
Apurva Mudgal
C. R. Subramanian (Eds.)

LN
CS

 1
26

01

Algorithms
and Discrete Applied
Mathematics
7th International Conference, CALDAM 2021
Rupnagar, India, February 11–13, 2021
Proceedings

Lecture Notes in Computer Science 12601

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Apurva Mudgal • C. R. Subramanian (Eds.)

Algorithms
and Discrete Applied
Mathematics
7th International Conference, CALDAM 2021
Rupnagar, India, February 11–13, 2021
Proceedings

123

Editors
Apurva Mudgal
Indian Institute of Technology Ropar
Rupnagar, India

C. R. Subramanian
The Institute of Mathematical Sciences
Chennai, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-67898-2 ISBN 978-3-030-67899-9 (eBook)
https://doi.org/10.1007/978-3-030-67899-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-67899-9

Preface

This volume contains the papers presented at CALDAM 2021 (the 7th International
Conference on Algorithms and Discrete Applied Mathematics) held during February
11–13, 2021 at IIT Ropar, Rupnagar, Punjab, India. CALDAM 2021 was organised by
the Department of Computer Science and Engineering, Indian Institute of Technology
Ropar, and the Association for Computer Science and Discrete Mathematics
(ACSDM), India. The program committee consisted of 31 highly experienced and
active researchers from various countries.

The conference had papers in the areas of algorithms, graph theory, combinatorics,
computational geometry, discrete geometry, and computational complexity. We
received 82 submissions with authors from all over the world. Each paper was
extensively reviewed by program committee members and other expert reviewers. The
committee decided to accept 39 papers for presentation. The program included two
Google invited talks by Professors Martin Fürer (of Pennsylvania State University) and
Anil Maheshwari (of Carleton University).

As volume editors, we would like to thank the authors of all submissions for
considering CALDAM 2021 for potential presentation of their works. We are very
much indebted to the program committee members and the external reviewers for
providing serious reviews within a very short period of time. We thank Springer for
publishing the proceedings in the Lecture Notes in Computer Science series. Our
sincerest thanks are due to the invited speakers Martin Fürer and Anil Maheshwari for
accepting our invitation to give a talk. We thank the organizing committee chaired by
Nitin Auluck and Arti Pandey of Indian Institute of Technology Ropar for the smooth
conduct of CALDAM 2021 and Indian Institute of Technology Ropar for providing the
necessary facilities. We are very grateful to the chair of the steering committee, Subir
Ghosh, for his active help, support, and guidance throughout. We thank our sponsors
Google Inc. for their financial support. We also thank Springer for its support for the
best paper presentation awards. We thank the EasyChair and Springer OCS conference
management systems, which were very effective in handling the entire process.

February 2021 Apurva Mudgal
C. R. Subramanian

Organization

Steering Committee

Subir Kumar Ghosh (Chair) Ramakrishna Mission Vivekananda Educational
and Research Institute, India

Gyula O. H. Katona Alfréd Rényi Institute of Mathematics, Hungarian
Academy of Sciences, Hungary

János Pach École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

Nicola Santoro School of Computer Science, Carleton University,
Canada

Swami Sarvattomananda Ramakrishna Mission Vivekananda Educational
and Research Institute, India

Chee Yap Courant Institute of Mathematical Sciences,
New York University, USA

Program Committee

Amitabha Bagchi Indian Institute of Technology Delhi, India
Aritra Banik National Institute of Science Education and Research,

Bhubaneswar, India
Niranjan Balachandran Indian Institute of Technology Bombay, India
Boštjan Brešar University of Maribor, Slovenia
Manoj Changat University of Kerala, India
Sandip Das ISI Kolkata, India
Josep Diaz Polytechnic University of Catalonia, Spain
Martin Fürer The Pennsylvania State University, USA
Sumit Ganguly Indian Institute of Technology Kanpur, India
Daya Gaur University of Lethbridge, Canada
Sathish Govindarajan Indian Institute of Science Bangalore, India
Pavol Hell Simon Fraser University, Canada
R. Inkulu Indian Institute of Technology Guwahati, India
Christos Kaklamanis University of Patras, Greece
S. Kalyanasundaram Indian Institute of Technology Hyderabad, India
Van Bang Le Universität Rostock, Germany
Andrzej Lingas Lund University, Sweden
Anil Maheshwari Carleton University, Canada
Bodo Manthey University of Twente, Netherlands
Bojan Mohar Simon Fraser University, Canada
Apurva Mudgal (Co-chair) Indian Institute of Technology Ropar, India
Rahul Muthu Dhirubhai Ambani Institute of Information

and Communication Technology, India

N. S. Narayanaswamy Indian Institute of Technology Madras, India
B. S. Panda Indian Institute of Technology Delhi, India
Iztok Peterin University of Maribor, Slovenia
S. Francis Raj Pondicherry University, India
Abhiram Ranade Indian Institute of Technology Bombay, India
Sagnik Sen Indian Institute of Technology Dharwad, India
Michiel Smid Carleton University, Canada
Éric Sopena University of Bordeaux, France
C. R. Subramanian

(Co-chair)
The Institute of Mathematical Sciences, Chennai, India

Organizing Committee

Nitin Auluck (Co-chair) Indian Institute of Technology Ropar, India
Swami Dhyanagamyananda Ramakrishna Mission Vivekananda Educational and

Research Institute, India
Shweta Jain Indian Institute of Technology Ropar, India
Pritee Khanna Indian Institute of Information Technology, Design and

Manufacturing Jabalpur, India
Kaushik Mondal Indian Institute of Technology Ropar, India
Arti Pandey (Co-chair) Indian Institute of Technology Ropar, India
M. Prabhakar Indian Institute of Technology Ropar, India
Somitra K. Sanadhya Indian Institute of Technology Jodhpur, India
Tarkeshwar Singh BITS Pilani Goa, India
Rishi Ranjan Singh Indian Institute of Technology Bhilai, India

Additional Reviewers

Hossein Abdollahzadeh Ahangar
Bijo S. Anand
N. R. Aravind
Pradeesha Ashok
Jasine Babu
Kannan Balakrishnan
Susobhan Bandopadhyay
Sayan Bandyapadhyay
Julien Bensmail
Benjamin Bergougnoux
Srimanta Bhattacharya
Sujoy Bhore
Dragana Božović
Christoph Brause
Sergio Cabello
Franco Chiaraluce
Pavan P. D.

Arun Kumar Das
Hiranya Dey
Andrzej Dudek
Brice Effantin
David Eppstein
Rudolf Fleischer
Florent Foucaud
Maria Francis
Iqra Altaf Gillani
Daniel Gonçalves
Sushmita Gupta
Gregory Gutin
Gowramma B. H.
Shenwei Huang
Jesper Jansson
Anjeneya Swami Kare
Aleksander Kelenc

viii Organization

Linda Kleist
Mirosław Kowaluk
Christian Laforest
Juho Lauri
Christos Levcopoulos
Carlos Vinícius G. C. Lima
Daniel Lokshtanov
Tomas Madaras
Rogers Mathew
Neeldhara Misra
Kaushik Mondal
William K. Moses, Jr.
Soumen Nandi
Narayanan Narayanan
Francis P.
Sajith Padinhatteeri
Anantha Padmanabha
Sagartanu Pal
Sudebkumar Prasant Pal
Fahad Panolan

Subhabrata Paul
Bernard Ries
Leonardo Sampaio Rocha
Aniket Basu Roy
Taruni S.
Vladimir Samodivkin
Brahadeesh Sankaranarayanan
Pradeep Sarvepalli
Saket Saurabh
Ingo Schiermeyer
Jin Sima
Vaishnavi Sundararajan
Kavaskar T.
Aleksandra Tepeh
Rakesh Venkat
S. Venkitesh
Koichi Wada
Ismael González Yero
Paweł Żyliński

Organization ix

Abstracts of Invited Talks

Width Parameters for Hard and Easy
Problems

Martin Fürer

Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802, USA

fhs@psu.edu

Abstract. The most obvious success of width parameters is the abundance of
algorithms that make NP-hard problems FPT (fixed parameter tractable).
These FPT algorithms are often very efficient for small parameter values.
However, the origin of the notion of treewidth is also tied to solving systems of
sparse linear equations. For large sparse system, a cubic algorithm is not good
enough. Traditionally, such systems have been approached by heuristics trying
to minimize the fill-in by appropriate pivot strategies for Gaussian elimination.

In the most prevalent case of systems of linear equations, the matrix is
symmetric and positive definite, always allowing a diagonal pivot strategy. This
results in an O k2nð Þ algorithm for an n� n matrix with treewidth k. If the matrix
is symmetric, but not positive definite, then off-diagonal pivots are sometimes
required. Nevertheless, the matrix can be kept symmetric throughout the algo-
rithm. However, for a long time, it seemed impossible to control the fill-in for
treewidth k matrices. Recently, this has been achieved for cliquewidth k and for
treewidth k, by a delaying method. This results in an O k2nð Þ algorithm for
determining the number of eigenvalues of a graph in a given interval, an
important task in spectral graph theory.

A major obstacle for employing treewidth as a tool for efficient algorithms is
the construction of tree decompositions of small width and the computation
of the treewidth itself. There has been significant progress in this respect, with
many challenges still ahead.

A simple modification of the definition of cliquewidth results in the notion of
multi-cliquewidth. For many graphs, the clique-width is exponentially larger
than the multi-cliquewidth. Nevertheless for some fundamental problems, like
Maximum Independent Set and Chromatic Number, the running times of the
standard dynamic programming algorithms are the same functions of the
multi-cliquewidth as of the cliquewidth. Thus an exponential speed-up is
achieved for these graphs by using multi-cliquewidth instead of cliquewidth,
assuming the corresponding tree decompositions are known.

Matching and Spanning Trees in Geometric
Graphs

Anil Maheshwari

School of Computer Science, Carleton University, Ottawa ON, Canada
anil@scs.carleton.ca

Abstract. In this talk, we survey some recent work on matching and spanning
trees in geometric graphs.

The matching problem is to find the largest set of independent edges in a
graph. We are especially interested in graphs whose edge set is defined with
respect to geometrical shapes. For a given shape S, and a point set P in the plane,
the graph GS ¼ P;Eð Þ has an edge between two points p; q 2 P if there exists a
shape S that has p and q on its boundary, and it does not contain any point of P
in its interior. The Delaunay triangulation, L1-Delaunay, H6 graph, and Gabriel
graphs are obtained by considering S to be a circle, a square, an equilateral
triangle, and a diametral disk, respectively. We will outline results on matchings
in GS where S is a circle, a square, an equilateral triangle, a diametral-disk, etc.
We will consider variants of geometric matching problems such as the bottle-
neck matching - find a perfect matching that minimizes the length of the longest
edge; the plane matching - find a maximum matching so that the edges in the
matching are pairwise non-crossing; the strong matching - find a maximum
matching so that the shapes representing the edges of the matchings are pairwise
disjoint; local-to-global - matching M is said to be k- local optimal if for any
subset M 0 � M of k edges, the optimal matching of the endpoints of M 0 is M 0.
Do k-local matchings approximate global matchings?

We will highlight some recent algorithmic results on the computation of
spanning trees in bipartite and complete geometric graphs for a point set in the
plane. We wish to compute spanning trees that optimize the total weight and are
plane, or have bounded degree, or minimize the bottleneck length and are of
bounded degree, or have all incident edges within a cone of a specific angle.

Research supported by the Natural Sciences and Engineering Research Council of Canada.

Contents

Approximation Algorithms

Online Bin Packing with Overload Cost. 3
Kelin Luo and Frits C. R. Spieksma

Scheduling Trains with Small Stretch on a Unidirectional Line 16
Apoorv Garg and Abhiram Ranade

Algorithmic Aspects of Total Roman and Total Double Roman Domination
in Graphs . 32

Chakradhar Padamutham and Venkata Subba Reddy Palagiri

Approximation Algorithms for Orthogonal Line Centers 43
Arun Kumar Das, Sandip Das, and Joydeep Mukherjee

Semitotal Domination on AT-Free Graphs and Circle Graphs 55
Ton Kloks and Arti Pandey

Burning Grids and Intervals . 66
Arya Tanmay Gupta, Swapnil A. Lokhande, and Kaushik Mondal

Parameterized Algorithms

On Parameterized Complexity of Liquid Democracy 83
Palash Dey, Arnab Maiti, and Amatya Sharma

Acyclic Coloring Parameterized by Directed Clique-Width 95
Frank Gurski, Dominique Komander, and Carolin Rehs

On Structural Parameterizations of Load Coloring . 109
I. Vinod Reddy

One-Sided Discrete Terrain Guarding and Chordal Graphs 122
Kasthurirangan Prahlad Narasimhan

Parameterized Complexity of Locally Minimal Defensive Alliances. 135
Ajinkya Gaikwad, Soumen Maity, and Shuvam Kant Tripathi

Computational Geometry

New Variants of Perfect Non-crossing Matchings . 151
Ioannis Mantas, Marko Savić, and Hendrik Schrezenmaier

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data . . . 165
Vahideh Keikha, Hamidreza Keikha, and Ali Mohades

A Worst-Case Optimal Algorithm to Compute the Minkowski Sum
of Convex Polytopes . 179

Sandip Das, Subhadeep Ranjan Dev, and Swami Sarvottamananda

On the Intersections of Non-homotopic Loops . 196
Václav Blažej, Michal Opler, Matas Šileikis, and Pavel Valtr

Graph Theory

On cd-Coloring of Trees and Co-bipartite Graphs . 209
M. A. Shalu and V. K. Kirubakaran

Cut Vertex Transit Functions of Hypergraphs . 222
Manoj Changat, Ferdoos Hossein Nezhad, and Peter F. Stadler

Lexicographic Product of Digraphs and Related Boundary-Type Sets 234
Manoj Changat, Prasanth G. Narasimha-Shenoi,
and Mary Shalet Thottungal Joseph

The Connected Domination Number of Grids . 247
Adarsh Srinivasan and N. S. Narayanaswamy

On Degree Sequences and Eccentricities in Pseudoline
Arrangement Graphs . 259

Sandip Das, Siddani Bhaskara Rao, and Uma kant Sahoo

Cops and Robber on Butterflies and Solid Grids . 272
Sheikh Shakil Akhtar, Sandip Das, and Harmender Gahlawat

b-Coloring of Some Powers of Hypercubes . 282
P. Francis, S. Francis Raj, and M. Gokulnath

Chromatic Bounds for the Subclasses of pK2-Free Graphs 288
Athmakoori Prashant and M. Gokulnath

Axiomatic Characterization of the Median Function of a Block Graph 294
Manoj Changat, Nella Jeena Jacob, and Prasanth G. Narasimha-Shenoi

On Coupon Coloring of Cartesian Product of Some Graphs 309
P. Francis and Deepak Rajendraprasad

On the Connectivity and the Diameter of Betweenness-Uniform Graphs. 317
David Hartman, Aneta Pokorná, and Pavel Valtr

xvi Contents

Combinatorics and Algorithms

On Algorithms to Find p-ordering . 333
Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Experimental Evaluation of a Local Search Approximation Algorithm
for the Multiway Cut Problem . 346

Andrew Bloch-Hansen, Nasim Samei, and Roberto Solis-Oba

Algorithmic Analysis of Priority-Based Bin Packing 359
Piotr Wojciechowski, K. Subramani, Alvaro Velasquez,
and Bugra Caskurlu

Recursive Methods for Some Problems in Coding
and Random Permutations . 373

Ghurumuruhan Ganesan

Achieving Positive Rates with Predetermined Dictionaries 385
Ghurumuruhan Ganesan

Characterization of Dense Patterns Having Distinct Squares 397
Maithilee Patawar and Kalpesh Kapoor

Graph Algorithms

Failure and Communication in a Synchronized Multi-drone System. 413
Sergey Bereg, José Miguel Díaz-Báñez, Paul Horn, Mario A. Lopez,
and Jorge Urrutia

Memory Optimal Dispersion by Anonymous Mobile Robots 426
Archak Das, Kaustav Bose, and Buddhadeb Sau

Quantum and Approximation Algorithms for Maximum Witnesses
of Boolean Matrix Products . 440

Mirosław Kowaluk and Andrzej Lingas

Template-Driven Rainbow Coloring of Proper Interval Graphs 452
L. Sunil Chandran, Sajal K. Das, Pavol Hell, Sajith Padinhatteeri,
and Raji R. Pillai

Minimum Consistent Subset of Simple Graph Classes 471
Sanjana Dey, Anil Maheshwari, and Subhas C. Nandy

Computational Complexity

Balanced Connected Graph Partition . 487
Satyabrata Jana, Supantha Pandit, and Sasanka Roy

Contents xvii

Hardness Results of Global Roman Domination in Graphs 500
B. S. Panda and Pooja Goyal

Author Index . 513

xviii Contents

Approximation Algorithms

Online Bin Packing with Overload Cost

Kelin Luo(B) and Frits C. R. Spieksma

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{k.luo,f.c.r.spieksma}@tue.nl

Abstract. In the classical online bin packing problem, items arriving
one by one with a given size not greater than 1 must be packed into
unit-capacity bins such that the total size of items packed in a bin does
not exceed its capacity; the objective is to minimize the total number
of used bins. In this paper, we allow the total size of items packed in a
bin to exceed the capacity, and there is a cost for each bin that depends
on the total size of items assigned to it; in particular, overloading a bin,
i.e., exceeding the capacity of a bin, comes at a prescribed cost. The cor-
responding goal is to minimize the total cost corresponding to the used
bins. We pay 1 to open a bin with capacity 1, and we additionally pay
c for each unit with which the bin is overloaded, i.e, the overload cost is
linear in the size of the overload.

For each c, we present lower bounds on the competitive ratio achiev-
able by deterministic algorithms. Further, we give an algorithm, called
First-Fit Algorithm with Fixed Overload (FFO) that achieves the best
possible competitive ratio for c ≤ 3/2. Furthermore, we sketch how the
lower bounds apply to more general convex cost functions.

Keywords: Online algorithms · Bin packing · Competitive analysis

1 Introduction

The online bin packing problem (BP) is a classical online optimization problem
in which a sequence of items of size between 0 and 1 are presented one by one.
Each item must be placed in a unit-capacity bin before the next item arrives. The
goal is to pack the items into the minimum number of bins such that the total
weight of items packed in each bin is at most 1. In this paper, we investigate
a variant of this classic problem, called the online bin packing problem with
overload cost; in this problem, we allow the total weight of items packed in a bin
to exceed 1.

Problem Definition. We receive a sequence of n items; notice we do not know
n in advance. Each item has rational size pi ∈ (0, 1] for each 1 ≤ i ≤ n. Each

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement number
754462 and funding from the NWO Gravitation Project NETWORKS, Grant Number
024.002.003.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-67899-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_1&domain=pdf
http://orcid.org/0000-0003-2006-0601
http://orcid.org/0000-0002-2547-3782
https://doi.org/10.1007/978-3-030-67899-9_1

4 K. Luo and F. C. R. Spieksma

item must be packed irrevocably into a bin before the next item arrives. We
have an infinite number of identical bins. Each bin is characterized by a fixed
capacity of 1, and a fixed, unit cost for opening a bin; in addition, there is a
given, rational, overload cost c ≥ 0 that applies to each unit of the overload.
A bin i is used (or opened) when it contains at least one item; its cost equals
costi = 1 + c · max{wi − 1, 0}, where wi is the total weight of the items in bin
i. The problem is to pack each item into a bin so that we minimize the sum
of the costs of all used bins. We refer to this problem as the online bin packing
problem with linear overload cost (BPOC). In this paper we prove lower bounds
and upper bounds on the competitive ratio of online algorithms for BPOC, for
any fixed overload cost c.

Related Work. The bin packing (BP) problem has been extensively investigated.
Two famous online algorithms for bin packing are First Fit (FF; FF packs the
next item into the first bin where it can be packed), and Best Fit (BF; BF
packs the next item into the fullest bin that can accommodate the item). The
analysis of these algorithms goes back to Ullman [17]; we refer to Sgall [16] for
an overview on online bin packing.

The performance of an online algorithm can be measured by the asymptotic
competitive ratio as well as by the absolute competitive ratio. The asymptotic
competitive ratio is defined as: cA := lim supn→∞ supσ{ ALG(σ)

OPT (σ) |OPT (σ) = n},

where OPT (σ) denotes the number of bins used by an optimal solution and
ALG(σ) denotes the number of bins used by an algorithm ALG for any input
σ. Johnson et al. [12] prove that both FF and BF have asymptotic performance
ratios of 1.7. Currently, the best known lower bound on the asymptotic perfor-
mance ratio of any online algorithm for bin packing is 1.54278 (see Balogh et
al. [2]), and the best-known performance ratio is 1.578, due to Balogh et al. [1].

The absolute competitive ratio is defined as: c := supσ{ ALG(σ)
OPT (σ)}. Like the

asymptotic competitive result, the absolute competitive ratio of FF and BF both
are shown to be 1.7 (Dósa and Sgall [7,8]). Recently, Balogh et al. [3] designed
an online bin packing algorithm with an absolute competitive ratio of 5/3, which
is best possible. The main idea of their algorithm, called Five-Thirds algorithm
(FT), is to use FF and reserve a number of bins specifically for the large items
of size more than 1/2.

Many variants of online bin packing have been considered. One variant is
the problem where bins have arbitrary capacities, known as the online variable-
sized bin packing problem. Kinnerly and Langston [13] propose a modified FF
algorithm, FF with a user-specified fill factor (FFf), and prove that it is 1.5 +
f
2 -competitive when f ≥ 1

2 . Csirik [5] proposes the Variable Harmonic (VH)
algorithm and shows that it is 1.4-competitive, see also Seiden [15] for a precise
analysis.

Another variant is the open-end packing problem that allows to violate the
capacity in a specific way. Yang and Leung [18] consider the online ordered open-
end bin packing problem (OOBP). In OOBP it is allowed to violate the capacity
in a way that the weight of items in each bin is less than 1 after removing the
heaviest item in it. Epstein and Levin [9] further consider two other variants

Online Bin Packing with Overload Cost 5

of the open-end bin packing problem: the strong open-end bin packing problem
(SOBP), in which the weight of the items in each bin must be less than 1 after
removing the lightest item; and the lazy bin covering problem (LBC) which has
the additional constraint that the total weight of items in each bin (except at
most one) is not less than 1.

A problem related to our problem is the extensible bin packing problem. It
arises when c = 1 and the number of bins is given. This problem is studied,
both in the offline as in the online version, for arbitrary (instead of unit) bin
capacities by Dell’Olmo and Speranza [6], Coffman and Lueker [4], and Ye and
Zhang [19].

Finally, there is a quite some literature that focuses on the cost of the used
bins. Li and Chen [14], Epstein and Levin [10,11], Cambazard et al. [7] all
consider different cost structures of the items packed in a bin. In particular, the
work by Epstein and Levin [11] is relevant for the offline version of our problem.
They deal with a general setting where a set of bin types with different sizes and
costs, and a set of items is given and the goal is to minimize the total cost of the
used bins. Epstein and Levin [11] design an AFPTAS for this problem. Here, we
focus exclusively on the performance of online algorithms.

Motivation. Consider the following possible application. In a multi-processor
system, tasks requiring capacity enter the system one by one, and each task
needs to be assigned to one of the processors. Each processor has a given service
capacity, and charges a fixed turning on/off cost. However, an overload cost will
be charged if the sum of capacities required by the tasks assigned to it exceeds
the service capacity. We aim to minimize the total cost of serving all tasks. This
is the motivation for our online bin packing problem with overload cost: each
bin represents a processor with a given capacity, and there is an overload cost if
the total size of items packed in this bin exceeds its capacity.

Our Results. In this paper, we consider the absolute competitive ratio for BPOC.
We present lower and upper bounds on the competitive ratio of any deterministic
algorithm for BPOC. Summarizing, we prove the following theorem. Let g(c) be
defined as follows:

g(c) =

⎧
⎪⎪⎨

⎪⎪⎩

max(1, c) if 0 ≤ c < 3
2

3
2 = 1.5 if 3

2 ≤ c < 1 + 2
√

3
1 +

√
3
3 ≈ 1.577 if 1 + 2

√
3 < c < 17

5
3 ≈ 1.667 if 17 ≤ c.

Theorem 1. For any c ≥ 0: no deterministic online algorithm for BPOC can
achieve a competitive ratio smaller than g(c).

Further, we propose an online algorithm called First-Fit Algorithm with Fixed
Overload (in short, FFO). Similar to the First-Fit algorithm (FF) for the classical
online bin packing problem, FFO packs each item into the first opened bin where
it fits, or opens a new bin if the item does not fit into any currently opened bin.
The difference is that, in FFO, the total size of the items assigned to any bin
may exceed its capacity 1. Let h(c) be defined as follows:

6 K. Luo and F. C. R. Spieksma

h(c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max(1, c) if 0 ≤ c ≤ 3
2

3+c
3 if 3

2 < c ≤ 9
5

8
5 = 1.6 if 9

5 < c ≤ 8
3

6c
3c+2 if 8

3 < c ≤ 14
3

7
4 = 1.75 if 14

3 < c.

Theorem 2. For any c ≥ 0: FFO is a h(c)-competitive algorithm for BPOC.

A pictorial overview of these results is shown in Fig. 1; notice that for some
values of c, lower and upper bounds coincide. In such a situation we call FFO
best possible, as no deterministic algorithm with a better competitive ratio exists.

Corollary 1. FFO is best possible for each c with 0 ≤ c ≤ 3/2.

Fig. 1. Illustration of LB and UB as c changes.

2 Lower Bounds

In Sect. 2.1, we prove Theorem 1 by analyzing each of the four segments of
g(c). In Sect. 2.2 we sketch how the lower bounds from Theorem 1 apply to cost
functions that are more general than the linear overload costs.

2.1 Proving Theorem 1

We denote the cost of packing the items in σ using algorithm A by costA, i.e.,
costA =

∑
i costi. We use ALG to denote an arbitrary on-line algorithm and

OPT to denote an optimal algorithm. Since, if c ≤ 1, BPOC becomes trivial as
opening a single bin is optimal, we assume henceforth that c > 1.

Lemma 1. If 1 < c ≤ 3
2 , no deterministic online algorithm for BPOC can

achieve a competitive ratio smaller than c.

Online Bin Packing with Overload Cost 7

Proof. As c is rational, we write c = a
b , a, b ∈ N, and we choose ε = 1

a . Further,
we use N1 = a, N2 = a + b; notice that N1 · ε = 1 and N2 · ε = 1 + 1/c.

The adversary releases items of size ε until either N1 · N2 items have been
released, or when ALG opens a second bin.

In the former situation, ALG packs all N1 ·N2 items into a single bin. Hence,
we have costALG = 1 + c(N1 · N2 · ε − 1) = c · N2 − c + 1. Another feasible
solution is one that uses N2 bins, each bin containing N1 items. It follows that
costOPT ≤ N2. We have

costALG

costOPT
≥ c · N2 − c + 1

N2
= c − (c − 1)ε

1 + 1/c
≥ c − ε.

Thus, we can assume that ALG opens a second bin; let us denote the number
of items released by the adversary i, i ≤ N1 · N2. Note that ALG packs i − 1
items into the first bin and packs one item into the second bin. We distinguish
two cases.

Case 1: 1 ≤ i ≤ N1. Obviously, costOPT = 1, costALG = 2, and it follows
immediately that costALG

costOPT
≥ 2 > c.

Case 2: N1 + 1 ≤ i ≤ N1 · N2. We use that i = � i
N1

� · N1 + i mod N1. Since
ALG opens two bins and the second bin contains exactly one item, we have
costALG = 2 + c(iε − ε − 1) = 2 + c((� i

N1
� + i mod N1) · ε − ε − 1). We

distinguish two subcases based on i mod N1.
2.1: (i mod N1) ≤ 1/c

ε .
A feasible solution is one that uses � i

N1
� bins: � i

N1
�−1 bins each contain-

ing N1 items and the last bin containing N1 + (i mod N1) items, which
causes an overload (i mod N1) ·ε. Thus costOPT ≤ � i

N1
�+c(i mod N1) ·ε.

costALG

costOPT
≥ 2 + c((� i

N1
� + i mod N1) · ε − ε − 1)

� i
N1

� + c(i mod N1) · ε

≥ 2 + c((� i
N1

� + 1/c
ε) · ε − ε − 1)

� i
N1

� + c · 1/c
ε · ε

= c +
3 − c − c · ε − c

� i
N1

� + 1
≥ c − c · ε

� i
N1

� + 1
> c − ε.

The second inequality follows from the fact that
2+c((� i

N1
�+i mod N1)·ε−ε−1)

� i
N1

�+c(i mod N1)·ε
decreases as (i mod N1) increases. The third inequality follows from c ≤ 3

2 .
The last inequality follows from c

� i
N1

�+1
< 1 since c < 2 ≤ � i

N1
� + 1.

2.2: (i mod N1) > 1/c
ε .

A feasible solution is one that uses � i
N1

� + 1 bins: � i
N1

� bins each con-
taining N1 items and the last bin containing (i mod N1) items. Thus
costOPT ≤ � i

N1
� + 1.

8 K. Luo and F. C. R. Spieksma

costALG

costOPT
≥ 2 + c((� i

N1
� + i mod N1) · ε − ε − 1)

� i
N1

� + 1

≥ 2 + c((� i
N1

� + 1/c
ε + 1) · ε − ε − 1)

� i
N1

� + 1
= c +

3 − c − c

� i
N1

� + 1
> c.

The second inequality follows from the fact that
2+c((� i

N1
�+i mod N1)·ε−ε−1)

� i
N1

�+1

increases as (i mod N1) increases. The last inequality follows from c ≤ 3
2 .
	

Lemma 2. If c ≥ 3
2 , no deterministic online algorithm for BPOC can achieve

competitive ratio smaller than 3
2 .

The proof goes along the lines of Lemma 1: the adversary continues to release
items of very small size until ALG opens a second bin. If ALG packs all items
into a single bin, then the ratio is close to c; Otherwise, ALG packs all items
except the last one into one single bin and packs the last item into the second
bin, then the ratio is 3

2 .

Lemma 3. If c ≥ 1 + 2
√

3, no deterministic online algorithm for BPOC can
achieve competitive ratio smaller than 3+

√
3

3 .

The proof follows the following idea: the adversary releases infinite many small
items of total size 1+(

√
3−1)/c−ε until ALG opens a second bin. If ALG opens

the second bin when the total size of released items is smaller than 1, then the
ratio is 2; If ALG opens the second bin when the total size of the released items
is greater 1, then the ratio is 3+

√
3

3 as OPT opens a single bin; Otherwise, ALG
packs all items into one single bin. In the last case, the adversary releases another
three big items with size 1/2 + y such that (1 + (

√
3 − 1)/c − ε)/3 + 1/2 + y = 1.

OPT packs a big item and some small items of size 1/2 − y into one bin, which
gives a total cost of 3. No matter how ALG packs the three big items, its total
cost is greater than 3 +

√
3.

Lemma 4. If c ≥ 17, no deterministic online algorithm for BPOC can achieve
a competitive ratio smaller than 5

3 .

Proof. Initially, the adversary releases six items, each with size 2
17 . In case ALG

opens two bins to pack these six items, the adversary stops. costOPT = 1 since
W = 6 · 2

17 < 1 and we conclude that costALG

costOPT
= 2.

Thus, we can assume ALG has opened so far a single bin. Then the adversary
releases six items, each with weight 1

3 + x, where x = 1
3c (referred to as medium

items). Since 2 · (2
17 + 1

3 + x) < 1, it follows that as long as the adversary does
not release any more items, we have costOPT = 3; consequently, if we manage to

Online Bin Packing with Overload Cost 9

show that costALG ≥ 5, the lemma has been proved. We enumerate four possible
cases: ALG opens 0, 1, 2, 3 bins. Note that obviously costALG ≥ 5 if ALG opens
at least four additional bins.

Case 1: ALG does not open an additional bin. Then the total overload is 6 ·
(13 +x)− (1− 12

17) = 1+6x+ 12
17 , and hence costALG = 1+ c(1+6x+ 12

17) > 5
(since c ≥ 17).

Case 2: ALG opens one additional bin. The overload is at least 6 · 2
17 + 6 · (13 +

x) − 2 = 12
17 + 6x, then costALG ≥ 2 + c(1217 + 6x) > 5 because c ≥ 17.

Case 3: ALG opens two additional bins. We distinguish three subcases.
3.1. If ALG does not pack any medium item into the first bin, then ALG dis-

tributes the 6 medium items in one of three ways over the two additional
bins, namely {(5, 1), (4, 2), (3, 3)}. Hence, costALG ≥ 3+c·min{ 2

3 +5x, 1
3 +

4x, 6x} ≥ 5 because c ≥ 17 and x = 1
3c .

3.2. If ALG packs one medium item into the first bin, then ALG distributes
5 medium items in one of two ways over the two additional bins, namely
{(4, 1), (3, 2)}. Hence, costALG ≥ 3 + c(13 + x − (1 − 12

17)) + c · min{ 1
3 +

4x, 3x} ≥ 5 because c ≥ 17 and x = 1
3c .

3.3. If ALG packs two or more medium items into the first bin, then costALG ≥
3 + c(23 + 2x − (1 − 12

17)) > 5 since c ≥ 17.
Case 4: ALG opens three additional bins.

4.1. If ALG packs at least one medium item into the first bin, then costALG ≥
4 + c(13 + x − (1 − 12

17)) ≥ 5 because c ≥ 17 and x = 1
3c .

4.2. If ALG does not pack any medium item into the first bin and ALG packs
at least three medium items in an additional bin, then costALG ≥ 4 + c ·
3x = 5 because x = 1

3c .
4.3. If ALG does not pack any medium item into the first bin (excluding

Case 4.1), and packs every two medium items into an additional bin
(excluding Case 4.2), then the adversary releases six more items, each
with weight 1

2 + y, where y = 1
2c , referred to as big items. Note that

2
17 + 1

3 + x + 1
2 + y ≤ 1 since c ≥ 17. Therefore the entire input can be

packed into 6 bins (as shown in Fig. 2) without any overload, thus we
have costOPT = 6, necessitating us to show that costALG ≥ 10.

4.3.1. If ALG opens six additional bins and packs each big item into a bin
(as shown in Fig. 2), then costALG = 10.

4.3.2. If ALG opens i additional bins (0 ≤ i ≤ 5), we claim that the total
overload is not smaller than 6−i

c . Since each of these i additionally
opened bins contains at least one big item, it follows that the weight
in each bin is at least 1

2 + y. As we still have 6 − i big items to pack,
we claim that, no matter how these are distributed over the bins,
each of these 6 − i big items will cause an overload of 1

c . Indeed,
1
2 + y + 1

2 + y = 1+ 1
c , leading to an overload of 1

c for each of the 6− i
remaining big items.
Thus, the claim that the total overload is at least 6−i

c holds. We have
costALG ≥ 4 + i + c · 6−i

c = 10.

10 K. Luo and F. C. R. Spieksma

Note that the equation costALG

costOPT
= 5/3 displayed in Case 3.1, Case 3.2, Case 4.1,

Case 4.2, Case 4.3. 	

Theorem 1 now follows from Lemma’s 1, 2, 3, and 4.

Fig. 2. Illustration of the packings found by ALG and OPT.

2.2 Lower Bounds for Convex Cost Functions

We consider a generalization of our problem BPOC, where the cost of each bin
is given by a convex function f(w) (where w > 0 represents the total size of the
items packed), with f(w) = 1 when 0 < w ≤ 1 (as shown in Fig. 3(1)). We refer
to such functions as lin-1 convex cost functions.

We claim that the proofs of Lemma’s 1, 2, 3, and 4, can be generalized to
arrive at the following conclusions that we state here without proof. Notice that
the quantity f−1(2) plays a crucial role - this quantity refers to an overload cost
that is equal to the cost of opening a second bin.

– For any lin-1 convex cost function f satisfying 5
3 ≤ f−1(2) < 2, no deter-

ministic algorithm for BPOC can achieve a competitive ratio smaller than
1

f−1(2)−1 .
– For any lin-1 convex cost function f satisfying f−1(2) > 5

3 , no deterministic
algorithm for BPOC can achieve competitive ratio smaller than 3

2 .
– For any lin-1 convex cost function f satisfying f−1(2) > 10+2

√
3

11 , no determin-
istic algorithm for BPOC can achieve competitive ratio smaller than 3+

√
3

3 .
– For any lin-1 convex cost function f satisfying f−1(2) > 18

17 , no deterministic
algorithm for BPOC can achieve competitive ratio smaller than 5

3 . See the

proof of Lemma 4 using x = f−1(2)−1
3 and y = f−1(2)−1

2 .

Online Bin Packing with Overload Cost 11

f(w) = 1 + c ·max{w − 1, 0}f(w)

w

f(w)

(1) (2)
w

(1,1) (1,1)

0 0

(f−1(2), 2) (1 + 1/c, 2)

Fig. 3. (1) lin-1 convex cost function; (2) linear cost function.

3 Upper Bounds: Proving Theorem 2

We propose the First-Fit Algorithm with Fixed Overload (in short, FFO). First-
Fit algorithm packs each item into the first opened bin where it fits, or opens a
new bin if the item does not fit into any currently opened bin. The main idea of
our algorithm, FFO, is to use First-Fit, but permits a fixed overload, O(c), for
each bin.

O(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞, if 0 < c ≤ 3
2

1
c , if 3

2 < c ≤ 9
5

2
3c , if 9

5 < c ≤ 14
3

1
3c , otherwise

(1)

Let k denote the number of bins and let wj denote the total weight of items in
bin j. The capacity of bin j in FFO is defined as sj = 1 + O(c), which is equal
to fixed space 1 plus the overload.

Algorithm 1. First-Fit Algorithm with Fixed Overload (FFO)
1: Input : overload cost c.
2: Initialization: O(c), h = 1, w1 ← 0, s1 ← 1 + O(c).
3: For each item i do
4: For j = 1, 2, ...h do
5: dj = sj − (wj + pi)
6: end for
7: If ∃j ∈ {1, 2, ..., h}, dj ≥ 0 do
8: pack i into bin j = min{j|dj ≥ 0}, wj = wj + pi
9: Otherwise do

10: h = h + 1, sh = 1 + O(c), pack i into bin h, and wh = pi
11: end if
12: end for
13: Output : k = h bins and wj for j = 1, 2, ..., k.

Proposition 1. The total weight of any two bins opened by FFO is greater than
1 + O(c).

12 K. Luo and F. C. R. Spieksma

Proposition 2. At least k − 1 bins have weight greater than 1+O(c)
2 .

Let C denote the set of opened bins and |C| = k. When c > 3/2, we have
1+O(c)

2 < 1. Let C1 denote the set of bins with weight no less than 1 (|C1| = k1),
let C2 denote the set of bins with weight in the interval [1+O(c)

2 , 1) (|C2| = k2),
and let C3 denote the set of bins with weight less than 1+O(c)

2 (|C3| = k3). Notice
that {C1, C2, C3} is a partition of C. According to Proposition 2, we know that
k3 ≤ 1. If k3 = 1, suppose the weight of that bin is δ; otherwise δ = 0.

In the proof of the forthcoming lemmas, we denote the total weight of the
items by W and the total overload of FFO by O. Let o be the average overload,
o = O/k1. Note that 0 ≤ o ≤ O(c). Note that costOPT ≥ W for c ≥ 1.

Lemma 5. FFO is 1-competitive for BPOC when c ≤ 1.

Since c ≤ 1, according to (1) and Line 7–8 in Algorithm 1, we know that FFO will
pack all items into one bin, i.e., k = 1, and hence costFFO = max{1, 1+c(W−1)}.
Obviously, costOPT = 1 + c · max{0, (W − 1)} = costFFO.

Lemma 6. FFO is c-competitive for BPOC when 1 < c ≤ 3
2 .

Proof. Since c > 1, according to (1) and Line 7–8 in Algorithm 1, we know
that FFO will pack all items into one bin, i.e., k = 1, and hence costFFO =
max{1, 1 + c(W − 1)}. Suppose OPT uses h (h ≥ 1) bins, we have costOPT ≥
max{h, h+c(W −h)}. W.l.o.g, suppose W ≥ 1, otherwise, costFFO = costOPT =
1. If W ≤ h, then costFFO

costOPT
≤ 1+c(W−1)

h ≤ 1+c(h−1)
1+(h−1) ≤ c; If W > h, then costFFO

costOPT
≤

1+c(W−1)
h+c(W−h) = 1+c(h−1)+c(W−h)

1+(h−1)+c(W−h) ≤ c. Thus costFFO

costOPT
≤ c. 	

Lemma 7. FFO is 3+c
3 -competitive for BPOC when 3

2 < c ≤ 9
5 .

Proof. Notice that costFFO = k + cO = k + c · k1 · o. If k2 ≥ 1, then W >

k1+k1 ·o+ 1+1/c
2 (k−k1) (based on Proposition 1); Otherwise W = k1+k1 ·o+δ.

We distinguish two cases based on k2.

Case 1: k2 ≥ 1. Note that costOPT ≥ W ≥ k1 + k1 · o + 1+1/c
2 (k − k1). We have

costFFO

costOPT
≤ k + c · k1 · o

k1 + k1 · o + (1/2 + 1/(2c))(k − k1)

≤ k + k1
(1/2 + 1/(2c))k + (1/2 + 1/(2c))k1

=
2c

c + 1
<

3 + c

3
,

where the second inequality follows from 0 ≤ o ≤ 1/c and the fact that
k+c·k1·o

k1+k1·o+(1/2+1/(2c))(k−k1)
increases as o increases; the last inequality follows

from 2c
c+1 − 3+c

3 = −(c−1)2−2
3(c+1) .

Case 2: k2 = 0. In the case of k1 = 0, we have costFFO = costOPT = 1 since
W = δ < 1. We distinguish three cases with respect to k1 ≥ 1.

Online Bin Packing with Overload Cost 13

2.1: k1 = 1. If k3 = 0, we have costFFO = costOPT = 1 + c · max{0,W − 1};
Otherwise k3 = 1, we have costOPT ≥ 2 because W ≥ 1 + 1

c , and hence
costFFO

costOPT
≤ 1+1/c·c+1

2 = 3
2 .

2.2: k1 = 2. Note that costFFO ≤ 2 + c · O + 1 = 3 + c · O. If O ≤ 1
c , we have

costOPT ≥ 2 + c · O since W ≥ 2 + O, and hence costFFO

costOPT
≤ 3+c·O

2+c·O ≤ 3
2 .

If 1
c < O ≤ 1, we have costOPT ≥ 2 + 1 = 3 since W > 2 + 1

c and
costFFO ≤ 2 + c + 1 = 3 + c since O ≤ 1, and hence costFFO

costOPT
≤ 3+c

3 .
Finally, If 1 < O ≤ 2

c ≤ 1 + 1
c , we have costOPT ≥ 3 + c(O − 1) since

W > 3 + (O − 1). Thus

costFFO

costOPT
≤ 3 + cO

3 + c(O − 1)
<

3 + c

3
,

where it follows from the fact that 3+cO
3+c(O−1) decreases as O increases.

2.3: k1 ≥ 3. Note that costFFO ≤ k1+c·k1·o+1 and costOPT ≥ W ≥ k1+k1·o.
We have

costFFO

costOPT
≤ k1 + c · k1 · o + 1

k1 + k1 · o
≤ 2k1 + 1

k1 + k1/c
≤ 2 × 3 + 1

3 + 3/c
<

3 + c

3
,

where the second inequality follows from 0 ≤ o ≤ 1/c and the fact that
k1+c·k1·o+1

k1+k1·o increases as o increases; the third inequality follows from k1 ≥
3 and the fact that 2k1+1

k1+k1/c decreases as k1 increases; the last inequality

follows from 2×3+1
3+3/c − 3+c

3 = 3c−c2−3
3c+3 = −(c−3/2)2−3/4

3c+3 < 0.

Concluding, the competitive ratio is max{ 3
2 , 3+c

3 } = 3+c
3 (since c ≥ 3

2). 	

Lemma 8. FFO is max{ 8

5 , 6c
6c+2}-competitive for BPOC when 9

5 < c ≤ 14
3 .

Specifically, the competitive ratio is 8
5 when 9

5 < c ≤ 8
3 ; and the competitive ratio

is 6c
3c+2 when 8

3 < c ≤ 14
3 .

Proof. Notice that costFFO = k + c · k1 · o. Recall that k3 ≤ 1. Similar to the
analysis in Case 1 of Lemma 7, we claim that W ≥ k1 + k1 · o + 1+2/(3c)

2 (k − k1)
if k2 ≥ 1. We distinguish two cases based on k2.

Case 1: k2 ≥ 1. Note that costOPT ≥ W ≥ k1 + k1 · o + 1+2/(3c)
2 (k − k1). We

have
costFFO

costOPT
≤ k + c · k1 · o

k1 + k1 · o + (1/2 + 1/(3c))(k − k1)

≤ k + 2k1/3
(1/2 + 1/(3c))k + (1/2 + 1/(3c))k1

≤ 6c

3c + 2
,

where the second inequality follows from 0 ≤ o ≤ 2/(3c) and f ′(o) > 0 in
which f = k+c·k1·o

k1+k1·o+(1/2+1/(3c))(k−k1)
.

14 K. Luo and F. C. R. Spieksma

Case 2: k2 = 0. Since k3 ≤ 1, costFFO ≤ k1 + c · k1 · o + 1. Obviously, in the
case of k1 = 0, we have costFFO = costOPT = 1. We distinguish three cases
with respect to k1 ≥ 1.

2.1: k1 = 1.
If k3 = 0, we have costFFO = costOPT = 1+ c ·max{0,W − 1}. If k3 = 1,
we have costOPT ≥ 1 + c · 2

3c = 5/3 because W ≥ 1 + O + δ ≥ 1 + 2
3c .

Since costFFO ≤ 1 + c · 2
3c + 1 = 8/3. Thus costFFO

costOPT
≤ 8

5 .
2.2: k1 = 2.

If O ≤ 1
c , we have costOPT ≥ 2 + c · O since W ≥ 2 + O and costFFO ≤

2 + c · O + 1 = 3 + c · O, and hence costFFO

costOPT
≤ 3+cO

2+cO ≤ 3
2 . If 1

c ≤ O ≤ 4
3c

(Note that O ≤ 4
3c because k1 = 2), we have costOPT ≥ 2+1 = 3 because

W ≥ 2+ 1
c and costFFO ≤ 2+4/3+1 = 13/3 because O ≤ 4

3c , and hence
costFFO

costOPT
≤ 13

9 ≤ 8
5 .

2.3: k1 ≥ 3. Since costOPT ≥ W ≥ k1 + k1 · o, we have

costFFO

costOPT
≤ k1 + c · k1 · o + 1

k1 + k1 · o

≤ 5k1/3 + 1
k1 + 2k1/(3c)

≤ 6
3 + 2/c

=
6c

3c + 2
,

where the second inequality follows from 0 ≤ o ≤ 2/(3c) and f ′(o) =
k1(k1(c−1)−1)
(k1+k1·o)2 > 0 in which f = k1+c·k1·o+1

k1+k1·o ; the third inequality follows

from k1 ≥ 3 and g′(k1) < 0 in which g = 5k1/3+1
k1+2k1/(3c) .

In sum, the competitive ratio is max{8
5 , 6c

3c+2}. Specifically, the competitive ratio
is 8

5 when 9
5 < c ≤ 8

3 ; and the competitive ratio is 6c
3c+2 when 8

3 < c ≤ 14
3 . 	

Next we analyze the competitive ratio of FFO when c > 14/3. Notice that
3(1+O(c))

4 < 1 because O(c) = 1
3c and c > 14/3. We partition C2 as follows: let

C21 denote the set of bins with weight in the interval [3(1+O(c))
4 , 1) (|C21| = k21),

let C22 denote the set of bins with weight in the interval [2(1+O(c))
3 , 3(1+O(c))

4)
(|C22| = k22), and let C23 denote the set of bins with weight in the interval
[1+O(c)

2 , 2(1+O(c))
3) (|C23| = k23). Notice that {C21, C22, C23} is a partition of C2.

The following proposition is useful.

Proposition 3. Each bin in C22 (except the earliest opened bin of C22) contains
at most two items and each of them is greater than 1+O(c)

4 ; and each bin in C23

(except the earliest opened bin of C23) contains exactly one item.

Based on Proposition 3, we can formulate Lemma 9 that we state here with-
out proof.

Lemma 9. FFO is 7
4 -competitive for BPOC when c > 14/3.

Theorem 2 now follows from Lemma’s 5, 6, 7, 8, and 9.

Online Bin Packing with Overload Cost 15

References

1. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algo-
rithm for online bin packing. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual
European Symposium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki,
Finland. LIPIcs, vol. 112, pp. 5:1–5:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018)

2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new lower bound for
classic online bin packing. In: Bampis, E., Megow, N. (eds.) WAOA 2019. LNCS,
vol. 11926, pp. 18–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39479-0 2

3. Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio
for online bin packing. J. Comput. Syst. Sci. 102, 1–17 (2019)

4. Coffman, E., Lueker, G.S.: Approximation algorithms for extensible bin packing.
J. Sched. 9(1), 63–69 (2006)

5. Csirik, J.: An on-line algorithm for variable-sized bin packing. Acta Inf. 26(8),
697–709 (1989)

6. Dell’Olmo, P., Speranza, M.G.: Approximation algorithms for partitioning small
items in unequal bins to minimize the total size. Discrete Appl. Math. 94(1–3),
181–191 (1999)

7. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

8. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp.
429–441. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-
7 36

9. Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for
variants of open-end bin packing. Inf. Process. Lett. 109(1), 32–37 (2008)

10. Epstein, L., Levin, A.: Bin packing with general cost structures. Math. Program.
132(1–2), 355–391 (2012)

11. Epstein, L., Levin, A.: An AFPTAS for variable sized bin packing with general
activation costs. J. Comput. Syst. Sci. 84, 79–96 (2017)

12. Johnson, D.S., Demers, A.J., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3(4), 299–325 (1974)

13. Kinnersley, N.G., Langston, M.A.: Online variable-sized bin packing. Discrete
Appl. Math. 22(2), 143–148 (1989)

14. Li, C.L., Chen, Z.L.: Bin-packing problem with concave costs of bin utilization.
Naval Res. Logist. (NRL) 53(4), 298–308 (2006)

15. Seiden, S.S.: An optimal online algorithm for bounded space variable-sized bin
packing. SIAM J. Discrete Math. 14(4), 458–470 (2001)

16. Sgall, J.: Online bin packing: old algorithms and new results. In: Beckmann,
A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 362–372.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08019-2 38

17. Ullman, J.D.: The performance of a memory allocation algorithm. Technical report
100, Princeton University, Prinston, NJ (1971)

18. Yang, J., Leung, J.Y.: The ordered open-end bin-packing problem. Oper. Res.
51(5), 759–770 (2003)

19. Ye, D., Zhang, G.: On-line extensible bin packing with unequal bin sizes. Discret.
Math. Theor. Comput. Sci. 11(1), 141–152 (2009)

https://doi.org/10.1007/978-3-030-39479-0_2
https://doi.org/10.1007/978-3-030-39479-0_2
https://doi.org/10.1007/978-3-662-43948-7_36
https://doi.org/10.1007/978-3-662-43948-7_36
https://doi.org/10.1007/978-3-319-08019-2_38

Scheduling Trains with Small Stretch
on a Unidirectional Line

Apoorv Garg1(B) and Abhiram Ranade2(B)

1 Coupa Software India Pvt. Ltd., Pune 411016, Maharashtra, India
apoorv.garg@gmail.com

2 Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
ranade@cse.iitb.ac.in

Abstract. We investigate the problem of scheduling trains to minimize
max-stretch, where the stretch suffered by a train is the ratio of its actual
finishing time to its minimum possible finishing time. This metric is pre-
sumably more appropriate for train scheduling because it is fairer. Our
target network, introduced in [11], is an in-comb: a unidirectional railway
line with equidistant stations, each initially having at most one train; in
addition, there can be at most one train poised to enter each station.
A train takes unit time to enter a station or to move from one to the
next. Trains must move to their destinations such that at any time there
can be at most one train at any station and on the track connecting
it to the next. We prove that minimizing max-stretch is NP-hard even
on this simple network. We also give an O(1)-approximation algorithm.
Our problem can also be interpreted as packet scheduling on in-comb, a
special case of in-trees. Packet scheduling on general graphs and some
special topologies has been studied earlier with different objective func-
tions, e.g., makespan, flowtime, and max-delay, but there has been little
work on max-stretch.

Keywords: Approximation algorithms · Combinatorial optimization ·
In-comb network · Max-stretch minimization · NP-hard · Packet
scheduling · Train scheduling · Unidirectional line

1 Introduction

In the train scheduling problem [2,8,19,21], we are interested in moving a set of
trains to their destinations, respecting track capacity and minimizing an appro-
priate cost metric. A natural expectation is: if trains are to be late, they should
be late in proportion to their planned travel times. This can be achieved by mini-
mizing max-stretch, where the stretch of a train is the ratio of its actual finishing
time to its minimum possible finishing time. Such fairness is not guaranteed by
minimizing other metrics such as max-delay or makespan.

The problem is modeled using a graph: nodes represent stations, links repre-
sent tracks. Initially, each station may hold one or more trains—represented as
point objects—to be moved to specified stations using specified paths. On each
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 16–31, 2021.
https://doi.org/10.1007/978-3-030-67899-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_2

Scheduling Trains with Small Stretch on a Unidirectional Line 17

link there can be at most one train at a time and it takes a specified time for
a train to traverse a link. There is also a buffering constraint: each station can
hold at most a specified number of trains. Our goal is to schedule the trains such
as to minimize their max-stretch, where in any schedule the stretch of a train is
defined as the ratio (f/fm) between its actual finishing time f in that schedule
and its minimum finishing time fm across all possible schedules which, in our
simple problem, equals the train’s path-length.

This problem is also studied in packet scheduling literature, using the terms
routers, channels, and packets in place of stations, tracks, and trains. We do not
know of any work on max-stretch; for other metrics, the problem is known to
be NP-hard in various versions. With bounded buffering at nodes, minimizing
makespan or max-delay—even to a constant factor—is NP-hard even on leveled
directed graphs in which packets move from the lowest numbered level to the
highest numbered level [6]. Since path-lengths of all packets are the same, the
hardness result also applies to max-stretch but this is rather degenerate. Assum-
ing unbounded buffering at nodes, minimizing makespan is NP-hard on trees as
well as on general graphs [20]. On trees, a 2-approximation can be obtained [20].
However, on unidirectional rings, in-trees, and out-trees, the optimal makespan
can be achieved [16]. For a variant of the problem where buffers are available
in links rather than at nodes, O(1)-approximations, using only O(1) buffers in
each link are known on general graphs [14,15,23,26].

There is also a large body of experimental work on train scheduling using
various approaches, such as simulation, heuristics, mixed integer linear program-
ming, multi-agent systems, genetic algorithms, reinforcement-learning, etc. [3–
5,7,9,12,13,17,18,24,25,27,29], but we do not know of papers which consider
stretch. In any case our goal in this paper is to establish provable bounds.

Given the practical importance of the problem, it is worth asking whether
good scheduling is possible for simpler networks. We have not found any such
results for max-stretch. In this paper we begin such a study by considering an
in-comb network, a special case of in-trees. The in-comb, defined formally later,
is a directed path with an extra, branch edge entering every node on the path.
There can be a train in each node and one poised to enter it from the branch.
Trains may exit the network in any node.

Our motivation for studying this network is two fold. First, for ease of man-
agement, a large railway network is often broken into sub-networks, each con-
sisting of a trunk route with trains entering and exiting from and to branch lines.
Each of the two directions of the route is like an in-comb. Second, the in-comb is
perhaps the simplest interesting network, and it would be good to understand the
computational complexity of scheduling on it with minimum max-stretch. We
further simplify it, assuming identical traversal times for all trains on all links.
Minimizing max-delay is known to be NP-hard on this simple network [11].

Main Results

1. Minimizing max-stretch is NP-hard for train scheduling on in-comb (Sect. 4).
2. A polytime algorithm to schedule trains on the in-comb with a max-stretch

O(1) times the optimal (Sect. 3).

18 A. Garg and A. Ranade

w1 w2 wN−1 wN

0 1 2 N−1 N

Fig. 1. The in-comb network

2 Preliminaries

2.1 Network Definition and Problem Statement

Our target network is an in-comb (Fig. 1). It consists of:

1. Line: sequence of stations, labeled 0, 1, . . . , N , and links (s − 1, s) ∀s ∈ [N]
2. Branches: for each station s > 0, an outer ws and a link (ws, s)

For every node (station or outer), at most one train is given to be there at time 0,
along with its destination. No more trains are introduced into the network later.
Trains starting at stations are called internal trains; those starting at outers
external trains. Each node can hold at most one train at a time. Any train takes
one step1 to enter a station from its outer or to move from a station to the next,
and vanishes (exits the network) on reaching its destination. An external train
entering the line is called an entry, to distinguish it from a movement which
means a train moving from one station to the next. The required output is a
schedule for the trains, minimizing the max-stretch. (Note: A train of path-length
� finishing its journey at time f is said to have suffered a stretch f/�).

2.2 The Chain-Hole View

Our arguments to prove the claimed results are based on a chain-hole view of
schedules [11], summarized next.

Hole refers to a vacancy at a station s. The hole might have been at s since
the very beginning (time 0), or created later by the exit of a train at s, or it
might have come to s from upstream. Some clarifications are needed regarding
holes and their progress on the line. First, for convenience we assume an infinite
number of suitably numbered artificial stations2 to the left and right of the line,
with no external or internal trains, i.e., each artificial station having a hole.
Second, suppose a station u has a hole h at time t. For any v > u, if trains at
stations u + 1, . . . , v − 1 remain stationary but the trains at stations u−1 and
v move, the hole in station u will vanish and a hole will appear in station v.
1 ∀t ∈ Z

+, step t is the unit time duration (t − 1, t] that ends at time t.
2 Stations −1, ..., −∞ upstream of station 0, and N + 1, ..., ∞ downstream of N .

Scheduling Trains with Small Stretch on a Unidirectional Line 19

Fig. 2. Spatial view of a chain 〈p0, h0, p1, h1, . . . , pk−1, hk−1, pk〉. Station s0 is the origin
(•) of the internal train p0 with which the chain begins. Stations s1, . . . , sk are the entry
points (�) of external trains p1, . . . , pk. s′

0, s
′
1, . . . , s

′
k−1 are the destinations (◦) of non-

terminal trains p0, p1, . . . , pk−1, where the holes h0, h1, . . . , hk−1 get created when those
trains exit. Links (–) crossed by train-movements of the chain are shown in red while
those crossed by hole-jumps are in green. (Color figure online)

We define this as the hole h jumping from station u to station v. In this view
both holes and trains can move forward, but only a hole can jump across several
stations in a step. It is also useful to consider that holes and trains contend for
links in order to progress down the line: across any link in any step, either a
train can move or a hole can jump but not both.

An external train can enter a station s only by filling a hole that might have
already been at s, or might jump to s from upstream. When a train p1 exits the
line at a station s′

1, it leaves behind a hole which can be used for the entry of
another train p2 at a station s2 > s′

1; p2 would exit at some station s′
2 ≥ s2,

re-creating the hole; and so on. Such a sequence of trains is called a chain. Thus,
a chain consists of a preexisting hole or an internal train followed by a sequence
of some k external trains p1 . . . pk; p1 must fill a hole h0 which is a preexisting
hole or a hole created by the exit of an internal train p0, and for j > 1, pj must
fill the hole hj−1 created by the exit of pj−1 (See Fig. 2). The chain is said to
begin with the preexisting hole h0 (or the train p0). Clearly, in any schedule,
every external train will be placed in some chain.

In order to build a schedule, we must somehow form such chains of trains.
After we form chains, we can worry about how to move the trains so that the
entries happen as per the chains. This is the structure of our algorithms.

3 An O(1)-Approximation of the Optimal Max-Stretch

The first ingredient of our algorithm is a strategy for scheduling any single class
of external trains in an optimal manner, where trains with path-lengths between
2i−1 and 2i − 1 constitute class i. This is discussed in Sect. 3.1.

The second ingredient is: schedule classes in increasing class order. Since the
path-lengths of trains in classes 1 through i−1 roughly add up to the path-length
of a class i train, the delay caused to the class i trains by lower class trains itself
does not substantially affect the stretch of class i trains. However, the movement
of lower class trains causes the holes to move. So this makes it harder to apply

20 A. Garg and A. Ranade

the lower bound on delivery time of class i trains derived in Sect. 3.1. We show
in Sect. 3.2 that the movement of holes from their initial positions only causes a
constant factor increase in the stretch. A second problem is that in the optimal
schedule, class i trains may need to use holes created by departure of internal
trains of classes up to some j. We show that we can estimate j through a pre-
computation. Thus, before scheduling the movement of class i external trains,
we deliver all class j internal trains. Again, this may not create the holes we
need in the same positions as in the optimal. In Sect. 3.2, we also show that the
drift of these holes also does not matter too much.

3.1 Schedule for a Single Class Using only Preexisting Holes

We consider how to minimize the makespan of a class i using only preexisting
holes and holes created by the exits of class i external trains. For ease of exposi-
tion, rather than say “we do not use the holes created by the exit of any internal
trains”, we modify all internal trains to have the last station N as their des-
tination. Positions of the preexisting holes remain unchanged. Note that since
the path-lengths in a class differ at most by a factor of 2, minimizing makespan
instead of max-stretch may worsen the latter at most by a factor of 2.

We show below that good schedules are possible if and only if the initial holes
are well distributed among the external trains, and to the extent they are well
distributed. We begin with the lower bound: good schedules are not possible if
some region with many external trains has very few holes.

Lemma 1. Suppose all internal trains go to the last station N . Suppose a con-
tiguous sequence S of stations has w external trains of class i and h holes. Then,
class i trains have a makespan at least max

{
2i−1,min

{
w·2i−1

2h ,
√

w · 2i−1
}}

.

Proof. Suppose all w external trains of class i enter by time T . Their makespan
F is at least T + d−1, where d=2i−1, and one of the following must be true:

1. At least w
2 trains enter in chains beginning with the holes within S: at most

h can enter in step 1 (and exit in step d, re-creating those h holes), h more in
step d+1, and so on. By time T , at most

(
1 + T−1

d

)
h trains can enter. But all

do enter by time T , i.e.,
(
1 + T−1

d

)
h ≥ w

2 =⇒ T +d−1 ≥ wd
2h =⇒ F ≥ wd

2h .
2. At least w

2 trains enter in chains beginning with the holes upstream of S.
Since in each step no more than one hole may jump into S from upstream,
in each of the first d steps at most one train can enter. Each can exit d steps
later to re-create a hole, so in the 2nd set of d steps, trains can fill these holes
and another d holes from upstream, i.e., two entries per step. In nth set, at
most n entries per step. Thus, at most q(q+1)d

2 + (q+1)r entries by time T ,
where q=�T

d � and r=T mod d, i.e., q(q + 1)d
2 + (q + 1)r ≥ w

2 and:
(a) If r = 0 then T = qd and (q + 1

2)2d2 > wd ⇒ T + d
2 >

√
wd ⇒ F ≥ √

wd

(b) If r ≥ 1 then (qd+d)(qd+2r) ≥ wd ⇒ (qd+r+d−1)2 ≥ wd ⇒ F ≥ √
wd

Thus, F ≥ min
{

wd
2h ,

√
wd

}
. But F ≥ d, the minimum class i path-length.

Scheduling Trains with Small Stretch on a Unidirectional Line 21

We next prove that if every region, or segment as defined below, has a large
number of holes as compared to the number of external trains within it then all
trains can be scheduled with small makespan.

Definition 1 (Class i segment of size w). Any contiguous sequence of sta-
tions initially having w external trains of class i (at their outers), such that:

1. The first station of the sequence has a class i external train.
2. Either the downstream neighbor of its last station has a class i external train,

or the sequence includes the downstream artificial stations N+1, ...∞.

Lemma 2. Suppose all internal trains go to the last station N , and i, w, and
h are given such that h ≥ min{w, 2i} and every class i segment of size w has at
least h holes. Then in polytime we can schedule class i trains to finish by time
2h + w·2i

h + 2i.

Proof Sketch. Here we only give the main idea (the details are in Appendix A):
We partition the network into a sequence of class i segments of size w and in
each we form h chains, every chain having at most w/h + 1 trains. In the first
h steps, the chain-heads enter in parallel in all segments—each filling one of the
h or more initial holes of the w-sized segment upstream of it. Afterwards, the
chains progress in parallel; conflicts are resolved by prioritizing external trains
over internal, and downstream chains over upstream. We can show that all chains
finish before time 2h + w · 2i/h + 2i.

Next we define grain-size of an instance, which tells how to apply the lemmas.

Definition 2 (Grain-size for class i). The smallest w ∈ {1, ...,Wi} for which
every class i segment of size w initially has at least

√
w·2i holes, where Wi is

the number of class i external trains.

Note: Since the segment of size Wi has infinite holes, grain-size is well defined.

Theorem 1. Suppose all internal trains go to the last station N . In polytime,
we can schedule class i trains to finish by time O(F ∗), where F ∗ is their optimal
makespan. Moreover, F ∗ ≥ F̃ = max

{
2i−1, 1

4

√
w · 2i−1

}
where w is the grain-

size for class i.

Proof. Let d = 2i−1, the minimum class i path-length, and w be the grain-
size for class i, i.e., each class i segment of size w has at least h =
√2wd�
holes. Then

√
2wd ≤ h <

√
w · 2d + 1 and Lemma 2 gives a schedule where

class i trains finish by time F < 3
√

w · 2d + 2d + 2. For w ≥ 2, we know that
some segment of size w

2 must have less than
√

wd holes, so applying Lemma 1

we have: F ∗ ≥ max
{

d,min
{

1
4

√
wd, 1√

2

√
wd

}}
= max

{
d,

√
wd
4

}
. For w = 1,

F ∗ ≥ d ≥ max
{

d,
√

wd
4

}
. Thus, F ∗ ≥ F̃ = max

{
d,

√
wd
4

}
≥ 1

8

√
wd + 1

2d.

22 A. Garg and A. Ranade

Algorithm 1: Preprocessing
Input: Π

1 for i = 1, ..., �log N	+1 do
2 Π0 = Π;
3 For j > 0: Πj = Π with all internal trains of classes 0, ..., j replaced by

holes, and destinations of all internal trains of classes > j set to N ;
4 for j = 0, ..., log N do
5 w(j) ←− the grain-size for class i in Πj as per Definition 2;

6 M(j) ←− max
{

2j−1, 2i−1, 1
4

√
w(j) · 2i−1

}
;

7 end

8 Ji ←− argminj M(j); wi ←− w(Ji); hi ←− �√wi ·2i;
9 end

Output: (Ji, wi, hi) for each class i ∈ {1, ..., �log N	+1}

3.2 The Overall Scheduling Algorithm

We now consider the scheduling of all trains, using holes created by the exits of
internal trains as well as the preexisting holes. As mentioned earlier, the classes
are scheduled one after another in ascending order. Scheduling of each class i is
as in the previous section but with the following two crucial differences.

First, for the entry of external trains, now we can also use holes created by
the exits of internal trains (in addition to the preexisting holes). Which of them
to use for class i has to be carefully decided, and the makespan lower-bound
accordingly adjusted. We do that in a preprocessing module.

Second, delivering the previous classes 1, ..., i − 1 delays class i and also
alters the distribution of holes (preexisting as well as created) relative to its
external trains. However, all those holes do become available for class i as they
are re-created at the exits of the trains of previous classes, although they appear
shifted somewhat downstream of their initial positions. We show in a scheduling
module that the delay and the shifts are small enough—relative to the class
i path-lengths—for us to still schedule class i with a max-stretch which is a
weighted sum of the max-stretch lower-bounds of classes i, i − 1, ..., 1 with the
corresponding weights in a decreasing geometric progression. Since the optimal
max-stretch for all trains can be no smaller than the maximum of the class-wise
lower-bounds, the overall max-stretch we achieve is only a constant times the
optimal (Theorem 2).

Preprocessing. This module (Algorithm 1) answers the following question:
for entering class i external trains, which holes should we use? In principle, we
could use the holes left behind by internal trains of any class j as well as the
preexisting holes. So we create an instance Πj by removing internal trains of
classes 1, . . . , j and find the grain-size w(j) for class i trains in Πj , and then
use Theorem 1 to determine a lower bound M(j) on the class i makespan in
Πj . Clearly, minj M(j) is a lower bound on the class i makespan in Π. The

Scheduling Trains with Small Stretch on a Unidirectional Line 23

Algorithm 2: Scheduling
Input: Π, (Ji, wi, hi) for each class i ∈ {1, . . . , �log N	+1}

1 for i = 1, ..., �log N	 + 1 do
2 Fi−1 ←− the number of steps already executed for classes 1, ..., i − 1;

3 Execute 2Ji movement steps, with no entries;
4 Schedule class i using Lemma 2 with w = ŵ = riwi and

h = ĥ = rihi − (Fi−1+2Ji), where ri = �Fi−1+2Ji

hi
+ max{Fi−1+2Ji

4hi
, 2i

hi
};

5 end

corresponding j is returned as Ji. The corresponding grain-size w(j) is returned
as wi, and the promised number of holes per grain as hi. We summarize this as
follows.

Lemma 3. Let F ∗
i denote the optimal makespan if only class i trains are to

be delivered. Then F ∗
i ≥ max{2Ji−1, 2i−1, 1

4

√
wi ·2i−1}, where Ji, wi are as per

Algorithm 1.

Proof. The last two terms are as per Theorem 1. The first term arises as 2Ji−1

steps have to elapse in order to use the holes created by exit of class Ji trains.

Scheduling. We schedule the classes one after another in ascending order. Class
i trains use the holes left behind by internal trains of classes 1, . . . , Ji where Ji is
as determined during preprocessing. To ensure that these trains have exited, we
run 2Ji movement steps. Note that these holes will not be present at the same
positions as in Πj . To account for this and also to account for all the movements
that occurred while delivering class 1, . . . , i−1 trains, we use a somewhat larger
grain-size than wi. (See Algorithm 2.)

Lemma 4. Let Fi denote the makespan for class i trains as per our algorithm,
F ∗

i the optimal class i makespan, and F0 = 0. Then Fi = 3
2Fi−1 + O(F ∗

i).

Proof. In ΠJi
, every class i segment of size wi has at least hi ≥ √

wi ·2i holes.
Thus, in Π, every class i segment of size ŵ = riwi has rihi or more potential
holes, i.e., actual holes and internal trains of classes 1, ..., Ji. During the first Fi−1

steps, some of them turn into holes and get used for entries of previous i−1 classes
but then also get re-created. By the end of the following 2Ji movement steps, all
of them would be available as holes but possibly downstream from their initial
positions. At most one train or hole may move out of any segment in a step, hence
at time Fi−1 + 2Ji , every segment of size ŵ must have at least ĥ = rihi−(Fi−1 +
2Ji) holes. Simplifying, we get: max

{
1
4 (Fi−1 + 2Ji), 2i

} ≤ ĥ < 1
4 (Fi−1 +

2Ji) + 2i + hi, which implies: ĥ ≥ 2i ≥ min{ŵ, 2i}. Thus, Lemma 2 can indeed

24 A. Garg and A. Ranade

be used with segment-size ŵ, and ĥ holes per segment, to let class i trains finish
by time:

Fi = (Fi−1 + 2Ji) + 2ĥ + ŵ · 2i/ĥ + 2i

< (Fi−1 + 2Ji) +
1

2
(Fi−1 + 2Ji) + 2i+1 + 2hi +

(ĥ + Fi−1 + 2Ji) · wi · 2i

hi · ĥ
+ 2i

∵ ĥ < 1
4
(Fi−1 + 2Ji) + 2i + hJ , ŵ = rwi , r =

ĥ+Fi−1+2Ji

hi

<
3

2
Fi−1 +

3

2
2Ji + 2hi + 5wi · 2i/hi + 3 · 2i ∵ 1

4
(Fi−1 + 2Ji) < ĥ

<
3

2
Fi−1 +

3

2
2Ji + 2

√
wi · 2i + 2 + 5

√
wi · 2i + 3 · 2i

∵
√

wi · 2i ≤ hi <
√

wi · 2i + 1

=
3

2
Fi−1 + O(F ∗

i)

The last line follows from that F ∗
i ≥ max{2Ji−1, 2i−1, 1

4

√
wi ·2i−1} by Lemma 3.

Theorem 2. Our schedule has a max-stretch O(1) times the optimal.

Proof. Let X∗
i be the optimal class i max-stretch. Clearly, the overall max-

stretch X∗ ≥ X∗
i for all i. Let Xi be the class i max-stretch in our schedule.

We know that Fi = 3
2Fi−1 + O(F ∗

i). Thus Fi = O(1)
∑i

k=1

(
3
2

)i−k
F ∗

k .
Since trains of class k have path-lengths < 2k, we have X∗

k >
F ∗

k

2k
⇒ F ∗

k <

2kX∗
k . Since trains of class i have path-lengths at least 2i−1, we get Xi ≤

Fi

2i−1 = 2−i+1Fi. Substituting we have: Xi = 2−i+1 · O(1)
∑i

k=1

(
3
2

)i−k 2kX∗
k =

O(1)
∑i

k=1

(
3
4

)i−k
X∗

k = O(1)X∗ ∑i
k=1

(
3
4

)i−k = O(X∗), because X∗
k ≤ X∗.

4 NP-Hardness

We reduce from the strongly NP-hard 3-Partition problem [10], defined below.

Definition 3 (Problem 3P). Let U be a set of positive integers, and S(U) =∑
u∈U u. Let B = |U |

3 and C = S(U)
B be integers and C

4 < u < C
2 ∀u ∈ U . Can U

be partitioned into B triples such that each triple adds up to the same value C?

The core of the reduction is a solver widget. This contains a train for each
integer in the 3P instance. If and only if the 3P instance has a solution, the three
trains corresponding to each triple in the partition get linked into a single chain.
For making sure that only B chains get formed, we use a hole-blocker widget to
prevent too many holes reaching the solver. The widgets, defined next, have size
polynomial in S(U), the size of the 3P instance in unary.

Lemma 5. For any 3P instance U , there exists a widget Solver(U) with NU

stations and integers T and L such that NU , T, L are polynomial in S(U), NU >
4L, and:

Scheduling Trains with Small Stretch on a Unidirectional Line 25

1. If U has a solution then the trains of the widget can be scheduled with a max-
stretch at most XU = 1 + T

L , and in each step, a train can enter the solver
from upstream and subsequently move forward non-stop.

2. If the trains can be scheduled with max-stretch ≤ XU and no hole enters the
widget from upstream during the first 2T steps, then U must have a solution.

Proof. Let U = {u1, . . . , un} be the 3P instance, where n = |U |. Suppose α = 4B
and NU = 2B + αBC + αC

4 . Define Solver(U) as stations s1, ..., sNU
such that:

1. The first B stations s1, ..., sB have holes, labelled respectively as h1, ..., hB .
2. For each ui, we have an external train Qi with path-length αui. These trains

wait at outers downstream of sB such that paths of all Qis are node-disjoint.
Let sD be the destination of the most downstream of Qis, i.e., D = B+αBC.

3. Outers of sD+1...sD+B have trains R1...RB , each with path-length L = αC
4 .

4. sB+1...sD+B have trains going to the last station N , while sD+B+1...sNU
have

holes.

Clearly, NU > 4L and L,NU are polynomial in S(U).
Now suppose U has a solution {U1, . . . , UB}. Then schedule the trains as

follows. For each k ∈ {1, . . . , B}, construct a chain c′
k consisting of:

1. the hole hk at station sk,
2. the three external trains (Qis) for the three integers in Uk, and
3. the external train Rk.

In each step k ∈ [B], let the first train of c′
k enter using hk. Then let all chains

progress in parallel—prioritize entries over movements and arbitrarily resolve the
conflicts among entries. Entries occur in at most n + B steps. In other steps, for
each c′

k, a non-terminal train moves on the line unless Rk has already entered;
there can be at most

∑
u∈Uk

(αu − 1) = αC − 3 such steps.3 Then at most
T = (αC − 3) + (n + B) = α(C + 1) − 3 steps occur by the time Rk has entered,
i.e., all Qis and Rks have entered by time T . (Clearly, T is polynomial in S(U).)
So no train needs to halt after time T , i.e., max-delay ≤ T . Since every train
has a path-length ≥ L, max-stretch ≤ 1 + T

L = XU . Moreover, since the entries
do not use any holes from upstream of the widget, in each step a train from
upstream can enter the widget and then also move ahead non-stop.

Finally, suppose the trains can be scheduled with max-stretch ≤ XU such
that no upstream hole enters the widget in the first 2T steps. Consider the set of
chains induced by the schedule. Every Qi has a path-length αui < αC

2 = 2L, and
Rk has path-length L. So each suffers a delay < 2L(XU − 1) = 2T , i.e., enters
by time 2T , hence it can not fill a hole from upstream of the widget. All internal
trains go to the last station N . Therefore, entries can use the B holes h1, ..., hB

or exit holes of other external trains, i.e., the chain-set has at most B chains,
say c′

1, ..., c
′
B . Clearly, no two Rks can be in same chain, so each must be the

terminal train of a chain. Then Qis must be the non-terminal trains. ∀k ∈ [B],
let Uk be the set of integers corresponding to the non-terminal trains of c′

k. Then

3 An external train with path-length l moves only l − 1 steps on the line.

26 A. Garg and A. Ranade

{U1, ..., UB} is a partition of U . Since Rk has a path-length L and a stretch at
most 1+ T

L , it must enter by time T +1, i.e., the path-lengths of the non-terminal
trains of c′

k add up to at most T = α(C + 1) − 3, i.e., Uk adds up to at most
T
α = (C + 1) − 3

α < C + 1, i.e., at most C. Then, since C
4 < u < C

2 ∀u ∈ U , the
partition {U1, ..., UB} must be a valid solution to the 3P instance U .

Lemma 6. Given integers � ≥ 1 and τ ≥ 2, ∃ a widget HoleBlocker(�, τ) of size
polynomial in � and τ such that:

1. Suppose there are at least 2� stations downstream of the widget, and the wid-
get’s trains can move downstream from the widget and then continue non-stop.
Then they can be scheduled with a max-stretch at most XHB = 1 + τ−1

� .
2. Suppose the widget’s trains can be scheduled with max-stretch at most XHB.

Then no holes go downstream from the widget during the first τ steps.

Proof. Let HoleBlocker(�, τ) consist of blocks F0, . . . , Fq−1, E, Fq from upstream
to downstream, where q = �τ/��. For each b ∈ {0, ..., q}, Fb has τ − b� stations,
each with an external train going a distance � and an internal train going to the
last station N . The external trains are labeled Pb,τ−bl to Pb,1 from upstream to
downstream. E has � stations with only internal trains, each going to the last
station N . Overall, the widget has w = (q + 1)(q�/2 + r) external trains (where
r = τ mod �) and w + � internal trains. Clearly, its size is polynomial in � and τ .

To prove part 1, we make τ chains c1, ..., cτ . Each cj consists of the external
trains Pb,j ∀b ∈ {0, ..., q}. In each step j ∈ {1...τ}, we let the first train P0,j of
cj enter using a hole from the artificial stations −1,−2, After the entry of its
first train, each chain progresses non-stop. It is easy to see that all chains can
do so in parallel, and that the number of external trains that will enter by time
τ = q� + r is �q(q + 1)/2 + r(q + 1) = (q + 1)(q�/2 + r) = w, i.e., all of the
Pb,js will enter by time τ . Then all trains move non-stop to their destinations.
So any external train suffers a delay at most τ − 1 and hence a stretch at most
1+ τ−1

� = XHB ; any internal train suffers a delay at most τ and hence a stretch
at most 1 + τ/2� ≤ XHB .

To prove part 2, we note that since there were no holes in the widget and all
internal trains go to the last station N , entries may fill the external holes (from
artificial stations −1,−2, ...) or the exit holes of other external trains. Moreover,
in any step at most one external hole can enter the widget. Then, it is easy to
see (similar to part 2 of the proof of Lemma 1) that by time τ = q� + r, at most
(q�/2+ r)(q +1) trains can enter, but that is exactly the count w of the external
trains. That means if in any of the first τ steps a hole goes downstream from the
widget, i.e., we miss using that hole to enter one of the widget’s external trains,
then not all of those trains can enter by time τ , which implies at least one of
them will suffer a delay of τ or more and hence a stretch at least 1 + τ

� > XHB .

With the two widgets defined above, we can now prove the hardness result.

Theorem 3. Minimizing max-stretch on in-comb is NP-hard.

Scheduling Trains with Small Stretch on a Unidirectional Line 27

Proof. The proof is by reduction from the 3-Partition problem. For an instance
U of the 3-Partition problem, our Train Scheduling instance is as follows.

The in-comb network consists of a HoleBlocker(�, τ) followed by a Solver(U).
We choose � = 2L and τ = 2T + 1, where T,L are as promised by Lemma 5.
Note that the size of our solver widget is NU > 4L, so the path-length of every
internal train of the hole-blocker is at least 4L = 2�, as required by Lemma 6.
Then it can be seen from Lemmas 5 and 6 that the size of the train scheduling
instance is polynomial in S(U). We fix the target max-stretch X to 1 + T

L .
Now, suppose the 3-Partition instance U has a solution. From Lemma 5

part 1, we can schedule trains of the solver widget with max-stretch at most
X such that any trains coming into the solver from the hole-blocker can move
ahead non-stop. Then, from Lemma 6 part 1, trains of the hole-blocker can also
be scheduled with max-stretch at most 1 + τ−1

� = X.
Conversely, suppose all trains can be scheduled with stretch at most X. From

Lemma 6 part 2, we know that no hole goes downstream from the hole-blocker
in the first 2T steps. Then, by Lemma 5 part 2, the 3-partition instance U must
have a solution.

Finally, note that the above construction is broadly similar to the one used in
[11] for the max-delay minimization problem, but now the crucial hole-blocker
widget has to be designed more carefully in order to prove the hardness of
minimizing max-stretch.

5 Conclusion

The train scheduling problem on in-comb was introduced in [11]. That work also
gave the chain-hole view as an important insight into the problem and used it
fruitfully to prove the hardness of max-delay minimization as well as design
an O(log N) approximation algorithm for it. We have used the same chain-
hole view but with entirely new ideas for lower and upper bounds to give an
O(1) approximation algorithm and the hardness proof for a lesser explored but
presumably more relevant metric—the max-stretch.

Further work can focus on tighter bounds as well as on possible general-
izations of the problem, e.g., multiple tracks between stations, multiple trains
at every station, variable train speeds, etc. Parametric formulations of the
problem—e.g., with a given maximum number of external trains—should also
be studied.

A Proof of Lemma 2

Without loss of generality, extend the path-length of every external train (of
class i) to � = 2d − 1, where d = 2i−1. Starting from upstream, partition the
network into groups of stations, each group being a class i segment of size w,
i.e., containing w external trains.

The schedule is trivial for the case when h ≥ w: external trains of one set
of alternate groups can enter in the first w ≤ h steps and those of the other

28 A. Garg and A. Ranade

set in the next w steps, trains of each group filling the holes of its upstream
neighbour; afterwards all trains can move to their destinations during the next
�−1 steps, thus giving a makespan of 2w + �−1 < 2h+2i. Next, let us consider
the non-trivial case: w > h > 2d − 1.

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0, 3)

Fig. 3. Chains in a group (i = 2, w = 13, h = 4). Circles denote holes and grey disks
denote internal trains. The other, labeled disks denote external trains, disks of a color
representing trains of a chain.

Within each group, number the external trains from 0 to w − 1 starting
upstream, and then form h chains, allocating the trains to the chains in a round-
robin fashion: train p becomes the jth train of the kth chain, where j = �p/h�
and k = p mod h. We may refer to train p also as train (k, j). Thus, each chain
will have some J trains where J ≤
w/h�. (See Fig. 3 for an example of chain
formation in a group.)

For k ∈ {0, ..., h − 1}, consider train (k, 0) in any group G. Let q denote the
first unassigned hole downstream of train (k, 0) in the previous group G − 1.
Assign this is as the initial hole of chain k in group G. Because each segment
of size w starting at any external train is guaranteed to have h holes, it can
be easily seen that this assignment succeeds in finding a distinct initial hole for
every chain.

Each external train has to perform one entry and 2d − 2 movements. Let
us also consider the jump of the hole that it fills as a movement of the entering
train, i.e., the train has 2d−1 movements. In each chain, number the movements
from 1 to (2d − 1) × J , starting upstream and numbering consecutively for all
trains of the chain. We will use 〈k,m〉 to denote mth movement in chain k. Note
that among the movements of different chains, we have an overlap condition: if
k′ > k then the movement 〈k,m〉 may overlap with 〈k′,m′〉 only for m′ ≤ m.

The train movements are scheduled in three phases, as follows:

1. This has h steps: 1, ..., h. In step i, the initial hole of chain h − i in every
group jumps to the first train (h − i, 0) of the chain and gets filled by the
train. It is easily seen that paths of the jumps in each step are disjoint.

2. In this phase, every train—except the last—in a chain completes its journey
and exits the network; the re-created hole then jumps to the next train of the
chain. We discuss this in more detail below.

3. In this last phase, the last trains of all chains move to their destinations. It
is easily seen that there are no conflicts and this phase takes 2d−1 steps.

In Phase 2, the paths of trains in one group do not overlap with those in
other groups. So, we can consider each group separately. To resolve the conflict
between overlapping movements due to take place in the same step, we use a

Scheduling Trains with Small Stretch on a Unidirectional Line 29

very simple scheduling rule: higher numbered chains have higher priority. Now
we can use a simple delay sequence argument—a proof technique used earlier in
[1,22,28]—to prove the time bound as follows.

Suppose 〈k,m〉 occurs in step t. Then, for t−1, one of the following is true:

1. Movement 〈k,m − 1〉 occurred in step t−1.
2. Movement 〈k′,m′〉 occurred in step t−1, delaying the (lower priority) move-

ment 〈k,m〉. Here k′ > k because of the scheduling rule and m′ ≤ m because
of the overlap condition.

Thus, if the last movement of Phase 2 occurs in step h + T then we can find a
sequence of movements 〈k,m〉, one for each of the steps h+T, h+T −1, ..., h+1,
such that:

1. k never decreases,
2. m never increases, and
3. at least one of the two does change.

But this can happen only h+(2d−1)(J −1) < h+2d ·w/h times. So, the overall
time for all the three phases is only less than 2h + 2d · w/h + 2d.

Figure 4, on page 16, illustrates the schedule for a small example as a space-
time diagram. Note that while the space-time trajectories of trains can not cross
one-another, trajectories of holes may cross those of trains because a hole can
jump over stationary trains.

