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Abstract. The Terrain Guarding problem, a variant of the famous
Art Gallery problem, has garnered significant attention over the last
two decades in Computational Geometry from the viewpoint of com-
plexity and approximability. Both the continuous and discrete versions
of the problem were shown to be NP-Hard in [14] and to admit a PTAS
[8,15]. The biggest unsolved question regarding this problem is if it is
fixed-parameter tractable with respect to the size of the guard set. In this
paper, we present two theorems that establish a relationship between a
restricted case of the Annotated Terrain Guarding problem and the
Clique Coverproblem in chordal graphs. These theorems were proved
in [11] for a special class of terrains called orthogonal terrains and were
used to present a FPT algorithm with respect to the parameter that we
require for Discrete Orthogonal Terrain Guarding in [2]. We hope
that the results obtained in this paper can, in future work, be used to
produce such an algorithm for Discrete Terrain Guarding.
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1 Introduction

Let V = {v1, . . . , vn} be a finite sequence of three or more points in R
2. The

polygonal chain defined by V is the curve specified by the line segments con-
necting vi and vi+1 for all 1 ≤ i < n. In this paper, we additionally assume that
polygonal chains are simple curves. For a point v in R

2, we use x(v) and y(v) to
denote the x and y coordinates of v. A 1.5-dimensional terrain (which we will
refer to as a terrain) is a polygonal chain defined by V where x(vi) ≤ x(vj) for
all i and j such that 1 ≤ i < j ≤ n. We also view a terrain T as an undirected
graph with vertices V and edges E = {(vi, vi+1) | 1 ≤ i < n}. We say that two
points a and b on a terrain T see or guard each other if no point in the line
segment joining these two points lies strictly below the terrain. An example of a
terrain is shown in Fig. 1a. Let U be a set of points on the terrain. The visibility
region of U is defined to be the collection of all points on the terrain which is seen
by at least one point of U . We let Vis U denote this set. The encircled vertices
in Fig. 1a are precisely the ones that are present in Vis U when U = {v2, v9}.
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When U contains a single element, say u, we abuse this notation and write Vis u
instead of Vis U .

These definitions naturally lead us to the three major versions of the terrain
guarding problem. They revolve around finding k-many points (called guards)
on the terrain to guard a chosen set of points of the terrain. In the Continuous

Terrain Guarding problem, we are required to guard the vertex set of the
graph by placing guards anywhere on the terrain. In the Discrete Terrain

Guarding version, while we are still to guard the vertex set, we can only place
guards on the vertices themselves. Annotated Terrain Guarding generalizes
the discrete version by restricting the vertices where the guards can be placed
to a subset of V while requiring us to guard a given subset of vertices. We will
focus on the annotated version of the terrain guarding problem in this paper
and define it formally below. This is referenced from [2]. Hereafter, we assume
that the number of vertices of a terrain is n.

Problem. Annotated Terrain Guarding: Given a terrain T (V,E), k ∈ N

and G, C ⊆ V decide if there exists a S ⊆ G with |S| ≤ k such that Vis S ⊇ C.
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Fig. 1. Examples of terrains where the vertices and edges are marked by small discs
and straight lines respectively. In (a), the vertices that are seen by U = {v2, v9} are
encircled. The second figure is an example of an orthogonal terrain.

Note that if G = C = V in the annotated version of the problem, then it is
exactly the Discrete Terrain Guarding problem. We use (T (V,E), n, k,G, C)
to denote an instance of the Annotated Terrain Guarding problem. The
visibility graph of such an instance, GT , is defined to be the undirected graph
GT = (C, E′), where E′ = {(u, v) ∈ C2 | there is a g ∈ G that sees u and v}. In
some variants of the Art Gallery problem, vertices in the visibility graph are
connected by an edge if those two vertices see each other [16]. Here, however,
there exists an edge between two vertices of GT if there exists an element in the
guard set which can see both these vertices.

A subclass of terrains which are of particular interest are orthogonal terrains.
In an orthogonal (or rectilinear) terrain, each edge is either parallel to the x-axis
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or parallel to the y-axis. Furthermore, each vertex is incident to at most one edge
of each type. An example of an orthogonal terrain is given in Fig. 1b.

