C1, C2, . . . , Ck} of V (G) into k type classes. It is known that
such a minimum partition can be found in linear time using fast modular decom-
position algorithms [14]. Notice that each type class could either be a clique or
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an independent set by definition. For algorithmic purpose it is often useful to
consider a type graph H of graph G, where each vertex of H is a type class in
G, and two vertices Ci and Cj are adjacent iff there is complete bipartite clique
between these type classes in G. It is not difficult to see that there will be either
a complete bipartite clique or no edges between any two type classes. The key
property of graphs of bounded neighbourhood diversity is that their type graphs
have bounded size. In this section, we prove the following theorem:

Theorem 1. The Locally Minimal Defensive Alliance problem is fixed-
parameter tractable when parameterized by the neighbourhood diversity.

Let G be a connected graph such that nd(G) = k. Let C1, . . . , Ck be the
partition of V (G) into sets of type classes. We assume k ≥ 2 since otherwise
the problem becomes trivial. Next we guess |Ci ∩D| and whether the vertices in
Ci are marginally or strongly protected, where D is a locally minimal defensive
alliance. We make the following guesses:

– Option 1: |Ci ∩ D| = 0.
– Option 2: |Ci ∩ D| = 1 and the vertices in Ci are marginally protected.
– Option 3: |Ci ∩ D| = 1 and the vertices in Ci are strongly protected.
– Option 4: |Ci ∩ D| > 1 and the vertices in Ci are marginally protected.
– Option 5: |Ci ∩ D| > 1 and the vertices in Ci are strongly protected.

There are at most 5k choices for the tuple (C1, C2, . . . , Ck) as each Ci has 5
options as given above. Finally we reduce the problem of finding a locally mini-
mal defensive alliance of maximum size to an integer linear programming opti-
mization with k variables. Since integer linear programming is fixed parameter
tractable when parameterized by the number of variables [12], we conclude that
our problem is FPT when parameterized by the neighbourhood diversity.

ILP Formulation: Given a particular choice P of options for (C1, C2, . . . , Ck),
our goal here is to find a locally minimal defensive alliance of maximum size.
For each Ci, we associate a variable xi that indicates |D ∩ Ci| = xi. Clearly,
xi = 0, if Ci is assigned Option 1; xi = 1 if Ci is assigned Option 2 or 3; and
xi > 1 if Ci is assigned Option 3 or 4. Because the vertices in Ci have the same
neighbourhood, the variables xi determine D uniquely, up to isomorphism. Let
S1 = {Ci | xi = 1}, S>1 = {Ci | xi > 1} and S = S1 ∪ S>1. Let H[S] be
the subgraph of H induced by S. Now we label the vertices of H[S] as follows:
vertex Ci is labelled c1 if it is a clique and Option 2 is assigned to Ci; vertex Ci

is labelled c>1 if it is a clique and Option 4 is assigned to Ci; vertex Ci is labelled
ind if it is an independent set and Option 2 or 4 is assigned to Ci; vertex Ci is
labelled s if it is a clique or an independent set, and Option 3 or 5 is assigned to
Ci. To ensure local minimality of defensive alliance, the induced subgraph must
satisfy the following conditions:
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– Every vertex labelled s in the induced graph must have at least one neighbour
labelled c1, c>1 or ind.

– Every vertex labelled c1 in the induced graph must have at least one neighbour
labelled c1, c>1 or ind.

– Every vertex labelled ind in the induced graph must have at least one neigh-
bour labelled c1, c>1 or ind.

Above conditions ensure local minimality of the solution because when we remove
a vertex from the solution, we make sure at least one of its neighbours gets
unprotected. This happens because every vertex in the solution has at least one
neighbour which is marginally protected. If the induced subgraph H[S] satisfies
all the above conditions then we proceed for the ILP, otherwise not. Let C be
a subset of S consisting of all type classes which are cliques; I = S \ C and
R = {C1, . . . , Ck} \ S. Let ni denote the number of vertices in Ci. We consider
two cases:

Case 1: Suppose v ∈ Cj where Cj ∈ I. Then the degree of v in D satisfies

dD(v) =
∑

Ci∈NH(Cj)∩S

xi (1)