0

Space (i.e. stations)

Time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 4. Space-time diagram of a group, say G, for i = 2, w = 12, h = 4. Colored disks
and circles at the top respectively represent external trains (of G) and holes (matched
to the entries of the next group G + 1) at their initial positions. External trains of a
color belong to same chain. Thus, black lines mark the space-time trajectory of the
0th chain, red lines the trajectory of the 1st chain, and so on. Solid lines represent
train-movements. Dashed lines represent hole-jumps for the entries of G, while dotted
lines represent the hole-jumps for the entries of G + 1. (Color figure online)

30 A. Garg and A. Ranade

References

1. Aleliunas, R.: Randomized parallel communication (preliminary version). In: Pro-
ceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, PODC 1982, pp. 60–72. ACM, New York (1982)

2. Cacchiani, V., et al.: An overview of recovery models and algorithms for real-time
railway rescheduling. Transp. Res. Part B: Methodol. 63, 15–37 (2014)

3. Cai, X., Goh, C., Mees, A.I.: Greedy heuristics for rapid scheduling of trains on a
single track. IIE Trans. 30(5), 481–493 (1998)

4. Caimi, G., Chudak, F., Fuchsberger, M., Laumanns, M., Zenklusen, R.: A new
resource-constrained multicommodity flow model for conflict-free train routing and
scheduling. Transp. Sci. 45(2), 212–227 (2011)

5. Chiang, T., Hau, H., Chiang, H.M., Kob, S.Y., Hsieh, C.H.: Knowledge-based
system for railway scheduling. Data Knowl. Eng. 27(3), 289–312 (1998)

6. Clementi, A., Ianni, M.D.: Optimum schedule problems in store and forward net-
works. In: 13th Proceedings of IEEE Networking for Global Communications,
INFOCOM 1994, vol. 3, pp. 1336–1343, June 1994

7. D’Ariano, A.: Improving real-time train dispatching: models, algorithms and appli-
cations. Doctoral thesis, TRAIL Research School, Deft, The Netherlands (2008)

8. Fang, W., Yang, S., Yao, X.: A survey on problem models and solution approaches
to rescheduling in railway networks. IEEE Trans. Intell. Transp. Syst. 16(6), 2997–
3016 (2015)

9. Flier, H., Mihalák, M., Schöbel, A., Widmayer, P., Zych, A.: Vertex disjoint paths
for dispatching in railways. In: Erlebach, T., Lübbecke, M. (eds.) 10th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems (ATMOS’10). OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 61–73.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Garg, A., Ranade, A.G.: Train scheduling on a unidirectional path. In: Lokam,
S., Ramanujam, R. (eds.) 37th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 93, pp. 29:1–29:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018)

12. Iyer, R.V., Ghosh, S.: Daryn-a distributed decision-making algorithm for railway
networks: modeling and simulation. IEEE Trans. Veh. Technol. 44(1), 180–191
(1995)

13. Krasemann, J.T.: Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transp. Res. Part C: Emerg.
Technol. 20(1), 62–78 (2012). Special issue on Optimization in Public Trans-
port+ISTT2011

14. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling
in o(congestion+dilation) steps. Combinatorica 14(2), 167–186 (1994)

15. Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding o(congestion +
dilation) packet routing schedules. Combinatorica 19(3), 375–401 (1999)

16. Leung, J.Y.T., Tam, T.W., Young, G.H.: On-line routing of real-time messages. J.
Parallel Distrib. Comput. 34(2), 211–217 (1996)

17. Mannino, C., Mascis, A.: Optimal real-time traffic control in metro stations. Oper.
Res. 57(4), 1026–1039 (2009)

Scheduling Trains with Small Stretch on a Unidirectional Line 31

18. Mascis, A., Pacciarelli, D.: Job-shop scheduling with blocking and no-wait con-
straints. Eur. J. Oper. Res. 143(3), 498–517 (2002)

19. Narayanaswami, S., Rangaraj, N.: Scheduling and rescheduling of railway oper-
ations: a review and expository analysis. Technol. Oper. Manage. 2(2), 102–122
(2011)

20. Peis, B., Skutella, M., Wiese, A.: Packet routing: complexity and algorithms. In:
Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1 20

21. Pellegrini, P., Rodriguez, J.: Single European sky and single european railway area:
a system level analysis of air and rail transportation. Transp. Res. Part A: Policy
Pract. 57, 64–86 (2013)

22. Ranade, A.G.: Fluent parallel computation. Ph.D. thesis, Department of Computer
Science, Yale University, New Haven, CT, USA (1989). aAI9010675

23. Rothvoß, T.: A simpler proof for o(congestion + dilation) packet routing. CoRR
abs/1206.3718 (2012)

24. Sahin, I.: Railway traffic control and train scheduling based oninter-train conflict
management. Transp. Res. Part B: Methodol. 33(7), 511–534 (1999)

25. Salim, V., Cai, X.: A genetic algorithm for railway scheduling with environmental
considerations. Environ. Model Softw. 12(4), 301–309 (1997)

26. Scheideler, C.: Universal routing strategies for interconnection networks. In: Goos,
G., Hartmanis, J., van Leeuwen, J. (eds.) Lecture Notes in Computer Science, vol.
1390, pp. 57–67. W. H. Freeman & Co., New York (1998)

27. Tormos, P., Lova, A., Barber, F., Ingolotti, L., Abril, M., Salido, M.A.: A genetic
algorithm for railway scheduling problems. In: Xhafa, F., Abraham, A. (eds.) Meta-
heuristics for Scheduling in Industrial and Manufacturing Applications. Studies in
Computational Intelligence, vol. 128, pp. 255–276. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78985-7 10

28. Upfal, E.: Efficient schemes for parallel communication. J. ACM 31(3), 507–517
(1984)

29. Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., Srdic, A.: Reinforcement learn-
ing approach for train rescheduling on a single-track railway. Transp. Res. Part B:
Methodol. 86, 250–267 (2016)

https://doi.org/10.1007/978-3-642-12450-1_20
https://doi.org/10.1007/978-3-540-78985-7_10

Algorithmic Aspects of Total Roman
and Total Double Roman Domination

in Graphs

Chakradhar Padamutham(B) and Venkata Subba Reddy Palagiri

Department of Computer Science and Engineering, National Institute of Technology,
Warangal, Warangal 506 004, Telangana, India
corneliusp7@gmail.com, pvsr@nitw.ac.in

Abstract. For a simple, undirected and connected graph G = (V, E),
a total Roman dominating function (TRDF) f : V → {0, 1, 2} has the
property that, every vertex u with f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2 and the subgraph induced by the set of ver-
tices labeled one or two has no isolated vertices. A total double Roman
dominating function (TDRDF) on G is a function f : V → {0, 1, 2, 3}
such that for every vertex v ∈ V if f(v) = 0, then v has at least two
neighbors x, y with f(x) = f(y) = 2 or one neighbor w with f(w) = 3,
and if f(v) = 1, then v must have at least one neighbor w with f(w) ≥ 2
and the subgraph induced by the set {ui : f(ui) ≥ 1} has no isolated
vertices. The weight of a T(D)RDF f is the sum f(V) =

∑
v∈V f(v).

The minimum total (double) Roman domination problem (MT(D)RDP)
is to find a T(D)RDF of minimum weight of the input graph. In this
article, we show that MTRDP and MTDRDP are polynomial time solv-
able for bounded treewidth graphs, chain graphs and threshold graphs.
We design a 2(ln(Δ−0.5)+1.5)-approximation algorithm (APX-AL) for
the MTRDP and 3(ln(Δ−0.5)+1.5)-APX-AL for the MTDRDP, where
Δ is the maximum degree of G, and show that the same cannot have
(1 − δ) ln |V | ratio APX-AL for any δ > 0 unless P = NP . Finally, we
show that MT(D)RDP is APX-hard for graphs with Δ = 5.

Keywords: Total Roman domination · Total double Roman
domination · APX-complete

1 Introduction

Let G(V, E) be a simple, undirected and connected graph. For a vertex u of G,
the (open) neighborhood denoted NG(u) is the set {v : (v, u) ∈ E} and its degree
is |NG(u)|. The closed neighborhood of u is NG[u] = {u} ∪ NG(u). Maximum
degree of G denoted Δ (or clearly Δ(G)) is maxu∈V |NG(u)|. A vertex v is called
isolated vertex if |NG(v)| = 0. A vertex v of G is called universal vertex if
NG[v] = V (G). A graph formed with the vertex set S ⊆ V of graph H(V, E)
and the edge set {(u, v) ∈ E : u, v ∈ S} is called an induced subgraph of H
denoted 〈S〉. For undefined terminology and notations we refer to [35].
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 32–42, 2021.
https://doi.org/10.1007/978-3-030-67899-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_3&domain=pdf
http://orcid.org/0000-0001-6589-8358
http://orcid.org/0000-0002-0972-1141
https://doi.org/10.1007/978-3-030-67899-9_3

Total (Double) Roman Domination in Graphs 33

A dominating set (DS) of a graph G is a set D such that D ⊆ V and
∪w∈DNG[w] = V and further D is called a total dominating set (TDS) of G if
every vertex in V is adjacent to at least one vertex in D. The (total) domina-
tion number of G denoted by (γt(G)) γ(G) is min{|Q| : Q is a (T)DS of G}.
The problem of finding a (T)DS of smallest cardinality in a graph is called the
minimum (total) dominating set (M(T)DS) problem. Literature on the concept
of, domination has been surveyed in [16], total domination has been surveyed in
[17].

In 2004, Cockayne et al. in [11] introduced the concept of Roman domination
(RDOM). A function f : V → {0, 1, 2} is a Roman Dominating Function (RDF)
on G if every vertex with label zero is adjacent to at least one vertex with label
two. We refer to [3,11,13,14,18–21,25,28,31,32] for the literature on RDOM in
graphs.

The notion of total Roman domination (TRDOM) was introduced in 2013
by Liu et al. in [22]. A total Roman dominating function (TRDF) is a Roman
dominating function with the additional property that the subgraph of G induced
by the set {k ∈ V : f(k) ≥ 1} is without isolated vertices. The concept of
TRDOM has been studied in [1,7,9,27].

Double Roman domination was introduced in 2016 by Beeler et al. in [30].
A Double Roman Dominating Function (DRDF) on G is a function g : V →
{0, 1, 2, 3} such that for every vertex k ∈ V if g(k) = 0, then k has at least two
neighbors x, y ∈ NG(k) with g(x) = g(y) = 2 or one neighbor w with g(w) = 3,
and if g(k) = 1, then k must have at least one neighbor w with g(w) ≥ 2. The
double Roman domination has been studied in [2,4,5,8,24].

Total double Roman domination (TDRDOM) was introduced in 2019 by
Shao et al. in [33], which is a variant of double Roman domination. A total
double Roman dominating function (TDRDF) is a double Roman dominating
function with the additional property that the subgraph of G induced by the
set {k ∈ V : g(k) ≥ 1} is without isolated vertices. The concept TDRDOM has
been studied in [15,33].

The weight of a RDF (TRDF, DRDF, TDRDF) g is the value g(V) =∑
v∈V g(v). The Roman domination number, total Roman domination num-

ber, double Roman domination number, total double Roman domination number,
respectively, equals the minimum weight of a RDF, TRDF, DRDF and TDRDF,
respectively, denoted by γR(G), γtR(G), γdR(G) and γtdR(G). The minimum
total (double) Roman domination problem (MT(D)RDP) is to find a T(D)RDF
of minimum weight in the input graph.

2 Bounded Tree-Width Graphs

A tree decomposition of a graph H is a tree T1 with the vertex set V (T1) =
{Z1, Z2, . . . , }, where each Zi is a subset of V (H) with the following requirements.

i) V (H) =
⋃

Zk∈V (T1)
Zk

ii) ∀(u, v) ∈ E(H), there exists a vertex Zt ∈ V (T1) such that u, v ∈ Zt and

34 C. Padamutham and V. S. R. Palagiri

iii) ∀v ∈ V (H), the induced subgraph {Zt : v ∈ Zt and Zt ∈ V (T1)} is a subtree
of T1.
Then the tree decomposition T1 of H is said to have width equals to max{|Zt|−1 :
Zt ∈ V (T1)} [29]. The treewidth is the smallest width of a tree decomposition of
a graph.

Theorem 1. Given a graph G and a positive integer k, TRDP can be expressed
in CMSOL.

Proof. Let f : V → {0, 1, 2} be a function on a graph G, where Vi = {v|f(v) = i}
for i ∈ {0, 1, 2}. The CMSOL formula for the RDF problem is expressed as
follows.

Rom Dom(V) = ∃V0, V1, V2,∀p(p ∈ V1 ∨ p ∈ V2 ∨ (p ∈ V0 ∧ ∃q ∈ V2 ∧
adj(p, q))),

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q
are two adjacent vertices of G.

Next, we give a CMSOL formula for the Total Rom(V), which says that
every vertex p ∈ V1 ∪ V2 is adjacent to some vertex q in V1 ∪ V2, as follows.

Total Rom(V) = ∃V0, V1, V2,∀p,∃q(p ∈ (V1 ∪ V2) ∧ q ∈ (V1 ∪ V2) ∧ adj(p, q)).
Let k be a positive integer, then the CMSOL formula for the TRDP is

expressed as follows.
Total Rom Dom(V) = (f(V) ≤ k) ∧ Rom Dom(V) ∧ Total Rom(V).

Now, from Theorem 1 and Courcelle’s result in [12], the theorem below follows.

Theorem 2. MTRDP for graphs with treewidth at most a constant is solvable
in linear time.

Theorem 3. Given a graph G and a positive integer k, TDRDP can be expressed
in CMSOL.

Proof. Let g : V → {0, 1, 2, 3} be a function on a graph G, where Vi = {v|g(v) =
i} for i ∈ {0, 1, 2, 3}. The CMSOL formula for the DRDF problem is expressed
as follows.

Double Rom Dom(V) = ∃V0, V1, V2, V3,∀p((p ∈ V0∧((∃q, r ∈ V2∧adj(p, q)∧
adj(p, r)) ∨ (∃s ∈ V3 ∧ adj(p, s))) ∨ (p ∈ V1 ∧ (∃t ∈ V2 ∧ adj(p, t) ∨ (∃u ∈ V3 ∧
adj(p, u))))) ∨ (p ∈ V2) ∨ (p ∈ V3)),
where adj(p, q) is the binary adjacency relation which holds if and only if, p, q
are two adjacent vertices of G.

Next, we give a CMSOL formula for the Total Double Rom(V), which says
that every vertex p ∈ V1 ∪ V2 ∪ V3 is adjacent to some vertex q in V1 ∪ V2 ∪ V3,
as follows.

Total Double Rom(V) = ∃V0, V1, V2, V3,∀p,∃q(p ∈ (V1 ∪V2 ∪V3)∧ q ∈ (V1 ∪
V2 ∪ V3) ∧ adj(p, q)).
Let k be a positive integer, then the CMSOL formula for the TDRDP is expressed
as follows.

Total Double Rom Dom(V) = (g(V) ≤ k) ∧ Double Rom Dom(V) ∧
Total Double Rom(V).

Total (Double) Roman Domination in Graphs 35

Now, from Theorem 3 and Courcelle’s result in [12], the theorem below follows.

Theorem 4. MTDRDP for graphs with treewidth at most a constant is solvable
in linear time.

3 Threshold Graphs

Here, we solve MTRDP and MTDRDP for connected threshold graphs in linear
time. A graph G is threshold iff the following conditions hold, see [23]

i) Vertex set of G is partitioned into two disjoint sets, a clique Q and an inde-
pendent set R
ii) There exists a permutation (q1, q2, . . . , qp) of vertices of Q such that NG[q1] ⊆
NG[q2] ⊆ ... ⊆ NG[qp] and
iii) There exists a permutation (r1, r2, . . . , ri) of vertices of R such that NG(r1) ⊇
NG(r2) ⊇ ... ⊇ NG(ri).

Theorem 5. Let G be a connected threshold graph. Then,

γtR(G) =

{
2, if G ∼= K2

3, otherwise
(1)

and

γtdR(G) =

{
3, if G ∼= K2

4, otherwise
(2)

Proof. Let G be a connected threshold graph with p clique vertices and i inde-
pendent vertices as described above. Since, qp is a universal vertex of G, clearly,
this implies that γtR(G) = 3 and γtdR(G) = 4, except when G ∼= K2 where
γtR(G) = 2 and γtdR(G) = 3.

Now, the following result is immediate from Theorem 5 and the fact that the
ordering of clique vertices of threshold graph can be found in linear time [23].

Theorem 6. MTRDP and MTDRDP for connected threshold graphs are linear
time solvable.

If threshold graph G is disconnected i.e., G contains isolated vertices, then TRDF
and TDRDF can not be defined on G.

4 Chain Graphs

Here, we solve MTRDP and MTDRDP for connected chain graphs in linear
time. An ordering α = (y1, y2, . . . , yp, z1, z2, . . . , zq) of vertex set of a bipartite
graph G(Y,Z,E) is a chain ordering if NG(y1) ⊆ NG(y2) ⊆ ... ⊆ NG(yp) and
NG(z1) ⊇ NG(z2) ⊇ ... ⊇ NG(zq). A bipartite graph is a chain graph iff it has a
chain ordering [36].

36 C. Padamutham and V. S. R. Palagiri

Theorem 7. Let G(Y,Z,E) be a connected chain graph. Then,

γtR(G) =

⎧
⎪⎨

⎪⎩

2, if G is K2

3, if G is K1,s, where s ≥ 2
4, otherwise

(3)

and

γtdR(G) =

⎧
⎪⎨

⎪⎩

3, if G is K2

4, if G is K1,s, where s ≥ 2
6, otherwise

(4)

Proof. Let G(Y,Z,E) be a connected chain graph with |Y | = p and |Z| = q
where p, q ≥ 1. If G ∼= K2 or G ∼= K1,s, where s ≥ 2, then γtR(G) and γtdR(G)
can be determined directly from Theorem 5. Otherwise, define functions f : V →
{0, 1, 2} and g : V → {0, 1, 2, 3} as follows.

f(v) =

{
2, if v ∈ {yp, z1}
0, otherwise

(5)

g(v) =

{
3, if v ∈ {yp, z1}
0, otherwise

(6)

Clearly, f (g) is a TRDF (TDRDF) and γtR(G) ≤ 4 (γtdR(G) ≤ 6). By con-
tradiction, it can be easily verified that γtR(G) ≥ 4 (γtdR(G) ≥ 6). Therefore
γtR(G) = 4 (γtdR(G) = 6).

Now, from Theorem 7 and the fact that chain ordering can be computed in linear
time [34], the theorem below follows.

Theorem 8. MTRDP and MTDRDP for connected chain graphs are solvable
in linear time.

If chain graph G is disconnected i.e., G contains isolated vertices, then TRDF
and TDRDF can not be defined on G.

5 Approximation Algorithm and Complexity

Here, results related to obtaining approximate solutions to MTRDP and
MTDRDP are presented.

5.1 Approximation Bounds

An existing result obtained on lower bound of approximation ratio of MDS is
given below.

Theorem 9 ([10]). For a graph G = (V,E), unless P = NP , the MDS problem
cannot have a solution with approximation ratio (1 − δ) ln |V | for any δ > 0.

Total (Double) Roman Domination in Graphs 37

Theorem below provides a lower bound on approximation ratio of MTRDP.

Theorem 10. For a graph H, unless P = NP , the MTRDP cannot have a
solution with approximation ratio (1 − δ) ln |V | for any δ > 0.

Proof. We propose a reduction which preserves the approximation. Let H(V,E),
where V = {v1, v2, . . . , vn} be an instance of the MDS problem. From H, an
instance H ′ of MTRDP is constructed as follows.

Create n copies of P3 with bi as the central vertex and ai, ci as terminal
vertices. Add the edges {(vi, ai), (vi, ci) : 1 ≤ i ≤ n}. An example construction
of H ′ from H is shown in Fig. 1. Next, we prove a claim.

Fig. 1. Construction of H ′ from H

Claim. γtR(H ′) = 3n + γ(H).

Proof. Let H(V,E), where V = {v1, v2, . . . , vn} be a graph and H ′ = (V ′, E′) is
a graph constructed from H.

Let M∗ be a MDS of H i.e., |M∗| = γ(H) and f be a function on H ′, defined
as

f(v) =

⎧
⎪⎨

⎪⎩

2, if v ∈ {vi, ai : vi ∈ M∗} or v ∈ {bi : vi /∈ M∗}
1, if v ∈ {ai : vi /∈ M∗}
0, otherwise

(7)

Clearly, f is a TRDF and γtR(H ′) ≤ 3n + |M∗|.
Next, we show that γtR(H ′) ≥ 3n + |M∗|. Let g be a TRDF on graph H ′.

Clearly if g(vi) = 0, then g(ai) + g(bi) + g(ci) ≥ 3 and if g(vi) ≥ 1, then
g(vi)+g(ai)+g(bi)+g(ci) ≥ 4. Therefore γtR(H ′) ≥ 3n+|M∗|. Hence γtR(H ′) =
3n + γ(H).

Suppose that the MTRDP has an approximation algorithm (APX-AL) A
which runs in polynomial time with approximation ratio β, where β = (1 −
δ) ln |V | for some fixed δ > 0. Let l be a fixed positive integer. Next, we design
an APX-AL, say DOM-SET-APPROX which runs in polynomial time to find a
DS of a given graph H.

38 C. Padamutham and V. S. R. Palagiri

Algorithm 1. DOM-SET-APPROX(G)
Require: A simple and undirected graph H.
Ensure: A DS M of H.
1: if there exists a DS M ′ of size at most l, then
2: M ← M ′

3: else
4: Build the graph H ′

5: Calculate a TRDF f on H ′ by using algorithm A
6: Find a DS M of H from TRDF f (as illustrated in the proof of Claim in
7: Sect. 5.1)
8: end if
9: return M.

It can be noted that if M is a DS with |M | ≤ l, then it is optimal. Otherwise,
let M∗ be a DS of H with minimum cardinality and g be a TRDF of H ′ with
g(V ′) = γtR(H ′). Clearly g(V) ≥ l. If M is a DS of H obtained by the algorithm
DOM-SET-APPROX, then |M | ≤ f(V) ≤ β(g(V)) ≤ β(3n + |M∗|) = β(1 +
3n

|M∗|)|M∗|. Therefore, DOM-SET-APPROX approximates a MDS within a ratio
β(1+ 3n

|M∗|). If 1
|M∗| < δ/2, then the approximation ratio becomes β(1+ 3n

|M∗|) <

(1 − δ)(1 + 3nδ
2) ln n = (1 − δ′) ln n, where δ′ = 3nδ2

2 − 3nδ
2 + δ.

By Theorem 9, if there exists an APX-AL for MDS problem with approxi-
mation ratio (1 − δ) ln |V |, then P = NP . Similarly, if there exists an APX-AL
for MTRDP with approximation ratio (1 − δ) ln |V |, then P = NP . For large
values of n, ln n ≈ ln(4n). Hence, in a graph H ′(V ′, E′), where |V ′| = 4|V |, the
MTRDP cannot have an approximation algorithm with a ratio of (1 − δ) ln |V ′|
unless P = NP .

Theorem 11. For a graph H, unless P = NP , the MTDRDP cannot have a
solution with approximation ratio (1 − δ) ln |V | for any δ > 0.

Proof. The proof is obtained with similar arguments as in Theorem 10, in which
replace the assigned value, for the vertices, 2 with 3.

5.2 Approximation Algorithm

Here, an APX-AL for MT(D)RDP is designed based on the approximation result
known for MTDS problem below.

Theorem 12 ([37]). The MTDS problem can be approximated with an approx-
imation ratio of ln(Δ − 0.5) + 1.5.

Let APP-TD-SET be an APX-AL that produces a TDS D of a graph G such
that |D| ≤ (ln(Δ − 0.5) + 1.5)γt(G).

Next, we designe APP-TRDF algorithm to determine an approximate solu-
tion of MTRDP. In our algorithm, first we determine a TDS D of G using
the APX-AL APP-TD-SET. Next, we build a total Roman dominating triple

Total (Double) Roman Domination in Graphs 39

Algorithm 2. APP-TRDF(G)
Input: A simple, undirected graph G.
Output: A TRDT Tr of G.
1: D ← APP-TD-SET(G)
2: Tr ← (V \ D, ∅, D)
3: return Tr.

(TRDT) Tr such that weight 2 is assigned for all vertices in D and weight 0 is
assigned for the remaining vertices.

Now, let Tr = (D′, ∅,D) be the TRDT obtained from the APP-TRDF algo-
rithm. Clearly, every vertex in G is assigned with weight either 2 or 0, Tr gives
a TRDF of G and APP-TRDF computes a TRDT Tr of G in polynomial time.
Hence, the result follows.

Theorem 13. The MTRDP in a graph can be approximated with an approxi-
mation ratio of 2(ln(Δ − 0.5) + 1.5).

Proof. Let D be the TDS from APP-TD-SET algorithm, Tr be the TRDT
produced by the APP-TRDF algorithm and Wr be the weight of Tr. Clearly,
Wr = 2|D|. It is known that |D| ≤ (ln(Δ − 0.5) + 1.5)γt(G). Therefore,
Wr ≤ 2(ln(Δ − 0.5) + 1.5)γt(G). Since γt(G) ≤ γtR(G) [1], it follows that
Wr ≤ 2(ln(Δ − 0.5) + 1.5)γtR(G).

The corollary below follows from Theorem 13.

Corollary 1. MTRDP ∈ APX for graphs with Δ = O(1).

Similar to the Algorithm 2, we propose an APX-AL APP-TDRDF which pro-
duces a total double Roman dominating quadruple (TDRDQ).

Algorithm 3. APP-TDRDF(G)
Input: A simple, undirected graph G.
Output: A TDRDQ Qr of G.
1: D ← APP-TD-SET(G)
2: Qr ← (V \ D, ∅, ∅, D)
3: return Qr.

We also note that the algorithm APP-TDRDF computes a TDRDQ Qr of a
given graph G in polynomial time and the following theorem holds.

Theorem 14. The MTDRDP in a graph can be approximated with an approx-
imation ratio of 3(ln(Δ − 0.5) + 1.5).

Proof. The proof is obtained with similar arguments as in Theorem 13.

The corollary below follows from Theorem 14.

Corollary 2. MTDRDP ∈ APX for graphs with Δ = O(1).

40 C. Padamutham and V. S. R. Palagiri

5.3 Approximation Completeness

Here, we prove that the MTRDP and MTDRDP are APX-complete (APXC) for
graphs with Δ = 5 using the L-reduction [26]. An optimization problem X is
said to be APXC if X belongs to APX and APX-hard classes. By providing an
L-reduction from MDS problem with Δ = 3 i.e., DOM-3 which is known to be
APXC [6], we show that the MTRDP and MTDRDP belongs to APX-hard for
graphs with Δ = 5.

Theorem 15. MTRDP ∈ APXC for graphs with Δ = 5.

Proof. From Corollary 1, it is clear that MTRDP is in APX. Given an instance
G = (V,E) of DOM-3, where V = {v1, v2, . . . , vn}, we construct an instance
G′ = (V ′, E′) of MTRDP same as in Sect. 5.1. Note that G′ is a graph with
Δ = 5. First we prove the following claim.

Claim. γtR(G′) = 3n + γ(G), where n = |V |.
Proof. The proof is same as in the Claim in Sect. 5.1.

Let D∗ be a MDS of G and f : V ′ → {0, 1, 2} be a minimum TRDF of G′. It is
known that for any graph G = (V,E) with maximum degree Δ, γ(G) ≥ n

Δ+1 ,
where n = |V |. Thus, |D∗| ≥ n

4 . From the above claim it is evident that f(V ′) =
|D∗| + 3n ≤ |D∗| + 12|D∗| = 13|D∗|.

Now consider a TRDF g : V ′ → {0, 1, 2} of G′. Clearly, the set D = {vi :
g(vi) ≥ 1 or g(ai) ≥ 1 or g(ci) ≥ 1} is a DS of G. Therefore, |D| ≤ g(V ′) − 3n.
Hence, |D| − |D∗| ≤ g(V ′) − 3n − |D∗| ≤ g(V ′) − f(V ′). This implies that there
exists an L-reduction with α = 13 and β = 1.

Theorem 16. MTDRDP ∈ APX-complete for graphs with Δ = 5.

Proof. The proof is obtained with similar arguments as in Theorem 15, in which
replace the assigned value 2 with 3. We get an L-reduction with α = 18 and
β = 1.

References

1. Abdollahzadeh Ahangar, H., Henning, M.A., Samodivkin, V., Yero, I.G.: Total
Roman domination in graphs. Appl. Anal. Discrete Math. 10, 501–517 (2016).
https://doi.org/10.2298/AADM160802017A

2. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: On the double
Roman domination in graphs. Discrete Appl. Math. 232, 1–7 (2017). https://doi.
org/10.1016/j.dam.2017.06.014

3. Abdollahzadeh Ahangar, H., Álvarez, M.P., Chellali, M., Sheikholeslami, S.M.,
Valenzuela-Tripodoro, J.C.: Triple Roman domination in graphs. Appl. Math.
Comput. 391, 125444 (2021). https://doi.org/10.1016/j.amc.2020.125444

4. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Outer independent
double Roman domination. Appl. Math. Comput. 364, 124617 (2020). https://doi.
org/10.1016/j.amc.2019.124617

https://doi.org/10.2298/AADM160802017A
https://doi.org/10.1016/j.dam.2017.06.014
https://doi.org/10.1016/j.dam.2017.06.014
https://doi.org/10.1016/j.amc.2020.125444
https://doi.org/10.1016/j.amc.2019.124617
https://doi.org/10.1016/j.amc.2019.124617

Total (Double) Roman Domination in Graphs 41

5. Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: Signed double
Roman domination in graphs. Discrete Appl. Math. 257, 1–1 (2019). https://
doi.org/10.1016/j.dam.2018.09.009

6. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237, 123–134 (2000). https://doi.org/10.1016/S0304-3975(98)00158-
3

7. Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S.M.: Total Roman domina-
tion number of trees. Australas. J. Combin. 69, 271–285 (2017)

8. Anu, V., Aparna Lakshmanan, S.: Double Roman domination number. Discrete
Appl. Math. 244, 198–204 (2018). https://doi.org/10.1016/j.dam.2018.03.026

9. Campanelli, N., Kuziak, D.: Total Roman domination in the lexicographic product
of graphs. Discrete Appl. Math. 263, 88–95 (2019). https://doi.org/10.1016/j.dam.
2018.06.008

10. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206, 1264–1275 (2008). https://doi.org/
10.1016/j.ic.2008.07.003

11. Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discrete Math. 278, 11–22 (2004). https://doi.org/10.1016/j.
disc.2003.06.004

12. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs. Inf. Comput. 85, 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

13. Dreyer, P.A.: Applications and variations of domination in graphs. Ph.D. thesis,
Rutgers University, The State University of New Jersey, New Brunswick, New
Jersey (2000)

14. Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman domi-
nation number of a graph. Discrete Math. 309, 3447–3451 (2009). https://doi.org/
10.1016/j.disc.2008.09.043

15. Hao, G., Volkmann, L., Mojdeh, D.A.: Total double Roman domination in graphs.
Commun. Comb. Optim. 5, 27–39 (2020). https://doi.org/10.22049/CCO.2019.
26484.1118

16. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (1998)

17. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-1-4614-6525-6

18. Henning, M.: Defending the Roman empire from multiple attacks. Discrete Math.
271, 101–115 (2003). https://doi.org/10.1016/S0012-365X(03)00040-2

19. Henning, M.A., Hedetniemi, S.T.: Defending the Roman empire–a new
strategy. Discrete Math. 266, 239–251 (2003). https://doi.org/10.1016/S0012-
365X(02)00811-7

20. Henning, M.: A characterization of Roman trees. Discuss. Math. Graph Theory
22, 325–334 (2002). https://doi.org/10.7151/dmgt.1178

21. Liedloff, M., Kloks, T., Liu, J., Peng, S.H.: Roman domination in some special
classes of graphs. Report TR-MA-04-01 (2004)

22. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Comb.
Optim. 26, 608–619 (2013). https://doi.org/10.1007/s10878-012-9482-y

23. Mahadev, N., Peled, U.: Threshold Graphs and Related Topics. Elsevier, North
Holland (1995)

24. Padamutham, C., Palagiri, V.S.R.: Complexity of Roman {2}-domination and the
double Roman domination in graphs. AKCE Int. J. Graphs Comb. 1–6 (2020).
https://doi.org/10.1016/j.akcej.2020.01.005

https://doi.org/10.1016/j.dam.2018.09.009
https://doi.org/10.1016/j.dam.2018.09.009
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1016/j.dam.2018.03.026
https://doi.org/10.1016/j.dam.2018.06.008
https://doi.org/10.1016/j.dam.2018.06.008
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/j.disc.2008.09.043
https://doi.org/10.1016/j.disc.2008.09.043
https://doi.org/10.22049/CCO.2019.26484.1118
https://doi.org/10.22049/CCO.2019.26484.1118
https://doi.org/10.1007/978-1-4614-6525-6
https://doi.org/10.1016/S0012-365X(03)00040-2
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.7151/dmgt.1178
https://doi.org/10.1007/s10878-012-9482-y
https://doi.org/10.1016/j.akcej.2020.01.005

42 C. Padamutham and V. S. R. Palagiri

25. Padamutham, C., Palagiri, V.S.R.: Algorithmic aspects of Roman domination in
graphs. J. Appl. Math. Comput. 89–102 (2020). https://doi.org/10.1007/s12190-
020-01345-4

26. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43, 425–440 (1991). https://doi.org/10.1016/
0022-0000(91)90023-X

27. Poureidi, A., Rad, N.J.: Algorithmic and complexity aspects of problems related
to total Roman domination for graphs. J. Combin. Optim. 39(3), 747–763 (2019).
https://doi.org/10.1007/s10878-019-00514-x

28. Rad, N.J., Volkmann, L.: Roman domination perfect graphs. An. Stiint. Univ.
Ovidius Constanta Ser. Mat. 19, 167–174 (2019)

29. Röhrig, H.: Tree decomposition: a feasibility study, Masters’s thesis, Max-Planck-
Institut Für Informatik, Citeseer (1998)

30. Robert, A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete
Appl. Math. 211, 23–29 (2016). https://doi.org/10.1016/j.dam.2016.03.017

31. ReVelle, C.S., Rosing, K.E.: Defendens imperium romanum: a classical problem in
military strategy. Am. Math. Mon. 107, 585–594 (2000). https://doi.org/10.2307/
2589113

32. Stewart, I.: Defend the Roman empire!. Sci. Am. 281, 136–138 (1999). https://
doi.org/10.1038/scientificamerican1299-136

33. Shao, Z., Amjadi, J., Sheikholeslami, S., Valinavaz, M.: On the total double
Roman domination. IEEE Access 7, 52035–52041 (2019). https://doi.org/10.1109/
ACCESS.2019.2911659

34. Uehara, R., Uno, Y.: Efficient algorithms for the longest path problem. In: Fleis-
cher, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 871–883. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4 74

35. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle
River (2001)

36. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264 (1978).
https://doi.org/10.1145/800133.804355

37. Zhu, J.: Approximation for minimum total dominating set. In: Proceedings of ICIS
09, Seoul, Korea, 24–26 November 2009, pp. 119–124 (2009). https://doi.org/10.
1145/1655925.1655948

https://doi.org/10.1007/s12190-020-01345-4
https://doi.org/10.1007/s12190-020-01345-4
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1007/s10878-019-00514-x
https://doi.org/10.1016/j.dam.2016.03.017
https://doi.org/10.2307/2589113
https://doi.org/10.2307/2589113
https://doi.org/10.1038/scientificamerican1299-136
https://doi.org/10.1038/scientificamerican1299-136
https://doi.org/10.1109/ACCESS.2019.2911659
https://doi.org/10.1109/ACCESS.2019.2911659
https://doi.org/10.1007/978-3-540-30551-4_74
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/1655925.1655948
https://doi.org/10.1145/1655925.1655948

Approximation Algorithms
for Orthogonal Line Centers

Arun Kumar Das1(B), Sandip Das1, and Joydeep Mukherjee2

1 Indian Statistical Institute, Kolkata, India
arund426@gmail.com, sandipdas@isical.ac.in

2 Ramakrishna Mission Vivekananda Educational and Research Institute,
Howrah, India

joydeep.m1981@gmail.com

Abstract. k orthogonal line center problem computes a set of k axis-
parallel lines for a given set of points in 2D such that the maximum
among the distance between each point to its nearest line is minimized. A
2-factor approximation algorithm and a (7

4
, 3
2
) bi-criteria approximation

algorithm is presented for the problem. Both of them are deterministic
approximation algorithms, having sub-quadratic running time and not
based on linear programming.

1 Introduction

A classical problem in computer science is data clustering. One has to group a
given set of data points such that every point in the same group is similar with
respect to some optimizing criteria. This problem finds application in learning
theory, data-mining, spatial range searching, etc. [10]. k-line center problem for
a given set of points is a type of clustering problem. A set of points and a
positive integer k are given as input. A set of k lines needs to be computed such
that the maximum among the distances between each point to its nearest line
is minimized. These lines are called the line centers for the given set of points.
Many variants of this problem are well studied due to their enormous applications
in the domain of facility location [18,19], and machine learning [10], etc. In this
paper, we study one such variant, where axis-parallel line centers are computed
for a given point set in 2-dimension. We call this problem as k-ORTHOGONAL-
LINE-CENTER (kOLC) problem. Some real-life applications of our problem
are designing transport networks, where the tracks are orthogonal to each other,
or to design circuit boards where the wires need to be embedded in orthogonal
orientations. The kOLC is stated as follows. Here the distance between a line
and a point is the perpendicular distance between them.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 43–54, 2021.
https://doi.org/10.1007/978-3-030-67899-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_4

44 A. K. Das et al.

Problem 1. k-ORTHOGONAL-LINE-CENTER (kOLC)
Input: A set S of n points in 2-dimensional plane and a positive integer
k.
Output: A set of k axis-parallel lines such that the maximum among the
distances from every point to its nearest line is minimized.

In order to solve kOLC we state another problem called k-ORTHOGONAL-
LINE-CENTER-WITH-RADIUS (kOLCR) problem. In fact Lemma 1 shows
that kOLC can be solved in polynomial time whenever kOLCR can be solved
in polynomial time.

Problem 2. k-ORTHOGONAL-LINE-CENTER-WITH-RADIUS
(kOLCR)
Input: A set S of n points in 2-dimensional plane and a positive integer
k and a positive real number r.
Output: A set of k axis-parallel lines such that the maximum among the
distances from every point to its nearest line is at most r.

We state another problem to establish the hardness of kOLCR.

Problem 3. STABBING-AXIS-PARALLEL-SQUARES-OF-SAME-
SIZE (SASS)
Input: A set S of n axis-parallel squares of side length 2r and a positive
integer k.
Output: A set of k axis-parallel lines such that each square is intersected
with at least one line.

Consider the center of the squares (intersection point of two diagonals)
and half of the side length of the squares in a given instance of SASS as the
input point set and input radius to kOLCR respectively. Then SASS reduces to
kOLCR. Observe that kOLCR has a solution if and only if SASS has a solution.
SASS is known to be W[1]-hard [9]. This problem is a special case of a well
known NP-hard problem of rectangle stabbing [12]. In the problem of rectangle
stabbing, one has to find a set of lines for a given set of rectangles such that
each rectangle is intersected by at least one line. This problem is well studied due
to its applications in data analysis [8], sensor networks [14], radiotherapy [17]
etc. The best known constant factor approximation algorithm for this problem
is designed by Gaur et al [12], which uses linear programming (LP) to solve the
problem. Dom et al. [9] presented a (4k+1)knO(1) time fixed-parameter tractable
(FPT) algorithm for stabbing axis-parallel disjoint squares of the same size in
the same paper in which they proved the W[1]-hardness of SASS.

Agarwal and Procopiuc [1] studied the problem of covering a point set in
R

d with k cylinders. For d = 2, they designed an O(nk2 log4 n) expected time
randomized algorithm, when k2 log k < n to compute O(k log k) strips of width
at most w∗ that cover the given set of points. Here w∗ is the optimal radius of the

Approximation Algorithms for Orthogonal Line Centers 45

cylinders for the problem. But the expected running time is O(n
2
3 k

8
3 log4 n) for

higher values of k. The expected time is O(n
3
2 k

9
4 polylog(n)), for d = 3. They also

presented an O(dnk3 log4 n) expected time randomized algorithm to compute a
set of O(dk log k) d-cylinders of diameter at most 8w∗ for points in R

d. Aggarwal
et al. [3] designed an O(n log n) expected time randomized algorithm to find k
cylinders of radius (1+ε)w∗ that cover a set of n given points in R

d. The constant
of proportionality depends on k, d and ε. Practical implementation and heuristics
for these problems are also well-studied [4–6,16]. Jaromczyk and Kowaluk [13]
presented a O(n2 log2 n) time algorithm for a special case like computing 2 line
center. An O(n(log n+ε−2 log 1

ε)+ε− 7
2 log 1

ε) time (1+ε) approximation scheme
for computing 2 line center is designed by Agarwal et al. [2]. Feldman et al. [10]
presented a randomized linear time bi-criteria approximation for generalized k-
center, mean and median problems.

One can devise a 2-factor approximation algorithm for solving kOLC by
using the LP-based approach of Gaur et al. [12]. In this paper, we present a
2-factor approximation algorithm for kOLC, which is not LP-based. Next, we
present a deterministic bi-criteria approximation algorithm for kOLC, based on
our 2-factor approximation algorithm. To the best of our knowledge, the only
deterministic bi-criteria approximation algorithm known for kOLC is a (32 , 16)
bi-criteria approximation by Chakraborty et al. [7], which is based on local search
technique.

The paper is organized in the following manner. Section 2 consists of some
definitions and the lemma showing the relation between the running times of
kOLC and kOLCR. We devise a 2-factor approximation algorithm for kOLC in
Sect. 3. A (74 , 3

2) bi-criteria approximation for the same is described in Sect. 4.

2 Preliminaries

A set of axis-parallel lines is said to be a set of line centers for a set of points
with radius r, whenever the maximum among the distances between each point
to its nearest line is at most r. Let C be a set of line centers for S with radius
r. For a point p of S, c(p) denotes the nearest member of C from p. We say that
this line center is assigned to the point p and p is served by this line center.
Thus Client set of a line center, l, where l ∈ C, denoted as s(l), is defined as
{p|p ∈ S and c(p) = l}.

A set of line centers is called an (α, β) bi-criteria approximate solution for
kOLC if the cardinality of the set is at most αk and the radius is at most β
times the optimal radius.

We show that the existence of a polynomial-time algorithm for kOLCR
implies the existence of a polynomial-time solution for kOLC.

Lemma 1. kOLC can be solved in O((T + n) log n) time, if kOLCR can be
solved in O(T) time.

Proof. Let r∗ be the maximum among all the distances between the points and
the line centers in the optimal solution of kOLC. Consider a line center l∗ in

46 A. K. Das et al.

the optimal solution of kOLC, such that the distance between the farthest point
from l in s(l) is r∗. Then there must be two such points in s(l) such that they are
at a distance r∗ from l∗. Otherwise, we can translate l∗ towards the farthest one
to reduce the distance. Thus the optimal radius is determined by two points in
the given set S. Since |S| = n, we have O(n2) possible candidates for the optimal
radius. We can perform a binary search on them to get the optimal solution for
kOLC by using the algorithm for kOLCR. We use the technique by Frederickson
and Johnson [11] to determine the median element in the binary search which
requires O(m log(2n

m)) time for a n × m sorted matrix. Since our matrix is of
order n × n the running time is O(n) in our case. Thus the lemma holds. ��

An (i, j, t)-grid is a set of i vertical and j horizontal lines where the distance
between two consecutive lines of same orientation is t. We call it simply a grid
and denote as W . Let l be a vertical line in a grid W and the x-coordinate of
every point on l be xl. A right-shift operation on l by an amount ξ produces
a new vertical line R(l) such that the x-coordinate of every point on R(l) is
lx + ξ. Similarly a right-shift operation on an (i, j, t)-grid W produces another
(i, j, t)-grid R(W) where every vertical line of R(W) is produced by performing
right-shift operation on the vertical lines of W . Similarly we define a left-shift
operation by an amount ξ on a vertical line l (or a grid W) to produce a new line
L(l) (or a grid L(W)). We also define up-shift and down-shift operations on a
horizontal line l as well as on a grid W by translating the horizontal lines verti-
cally upward and downward respectively. The newly produced lines are denoted
as U(l) and D(l) respectively and the newly produced grids are denoted as U(W)
and D(W) respectively. Furthermore we define the composition of two shift oper-
ations. They are performed one after another on a grid. So an up-right-shift on
a grid W produces a new grid UR(W), where UR(W) is obtained by perform-
ing an up-shift operation on R(W). Similarly we define the other combinations.
Clearly these combinations are commutative and DU(W) = UD(W) = W and
RL(W) = LR(W) = W .

In Sect. 3 we design an algorithm that produces a 2-factor approximation for
the kOLC problem in terms of the number of centers. The algorithm chooses a
subset of the grid lines which serve as line centers for the given set of points. Let
the difference between the x-coordinates of the leftmost and rightmost points
of S be w and the difference between the y-coordinates of the topmost and
bottommost points of S be h.

3 A 2-factor Approximation Algorithm

We begin with an instance of kOLCR, where the radius r is also given as input
along with all other input of kOLC. We construct a (� w

2r �, � h
2r �, 2r)-grid W .

The leftmost vertical line of the grid passes through the leftmost member of S
and the topmost horizontal line passes through the topmost member of S. Then
every point in S lies between two horizontal and two vertical lines which are 2r
distance apart from each other. This fact follows from the construction of the

Approximation Algorithms for Orthogonal Line Centers 47

(� w
2r �, � h

2r �, 2r)-grid W . Thus each of the points is within a distance r from at
least one line of both orientations. Only the points which are equidistant from
both lines of the same orientation are within a distance r from two lines of the
same orientation. But a point can not be within a distance r from more than 2
lines of the same orientation as the lines are 2r distance apart from each other.
We state this fact as an observation.

Observation 1. Every point in S is within a distance r from at least one vertical
line and at least one horizontal line of the grid W . A point in S can be exactly
at a distance r from at most two horizontal lines and at most two vertical lines.

Our algorithm finds a subset of the grid W (ie. a set of lines from the grid
W) and returns that as a set of axis-parallel line centers for S with radius r. So
for a line l, where l ∈ W , we define the client set of l in W as the set of points in
S such that they are within a distance r from l. We denote it by sW (l). It follows
from Lemma 1 that each point is assigned to at least one line of one orientation.
But in our algorithm we do not assign a point to more than one line of the same
orientation. In other words we want sW (li) ∩ sW (lj) = φ, for every li and lj of
the same orientation, i.e. both of them are either vertical or horizontal in W . It
follows from the definition of sW (l) that the points which are equidistant from
two lines of same orientation in W , belong to the client sets of both the lines.
We break the tie in the following manner.

Let Q be the set of points in S such that every member in Q is at a distance
r from two vertical lines of the grid W . We allot every points in Q in the client
set of the line which is serving more points other than the points in Q. In case
of tie we choose arbitrarily but we allot every member of Q to the same line.
Similarly we allot points of S which are equidistant from two horizontal lines.
Thus a point only belongs to client sets of one vertical and one horizontal line,
after this assignment.

Now we construct a graph with � w
2r � + � h

2r � vertices such that each vertex
represents a unique line of W . Let lv denote the corresponding line of W for a
vertex v of the graph. Two vertices u and v have an edge between them if and
only if they satisfy the following conditions:

1. lu and lv are of different orientations in W . In other words one of them is
vertical and the other one is horizontal.

2. sW (lu) ∩ sW (lv) �= φ, where sW (lu) and sW (lv) are the client set of the lines
of W , corresponding to u and v respectively.

We call this graph as the graph of W and denote it by G(W).

Lemma 2. The graph G(W), defined above, is a bipartite graph.

Proof. The edges of G(W) are given between two vertices u and v if they cor-
respond to two lines of W in different orientations. We can divide the set of
vertices of G(W) into two partitions, namely, the vertices corresponding to the
vertical lines of W and the vertices corresponding to the horizontal lines of W ,
with no edge between two vertices in the same partition. Thus the graph G(W)
is a bipartite graph. ��

48 A. K. Das et al.

Now we show a relation between the vertex cover of G(W) and a set of line
centers, chosen from W , for S. The following lemma states the relation, which
helps us to choose a set of line centers for S with radius r from the lines present
in W .

Lemma 3. A subset C of W is a set of line centers for S with radius r, if and
only if the vertices in G(W), corresponding to the lines in C, form a vertex cover
of G(W).

Proof. Every point of S is assigned to a unique set sW (l), where l ∈ W , in one
orientation. So exactly one horizontal and exactly one vertical line of W can
serve a point p, where p ∈ S, as a center. This fact together with the structure
of the graph G(W) imply that each point can be assigned to a unique edge in
G(W). Let pe denote the edge corresponding to a point p, where p ∈ S.

Let C ′ a vertex cover of G(W). Then pe must have an end vertex, v(say), in
C ′. Then from the structure of G(W) it follows that p ∈ sW (lv). This fact holds
for all the points p ∈ S. Hence the lines in W corresponding to the vertices in
C ′ is a set of line centers with radius r.

Conversely let C be a set of line centers for S with radius r where C ⊆ W .
Consider an edge e of G(W). There exists a point p in S such that e = pe. Now
C being a set of line centers with radius r, a line of W must be present in C
such that p ∈ sW (l). In other words, one end vertex of e is present in the set of
vertices corresponding to the lines in C. Since this fact holds for every edge of
G(W), the vertices in G(W) corresponding to the lines of C in W form a vertex
cover of G(W). Thus the lemma holds. ��

Now we wish to choose a set of lines from the grid W to serve as centers for
S with radius r. We establish a relation between the lines in an optimal solution
to a given instance of problem kOLCR and the line centers that can be chosen
from the grid W for this instance. Let C∗ be an optimal solution consisting k
orthogonal line centers for S. The following lemma states the relation between
the lines in C∗ and a set of lines that can be chosen from W .

Lemma 4. Let l∗ be any line belonging to C∗. At most 2 lines of W are sufficient
to serve all the points in s(l∗) as centers with radius r, where these lines of W
have the same orientation as l∗. The vertices of G(W), corresponding to these
lines also form a vertex cover.

Proof. Without loss of generality let l∗ has vertical orientation. If it coincides
with a vertical line of W then that line is sufficient to serve all members of s(l∗)
as centers with radius r. Now we assume that l∗ lies between two consecutive
vertical lines of the grid W , say, li and li+1. Let p be a point of S, such that
p ∈ s(l∗). Since p lies within a distance r from l∗, p must belong to either sW (li)
or sW (li+1). This imply s(l∗) ⊆ sW (li) ∪ sW (li+1). The property of forming a
vertex cover follows from Lemma 3. Thus the lemma holds. ��

Now we are in a position to devise an approximation algorithm to compute
k axis-parallel line centers with radius r for S. We compute the grid W as
mentioned above and compute the minimum vertex cover of the graph G(W).

Approximation Algorithms for Orthogonal Line Centers 49

It follows from Lemma 3 that a minimum set of lines of W , which can serve S
with radius r, form a minimum vertex cover of G(W). Furthermore this minimum
vertex cover is of size at most 2k if there exists a solution for kOLCR, by Lemma
4. We check the cardinality of the minimum vertex cover of G(W). For the
cardinality more than 2k, there does not exist a set of orthogonal line centers with
radius r for S, which has cardinality at most k. In that case, the algorithm returns
“NOT POSSIBLE”. Otherwise, it returns the lines of W which corresponds to
the vertices in the minimum vertex cover of G(W) as our output. Algorithm 1
describes the steps to compute a solution for problem kOLCR. The following
lemma states the correctness of the algorithm as a 2-factor approximation for
kOLCR.

Input: S, k, r
Output: A set of axis parallel lines C
Construct the (� w

2r
�, � h

2r
�, 2r)-grid W and the graph G(W);

Compute the minimum vertex cover C′ of the graph G(W), using the
algorithm described in [15] ;
if |C′| ≤ 2k then

C ← The lines of W which correspond to the vertices in C′ ;
return C

else
return ”NOT POSSIBLE”;

end

Algorithm 1: 2-FACTOR-kOLCR()

Lemma 5. Algorithm 1 returns a 2-factor approximation of the problem
kOLCR.

Proof. The proof follows from combining Lemma 3 and Lemma 4. ��
Now we analyze the running time of Algorithm 1. Although there are �w+h

2r �
grid lines, we compute only those grid lines which serve at least one point of S.
Thus we only deal with O(n) lines of W . Also note that the number of edges
in the graph is also O(n), since each member of S corresponds to at most one
edge. We can determine the graph by spending a constant amount of time with
each member of S. This takes O(n) time as well as O(n) space. Then using the
algorithm described in [15] we can compute the minimum vertex cover in O(n

3
2)

time and O(n) space. The rest steps of the algorithm can be done in constant
time. So the overall running time of the algorithm is O(n

3
2). Hence we conclude

the following theorem.

Theorem 1. A 2-factor approximate solution for kOLC, described in Problem
1 for a given set with n points, can be computed in O(n

3
2 log n) time.

Proof. The proof follows from the above discussion and Lemma 1. ��
In the following section, we design a bi-criteria approximation algorithm using
the shifting of the grid W , as defined in Sect. 2.

50 A. K. Das et al.

4 A (7
4
, 3
2
) bi-criteria approximation algorithm

We design a bi-criteria approximation algorithm in this section. We allow the
radius of the centers to be within a constant factor of the given radius to achieve
a tighter approximation factor in terms of the number of centers. We allow the
radius of this new set of line centers to be (r + r

2), ie. 3r
2 instead of r.

We begin with an instance of kOLCR as before. We initially construct a
(� 2w

3r �, � 2h
3r �, 3r)-grid, similar to the grid constructed in Sect. 3. The distance

between two lines of the same orientation is 3r instead of 2r like the previous one.
We denote this grid by W from now for notational simplicity. Clearly, these grid
lines can serve the members of S as centers with radius 3r

2 . Then we construct 8
more (� 2w

3r �, � 2h
3r �, 3r)-grids by performing the shift operations with amount r on

W , defined in Sect. 2. We construct the corresponding bipartite graphs and check
the cardinality of the minimum vertex covers. We return the lines corresponding
to the vertex cover, which has the minimum cardinality among them, as output.
We establish that this solution is a (74 , 3

2) bi-criteria approximation to kOLCR.
We use similar arguments as in Lemma 4 and conclude that at most two

lines of W (as well as the other grids constructed by shift operations on W) are
sufficient to serve the client set s(l∗) of a line center l∗, present in the optimal
solution C∗ of the given instance of kOLCR. Now we wish to reduce this number
by locating a set of lines L, where L ⊆ C∗, such that only one line from a grid
is sufficient to serve s(l∗), for every l∗ ∈ L. We show that |L| ≥ |C∗|

4 for at least
one grid among all the nine grids we constructed. Note that the line centers in
the optimal solution to the problem serve the points of S with radius r and the
lines of the grids serve them with radius 3r

2 .
Now we analyze the changes in the client sets of the vertical lines when we

perform a right-shift operation on W to produce R(W). Note that the client
sets of the horizontal lines remain the same for W and R(W). Let C∗

v and C∗
h

denote the set of vertical and horizontal line centers present in C∗ respectively.
The following cases can happen in the shifted grid R(W).

1. s(l∗), which was served by a single vertical line in W , is still being served by
a single vertical line in R(W). We denote the set of these lines, present in C∗,
as C1.

2. s(l∗), which was served by a single vertical line in W , needs two vertical lines
in R(W) to be served. We denote the set of these lines, present in C∗, as C2.

3. s(l∗), which was served by two vertical lines in W , can be served with by a
single vertical line in R(W). We denote the set of these lines, present in C∗,
as C3.

4. s(l∗), which was served by two vertical lines in W , still requires two vertical
lines in R(W) to be served. We denote the set of these lines, present in C∗,
as C4.

Since C1∪ C2∪ C3∪ C4 = C∗
v , we can conclude that the cardinality of at least

one of these four sets has at least one-fourth of the cardinality of C∗
v . Utilizing

this fact we show in Lemma 6 that the client set of the vertical line centers of

Approximation Algorithms for Orthogonal Line Centers 51

the optimal solution can be served with at most 7
4 |C∗

v | vertical lines from one of
the grids among W , R(W) and L(W).

Lemma 6. There is at least one grid among W , R(W) and L(W) such that at
most 7

4 |C∗
v | vertical lines from that grid is sufficient to serve all the points in the

client set ∪l∗∈C∗
v
s(l∗).

Fig. 1. Proof of Lemma 6

Proof. We prove this lemma by considering the cardinalities of the sets C1, C2,
C3 and C4. The lemma holds for the grid W , if either |C1| ≥ |C∗

v |
4 or |C2| ≥ |C∗

v |
4 .

The lemma holds for the grid R(W), if |C3| ≥ |C∗
v |
4 . The only case left to consider

is when |C4| ≥ |C∗
v |
4 and |C1| <

|C∗
v |
4 , |C2| <

|C∗
v |
4 , |C3| <

|C∗
v |
4 .

Let l and l′ be two vertical lines of W , which are necessary to serve s(l∗),
for some l∗ ∈ C4, where l lies on the left of l∗. Let R(l) and R(l′) be the lines of
R(W), which are necessary to serve s(l∗). This implies that l∗ is not lying within
a distance 3

2r from l. Since the distance between l and l′ is 3r, l∗ is lying within
a distance 3

2r form l′. This implies that L(l′) can serve all members of s(l∗).
Then the lemma holds for the grid L(W). The scenario is depicted in Fig. 1. ��

We argue similarly and we can state the following lemma which states about
serving all the points which are served by the members of C∗

h.

Lemma 7. There is at least one grid among W , U(W) and D(W) such that at
most 7

4 |C∗
h| horizontal lines from that grid is sufficient to serve all the points in

the client set ∪l∗∈C∗
h
s(l∗).

Proof. Proof follows from similar arguments in Lemma 6. ��

52 A. K. Das et al.

Now consider all the possible shifting operations on W which consist of left,
right, up, and down shifts as defined in Sect. 2. The following lemma states that
we can locate a grid among them where at most 7

4k lines are sufficient to serve
all the points as line centers with radius 3

2r.

Lemma 8. There is at least one grid among W , U(W), D(W), R(W), L(W),
LU(W), RU(W), LD(W), RD(W), such that at most 7

4k lines from that grid
is sufficient to serve all the points in the client set ∪l∗∈C∗s(l∗).

Proof. Proof follows by combining Lemma 6 and Lemma 7. ��
Now we devise our bi-criteria approximation algorithm to compute k axis-

parallel line centers with radius 3
2r for S. We compute the grid W as mentioned

in Sect. 3 but we keep 3r distance between two lines of the same orientation.
Then we compute all eight other grids, mentioned in Lemma 8, by performing
the shift operation on W . After that, we construct the nine corresponding graphs
and compute their minimum vertex covers. We take that one which has minimum
cardinality among all these nine sets. We return the lines of the corresponding
grid as our output if the cardinality of the minimum vertex cover is less than
or equal to 7

4k. Otherwise, we return “NOT POSSIBLE” as output as there
does not exist a set of orthogonal line centers with radius r for S, which has
cardinality at most k. Algorithm 2 describes the steps of the procedure. The
correctness of the algorithm as a (74 , 3

2) bi-criteria approximation for kOLCR
follows from Lemma 8.

Input: S, k, r
Output: A set of lines C
Construct the (� w

3r �, � h
3r �, 3r)-grids W , R(W), L(W), U(W), D(W),

RU(W), RD(W), LU(W), LD(W) ;
Construct the graphs G(W), G(R(W)), G(L(W)), G(U(W)), G(D(W)),
G(RU(W)), G(RD(W)), G(LU(W)), G(LD(W)) and store them in an
array G;
H is an array to store the vertex covers ;
for each member G[i] of G do

H[i] ← Minimum vertex cover of G[i]
end
C ← the lines corresponding to the member of H with the minimum
cardinality ;
if |C| ≤ 7

4k then
return C ;

else
return ”NOT POSSIBLE” ;

end

Algorithm 2: BI-CRITERIA-kOLCR()

The running time analysis of Algorithm 2 is similar to Algorithm 1. We
compute the graphs and their vertex covers 9 times in the same way. So the
running time is still O(n

3
2). Thus we conclude the following theorem.

Approximation Algorithms for Orthogonal Line Centers 53

Theorem 2. A (74 , 3
2) bi-criteria approximation algorithm for kOLC problem

can be computed in O(n
3
2 log n) time.

Proof. Proof follows from the above discussion combining with Lemma 1. ��

References

1. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective cluster-
ing. J. Algorithms 46(2), 115–139 (2003)

2. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1+ ε)-approximation algo-
rithm for 2-line-center. Comput. Geomet. 26(2), 119–128 (2003)

3. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for
a k-line center. Algorithmica 42(3), 221–230 (2005)

4. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering, p. 61–72. Association for Computing Machinery, New York,
June 1999

5. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimen-
sional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2000, pp. 70–81. Association for Computing
Machinery, New York (2000)

6. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. ACM SIGMOD Rec.
27(2), 94–105 (1998)

7. Chakraborty, B., Das, A.K., Das, S., Mukherjee, J.: Approximating k -orthogonal
line center. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS, vol. 12577, pp.
47–60. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64843-5 4

8. Călinescu, G., Dumitrescu, A., Karloff, H., Wan, P.J.: Separating points by axis-
parallel lines. Int. J. Comput. Geomet. Appl. 15(06), 575–590 (2005)

9. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing
rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM
2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00202-1 26

10. Feldman, D., Fiat, A., Sharir, M., Segev, D.: Bi-criteria linear-time approxima-
tions for generalized k-mean/median/center. In: Proceedings of the Twenty-Third
Annual Symposium on Computational Geometry, SCG 2007, pp. 19–26. Associa-
tion for Computing Machinery, New York (2007)

11. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted
matrices. SIAM J. Comput. 13(1), 14–30 (1984)

12. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algo-
rithms for the rectangle stabbing problem and the rectilinear partitioning problem.
J. Algorithms 43(1), 138–152 (2002)

13. Jaromczyk, J.W., Kowaluk, M.: The two-line center problem from a polar view: a
new algorithm and data structure. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro,
N. (eds.) WADS 1995. LNCS, vol. 955, pp. 13–25. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60220-8 47

14. Koushanfar, F., Slijepcevic, S., Potkonjak, M., Sangiovanni-Vincentelli, A.: Error-
tolerant multimodal sensor fusion. In: IEEE CAS Workshop on Wireless Commu-
nication and Networking, pp. 5–6 (2002)

https://doi.org/10.1007/978-3-030-64843-5_4
https://doi.org/10.1007/978-3-642-00202-1_26
https://doi.org/10.1007/978-3-642-00202-1_26
https://doi.org/10.1007/3-540-60220-8_47

54 A. K. Das et al.

15. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical
Soc. (2009)

16. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algo-
rithm for fast projective clustering. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2002, pp. 418–427.
Association for Computing Machinery, New York (2002)

17. Renner, W.D., Pugh, N.O., Ross, D.B., Berg, R.E., Hall, D.C.: An algorithm for
planning stereotactic brain implants. Int. J. Radiat. Oncol. Biol. Phys. 13(4), 631–
637 (1987)

18. Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the art-location on networks: a
survey. Part I: the p-center and p-median problems. Manage. Sci. 29(4), 482–497
(1983)

19. Zanjirani Farahani, R., Hekmatfar, M.: Facility Location: Concepts, Models, Algo-
rithms and Case Studies. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-7908-2151-2

https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/978-3-7908-2151-2

Semitotal Domination on AT-Free Graphs
and Circle Graphs

Ton Kloks1 and Arti Pandey2(B)

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
klokston@gmail.com

2 Department of Mathematics, Indian Institute of Technology Ropar,
Nangal Road, Rupnagar 140001, Punjab, India

arti@iitrpr.ac.in

Abstract. For a graph G = (V, E) with no isolated vertices, a set D ⊆ V
is called a semitotal dominating set of G if (i) D is a dominating set of
G, and (ii) every vertex in D has another vertex in D at a distance
at most two. The minimum cardinality of a semitotal dominating set
of G is called the semitotoal domination number of G, and is denoted
by γt2(G). The Minimum Semitotal Domination problem is to find
a semitotal dominating set of G of cardinality γt2(G). In this paper, we
present some algorithmic results on Semitotal Domination. We show that
the decision version of the Minimum Semitotal Domination problem
is NP-complete for circle graphs. On the positive side, we show that the
Minimum Semitotal Domination problem is polynomial-time solvable
for AT-free graphs. We also prove that the Minimum Semitotal Dom-
ination for AT-free graphs can be approximated within approximation
ratio of 3 in linear-time. Our results answer the open questions posed by
Galby et al. in their recent paper.

Keywords: Domination · Semitotal domination · AT-free graphs ·
Circle graphs · Graph algorithms · NP-completeness · Approximation
algorithm

1 Introduction

For a graph G = (V,E), a dominating set in G is a set D ⊆ V such that every
vertex in V \D is adjacent to at least one vertex in D. The domination number
of G, denoted by γ(G), is the minimum cardinality of a dominating set of G.
More details about the domination problem can be found in the books [1,2]. An
important variation of domination is connected domination, see [3]. The con-
nected domination has various applications in wireless networks. A dominating
set D is called a connected dominating set of G if G[D] is connected. The car-
dinality of a minimum connected dominating set of G is called the connected
domination number of G, and is denoted by γc(G).

A total dominating set, of a graph G with no isolated vertex is a set S of
vertices of G such that every vertex in G is adjacent to at least one vertex
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 55–65, 2021.
https://doi.org/10.1007/978-3-030-67899-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_5

56 T. Kloks and A. Pandey

in S. The total domination number of G, denoted by γt(G), is the minimum
cardinality of a total dominating set of G. Total domination is well studied
problem in graph theory. The literature on the subject of total domination in
graphs has been surveyed and detailed in the recent book [4]. A survey of total
domination in graphs can also be found in [5].

A relaxed form of total domination called semitotal domination was intro-
duced by Goddard, Henning and McPillan [6], and studied further in [7–11] and
elsewhere. A set D of vertices in a graph G with no isolated vertices is a semi-
total dominating set of G if D is a dominating set of G and every vertex in D is
within distance 2 of another vertex of D. The semitotal domination number of
G, denoted by γt2(G), is the minimum cardinality of a semitotal dominating set
of G. Since every total dominating set is a semitotal dominating set, and every
semitotal dominating set is a dominating set, for every graph G with no isolated
vertex, γ(G) ≤ γt2(G) ≤ γt(G). Therefore, the semitotal domination number
is squeezed between the two most important domination parameters, namely
the domination number and the total domination number. However as remarked
in [9], the semitotal domination number behaves very differently to both the
domination and total domination number. For example, the total domination
number is generally incomparable with the matching number, while the semi-
total domination is comparable with the matching number and is bounded by
at most the matching number plus one (see [7]). The PhD thesis by A. Marcon
is entirely on this topic of semitotal domination in graphs, and provides further
motivation and importance for its study.

The Minimum Domination problem is to find a dominating set of cardi-
nality γ(G). Given a graph G and an integer k, the Domination Decision
problem is to determine whether G has a dominating set of cardinality at most
k. The Minimum Total Domination problem is to find a total dominating set
of cardinality γt(G). The Minimum Semitotal Domination problem (MSDP)
is to find a semitotal dominating set of minimum cardinality. The Semitotal
Domination Decision problem (SDDP) is the decision version of the Minimum
Semitotal Domination problem.

Goddard et al. [6] initiated the algorithmic study of the Minimum Semi-
total Domination problem. They proved that the Semitotal Domination
Decision problem is NP-complete for general graphs [6], and they proposed
a linear-time algorithm to find a minimum cardinality semitotal dominating
set in trees [6]. Henning et al. [11] proved that the Semitotal Domination
Decision problem remains NP-complete for split graphs, planar graphs and
chordal bipartite graphs. In addition, they proposed an O(n2)-time algorithm
to compute a minimum cardinality semitotal dominating set in interval graphs.
Galby et al. [12] proposed polynomial-time algorithm for graphs of bounded mim-
width. They also proved that it is NP-complete to recognise the graphs such that
γt2(G) = γt(G), even if restricted to be planar graphs with maximum degree 4.
Galby et al. [12] also posed the problem of determining the complexity status
of the Minimum Semitotal Domination problem for AT-free graphs, circle
graphs, dually chordal graphs and tolerance graphs as open problems. In this

Semitotal Domination on AT-Free Graphs and Circle Graphs 57

paper, we resolve the complexity status of the problem for AT-free graphs and
circle graphs. We propose a polynomial-time algorithm to compute a minimum
cardinality semitotal dominating set in AT-free graphs, and we prove that the
Semitotal Domination Decision problem is NP-complete for circle graphs.

The main contributions of the paper are summarized below. In Sect. 2, we dis-
cuss some pertinent definitions. In Sect. 3, we show that there exists a linear-time
3-approximation algorithm for the Minimum Semitotal Domination problem
in AT-free graphs. In Sect. 4, we propose a polynomial-time algorithm for the
Minimum Semitotal Domination problem in AT-free graphs. In Sect. 5, we
show that the Semitotal Domination Decision problem is NP-complete for
circle graphs. Finally, Sect. 6, concludes the paper.

2 Preliminaries

Let G = (V,E) be a graph. For a vertex v ∈ V , NG(v) = {u ∈ V | uv ∈ E} and
NG[v] = NG(v) ∪ {v} denote the open neighborhood and the closed neighborhood
of v, respectively. For a vertex v, degree of v is |NG(v)|, and is denoted by dG(v).
A vertex of degree one is called a pendant vertex and a vertex of degree zero is
called an isolated vertex. For a set S ⊆ V , the sets NG(S) =

⋃
u∈S NG(u) and

NG[S] = NG(S) ∪ S are called open neighborhood and the closed neighborhood
of S, respectively. A sequence of vertices of G is a path P = (v0, v1, . . . , vk) of
G if vivi+1 ∈ E for every i ∈ {0, 1, 2, . . . , k − 1}. The length of a path P =
(v0, v1, . . . , vk) is the number of edges in it. For two distinct vertices u, v ∈ V ,
the distance dG(u, v) between u and v is the length of a shortest path between
u and v. For a set S ⊆ V (G), the subgraph induced by S is denoted by G[S]. A
set S ⊆ V is an independent set if G[S] has no edge. The square of G denoted as
G2 is obtained from G by adding new edges between every two vertices having
distance two in G.

The vertices u, v and w of a graph G form an asteroidal triple (AT) if {x, y, z}
is an independent set and for any two of these vertices there is a path between
them that avoids the neighborhood of the third. A graph G is said to be aster-
oidal triple-free (AT-free) if it does not contain an asteroidal triple. A graph G
is called a circle graph if there is a one to one correspondence between the vertex
set V (G) = {v1, v2, . . . , vn} of the circle graph G and a set C = {c1, c2, . . . , cn}
of chords on a circle such that two vertices are adjacent if and only if the corre-
sponding chords intersect.

Let n and m denote the number of vertices and edges of G, respectively. In
this paper, we only consider connected graphs with at least two vertices.

3 Linear-Time Approximation Algorithm

In this section, we show that there exists a linear-time 3-approximation algorithm
to compute a minimum cardinality semitotal dominating set of an AT-free graph.
We first recall the definition of dominating pair and dominating shortest path of
a graph.

58 T. Kloks and A. Pandey

Definition 1. For a graph G = (V,E) and u, v ∈ V , the pair (u, v) is called
a dominating pair of G if the vertex set of any path between u and v is a
dominating set of G.

Definition 2. A path P = (u = u0, u1, u2, . . . , ud = v) is a dominating short-
est path of a graph G = (V,E) if dG(u, v) = d and {u0, u1, u2, . . . , ud} is a
dominating set of G.

The following result is already known for AT-free graphs.

Theorem 1 [13]. A connected AT-free graph G has a dominating pair, and
hence a dominating shortest path. Also, a dominating pair of G can be com-
puted in linear-time.

The following relation between the domination number and connected dom-
ination number is well known.
Theorem 2 [14]. For a graph G, γc(G) ≤ 3γ(G) − 2.

Since γ(G) ≤ γt2(G), we have the following relation between the connected
domination number and semitotal domination number of a graph.

Theorem 3. For a graph G, γc(G) ≤ 3γt2(G) − 2.

Now, we are ready to present the main result of this section.
Theorem 4. A minimum semitotal dominating set of an AT-free G can be
approximated in linear-time within an approximation ratio of 3.

Proof. Let D be the vertex set of a dominating shortest path between u and v in
G, then diameter of G must be at least |D|−1. We also know that any connected
dominating set has cardinality at least diam(G) − 1. Hence, the cardinality of
connected dominating set must be at least |D|−2. That is, γc(G) ≥ |D|−2. Also,
by Theorem 3, γc(G) ≤ 3γt2(G)− 2. Hence |D| − 2 ≤ 3γt2(G)− 2, which implies
that |D| ≤ 3γt2(G). Note that D is the set of vertices of a path. Hence, D is also
a semitotal dominating set of G, and |D| ≤ 3γt2(G). Hence D approximates the
Minimum Semitotal Domination problem within an approximation ratio of
3. Also, D can be computed in linear-time for AT-free graphs. ��

4 Polynomial-Time Exact Algorithm

In this section, we present a polynomial-time exact algorithm to compute a
minimum cardinality semitotal dominating set of an AT-free graph G. We first
describe the main idea behind our algorithm.

Galby et al. [12] have shown that given a graph G, we can construct a graph
G′ such that γt2(G) = γt(G′). In addition, given a minimum cardinality total
dominating set of G′, we can construct a minimum cardinality semitotal dom-
inating set of G in polynomial-time. In our algorithm, we have the following
three steps: (i) Given an AT-free graph G, construct G′, (ii) Compute a mini-
mum cardinality total dominating set D′ of G′, (iii) From D′, construct a min-
imum cardinality semitotal dominating set D of G. Next we first describe how
to construct G′ from G, then we will present an algorithm to find a minimum
cardinality total dominating set of G′.

Semitotal Domination on AT-Free Graphs and Circle Graphs 59

4.1 Construction of G′ from G

Given a graph G = (V,E) where V = {v1, v2, . . . , vn}, we construct G′ in the
following way: for each vertex vi in G, take two vertices v1

i and v2
i in G′. If vi

and vj are at distance at most 2 in G, then add an edge between v1
i and v1

j in
G′. Also, if vi ∈ NG[vj] in G, then add an edge between v1

i and v2
j . Formally

G′ = (V ′, E′) where

V ′ = {v1
i , v

2
i | 1 ≤ i ≤ n}, and

E′ = {v1
i v

1
j | dG(vi, vj) ≤ 2} ∪ {v1

i v
2
j | vi ∈ NG[vj]}.

If we define V 1 = {v1
i | 1 ≤ i ≤ n} and V 2 = {v2

i | 1 ≤ i ≤ n}, then G′[V 1] is
isomorphic to G2 and V 2 is an independent set. Note that G′ can be constructed
from G in O(|V |.|E|)-time. Note that if G is an AT-free graph, then G′ is not
necessarily AT-free. For example consider the graph G shown in Fig. 1. Then G
is AT-free, but G′ has an asteroidal triple. The set of three vertices v2

1 , v
2
5 , v

2
6

form an asteroidal triple in G′.

v1

v3

v4

v2

v5

v6

v2
5

v2
4

v2
3

v2
2

v2
1v1

1

v1
2

v1
6v2

6

v1
4

v1
5

v1
3

G G′

Fig. 1. An illustration to the construction of G′ from G: G is AT-free, but G′ has an
asteroidal triple.

Theorem 5 [12]. For a graph G, γt2(G) = γt(G′). Moreover, a minimum semi-
total dominating set of G can be obtained from a minimum total dominating set
of G′ in linear-time.

In the next section, we will present the algorithm to compute a minimum
cardinality total dominating set in G′, which is not an AT-free graph, but con-
structed from an AT-free graph G. To find an algorithm for minimum cardinality
total dominating set in G′, we have used the idea given by Kratsch [15] for finding
the minimum cardinality total dominating of an AT-free graph.

60 T. Kloks and A. Pandey

4.2 Algorithm to Find a Minimum Total Dominating Set of G′

Let G be a graph and T be a minimum total dominating set of G. Kratsch has
shown that if there exists an x ∈ V such that any three consecutive BFS-levels
of x contain at most k elements of T , then there is an O(nk+2)-time algorithm to
compute a minimum cardinality total dominating set of G (see [15, Theorem 8]).

If G is an AT-free graph and G′ is the graph constructed from G as discussed
in Sect. 4.1, then we will show that there exists a minimum total dominating set
Dt of G′ and a vertex x ∈ V (G′) such that any j-consecutive BFS-levels of x
contain at most 2j+9 elements of Dt. This will imply that any three consecutive
BFS-levels of x contain at most 15 elements of Dt, and hence we will get an
O(n17)-time algorithm to compute a minimum cardinality total dominating set
of G′.

Lemma 1. If G is an AT-free graph and G′ is the graph constructed from G as
discussed in Sect. 4.1, then there exists a minimum total dominating set Dt of
G′ and a vertex x ∈ V (G′) such that any j-consecutive BFS-levels of x contain
at most 2j + 9 elements of Dt.

Proof. Let G be an AT-free graph, and (x, y) be a dominating pair in G. Let G′ be
the graph constructed from G as illustrated in Sect. 4.1. Note that corresponding
to a vertex x in G, we have taken vertices x1 and x2 in G′, where x1 ∈ V 1 and
x2 ∈ V 2. Next we construct a BFS-tree of G′ rooted at x1 in the following
way: First construct a BFS-tree T of G′[V 1] rooted at x1. Note that G′[V 1] is
isomorphic to G2. Let α = (x1 = v1

1 , v
1
2 , . . . , v

1
n) be a BFS ordering of T . Now,

in tree T we add the vertices of V 2 to get a BFS-tree of G′. Process the vertices
of V 1 in the ordering α. For each v1

i , find the vertices in NG′(v1
i) ∩ V2 which are

not yet added in BFS-tree, and make them child of v1
i .

Note that the updated tree T is a BFS-tree of G′. Now we show that there
exists a minimum total dominating set Dt of G′ such that any j consecutive
levels of BFS-tree T contains at most 2j + 9 vertices of Dt.

Let x = x0, x1, x2, . . . , xd = y be a shortest path between the vertices of
dominating pair (x, y). Corresponding to this path, we get the following two
shortest paths in G′[V 1]:

P1 = x1
0, x

1
2, x

1
4, . . . and P2 = x1

0, x
1
1, x

1
3, . . .

Note that the vertex set of P1 ∪ P2 is a total dominating set of G′. We refer to
this total dominating set as A.

Let L0, L1, L2, . . . Ll denote the levels of BFS-tree T of G′ with root x1 ∈
V 1. So, L0 = x1, L1 = NG′(x1), and Li = {v ∈ G′ | d(x1, v) = i} for any
i ∈ {1, 2, . . . , l}, where l is the depth of the tree T . By contradiction, assume
that there exists j consecutive levels containing more than 2j + 9 vertices of
a minimum total dominating set Dt. Now, choose i minimum and j maximum
with respect to i such that Li ∪ . . . ∪ Li+j−1 has more than 2j + 9 vertices of a
minimum total dominating set Dt. We call (i, j) as a bad segment.

Semitotal Domination on AT-Free Graphs and Circle Graphs 61

Let Di,j
t = Dt ∩ (Li ∪ . . . ∪ Li+j−1). Then |Di,j

t | ≥ 2j + 10. Let Ai,j =
A∩{Li−2 ∪ . . .∪Li+j+1}. Since |A∩Lk| ≤ 2 for any k, |Ai,j | ≤ 2(j +4) = 2j +8.
Note that |Dt ∩Li−1| ≤ 1, if not then (i−1, j) will also be a bad segment, which
is contradiction to the minimality of i. Similarly, |Dt ∩ Li+j | ≤ 1, if not then
(i, j +1) will also be a bad segment, which is contradiction to the maximality of
j with respect to i.

Now, we modify the set Dt to another total dominating set in the following
way: Define D∗

t = (Dt\Di,j
t) ∪ Ai,j . Note that NG′ [Di,j

t] ⊆ NG′ [Ai,j], hence D∗
t

still dominates all the vertices of G′. But there may exist a vertex v ∈ Li−1 ∩Dt,
which is an isolated vertex in G′[D∗

t]. This case arises if there exists a neighbor
w of v such that w ∈ Li ∩ Dt but w /∈ D∗

t . In this case we also add w in D∗
t .

Similarly, there may exist a vertex s ∈ Li+j ∩ Dt, which is an isolated vertex
in G′[D∗

t]. Again, this case arises if there exists a neighbor t of s such that
t ∈ Li+j−1 ∩ Dt but t /∈ D∗

t . In this case, we add t in D∗
t . Now, the set D∗

t is a
total dominating set of G′. Since |Ai,j ∪ {w, t}| ≤ 2j + 10, |D∗

t | ≤ |Dt|. Hence
D∗

t is also a minimum total dominating set of G′.
Note that the boundary cases i ∈ {0, 1} and j ∈ {l − 1, l} are not possible.

Because in these cases, Ai,j ≤ 2j + 6, and hence the cardinality of D∗
t will be

smaller than the cardinality of Dt, a contradiction arises.
Next we prove the following claim.

Claim. If there exists a bad segment (i′, j′) in the BFS-tree T with respect to
the minimum total dominating set D∗

t , then i′ > i.

Proof. Suppose (i′, j′) is a bad segment in T with respect to D∗
t . Suppose i′ ≤ i.

Then i′ + j′ −1 ≥ i−2, otherwise (i′, j′) should also be a bad segment in T with
respect to Dt, contradicting the choice of i. By construction |D∗

t ∩Lk| ≥ 2 for any
k ∈ {i−2, i−1, i, . . . , i+j−1, i+j, i+j+1}. Hence if (i′, j′) is a bad segment with
i′ ≤ i and i′ + j′ −1 ≥ i−2, then there is a j∗ such that (i′, j∗) is a bad segment
with respect to D∗

t and i′ + j∗ − 1 ≥ i + j + 1. By the construction of D∗
t , this

implies |D∗
t ∩ (Li′ ∪Li′+1 ∪ . . .∪Li′+j∗−1)| = |Dt ∩ (Li′ ∪Li′+1 ∪ . . .∪Li′+j∗−1)|,

and hence (i′, j∗) should be a bad segment in Dt, contradicting the choice of
either i or j.

Hence i′ > i. This completes the proof of the claim. ��
Using the above claim, we can say that if a bad segment in the BFS-tree T

with respect to the minimum total dominating set Dt starts at level i, then we
can modify the set Dt to get another minimum total dominating set D∗

t such
that if a bad segment still exists, then it will start from level i′, where i′ > i.
If we continue doing the same process again and again, then after finite number
of steps, we will get a minimum total dominating set D of G′ such that there
will be no bad segment with respect to D. Note that the number of steps will
be bounded by the depth of the BFS-tree. Hence, any j-consecutive BFS-levels
of x will contain at most 2j + 9 elements of D. This completes the proof of our
lemma. ��

Now, we may directly state the main theorem of this section.

62 T. Kloks and A. Pandey

Theorem 6. There exists a polynomial-time algorithm to compute a minimum
cardinality semitotal dominating set of an AT-free graph.

5 NP-Completeness Result on Circle Graphs

In this section, we show that the Semitotal Domination Decision problem is
NP-complete for circle graphs. To prove the NP-completeness result, we provide a
polynomial reduction from the Domination Decision problem in circle graphs,
which is already known to be NP-complete [16]. We first prove the following
lemma.

Lemma 2. Let G be a circle graph. Then, the graph G′ obtained by adding a
pendant vertex to any vertex v ∈ V (G) is also a circle graph.

Proof. Let G be a circle graph with vertex set V (G). Note that there is a one
to one correspondence between the vertex set V (G) = {v1, v2, . . . , vn} of the
circle graph G and a set C = {c1, c2, . . . , cn} of chords on a circle such that two
vertices are adjacent if and only if the corresponding chords intersect. An illus-
tration is given in Fig. 2. If two chords have same endpoint, we can slightly shift
one of the chord without changing any intersection relation and representing the
same graph. So without loss of generality, we may assume that the end points of
different chords are distinct. Now, to prove the result it is enough to show that if
ck is any chord on the circle then we can draw another chord on the same circle
which intersects only ck.

c1

c2

c3

c4

c5

c6

v2

v4v1

v3v6

v5

Fig. 2. An illustration of a circle graph and its corresponding circle model.

As we have n chords on the circle satisfying the property that no two chord
have a common end point, we have total 2n points on the circle, representing
the end of the chords. Starting with any end point, let a1, a2, . . . , a2n are the
consecutive and distinct end points of the chords on the circle in clockwise ori-
entation. Let ck be a chord having ai as one of its end point. Now take a point a

Semitotal Domination on AT-Free Graphs and Circle Graphs 63

on the arc aiai+1 other than ai, ai+1 and another point b on the arc ai−1ai other
than ai−1, ai. Now make a chord with end points a and b (see Fig. 3). We may
observe that this new chord will intersect only ck. Hence, the result is proved. ��

a1 a2

a2n

ai+1 ai

ai−1a
b

Fig. 3. Illustration of making additional chord.

Theorem 7. The Semitotal Domination Decision problem is NP-complete
for circle graphs.

Proof. Clearly, the Semitotal Domination Decision problem is in NP for
circle graphs. To prove the NP-hardness result, we give a polynomial reduction
from the Minimum Domination problem in circle graphs.

Given a circle graph G = (V,E), where V = {v1, v2, . . . , vn}, we construct
another circle graph G′ = (V ′, E′) as follows: For each i, 1 ≤ i ≤ n, we first
add a pendant vertex ai at vi and then add a pendant vertex bi at ai. Formally,
V ′ = V ∪ {ai, bi | 1 ≤ i ≤ n} and E′ = E ∪ {viai, aibi | 1 ≤ i ≤ n}. It clearly
follows from Lemma 1 that G′ is also a circle graph. Next, we will show that G
has a dominating set of size atmost k if and only if G′ has a semitotal dominating
set of size atmost n + k.

Clearly, if D is a dominating set G of cardinality atmost k, then the set
D′ = D ∪ {a1, a2, . . . , an} is a semi-TD-set of G′, and |D′| ≤ n + k.