A graph G(V,E) is chordal if for any V ′ ⊆ V , where |V ′| ≥ 4, the subgraph
induced by V ′ is not a cycle. Equivalently, G is chordal if the graph induced by
any cycle of length at least 4 is not a cycle. Chordal graphs have been well studied
in literature since a lot of the typical NP-Hard graph problems can be solved
quickly for this graph class [10]. In particular, there exists a simple polynomial
time algorithm which solves the Clique Cover problem in chordal graphs [9].
The Clique Cover problem is defined as follows: given a graph G(V,E) and a
k ∈ N, decide if there exists a collection of k-many cliques of G that covers V .
An instance of this problem is denoted by (G(V,E), n, k) where |V | = n.

1.1 Motivation

Optimal guarding of terrains arises in the placement of antennas for communi-
cation networks. We study this problem in two dimensions to understand better
the considerably more difficult problem of guarding terrains in three dimensions.
Moreover, 1.5-dimensional terrains arise directly in applications of coverage along
a highway as well as in security lamp and camera placement along walls and
streets [3,11,14].

1.2 Related Work

The Terrain Guarding problem was stated in 1995 by Chen et al. in [4]. In
the same paper, the authors hypothesized that both the continuous and dis-
crete versions of the problem are NP-Hard, but did not provide a concrete proof
in support of their claim. It was only in 2010 that King and Krohn finally
showed that both the Continuous Terrain Guarding and Discrete Ter-

rain Guarding problems are NP-Hard [14]. Meanwhile, the problem continued
to be studied from the viewpoint of approximation algorithms and Ben-Moshe
et al. [3] proposed the first constant-factor approximation for the discrete version
of the problem. The factor of approximation was improved over the course of
several papers [5,6,13] and finally a PTAS for the discrete version of the prob-
lem was given by Krohn et al. in 2014 [15]. A PTAS for Continuous Terrain

Guardingwas obtained a couple of years later by Friedrichs et al. [8].
Thus, we have a satisfactory understanding of the approximability of the

terrain guarding problem. In the paper that they proved the NP-Hardness of
the terrain guarding problems, King and Krohn stated that the biggest remain-
ing question regarding this problem was its fixed-parameter tractability. Terrain
guarding has been shown to have a FPT algorithm with respect to few param-
eters [1,12] but it is still not known if the problem is fixed-parameter tractable
with respect to the number of guards that are required to guard the terrain. In
2018, Ashok et al. showed that this is indeed true for the Discrete Orthogo-

nal Terrain Guarding problem in [2]. Their algorithm exploited a connection
between guarding orthogonal terrains and covering chordal graphs with cliques
that was established by Katz and Roisman in Lemmas 3.6 and 3.7 of their paper
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[11]. In these lemmas, they considered the visibility graph of the Annotated

Orthogonal Terrain Guarding instance (T (V,E), n, k,R,Cl) and proved
that it is chordal. They then showed that any clique of the visibility graph can
been seen by a single guard. In this paper, we will show that these lemmas
can be stated and proved for a special case of the annotated version of the ter-
rain guarding problem called the Left-Sided Terrain Guarding problem (we
define the problem formally in the next section).

1.3 Results

This paper presents two theorems which prove the equivalence between a
restricted case of the Left-Sided Terrain Guarding problem and the
Clique Cover problem in chordal graphs. Theorem3.1 proves that the visibil-
ity graph corresponding to an instance of this problem is chordal. Theorem3.2
builds on top of this and proves that there exists a clique in the visibility graph,
if, and only if, there exists a guard that sees all the vertices of that clique. Col-
lating these two theorems gives us the main result of this paper. Lemmas 3.4 and
3.5 show that this paper indeed generalizes results that are known for orthogonal
terrains.

Main Result. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-

ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, this is a true instance of
the problem if, and only if, (GT (C, E′), |C|, k) is a true instance of the Clique

Coverproblem where GT , the visibility graph of T , is a chordal graph.