Thus, including itself, v has 1 +
∑

Ci∈NH(Cj)∩S

xi defenders in G. Note that if

Ci ∈ D, then only xi vertices of Ci are in D and the remaining ni − xi vertices
of Ci are outside D. The degree of v outside D satisfies

dDc(v) =
∑

Ci∈NH(Cj)∩S

(ni − xi) +
∑

Ci∈NH(Cj)∩R

ni (2)

Case 2: Suppose v ∈ Cj where Cj ∈ C. The degree of v in D satisfies

dD(v) =
∑

Ci∈NH [Cj ]∩S

xi (3)

The degree of v outside D satisfies

dDc(v) =
∑

Ci∈NH [Cj ]∩S

(ni − xi) +
∑

Ci∈NH [Cj ]∩R

ni (4)

In the following, we present an ILP formulation of locally minimal defensive
alliance problem, where a choice of options for (C1, . . . , Ck) is given:
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Maximize
∑

Ci∈S

xi

Subject to

1 +
∑

Ci∈NH(Cj)∩S

2xi >
∑

Ci∈NH(Cj)

ni, for all Cj ∈ I, labelled s,

∑

Ci∈NH(Cj)∩S

2xi −
∑

Ci∈NH(Cj)

ni = 0 or − 1, for all Cj ∈ I, labelled ind,

∑

Ci∈NH [Cj ]∩S

2xi >
∑

Ci∈NH [Cj ]

ni, for all Cj ∈ C, labelled s,

∑

Ci∈NH [Cj ]∩S

2xi −
∑

Ci∈NH [Cj ]

ni = 0 or 1, for all Cj ∈ C, labelled c1 or c>1,

xi = 1 for all i : Ci ∈ S1;
xi ∈ {2, 3, . . . , |Ci|} for all i : Ci ∈ S2.

Solving the ILP: Lenstra [12] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [9] proved an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et. al. [4].

p-Variable Integer Linear Programming Optimization (p-Opt-ILP):
Let matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Lemma 1. [4] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN)) arith-
metic operations and space polynomial in L. Here L is the number of bits in the
input, N is the maximum absolute value any variable can take, and M is an
upper bound on the absolute value of the minimum taken by the objective func-
tion.

In the formulation for Locally Minimal Defensive Alliance problem,
we have at most k variables. The value of objective function is bounded by n and
the value of any variable in the integer linear programming is also bounded by
n. The constraints can be represented using O(k2 log n) bits. Lemma 1 implies
that we can solve the problem with the guess P in FPT time. There are at most
5k choices for P , and the ILP formula for a guess can be solved in FPT time.
Thus Theorem 1 holds.
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5 Graphs of Bounded Treewidth

In this section we prove that Locally Minimal Defensive Alliance prob-
lem can be solved in polynomial time for graphs of bounded treewidth. In other
words, this section presents XP-time algorithm for Locally Minimal Defen-
sive Alliance problem parameterized by treewidth. We now prove the follow-
ing theorem:

Theorem 2. Given an n-vertex graph G and its nice tree decomposition T of
width at most k, the size of a maximum locally minimal defensive alliance of G

can be computed in 8knO(2k+1) time.

Let (T, {Xt}t∈V (T )) be a nice tree decomposition rooted at node r of the input
graph G. For a node t of T , let Vt be the union of all bags present in the subtree
of T rooted at t, including Xt. We denote by Gt the subgraph of G induced by Vt.
For each node t of T , we construct a table dpt(A,x, a, α,y, z, β) ∈ {true, false}
where A ⊆ Xt; x and y are vectors of length n; a, α and β are integers between
0 and n. We set dpt(A,x, a, α,y, z, β) = true if and only if there exists a set
At ⊆ Vt such that:

1. At ∩ Xt = A
2. a = |At|
3. the ith coordinate of vector x is

x(i) =

{
dAt

(vi) for vi ∈ A

0 otherwise

4. α is the number of vertices v ∈ At that are protected, that is, dAt
(v) ≥

dG(v)−1
2 .