Conversely, suppose that D′ is a semi-TD-set of G′ of cardinality atmost
n + k. For each i, 1 ≤ i ≤ n to dominate the vertex bi, either ai or bi must
belong to D′. If both ai and bi belong to D′, then bi can be replaced with vi
in D′. If bi ∈ D′ but ai /∈ D′, then bi can be replaced with ai. Note that the
updated set D′ still remains a semi-TD-set of G′. So, without loss of generality,
we may assume that {a1, a2, . . . , an} ⊆ D′ and {b1, b2, . . . , bn} ∩ D′ = ∅. Now,
for each i, 1 ≤ i ≤ n, D′ should also contain a vertex at distance at most 2 from
ai. Since bi /∈ D′, either vi or one of the neighbor of vi in G must be present in
D′. Hence, the set D′\{a1, a2, . . . , an} is a dominating set of G of cardinality at
most k. This completes the proof of the theorem. ��

64 T. Kloks and A. Pandey

6 Conclusion

Galby et al. [12] mentioned that the complexity of the Minimum Semitotal
Domination problem is open for AT-free graphs, circle graphs, dually graphs
and tolerance graphs. In this paper, we resolved the complexity status of the
problem for circle graphs and AT-free graphs. We proved that the Semito-
tal Domination Decision problem is NP-complete for circle graphs. On the
positive side, we proved that there exists an O(n19)-time algorithm for the Min-
imum Semitotal Domination problem on AT-free graphs. We also proved
that the Minimum Semitotal Domination problem can be approximated in
linear-time within an approximation ratio of 3 for AT-free graphs. But the com-
plexity of the Minimum Semitotal Domination problem is still open for dou-
bly chordal graphs and tolerance graphs. So, one may further try to find out
the complexity status of the problem for these graph classes. One may also try
to propose an algorithm for the Minimum Semitotal Domination problem
in AT-free graphs with better time complexity. It will also be interesting to
study the Minimum Semitotal Domination problem for k-polygon graphs.
k-polygon graphs are the intersection graphs of chords in a k-sided polygon.
Elmallah et al. [17] have shown that the Minimum Domination problem can
be solved in O(n4k2

+3)-time in k-polygon graphs. One may try to check whether
the Minimum Semitotal Domination problem is also polynomially solvable
for k-polygon graphs or not.

References

1. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs,
vol. 208. Marcel Dekker Inc., New York (1998)

2. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics,
vol. 209. Marcel Dekker Inc., New York (1998)

3. Du, D., Wan, P.: Connected Dominating Set: Theory and Applications. Springer,
New York (2013). https://doi.org/10.1007/978-1-4614-5242-3

4. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-6525-6

5. Henning, M.A.: A survey of selected recent results on total domination in graphs.
Discrete Math. 309, 32–63 (2009)

6. Goddard, W., Henning, M.A., McPillan, C.A.: Semitotal domination in graphs.
Util. Math. 94, 67–81 (2014)

7. Henning, M.A., Marcon, A.J.: On matching and semitotal domination in graphs.
Discrete Math. 324, 13–18 (2014)

8. Henning, M.A., Marcon, A.J.: Vertices contained in all or in no minimum semitotal
dominating set of a tree. Discuss. Math. Graph Theory 36, 71–93 (2016)

9. Henning, M.A., Marcon, A.J.: Semitotal domination in claw-free cubic graphs.
Ann. Combin. 20, 799–813 (2016)

10. Henning, M.A.: Edge weighting functions on semitotal dominating sets. Graphs
Combin. 33, 403–417 (2017)

11. Henning, M.A., Pandey, A.: Algorithmic aspects of semitotal domination graphs.
Theor. Comput. Sci. 766, 46–57 (2019)

https://doi.org/10.1007/978-1-4614-5242-3
https://doi.org/10.1007/978-1-4614-6525-6

Semitotal Domination on AT-Free Graphs and Circle Graphs 65

12. Galby, E., Munaro, A., Ries, D.: Semitotal domination: new hardness results and
a polynomial-time algorithm for graphs of bounded mim-width. Theor. Comput.
Sci. 814, 28–48 (2020)

13. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Dis-
crete Math. 10, 399–430 (1997)

14. Duchet, P., Meyneil, H.: On hadwiger’s number and the stability number. Discrete
Math. 13, 71–74 (1982)

15. Kratsch, D.: Domination and total domination on asteroidal-triple free graphs.
Discrete Appl. Math. 99, 111–123 (2000)

16. Keil, J.: The complexity of domination problems in circle graphs. Discrete Appl.
Math. 42, 51–63 (1993)

17. Elmallah, E., Stewart, L.: Independence and domination in polygon graphs. Dis-
crete Math. 44, 65–77 (1993)

Burning Grids and Intervals

Arya Tanmay Gupta1(B), Swapnil A. Lokhande2, and Kaushik Mondal3(B)

1 Michigan State University, East Lansing, MI, USA
guptaar3@msu.edu

2 Indian Institute of Information Technology Vadodara, Gandhinagar, India
3 Indian Institute of Technology Ropar, Rupnagar, India

kaushik.mondal@iitrpr.ac.in

Abstract. Graph burning runs on discrete time steps. The aim is to
burn all the vertices in a given graph in the least number of time steps.
This number is known to be the burning number of the graph. The spread
of social influence, an alarm, or a social contagion can be modeled using
graph burning. The less the burning number, the faster the spread.

Optimal burning of general graphs is NP-Hard. There is a 3-approx-
imation algorithm to burn general graphs where as better approximation
factors are there for many sub classes. Here we study burning of grids;
provide a lower bound for burning arbitrary grids and a 2-approximation
algorithm for burning square grids. On the other hand, burning path
forests, spider graphs, and trees with maximum degree three is already
known to be NP-Complete. In this article we show burning problem to
be NP-Complete on connected interval graphs.

1 Introduction

The spread of social influence in order to analyze a social network is an important
topic of study [4,17,18]. Kramer et al. [19] have highlighted that the underlying
network plays an essential role in the spread of an emotional contagion; they
have nullified the necessity of in-person interaction and non-verbal cues. With
the aim to model such problems, Graph Burning was introduced in [10]. Graph
burning is also inspired by other contact processes like firefighting [12], graph
cleaning [2], and graph bootstrap percolation [3]. Burning a graph can be used to
model the spread of a meme, gossip, or a social contagion, influence or emotion.
It can also be used to model the viral infections: the exposure to infections and
proliferation of virus.

Graph burning runs on discrete time-steps (or rounds) as follows: in each
time-step t, first (a) an arbitrary vertex is burnt from “outside” (it is selected
as a fire source), and then, (b) the fire spreads to the vertices that are one
hop neighbors of the already burnt vertices (burnt by round t − 1); this process
continues till all the vertices of the given graph are burned. Observe that some

A.T. Gupta—This study was conducted when A T Gupta was affiliated with the Indian
Institute of Information Technology Vadodara, India.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 66–79, 2021.
https://doi.org/10.1007/978-3-030-67899-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_6

Burning Grids and Intervals 67

fire source selected at round t does not spread fire to its one hop neighbors in the
same round. The sequence of fire sources, selected one in each round until a graph
is completely burnt, is called a burning sequence of that graph. The minimum
time steps (equivalently, number of fire sources) required to burn a graph G is
called the burning length or the burning number of G, and is denoted by b(G).
The less the value of b(G), the faster it is to spread the fire, and therefore burn
all the vertices in G. The graph burning problem is to find an optimal burning
sequence for a given graph G. At places, we use burning problem to refer the
same.

The underlying decision problem for graph burning is as follows: the given
input is an arbitrary graph G and an integer k, the task is to determine if G
can be burned in k or less rounds. Bessy et al. [5] showed that optimal graph
burning is an NP-Complete problem. They also showed that burning spider
graphs, trees with maximum degree three and path forests is NP-Complete. In
this article, we study the graph burning problem on interval graphs and grids.
Interval graphs are formed from a set of closed intervals on the real line such
that each interval corresponds to a vertex and the vertices corresponding to
two such intervals are connected only if they overlap on the real line. Grids
are formed by a set of equidistant horizontal and vertical lines intersecting at
right angles such that each intersection point corresponds to a vertex and all
the (induced) line segments joining those vertices are considered as edges. We
prove NP-Completeness results for interval graphs. Our construction and proof
technique are similar to [5]. We also provide matching bounds for burning grids.

Our Contribution: We provide a lower bound for the burning num-
ber of grids of arbitrary size and a 2-approximation algorithm for burning
square grids (Sect. 4). We prove burning connected interval graphs to be NP-
Complete(Sect. 5). We also report hardness results on some more graph classes
(Sect. 6).

2 Preliminary Definitions and Symbols

We mention below some of the notations used in this article. Let G be a graph.
We denote the set of vertices in G by V (G). The distance between two vertices
imply the number of edges contained in the shortest path between those two
vertices in G. The radical center of a graph means the vertex from which the
shortest distance to the furthest vertex is minimum. We define ∪\s to be the
left sequential union. This operation can add a single element to a sequence, or
merge two sequences. As an example, let P = (a, b) be a sequence, then after
executing the statement P = P ∪\s (c), P becomes (c, a, b). Similarly ∪s/ is
defined as the right sequential union. Let Q1, Q2 be two paths. By joining these
two paths in order Q1, Q2, we mean adding an edge between the last vertex of
Q1 and the first vertex of the Q2. Let A be a set of natural numbers. We denote
the sum of all numbers in A as s(A). The largest element in A is denoted by
max(A).

68 A. T. Gupta et al.

Let W be a non-empty set of vertices such that W ⊂ V (G). The set of vertices
that are at most at a distance i from W in G, including W is denoted by G.Ni[W].
The set W may be a set containing a single element. Let S = (x1, x2, ..., xk) be a
burning sequence of G of size k such that, xi is chosen as the fire source in round
i. The burning cluster (or simply cluster, when it is clear from the context) of a
fire source xi is the set G.Nk−i[xi]. Precisely, it is the set of vertices, to whom
the fire source xi is able to spread fire to in the remaining (k−i) rounds. Observe
that, xi would be able to burn all of it’s (k − i) hop neighbors. Now it is easy to
see that, if S is able to burn G completely, then Eq. 1 must hold true [5].

G.Nk−1[x1] ∪ G.Nk−2[x2] ∪ ... ∪ G.N0[xk] = V (G) (1)

For the NP-Completeness proof, we reduce distinct 3-partition problem to
our problem. The input of the distinct 3-partition problem is a set of distinct
natural numbers, X = {a1, a2, ..., a3n}, such that

∑3n
i=1 ai = nB where B

4 < ai <
B
2 . The task is to determine if X can be partitioned into n sets, each containing 3
elements such that sum of each set equals B. Note that, B can only be a natural
number as it is a sum of 3 natural numbers. It is well known that the distinct
3-partition problem is NP-Complete in the strong sense (see [5,13]).

3 Related Works

The burning problem was introduced by Bonato et al. (2014) [10]. This work
showed that the burning number of a path or cycle of length p is

⌈√
p
⌉
along

with some other properties and results. Bessy et al. [5] showed that burning a
general graph is NP-Complete: they showed that burning spider graphs, trees,
and path-forests are NP-Complete. A 3-approximation algorithm for burning
general graphs was described in [5]. Bonato et al. [8] proposed a 2-approximation
algorithm for burning trees. A 1.5-approximation algorithm for burning path-
forests was described in [9]. A 2-approximation algorithm for burning graphs
that are bounded by a diameter of constant length was described in [15]. There
are works providing upper bounds on the burning number of some classes of
graphs. Authors in [11] as well as [9] showed that burning number of spider
graphs of order n is at most

√
n. Bessy et al. [6] provided a bound on the

burning number of a connected graph of order n, and a special class of trees.
Simon et al. [1] presented systems that utilize burning in the spread of an alarm
through a network. Simon et al. [20] provided heuristics to minimize the time
steps in burning a graph. Kamali et al. [15] provides upper bound on burning
number for the graphs with bounded path length and also for the graphs with
minimum degree δ. Along with this, authors in [15] (also [16]) discussed bounds
on the burning number of interval graphs and showed almost tight bounds.
Although, they have not provided any algorithm to find an optimal burning
sequence. Despite the known bounds on the burning number and the fact that
most of other properties of interval graphs can be computed in polynomial time,
we show that burning connected interval graphs turns out to be NP-Complete.
Also we study graph burning on grids which is a graph of constant minimum
degree.

Burning Grids and Intervals 69

4 Burning Grids

In this section we study graph burning problem on grids by providing a lower
bound for grids of arbitrary size and an 2-approximation algorithm for square
grids. According to [15], the upper bound on burning number of graphs with
constant minimum degree is O(

√
n). Here we provide a better upper bound and

a matching lower bound for this specific class of graphs.
First we analyze at most how many nodes can be burnt by an arbitrary fire

source inside the grid. We show an example in Fig. 1 (a). Let the maximum
number of vertices that can be burned by a single fire source in k rounds be
denoted by fk. We compute fk using the recurrence relations as follows.

f1 = 1
fk = 4(k − 1) + fk−1

At kth time step after a fire source is placed, the number of vertices which
can be burned is 1+4+8+12+ ...+4(k − 1) = 1+4(1+2+3+ ...+(k − 1)) =
1 + 4 × k(k−1)

2 = 2k(k − 1) + 1.

(a) (b)

Fig. 1. (a) On a grid, a fire source (circled) is able to burn 1 vertex in 1 round, 5
vertices in 2 rounds, 13 vertices in 3 rounds, 25 vertices in 4 rounds, and so on. (b) An
8 × 8 grid divided into four 4 × 4 subgrids.

The Lower Bound: We prove the following lemma on the lower bound of
burning number on any arbitrary grid of size l × b.

Lemma 1. To burn a grid of size l × b, we need a burning sequence containing
at least (l × b)

1
3 fire sources.

Proof. Consider a grid of size l × b, where l and b are any positive integers. As
discussed above, fk = 2k(k − 1) + 1. So, if i be the burning number of the grid,
then the total number of vertices that are burned by this burning sequence will

70 A. T. Gupta et al.

be 1+5+13+25+ ...+2i(i− 1)+1 = (2(0+2+6+12+20+ ...+(i2 − i))+ i)
= 2((12 − 1)+ (22 − 2)+ (32 − 3)+ ...+(i2 − i))+ i = 2((12+22+32+ ...+ i2)−
(1 + 2+ 3+ ...+ i)) + i = 2

(
i(i+1)(2i+1)

6 − i(i+1)
2

)
+ i = i(i+1)(2i+1)

3 − i(i+1)+ i

= i(i+1)(2i−2)
3 + i = i(2i2−2+3)

3 = i(2i2+1)
3 .

A burning sequence of size i shall be able to burn at most 2i3+i
3 vertices on

the grid. So to burn the grid in i rounds, we must have,

2i3 + i

3
≥ l × b (2)

Since 2i3+i
3 ≤ i3 ∀i ≥ 1 and the burning sequence burns all the vertices, we

have i3 ≥ 2i3+i
3 ≥ l × b. This implies i ≥ (l × b)

1
3 . �	

We state the following corollary.

Corollary 1. To burn a square grid of size n, the burning number needs to be
at least n

1
3 .

Now we describe the following algorithm to burn an arbitrary grid G of size
l × b. We further show that this is a 2-approximation algorithm for burning any
l × l square grid with l ≥ 403.

The Algorithm: Divide G into subgrids (see Fig. 1 (b) for example) of dimen-
sions l

2
3 × b

2
3 . Represent the resultant subgrids by g1, g2, ..., gk where k is the

count of subgrids obtained. Let S be the sequence of fire sources, initially empty.
For 1 ≤ i ≤ k, put the radical center xi of subgrid gi as the i-th fire source in S.
If G is not completely burnt by those k fire sources, then in each step i ≥ k +1,
continue putting unburnt vertices from G in S until G is completely burnt.

Theorem 1. Our algorithm is able to burn a grid G within an approximation
factor of 2 if G is a l × l square grid with l ≥ 403.

Proof. The algorithm divides the grid in to at most (l
1
3 +1)× (l

1
3 +1) subgrids.

In each round i, xi is set to be the i-th fire source. As the fire source is placed
at the radical center of a subgrid, and the radius of the subgrid is l

2
3 , so it takes

l
2
3 rounds to burn the corresponding subgrid. As the last fire source may take
up to l

2
3 rounds to burn the respective subgrid, our algorithm takes a total of

at most
(l 1
3 + 1) × (l

1
3 + 1) + l

2
3 � rounds i.e.,
2l 2

3 + 2l
1
3 + 1� rounds to burn G

completely. Next we see what can not be burnt using half of the rounds that our
algorithm takes in worst case.

It is impossible to burn any l × l square grid with l ≥ 403 in less than
�2l 23 +2l

1
3 +1�

2 rounds as i = �2l 23 +2l
1
3 +1�

2 value does not satisfy Eq. 2 for b = l
where l ≥ 403. Remember, to burn G completely in i rounds, Eq. 2 must be
satisfied. Hence the proof. �	

Burning Grids and Intervals 71

5 Burning Interval Graphs

We show that burning connected interval graphs is NP-Complete by giving a
reduction from the distinct 3-partition problem. We construct interval graph
from any given instance of the distinct 3-partition problem. We do so by replacing
each spider structure by a “comb structure” in the construction of the NP-
Completeness proof for burning trees in [5], which we elaborate later in this
section. But before going to that, we have the following discussion that tries to
relate burning an interval graph to burning a path.

Bonato et al. (2016) [7] proved that a path or a cycle of n vertices can be
burned in
√n� steps. Note the following observation from the above fact.

Observation 1. The burning clusters of each of the n fire sources of any opti-
mal burning sequence of a path of n2 vertices are pairwise disjoint.

We would like to recall another result from [15,16] on the bounds on burning
number of interval graphs as the following observation. We provide an example
of burning a path of size nine as shown in the Fig. 2.

v1 v2 v3(x1)

t = 1

v4 v5 v6 v7(x2)

t = 2

v8 v9(x3)

t = 3

Fig. 2. Path of length nine is burnt in three steps. The vertex v3 is chosen as fire source
x1 in time t = 1 and x1 is burned at this step. In time t = 2, v7 is chosen as the next
fire source x2 and it is burned in this step. Along with this, the one hop neighbors v2,
v4 of the already burnt (by step 1) vertex v3 also are burned in this step. In time t = 3,
v9 is selected as the third fire source and subsequently is burned in this step. Also the
one hop neighbors v1, v5, v6 and v8 are burned in this step by the spread of fire from
the already burnt vertices (by step 2).

Observation 2. Let L be a maximum length path among the all pair shortest
paths of an interval graph G. Then b(L) ≤ b(G) ≤ b(L) + 1.

Also note that, finding such L is easy to do in polynomial time. We can
simply compute all pair shortest path and choose the maximum length path
among all. Then we can see from the proof of Observation 2 that burning an
interval graph in (b(L)+1) rounds, i.e., at most in (b(G)+1) rounds is trivial. We
study whether finding a burning sequence of length b(G) is possible in polynomial
time, especially if b(G) = b(L) for an interval graph G. We show that determining
whether b(G) = b(L) is NP-Complete.

General Idea: First we provide a general idea behind our approach. We prove
the NP-Completeness of burning interval graphs by giving a reduction from the
distinct 3-partition problem. We construct interval graph from any given instance
of the distinct 3-partition problem. We show that burning this interval graph is

72 A. T. Gupta et al.

possible optimally in polynomial time if and only if one can solve the distinct
3-partition problem. While describing the idea, we refer to few notations here
which are defined in Sect. 5.1.

We start with any input X of the distinct 3-partition problem. First we
construct another set X ′ from X such that all the elements of X ′ are odd.
The reason behind moving to X ′ is, we aim to use the fact that the sizes of
the burning clusters of the fire sources on a path are all odds if the length of
the path is a perfect square. First we construct a path PI of length (2m + 1)2

(where m = max(X)) by combining few subpaths of shorter lengths. Note that
b(PI) = 2m + 1. Then we add few vertices and corresponding edges to some
of the subpaths Tj of PI in such a way that it remains an interval graph. We
call it IG(X) (Sect. 5.1). The optimal burning number b(IG(X)) takes the value
2m + 1 whenever X ′(and eventually X) can be partitioned according to the
distinct 3-partition problem (Lemma 3). So we keep the burning number of the
path PI and the interval graph IG(X) same.

Additional vertices and edges are added to the sub paths Tj to form structures
T c
j (refer Fig. 3) in such a way that to burn IG(X) optimally, one must have to

burn each T c
j only with one fire source (Lemma 2). Not only that, one must have

to put that fire source on T c
j in a particular round depending on the length of

the subpath Tj (Lemma 5). With the help of these results and another couple of
results, we finally show that, to burn this interval graph optimally in b(IG(X))
steps, one needs to solve the distinct 3-partition problem on the input X. This
makes our problem an NP-Complete problem (Sect. 5.3 Theorem 2).

5.1 Interval Graph Construction

Let n be a natural number. Let X = {a1, a2, · · · , a3n} be an input to a distinct 3-
partition problem. So, n = |X|

3 and B = s(X)
n . Let m = max(X), and k = m−3n.

Let Fm be the set of first m natural numbers, Fm = {1, 2, 3, ...,m}. Also let F ′
m be

the set of first m odd numbers, F ′
m = {2 fi − 1 : fi ∈ Fm} = {1, 3, 5, ..., 2m− 1}.

Let X ′ = {2 ai − 1 : ai ∈ X}, B′ = s(X′)
n . Observe that s(X ′) =

∑3n
i=1 2 ai − 1 =

2nB − 3n, so B′ = 2B − 3. It is easy to observe that any solution of X gives a
solution of X ′ and vice versa. Let Y = F ′

m \ X ′.
Let there be n paths Q1, Q2..., Qn, each of order B′. Consider k paths

Q′
1, Q′

2, ..., Q′
k such that each Q′

j (∀ 1 ≤ j ≤ k) is of order of jth

largest number in Y , where k = |Y |. Clearly the total number of ver-
tices in Q1, Q2..., Qn, Q′

1, Q
′
2, ..., Q

′
k is m2, i.e., equals s(F ′

m). Consider another
m + 1 paths T1, T2, ..., Tm+1 such that each Tj (∀1 ≤ j ≤ m + 1) is of
order of 2(2m + 1 − j) + 1. Total number of vertices in T1, T2, ..., Tm+1 is
∑m+1

j=1 (2(2m + 1 − j) + 1) = (3m2+4m+1). We join these paths in the follow-
ing order to form a larger path:
Q1, T1, Q2, T2, ..., Qn, Tn, Q′

1, Tn+1, Q′
2, Tn+2, ..., Q′

k, Tn+k, Tn+k+1, ...,
Tm+1. We denote this path as PI . The total number of vertices in PI is
m2 + 3m2 + 4m + 1 = (2m + 1)2. Hence b(PI) = (2m + 1).

Now we add few more vertices to PI in such a way that it remains an interval
graph and the optimal burning number of the graph remains same as b(PI). We

Burning Grids and Intervals 73

add a distinct vertex connected to each vertex from 2nd to 2nd-last vertices
of Tj , ∀1 ≤ j ≤ m + 1 (Fig. 3 illustrates an example Tj along with the added
vertices and edges (vertically upwards w.r.t. Tj). This forms a kind of comb
structure; we call it T c

j). Let this graph be called IG(X). Now we calculate
total number of vertices in IG(X). Number of vertices added to each Tj is
(2(2m + 1 − j) + 1) − 2 = (4m + 1 − j). Hence total number of vertices added
to PI is

∑m+1
j=1 (4m + 1 − j) = (3m2 + 2m − 1). So, total number of vertices in

IG(X) is (2m+1)2+(3m2+2m−1) = (7m2+6m). One such example of IG(X)
is shown in Fig. 4 corresponding to the numerical example given in Sect. 5.2.

Observe that PI is a diameter of IG(X) and there is no cycle in IG(X). Also,
all the vertices which are not in PI are connected to some vertex of PI by an
edge. Hence IG(X) is a valid interval graph.

u1
j

x1

vt

v vr x2

u
|Tj |−2

j

Fig. 3. Structure of a Tj with 33 vertices, along with the extra vertices connected to
it. The dashed line represents the fact that other subpaths may be connected to a Tj

on either or both ends.

Let u1
j be the vertex connected to the 2nd vertex of each Tj and u

|Tj |−2
j be the

vertex connected to its 2nd-last vertex of Tj , where |Tj | stands for the number
of vertices in the subpath Tj . Let ATj = {u1

j , u
2
j , ..., u

|Tj |−2
j } be the set of all

|Tj | − 2 additional vertices corresponding to Tj . Now we mention an important
observation regarding burning T c

j .

Observation 3. If T c
j is burnt by putting m ≥ 2 fire sources on Tj, then the

burning clusters of at least two of these fire sources overlap (i.e., contain common
vertices) of Tj.

Proof. Let that some T c
j be completely burnt by two or more fire sources and

yet there is no overlap between the burning clusters of any of those fire sources.
Since all the fire sources are on Tj , which is a sub path of PI , we say two fire
sources on Tj are adjacent if there is a path in Tj between those two fire sources
such that the path does not contain any other fire sources. For any two adjacent
fire sources let us assume that there is no vertex which lies in the burning clusters
of both the fire sources. Let v be a vertex on the path joining those two adjacent
fire sources x1 and x2, such that the vertices in the left side of v including it
(vertices towards x1 as shown in Fig. 3 using the left arrow) are burnt by x1 and
the vertices in the right of v (excluding v) are burnt by x2.

Let the vertex that is just right to v is vr. By pigeonhole principle, we have
that at least one of v or vr having a neighbor vt in T c

j which is not in Tj .
Without the loss of generality, let that v is having such a neighbor. Since the

74 A. T. Gupta et al.

Q1 T1 Q2 T2

T5 Q′
3 T4 Q′

2 T3 Q′
1

Q′
4 T6 Q′

5 T7 Q′
6 T8

T11 Q′
9 T10 Q′

8 T9 Q′
7

Q′
10 T12 T13 T14 T15 T16

T17

Fig. 4. Construction of an example IG(X).The corresponding numerical example is in
Sect. 5.2

burning cluster of x1 extends till v and not to its one hop neighbor vr (∈ Tj), so
it does not burn the other one hop neighbor vt (∈ Tj) too. It is easy to see that
the second fire source can not burn vt. This is contradiction to our assumption
that T c

j is burnt completely without overlapping clusters. �	
The following observation is immediate.

Observation 4. If a single fire source is able to burn Tj in t rounds, then T c
j

would also be burnt by it in the same number of rounds.

Lemma 2. If at least one Tj is burnt using more than one fire sources, then PI

can not be burnt optimally, i.e., in b(PI) = 2m + 1 steps.

Proof. Since PI is a simple path of length (2m+1)2, according to Observation 1,
each fire source in an optimal burning sequence must burn disjoint set of vertices
of PI . Let x1, x2, ..., x2m+1 be an optimal burning sequence of PI such that some
Tj is burnt using more than one fire sources, then according to Observation
3, at least two fire sources burn at least one common vertex of PI and hence
x1, x2, ..., x2m+1 can not be an optimal burning sequence for PI . �	

5.2 Example Construction

Here we show the construction of IG(X) from a particular input set X. Let
X = {10, 11, 12, 14, 15, 16}. Then n = 2, m = 16, B = 39, and k = 10. Also
Fm = {1, 2, ..., 16} and F ′

m = {1, 3, ..., 31}. Further, X ′ = {19, 21, 23, 27, 29, 31},
B′ = 75 = 2B − 3 and Y = {1, 3, 5, 7, 9, 11, 13, 15, 17, 25}. Observe that Q1 and

Burning Grids and Intervals 75

Q2 are paths of size 75, and each Q′
1, Q

′
2, ..., Q

′
k are paths of order of 25, 17, 15,

13, 11, 9, 7, 5, 3, 1 respectively. T1, T2, T3, ...Tm+1 are of order of 65, 63, 61..., 33
respectively. We add a vertex connected to each vertex from 2nd to 2nd-last
vertices of Tj(1 ≤ j ≤ m + 1). Observe that this is a valid interval graph. The
constructed example IG(X) is shown in Fig. 4.

5.3 NP-Completeness

In this section we proceed to the NP-Completeness proof through a series of
lemmas. We start with the following.

Lemma 3. If X ′ has a solution for the distinct 3-partition problem, then burn-
ing number of IG(X) is 2m + 1.

Proof. If X ′ has a solution for the distinct 3-partition problem, there would be
n sets of three numbers each, sum of which is B′. Recall that length of each Qi is
B′. Hence, Q1, ..., Qn can be partitioned into further subpaths Q′′

1 , ..., Q′′
3n. Let

us call the partitions of Qi as Q′′
3(i−1)+1, Q′′

3(i−1)+2, and Q′′
3i. Since X ′ is a set

of odd numbers, length of each of these 3n subpaths are odd.
Let P ′ = {Q′′

1 , ..., Q
′′
3n, Q

′
1, ..., Q

′
k, T1, ..., Tm+1}. Let ri be the ((2m+1)−i+

1)th = (2m − i+2)th vertex on the ith largest subpath in P ′. Then, the burning
sequence S′ = (r1, r2, .., r2m+1) can burn PI and subsequently IG(X). This
implies that b(IG(X)) ≤ 2m+1. Since IG(X) has a subpath of length (2m+1)2

in form of PI , we have b(IG(X)) ≥ 2m + 1. Hence, b(IG(X)) = 2m + 1. �	
Lemma 4. Each fire source yi of any optimal burning sequence (y1, y2,
..., y2m+1) of IG(X) must be on PI .

Proof. We prove it by contradiction. If for any i, yi is on PI , then subgraph
induced by G.N2m+1−i[yi]∩PI has length at most 2(2m+1− i)+1. Let we put
a fire source yi on some vertex of ATj for some j, which is not on PI , and still
burn IG(X) in 2m + 1 steps. Then subgraph induced by G.N2m+1−i[yi] ∩ PI is
a path of length less than 2(2m+ 1− i) + 1. This along with Eq. 1 implies that
| ∪2m+1

i=1 G.N2m+1−i[yi] ∩ PI | < (2m + 1)2. So, even PI is not burnt. This is a
contradiction to our assumption that IG(X) is burnt in 2m+1 steps. Therefore
each yi must be a put on some vertex in PI . �	

Let S′ = (y1, y2, ..., y2m+1) be any optimal burning sequence. Let ri be the
(2m − i+ 2)th vertex on the ith largest sub path in P ′ as described in the proof
of Lemma 3. Observe that Tj ’s are the largest m + 1 sub paths in P ′.

Lemma 5. We must have yi = ri, ∀ 1 ≤ i ≤ m + 1.

Proof. We are going to prove this lemma using the strong induction hypothesis.
We have that each uk

j ∈ ATj for some j must receive fire from some yi in PI , as
all fire sources must be on PI (Lemma 4). For i = 1, the only vertex connected
to both u1

1 and u
|T1|−2
1 and within a distance 2m + 1 − i = 2m, is r1. Now we

must have y1 = r1, else, if we put y1 somewhere else, then neither y1 nor any

76 A. T. Gupta et al.

other fire source can burn T c
1 alone. Also, we can not use multiple fire sources

to burn T c
1 as an optimal burning of IG(X) does not allow that (Lemma 2). So,

we must have that y1 = r1. Now to establish strong induction, let that we need
to have yk on rk for 1 ≤ k ≤ m.

Since rk is already used to burn T c
k , the only fire source that can burn T c

k+1

alone, is rk+1. Recall that Tk+1 has the largest length among the remaining
subpaths after T1, T2, · · · , Tk are burnt. And we can not use multiple fire sources
to burn T c

k+1 (Lemma 2). Also the only vertex connected to both u1
k+1 and

u
|Tk+1|−2
k+1 within distance 2m+1− (k+1) is rk+1. So, we must have that yk+1 =

rk+1. This completes the proof. �	
Let P ′′ = IG(X)\(T c

1 ∪ T c
2 ∪ ... ∪ T c

m+1). Now we present the following lemma
on burning this remaining subgraph P ′′. That is P ′′ is a path forest consists of
the subpaths Q1, Q2..., Qn, Q′

1, Q
′
2, ..., Q

′
k. Now we present the following lemma

on burning P ′′.

Lemma 6. There is a partition of P ′′, induced by the fire sources yi (m + 1 ≤
i ≤ 2m + 1) of the optimal burning sequence S′, into paths of orders in F ′

m.

Proof. From Lemma 5, we have that ∀ 1 ≤ i ≤ m+1, all the vertices in T c
i , would

be burnt by yi. Therefore, we have to burn the vertices in Q1, ..., Qn, Q′
1, ..., Q

′
k by

the fire sources {ym+2,ym+3,· · · , y2m+1} (the remaining m sources of fire). Since
P ′′ is a disjoint union of paths, so we have that ∀i such that m+2 ≤ i ≤ 2m+1,
the subgraph induced by the vertices in G.N2m+1−i[yi] is a path of length at
most 2(2m + 1 − i) + 1. Moreover, we have that the path forest P ′′ is of order∑m

i=1(2i − 1) = m2. This implies that for each i with m + 2 ≤ i ≤ 2m + 1,
the subgraph induced by the vertices in G.N2m+1−i[yi] is a path of order equal
to 2(2m + 1 − i) + 1, otherwise we cannot burn all the vertices of P ′′ by these
m fire sources which is a contradiction to the fact that S′ is a optimal burning
sequence. Therefore there must be a partition of P ′′, induced by the burning
sequence ym+2, ym+3, ..., y2m+1, into subpaths of length as per each element in
F ′
m = {1, 3, 5, ..., 2m − 1}. �	

Theorem 2. Optimal burning of an interval graph is NP-Complete.

Proof. one part is already proved in Lemma 3. Here we show the other part. Let
say we have a 2m + 1 round optimal solution of the burning problem. Each T c

j

must get burned by exactly one fire source as per Lemma 5. From Lemma 6, we
claim that the remaining path forest must be burned by the rest of available fire
sources corresponding to the set F ′

m.
Now, if each of the Q′

i is burned by a single fire source, then they must be
burned by the fire sources corresponding to the integers belonging to set Y . Hence
the remaining fire sources burning Qi’s are burnt by fire sources corresponding
to the integers belonging to the set X ′. As the size of each Qi is B′, which is
always odd (B′ = 2B − 3), and also B′ > 2m − 1 (from the definition of distinct
3-partition problem, m < B/2), so no Qi can be burnt by a single fire source.
Again it can not be burnt by two fire sources as sum of any two numbers in X ′

Burning Grids and Intervals 77

are even. Also no Qi can be burnt by 4 or more fire sources as then by pigeon
whole principle there would be at least one Qi which needs to be burned by
at most 2 fire sources, which is not possible. Hence each Qi must be burnt by
exactly three fire sources.

Else, if Q′
i’s are not burned by single fire sources, we apply the following

process subject to each subpath Q′
j for 1 ≤ j ≤ k. Let that some subpath Q′

j is
burned using multiple fire sources. Since the given solution is optimal so these
burning clusters are non overlapping. Not only that, the sum of the cluster sizes
of these fire sources is exactly same as order of Q′

j . Now some fire source with
cluster size equal to order of Q′

j must be present on some other subpath. We
can interchange that fire source (whose cluster size is Q′

j) by these fire sources
(which are presently burning Q′

j). This way we can make each subpath Q′
j to be

burnt by a single fire source whose cluster size is equal to Q′
j . This takes O(m)

time. After this we again arrived to the case discussed above and we can see that
each Qi are burnt by exactly three fire sources corresponding to the integers in
X ′. Therefore we have a solution of the distinct 3-partition problem whose input
set is X ′. This, in turn, gives us the solution of the distinct 3-partition problem
on the input set X.

Therefore, we have reduced the burning problem of IG(X) from the dis-
tinct 3-partition problem in pseudo-polynomial time. Since, the distinct 3-
partition problem is NP-Complete in the strong sense, burning IG(X) is also
NP-Complete in the strong sense. �	

6 More Hardness Results

In this section we report hardness results on few more graph classes that mostly
follow from our result on the interval graph. A disc graph is formed from an
arrangement of discs on a Euclidean plane such that there is a vertex in the disc
graph corresponding to each disc, and if there is an overlap between a pair of
discs, then there shall be an edge between their corresponding vertices in the
disc graph. Since any interval graph is valid to be a disc graph, we have the
following.
Corollary 2. Optimal burning of disc graphs is NP-Complete even if the under-
lying disc representation is given.

In a unit distance graph, the edges can be drawn in a euclidean plane such
that each edge is of unit length. In matchstick graph, the edges can be drawn in
a euclidean plane such that each edge is of unit length and they do not intersect
each other. The graph class that we have constructed is valid to be a unit distance
graph and a matchstick graph. So we have Corollary 3 as follows.
Corollary 3. Optimal burning of unit distance graphs and matchstick graphs is
NP-Complete.

A permutation graph is constructed from an original sequence of objects O =
(1, 2, 3, ..., k) which are numbers here and its permutation P = (p1, p2, p3, ..., pk)
such that there is an edge between two vertices corresponding to number i and j

78 A. T. Gupta et al.

respectively, if i < j and j occurs before i in P . We can compute a permutation
of an arbitrary original sequence of numbers such that the corresponding permu-
tation graph becomes a path forest (see [14] for a simple construction formula),
which leads to the following Corollary 4.

Corollary 4. Burning of general permutation graphs is NP-Complete.

7 Conclusion

In this article we show that the graph burning problem is NP-Complete on inter-
val graphs which completes the study of burning interval graph given the already
existing results. We also show a lower bound for the burning number of grids of
arbitrary size and give a two approximation algorithm for burning square grids.
It remains an open question whether burning grids is an NP-Complete problem.
Another very much related direction is to try and improve the 3-approximation
algorithm provided in [5] for burning general graphs.

References

1. S̃imon, M., Huraj, L., Dirgovã Luptãkovã, I., Posṕıchal, J.: Heuristics for spreading
alarm throughout a network. Appl. Sci. 9(16), 3269 (2019)

2. Alon, N., PraLat, P., Wormald, N.: Cleaning regular graphs with brushes. SIAM
J. Disc. Math. 23(1), 233–250 (2009)

3. Balogh, J., Bollobás, B., Morris, R.: Graph bootstrap percolation. Random Struct.
Algorithms 41(4), 413–440 (2012)

4. Banerjee, S., Gopalan, A., Das, A., Shakkottai, S.: Epidemic spreading with exter-
nal agents. IEEE Trans. Inf. Theory 60, 06 (2012)

5. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph
is hard. Disc. Appl. Math. 232(C), 73–87 (2017)

6. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Bounds on the
burning number. Disc. Appl. Math. 235, 16–22 (2018)

7. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math.
12(1–2), 85–100 (2016)

8. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 6

9. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-
forests. Theor. Comput. Scie. 794, 12–19 (2019)

10. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social
contagion. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014. LNCS,
vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13123-8 2

11. Das, S., Dev, S.R., Sadhukhan, A., Sahoo, U., Sen, S.: Burning spiders. In:
Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 155–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 13

12. Finbow, S., Macgillivray, G.: The firefighter problem: a survey of results, directions
and questions. Australas. J. Comb. [Electron. only] 43, 57–78 (2009)

https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-74180-2_13

Burning Grids and Intervals 79

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

14. Gupta, A.T., Lokhande, S.A., Mondal, K.: Np-completeness results for graph burn-
ing on geometric graphs. arXiv: 2003.07746 (2020)

15. Kamali, S., Miller, A., Zhang, K.: Burning two worlds. In: SOFSEM (2020)
16. Kare, A.S., Vinod Reddy, I.: Parameterized algorithms for graph burning prob-

lem. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol.
11638, pp. 304–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25005-8 25

17. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: ACM SIGKDD, pp. 137–146. Association for Computing
Machinery, New York (2003)

18. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for
social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 91

19. Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-
scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111(24),
8788–8790 (2014)

20. Simon, M., Huraj, L., Dirgova, L., Pospichal, J.: How to burn a network or spread
alarm. MENDEL 25(2), 11–18 (2019)

http://arxiv.org/abs/2003.07746
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/11523468_91

Parameterized Algorithms

On Parameterized Complexity of Liquid
Democracy

Palash Dey, Arnab Maiti, and Amatya Sharma(B)

Indian Institute of Technology Kharagpur, Kharagpur, India
palash.dey@cse.iitkgp.ac.in, arnabmaiti@iitkgp.ac.in,

amatya65555@iitkgp.ac.in

Abstract. In liquid democracy, each voter either votes herself or del-
egates her vote to some other voter. This gives rise to what is called
a delegation graph. To decide the voters who eventually votes along
with the subset of voters whose votes they give, we need to resolve the
cycles in the delegation graph. This gives rise to the Resolve Dele-
gation to MinMaxWeight problem where we need to find an acyclic
sub-graph of the delegation graph such that the number of voters whose
votes they give is bounded above by some integer λ. Putting a cap on the
number of voters whose votes a voter gives enable the system designer
restrict the power of any individual voter. The Resolve Delegation
to MinMaxWeight problem is already known to be NP-hard. In this
paper we study the parameterized complexity of this problem. We show
that Resolve Delegation to MinMaxWeight is para-NP-hard with
respect to parameters λ, number of sink nodes and the maximum degree
of the delegation graph. We also show that Resolve Delegation to
MinMaxWeight is W[1]-hard even with respect to the treewidth of the
delegation graph. We complement our negative results by exhibiting FPT
algorithms with respect to some other parameters. We finally show that
a related problem, which we call Resolve Fractional Delegation, is
polynomial time solvable.

Keywords: Liquid democracy · Resolve Delegation to
MinMaxWeight · Parameterized complexity

1 Introduction

In a direct democracy, agents vote for a candidate by themselves. In liquid democ-
racy, the voters can delegate their votes to other agents who can vote on their
behalf. Suppose voter 1 delegates her vote to voter 2 and voters 2 and 3 delegate
their votes to voter 4. Then voter 4 has a voting power equivalent to 4 individual
votes. That is delegations are transitive. This particular feature can make liquid
democracy a disruptive approach to democratic voting system. This happens
because such a voting system can lead to what we call a super-voter who has a
lot of voting power. So now the candidates instead of trying to appease the gen-
eral public can do behind the closed door dealings with the super-voters and try
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 83–94, 2021.
https://doi.org/10.1007/978-3-030-67899-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_7

84 P. Dey et al.

to win the election in an unfair manner. In order to deal with this issue, a central
mechanism ensures that no super-voter has a lot of voting power. Formally we
do it as follows. We create a delegation graph where the set of vertices is the set
of voters and we have a directed edge from vertex i to vertex j if voter i delegates
her vote to voter j. We observe that delegation graph may contain cycles. Every
voter is also allowed to delegate her vote to more than one other voters and let
the system decide her final delegation. We use a central mechanism to find a
acyclic sub-graph of the delegation graph such that no super-voter (the vertices
having out-degree 0) has a lot of voting power. We call this problem Resolve
Delegation to MinMaxWeight.

1.1 Related Work

An empirical investigation of the existence and influence of super-voters was
done by [9]. They showed that the super-voters can be powerful although they
seem to act in a responsible manner according to their results. There have been
a few theoretical work in this area by [4,7] and [8]. A detailed theoretical work
especially on the approximation algorithms in this setting was done by [6]. Some
other important work in Liquid democracy includes [2] and [3].

1.2 Our Contribution

We study parameterized complexity of the Resolve Delegation to Min-
MaxWeight problem with respect to various natural parameters. In particular,
we consider the number of sink vertices (t), maximum allowed weight λ of any
sink in the final delegation graph, maximum degree (Δ), tree-width, number of
edges deleted in optimal solution (erem), number of non-sink vertices (|V\T|).
The number of sink vertices corresponds to the number of influential voters
which is often a small number in practice. This makes the number of sink ver-
tices an important parameter to study. Similarly, the parameter λ corresponds
to the “power” of a voter. Since the input to the problem is a graph, it is natural
to study parameters, for example, tree-width (by ignoring the directions of the
edges) and the number of edges that one needs to delete in an optimal solution.
We summarize our results in Table 1. We finally show that Resolve Delega-
tion to MinMaxWeight is polynomial time solvable if we allow fractional
delegations [Theorem 6].

2 Preliminaries

A directed graph G is a tuple (V,E) where E ⊆ {(x,y) : x,y ∈ V, x �= y}.
For a graph G, we denote its set of vertices by V[G], its set of edges by E[G],
the number of vertices by n, and the number of edges by m. Given a graph
G = (V,E), a sub-graph H = (V′,E′) is a graph such that (i) V′ ⊆ V, (ii)
E′ ⊆ E, and (iii) for every (x,y) ∈ E′, we have x,y ∈ V′. A sub-graph H of a
graph G is called a spanning sub-graph if V[H] = V[G] and induced sub-graph if
E[H] = {(x,y) ∈ E[G] : x,y ∈ V[H]}. Given an induced path P of a graph, we
define end vertex as vertex with 0 outdegree in P and start vertex as a vertex
with 0 indegree in P.

On Parameterized Complexity of Liquid Democracy 85

Table 1. Summary of results.

Parameter Result

t para-NP-hard [Theorem 1]

(λ, Δ) para-NP-hard [Theorem 2]

(λ, t) quadratic vertex kernel [Observation 1]

tree-width W[1]-Hard [Theorem 3]

erem FPT by bounded search tree technique [Theorem 5]

|V\T| FPT by bounded search tree technique [Theorem 4]

Problem under AssumptionResult

fractional delegation Reduction to LP [Theorem 6]

DAG,Bipartite Graph W[1]-Hard w.r.t treewidth [Corollary 2]

DAG,Bipartite Graph para-NP-hard w.r.t λ, Δ [Corollary 1]

2.1 Problem Definition

We now define our problem formally.

Definition 1 (Resolve Delegation to MinMaxWeight). Given a
directed graph G = (V,E) (also known as delegation graph) with the set
T ⊆ V as its set of sink vertices and an integer λ, decide if there exists a
spanning sub-graph H ⊆ G such that

(i) The out-degree of every vertex in V \ T is exactly 1
(ii) For every sink vertex t ∈ T, the number of vertices (including t) in V

which has a path to t in the sub-graph H is at most λ

We denote an arbitrary instance of Resolve Delegation to Min-
MaxWeight by (G, λ).

In the spanning sub-graph H ⊆ G , if there is a path from u to v in H such
that all the vertices on this path except v has out-degree 1, then we say that
vertex u delegates to vertex v. In any spanning sub-graph H ⊆ G with the out-
degree of every vertex in V \ T is exactly 1 (we call sub-graph H a feasible
solution), weight of a tree rooted at the sink vertex u is the number of vertices
(including u) that have a directed path to u. We study parameterized complexity
of Resolve Delegation to MinMaxWeight with respect to t, λ, and the
maximum degree Δ of the input graph as our parameters. In the optimization
version of Resolve Delegation to MinMaxWeight, we aim to minimize λ.

3 Results: Algorithmic Hardness

Our first result shows that Resolve Delegation to MinMaxWeight is
NP-complete even if we have only 3 sink vertices. For that, we exhibit reduction
from the Two Vertex Disjoint Paths problem.

86 P. Dey et al.

Definition 2 (Two Vertex Disjoint Paths). Given a directed graph G =
(V,E), two pairs (s1, t1) and (s2, t2) of vertices which are all different from each
other, compute if there exists two vertex disjoint paths P1 and P2 where Pi

is a path from si to ti for i ∈ [2]. We denote an arbitrary instance of it by
(G, s1, t1, s2, t2).

We know that Two Vertex Disjoint Paths is NP-complete [5]. The idea
is to add paths containing large number of nodes in the instance of Resolve
Delegation to MinMaxWeight which we are creating using the instance
of Two Vertex Disjoint Paths. This key idea will make both the instances
equivalent.

Theorem 1. The Resolve Delegation to MinMaxWeight problem is
NP-complete even if we have only 3 sink vertices. In particular, Resolve Del-
egation to MinMaxWeight is para-NP-hard with respect to the parameter
t.

Proof. The Resolve Delegation to MinMaxWeight problem clearly
belongs to NP. To show its NP-hardness, we reduce from Two Vertex Dis-
joint Paths. Let (G = (V,E), s1, t1, s2, t2) be an arbitrary instance of Two
Vertex Disjoint Paths. Let n = |V|. We consider the following instance
(G′ = (V′,E′), λ).

V′ = {av : v ∈ V} ∪ D1 ∪ D′
1 ∪ D2 ∪ D′

2 ∪ D3 where
|D1| = |D′

2| = 10n, |D′
1| = |D2| = 5n, |D3| = 15n

E′ = {(au,av) : (u, v) ∈ E} ∪ F

We now describe the edges in F. Each D1,D′
1,D2,D′

2 and D3 induces a path
in G′ and thus the edges in these paths are part of F. The end vertices of the
path induced on D1 and D2 be respectively d1 and d2. The start vertices of
the path induced on D′

1 and D′
2 be respectively d′

1 and d′
2. The end vertices

of the path induced on D′
1,D

′
2 and D3 be t′

1, t
′
2 and t′

3 respectively. The set F

also contains the edges in {(d1,as1), (d2,as2), (at1 ,d
′
1), (at2 ,d

′
2)}. F also contains

edge (av, t′
3) ∀v ∈ V. This finishes the description of F and thus the description

of G′. We observe that G′ has exactly 3 sink vertices, namely t′
1, t

′
2 and t′

3. Finally
we define λ = 17n. We claim that the two instances are equivalent.

In one direction, let us assume that the Two Vertex Disjoint Paths
instance is a yes instance. For all i ∈ [2], let Pi be a path from si to
ti in G such that P1 and P2 are vertex disjoint. We build the solution H

for Resolve Delegation to MinMaxWeight by first adding the set of
edges {(u, v)|outdegree of u is 1}. Then we add the paths P1 and P2. Then
we add the edges (at1 ,d

′
1), (at2 ,d

′
2). Then for each vertex u in the set Vr

= {av|v ∈ V}\V[P1 ∪ P2], add the edge (u, t′
3) to H.

We observe that the out degree of every vertex is exactly 1 in H except the
sink vertices in G′ (which are t′

1, t
′
2 and t′

3). Also since H contains the path Pi,
every vertex in Di has a path to t′

i for i ∈ [2]. Of course, every vertex in D′
i has

a path to t′
i for i ∈ [2] and every vertex in D3 delegates to t′

3. Hence ∀i ∈ [3],

On Parameterized Complexity of Liquid Democracy 87

the number of vertices which has a path to ti in H′ is at most 16n which is less
than λ. Hence the Resolve Delegation to MinMaxWeight instance is a
yes instance.

In the other direction, let us assume that the Resolve Delegation to
MinMaxWeight instance is a yes instance. Let H′ = (V′,E′′) ⊆ G′ be a
spanning sub-graph of G′ such that (i) the out degree of every vertex which is
not a sink is exactly 1, (ii) there are at most λ (= 17n) vertices (including the
sink nodes) in H′ which has a path to t′

i for i ∈ [3]. Note that as1 must have
a path P′

1 to at1 in H′ otherwise at least 20n vertices have path to either t′
2

or t′
3 in H′ which is a contradiction (since λ = 17n). Similarly as2 must have

a path P′
2 to at2 in H′ otherwise at least 20n vertices have path to either t′

1

or t′
3 in H′ which is a contradiction (since λ = 17n). Since, for i ∈ [2], we

have a path P′
i from asi

to ati
in H′ and the out-degree of every vertex in H′

except t′
1, t

′
2 and t′

3 is 1, the paths P′
1 and P′

2 are vertex disjoint. We define
path Pi = {(u, v) : (au,av) ∈ P′

i} in G for i ∈ [2]. Since P′
1 and P′

2 are vertex
disjoint, it follows that P1 and P2 are also vertex disjoint. Thus the Resolve
Delegation to MinMaxWeight instance is a yes instance. ��

We next show that Resolve Delegation to MinMaxWeight is
NP-complete even if we have λ = 3 and Δ = 3. For that we exhibit a reduc-
tion from (3, B2)-SAT which is known to be NP-complete [1].

Definition 3 ((3,B2)-SAT). Given a set X = {xi : i ∈ [n]} of n variables and
a set C = {Cj : j ∈ [m]} of m 3-CNF clauses on X such that, for every i ∈ [n],
xi and x̄i each appear in exactly 2 clauses, compute if there exists any Boolean
assignment to the variables which satisfy all the m clauses simultaneously. We
denote an arbitrary instance of (3,B2)-SAT by (X,C).

For each literal and clause in (3, B2)-SAT we add a node in the instance of
Resolve Delegation to MinMaxWeight and we add some special set of
edges and nodes so that λ = 3 and both the out-degree and in-degree of every
vertex is at most 3

Theorem 2. The Resolve Delegation to MinMaxWeight problem is
NP-complete even if we have λ = 3 and both the out-degree and in-degree of every
vertex is at most 3. In particular, Resolve Delegation to MinMaxWeight
is para-NP-hard with respect to the parameter (λ,Δ).

Proof. The Resolve Delegation to MinMaxWeight problem clearly
belongs to NP. To show its NP-hardness, we reduce from (3, B2)-SAT. Let
(X = {xi : i ∈ [n]},C = {Cj : j ∈ [m]}) be an arbitrary instance of (3, B2)-
SAT. We define a function f : {xi, x̄i : i ∈ [n]} −→ {ai, āi : i ∈ [n]} as f(xi) = ai

and f(x̄i) = āi for i ∈ [n]. We consider the following instance (G = (V,E), λ).

V = {ai, āi,di,1,di,2 : i ∈ [n]} ∪ {yj : j ∈ [m]}

E = {(yj, f(l
j
1)), (yj, f(l

j
2)), (yj, f(l

j
3)) : Cj = (lj1 ∨ l

j
2 ∨ l

j
3), j ∈ [m]}

∪ {(di,2,di,1), (di,1,ai), (di,1, āi) : i ∈ [n]}

λ = 3

88 P. Dey et al.

We observe that both the in-degree and out-degree of every vertex in G is at
most 3. Also Δ = 3. We now claim that the two instances are equivalent.

Suppose the (3, B2)-SAT instance is a yes instance. Let g : {xi : i ∈ [n]} −→
{true, false} be a satisfying assignment of the (3, B2)-SAT instance. We define
another function h(g, j) = f(l), j ∈ [m], for some literal l which appears in the
clause Cj and g sets it to true. We consider the following sub-graph H ⊆ G

E[H] = {(di,2,di,1) : i ∈ [n]}

∪ {(di,1,ai) : i ∈ [n],g(xi) = false}

∪ {(di,1, āi) : i ∈ [n],g(xi) = true}

∪ {(yj,h(g, j)) : j ∈ [m]}

We observe that H is a spanning sub-graph of G such that (i) every non-sink
vertices in G has exactly one outgoing edge in H and (ii) for each sink vertex
in G, there are at most 3 vertices (including the sink itself) which has a path
to it. Hence the Resolve Delegation to MinMaxWeight instance is a yes
instance.

In the other direction, let the Resolve Delegation to MinMaxWeight
instance is a yes instance. Let H ⊆ G be a sub-graph of G such that (i) every
non-sink vertices in G has exactly one outgoing edge in H and (ii) for each sink
vertex in G, there are at most 3 vertices (including the sink itself) which has a
path to it. We define an assignment g : {xi : i ∈ [n]} −→ {true, false} as g(xi) =
false if (di,1,ai) ∈ E[H] and true otherwise. We claim that g is a satisfying
assignment for the (3, B2)-SAT instance. Suppose not, then there exists a clause
Cj = (lj1 ∨ l

j
2 ∨ l

j
3) for some j ∈ [m] whom g does not satisfy. We define functions

f1, f2 : {xi, x̄i : i ∈ [n]} −→ {di,1,di,2 : i ∈ [n]} as f1(xi) = f1(x̄i) = di,1 and
f2(xi) = f2(x̄i) = di,2. We observe that the sink vertex f(lji) is reachable from
both f1(l

j
i) and f2(l

j
i) in H for every i ∈ [3]. Since λ = 3, we do not have a

path from yj to any of f(li), i ∈ [3] which is a contradiction since the non-sink
vertex yj must have out-degree 1 in H. Hence g is a satisfying assignment for
the (3, B2)-SAT instance and thus the instance is a yes instance. ��
Corollary 1. Given that the input graph is both bipartite and directed acyclic
graph, the Resolve Delegation to MinMaxWeight problem is NP-complete
even if we have λ = 3 and both the out-degree and in-degree of every vertex is
at most 3 which concludes that Resolve Delegation to MinMaxWeight is
para-NP-hard with respect to the parameter (λ,Δ).

Proof. The corollary follows as the resulting graph G from reduction of (3, B2)-
SAT instance in Theorem 2 is bipartite as V can be partitioned into 2 indepen-
dent sets V1 = {yj : j ∈ [m]} ∪ {di,1 : i ∈ [n]} and V2 = {ai, āi,di,2 : i ∈ [n]}. Also
G is Directed Acyclic graph as it doesn’t have directed cycles. ��
Definition 4. A (positive integral) edge weighting of a graph G is a mapping
w that assigns to each edge of G a positive integer.

On Parameterized Complexity of Liquid Democracy 89

Definition 5. An orientation of G is a mapping Λ : E(G) → V(G) × V(G)
with Λ((u, v)) ∈ {(u, v), (v,u)}.

Definition 6. The weighted outdegree of a vertex v ∈ V(G) w.r.t
an edge weighting w and an orientation Λ is defined as d+

G,w,Λ(v) =∑
(v,u)∈E(G) with Λ((v,u))=(v,u) w((v,u)).

Definition 7. (Minimum Maximum Outdegree). Given a graph G, an edge
weighting w of G in unary and a positive integer r, is there an orientation Λ of
G such that d+

G,w,Λ(v) � r for each v ∈ V(G)?

Lemma 1. [10] Minimum Maximum Outdegree is W[1]-hard when parame-
terized by the treewidth of the instance graph.

We now show that Resolve Delegation to MinMaxWeight is W[1]-
hard when parameterized by the treewidth of the instance graph. We reduce
from Minimum Maximum Outdegree with instance graph G to Resolve
Delegation to MinMaxWeight by first creating a replica of the G and then
taking an edge (u, v) with weight w and replacing it with a path of w nodes
with the end vertex having edges to u and v.

Theorem 3. Resolve Delegation to MinMaxWeight is W[1]-hard when
parameterized by the treewidth of the instance graph

Proof. To prove W[1]-Hardness we reduce from Minimum Maximum Outde-
gree to Resolve Delegation to MinMaxWeight. Let a graph G(V,E) with
an edge weighting w in unary and a positive integer r be an arbitrary instance of
Minimum Maximum Outdegree. Minimum Maximum Outdegree is con-
sidered to be a YES instance if the weighted outdegree of every vertex is upper
bounded by r. Now using the instance of Minimum Maximum Outdegree we
create an instance (H, r + 1) of Resolve Delegation to MinMaxWeight.
Let us construct a graph H = (V,E) where V = V1 ∪ V2. V1 = {bu : u ∈ V}.
∀(u, v) ∈ E add the set of vertices {auv1 ,auv2 , . . . ,auvw(u,v)

} to V2. ∀(u, v) ∈ E,
(auv1 ,bu) ∈ E, (auv1 ,bv) ∈ E and ∀i ∈ [w(u, v)] \ {1}, (auvi

,auvi−1) ∈ E.
This completes the construction of H with V1 as the sink nodes. It is trivial to
observe the fact that tw(H) � tw(G) + 2. We now prove that the Minimum
Maximum Outdegree is an YES instance iff the Resolve Delegation to
MinMaxWeight is an YES instance

Let Minimum Maximum Outdegree be a YES instance. Let Λ be the ori-
entation of G which makes Minimum Maximum Outdegree an YES instance.
We consider the following sub-graph H ′ ⊆ H

E[H ′] = {(auvi
,auvi−1) : i ∈ [w(u, v)] \ {1}, (u, v) ∈ E}

∪ {(auv1 ,bu) : (u, v) ∈ E,Λ((u, v)) = (u, v)}

We observe that H′ is a spanning sub-graph of H such that (i) every non-sink
vertices in H has exactly one outgoing edge in H′ and (ii) for each sink vertex

90 P. Dey et al.

in H, there are at most r+1 vertices (including the sink itself) which has a path
to it. Hence the Resolve Delegation to MinMaxWeight instance is a yes
instance.

Let Resolve Delegation to MinMaxWeight be a YES instance. Let H′

be the spanning sub-graph of H which make Resolve Delegation to Min-
MaxWeight a YES instance. Let the edges in H′ be denoted by E′. We consider
the following orientation Λ of G

Λ((u, v)) =
{
(u, v) if (auv1 ,bu) ∈ E ′

(v,u) otherwise
Clearly weighted outdegree of every vertex in G is atmost r. Therefore Minimum
Maximum Outdegree is an YES instance.
This concludes the proof of this theorem. ��
Corollary 2. Resolve Delegation to MinMaxWeight is W[1]-hard when
parameterized by the treewidth even when the input graph is both Bipartite and
Directed Acyclic Graph.

Proof. In the instance of Resolve Delegation to MinMaxWeight created
in Theorem 3, graph H is Bipartite as there is no odd cycle in the underlying
undirected graph. Also graph H is Directed Acyclic Graph (DAG) as there is no
directed cycle. ��

4 FPT Algorithms

We now prresent our FPT algorithms.

Observation 1. There is a kernel for Resolve Delegation to Min-
MaxWeight consisting of at most λt vertices. In particular, there is an FPT
algorithm for the Resolve Delegation to MinMaxWeight problem param-
eterized by (λ, t).

Proof. If the number n of vertices in the input graph is more than λt, then the
instance is clearly a no instance. Hence, we have n � λt. ��

In this section we define the notion of weights for the nodes in the subgraph
H of the delegation graph G. We define weight of all nodes u in G to be 1. To get a
notion of weight of a vertex u in a subgraph H, it can be considered as a number
which is one more than the number of nodes who have delegated their vote to u

and then have been removed from the graph G during the construction of H. If
H is a forest such that every non-sink node has an outdegree 1, then clearly the
weight of the tree rooted at a sink node say t is sum of the weights of the nodes
in the tree. We now show Resolve Delegation to MinMaxWeight is FPT
w.r.t number of non-sink nodes by using the technique of bounded search tree
by the branching on set of vertices satisfying some key properties.

On Parameterized Complexity of Liquid Democracy 91

Theorem 4. The Resolve Delegation to MinMaxWeight problem has a
FPT with respect to the parameter k which is the number of non-sink nodes in
G (delegation graph).

Proof. Let us denote the problem instance by (G, λ,k). Now we present the
following reduction and branching rules.

Reduction RD.1. If there is a vertex v in V with only one outgoing edge to a
vertex u (u, v are distinct), delete v from graph and increase weight of u by the
weight of v. The incoming edges which were incident on v (except the self loops
if any) are now incident on u.

Safeness of Reduction RD.1. is trivial as a node v with single outgoing edge
can only delegate the votes it has got (this includes v’s own vote and the votes
of other nodes who have delegated to v so far) to the only neighbor u it has got.

Reduction RD.2 Remove self loops if any.
Safeness of Reduction RD.2. follows from the fact that no non-sink node can
delegate to itself

Reduction RD.3. If G contains a non-sink node v with outdegree more than
2(k − 1) and indegree 0, delete v from G. The new instance is (G − v, λ,k − 1)
Safeness of Reduction RD.3. is due to the fact that if we have a vertex v with
outdegree greater than 2(k − 1), it implies that it has an outgoing edge to at
least k sink nodes. Let us denote these sink nodes by set S. So, irrespective of
the delegations made by other vertices, there will exist one sink node t ′ ∈ S such
that none of the other k − 1 non-sink nodes have delegated to t ′ and hence we
can delegate v to t ′ and still not increase the maximum weight of the sink node.

Branching B.1. Pick a vertex v such that the outdegree is more than 2(k− 1)
and indegree is k ′ > 0. Note that k ′ � k−1. Each of k ′ nodes having an outgoing
edge to v can either delegate to v or not delegate it. So we have 2k′

possibilities
and hence we can create 2k′

subproblems. In each possibility if a node u1 is
delegating to v then we delete all the outgoing edges of u1 expect (u1, v) and if
we have a node u2 which doesn’t delegate to v then we delete the outgoing edge
from u2 to v. In each of the 2k′

instances of graph created first apply R.D.1,
then R.D.2, and then finally R.D.3. Now solve the problem recursively for each
of the 2k′

instances created by considering each of them as a subproblem. If a
non-sink node u has delegated to v then u gets deleted due to R.D.1 and if none
of the non-sink nodes delegate to v then v gets deleted to R.D.3. So therefore,
the new parameter (number of non-sink nodes) for the smaller subproblems gets
reduced by at least 1.

Given a directed delegation graph G, the algorithm works as follows. It first
applies Reductions RD.1., RD.2.,RD.3. and Branching Rule B.1 exhaustively
and in the same order. The parameter (number of non-sink nodes) decreases by
at least 1 for each of the subproblems as explained earlier. If we can’t apply the
branching rule B.1 to a given subproblem it implies that there is no non-sink
node such that the outdegree is more than 2(k− 1) and indegree is greater than
0. Also due to R.D.3 we don’t have any non-sink node with outdegree more than

92 P. Dey et al.

2(k − 1) and indegree equal to 0. So we can do a brute force by considering
every possible delegations and solve this instance in O(kk ·nO(1)) running time.
Note that our algorithm will only look at the feasible solutions of Resolve
Delegation to MinMaxWeight while brute forcing for a subproblem.

Also since every node of bounded search tree splits into at most 2k−1 subprob-
lems and height of the tree is O(k), we get f(k) leaves (where f(k) is a function
of k only). Clearly the time taken at every node is bounded by g(k) · nO(1)

where g(k) is a function of k only. Thus, the total time used by the algorithm is
at-most O(f(k) ·g(k) ·nO(1)) which gives us an FPT for Resolve Delegation
to MinMaxWeight. ��

We now show Resolve Delegation to MinMaxWeight is FPT w.r.t
number of edges to be deleted from delegation graph by using the technique
of bounded search tree by the branching on set of edges satisfying some key
properties.

Theorem 5. The Resolve Delegation to MinMaxWeight problem has a
FPT with respect to the parameter k which is the number of edges to be deleted
from delegation graph.

Proof. The parameter k is the number of edges to be deleted. Given any instance
G of problem , every feasible solution graph GT is a forest with trees with set of
roots as set of all sink nodes T. Clearly then k = |E|− |V|+ |T|. Let us denote the
problem instance by (G, λ,k).

Observation 2. If k > 0 and only the sink nodes have outdegree 0, then there
is a non-sink node with outdegree atleast 2.

Proof. Sum of outdegree of all the non-sink nodes is greater than |V|− |T|. Hence
the observation follows from pigeon hole principle.

Branching B.1. Let k > 0. Consider the vertex with maximum outdegree. If
l is the outdegree of one such vertex v, delete one of the two groups of edges
{1, . . . ,
l/2�} and {
l/2� + 1, . . . , l} outgoing from v. Then solve the problem
recursively for two new subproblems with new parameter k

′ � k − 1.
Now we describe why the Branching B.1 is safe. Note that the Branching B.1

is triggered only when k > 0. It follows from Observation 2 that outdegree of v

is at least 2. Consider the degree of v to be l and the corresponding outgoing
edges from v to be {1, . . . , l} . Since v can delegate only to exactly one of its
neighbours connected by {1, . . . , l}, other l − 1 edges need to be deleted from
delegation graph as they can not be a part of feasible solution. If we partition
the set of edges into two disjoint sets {1, . . . ,
l/2�} and {
l/2� + 1, . . . , l} , only
one out of the two groups can be a part of feasible solution. This allows us to
delete the other half set say {
l/2� + 1, . . . , l}. As we know that |l| � 2 which
comes from the fact that outdegree of vertex v is at least 2. The problem now
reduces to a smaller instance G

′
with edges E

′
[G′] = E[G]\{
l/2� + 1, . . . , l} and

parameter number of edges to be deleted as k
′ � k − 1. Thus way we get a

bounded search tree with only constant number of subproblems at each branch
such that at each recursive step the height of search tree reduces by at least one.

On Parameterized Complexity of Liquid Democracy 93

Given a directed delegation graph G, the algorithm works as follows. As long
as k > 0, Branching Rule B.1 is applied exhaustively in the bounded search tree.
Note that Branching Rule B.1 brings down the parameter k in every call by at
least 1. Whenever the parameter k becomes 0, we have a feasible solution as the
non-sink nodes have the outdegree of 1. Now we can easily check in polynomial
time whether the feasible solution is a YES instance or a NO instance. At every
recursive call we decrease the parameter by at least 1 and thus the height of the
tree is at most k. Also since every node of bounded search tree splits into two,
we get O(2k) leaves. Clearly the time taken at every node is bounded by nO(1).
Thus if f(k) = O(2k) be the number of nodes in the bounded search tree, the
total time used by the algorithm is at most O(2knO(1)) which gives us an FPT
for Resolve Delegation to MinMaxWeight. ��

5 Structural Results

Theorem 6. There exists a linear programming formulation for the optimiza-
tion version of Resolve Delegation to MinMaxWeight where fractional
delegation of votes is allowed. Thus the fractional variant is solvable in polyno-
mial time.

Proof. We consider the fractional variant of Liquid Democracy Delegation Prob-
lem where it is allowed to fractionally delegate votes of a source (delegator) to
multiple nodes such that total number of votes being delegated is conserved at
the delegator. We formally define conservation while formulating the LP for the
problem.
LP formulation follows similar to the LP formulation of flow-problems (e.g. Max-
FLow-MinCut etc). We assign xu,v as weight to every edge (u, v) ∈ E[G] which
corresponds to the fractional weight of votes delegated from vertex u to v (for
all u, v ∈ V[G]. For all other xu,v where (u, v) pair doesn’t correspond to an
edge of delegation graph we assign value 0. It immediately follows that for all
sink nodes t ∈ T[G] , total weight of fractional votes being delegated to each
sink-node t (including that of the sink node t) is

∑

v∈V\T

xv,t + 1 ∀t ∈ T . For all

other non-sink nodes s ∈ V\T , node s obeys conservation as follows :
∑

u∈V\T

xu,s + 1 =
∑

v∈V

xs,v,∀s ∈ V\T

Our aim is to minimize the maximum weight of votes delegated to any sink node
(including that of the sink node). The corresponding LP formulation is:

minimize z

z �
∑

v∈V\T

xv,t + 1, ∀t ∈ T

∑

u∈V\T

xu,s + 1 =
∑

v∈V

xs,v , ∀s ∈ V\T [Follows from conservation]

xu,v � 0 ,∀(u, v) ∈ E[G]
xu,v = 0 ,∀(u, v) /∈ E[G]

��

94 P. Dey et al.

6 Conclusion and Future Direction

We have studied the parameterized complexity of a fundamental problem in
liquid democracy, namely Resolve Delegation to MinMaxWeight. We
considered various natural parameters for the problem including the number of
sink vertices, maximum allowed weight of any sink in the final delegation graph,
maximum degree of any vertex, tree-width, the number of edges that one deletes
in an optimal solution, number of non-sink vertices. We also show that a related
problem which we call Resolve Fractional Delegation is polynomial time
solvable.

An important future work is to resolve the complexity of Resolve Dele-
gation to MinMaxWeight if the input graph is already acyclic or tree. We
know that there exists a Ω(log n) lower bound on the approximation factor of
optimizing the maximum allowed weight of any sink [6]. It would be interest-
ing to see if there exists FPT algorithms achieving a approximation factor of
o(log n).

References

1. Berman, P., Karpinski, M., Scott, A.: Approximation hardness of short symmetric
instances of max-3sat. Technical report (2004)

2. Brill, M., Talmon, N.: Pairwise liquid democracy. In: IJCAI, vol. 18, pp. 137–143
(2018)

3. Caragiannis, I., Micha, E.: A contribution to the critique of liquid democracy. In:
IJCAI, pp. 116–122 (2019)

4. Christoff, Z., Grossi, D.: Binary voting with delegable proxy: An analysis of liquid
democracy. arXiv preprint arXiv:1707.08741 (2017)

5. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10(2), 111–121 (1980)

6. Gölz, P., Kahng, A., Mackenzie, S., Procaccia, A.D.: The fluid mechanics of liq-
uid democracy. In: Christodoulou, G., Harks, T. (eds.) WINE 2018. LNCS, vol.
11316, pp. 188–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04612-5 13

7. Green-Armytage, J.: Direct voting and proxy voting. Constitutional Political Econ.
26(2), 190–220 (2014). https://doi.org/10.1007/s10602-014-9176-9

8. Kahng, A., Mackenzie, S., Procaccia, A.D.: Liquid democracy: an algorithmic per-
spective. In: AAAI 2018 (2018)

9. Kling, C.C., Kunegis, J., Hartmann, H., Strohmaier, M., Staab, S.: Voting
behaviour and power in online democracy: A study of liquidfeedback in Germany’s
pirate party. arXiv preprint arXiv:1503.07723 (2015)

10. Szeider, S.: Not so easy problems for tree decomposable graphs. arXiv preprint
arXiv:1107.1177 (2011)

http://arxiv.org/abs/1707.08741
https://doi.org/10.1007/978-3-030-04612-5_13
https://doi.org/10.1007/978-3-030-04612-5_13
https://doi.org/10.1007/s10602-014-9176-9
http://arxiv.org/abs/1503.07723
http://arxiv.org/abs/1107.1177

Acyclic Coloring Parameterized
by Directed Clique-Width

Frank Gurski(B), Dominique Komander, and Carolin Rehs

Institute of Computer Science, Algorithmics for Hard Problems Group,
Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany

frank.gurski@hhu.de

Abstract. An acyclic r-coloring of a directed graph G = (V, E) is a
partition of the vertex set V into r acyclic sets. The dichromatic number
of a directed graph G is the smallest r such that G allows an acyclic
r-coloring. For symmetric digraphs the dichromatic number equals the
well-known chromatic number of the underlying undirected graph. This
allows us to carry over the W[1]-hardness and lower bounds for running
times of the chromatic number problem parameterized by clique-width to
the dichromatic number problem parameterized by directed clique-width.
We introduce the first polynomial-time algorithm for the acyclic coloring
problem on digraphs of constant directed clique-width. From a param-
eterized point of view our algorithm shows that the Dichromatic Num-
ber problem is in XP when parameterized by directed clique-width and
extends the only known structural parameterization by directed modu-
lar width for this problem. Furthermore, we apply defineability within
monadic second order logic in order to show that Dichromatic Num-
ber problem is in FPT when parameterized by the directed clique-width
and r. For directed co-graphs, which is a class of digraphs of directed
clique-width 2, we even show a linear time solution for computing the
dichromatic number.

Keywords: Acyclic coloring · Directed clique-width · Directed
co-graphs · Polynomial time algorithms

1 Introduction

In this paper, we consider an approach for coloring the vertices of digraphs. An
acyclic r-coloring of a digraph G = (V,E) is a partition of the vertex set V into
r sets such that all sets induce an acyclic subdigraph in G. The dichromatic
number of G is the smallest integer r such that G has an acyclic r-coloring.
Acyclic colorings of digraphs received a lot of attention in [4,28,29] and also in
recent works [26,27,32]. The dichromatic number is one of two basic concepts
for the class of perfect digraphs [1] and can be regarded as a natural counterpart
of the well known chromatic number for undirected graphs.

In the Dichromatic Number problem (DCN) there is given a digraph G and an
integer r and the question is whether G has an acyclic r-coloring. If r is constant
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 95–108, 2021.
https://doi.org/10.1007/978-3-030-67899-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_8

96 F. Gurski et al.

and not part of the input, the corresponding problem is denoted by DCNr. Even
DCN2 is NP-complete [12], which motivates to consider the Dichromatic Number
problem on special graph classes. Up to now, only few classes of digraphs are
known, for which the dichromatic number can be found in polynomial time. The
set of DAGs is obviously equal to the set of digraphs of dichromatic number 1.
Further, every odd-cycle free digraph [29] and every non-even digraph [27] has
dichromatic number at most 2.

The Dichromatic Number problem remains hard even for inputs of bounded
directed feedback vertex set size [27]. This result implies that there are no XP-
algorithms1 for the Dichromatic Number problem parameterized by directed
width parameters such as directed path-width, directed tree-width, DAG-width
or Kelly-width. The first positive result concerning structural parameterizations
of the Dichromatic Number problem is the existence of an FPT-algorithm2 for
the Dichromatic Number problem parameterized by directed modular width [31].

In this paper, we introduce the first polynomial-time algorithm for the
Dichromatic Number problem on digraphs of constant directed clique-width.
Therefore, we consider a directed clique-width expression X of the input digraph
G of directed clique-width k. For each node t of the corresponding rooted
expression-tree T we use label-based reachability information about the sub-
graph Gt of the subtree rooted at t. For every partition of the vertex set of Gt

into acyclic sets V1, . . . , Vs we compute the multi set 〈reach(V1), . . . , reach(Vs)〉,
where reach(Vi), 1 ≤ i ≤ s, is the set of all label pairs (a, b) such that the
subgraph of Gt induced by Vi contains a vertex labeled by b, which is reach-
able by a vertex labeled by a. By using bottom-up dynamic programming along
expression-tree T , we obtain an algorithm for the Dichromatic Number problem
of running time n2O(k2)

where n denotes the number of vertices of the input
digraph. Since any algorithm with running time in n2o(k)

would disprove the
Exponential Time Hypothesis (ETH), the exponential dependence on k in the
degree of the polynomial cannot be avoided, unless ETH fails.

From a parameterized point of view, our algorithm shows that the Dichro-
matic Number problem is in XP when parameterized by directed clique-width.
Further, we show that the Dichromatic Number problem is W[1]-hard on sym-
metric digraphs when parameterized by directed clique-width. Inferring from
this, there is no FPT-algorithm for the Dichromatic Number problem parame-
terized by directed clique-width under reasonable assumptions. The best param-
eterized complexity, which can be achieved, is given by an XP-algorithm. Fur-
thermore, we apply defineability within monadic second order logic (MSO) in
order to show that Dichromatic Number problem is in FPT when parameterized
by the directed clique-width and r, which implies that for every integer r it holds
that DCNr is in FPT when parameterized by directed clique-width.

1 XP is the class of all parameterized problems which can be solved by algorithms
that are polynomial if the parameter is considered as a constant [9].

2 FPT is the class of all parameterized problems which can be solved by algorithms
that are exponential only in the size of a fixed parameter while being polynomial in
the size of the input size [9].

Acyclic Coloring Parameterized by Directed Clique-Width 97

Since the directed clique-width of a digraph is at most its directed modular
width [32], we reprove the existence of an XP-algorithm for DCN and an FPT-
algorithm for DCNr parameterized by directed modular width [31]. On the other
hand, there exist several classes of digraphs of bounded directed clique-width and
unbounded directed modular width, which implies that directed clique-width is
the more powerful parameter and thus, the results of [31] does not imply any
parameterized algorithm for directed clique-width.

In Table 1 we summarize the known results for DCN and DCNr parameter-
ized by width parameters.

Table 1. Complexity of DCN and DCNr parameterized by width parameters. We
assume that P �= NP. The “///” entries indicate that by taking r out of the instance
the considered parameter makes no sense.

Parameter DCN DCNr

Directed modular width FPT [31] FPT [31]

Directed clique-width W[1]-hard Corollary 1 FPT Corollary 5

XP Corollary 3

Directed clique-width + r FPT Theorem 4 ///

Directed tree-width �∈ XP [27] �∈ XP [27]

Directed path-width �∈ XP [27] �∈ XP [27]

DAG-width �∈ XP [27] �∈ XP [27]

Kelly-width �∈ XP [27] �∈ XP [27]

Clique-width of un(G) �∈ FPT by Corollary 1 open

For directed co-graphs, which is a class of digraphs of directed clique-width 2
[23], we even show a linear time solution for computing the dichromatic number
and an optimal acyclic coloring.

2 Preliminaries

We use the notations of Bang-Jensen and Gutin [2] for graphs and digraphs.

2.1 Directed Graphs

A directed graph or digraph is a pair G = (V,E), where V is a finite set of
vertices and E ⊆ {(u, v) | u, v ∈ V, u �= v} is a finite set of ordered pairs
of distinct vertices called arcs or directed edges. For a vertex v ∈ V , the sets
N+(v) = {u ∈ V | (v, u) ∈ E} and N−(v) = {u ∈ V | (u, v) ∈ E} are called
the set of all successors and the set of all predecessors of v. The outdegree of v,
outdegree(v) for short, is the number of successors of v and the indegree of v,
indegree(v) for short, is the number of predecessors of v.

98 F. Gurski et al.

A digraph G′ = (V ′, E′) is a subdigraph of digraph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. If every arc of E with both end vertices in V ′ is in E′, we say that G′

is an induced subdigraph of digraph G and we write G′ = G[V ′].
For some given digraph G = (V,E) we define its underlying undirected graph

by ignoring the directions of the arcs, i.e. un(G) = (V, {{u, v} | (u, v) ∈ E, u, v ∈
V }). There are several ways to define a digraph G = (V,E) from an undirected
graph G′ = (V,E′). If we replace every edge {u, v} ∈ E′ by

– both arcs (u, v) and (v, u), we refer to G as a complete biorientation of G′.
Since in this case G is well defined by G′ we also denote it by

←→
G′ . Every

digraph G which can be obtained by a complete biorientation of some undi-
rected graph G′ is called a complete bioriented graph or symmetric digraph.

– one of the arcs (u, v) and (v, u), we refer to G as an orientation of G′. Every
digraph G which can be obtained by an orientation of some undirected graph
G′ is called an oriented graph.

For a digraph G = (V,E) an arc (u, v) ∈ E is symmetric if (v, u) ∈ E. Thus,
each bidirectional arc is symmetric. Further, an arc is asymmetric if it is not
symmetric. We define the symmetric part of G as sym(G), which is the spanning
subdigraph of G that contains exactly the symmetric arcs of G. Analogously, we
define the asymmetric part of G as asym(G), which is the spanning subdigraph
with only asymmetric arcs.

By
−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)}), n ≥ 2, we denote the directed

path on n vertices, by
−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)}), n ≥ 2,

we denote the directed cycle on n vertices.
A directed acyclic graph (DAG) is a digraph without any

−→
Cn, for n ≥ 2, as

subdigraph. A vertex v is reachable from a vertex u in G if G contains a
−→
Pn as a

subdigraph having start vertex u and end vertex v. A digraph is odd cycle free
if it does not contain a

−→
Cn, for odd n ≥ 3, as subdigraph. A digraph G is planar

if un(G) is planar.
A digraph is even if for every 0-1-weighting of the edges it contains a directed

cycle of even total weight.

2.2 Acyclic Coloring of Directed Graphs

We consider the approach for coloring digraphs given in [29]. A set V ′ of vertices
of a digraph G is called acyclic if G[V ′] is acyclic.

Definition 1 (Acyclic graph coloring [29]). An acyclic r-coloring of a
digraph G = (V,E) is a mapping c : V → {1, . . . , r}, such that the color classes
c−1(i) for 1 ≤ i ≤ r are acyclic. The dichromatic number of G, denoted by �χ(G),
is the smallest r, such that G has an acyclic r-coloring.

There are several works on acyclic graph coloring [4,28,29] including several
recent works [26,27,32]. The following observations support that the dichromatic

Acyclic Coloring Parameterized by Directed Clique-Width 99

number can be regarded as a natural counterpart of the well known chromatic
number χ(G) for undirected graphs G.

Observation 1. For every symmetric directed graph G it holds that �χ(G) =
χ(un(G)).

Observation 2. For every directed graph G it holds that �χ(G) ≤ χ(un(G)).

Observation 3. Let G be a digraph and H be a subdigraph of G, then �χ(H) ≤
�χ(G).

Name: Dichromatic Number (DCN)
Instance: A digraph G = (V,E) and a positive integer r ≤ |V |.
Question: Is there an acyclic r-coloring for G?

If r is a constant and not part of the input, the corresponding problem is
denoted by r-Dichromatic Number (DCNr). Even DCN2 is NP-complete [12].

3 Acyclic Coloring of Directed Co-graphs

As recently mentioned in [31], only few classes of digraphs for which the dichro-
matic number can be found in polynomial time are known. The set of DAGs is
obviously equal to the set of digraphs of dichromatic number 1. Every odd-cycle
free digraph [29] and every non-even digraph [27] has dichromatic number at
most 2. Thus, for DAGs, odd-cycle free digraphs, and non-even digraphs the
dichromatic number can be computed in linear time. Furthermore, for every
perfect digraph the dichromatic number can be found in polynomial time [1].

We next show how to find an optimal acyclic coloring for directed co-graphs,
which are defined below, in linear time.

Definition 2 (Directed co-graphs [8]). The class of directed co-graphs is
recursively defined as follows.

1. Every digraph with a single vertex ({v}, ∅), denoted by v, is a directed co-
graph.

2. If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint directed co-graphs, then
(a) the disjoint union G1 ⊕G2, which is defined as the digraph with vertex set

V1 ∪ V2 and arc set E1 ∪ E2,
(b) the series composition G1 ⊗ G2, which is defined by their disjoint union

plus all possible directed edges between V1 and V2, and
(c) the order composition G1 � G2, which is defined by their disjoint union

plus all possible directed edges from V1 to V2, are directed co-graphs.

Every expression X using the four operations of Definition 2 is called a di-co-
expression. For every directed co-graph we can define a tree structure denoted
as di-co-tree. This is an ordered rooted tree whose leaves represent the vertices
of the digraph and whose inner nodes correspond to the operations applied on
the subexpressions defined by the subtrees. For every directed co-graph one can

100 F. Gurski et al.

construct a di-co-tree in linear time [8]. Directed co-graphs are interesting from
an algorithmic point of view since several hard graph problems can be solved in
polynomial time by dynamic programming along the tree structure of the input
graph, see [3,18,19].

Lemma 1 (�3). Let G1 and G2 be two vertex-disjoint directed graphs. Then,
the following equations hold:

1. �χ(G1 ⊕ G2) = max(�χ(G1), �χ(G2))
2. �χ(G1 � G2) = max(�χ(G1), �χ(G2))
3. �χ(G1 ⊗ G2) = �χ(G1) + �χ(G2)

Lemma 1 can be used to obtain the following result.

Theorem 1. Let G be a directed co-graph. Then, an optimal acyclic coloring
for G and �χ(G) can be computed in linear time.

The clique number ωd(G) of a digraph G is the number of vertices in a
largest complete bioriented subdigraph of G and the clique number ω(G) of a
(-n undirected) graph G is the number of vertices in a largest complete subgraph
of G. Since the results of Lemma 1 also hold for ωd instead of �χ we obtain the
following result.

Proposition 1. Let G be a directed co-graph. Then, it holds that

�χ(G) = χ(un(sym(G))) = ω(un(sym(G))) = ωd(G)

and all values can be computed in linear time.

4 Parameterized Algorithms for Directed Clique-Width

For undirected graphs the clique-width [7] is one of the most important param-
eters. Clique-width measures how difficult it is to decompose the graph into a
special tree-structure. From an algorithmic point of view, only tree-width [30] is
a more studied graph parameter. Clique-width is more general than tree-width
since graphs of bounded tree-width have also bounded clique-width [5]. The tree-
width can only be bounded by the clique-width under certain conditions [22].
Many NP-hard graph problems admit polynomial-time solutions when restricted
to graphs of bounded tree-width or graphs of bounded clique-width.