2 Preliminaries

For points a and b on T , we say a precedes b, denoted by a ≺ b, if a appears on
the terrain before b does (the terrain is scanned from left to right). The Order
Claim, which was originally stated in [3] and later slightly generalized in [1], lays
the foundation for the theorems that follow in the next section.

Lemma 2.1 (Order Claim). Let a, b, c and d be four points on a terrain
T (V,E) such that a ≺ b ≺ c ≺ d. If a sees c and b sees d, then, a sees d.

In an orthogonal terrain T (V,E), a vertex vi, where 1 < i < n, is convex
if x(vi) = x(vi+1) and y(vi) < y(vi+1) or x(vi) = x(vi−1) and y(vi) < y(vi−1)
and is reflex otherwise. Equivalently, vi is a convex vertex if the angle formed
by the vertices vi−1, vi and vi+1 (measured above the terrain) is convex and
is a reflex vertex otherwise. It is a left vertex if x(vi−1) = x(vi) and a right
vertex if x(vi) = x(vi+1). The set of convex vertices is denoted by C and the set
of reflex vertices is denoted by R. In Fig. 1b, the convex vertices are encircled
and the reflex vertices are marked using squares. The set of vertices which are
both convex and left are called left convex vertices and is denoted by Cl. Right
convex, left reflex and right reflex vertices are defined similarly and are denoted
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by Cr, Rl, and Rr respectively. Vertices a ∈ Cl and b ∈ Rr are said to be of
the opposite type as are vertices c ∈ Cr and d ∈ Rl. v1 is defined to be of the
opposite type as v2 and vn is defined to be that of vn−1. In Fig. 1b, Rl = {v7},
Rr = {v2, v4, v8}, Cl = {v1, v3, v5, v9} and Cr = {v6}. Finally, we define a
restriction of the annotated version of the terrain guarding problem where we
allow the guards to only see in one direction.

Problem. Left-Sided Terrain Guarding: Given a terrain T (V,E), k ∈ N

and G, C ⊆ V decide if there exists a S ⊆ G with |S| ≤ k such that for all v ∈ C,
there is a g ∈ G such that x(v) ≤ x(g) and g sees v.

Equivalently, in this version of the problem we enforce that the guards of G
can only see to their left. In this case, we say that G is a set of left guards. Right-

Sided Terrain Guarding and right guards are defined symmetrically. In the
paper that they introduced the terrain guarding problem [4], Chen et al. also
described the left and right-guarding versions of the problem. They produced
an algorithm, which they called Army-Withdraw, which ran in linear time to
solve these versions. Elbassioni et al. [6] constructed a bipartite graph G from a
Left-Sided Terrain Guarding instance (T (V,E), n, k,G, C) where G ∩ C = ∅
with the bipartition (G, C). An element (g, c) ∈ G × C was an edge of this graph
if x(c) ≤ x(g) and g sees c. They then proved that the vertex-vertex incidence
matrix corresponding to this graph is totally balanced an used the properties
of such matrices to produce a 4-approximation algorithm for the Annotated

Terrain Guarding problem where G ∩ C = ∅. The author refers the reader to
[7] and [10] for a detailed discussion on totally balanced matrices.

3 Terrains and Chordal Graphs

In this section, we will prove two theorems which will lead us to the main
result of this paper. Even though this section deals exclusively with the Left-

Sided Terrain Guarding problem, the claims and their proofs apply, by sym-
metry, to the Right-Sided Terrain Guarding problem. The first theorem
proves that the visibility graph of an Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) is chordal. The proof of this theorem considers a cycle C of
length k, where k ≥ 4, in GT and proves that the subgraph induced by C,
denoted by GT [C], is not a cycle. This is done by an extensive use of Lemma 2.1
on the various cases that arise depending on the positions of the vertices of C
and the guards that see them on the terrain.