5. A vertex v ∈ A is said to be “good” if it has at least one marginally protected
neighbour in At \A. A vertex v ∈ A is said to be “bad” if it has no marginally
protected neighbours in At \ A. Here y is a vector of length n, and the ith
coordinate of vector y is

y(i) =

⎧
⎪⎨

⎪⎩

g if vi ∈ A and vi is a good vertex
b if vi ∈ A and vi is a bad vertex
0 otherwise

6. z is a 2k length vector, where the entry z(S) associated with subset S ⊆ A
denotes the number of common bad neighbours of S in At \ A. The z
vector considers the power set of A in lexicographic order. For example,
let A = {a, b, c}, then z =

(
z({a}), z({a, b}), z({a, b, c}), z({a, c}), z({b}),

z({b, c}), z({c})
)
.

7. β is the number of good vertices in At.
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We compute all entries dpt(A,x, a, α,y, z, β) in a bottom-up manner. Since
tw(T ) ≤ k, at most 2knk(n + 1)32kn2k = 4knO(2k) records are maintained at
each node t. Thus, to prove Theorem 2, it suffices to show that each entry
dpt(A,x, a, α,y, z, β) can be computed in 2knO(2k) time, assuming that the
entries for the children of t are already computed.

Leaf Node: For a leaf node t we have that Xt = ∅. Thus dpt(A,x, a, α,y, z, β)
is true if and only if A = ∅, x = 0, a = 0, α = 0, y = 0, z = 0, β = 0. These
conditions can be checked in O(1) time.

Introduce Node: Suppose t is an introduction node with child t′ such that
Xt = Xt′ ∪ {vi} for some vi /∈ Xt′ . Let A be any subset of Xt. We consider two
cases:

Case (i): Let vi /∈ A. In this case dpt(A,x, a, α,y, z, β) is true if and only if
dpt′(A,x, a, α,y, z, β) is true.

Case (ii): Let vi ∈ A. Here dpt(A,x, a, α,y, z, β) is true if and only if there exist
A′,x′, a′, α′, y′, z′, and β′ such that dpt′(A′,x′, a′, α′,y′, z′, β′)=true, where

1. A = A′ ∪ {vi};
2. x(j) = x′(j) + 1, if vj ∈ NA(vi), x(i) = dA(vi), and x(j) = x′(j) if vj ∈

A \ NA[vi];
3. a = a′ + 1;
4. α = α′ + δ; here δ is the cardinality of the set

{
vj ∈ A | x′(j) <

dG(vj) − 1
2

;x(j) ≥ dG(vj) − 1
2

}
.

That is, to compute α from α′ we need to add the number δ of those vertices
not satisfied in (A′,x′, a′, α′,y′, z′, β′) but satisfied in (A,x, a, α,y, z, β).

5. y(i) = b and y(j) = y′(j) for all j �= i.
6. z(S) = z′(S) if vi /∈ S; z(S) = 0 if vi ∈ S.
7. β = β′.

For an introduce node t, dpt(A,x, a, α,y, z, β) can be computed in O(1) time.
This follows from the fact that there is only one candidate of such tuple
(A′,x′, a′, α′,y′, z′, β′).

Forget Node: Suppose t is a forget node with child t′ such that Xt = Xt′ \{vi}
for some vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,x, a, α,y, z, β) is true
if and only if either dpt′(A,x, a, α,y, z, β) is true (this corresponds to the case
that At does not contain vi) or dpt′(A′,x′, a′, α′,y′, z′, β′)=true for some A′,x′,
a′, α′, y′, z′, β′ with the following conditions (this corresponds to the case that
At contains vi):

1. A′ = A ∪ {vi};
2. x(j) = x′(j) for all j �= i and x(i) = 0;
3. a = a′;
4. α = α′;
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We now consider four cases:
Case 1: vi is not marginally protected and vi is a good vertex.

5. y(j) = y′(j) for all j �= i and y(i) = 0;
6. z(S) = z′(S) for all S ⊆ A;
7. β = β′.

Case 2: vi is not marginally protected and vi is a bad vertex.

5. y(j) = y′(j) for all j �= i and y(i) = 0;
6.

z(S) =

{
z′(S) + 1 if S ⊆ NA(vi)
z′(S) otherwise

7. β = β′.

Case 3: vi is marginally protected and vi is a good vertex.