For directed graphs there are several attempts to generalize tree-width such
as directed tree-width, DAG-width, or Kelly-width, which are representative for
what people are working on, see the surveys [16,17]. Unfortunately, none of
these attempts allows polynomial-time algorithms for a large class of problems
on digraphs of bounded width [16, Table 2]. This also holds for DCNr and DCN
since even for bounded size of a directed feedback vertex set, deciding whether a
3 The proofs of the results marked with a � are omitted due to space restrictions, see

[20].

Acyclic Coloring Parameterized by Directed Clique-Width 101

directed graph has dichromatic number at most 2 is NP-complete [27]. This result
rules out XP-algorithms for DCN and DCNr by directed width parameters such
as directed path-width, directed tree-width, DAG-width or Kelly-width, since
all of these are upper bounded by the feedback vertex set number.

Next, we discuss parameters which allow XP-algorithms or even FPT-
algorithms for DCN and DCNr. The first positive result concerning structural
parameterizations of DCN was recently given in [31] using the directed modular
width (dmw).

Theorem 2 ([31]). The Dichromatic Number problem is in FPT when param-
eterized by directed modular width.

By [16], directed clique-width performs much better than directed path-
width, directed tree-width, DAG-width, and Kelly-width from the parameter-
ized complexity point of view. Hence, we consider the parameterized complexity
of DCN parameterized by directed clique-width.

Definition 3 (Directed clique-width [7]). The directed clique-width of a
digraph G, d-cw(G) for short, is the minimum number of labels needed to define
G using the following four operations:

1. Creation of a new vertex v with label a (denoted by a(v)).
2. Disjoint union of two labeled digraphs G and H (denoted by G ⊕ H).
3. Inserting an arc from every vertex with label a to every vertex with label b

(a �= b, denoted by αa,b).
4. Change label a into label b (denoted by ρa→b).

An expression X built with the operations defined above using k labels is called
a directed clique-width k-expression. Let digraph(X) be the digraph defined by
k-expression X.

In [23] the set of directed co-graphs is characterized by excluding two digraphs
as a proper subset of the set of all graphs of directed clique-width 2, while for
the undirected versions both classes are equal.

By the given definition every graph of directed clique-width at most k can
be represented by a tree structure, denoted as k-expression-tree. The leaves of
the k-expression-tree represent the vertices of the digraph and the inner nodes
of the k-expression-tree correspond to the operations applied to the subexpres-
sions defined by the subtrees. Using the k-expression-tree many hard problems
have been shown to be solvable in polynomial time when restricted to graphs of
bounded directed clique-width [16,23].

Directed clique-width is not comparable to the directed variants of tree-width
mentioned above, which can be observed by the set of all complete biorientations
of cliques and the set of all acyclic orientations of grids. The relation of directed
clique-width and directed modular width [32] is as follows.

Lemma 2 ([32]). For every digraph G it holds that d-cw(G) ≤ dmw(G).

102 F. Gurski et al.

On the other hand, there exist several classes of digraphs of bounded directed
clique-width and unbounded directed modular width, e.g. even the set of all
directed paths {−→

Pn | n ≥ 1}, the set of all directed cycles {−→
Cn | n ≥ 1}, and the

set of all minimal series-parallel digraphs [33]. Thus, the result of [31] does not
imply any XP-algorithm or FPT-algorithm for directed clique-width.

Corollary 1. The Dichromatic Number problem is W[1]-hard on symmetric
digraphs and thus, on all digraphs when parameterized by directed clique-width.

Proof. The Chromatic Number problem is W[1]-hard when parameterized by
clique-width [13]. An instance consisting of a graph G = (V,E) and a positive
integer r for the Chromatic Number problem can be transformed into an instance
for the Dichromatic Number problem on digraph

←→
G and integer r. Then, G has

an r-coloring if and only if
←→
G has an acyclic r-coloring by Observation 1. Since

for every undirected graph G its clique-width equals the directed clique-width
of

←→
G [23], we obtain a parameterized reduction. ��
Thus, under reasonable assumptions there is no FPT-algorithm for the

Dichromatic Number problem parameterized by directed clique-width and an
XP-algorithm is the best that can be achieved. Next, we introduce such an XP-
algorithm.

Let G = (V,E) be a digraph which is given by some directed clique-width
k-expression X. For some vertex set V ′ ⊆ V , we define reach(V ′) as the set of
all pairs (a, b) such that there is a vertex u ∈ V ′ labeled by a and there is a
vertex v ∈ V ′ labeled by b and v is reachable from u in G[V ′].

Within a construction of a digraph by directed clique-width operations only
the edge insertion operation can change the reachability between the present
vertices. Next, we show which acyclic sets remain acyclic when performing an
edge insertion operation and how the reachability information of these sets have
to be updated due to the edge insertion operation.

Lemma 3 (�). Let G = (V,E) be a vertex labeled digraph defined by some
directed clique-width k-expression X, a �= b, a, b ∈ {1, . . . , k}, and V ′ ⊆ V be an
acyclic set in G. Then, vertex set V ′ remains acyclic in digraph(αa,b(X)) if and
only if (b, a) �∈ reach(V ′).

Lemma 4 (�). Let G = (V,E) be a vertex labeled digraph defined by some
directed clique-width k-expression X, a �= b, a, b ∈ {1, . . . , k}, V ′ ⊆ V be an
acyclic set in G, and (b, a) �∈ reach(V ′). Then, reach(V ′) for digraph(αa,b(X))
can be obtained from reach(V ′) for digraph(X) as follows:

– For every pair (x, a) ∈ reach(V ′) and every pair (b, y) ∈ reach(V ′), we extend
reach(V ′) by (x, y).

For a disjoint partition of V into acyclic sets V1, . . . , Vs, let M be the multi
set4 〈reach(V1), . . . , reach(Vs)〉. Let F (X) be the set of all mutually different
4 We use the notion of a multi set, i.e., a set that may have several equal elements.

For a multi set with elements x1, . . . , xn we write M = 〈x1, . . . , xn〉. The number

Acyclic Coloring Parameterized by Directed Clique-Width 103

multi sets M for all disjoint partitions of vertex set V into acyclic sets. Every
multi set in F (X) consists of nonempty subsets of {1, . . . , k} × {1, . . . , k}. Each
subset can occur 0 times and not more than |V | times. Thus, F (X) has at most

(|V | + 1)2
k2−1 ∈ |V |2O(k2)

mutually different multi sets and is polynomially bounded in the size of X.
In order to give a dynamic programming solution along the recursive struc-

ture of a directed clique-width k-expression, we show how to compute F (a(v)),
F (X ⊕ Y) from F (X) and F (Y), as well as F (αa,b(X)) and F (ρa→b(X)) from
F (X).

Lemma 5 (�). Let a, b ∈ {1, . . . , k}, a �= b.

1. F (a(v)) = {〈{(a, a)}〉}.
2. Starting with set D = {〈〉}×F (X)×F (Y) extend D by all triples that can be

obtained from some triple (M,M′,M′′) ∈ D by removing a set L′ from M′

or a set L′′ from M′′ and inserting it into M, or by removing both sets and
inserting L′ ∪L′′ into M. Finally, we choose F (X ⊕Y) = {M | (M, 〈〉, 〈〉) ∈
D}.

3. F (αa,b(X)) can be obtained from F (X) as follows. First, we remove from
F (X) all multi sets 〈L1, . . . , Ls〉 such that (b, a) ∈ Lt for some 1 ≤ t ≤ s.
Afterwards, we modify every remaining multi set 〈L1, . . . , Ls〉 in F (X) as
follows:
– For every Li which contains a pair (x, a) and a pair (b, y), we extend Li

by (x, y).
4. F (ρa→b(X)) = {〈ρa→b(L1), . . . , ρa→b(Ls)〉 | 〈L1, . . . , Ls〉 ∈ F (X)}, where we

use ρa→b(Li) = {(ρa→b(c), ρa→b(d)) | (c, d) ∈ Li} and ρa→b(c) = b, if c = a,
and ρa→b(c) = c, if c �= a.

Since every possible coloring of G is realized in the set F (X), where X is a
directed clique-width k-expression for G, it is easy to find a minimum coloring
for G.

Corollary 2. Let G = (V,E) be a digraph given by a directed clique-width k-
expression X. There is a partition of V into r acyclic sets if and only if there is
some M ∈ F (X) consisting of r sets of label pairs.

Theorem 3. The Dichromatic Number problem on digraphs on n vertices given
by a directed clique-width k-expression can be solved in n2O(k2)

time.

Proof. Let G = (V,E) be a digraph of directed clique-width at most k and T be
a k-expression-tree for G with root w. For some vertex u of T we denote by Tu

the subtree rooted at u and Xu the k-expression defined by Tu. In order to solve

how often an element x occurs in M is denoted by ψ(M, x). Two multi sets M1 and
M2 are equal if for each element x ∈ M1 ∪ M2, ψ(M1, x) = ψ(M2, x), otherwise
they are called different. The empty multi set is denoted by 〈〉.

104 F. Gurski et al.

the Dichromatic Number problem for G, we traverse k-expression-tree T in a
bottom-up order. For every vertex u of T we compute F (Xu) following the rules
given in Lemma 5. By Corollary 2 we can solve our problem by F (Xw) = F (X).

Our rules given Lemma 5 show the following running times. For every v ∈ V
and a ∈ {1, . . . , k} set F (a(v)) can be computed in O(1). The set F (X ⊕Y) can

be computed in time (n + 1)3(2
k2−1) ∈ n2O(k2)

from F (X) and F (Y). The sets

F (αa,b(X)) and F (ρa→b(X)) can be computed in time (n + 1)2
k2−1 ∈ n2O(k2)

from F (X).
In order to bound the number and order of operations within directed clique-

width expressions, we can use the normal form for clique-width expressions
defined in [11]. The proof of Theorem 4.2 in [11] shows that also for directed
clique-width expression X, we can assume that for every subexpression, after
a disjoint union operation first there is a sequence of edge insertion operations
followed by a sequence of relabeling operations, i.e. between two disjoint union
operations there is no relabeling before an edge insertion. Since there are n leaves
in T , we have n− 1 disjoint union operations, at most (n− 1) · (k − 1) relabeling
operations, and at most (n − 1) · k(k − 1) edge insertion operations. This leads

to an overall running time of n2O(k2)
. ��

The running time shown in Theorem3 leads to the following result.

Corollary 3. The Dichromatic Number problem is in XP when parameterized
by directed clique-width.

Up to now there are only very few digraph classes for which we can compute
a directed clique-width expression in polynomial time. This holds for directed co-
graphs, digraphs of bounded directed modular width, and orientations of trees.
For such classes we can apply the result of Theorem 3. In order to find directed
clique-width expressions for general digraphs one can use results on the related
parameter bi-rank-width [24]. By [2, Lemma 9.9.12] we can use approximate
directed clique-width expressions obtained from rank-decomposition with the
drawback of a single-exponential blow-up on the parameter.

Next, we give a lower bound for the running time of parameterized algorithms
for Dichromatic Number problem parameterized by the directed clique-width.

Corollary 4. The Dichromatic Number problem on digraphs on n vertices
parameterized by the directed clique-width k cannot be solved in time n2o(k)

,
unless ETH fails.

Proof. In order to show the statement we apply the following lower bound for
the Chromatic Number problem parameterized by clique-width given in [14].
Any algorithm for the Chromatic Number problem parameterized by clique-
width with running in n2o(k)

would disprove the Exponential Time Hypothesis.
By Observation 1 and since for every undirected graph G its clique-width equals
the directed clique-width of

←→
G [23], any algorithm for the Dichromatic Num-

ber problem parameterized by directed clique-width can be used to solve the
Chromatic Number problem parameterized by clique-width. ��

Acyclic Coloring Parameterized by Directed Clique-Width 105

In order to show fixed parameter tractability for DCNr w.r.t. the parameter
directed clique-width one can use its defineability within monadic second order
logic (MSO). We restrict to MSO1-logic, which allows propositional logic, vari-
ables for vertices and vertex sets of digraphs, the predicate arc(u, v) for arcs of
digraphs, and quantifications over vertices and vertex sets [6]. In [16, Theorem
4.2] it has been shown that for every integer k and MSO1 formula ψ, every
ψ-LinEMSO1 optimization problem (see [16]) is fixed-parameter tractable on
digraphs of clique-width k w.r.t. the parameters k and length of the formula |ψ|.
Next, we will apply this result to DCN.

Theorem 4. The Dichromatic Number problem is in FPT when parameterized
by directed clique-width and r.

Proof. Let G = (V,E) be a digraph. We can define DCNr by an MSO1 formula

ψ = ∃V1, . . . , Vr :

⎛
⎝Partition(V, V1, . . . , Vr) ∧

∧
1≤i≤r

Acyclic(Vi)

⎞
⎠

with

Partition(V, V1, . . . , Vr) = ∀v ∈ V : (
∨

1≤i≤r v ∈ Vi)∧
�v ∈ V : (

∨
i�=j, 1≤i,j≤r(v ∈ Vi ∧ v ∈ Vj))

and

Acyclic(Vi) = ∀V ′ ⊆ Vi, V
′ �= ∅ : ∃v ∈ V ′(outdegree(v) = 0 ∨ outdegree(v) ≥ 2)

For the correctness we note the following. For every induced cycle V ′ in G it
holds that for every vertex v ∈ V ′ we have outdegree(v) = 1 in G. This does not
hold for non-induced cycles. But since for every cycle V ′′ in G there is a subset
V ′ ⊆ V ′′, such that G[V ′] is a cycle, we can verify by Acyclic(Vi) whether G[Vi]
is acyclic. Since it holds that |ψ| ∈ O(r), the statement follows by the result of
[16] stated above. ��
Corollary 5. For every integer r the r-Dichromatic Number problem is in FPT
when parameterized by directed clique-width.

5 Conclusions and Outlook

The presented methods allow us to compute the dichromatic number on directed
co-graphs in linear time and on graph classes of bounded directed clique-width
in polynomial time.

The shown parameterized solutions of Corollary 3 and Theorem 4 also hold
for any parameter which is larger or equal than directed clique-width, such as
the parameter directed modular width [32] (which even allows an FPT-algorithm
by [31,32]) and directed linear clique-width [21].

106 F. Gurski et al.

Further, the hardness result of Corollary 1 rules out FPT-algorithms for the
Dichromatic Number problem parameterized by width parameters which can be
bounded by directed clique-width. Among these are the clique-width and rank-
width of the underlying undirected graph, which also have been considered in
[15] on the Oriented Chromatic Number problem.

From a parameterized point of view width parameters are so-called structural
parameters, which are measuring the difficulty of decomposing a graph into a
special tree-structure. Beside these, the standard parameter, i.e. the threshold
value given in the instance, is well studied. Unfortunately, for the Dichromatic
Number problem the standard parameter is the number of necessary colors r and
does even not allow an XP-algorithm, since DCN2 is NP-complete [27]. A posi-
tive result can be obtained for parameter “number of vertices” n. Since integer
linear programming is fixed-parameter tractable for the parameter “number of
variables” [25] the existence of an integer program for DCN using O(n2) variables
implies an FPT-algorithm for parameter n, see [20].

It remains to verify whether the running time of our XP-algorithm for DCN
can be improved to n2O(k)

, which is possible for the Chromatic Number problem
by [10]. Further, it remains open whether the hardness of Corollary 1 also holds
for special digraph classes and for directed linear clique-width [21]. Additionally,
the existence of an FPT-algorithm for DCNr w.r.t. parameter clique-width of
the underlying undirected graph is open.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 388221852.

References

1. Andres, S., Hochstättler, W.: Perfect digraphs. J. Graph Theory 79(1), 21–29
(2015)

2. Bang-Jensen, J., Gutin, G.: Classes of Directed Graphs. SMM. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-71840-8

3. Bang-Jensen, J., Maddaloni, A.: Arc-disjoint paths in decomposable digraphs. J.
Graph Theory 77, 89–110 (2014)

4. Bokal, D., Fijavz, G., Juvan, M., Kayll, P., Mohar, B.: The circular chromatic
number of a digraph. J. Graph Theory 46(3), 227–240 (2004)

5. Corneil, D., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 4, 825–847 (2005)

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge (2012)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101, 77–114 (2000)

8. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for
directed cographs. Discret. Appl. Math. 154(12), 1722–1741 (2006)

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/978-1-4471-5559-1

Acyclic Coloring Parameterized by Directed Clique-Width 107

10. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45477-2 12

11. Espelage, W., Gurski, F., Wanke, E.: Deciding clique-width for graphs of bounded
tree-width. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS,
vol. 2125, pp. 87–98. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44634-6 9

12. Feder, T., Hell, P., Mohar, B.: Acyclic homomorphisms and circular colorings of
digraphs. SIAM J. Discret. Math. 17(1), 161–163 (2003)

13. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of clique-width
parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

14. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S., Zehavi, M. Cliquewidth
III: the odd case of graph coloring parameterized by cliquewidth. ACM Trans.
Algorithms 15(1), 9:1–9:27 (2018)

15. Ganian, R.: The parameterized complexity of oriented colouring. In: Proceedings of
Doctoral Workshop on Mathematical and Engineering Methods in Computer Sci-
ence, MEMICS. OASICS, vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2009)

16. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.:
Digraph width measures in parameterized algorithmics. Discret. Appl. Math. 168,
88–107 (2014)

17. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory
Ser. B 116, 250–286 (2016)

18. Gurski, F., Hoffmann, S., Komander, D., Rehs, C., Rethmann, J., Wanke, E.:
Computing directed Steiner path covers for directed co-graphs (extended abstract).
In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 556–565.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2 45

19. Gurski, F., Komander, D., Rehs, C.: Computing digraph width measures on
directed co-graphs. In: G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT
2019. LNCS, vol. 11651, pp. 292–305. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25027-0 20

20. Gurski, F., Komander, D., Rehs, C.: Acyclic coloring of special digraphs. ACM
Computing Research Repository (CoRR), abs/2006.13911, p. 16 (2020)

21. Gurski, F., Rehs, C.: Comparing linear width parameters for directed graphs. The-
ory Comput. Syst. 63(6), 1358–1387 (2019)

22. Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without
Kn,n. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 196–205.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40064-8 19

23. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theor. Comput. Sci. 616,
1–17 (2016)

24. Kanté, M., Rao, M.: The rank-width of edge-coloured graphs. Theory Comput.
Syst. 52(4), 599–644 (2013)

25. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

26. Li, Z., Mohar, B.: Planar digraphs of digirth four are 2-colorable. SIAM J. Discret.
Math. 31, 2201–2205 (2017)

27. Millani, M., Steiner, R., Wiederrecht, S.: Colouring non-even digraphs. ACM Com-
puting Research Repository (CoRR), abs/1903.02872, p. 37 (2019)

28. Mohar, B.: Circular colorings of edge-weighted graphs. J. Graph Theory 43(2),
107–116 (2003)

https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1007/3-540-44634-6_9
https://doi.org/10.1007/3-540-44634-6_9
https://doi.org/10.1007/978-3-030-38919-2_45
https://doi.org/10.1007/978-3-030-25027-0_20
https://doi.org/10.1007/978-3-030-25027-0_20
https://doi.org/10.1007/3-540-40064-8_19

108 F. Gurski et al.

29. Neumann-Lara, V.: The dichromatic number of a digraph. J. Comb. Theory Ser.
B 33(2), 265–270 (1982)

30. Robertson, N., Seymour, P.: Graph minors II. Algorithmic aspects of tree width.
J. Algorithms 7, 309–322 (1986)

31. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width.
ACM Computing Research Repository (CoRR), abs/1905.13203, p. 37 (2019)

32. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width.
In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2 33

33. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel digraphs. SIAM
J. Comput. 11, 298–313 (1982)

https://doi.org/10.1007/978-3-030-39219-2_33

On Structural Parameterizations of Load
Coloring

I. Vinod Reddy(B)

Department of Electrical Engineerng and Computer Science,
Indian Institute of Technology Bhilai, Raipur, India

vinod@iitbhilai.ac.in

Abstract. Given a graph G and a positive integer k, the 2-Load Col-
oring problem is to check whether there is a 2-coloring f : V (G) → {r, b}
of G such that for every i ∈ {r, b}, there are at least k edges with both
end vertices colored i. It is known that the problem is NP-complete even
on special classes of graphs like regular graphs. Gutin and Jones (Inf Pro-
cess Lett 114:446-449, 2014) showed that the problem is fixed-parameter
tractable by giving a kernel with at most 7k vertices. Barbero et al.
(Algorithmica 79:211-229, 2017) obtained a kernel with less than 4k ver-
tices and O(k) edges, improving the earlier result.

In this paper, we study the parameterized complexity of the prob-
lem with respect to structural graph parameters. We show that 2-Load
Coloring cannot be solved in time f(w)no(w), unless ETH fails and
it can be solved in time nO(w), where n is the size of the input graph,
w is the clique-width of the graph and f is an arbitrary function of w.
Next, we consider the parameters distance to cluster graphs, distance
to co-cluster graphs and distance to threshold graphs, which are weaker
than the parameter clique-width and show that the problem is fixed-
parameter tractable (FPT) with respect to these parameters. Finally, we
show that 2-Load Coloring is NP-complete even on bipartite graphs
and split graphs.

1 Introduction

Given a graph G and a positive integer c, the load distribution of a c-coloring
f : V (G) → [c] is a tuple (f1, . . . , fc), where fi is the number of edges with at
least one end point colored with i. The c-Load Coloring problem is to find
a coloring f such that the function �f (G) = max{fi : i ∈ [c]} is minimum. We
denote this minimum by �(G). Ahuja et al [1] showed that the problem is NP-
hard on general graphs when c = 2. They also gave a polynomial time algorithm
for 2-Load Coloring on trees.

In a 2-coloring f : V (G) → {r, b}, an edge is called red (resp. blue) if both
end vertices are colored with r (resp. b). We use rf and bf to denote the number
of red and blue edges in a 2-coloring f of G. Let μf (G) = min{rf , bf} and μ(G) is
the maximum of μf (G) over all possible 2-colorings of G. Ahuja et al. [1] showed
that the 2-Load Coloring problem is equivalent to maximizing μ(G) over all
possible 2-colorings of G, in particular they showed that �(G) = |E(G)| − μ(G).
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 109–121, 2021.
https://doi.org/10.1007/978-3-030-67899-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_9

110 I. V. Reddy

Input: A graph G = (V,E) and an integer k
Question: Does there exists a coloring f : V (G) → {r, b} such that μ(G) ≥
k? (i.e, rf ≥ k and bf ≥ k)

The above version of the load coloring problem has been studied from the
parameterized complexity perspective. Gutin and Jones [10] proved that the
problem admits a polynomial kernel (with at most 7k vertices) parameterized
by k. They also showed that the problem is fixed-parameter tractable when
parameterized by the tree-width of the input graph. More recently, Barbero
et al. [2] obtained a kernel for the problem with at most 4k vertices improving
the result of [10].

In this paper, we study the following variant of the load coloring problem.

2-Load Coloring
Input: A graph G = (V,E) and integers k1 and k2
Question: Does there exists a coloring f : V (G) → {r, b} such that rf ≥ k1
and bf ≥ k2?

Our Contributions. In this paper, we study the 2-Load Coloring problem
from the viewpoint of parameterized complexity. A parameterized problem with
input size n and parameter k is called fixed-parameter tractable (FPT) if it can
be solved in time f(k)nO(1), where f is a function only depending on the param-
eter k (for more details on parameterized complexity refer to the textbook [5]).
There are many possible parameterizations for 2-Load Coloring. One such
parameter is the size of the solution. The problem admits a linear kernel [10]
with respect to the size of the solution. In this paper, we study the 2-Load
Coloring problem with respect to various structural graph parameters. These
parameters measure the complexity of the input rather than the problem itself.
Tree-width is one of the well-known structural graph parameters. The 2-Load
Coloring problem is FPT when parameterized by tree-width [10] of the input
graph.

Even though tree-width is a widely used graph parameter for sparse graphs,
it is not suitable for dense graphs, even if they have a simple structure. In
Sect. 3, we consider the graph parameter clique-width introduced by Courcelle
and Olariu [4], which is a generalization of the parameter tree-width. We show
that 2-Load Coloring can be solved in time nO(w), and cannot be solved in
f(w)no(w) unless ETH fails, where w is the clique-width of the n vertex input
graph and f is an arbitrary function of w. Next, we consider the parameters
distance to cluster graphs, distance to co-cluster graphs, and distance to thresh-
old graphs. These parameters are weaker than the parameter clique-width in
the sense that they are a subclass of bounded clique-width graphs. Thus study-
ing the parameterized complexity of 2-Load Coloring with respect to these

On Structural Parameterizations of Load Coloring 111

Table 1. Known and new parameterized results for 2-Load Coloring

Parameter Results

Size of the solution linear kernel [2,10]
Tree-width FPT [10]
clique-width(w) nO(w) algorithm (Theorem 1)

no f(w)no(w) algorithm (Theorem 2)
Distance to cluster graphs FPT (Theorem 3)
Distance to co-cluster graphs FPT (Theorem 4)
Distance to threshold graphs FPT (Theorem 5)
Distance to bipartite graphs para-NP-hard (Theorem 6)
Distance to split graphs para-NP-hard (Theorem 7)

parameters reduces the gap between tractable and intractable parameterizations.
In Sect. 4, we show that 2-Load Coloring is fixed-parameter tractable with
respect to the parameters distance to cluster, distance to co-cluster and distance
to threshold graphs. Finally in Sect. 5, we show that 2-Load Coloring is NP-
complete on bipartite graphs and split graphs. Table 1 gives an overview of our
results.

2 Preliminaries

In this section, we introduce some basic notation and terminology related to
graph theory and parameterized complexity. For k ∈ N, we use [k] to denote
the set {1, 2, . . . , k}. If f : A → B is a function and C ⊆ A, f |C denotes the
restriction of f to C, that is f |C : C → B such that for all x ∈ C, f |C(x) = f(x)
All graphs we consider in this paper are undirected, connected, finite and simple.
For a graph G = (V,E), by V (G) and E(G) we denote the vertex set and edge
set of G respectively. We use n to denote the number of vertices and m to denote
the number of edges of a graph. An edge between vertices x and y is denoted as
xy for simplicity. For a subset X ⊆ V (G), the graph G[X] denotes the subgraph
of G induced by vertices of X and EG[X] denote the set of edges having both
end vertices in the set X. For subsets X,Y ⊆ V (G), EG[X,Y] denote the set of
edges connecting X and Y .

For a vertex set X ⊆ V (G), we denote G − X, the graph obtained from G
by deleting all vertices of X and their incident edges. For a vertex v ∈ V (G),
by N(v), we denote the set {u ∈ V (G) | vu ∈ E(G)} and we use N [v] to
denote the set N(v) ∪ {v}. The neighbourhood of a vertex set S ⊆ V (G) is
N(S) = (∪v∈V (G)N(v)) \ S. A vertex is called universal vertex if it is adjacent
to every other vertex of the graph. For more details on standard graph-theoretic
notation and terminology, we refer the reader to the textbook [6].

112 I. V. Reddy

2.1 Graph Classes

We now define the graph classes which are considered in this paper. A graph is
bipartite if its vertex set can be partitioned into two disjoint sets such that no
two vertices in the same set are adjacent. A cluster graph is a disjoint union
of complete graphs. A co-cluster graph is the complement graph of a cluster
graph. A graph is a split graph if its vertices can be partitioned into a clique
and an independent set. Split graphs are (C4, C5, 2K2)-free [7]. A graph is a
threshold graph if it can be constructed from the one-vertex graph by repeatedly
adding either an isolated vertex or a universal vertex. The class of threshold
graphs is the intersection of split graphs and cographs [11]. Threshold graphs
are (P4, C4, 2K2)-free. We denote a split graph (resp. threshold graph) with
G = (C, I) where C and I denotes the partition of G into a clique and an
independent set.

For a graph class F the distance to F of a graph G is the minimum number
of vertices that have to be deleted from G in order to obtain a graph in F . The
parameters distance to cluster graphs [9], distance to co-cluster graphs, distance
to threshold graphs [3] can be computed in FPT time.

2.2 Clique-Width

The clique-width of a graph G denoted by cw(G), is defined as the minimum
number of labels needed to construct G using the following four operations:

i. Introducing a vertex. Φ = v(i), creates a new vertex v with label i. GΦ is a
graph consisting a single vertex v with label i.

ii. Disjoint union. Φ = Φ′ ⊕Φ′′, GΦ is a disjoint union of labeled graphs GΦ′ and
GΦ′′

iii. Introducing edges. Φ = ηi,j(Φ′), connects each vertex with label i to each
vertex with label j (i �= j) in GΦ′ .

iv. Renaming labels. Φ = ρi→j(Φ′): each vertex of label i is changed to label j in
GΦ′ .

An expression build from the above four operations using w labels is called as
w-expression. In otherwords, the clique-width of a graph G, is the minimum w
for which there exists a w-expression that defines the graph G. A w-expression
Ψ is a nice w-expression of G, if no edge is introduced twice in Ψ .

3 Graphs of Bounded Clique-Width

3.1 Upper Bound

In this section, we present an algorithm for solving 2-Load Coloring which
runs in time nO(w) on graphs of clique-width at most w.

Theorem 1. 2-Load Coloring can be solved in time nO(w), where w is the
clique-width of the input graph.

On Structural Parameterizations of Load Coloring 113

Proof. The algorithm is based on a dynamic programming over the w-expression
of the input graph G. We assume that the w-expression Ψ defining G is nice,
that is every edge is introduced exactly once in Ψ .

For each subexpression Φ of Ψ ,

OPT (Φ, n1,r, n1,b, n2,r, n2,b, . . . , nw,r, nw,b, k1)

denotes maximum number of blue edges that can be obtained in a 2-coloring
f : V (GΦ) → {r, b} of GΦ with the constraint that number of red edges is at
least k1 in GΦ and the number of vertices of label i in GΦ that are colored with
a color � in GΦ is ni,�, where � ∈ {r, b}, i ∈ [w].

If there are no colorings satisfying the constraint OPT (Φ, n1,r, n1,b, . . . ,
nw,r, nw,b, k1), then we set its value equal to -∞. Observe that G is a Yes-
instance of 2-Load Coloring if and only if OPT (Ψ, ., . . . , ., k1) ≥ k2, for some
2-coloring of GΨ .

Now we give the details of calculating the values of OPT (Φ,) at each oper-
ation.

1. Φ = v(i). In this case GΦ contains one vertex of label i and no edges. Hence
OPT (Φ, 0, 0, . . . ni,r = 1, 0, . . . 0, k1 = 0) = 0 and OPT (Φ, 0, 0, . . . 0, ni,b =
1, 0, . . . 0, 0, k1 = 0) = 0. Otherwise OPT (Φ, . . . , k1) = −∞.

2. Φ = ρi→j(Φ′).
All vertices of label i are relabled to j by ρi→j operation in GΦ, hence,
there are no vertices of label i in GΦ, so ni,r = ni,b = 0. Let c be
a coloring corresponding to an entry OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1).
Then c is also a coloring of GΦ′ , corresponding to the entry
OPT (Φ′, n′

1,r, n
′
1,b, . . . , n

′
w,r, n

′
w,b, k1), where n′

i,� + n′
j,� = nj,� for � ∈ {r, b}

and n′
p,� = np,� for all p ∈ [w] − {i, j} and � ∈ {r, b}. The number of red and

blue edges in GΦ is the same as that in GΦ′ with respect to the coloring c .
Hence, we have the following relation.

OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) =
⎧
⎪⎪⎨

⎪⎪⎩

max

⎧
⎨

⎩
OPT (Φ′, n′

1,r, . . . , n′
w,b, k1)

∣
∣
∣
∣
∣
∣

n′
i,� + n′

j,� = nj,�, ni,� = 0 for each � ∈ {r, b}
and np,� = n′

p,� for all p ∈ [w] − {i, j}
and � ∈ {r, b}

⎫
⎬

⎭

−∞, otherwise

3. Φ = Φ′ ⊕ Φ′′. As this operation does not add new edges, any coloring c corre-
sponding to OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) is split between two color-
ings c′ = c|V (GΦ′) and c′′ = c|V (GΦ′′) respectively. As GΦ is the disjoint union
of GΦ′ and GΦ′′ , the number of red and blue edges edges in GΦ with respect
to c is a sum of number red and blue edges with respect to c′ and c′′ in the
graphs GΦ′ and GΦ′′ .

OPT (Φ, n1,r, n1,b, . . . , nw,r, nw,b, k1) =

max
n′

i,a + n′′
i,a = ni,a

k′
1 + k′′

1 = k1

{
OPT (Φ′, n′

1,r, . . . , n′
w,b, k

′
1) + OPT (Φ′′, n′′

1,r, . . . , n′′
w,b, k

′′
1)

}

114 I. V. Reddy

4. Φ = ηi,j(Φ′). The graph GΦ is obtained from GΦ′ by adding the edges between
each vertex of label i to each vertex of label j. Any coloring c of GΦ is also a
coloring of GΦ′ . As given w-expression is nice, every edge is which is added
by this operation was not present in GΦ′ . Therefore ηi,j operation on GΦ′

creates ni,r · nj,r many red edges and ni,b · nj,b blue edges. Hence, we have
the following relation

OPT (Φ, n1,r, . . . , nw,b, k1) = OPT (Φ′, n1,r, . . . , nw,b, k1−ni,r ·nj,r)+ni,b ·nj,b

We have described the recursive formulas for all possible cases. The correctness
of the algorithm follows from the description of the procedure. The number of
entries in the OPT table is at most |Ψ |nO(w). We can compute each entry of
the OPT table in nO(w) time. The maximum number of blue edges that can be
obtained in GΨ is equals to maxn1,r,...,nw,b

OPT (Ψ, n1,r, n1,b, . . . , nw,r, nw,b, k1)
which can be computed in nO(w) time. This proves that 2-Load Coloring can
be solved in time nO(w) on graphs of clique-width at most w.
�

3.2 Lower Bound

We now show the lower bound complementing with the corresponding upper
bound result of the previous section. To prove our result we give a linear FPT
reduction from the Minimum Bisection problem. In the Minimum Bisection
problem, we are given a graph G with an even number of vertices and a positive
integer k, and the goal is to determine whether there is a partition of V (G) into
two sets V1 and V2 of equal size such that |EG[V1, V2]| ≤ k. Fomin et al. [8]
showed that Minimum Bisection cannot be solved in time f(w)no(w) unless
ETH fails.

Theorem 2. The 2-Load Coloring problem cannot be solved in time
f(w)no(w) unless ETH fails. Here, w is the clique-width of n vertex input graph.

Proof. We give a reduction from the Minimum Bisection problem to the 2-
Load Coloring problem. Let (G, k) be an instance of Minimum Bisection.
We construct a graph H as follows.

1. For every vertex v ∈ V (G), we introduce two vertices av, bv in H. Let A =
{av1 , . . . , avn

} and B = {bv1 , . . . , bvn
}

2. For every edge uv ∈ E(G), we add the edges auav and bubv to H.
3. Finally, for every vertex avi

∈ A and every vertex bvj
∈ B add the edge avi

bvj

to H.

It is easy to see that the graph H has 2n vertices and 2m + n2 edges and the
construction of H can be done in polynomial time. Moreover, if cw(G) = w
with w-expression ΦG, then we can construct a (w + 1)-expression ΦH of H by
taking two disjoint copies of ΦG and relabel every vertex in the first copy with
the label w + 1 and every vertex in the second copy with some arbitrary label
� ∈ [w] and finally add edges between both the copies using ηw+1,�. This shows
that cw(H) ≤ w + 1. Let us set k1 = k2 = m − k + n2/4. We now show that
(G, k) is a Yes instance of Minimum Bisection if and only if (H, k1, k2) is a
Yes instance of 2-Load Coloring.

On Structural Parameterizations of Load Coloring 115

Forward Direction. Let (V1, V2) be a partition of V (G) such that |EG[V1, V2]| ≤ k
and |V1| = |V2|. We construct a 2-coloring f : V (H) → {r, b} of H as follows.
For each v ∈ V (G), f(av) = r and f(bv) = b if v ∈ V1 and f(av) = b and
f(bv) = r if v ∈ V2. Let Ar = {av : f(av) = r}, Ab = {av : f(av) = b}
and Br = {bv : f(bv) = r}, Bb = {bv : f(bv) = b}. It is easy to see that
|Ar| = |Ab| = |Br| = |Bb| = n/2.

rf = |EH [Ar]| + |EH [Br]| + |EH [Ar, Br]| = m − k + n2/4 = k1

Similarly, we can show that bf = k2. Therefore (H, k1, k2) is a Yes instance
of 2-Load Coloring.

Reverse Direction. Let f : V (H) → {r, b} be a 2-coloring of H such that rf = k1
and bf = k2. Let Ar = {av : f(av) = r}, Ab = {av : f(av) = b} and Br = {bv :
f(bv) = r}, Bb = {bv : f(bv) = b}. Let Vr = Ar ∪ Br and Vb = Ab ∪ Bb. Then we
have |EH [Vr, Vb]| = 2m + n2 − rf − bf = 2k + n2/2.

Let V1 := {v : f(av) = r} and V2 := {v : f(av) = b}. We show that
|EG(V1, V2)| ≤ k and |V1| = |V2|. Let |Ab| = p and |Bb| = q such that p+q = |Vb|.
Then we have |Ar| = n − p and |Br| = n − q.

We know that

|EH [Vr]| + |EH [Vb]| = k1 + k2 = 2m − 2k + n2/2

|EH [Ar]| + |EH [Br]| + |EH [Ar, Br]| + |EH [Ab]| + |EH [Bb]| + |EH [Ab, Bb]| = 2m − 2k + n2/2

|EH [Ar]|+ |EH [Br]|+(n−p)(n−q)+ |EH [Ab]|+ |EH [Bb]|+pq = 2m−2k+n2/2

After simplifying we get (n − p)(n − q) + pq = n2/2. Which implies p = q =
n/2, that is |Ar| = |Ab| = |Br| = |Bb| = n/2. Hence |V1| = |V2| = n/2, that is
(V1, V2) is a bisection of G.

Finally, we show that |EG[V1, V2]| ≤ k. We know that |EH [Vr, Vb]| =
2k + n2/2.

|EH [Vr, Vb]| = |EH [Ar, Ab]| + |EH [Br, Bb]| + |EH [Ar, Bb]| + |EH [Ab, Br]| = 2k + n2/2

By the construction of H we have |EH [Ar, Ab]| = |EH [Br, Bb]|. Therefore we get

2|EH [Ar, Ab]| + n2/4 + n2/4 = 2k + n2/2

Which implies |EH [Ar, Ab]| = k and hence |EG[V1, V2]| = k. Therefore (G, k) is
a Yes instance of Minimum Bisection. This concludes the proof.
�

4 Parameterized Algorithms

Clique-width of cluster graphs, co-cluster graphs and threshold graphs is at most
two. Hence, from the Theorem 1, 2-Load Coloring is polynomial time solvable
on these graph classes. In this section, we show that 2-Load Coloring is FPT
parameterized by distance to cluster graphs, distance to co-cluster graphs and
distance to threshold graphs.

116 I. V. Reddy

4.1 Distance to Cluster Graphs

Theorem 3. 2-Load Coloring is fixed-parameter tractable parameterized by
the distance to cluster graphs.

Proof. Let (G,X, k1, k2) be a 2-Load Coloring instance, where X ⊆ V (G)
of size k such that G − X is a disjoint union of cliques C1, C2, . . . , C�. We first
guess the colors of vertices in X in an optimal 2-coloring of G. This can be done
in O(2k) time. Let h : X → {r, b} be such a coloring. Without loss of generality
we assume that X is an independent set in G. Otherwise, let er and eb be the
number of red and blue edges in the coloring h having both end vertices in the set
X. We build the new instance (G′,X, k′

1, k
′
2) of 2-Load Coloring, where G′ is

the graph obtained from G by deleting the edges having both their end vertices
in X and k′

1 = k1 − er and k′
2 = k2 − eb. It is easy to see that (G,X, k1, k2) is a

Yes instance of 2-Load Coloring iff there exists a 2-coloring g of G′ such that
g|X = h and rg ≥ k′

1 and bg ≥ k′
2. Hence, we assume that X is an independent

set in G.
For each i ∈ [�], let Gi = G[X ∪ Ci] be the subgraph of G induced by the

vertices of the clique Ci and the set X.
The algorithm is based on dynamic programming technique, which has two

phases. In phase-1, given a graph Gi and non-negative integers q and nr
i , we find

a 2-coloring of Gi that maximizes the number of blue edges with the constriant
that there are at least q red edges in Gi and nr

i red vertices in Ci. In phase-
2, for each t ∈ [�], and a non-negative integer p, we find a 2-coloring of ̂Gt =
G[C1∪, . . . ,∪Ct∪X] that maximizes the number of blue edges with the constraint
that number of red edges is at least p.

Phase-1. For each i ∈ [�], q ∈ [|E(Gi)|]∪{0} and nr
i ∈ [|Ci|]∪{0}, let b[Gi, n

r
i , q]

be the maximum number of blue edges that can be attained in a 2-coloring g of
Gi satisfying the following constraints.

1. g|X = h.
2. number of red edges in Gi is at least q.
3. number of red vertices in Ci is equal to nr

i .

If the constraint cannot be satisfied, then we let b[Gi, n
r
i , q] = −∞. From the

definition of b[,], we can see that b[Gi, 0, 0] gives the number of blue edges in Gi

when all vertices of Ci are colored blue. b[Gi, 0, q] = −∞ for q > 0, b[Gi, n
r
i , 0] =

−∞ for nr
i > 1. For a given values of i, nr

i and q, the computation of b[Gi, n
r
i , q]

is described as follows.
Let Hi be the graph obtained from Gi by deleting the edges inside the clique

Ci. It is easy to see that X is a vertex cover of the graph Hi. If g colors nr
i

vertices red in the clique Ci then we get
(

nr
i
2

)

red edges and
(

nb
i
2

)

blue edges
inside Ci, where nr

i + nb
i = |Ci|. Hence we get the following relation.

b
[

Gi, n
r
i , q

]

= b
[

Hi, n
r
i , q −

(

nr
i

2

)

]

+
(

nb
i

2

)

On Structural Parameterizations of Load Coloring 117

For v ∈ Hi − X, let ri(v) and bi(v) denote the number of red and blue vertices
in N(v) ∩ X respectively. For a vertex v ∈ Hi, we use Hi − {v} to denote the
graph obtained from Hi by deleting the vertex v and its incident edges. Let
q′ = q − (

nr
i
2

)

. Using this notation, we get the following recurrence.

b
[
Hi, n

r
i , q

′
]

= max
{
b
[
Hi −{v}, nr

i −1,max{q′ − ri(v), 0}]
, b

[
Hi −{v}, nr

i , q
′]+ bi(v)

}

If v is colored red, then we get ri(v) red edges between v and the neighbors of
v in X. If v is colored blue, then we get bi(v) blue edges between v and neighbors
of v in X.

The size of the DP table is at most O(mn2) and each entry can be computed
in O(n) time. Hence the running time of Phase-1 is O(n3m).

Phase-2. Let ̂Gt be the subgraph of G induced by the cliques C1, · · · , Ct and the
set X. Let OPT [t, p] be the maximum number of blue edges that can be attained
in a 2-coloring f of ̂Gt with the constraint that number of red edges is at least p
and f |X = h. If the constraint cannot be satisfied, then we let OPT [t, p] = −∞.
From the definition of OPT , we have OPT [0, 0] = 0 and OPT [0, p] = −∞ for
p > 0. For t > 0 we have:

OPT [t, p] = max
q = 0, . . . , |E(Gt)|
nr

t = 0, . . . , |Ct|

{

OPT
[

t − 1,max{p − q, 0}]

+ b[Gt, n
r
t , q]

}

If there are q red edges in Gt and nr
t red vertices in Ct in the coloring f , then

we get b[Gt, n
r
t , q] blue edges in Gt. We consider all possible values for q and nr

t

and pick the values that maximizes the OPT .
Observe that (G,X, k1, k2) is a Yes instance if and only if OPT [�, k1] ≥ k2.

There are O(�k1) subproblems, each of which can be solved in O(n2m) time.
As � ≤ n, k1 ≤ m, the running time of phase-2 is O(�k1n2m) = O(n3m2). The
overall running time of the algorithm is O(2kn3m2), where O(2k) is the time
required for guessing the coloring of X in an optimal coloring of G.
�

4.2 Distance to Co-cluster Graphs

Theorem 4. 2-Load Coloring is fixed-parameter tractable parameterized by
the distance to co-cluster graphs.

Proof. Due to space restriction the proof is presented in the full version of this
paper [12].

4.3 Distance to Threshold Graphs

Theorem 5. 2-Load Coloring is fixed-parameter tractable parameterized by
the distance to threshold graphs.

118 I. V. Reddy

Proof. Let (G,X, k1, k2) be a 2-Load Coloring instance, where X ⊆ V (G) of
size k such that G − X is a threshold graph. We guess the coloring of X in an
optimal 2-coloring of G in O(2k) time. Let h : X → {r, b} be such a coloring.
We assume that X is an independent set in G, if not we count the number of
red edges er and blue edges eb inside X and replace the parameters k1 and k2
with k1 − er and k2 − eb respectively. Then finally we delete all the edges inside
X. For a vertex v in G − X, we use nr

X(v) (resp. nb
X(v)) to denote the number

of neighbors of the vertex v in the set X which are colored red (resp. blue).
Let v1, v2, . . . , v� be the ordering of the vertices of the threshold graph G − X
obtained from its construction (i.e., vi is added before vi+1 to the graph G−X).

For t ∈ [�], let Vt = {v1, . . . , vt} and Gt be the graph induced by the vertices
Vt ∪X. Using the definition of threshold graphs, we can see that, for each t ∈ [�],
the vertex vt is either a universal vertex or an isolated vertex in the graph Gt−X.
We use nr

t and nb
t denote the number of red and blue vertices in a 2-coloring of

Gt respectively.
Let OPT [t, nr

t , p] be the maximum number of blue edges that can be obtained
in a 2-coloring g of Gt with the constraint that g|X = h and Vt has nr

t vertices of
color red, Gt has at least p red edges. If the constraint cannot be satisfied, then we
let OPT [t, nr

t , p] = −∞. From the definition of OPT , we have OPT [0, 0, 0] = 0,
OPT [0, nr

t , p] = −∞ for p > 0 and OPT [t, 0, p] = −∞ for p > 0.
For t > 0, we have two cases based on whether vt is a universal vertex or an

isolated vertex in the graph Gt −X. If vt is a universal vertex, then it is adjacent
to all vertices of Gt − X. Hence we get the following relation.

OPT [t, nr
t , p] =

max
{
OPT [t−1, nr

t −1,max{p−(nr
t −1)−nr

X(vt), 0}], OPT [t−1, nr
t , p]+(nb

t−1+nb
X(vt))}

If vt is colored red, then we get (nr
t − 1) red edges between vt and neighbors

of vt in Gt − X and nr
X(vt) red edges between vt and its neighbors in X. If vt

is colored blue, then we get nb
t − 1 blue edges between vt and neighbors of vt in

Gt − X and nb
X(vt) blue edges between vt and its neighbors in X.

If vt is an isolated vertex, then it is not adjacent to any vertex of Gt − X.
Then we get the following relation.

OPT [t, nr
t , p] = max

{
OPT [t−1, nr

t −1,max{p−nr
X(vt), 0}], OPT [t−1, nr

t , p]+nb
X(vt)}

If vt is colored red, then we get nr
X(vt) red edges between vt and its neighbors

in X. If vt is colored blue, then we get nb
X(vt) blue edges between vt and its

neighbors in X.
Observe that (G,X, k1, k2) is a Yes instance of 2-Load Coloring if and

only if OPT [�, nr
t , k1] ≥ k2 for some integer nr

t . There are O(n2k1) subproblems,
each of which can be solved in O(n) time. As k1 ≤ m, the overall running time
of this algorithm is O(2kn3m).
�

5 Special Graph Classes

In this section, we show that 2-Load Coloring is NP-complete on bipartite
graphs and split graphs.

On Structural Parameterizations of Load Coloring 119

Theorem 6. 2-Load coloring is NP-complete on bipartite graphs.

Proof. We give a reduction from 2-Load Coloring on general graphs. Let
(G, k1, k2) be an instance of 2-Load Coloring. Without loss of generality, we
assume that k2 ≥ k1. We construct a bipartite graph H = ((X ∪ Z) ∪ Y), E)
as follows. For every vertex v ∈ V (G), we introduce a vertex xv ∈ X. For every
edge e ∈ E(G), we introduce a vertex ye ∈ Y , and if e = uv, then ye is adjacent
to xu and xv in H. For every edge e ∈ E(G), we also introduce additional m2

vertices z1e , z2e , . . . , zm2

e in Z. For each e ∈ E(G) and i ∈ [m2] introduce an edge
between zi

e and ye in H. This completes the construction of the bipartite graph
H and clearly can be performed in polynomial time. We set k′

1 = 2k1 + k1m
2,

k′
2 = (m + k2 − k1) + (m − k1)m2. We argue that (G, k1, k2) is a yes instance

of 2-Load Coloring if and only if (H, k′
1, k

′
2) is a yes instance of 2-Load

Coloring.

Forward Direction. Let f : V (G) → {r, b} is a 2-coloring of G such that rf = k1
and bf = k2. Then we define a coloring g : V (H) → {r, b} of H as follows:
g(xv) = f(v) for all xv ∈ X. For every edge e = uv ∈ E(G), if f(u) = f(v) = r,
then g(ye) = f(u), else g(ye) = b. For each e ∈ E(G) and i ∈ [m2], g(zi

e) = g(ye).
Note that for each red (resp blue) edge e = uv in G, m2 +2 edges (namely yexv,
yexu, zi

exu) are red (resp. blue) with respect to g. For each edge e = uv ∈ E(G)
with f(u) �= f(v) we get m2 + 1 blue edges with respect to g. Therefore, rg =
(m2 + 2)k1 = 2k1 + m2k1 and bg = (m2 + 2)k2 + (m − k1 − k2)(m2 + 1) =
(m + k2 − k1) + (m − k1)m2. Hence (H, k′

1, k
′
2) is a yes instance of 2-Load

Coloring.

Reverse Direction. Let g : V (H) → {r, b} be a 2-coloring of H such that rg =
2k1 +k1m

2 and bg = (m+k2 −k1)+ (m−k1)m2. We assume that g(zi
e) = g(ye)

for each e ∈ E(G) and i ∈ [m2], otherwise we recolor the vertices zi
e with the

color of ye, as it only increases the number of red and blue edges. Now, we argue
that the 2-coloring g of H when restricted to the vertices of G gives a 2-coloring
f of G such that rf = k1 and bf = k2.

We partition the vertices of Y in H into four sets based on their coloring in
g as follows.

Pr = {ye : e = uv, g(ye) = g(xu) = g(xv) = r}
Qr = {ye : e = uv, g(ye) = r and g(xu) �= g(xv)}

Pb = {ye : e = uv, g(ye) = g(xu) = g(xv) = b}
Qb = {ye : e = uv, g(ye) = b and g(xu) �= g(xv)}

Let pr, qr,pb and qb denote the sizes of the sets Pr, Qr Pb and Qb respectively.
Using this notation, we have rg = 2pr+qr+m2(pr+qr), bg = 2pb+qb+m2(pb+qb).
Also, it is easy to see that pr + qr + pb + qb = m. By using above two equations,
we get

rg + bg = pr + pb + m + m3

120 I. V. Reddy

pr +pb = rg +bg −m−m3 = 2k1+k1m
2+(m+k2−k1)+(m−k1)m

2−m−m3 = k1+k2

Claim. pr = k1 and pb = k2.
Suppose pr = k1 − � and pb = k2 + � for some � ≥ 1. Then

rg = 2pr + qr + m2(pr + qr) = 2(k1 − �) + qr + m2(k1 − � + qr)

Since rg = 2k1 + k1m
2, by substituting in the above equation, we get qr =

(

m2+2
m2+1

)

� ≥ � + 1. That implies qb ≤ m − (k1 − �) − (k2 + �) − (� + 1) =
(m − k1 − k2 − � − 1). Then

bg = 2pb + qb + m2(pb + qb)

=2(k2 + �) + (m − k1 − k2 − � − 1) + m2(k2 + � + (m − k1 − k2 − � − 1))

<(m + k2 − k1) + m2(m − k1)

This is a contradiction as bg = (m+k2−k1)+m2(m−k1). Therefore pr = k1
and pb = k2. Define f : V (G) → {r, b} as f(u) = g(xu). Since pr = k1 and
pb = k2, we get rf ≥ k1 and bf ≥ k2. Hence, by restricting the coloring g of H
to the vertices of G, we get a coloring f of G with at least k1 red edges and k2
blues edges. Therefore (G, k1, k2) is a yes instance of 2-Load Coloring.
�
Theorem 7. 2-Load coloring is NP-complete on split graphs.

Proof. The proof is similar to the case of bipartite graphs except that we add all
possible edges between the vertices of Y to make it a clique in the graph H. We set
k′
1 = 2k1 + m2k1 +

(

k1
2

)

and k′
2 = (m + k2 − k1) + (m − k1)m2 +

(

m−k1
2

)

.
�

6 Conclusion

In this paper, we have studied the parameterized complexity of 2-Load Color-
ing. We showed that 2-Load Coloring (a) cannot be solved in time f(w)no(w),
unless ETH fails, (b) can be solved in time nO(w), where w is the clique-width of
the graph. We have shown that the problem is FPT parameterized by (a) distance
to cluster graphs (b) distance to co-cluster graphs and (c) distance to thresh-
old graphs. We also studied the complexity of the problem on special classes of
graphs. We have shown that the problem is NP-complete on bipartite graphs
and split graphs. A possible future work would be to study the kernelization
complexity of the problem with respect to structural graph parameters.

Acknowledgement. The author acknowledges DST-SERB (SRG/2020/001162) for
funding to support this research.

References

1. Ahuja, N., Baltz, A., Doerr, B., Př́ıvětivỳ, A., Srivastav, A.: On the minimum load
coloring problem. J. Discrete Algorithms 5(3), 533–545 (2007)

On Structural Parameterizations of Load Coloring 121

2. Barbero, F., Gutin, G., Jones, M., Sheng, B.: Parameterized and approximation
algorithms for the load coloring problem. Algorithmica 79(1), 211–229 (2017)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

4. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1), 77–114 (2000)

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3 15

6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics (2005)
7. Foldes, S., Hammer, P.: On split graphs and some related questions. In: Problémes

Combinatoires et Théorie Des Graphes, pp. 138–140, Colloques internationaux
C.N.R.S. 260 (1976)

8. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized by clique-width. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 493–502. SIAM
(2010)

9. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8–10), 718–726 (2009)

10. Gutin, G., Jones, M.: Parameterized algorithms for load coloring problem. Inf.
Process. Lett. 114(8), 446–449 (2014)

11. Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. vol. 56. Else-
vier (1995)

12. Reddy, I.V.: On structural parameterizations of load coloring. arXiv preprint
arXiv:2010.05186 (2020)

https://doi.org/10.1007/978-3-319-21275-3_15
http://arxiv.org/abs/2010.05186

One-Sided Discrete Terrain Guarding
and Chordal Graphs

Kasthurirangan Prahlad Narasimhan(B)

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
kprahlad.narasimhan@niser.ac.in

Abstract. The Terrain Guarding problem, a variant of the famous
Art Gallery problem, has garnered significant attention over the last
two decades in Computational Geometry from the viewpoint of com-
plexity and approximability. Both the continuous and discrete versions
of the problem were shown to be NP-Hard in [14] and to admit a PTAS
[8,15]. The biggest unsolved question regarding this problem is if it is
fixed-parameter tractable with respect to the size of the guard set. In this
paper, we present two theorems that establish a relationship between a
restricted case of the Annotated Terrain Guarding problem and the
Clique Coverproblem in chordal graphs. These theorems were proved
in [11] for a special class of terrains called orthogonal terrains and were
used to present a FPT algorithm with respect to the parameter that we
require for Discrete Orthogonal Terrain Guarding in [2]. We hope
that the results obtained in this paper can, in future work, be used to
produce such an algorithm for Discrete Terrain Guarding.

Keywords: Terrain guarding · Chordal graphs · Visibility graphs

1 Introduction

Let V = {v1, . . . , vn} be a finite sequence of three or more points in R
2. The

polygonal chain defined by V is the curve specified by the line segments con-
necting vi and vi+1 for all 1 ≤ i < n. In this paper, we additionally assume that
polygonal chains are simple curves. For a point v in R

2, we use x(v) and y(v) to
denote the x and y coordinates of v. A 1.5-dimensional terrain (which we will
refer to as a terrain) is a polygonal chain defined by V where x(vi) ≤ x(vj) for
all i and j such that 1 ≤ i < j ≤ n. We also view a terrain T as an undirected
graph with vertices V and edges E = {(vi, vi+1) | 1 ≤ i < n}. We say that two
points a and b on a terrain T see or guard each other if no point in the line
segment joining these two points lies strictly below the terrain. An example of a
terrain is shown in Fig. 1a. Let U be a set of points on the terrain. The visibility
region of U is defined to be the collection of all points on the terrain which is seen
by at least one point of U . We let Vis U denote this set. The encircled vertices
in Fig. 1a are precisely the ones that are present in Vis U when U = {v2, v9}.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 122–134, 2021.
https://doi.org/10.1007/978-3-030-67899-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_10

One-Sided Discrete Terrain Guarding and Chordal Graphs 123

When U contains a single element, say u, we abuse this notation and write Vis u
instead of Vis U .

These definitions naturally lead us to the three major versions of the terrain
guarding problem. They revolve around finding k-many points (called guards)
on the terrain to guard a chosen set of points of the terrain. In the Continuous
Terrain Guarding problem, we are required to guard the vertex set of the
graph by placing guards anywhere on the terrain. In the Discrete Terrain
Guarding version, while we are still to guard the vertex set, we can only place
guards on the vertices themselves. Annotated Terrain Guarding generalizes
the discrete version by restricting the vertices where the guards can be placed
to a subset of V while requiring us to guard a given subset of vertices. We will
focus on the annotated version of the terrain guarding problem in this paper
and define it formally below. This is referenced from [2]. Hereafter, we assume
that the number of vertices of a terrain is n.

Problem. Annotated Terrain Guarding: Given a terrain T (V,E), k ∈ N

and G, C ⊆ V decide if there exists a S ⊆ G with |S| ≤ k such that Vis S ⊇ C.

v2

v10

v1
v3

v4 v5 v6

v7

v8
v9

(a)

v1 v2

v3 v4

v5 v6

v7 v8

v9

(b)

Fig. 1. Examples of terrains where the vertices and edges are marked by small discs
and straight lines respectively. In (a), the vertices that are seen by U = {v2, v9} are
encircled. The second figure is an example of an orthogonal terrain.

Note that if G = C = V in the annotated version of the problem, then it is
exactly the Discrete Terrain Guarding problem. We use (T (V,E), n, k,G, C)
to denote an instance of the Annotated Terrain Guarding problem. The
visibility graph of such an instance, GT , is defined to be the undirected graph
GT = (C, E′), where E′ = {(u, v) ∈ C2 | there is a g ∈ G that sees u and v}. In
some variants of the Art Gallery problem, vertices in the visibility graph are
connected by an edge if those two vertices see each other [16]. Here, however,
there exists an edge between two vertices of GT if there exists an element in the
guard set which can see both these vertices.

A subclass of terrains which are of particular interest are orthogonal terrains.
In an orthogonal (or rectilinear) terrain, each edge is either parallel to the x-axis

124 K. Prahlad Narasimhan

or parallel to the y-axis. Furthermore, each vertex is incident to at most one edge
of each type. An example of an orthogonal terrain is given in Fig. 1b.

A graph G(V,E) is chordal if for any V ′ ⊆ V , where |V ′| ≥ 4, the subgraph
induced by V ′ is not a cycle. Equivalently, G is chordal if the graph induced by
any cycle of length at least 4 is not a cycle. Chordal graphs have been well studied
in literature since a lot of the typical NP-Hard graph problems can be solved
quickly for this graph class [10]. In particular, there exists a simple polynomial
time algorithm which solves the Clique Cover problem in chordal graphs [9].
The Clique Cover problem is defined as follows: given a graph G(V,E) and a
k ∈ N, decide if there exists a collection of k-many cliques of G that covers V .
An instance of this problem is denoted by (G(V,E), n, k) where |V | = n.

1.1 Motivation

Optimal guarding of terrains arises in the placement of antennas for communi-
cation networks. We study this problem in two dimensions to understand better
the considerably more difficult problem of guarding terrains in three dimensions.
Moreover, 1.5-dimensional terrains arise directly in applications of coverage along
a highway as well as in security lamp and camera placement along walls and
streets [3,11,14].

1.2 Related Work

The Terrain Guarding problem was stated in 1995 by Chen et al. in [4]. In
the same paper, the authors hypothesized that both the continuous and dis-
crete versions of the problem are NP-Hard, but did not provide a concrete proof
in support of their claim. It was only in 2010 that King and Krohn finally
showed that both the Continuous Terrain Guarding and Discrete Ter-
rain Guarding problems are NP-Hard [14]. Meanwhile, the problem continued
to be studied from the viewpoint of approximation algorithms and Ben-Moshe
et al. [3] proposed the first constant-factor approximation for the discrete version
of the problem. The factor of approximation was improved over the course of
several papers [5,6,13] and finally a PTAS for the discrete version of the prob-
lem was given by Krohn et al. in 2014 [15]. A PTAS for Continuous Terrain
Guardingwas obtained a couple of years later by Friedrichs et al. [8].

Thus, we have a satisfactory understanding of the approximability of the
terrain guarding problem. In the paper that they proved the NP-Hardness of
the terrain guarding problems, King and Krohn stated that the biggest remain-
ing question regarding this problem was its fixed-parameter tractability. Terrain
guarding has been shown to have a FPT algorithm with respect to few param-
eters [1,12] but it is still not known if the problem is fixed-parameter tractable
with respect to the number of guards that are required to guard the terrain. In
2018, Ashok et al. showed that this is indeed true for the Discrete Orthogo-
nal Terrain Guarding problem in [2]. Their algorithm exploited a connection
between guarding orthogonal terrains and covering chordal graphs with cliques
that was established by Katz and Roisman in Lemmas 3.6 and 3.7 of their paper

One-Sided Discrete Terrain Guarding and Chordal Graphs 125

[11]. In these lemmas, they considered the visibility graph of the Annotated
Orthogonal Terrain Guarding instance (T (V,E), n, k,R,Cl) and proved
that it is chordal. They then showed that any clique of the visibility graph can
been seen by a single guard. In this paper, we will show that these lemmas
can be stated and proved for a special case of the annotated version of the ter-
rain guarding problem called the Left-Sided Terrain Guarding problem (we
define the problem formally in the next section).

1.3 Results

This paper presents two theorems which prove the equivalence between a
restricted case of the Left-Sided Terrain Guarding problem and the
Clique Cover problem in chordal graphs. Theorem3.1 proves that the visibil-
ity graph corresponding to an instance of this problem is chordal. Theorem3.2
builds on top of this and proves that there exists a clique in the visibility graph,
if, and only if, there exists a guard that sees all the vertices of that clique. Col-
lating these two theorems gives us the main result of this paper. Lemmas 3.4 and
3.5 show that this paper indeed generalizes results that are known for orthogonal
terrains.

Main Result. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-
ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, this is a true instance of
the problem if, and only if, (GT (C, E′), |C|, k) is a true instance of the Clique
Coverproblem where GT , the visibility graph of T , is a chordal graph.

2 Preliminaries

For points a and b on T , we say a precedes b, denoted by a ≺ b, if a appears on
the terrain before b does (the terrain is scanned from left to right). The Order
Claim, which was originally stated in [3] and later slightly generalized in [1], lays
the foundation for the theorems that follow in the next section.

Lemma 2.1 (Order Claim). Let a, b, c and d be four points on a terrain
T (V,E) such that a ≺ b ≺ c ≺ d. If a sees c and b sees d, then, a sees d.

In an orthogonal terrain T (V,E), a vertex vi, where 1 < i < n, is convex
if x(vi) = x(vi+1) and y(vi) < y(vi+1) or x(vi) = x(vi−1) and y(vi) < y(vi−1)
and is reflex otherwise. Equivalently, vi is a convex vertex if the angle formed
by the vertices vi−1, vi and vi+1 (measured above the terrain) is convex and
is a reflex vertex otherwise. It is a left vertex if x(vi−1) = x(vi) and a right
vertex if x(vi) = x(vi+1). The set of convex vertices is denoted by C and the set
of reflex vertices is denoted by R. In Fig. 1b, the convex vertices are encircled
and the reflex vertices are marked using squares. The set of vertices which are
both convex and left are called left convex vertices and is denoted by Cl. Right
convex, left reflex and right reflex vertices are defined similarly and are denoted

126 K. Prahlad Narasimhan

by Cr, Rl, and Rr respectively. Vertices a ∈ Cl and b ∈ Rr are said to be of
the opposite type as are vertices c ∈ Cr and d ∈ Rl. v1 is defined to be of the
opposite type as v2 and vn is defined to be that of vn−1. In Fig. 1b, Rl = {v7},
Rr = {v2, v4, v8}, Cl = {v1, v3, v5, v9} and Cr = {v6}. Finally, we define a
restriction of the annotated version of the terrain guarding problem where we
allow the guards to only see in one direction.

Problem. Left-Sided Terrain Guarding: Given a terrain T (V,E), k ∈ N

and G, C ⊆ V decide if there exists a S ⊆ G with |S| ≤ k such that for all v ∈ C,
there is a g ∈ G such that x(v) ≤ x(g) and g sees v.

Equivalently, in this version of the problem we enforce that the guards of G
can only see to their left. In this case, we say that G is a set of left guards. Right-
Sided Terrain Guarding and right guards are defined symmetrically. In the
paper that they introduced the terrain guarding problem [4], Chen et al. also
described the left and right-guarding versions of the problem. They produced
an algorithm, which they called Army-Withdraw, which ran in linear time to
solve these versions. Elbassioni et al. [6] constructed a bipartite graph G from a
Left-Sided Terrain Guarding instance (T (V,E), n, k,G, C) where G ∩ C = ∅
with the bipartition (G, C). An element (g, c) ∈ G × C was an edge of this graph
if x(c) ≤ x(g) and g sees c. They then proved that the vertex-vertex incidence
matrix corresponding to this graph is totally balanced an used the properties
of such matrices to produce a 4-approximation algorithm for the Annotated
Terrain Guarding problem where G ∩ C = ∅. The author refers the reader to
[7] and [10] for a detailed discussion on totally balanced matrices.

3 Terrains and Chordal Graphs

In this section, we will prove two theorems which will lead us to the main
result of this paper. Even though this section deals exclusively with the Left-
Sided Terrain Guarding problem, the claims and their proofs apply, by sym-
metry, to the Right-Sided Terrain Guarding problem. The first theorem
proves that the visibility graph of an Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) is chordal. The proof of this theorem considers a cycle C of
length k, where k ≥ 4, in GT and proves that the subgraph induced by C,
denoted by GT [C], is not a cycle. This is done by an extensive use of Lemma 2.1
on the various cases that arise depending on the positions of the vertices of C
and the guards that see them on the terrain.

The second theorem considers a Left-Sided Terrain Guarding instance
(T (V,E), n, k,G, C) where G and C are disjoint and Vis G ⊇ C. It proves that
the vertices of any clique of GT can be seen by a single guard. This proves that
k-many guards can see all of C if, and only if, there exists k-many cliques that
cover GT . This along with the previous theorem directly proves our main result.
We prove this theorem using induction over the number of vertices in the clique.
In Fig. 8, we provide an example of a terrain where this claim fails if G ∩ C is
non-empty.

One-Sided Discrete Terrain Guarding and Chordal Graphs 127

Finally, we prove two corollaries of our main result. The first one states
that if a Left-Sided Terrain Guarding instance is false, then there exists a
small subset of C (with k + 1 vertices) that cannot be seen by k-many guards.
We prove this by producing an independent set U of size k + 1 in GT and
observing that if k guards did see all the vertices of U , then U would fail to be
an independent set. The second corollary proves that for an orthogonal terrain
T , (T (V,E), n, k,R,Cl) is a true instance if, and only if, (Gl(Cl, E

′), |Cl|, k) is
a true instance of the Clique Cover problem. This was the result obtained in
[11] by Katz and Roisman. This is done by observing that left convex vertices
can only see to one side.

Theorem 3.1. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-
ing instance. Then, the visibility graph of this instance, say GT , is chordal.

Proof. Let C ⊆ C where |C| = p ≥ 4 be a cycle in GT . We prove that GT [C] is
not a cycle. Let C = {c1, c2 . . . cp} be the order of the vertices as they appear on
the cycle. Also, we assume, without loss in generality, that ci
 c1 for all ci ∈ C
and that cp ≺ c2. As c1 and cp are neighbours in GT , there is a left guard g1,p
which sees both these vertices. Similarly, we have g1,2, a left guard, which sees
both c1 and c2. Note that c1
 g1,p and c1
 g1,2. If g1,2 = g1,p = g, then g sees
both c2 and cp. This implies that c2 and cp share an edge in GT [C]. Since p ≥ 4,
(c2, cp) is a chord of the cycle. Thus, GT [C] is not a cycle. We are now left with
two cases:

Case 1 (g1,p ≺ g1,2). This is illustrated in Fig. 2. Here, cp ≺ c2 ≺ g1,p ≺ g1,2
and cp sees g1,p while c2 sees g1,2. Thus, by Lemma 2.1, g1,2 sees cp. Since g1,2
sees c2 by construction, there is an edge between c2 and cp in GT . As observed
previously, this implies that GT [C] is not a cycle. Note that g1,p could be c1.

cp c2 c1

g1,p

g1,2

Fig. 2. This figure illustrates Case 1 of Theorem3.1 where g1,p ≺ g1,2. Two vertices
that see each other are connected by a dashed line. If we substitute a, b, c and d with
cp, c2, g1,p and g1,2 respectively in Lemma 2.1, we get that cp sees g1,2 in this case.

128 K. Prahlad Narasimhan

Case 2 (g1,2 ≺ g1,p). In this case, we have two possibilities. The first one is when
c1 ≺ g1,2 while the second one is where g1,2 is c1. Figure 3a illustrates the first
case. Here, c2 ≺ c1 ≺ g1,2 ≺ g1,p and c2 sees g1,2 while c1 sees g1,p. We infer
that g1,p sees c2 by applying Lemma2.1 on these vertices. Thus, there is an edge
between c2 and cp in GT [C] proving that GT [C] is not a cycle. Now, assume
that c1 = g1,2. This is considered in Fig. 3b. Unfortunately, in this situation, we
cannot use Lemma 2.1 directly.

We now consider c3, the other neighbour of c2, in C. Note that c3 exists as
|C| ≥ 4. Since c2 and c3 are neighbours in C, and thus in GT , there exists a left
guard, say g2,3, which sees both these vertices. If g2,3 = g1,p = g, then c3 has an
edge with c1 in GT . Since the neighbours of c1 in C are c2 and cp, where p > 3,
(c1, c3) is chord of C. This proves that GT [C] is not a cycle. Thus, we will focus
on the situations where g2,3 �= g1,p in the cases that follow.

We will show that if c3 ≺ c2, then GT [C] is not a cycle. We will then prove
that if cj+1 ≺ c2 ≺ cj ≺ c1 for any 3 ≤ j < p, then GT [C] is not a cycle. Finally,
we prove that these two claims jointly imply that GT [C] is never a cycle and
complete our proof.

cp c2 c1

g1,2

g1,p

(a)

cp c2 c1

g1,p

(b)

Fig. 3. This figure depicts Case 2 of Theorem3.1 where g1,2 ≺ g1,p. In (a) c1 ≺ g1,2,
while in (b) c1 = g1,2. In the first possibility, we can apply Lemma 2.1 on the encircled
vertices. Doing so, we get that c2 sees g1,p. We are unable to apply the Lemma 2.1 on
(b). The dashed line between c1 and c2 in (b) is curved for illustrative purposes.

Claim 1. If c3 ≺ c2, then GT [C] is not a cycle.

We consider the following two cases depending on the position of c3: it precedes
cp or it lies between cp and c2.

Subcase 2.1 (c3 ≺ cp). We have two possibilities: g2,3 ≺ g1,p or g1,p ≺ g2,3. These
are shown in Fig. 4a and 4b respectively. Lemma 2.1 guarantees an edge between
c1 and c3 in the former case and between c2 and cp in the latter case in GT [C]
(apply the lemma on c3, cp, g2,3 and g1,p in the first case and on cp, c2, g1,p and

One-Sided Discrete Terrain Guarding and Chordal Graphs 129

g2,3 in the second case). As noted previously, GT [C] is not a cycle in both these
cases. Note that g2,3 could be c1 or c2 in the first case and g1,p could be c1 in
the second.

cp c2 c1

g1,p

c3

g2,3

(a)

cp c2 c1

g2,3

c3

g1,p

(b)

Fig. 4. This figure illustrates Subcase 2.1 of Theorem3.1 where c3 ≺ cp. In (a) g2,3
precedes g1,p, while in (b) g1,p precedes g2,3. On applying Lemma 2.1 to the marked
vertices, we get that c3 is seen by g1,p in (a) and cp is seen by g2,3 in (b).

Subcase 2.2 (cp ≺ c3 ≺ c2). Depending on the position of g2,3, we have three
possibilities: g2,3 precedes c1, or it lies between c1 and g1,p, or it lies after g1,p.
Note that the third case is equivalent to the one in Fig. 4b since the position of
c3 was not used in the proof of the existence of the (c2, cp) edge. If g2,3 is equal
to c1, then c1 has an edge with c3 in GT [C] since it sees itself as well as c3.
Thus, GT [C] is not a cycle. This leaves two cases: g2,3 ≺ c1 and c1 ≺ g2,3 ≺ g1,p.
These are shown in Figs. 5a and 5b. On applying Lemma2.1 on the four encircled
vertices in the order they appear on the terrain, we infer that the (c1, c3) edge
exists in GT [C] in both these cases proving that it is not a cycle.

c3 c2 c1

g1,p

cp

g2,3

c3 c1

(a)

c3 c2 c1

g1,p

cp

g2,3

(b)

Fig. 5. c3 lies between c2 and cp in both these figures which illustrate Subcase 2.2 of
Theorem3.1. In (a) g2,3 ≺ c1, while in (b) c1 ≺ g2,3 ≺ g1,p. On applying Lemma 2.1 on
the encircled vertices we infer that c3 is seen by c1 in (a) and by g1,p in (b).

130 K. Prahlad Narasimhan

Thus, we have proven that if c3 precedes c2, GT [C] is not a cycle. We will
complete the proof by proving the following claim.

Claim 2. If cj+1 ≺ c2 ≺ cj ≺ c1 for some j where 3 ≤ j < p, then GT [C] is not
a cycle.

We have three cases depending on the position of the left guard, called gj,j+1,
which sees cj and cj+1. If gj,j+1 = c1, then there exists a (c2, cj+1) edge in GT [C]
since c1 sees c2. As cj+1 is neither c1 nor c3, GT [C] is not a cycle. The other two
cases: gj,j+1 ≺ c1 and c1 ≺ gj,j+1 are shown in Figs. 6a and 6b respectively. In
both these cases, on applying Lemma 2.1 on the marked vertices, we get that c2
and cj+1 share an edge in GT [C]. From the argument that we just stated, GT [C]
is not a cycle. Note that gj,j+1 could be cj in Fig. 6a. This proves our claim.

c2 cj c1cj+1

gj,j+1

(a)

c2 cj c1cj+1

gj,j+1

(b)

Fig. 6. This figure corresponds to cases that are discussed in Claim 2 of Theorem3.1.
Here, cj lies between c2 and c1. In (a) gj,j+1 ≺ c1, while in (b) gj,j+1 lies after c1. On
applying Lemma 2.1, we get that c1 sees cj+1 in (a) and c2 sees gj,j+1 in (b).

Now, let D = {i | c2 ≺ ci ≺ c1}. If D is empty, then c3 ≺ c2. By our first
claim, GT [C] is not a cycle. Since we assumed that cp ≺ c2, j := max{i | i ∈
D} < p. Thus, cj+1 exists and is not in D. This implies that cj+1 ≺ c2 ≺ cj ≺ c1
and will prove that GT [C] is not a cycle by the second claim. This completes
the proof of this theorem since C was arbitrary cycle of length at least 4. �
Theorem 3.2. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-
ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, for K ⊆ C, GT [K] is
a clique if, and only if, there is a g ∈ G such that Vis g ⊇ K.

Proof. Let K be a set such that there is a g ∈ G such that Vis g ⊇ K. Then, for
any pair of vertices in K there is an edge between them in GT [K] since there is
a guard (g itself) seeing them both. Thus, GT [K] is a clique. Now, we prove the
forward direction of the claim. Assume that K ⊆ C such that GT [K] is a clique.
We prove that there exists a guard seeing all of K by induction on the number
of vertices in K. If |K| = 1 or |K| = 2, then our claim follows trivially. Assume
that our supposition holds for all cliques of size at most p, where p ≥ 2.

One-Sided Discrete Terrain Guarding and Chordal Graphs 131

Let K = {k1, k2, . . . kp, kp+1} be a subset of C such that GT [K] is a clique.
The vertices of K are ordered according to how they appear on the terrain.
Let K ′ = {k2 . . . kp, kp+1}. Since GT [K ′] is a clique of size p, by the induction
hypothesis, there is a left guard g1 such that Vis g1 ⊇ K ′. Since there is a
(k1, kp+1) edge in GT [K], there is a left guard, say g2, which sees them both. If
g1 = g2 = g, then we have Vis g ⊇ K proving the supposition. We are now left
with two cases:

Case 1 (g2 ≺ g1). This case is shown in Fig. 7a. Here, we observe that k1 ≺ kj ≺
g2 ≺ g1 where k1 sees g2 and kj sees g1. By Lemma 2.1, g1 guards k1 as well.
Thus, Vis g1 ⊇ K.

Case 2 (g1 ≺ g2). This is illustrated in Fig. 7b. Here, on applying Lemma2.1
on the marked vertices, we get that g2 sees kj for all j where 2 ≤ j ≤ p. Thus,
Vis g2 ⊇ K. Note that we can apply Lemma 2.1 on these four vertices only
because g1 �= kp+1.

k2 kj kp+1

g2

g1

k1

(a)

k2 kj kp+1

g1

g2

k1

(b)

Fig. 7. This figure corresponds to the cases that arise in Theorem3.2. In (a) g2 ≺ g1,
while in (b) g1 ≺ g2. By Lemma 2.1, g1 also sees k1 in (a) and g2 guards all the vertices
from k2 through to kp+1 in (b).

This proves our supposition and completes the proof by induction. Note that
the situations illustrated in Figs. 7a and 7b are similar to the ones in Figs. 2 and
3a. They are presented in this proof again for clarity. �

This theorem’s claim is not true if G ∩ C �= ∅. A non-example is presented
in Fig. 8. In the terrain illustrated by that figure, we let C = {v1, v3, v4} and
G = {v4, v5, v7} be a set of left guards. v1 shares an edge with both v3 and v4 in
GT since v7 sees both v1 and v3 while v5 sees both v1 and v4. Furthermore, since
v4 sees itself as well as v3, there is an edge between v3 and v4 in GT . Thus, GT [C]
is a clique. However, none of the three guards in G guard all the vertices of C: v4
does not see v1, v5 does not see v3, and v7 does not see v4. It is also clear that
Theorem 3.2 fails to hold if Vis G ⊇ C. For example, if C = {v3} and G = {v5}

132 K. Prahlad Narasimhan

in the terrain illustrated in Fig. 8, then the isolated vertex v3 is a clique but no
guard in G sees it.

Theorem 3.1 and 3.2 are, to the best of the author’s knowledge, an addition
to existing literature. Combining these two theorems gives us the main result of
this paper.

Theorem 3.3. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-
ing instance where G ∩ C = ∅ and Vis G ⊇ C. Then, this is a true instance of
the problem if, and only if, (GT (C, E′), |C|, k) is a true instance of the Clique
Cover problem where GT , the visibility graph of T , is a chordal graph.

As stated in the beginning of this section, the above result also holds for the
Right-Sided Terrain Guarding problem. It is well known that in a chordal
graph G(V,E), the minimum number of cliques required to cover V , denoted by
χ(G), is equal to the size of a maximum sized independent set of G, denoted
by α(G) [10]. The algorithm that solves the Clique Cover problem can be
modified slightly to solve the Independent Set problem in polynomial time
[9]. We use these two properties of chordal graphs in the proof of the lemma
that follows.

v1

v2

v3

v4 v5

v6

v7

Fig. 8. This terrain presents an example where a clique in GT is not seen by a single
left guard if G ∩ C �= ∅. The vertices of C and G have been encircled and marked by
squares respectively.

Lemma 3.4. Let (T (V,E), n, k,G, C) be a Left-Sided Terrain Guard-
ing instance where G ∩ C = ∅ and Vis G ⊇ C. One can decide, in polynomial
time, if this is a true instance of the problem. If this instance is false, then one
can find U ⊆ C in polynomial time such that |U | = k+1 and (T (V,E), n, k,G, U)
is a false instance.

Proof. By Theorem 3.3, we know that the visibility graph, say GT , corresponding
to (T (V,E), n, k,G, C) is chordal and that it is a true instance if, and only if,
(GT (C, E′), |C|, k) is a true instance of the Clique Cover problem. Since the
Clique Cover problem can be solved in polynomial time in chordal graphs, we

One-Sided Discrete Terrain Guarding and Chordal Graphs 133

can decide if (T (V,E), n, k,G, C) is a true instance of the Left-Sided Terrain
Guarding problem in polynomial time.

Now, if (T (V,E), n, k,G, C) is false, then GT cannot be covered by k many
cliques. Thus, χ(GT) > k. This implies that α(GT) > k. We compute a maximum
sized independent set of GT and let U be a subset of size k+1 of this independent
set. Since GT is chordal, this can be done in polynomial time. Clearly, U is an
independent set of GT . If there exists k many guards in G which guards U , then
there must exist one guard which sees at least two vertices of U . By construction
of GT , there must exist an edge between them. This contradicts the fact that U
is an independent set of GT and thus completes the proof of this lemma. �

We note that the above lemma holds for the right-sided version of the ter-
rain guarding problem as well. The lemma stated and proved above generalizes
Lemmas 4.8 and 4.9 of [2]. These were used to present a FPT algorithm with
respect to the solution size for the Discrete Orthogonal Terrain Guard-
ingproblem in that paper. We conclude this paper by proving that the following
result by Katz and Roisman [11] follows from Theorem 3.3.

Lemma 3.5. Consider the Annotated Orthogonal Terrain Guard-
ing instance (T (V,E), n, k,R,Cl) and let Gl be the visibility graph correspond-
ing to this instance. Then, Gl is chordal. Furthermore, (T (V,E), n, k,R,Cl) is a
true instance of the problem if, and only if, (Gl(Cl, E

′), |Cl|, k) is a true instance
of the Clique Cover problem. The symmetric claim holds for the set of right
convex vertices.

Proof. Note that a vertex v ∈ Cl can only see to its right (referring back to
Fig. 1b will make this observation straightforward) [11]. Equivalently, a vertex
g ∈ R which is to guard v needs to look only to its left. Thus, we can consider the
guards which are required to guard Cl to be a set of left guards. Using a symmet-
ric argument, we see that the guard set that is to guard the right convex vertices
can be considered to be a set of right guards. Also, we note that Vis R ⊇ V .
This implies that R sees all of Cl and Cr. Since C ∩R = ∅, we can apply Theo-
rem 3.3 to the Left-Sided Terrain Guarding instance (T (V,E), n, k,R,Cl).
By a symmetric argument, our claim is also true for the Right-Sided Ter-
rain Guarding instance (T (V,E), n, k,R,Cr). This completes the proof of the
lemma. �

Acknowledgments. The author would like to thank Susobhan Bandopadhyay, Dr.
Aritra Banik, and Dr. Sushmita Gupta for helpful discussions. He would also like to
thank the anonymous reviewers of CALDAM-2021 for their valuable comments.