The second theorem considers a Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) where G and C are disjoint and Vis G ⊇ C. It proves that
the vertices of any clique of GT can be seen by a single guard. This proves that
k-many guards can see all of C if, and only if, there exists k-many cliques that
cover GT . This along with the previous theorem directly proves our main result.
We prove this theorem using induction over the number of vertices in the clique.
In Fig. 8, we provide an example of a terrain where this claim fails if G ∩ C is
non-empty.
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Finally, we prove two corollaries of our main result. The first one states
that if a Left-Sided Terrain Guarding instance is false, then there exists a
small subset of C (with k + 1 vertices) that cannot be seen by k-many guards.
We prove this by producing an independent set U of size k + 1 in GT and
observing that if k guards did see all the vertices of U , then U would fail to be
an independent set. The second corollary proves that for an orthogonal terrain
T , (T (V,E), n, k,R,Cl) is a true instance if, and only if, (Gl(Cl, E

′), |Cl|, k) is
a true instance of the Clique Cover problem. This was the result obtained in
[11] by Katz and Roisman. This is done by observing that left convex vertices
can only see to one side.

Theorem 3.1. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-

ing instance. Then, the visibility graph of this instance, say GT , is chordal.

Proof. Let C ⊆ C where |C| = p ≥ 4 be a cycle in GT . We prove that GT [C] is
not a cycle. Let C = {c1, c2 . . . cp} be the order of the vertices as they appear on
the cycle. Also, we assume, without loss in generality, that ci 
 c1 for all ci ∈ C
and that cp ≺ c2. As c1 and cp are neighbours in GT , there is a left guard g1,p
which sees both these vertices. Similarly, we have g1,2, a left guard, which sees
both c1 and c2. Note that c1 
 g1,p and c1 
 g1,2. If g1,2 = g1,p = g, then g sees
both c2 and cp. This implies that c2 and cp share an edge in GT [C]. Since p ≥ 4,
(c2, cp) is a chord of the cycle. Thus, GT [C] is not a cycle. We are now left with
two cases:

Case 1 (g1,p ≺ g1,2). This is illustrated in Fig. 2. Here, cp ≺ c2 ≺ g1,p ≺ g1,2
and cp sees g1,p while c2 sees g1,2. Thus, by Lemma 2.1, g1,2 sees cp. Since g1,2
sees c2 by construction, there is an edge between c2 and cp in GT . As observed
previously, this implies that GT [C] is not a cycle. Note that g1,p could be c1.

cp c2 c1

g1,p

g1,2

Fig. 2. This figure illustrates Case 1 of Theorem3.1 where g1,p ≺ g1,2. Two vertices
that see each other are connected by a dashed line. If we substitute a, b, c and d with
cp, c2, g1,p and g1,2 respectively in Lemma 2.1, we get that cp sees g1,2 in this case.



128 K. Prahlad Narasimhan

Case 2 (g1,2 ≺ g1,p). In this case, we have two possibilities. The first one is when
c1 ≺ g1,2 while the second one is where g1,2 is c1. Figure 3a illustrates the first
case. Here, c2 ≺ c1 ≺ g1,2 ≺ g1,p and c2 sees g1,2 while c1 sees g1,p. We infer
that g1,p sees c2 by applying Lemma2.1 on these vertices. Thus, there is an edge
between c2 and cp in GT [C] proving that GT [C] is not a cycle. Now, assume
that c1 = g1,2. This is considered in Fig. 3b. Unfortunately, in this situation, we
cannot use Lemma 2.1 directly.

We now consider c3, the other neighbour of c2, in C. Note that c3 exists as
|C| ≥ 4. Since c2 and c3 are neighbours in C, and thus in GT , there exists a left
guard, say g2,3, which sees both these vertices. If g2,3 = g1,p = g, then c3 has an
edge with c1 in GT . Since the neighbours of c1 in C are c2 and cp, where p > 3,
(c1, c3) is chord of C. This proves that GT [C] is not a cycle. Thus, we will focus
on the situations where g2,3 �= g1,p in the cases that follow.

We will show that if c3 ≺ c2, then GT [C] is not a cycle. We will then prove
that if cj+1 ≺ c2 ≺ cj ≺ c1 for any 3 ≤ j < p, then GT [C] is not a cycle. Finally,
we prove that these two claims jointly imply that GT [C] is never a cycle and
complete our proof.

cp c2 c1

g1,2

g1,p

(a)

cp c2 c1

g1,p

(b)

Fig. 3. This figure depicts Case 2 of Theorem3.1 where g1,2 ≺ g1,p. In (a) c1 ≺ g1,2,
while in (b) c1 = g1,2. In the first possibility, we can apply Lemma 2.1 on the encircled
vertices. Doing so, we get that c2 sees g1,p. We are unable to apply the Lemma 2.1 on
(b). The dashed line between c1 and c2 in (b) is curved for illustrative purposes.