5.

y(j) =

{
g if vj ∈ NA(vi)
y′(j) if vj ∈ A \ NA(vi)

6. z(S) = z′(S) − z′(S ∪ {vi}) for all S ⊆ A;
7. β = β′ + z′({vi}) + |

{
j : y′(j) = b; y(j) = g

}
|.

Case 4: vi is marginally protected and vi is a bad vertex.

5.

y(j) =

{
g if vj ∈ NA(vi)
y′(j) if vj ∈ A \ NA(vi)

6.

z(S) =

{
z′(S) − z′(S ∪ {vi}) + 1 if S ⊆ NA(vi)
z′(S) − z′(S ∪ {vi}) for all other subsets S ⊆ A

7. β = β′ + z′({vi}) + |
{

j : y′(j) = b; y(j) = g
}

|.

For a forget node t, dpt(A,x, a, α,y, z, β) can be computed in nO(2k) time.
This follows from the fact that there are nO(2k) candidates of such tuple
(A′,x′, a′, α′, z′, β′), and each of them can be checked in O(1) time.

Join Node: Suppose t is a join node with children t1 and t2 such that Xt =
Xt1 = Xt2 . Let A be any subset of Xt. Then dpt(A,x, a, α,y, z, β) is true if and
only if there exist (A1,x1, a1, α1,y1, z1, β1) and (A2,x2, a2, α2,y2, z2, β2) such
that dpt1(A1,x1, a1, α1,y1, z1, β1) = true and dpt2(A2,x2, a2, α2,y2, z2, β2) =
true, where

1. A = A1 = A2;
2. x(i) = x1(i) + x2(i) − dA(vi) for all i ∈ A, and x(i) = 0 if i /∈ A;
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3. a = a1 + a2 − |A|;
4. α = α1 + α2 − γ + δ; γ is the cardinality of the set

{
vj ∈ A | x1(j) ≥ dG(vi) − 1

2
; x2(j) ≥ dG(vi) − 1

2

}

and δ is the cardinality of the set
{

vj ∈ A | x1(j) <
dG(vi) − 1

2
; x2(j) <

dG(vi) − 1
2

; x(j) ≥ dG(vi) − 1
2

}
.

To compute α from α1 + α2, we need to subtract the number of those vj
which are satisfied in both the branches and add the number of vertices vj
not satisfied in either of the branches t1 and t1 but satisfied in t.

5.

y(j) =

{
g if y1(j) = g or y2(j) = g

b otherwise

6. z(S) = z1(S) + z2(S) for all S ⊆ A;
7. β = β1 + β2 − |

{
j : y1(j) = g, y2(j) = g

}
|.

For a join node t, there are nk possible pairs for (x1,x2) as x2 is uniquely
determined by x1; n+1 possible pairs for (a1, a2); n+1 possible pairs for (α1, α2);
there are 2k possible pairs for (y1,y2) as y2 is uniquely determined by y1; there
are n2k possible pairs for (z1, z2) as z2 is uniquely determined by z1; and n + 1
possible pairs for (β1, β2). In total, there are 2knO(2k) candidates, and each of
them can be checked in O(1) time. Thus, for a join node t, dpt(A,x, a, α,y, z, β)
can be computed in 2knO(2k) time.

At the root node r, we look at all records such that dpr(∅,x, a, α,y, z, β) =
true, and a = α = β. The size of a maximum locally minimal defensive alliance
is the maximum a satisfying dpr(∅,x, a, a,y, z, a)= true.

6 Conclusion

The main contributions in this paper are that the Locally Minimal Defen-
sive Alliance problem is FPT when parameterized by neighborhood diversity,
the problem is polynomial time solvable on trees, and XP in treewidth. We
list some nice problems emerge from the results here: is the problem FPT in
treewidth, and does it admit a polynomial kernel in neighborhood diversity?
Also, noting that the result for neighborhood diversity implies that the problem
is FPT in vertex cover, it would be interesting to consider the parameterized com-
plexity with respect to twin cover. The modular width parameter also appears to
be a natural parameter to consider here, and since there are graphs with bounded
modular-width and unbounded neighborhood diversity; we believe this is also an
interesting open problem. The parameterized complexity of the Locally Min-
imal Defensive Alliance problem remains unsettle when parameterized by
other important structural graph parameters like clique-width.
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