References

1. Agrawal, A., Kolay, S., Zehavi, M.: Parameter analysis for guarding terrains. In:
Albers, S. (ed.) 17th Scandinavian Symposium and Workshops on Algorithm The-
ory, SWAT 2020, Tórshavn, Faroe Islands, 22–24 June 2020. LIPIcs, vol. 162, pp.
4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.SWAT.2020.4

https://doi.org/10.4230/LIPIcs.SWAT.2020.4
https://doi.org/10.4230/LIPIcs.SWAT.2020.4

134 K. Prahlad Narasimhan

2. Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for
terrain guarding. ACM Trans. Algorithms 14(2), 25:1–25:20 (2018). https://doi.
org/10.1145/3186897

3. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algo-
rithm for optimal 1.5D terrain guarding. SIAM J. Comput. 36(6), 1631–1647
(2007). https://doi.org/10.1137/S0097539704446384

4. Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and
monotone chains. In: Proceedings of the 7th Canadian Conference on Computa-
tional Geometry, Quebec City, Quebec, Canada, August 1995, pp. 133–138. Car-
leton University, Ottawa, Canada (1995). http://www.cccg.ca/proceedings/1995/
cccg1995 0022.pdf

5. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geo-
metric set cover. Discret. Comput. Geom. 37(1), 43–58 (2007). https://doi.org/10.
1007/s00454-006-1273-8

6. Elbassioni, K.M., Krohn, E., Matijevic, D., Mestre, J., Severdija, D.: Improved
approximations for guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–
463 (2011). https://doi.org/10.1007/s00453-009-9358-4

7. Farber, M.: Characterizations of strongly chordal graphs. Discret. Math. 43(2–3),
173–189 (1983). https://doi.org/10.1016/0012-365X(83)90154-1

8. Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain
guarding problem: discretization, optimal solutions, and PTAS. J. Comput. Geom.
7(1), 256–284 (2016). https://doi.org/10.20382/jocg.v7i1a13

9. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972). https://doi.org/10.1137/0201013

10. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Networks 13(2),
304–305 (1983). https://doi.org/10.1002/net.3230130214

11. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Com-
put. Geom. 39(3), 219–228 (2008). https://doi.org/10.1016/j.comgeo.2007.02.002

12. Khodakarami, F., Didehvar, F., Mohades, A.: A fixed-parameter algorithm for
guarding 1.5D terrains. Theor. Comput. Sci. 595, 130–142 (2015). https://doi.
org/10.1016/j.tcs.2015.06.028

13. King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In:
Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–
640. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 58

14. King, J., Krohn, E.: Terrain guarding is NP-hard. In: Charikar, M. (ed.) Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, 17–19 January 2010, pp. 1580–1593.
SIAM (2010). https://doi.org/10.1137/1.9781611973075.128

15. Krohn, E., Gibson, M., Kanade, G., Varadarajan, K.R.: Guarding terrains via
local search. J. Comput. Geom. 5(1), 168–178 (2014). https://doi.org/10.20382/
jocg.v5i1a9

16. O’Rourke, J.: Art gallery theorems and algorithms. SIAM Rev. 31(2), 342–343
(1989). https://doi.org/10.1137/1031076

https://doi.org/10.1145/3186897
https://doi.org/10.1145/3186897
https://doi.org/10.1137/S0097539704446384
http://www.cccg.ca/proceedings/1995/cccg1995_0022.pdf
http://www.cccg.ca/proceedings/1995/cccg1995_0022.pdf
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1007/s00453-009-9358-4
https://doi.org/10.1016/0012-365X(83)90154-1
https://doi.org/10.20382/jocg.v7i1a13
https://doi.org/10.1137/0201013
https://doi.org/10.1002/net.3230130214
https://doi.org/10.1016/j.comgeo.2007.02.002
https://doi.org/10.1016/j.tcs.2015.06.028
https://doi.org/10.1016/j.tcs.2015.06.028
https://doi.org/10.1007/11682462_58
https://doi.org/10.1137/1.9781611973075.128
https://doi.org/10.20382/jocg.v5i1a9
https://doi.org/10.20382/jocg.v5i1a9
https://doi.org/10.1137/1031076

Parameterized Complexity of Locally
Minimal Defensive Alliances

Ajinkya Gaikwad, Soumen Maity(B), and Shuvam Kant Tripathi

Indian Institute of Science Education and Research, Pune, India
soumen@iiserpune.ac.in, {ajinkya.gaikwad,

tripathi.shuvamkant}@students.iiserpune.ac.in

Abstract. A defensive alliance in a graph G = (V,E) is a set of vertices
S satisfying the condition that every vertex v ∈ S has at least as many
neighbours (including itself) in S as it has in V \S. We consider the
notion of local minimality in this paper. We are interested in locally
minimal defensive alliance of maximum size. This problem is known to
be NP-hard but its parameterized complexity remains open until now.
We enhance our understanding of the problem from the viewpoint of
parameterized complexity. The three main results of the paper are the
following: (1) when the input graph happens to be a tree, Locally
Minimal Strong Defensive Alliance can be solved in polynomial
time, (2) Locally Minimal Defensive Alliance is fixed parameter
tractable (FPT) when parametrized by neighbourhood diversity, and (3)
Locally Minimal Defensive Alliance can be solved in polynomial
time for graphs of bounded treewidth.

Keywords: Parameterized complexity · FPT · Treewidth

1 Introduction

During the last 20 years, the Defensive Alliance problem has been stud-
ied extensively. A defensive alliance in an undirected graph is a set of ver-
tices with the property that each vertex has at least as many neighbours in
the alliance (including itself) as neighbours outside the alliance. In 2000, Kris-
tiansen, Hedetniemi, and Hedetniemi [10] introduced defensive, offensive, and
powerful alliances, and further studied by Shafique [7] and other authors. In this
paper, we will focus on defensive alliances. A defensive alliance is strong if each
vertex has at least as many neighbours in the alliance (not counting itself) as out-
side the alliance. The theory of alliances in graphs have been studied intensively
[2,5,6] both from a combinatorial and from a computational perspective. As

A. Gaikwad—The first author gratefully acknowledges support from the Ministry of
Human Resource Development, Government of India, under Prime Minister’s Research
Fellowship Scheme (No. MRF-192002-211).
S. Maity—The author’s research was supported in part by the Science and Engineering
Research Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 135–148, 2021.
https://doi.org/10.1007/978-3-030-67899-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_11

136 A. Gaikwad et al.

mentioned in [1], the focus has been mostly on finding small alliances, although
studying large alliances do not only make a lot of sense from the original moti-
vation of these notions, but was actually also delineated in the very first papers
on alliances.

Note that defensive alliance is not a hereditary property, that is, a subset of
defensive alliance is not necessarily a defensive alliance. Shafique [7] called an
alliance a locally minimal alliance if the set obtained by removing any vertex
of the alliance is not an alliance. Bazgan et al. [1] considered another notion
of alliance that they called a globally minimal alliance which has the property
that no proper subset is an alliance. In this paper we are interested in locally
minimal alliances of maximum size. Clearly, the motivation is that big communi-
ties where every member still matters somehow are of more interest than really
small communities. Also, there is a general mathematical interest in such type
of problems, see [13].

2 Basic Notations

Throughout this article, G = (V,E) denotes a finite, simple and undirected
graph of order |V | = n. The subgraph induced by S ⊆ V (G) is denoted by G[S].
For a vertex v ∈ V , we use NG(v) = {u : (u, v) ∈ E(G)} to denote the (open)
neighbourhood of vertex v in G, and NG[v] = NG(v) ∪ {v} to denote the closed
neighbourhood of v. The degree dG(v) of a vertex v ∈ V (G) is |NG(v)|. For a
subset S ⊆ V (G), we define its closed neighbourhood as NG[S] =

⋃
v∈S NG[v]

and its open neighbourhood as NG(S) = NG[S] \ S. For a non-empty subset
S ⊆ V and a vertex v ∈ V (G), NS(v) denotes the set of neighbours of v in S,
that is, NS(v) = {u ∈ S : (u, v) ∈ E(G)}. We use dS(v) = |NS(v)| to denote the
degree of vertex v in G[S]. The complement of the vertex set S in V is denoted
by Sc.

Definition 1. A non-empty set S ⊆ V is a defensive alliance in G if for each
v ∈ S, |N [v] ∩ S| ≥ |N(v) \ S|, or equivalently, dS(v) + 1 ≥ dSc(v).

A vertex v ∈ S is said to be protected if dS(v) + 1 ≥ dSc(v). A set S ⊆ V is a
defensive alliance if every vertex in S is protected.

Definition 2. A vertex v ∈ S is said to be marginally protected if it becomes
unprotected when one of its neighbour in S is moved from S to V \ S. A vertex
v ∈ S is said to be strongly protected if it remains protected even if one of its
neighbours is moved from S to V \ S.

Definition 3. An alliance S is called a locally minimal alliance if for any v ∈ S,
S \ {v} is not an alliance.

Definition 4. An alliance S is globally minimal alliance or shorter minimal
alliance if no proper subset is an alliance.

Parameterized Complexity of Locally Minimal Defensive Alliances 137

1

2 3 4 5 6

7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

Fig. 1. A graph G with AL(G) = 10 and A(G) = 3; S = {7, 2, 9, 3, 11, 4, 13, 5, 15, 6}
is a locally minimal defensive alliance of size 10 and {1, 2, 3} is a globally minimal
defensive alliance of size 3.

A defensive alliance S is connected if the subgraph induced by S is connected. An
alliance S is called a connected locally minimal alliance if for any v ∈ S, S \ {v}
is not a connected alliance. Notice that any globally minimal alliance is also
connected. As introduced in [1], we use AL(G) for the cardinality of the largest
locally minimal defensive alliance in a graph G, and A(G) for the cardinality
of the largest globally minimal defensive alliance in a graph G (Fig. 1). In this
paper, we consider Locally Minimal Defensive Alliance problem under
structural parameters. We define the problem as follows:

Locally Minimal Defensive Alliance
Input: An undirected graph G = (V,E) and an integer k ≤ |V (G)|.
Question: Is there a locally minimal defensive alliance S ⊆ V (G) such that
|S| ≥ k?

Our results are as follows:

– Locally Minimal Strong Defensive Alliance problem is polynomial
time solvable on trees.

– Locally Minimal Defensive Alliance problem is FPT when parameter-
ized by neighbourhood diversity of the input graph.

– Locally Minimal Defensive Alliance problem is polynomial time solv-
able for graphs with bounded treewith.

Known Results: The decision version for several types of alliances have been
shown to be NP-complete. Carvajal et al. [3] proved that deciding if a graph
contains a strong defensive alliance of size at most k is NP-hard. The defen-
sive alliance problem is NP-complete even when restricted to split, chordal and
bipartite graph [8]. Bazgan et al. [1] proved that deciding if a graph contains a
locally minimal strong defensive alliance of size at least k is NP-complete, even
when restricted to bipartite graphs with average degree less than 3.6; deciding
if a graph contains a connected locally minimal strong defensive alliance or a
connected locally minimal defensive alliance of size at least k is NP-complete,

138 A. Gaikwad et al.

even when restricted to bipartite graphs with average degree less than 2 + ε, for
any ε > 0.

3 Locally Minimal Strong Defensive Alliance on Trees

Recall that a defensive alliance is strong if each vertex has at least as many
neighbours in the alliance (not counting itself) as outside the alliance. Finding
a locally minimal (strong) defensive alliance of maximum size is believed to be
intractable [1]. However, when the graph happens to be a tree, we solve the
problem in polynomial time, using dynamic programming. It may be observed
that if S is a locally minimal strong defensive alliance, then for every vertex
v ∈ S, at least one of its neighbours in S is marginally protected. A vertex
v ∈ S is said to be good if it has at least one marginally protected neighbour
in S, otherwise it is called a bad vertex. Let v be a non-leaf node with children
v1, v2, . . . , vd. Then v ∈ S is marginally unprotected by its children if �d+1

2 	 − 1
of its children are in S; thus the parent of v must be in S for protection of v.
Vertex v is strongly protected by its children if at least �d+1

2 	 + 1 of its children
are in S. We define different possible states of a vertex v as follows:

– 0: vertex v is not in the solution.
– 1̂b: vertex v is marginally unprotected by its children and none of its children

are marginally protected.
– 1̂g: vertex v is marginally unprotected by its children and if v has children

then at least one of them is marginally protected.
– 1mg: vertex v is marginally protected by its children and at least one of its

children is marginally protected.
– 1sb: vertex v is strongly protected by its children and none of the children is

marginally protected.
– 1sg: vertex v is strongly protected by its children and at least one of its

children is marginally protected.

Here is the algorithm: Start by rooting the tree at any node v. Each node
defines a subtree, the one hanging from it. This immediately suggests sub-
problems: Av(s) = the size of the largest locally minimal defensive alliance of
the subtree rooted at v and the state of v is s. Our final goal is to compute
max

{
Ar(0), Ar(1sg), Ar(1mg)

}
where r is the root of T .

Leaf Node: For a leaf node v, we have Av(0) = 0, Av(1̂b) = 1; Av(1̂g) =
Av(1mg) = Av(1sb) = Av(1sg) = −∞.

Non-leaf Node: Let v be a non-leaf node with the set C = {v1, v2, . . . , vd} of
children. Suppose we know Avi

(s) for all children vi of v. How can we compute
Av(s)? We now consider the following cases:

Case 1: Let the state of v be 0. Then

Av(0) =
∑

x∈C
max

{
Ax(0), Ax(1sg), Ax(1mg)

}

Parameterized Complexity of Locally Minimal Defensive Alliances 139

Case 2: Let the state of v be 1̂b or 1sb. Let (v1, v2, . . . , vd) be a descending
ordering of C according to values max{Avi

(1sg), Avi
(1sb)}, that is,

max{Av1(1sg), Av1(1sb)} ≥ . . . ≥ max{Avd
(1sg), Avd

(1sb)}.

Let C� d+1
2 �−1 = {v1, v2, . . . , v� d+1

2 �−1} and C� d+1
2 �+1 = {v1, v2, . . . , v� d+1

2 �+1}.
Then

Av(1̂b) = 1 +
∑

x∈C� d+1
2 �−1

max
{

Ax(1sg), Ax(1sb)
}

+
∑

x∈C\C� d+1
2 �−1

Ax(0),

and
Av(1sb) = 1 +

∑

x∈C� d+1
2 �+1

max
{

Ax(1sg), Ax(1sb)
}

+
∑

x∈C\C� d+1
2 �+1

max
{

Ax(0), Ax(1sg), Ax(1sb)
}

Thus, in this case, v must have at least �d+1
2 	 + 1 non-leaf children, otherwise,

Av(1sb) = −∞.

Case 3: Let the state of v be 1̂g, 1mg or 1sg. Let (v1, v2, . . . , vd) be a descending
ordering of C according to values max{Avi

(1̂g), Avi
(1̂b), Avi

(1sg), Avi
(1sb)}. Let

Ck,i be the set of first k children from the ordering (v1, v2, . . . , vd) except vertex
vi. We have the following recurrence relations:

Av(1̂g) = max
vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

x∈C� d+1
2 �−2,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

x∈C\
(
C� d+1

2 �−2,i
∪{vi}

)
Ax(0)

}
,

for d ≥ 2, and Av(1̂g) = 1 for d = 1. Here v ∈ S is good and marginally
unprotected by its children, that is, exactly �d+1

2 	 − 1 of its children are in S

and at least one of them is labelled 1̂g or 1̂b so that v is adjacent to at least one
marginally protected child. Next, we have

Av(1mg) = max
vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

x∈C� d+1
2 �−1,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

x∈C\
(
C� d+1

2 �−1,i
∪{vi}

)
Ax(0)

}

140 A. Gaikwad et al.

Here v ∈ S is good and marginally protected by its children, that is, exactly
�d+1

2 	 of its children are in S and at least one of them is labelled 1̂g or 1̂b so
that v is adjacent to at least one marginally protected child. Finally, we have

Av(1sg) = max
non-leaf vi∈C

{
1 + max{Avi

(1̂g), Avi
(1̂b)}

+
∑

non-leaf x∈C� d+1
2 �,i

max{Ax(1̂g), Ax(1̂b), Ax(1sg), Ax(1sb)}

+
∑

non-leaf x∈C\
(
C� d+1

2 �,i∪{vi}
)
max{Ax(0), Ax(1̂g), Ax(1̂b), Ax(1sg)}

}
.

Here v ∈ S is good and strongly protected by its children, that is, at least �d+1
2 	+1

of its children are in S and at least one of these �d+1
2 	 + 1 children is labelled

1̂g or 1̂b so that v is adjacent to at least one marginally protected child. It may
be noted that if vi is a leaf node then vi cannot be in S. The reason is this;
vi’s only neighbour is its parent v, which is strongly protected, therefore vi will
never have a marginally protected neighbour. Thus, in this case, v must have at
least �d+1

2 	+1 non-leaf children, otherwise, Av(1sg) = −∞. For computation of
Ar(1mg) and Ar(1sg), we replace d by d − 1 in the above recurrence relations as
the root node r with d children has degree d, whereas other non-leaf node with
d children has degree d + 1.

The running time of this algorithm is easy to analyze. At each node v ∈ V (T),
we compute Av(s) where s is a state of v. The time required to get descending
ordering of the children of v is O(d log d), where d is the number of children of
vertex v. The number of subproblems is exactly the number of vertices in T . The
total running time is therefore equal to c

∑
di log di ≤ c log n

∑
di = cn log n =

O(n log n), where c is a constant.

4 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for Locally Minimal Defen-
sive Alliance problem parameterized by neighbourhood diversity. We say two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.
The relation of having the same type is an equivalence relation. The idea of
neighbourhood diversity is based on this type structure.

Definition 5. [11] The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer k for which we can partition the set V of vertices
into k classes, such that all vertices in each class have the same type.

If neighbourhood diversity of a graph is bounded by an integer k, then there
exists a partition {C1, C2, . . . , Ck} of V (G) into k type classes. It is known that
such a minimum partition can be found in linear time using fast modular decom-
position algorithms [14]. Notice that each type class could either be a clique or

Parameterized Complexity of Locally Minimal Defensive Alliances 141

an independent set by definition. For algorithmic purpose it is often useful to
consider a type graph H of graph G, where each vertex of H is a type class in
G, and two vertices Ci and Cj are adjacent iff there is complete bipartite clique
between these type classes in G. It is not difficult to see that there will be either
a complete bipartite clique or no edges between any two type classes. The key
property of graphs of bounded neighbourhood diversity is that their type graphs
have bounded size. In this section, we prove the following theorem:

Theorem 1. The Locally Minimal Defensive Alliance problem is fixed-
parameter tractable when parameterized by the neighbourhood diversity.

Let G be a connected graph such that nd(G) = k. Let C1, . . . , Ck be the
partition of V (G) into sets of type classes. We assume k ≥ 2 since otherwise
the problem becomes trivial. Next we guess |Ci ∩D| and whether the vertices in
Ci are marginally or strongly protected, where D is a locally minimal defensive
alliance. We make the following guesses:

– Option 1: |Ci ∩ D| = 0.
– Option 2: |Ci ∩ D| = 1 and the vertices in Ci are marginally protected.
– Option 3: |Ci ∩ D| = 1 and the vertices in Ci are strongly protected.
– Option 4: |Ci ∩ D| > 1 and the vertices in Ci are marginally protected.
– Option 5: |Ci ∩ D| > 1 and the vertices in Ci are strongly protected.

There are at most 5k choices for the tuple (C1, C2, . . . , Ck) as each Ci has 5
options as given above. Finally we reduce the problem of finding a locally mini-
mal defensive alliance of maximum size to an integer linear programming opti-
mization with k variables. Since integer linear programming is fixed parameter
tractable when parameterized by the number of variables [12], we conclude that
our problem is FPT when parameterized by the neighbourhood diversity.

ILP Formulation: Given a particular choice P of options for (C1, C2, . . . , Ck),
our goal here is to find a locally minimal defensive alliance of maximum size.
For each Ci, we associate a variable xi that indicates |D ∩ Ci| = xi. Clearly,
xi = 0, if Ci is assigned Option 1; xi = 1 if Ci is assigned Option 2 or 3; and
xi > 1 if Ci is assigned Option 3 or 4. Because the vertices in Ci have the same
neighbourhood, the variables xi determine D uniquely, up to isomorphism. Let
S1 = {Ci | xi = 1}, S>1 = {Ci | xi > 1} and S = S1 ∪ S>1. Let H[S] be
the subgraph of H induced by S. Now we label the vertices of H[S] as follows:
vertex Ci is labelled c1 if it is a clique and Option 2 is assigned to Ci; vertex Ci

is labelled c>1 if it is a clique and Option 4 is assigned to Ci; vertex Ci is labelled
ind if it is an independent set and Option 2 or 4 is assigned to Ci; vertex Ci is
labelled s if it is a clique or an independent set, and Option 3 or 5 is assigned to
Ci. To ensure local minimality of defensive alliance, the induced subgraph must
satisfy the following conditions:

142 A. Gaikwad et al.

– Every vertex labelled s in the induced graph must have at least one neighbour
labelled c1, c>1 or ind.

– Every vertex labelled c1 in the induced graph must have at least one neighbour
labelled c1, c>1 or ind.

– Every vertex labelled ind in the induced graph must have at least one neigh-
bour labelled c1, c>1 or ind.

Above conditions ensure local minimality of the solution because when we remove
a vertex from the solution, we make sure at least one of its neighbours gets
unprotected. This happens because every vertex in the solution has at least one
neighbour which is marginally protected. If the induced subgraph H[S] satisfies
all the above conditions then we proceed for the ILP, otherwise not. Let C be
a subset of S consisting of all type classes which are cliques; I = S \ C and
R = {C1, . . . , Ck} \ S. Let ni denote the number of vertices in Ci. We consider
two cases:

Case 1: Suppose v ∈ Cj where Cj ∈ I. Then the degree of v in D satisfies

dD(v) =
∑

Ci∈NH(Cj)∩S

xi (1)

Thus, including itself, v has 1 +
∑

Ci∈NH(Cj)∩S

xi defenders in G. Note that if

Ci ∈ D, then only xi vertices of Ci are in D and the remaining ni − xi vertices
of Ci are outside D. The degree of v outside D satisfies

dDc(v) =
∑

Ci∈NH(Cj)∩S

(ni − xi) +
∑

Ci∈NH(Cj)∩R

ni (2)

Case 2: Suppose v ∈ Cj where Cj ∈ C. The degree of v in D satisfies

dD(v) =
∑

Ci∈NH [Cj]∩S

xi (3)

The degree of v outside D satisfies

dDc(v) =
∑

Ci∈NH [Cj]∩S

(ni − xi) +
∑

Ci∈NH [Cj]∩R

ni (4)

In the following, we present an ILP formulation of locally minimal defensive
alliance problem, where a choice of options for (C1, . . . , Ck) is given:

Parameterized Complexity of Locally Minimal Defensive Alliances 143

Maximize
∑

Ci∈S

xi

Subject to

1 +
∑

Ci∈NH(Cj)∩S

2xi >
∑

Ci∈NH(Cj)

ni, for all Cj ∈ I, labelled s,

∑

Ci∈NH(Cj)∩S

2xi −
∑

Ci∈NH(Cj)

ni = 0 or − 1, for all Cj ∈ I, labelled ind,

∑

Ci∈NH [Cj]∩S

2xi >
∑

Ci∈NH [Cj]

ni, for all Cj ∈ C, labelled s,

∑

Ci∈NH [Cj]∩S

2xi −
∑

Ci∈NH [Cj]

ni = 0 or 1, for all Cj ∈ C, labelled c1 or c>1,

xi = 1 for all i : Ci ∈ S1;
xi ∈ {2, 3, . . . , |Ci|} for all i : Ci ∈ S2.

Solving the ILP: Lenstra [12] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [9] proved an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et. al. [4].

p-Variable Integer Linear Programming Optimization (p-Opt-ILP):
Let matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Lemma 1. [4] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN)) arith-
metic operations and space polynomial in L. Here L is the number of bits in the
input, N is the maximum absolute value any variable can take, and M is an
upper bound on the absolute value of the minimum taken by the objective func-
tion.

In the formulation for Locally Minimal Defensive Alliance problem,
we have at most k variables. The value of objective function is bounded by n and
the value of any variable in the integer linear programming is also bounded by
n. The constraints can be represented using O(k2 log n) bits. Lemma 1 implies
that we can solve the problem with the guess P in FPT time. There are at most
5k choices for P , and the ILP formula for a guess can be solved in FPT time.
Thus Theorem 1 holds.

144 A. Gaikwad et al.

5 Graphs of Bounded Treewidth

In this section we prove that Locally Minimal Defensive Alliance prob-
lem can be solved in polynomial time for graphs of bounded treewidth. In other
words, this section presents XP-time algorithm for Locally Minimal Defen-
sive Alliance problem parameterized by treewidth. We now prove the follow-
ing theorem:

Theorem 2. Given an n-vertex graph G and its nice tree decomposition T of
width at most k, the size of a maximum locally minimal defensive alliance of G

can be computed in 8knO(2k+1) time.

Let (T, {Xt}t∈V (T)) be a nice tree decomposition rooted at node r of the input
graph G. For a node t of T , let Vt be the union of all bags present in the subtree
of T rooted at t, including Xt. We denote by Gt the subgraph of G induced by Vt.
For each node t of T , we construct a table dpt(A,x, a, α,y, z, β) ∈ {true, false}
where A ⊆ Xt; x and y are vectors of length n; a, α and β are integers between
0 and n. We set dpt(A,x, a, α,y, z, β) = true if and only if there exists a set
At ⊆ Vt such that:

1. At ∩ Xt = A
2. a = |At|
3. the ith coordinate of vector x is

x(i) =

{
dAt

(vi) for vi ∈ A

0 otherwise

4. α is the number of vertices v ∈ At that are protected, that is, dAt
(v) ≥

dG(v)−1
2 .

5. A vertex v ∈ A is said to be “good” if it has at least one marginally protected
neighbour in At \A. A vertex v ∈ A is said to be “bad” if it has no marginally
protected neighbours in At \ A. Here y is a vector of length n, and the ith
coordinate of vector y is

y(i) =

⎧
⎪⎨

⎪⎩

g if vi ∈ A and vi is a good vertex
b if vi ∈ A and vi is a bad vertex
0 otherwise

6. z is a 2k length vector, where the entry z(S) associated with subset S ⊆ A
denotes the number of common bad neighbours of S in At \ A. The z
vector considers the power set of A in lexicographic order. For example,
let A = {a, b, c}, then z =

(
z({a}), z({a, b}), z({a, b, c}), z({a, c}), z({b}),

z({b, c}), z({c})
)
.

7. β is the number of good vertices in At.

Parameterized Complexity of Locally Minimal Defensive Alliances 145

We compute all entries dpt(A,x, a, α,y, z, β) in a bottom-up manner. Since
tw(T) ≤ k, at most 2knk(n + 1)32kn2k = 4knO(2k) records are maintained at
each node t. Thus, to prove Theorem 2, it suffices to show that each entry
dpt(A,x, a, α,y, z, β) can be computed in 2knO(2k) time, assuming that the
entries for the children of t are already computed.

Leaf Node: For a leaf node t we have that Xt = ∅. Thus dpt(A,x, a, α,y, z, β)
is true if and only if A = ∅, x = 0, a = 0, α = 0, y = 0, z = 0, β = 0. These
conditions can be checked in O(1) time.

Introduce Node: Suppose t is an introduction node with child t′ such that
Xt = Xt′ ∪ {vi} for some vi /∈ Xt′ . Let A be any subset of Xt. We consider two
cases:

Case (i): Let vi /∈ A. In this case dpt(A,x, a, α,y, z, β) is true if and only if
dpt′(A,x, a, α,y, z, β) is true.

Case (ii): Let vi ∈ A. Here dpt(A,x, a, α,y, z, β) is true if and only if there exist
A′,x′, a′, α′, y′, z′, and β′ such that dpt′(A′,x′, a′, α′,y′, z′, β′)=true, where

1. A = A′ ∪ {vi};
2. x(j) = x′(j) + 1, if vj ∈ NA(vi), x(i) = dA(vi), and x(j) = x′(j) if vj ∈

A \ NA[vi];
3. a = a′ + 1;
4. α = α′ + δ; here δ is the cardinality of the set

{
vj ∈ A | x′(j) <

dG(vj) − 1
2

;x(j) ≥ dG(vj) − 1
2

}
.

That is, to compute α from α′ we need to add the number δ of those vertices
not satisfied in (A′,x′, a′, α′,y′, z′, β′) but satisfied in (A,x, a, α,y, z, β).

5. y(i) = b and y(j) = y′(j) for all j �= i.
6. z(S) = z′(S) if vi /∈ S; z(S) = 0 if vi ∈ S.
7. β = β′.

For an introduce node t, dpt(A,x, a, α,y, z, β) can be computed in O(1) time.
This follows from the fact that there is only one candidate of such tuple
(A′,x′, a′, α′,y′, z′, β′).

Forget Node: Suppose t is a forget node with child t′ such that Xt = Xt′ \{vi}
for some vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,x, a, α,y, z, β) is true
if and only if either dpt′(A,x, a, α,y, z, β) is true (this corresponds to the case
that At does not contain vi) or dpt′(A′,x′, a′, α′,y′, z′, β′)=true for some A′,x′,
a′, α′, y′, z′, β′ with the following conditions (this corresponds to the case that
At contains vi):

1. A′ = A ∪ {vi};
2. x(j) = x′(j) for all j �= i and x(i) = 0;
3. a = a′;
4. α = α′;

146 A. Gaikwad et al.

We now consider four cases:
Case 1: vi is not marginally protected and vi is a good vertex.

5. y(j) = y′(j) for all j �= i and y(i) = 0;
6. z(S) = z′(S) for all S ⊆ A;
7. β = β′.

Case 2: vi is not marginally protected and vi is a bad vertex.

5. y(j) = y′(j) for all j �= i and y(i) = 0;
6.

z(S) =

{
z′(S) + 1 if S ⊆ NA(vi)
z′(S) otherwise

7. β = β′.

Case 3: vi is marginally protected and vi is a good vertex.

5.

y(j) =

{
g if vj ∈ NA(vi)
y′(j) if vj ∈ A \ NA(vi)

6. z(S) = z′(S) − z′(S ∪ {vi}) for all S ⊆ A;
7. β = β′ + z′({vi}) + |

{
j : y′(j) = b; y(j) = g

}
|.

Case 4: vi is marginally protected and vi is a bad vertex.

5.

y(j) =

{
g if vj ∈ NA(vi)
y′(j) if vj ∈ A \ NA(vi)

6.

z(S) =

{
z′(S) − z′(S ∪ {vi}) + 1 if S ⊆ NA(vi)
z′(S) − z′(S ∪ {vi}) for all other subsets S ⊆ A

7. β = β′ + z′({vi}) + |
{

j : y′(j) = b; y(j) = g
}

|.

For a forget node t, dpt(A,x, a, α,y, z, β) can be computed in nO(2k) time.
This follows from the fact that there are nO(2k) candidates of such tuple
(A′,x′, a′, α′, z′, β′), and each of them can be checked in O(1) time.

Join Node: Suppose t is a join node with children t1 and t2 such that Xt =
Xt1 = Xt2 . Let A be any subset of Xt. Then dpt(A,x, a, α,y, z, β) is true if and
only if there exist (A1,x1, a1, α1,y1, z1, β1) and (A2,x2, a2, α2,y2, z2, β2) such
that dpt1(A1,x1, a1, α1,y1, z1, β1) = true and dpt2(A2,x2, a2, α2,y2, z2, β2) =
true, where

1. A = A1 = A2;
2. x(i) = x1(i) + x2(i) − dA(vi) for all i ∈ A, and x(i) = 0 if i /∈ A;

Parameterized Complexity of Locally Minimal Defensive Alliances 147

3. a = a1 + a2 − |A|;
4. α = α1 + α2 − γ + δ; γ is the cardinality of the set

{
vj ∈ A | x1(j) ≥ dG(vi) − 1

2
; x2(j) ≥ dG(vi) − 1

2

}

and δ is the cardinality of the set
{

vj ∈ A | x1(j) <
dG(vi) − 1

2
; x2(j) <

dG(vi) − 1
2

; x(j) ≥ dG(vi) − 1
2

}
.

To compute α from α1 + α2, we need to subtract the number of those vj
which are satisfied in both the branches and add the number of vertices vj
not satisfied in either of the branches t1 and t1 but satisfied in t.

5.

y(j) =

{
g if y1(j) = g or y2(j) = g

b otherwise

6. z(S) = z1(S) + z2(S) for all S ⊆ A;
7. β = β1 + β2 − |

{
j : y1(j) = g, y2(j) = g

}
|.

For a join node t, there are nk possible pairs for (x1,x2) as x2 is uniquely
determined by x1; n+1 possible pairs for (a1, a2); n+1 possible pairs for (α1, α2);
there are 2k possible pairs for (y1,y2) as y2 is uniquely determined by y1; there
are n2k possible pairs for (z1, z2) as z2 is uniquely determined by z1; and n + 1
possible pairs for (β1, β2). In total, there are 2knO(2k) candidates, and each of
them can be checked in O(1) time. Thus, for a join node t, dpt(A,x, a, α,y, z, β)
can be computed in 2knO(2k) time.

At the root node r, we look at all records such that dpr(∅,x, a, α,y, z, β) =
true, and a = α = β. The size of a maximum locally minimal defensive alliance
is the maximum a satisfying dpr(∅,x, a, a,y, z, a)= true.

6 Conclusion

The main contributions in this paper are that the Locally Minimal Defen-
sive Alliance problem is FPT when parameterized by neighborhood diversity,
the problem is polynomial time solvable on trees, and XP in treewidth. We
list some nice problems emerge from the results here: is the problem FPT in
treewidth, and does it admit a polynomial kernel in neighborhood diversity?
Also, noting that the result for neighborhood diversity implies that the problem
is FPT in vertex cover, it would be interesting to consider the parameterized com-
plexity with respect to twin cover. The modular width parameter also appears to
be a natural parameter to consider here, and since there are graphs with bounded
modular-width and unbounded neighborhood diversity; we believe this is also an
interesting open problem. The parameterized complexity of the Locally Min-
imal Defensive Alliance problem remains unsettle when parameterized by
other important structural graph parameters like clique-width.

148 A. Gaikwad et al.

Acknowledgement. We are grateful to the referees for thorough reading and con-
structive comments that have made the paper better readable.

References

1. Bazgan, C., Fernau, H., Tuza, Z.: Aspects of upper defensive alliances. Discret.
Appl. Math. 266, 111–120 (2019)

2. Cami, A., Balakrishnan, H., Deo, N., Dutton, R.: On the complexity of finding
optimal global alliances. J. Comb. Math. Comb. Comput. 58, 23–31 (2006)

3. Carvajal, R., Matamala, M., Rapaport, I., Schabanel, N.: Small alliances in graphs.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 218–227.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74456-6 21

4. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

5. Fernau, H., Rodriguez-Velazquez, J.A.: A survey on alliances and related parame-
ters in graphs. Electron. J. Graph Theory Appl. 2(1) (2014)

6. Fricke, G., Lawson, L., Haynes, T., Hedetniemi, M., Hedetniemi, S.: A note on
defensive alliances in graphs. Bull. Inst. Comb. Appl. 38, 37–41 (2003)

7. Hassan-Shafique, K.: Partitioning a graph in alliances and its application to data
clustering (2004)

8. Jamieson, L.H., Hedetniemi, S.T., McRae, A.A.: The algorithmic complexity of
alliances in graphs. J. Comb. Math. Comb. Comput. 68, 137–150 (2009)

9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

10. Kristiansen, P., Hedetniemi, M., Hedetniemi, S.: Alliances in graphs. J. Comb.
Math. Comb. Comput. 48, 157–177 (2004)

11. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012)

12. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

13. Manlove, D.: Minimaximal and maximinimal optimisation problems: a partial
order-based approach (1998)

14. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.1007/978-3-540-74456-6_21
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

Computational Geometry

New Variants of Perfect Non-crossing
Matchings

Ioannis Mantas1(B), Marko Savić2(B), and Hendrik Schrezenmaier3(B)

1 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
ioannis.mantas@usi.ch

2 Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Novi Sad, Serbia

marko.savic@dmi.uns.ac.rs
3 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

schrezen@math.tu-berlin.de

Abstract. Given a set of points in the plane, we are interested in match-
ing them with straight line segments. We focus on perfect (all points
are matched) non-crossing (no two edges intersect) matchings. Apart
from the well known MinMax variant, where the length of the longest
edge is minimized, we extend work by looking into different optimization
variants such as MaxMin, MinMin and MaxMax. We consider both
the monochromatic and bichromatic versions of these problems and by
employing diverse techniques we provide efficient algorithms for various
input point configurations.

Keywords: Perfect · Non-crossing · Matchings · Monochromatic ·
Bichromatic · Bottleneck · MinMax · MaxMin · MaxMax · MinMin

1 Introduction

In the matching problem, given is a set of objects, the goal is to partition the
set into pairs such that no object belongs in two pairs. This simple problem is a
classic in graph theory, which has received a lot of attention, both in an abstract
and in a geometric setting. There are plenty of variants of the problem and there
is a great plethora of results.

In this paper, we consider the geometric setting where, given a set P of 2n
points in the plane, the goal is to match points of P with straight line segments,
in the sense that each pair of points induces an edge of the matching. A matching
is perfect if it consists of exactly n pairs. A matching is non-crossing if all edges
induced by the matching are pairwise disjoint. When there are no restrictions
on which pairs of points can be matched, the problem is called monochromatic.
In the bichromatic variant, P is partitioned into two sets B and R of blue and
red points, respectively, and only points of different colors are allowed to be
matched. When |B| = |R| = n, the bichromatic point set P is called balanced.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 151–164, 2021.
https://doi.org/10.1007/978-3-030-67899-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_12

152 I. Mantas et al.

1.1 Related Work

Geometric matchings find applications in many diverse fields, with the most
famous perhaps being operations research, where it is known as the assignment
problem. They are useful in the field of shape matching, when shapes are rep-
resented by finite point sets, see e.g., [30], and it is a fundamental problem in
pattern recognition. Among others, geometric matchings appear in VLSI design
problems, see e.g., [11], in computational biology, see e.g., [10], and are used for
map construction or comparison algorithms, see e.g., [16].

Requiring the matching to be non-crossing or perfect is rather natural. Given
a monochromatic or balanced bichromatic point set, a perfect non-crossing
matching always exists and it can be found in O(n log n) time by recursively
computing ham-sandwich cuts [20] or by using the algorithm of Hershberger
and Suri [18]. Many times though, not any perfect non-crossing matching is
sufficient and the interest lies in finding a matching with respect to some opti-
mization criterion.

A well-studied optimization criterion is minimizing the sum of lengths of all
edges, which we call the MinSum variant. It is also known as the Euclidean
assignment or Euclidean matching problem. It is interesting, and not difficult
to show, that such a matching is always non-crossing. For monochromatic point
sets, an O(n1.5 log n)-time algorithm was given by Varadarajan [29]. For bichro-
matic point sets, Kaplan et al. [19] recently presented an O(n2 log9 nλ6(log n))-
time algorithm, outperforming previous results [3,28]. When points are in convex
position, Marcotte and Suri [22] solved the problem in O(n log n) time for both
the monochromatic and bichromatic settings.

Another popular goal is to minimize the length of the longest edge, which
we call the MinMax variant and is also known as the bottleneck matching.
Given monochromatic points, Abu-Affash et al. [1] showed that finding such
a matching is NP-hard. This was accompanied by an O(n3)-time algorithm for
points in convex position. Recently this was improved to O(n2) time by Savić and
Stojaković [24]. For bichromatic points, Carlsson et al. [8] proved that finding a
MinMax matching is NP-hard. Biniaz et al. [7] gave algorithms with O(n3)-time
for points in convex position and O(n log n)-time for points on a circle. These
were improved to O(n2) and O(n), respectively, by Savić and Stojaković [25].

Several other optimzation goals have been studied. In a fair matching the
goal is to minimize the length difference between the longest and the shortest
edge, and in a minimum deviation matching, the difference between the length of
the shortest edge and the average edge length should be minimized, see [14,15].
Alon et al. [5] studied the MaxSum variant, where the goal is to maximize the
sum of edge lengths. They conjectured that the problem is NP-hard, and gave
an approximation algorithm, later improved by Dumitrescu and Toth [12].

1.2 Problem Variants Considered and Our Contribution

In this work, we continue exploring similar optimization variants in different
settings and give efficient algorithms for constructing optimal matchings. We
only deal with perfect non-crossing matchings, so these properties will always be

New Variants of Perfect Non-crossing Matchings 153

Fig. 1. Optimal MinMin1, MaxMax1, MinMax1, and MaxMin1 matchings of
monochromatic points. The edges realizing the values of the matchings are highlighted.

assumed from now on, without further mention. We consider four optimization
variants: MinMin where the length of the shortest edge is minimized, MaxMax
where the length of the longest edge is maximized, MaxMin where the length
of the shortest edge is maximized, and MinMax where the length of the longest
edge is minimized. See Fig. 1 for an illustration of these four variants.

To the best of our knowledge, except for MinMax, the other three variants
have not been considered before. Studying the MinMin and MaxMax variants
is motivated by the analysis of worst-case scenarios for problems where very
short or long edges are undesirable, but the selection of edges is not something
that we can control. More generally, the values of MinMin and MaxMax serve
as lower and upper bounds on the length of any feasible edge and can be helpful
in estimating the quality of a matching, with respect to some objective function.
The MaxMin variant, similar to MinMax, resembles fair matchings in the sense
that all edges have similar lengths, analogously to the variants studied in [14].

We study both the monochromatic and bichromatic versions of these vari-
ants in different point configurations. For bichromatic points, we assume that
P is balanced. We denote the monochromatic problems with the index 1, e.g.,
MinMin1, and the bichromatic with the index 2, e.g., MinMin2. In Sect. 2,
we consider monochromatic points in general position. In Sect. 3, points are in
convex position. In Sect. 4, points lie on a circle. In Sect. 5, we consider doubly

Table 1. Summary of results on the optimization of perfect non-crossing matchings.
The value of the matching can be obtained in the time not indicated with (*). The time
marked with (*) represents the extra time needed to also return a matching. h denotes
the size of the convex hull. ε denotes an arbitrarily small positive constant. Results
without reference are given in this paper.

Monochromatic MinMin1 MaxMax1 MinMax1 MaxMin1

General position O(nh + n log n),
O(n1+ε+n2/3h4/3 log3 n)

O(nh) + O(n log n)∗,
O(n1+ε+n2/3h4/3 log3 n)

NP-hard [1] ?

Convex position O(n) O(n) O(n2) [24] O(n3)

Points on circle O(n) O(n) O(n) O(n)

Bichromatic MinMin2 MaxMax2 MinMax2 MaxMin2

General position ? ? NP-hard [8] ?
Convex position O(n) O(n) O(n2) [25] O(n3)

Points on circle O(n) O(n) O(n) [25] O(n3)

Doubly collinear O(n) O(1) + O(n)∗ O(n4 log n) ?

154 I. Mantas et al.

collinear bichromatic points, where the blue points lie on one line and the red
points on another line.

Table 1 summarizes the best-known running times for different matching vari-
ants including the contributions of this paper. For each variant, we study their
structural properties and combine diverse techniques with existing results in
order to tackle as many configurations as possible. The various open questions
that arise throughout the paper, pave the way for further research in this family
of problems. The proofs which are omitted due to lack of space, together with
extra details and suggestions for future work, can be found in our full paper [21].

2 Monochromatic Points in General Position

In this section, P is a monochromatic set of points in general position, where we
assume that no three points are collinear. We denote by CH(P) the boundary
of the convex hull of P , by h the number of vertices of CH(P), by q1, . . . , qh

the counterclockwise ordering of the vertices along CH(P), and by d(v, w) the
Euclidean distance between two points v and w. We call an edge (v, w) feasible,
if there exists a matching which contains (v, w), and infeasible otherwise.

The following lemma gives us a feasibility criterion for an edge (v, w).

Lemma 1. An edge (v, w) is infeasible if and only if (1) v, w ∈ CH(P) and
(2) there is an odd number of points on each side of (v, w).

Proof. Let l be the line through the points v, w and let A,B be the subdivision
of P \ {v, w} induced by l. For the if-part, let v, w ∈ CH(P). Then each edge
(a, b) with a ∈ A, b ∈ B intersects (v, w) and thus cannot be in a matching with
(v, w). If further A,B have an odd number of points each, at least one point from
each set will not be matched if (v, w) is in the matching. So, (v, w) is infeasible.

For the only-if-part, let (v, w) be infeasible and suppose that (1) or (2) is not
fulfilled. If (2) is not fulfilled, then A,B have an even number of points each.
Thus, we can find matchings of A and B independently without intersecting
(v, w). Hence, (v, w) is a feasible edge, a contradiction. If (1) is not fulfilled, then
not both of v, w are in CH(P). So, l crosses at least one edge (x, y) of CH(P),
with x ∈ A, y ∈ B, see Fig. 2a. But then, both A \ {x} and B \ {y} contain an
even number of points. Thus, there exist matchings of A\{x} and B \{y}, which
together with (v, w) and (x, y) form a matching of P , a contradiction. ��

Fig. 2. (a) Illustration for the proof of Lemma1. (b),(c) The weak radial ordering of p
with the points of P \ CH(P) considered as unlabeled points.

New Variants of Perfect Non-crossing Matchings 155

2.1 MinMin1 and MaxMax1 Matchings in General Position

The problems MinMin and MaxMax are equivalent to finding the extremal,
shortest or longest, feasible pair. A main challenge is to check the feasibility of
an edge according to Lemma 1. We propose two different approaches.

Using Radial Orderings. The radial ordering of a point p ∈ P is the counter-
clockwise circular ordering of the points in P \ p by angle around p. The radial
orderings of all p ∈ P can be computed in O(n2) total time using the dual line
arrangement of P , see e.g., [4,6].

Given a subset A ⊆ P , we define the A-weak radial ordering of a point
p ∈ P as the radial ordering of p where the points from A that occur between
two points from A := P \ A are given as an unordered set, see Figs. 2b and 2c.
We are interested in the CH(P)-weak radial orderings of the points in CH(P).
These are of interest, as they allow us to check the feasibility of all pairs (qi, qj)
of points qi, qj ∈ CH(P) in O(nh) total time using Lemma 1.

Lemma 2. Given a point set P and a subset A ⊆ P with |P | = n and |A| = k,
the A-weak radial orderings of all points in A can be computed in O(nk) time.

Proof. First, we use a point-line duality and compute the dual line arrangement
LA of A in O(k2) time [4,6]. We denote the dual line of a point p by lp. For
each edge e of LA, we initialize a set Xe := ∅, also in O(k2) total time. Then,
for each point p ∈ P \ A, we find the set Ep of edges of LA that are intersected
by lp and add p to all sets Xe with e ∈ Ep. Due to the zone theorem [4] this
takes O(k) time for each p. Finally, we can read off the weak radial ordering of
a point q ∈ A from LA and the sets Xe in the following way: Let p1, . . . , pk−1

be the ordering of the points in A \ q corresponding to the order of intersections
of lq with the other lines in LA. Further, let ei be the edge of LA between the
intersections of lq with lpi

and lpi+1 (with indices understood modulo k − 1).
Then the weak radial ordering of q is p1,Xe1 , p2,Xe2 , . . . , Xek−1 . ��

We use the feasibility criterion of Lemma 1 and the concept of weak radial
orderings to provide algorithms for MinMin1 and MaxMax1.

Theorem 1. If P is in general position, MinMin1 can be solved in O(nh +
n log n) time.

Proof. We initially construct CH(P) in O(n log h) time [9]. Then, we compute
the CH(P)-weak radial orderings of the points in CH(P) in O(nh) total time
using Lemma 2. Now we look for the shortest feasible edge.

We first consider edges (v, w) with v /∈ CH(P) and we want to find m1 :=
min({ d(v, w) : v ∈ P \ CH(P), w ∈ P }). By Lemma1, such edges are always
feasible. We can find m1 in O(n log n) time using a standard algorithm via a
Voronoi diagram. Now we consider edges (v, w) with both v, w ∈ CH(P) and
we want to find m2 := min({ d(v, w) : v, w ∈ CH(P) }). By Lemma1, an edge
(qi, qi+1) is always feasible and an edge (qi, qj+1) is feasible if and only if (i)
(qi, qj) is feasible and there is an odd number of points between qj , qj+1 in the
radial ordering of qi or (ii) (qi, qj) is infeasible and there is an even number of

156 I. Mantas et al.

points between qj , qj+1 in the radial ordering of qi. Thus, we can find m2 in
O(nh) time, using weak radial orderings. So, we can find the overall minimum
msol = min(m1,m2), in O(n log n + nh) time. ��

Observe that using the same algorithm but considering the maximum feasible
values for m1,m2 and msol, also solves MaxMax1 in O(nh+n log n) time. Using
the following lemma we further improve the time complexity to O(nh).

Lemma 3. If (v, w) is a longest feasible edge, then one of v, w ∈ CH(P).

Theorem 2. If P is in general position, MaxMax1 can be solved in
O(nh) time.

Proof. The algorithm is similar to the MinMin1, described in Theorem 1, with
two changes: The minimizations of m1,m2,msol are replaced by maximizations
and, to find m1, we only consider edges (v, w) with v ∈ P \ CH(P) and w ∈
CH(P). This is sufficient, due to Lemma 3, and reduces the time for finding
m1 to O((n − h)h), by simply comparing all (n − h)h edges. Hence, the overall
running time is reduced to O((n − h)h + nh) = O(nh). ��

Using Halfplane Range Queries. Now we take another approach to decide the
feasibility of a pair of points from CH(P). The task of determining the number
of points of a given point set lying on one side of a given straight line is known
as halfplane range query and has been studied extensively over the last decades,
see e.g., [2]. Using these results to check the criterion of Lemma 1, we obtain
the following algorithms that are more efficient than those of Theorems 1 and 2,
when h = Ω(nc) for some constant c > 0.

Theorem 3. Let P be in general position. Then MinMin1 and MaxMax1 can
be solved in O(n1+ε +n2/3h4/3 log3 n) time where ε > 0 is an arbitrary constant.

Proof. We show that the feasibility of all pairs of points of CH(P) can be decided
in the claimed running times. Then, with the aforementioned algorithm and an
additional effort of O(n log n) time, MinMin1 and MaxMax1 can be solved.

We distinguish two classes of values of h. Let h ≤ n1/4. According to [23],
halfplane range queries can be answered in O(n1/2) time after a preprocessing
step, costing O(n1+ε) time. We have to do

(
h
2

)
= O(h2) queries, so the time

needed for the queries is O(h2n1/2) = O(n). Therefore the preprocessing step
dominates the overall time needed, resulting in O(n1+ε) total time.

Now let h ≥ n1/4. We set m = n2/3h4/3. Then we have n ≤ m ≤ n2,
which is required by [23] for the following to hold: Halfplane range queries
can be answered in O(n

m1/2 log
3 m

n) time after a preprocessing step costing
O(n1+ε + m logε n) time. Thus the time needed for the O(h2) queries is
O(n2/3h4/3 log3 n) and for the preprocessing is O(n1+ε + n2/3h4/3 logε n), so
O(n1+ε +n2/3h4/3 log3 n) time overall. Combining the two cases for h, the claim
follows. ��

New Variants of Perfect Non-crossing Matchings 157

3 Points in Convex Position

In this section, we assume that the points in P are in convex position and
their counterclockwise ordering, p0, . . . , p2n−1, is given. For simplicity, we address
points by their indices, i.e., we refer to pi as i. Arithmetic operations with indices
are done modulo 2n. We call edges of the form (i, i + 1) boundary edges and we
call the remaining edges diagonals.

We remark that all four optimization variants, for both monochromatic and
bichromatic point sets, can be solved in O(n3) time by a dynamic programming
approach. This approach has also been used in [1,7,8] for MinMax problems.
We present more efficient algorithms for MinMin and MaxMax.

3.1 MinMin1 and MaxMax1 Matchings in Convex Position

We make use of the following two algorithms. Given two convex polygons P
and Q, Toussaint’s algorithm [27] finds in O(|P | + |Q|) time the vertices that
realize the minimum distance between P and Q. Analogously, Edelsbrunner’s
algorithm [13] finds in O(|P | + |Q|) time the vertices that realize the maximum
distance between P and Q.

Theorem 4. If P is in convex position, MinMin1 and MaxMax1 can be solved
in O(n) time.

Proof. A pair (i, j) is feasible if and only if i and j are of different parity. This
suggests that we can split P into two sets, Peven and Podd, one containing the even
and the other containing the odd indices. Then, any edge (v, w) with v ∈ Peven
and w ∈ Podd is feasible. Considering Podd and Peven as convex polygons, we
apply Toussaint’s algorithm [27] for MinMin1 or Edelsbrunner’s algorithm [13]
for MaxMax1. All steps can be done in O(n) time. ��

3.2 MinMin2 and MaxMax2 Matchings in Convex Position

We now combine the monochromatic algorithms with the theory of orbits [25],
a concept which captures well the nature of bichromatic matchings in convex
position. More specifically, P is partitioned into orbits, which are balanced sets

(a) (b) (c)

Fig. 3. MinMin2 for P in convex position. (a) Find orbits. (b) Find the shortest edge
between the blue and red polygon of an orbit. (c) Extend to a perfect matching. (Color
figure online)

158 I. Mantas et al.

of points, and the colors of the points along the boundary of the orbit are alter-
nating, see Fig. 3a. An important property is that a bichromatic edge (b, r) is
feasible if and only if b and r are in the same orbit [25].

Theorem 5. If P is in convex position, MinMin2 and MaxMax2 can be solved
in O(n) time.

Proof. We first compute all orbits in O(n) time [25]. Due to the alternation
of red and blue points along the boundary of the orbits, a single orbit can be
considered as a set of points in the monochromatic setting, with respect to the
feasibility of the edges. Thus, for MinMin2, we can select for each orbit the
shortest edge in O(n) time using Theorem 4. The shortest edge out of all these
selected edges is the shortest overall feasible edge of P , see Fig. 3b. Selecting the
maximum edges instead solves MaxMax2. ��

To construct, in O(n) time, optimal matchings from Theorems 4 and 5 after
finding an extremal feasible edge (i, j), we can apply the following lemma to
the sets {i + 1, . . . , j − 1} and {j + 1, . . . , i − 1}, see Fig. 3c. The idea is to pair
consecutive edges along the boundary of the convex hull or each orbit.

Lemma 4. If P is in convex position, we can construct an arbitrary matching
in O(n) time, both in the monochromatic and bichromatic case.

4 Points on a Circle

In this section, we assume that all points lie on a circle. Obviously, the points
are in convex position, so all the results from Sect. 3 also apply here. We present
algorithms with a better time complexity. We use the notation from Sect. 3.

In addition to convexity, the results in this section rely on a property of
points lying on a circle, which we call the decreasing chords property. A point
set has this property if, for any edge (i, j), in at least one of its sides, an edge
between any two points on that side is not longer than (i, j) itself, see Fig. 4a.

Due to the decreasing chords property, we can easily infer the following.

Lemma 5. Any shortest edge of a matching on P is a boundary edge.

4.1 MaxMin1 Matching on a Circle

Lemma 5 suggests an approach for MaxMin by forbidding short boundary edges
and checking whether we can find a matching without them. Let some boundary
edges be forbidden and the remaining be allowed. A forbidden chain is a maximal
sequence of consecutive forbidden edges. A forbidden chain has endpoints i, j if
the edges (i, i+1), . . . , (j−1, j) are forbidden and the edges (i−1, i) and (j, j+1)
are allowed. Refer to Fig. 4b for an illustration.

Lemma 6. Given a set of forbidden edges, there exists a matching without for-
bidden edges if and only the length of a longest forbidden chain is less than n.

New Variants of Perfect Non-crossing Matchings 159

Fig. 4. (a) The decreasing chords property. (b) A forbidden chain with endpoints i, j.
(c) Proof of Lemma 6. (Forbidden edges are dashed and allowed edges are solid.)

Proof. If the boundary edges are either all forbidden or all allowed, then the
statement trivially holds. So, let us assume that there exists at least one forbid-
den and at least one allowed boundary edge.

Consider a forbidden chain of length l which has endpoints i and j. First, we
assume that l ≥ n. Then, at least one matched pair (a, b) has both endpoints in
{i, . . . , j}. Thus, either (a, b) is a forbidden boundary edge or it splits P in a way
that all points on one side of the line through (a, b) lie completely in {i, . . . , j}.
So, there exists a matched boundary edge inside {i, . . . , j} and, thus, a matching
without forbidden edges does not exist.

Now let us assume that l < n. We construct a matching without forbidden
edges using a recursive approach. We match the pair (i − 1, i) and consider the
set P ′ = P \ {i − 1, i}, see Fig. 4c. In P ′, (i − 2, i + 1) is an allowed boundary
edge since it is a diagonal in P . We show that P ′ can be matched by showing
that the condition of the lemma holds for P ′.

Let i′ and j′ be the endpoints of a longest forbidden chain in P ′, going
counterclockwise from i′ to j′, and let l′ be its length. If l′ < n−1, a matching of
P ′ without forbidden edges can be computed recursively. Otherwise, if l′ ≥ n−1,
from l′ ≤ l < n we infer that l′ = l = n−1. Since l = l′, the new longest forbidden
chain is disjoint from {i + 1, . . . , j}, so it is contained in {j + 1, . . . , i − 2}, see
Fig. 4c. But since |P ′| = 2n − 2 and |{i + 1, . . . , j}| = n − 1, we have |{j +
1, . . . , i − 2}| = n − 1 and thus l′ < n − 1, a contradiction. ��

MaxMin is equivalent to finding the largest value μ such that there exists
a matching with all edges of length at least μ. By Lemma5, it suffices to search
for μ among the lengths of the boundary edges. By Lemma 6, this means that
we need to find the maximal length μ of a boundary edge such that there are
no n consecutive boundary edges all shorter than μ. An obvious way to find μ
is to employ binary search over the boundary edge lengths and check at each
step whether the condition is satisfied or not, which yields an O(n log n)-time
algorithm. A faster approach to find μ is as follows. Consider all 2n sets of n
consecutive boundary edges and associate to each set the longest edge in it.
Then, out of the 2n longest edges, search for the shortest one. This can be done
in O(n) time using a data structure for range maximum query, see e.g., [17].
However, our approach fits under the more restricted sliding window maximum
problem, for which several simple optimal algorithms are known, see e.g., [26].

160 I. Mantas et al.

Theorem 6. If P lies on a circle, MaxMin1 can be solved in O(n) time.

We can also construct an optimal matching within the same time complexity,
as the following lemma states.

Lemma 7. Given a value μ > 0, a matching consisting of edges of length at
least μ can be constructed in O(n) time if it exists.

4.2 Other Matchings on a Circle

Theorem 7. If P lies on a circle, MinMax1 can be solved in O(n) time.

Proof. We show that there exists a MinMax1 matching using only boundary
edges. Suppose we have a MinMax1 matching M containing a diagonal (i, j).
Assume, without loss of generality, that all edges with endpoints in {i, . . . , j} are
at most as long as (i, j). We construct a new matching M ′ by taking all matched
pairs in M that are outside of {i, . . . , j} together with edges (i, i+1), (i+2, i+
3), . . . , (j − 1, j). The longest edge of M ′ is not longer than the longest edge of
M , proving our claim. There are only two matchings consisting only of boundary
edges and in O(n) time we choose the one with the shorter longest edge. ��

Points on a circle are in convex position, so, both MinMin1 and MinMin2
can be found in O(n) time using Theorems 4 and 5. Instead, we can do it much
simpler by finding the shortest feasible boundary edge. By Lemma 5, the shortest
edge of a matching is a boundary edge in both settings. This can then be extended
to a perfect matching using Lemma 4.

5 Doubly Collinear Points

In this section, we consider a doubly collinear setting. A bichromatic point set
P is doubly collinear if the blue points lie on a line lB and the red points lie on
a line lR. We assume that lB and lR are not parallel and that the ordering of
the points along each line is given. Let x = lB ∩ lR and assume, for simplicity,
that x /∈ P . Lines lB and lR are split at x into two half-lines, and the plane is
subdivided into four sectors. We call a sector small, if its angle is acute.

Let l ∈ {lB , lR}. Then, for two points a, b on l, we denote by (a, b) the
open line segment connecting a and b. Further, if a
= x, we denote by (a→x→),
x···(a→) ⊂ l the open half-lines starting at a that contain x and do not contain
x, respectively. If we use square brackets, e.g., in x···[a→), (a, b], or [a, b], the
corresponding endpoint is contained in the set.

The following lemma gives us a feasibility criterion for an edge (r, b), see
Fig. 5a and 5b, which can be checked in O(1) time. We give a constructive proof
that also indicates an algorithm which, given a feasible edge (r, b), returns a
matching containing (r, b) in O(n) time.

Lemma 8. An edge (r, b) is feasible if and only if |(r, x) ∩ P | ≤ |(b→x→) ∩ P |
and |(b, x) ∩ P | ≤ |(r→x→) ∩ P |.

New Variants of Perfect Non-crossing Matchings 161

Fig. 5. (a) A feasible edge (r, b). (b) An infeasible edge (r, b). (c) An optimal MinMax2
matching of the type described in Lemma 10.

5.1 MinMin2 and MaxMax2 Matchings on Doubly Collinear
Points

Let l′R and l′B be a red and a blue half-line, respectively. The following lemma
is a consequence of Lemma 8. It allows us to find, for each point in l′R ∩ P , the
closest point in l′B ∩ P it induces a feasible edge with, in O(n) total time.

Lemma 9. Let r ∈ R and r′ ∈ x···(r→)∩P . Let b, b′ ∈ l′B ∩P be closest to r and
r′, respectively, such that (r, b) and (r′, b′) are feasible. Then b′ ∈ x···[b→) ∩ P .

Theorem 8. If P is doubly collinear, MinMin2 can be solved in O(n) time.

We call a point p ∈ P an extremal point if |x···(p→) ∩ P | = 0. We show that
the longest edge between points in R and B is realized by extremal points, so
there are O(1) candidate edges. Hence, we can find the longest feasible edge in
O(1) time. This can later be extended in O(n) time to an optimal matching,
using the algorithm which appears in the constructive proof of Lemma 8.

Theorem 9. If P is doubly collinear, MaxMax2 can be solved in O(1) time.

5.2 MinMax2 and MaxMin2 Matchings on Doubly Collinear
Points

We start by considering the one-sided doubly collinear case, where all red points
are on the same side of lB . Then, we turn to the general (two-sided) case. Finally,
for the general case, we present improved results for some special cases.

One-Sided Doubly Collinear. Observe that, in this case, the extremal red point
must be matched with one of the two extremal blue points. Thus, using dynamic
programming, all four optimization variants can be solved in O(n2) time.

Theorem 10. If P is one-sided doubly collinear, MinMax2 and MaxMin2
can be solved in O(n2) time.

For MinMax2, we show that there exists (also in the two-sided case) an
optimal matching of a special form, described in the following lemma, allowing
us to design a faster algorithm. It can be obtained from an arbitrary optimal
matching by applying local changes that do not change the objective value.

162 I. Mantas et al.

Lemma 10. There exists an optimal matching for MinMax2 of the following
form. For each half-line l′, the points of l′ ∩ P that are matched in the small
incident sector are consecutive points, see Fig. 5c.

Theorem 11. If P is one-sided doubly collinear, MinMax2 can be solved in
O(n log n) time.

General Doubly Collinear. We return to the two-sided case and look at the
MinMax2 variant. By only considering matchings of the form described in
Lemma 10, enumerating all possible choices for the decision which blue point
is matched through which sector, and applying Theorem 11 for the two resulting
one-sided subproblems, we obtain the following.

Theorem 12. If P is doubly collinear, MinMax2 can be solved in O(n4 log n)
time.

Special Angles of Intersection. Let α be the angle of intersection lB and lR, with
α ∈ (0, π

2]. We prove the existence of optimal matchings having a special form,
and we then use these to derive improved algorithms for these cases as follows.

Theorem 13. If α = π
2 , MinMax2 and MaxMin2 can be solved in O(n) time.

Theorem 14. If α ≤ π
4 , MinMax2 can be solved in O(n) time.

6 Conclusions and Future Work

We considered new variants for perfect non-crossing matchings. In most Min-
Min and MaxMax variants, we came up with optimal algorithms by exploiting
structural properties of the point sets, combined with existing techniques from
diverse problems. On the contrary, the MaxMin variant exhibits a significant
difficulty. Designing efficient algorithms even for simple configurations, as cocir-
cular or doubly collinear, is not at all obvious and thus quite interesting on
its own. Throughout the paper many open questions have arisen. For instance,
regarding convex bichromatic point sets, can orbits help to improve the MaxMin
algorithms? Regarding arbitrary point sets, is there a polynomial time feasibil-
ity check for a bichromatic edge? Are the MaxMin variants NP-hard as their
MinMax counterparts? It would be interesting to see how Table 1 can be filled
with improved algorithms or hardness results.

Acknowledgements. M. S. was partially supported by the Ministry of Education,
Science and Technological Development, Republic of Serbia, project 174019, and H. S.
by the German Research Foundation, DFG grant FE-340/11-1.

Initial discussions took place at the Intensive Research Program in Discrete,
Combinatorial and Computational Geometry which took place in Barcelona in 2018.
We are grateful to CRM, UAB for hosting the event and to the organizers for providing
the platform to meet and collaborate. We would like to thank Carlos Alegría, Carlos
Hidalgo Toscano, Oscar Iglesias Valiño, and Leonardo Martínez Sandoval for prelim-
inary discussions, and Carlos Seara for raising a question that motivated this work.
Finally, we would like to thank an anonymous reviewer for bringing to our attention
the halfplane range queries.

https://dccg.upc.edu/irp2018/
https://dccg.upc.edu/irp2018/
http://www.crm.cat

New Variants of Perfect Non-crossing Matchings 163

References

1. Abu-Affash, A.K., Carmi, P., Katz, M.J., Trabelsi, Y.: Bottleneck non-crossing
matching in the plane. Comput. Geom. 47(3A), 447–457 (2014)

2. Agarwal, P.K.: Simplex range searching and its variants: a review. In: Loebl, M.,
Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics, pp. 1–30.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44479-6_1

3. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953
(2000)

4. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Handbook of
Computational Geometry, chap. 2, pp. 49–119. North-Holland (2000)

5. Alon, N., Rajagopalan, S., Suri, S.: Long non-crossing configurations in the plane.
In: Proceedings of the 9th Annual Symposium on Computational Geometry, pp.
257–263 (1993)

6. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Handbook of
Computational Geometry, chap. 19, pp. 829–876. North-Holland (2000)

7. Biniaz, A., Maheshwari, A., Smid, M.H.: Bottleneck bichromatic plane matching
of points. In: Proceedings of the 26th Canadian Conference on Computational
Geometry, pp. 431–435 (2014)

8. Carlsson, J.G., Armbruster, B., Rahul, S., Bellam, H.: A bottleneck matching prob-
lem with edge-crossing constraints. Int. J. Comput. Geom. Appl. 25(4), 245–261
(2015)

9. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discret. Comput. Geom. 16(4), 361–368 (1996). https://doi.org/10.
1007/BF02712873

10. Colannino, J., et al.: An O(n log n)-time algorithm for the restriction scaffold
assignment problem. J. Comput. Biol. 13(4), 979–989 (2006)

11. Cong, J., Kahng, A.B., Robins, G.: Matching-based methods for high-performance
clock routing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12(8), 1157–
1169 (1993)

12. Dumitrescu, A., Tóth, C.D.: Long non-crossing configurations in the plane. Discret.
Comput. Geom. 44, 727–752 (2010)

13. Edelsbrunner, H.: Computing the extreme distances between two convex polygons.
J. Algorithms 6(2), 213–224 (1985)

14. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related
problems. Algorithmica 31(1), 1–28 (2001)

15. Efrat, A., Katz, M.J.: Computing fair and bottleneck matchings in geometric
graphs. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.)
ISAAC 1996. LNCS, vol. 1178, pp. 115–125. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0009487

16. Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map
layout by point set matching. Int. J. Comput. Geom. Appl. 25(02), 101–122 (2015)

17. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

18. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm.
BIT Numer. Math. 32(2), 249–267 (1992)

19. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
Discret. Comput. Geom. 64(3), 838–904 (2020)

https://doi.org/10.1007/978-3-319-44479-6_1
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BFb0009487
https://doi.org/10.1007/BFb0009487

164 I. Mantas et al.

20. Lo, C.-Y., Matoušek, J., Steiger, W.: Algorithms for ham-sandwich cuts. Discret.
Comput. Geom. 11(4), 433–452 (1994). https://doi.org/10.1007/BF02574017

21. Mantas, I., Savić, M., Schrezenmaier, H.: New variants of perfect non-crossing
matchings. arXiv preprint arXiv:2001.03252 (2020)

22. Marcotte, O., Suri, S.: Fast matching algorithms for points on a polygon. SIAM J.
Comput. 20(3), 405–422 (1991)

23. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discret. Comput.
Geom. 10(2), 157–182 (1993)

24. Savić, M., Stojaković, M.: Faster bottleneck non-crossing matchings of points in
convex position. Comput. Geom. 65, 27–34 (2017)

25. Savić, M., Stojaković, M.: Bottleneck bichromatic non-crossing matchings using
orbits (2018). arxiv.org/abs/1802.06301

26. Tangwongsan, K., Hirzel, M., Schneider, S.: Low-latency sliding-window aggrega-
tion in worst-case constant time. In: Proceedings of the 11th ACM International
Conference on Distributed and Event-Based Systems, pp. 66–77 (2017)

27. Toussaint, G.T.: An optimal algorithm for computing the minimum vertex distance
between two crossing convex polygons. Computing 32(4), 357–364 (1984)

28. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18(6), 1201–1225
(1989)

29. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: Proceedings of the 39th Symposium on Foundations of Computer
Science, pp. 320–329 (1998)

30. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S.
(ed.) Principles of Visual Information Retrieval. ACVPR, pp. 87–119. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-3702-3_4

https://doi.org/10.1007/BF02574017
http://arxiv.org/abs/2001.03252
http://arxiv.org/abs/org/abs/1802.06301
https://doi.org/10.1007/978-1-4471-3702-3_4

Cause I’m a Genial Imprecise Point:
Outlier Detection for Uncertain Data

Vahideh Keikha1(B), Hamidreza Keikha2, and Ali Mohades3

1 The Czech Academy of Sciences, Institute of Computer Science,
Pod Vodárenskou věž́ı, Prague, Czech Republic

keikha@cs.cas.cz
2 Department of Mathematics and Computer Science,

Sistan and Baluchestan University, Zahedan, Iran
keikha.eng@gmail.com

3 Department of Mathematics and Computer Science,
Amirkabir University of Technology, Tehran, Iran

mohades@aut.ac.ir

Abstract. In this paper, we introduce the outlier detection problem in
a set of uncertain points. We study two variants of the problems based
upon the definition of the outlier. For a given positive integer k(< n)
and a set � of n regions as the imprecise points, the first type of the
outlier detection problem that we study is to locate n − k points on
distinct regions, such that the size of the smallest axis-aligned bounding
box (AABB), the diameter or the smallest enclosing circle (SEC) of the
resulting points gets minimized. The uncertainty regions we study are
squares or disks, and the excluded k regions are considered as outliers.

We also study the covering versions in which the objectives of the SEC
and the AABB problems are to find the smallest circle or axis-aligned
bounding box, respectively, that covers the area of at least n−k regions.

In the second-type of outliers, the outliers are those k regions that
mostly reduce the uncertainty-induced gap between the lower bound and
the upper bound on the size of the output. We give polynomial time
algorithms for several variants of the mentioned problems, ranging in
running time from O(n log n) to O(n5.5 log n).

1 Introduction

Geometric modeling is a vigorous fit for facing many of the world’s challenges.
However, the evident uncertainty due to a variety of reasons alters the efficiency
of the geometric algorithms. Such imprecision can occur at different occasions of
the data collection process, e.g., one may gather data by sampling or one may
not have enough space to store all the numerical information without rounding.
In geometric problems, it has often been assumed that the input points have
precise coordinates, however, real datasets are mostly uncertain or incomplete.
Also, some of the collected data might be irrelevant and situated away from the
other data. Motivated by these, we introduce the “outlier detection problem in

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 165–178, 2021.
https://doi.org/10.1007/978-3-030-67899-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_13

166 V. Keikha et al.

a set of geometric imprecise data”. To the best of our knowledge, this problem
is not studied yet to make comparisons with the related works.

Data Uncertainty. If the exact coordinates of a point are not known, we refer
to this point as an uncertain point. We assume an uncertain point is modeled by
a square (or disk) according to the region-based model of uncertainty, in which
the point may lie at any place within the region with the same probability [13].
Let � be a set of n squares. Then � can introduce infinitely many placements,
where each placement consists of n points from distinct squares, and each point
is allowed to translate within the square the point lies on. Also, each different
placement of points can have different measures, which implies that there exists
a range in which the size of the various descriptors of the points bounce. Such
descriptors are most conveniently defined by the smallest enclosing circle (SEC),
axis-aligned bounding box (AABB), the diameter, or the convex hull. We refer
to the largest value of the descriptor as the upper bound and to the smallest one
as the lower bound.

Calculating the upper/lower bound on the area of AABB of a set of n squares
(or disks) is to find a placement of points such that the area of AABB has
its maximum/minimum value. For squares or disks, the choices of the optimal
solutions lie on the boundary of the axis-extreme regions and cost O(n) time [12].
In the SEC problem, computing the upper/lower bound is defined as computing a
placement of points such that the radius of the SEC has its maximum/minimum
value. Solving the maximization problem on both the disks and the squares takes
O(n) time. The minimization problem for disks is LP-type, and for squares (or
any set of convex bodies) can be modeled as finding the minimum of a convex
function, and they both take O(n) time [12]. In the diameter problem, computing
the upper/lower bound is defined as computing a placement of points such that
the maximum (minimum) pairwise distances has its maximum (minimum) value.
On a set of n squares, both the minimization and the maximization problems
cost O(n log n) time [12]. On a set of disks, the largest possible diameter can be
computed in O(n log n) time, but for the smallest possible diameter problem, only
approximation algorithms are known [11,12]. These problems are introduced by
Löffler and van Kreveld [12]. For arbitrary values of k, these algorithms may
suggest exponential time solutions to the problem of computing a subset of size
n − k (n − k-subset) with the optimized cost function among all n − k-subsets.

Outlier Removal. There are lots of studies in the field of outlier detection
when the input is a set of points. Several problems are studied under different
assumptions for the number of outliers, where it varies from one to any value in
the order of the input; see, e.g., [4] and the references therein. In the literature,
most of the studies aim to remove the outliers to reduce the most the size of a
specific measure, prior to any analyzes. Let P be a set of n points. For arbitrary
values of k, the problem of choosing a subset of size n − k of P such that this
set has the smallest AABB can be solved in O(n5/2) time [2,3,10]. Very recently,
this running time is improved to O(n2 log n) by Chan and Har-Peled [5].

The problem of computing a set of n − k points with the smallest possible
diameter can be solved in O(n log n+ k2n log2 k) [1,8] time. Note that removing

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 167

Fig. 1. Problem definitions on a set of squares in the minimization version, with k = 3
outliers. The optimal solutions are shown in purple, and the shaded squares are the
first-type outliers. (a) Minimizing the smallest possible diameter. (b) Minimizing the
SEC. (c) Minimizing the smallest area AABB. (Color figure online)

even one outlier from a set of n points takes Ω(n log n) time [3] since one of
the vertices of the diameter determines the outlier. Using such vertex, the diam-
eter would be computed in linear time. We refer the interested readers to the
references in [2,5] for related studies.

For a set P of n points and an integer k < n, the problem of computing the
SEC of only n − k points is referred to as n − k-enclosing problem. It is already
shown that the n−k-enclosing circle of a set of points is centered at a vertex or an
edge of a Voronoi diagram of order n−k−1, and can be computed in O(n2 log n)
time [7]. They also provided a O(nk log2 n) time algorithm with O(nk) space, and
an algorithm with O(nk log2 n log n/k) time and O(n log n) space [7]. Har-peled
and Mazumdar [9] presented a O(n(n−k)) expected time randomized algorithm
for computing the n − k-enclosing circle of a set of n points in the plane. They
also provided several approximation algorithms with O(n) time for constant
approximation factors, and with O(n + n min(1/(n − k)ε3) log2(1ε , n − k)) time
for a (1 + ε) approximation factor. In R

d, if d is fixed, the n − k-enclosing circle
problem can be solved in polynomial time, otherwise the problem becomes NP-
hard [15]. The authors also introduced a PTAS with running time O(n

2
ε2

+1d).

Contribution

Problem Definition. We study two variants of the problems based upon the
definition of the outlier. For a set � of n imprecise points, the first type of
problem we study is to locate n − k (for a given k) points on distinct squares
(or disks), such that the diameter, the radius of the smallest enclosing circle, or
the area of the smallest axis-aligned bounding box of the resulting points gets
minimized. The excluded k squares are considered as the outliers.

In the covering version, we study the case where the radius of the SEC or
the area of the AABB needs to get minimized but they should cover the area of
at least n − k squares (against the previous version, that stabbing n − k regions
suffices). In the maximization version of the diameter problem, the selected n −
k points have the largest possible diameter among all possible choices. More
formally we study the following problems:

168 V. Keikha et al.

Fig. 2. (a) A set � of uncertain points. (b) There exists a gap between U(α�) (shown
in red) and L(α�) (shown in blue). (c) For k = 1, the outlier which narrows the
uncertainty gap is Ri, i.e. the uncertainty gap of �′ = � \ Ri is minimized among all
choices of �′. (Color figure online)

Problem 1. Let � = {R1, . . . , Rn} be a set of n squares (or disks), and let k < n
be a positive integer. The objective is to find a set P of placement of points on
n−k distinct squares such that the diameter, the radius of the SEC, or the area
of the AABB of those points is minimized among any other choices of P .

Problem 2. Let � = {R1, . . . , Rn} be a set of n squares (or disks), and let k < n
be a positive integer. The objective is to find a circle with the smallest radius
(or a smallest area AABB) such that the circle (or the AABB) covers the area
of at least n−k squares. In the diameter problem, we need to select n−k points
on distinct squares such that the selected points realizes the largest possible
diameter among all possible choices.

We refer to the deleted k squares as the first-type outliers. An example of the
first-type outliers in the minimization problems is illustrated in Fig. 1.

For a measure α on a set � of imprecise points, let U(α�) and L(α�), respec-
tively, denote the upper and the lower bound on the size of α for any placement
of points on �. See Fig. 2(b) for an illustration. We call the range U(α�)−L(α�)
uncertainty-induced-gap or simply uncertainty gap.

In the second-type outlier detection problem, we should identify k outliers
based upon this observation that the value of the uncertainty gap (for a given
measure, the difference between the size of the largest and the smallest value)
gets minimized. The second-type outliers are those k regions that narrow this
gap the most; in the sense that the smaller uncertainty gap results in the smaller
range of a specific measure on different placements.

To define the second-type outliers more formally, let �∗ ⊆ � be a set of n−k
squares such that � \ �∗ determines the set of the second-type outliers. Then
U(α�∗)−L(α�∗) has the smallest possible value among all possible choices of �∗.
See Fig. 2 as an example, in which the difference between the largest- and the
smallest-area AABB determines the uncertainty gap. Indeed, in the second-type
outliers, we look for a set of n−k uncertain points, in which, for a specific extent
measure, any of the placement of the points on those regions have almost the
same extension. In other words, the different placement of the points on �∗ have

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 169

Fig. 3. (a) The axis-extreme squares (shaded squares), and convex chains. Case (iii) of
the smallest diameter with two vertices at Rb and Rr, and two vertices at ChTL and
ChTR. (b) case (i). (c) case (ii). In each case, the optimal placement is shown in purple,
and the diameter is denoted by solid line segment (in purple). (Color figure online)

the most similarity among other choices of �∗ in some sense. As a motivation,
one may use this definition to find a cluster of size n − k on �.

Our Results. Let � be a set of n squares/disks, and let k < n be a positive
integer. We show that the problem of locating n − k points on distinct squares
such that the size of the diameter of the selected points gets minimized takes
O(n5.5 log n) time (Sect. 2), locating n−k points on distinct disks (resp. squares)
such that the radius of the SEC of the selected points gets minimized takes
O(n2 log n) (resp. O(n3 log n)) time (Sect. 3). For large values of k, we introduce
a divide-and-conquer algorithm with running time O(n log n). The problem of
locating n− k points on distinct squares such that the area of the bounding box
of the selected points gets minimized takes O(n + k2(n − k)) time (Sect. 4). In
each particular problem, we also study the maximization/covering version and
the problem of computing the second-type outliers.

2 Minimum Diameter

Let � be a set of squares. The problem of computing the smallest diameter of �,
denoted by d∗, is computing a placement of n points on distinct squares such that
this placement has the smallest possible diameter among all possible choices [12].
Our objective is to find a subset �∗ ⊆ � of n − k squares such that the smallest
diameter of �∗ has the smallest possible value among all choices of �∗.

Löffler and van Krevel [12] proved that in the smallest diameter problem
on the squares, except for the four axis-extreme squares, we can discretize the
problem on the corners. In other words, they proved that the optimal placement
of any of the squares except for at most four squares always lies at a corner. They
defined the topmost axis-extreme square Rt as a square with the topmost bottom-
side. The left, bottom and right axis-extreme squares Rl, Rb, Rr are defined
analogously. See Fig. 3(a) as an illustration. Also, for Rt, the bottom side is the
candidate of the placement of a vertex of the smallest diameter [12], etc.

170 V. Keikha et al.

After computing the axis-extreme squares, the authors computed four convex
chains ChTL, ChTR, ChBL and TBR as we explain in the following: ChTL connect
the bottom right corner of the topmost square to the bottom right corner of
the leftmost square via a set of bottom right corners of the squares, such that
this path is convex and lies to the right of the supporting line of the directed
line segment connecting Rt to Rl. The other chains are defined analogously. See
Fig. 3(a) for an illustration. We call ChTL and ChBR opposite chains, and ChTL

and ChTR are consecutive chains, etc. Similarly, the pairs Rb, Rr, and Rr, Rt, etc.
are consecutive extreme squares. Computing these chains and the axis-extreme
squares takes at most O(n log n) time [12]. In [12] it is proven that the smallest
diameter d∗ may occur at multiple pairs of squares at the same time, but it can
have at most three different configurations:

Case (i): d∗ has two vertices at two opposite chains, see Fig. 3(b).
Case (ii): d∗ has one vertex at an axis-extreme square, in which this vertex is
in balance between two other vertices on two consecutive chains (or one chain),
in which case, the smallest diameter occurs at two pairs at the same time, such
that if we move the vertex on the axis-extreme square in either directions, it
becomes further from one of the vertices at a convex chain, see Fig. 3(c). We
explain this configuration for Rb. It is already proved that for Rb, a candidate
of the solution only lies on the top side, and the discrete set of candidate points
on the top side of Rb must be computed according to the vertices on ChTL and
ChTR, which takes O(n log n) time.
Case (iii): d∗ has two adjacent vertices on two consecutive axis-extreme squares,
such that they are connected to each other, and each of which is connected to
some vertices on a convex chain, in which case, the smallest diameter occurs
at three pairs at the same time; see Fig. 3(a). In this configuration, again, the
discrete set of candidate points of two axis-extreme squares can be computed
in O(n log n) time [12]. The symmetric configurations of each case will also be
treated at the same time.

Discrete Set of Points on Axis-Extreme Squares. For every possible place-
ment of a point on an axis-extreme square, there is one vertex on one of the
chains that are furthest away from it, and this determines a candidate for the
smallest possible diameter; as the axis-extreme point moves over its edge, this
furthest vertex can move only in restricted ways [12], which makes this possible
to compute a discrete set of points on a side of an axis-extreme square, such that
each of this set can have the complexity O(n) and can be computed in O(n log n)
time [12] (Lemma 4).

Algorithm. Observe that for the set �∗ of n−k squares of the smallest diameter,
we still have four axis-extreme squares. In each step of our algorithm, we first
fix four squares Rt, Rl, Rb and Rr as the axis-extreme squares of �∗, and ignore
all the squares that their right (resp. top) sides lie to the left (resp. bellow) of
the right (resp. top) side of Rl (Rb). Similarly, we also delete all the squares
which lie on an axis-extreme position with respect to Rr and Rt; see the hatched

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 171

Rr

Rt

Rl

Rb

b

r

G�′ : G�′ :

b

r

x

(a) (b)

y
x y

p

q

p

q

Fig. 4. (a) The graph G�′ for a selection of Rl, Rt, Rr and Rb as the axis-extreme
squares. (b) G�′ is a bipartite graph.

squares in Fig. 4. Let �′ ⊆ � denote the set which has Rt, Rl, Rb and Rr as the
axis-extreme squares. We solve the minimum diameter problem of each selection
of �′ independently, and we describe later that how one can determine whether
is �′ a proper n − k-subset or not.

First consider the handling of case (iii) on �′, in which the optimal solution
of the smallest diameter of n − k squares has two vertices at Rb and Rr. Note
that the symmetric possible cases on �′ can be treated similarly. Since we have
fixed Rt, Rl, Rb and Rr, we can compute ChTL, ChTR, ChBL and ChBR on �′,
and also the discrete set of points determining the candidate of the vertices of
the smallest diameter on Rb and Rr (using Lemma 4 [12]). Computing the chains
and the discrete sets takes at most O(n log n) time [12].

Since we are in case (iii), two vertices at Rb and Rr must be connected
directly. Let d denote the computed minimum diameter of �′, determined by a
segment that is connecting a pair b ∈ Rb and r ∈ Rr, and also by two other
connected pairs, each of which is connecting to b or r, as illustrated in Fig. 3(a)
and Fig. 4(a). Consider two circles Cb and Cr with radius |d|, centered at b and
r, respectively. If our selection is a valid choice for the axis-extreme squares of
�∗, there must be at least n−k distinct squares intersecting Cb ∩Cr, where each
of the pairwise smallest distances is at most |d|. Observe that the intersecting
squares by Cb ∩ Cr contribute a corner on Cb ∩ Cr. If a square contributes more
than one corner, we consider the closest corner to each of b or r, such that for
each square, we only consider one corner. Note that it is possible to distinguish
between different corners of the squares since we already know that the diameter
is at most d. See Fig. 3 as an illustration. Let P ′ denote the set that contains b, r
and all the (possibly selected) corners lying on Cb ∩ Cr. We make a graph G�′

172 V. Keikha et al.

on P ′, such all its vertices (lying on Cb ∩Cr) with a smaller pairwise distance of
|d|, will be connected together. Let G�′ denote the complement of G�′ .

Lemma 1. G�′ is a bipartite graph.

Proof. The vertices of P ′ which lie on only one side of br have a smaller distance
of |d|. Consequently, the vertices which are already connected to each other at
G�′ , have a further distance than |d|, and lie at different sides of br. Thus the
vertices at each side of br in G�′ determine a part of a bipartite graph. ��
Lemma 2. For a selection of b ∈ Rb and r ∈ Rr with distance |d|, and Rb, Rr ∈
�′, a maximum independent set of size (at least) n − k on G�′ determines a set
of n − k squares in which the diameter is at most |d|.
Proof. Lemma 1 implies that the vertices of G�′ that are connected to each
other lie on different sides of br since the vertices which lie on only one side
has a distance smaller than |d|, and they are not connected to each other at
G�′ . Such vertices would be determined by a maximum independent set on
G�′ . If the maximum independent set has a size at least n − k, the pairwise
distances of the candidates of this number of squares are at most |d|. The lemma
follows. ��

It is shown that an independent set of maximum size of a bipartite graph of
n vertices can be computed in O(n1.5 log n) time [1], in which a similar idea is
used for computing a subset with the smallest possible diameter. Thereupon, for
a fixed Rl, Rt, Rb and Rr, determining whether they introduce a valid instance
can be done in O(n1.5 log n) time, and the smallest possible value of d among
all possible configurations of case (iii) of � (by considering the freedom of the
axis-extreme squares) takes O(n5.5 log n) time.

In case (iii), in each selection of the extreme squares, 3 edges determine
d simultaneously, and we considered the existence of a solution of size n − k
around br. Let rp and qb denote the two other pairs. It is required to repeat
above procedure also for rp and qb; see Fig. 4(a).

For each selection of �′, we also consider the solutions of case (i) and case
(ii), and remember the minimum d for which there are n − k squares to realize
a diameter of size at most d. To consider the solution of case (i) on �′, we
consider all possible distinct pairs of the bottom left corners and the upper right
corners on ChTL and ChBR, respectively, as the candidates to determine d, and
construct the graph G�′ , as we discussed in case (iii). In case (ii), d will be
determined by a vertex on the discrete set of Rb and one vertex at ChTL and
one vertex at ChTR (or both vertices at one of these chains). The symmetric
configurations have the same statement.

Observe that case (i) and case (ii) also have at most O(n2) different candi-
dates for d, and can be treated with the same time cost of case(iii).