Claim 1. If c3 ≺ c2, then GT [C] is not a cycle.

We consider the following two cases depending on the position of c3: it precedes
cp or it lies between cp and c2.

Subcase 2.1 (c3 ≺ cp). We have two possibilities: g2,3 ≺ g1,p or g1,p ≺ g2,3. These
are shown in Fig. 4a and 4b respectively. Lemma 2.1 guarantees an edge between
c1 and c3 in the former case and between c2 and cp in the latter case in GT [C]
(apply the lemma on c3, cp, g2,3 and g1,p in the first case and on cp, c2, g1,p and
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g2,3 in the second case). As noted previously, GT [C] is not a cycle in both these
cases. Note that g2,3 could be c1 or c2 in the first case and g1,p could be c1 in
the second.

cp c2 c1

g1,p

c3

g2,3

(a)

cp c2 c1

g2,3

c3

g1,p

(b)

Fig. 4. This figure illustrates Subcase 2.1 of Theorem3.1 where c3 ≺ cp. In (a) g2,3
precedes g1,p, while in (b) g1,p precedes g2,3. On applying Lemma 2.1 to the marked
vertices, we get that c3 is seen by g1,p in (a) and cp is seen by g2,3 in (b).

Subcase 2.2 (cp ≺ c3 ≺ c2). Depending on the position of g2,3, we have three
possibilities: g2,3 precedes c1, or it lies between c1 and g1,p, or it lies after g1,p.
Note that the third case is equivalent to the one in Fig. 4b since the position of
c3 was not used in the proof of the existence of the (c2, cp) edge. If g2,3 is equal
to c1, then c1 has an edge with c3 in GT [C] since it sees itself as well as c3.
Thus, GT [C] is not a cycle. This leaves two cases: g2,3 ≺ c1 and c1 ≺ g2,3 ≺ g1,p.
These are shown in Figs. 5a and 5b. On applying Lemma2.1 on the four encircled
vertices in the order they appear on the terrain, we infer that the (c1, c3) edge
exists in GT [C] in both these cases proving that it is not a cycle.

c3 c2 c1

g1,p

cp

g2,3

c3 c1

(a)

c3 c2 c1

g1,p

cp

g2,3

(b)

Fig. 5. c3 lies between c2 and cp in both these figures which illustrate Subcase 2.2 of
Theorem3.1. In (a) g2,3 ≺ c1, while in (b) c1 ≺ g2,3 ≺ g1,p. On applying Lemma 2.1 on
the encircled vertices we infer that c3 is seen by c1 in (a) and by g1,p in (b).
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Thus, we have proven that if c3 precedes c2, GT [C] is not a cycle. We will
complete the proof by proving the following claim.

Claim 2. If cj+1 ≺ c2 ≺ cj ≺ c1 for some j where 3 ≤ j < p, then GT [C] is not
a cycle.

We have three cases depending on the position of the left guard, called gj,j+1,
which sees cj and cj+1. If gj,j+1 = c1, then there exists a (c2, cj+1) edge in GT [C]
since c1 sees c2. As cj+1 is neither c1 nor c3, GT [C] is not a cycle. The other two
cases: gj,j+1 ≺ c1 and c1 ≺ gj,j+1 are shown in Figs. 6a and 6b respectively. In
both these cases, on applying Lemma 2.1 on the marked vertices, we get that c2
and cj+1 share an edge in GT [C]. From the argument that we just stated, GT [C]
is not a cycle. Note that gj,j+1 could be cj in Fig. 6a. This proves our claim.

c2 cj c1cj+1

gj,j+1

(a)

c2 cj c1cj+1

gj,j+1

(b)

Fig. 6. This figure corresponds to cases that are discussed in Claim 2 of Theorem3.1.
Here, cj lies between c2 and c1. In (a) gj,j+1 ≺ c1, while in (b) gj,j+1 lies after c1. On
applying Lemma 2.1, we get that c1 sees cj+1 in (a) and c2 sees gj,j+1 in (b).