Theorem 1. Let � be a set of n squares. The problem of computing a subset of
n − k squares with the minimum diameter can be solved in O(n5.5 log n) time.

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 173

Maximization Problem. In the maximization version, the solution always
occurs at the corners of the squares and there is no need to compute the convex
chains [12]. We adjust our algorithm as explained below. First, fix four axis
extreme squares as before, and compute the set �′. We then solve the maximum
diameter problem on �′ [12] and compute d. Then check whether G�′ has an
independent of size n − k, if so, we update the maximum solution that we have
computed so far. It follows that the maximization version can also be solved in
O(n5.5 log n) time. As we discussed in the introduction, this algorithm does not
work on disks since we cannot compute the discrete sets on disks.

Second-Type Outliers. In the second-type outlier detection problem, a can-
didate of the optimal solution has two properties: (1) There exists a set �′ for
which the corresponding G�′ graphs on both the maximum and the minimum
possible diameter of �′ has an independent set of size (at least) n−k and (2) the
difference between the values of d for the maximum and the minimum possible
diameter of �′ has the smallest possible value among all other choices of �′.

To compute a set �′ of these properties, for each selection of �′, we solve both
the maximization and the minimization problems at the same time. If �′ justifies
both conditions, we keep it for the comparison with the other candidates.

Theorem 2. Let � be a set of n squares. For a given k, the problem of com-
puting a subset of size n − k that minimizes the uncertainty gap can be solved in
O(n5.5 log n) time.

3 Smallest Enclosing Circle with Outliers

In this section, we compute the smallest circle which is intersecting or covering
at least n − k regions of �. We first discuss the stabbing problem on a set of
disks, and then we generalize the idea to the squares. We also introduce a time
and space efficient divide-and-conquer algorithm for large values of k.

� Is a Set of Disks. The objective is to find a subset �′ ⊆ �, such that �′

intersects at least n − k disks and has the smallest possible radius among all
possible choices of �′. Observe that for a set of unit disks of radius r, solving the
problem on the center of the disks suffices. It is because the distance of the center
of the smallest n− k-enclosing circle (which is realized by �′) to the center of at
least one disk of �′ is at least r, otherwise, we still can reduce its radius. This
property holds for all possible n−k minimal enclosing circles of �. Consequently,
if we first solve the n − k-enclosing circles of the centers of the disks of � and
reduce the radius of the computed optimal solution by r, the resulting circle is
the SEC of n − k disks. From now on, we assume the disks have different sizes.

Our algorithm is based on the parametric search. Suppose we know the radius
of the smallest circle that intersects at least n − k squares equals r′. We enlarge
any disk Ri of radius ri to have the radius ri + r′. Observe that there is an
intersection point p on one of the enlarged disks R′

i, so that p has a ply n − k,
where the ply of a point is the number of distinct regions containing p. Here we

174 V. Keikha et al.

mean p lies in the common intersection of n − k disks. The intersection points
of the enlarged disks should be determined by at least two disks. Consequently,
we discretize the possible values of r′ to a set with complexity O(n2).

Algorithm. Let X denote the set of all candidates for r′, and let ci denote
the center of Ri. For any two disks Ri and Rj with j �= i, let r′ = |cicj |. If
r′ ≥ (ci − cj − ri − rj)/2 which means if we increase their radius by summing
with r′, Ri and Rj intersect, we add r′ to X. After sorting the elements of X,
we binary search on X to find the smallest r′ for which there is a point on the
boundary of a disk with ply n−k. In each iteration, we construct the arrangement
of the enlarged disks by an additive radius r′, and we consider the intersection
points of the boundary of all the disks to find a point with ply n−k. The optimal
solution would be determined by the minimum value of r′ for which there exists
a point with ply n− k in the arrangement of the enlarged disks. The complexity
of the vertices of the arrangement is O(n2), and a binary search for finding the
smallest r′ takes O(n2 log n) time and O(n2) space. Notice that we can extend
our algorithm to a set of squares, but for finding the exact location of the center
of n − k-enclosing disk, we need to solve a linear programming problem at each
iteration of the binary search, which increases the running time to O(n3 log n).
We remark that the discussed complexities can be improved slightly by using
the introduced oracles in [7] for the same problem on a set of points.

Theorem 3. Let � be a set of disks (resp. squares). The problem of finding a
subset of size n−k of � for which the smallest enclosing circle intersects at least
n − k regions and has the smallest possible radius can be solved in O(n2 log n)
(resp. O(n3 log n)) time and O(n2) space.

A Divide-and-Conquer Algorithm for Large Values of k

We design a time and space efficient algorithm for large values of k, that is based
on the divide-and-conquer technique and costs O(n) space and O(n log n) time.
We first describe the case where k = n − 3. Observe that we have a naive O(n3)
algorithm for this problem. In each iteration of the algorithm, we decompose the
set of squares into two subsets with equal (or almost equal) size by a vertical
line �. Let l∗ and r∗ denote the radius of the optimal solution of the left and the
right subsets of the squares, respectively, as illustrated in Fig. 5. Consider two
strips of length 2× min(l∗, r∗) to the left and to the right of �. We decompose
each strip to a set of cells of side length 2× min(l∗, r∗). Observe that each cell
intersects at most 5 squares since otherwise, we can construct a circle which is
intersecting three squares with a radius smaller than min(l∗, r∗) (on one side of
�). To find a solution that is smaller than min(l∗, r∗), we need to consider at most
5 adjacent cells of each cell of the strip. Let m denote the radius of the solution
on any 6 adjacent cells of the strip. Observe that m is an SEC with two or three
points on its boundary, with at least one point on each side of �. At most 30
squares can intersect 6 adjacent cells. Therefore, computing m takes O(n) time,
if we sort the squares (based on their bottom sides) according to y-coordinates,

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 175

�

r∗
l∗

4× r∗

Fig. 5. For k = n − 3, there could be at most 5 squares intersecting with a cell of
the strip; see the hatched cell. Here, the intersecting squares are points (degenerate
squares).

prior to the algorithm. This iteration returns min(l∗, r∗,m). If a sub-problem has
only two or three squares, we simply return the smallest stabbing circle. Then
T (n) = 2T (n/2) + O(n), and we conclude that the algorithm runs in O(n log n)
time and O(n) space. Observe that this algorithm carries over to disks and to
any k ∈ O(n), e.g., if k = n − 4, each cell cannot intersect more than 8 squares.

Largest Covering Circle with Outliers. We show that computing a smallest
n − k-enclosing circle which covers the area of at least n − k disks is LP-type.
Observe that this problem can be formulated as below

Min r

s.t. ||x − ci|| + ri ≤ r for i = 1, . . . , n,

where ci and ri are the center and the radius of Ri ∈ �, and x and r are the
center and the radius of the n − k-enclosing circle. According to Theorem 1.2.
of [14], above program can be reformulated to satisfy only k constraints in O(nkd)
time, where d equals the geometric dimension of the original problem (here
d = 2), and this would be performed by finding the optimal solution of O(k2)
independent LP-type problems. Therefore, this problem can be solved in O(nk2)
time. Moreover, this implies that computing k second-type outliers takes O(nk2+
n2 log n) time.

Theorem 4. The problem of computing the smallest circle which covers the area
of at least n − k disks can be solved in O(nk2) time.

4 Bounding Box

In the case where there exists a point in the common intersection of n − k
squares, the optimal solution to Problem 1 is a single point. This case can be
distinguished in O(n log n) time. From now on, suppose this is not the case. We
first look at the problem in R

1. First let I = {I1, . . . , In} be a set of n uncertain
points modeled as intervals. For a given k, the objective is to locate n−k points

176 V. Keikha et al.

on n−k intervals, so that the length of the interval that intersects n−k intervals
gets minimized. For a set � of squares (resp. intervals), let �∗

n−k (resp. I∗
n−k)

denote the smallest area bounding box (resp. shortest interval) that intersects
at least n − k squares (resp. intervals).

Lemma 3. Let I be a set of n intervals, and let k < n be any positive integer.
The interval of minimum length which covers at least n − k points from n − k
distinct intervals selects its left (resp. right) endpoint on the rightmost (rest.
leftmost) endpoint of an interval in I.

The lemma can be easily proved by contradiction.

Algorithm. Lemma 3 implies that we can discretize the problem on the end-
points. Then a sliding window idea can be applied to solve the problem. Sup-
pose we have sorted and constructed two sorted lists

←−
I (increasing order) and−→

I (decreasing order) of the endpoints of k distinct intervals, from the begin-
ning and the end of I. For a point pi ∈ ←−

I , the candidate point qj ∈ −→
I has

index n − k − i. The algorithm and computing the partially ordered sets take
O(n + k log n) time [6].

2-d Case. Now let � = {R1, . . . , Rn} be a set of squares, the objective is to locate
n − k points on n − k distinct squares such that the area of the smallest AABB
of at least n − k squares gets minimized. It can be shown that Lemma 3 carries
over to the squares, i.e., only the sides of the squares need to be considered.

Observation 1. For any value of k, �∗
n−k is entirely located within �∗

n.

The same argument also holds for I∗
n−k and I∗

n. Similar to the 1-d case, a
sliding window algorithm solves the problem, in which we try all possible ways
to delete k squares from four directions. We start from �∗

n, and try to shrink it
optimally.

The first candidate of being an outlier from the top direction is the square
with the topmost bottom side, since removing any other square does not influence
the top side. Also, any other potential outlier from the other 3 directions has
the same property. We first compute the k-th square with topmost bottom side
in linear time. Let Rt′ denote it. Then we compute all the squares which have
a higher bottom side than Rt′ , and compute a (decreasing) sorted list of them.
We similarly compute three other sorted lists of distinct sides of the squares in
other directions, each of them consists of k squares. This takes O(n + k log n)
time.

W.l.o.g, in each step of the algorithm we first try removing some squares
from the left and right, and then from top and bottom. If we need to remove
m squares from left and right, it can be done in m + 1 different ways. Then the
remaining k − m squares can be removed in k − m + 1 different ways. Checking
whether each candidate square is already removed or not can be easily done by
assigning a true/false flag to each square. Considering the freedom of the choices
in each step, the optimal solution can be found in O(n + k2(n − k)) time.

Cause I’m a Genial Imprecise Point: Outlier Detection for Uncertain Data 177

Theorem 5. For a given set � of n squares and a positive integer k < n, the
problem of choosing n−k squares such that the smallest AABB of those squares
has the smallest area can be solved in O(n + k2(n − k)) time.

The Covering Bounding Box. In both 1-d and 2-d cases, we again discretize
the problem on the endpoints of the intervals or the sides of the squares, and
adjust the minimization algorithms for the covering versions. In particular, in
R

1, the interval of minimum length that covers at least n − k distinct intervals
completely selects its left (resp. right) endpoint on the leftmost (rest. rightmost)
endpoint of an interval in I, etc. All the extensions to the disks are obvious.

Second-Type Outliers. In the second-type outlier detection problem, (1) we
should find a set �′ for which �′ is intersecting with at least n − k squares
and (2) the difference between the area of the smallest-area intersecting and the
smallest-area covering AABB of �′ has the smallest possible value. Since both
the minimization and the covering problems can be solved in O(n + k2(n − k))
time, the second-type outliers of size k can be detected at the same time.

Acknowledgment. V. Keikha was supported by the Czech Science Foundation, grant
number GJ19-06792Y, and with institutional support RVO: 67985807.

References

1. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diam-
eter and related problems. J. Algorithms 12(1), 38–56 (1991)

2. Ahn, H.-K., et al.: Covering points by disjoint boxes with outliers. Comput. Geom.
44(3), 178–190 (2011)

3. Atanassov, R., et al.: Algorithms for optimal outlier removal. J. Discret. Algorithms
7(2), 239–248 (2009)

4. Bae, S.W.: Computing a minimum-width square or rectangular annulus with out-
liers. Comput. Geom. 76, 33–45 (2019)

5. Chan, T.M., Har-Peled, S.: Smallest k-enclosing rectangle revisited. Discret. Com-
putat. Geom. 1–23 (2020)

6. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S.J., Verbin, E.: Sorting and
selection in posets. SIAM J. Comput. 40(3), 597–622 (2011)

7. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related
problems. Comput. Geom. 4(3), 119–136 (1994)

8. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal poly-
topes. Discret. Comput. Geom. 11(3), 321–350 (1994). https://doi.org/10.1007/
BF02574012

9. Har-Peled, S., Mazumdar, S.: Fast algorithms for computing the smallest k-
enclosing circle. Algorithmica 41(3), 147–157 (2005)

10. Kaplan, H., Roy, S., Sharir, M.: Finding axis-parallel rectangles of fixed perimeter
or area containing the largest number of points. Comput. Geom. 81, 1–11 (2019)

11. Keikha, V., Löffler, M., Mohades, A.: A fully polynomial time approximation
scheme for the smallest diameter of imprecise points. Theor. Comput. Sci. 814,
259–270 (2020)

https://doi.org/10.1007/BF02574012
https://doi.org/10.1007/BF02574012

178 V. Keikha et al.

12. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010). Special Issue:
10th Workshop on Algorithms and Data Structures (WADS 2007)

13. Löffler, M.: Data imprecision in computational geometry. Ph.D. thesis, Utrecht
University (2009)

14. Matoušek, J.: On geometric optimization with few violated constraints. Discret.
Comput. Geom. 14(4), 365–384 (1995). https://doi.org/10.1007/BF02570713

15. Shenmaier, V.: The problem of a minimal ball enclosing k points. J. Appl. Ind.
Math. 7(3), 444–448 (2013)

https://doi.org/10.1007/BF02570713

A Worst-Case Optimal Algorithm
to Compute the Minkowski Sum

of Convex Polytopes

Sandip Das1, Subhadeep Ranjan Dev1(B), and Swami Sarvottamananda2

1 Indian Statistical Institute, Kolkata, Kolkata, India
sandipdas@isical.ac.in, info.subhadeep@gmail.com

2 Ramakrishna Mission Vivekananda Educational and Research Institute, Howrah,
Howrah, India

sarvottamananda@rkmvu.ac.in

Abstract. We propose algorithms to compute the Minkowski sum of
a set of convex polytopes in R

d. The input and output of the proposed
algorithms are the face lattices of the input and output polytopes respec-
tively. We first present the algorithm for the Minkowski sum of two con-
vex polytopes. The time complexity of this algorithm is O(dωnm) where
n and m are the face lattice sizes of the two input polytopes and ω is the
matrix multiplication exponent (ω ∼ 2.373). Our algorithm for two sum-
mands is worst-case optimal for fixed d. We generalize this algorithm for
r convex polytopes, say Pi, 1 ≤ i ≤ r. The time complexity of this gen-
eralization is O(min{dωNM, dωr

∏ |Pi|}) where N =
∑ |Pi| is the total

size of the face lattices of the r input polytopes and M is the size of
the face lattice of their Minkowski sum P1 ⊕ · · · ⊕ Pr. Our algorithm for
multiple summands is worst-case optimal for fixed d ≥ 3 and r < d.

1 Introduction

The Minkowski sum, initially defined by Hermann Minkowski [1864–1909], is
an important concept, useful in computational geometry, computer graphics,
robot motion planning, assembly planning, computer-aided design, computer-
aided manufacturing and various other fields. The abundant literature from the
late nineteenth century on the subject corroborates the importance and applica-
bility of the concept. Recently Das et al. [10] implicitly used the Minkowski sums
to compute the diameter, the width, the minimum enclosing/stabbing sphere,
the maximum inscribed sphere and the minimum enclosing/stabbing cylinder
for various types of inputs, some involving convex polygons/polytopes, for poly-
hedral distance functions [9]. The present algorithm was motivated by it.

The Minkowski Sum of two or more convex polytopes in R
d can be com-

puted efficiently by a simple application of the optimal convex hull algorithm
by Chazelle [6] or the output sensitive algorithm by Seidel [20]. The time com-
plexities are O(n�d/2�) and O(n2 + h log h) respectively for fixed d where n is
the total number of Cartesian sums of the vertices of the input polytopes and
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 179–195, 2021.
https://doi.org/10.1007/978-3-030-67899-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_14

180 S. Das et al.

h is the size of the resultant Minkowski sum. For the sub-linear output size, an
improved algorithm by Chan [5] can be used instead. The Minkowski sum com-
puting algorithm using the results by Chazelle is a worst-case optimal algorithm,
only when the summands and the sum, all are asymptotically worst-cases for the
convex hulls as well as for the Minkowski sum. The Minkowski sum of two convex
polygons in R

2 can be computed optimally in linear time by a well known algo-
rithm [4]. Bekker et al. [3] gave an optimal output sensitive algorithm, linear in
the output size, to compute the Minkowski sum of two convex polyhedra in R

3.
In the case of R

d, Fukuda et al. [14] presented an alternative non-optimal output
sensitive algorithm for enumerating the faces in the Minkowski sum of convex
polytopes. Their polynomial-time per-face algorithm did not improve upon the
method using Seidel’s O(n2+h log h)-time or Chan’s sub-linear sized convex hull
algorithm for output sensitive computation. Agarwal et al. [2], and later Fogel
et al. [12], devised the algorithms to compute the Minkowski Sum of non-convex
polygons in R

2 and non-convex polyhedra in R
3, respectively, using techniques of

decomposition of non-convex polygons and polyhedra, respectively, by Chazelle
et al. [7,8].

In addition to the algorithmic results above, there are also several combina-
torial results on the Minkowski sum of convex polytopes in R

d. Grunbaum [16]
proved that in the worst case, for d ≥ 3, the number of faces of the Minkowski
sum of two convex polytopes is the product of the number of faces of its two
summands. This important fact contributes for the optimality of our proposed
worst-case optimal algorithm. Adiprasito [1], Gritzmann et al. [15], Karavelas
et al. [17], Weibel [21] and others derived various upper and lower bounds for
the Minkowski sums.

The different approaches to compute the Minkowski sum of convex polytopes
are to compute convex hulls [5,6,20], to compute the boundary faces of the
resultant polytope using LPP [13,14] or to use convolutions [3,4,19,22]. The
convolution method is well understood in the case of R

2 and R
3 but not in

higher dimensions. In this paper, we compute the Minkowski sum of convex
polytopes in R

d using their face lattices [5,6,11,20], defined in Sect. 2, as input
and output for traversal. Our traversal of the Minkowski sum is similar to the
convolution method.

Our contributions in this is paper are two worst-case optimal algorithms for
fixed d to compute the face lattices of Minkowski sums for two and multiple
convex polytopes, respectively, in R

d. We are able to achieve worst-case optimal
bounds in both the algorithms by devising efficient criteria to check the bound-
ary faces of the Minkowski sum. For this check, we first characterize the faces
and the incidences of the Minkowski sum in terms of the face lattice by pro-
viding algorithm specific necessary and sufficient conditions for faces (Lemma1,
Lemma 2 and Lemma 3) and for incidences (Lemma 6). A novel use of Lemma 4
is crucial to avoid duplicate faces. We use these characterizations to effectively
remove the duplicate or invalid faces and incidences, on the one hand, and iden-
tify the valid faces and incidences of the Minkowski sum uniquely, on the other.
Secondly, we augment the face lattices in a novel way. This allows us to apply

Minkowski Sum of Convex Polytopes 181

the sufficiency conditions in O(dω) time per candidate face of the Minkowski
sum (Lemma 2(ii) and Lemma 3(ii)). The quantity ω, ω ∼ 2.373, in dω is the
matrix multiplication exponent [18] and dω is the complexity of computing the
rank of the d × 2d matrices in the two algorithms. The other significant points
to note in this paper are an efficient face lattice traversal method independent
of adjacency information and an effective table search for finding duplicates or
identifying new faces (Sect. 4.2).

A brief summary of time complexities in our algorithms is as follows. Let P
and Q be two convex polytopes in R

d with face lattice sizes n and m, respectively.
Our algorithm for two summands computes the face lattice of the Minkowski
sum P ⊕ Q of P and Q in O(dωnm) time (Theorem 2). This running time is
worst-case optimal for any fixed d ≥ 3. For d ≤ 2, a trivial modification to
our algorithm suffices to compute the face lattice of P ⊕ Q in O(n + m) time.
Furthermore, let P1, P2, . . . , Pr be r convex polytopes in R

d with respective face
lattice sizes n1, n2, . . . , nr. Let N =

∑r
i=1 ni and let M denote the size of the

face lattice of the Minkowski sum,
⊕r

i=1 Pi, of the r polytopes. We generalize our
previous algorithm to compute the face lattice of the Minkowski sum

⊕r
i=1 Pi

of r summands in time O (min{dωNM, dωr
∏r

i=1 ni}) (Theorem 3). This running
time is optimal for fixed d when r < d and is our primary contribution in this
paper. Note that the size of the Minkowski sum for r ≥ d is bounded by the sum
of sizes of (d − 1)-subset Minkowski sum among r polytopes.

The remaining paper is organized as follows. In Sect. 2 we provide a few
preliminary definitions and notations used throughout the paper. In Sect. 3 we
describe an augmentation to the input face lattices and develop some basic
methods needed by our algorithms. Next, in Sect. 4 we present our first algorithm
to compute the Minkowski sum of two convex polytopes in R

d. In the same
section, we also present various geometric results on the face lattice of convex
polytopes and their Minkowski sum that prove the correctness and complexity
of our algorithm. In Sect. 5 we generalize the method used in our first algorithm
to efficiently compute the Minkowski sum of multiple convex polytopes in R

d.

2 Preliminaries

Let S1 and S2 be two sets of points in R
d. The Minkowski sum of these two

sets, denoted by S1 ⊕ S2, is defined as the set {p | p = p1 + p2,∀p1 ∈ S1 and
∀p2 ∈ S2} where p1 + p2 denotes the sum of the positional vectors of p1 and p2.
This definition is equally applicable to the Minkowski sum of convex polytopes
or, as a matter of fact, to any geometric objects as they can be equivalently
seen as sets of points. We assume, for the sake of simplicity, that the origin of
reference lies strictly in the interior of all the input convex polytopes, i.e, not
on the boundary or in the exterior. However, note that the illustrations in the
paper, for the sake of clarity, are in general positions.

It is a well-known fact that the Minkowski sum of two convex sets is also
convex. Extending this to polytopes we have the following observation (see Fig. 1
for an example).

182 S. Das et al.

Observation 1. The Minkowski sum of any two convex polytopes is also a convex
polytope.

Fig. 1. Minkowski sum of two convex
polytopes in R

3.

a

b

c

d

e

f

g
h

ab

abcd

strict relative interior points

P

φ

a b c d efgh

ab

abcd

P

bc cd ad ae bf cg dh he hg gf fe

abfe bcgf cdhg adhe hefg

Fig. 2. Face lattice L (P) as a Hasse
diagram of the cuboid P . For example,
ab ≺ abcd as well as ab � abcd.

Let S be a set of points in R
d. The affine space of S, denoted by affine(S), is

the affine combinations of the points in S, i.e., the set {p | p =
∑k

i=1 λipi,∀i, 1 ≤
i ≤ k, pi ∈ S, λi ∈ R and

∑k
i=1 λi = 1}. Every affine space A has an associated

affine dimension which is the cardinality of its basis and is denoted by dim(A).
In our algorithms we represent an affine space A by a point in A and any of its
several bases consisting of dim(A) number of basis vectors.

We represent a hyperplane h in R
d by an equation of the form �x ·�n = c, where

�n is the normal to h and c is a fixed constant. The two open halfspaces determined
by h are �x · �n > c and �x · �n < c and are denoted by h+ and h− respectively. We
say that a hyperplane h is a supporting hyperplane of a polytope P if P ∩h 	= ∅

and P ∩ h+ = ∅, i.e., P touches h and its interior lies completely in h− because
of our assumption that origin lies in the interior.

A nontrivial face of a polytope P is the intersection of P with a supporting
hyperplane h of P . The only two trivial faces of P are the face P itself and
the null face φ. Observe that the faces of any convex polytope are also convex.
Moreover, for a face f and a supporting hyperplane h of P if f = P ∩ h we call
h the supporting hyperplane of P on f . We have the following observation.

Observation 2. Every supporting hyperplane h of a d dimensional polytope P
corresponds to exactly one face of P and every nontrivial face f of P has one
supporting hyperplane if f is a d − 1 dimensional face or infinite supporting
hyperplanes otherwise.

We call a (k − 1)-dimensional face, say f , of a k-dimensional face F a facet
of F . We denote this by f ≺ F and F � f . A face f is called a subface of a face

Minkowski Sum of Convex Polytopes 183

F and F a superface of f if there exists a sequence of faces f1, f2, . . . , fi (i can
be 0) such that f ≺ f1 ≺ f2 · · · ≺ fi ≺ F .

Every face f of P has a corresponding affine space affine(f) and a corre-
sponding affine dimension dim(f). For brevity, we use the same terms that we
used for point sets earlier. In subsequent sections, we represent an affine space
A, with dim(A) = k, by the tuple 〈�p, �u1, �u2, ..., �uk〉, if the affine space A corre-
sponds to the parametric equation �x(�t) = �p +

∑k
i=1 ti · �ui where �p is the vector

representation of a point in A, the set { �u1, �u2, . . . , �uk} is a vector basis of A, the
vector �t = (t1, t2, . . . , tk) is the parameter with �t ∈ R

k and �x(�t)’s are points of
the affine space A.

We assume that the input consists of the face lattices of summand convex
polytopes and either H-representations or the V-representations of the sum-
mands. We briefly describe the face lattice of any convex polytopes and a linear-
time augmentation of any face lattice, that we need for the algorithm, in the
next section.

3 Augmented Face Lattice of Convex Polytopes

3.1 Face Lattice of a Convex Polytope

Let P be a convex polytope of affine dimension δ, where δ ≤ d, i.e. the polytope
P may be in a subspace of R

d. We first define the face lattice [5,6,11,20] of any
convex polytope for reference.

Definition 1. The face lattice, denoted by L (P), of a convex polytope P is a
Hasse diagram where the nodes are faces of P including a unique null face φ and
the polytope P . Moreover, the reflexive, anti-symmetric and transitive binary
relation ≺∗ or, equivalently, �∗, the transitive closure of ≺ or �, respectively,
is used as the partial order relation for the Hasse diagram.

For our purpose, we represent the Hasse diagram of the face lattice as a
layered graph in the algorithm, with the nodes arranged in layers according to
the dimension k, −1 ≤ k ≤ δ, of their faces. See Fig. 2 for the face lattice of a
cuboid in R

3. Though we need additional description of the faces in the nodes in
many applications, in this paper, we only need either the H-representation of the
polytope stored in (δ − 1)-dimensional faces, i.e. facets, or the V-representation
of the polytope stored in 0-dimensional faces, i.e. vertices. Any representation
that allows us to augment the face lattice described below is acceptable. We
briefly describe the data structure representing L (P) below.

3.2 Data Structure for a Face Lattice

For convenience, we denote the set of all faces of the polytope P by F (P) and
its subsets consisting of faces of dimension k by Fk(P), −1 ≤ k ≤ δ. The face
lattice of P has nodes arranged in (δ+2) layers where the nodes in the k-th layer
represent the faces in Fk(P). First, we denote the face corresponding to a node x

184 S. Das et al.

by face(x), and, vice versa, the node corresponding to a face f by node(f). In this
paper, due to one-to-one mapping, the nodes and their corresponding faces refer
to each other uniquely and we use them interchangeably in the discussions. Next,
for the sake of brevity, dim(x) and affine(x) for a node x denote the dimension
and affine space respectively of the face face(x). We store dim(x) and the tuple
representing affine(x) in each node x, except in the node of the null face φ, for
which dim(x) = −1. Each node x also maintains two lists, super(x) and sub(x)
where the list super(x) is the list of all nodes x′ such that face(x′) � face(x)
and sub(x) is the list of all nodes x′ such that face(x′) ≺ face(x). We also store a
strict relatively interior point of the face of the node, denoted by point(x), in each
node x, except the node of null face φ. By relative interior, we mean that the
point is an interior, i.e. non-boundary, point of face face(x) relative to its affine
space and by strict, we mean that the point is not a relative interior point of any
of the proper subfaces of face(x). See Fig. 2 for illustration of a strict relatively
interior point. In the discussion below, we show how we augment the face lattice
L (P) to include point(x) and affine(x) in each node x, in time linear in the size
of the face lattice. We assume that the face lattice inherently has dim(x), sup(x)
and super(x) stored in its each node x.

3.3 Augmenting a Face Lattice

In literature, the V-representation of the convex polytope P is the minimal set of
points whose convex hull is the polytope P . An alternative representation is the
H-representation of P which is the set of minimal halfspaces whose intersection is
the polytope P . Both the representations equivalently and uniquely describe the
polytope P for our purpose. The conversion from one representation to another
requires a simple top-down or bottom-up traversal of the face lattice. We can
do this in linear time. Thus, we can augment the face lattice of the polytope P
by the method given below, if the input contains either the H-representation or
the V-representation of the polytope P .

In the following discussion, we assume that the V-representation of the convex
polytope P , equivalently the coordinates of all the vertices in F0(P), is provided.
We do a bottom-up traversal on L (P) to augment the face lattice with point(x)
for each node x. Initially, for each node x corresponding to vertices, i.e. the faces
in F0(P), we set point(x) to be the coordinates of the vertex determined by the
V-representation. Then at intermediate steps, at each node x with dim(x) > 0
we arbitrarily select two nodes y and y′ in the list sub(x) and set point(x) to be
the middle point (point(y) + point(y′))/2. We can easily show that point(x) is a
strict relative interior point of face face(x). It is interior because of convexity,
relative because of being an affine combination of points in subfaces and strict
because the affine spaces of distinct subfaces are distinct.

Next, we show how we augment in linear time the face lattice to include the
affine spaces of all the nodes required by our algorithm.

As mentioned earlier the parametric equation of the affine space of a k-
dimensional face f is represented by the (k + 1) tuple 〈�p, �u1, �u2, . . . , �uk〉. In this
representation, �p is the vector representing a strict relative interior point of f and

Minkowski Sum of Convex Polytopes 185

the set { �u1, �u2, . . . , �uk} is a basis of affine(f). We show below how we compute
the tuple 〈�p, �u1, �u2, . . . , �uk〉 representing the affine space affine(x) for any node
x in L (P). We first make the following observation.

Observation 3. If f and g are two faces of P such that f � g then any point in
the strict relative interior of the face f is affinely independent of the points in the
face g, i.e., no strict relative interior point of the face f is an affine combination
of points in the face g.

In short, the observation above is the consequence of the fact that the affine
dimension increases as we add the strict relative interior points of the superfaces.
Thus, in the pseudocode below, we compute the affine space of each of the
subfaces of face(x) in L (P) recursively, in linear time.

procedure AugmentAffine(x)
if affine(x) is unset then

if x is a vertex then
Set affine(x) for the vertex appropriately;

else
foreach y ∈ sub(x) do

AugmentAffine(y)
Choose a node y arbitrarily from sub(x);
Set affine(x) as affine(y) with additional basis vector
point(y) − point(x);

The correctness of the recursive algorithm follows from the observation above.
We, therefore, have the following theorem.

Theorem 1. We can augment the face lattice L (P) of the convex polytope P
with affine dimensions, affine spaces and strict relative interior points in linear
time for either the V-representation or the H-representation of the polytope P .
The space required is O(d2 · |L (P)|).

Once we compute the affine spaces of the faces of the summand convex poly-
topes, we can readily compute the affine dimension and the affine space of the
Minkowski sum of the faces, which may be less than the sum of individual dimen-
sions of the summand faces. This is required to determine if the sum is a valid
face and then, if it is, to determine the appropriate layer of the face lattice of
the sum. We show next how we compute the affine dimension.

3.4 Determination of the Dimension of the Minkowski Sum of Faces

Let P and Q be two convex polytopes with face lattices L (P) and L (Q).
Let x be a node in L (P) and x′ a node in L (Q). We show in pseudocode
below, how we determine the affine dimension of face(x) ⊕ face(x′). We note
that face(x)⊕ face(x′) may not be a valid face of P ⊕Q. It may be a partial face
or it may partially lie inside P .

186 S. Das et al.

We also note that for any two faces f in P and g in Q the affine space
affine(f ⊕g) = affine(f)⊕affine(g). This follows from the definition of the affine
spaces and the Minkowski sum. So, briefly, we consider the combined set of
affinely independent vectors in affine(x) and affine(x′) and return the resulting
rank as the dimension of f ⊕g. The function Rank() in our algorithm computes
the rank of a matrix using the fastest rank determination algorithm. We give
below the pseudocode to determine the dimension of f ⊕ g where f = face(x)
and g = face(x′) in L (P) and L (Q) respectively.

function Dim(x, x′)
〈�p, �u1, �u2, . . . , �uk〉 ← affine(x);
〈�p′, �u′

1,
�u′
2, . . . ,

�u′
k′〉 ← affine(x′);

r ← Rank[�u1 �u2 . . . �uk
�u′
1

�u′
2 . . . �u′

k′];
return r;

The runtime complexity of the function Dim is dω where ω is the matrix
multiplication exponent [18]. We will use this time complexity later. The cor-
rectness of the function above follows from the fact that affine(A ⊕ B) =
affine(A) ⊕ affine(B) for any two sets of points A and B. We use the meth-
ods described above in the subsequent sections to compute the Minkowski sum
of convex polytopes.

4 The Minkowski Sum of Two Convex Polytopes

Let P and Q be two convex polytopes in R
d with the face lattice representa-

tions L (P) and L (Q). The face lattice sizes are n and m respectively. In this
section, we present an O(dωnm)-time and O(d2nm)-space algorithm to compute
the Minkowski sum P ⊕ Q. In Sect. 4.1 we first present some important charac-
terizations for the Minkowski sum P ⊕ Q necessary for our algorithm. We then
present the main algorithm of the algorithm in Sect. 4.2.

In this section, we assume unless mentioned otherwise, that the affine dimen-
sion of the polytope P ⊕Q, i.e., dim(P ⊕Q), is d. Otherwise, if dim(P ⊕Q) < d,
we compute the Minkowski sum in lower affine dimension by projecting the input
to the affine space of the polytope P ⊕ Q.

4.1 Necessary and Sufficient Conditions for the Faces of P ⊕ Q

First we provide a necessary condition for the faces of the polytope P ⊕ Q. The
following lemma is a well known fact so the proof is omitted.

Lemma 1 (Necessary Condition for a face F in P ⊕ Q). Let P and Q be
convex polytopes. If F is any face of P ⊕ Q then there exist a unique face f in
P and a unique face g in Q such that F = f ⊕ g.

Minkowski Sum of Convex Polytopes 187

As a consequence of Lemma 1, all the faces of the polytope P ⊕ Q are of the
form f ⊕ g where f is a face of the polytope P and g is a face of the polytope
Q. However, not all possibilities of f ⊕ g are faces of the polytope P ⊕ Q. To
remove the invalid possibilities we need sufficient conditions. By definition of a
face, for f ⊕ g to be a face of P ⊕ Q, a sufficient condition is that there must be
a supporting hyperplane h of f ⊕ g. We state the condition below.

Observation 4 (Sufficient condition). Let f and g be faces of convex polytopes
P and Q respectively. The Minkowski sum f ⊕ g is a face of polytope P ⊕ Q,
if there exists a supporting hyperplane h such that (P ⊕ Q) ∩ h+ = ∅ and
(P ⊕ Q) ∩ h = f ⊕ g.

This condition, however, can not be efficiently checked. So it is not practical,
We need a computationally efficient sufficient condition. Therefore we present
alternative conditions. First, we suggest a sufficient condition for f ⊕ g to be a
facet of polytope P ⊕ Q and then we generalize the condition for other lower
dimensional faces. For facets of P ⊕ Q, the condition is simplified because there
is only one choice of supporting hyperplane h, h = affine(f ⊕ g), since the affine
dimension will be d − 1 because of our assumption, i.e., the affine space will be
the supporting hyperplane because it happens to be the only choice. Now, the
hyperplane h will be a supporting hyperplane of f ⊕ g, if, equivalently (1) every
point of the polytope P ⊕Q, other than of f ⊕g, is in h−, (2) every vertex in the
polytope P ⊕Q, other than the vertices of f ⊕g, is in h−, since due to convexity
every point in P ⊕Q is a convex combination of its vertices, or (3) every strictly
relative interior point of possible fi ⊕ g and f ⊕ gj are in h− where fi’s and gj ’s
are the immediate superfaces of f and g respectively. The criterion in (3) can
be computed efficiently and the equivalence of the three criteria can be proved.
Summarily, the idea of the proof is that if f ⊕g is not a facet then at least one of
the several f ⊕ gj ’s and fi ⊕ g’s will have its interior outside h−. We present the
sufficient condition of (3) in the following lemma. We omit the proof because of
space constraint.

Lemma 2 (Sufficient condition for a facet f ⊕g in P ⊕Q). Let f be a face
of a convex polytope P and g be a face of a convex polytope Q. The Minkowski
sum f ⊕ g is a facet of polytope P ⊕ Q, if

(i) dim(f ⊕ g) = d − 1, and
(ii) ∀f ′, f ′ � f , point(f ′)+point(g) ∈ h− and ∀g′, g′ � g, point(f)+point(g′) ∈

h− where h is affine(f ⊕ g).

Once we have a sufficient condition for the facets, we can get sufficient condi-
tions for the other faces by treating them as the facets of any of their immediate
superfaces. We can effectively and efficiently do this by checking the conditions
relative to the affine space of the immediate superfaces. So, if we are able to com-
pute all the facets of P ⊕Q correctly, then we can also compute the (d−2)-faces
of the polytope P ⊕Q by checking the sufficient conditions, then we can continue
to (d − 3)-faces, and so on. This will allow us to check sufficient conditions for

188 S. Das et al.

the faces of all affine dimensions. We show later how we do this efficiently. We
present the generalized sufficient condition in the lemma below. As mentioned
earlier, the face f ⊕ g, in the lemma must be part of a known face of P ⊕ Q to
be its facet. The proof, which is similar to that of Lemma 2 is omitted.

Lemma 3 (Sufficient condition for a face f ⊕ g in P ⊕ Q). Let F ⊕ G be
a face of polytope P ⊕ Q where F and G are faces of convex polytopes P and Q
respectively. Let f and g be any faces of P and Q, such that f ≺ F and g ≺ G
respectively and let dim(f ⊕ g) = dim(F ⊕ G) − 1 = k. Then f ⊕ g is a facet of
F ⊕ G, and hence is a face of P ⊕ Q, if,

(i) dim(f ⊕ g) = k, and
(ii) ∀f ′, F � · · · � f ′ � f , point(f ′)+point(g) ∈ A− and ∀g′, G � · · · � g′ � g,

point(f) + point(g′) ∈ A− where A is the hyperplane, A = affine(f ⊕ g), in
the relative subspace affine(F ⊕ G), i.e., in R

k+1.

valid

invalid

valid facet: bc ⊕ BC

P ⊕ Q

a

b c

de

A

B C

D

EF
P Q

invalid facets: b ⊕ BC , ab ⊕ B, ae ⊕ B

Fig. 3. Invalid sums f ⊕ g can be par-
tial facets, partially on the boundary or
completely in the interior.

O

f f ′

g

f ⊕ g
f ′ ⊕ g

Fig. 4. Invalid partial facet f ⊕ g not
satisfying the sufficiency condition, i.e.
point(f ′ ⊕ g) /∈ h−.

The necessity and sufficiency lemmas presented above, unfortunately, do not
remove the possibility that same face of the polytope P ⊕Q is computed multiple
times. We need an efficient method to identify duplicates. Even after identifying
duplicates correctly, we also need an efficient method to add missing incidences
at a later stage correctly. First we note, owing to Lemma 1, that multiple fi⊕gi’s
can not give the same face of P ⊕ Q. Second, if fi ⊕ gi’s refer to partial faces
on the boundary of P ⊕ Q with same affine space then the suprema of fi’s and
gi’s will be faces F and G respectively, such that F ⊕ G is a face of P ⊕ Q with
the same affine space. This allows us to add a node corresponding only to the
Minkowski sum of suprema, F ⊕ G, when we do a top down computation. We
present this property in the following lemma needed in the algorithm to halt the
top down processing (Figs. 3 and 4).

Minkowski Sum of Convex Polytopes 189

Lemma 4. Let f be a face of P and g be a face of Q such that affine(f ⊕g) = A.
Let h be a supporting hyperplane on A, i.e., (P ⊕Q)∩h ⊆ A, and (P ⊕Q)∩h+ =
∅. Then there exist suprema faces F and G of P and Q respectively, such that
f ≺ · · · ≺ F , g ≺ · · · ≺ G respectively, affine(F ⊕ G) = A and F ⊕ G is a face
of P ⊕ Q.

The proof of Lemma 4 is omitted. An immediate consequence of the lemma is
all fi ⊕ gi’s that account for partial faces will have a proper face F ⊕ G which is
unique and therefore in a top down computation, once we compute a proper face
of P ⊕ Q, we neither encounter any partial faces nor we compute the same face
twice. This is the consequence of the following lemma which we state without
the proof.

Lemma 5. Let f and f ′ be two faces of P and g and g′ be two faces of Q. If
f ⊕ g and f ′ ⊕ g′ correspond to the same face of P ⊕ Q then f ≡ f ′ and g ≡ g′.

Consequently, if we compute a suprema face of two summands, we are sure
that there are no other summands for the same suprema face. Thus there would
be no partial faces, no invalid faces and no duplicate faces. The only task that
remains in the present section is the characterization of incidences of the com-
puted faces. The incidences of the facets to P computed by the application
of Lemma 2 are obvious. Following Lemma1 and Lemma 3, we only need to
implement the remaining incidences by the application necessary and sufficient
condition for the facets of the faces of the Minkowski sum P ⊕ Q in the algo-
rithm. We present the necessary and sufficient condition for these incidences in
the following lemma.

Lemma 6 (Necessary and Sufficient Condition for an Incidence f⊕f ′ ≺
g ⊕ g′ in P ⊕ Q). Let f and g be faces of P and f ′ and g′ be faces of Q where
P and Q are convex polytopes. Then f ⊕ f ′ ≺ g ⊕ g′ iff

(i) f ⊕ f ′ and g ⊕ g′ are faces of P ⊕ Q,
(ii) dim(f ⊕ f ′) = dim(g ⊕ g′) − 1, and
(iii) f ≺ · · · ≺ g and f ′ ≺ · · · ≺ g′

The above lemma can be proved by analyzing the supporting hyperplanes
of faces f ⊕ f ′ and g ⊕ g′. The immediate consequence of this lemma is that
whenever we compute a facet of a face of P ⊕ Q we can immediately add an
incidence relation whether it is newly computed or not. The lemma also ensures
that we do not miss any incidences during the execution of the algorithm.

We describe the algorithm to compute the Minkowski sum in the next section.

4.2 The Minkowski Sum Algorithm

To simplify the discussion we treat the nodes in the face lattices as the corre-
sponding faces. Our algorithm computes the faces of P ⊕ Q and the incidences
layer by layer in a top-down manner. At each layer k, −1 ≤ k ≤ d, we main-
tain a list of the computed nodes in Fk(P ⊕ Q). For each computed node z in

190 S. Das et al.

gf
f ′

g ′

f ′

f
g ′

g

P Q

P ⊕ Q
f ⊕ g

f ⊕ g ′f ′ ⊕ g

.

...

...

f

g

sum(f , g)

Fig. 5. Identifying replication using
the table sum.

P Q

P ⊕ Q

Fig. 6. Worst case: Even in R
3, the

number of faces, i.e., sum of vertices,
edges and facets, in P ⊕ Q can be
Θ(nm).

F (P ⊕ Q), we store its summand nodes x and y from L (P) and L (Q) respec-
tively. We create a 2-dimensional table sum that takes as indices two nodes x
in L (P) and y in L (Q) such that the table entry maps to the node z. Other
table entries will be empty. This table is updated whenever a new node is added
to L (P ⊕Q). See Fig. 5. Internally, we create unique consecutive indices for the
nodes.

We describe the computation of P ⊕ Q below. Initially, the set Fd(P ⊕ Q)
contains a single node representing the trivial face P ⊕ Q. We compute the
set Fk(P ⊕ Q) inductively from the already computed set Fk+1(P ⊕ Q), from
k = d − 1 down to 0, as follows. For each node z ∈ Fk+1(P ⊕ Q) we look for
the facets of z among the candidate Minkowski sums involving the subfaces xi’s
and yj ’s of the summands x and y of the sum z. A sum xi ⊕ yj is a candidate
sum if dim(xi ⊕ yj) is dim(z)−1. To verify whether a candidate sum, i.e xi ⊕ yj ,
is a new valid facet of z we need to check two conditions: (1) whether the sum
satisfies Lemma 3 and (2) a node corresponding to the sum does not already
exist in L (P ⊕ Q). Condition (1) depends only on the immediate superfaces of
xi and yj and the affine space of z. This can be readily checked since we have all
necessary information with us from the previous iteration. Condition (2) can be
verified by checking the table sum(x, y). Once the sum of xi⊕yj is determined to
be a valid immediate subface of z we create a node z′ in L (P ⊕Q) corresponding
to the sum of xi and yj along with proper incidences and update the table sum
as per Lemma 6. During traversal if we reach either a k−1 dimensional candidate
node or a non-facet k dimensional candidate node we do not traverse to further
subfaces of x′ and y′ as outlined by Lemma 4. This concludes our algorithm. We
have the following theorem as a result.

Theorem 2. The Minkowski sum P ⊕ Q of the convex polytopes P and Q in
R

d of face lattice sizes n and m respectively can be computed in O(dωnm)-time

Minkowski Sum of Convex Polytopes 191

and O(d2nm)-space. Furthermore, the algorithm is worst-case optimal in n and
m, i.e., for fixed d, when |P ⊕ Q| = O(nm).

Proof. Correctness: A direct consequence of Lemma 1 is that in order to com-
pute the faces of P ⊕ Q we need only check the faces of type f ⊕ g where f is
a face of P and g a face of Q. Not all such faces are valid and Lemma 3 ensures
that we choose only the correct faces of P ⊕ Q. Furthermore Lemma 4 and 5
guarantee that no duplicate nodes are generated by our algorithm.

Time Complexity: The run-time complexity is O(dωnm) because our algo-
rithm traverses each pair of incidences of the face lattices L (P) and L (Q) only
once. The expression dω is due to the time required to compute rank in the
necessary and sufficient condition.

Space Complexity: The O(d2nm) space requirement is due to the extra storage
for face-lattice augmentation when we store d-dimensional vectors in the nodes.

Optimality: We assume that d is fixed in the following discussion. We show
that the worst case space and time complexities are tight. See Fig. 6 for a worst-
case construction in R

3. For d > 3, we describe a d-dimensional construction
in Sect. 4.4. Since there are Θ(nm) vertices in the Minkowski Sum in the con-
struction, any reasonable representation of the polytope, V-representation, H-
representation, face enumeration, facet enumeration, facial structure, face lattice,
etc.; all will have Ω(nm) length. This is a lower bound for any Minkowski Sum
algorithm for these constructions because no algorithm can report the vertices
in less time. So the complexity of any algorithm that constructs the Minkowski
sum for this example will be Ω(nm). Since our algorithm runs in Θ(nm), i.e.,
linear in output length, therefore the lower bound is tight and our algorithm is
worst-case optimal. ��

4.3 Minkowski Sum from Other Input Representations

V-representation or H-representation. We note that instead of the face
lattices of the convex polytopes P and Q, if only the V-representations or H-
representations of P and Q are provided, then we can compute the Minkowski
Sum P ⊕Q by first computing the face lattices of P and Q using the best known
algorithm for convex hull construction before applying our techniques.

This may lead to a better performing algorithm than existing techniques in
many cases except, for example, when Chan’s and Seidel’s output sensitive con-
vex hull applications perform better. For example, if we use the best of Chazelle’s,
Seidel’s or Chan’s algorithm to compute the convex hull, the time complexity
of our algorithm would be O(nm + T (L(P)) + T (L(P))) instead of the current
O(T (L(P ⊕ Q))) for fixed d where T (L) = min{Tbc(L), Trs(L), Ttc(L)} and Tbc,
Trs and Ttc are the time complexities of the convex hull algorithms of Chazelle,
Seidel and Chan, respectively, to compute the final convex hull face lattice L. For
illustration, this is always better than Chazelle’s convex hull application and our
O(nm + (n + m) log(n + m)-time, surprisingly, fares better compared to Seidel’s
output sensitive O((. . .)2 + h log h) whenever h log h, h = |P ⊕ Q|, is ω(nm). ��

192 S. Das et al.

Face Enumeration Suppose we are provided an enumeration of all the faces (or
only facets and vertices) of the input Polytopes P and Q. In this case, there are
algorithms in the literature to compute face lattices from the face enumerations
in O(F log F) time using a dictionary [5,20], where F = |F|, F is the set of faces
of the input convex polytope. We expect that we should have at least the affine
space of each face in the input, or a way to compute it efficiently, in order to
compute the incidences of the face lattice. For the case of enumeration of only
facets and vertices, we need more data on facets and vertices. Thus if the faces
of input polytopes P and Q are enumerated instead of face lattice as input, then
the resulting complexity of our algorithm which computes the face lattice from
the face enumeration first will be O(nm+(n+m) log(n+m))-time in the worst
case. ��

From the above discussion, it can be seen that our algorithm fares quite well
even in the case when the input is provided in common representations. Sum-
marily, only a term (n+m) log(n+m) is added (which is the time complexity for
sort). In the next section, we give an example to prove the worst-case optimality
of the algorithm.

4.4 An Example to Prove Worst-Case Optimality

Let us consider the convex polytopes (in fact, polygons placed orthogonally) Pi,
1 ≤ i ≤ d − 1 in d-dim that is the convex hull of ni points with the coordinates
(x1 = 0, . . . , xi−1 = 0, xi = h(1 − t2), xi+1 = 0, . . . , xd−1 = 0, xd = t) for ni

distinct values of t, −1 ≤ t ≤ 1. In short, except for coordinates xi and xd,
other coordinates are 0. We construct convex polytopes P = P1 ⊕ · · · ⊕ Pk and
Q = Pk+1⊕· · ·⊕Pd−1. Note that the origin is on the bases of polytopes P and Q.
In this section, we consider d as fixed and express the complexities independent
of d.

X2

X3

X1

X4

P

Q

X2

X3

X1

X4
P ⊕ Q

X4

Fig. 7. Construction of the worst-case polytope P ⊕ Q in R
4 to prove the optimality

Minkowski Sum of Convex Polytopes 193

We draw the above example in R
4, where P = P1 and Q = P2⊕P3. See Fig. 7

for illustration. If we wish to construct d-dimensional input polytopes instead of
k or d − k − 1 dimensional polytopes then we may consider the polytopes P ⊕ ε-
cube and Q ⊕ ε-cube instead, where the ε-cube is an axis-parallel d-dimensional
hypercube of ε size.

The number of vertices, as well as number of faces and the size of face-
lattice of P is Θ(n1n2 . . . nk). Let the size of the face lattice be n. The num-
ber of vertices, as well as number of faces and the size of face-lattice of Q is
Θ(nk+1nk+2 . . . nd−1). Let the size of face lattice be m. The number of vertices, as
well as number of faces and the size of face-lattice of P ⊕ Q is Θ(n1n2 . . . nd−1).
This is Θ(nm), since every point u⊕v, where u is a vertex of P and v is a vertex
of Q, is a vertex of P ⊕ Q (i.e. on the boundary of the convex hull).

Our algorithm computes the Minkowski sum for this example in Θ(nm),
whereas the best known output sensitive algorithm, i.e. Seidel’s, is Θ((nm)2 +
h log h). Since the output size is Θ(nm) for this worst-case, our algorithm is
linear in the output size and therefore optimal. This completes the argument for
worst-case optimality.

The algorithm to compute the Minkowski sum of two convex polytopes can
be used to compute the Minkowski sum of multiple convex polytopes. We present
the algorithm and analyze its complexity in the next section.

5 The Minkowski Sum of Multiple Convex Polytopes

Let P1, P2, . . . , Pr be r convex polytopes of the face lattice sizes n1,
n2, . . . , nr, respectively. We can compute the Minkowski sum

⊕n
i=1 Pi in

O(dω
∑r

j=1

∏j
i=1 ni) = O(dω · r · ∏r

i=1 ni)) in the worst case by the method
presented in Sect. 4 after sorting the polytopes in ascending order of the sizes
of face lattices. The worst-case complexity of the resulting algorithm is tight
for r < d. For r ≥ d, however, it is known that the worst-case space complex-
ity of the face lattice of the resulting polytope does not increase with r as an
exponent [21]. Thus the time complexity has an upper bound. We describe this
bound from the citation for reference. Let M = O(

∑
S∈C |⊕P∈S P |) where C

is the set of all d − 1 combinations of r polytopes. By Stirling’s approximation,
this quantity is asymptotically ≈ (er/(d−1))d−1 times maximum size of (d−1)-
subset Minkowski sum among r polytopes. The size of the Minkowski sum for
any r, r ≥ d is bounded by M . Consequently, we give the running time for the
computation of the Minkowski sum of r convex polytopes in the theorem below.

Theorem 3. The Minkowski sum
⊕r

i=1 Pi of r convex polytopes Pi’s of face
lattice sizes ni’s, 1 ≤ i ≤ r, can be computed in time O(dωmin{NM, r

∏r
i=1 ni}),

where N is the total input size
∑r

i=1 ni and M is the face lattice size of the
resultant Minkowski sum. The space complexity of the algorithm is O(d2M).
Moreover, the algorithm is worst-case optimal for fixed for d > 3 and r < d.

Proof. The proof follows from the observation that the size of the face lat-
tice of the sum is always larger than the size of the face lattice of any of the

194 S. Das et al.

summands. The time complexity for r ≥ d is O(
∑r

i=1 dωniM) = O(dωNM)
by the application of Theorem2. For r < d too, the expression for time-
complexity, O(dωr

∏r
i=1 ni)), which might be larger than the tighter complexity

of O(dω
∑r

i=1 niM), follows directly from Theorem 2. Thus the time-complexity
is O(dωmin{NM, r

∏r
i=1 ni}). The correctness of the algorithm follows from the

correctness of the algorithm of previous section. The space requirement is due
to augmented face lattice of the output polytope in the intermediate steps.
The argument for worst-case optimality for fixed d is same as in the proof of
Theorem 2. ��

6 Concluding Remarks and Acknowledgments

In the paper, we presented a worst-case optimal algorithm to compute the
Minkowski sum with better bounds than the currently known algorithms. We
acknowledge anonymous referees for providing constructive suggestions and sug-
gesting improvements in the paper.

References

1. Adiprasito, K.A., Sanyal, R.: Relative Stanley-Reisner theory and upper bound
theorems for Minkowski sums. Publications mathématiques de l’IHÉS 124(1), 99–
163 (2016)

2. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient con-
struction of Minkowski sums. Comput. Geom. 21(1–2), 39–61 (2002)

3. Bekker, H., Roerdink, J.B.T.M.: An efficient algorithm to calculate the Minkowski
sum of convex 3D polyhedra. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A.,
Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 619–628.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0 71

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

5. Chan, T.M.: Output-sensitive results on convex hulls, extreme points, and related
problems. Discret. Comput. Geom. 16(4), 369–387 (1996). https://doi.org/10.
1007/BF02712874

6. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discret.
Comput. Geom. 10(4), 377–409 (1993). https://doi.org/10.1007/BF02573985

7. Chazelle, B.M.: Convex decompositions of polyhedra. In: Proceedings STOC, pp.
70–79 (1981)

8. Chazelle, B.M., Dobkin, D.P.: Optimal convex decompositions. In: Toussaint, G.T.
(ed.) Computational Geometry. Machine Intelligence and Pattern Recognition, vol.
2, pp. 63–133 (1985)

9. Chew, L.P., Scot Drysdale, R.L.: Voronoi diagrams based on convex distance func-
tions. In: Proceedings SoCG, pp. 235–244 (1985)

10. Das, S., Nandy, A., Sarvottamananda, S.: Radius, diameter, incenter, circumcenter,
width and minimum enclosing cylinder for some polyhedral distance functions.
Discret. Appl. Math. (2020, in press)

https://doi.org/10.1007/3-540-45545-0_71
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/BF02712874
https://doi.org/10.1007/BF02712874
https://doi.org/10.1007/BF02573985

Minkowski Sum of Convex Polytopes 195

11. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs
on Theoretical Computer Science. Springer, Heidelberg (1987). https://doi.org/
10.1007/978-3-642-61568-9

12. Fogel, E., Halperin, D.: Exact Minkowski sums of convex polyhedra. In: Proceed-
ings SoCG, pp. 382–383 (2005)

13. Fukuda, K.: From the zonotope construction to the Minkowski addition of convex
polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)

14. Fukuda, K., Weibel, C.: Computing all faces of the Minkowski sum of V-polytopes.
In: Proceedings of the 17th CCCG, pp. 253–256 (2005)

15. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational
complexity and applications to Gröbner basis. SIAM J. Discret. Math. 6(2), 246–
269 (1993)

16. Grünbaum, B., Kaibel, V., Klee, V., Ziegler, G.M.: Convex Polytopes. Graduate
Texts in Mathematics. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
1-4613-0019-9

17. Karavelas, M.I., Tzanaki, E.: The maximum number of faces of the Minkowski sum
of two convex polytopes. In: Proceedings SODA, pp. 11–28 (2012)

18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings
ISSAC, pp. 296–303 (2014)

19. Ramkumar, G.D.: An algorithm to compute the Minkowski sum outer-face of two
simple polygons. In: Proceedings SoCG, pp. 234–241 (1996)

20. Seidel, R.: Constructing higher-dimensional convex hulls at logarithmic cost per
face. In: Proceedings STOC, pp. 404–413 (1986)

21. Weibel, C.: Maximal F-vectors of Minkowski sums of large numbers of polytopes.
Discret. Comput. Geom. 47(3), 519–537 (2012)

22. Wein, R.: Exact and efficient construction of planar Minkowski sums using the
convolution method. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 829–840. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036 73

https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/11841036_73

On the Intersections of Non-homotopic
Loops

Václav Blažej1(B) , Michal Opler2 , Matas Šileikis3 , and Pavel Valtr4

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

vaclav.blazej@fit.cvut.cz
2 Computer Science Institute, Charles University, Prague, Czech Republic

opler@iuuk.mff.cuni.cz
3 The Czech Academy of Sciences, Institute of Computer Science,

Prague, Czech Republic
matas.sileikis@gmail.com

4 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic

Abstract. Let V = {v1, . . . , vn} be a set of n points in the plane and let
x ∈ V . An x-loop is a continuous closed curve not containing any point of
V , except of passing exactly once through the point x. We say that two
x-loops are non-homotopic if they cannot be transformed continuously
into each other without passing through a point of V . For n = 2, we give
an upper bound 2O(k) on the maximum size of a family of pairwise non-
homotopic x-loops such that every loop has fewer than k self-intersections
and any two loops have fewer than k intersections. This result is inspired
by a very recent result of Pach, Tardos, and Tóth who proved the upper

bounds 216k4
for the slightly different scenario when x �∈ V .

Keywords: Graph drawing · Non-homotopic loops · Curve
intersections · Plane

1 Introduction

The so-called crossing lemma, which was proved independently by Ajtai,
Chvátal, Newborn, Szemerédi [1] and by Leighton [2], bounds the number of
crossings in any planar drawing of any graph with n vertices and m ≥ 4n
edges. The crossing lemma has many applications in discrete and computational
geometry and other fields. Very recently, Pach, Tardos, and Tóth [3] proved an

This research was initiated during the workshop KAMAK 2020 in Kytlice in Sept.
20–25, 2020. MŠ was supported by the Czech Science Foundation, grant number GJ20-
27757Y, with institutional support RVO: 67985807. VB acknowledges the support of
the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research
Center for Informatics”. PV and MO were supported by project 18-19158S of the
Czech Science Foundation.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 196–205, 2021.
https://doi.org/10.1007/978-3-030-67899-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_15&domain=pdf
http://orcid.org/0000-0001-9165-6280
http://orcid.org/0000-0002-4389-5807
http://orcid.org/0000-0002-6353-9105
http://orcid.org/0000-0002-3102-4166
https://doi.org/10.1007/978-3-030-67899-9_15

On the Intersections of Non-homotopic Loops 197

interesting natural modification of the crossing lemma for multigraphs with non-
homotopic edges. In the proof of their result, Pach, Tardos, and Tóth [3] applied
a bound on the maximum size of certain collections of so-called non-homotopic
loops. In this paper, we show that their bound can be significantly improved for
a closely related problem.

For an integer n ≥ 1, let Vn = {v1, . . . , vn} be a set of n distinct points in the
plane R

2. Given x ∈ R
2, an x-loop is a continuous function f : [0, 1] → R

2 such
that f(0) = f(1) = x and f(t) �∈ Vn for t ∈ (0, 1). We will only consider x-loops
that do not pass through x, that is f(t) = x only for t ∈ {0, 1}. When x is
clear from the context we will also call an x-loop simply a loop. Two loops f0, f1
are homotopic (with respect to Vn), denoted f0 ∼ f1, if there is a continuous
function H : [0, 1]2 → R

2 (a homotopy) such that

H(0, t) = f0(t) and H(1, t) = f1(t) for all t ∈ [0, 1],

H(s, 0) = H(s, 1) = x for all s ∈ [0, 1].

and
H(s, t) �∈ Vn for all s, t ∈ (0, 1).

A self-intersection of a loop f corresponds to a pair {t, u} ⊂ (0, 1) of distinct
numbers such that f(t) = f(u), while an intersection of two loops f1, f2 corre-
sponds to an ordered pair t, u ∈ (0, 1) such that f1(t) = f2(u).

Given integers n, k ≥ 1 and x ∈ Vn, let g(n, k) be the largest number of pair-
wise non-homotopic loops such that every loop has fewer than k self-intersections
and any two loops have fewer than k intersections.

Pach, Tardos and Tóth [3] considered the same quantity, but for x outside
of Vn (they also added a restriction that no loop passes through x, which holds
trivially in our setting with x ∈ Vn). Although the two settings seem to be
very similar, we were able to obtain an upper bound on g(2, k) which is signif-
icantly smaller than the upper bound on f(2, k) obtained by Pach, Tardos and
Tóth [3]. In the setting of Pach, Tardos and Tóth [3] with x �∈ Vn, the largest
number of pairwise non-homotopic loops so that every loop has fewer than k self-
intersections and any two loops have fewer than k intersections is denoted by
f(n, k). The two aforementioned quantities are related by the following inequal-
ities.

Proposition 1. For every n, k ≥ 1 we have

g(n, k) ≤ f(n, k) ≤ g(n + 1, k). (1)

Proposition 1 is proved in Sect. 5.
Pach, Tardos and Tóth [3] showed that for n ≥ 2

f(n, k) ≤ 2(2k)2n (2)

and

f(n, k) ≥
{

2
√

nk/3, n ≤ 2k,

(n/k)k−1, n ≥ 2k.

198 V. Blažej et al.

Also in [3] it was proved that if n = 1, then there are at most 2k + 1 non-
homotopic loops with fewer than k self-intersections (that is, if we do not bound
the number of intersections) implying f(1, k) ≤ 2k + 1.

In our main result we focus on the function g in case n = 2. Inequalities (1)
and (2) imply that g(2, k) ≤ 216k4

. The following theorem improves this bound
significantly.

Theorem 1. Let n = 2 and x ∈ V2. For any k, the size of any collection of
non-homotopic x-loops with fewer than k self-intersections is at most 2O(k). In
particular

g(2, k) ≤ 212k.

We believe that the bound in Theorem1 can be further improved by reducing
the exponent to O(

√
k log k). We plan to address this in a follow-up paper.

2 Setup and Notation

Depending on the context, we will treat S := R
2 \ Vn either as the plane with

n points removed, or as a sphere with n + 1 points removed (where n of these
points is the set Vn = {v1, . . . , vn} and the last one, denoted by v0, corresponds
to the “point at infinity”). We refer to the points vi as obstacles.

For convenience, we will always assume the following properties of a finite
collection of loops:

1. the set of points of intersections and the set of points of self-intersections are
disjoint,

2. every (self-)intersection is simple (that is, no point in S belongs to more than
two loops and no loop passes through the same point more than twice),

3. every intersection between two loops is a crossing, that is, one loop “passes
to the other side” of the other loop (otherwise an intersection is called a
touching).

Assumptions 1–3 can be attained by infinitesimal perturbations without creating
any new intersections or self-intersections.

Given a drawing of the x-loops satisfying the above conditions, we choose
a closed curve on the sphere without self-intersections which goes through the
points v0, . . . , vn in this order (if x /∈ Vn, we choose this curve so that it avoids x).
We call this loop the equator. Removing the equator from the sphere, we obtain
two connected sets, which we arbitrarily name the top half and the bottom half.
We refer to the n + 1 sets into which the equator is split by excluding points vi

as gaps. We label the gaps by elements of An := {0, . . . , n}, assigning label i to
the gap between vi and vi+1, with indices counted modulo n + 1.

By a careful choice of the equator, we can assume the following conditions:

4. every x-loop in the collection intersects the equator a finite number of times,
5. each of these intersections (except for, possibly, the intersection at x) is a

crossing (as opposed to a touching),
6. no point of self-intersection or intersection (other than x) lies on the equator.

On the Intersections of Non-homotopic Loops 199

Part of a given loop f between a pair of distinct intersections with the equator
(inclusively) is called a segment (it is a restriction of f to a closed subinterval of
[0, 1]). Whenever the two intersections defining a segment are consecutive (along
the loop f), the segment is called an arc. If some arc intersects itself, we can
remove the part of the arc between these self-intersections without changing the
homotopy class of the loop; this trivially does not increase the number of (self-)
intersections; therefore we can make yet another assumption about the family
of x-loops and the equator:

7. there are no self-crossings within any arc (i.e., between consecutive crossings
of the equator).

Given a x-loop �, we list the labels of gaps in the order they are crossed by
the loop. This way we obtain a word w over alphabet An. We say that � induces
w. The empty word corresponds to a trivial loop.

A segment that intersects the equator k times (including the beginning and
the end) consists of k−1 arcs, which we order in a natural way so that the segment
traverses the arcs in the increasing order. A segment is called a downsegment if
its first arc is contained in the bottom half, and an upsegment otherwise. If a
segment does not start nor end at x, by listing the labels of gaps that the segment
intersects, we obtain a word w in alphabet An, and call such a segment a w-
segment (or, more specifically, w-downsegment or w-upsegment, if we want to
specify the location of the first arc). For example, a loop with the first arc in the
top half that induces the word 01201 has a 01-downsegment and a 01-upsegment,
as well as a 012-downsegment but no 012-upsegment.

3 General n

In this section we state and prove several facts that are valid for general n,
including all prerequisites for the proof of Theorem1.

We start with a simple proposition which allows bounding the number of
non-homotopic loops in terms of the different words that they induce.

Proposition 2. Let x ∈ Vn and suppose that two x-loops �1 and �2 start with
an arc which belongs to the same half of the sphere. If they induce the same word
of length m, they are homotopic.

Proof. For i ∈ {1, 2} and k ∈ {1, . . . , m}, suppose that the kth arc of �i ends at
point pk

i (with pk
1 and pk

2 lying in the same gap). Let γk be a loop which first
goes along the first k arcs of �2, then goes along a gap from pk

2 to pk
1 and then

continues to x along the last m+1− k arcs of �1. Since the curved quadrilateral
consisting of kth arcs of the loops and the two parts of two gaps does not wind
around any obstacle, we have γk−1 ∼ γk for k = 2, . . . ,m. By a similar argument,
we have �1 ∼ γ1 and �2 ∼ γm. The proposition follows.

200 V. Blažej et al.

Lemma 1. Let letters a, b, c ∈ An be distinct. If f1, f2 are two, not necessarily
distinct, x-loops, then any abc-downsegment in f1 and any abc-upsegment in f2
intersect.

Proof. Choose a cyclic orientation of the equator such that gaps appear in the
order a, b, c. Let s1 be an abc-downsegment of f1, and s2 be an abc-upsegment
of f2 and, for contradiction, suppose s1, s2 do not intersect.

By removing the point of intersection with s1 from the gap b, we obtain two
disjoint sets, and name them B′ and B′′ so that — in the same orientation of
the equator — gap a is followed by set B′ followed by B′′ followed by gap c. The
bc-arc of s1 partitions the top half into two connected components. Note that
gap a and B′′ belong to different components. Since the ab-arc of s2 belongs to
the top half, s2 must intersect the gap b in B′. Similarly, ab-arc of s1 partitions
the bottom half into two components, so that B′ and c belong to different com-
ponents. Since the bc-arc of s2 traverses the bottom half, s2 must intersect the
gap b in B′′. Since B′ and B′′ are disjoint, we obtain a contradiction.

Corollary 1. Given three distinct letters a, b, c ∈ An, suppose that loop f1 has
i disjoint abc-downsegments and loop f2 has j disjoint abc-upsegments. Then
the number of intersections between f1 and f2 is at least i · j. In particular, if
f1 = f2, the number of self-intersections is at least i · j.

In the following lemma we chose x = v1 for simplicity, since in the application
we can choose x = v1 without loss of generality. The proof of Lemma2 shows
that if x = vi, then the set {2, . . . , n} should be replaced by the set of gaps not
incident to x, that is {0, . . . , n} \ {i − 1, i}.

Lemma 2. Let n ≥ 1 and assume x = v1. Any family of non-homotopic x-
loops can be redrawn without increasing the number of self-intersections and
intersections so that every x-loop induces a word such that (i) no two consecutive
letters are equal and (ii) the first and the last letter belongs to {2, . . . , n}.
Proof. By an ear we mean a segment inducing a word aa for any letter a. Taking
into account that the gaps 0 and 1 are incident to x = v1, by x-ear we mean a
segment, which corresponds to a letter 0 or 1 at the start or end of the word: that
is, an x-ear has x as one of its endpoints and a crossing of the gap 0 or the gap
1 as its other endpoint. We will remove ears in the first step (thus deleting the
consecutive pairs of equal letters) and x-ears in the second step (thus deleting
the wrong letters at the beginning or the end).

For the first step, we choose an ear in some loop (between two points of some
gap a) and denote its endpoints by u and v. By uv-gap denote the set of points
in the gap a strictly between u and v. An ear is minimal if there is no other ear
with both endpoints in the uv-gap. We remove ears one by one, always picking
a minimal ear.

The chosen ear partitions one of the halves of the sphere into two simply
connected sets, one of which, that we denote by P , contains the uv-gap in its
boundary.

On the Intersections of Non-homotopic Loops 201

We remove the chosen ear by continuously transforming it to a path which
closely follows the uv-gap inside the other half of the sphere, as shown on Fig. 1.
By choosing the new path sufficiently close to the equator we can make sure that
if a new (self-)intersection with some loop � appears, then by tracing � from that
(self-)intersection in a certain direction we cross the uv-gap, thus entering the
set P .

P

u v
u v

� �

Fig. 1. Removal of a minimal ear

Since x /∈ P , by tracing � further we must leave P . This cannot happen by
crossing the uv-gap again, since that would contradict the fact that we picked a
minimal ear. Hence we leave P by crossing the original path of ear. This gives a
way to assign, for each newly created intersection with �, a unique intersection
with � that was removed, showing that the transformation of the ear does not
increase the total number of intersections with �. In particular the number of self-
intersections does not increase since we can choose � to be the loop containing
the ear in question.

The second step, removing x-ears, is similar to the first one, except that we
have to deal with the endpoint x separately. Let v be the point where an x-ear
crosses a gap a incident to x (either 0 or 1). Similarly as for ears, by xv-gap we
mean the points of gap a strictly between x and v. An x-ear is minimal, if no
other x-ear crosses gap a through the xv-gap. We will remove the x-ears one by
one, always picking a minimal x-ear.

Since the x-ear is contained in one of the halves of the sphere, it partitions
it into two simply connected sets, one of which, that we denote by P , has the
xv-gap in its boundary. We remove the x-ear by continuously transforming it
into a path that closely follows the xv-gap in the opposite half of the sphere,
as shown on Fig. 2. By choosing the new path sufficiently close to the equator,
we can make sure that if a new (self-)intersection with some loop � appears,
then by tracing � from that (self-)intersection in a certain direction we cross the
xv-gap, thus entering set P . Tracing � further we must eventually leave the set
P , since x /∈ P . This cannot happen by crossing the xv-gap again, since that
would contradict the fact that we removed all ears in the first step. It also cannot
happen by crossing x, since this would contradict that we chose a minimal x-ear.
Hence we leave P by crossing the original path of the x-ear, which determines
an intersection with the loop � that was removed by transforming the x-ear.

Similarly as in the first step this assigns a unique removed intersection with �
to each new intersection with �, showing that removal of a minimal x-ear does
not increase the number of (self-)intersections.

202 V. Blažej et al.

v

x

v
P

C
x
C

� �

Fig. 2. Removal of a minimal x-ear

We recap what we have proved: by repeatedly removing minimal ears in the
first step and removing minimal x-ears in the second step we end up with a
drawing which does not have any ears nor x-ears, proving the lemma.

Note that the following lemma holds for n = 1 vacuously, since neither of the
two conditions can be satisfied.

Lemma 3. Let n ≥ 1 and assume x ∈ Vn. Suppose that a, b are adjacent distinct
gaps, i.e., b = a + 1 or b = a − 1 modulo n + 1. Let � be an x-loop that induces a
word in which no two consecutive letters are equal. Let s be an aba-segment in �.
If either (i) x is not a shared endpoint of a and b or (ii) � crosses gaps different
from a, b before and after the segment s, then s intersects some other segment
of �.

Proof. Let y be the obstacle incident to gaps a and b. Let u and v be the
endpoints of the segment s (thus distinct and both in the gap a) and label them
so that u is closer to y than v. Let yu-gap and uv-gap denote part of the a-gap
between respective points (or obstacle). The union of s and the uv-gap forms a
closed curve without self-intersections (neither the ab arc of segment s nor the
ba arc has any self-intersections and the arcs are on the opposite halves of the
sphere),which divides the sphere into two parts. Let P be the part of the divided
sphere which contains vertex y. As P contains y and its border intersects gap a
and gap b, we can partition P by the equator into parts P1 and P2, where P1

denotes the part incident to v, as depicted on Fig. 3.

b gap

a gap
u

v
y

P1

P2

Fig. 3. An aba-segment forces a self-intersection if x �= y or the loop crosses a gap
different from a, b both before and after the segment

On the Intersections of Non-homotopic Loops 203

Choose an orientation of � so that v precedes u. After passing through u, the
loop enters into P1. Loop � must eventually leave P due to the assumption of
the lemma: in the case (i) this is because x �= y and therefore x /∈ P while in the
case (ii) it has to reach some gap c /∈ {a, b} which does not intersect P . Before it
leaves the set P , it may cross the equator several times, but only through gaps
a and b. Since by assumption � does not cross the same gap twice in a row, the
location of the loop before leaving set P is determined by the last crossed gap:
it always enters set P1 after crossing the gap a and enters set P2 after passing
through the gap b.

If the loop leaves P through s, we obtain the desired self-intersection. Oth-
erwise � leaves P through the uv-gap (it cannot leave through point u, since by
assumption self-intersections do not occur on the equator). As leaving P through
the uv-gap is only possible from set P1, we obtain that � crosses gap a twice in a
row (once to enter P1 and then to leave through the uv-gap), contradicting the
assumption.

4 Case n = 2

From now on, we focus on the task at hand and assume that n = 2 (meaning
that we have exactly 3 obstacles on a sphere, one of which is x), in which case
words use letters 0, 1 and 2.

Proof (of Theorem 1)
Without loss of generality assume that x = v1 and fix an x-loop �. By Lemma 2,
we can assume that � induces a word w starting and ending in 2 and with
no two consecutive equal letters. Lemma 3 implies that for any two distinct
letters a, b in w every aba-segment participates in a self-intersection: for aba ∈
{121, 212, 020, 202} this is because x is not incident to both a and b, while for
aba ∈ {010, 101} this is because the word induced by the loop starts and ends
in 2.

Since every self-intersection is simple, it occurs in at most two disjoint seg-
ments. We claim that the word w induced by � has fewer than 12k letters. For
contradiction, assume the contrary and partition the first 12k letters of w into
2k disjoint subwords of length 6. Each of these subwords either contains an aba
subword or the word is of the form abcabc. Segments in the form abcabc contain
an abc-upsegment and an abc-downsegment (for the same word abc) which by
Lemma 1 forces a self-intersection. Segments which contain aba subword partici-
pate in an intersection. As each intersection may cause at most two participations
of disjoint segments, it follows that � has at least k self-intersections, giving a
contradiction.

It is easy to see that there are fewer than 212k−1 permitted words with fewer
than 12k letters. By Proposition 2 at most two non-homotopic x-loops induce
the same word. Therefore we conclude that g(2, k) ≤ 212k.

204 V. Blažej et al.

5 Proof of Proposition 1

We denote Vn = {v1, . . . , vn} the set of points removed from the plane. To see
the first inequality in (1), let x ∈ Vn, and fix a family of x-loops that attains the
maximum g(n, k). Since the number of (self-)intersections is finite, by continuity
of loops, there is a circle centered at x such that (i) each loop intersects it at
exactly two distinct points, (ii) inside the circle there are no intersections (other
than those at x) and no self-intersections, and (iii) inside the circle there are no
points of Vn (other than x). Property (iii) implies that we can homotopically
transform the loops inside the circle so that between the circle and x they form
straight lines.

Pick a point x′ on the circle so that neither x′ nor its antipodal point lie
on any x-loop. Denoting the points where a loop � crosses the circle by pl while
‘departing’ and ql while ‘returning’, replace each � by an x′-loop �′ in which p�x
and q�x are replaced by straight segments p�x

′ and q�x
′. Since the pairs p� and

q� are pairwise disjoint, this does not create additional intersections, see Fig. 4.

x′

x

H′(1, δ)

p�1

p�0

H′(0, δ)

H′(s, δ)

Fig. 4. Constructing homotopy for modified loops, showing only the ‘departing’ ends
of the loops, i.e., for the argument t close to 0.

It remains to check that no two of the resulting x′-loops are homotopic (with
respect to Vn). Assuming for contradiction that H ′ is a homotopy between x′-
loops �′

0 = H ′(0, ·) and �′
1 = H ′(1, ·), we will construct a homotopy between

original loops �0 and �1. Pick ε > 0 such that there are no obstacles in a ball of
radius ε around x′. Elementary analysis implies that there is δ = δ(ε) such that

max
s∈[0,1]

|H ′(s, t) − x′| < ε, t ∈ [0, δ] ∪ [1 − δ, 1]. (3)

Fix s ∈ [0, 1] and define a function H(s, t) as follows. Set H(s, t) = H ′(s, t) for
t ∈ [δ, 1−δ]. On the interval [0, δ] connects x and H ′(s, δ) by a straight line, that
is, set H(s, t) = x(1 − t) + tH ′(s, δ), and symmetrically on [1 − δ, 1] connects x

On the Intersections of Non-homotopic Loops 205

and H ′(s, 1 − δ) by a straight line, that is, set H(s, t) = xt + (1 − t)H ′(s, 1 − δ).
By (3) and choice of ε none of these two segments hits any obstacle other than
x.

Assuming δ is small enough we can make sure that for i ∈ {0, 1}, H ′(i, δ) and
H ′(i, 1− δ) lie inside the circle on the straight segments of the loop �′

i. It is easy
to see that H is a homotopy with respect to Vn, so H(0, ·) ∼ H(1, ·). By replacing
the two initial straight segments of H(0, ·) (namely x to H ′(0, δ) and H ′(0, δ) to
p�0) by the segment from x to pl0 (and similarly the final two segments at the
other end of the loop) we obtain the loop �0. The three segments form a triangle
with no elements of Vn inside it (and similarly for the triangle at the other end),
which implies that H(0, ·) ∼ �0. By the same argument H(1, ·) ∼ �1. Recalling
that H(0, ·) ∼ H(1, ·), we obtain �0 ∼ �1, a contradiction.

To see the second inequality in (1), we choose a family of x-loops that attains
the maximum f(n, k). Since none of the x-loops passes through x, they are also
x-loops with respect to Vn+1 := Vn ∪ {x}. To show that this family of x-loops
gives a lower bound to g(n + 1, k), we observe that if two x-loops f0, f1 are
non-homotopic with respect to Vn, then they are non-homotopic with respect
to Vn+1. Indeed, assuming for contradiction that that there is a homotopy H
between f0 and f1 satisfying H(s, t) /∈ Vn+1 for all s, t ∈ (0, 1), it trivially
satisfies H(s, t) /∈ Vn for all s, t ∈ (0, 1), and thus f0 ∼ f1 with respect to Vn−1,
giving a contradiction.

This completes the proof of Proposition 1.

Acknowledgement. This research was initiated during the workshop KAMAK 2020
organized by two departments (KAM and IÚUK) of the Faculty of Mathematics and
Physics, Charles University, in Kytlice in September 20–25, 2020. We thank the orga-
nizers and the participants of the workshop for creating a stimulating atmosphere and
for helpful discussions.

References

1. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. In:
Theory and Practice of Combinatorics. North-Holland Mathematics Studies, vol.
60, pp. 9–12. North-Holland, Amsterdam (1982). https://doi.org/10.1016/S0304-
0208(08)73484-4

2. Leighton, F.T.: Complexity Issues in VLSI. Foundations of Computing. MIT Press,
Cambridge (1983)

3. Pach, J., Tardos, G., Tóth, G.: Crossings between non-homotopic edges (2020).
arXiv:2006.14908. To appear in LNCS, Springer, Proc. of Graph Drawing 2020

https://doi.org/10.1016/S0304-0208(08)73484-4
https://doi.org/10.1016/S0304-0208(08)73484-4
http://arxiv.org/abs/2006.14908

Graph Theory

On cd-Coloring of Trees
and Co-bipartite Graphs

M. A. Shalu and V. K. Kirubakaran(B)

IIITDM Kancheepuram, Chennai, India
{shalu,mat19d002}@iiitdm.ac.in

Abstract. A k-class domination coloring (k-cd-coloring) is a partition
of the vertex set of a graph G into k independent sets V1, . . . , Vk, where
each Vi is dominated by some vertex ui of G. The least integer k such
that G admits a k-cd-coloring is called the cd-chromatic number, χcd(G),
of G. A subset S of the vertex set of a graph G is called a subclique in
G if dG(x, y) �= 2 for every x, y ∈ S. The cardinality of a maximum sub-
clique in G is called the subclique number, ωs(G), of G.

In this paper, we present algorithms to compute an optimal cd-
coloring and a maximum subclique of (i) trees with time complexity O(n)
and (ii) co-bipartite graphs with time complexity O(n2.5). This improves
O(n3) algorithms by Shalu et al. [2017, 2020]. In addition, we prove tight
upper bounds for the subclique number of the class of (i) P5-free graphs
and (ii) double-split graphs.

1 Introduction

Mathematical models for many real life problems demand optimum (i) sharing
(vertex coloring) and (ii) monitoring the usage (domination) of the limited avail-
able resources [1,2,9]. The class domination coloring, a combination of vertex col-
oring and domination [7,13,14], is one of the attempts to address such problems.
For other variations and details visit [3,6,10–12]. A k-vertex coloring V1, . . . , Vk

of a graph G is called a k-cd-coloring if for every i, 1 ≤ i ≤ k, there exists a ver-
tex ui such that Vi ⊆ N [ui]. The cd-chromatic number of a graph G is defined as
χcd(G) = min{k : G admits a k-cd-coloring}. We observe that two vertices x, y of
a graph G receive same color in a cd-coloring of G only if the length of a shortest
path between x and y in G is two; i.e., dG(x, y) = 2. By this observation, Shalu et
al. [11] introduced a lower bound for the cd-chromatic number of a graph called the
subclique number. A subset S of the vertex set of a graph G is called a subclique in
G if dG(x, y) �= 2 for every x, y ∈ S. The subclique number of a graph G is defined
as ωs(G) = max {|S| : S is a subclique in G}. Clearly, ωs(G) ≤ χcd(G). In this
paper, we explore the following computational problems.

cd-colorability

Instance : A graph G and a positive integer k.
Question : Is G k-cd-colorable?

M. A. Shalu—Supported by SERB (DST), MATRICS scheme MTR/2018/000086.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 209–221, 2021.
https://doi.org/10.1007/978-3-030-67899-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_16&domain=pdf
http://orcid.org/0000-0002-3057-457X
https://doi.org/10.1007/978-3-030-67899-9_16

210 M. A. Shalu and V. K. Kirubakaran

Subclique

Instance : A graph G and a positive integer k.
Question : Does G contain a subclique of size k?

The problem CD-Colorability is proved to be NP-complete for several
classes of graphs such as bipartite graphs [7] and chordal graphs [12]. It is also
proved that testing whether a graph is k-cd-colorable is NP-complete for k ≥ 4
and is polynomial time solvable for k ≤ 3. Shalu and Sandhya [10] gave an O(n5)
time algorithm to check whether a graph is 3-cd-colorable where n is the cardi-
nality of the vertex set. Kiruthika et al. [6] gave an O(2nn4log n) time algorithm
to find the cd-chromatic number of a graph with n vertices and addressed FPT
version of the problem CD-Colorability.

Shalu et al. [11] proved that the problem Subclique is NP-complete for bipar-
tite graphs, chordal graphs and P5-free graphs. They also proved that (i) an opti-
mal cd-coloring and (ii) a maximum subclique in trees and co-bipartite graphs
can be found in O(n3) time [11,12]. We improve the complexity of these results.

In this paper, we present (i) a linear time algorithm to find a maximum sub-
clique and an optimal cd-coloring of trees in Sect. 3, and (ii) an O(n2.5) algorithm
to find a maximum subclique and an optimal cd-coloring of a co-bipartite graphs
with n vertices in Sect. 4. In addition, we give a tight upper bound for the problem
Subclique on P5-free graphs in Sect. 5, and we show that the subclique number
of a double-split graph is equal to its clique number in Sect. 6.

2 Preliminaries

We follow West [15] for terminologies and notation. We denote (i) by x1 . . . xk a
path with vertex set {x1, . . . , xk} and edge set {xixi+1 : 1 ≤ i ≤ k−1}, and (ii) by
(x1, . . . , xk) a cycle with vertex set {x1, . . . , xk} and edges x1x2, . . . , xk−1xk, xkx1.
A clique (An independent set) C of a graph G is a collection of vertices such that
any two vertices (no two vertices) in C are adjacent. The cardinality of a maximum
clique (maximum independent set) is called clique number (independence num-
ber), ω(G) (α(G)), of G. For X ⊆ V (G), G[X] denotes the subgraph induced by
the vertices of X in G. If we say {x1, . . . , xk} induces a path Pk, then it means that
G[{x1, . . . , xk}] is the path x1 . . . xk. For two vertices x, y ∈ G, dG(x, y) denotes
the length of a shortest path joining x and y in G. For a graph H, G is H-free if no
induced subgraph of G is isomorphic to H. For a vertex x ∈ V (G), N(x) = {y ∈
V (G) : xy ∈ E(G)}, N [x] = {x} ∪ N(x) and A(x) = V (G) \ N [x].

3 Trees

In this section, we present a linear time algorithm to find a maximum subclique
and an optimal cd-coloring of trees, and thereby we show that the cd-chromatic
number and the subclique number of a tree are equal.

On cd-Coloring of Trees and Co-bipartite Graphs 211

Algorithm 1: To compute a maximum subclique and an optimal cd-
coloring of a tree
Input :A tree T
Output : a subclique S, a collection {Vu : u ∈ S}, and a collection of

singleton sets {Du : u ∈ S} where V (T) = ∪u∈SVu is a
|S|-cd-coloring of T , and each color class Vu is dominated by the
vertex in Du.

Initialization: S = ∅, Vu = Du = ∅ for all u ∈ V (T), and all vertices of T
are unmarked.

while T � K1 do
Choose a leaf vertex u of T
if u is unmarked then

S = S ∪ {u}
Du = N(u)
Vu = {u} ∪ {v ∈ V (T) : dT (u, v) = 2 and v is unmarked}
Mark all vertices in Vu

end
T = T \ {u}

end
if T ∼= K1 and u is unmarked then

S = S ∪ {u}
Du = {u}
Vu = {u}
Mark u

end

We present an example of the execution of Algorithm 1 at the end of this
section.

Theorem 1. For every tree T , ωs(T) = χcd(T). Besides, when a tree T is given
as input, Algorithm1 outputs a maximum subclique and an optimal cd-coloring
of T .

Proof. For an input tree T of Algorithm 1, let S, {Vu : u ∈ S}, and {Du : u ∈
S} be the sets output by the algorithm.

Claim 1: For all u ∈ S, either (i) Du = Vu = {u} or (ii) there exists a vertex
v ∈ V (T) distinct from u such that Du = {v} and Vu ⊆ N(v).
If u is added to S at the end of the algorithm, then Du = Vu = {u}. If not, u is
added to S at ith iteration where i < n. At ith iteration, u is a leaf vertex, and
hence u has only one neighbor, say v. Therefore, Du = {v}. This implies that,
during ith iteration, every vertex at distance two from u is a neighbor of v. Thus,
Vu ⊆ N(v). This proves Claim 1.
Note that, in both cases, the vertex in Du dominates Vu.

Claim 2: S is a subclique in T .
If not, there exist u, v ∈ S such that dG(u, v) = 2. W.l.o.g., assume that u is

212 M. A. Shalu and V. K. Kirubakaran

added to S before v. Let i be the iteration in which u is added to S. Then, during
ith iteration, the vertex v is marked. Therefore, v will not be added to S during
any succeeding iteration, a contradiction.

Claim 3: Vu is an independent set for all u ∈ S.
If not, for some u ∈ S, there exist x, y ∈ Vu such that xy ∈ E(T). Since Vu

contains at least two vertices, Vu �= {u}. Then, by Claim 1, there exists a vertex
v of T distinct from u such that Du = {v} and Vu ⊆ N(v). In particular,
xv, yv ∈ E(T). Thus, (x, v, y) is a cycle in T , a contradiction.

Claim 4:
⋃

u∈S

Vu is a cd-coloring of T .

A vertex of T is added to a set Vu for some u ∈ S, only when the vertex is
unmarked. In addition, every vertex is marked soon after it is added to some Vu.
This implies that every vertex in V (T) belongs to at most one Vu. Since every
vertex in T is marked only when it is added to some Vu and also every vertex
in T is marked by the end of the algorithm. This implies that every vertex of T
belongs to Vu for some u ∈ S. Thus, ∪u∈SVu is a partition of V (T). By Claim 3,
each Vu is an independent set. Hence, V (T) = ∪u∈SVu is a coloring.

ByClaim1, the vertices inVu are dominated by the vertex inDu. Thus, the coloring
V (T) = ∪u∈SVu is a |S|-cd-coloring of T . Therefore, χcd(T) ≤ |S| ≤ ωs(T), and
we know that, ωs(T) ≤ χcd(T). This implies that ωs(T) = χcd(T) = |S|.
Hence, the set S output by the algorithm is a maximum subclique of T . Similarly,
the partition V (T) = ∪u∈SVu is an optimal cd-coloring of T where each Vu is
dominated by the vertex in Du. �

Corollary 1. Algorithm1 runs in O(n) time where n = |V (T)|.
Proof. Our analysis is based on the assumption that the tree is represented using
adjacency list. To compute the running time of Algorithm1, we consider each
step in the algorithm, and determine the time complexity of the step as well as
the number of times the step is executed. The step of choosing a leaf vertex from
T requires O(1) time, and is repeated n−1 times. Similarly, deleting a leaf vertex
takes constant time, and is repeated n−1 times. The steps in which we add a new
vertex to the sets S and Du also requires only constant time, and are repeated
at most n times. In addition, adding vertices to Vu and marking them takes
O(deg(v)) time where Du = {v}. Whenever a vertex v is added to Du during
some iteration, each of its neighbors are marked at the end of the iteration. Hence,
every vertex u′ added to S during any succeeding iteration is not a neighbor of
v. Thus, for any two vertices u,w added to S during iterations of the while loop,
vertices in Du and Dw are distinct. And the steps after all iterations of the while
loop takes only O(1) time. Thus, the time complexity of the algorithm is at most
(n − 1) · O(1) + n · O(1) +

∑
v∈V (T) O(deg(v)) + O(1) = O(n). �

On cd-Coloring of Trees and Co-bipartite Graphs 213

13

16

14
15

12

11

10

9

8

7

6

5 4

3

2

1

Fig. 1. Tree T

Consider the tree T in Fig. 1, and assume that the algorithm chooses the least
labelled leaf during every iteration. Then, the output of the algorithm will be a
subclique S = {1, 2, 5, 6, 9, 10, 13, 16}, {Vu : u ∈ S} and {Du : u ∈ S} where
V1 = {1, 3}, V2 = {2, 4}, V5 = {5, 7, 12}, V6 = {6, 8}, V9 = {9, 11}, V10 =
{10}, V13 = {13, 14, 15}, V16 = {16}, D1 = {2}, D2 = {3}, D5 = {8}, D6 =
{7}, D9 = {10}, D10 = {11}, D13 = {16} and D16 = {16}. Observe that
{V1, V2, V5, V6, V9, V10, V13, V16} is an 8-cd-coloring of T where vertices in Vu are
dominated by the vertex in Du for every u ∈ S. Thus, χcd(T) = ωs(T) = 8.

4 Co-bipartite Graphs

Let G(X ∪ Y,E) be a co-bipartite graph where the vertex set is partitioned into
cliques X and Y . In this section, we show that the cd-chromatic number of a
co-bipartite graph G is equal to its subclique number .

Lemma 1. Let G(X ∪ Y,E) be a co-bipartite graph. Then, the set A = {x ∈
X : N(x) ∩ Y = ∅} ∪ {y ∈ Y : N(y) ∩ X = ∅} is either a clique or a maximal
subclique in G(see Fig. 2).

Proof. If either A ∩ X = ∅ or A ∩ Y = ∅, then A is a clique. Assume that both
A ∩ X and A ∩ Y are non-empty.

Claim: A is a maximal subclique in G.
Clearly, A ∩ X and A ∩ Y are cliques. If dG(x, y) = 2, for some x ∈ A ∩ X and
y ∈ A ∩ Y , then there exists a path xwy in G for some w ∈ V (G). W.l.o.g.,
assume that w ∈ Y . Then N(x) ∩ Y �= ∅ and x ∈ A, a contradiction. Therefore,
A is a subclique of G. Next, we prove that the subclique A is maximal. On the
contrary, assume that A is a proper subset of some subclique, say S in G. Let
x ∈ (S \ A). W.l.o.g., assume that x ∈ X. Since x /∈ A, it has a neighbor y ∈ Y
(by the definition of A). Let y∗ ∈ A ∩ Y . Clearly, xy∗ /∈ E(G). This implies that
{x, y, y∗} induces a P3 in G. Thus, dG(x, y∗) = 2, a contradiction because S is a
subclique. Therefore, A is a maximal subclique of G. �

214 M. A. Shalu and V. K. Kirubakaran

y1

y2

y3

y4

x1

x2

x3

x4

x5

X Y

Fig. 2. A co-bipartite graph G(X ∪ Y, E). For this graph G, A = {x2, x3, x4, y2, y4}.

Theorem 2. Let G(X ∪ Y,E) be a co-bipartite graph, and let A = {x ∈ X :
N(x) ∩ Y = ∅} ∪ {y ∈ Y : N(y) ∩ X = ∅}. Then, any subclique of G is either a
clique or a subset of A. Hence, ωs(G) = max{ω(G), |A|}.
Proof. Let S be a subclique of G. If S is a subset of A, we are done. Otherwise,
there exists a vertex x ∈ S \ A. W.l.o.g. assume that x ∈ X. By the definition
of A, x has a neighbor y ∈ Y .

Claim: S is a clique in G.
On the contrary, assume that there exist vertices x′ ∈ S∩X and y′ ∈ S∩Y , such
that x′y′ /∈ E(G). If xy′ ∈ E(G), then x �= x′ and thus {x′, x, y′} ⊆ S induces
a P3 in G; since dG(x′, y′) = 2 and S is a subclique, we have a contradiction. If
xy′ /∈ E(G). Then y �= y′ and thus {x, y, y′} induces a P3 in G; since dG(x, y′) = 2
and S is a subclique, we have a contradiction.

Thus, every subclique in G is either a clique or a subset of A, and hence
ωs(G) = max{ω(G), |A|}. �

Remark: A maximum clique of a co-bipartite graph G can be found in O(n2.5),
since a maximum independent set in the bipartite graph Gc can be found in
O(n2.5) [8]. Also, the set A ⊆ V (G) in Theorem 2 can be found in O(n2) time.
Thus, a maximum subclique of a co-bipartite graph can be found in O(n2.5)
time.

In order to find the cd-chromatic number of a co-bipartite graph, we use the
concept of system of distinct representatives (SDR) [15].

System of Distinct Representatives (SDR)
Let D = {D1, . . . , Dn} be a collection of subsets of a set Y. An SDR for D is a
set of distinct elements d1, . . . , dn of Y such that di ∈ Di.

Note: D has an SDR if and only if | ⋃

i∈B

Di| ≥ |B| for every B ⊆ {1, . . . , n} [15].

On cd-Coloring of Trees and Co-bipartite Graphs 215

Theorem 3. If G(X ∪ Y,E) is a co-bipartite graph, then χcd(G) = ωs(G).

Proof.
Case 1: G is disconnected.

Then the vertex set of G itself is a subclique of G (union of cliques X and Y),
and thus, χcd(G) = |V (G)| = ωs(G) (since |V (G)| = ωs(G) ≤ χcd(G) ≤ |V (G)|).

Case 2: G is connected.
We know that, ωs(G) ≥ max{|X|, |Y |}. Let S be a maximum subclique of G.
Let X1 = X ∩ S, X2 = X \ S, Y1 = Y ∩ S, and Y2 = Y \ S. Since |Y1| + |X1| =
|S| = ωs(G) ≥ |X|, we have |Y1| ≥ |X| − |X1|, and thus |Y1| ≥ |X2|. Similarly,
|X1| ≥ |Y2|.

Let us label the vertices in X1 as x(1,1), . . . , x(1,|X1|), the vertices in X2 as
x(2,1), . . . , x(2,|X2|), the vertices in Y1 as y(1,1), . . . , y(1,|Y1|), and the vertices in Y2

as y(2,1), . . . , y(2,|Y2|).
Let us construct a one to one function f : X2 → Y1, such that dG(x, f(x)) = 2

for every x ∈ X2. To this end, we define Di = {y ∈ Y1 : dG(x(2,i), y) = 2} for
1 ≤ i ≤ |X2|. Let D = {D1, . . . , D|X2|}.

Claim 1: D = {Di : 1 ≤ i ≤ |X2|} has an SDR.

If not, there exists a set {i1, . . . , ik} ⊆ {1, . . . , |X2|} such that |
k⋃

j=1

Dij |< k (by

Note). Clearly, S\
k⋃

j=1

Dij is a subclique and {x(2,i1), . . . , x(2,ik)} is a clique. Since

no vertex of S\
k⋃

j=1

Dij is at distance two from each vertex in {x(2,i1), . . . , x(2,ik)},

S′ = (S \ {
k⋃

j=1

Dij})∪{x(2,i1), . . . , x(2,ik)} is a subclique in G. The cardinality of

S′ is at least |S| + 1, a contradiction because S is a maximum subclique. This
proves Claim 1.

By Claim 1, D = {D1, . . . , D|X2|} has an SDR. W.l.o.g., assume that
y(1,1), . . . , y(1,|X2|), are the distinct elements of Y1 such that y(1,i) ∈ Di for
1 ≤ i ≤ |X2|.

Next, we define a function f : X2 → Y1 as f(x(2,i)) = y(1,i) for 1 ≤ i ≤ |X2|.
Clearly, f is a one-one function, thanks to SDR. Also, by the definition of

Di, dG(x(2,i), y(1,i)) = 2 for 1 ≤ i ≤ |X2|.
Similarly, we define a one-one function g : Y2 → X1 such that dG(y, g(y)) = 2

for every y ∈ Y2. W.l.o.g., assume that g(y(2,j)) = x(1,j) for 1 ≤ j ≤ |Y2|. Let

Ui =

{
{x(2,i), y(1,i)} for 1 ≤ i ≤ |X2|
{y(1,i)} for |X2| + 1 ≤ i ≤ |Y1|,

and let

Vj =

{
{x(1,j), y(2,j)} for 1 ≤ j ≤ |Y2|
{x(1,j)} for |Y2| + 1 ≤ j ≤ |X1|.

216 M. A. Shalu and V. K. Kirubakaran

Then, the partition V (G) = (U1∪. . .∪U|Y1|)∪(V1∪. . .∪V|X1|) is an ωs(G)-coloring
of G. For 1 ≤ i ≤ |Y1|, Ui is either a singleton set or a pair of vertices at distance
two from each other, and hence dominated by some vertex in G. Similarly, each
Vj(1 ≤ j ≤ |X1|) is dominated by some vertex in G. Therefore, the above coloring
is an ωs(G)-cd-coloring of G. This implies that χcd(G) ≤ ωs(G). We know that,
ωs(G) ≤ χcd(G). Hence, χcd(G) = ωs(G). �

Corollary 2. An optimal cd-coloring of a co-bipartite graph G with n vertices
can be found in O(n2.5) time.

Proof. We construct a graph G∗ associated with a graph G as V (G∗) = V (G)
and E(G∗) = {xy : dG(x, y) = 2} [11]. The sets {Ui = {x(2,i), y(1,i)} : 1 ≤ i ≤
|X2|} in Theorem 3 corresponds to the matching {x(2,i)y(1,i) : 1 ≤ i ≤ |X2|} in
G∗[X2 ∪ Y1] (a bipartite graph with partitions X2 and Y1). Since the matching
saturates every vertex in X2, it is a maximum matching of G∗[X2∪Y1]. Similarly,
the sets {Vj = {x(1,j), y(2,j)} : 1 ≤ j ≤ |Y2|} corresponds to the matching
{x(1,j)y(2,j) : 1 ≤ j ≤ |Y2|} in G∗[X1 ∪ Y2] (a bipartite graph with partitions
X1 and Y2). Since the matching saturates every vertex in Y2, it is a maximum
matching of G∗[X1 ∪ Y2]. We know that a maximum matching in a bipartite
graph can be found in O(n2.5) time [8]. Also, G∗ can be computed in O(n2) time
by removing the edges between the vertices of A (defined in Theorem2) from
GC . Thus, the problem is solvable in O(n2.5) time. �

5 P5-free Graphs

In this section we give a tight upper bound for subclique number on P5-free
graphs. Shalu et al. [11] proved that Subclique problem is NP-complete for the
class of P5-free graphs (a superclass of co-bipartite graphs). We use the following
observation in the proof of our theorem on P5-free graphs.

Observation 1. If G is a graph with a universal vertex, then every subclique is
a clique, and thus ωs(G) = ω(G). �

Theorem 4. Every connected P5-free graph has a dominating P3 or a dominat-
ing clique [4]. �

Theorem 5. Let G be a non trivial connected P5-free graph. Then

(i) ωs(G) ≤ ω(G)(ω(G) − 1), if G has a dominating clique and
(ii) ωs(G) = ω(G), if G has a dominating P3 and no subgraph K2 of the P3

dominates G. In addition, the above upper bounds are tight.

Proof. Let S be a subclique of a non trivial connected P5-free graph G.
Part 1: Suppose that G has a dominating clique, say C = {x1, . . . , xk}. We

consider two cases.

On cd-Coloring of Trees and Co-bipartite Graphs 217

Claim 1: If C ∩ S �= ∅, then |S| ≤ ω(G).
W.l.o.g., assume that xi ∈ S for some i ∈ {1, . . . , k}. We prove that S ⊆ N [xi].
If not, there exists a vertex y ∈ S such that yxi /∈ E(G) and let xj be the
vertex in C \ {xi} that dominates y, then {xi, xj , y} induces a P3 in G. Hence
dG(y, xi) = 2 and y, xi ∈ S, a contradiction. Therefore S ⊆ N [xi]. Note that S is
a subclique in G[N [xi]], a graph with universal vertex xi. Thus by Observation 1,
S is a clique and |S| ≤ ω(G).
Claim 2: If C ∩ S = ∅, then |S| ≤ |C|(ω(G) − 1).

Clearly, S ⊆
k⋃

i=1

N(xi) and S =
k⋃

i=1

(N(xi) ∩ S). Note that N(xi) ∩ S is a clique

of size at most ω(G) − 1, because N(xi) ∩ S is a subclique in G[N [xi]], and

any maximum clique in G[N [xi]] contains xi. Thus, |S| = |
k⋃

i=1

(N(xi) ∩ S)| ≤
∑k

i=1 |N(xi) ∩ S| ≤ k(ω(G) − 1) and k ≤ ω(G).
By Claims 1 and 2, ωs(G) ≤ ω(G)(ω(G) − 1) which completes the proof of

the Part 1 and an example showing this bound is tight is given in Fig. 3. Note
that {2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16} forms a subclique of size 12.

1 5

913

2

3

4

14

15

16

10

11

12

6

7

8

Fig. 3. A P5-free graph G with ω(G) = 4 and ωs(G) = 12.

Part 2: Suppose that G has a dominating P3 and no subgraph K2 of the P3

dominates G. We prove that ωs(G) = ω(G). We reserve the rest of the proof for
the longer version of this paper. �
Note that Theorems 4 and 5 proves Corollary 3, and Part 1 of Theorem5 proves
Corollary 4.

Corollary 3. If G is a non trivial connected P5-free graph, then ωs(G) ≤
ω(G)(ω(G) − 1).

Corollary 4. If G is a non trivial graph with a dominating clique, then ωs(G) ≤
ω(G)(ω(G) − 1).

Remark: The difference between subclique number and clique number is arbi-
trarily large even for P6-free trees. An example is shown in Fig. 4.

218 M. A. Shalu and V. K. Kirubakaran

u

x1 y1

x2 y2

xk yk

Fig. 4. A P6-free tree, T with ω(T) = 2, and S = {x1, y1, y2, . . . yk} is a subclique of
size k + 1.

6 Double-Split Graphs

In this section, we prove that the subclique number of a double-split graph is
equal to its clique number. The class of double split graphs play a key role in
the proof of Strong Perfect Graph Theorem [5]. A graph G(A∪B,E) is a double
split graph if (i) G[A] ∼= pK2 for some positive integer p (i.e., G[A] is a disjoint
union of edges), (ii) G[B] ∼= (mK2)c for some positive integer m (i.e., G[B] is the
complement of a disjoint union of edges), (iii) every vertex u ∈ B is adjacent to
exactly one vertex from every pair of adjacent vertices x, y ∈ A, and (iv) every
vertex x ∈ A is adjacent to exactly one vertex from every pair of non-adjacent
vertices u, v ∈ B (see Fig. 5). Clearly, |A| = 2p and |B| = 2m.

Shalu et al. [12] proved that if G is a double-split graph with p ≥ 2 and
m ≥ 2, then m + 1 ≤ χcd(G) ≤ m + 2. Also, they proved that χcd(G) = m + 1
if and only if there are two vertices u, v ∈ B such that N(u) ∩ A = N(v) ∩ A.

x1 y1

x2 y2

xp yp

A

u1 v1

u2 v2

um vm

B

Fig. 5. Structure of a double-split graph. Edges between A and B are not displayed.
Dashed lines join non-adjacent vertices in B.

Theorem 6. Let G(A ∪ B,E) be a double-split graph. Then, ωs(G) = ω(G) =
m + 1.

On cd-Coloring of Trees and Co-bipartite Graphs 219

Proof. Let S be a subclique in G. We prove that |S| ≤ m+1. First, we establish
the following claims.

Claim 1: If x, x′ ∈ S ∩ A, then x and x′ do not have a common neighbor in B.
If not, there exists a vertex u ∈ B such that ux and ux′ are edges in G. By
condition (iii) (of the definition of double-split graph), u is adjacent to exactly
one end vertex of every edge in A. Since u is adjacent to both x and x′, xx′ is
not an edge in G. Hence, dG(x, x′) = 2, a contradiction because S is a subclique.

Claim 2: S can contain at most two vertices from A.
On the contrary, assume that x, y, z ∈ S ∩ A. Since B �= ∅, there exist u, v ∈ B
such that uv /∈ E(G). Then, by condition (iv), x is adjacent to either u or v.
W.l.o.g., assume that x is adjacent to u. Since x, y ∈ S ∩A, uy /∈ E(G) by Claim
1. Again, by condition (iv), vy is an edge in G. Now, by Claim 1, z is neither
adjacent to u nor adjacent to v, a contradiction to condition (iv).

Claim 3: Every vertex in S ∩ B is adjacent to each vertex in S ∩ A.
If not, there exist x ∈ S ∩ A and u ∈ S ∩ B such that ux /∈ E(G). Let y be
the neighbor of x in A. Then, by condition (iii), uy ∈ E(G). This implies that
dG(x, u) = 2, a contradiction to the subclique property of S. Hence, every vertex
in S ∩ B is adjacent to each vertex in S ∩ A.

Claim 4: If S ∩ B �= ∅, then |S ∩ A| ≤ 1.
On the contrary, assume that S ∩B �= ∅, and there are two vertices x, z ∈ S ∩A.
Let u ∈ S ∩ B. Then by Claim 3, ux, uz ∈ E(G), a contradiction to Claim 1.

Claim 5: If m = 1, then B = {u1, v1} is a subclique in G.
Clearly, u1v1 /∈ E(G). By condition (iv), u1 and v1 do not have a common
neighbor in A. This implies that dG(u1, v1) �= 2. Hence, B is a subclique of size
2(= m + 1).

Claim 6: For m > 1, S can contain at most m vertices of B.
Clearly, for every non-adjacent pair u, v ∈ B, there is a vertex u′ ∈ B such that
u′u, u′v ∈ E(G). This implies that dG(u, v) = 2. Thus, S can contain at most
one vertex from every non-adjacent pair in B. Since there are exactly m such
disjoint non-adjacent pairs in B, |S ∩ B| ≤ m.

Next, we prove that |S| ≤ m + 1. We consider the following three cases.
(1) S ∩ A = ∅ implies S ⊆ B, and hence |S| ≤ m + 1, by Claims 5 and 6.
(2) S ∩ B = ∅ implies S ⊆ A, and hence |S| ≤ 2 ≤ m + 1, by Claim 2.
(3) S ∩ B �= ∅ and S ∩ A �= ∅ implies |S| ≤ m + 1 (Proof of (3): Let x ∈ S ∩ A.
Then, by Claims 3 and 4, it is evident that S ⊆ (N(x) ∩ B) ∪ {x}. By condition
(iv), |N(x) ∩ B| = m, and hence |S| ≤ m + 1).

220 M. A. Shalu and V. K. Kirubakaran

By above three cases, |S| ≤ m + 1. Since S is a arbitrary sublcique and |S| ≤
m + 1, ωs(G) ≤ m + 1. We know that every clique is also a subclique. Thus,
ω(G) ≤ ωs(G). If x ∈ A, then (N(x) ∩ B) ∪ {x} is a clique in G. This implies
that ω(G) ≥ m + 1. Since m + 1 ≤ ω(G) ≤ ωs(G) ≤ m + 1, we have ωs(G) =
ω(G) = m + 1. �

7 Conclusion

We present algorithms to compute an optimal cd-coloring and a maximum sub-
clique of (i) trees with time complexity O(n) and (ii) co-bipartite graphs with
time complexity O(n2.5), and thereby improve the known O(n3) algorithms. If
G is a non-trivial connected P5-free graph, then ωs(G) ≤ ω(G)(ω(G) − 1). Note
that such an upper bound (for subclique number) doesn’t exist even for the
class of P6-free tress, since for every integer k ≥ 1 there exists a P6-free tree
with ω = 2 and ωs = k + 1 (see Fig. 4).

References

1. Amin, S.M., Wollenberg, B.F.: Towards a smart grid. IEEE Power Energ. Mag. 3,
34–41 (2005). https://doi.org/10.1109/MPAE.2005.1507024

2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36, 335–371 (2004). https://doi.org/10.
1145/1041680.1041681

3. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorithmic
aspects of dominator colorings in graphs. Comb. Algorithms 7056, 19–30 (2011).
https://doi.org/10.1007/978-3-642-25011-8 2

4. Bocsó, D., Tuza, Z.: Dominating cliques in P5-free graphs. Periodica Mathematica
Hungarica 21, 303–308 (1990). https://doi.org/10.1007/BF02352694

5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006). https://doi.org/10.4007/annals.
2006.164.51

6. Krithika, R., Rai, A., Saurabh, S., Tale, P.: Parameterized and exact algorithms for
class domination coloring. In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 336–349.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 26

7. Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings
of graphs. Graphs Comb. 31(3), 713–727 (2014). https://doi.org/10.1007/s00373-
014-1407-3

8. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of 21st IEEE Symposium on Foundations of
Computer Science, pp. 17–27 (1980). https://doi.org/10.1109/SFCS.1980.12

9. Monti, A., Ponci, F., Benigni, A., Liu, J.: Distributed intelligence for smart grid con-
trol. In: International School on Nonsinusoidal currents and Compensation, Lagow,
Poland (2010). https://doi.org/10.1109/ISNCC.2010.5524469

10. Shalu, M.A., Sandhya, T.P.: The cd-coloring of graphs. In: Govindarajan, S.,
Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 337–348. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29221-2 29

https://doi.org/10.1109/MPAE.2005.1507024
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1145/1041680.1041681
https://doi.org/10.1007/978-3-642-25011-8_2
https://doi.org/10.1007/BF02352694
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1007/978-3-319-51963-0_26
https://doi.org/10.1007/s00373-014-1407-3
https://doi.org/10.1007/s00373-014-1407-3
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/ISNCC.2010.5524469
https://doi.org/10.1007/978-3-319-29221-2_29

On cd-Coloring of Trees and Co-bipartite Graphs 221

11. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-chromatic
number and its complexity. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM
2017. LNCS, vol. 10156, pp. 344–355. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53007-9 30

12. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On complexity of cd-coloring of
graphs. Discret. Appl. Math. 280, 171–185 (2020). https://doi.org/10.1016/j.dam.
2018.03.004

13. Swaminathan, V., Sundareswaran, R.: Color class domination in graphs. In: Math-
ematical and Experimental Physics. Narosa Publishing House (2010)

14. Venkatakrishnan, Y.B., Swaminathan, V.: Color class domination number of mid-
dle and central graph of K1,n, Cn, Pn. Adv. Model. Optim. 12, 233–237 (2010)

15. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson, London (2018)

https://doi.org/10.1007/978-3-319-53007-9_30
https://doi.org/10.1007/978-3-319-53007-9_30
https://doi.org/10.1016/j.dam.2018.03.004
https://doi.org/10.1016/j.dam.2018.03.004

Cut Vertex Transit Functions
of Hypergraphs

Manoj Changat1(B) , Ferdoos Hossein Nezhad1, and Peter F. Stadler2,3,4,5,6

1 Department of Futures Studies, University of Kerala, Trivandrum 695 581, India
mchangat@keralauniversity.ac.in, ferdows.h.n@gmail.com

2 Bioinformatics Group, Department of Computer Science, and Interdisciplinary
Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18,

04107 Leipzig, Germany
studla@bioinf.uni-leipzig.de

3 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
4 Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
5 Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia

6 Santa Fe Institute, Santa Fe, NM, USA

Abstract. We study the cut vertex transit function of a connected
graph G and discuss its betweenness properties. We show that the cut
vertex transit function can be realized as the interval function of a block
graph and derive an axiomatic characterization of the cut vertex transit
function. We then consider a natural generalization to hypergraphs and
identify necessary conditions.

Keywords: Transit function · Convexity · Cut vertices · Block graphs

1 Introduction

A transit function R defined on a non-empty set V is a function R : V ×V → 2V

satisfying the three axioms

(t1) x ∈ R(x, y) for all x, y ∈ V ,
(t2) R(x, y) = R(y, x) for all x, y ∈ V ,
(t3) R(x, x) = {x} for all x ∈ V .

Transit functions on discrete structures were introduced by H.M. Mulder [13]
to generalize the concept of betweenness in an axiomatic way. Intuitively, the
transit sets R(x, y) can be interpreted as an interval delimited by x and y. Transit
functions captured attention in particular on discrete sets endowed with some
additional structure, such as graphs, partially ordered sets, hypergraphs, etc.
Several types of interval functions that can be defined in terms of paths were
studied in some detail. Most of the literature concerns the shortest path transit
function

I(u, v) := {w ∈ V |w lies on a shortest uv-path}. (1)

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 222–233, 2021.
https://doi.org/10.1007/978-3-030-67899-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_17&domain=pdf
http://orcid.org/0000-0001-7257-6031
http://orcid.org/0000-0002-5016-5191
https://doi.org/10.1007/978-3-030-67899-9_17

Cut Vertex Transit Functions of Hypergraphs 223

on a connected graph G, see e.g. [12,14,16,17]. As alternatives in particular
the induced path [4,5,8,11,18] and the all-paths transit functions [3] have been
considered. P. Duchet [10] considered the following notion of betweenness for
both graph and hypergraphs:

C(u, v) := {w ∈ V |w lies on every uv-path}. (2)

On graphs, C(u, v) = {u, v} whenever u and v are located in the same block,
and C(u, v) = V if u and v are located in different connected components. For
a connected graph G we therefore have the equivalent definition [13]

C(u, v) = {u, v} ∪ {w|w is a cut vertex between u and v}. (3)

Therefore, C is usually called the cut vertex transit function of a graph G. A
similar relation with cut vertices can be found for hypergraphs, see Sect. 3 below.

2 Cut Vertex Transit Functions of Graphs

Notation and Terminology

Let G = (V,E) be a finite, simple graph with vertex set V and edge-set E. Two
graphs G = (V,E) and H = (W,F) are isomorphic if and only if there is a
bijection f from V to W such that for adjacent vertices u, v ∈ V the images
f(u), f(v) are adjacent vertices in H. Given G and a vertex v ∈ V , we write
G − v for the graph obtained by removing v and all its incident edges. We say
that v is a cut vertex in a connected graph G if G has at least one edge and
G − v is disconnected.

A graph is 2-connected if it contains no cut vertex. A block of G is a maximal
2-connected subgraph. A clique is a complete subgraph. A graph is a block graph
if all its blocks are cliques. The block closure G∗ of a connected graph G is the
graph obtained from G by joining two vertices whenever they are in the same
block of G. Thus G∗ is the block graph.

Let R be a transit function on V . The underlying graph GR of R has vertex
set V and uv ∈ E is an edge of GR if and only if R(u, v) = {u, v}. Note that
if R is a transit function on G, then GR need not be isomorphic with G, see
[13] for counterexamples. The transit graph Gt

R of a transit function R on V is
defined as the graph with vertex set V and uv ∈ E is an edge of Gt

R if there is
no x �= u, v such that R(u, x) ∩ R(x, v) = {x}.

For any arbitrary transit function R, we define

R(u, v, w) := R(u, v) ∩ R(v, w) ∩ R(w, u). (4)

The cardinality |R(u, v, w)| for several of path-based transit function character-
izes interesting graph classes. For instance, in terms of the shortest path function,
the graphs for which |I(u, v, w)| > 0 are the modular graphs and |I(u, v, w)| = 1
characterizes median graphs [14]. For the induced path function, |J(u, v, w)| > 0
determines the triangle-free graphs [2], and |J(u, v, w)| = 1 identifies the svelte

224 M. Changat et al.

graphs [11]. For the all-path functions, |A(u, v, w)| > 0 characterizes the con-
nected graphs and |A(u, v, w)| = 1 determines the trees.

The following betweenness axioms were considered by H.M. Mulder in [12]
and [11], see also [13]:

(b1) x ∈ R(u, v), x �= v ⇒ v /∈ R(u, x),
(b2) x ∈ R(u, v) ⇒ R(x, v) ⊆ R(u, v),
(b3) if x ∈ R(u, v) and y ∈ R(u, x), then x ∈ R(y, v) for all u, v, x, y.
(b4) if x ∈ R(u, v), then R(u, x) ∩ R(x, v) = {x} for all u, v, x,
(m) x, y ∈ R(u, v) ⇒ R(x, y) ⊆ R(u, v).

Properties of C on Graphs

We briefly review the relationships between the underlying graph GC , the graph
G and transit graph Gt

C of the cut vertex transit function C of G.

Proposition 1. (Prop. 9 in [13]) Let C be a cut vertex transit function of a
connected graph G. Then the underlying graph GC , the block closure G∗ of G
and transit graph Gt

C of C are isomorphic.

Proposition 2. The cut vertex transit function C of a connected graph G sat-
isfies axioms (b1), (b2), (b3), (b4), and (m).

Proof. Propositions 8 and 10 in [13] show that C satisfies (b1), (b2) and (m). The
statement that C satisfies (b4) is equivalent to the observation that “FC = C”
in [13]. To see that (b3) is satisfied, consider four vertices x �= u, x �= v, y �= x
and y �= u such that x ∈ C(u, v) and y ∈ C(u, x). By construction, x is a cut
vertex separating u and v, and y is a cut vertex separating u and x. That is, y
lies within every ux-path and x within every uv-path in G. Since G is connected,
x also lies within every yv-path in G. Hence the cut vertex x separates vertices
y and v in G. That is, x ∈ C(y, v). 	

As shown in [5], the underlying graph GR is connected if R satisfies axioms
(b1) and (b2). Since C satisfies this condition, the underlying graph GC of the
cut vertex transit function C of G is connected whenever G is connected.

Proposition 3. (Prop. 11 and 12 in [13]) Let G be a connected graph. Then
for any three vertices of G holds |C(u, v, w)| ≤ 1. G is a tree if and only if any
three distinct vertices u, v, w of G satisfy |C(u, v, w)| = 1.

Lemma 1. Let R be a transit function satisfying axioms (b2) and |R(u, v, w)| ≤
1, then R satisfies axiom (b1) and (b4) on V , and GR is connected.

Proof. Let x ∈ R(u, v), suppose R does not satisfy axiom (b4). Then there
exists at least one y �= x, such that y ∈ R(u, x) ∩ R(x, v). Since x ∈ R(u, v),
by (b2), R(u, x) ⊆ R(u, v) and R(x, v) ⊆ R(u, v). Therefore y ∈ R(u, v). Hence
|R(u, x, v)| > 1, which violates |R(u, v, w)| ≤ 1. Therefore R satisfies axiom (b4).
Since R satisfies (t1), (t2), and (b4), R also satisfies (b1). Since R satisfies (b1)
and (b2), GR is connected. 	

Cut Vertex Transit Functions of Hypergraphs 225

An axiomatic characterization of the cut vertex transit function of a graph
can be obtained starting from the following simple observation:

Proposition 4. If G is a block graph, then the shortest path transit function
and the cut vertex transit function coincide.

Proof. Let G be a block graph. If u, v are in the same block, then I(u, v) = {u, v}
since every block is a clique. Thus I(u, v) = C(u, v). If u and v are in distinct
blocks, then there is a unique sequence of blocks between them, which pair-wisely
intersect in cut-vertices. Since two consecutive cut vertices are contained in the
same block, they are adjacent in G, and thus the sequence of cut vertices form
the unique shortest path connecting u and v in G. Therefore I(u, v) = C(u, v).

We note in passing that Proposition 4 can also be obtained using the observation
of [15] that G is a block graph if and only the shortest path between any two
vertices is unique, and noting that all inner vertices of a shortest path in a
block graph are cut vertices since it contains at most one edge from each block.
The second ingredient is a characterization of the shortest path transit function,
usually called the interval function as defined in (1), for block graphs.

Proposition 5. (Thm. 6 in [1]) R is the interval function of a block graph G,
i.e., R = IGR

, if and only if R satisfies the axioms (t1), (t2), (b1), (b2), and
the additional axiom

(U∗) R(u, x) ∩R(x, v) = {x} implies R(u, v) ⊆ R(u, x) ∪R(x, v), for all u, v, x ∈
V .

Taken together, Propositions 4 and 5 imply

Corollary 1. A transit function R is the cut vertex transit function of the graph
GR if and only if R satisfies axioms (t1), (t2), (b1), (b2), and (U∗).

An alternative characterization can be obtained using R(u, v, w).

Theorem 1. Let R : V ×V → 2V be a function on V . Then R is the cut vertex
transit function of the graph GR if and only if R satisfies the axioms (t1), (t2),
(b2), (U∗), and |R(u, v, w)| ≤ 1 for all u, v, w ∈ V .

Proof. Suppose R satisfies the axioms (t1), (t2), (b2), (U∗), and |R(u, v, w)| ≤ 1
for all u, v, w ∈ V . By Lemma 1, R also satisfies (b1), and hence Corollary 1
implies that R is the cut vertex transit function of the block graph GR.
Conversely, let R by the cut vertex transit function of a graph. Therefore,
|R(u, v, w)| ≤ 1 for any u, v, w ∈ V by Proposition 3. On the other hand, R
is the interval function of a block graph by Proposition 4, and hence satisfies in
particular (t1), (t2), (b2), and (U∗). 	

We conclude this section with the following remark which can be deduced
from the results of this section.

Corollary 2. The cut vertex transit function C of a connected graph G coincides
with the interval function of its block closure G∗.

226 M. Changat et al.

3 Cut Vertex Transit Function of Hypergraphs

3.1 Notation and Terminology

A hypergraph H consists of a set V of vertices and a set E ⊆ 2V of non-
empty edges. A path in a hypergraph H is an alternating sequence of hyperedges
x1e1x2e2x3 . . . xk−1ek−1xkekxk+1 such that x1 ∈ e1, xi ∈ ei−1∩ei, and xk+1 ∈ ek
and for i �= j we have xi �= xj and ei �= ej . Every edge ei in a path thus
contains at least two vertices. A hypergraph is connected if every pair of vertices
is connected by a path. A path in H is called simple if ei∩ej = ∅ for j �= i, i±1. A
cycle is a simple path, say x1e1x2e2x3 . . . xk−1ek−1xkekxk+1, in which x1 = xk+1.
We will need the following simple observation.

Lemma 2. Let P by a uv-path in H. Then there is a simple uv-path composed
of a subset of the hyperedges of P .

In order to determine C(u, v), therefore, it suffices to consider only simple
uv-path. Now let P by a simple uv-path and consider a vertex x ∈ P . We note
that x is either contained in a single edge, say ej , or in the intersection of two
consecutive edges ei ∩ ei+1. In either case, P can be subdivided into a ux-path
P1 and a xv-path P2. In the first case, P1 and P2 share ej , while in the second
case they have no edge in common. Both paths P1 and P2 are again simple.

Paths can also be concatenated, provided they do not contain the same edge.
Let P1 and P2 be a ux-path and an xv-path, respectively. Then their concate-
nation P1P2 = ue1 . . . ejxe

′
1 . . . e

′
kv is again a path provided no edges appear

twice as we traverse from u to v. We also define a concatenation in which the
last edge of P1 and the first edge of P2 coincides: For P1 = ue1 . . . xje

∗x and
P1 = xe∗x′

1e
′
2 . . . e

′
kv we set P1•P2 := ue1 . . . xje

∗x′
1e

′
2 . . . e

′
kv. Note that although

x does not appear explicitly in P1 •P2, it is still contained in e∗. Note, however,
that the concatenated uv-path does not necessarily contain a simple path that
still contains x.

The strong vertex deletion removes with a vertex y also all edges from H that
contain y. As in the graph case we write H − y for the resulting hypergraph. A
strong cut vertex is a vertex whose strong deletion renders H disconnected [9].
That is, x is a strong cut vertex in H if and only if there are two distinct vertices
u �= x and v �= x in H such that every uv-path contains an edge containing x.
In this case, we say that x separates u und v.

Before we proceed, we consider the concatenation of simple paths at a strong
cut vertex.

Lemma 3. Let x be a strong cut vertex in H separating u and v. Let P1 and
P2 be simple ux- and xv-paths, respectively. Then there are simple uv-paths P ′

and P ′′ that contain the edges of P1 and P2, respectively.

Proof. First, we observe that the concatenations P1P2 or P1 •P2 (in the case of
equal end edges) are again paths in this case since all edges of P1 except for the
last one, e∗

1, are contained in the component of H − x that contains u, all edges
of P2 except for the first one, e∗

2 are contained in the component of H − x that

Cut Vertex Transit Functions of Hypergraphs 227

contains v. In particular, therefore ei ∩ ej = ∅ for all edges ei �= e∗
1 in P1 and

ej �= e∗
2 in P2. Thus, if e∗

1 = e∗
2, then the concatenation P1 • P2 is again simple,

and the assertion follows. If e∗
1 �= e∗

2, then we have to consider the following case:
(i) If P1P2 is simple, then the assertion follows trivially. (ii) otherwise, there is
a minimal i such that there is a x′ ∈ ei ∩ e∗

2 (in which case ux1 . . . xieix
′P2 is a

simple uv-path), or there is a maximal j such that x′′ ∈ e∗
2 ∩ e′

j (in which case
P1x

′′e′
j . . . e

′
kv is a simple xv-path).

x y

Fig. 1. The absence of strong cut vertices does not imply the existence of two vertex
disjoint paths. Every pair of xy-paths shares at least two vertices in the intersection
of two of hyperedges with rank 4. Removal of all edges incident to any given vertex,
however, still leave an xy-path behind, i.e., there is no strong cut vertex separating x
and y.

Very little seems to be known about path-related transit functions on hyper-
graphs. For our purposes, one of the difficulties seems to be rooted in the much
looser connection between alternative paths and cut vertices compared to the
special case of graphs, see also [9].

Remark 1. As in graphs, the existence of two edge-disjoint paths is necessary
– but not sufficient – to exclude strong cut vertices. We say that two xy-path
P ′ and P ′′ are vertex-disjoint if their vertex sets only share the endpoints, i.e.,⋃

e∈P ′ ∩⋃
e∈P ′′ = {x, y}. In contrast to graphs, the existence of two vertex dis-

joint paths is necessary but not sufficient in hypergraphs to rule out strong cut
vertices. In the example of Fig. 1, any two xy-paths share (at least) a pair of ver-
tices located in the hyperedges of rank 4, i.e., there is no pair of vertex-disjoint
xy-paths. Nevertheless, no vertex is contained in all xy-paths, and hence there
is no strong cut vertex separating x and y.

Properties of C on Hypergraphs

As in the case of graphs, we consider the transit function defined in Eq. (2), i.e.,
for all u �= v we have x ∈ C(u, v) if every uv-path in the hypergraph contains an
edge that contains x. That is, x ∈ C(u, v) if and only if x is a strong cut vertex
separating u and v.

228 M. Changat et al.

Since the definition of uv-paths is symmetric and u and v are contained
in every uv-path, it is clear that C satisfies (t1) and (t2). By convention we set
C(x, x) = {x} for all x, i.e., C is a well-defined transit function. Note that C(u, v)
in particular contains all vertices in the intersection of all edges in uv-paths that
contain u. For instance, if every edge containing u also contains w �= u, then
w ∈ C(u, v) for all v.

Similar to the case of graphs, the interval function I(u, v) of a hypergraph H
is defined as the function that returns, for every pair of vertices u, v of H, the
set of all vertices lying on shortest uv-paths in H. Note that the exact definition
depends on what one means by “shortest”. There are at least three natural ways
to measure the “length” of a path: its number of edges, the number of included
vertices, or the sum of the cardinalities of the edges. For our purposes, any of
the above definitions can be used. If x lies on every path from u to v, then x in
particular lies on every shortest uv-path, and we have the following immediate
observation.

Remark 2. The cut vertex transit function C and the interval function I of a
hypergraph H are related by C(u, v) ⊆ I(u, v).

The characterization of cut vertex transit functions of graphs benefits greatly
from the existence of the block closure G∗ and the convenient properties of block
graphs. As a generalization we define the hypergraph H∗ obtained from H by
adding the hyperedge {u, v} whenever C(u, v) = {u, v}. The inclusion of these
edges clearly does not change the cut vertex transit function, i.e., C = C∗.
Its underlying graph GC∗ is of course a block graph. In contrast to the graph
case, G∗

C is not connected in general, even if H is connected. For example, if
e = {x, u, y} is the only edge containing u, then {x, u, y} ∈ C(u, v) for all v,
and thus u is an isolated vertex in GC∗ . It is tempting to speculate that the
correspondence between C and the interval function I∗ of the block closure
generalizes to hypergraphs. However, the example in Fig. 2 shows that this is
not the case. Note that the example is independent of the choice of the exact
length function for paths.

p

q

vu x

Fig. 2. Construction of the block closure of H with V = {p, q, u, v, x} and edges
{u, x, p}, {u, x, q}, {p, v}, and {q, v} adds only the edge {p, q}. We have C∗(u, v) =
C(u, v) = {u, x, v} and I(u, v) = I∗(u, v) = V , since both H and H∗ contain the two
equivalent shortest uv-paths P1 = (u{u, x, p}p{p, v}v) and P2 = (u{u, x, q}q{q, v}v).
Note that this remains true for any “reasonable” notion of “shortest paths”.

Cut Vertex Transit Functions of Hypergraphs 229

We start our investigation of the cut vertex transit function C with a simple
observation

Lemma 4. The cut vertex transit function of a hypergraph satisfies axiom (b2).

Proof. From x ∈ C(u, v), we know that every uv-path contains an edge contain-
ing x, and thus an xv-subpath. By assumption, y ∈ C(x, v), i.e., every xv-path
contains an edge containing y. Thus every uv-path contains such an edge. Con-
sequently we have y ∈ C(u, v) and C(x, v) ⊆ C(u, v).

Next we investigate to what extent C captures betweenness properties
between cut vertices.

Lemma 5. Let x and y be two distinct strong cut vertices separating u and v.
Then y is a strong cut vertex separating u and x or x and v.

Proof. By assumption every (simple) uv-path contains an edge containing x and
an edge containing y. By Lemma 3 the concatenation of any simple ux-path
and any simple xv-path always contains y. Now suppose there are two simple
uv-paths P1 and P2 such that y appears only in edges of the ux-subpath of P1

and only in edges of the xv-subpath of P2. Since P1 and P2 are simple, we can
concatenate the xv-subpath of P1 and the ux-subpath of P2 to obtain a simple
path that contains no edge containing u, a contradiction. Hence y is contained
in every ux-path or in every xv-path.

Consider the following axiom for general transit functions, which also appeared
in the characterization of hierarchies [7].

(h”) x ∈ R(u, v) implies R(u, v) = R(u, x) ∪ R(x, v).

We can now restate Lemma 5 as

Corollary 3. The cut vertex transit function C of a hypergraph satisfies axiom
(h”).

Proof. Lemma 5 translates to: “x, y ∈ C(u, v) implies y ∈ C(u, x) or y ∈ C(x, v)
for all u, v ∈ V .” Thus C(u, v) ⊆ C(u, x) ∪ C(x, v). Property (b2) ensures that
C(u, x) ∪ C(x, v) ⊆ C(u, v).

Note that axiom (h”) trivially implies axiom (b2).

Lemma 6. Let x and y be two distinct strong cut vertices in H such that x
separates u and v, and y separates u and x. Then x separates y and v.

Proof. We first observe that both x and y are contained in every uv-path. We
again invoke Lemma 3 to argue that every simple uv-path can be subdivided
into a ux- and xv-path, with the property that every ux-path contains an edge
containing y. Furthermore, if every xv-path also contains y, then x and y are
always contained in a common edge of every uv-path. In the latter case x of
course always contained in the yv-subpath. Now suppose there is a xv-path that

230 M. Changat et al.

does not contain y. We can then subdivide every simple uv-path into an ux-path
and an xv-path, and further subdivide the ux-path into a uy-path and yx-path.
If x and y always appear in the same edge along P , we can argue as above.
Otherwise, x is always contained in the yv-subpath of every uv-path. Thus x
always separates y and v. 	

Somewhat surprisingly, this result is no longer true when some of the vertices u,
v, x, and y are not assumed to be pairwisely distinct. To see this, consider the
hypergraph H3 consisting of three vertices and the single edge e = V = {u, x, v}.
We have C(u, x) = C(x, v) = C(u, v) = {u, x, v}. Setting y = v, however, we
would claim x ∈ C(y, v) = C(v, v), contradicting (t3). In particular, therefore,
C does not satisfy (b3) but only the following, slightly weaker axiom:

(b3’) If x, y, u, v distinct, x ∈ R(u, v), and y ∈ R(u, x) then x ∈ R(y, v).

The hypergraph H3 also serves as a counter-example for (b1): We have x ∈
C(u, v) but C(u, x) = C(x, v) = C(u, v). Hence we do not seem to have an
analog of axiom (b1). By the same argument, (b4) does not hold.

The following axiom is motivated by the idea that, given three distinct ver-
tices, at least one of the paths connecting them must pass through each cut
vertex that separates any two of them.

(X’) If x /∈ R(u, v) then R(u, v) ⊆ R(u, x) ∪ R(x, v) for u, v ∈ V .

Lemma 7. The cut vertex transit function of a hypergraph satisfies axiom (X’).

Proof. Assume, for contradiction, that there is y ∈ C(u, v) such that y /∈ C(u, x)
and y /∈ C(x, u). Then there is a ux- and xv-path, neither of which contains an
edge containing y. Their concatenation, therefore, contains an uv-path without
an edge containing y, and thus y /∈ C(u, v), a contradiction. The assertion follows
immediately.

In fact, axiom (X’) can be viewed as the following axiom (X) (“triangle inequal-
ity”)

(X) For all u, v, x ∈ V holds R(u, v) ⊆ R(u, x) ∪ R(x, v).

Corollary 4. The cut vertex transit function of a hypergraph satisfies axiom
(X).

Proof. Let u, v, x ∈ V If x = u or x = v or u = v the assertion holds triv-
ially; hence assume that u, v, and x are pairwise disjoint. If x ∈ C(u, v) then
(h”) implies C(u, x) ∪ C(x, v) = C(u, v). If x /∈ C(u, v), the assertion follows
immediately from (X’).

Axiom (U∗) is a trivial consequence of (X).
We note in passing that (X) is satisfied also by the transit functions of hier-

archies, which satisfy (m), (h”) and (h”’) [x /∈ R(u, v) implies R(u, x) = R(x, v)]
[7]. To see this, we note that (h”’) implies v ∈ R(u, x) and u ∈ R(x, v), which
together with (m) implies R(u, v) ⊆ R(u, x) ∪ R(x, v), i.e., (X’).

Finally we consider the axiom

Cut Vertex Transit Functions of Hypergraphs 231

(m’) For all u, v, x, y ∈ V with R(u, v)∩R(x, y) �= ∅ there are p, q ∈ V such that
R(u, v) ∩ R(x, y) = R(p, q).

Property (m’) is a key ingredient towards constructing convexities from transit
sets: it states that the intersection of two transit sets is either empty or a transit
set [6]. We have

Lemma 8. The cut vertex transit function C of a hypergraph satisfies (m’).

Proof. First note that if C(u, v) ∩ C(x, y) = {p}, the assertion holds because
C(p, p) = {p} by definition. This covers in particular the cases u = v or x = y.
For {u, v} = {x, y} there is nothing to show. Thus we consider u �= v, x �= y,
{u, v} �= {x, y}, and assume that there are two distinct vertices p′, q′ ∈ C(u, v)∩
C(x, y). For contradiction, suppose that (m’) does not hold. That is, for every
choice of p′, q′, there is a vertex r ∈ C(u, v) ∩ C(x, y) \ C(p′, q′). On the other
hand, every uv-path and every xy path contains an rp′-path that contains an
edge containing q′ or an rq′-path that contains an edge containing p′; otherwise,
at least one of p′, q′, r′ would not be contained in C(u, v)∩C(x, y). Thus we have
C(p′, q′) � C(p′, r) ⊆ C(u, v)∩C(x, y) or C(p′, q′) � C(r, q′) ⊆ C(u, v)∩C(x, y).
That is, the initial choice C(p′, q′) can be replaced by a strict super-set that
contains r. Repeating the argument therefore produces arbitrarily large super-
sets of C(p′, q′) that are still contained in C(u, v) ∩ C(x, y), a contradiction.
Thus there is an inclusion-maximal choice p, q for p′, q′ such that C(p, q) =
C(u, v) ∩ C(x, y). 	

Note that in graphs the choice of p, q is unique due to the uniqueness of the
shortest paths in the block closure [15] and the fact the end points of a path are
uniquely defined. The latter is no longer true in hypergraphs since there may be
a vertex p′ �= p that is contained in every choice for the first edges in a pq-path,
in which case C(p′, q) = C(p, q). For the same reason |C(u, v, w)| ≤ 1 fails for
hypergraphs.
We summarize our observations as

Theorem 2. The cut vertex transit function C of a hypergraph satisfies (t1),
(t2), (b2), (b3’), (m), (h”), (X’), (X), and (m’).

Proof. The general axioms (t1) and (t2) are the basic transit axioms already
discussed at the beginning of this section. Lemma 4 establishes (b2). Axiom
(b3’) is simple rewording of Lemma 6. Axiom (h”) holds due to Corollary 3. It is
shown in [7] that (h”) implies (m). Axioms (X) and (U∗) are shown in Lemma 7
and Corollary4, resp., and (m’) holds because of Lemma 8.

Note that (m) and thus also (b2) are implied by (h”) and thus will not be needed
in a characterization that makes use of axiom (h”). Similarly, (U∗) is redundant.

The results above provide some insights into the cut vertex transit function
C of hypergraphs. Even though C has some very strong properties (axioms),
they do not appear to provide a complete characterization. It remains an inter-
esting problem, therefore, whether an axiomatic characterization exists for the

232 M. Changat et al.

cut vertex transit function of hypergraphs and if so, whether it will be similar
in spirit to characterization of the cut vertex transit function of graphs.

Acknowledgments. This research work was performed while MC was visiting the
Max Plank Institute for Mathematics in the Sciences (MPI-MIS), Leipzig and Leipzig
University’s Interdisciplinary Center for Bioinformatics (IZBI). MC acknowledges the
financial support of the MPI-MIS, the hospitality of the IZBI, and the Commission
for Developing Countries of the International Mathematical Union (CDC-IMU) for
providing the individual travel fellowship supporting the research visit to Leipzig. This
work was supported in part by SERB-DST, Ministry of Science and Technology, Govt.
of India, under the MATRICS scheme for the research grant titled “Axiomatics of
Betweenness in Discrete Structures” (File: MTR/2017/000238).

References

1. Balakrishnan, K., Changat, M., Lakshmikuttyamma, A.K., Mathew, J., Mulder,
H.M., Narasimha-Shenoi, P.G., Narayanan, N.: Axiomatic characterization of the
interval function of a block graph. Discret. Math. 338, 885–894 (2015). https://
doi.org/10.1016/j.disc.2015.01.004

2. Changat, M., Hossein Nezhad, F., Mohandas, S., Mulder, H.M., Narasimha-Shenoi,
P.G., Stadler, P.F.: Interval function, induced path transit function, modular,
geodetic and block graphs and axiomatic characterizations (2019, in preparation)

3. Changat, M., Klavžar, S., Mulder, H.M.: The all-paths transit function of a
graph. Czechoslovak Math. J. 51, 439–448 (2001). https://doi.org/10.1023/A:
1013715518448

4. Changat, M., Mathew, J.: Induced path transit function, monotone and Peano
axioms. Discret. Math. 286, 185–194 (2004). https://doi.org/10.1016/j.disc.2004.
02.017

5. Changat, M., Mathews, J., Mulder, H.M.: The induced path function, monotonicity
and betweenness. Discret. Appl. Math. 158, 426–433 (2010). https://doi.org/10.
1016/j.dam.2009.10.004

6. Changat, M., Narasimha-Shenoi, P.G., Stadler, P.F.: Axiomatic characterization
of transit functions of weak hierarchies. Art Discret. Appl. Math, 2, P1.01 (2019).
https://doi.org/10.26493/2590-9770.1260.989

7. Changat, M., Nezhad, F.H., Stadler, P.F.: Axiomatic characterization of transit
functions of hierarchies. Ars Math. Contemp. 14, 117–128 (2018)

8. Changat, M., Peterin, I., Ramachandran, A., Tepeh, A.: The induced path transit
function and the Pasch axiom. Bull. Malaysian Math. Sci. Soc. 39(1), 123–134
(2015). https://doi.org/10.1007/s40840-015-0285-z

9. Dewar, M., Pike, D., Proos, J.: Connectivity in hypergraphs. Canad. Math. Bull.
61, 252–271 (2018). https://doi.org/10.4153/CMB-2018-005-9

10. Duchet, P.: Classical perfect graphs: an introduction with emphasis on triangulated
and interval graphs. Ann. Discret. Math. 21, 67–96 (1984). https://doi.org/10.
1016/S0304-0208(08)72924-4

11. Morgana, M.A., Mulder, H.M.: The induced path convexity, betweenness and
svelte graphs. Discret. Math. 254, 349–370 (2002). https://doi.org/10.1016/S0012-
365X(01)00296-5

12. Mulder, H.M.: The Interval function of a Graph, MC Tract, vol. 132. Mathematisch
Centrum, Amsterdam (1980)

https://doi.org/10.1016/j.disc.2015.01.004
https://doi.org/10.1016/j.disc.2015.01.004
https://doi.org/10.1023/A:1013715518448
https://doi.org/10.1023/A:1013715518448
https://doi.org/10.1016/j.disc.2004.02.017
https://doi.org/10.1016/j.disc.2004.02.017
https://doi.org/10.1016/j.dam.2009.10.004
https://doi.org/10.1016/j.dam.2009.10.004
https://doi.org/10.26493/2590-9770.1260.989
https://doi.org/10.1007/s40840-015-0285-z
https://doi.org/10.4153/CMB-2018-005-9
https://doi.org/10.1016/S0304-0208(08)72924-4
https://doi.org/10.1016/S0304-0208(08)72924-4
https://doi.org/10.1016/S0012-365X(01)00296-5
https://doi.org/10.1016/S0012-365X(01)00296-5

Cut Vertex Transit Functions of Hypergraphs 233

13. Mulder, H.M.: Transit functions on graphs (and posets). In: Changat, M., Klavžar,
S., Mulder, H.M., Vijayakumar, A. (eds.) Convexity in Discrete Structures.
Ramanujan Lecture Notes Series, vol. 5, pp. 117–130. International Press, Boston
(2008)

14. Mulder, H.M., Nebeský, L.: Axiomatic characterization of the interval function of
a graph. Eur. J. Comb. 30, 1172–1185 (2009). https://doi.org/10.1016/j.ejc.2008.
09.007

15. Mulder, H.M.: An observation on block graphs. Bull. Inst. Comb. Appl. 77, 57–58
(2016)

16. Nebeský, L.: A characterization of the interval function of a connected graph.
Czech. Math. J. 44, 173–178 (1994). https://doi.org/10.21136/CMJ.1994.128449

17. Nebeský, L.: Characterization of the interval function of a (finite or infinite) con-
nected graph. Czech. Math. J. 51, 635–642 (2001). https://doi.org/10.1023/A:
1013744324808

18. Nebeský, L.: The induced paths in a connected graph and a ternary relation deter-
mined by them. Math. Bohem. 127, 397–408 (2002). https://doi.org/10.21136/
MB.2002.134072

https://doi.org/10.1016/j.ejc.2008.09.007
https://doi.org/10.1016/j.ejc.2008.09.007
https://doi.org/10.21136/CMJ.1994.128449
https://doi.org/10.1023/A:1013744324808
https://doi.org/10.1023/A:1013744324808
https://doi.org/10.21136/MB.2002.134072
https://doi.org/10.21136/MB.2002.134072

Lexicographic Product of Digraphs
and Related Boundary-Type Sets

Manoj Changat1 , Prasanth G. Narasimha-Shenoi2 ,
and Mary Shalet Thottungal Joseph2(B)

1 Department of Futures Studies, University of Kerala, Trivandrum, India
mchangat@gmail.com

2 Department of Mathematics, Government College Chittur, Palakkad, India
prasanthgns@gmail.com, mary shallet@yahoo.co.in

Abstract. Let D = (V,E) be a digraph and u, v ∈ V (D). The met-

ric, maximum distance is defined by md(u, v) = max{−→
d (u, v),

−→
d (v, u)}

where
−→
d (u, v) denote the length of a shortest directed u − v path in

D. The relationship between the boundary-type sets of the lexicographic
product of two digraphs and its factor graphs have been studied in this
article.

Keywords: Maximum distance · Boundary-type sets · Strongly
connected digraph · Lexicographic product · DDLE digraph

Subject Classification (2020): 05C12 · 05C20 · 05C76

1 Introduction

The operations on digraphs that result in a bigger digraph have been of great
research interest. There exist many digraph products for which the vertex set is
the Cartesian product of vertex sets of its factors. They differ by the definitions
of the edge sets. Among them, four are called standard products. These are the
Cartesian product, the strong product, the direct product, and the lexicographic
product. For a rich bibliography about them, see [10].

The study of the boundary vertex sets of a graph, namely the boundary,
contour, eccentricity, and peripheral sets was initiated in [5,7]. They find appli-
cations in various contexts like facility location [8] and rebuilding in graphs [3].

Minimizing the distance between nodes in the digraph sense is equivalent to
minimizing the distance in either direction. Thus the metric, maximum distance
(see [9]) md(u, v) for u, v ∈ V (D) is the most suitable in these networks. The
concept of boundary type vertices defined in graphs using the usual distance can
be extended to digraphs using the metric maximum distance.

The study of lexicographic product of two graphs was initiated by Frank
Harary in 1959. In [12], Harary defined a binary operation on graphs, which
was called composition, such that the group of the composition of two graphs is
permutationally equivalent to the composition of their groups.
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 234–246, 2021.
https://doi.org/10.1007/978-3-030-67899-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_18&domain=pdf
http://orcid.org/0000-0001-7257-6031
http://orcid.org/0000-0002-5850-5410
http://orcid.org/0000-0001-6350-7106
https://doi.org/10.1007/978-3-030-67899-9_18

Lexicographic Product of Digraphs and Related Boundary-Type Sets 235

In this article, the four boundary-type sets of lexicographic product of two
directed graphs is investigated. A similar attempt was made in [6] to find the
boundary-type sets of the Cartesian product of two directed graphs.

The article is organised as follows. In Sect. 2, all the basic definitions are
provided. In Sect. 3, the definition of a digraph satisfying the DDLE property is
introduced. The four boundary-type sets of the lexicographic product D1 ◦ D2

are considered in the following cases. Subsection 3.1 deals with the case when
D1 is a digraph satisfying the DDLE property. Subsections 3.2 and 3.3 deal with
the cases when D1 is a directed cycle and a symmetric digraph, respectively.

2 Preliminaries

A digraph D consists of a non-empty finite set V (D) of elements called vertices
and a finite set E(D) of ordered pairs of distinct vertices called arcs or edges
[1]. The first vertex of the ordered pair is the tail of the edge, and the second
is the head; together they are the endvertices. The underlying graph UD of a
digraph D is the simple graph with the vertex set V (D) and the unordered pair
(x, y) ∈ E(UD) if and only if either (x, y) ∈ E(D) or (y, x) ∈ E(D).

The following definitions are from [2]. A directed walk is an alternating
sequence W = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi and arcs aj from D such
that xi and xi+1 are the tail and head of ai, respectively, for every i ∈ [k − 1].
If the vertices of W are distinct, then W is a directed path (dipath). If the ver-
tices x1, . . . , xk−1 are distinct, k ≥ 3 and x1 = xk, then W is a directed cycle
(dicycle). A pair of opposite arcs forms a directed cycle of length 2.

In this article, a path will always mean a ‘directed path’. A digraph is strongly
connected or strong if, for each ordered pair u, v of vertices, there is a path from
u to v. The length of a path is the number of edges in the path. Let u and v be
vertices of a strongly connected digraph D. A shortest directed u−v path is also
called a directed u−v geodesic. The number of edges in a directed u−v geodesic
is called the directed distance

−→
d (u, v). But this distance is not a metric because−→

d (u, v) �= −→
d (v, u) is possible. So in [9], Chartrand and Tian introduced two

other distances in a strong digraph, namely the maximum distance md(u, v) =
max{−→d (u, v),

−→
d (v, u)} and sum distance sd(u, v) =

−→
d (u, v) +

−→
d (v, u), both of

which are metrics.
This article deals with the distance md. The m-eccentricity of a vertex

v, the m-radius, and the m-diameter of a digraph D are also defined in [9].
We denote them respectively as mecc(v), mrad(D), and mdiam(D). Thus,
mecc(v) = max

u∈V (D)
{md(v, u)}, mrad(D) = min

v∈V (D)
{mecc(v)}, and mdiam(D) =

max
v∈V (D)

{mecc(v)}.

In a strongly connected digraph, the m-distance between every pair of vertices
and the m-eccentricity of every vertex is finite.

The concept of neighborhood of a vertex v in a digraph D is as follows:
N+

D (v) = {u ∈ V : (v, u) ∈ E}, N−
D (v) = {w ∈ V : (w, v) ∈ E}. The sets

236 M. Changat et al.

N+
D (v), N−

D (v) and ND(v) = N+
D (v)

⋃
N−

D (v) are called the out-neighborhood,
the in-neighborhood and the neighborhood of v, respectively.

Most of the following definitions are analogous to the definitions in [7]. Let
D = (V,E) be a strong digraph and u, v ∈ V . The vertex v is said to be an m-
boundary vertex of u if no neighbor of v is further away from u than v. A vertex v
is called an m-boundary vertex of D if it is the m-boundary vertex of some vertex
u ∈ V . The m-boundary m∂(D) of D is the set of all of its m-boundary vertices;
that is, m∂(D) = {v ∈ V : ∃u ∈ V such that ∀w ∈ N(v), md(u,w) ≤ md(u, v)}.
The vertex v is called an m-eccentric vertex of u if no vertex in V is further
away from u than v. Then md(u, v) = mecc(u). A vertex v is called an m-
eccentric vertex of D if it is the m-eccentric vertex of some vertex u ∈ V . The
m-eccentricity mEcc(D) of D is the set of all of its m-eccentric vertices; that is,
mEcc(D) = {v ∈ V : ∃u ∈ V such that mecc(u) = md(u, v)}. A vertex v ∈ V is
called an m-peripheral vertex of D if no vertex in V has an m-eccentricity greater
than mecc(v); that is, if the m-eccentricity of v is equal to the m-diameter of
D. The m-periphery mPer(D) of D is the set of all of its m-peripheral vertices;
that is, mPer(D) = {v ∈ V : mecc(u) ≤ mecc(v),∀u ∈ V } = {v ∈ V : mecc(v) =
mdiam(D)}. A vertex v ∈ V is called an m-contour vertex of D if no neighbor
vertex of v has an m-eccentricity greater than mecc(v). The following definition
is from [5]. The m-contour mCt(D) of D is the set of all of its contour vertices;
that is, mCt(D) = {v ∈ V : mecc(u) ≤ mecc(v),∀u ∈ N(v)}.

From the definitions, it follows that

1. mPer(D) ⊆ mCt(D) ∩ mEcc(D),
2. mEcc(D) ∪ mCt(D) ⊆ m∂(D).

3 Lexicographic Product of Directed Graphs

The lexicographic product of two digraphs D1 and D2 is the digraph D1 ◦ D2,
having the vertex set V (D1) × V (D2) and with arc set defined as follows. A
vertex (ui, vr) is adjacent to (uj , vs) in D1 ◦ D2 if either

1. (ui, uj) ∈ E(D1), or
2. ui = uj , (vr, vs) ∈ E(D2).

The lexicographic product of two graphs is not commutative [10]. The dis-
tance between two vertices (ui, vr) and (uj , vs) in the lexicographic product
G ◦ H of a connected graph G and a graph H is obtained from [10] as:

dG◦H((ui, vr), (uj , vs)) =

{
dG(ui, uj) if ui �= uj

min{2, dH(vr, vs)} if ui = uj

Prior to the definition of the distance between two vertices in the lexico-
graphic product of two digraphs, several other notions from [11] need to be
introduced. Let D be a digraph. Given a vertex x of a digraph D, ξD(x) is the
length of a shortest dicycle in D containing x, or infinity if no such dicycle exists.
In this article, ξD(x) will be called the dicycle distance of x in D.

Lexicographic Product of Digraphs and Related Boundary-Type Sets 237

Consider two digraphs D1 and D2 with vertex sets V (D1) = {u1, u2, . . . , un}
and V (D2) = {v1, v2, . . . , vm}, respectively. Let (ui, vr), (uj , vs) ∈ V (D1 ◦ D2).
The formula for directed distance

−→
d D1◦D2((ui, vr), (uj , vs)) is obtained from [11]

as follows:
−→
d D1◦D2((ui, vr), (uj , vs)) =

{−→
d D1(ui, uj) if ui �= uj

min{ξD1(ui),
−→
d D2(vr, vs)} if ui = uj .

Thus

mdD1◦D2 ((ui, vr), (uj , vs)) = max{−→
d D1◦D2 ((ui, vr), (uj , vs)),

−→
d D1◦D2 ((uj , vs), (ui, vr))}

=

{
max{−→

d D1 (ui, uj),
−→
d D1 (uj , ui)} if ui �= uj

min{ξD1 (ui),max{−→
d D2 (vr, vs),

−→
d D2 (vs, vr)}} if ui = uj .

=

{
mdD1 (ui, uj) if ui �= uj

min{ξD1 (ui), mdD2 (vr, vs)} if ui = uj .

Hence it follows that

meccD1◦D2 (ui, vr) =

{
min{meccD2 (vr), 2} if meccD1 (ui) = 1
max{meccD1 (ui),min{ξD1 (ui),meccD2 (vr)}} if meccD1 (ui) ≥ 2.

As the digraphs under consideration are clear from the vertex labelling,
we may denote mdD1(ui, uj) by md(ui, uj), mdD1◦D2((ui, vr), (uj , vs)) by
md((ui, vr), (uj , vs)), and meccD1◦D2(ui, vr) by mecc(ui, vr).

For every vertex x of a strongly connected digraph D with at least two
vertices, there exists a dicycle in D containing x. So ξD(x) is finite for every
vertex x in D. Also, meccD(x) is finite for every vertex x of a strongly connected
digraph D. The following definition is introduced to begin with the study of the
boundary vertices of the lexicographic product of two digraphs.

Definition 1. A strong digraph D is said to satisfy the dicycle distance less
than eccentricity property or in short the DDLE property, if for every ver-
tex x ∈ V (D), mecc(x) > ξD(x). A digraph D which satisfy the DDLE property
is called a DDLE digraph.

If D1 is a DDLE digraph, then mecc(ui) > 2 for all ui ∈ V (D1), and hence
mecc(ui, vr) = mecc(ui) > ξD1(ui) for all (ui, vr) ∈ V (D1 ◦ D2). Let G and
H be the underlying graphs of the digraphs D1 and D2, respectively. Since
NG◦H(ui, vr) = (NG(ui) × V (H))

⋃
({ui} × NH(vr)) [10], and since the neigh-

bors of (ui, vr) are exactly the same in D1 ◦ D2 and its underlying graph G ◦ H,
ND1◦D2(ui, vr) = (ND1(ui)×V (D2))

⋃
({ui}×ND2(vr)). The lexicographic prod-

uct of two digraphs D1 and D2 is strongly connected if and only if D1 is strongly
connected [10]. Examples of digraphs that do not satisfy the DDLE property are
the directed cycles Cn and the complete graphs Kn, n ≥ 2.

3.1 D1 ◦ D2, D1 Is a DDLE Digraph

As D1 is a DDLE digraph, mecc(ui) > ξD1(ui) for all ui ∈ V (D1).
Also since mecc(ui) > 2, mecc(ui, vr) = max{mecc(ui),min{ξD1(ui),

238 M. Changat et al.

mecc(vr)}} = mecc(ui) for all (ui, vr) ∈ V (D1 ◦ D2). Thus if D1 is a DDLE
digraph, then we get the following results regarding the m-periphery, m-contour
and m-eccentricity sets of D1 ◦ D2. Since the DDLE property is related to the
m-eccentricity of a vertex, nothing could be inferred about the m-boundary set
m∂(D1 ◦ D2).

Proposition 1. Let D1 be a strongly connected DDLE digraph and D2 be an
arbitrary digraph. Then

1. Per(D1 ◦ D2) = mPer(D1) × V (D2),
2. Ct(D1 ◦ D2) = mCt(D1) × V (D2),
3. Ecc(D1 ◦ D2) = mEcc(D1) × V (D2).

Proof. Given D1 is a DDLE digraph. Let ui ∈ V (D1) and vr ∈ V (D2). Then,
mecc(ui, vr) = mecc(ui).

1. (ui, vr) ∈ mPer(D1 ◦ D2) ⇐⇒ mecc(ui, vr) ≥ mecc(uk, vq)
for all (uk, vq) ∈ V (D1 ◦ D2)

⇐⇒ mecc(ui) ≥ mecc(uk) for all uk ∈ V (D1)
⇐⇒ ui ∈ mPer(D1).

Thus, mPer(D1 ◦ D2) = mPer(D1) × V (D2).
2. ND1◦D2(ui, vr) = (ND1(ui) × V (D2))

⋃
({ui} × ND2(vr)).

(ui, vr) ∈ mCt(D1 ◦ D2) ⇐⇒ mecc(ui, vr) ≥ mecc(uk, vq) for all (uk, vq) ∈ N(ui, vr)

⇐⇒ mecc(ui) ≥ mecc(uk) for all uk ∈ N(ui)

⇐⇒ ui ∈ mCt(D1).

Hence it follows that mCt(D1 ◦ D2) = mCt(D1) × V (D2).
3. (ui, vr) ∈ mEcc(D1 ◦ D2) if and only if there exists (uj , vs) ∈ V (D1 ◦ D2)

such that mecc(uj , vs) = mecc(uj) = md((uj , vs), (ui, vr)). Since D1 is a DDLE
digraph, mecc(uj , vs) = mecc(uj), and uj �= ui. Thus, md((uj , vs), (ui, vr)) =
md(uj , ui). Hence it follows that (ui, vr) ∈ mEcc(D1 ◦ D2) if and only if there
exists a vertex uj in D1 such that mecc(uj) = md(uj , ui); if and only if ui ∈
mEcc(D1). Thus, mEcc(D1 ◦ D2) = mEcc(D1) × V (D2). ��

A digraph D is said to be symmetric if (u, v) ∈ E(D) if and only if (v, u) ∈
E(D), and so the maximum distance md is the usual distance d and likewise
m-eccentricity is the usual eccentricity and so on. Thus the prefix m can be
avoided for boundary-type sets also. If D is a connected symmetric digraph,
then ξD(x) = 2 for all x ∈ V (D). Hence the DDLE property for D is ecc(x) > 2
for all x ∈ V (D); that is, rad(D) > 2.

Thus, an immediate corollary follows from Proposition 1.

Corollary 1. Let D1 be a connected symmetric digraph with rad(D1) > 2 and
D2 be an arbitrary digraph. Then

1. mPer(D1 ◦ D2) = Per(D1) × V (D2),
2. mCt(D1 ◦ D2) = Ct(D1) × V (D2),
3. mEcc(D1 ◦ D2) = Ecc(D1) × V (D2).

Lexicographic Product of Digraphs and Related Boundary-Type Sets 239

3.2 Cn ◦ D2, Cn Is a Dicycle

Proposition 2. Let Cn be the dicycle on n vertices and D2 be an arbitrary
digraph.

1. If mrad(D2) ≥ n or mdiam(D2) < n, then m∂(Cn ◦ D2) = mCt(Cn ◦ D2) =
mEcc(Cn ◦ D2) = mPer(Cn ◦ D2) = V (Cn) × V (D2).

2. If mrad(D2) < n and mdiam(D2) ≥ n, then mPer(Cn◦D2) = mCt(Cn◦D2) =
V (Cn) × [

⋃
mecc(vr)≥n vr], and mEcc(Cn ◦ D2) = m∂(Cn ◦ D2) = V (Cn) ×

V (D2).

Proof. mecc(ui) = n − 1 and ξCn
(ui) = n for all ui ∈ Cn. Hence

meccCn◦D2(ui, vr) =

{
n − 1 if meccD2(vr) ≤ n − 1
n if meccD2(vr) ≥ n.

1. If mrad(D2) ≥ n, then mecc(ui, vr) = n for all (ui, vr) ∈ V (Cn ◦ D2). If
mdiam(D2) < n, then mecc(ui, vr) = n − 1 for all (ui, vr) ∈ V (Cn ◦ D2).
So in both the cases, m∂(Cn ◦ D2) = mCt(Cn ◦ D2) = mEcc(Cn ◦ D2) =
mPer(Cn ◦ D2) = V (Cn) × V (D2).

2. If mrad(D2) < n and mdiam(D2) ≥ n, then mPer(Cn ◦ D2) consists of all
those vertices (ui, vr) such that mecc(ui, vr) = n. Hence mPer(Cn ◦ D2) =
V (Cn) × [

⋃
mecc(vr)≥n vr]. Since mPer(Cn ◦ D2) ⊆ mCt(Cn ◦ D2), V (Cn) ×

[
⋃

mecc(vr)≥n vr] ⊆ mCt(Cn ◦ D2). If vr ∈ V (D2) is such that mecc(vr) < n,
then mecc(ui, vr) = n − 1 for all ui ∈ V (Cn). N(ui) × V (D2) ⊆ N(ui, vr).
Since mdiam(D2) ≥ n, there exists a vertex (uk, vq) ∈ N(ui, vr) such that
mecc(uk, vq) = n. Hence if mecc(vr) < n, then (ui, vr) /∈ mCt(Cn◦D2). Hence
mCt(Cn ◦ D2) = V (Cn) × [

⋃
mecc(vr)≥n vr].

Let ui ∈ V (Cn) and vr ∈ V (D2). If mecc(vr) < n, then mecc(ui, vr) =
n − 1 and there exists uj �= ui such that mdCn◦D2((uj , vr), (ui, vr)) =
n − 1 = mecc(uj , vr) and hence (ui, vr) is an eccentric vertex of (uj , vr). If
mecc(vr) ≥ n, then mecc(ui, vr) = n and there exists a vertex vs ∈ V (D2)
such that md(vs, vr) ≥ n and so mecc(ui, vs) = n. Thus mecc(ui, vs) =
mdCn◦D2((ui, vs), (ui, vr)) = n and hence (ui, vr) is an eccentric vertex of (ui, vs).
Hence mEcc(Cn ◦ D2) = V (Cn) × V (D2). Since mEcc(Cn ◦ D2) ⊆ m∂(Cn ◦ D2),
m∂(Cn ◦ D2) = V (Cn) × V (D2). ��
If D1 is not a DDLE digraph, then the boundary-type sets are no longer
characterized by the m-radius or m-diameter of the two digraphs. This is
because meccD1◦D2(ui, vr) depends on ξD1(ui), in addition to meccD1(ui) and
meccD2(vr).

To see this, consider the digraphs D1 and D′
1 in Fig. 1. The eccentricity of

each vertex is displayed near the vertex. Here, mdiam(D1) = mdiam(D′
1) =

2. Let D2 be the symmetric dipath P4 with labels v1, v2, v3, v4 in order.
Then, meccD2(v1) = meccD2(v4) = 3 and meccD2(v2) = meccD2(v3) = 2.
In D1, ξD1(u1) = ξD1(u3) = 3 and ξD1(u2) = ξD1(u4) = 2. Hence in
D1 ◦ D2, mecc(u1, v1) = mecc(u3, v1) = mecc(u1, v4) = mecc(u3, v4) = 3

240 M. Changat et al.

and the m-eccentricity of all the other vertices is 2. Thus, mPer(D1 ◦ D2) =
{(u1, v1), (u3, v1), (u1, v4), (u3, v4)}. In D′

1, the dicycle distance of every ver-
tex is 2. Thus, the m-eccentrity of every vertex in D′

1 ◦ D2 is 2 and hence
mPer(D′

1 ◦ D2) = V (D1) × V (D2). So, the remaining discussion is restricted
to the case when D1 is a symmetric digraph.

Fig. 1. Digraphs D1 and D′
1

3.3 D1 ◦ D2, D1 Is a Symmetric Digraph

Suppose that D1 is a symmetric digraph. Then ξD1(ui) = 2 for all ui ∈ V (D1).

Thus, mdD1◦D2((ui, vr), (uj , vs)) =

{
mdD1(ui, uj) if ui �= uj

min{2,mdD2(vr, vs)} if ui = uj

and meccD1◦D2(ui, vr) =

{
eccD1(ui) if eccD1(ui) ≥ 2
min{meccD2(vr), 2} if eccD1(ui) = 1.

The distance between two vertices in D1 ◦ D2, when D1 is a symmetric
digraph is the same as in the case of the lexicographic product of two symmet-
ric digraphs. So all the results for the boundary type sets are also the same.
The description of the boundary-type sets of the lexicographic product of two
symmetric digraphs is given in [4]. In this article, the results for the boundary-
type sets are proved, when D1 is a symmetric digraph and D2 is an arbitrary
digraph. In correspondence with the notation in [4], the notation mZ(D) is used
to denote the set of vertices with minimum m-eccentricity in the digraph D. If
all the vertices have the same m-eccentricity, then we take mZ(D) = ∅. Also,
mdiam(D) ≤ 2 mrad(D), for all digraphs D [9].

If D1 = Kn, n ≥ 2, then ecc(ui) = 1 for all ui ∈ V (D1).

Hence mdD1◦D2((ui, vr), (uj , vs)) =

{
1 if ui �= uj

min{2,mdD2(vr, vs)} if ui = uj

and meccD1◦D2(ui, vr) = min{meccD2(vr), 2}.

Proposition 3. Let Kn be the complete symmetric digraph on n vertices and
D2 be an arbitrary digraph. Then

Lexicographic Product of Digraphs and Related Boundary-Type Sets 241

1. mPer(Kn ◦ D2) = mCt(Kn ◦ D2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V (Kn) × V (D2) if mrad(D2) ≥ 2 or

D2 = Km

V (Kn) × [V (D2)\mZ(D2)] if mrad(D2) = 1 and

D2 �= Km

2. Ecc(Kn ◦ D2) = V (Kn) × V (D2).

Proof.

1. If mrad(D2) ≥ 2, then mecc(ui, vr) = 2 for all (ui, vr) ∈ V (Kn ◦ D2). If
D2 = Km, then mecc(ui, vr) = 1 for all (ui, vr) ∈ V (Kn ◦ D2). Thus in both
the cases, mPer(Kn ◦ D2) = mCt(Kn ◦ D2) = V (Kn) × V (D2).

If mrad(D2) = 1 and D2 �= Km, then mecc(ui, vr) = 1 for all vr ∈ mZ(D2)
and mecc(ui, vr) = 2 for all vr ∈ V (D2)\mZ(D2). Thus, mPer(Kn ◦ D2) =
V (Kn) × (V (D2)\mZ(D2)). If mecc(ui, vr) = 1, then (ui, vr) /∈ mCt(Kn ◦
D2), because there exists vq ∈ N(vr) such that mecc(vq) = 2 and hence
mecc(uk, vq) = 2, where (uk, vq) ∈ N(ui, vr). Since every vertex with eccen-
tricity 2 is in mPer(Kn ◦ D2), it follows that mPer(Kn ◦ D2) = mCt(Kn ◦ D2) =
V (Kn) × (V (D2)\mZ(D2)).

2. First, suppose that mrad(D2) = 1. If vs ∈ mZ(D2), then mecc(vs) = 1,
and hence mecc(ui, vs) = 1 = mdKn◦D2((ui, vs), (ui, vr)) for all (ui, vr) ∈
V (Kn ◦ D2).

Now, if mrad(D2) ≥ 2, then for all vs ∈ V (D2), mecc(vs) ≥ 2, and hence
mecc(ui, vs) = 2 = dKn◦D2((ui, vs), (ui, vr)) for all (ui, vr) ∈ V (Kn ◦ D2).

Hence in both the cases, Ecc(Kn ◦ D2) = V (Kn) × V (D2). ��
From Corollary 1, if mrad(D1) > 2, then mPer(D1◦D2) = mPer(D1)×V (D2).

The next two propositions discuss the relation between mPer(D1 ◦ D2) and
mdiam(D1). mdiam(D1) = 1 is the case when D1 is a complete symmetric
digraph.

Proposition 4. Let D1 be a connected symmetric digraph with diam(D1) ≥ 3,
and D2 be an arbitrary digraph. Then mPer(D1 ◦ D2) = Per(D1) × V (D2).

Proof. If diam(D1) = n ≥ 3, then mdiam(D1 ◦ D2) = n, since mecc(ui, vr) = n
for all vertices (ui, vr) in D1 ◦ D2 such that ui ∈ Per(D1), vr ∈ V (D2) and
mecc(ui, vr) < n for the remaining vertices. Hence mPer(D1 ◦ D2) = Per(D1) ×
V (D2). ��
Proposition 5. Let D1 be a connected symmetric digraph with diam(D1) = 2,
and D2 be an arbitrary digraph. Then

mPer(D1 ◦ D2) =

{
V (D1) × V (D2) if mrad(D2) ≥ 2
[Per(D1) × V (D2)] ∪ [V (D1) × (V (D2)\mZ(D2))] if mrad(D2) = 1.

Proof. If diam(D1) = 2 and mrad(D2) ≥ 2, then mecc(ui, vr) = 2 for all
(ui, vr) ∈ V (D1 ◦ D2). Hence in this case, mPer(D1 ◦ D2) = V (D1) × V (D2).