Now, let D = {i | c2 ≺ ci ≺ c1}. If D is empty, then c3 ≺ c2. By our first
claim, GT [C] is not a cycle. Since we assumed that cp ≺ c2, j := max{i | i ∈
D} < p. Thus, cj+1 exists and is not in D. This implies that cj+1 ≺ c2 ≺ cj ≺ c1
and will prove that GT [C] is not a cycle by the second claim. This completes
the proof of this theorem since C was arbitrary cycle of length at least 4. �
Theorem 3.2. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-

ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, for K ⊆ C, GT [K] is
a clique if, and only if, there is a g ∈ G such that Vis g ⊇ K.

Proof. Let K be a set such that there is a g ∈ G such that Vis g ⊇ K. Then, for
any pair of vertices in K there is an edge between them in GT [K] since there is
a guard (g itself) seeing them both. Thus, GT [K] is a clique. Now, we prove the
forward direction of the claim. Assume that K ⊆ C such that GT [K] is a clique.
We prove that there exists a guard seeing all of K by induction on the number
of vertices in K. If |K| = 1 or |K| = 2, then our claim follows trivially. Assume
that our supposition holds for all cliques of size at most p, where p ≥ 2.
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Let K = {k1, k2, . . . kp, kp+1} be a subset of C such that GT [K] is a clique.
The vertices of K are ordered according to how they appear on the terrain.
Let K ′ = {k2 . . . kp, kp+1}. Since GT [K ′] is a clique of size p, by the induction
hypothesis, there is a left guard g1 such that Vis g1 ⊇ K ′. Since there is a
(k1, kp+1) edge in GT [K], there is a left guard, say g2, which sees them both. If
g1 = g2 = g, then we have Vis g ⊇ K proving the supposition. We are now left
with two cases:

Case 1 (g2 ≺ g1). This case is shown in Fig. 7a. Here, we observe that k1 ≺ kj ≺
g2 ≺ g1 where k1 sees g2 and kj sees g1. By Lemma 2.1, g1 guards k1 as well.
Thus, Vis g1 ⊇ K.

Case 2 (g1 ≺ g2). This is illustrated in Fig. 7b. Here, on applying Lemma2.1
on the marked vertices, we get that g2 sees kj for all j where 2 ≤ j ≤ p. Thus,
Vis g2 ⊇ K. Note that we can apply Lemma 2.1 on these four vertices only
because g1 �= kp+1.

k2 kj kp+1

g2

g1

k1

(a)

k2 kj kp+1

g1

g2

k1

(b)

Fig. 7. This figure corresponds to the cases that arise in Theorem3.2. In (a) g2 ≺ g1,
while in (b) g1 ≺ g2. By Lemma 2.1, g1 also sees k1 in (a) and g2 guards all the vertices
from k2 through to kp+1 in (b).

This proves our supposition and completes the proof by induction. Note that
the situations illustrated in Figs. 7a and 7b are similar to the ones in Figs. 2 and
3a. They are presented in this proof again for clarity. �

This theorem’s claim is not true if G ∩ C �= ∅. A non-example is presented
in Fig. 8. In the terrain illustrated by that figure, we let C = {v1, v3, v4} and
G = {v4, v5, v7} be a set of left guards. v1 shares an edge with both v3 and v4 in
GT since v7 sees both v1 and v3 while v5 sees both v1 and v4. Furthermore, since
v4 sees itself as well as v3, there is an edge between v3 and v4 in GT . Thus, GT [C]
is a clique. However, none of the three guards in G guard all the vertices of C: v4
does not see v1, v5 does not see v3, and v7 does not see v4. It is also clear that
Theorem 3.2 fails to hold if Vis G ⊇ C. For example, if C = {v3} and G = {v5}
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in the terrain illustrated in Fig. 8, then the isolated vertex v3 is a clique but no
guard in G sees it.

Theorem 3.1 and 3.2 are, to the best of the author’s knowledge, an addition
to existing literature. Combining these two theorems gives us the main result of
this paper.

Theorem 3.3. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-

ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, this is a true instance of
the problem if, and only if, (GT (C, E′), |C|, k) is a true instance of the Clique

Cover problem where GT , the visibility graph of T , is a chordal graph.

As stated in the beginning of this section, the above result also holds for the
Right-Sided Terrain Guarding problem. It is well known that in a chordal
graph G(V,E), the minimum number of cliques required to cover V , denoted by
χ(G), is equal to the size of a maximum sized independent set of G, denoted
by α(G) [10]. The algorithm that solves the Clique Cover problem can be
modified slightly to solve the Independent Set problem in polynomial time
[9]. We use these two properties of chordal graphs in the proof of the lemma
that follows.

v1

v2

v3

v4 v5

v6

v7

Fig. 8. This terrain presents an example where a clique in GT is not seen by a single
left guard if G ∩ C �= ∅. The vertices of C and G have been encircled and marked by
squares respectively.

Lemma 3.4. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-

ing instance where G ∩ C = ∅ and Vis G ⊇ C. One can decide, in polynomial
time, if this is a true instance of the problem. If this instance is false, then one
can find U ⊆ C in polynomial time such that |U | = k+1 and (T (V,E), n, k,G, U)
is a false instance.

Proof. By Theorem 3.3, we know that the visibility graph, say GT , corresponding
to (T (V,E), n, k,G, C) is chordal and that it is a true instance if, and only if,
(GT (C, E′), |C|, k) is a true instance of the Clique Cover problem. Since the
Clique Cover problem can be solved in polynomial time in chordal graphs, we
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can decide if (T (V,E), n, k,G, C) is a true instance of the Left-Sided Terrain

Guarding problem in polynomial time.
Now, if (T (V,E), n, k,G, C) is false, then GT cannot be covered by k many

cliques. Thus, χ(GT ) > k. This implies that α(GT ) > k. We compute a maximum
sized independent set of GT and let U be a subset of size k+1 of this independent
set. Since GT is chordal, this can be done in polynomial time. Clearly, U is an
independent set of GT . If there exists k many guards in G which guards U , then
there must exist one guard which sees at least two vertices of U . By construction
of GT , there must exist an edge between them. This contradicts the fact that U
is an independent set of GT and thus completes the proof of this lemma. �

We note that the above lemma holds for the right-sided version of the ter-
rain guarding problem as well. The lemma stated and proved above generalizes
Lemmas 4.8 and 4.9 of [2]. These were used to present a FPT algorithm with
respect to the solution size for the Discrete Orthogonal Terrain Guard-

ingproblem in that paper. We conclude this paper by proving that the following
result by Katz and Roisman [11] follows from Theorem 3.3.

Lemma 3.5. Consider the Annotated Orthogonal Terrain Guard-

ing instance (T (V,E), n, k,R,Cl) and let Gl be the visibility graph correspond-
ing to this instance. Then, Gl is chordal. Furthermore, (T (V,E), n, k,R,Cl) is a
true instance of the problem if, and only if, (Gl(Cl, E

′), |Cl|, k) is a true instance
of the Clique Cover problem. The symmetric claim holds for the set of right
convex vertices.

Proof. Note that a vertex v ∈ Cl can only see to its right (referring back to
Fig. 1b will make this observation straightforward) [11]. Equivalently, a vertex
g ∈ R which is to guard v needs to look only to its left. Thus, we can consider the
guards which are required to guard Cl to be a set of left guards. Using a symmet-
ric argument, we see that the guard set that is to guard the right convex vertices
can be considered to be a set of right guards. Also, we note that Vis R ⊇ V .
This implies that R sees all of Cl and Cr. Since C ∩R = ∅, we can apply Theo-
rem 3.3 to the Left-Sided Terrain Guarding instance (T (V,E), n, k,R,Cl).
By a symmetric argument, our claim is also true for the Right-Sided Ter-

rain Guarding instance (T (V,E), n, k,R,Cr). This completes the proof of the
lemma. �
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