242 M. Changat et al.

If diam(D1) = 2 and mrad(D2) = 1, then

(ui, vr) ∈ mPer(D1 ◦ D2) ⇐⇒ mecc(ui, vr) = 2
⇐⇒ either ecc(ui) = 2 or mecc(vr) = 2
⇐⇒ either ui ∈ Per(D1) or vs ∈ V (D2)\mZ(D2).

Hence mPer(D1 ◦ D2) = [Per(D1) × V (D2)]
⋃

[V (D1) × (V (D2)\mZ(D2))].
��

The m-contour and m-eccentricity sets of D1 ◦ D2 depends on the m-radii of
both D1 and D2, unless mrad(D1) ≥ 3.

Proposition 6. Let D1 be a connected symmetric digraph different from Kn

and D2 be an arbitrary digraph. Then

mCt(D1 ◦ D2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ct(D1) × V (D2) if rad(D1) ≥ 2

V (D1) × V (D2) if rad(D1) = 1 and

mrad(D2) ≥ 2

[(Ct(D1)\Z(D1)) × V (D2)] ∪ [Z(D1) × (V (D2)\mZ(D2))] if rad(D1) = 1 and

mrad(D2) = 1.

Proof. Let ui ∈ V (D1) and vr ∈ V (D2).
Suppose that rad(D1) ≥ 2. By Corollary 1, mCt(D1◦D2) = Ct(D1)×V (D2),

if rad(D1) > 2. Let rad(D1) = 2. Then mecc(ui, vr) = ecc(ui) for all
(ui, vr) ∈ V (D1 ◦ D2). ND1◦D2(ui, vr) = (ND1(ui) × V (D2))

⋃
({ui} × ND2(vr)).

If ui ∈ Ct(D1), then ecc(ui) ≥ ecc(uk) for all uk ∈ N(ui). Thus, mecc(ui, vr) ≥
mecc(uk, vs) for all (uk, vs) ∈ N(ui, vr). Hence Ct(D1)×V (D2) ⊆ mCt(D1◦D2).
If ui /∈ Ct(D1), then there exists uq ∈ N(ui) such that ecc(uq) > ecc(ui). Hence
there exists (uq, vs) ∈ N(ui, vr) such that mecc(ui, vr) < mecc(uq, vs) and thus
(ui, vr) /∈ mCt(D1 ◦ D2). Hence mCt(D1 ◦ D2) = Ct(D1) × V (D2).

Suppose that rad(D1) = 1 and mrad(D2) ≥ 2. Thus, diam(D1) ≤ 2, and
eccD1(ui) = 1 or 2. Since mecc(vr) ≥ 2 for all vr ∈ V (D2), mecc(ui, vr) = 2 for
all (ui, vr) ∈ V (D1 ◦ D2). Hence in this case, mCt(D1 ◦ D2) = V (D1) × V (D2).

Consider the case rad(D1) = mrad(D2) = 1. We have mecc(ui, vr) = 1
or 2 for all (ui, vr) ∈ V (D1 ◦ D2). Let ui ∈ V (D1) and vr ∈ V (D2). If
mecc(ui, vr) = 2, then, (ui, vr) ∈ mCt(D1 ◦ D2). mecc(ui, vr) = 2 if either
(ecc(ui) = 2 and mecc(vr) ≥ 1), or (ecc(ui) = 1 and mecc(vr) = 2). The
first possibility is ui ∈ Ct(D1)\Z(D1) and vr ∈ V (D2). The second possibil-
ity is ui ∈ Z(D1) and vr ∈ V (D2)\mZ(D2). mecc(ui, vr) = 1 if and only
if ecc(ui) = mecc(vr) = 1. As D1 �= Kn and ecc(ui) = 1, there is at least
one uk ∈ N(ui) such that ecc(uk) = 2. Hence mecc(uk, vr) = 2 and since
(uk, vr) ∈ N(ui, vr), it follows that (ui, vr) /∈ mCt(D1 ◦ D2). Hence in this case,
mCt(D1 ◦ D2) = [(Ct(D1)\Z(D1)) × V (D2)]

⋃
[Z(D1) × (V (D2)\mZ(D2))]. ��

Lemma 1. Let D1 be a connected symmetric digraph and D2 be an arbitrary
digraph. Then mEcc(D1 ◦ D2) ⊆ Ecc(D1) × V (D2).

Lexicographic Product of Digraphs and Related Boundary-Type Sets 243

Proof. Let ui ∈ V (D1) and vr ∈ V (D2). Whenever ui ∈ Ecc(D1), there exists
a vertex uj ∈ V (D1) such that ecc(uj) = d(uj , ui). If rad(D1) ≥ 2, then in
D1 ◦ D2, mecc(uj , vr) = ecc(uj) = d(uj , ui) = md((uj , vr), (ui, vr)) and hence
(ui, vr) ∈ mEcc(D1 ◦ D2). If rad(D1) = 1 and if ui ∈ Ecc(D1), let uj ∈ V (D1)
be such that ecc(uj) = 1 = d(uj , ui). Then, there are two cases.

If mecc(vr) = 1, then mecc(uj , vr) = md((uj , vr), (ui, vr)) = 1 and so
(ui, vr) ∈ mEcc(D1 ◦D2). If mecc(vr) ≥ 2, then there exists a vertex vs ∈ V (D2)
such that in D1 ◦ D2, mecc(ui, vs) = md((ui, vs), (ui, vr)) = 2 and so (ui, vr) ∈
mEcc(D1 ◦ D2). So in both the cases, Ecc(D1) × V (D2) ⊆ mEcc(D1 ◦ D2). ��
Proposition 7. Let D1 be a connected symmetric digraph with rad(D1) = 2,
and D2 be an arbitrary digraph. Then
mEcc(D1 ◦ D2) =

{
[Ecc(D1) × V (D2)]

⋃
[Z(D1) × (V (D2)\Z(D2))] if mrad(D2) = 1

[Ecc(D1) ∪ Z(D1)] × V (D2) if mrad(D2) ≥ 2.

Proof. By Lemma 1, Ecc(D1) × V (D2) ⊆ mEcc(D1 ◦ D2). Now, it is enough to
find the vertices (ui, vr) ∈ mEcc(D1 ◦ D2) such that ui /∈ Ecc(D1).
First, suppose that mrad(D2) = 1. If ui ∈ Z(D1), then ecc(ui) = 2 and hence
mecc(ui, vr) = 2 for all vr ∈ V (D2). If vr /∈ mZ(D2), then mecc(vr) ≥ 2
and so there exists a vertex vs ∈ V (D2) such that md(vs, vr) ≥ 2 and
hence mdD1◦D2((ui, vs), (ui, vr)) = 2. But, if vr ∈ mZ(D2), md(vs, vr) = 1
for all vs ∈ V (D2). Hence there exists no vertex (ui, vs) in D1 ◦ D2 such
that mdD1◦D2((ui, vs), (ui, vr)) = 2. Thus if ui /∈ Ecc(D1), then (ui, vr) ∈
mEcc(D1 ◦D2) if and only if ui ∈ Z(D1) and vr /∈ Z(D2). Hence Ecc(D1 ◦D2) =
[Ecc(D1) × V (D2)]

⋃
[Z(D1) × (V (D2)\mZ(D2))].

Next, suppose that mrad(D2) ≥ 2. Let vr ∈ V (D2). Since rad(D1) = 2 and

mrad(D2) ≥ 2, mecc(ui, vs) =

{
ecc(ui) if ui /∈ Z(D1)
2 if ui ∈ Z(D1).

(ui, vr) ∈ mEcc(D1 ◦ D2) if and only if there exists a vertex (uj , vs) ∈ V (D1 ◦
D2)) such that mecc(uj , vs) = md((uj , vs), (ui, vr)). If vs ∈ V (D2) is such that
md(vs, vr) ≥ 2, then meccD1◦D2(ui, vs) = 2 = mdD1◦D2((ui, vs), (ui, vr)) for
all ui ∈ Z(D1). Thus besides Ecc(D1) × V (D2), all elements (ui, vr), where
ui ∈ Z(D1) are also eccentric vertices in D1 ◦ D2. For vertices ui such that
ui /∈ Ecc(D1) and ui /∈ Z(D1), ecc(ui) > 2 and there exist no vertex uj ∈ V (D1)
such that ecc(uj) = d(uj , ui). Hence in D1 ◦ D2, there exist no vertex (uj , vs)
such that meccD1◦D2(uj , vs) = mdD1◦D2((uj , vs), (ui, vr)). That is, (ui, vr) is not
an eccentric vertex of any vertex (uj , vs) in D1 ◦ D2. Thus mEcc(D1 ◦ D2) =
(Ecc(D1)

⋃
Z(D1)) × V (D2). ��

244 M. Changat et al.

Proposition 8. Let D1 be a connected symmetric digraph with rad(D1) = 1
different from Kn and D2 be an arbitrary digraph. Then mEcc(D1 ◦ D2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[Ecc(D1) × V (D2)] ∪ [Z(D1) × (V (D2)\mZ(D2))] if mrad(D2) = 1 and

|Z(D1)| = |mZ(D2)| = 1

Ecc(D1) × V (D2) if mrad(D2) = 1 and

|Z(D1)| ≥ 2

[Ecc(D1) ∪ Z(D1)] × V (D2) if mrad(D2) ≥ 2 or mrad(D2) = 1,

|Z(D1)| = 1, and |mZ(D2)| ≥ 2.

Proof. By Lemma 1, Ecc(D1) × V (D2) ⊆ mEcc(D1 ◦ D2).
Thus, it is enough to find the remaining vertices in Ecc(D1 ◦ D2) in each case.

Consider the case: rad(D2) = 1 and |Z(D1)| = |mZ(D2)| = 1. Let vr ∈
V (D2).

meccD1◦D2(ui, vs) =

{
eccD1(ui) if ui /∈ Z(D1)
min{meccD2(vs), 2} if ui ∈ Z(D1).

Thus if ui /∈ Ecc(D1), then (ui, vr) ∈ mEcc(D1 ◦ D2) only if ui ∈ Z(D1)
and vr /∈ mZ(D2). For, if vs ∈ V (D2) is such that md(vr, vs) = 2, then
meccD1◦D2(ui, vs) = 2. Thus meccD1◦D2(ui, vs) = mdD1◦D2((ui, vs), (ui, vr)) = 2
for ui ∈ Z(D1) and vr /∈ mZ(D2), and there exists only one vertex in D1 ◦ D2

having eccentricity 1 (the single vertex in Z(D1) × Z(D2)). This vertex can-
not be the eccentric vertex of any vertex in D1 ◦ D2. Hence mEcc(D1 ◦ D2) =
[Ecc(D1) × V (D2)]

⋃
[Z(D1) × (V (D2)\mZ(D2))].

Now consider the case: mrad(D2) = 1 and |Z(D1)| ≥ 2. If ui ∈ Z(D1), then
there exists another vertex uj ∈ Z(D1) such that ecc(uj) = d(uj , ui) = 1. Hence
ui ∈ Ecc(D1). Thus, mEcc(D1 ◦ D2) = Ecc(D1) × V (D2).

Next, consider the case: mrad(D2) = 1, |Z(D1)| = 1 and |mZ(D2)| ≥ 2. For
each vr ∈ Z(D2), there exists another vertex vs ∈ mZ(D2) such that mecc(vs) =
md(vs, vr) = 1. Thus, if ui ∈ Z(D1), then mecc(ui, vs) = md((ui, vs), (ui, vr)) =
1. That is, every vertex (ui, vr) such that ui ∈ Z(D1), vr ∈ mZ(D2) is an
eccentric vertex in D1 ◦ D2. But all vertices in Z(D1) × (V (D2)\mZ(D2)) are
in mEcc(D1 ◦ D2), as proved in the first case. Since no other vertex could
be an eccentric vertex in mEcc(D1 ◦ D2), it follows that mEcc(D1 ◦ D2) =
[Ecc(D1)

⋃
Z(D1)] × V (D2).

Finally, consider the case: mrad(D2) ≥ 2.

Then, meccD1◦D2(ui, vs) =

{
eccD1(ui) if ui /∈ Z(D1)
2 if ui ∈ Z(D1).

Hence if ui ∈ Z(D1), then meccD1◦D2(ui, vs) = mdD1◦D2((ui, vs), (ui, vr)) = 2
for all vr ∈ V (D2). So the vertices (ui, vr) ∈ Z(D1) × V (D2) are the other ver-
tices in Ecc(D1 ◦ D2). Thus, mEcc(D1 ◦ D2) = [Ecc(D1)

⋃
Z(D1)] × V (D2).

��
Proposition 9. Let D1 be a connected symmetric digraph and D2 be an arbi-
trary digraph. Then

Lexicographic Product of Digraphs and Related Boundary-Type Sets 245

1. m∂(D1 ◦ D2) = V (D1) × V (D2), if mrad(D2) ≥ 2 or mrad(D2) = 1 and
|mZ(D2)| ≥ 2.
2. m∂(D1 ◦ D2) = [V (D1) × (V (D2)\mZ(D2))]

⋃
[∂(D1) × mZ(D2)], if

mrad(D2) = 1 and |mZ(D2)| = 1.

Proof. Let ui ∈ V (D1) and vr ∈ V (D2).

1. Suppose that mrad(D2) ≥ 2.

Then meccD1◦D2(ui, vr) =

{
eccD1(ui) if eccD1(ui) ≥ 2
2 if eccD1(ui) = 1

Since mdD1◦D2d((uj , vs), (ui, vr)) =

⎧⎪⎨
⎪⎩

dD1 (uj , ui) if ui �= uj

1 if ui = uj and md(vs, vr) = 1
2 if ui = uj and md(vs, vr) > 1

If vs is such that mdD2(vs, vr) > 1, then md((ui, vs), (ui, vr)) = 2. If (uk, vq) ∈

N(ui, vr), then md((ui, vs), (uk, vq)) =

⎧
⎪⎨

⎪⎩

1 if uk ∈ ND1(ui)
1 if uk = ui and md(vs, vq) = 1
2 if uk = ui and md(vs, vq) > 1

as N(ui, vr) = [N(ui)×V (D2)]
⋃

[{ui}×N(vr)]. Hence (ui, vr) is a boundary
vertex of (ui, vs). Thus, V (D1) × V (D2) ⊆ m∂(D1 ◦ D2).

Now suppose that mrad(D2) = 1 and |mZ(D2)| ≥ 2. Let va ∈ mZ(D2).
So md(va, vr) = 1 for all vr ∈ V (D2). Then md((ui, va), (ui, vr)) = 1,
and md((ui, va), (uk, vq)) = 1 for all (uk, vq) ∈ N(ui, vr), since d(ui, uk) =
1 for all uk ∈ N(ui). Since |mZ(D2)| ≥ 2, there exist vb ∈ mZ(D2)
such that md(vb, va) = 1. Thus we get md((ui, vb), (ui, va)) = 1, and also
mdD1◦D2((ui, vb), (uk, vq)) = 1 for all (uk, vq) ∈ N(ui, va). So again in this case,
V (D1) × V (D2) ⊆ m∂(D1 ◦ D2).

2. Suppose that mrad(D2) = 1 and |mZ(D2)| = 1. So there is only one vertex va
such that mdD2(va, vr) = 1 for all vr ∈ V (D2). Hence every vertex (ui, vr) ∈
V (D1 ◦ D2) is a boundary vertex of (ui, va). Also, (ui, va) is not a boundary
vertex in D1 ◦ D2 unless ui is a boundary vertex in D1. For, if ui ∈ ∂(D1),
then ui is a boundary vertex of uj ∈ V (D1), and hence (ui, va) is a boundary
vertex of (uj , va) in D1 ◦ D2. So in this case, m∂(D1 ◦ D2) = [V (D1) ×
(V (D2)\mZ(D2))]

⋃
[∂(D1) × mZ(D2)]. ��

Acknowledgements. Prasanth G. Narasimha-Shenoi and Mary Shalet Thottun-
gal Joseph are supported by Science and Engineering Research Board, a statu-
tory body of Government of India under their Extra Mural Research Funding No.
EMR/2015/002183. Also, their research was partially supported by Kerala State Coun-
cil for Science Technology and Environment of Government of Kerala under their SARD
project grant Council(P) No. 436/2014/KSCSTE. Prasanth G. Narasimha-Shenoi is
also supported by Science and Engineering Research Board, under their MATRICS
Scheme No. MTR/2018/000012.

The authors thank the anonymous referees for their valuable comments which
helped in improving the article.

246 M. Changat et al.

References

1. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84800-998-1

2. Bang-Jensen, J., Gutin, G.Z.: Classes of Directed Graphs. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-71840-8

3. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.: On
geodetic sets formed by boundary vertices. Discret. Math. 306(2), 188–198 (2006)

4. Cáceres, J., Hernando Mart́ın, M.d.C., Mora Giné, M., Pelayo Melero, I.M., Puer-
tas González, M.L.: Boundary-type sets and product operators in graphs. In: VII
Jornadas de Matemática Discreta y Algoŕıtmica, pp. 187–194 (2010)

5. Cáceres, J., Márquez, A., Oellermann, O.R., Puertas, M.L.: Rebuilding convex sets
in graphs. Discret. Math. 297(1), 26–37 (2005)

6. Changat, M., Narasimha-Shenoi, P.G., Thottungal Joseph, M.S., Kumar, R.:
Boundary vertices of cartesian product of directed graphs. Int. J. Appl. Comput.
Math. 5(1), 1–19 (2019). https://doi.org/10.1007/s40819-019-0604-4

7. Chartrand, G., Erwin, D., Johns, G.L., Zhang, P.: Boundary vertices in graphs.
Discret. Math. 263(1), 25–34 (2003)

8. Chartrand, G., Gu, W., Schultz, M., Winters, S.J.: Eccentric graphs. Netw.: Int.
J. 34(2), 115–121 (1999)

9. Chartrand, G., Tian, S.: Distance in digraphs. Comput. Math. Appl. 34(11), 15–23
(1997)

10. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. CRC Press,
Boco Raton (2011)

11. Hammack, R.H.: Digraphs products. In: Bang-Jensen, J., Gutin, G. (eds.) Classes
of Directed Graphs. SMM, pp. 467–515. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-71840-8 10

12. Harary, F., et al.: On the group of the composition of two graphs. Duke Math. J.
26(1), 29–34 (1959)

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/s40819-019-0604-4
https://doi.org/10.1007/978-3-319-71840-8_10
https://doi.org/10.1007/978-3-319-71840-8_10

The Connected Domination Number
of Grids

Adarsh Srinivasan1(B) and N. S. Narayanaswamy2

1 Indian Institute of Science Education and Research (IISER) Pune, Pune, India
adarsh.srinivasan@students.iiserpune.ac.in

2 Indian Institute of Technology (IIT) Madras, Chennai, India
swamy@cse.iitm.ac.in

Abstract. Closed form expressions for the domination number of an
n × m grid have attracted significant attention, and an exact expression
has been obtained in 2011 [7]. In this paper, we present our results on
obtaining new lower bounds on the connected domination number of an
n × m grid. The problem has been solved for grids with up to 4 rows
and with 6 rows and the best currently known lower bound for arbitrary
m, n is

⌈
mn
3

⌉
[11]. Fujie [4] came up with a general construction for a

connected dominating set of an n × m grid. In this paper, we investigate
whether this construction is indeed optimum. We prove a new lower

bound of

⌈
mn+2

⌈
min{m,n}

3

⌉

3

⌉
for arbitrary m, n ≥ 4.

Keywords: Connected dominating set · Maximum leaf spanning tree ·
Grid graph · Connected domination number

1 Introduction

In this paper, we study the Minimum Connected Dominating Set (Min-
CDS) problem in grid graphs. Given a connected graph G = (V,E), a connected
dominating set (CDS) is a subset S of V which induces a connected subgraph
in G such that every vertex of G is either in S or adjacent to a vertex in S. The
Min-CDS problem asks for a CDS of minimum size. This is a well studied prob-
lem in combinatorial optimisation. The connected domination number of G is the
minimum size of a connected dominating set of G. This problem is equivalent to
the Maximum Leaf Spanning Tree (MLST) problem, which is the problem
of finding a spanning tree of G with maximum number of leaves. A graph has a
spanning tree with k leaves if and only if it has a connected dominating set of
size |V |−k. These problems are known to be NP-complete [6, ND2, Appendix 2],
and have been widely studied and have applications in areas such as networking,
circuit layout, etc (See [15] for example). A common theme in the study of any
NP-complete problem is to consider the problem in special classes of inputs with

This research was supported by the first author’s INSPIRE fellowship from Department
of Science and Technology (DST), Govt. of India.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 247–258, 2021.
https://doi.org/10.1007/978-3-030-67899-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_19&domain=pdf
http://orcid.org/0000-0003-0288-4818
http://orcid.org/0000-0002-8771-3921
https://doi.org/10.1007/978-3-030-67899-9_19

248 A. Srinivasan and N. S. Narayanaswamy

more structure than the general case and try to understand whether the problem
remains NP-complete or admits a polynomial time solution. Min-CDS is known
to be NP-complete when it is restricted to planar bipartite graphs of maximum
degree 4 [9]. It is also known to be NP-complete for unit disk graphs [10] and sub-
graphs of grid graphs [2, Theorem 6.1]. When viewed in terms of approximation
algorithms, the minimum connected dominating set and maximum leaf spanning
tree problems are not equivalent. The MLST problem is MAX-SNP-hard which
makes a Polynomial Time Approximation Scheme (PTAS) unlikely [5], but lin-
ear time 3-approximation algorithms [12] and 2-approximation algorithms [13]
exist. A PTAS exists for the Min-CDS problem on unit disk graphs [3,8]. The
complexity of this problem for complete grid graphs remains unknown.

By comparison, the computation of the domination number of an n × m
grid graph is a well studied problem. Chang [1] devoted their PhD thesis to
calculating the domination number of grids and Gonçalves et al. [7] solved this
problem in 2011 by proving it to be

⌊
(n+2)(m+2)

5

⌋
−4 for 16 ≤ m ≤ n. Hence it is

natural to ask the following questions about the connected domination number
of grid graphs:

– Can we come up with a closed form expression for the connected domination
number of an n × m grid?

– Can we design an algorithm that takes n,m as input, with run-time polyno-
mial in n,m that outputs the domination number of an n × m grid?

An answer for the first question would imply an answer for the second one, but
not vice versa. A partial answer can be obtained by showing lower and upper
bounds on the connected domination number. Upper bounds can be obtained
using constructions or heuristic algorithms. Fujie [4] came up with a general
construction of a spanning tree of a grid with a large number of leaves which leads
to an upper bound on the connected domination number. Li and Tolouse [11]
determined the optimum maximum leaf spanning tree for grid graphs with up to
4 rows and with 6 rows. The only known general lower bound is

⌈
mn
3

⌉
. This was

obtained by Li and Tolouse using an easy counting argument and by Fujie using
a mathematical programming approach.

In this paper, we come up with improved lower bounds on the connected

domination number of a grid. We show a lower bound of
⌈

mn+2�min{m,n}
3 �

3

⌉
for

arbitrary m,n ≥ 4 (Theorem 3). To our knowledge, this is the first non-trivial
result of this kind. Our proof also leads to some insight on the structure of the
optimum connected dominating set of a grid.

1.1 Preliminaries and Terminology

We first introduce the definitions and notations that we will use in the rest of
the paper. For all definitions and notations not defined here, we refer to [14]. Let
G = (V,E) be a connected graph. A leaf refers to a vertex of degree 1 in G. The
open neighbourhood of a subset S of V in G is defined to be the set of all vertices

The Connected Domination Number of Grids 249

adjacent to a vertex in S which are not in S and denoted by NG(S). The closed
neighbourhood of S in G, NG[S] is defined to be NG(S) ∪ S. G[S] denotes the
subgraph of G induced by S. A set S is called a connected dominating set of G
if NG[S] = V and G[S] is a connected subgraph of G. The size of the minimum
connected dominating set of G is called its connected domination number and
is denoted by γc(G). The maximum leaf number of G is the number of leaves in
the maximum leaf spanning tree of G. The connected domination number and
the maximum leaf number add up to |V |. A connected dominating set of G can
be obtained by deleting the leaves of a spanning tree of G.

The notation [i] denotes the set {1, 2, . . . , i}. The n × m grid graph Gn,m is
the graph with the vertex set [n]× [m] with two vertices (i1, j1) and (i2, j2) being
adjacent if and only if |ii − i2|+ |j1−j2| = 1. It can also be defined as a unit disk
graph in which the disks have the integer points mentioned as centers and radius
1/2. For the reminder of the paper, we just use G instead of Gn,m without any
ambiguity. We assume whenever necessary that G is embedded in a larger grid
graph. Specifically, we embed G in G′ which is a grid graph with two additional
rows and columns. The vertex set of G′ is {0, 1, . . . , n + 1} × {0, 1, . . . ,m + 1}
with the same incidence relation as G.

S is a connected dominating set of G. l is the number of leaves in the graph
G[S]. It has no relation to the number of leaves in the corresponding spanning
tree of G. For any v ∈ G we define the loss function of that vertex to be
�(v) = |N [v] ∩ S| − 1. The loss function of the set S is defined to be �(S) =∑

v∈NG′ [S] �(v). The boundary of Gn,m is defined to be the set of points in Gn,m

which have three neighbours or less in Gn,m (excluding the points themselves).
The excess function e(S) is defined to be the number of points in S present in
the boundary of G. These definitions are inspired by similar definitions in [7].

2 Bounds on the Connected Domination Number

2.1 Known Upper Bounds

Upper bounds for γc(G) can be easily obtained by constructing spanning trees
for G with a large number of leaves, which leads to an upper bound for the
maximum leaf number of G, and a corresponding lower bound on the connected
domination number. Fujie gave a construction of a spanning tree with a large
number of leaves [4, Lemma 2]. We reproduce their construction here:

Let D1 be a CDS of Gn,m with the following vertices-

(1, 2), (2, 2), . . . , (n, 2)
(1,m − 1), (2,m − 1), . . . (n,m − 1)
(2, 3), (2, 4), . . . , (2,m − 2)

(i, 3k + 2) for i = 3, 4, . . . , n, k = 1, 2, . . . ,

⌊
m − 4

3

⌋

250 A. Srinivasan and N. S. Narayanaswamy

Let D2 be a CDS with the following vertices-

(2, 1), (2, 2), . . . , (2,m)
(n − 1, 1), (n − 1, 2), . . . (n − 1,m)
(3, 2), (4, 2), . . . , (m − 2, 2)

(3k + 2, i) for k = 1, 2, . . . ,

⌊
n − 4

3

⌋
, i = 3, 4, . . . ,m

Hence, we have the following upper bound on γc(G):

γc(G) ≤ min

{
2n + (m − 4) +

⌊
m − 4

3

⌋
(n − 2), 2m + (n − 4) +

⌊
n − 4

3

⌋
(m − 2)

}

(1)
Figure 1 describes an example for the constructions for the graph G7,11.

Fig. 1. D1 and D2 for G7,11 (Black vertices present in CDS)

2.2 New Lower Bounds

Proving lower bounds would require combinatorial arguments, which will be the
main contribution of this paper. In [7] the authors introduced a combinatorial
parameter called the loss function to prove lower bounds on the domination num-
ber of a grid. The loss and excess functions which we have defined are inspired
by that definition. Using these parameters, we prove a sequence of lower bounds
on |S|, each an improvement on the previous one, culminating in Theorem3.

Our approach is to obtain lower bounds in �(S) and e(S) parametrized by l
and then combine them to obtain absolute lower bounds on �(S) + e(S). This
will, in turn lead to lower bounds on |S|.

G[S] can be divided into a number of horizontal and vertical line segments,
with each vertical line segment connected to at least one horizontal line segment
and vice versa as the graph is connected. The vertices, called joins where a
horizontal line segment meets a vertical line segment can be of degree 2, 3 or 4.
When the join is of degree 2, we refer to the horizontal line segment and vertical
line segment that meet at the vertex as a bend.

Let d3 and d4 be the number of vertices in G[S] with degree 3 and 4 respec-
tively and d2 be the number of bends. Note that here d2 counts only those degree
2 vertices which form a bend. We make the following observation on the number
of leaves in G[S]:

The Connected Domination Number of Grids 251

Lemma 1. For any CDS S of G: l ≤ d3 + 2d4 + 2.

Proof. The well known handshake lemma states that for a graph G = (V,E)∑
v∈V δ(v) = 2|E|. We apply this for G[S]. The number of vertices of degree 2

is |S| − d3 − d4 − l and as G[S] is connected, the number of edges in G[S] is at
least |S| − 1.

3d3 + 4d4 + 2(|S| − d3 − d4 − l) + l = 2|E| ≥ 2(|S| − 1)
=⇒ l ≤ d3 + 2d4 + 2

�
We now relate the parameters �(S) and e(S) to the size of a connected dominat-
ing set:

Lemma 2. For any m,n ≥ 3, Gn,m has a minimum CDS that does not contain
any corner of Gn,m.

Proof. Consider a CDS S of Gn,m which contains the corner point (1, 1). As
G[S] is a connected subgraph, S must contain either (1, 2) or (2, 1). There exists
a maximal horizontal or vertical line segment in G[S] containing (1, 1). Assume
G[S] contains the path (1, 1), (1, 2), . . . , (1, k) As G[S] is connected, one of these
points must contain a neighbour in S. Let (1, i) be the first such point with a
neighbour (2, i). Now, for all j < i, we replace (1, j) in S with (2, j) to obtain
a new CDS of G with the same number of points. As n,m ≥ 4, (2, 1) which
replaces (1, 1) is not a corner point. We perform a similar procedure with the
path (1, 1), (2, 1), . . . , (k, 1) if S does not contain the point (1, 2), and repeat this
for all four corner points of G to obtain a new CDS for Gn,m with the same
number of points as S.
�
Lemma 3. For a CDS S of G: nm = 5|S| − �(S) − e(S).

Proof. For a set S which dominates G, consider the set NG′ [S], which is its
closed neighbourhood in G′. Any point in S dominates 5 points including itself,
and for each v ∈ NG′ [S], the number of points which dominate v is 1 + �(v).
Hence, |NG′ [S]| = 5|S| − �(S).

As no point in S is a corner point of G (see previous lemma), every point
in the boundary of G dominates exactly one point in G′ outside G. Thus the
number of points in NG′ [S] outside G is e(S). Hence, mn = |NG′ [S]| − e(S) and
this proves the lemma.
�

Lemma 4. �(S) ≥ 2|S| − l + d2 + 3d3 + 6d4 and e(S) ≥ 4 if m,n ≥ 4.

Proof. Consider the four corners of the grid, the points (1, 1), (n, 1), (1,m) and
(n,m). These points have to be dominated by a point in S, and all their neigh-
bours in G are in the boundary of G. As both n and m are greater than or equal
to 4, two corner points cannot be dominated by the same point in S, and hence
e(S) ≥ 4.

252 A. Srinivasan and N. S. Narayanaswamy

Fig. 2. The three different types of joins

For any point v in S which is not a leaf in G[S], �(v) ≥ 2. This is because
it has at least 2 neighbours in S. If v is a leaf, �(v) = 1. Hence, if l is the
number of leaves of S, �(S) ≥ 2|S| − l. In addition to this, consider a vertex
of degree 3 as in Fig. 2. The loss function of the point P is at least 3 and the
loss function of Q and R is at least 1. For the vertex of degree 4 shown, the loss
function of P is at least 4 and the loss functions of Q,R, S and T are each at
least 1. For the bend shown, the loss function of the point P is at least 1. Hence,
�(S) ≥ 2|S| − l + d2 + 3d3 + 6d4.
�
Putting these observations together, we get our first bound on e(S) + �(S):

Lemma 5 (Parametrized bound 1). Consider any CDS S for G, with G[S]
having l leaves. Then �(S) + e(S) ≥ 2|S| + 2l − 2.

Proof. This follows from the fact that �(S) + e(S) ≥ 2|S| − l + 3d3 + 6d4 + 4
(Lemma 4) and d3 + 2d4 ≥ l − 2 (Lemma 1).
�
From this bound it is easy to derive the already known lower bound of

⌈
mn
3

⌉
for

γc(G):

Theorem 1 (Bound 1). For any CDS S of G:

|S| ≥
⌈mn

3

⌉

Proof. As S must have at least 2 leaves, �(S)+ e(S) ≥ 2|S|+2. We can now use
this in Lemma 3:

mn ≤ 5|S| − 2|S| − 2 = 3|S| − 2

=⇒ |S| ≥
⌈mn

3

⌉

�
We have not used any structural information on G[S] yet. Specifically, we have
not used the fact that it might contain bends. Next, we use the fact that the
connected dominating set must contain a certain minimum number of joins to
show a new bound on �(S)+ e(S). We first prove the following simple lemma on
the structure of G[S]. We say that the horizontal line segments span the height
of the graph if the subgraph induced by their closed neighbourhood contains
a point from every row of G and we say that the vertical line segments span
the width of the graph if the subgraph induced by their closed neighbourhood
contains a point from every column of G.

The Connected Domination Number of Grids 253

Lemma 6. G[S] either has at least
⌈
n
3

⌉
horizontal line segments which span the

width of G or
⌈
m
3

⌉
vertical line segments which span the height of G.

Proof. Any horizontal line segment dominates an area that spans at most three
rows. Hence, if S has less than

⌈
n
3

⌉
horizontal line segments, there exists at least

one row which is not dominated by any of the points in the horizontal line seg-
ments. The rows not dominated by horizontal line segments must be dominated
by the vertical line segments. Any vertical line segment can dominate an area
which spans at most 3 columns and hence there must be at least

⌈
m
3

⌉
vertical

line segments in S. Similarly, if S has less than
⌈
m
3

⌉
vertical line segments, it

must have at least
⌈
n
3

⌉
horizontal line segments.
�

We use this lemma to prove the following bound on the number of joins in G[S].

Lemma 7. Let d2, d3 and d4 denote the number of bends, joins of degree 3 and
joins of degree 4 respectively.

d2 + d3 + d4 ≥
⌈

min{m,n}
3

⌉

Proof. Either the horizontal line segments dominate an area that spans the entire
height of the graph or the vertical line segments dominate an area that spans
the width of the graph. We assume the latter without loss of generality. Each of
these vertical line segments must be connected to a point in the previous or next
column in the grid. Hence, each of these must contain either a bend, a degree
3 join or a degree 4 join. From the previous lemma, we know that there are at
least

⌈
m
3

⌉
vertical line segments and the result follows.
�

We use these two lemmas to obtain two new lower bounds on �(S) + e(S)
parametrized by the number of leaves, which we can then combine to obtain
an improved lower bound for |S|.
Lemma 8 (parametrized bound 2). Consider any CDS S for G, with G[S]
having l leaves. Then �(S) + e(S) ≥ 2|S| +

⌈
min{m,n}

3

⌉
+ l.

Proof. We know that e(S) ≥ 4 and �(S) ≥ 2|S|− l+3d3 +6d4 +d2, and because
d2 + d3 + d4 ≥

⌈
min{m,n}

3

⌉
,

�(S) ≥ 2|S|−l+

⌈
min{m, n}

3

⌉
+2d3+5d4 ≥ 2|S|−l+

⌈
min{m, n}

3

⌉
+2(d3+2d4+2)−4

We now use the fact that l ≤ d3 + 2d4 + 2 to prove the lemma
�
Lemma 9 (parametrized bound 3). Consider any CDS S for G, with G[S]
having l leaves. Then �(S) + e(S) ≥ 2|S| + 2

⌈
min{m,n}

3

⌉
+ 2 − l.

254 A. Srinivasan and N. S. Narayanaswamy

Proof. We can assume without loss of generality that the vertical lines span
the width of the grid. Every vertical line must contain a join. Hence, at least⌈
m
3

⌉ − d3 − d4 of them must have one or more bends. A vertical line with only
one bend must also contain a leaf. This implies that the number of bends is at
least 2

(⌈
min{m,n}

3

⌉
− d3 − d4

)
− l. We use this in our estimation of �(S):

�(S) ≥ 2|S| − l + d2 + 3d3 + 6d4

≥ 2|S| − l + 3d3 + 6d4 + 2
(⌈

min{m,n}
3

⌉
− d3 − d4

)
− l

≥ 2|S| + 2
⌈

min{m,n}
3

⌉
+ d3 + 2d4 + 2 − 2l − 2

≥ 2|S| + 2
⌈

min{m,n}
3

⌉
− l − 2

Using the fact that e(S) ≥ 4, the result follows.
�
Combining the previous two parametrized bounds leads to the following lower
bound on |S| which is an improvement over the currently known bound of |S| ≥⌈
mn
3

⌉
:

Theorem 2 (Bound 2). For a CDS S of G:

|S| ≥
⎡
⎢⎢⎢

mn +
⌈
3
2

⌈
min{m,n}

3

⌉⌉
+ 1

3

⎤
⎥⎥⎥

Proof. The lower bound in Lemma 8 increases with l and the bound in Lemma9
decreases with l. As they both lower bound �(S) + e(S), �(S) + e(S) is always
greater than or equal to 2|S| +

⌈
3
2

⌈
min{m,n}

3

⌉⌉
+ 1. From Lemma 3,

mn = 5|S| − �(S) − e(S) ≥ 5|S| −
(

2|S| +
⌈

3
2

⌈
min{m,n}

3

⌉⌉
+ 1

)

This means that 3|S| ≥ mn +
⌈
3
2

⌈
min{m,n}

3

⌉⌉
+ 1 which proves the theorem.
�

This bound can be further improved by counting the number of bends in G[S]
more carefully. In the proof of Lemma9, we used the fact that the number
of bends is at least 2

(⌈
min{m,n}

3

⌉
− d3 − d4

)
− l. In the following lemma, we

improve on that:

Lemma 10. Consider a CDS S of G. The number of bends in S is at least
2
(⌈

min{m,n}
3

⌉
− l + 1

)
.

Proof. We first assume that G[S] has no vertices of degree 4. If it does, we can
just treat a vertex of degree 4 as two vertices of degree 3. Hence, the number of

The Connected Domination Number of Grids 255

vertices of degree 3 has to be at least l − 2. As before, we can assume without
loss of generality that the vertical lines dominate an area that spans the width
of the grid and that there are

⌈
m
3

⌉
vertical lines. Some of these lines have one

or more degree 3 vertices and some of them have bends.
Observe that a vertical line with only one join must contain a leaf. Every

join in a vertical line must be paired with another join or be paired with a leaf
as shown in Fig. 3.

Fig. 3. Joins and leaves

Out of all the vertices of degree 3, let t1 be the number of vertices not paired
with a bend or a degree 3 vertex, t2 be the number of bend-degree 3 vertex pairs,
and t3 be the number of degree 3 vertex- degree 3 vertex pairs. Hence, it is clear
that out of the vertical lines, at most (l − 2) − t3 contain vertices of degree 3.
Hence there are at least

(⌈
m
3

⌉ − (l − 2) + t3
)

vertical lines without vertices of
degree 3 and these vertical lines contain at most l − t1 leaves. Consider such a
vertical line. It can have only one bend if and only if it has a leaf and hence
there can be at most (l− t1) of such columns. We have already counted t2 bends.
Hence, we can bound the number of bends:

d2 ≥ 2
(⌈m

3

⌉
− (l − 2) + t3 − (l − t1)

)
+ t2 + (l − t1)

= 2
⌈m

3

⌉
− 3l + 4 + t1 + t2 + 2t3

t1 + t2 + 2t3 ≥ l − 2 as every vertex of degree 3 belongs in at least one of the
three categories mentioned and the lemma follows.
�
We now have the necessary material to prove the main result of our paper.

Theorem 3 (Main Theorem). For a CDS S of G:

|S| ≥
⎡
⎢⎢⎢

mn + 2
⌈
min{m,n}

3

⌉

3

⎤
⎥⎥⎥

256 A. Srinivasan and N. S. Narayanaswamy

Proof.

�(S) ≥ 2|S| − l + d2 + 3d3 + 6d4

≥ 2|S| − l + 3d3 + 6d4 + 6 + 2
(⌈

min{m,n}
3

⌉
− l + 1

)
− 6

≥ 2|S| + 2
⌈

min{m,n}
3

⌉
− 4

We have used the fact that d3 + 2d4 + 2 ≥ l. As e(S) ≥ 4, �(S) + e(S) ≥
2|S| + 2

⌈
min{m,n}

3

⌉
, the theorem follows.
�

2.3 Gap Between Lower and Upper Bounds

In this section, we compare the gap between the lower and upper bounds
obtained. To do that, we have to consider this case by case, for reminders n
and m leave on division by 3. We assume m ≤ n. Let L denote the lower bound
obtained in Theorem 3. We let L = mn

3 + 2m
9 , omitting the ceiling functions as

they would only increase L by at most 2. Out of the two CDS’s we constructed
in Sect. 2.1, D1 and D2, the upper bound is given by the construction of smaller
size. If m is divisible by 3, |D1| ≤ |D2|, and the gap between the lower and upper
bounds is m

9 . If m is not divisible by 3 and n is however, then |D2| ≤ |D1| and
the gap is n

3 − 2m
9 . Similarly, we can analyse the other cases using Table 1 and

Table 2. The new lower bound is closest to the constructions in the case that m
is divisible by 3.

Table 1. Gaps between |D1| and L

m mod 3 |D1| |D1| − mn
3

|D1| − L

0 mn
3

+ m
3

m
3

m
9

1 mn
3

+ m
3

+ 2n
3

− 4
3

m
3

+ 2n
3

− 4
3

m
9

+ 2n
3

− 4
3

2 mn
3

+ m
3

+ n
3

− 2
3

m
3

+ n
3

− 2
3

m
9

+ n
3

− 2
3

Table 2. Gaps between |D2| and L

n mod 3 |D2| |D2| − mn
3

|D2| − L

0 mn
3

+ n
3

n
3

n
3

− 2m
9

1 mn
3

+ n
3

+ 2m
3

− 4
3

n
3

+ 2m
3

− 4
3

n
3

+ 4m
9

− 4
3

2 mn
3

+ m
3

+ n
3

− 2
3

m
3

+ n
3

− 2
3

m
9

+ n
3

− 2
3

The Connected Domination Number of Grids 257

3 Conclusions and Further Research

In this paper, we come up with improved lower bounds on the connected domi-
nation number of a grid. The question of finding a closed form expression how-
ever, remains open. We have broadly used the following approach to prove lower
bounds on |S|. Using the fact that G is a grid graph, we obtained some structural
results for any connected set that dominates G, which lead to lower bounds on
the number of bends, vertices of degree 3 and vertices of degree 4 in G[S]. We
then used Lemma 4 to get lower bounds on |S|. This approach however, does
not capture the full picture. Consider Fujie’s construction detailed in Sect. 2.1.
There are no bends or vertices of degree 4 and the number of vertices of degree 3
is

⌈
m
3

⌉
or

⌈
n
3

⌉
, and our techniques have already accounted for this. There is still

a gap between our lower bound and this upper bound because e(S) =
⌈
m
3

⌉
+ 2

and
⌈
n
3

⌉
+ 2 for these constructions, while we have used a lower bound of 4 for

e(S). While this is the best possible lower bound for e(S) separately, it might be
possible to obtain better lower bounds for �(S) + e(S) by trying to lower bound
the sum of two quantities, rather than lower bound each quantity separately as
we have done.

An approach to this problem which we have not pursued here would be to
design an algorithm or an approximation algorithm that returns the size of the
minimum connected dominating set of an n × m grid in time polynomial in n
and m. It is important to note that an approximation algorithm would lead
to an upper bound on the connected domination number of the grid, while our
work has focused on lower bounds. The constructions described in Sect. 2.1 for
example, would lead to a trivial approximation algorithm. The gap between our
current lower and upper bounds is linear in m and n, which means that this
would be asymptotically better than any (1 + ε)-approximation algorithm (the
input size is O(mn)). A non-constructive approach to obtaining upper bounds,
for example using the probabilistic method could also be tried.

Our approach has been completely analytical. In [7] the authors used a com-
putational approach to answer the analogous questions about the domination
number of grids, using dynamic programming algorithms to calculate the mini-
mum value of a similar loss function near the boundary of the grid. The connected
dominating set problem is one of a more ‘global’ nature than the dominating set
problem, as it involves connectivity as a constraint. This entails a very differ-
ent set of challenges and a computational approach to the problem would likely
require new techniques.

References

1. Chang, T.: Domination numbers of grid graphs. Ph.D. thesis, University of South
Florida (1992)

2. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1),
165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

https://doi.org/10.1016/0012-365X(90)90358-O

258 A. Srinivasan and N. S. Narayanaswamy

3. Du, H., Ye, Q., Zhong, J., Wang, Y., Lee, W., Park, H.: Polynomial-time approx-
imation scheme for minimum connected dominating set under routing cost con-
straint in wireless sensor networks. Theoret. Comput. Sci. 447, 38–43 (2012).
https://doi.org/10.1016/j.tcs.2011.10.010

4. Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem.
Comput. Oper. Res. 30(13), 1931–1944 (2003). https://doi.org/10.1016/S0305-
0548(02)00117-X

5. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the
maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994).
https://doi.org/10.1016/0020-0190(94)90139-2

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

7. Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The domination number of
grids. SIAM J. Discret. Math. 25(3), 1443–1453 (2011). https://doi.org/10.1137/
11082574

8. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP-and PSPACE-hard problems for
geometric graphs. J. Algorithms 26(2), 238–274 (1998). https://doi.org/10.1006/
jagm.1997.0903

9. Li, B.P., Toulouse, M.: Variations of the maximum leaf spanning tree problem
for bipartite graphs. Inf. Process. Lett. 97(4), 129–132 (2006). https://doi.org/10.
1016/j.ipl.2005.10.011

10. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982). https://doi.org/10.1137/0211025

11. Lie, P., Toulouse, M.: Maximum leaf spanning tree problem for grid graphs.
JCMCC. J. Comb. Math. Comb. Comput. 73 (2010). http://www.cs.umanitoba.
ca/∼lipakc/gridgraph-aug6-08.pdf

12. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost lin-
ear time. J. Algorithms 29(1), 132–141 (1998). https://doi.org/10.1006/jagm.1998.
0944

13. Solis-Oba, R., Bonsma, P., Lowski, S.: A 2-approximation algorithm for finding
a spanning tree with maximum number of leaves. Algorithmica 77(2), 374–388
(2015). https://doi.org/10.1007/s00453-015-0080-0

14. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2000)

15. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In: Proceedings of the 3rd International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications,
DIALM 1999, pp. 7–14. Association for Computing Machinery, New York (1999).
https://doi.org/10.1145/313239.313261

https://doi.org/10.1016/j.tcs.2011.10.010
https://doi.org/10.1016/S0305-0548(02)00117-X
https://doi.org/10.1016/S0305-0548(02)00117-X
https://doi.org/10.1016/0020-0190(94)90139-2
https://doi.org/10.1137/11082574
https://doi.org/10.1137/11082574
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1016/j.ipl.2005.10.011
https://doi.org/10.1016/j.ipl.2005.10.011
https://doi.org/10.1137/0211025
http://www.cs.umanitoba.ca/~lipakc/gridgraph-aug6-08.pdf
http://www.cs.umanitoba.ca/~lipakc/gridgraph-aug6-08.pdf
https://doi.org/10.1006/jagm.1998.0944
https://doi.org/10.1006/jagm.1998.0944
https://doi.org/10.1007/s00453-015-0080-0
https://doi.org/10.1145/313239.313261

On Degree Sequences and Eccentricities
in Pseudoline Arrangement Graphs

Sandip Das1, Siddani Bhaskara Rao2, and Uma kant Sahoo1(B)

1 Indian Statistical Institute, Kolkata, India
umakant.iitkgp@gmail.com

2 CRRAO Advanced Institute of Mathematics, Statistics and Computer Science,
Hyderabad, India

Abstract. A pseudoline arrangement graph is a planar graph induced
by an embedding of a psuedoline arrangement. We give a simple criterion
based on the degree sequence that says when a degree sequence will have
a pseudoline arrangement graph as one of its realizations. We then study
the eccentricities of vertices in such graphs.

1 Introduction

A pseudoline is a curve that extends to infinity on both ends. An arrangement
A(L) of pseudolines in the Euclidean plane R

2 is a collection L of (at least three)
pairwise intersecting pseudolines. A pair of pseudolines intersect exactly once,
where they cross each other. It is simple if no three pseudolines meet at a point.
This implies that all the intersection points are distinct. In this article, we shall
consider only simple arrangements, and for the sake of convenience, we omit the
word simple.

The class of pseudoline arrangement graphs GL are graphs induced by simple
arrangements A(L), for any set of pseudolines L, whose vertices are intersection
points of pseudolines in L, and there is an edge between two vertices if they
appear on one of the pseudolines, say l ∈ L, with no other vertices in the part of
l between the two vertices. The realization of a pseudoline arrangement graph GL

by pseudolines in L is its pseudoline arrangement realization, denoted R(GL). To
obtain a pseudoline arrangement realization, we delete the two infinite segments
of each pseudoline from the corresponding pseudoline arrangement. Hence it
differs from the pseudoline arrangement (also note that R(GL) has just one
unbounded face. We have analogous definitions by replacing pseudolines with
lines.

Arrangements are basic objects of interest in both Discrete and Compu-
tational Geometry. Two of the main reasons driving the study of pseudoline
arrangements are (1) the numerous problems and conjectures collected in the

S. Das and U. K. Sahoo—Authors are partially supported by the IFCAM project
MA/IFCAM/18/39.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 259–271, 2021.
https://doi.org/10.1007/978-3-030-67899-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_20

260 S. Das et al.

survey book by Grünbaum [16], and (2) a consequence of the topological repre-
sentation theorem of Folkman and Lawrence [11] that gives a geometric inter-
pretation of oriented matroids of rank three in terms of pseudoline arrangements
(see [1, Chapter 6] for detailed discussions). For further details on line and pseu-
doline arrangements, see surveys by Erdős and Purdy [5], and by Felsner and
Goodman [8]; also see the book by Felsner [7, Chapter 5 and 6]. We present a
brief relevant review in Sect. 1.3.

Pseudoline arrangements are a natural generalization of line arrangements,
preserving their basic topological and combinatorial properties. It is well-known
that pseudoline arrangements strictly contain line arrangements (see [7,16]). In
this article, we study the corresponding graph realization problem on pseudo-
line arrangement graphs, and the eccentricities of its vertices. These results are
explored in Sects. 2 and 3, respectively. For graph-theoretic terms, refer to the
standard text by West [24].

Next we describe the first problem addressed in this article, that is, the graph
realization problem concerning pseudoline arrangement graphs.

1.1 Degree Sequences and Graph Realization Problem

The degree sequence of a graph is the non-increasing list of degrees of its vertices.
A graph with degree sequence π is said to be a realization of π. Given an arbitrary
finite sequence of non-increasing numbers π, the graph realization problem asks
whether there is a graph that realizes π. The Erdős-Gallai theorem [6] and
the Havel-Hakimi algorithm [17,19] (strengthening of the former) are the two
popular methods of solving the graph realization problem. We first address the
following problem:

Pseudoline Arrangement Graph Realization Problem: Given a sequence of finite
numbers, whether there is a pseudoline arrangement graph that realizes it.

The following theorem solves the pseudoline arrangement graph realization
problem. If the answer to this problem is yes, then we construct a pseudoline
arrangement realization. This construction and the proof is given in Sect. 2.

A vertex with degree i is a i-vertex, for 2 ≤ i ≤ 4; and let di denote the
number of i-vertices. Let 〈ad〉 denote the sequence 〈a, . . . , a〉 of length d.

Theorem 1. A finite non-increasing sequence of positive numbers π is a degree
sequence of a pseudoline arrangement graph if and only if it satisfies the following
two conditions.

1. π =
〈
4d4 , 3d3 , 2d2

〉
with 3 ≤ d2 ≤ n, d3 = 2(n − d2) and d4 = n(n − 5)/2 + d2

for some integer n ≥ 3.
2. If d2 = n, then n is odd.

There are stronger characterizations based on degree sequences for other
graph classes. A graph class G has a degree sequence characterization if one can
recognize whether a graph G ∈ G or not, solely based on its degree sequence.
Hence to recognize whether G ∈ G or not, one needs to check whether all the con-
ditions of the degree sequence characterizations are met by the degree sequence

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 261

of G; often leading to linear-time recognition algorithms [3,18,23]. However, for
the following reason, we cannot infer anything about the recognition of pseudo-
line arrangement graphs from Theorem 1.

A 2–switch operation is the replacement of a pair of edges xy and zw in a
simple graph by the edges yz and wx, given that yz and wx were not edges in
the graph originally. Performing a 2–switch operation in a graph does not change
its degree sequence. The class of pseudoline arrangement graphs GL is not closed
under the 2–switch operation, that is, after performing a 2–switch operation
in GL ∈ GL, the resulting graph may not be in GL. This kills all the hope for
obtaining a degree sequence characterization for pseudoline arrangement graphs.
Thus in this “sense”, Theorem 1 is the best one can hope for.

We further want to highlight that Theorem1 also implies that the class of
pseudoline arrangement graphs cannot have a forbidden graph characterization,
that is, a characterization for recognizing a graph class by specifying a list of
graphs that are forbidden to exist as (or precisely, be isomorphic to) an induced
subgraph of any graph in the class. A result of Greenwell et al. [15] says that
a graph class has a forbidden graph characterization if and only if it is closed
under taking induced subgraphs. The pseudoline arrangement graphs are not
closed under vertex deletions. Indeed, Theorem1 implies that deleting any ver-
tex in a pseudoline arrangement graph does not result in a pseudoline arrange-
ment graph. Alternately, consider the pseudoline arrangement graph on four
pseudolines: on deleting a vertex with degree two, we do not get a pseudoline
arrangement graph. Hence pseudoline arrangement graphs cannot have a forbid-
den graph characterization.

As mentioned earlier, pseudoline arrangements are a natural generalization
of line arrangements. One more important advantage in studying pseudoline
arrangements is that it is possible to decide efficiently whether a combinatorial
structure represents an arrangement of psuedolines, whereas the corresponding
question for line arrangements is NP-complete [7, Chapter 6]. In our context of
graphs, Bose et al. [4] proved that recognizing line arrangement graphs is NP-
hard. In this light, it makes more sense to study the line arrangement graph
realization problem. But observe that Theorem1 also addresses the correspond-
ing problem for lines (see Remark 3). Hence we stick with studying pseudolines.

Next we study the eccentricities of vertices in pseudoline arrangement graphs.

1.2 Eccentricities in Pseudoline Arrangement Graphs

The distance d(u, v) between two vertices u, v of a graph G is the length of the
shortest path between them. The eccentricity e(u) of a vertex u is the maximum
distance of a vertex in V (G) from u. A vertex v is an eccentric vertex of u if
d(u, v) = e(u). The diameter d(G) of G is the maximum eccentricity of any
vertex in V (G). The radius r(G) of G is the minimum eccentricity of any vertex
in V (G).

In studying the eccentricities of vertices, one of our main aims is to find the
diameter and radius of pseudoline arrangement graphs. To this end, one needs to
find properties of shortest paths and eccentric vertices. Hence we begin with some

262 S. Das et al.

basic observations regarding them in Sect. 3.1. They vary from the restrictions
on the shortest paths between two vertices, to the existence of particular types
of eccentric vertices. These observations are also of independent interest. Using
these observations, or otherwise, we find the diameter of pseudoline arrangement
graphs.

Proposition 1. The diameter of a pseudoline arrangement graph on n lines is
n − 2.

Surprisingly, the diameter of a pseudoline arrangement graph is independent
of the graph, and depends only on the number of pseudolines in its realization.

In the following theorem, we characterize the vertices of a pseudoline arrange-
ment graph that have the maximum eccentricity, that is, equal to the diameter
of the graph.

Theorem 2. For a vertex v in a pseudoline arrangement graph G on n pseu-
dolines, its eccentricity e(v) is n − 2 if and only if v lies in the outer face of its
realization R(G).

Hence Theorem 2 fixes the vertices that occur in the outer face of every
realization of a pseudoline arrangement graph.

Unlike the diameter, one can see that the radius of a pseudoline arrangement
graph will depend on the graph structure. However, we are still to prove any
non-trivial bounds on the radius. We hope Theorem2 to be a starting point for
such a result. We keep this line of questioning for further study.

Organization: In the remaining part of this section,we give a brief review, and
then introduce some required tools and definitions. In Sect. 2, we prove Theo-
rem 1. In Sect. 3, we present our results on eccentricity of vertices in pseudoline
arrangement graphs leading to Proposition 1 and Theorem 2. Due to space con-
straints, the proofs of these results are deferred to the full version. We conclude
with some remarks in Sect. 4.

1.3 A Brief Review on Pseudoline Arrangement Graphs

In this survey, we focus on pseudoline arrangement graphs, and hence many
other results concerning arrangements are not mentioned. They can be found
in the survey articles and books on this topic by Grünbaum [16], by Erdős and
Purdy [5], by Felsner [7], and by Felsner and Goodman [8]. Grünbaum [16] (in
the 1970s) was the first to collect relevant results and posed many problems
and conjectures on arrangements of lines as well as pseudolines. The chapter
by Erdős and Purdy [5] also addresses various aspects of arrangements. The
Chapter 5 in Felsner’s book [7] contains results on line arrangements, whereas
pseudoline arrangements are studied in Chapter 6. The survey by Felsner and
Goodman [8] is the most recent (2017).

Bose et al. [4] (in 2003) proved that recognizing line arrangement graphs
is NP-hard. Amongst other results, they gave examples of non-Hamiltonian line

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 263

arrangement graphs. Felsner et al. [9] studied connectivity, Hamiltonian path and
Hamiltonian cycle decomposition, 4-edge and 3-vertex coloring for arrangement
graphs of pseudolines, and pseudocircles on spheres. Triangles in line arrange-
ment realizations have been studied by Melchior [22], Levi [21], Füredi and
Palsti [12], Felsner and Kriegel [10] and others. Bose et al. [2] studied some
hypergraph-theoretic properties of line arrangements.

1.4 Tools, Definitions and Notations

Tools Used: We need the following widely used notions and constructions for
pseudoline arrangements. Definitions and constructions are explained in detail
in [7, Chapter 6]. We give a succinct description. For a fixed unbounded region f
of a pseudoline arrangement A on n pseudolines, there is always an unbounded
region f∗ that is separated from f by all pseudolines. Note that the boundaries
of f and f∗ have two pseudolines in common. Fix points x ∈ f and x∗ ∈ f∗.
We topologically sweep the arrangement to form an aesthetic arrangement of
polylines (pseudolines made up of line segments) called the wiring diagram [13]
corresponding to the sweep. This process uses allowable sequences [14], which
we do not describe here.

Consider the internally disjoint oriented x∗, x-curves that do not contain
any vertex of the arrangement and that crosses each pseudoline exactly once.
A topological sweep of the arrangement is a sequence c0, . . . , cr of such oriented
x∗, x-curves with r =

(
n
2

)
such that there is exactly one vertex between the curves

ci and ci+1. Here c0 is the oriented x∗, x-curve such that all the vertices in A lie
to the right of c0 (with respect to the orientation of c0). Label the pseudolines
from 1 to n such that c0 intersects the pseudolines in increasing order. Next we
form the wiring diagram corresponding to this topological sweep.

Fix n horizontal wires. We confine the pseudolines to these wires, except for
the parts where they cross each other. Corresponding to the topological sweep
we have a sequence p0, . . . , pr of vertical lines with pi to the left of pj , for i < j.
The ordering of polylines in which p0 intersects from bottom to top is 1, 2, . . . , n.
Between pi and pi+1, we allow only the two pseudolines that form the vertex
between ci and ci+1 to intersect. Hence the ordering of the polylines intersecting
pi from bottom to top is the same as the ordering of pseudolines intersecting ci
from x∗ to x. We call this as the wiring diagram corresponding to the topological
sweep. See Fig. 1 for an illustration.

Definitions and Notations: Since we are dealing with pseudolines, which are
topological analogues of lines, we shall come across terms like pseudohalfplane,
pseudoquadrant, pseudotriangle, pseudopolygon etc., in our arguments; the prefix
pseudo denotes the topological analogue of the following term.

Let GL be a pseudoline arrangement graph with realization R(GL). The span
of each pseudoline is the part of pseudoline drawn in R(GL), that is, the part
of the pseudoline between its end vertices. A path P is a sequence of distinct
vertices, such that consecutive vertices are adjacent. The length of a path P ,
denoted |P |, is the number of edges in P . The length of the shortest u, v-path is

264 S. Das et al.

Fig. 1. Topological sweep of a pseudoline arrangement and its wiring diagram.

d(u, v). For vertices u and v in the path P in GL, let uv|P denote the u, v-path
in P , with length d(u, v)P . For vertices u and v in line l ∈ L, let uv|l denote the
u, v-path in l, with length d(u, v)l.

For points c and d (may not be in V (GL)) that are on different pseudolines,
let cd denote the line segment between c and d. If vertex u ∈ V (GL) is an
intersection point of two pseudolines l1 and l2, then we say u = l1 ∩ l2. For
vertices u, v ∈ V (GL) not lying on a pseudoline l, we say l separates u and v if
they lie on different pseudohalfplanes bounded by l.

Relevant definitions specific to the proofs are given in their respective
sections.

2 Pseudoline Arrangement Graph Realization Problem

Now we solve the pseudoline arrangement graph realization problem, that is, we
prove Theorem 1. For the sake of the reader, we restate Theorem 1.

Theorem 1. A finite non-increasing sequence of positive numbers π is a degree
sequence of a pseudoline arrangement graph if and only if it satisfies the following
two conditions.

1. π =
〈
4d4 , 3d3 , 2d2

〉
with 3 ≤ d2 ≤ n, d3 = 2(n − d2) and d4 = n(n − 5)/2 + d2

for some integer n ≥ 3.
2. If d2 = n, then n is odd.

Remark 1. We study degree sequences in pseudoline arrangement graphs on the
Euclidean plane as opposed to the real projective plane, where the corresponding
problem is not interesting (π = 〈4(n2)〉). It further indicates the importance of
the second condition in Theorem 1 for completing the characterization, as most
of the first condition is relatively intuitive.

The rest of this section is devoted to the proof of Theorem1. In Sect. 2.1, we
prove the necessity of Theorem 1. In Sect. 2.2, we define some constructions and
operations that we need to prove the sufficiency of Theorem1, which is presented
in Sect. 2.3.

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 265

2.1 Proof of Necessity of Theorem 1

Suppose the degree sequence π has a pseudoline arrangement realization on n ≥ 3
pseudolines. Since every pair of pseudolines intersect, d2 + d3 + d4 = n(n− 1)/2.
Each of the end vertices of every pseudoline is either a 2–vertex or a 3–vertex:
each 2–vertex is an end vertex of two pseudolines, and each 3–vertex is an end
vertex of one pseudoline. Thus 2d2 + d3 = 2n. From both these equations, d3 =
2(n − d2), d4 = n(n − 5)/2 + d2 and d2 ≤ n.

We claim that d2 ≥ 3. First we extend the realization on n pseudolines to
an arrangement on n pseudolines. Next extend the arrangement to a pseudoline
arrangement on n+1 pseudolines in the real projective plane by adding an imag-
inary pseudoline l at infinity. A standard result by Levi [21] (also see [7, Prop.
5.13]) shows that every such pseudoline is incident to at least three triangles. In
particular, l is incident to at least three triangles in this arrangement in the real
projective plane. Each of these triangles corresponds to unbounded regions with
exactly two pseudolines in its boundary in the arrangement in the Euclidean
plane. The intersection point of these two pseudolines corresponds to a 2-vertex
in the realization. Hence d2 ≥ 3.

If d2 = n then d3 = 0, that is, each of the end vertex of every pseudoline is a
2–vertex. In such an arrangement consider any pseudoline l. Let u and v be the
end vertices of l. Pseudoline l divides the plane into two open pseudohalfplanes,
denoted l+ and l−. The other two pseudolines from u and v meet in one of
the pseudohalfplanes, say (without loss of generality) l+. Let the number of 2–
vertices in l+ be k. Thus the number of 2–vertices in l− is n − k − 2. All other
pseudolines, except the three incident at u or v, cross the part of l between u
and v. We double count such crossings: for all the 2-vertices in l− there are
2(n − k − 2) such crossings, and for all the 2–vertices in l+ there are 2k − 2 such
crossings. Thus 2k − 2 = 2(n − k − 2). This implies n = 2k + 1. Hence if d2 = n
then n is odd. This completes the necessity part of the proof.

Remark 2. One can derive the first condition of Theorem1 from the argument
involving the projective plane in proving d2 ≥ 3. However, we want to highlight
the approach using the two equations, as they hold for graphs induced by a
more general arrangement of simple finite curves, which is helpful in alternately
proving a result of Kostochka and Nešetřil [20]. An alternate proof of d2 ≥ 3
using wiring diagrams is given in Sect. 4.1.

To prove the sufficiency of Theorem 1, we give a line arrangement realization
having the given degree sequence. First we need the following construction and
operations.

2.2 Constructions and Operations

Star Construction: For odd n, place n vertices uniformly on a circle and join
each vertex to its opposite two farthest vertices. Resulting is a line arrangement
realization on n lines called a star construction on n vertices. The center of the

266 S. Das et al.

circle is called the center of the star construction. The rest of the vertices are 4–
vertices that lie within the circle. The star construction on n vertices has degree
sequence

〈
4n(n−3)/2, 2n

〉
.

→

x

x

O
l l

l

l

l l
1

2 1 2

u v u v

Fig. 2. Pull operation

→ →

x
x x

u v u v u v

l l

l

1 2

3

Fig. 3. Two line operations on the 2-
vertex x

Pull Operation: Consider a 2–vertex x in a star construction on at least 5 vertices
with O as the center of the star construction. Let x = l1 ∩ l2 with the other
end vertices of l1 and l2 as u and v respectively. Let l be the first line crossed
while moving from x to O along the line segment xO. Rotate l1 and l2 about
u and v such that x = l1 ∩ l2 comes closer to O till x crosses l, while keeping
the slope of xO fixed (see Fig. 2). Now x becomes a 4–vertex and two new 3–
vertices are created at the expense of two 4–vertices in the star construction.
In this operation, the number of 2–vertices decreases by one. Hence the degree
sequence changes from

〈
4d4 , 2d2

〉
to

〈
4d4−1, 32, 2d2−1

〉
.

Line Operation: In the target degree sequence, if d2 is odd, then consider a star
construction. Choose a 2–vertex x = l1 ∩ l2 with the other end vertices of l1
and l2 as u and v respectively, which are also 2-vertices. Let l3 be the other line
intersecting l2 at v. Take a point on the line l1 that is close to x and just outside
the span of l1 in the realization. Also, take a point in the realization on the line
l3 and close to v. Joining these two points we add a new line l to the realization
that intersects all the span of other lines except the span of l1 in the realization
of the star construction (as shown in Fig. 3). In the new realization, l1∩ l forms a
new 2–vertex, making x a 3–vertex. Thus the number of 2–vertices is unaffected.
The other end vertex of l is also a 3–vertex, increasing number of 3–vertices by
2. The rest of the new vertices introduced are 4–vertices.

By doing k line operations on x, we add k such new lines to the realiza-
tion close to x. On constructing such new lines we make sure that their inter-
section points with l3 (as well as with l1), in order of their addition, form a
monotonic sequence of points in l3 (and in l1). It ensures that the new line
added also intersects the previously added lines before reaching its end vertex,
which is a 3–vertex (refer Fig. 3). Upon performing k line operations on a star
construction on d2 vertices, the number of 2–vertices remains unchanged; the
number of 3–vertices increases by 2k; and the number of 4–vertices increases by

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 267

(
d2+k

2

) − (
d2
2

) − 2k = k(d2 + k−5
2). Hence the degree sequence changes from

〈4d4 , 2d2〉 to 〈4d4+k(d2+
k−5
2), 32k, 2d2〉.

In the target sequence, if d2 is even, then we first consider a star construction
on d2 + 1 with one pull operation on it. This realization has d2 2–vertices.
We can also perform line operations on this realization. Repeating the above
calculations, upon performing k line operations on a star construction on d2 + 1
vertices with a pull operation, the number of 2–vertices remains unchanged; the
number of 3–vertices increases by 2k; and the number of 4–vertices increases by(
d2+1+k

2

) − (
d2+1

2

) − 2k = k(d2 + k−3
2). Hence the degree sequence changes from

〈4d4 , 32, 2d2〉 to 〈4d4+k(d2+
k−3
2), 32+2k, 2d2〉.

Now we are ready to prove the sufficiency part of Theorem1.

2.3 Proof of Sufficiency of Theorem 1

Let π be a degree sequence satisfying the properties given in Theorem1 for some
value of n. We give an algorithm to draw a line arrangement realization with
degree sequence π.

Algorithm: For odd d2, we do a star construction on d2 vertices. If d2 = n, then
n is odd, and we have the required line arrangement realization; else do n − d2
line operations on a 2–vertex of the star to get the required realization. For even
d2, we do a star construction on d2 + 1 vertices and then do a pull operation on
one of the 2–vertices, resulting in d2 2–vertices. If d2 = n − 1, then we have the
required line arrangement realization; else if n > d2+1, then we do n−d2−1 line
operations on a 2–vertex of the star construction to get the required realization.
Hence we have the required line arrangement realization, with degree sequence
π.

Correctness: For odd d2, a star construction on d2 vertices results in the degree
sequence πs = 〈4d2(d2−3)/2, 2d2〉. If d2 = n, then πs = π. If d2 < n, then
performing n − d2 line operations increases d4 by (n − d2)(d2 + n−d2−5

2) =
n2

2 − d2
2
2 − 5n

2 + 5d2
2 ; increases d3 by 2(n− d2); and d2 remains same. This results

in the degree sequence 〈4n(n−5)/2+d2 , 32(n−d2), 2d2〉.
For even d2, a pull operation on a star construction on d2 + 1 ≥ 5 vertices

results in degree sequence πsp = 〈4(d2+1)(d2−2)/2−1, 32, 2d2〉. If d2 = n − 1, then
π = 〈4n(n−3)/2−1, 32, 2n−1〉 = 〈4n(n−5)/2, 32, 2n−1〉. Hence πsp = π. If d2 < n−1,
then performing n − d2 − 1 line operations increases d4 by (n − d2 − 1)(d2 +
n−d2−4

2) = n2

2 − d2
2
2 − 5n

2 + 3d2
2 + 2; increases d3 by 2(n − d2 − 1); and d2 remains

same. This results in the degree sequence 〈4n(n−5)/2+d2 , 32(n−d2), 2d2〉.
So the resulting realization given by the algorithm has degree sequence π.

This completes the proof of the sufficiency of Theorem 1 and hence the proof of
Theorem 1. �

Remark 3. We constructed a line arrangement realization in the proof of the
sufficiency of Theorem 1, and the proof of necessity also goes through for line

268 S. Das et al.

arrangements. Hence Theorem 1 also solves the line arrangement graph realiza-
tion problem.

Next we study the eccentricities of vertices in pseudoline arrangement graphs.

3 Eccentricities in Pseudoline Arrangement Graphs

To find the eccentricity of a vertex, we shall find one of its eccentric vertices. For
this purpose, we derive some basic results on the shortest paths and eccentric
vertices in pseudoline arrangement graphs, which are of independent interest.
To this end, we need the following definitions.

Consider two vertices u and v in a pseudoline arrangement that do not lie
on the same pseudoline. Let u = l1 ∩ l2 and v = l3 ∩ l4. For each vertex in the
pseudoline arrangement, the two intersecting pseudolines divide the Euclidean
plane into four pseudoquadrants. Let Qv denote the pseudoquadrant defined by
l1 and l2 that contains vertex v. Similarly, let Qu denote the pseudoquadrant
defined by l3 and l4 that contains vertex u. Let Quv = Qu ∩ Qv.

Due to space constraints, the proofs of our results in this section are deferred
to the full version.

3.1 Basic Results on Eccentricities

Our first observation says that the shortest path between two vertices in a pseu-
doline is the path between them on the pseudoline.

Proposition 2. For vertices u and v on pseudoline l, the shortest u, v-path
completely lies on l, and this path is unique.

Next we study the shortest paths between any two vertices in a pseudoline
arrangement graph. The following is a consequence of Proposition 2.

Proposition 3. For any two vertices u and v, a shortest u, v-path of length k
has vertices on k + 2 pseudolines.

Our next proposition is the analogue of Proposition 2, for vertices that do
not lie on a pseudoline.

Proposition 4. For vertices u and v not on the same pseudoline, the shortest
path between them completely lies in Quv.

As a corollary of our next result, it follows that one of the eccentric vertices
of any vertex lies on the outer face.

Proposition 5. For a vertex u ∈ V (GL), there exists an eccentric vertex of u
that is a 2–vertex or 3–vertex.

Corollary 1. For a vertex u ∈ V (GL), there exists an eccentric vertex of u that
lies in the outer face of R(GL).

Next we present the main results of this section.

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 269

3.2 Diameter and Characterization of Vertices with Maximum
Eccentricity

Finding the diameter of a pseudoline arrangement graph is a straightforward
implication of Proposition 3. However, one can also prove it without using Propo-
sition 3. For the sake of the reader, we restate Proposition 1.

Proposition 6. The diameter of a pseudoline arrangement graph on n lines is
n − 2.

The context of the proof of Proposition 3, implies the following remark.

Remark 4. If d(u, v) = n − 2 − i, then every shortest u, v-path has vertices on
n − i pseudolines. In particular, if d(u, v) = n − 2, then any shortest u, v-path
has vertices on all the n pseudolines.

For vertices u and v, any shortest u, v-path has a vertex on every pseudoline
that separates u and v. So the number of such separating pseudolines lower
bounds d(u, v).

Remark 5. For vertices u and v in a pseudoline arrangement graph,

d(u, v) ≥

⎧
⎪⎨

⎪⎩

#separating pseudolines + 1 if u and v lie on the same pseudoline;

#separating pseudolines + 2, if u and v do not lie on the same

pseudoline.

Theorem 2 characterizes the vertices of a pseudoline arrangement graph that
have the maximum eccentricity, that is, equal to its diameter. For the sake of
the reader, we restate Theorem 2.

Theorem 2. For a vertex v in a pseudoline arrangement graph G on n pseu-
dolines, its eccentricity e(v) is n − 2 if and only if v lies in the outer face of its
realization R(G).

As a direct consequence of Theorem 2, we can also find eccentricities of some
vertices in the next layer. Let GL be a pseudoline arrangement graph having
vertices Vout ⊂ V (GL) on the outer face of its realization R(GL). The 1–layer
of R(GL) is the outer face of the realization upon removing all vertices in Vout

and their incident edges.
Theorem 2 implies that any interior vertex has eccentricity less than n − 2.

Notice that it is possible for vertices in the 1–layer of R(GL) to have no neighbors
on the outer face. However, for vertices in the 1–layer which have a neighbor on
the outer face, we have the following corollary.

Corollary 2. Let u1 be a vertex in the 1–layer of R(GL). If u1 has a neighbor
u in the outer face of R(GL), then e(u1) = n − 3.

270 S. Das et al.

4 Final Remarks

4.1 Alternate Proof of d2 ≥ 3 in Theorem 1 Using Wiring Diagrams

Observe that the leftmost and rightmost intersection point in the wiring diagram
of a pseudoline arrangement is always a 2-vertex; so d2 ≥ 2. Next we consider a
‘restricted wiring diagram’ in which there is just one intersection point between
the top two levels. In this case, observe that such an intersection point is also a 2-
vertex. This 2-vertex is different from the leftmost and the rightmost intersection
point in the wiring diagram (else one of the pseudolines has just one intersection
point in it; a contradiction). Thus for pseudoline arrangements with a wiring
diagram that has only one intersection point between the top two levels, d2 ≥ 3.
We claim that all pseudoline arrangements have such a restricted wiring diagram.
To show this, we need to carefully set up the topological sweep that fixes the
wiring diagram. Choose the sweep lines to originate from an unbounded face
that is bounded by two pseudolines in the pseudoline arrangement (this always
exists as d2 ≥ 2). Perform the topological sweep to form the required restricted
wiring diagram. See Fig. 1 for an illustration.

Acknowledgement. The authors thank Prof. Douglas B. West for his encouragement
to pursue the line arrangement graph realization problem, which was the starting point
of this work. The authors also thank Dibyayan Chakraborty for suggesting to pursue the
questions on eccentricity. The authors also thank the reviewers of both of this version
and the earlier drafts for greatly enhancing both the content and the presentation
of this paper. The first and third authors are partially supported by IFCAM project
Applications of graph homomorphisms (MA/IFCAM/18/39).

References

1. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented
Matroids, 2nd ed. Encyclopedia of Mathematics, vol. 46. Cambridge University
Press, New York (1999)

2. Bose, P., et al.: Coloring and guarding arrangements. Discret. Math. Theor. Com-
put. Sci. 15, 139–154 (2013)

3. Bose, P., et al.: A characterization of the degree sequences of 2-trees. J. Graph
Theory 58, 191–209 (2008)

4. Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. Int. J. Com-
put. Geom. Appl. 13(6), 447–462 (2003)

5. Erdős, P., Purdy, G.: Extremal problems in combinatorial geometry. In: Graham,
R.L., et al. (eds.) Handbook of Combinatorics, vol. I, pp. 809–874. Elsevier, Ams-
terdam (1995)

6. Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11,
264–274 (1960)

7. Felsner, S.: Geometric Graphs and Arrangements. Advanced Lectures in Mathe-
matics. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-322-80303-0

8. Felsner, S., Goodman, J.E.: Pseudoline arrangements, Chapter 5. In: Goodman,
J.E., et al. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn.
CRC Press, Boco Raton (2017)

https://doi.org/10.1007/978-3-322-80303-0

On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs 271

9. Felsner, S., Hurtado, F., Noy, M., Streinu, I.: Hamiltonicity and colorings of
arrangement graphs. Discret. Appl. Math. 154(17), 2470–2483 (2006). Extended
abstract in Proceedings of SODA 2000, 155–164

10. Felsner, S., Krieger, K.: Triangles in Euclidean arrangements. In: Hromkovič, J.,
Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 137–148. Springer, Heidelberg
(1998). https://doi.org/10.1007/10692760 12

11. Folkman, J., Lawrence, J.: Oriented matroids. J. Comb. Theory Ser. B 25, 199–236
(1978)

12. Füredi, Z., Palasti, I.: Arrangements of lines with a large number of triangles. Proc.
Am. Math. Soc. 92, 561–566 (1984)

13. Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum and Sloane. Discret.
Math. 32, 27–35 (1980)

14. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of
arrangements. J. Comb. Theory Ser. A 37, 257–293 (1984)

15. Greenwell, D.L., Hemminger, R.L., Kleitman, J.: Forbidden subgraphs. In: Pro-
ceedings of 4th South East Conference of Graph Theory and Computing, Florida
Atlantic University, pp. 389–394 (1973)

16. Grünbaum, B.: Arrangements and Spreads. Regional Conference Series in Mathe-
matics. Amer. Math. Soc. Providence, RI (1972)

17. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph. Int. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)

18. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1, 275–284
(1981). https://doi.org/10.1007/BF02579333

19. Havel, V.: A remark on the existence of finite graphs. Časopis Pěst Mat 80, 477–480
(1955)

20. Kostochka, A.V., Nešetřil, J.: Coloring relatives of intervals on the plane, I: chro-
matic number versus girth. Eur. J. Comb. 19, 103–110 (1998)

21. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber.
Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig, 78, 256–267 (1926)

22. Melchior, E.: Über Vielseite der projektiven Ebene. Deutsche Mathematik 5, 461–
475 (1940)

23. Merris, R.: Split graphs. Eur. J. Comb. 24(4), 413–430 (2003)
24. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson Education, London

(2002)

https://doi.org/10.1007/10692760_12
https://doi.org/10.1007/BF02579333

Cops and Robber on Butterflies and Solid
Grids

Sheikh Shakil Akhtar, Sandip Das, and Harmender Gahlawat(B)

Indian Statistical Institute, Kolkata, India
harmendergahlawat@gmail.com

Abstract. Cops and robber is a well-studied two player pursuit-evasion
game played on a graph. In this game, a set of cops, controlled by the
first player, tries to capture the position of a robber, controlled by the
second player. The cop number of a graph is the minimum number of
cops required to capture the robber in the graph. We show that the cop
number for butterfly networks and for solid grids is two.

1 Introduction and Results

Cops and robber is a two player pursuit-evasion game played on a graph. The
first player controls a set of agents, called cops, and the second player controls
a single agent, called the robber. The game starts with the cops occupying some
vertices of the graph and then the robber occupies a vertex of the graph. More
than one agent may simultaneously occupy the same vertex of the graph. In each
subsequent round, first each cop and then the robber make a move. In a move,
an agent either moves to an adjacent vertex (along an edge) or stays on the same
vertex. If at any point in the game one of the cops occupies the same vertex as
the robber, then we call it a capture. If the cops can capture the robber in a
graph, then the cops win and if the robber can evade the capture indefinitely,
then the robber wins. The cop number of a graph G, written as c(G), is the
minimum number of cops required to capture a robber in G. Furthermore, for a
family F of graphs, c(F) = max{c(G)|G ∈ F}. Classically, the game is a perfect
information game in the sense that all the agents know each other’s position.

The game of cops and robber was independently introduced by Quilliot [19]
and by Nowakowski and Winkler [18]. Both of these papers considered the game
with a single cop and a robber, and both characterized the graphs where a single
cop can win. Later, Aigner and Fromme [1] generalized the game to multiple cops
and introduced the concept of the cop number. They also showed that the cop
number for planar graphs is 3 and for every n, there exists a graph G such that
c(G) ≥ n. Since then, cops and robber game has been studied extensively and
has applications in artificial intelligence, graph searching, game development,
etc. [2,11,12] as well as significant implications in theory [20]. For a detailed
survey of the subject, see the book by Bonato and Nowakowski [5].

Berarducci and Inrigila [6] gave a backtracking algorithm that decides
whether the cop number of a graph is at most k in O(nk) time; so for a fixed
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 272–281, 2021.
https://doi.org/10.1007/978-3-030-67899-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_21

Cops and Robber 273

k, this is a polynomial-time algorithm. Goldstein and Reingold [9] proved that,
deciding if k cops can capture a robber in a graph is EXPTIME-complete if k is
not fixed and either the initial positions are given or the graph is directed. Fomin
et al. [8] proved that determining the cop number of a graph is NP-hard. Later
Kinnersley [13] proved that determining the cop number of a graph or digraph
is EXPTIME-complete.

Butterfly networks (defined later) are extensively studied interconnection
networks and have applications in parallel computing [14]. We study the game
of cops and robber on butterfly networks and have the following theorem.

Theorem 1. Cop number for finite butterfly networks is two.

We also show that on a k-dimensional butterfly network, two cops can capture
the robber in O(k2) cop moves.

Cops and robber game has been studied on grids and it is known that the
cop number for grids is 2 [16]. Several variations of cops and robber game also
have been studied on grids [3,4,7], and the classical cops and robber game has
been studied on various kinds of grids [15,17]. Continuing this, we study the
game of cops and robber on solid grids, which are subgraphs of grids such that
each internal face has unit area (formally defined later). We have the following
theorem.

Theorem 2. Cop number for solid grids is two.

1.1 Organisation

In Sect. 2 we define the important definitions and tools that we will use for our
proofs. In Sect. 3 we study the game on butterfly networks and prove Theorem 1.
In Sect. 4 we study the game on solid grids and prove Theorem 2. In Sect. 5 we
suggest some future directions.

2 Definitions

All the graphs considered in this paper are finite, connected, and simple. We
will denote the robber as R. Let G be a graph and H be a subgraph of G. Then
G − H refers to the graph induced by vertices that are in G but not in H.

Let H be a subgraph of G. We say that R is restricted to H, if R cannot
leave the vertices of H without getting captured. We also say that H is the
robber territory.

Let H be a subgraph of G. A cop C guards H if the robber cannot enter the
vertices of H without getting captured by C in the next cop move.

For a graph G, capture time using k cops, is the number of cop moves to
ensure the capture (of robber) using k cops.

A k-dimensional butterfly network, is a graph, consisting of 2k(k+1) vertices
arranged in k + 1 columns and 2k rows. The 2k rows are coded in k-bit binary
from 00 . . . 00 to 11 . . . 11 and the k + 1 columns are coded in decimal from 0

274 S. S. Akhtar et al.

to k. These columns are also referred to as levels. A vertex in i-th row and j-th
column is denoted by (i, j). There exists an edge between two vertices (i, j) and
(i′, j′) if (1) j′ = j + 1 and (2) either i′ = i, referred as straight edge, or the
binary representations of i and i′ differ exactly in the j′-th least significant bit,
referred as cross edge. See Fig. 1 for an illustration.

Fig. 1. A 3-dimensional butterfly network.

We also define the recursive definition of a k-dimensional butterfly network,
which we will use in our algorithm. For that purpose, take two (k−1)-dimensional
butterfly networks A and B. Now, for all the vertices of A, append 0 as the most
significant bit and for all the vertices of B, append 1 as the most significant bit.
Levels of all the vertices remain as they were in A and B. Next, add level k
with 2k vertices and add edges between vertices of level k and k − 1 as per the
rules defined for butterfly networks in the previous definition. See Fig. 1 for an
illustration. Observe that all paths from vertices of A to vertices of B go through
the vertices of the new level (level k).

Let u and v be two vertices of a graph G. Then N(u) denote the open
neighbourhood of vertex u, that is, N(u) = {x | (x, u) is an edge in G}. Closed
neighbourhood of a vertex u, N [u] = N(u)∪{u}. A vertex u is a corner vertex, if
there exists a vertex v such that N [u] ⊆ N [v]. We also say that u is a corner of v.
If a graph G has no corner vertex, then c(G) > 1 [1,18]. Aigner and Fromme [1]
proved the following result (we restate the result to suit our definitions), which
we will use.

Cops and Robber 275

Result 1. (Aigner and Fromme [1]) Let P be a shortest path between two ver-
tices u and v of a graph G. Then one cop can guard P after a finite number of
moves.

3 Butterfly Networks

In this section, we give a strategy to capture the robber in a k-dimensional but-
terfly network using two cops in O(k2) moves. We need the following definitions.

We refer the vertex in level 0 and row 00 . . . 00 as the start vertex of a k-
dimensional butterfly network. An agent, cop or robber, makes a forward move if
the level of vertex occupied by the agent increases, and makes a backward move
if the level of the vertex occupied by the agent decreases.

Note 1. When we say l-th least significant bits or l significant bits, it means the
usual for l > 0. For l = 0, assume that the l least significant bits or the l-th least
significant bit of all the tuples are the same.

Vertex (i′, j) is said to be an image of (i, j), if the j least significant bits
of i and i′ are the same. For example, each vertex is an image of itself, all the
vertices of level 0 are images of each other, and the vertices of level k do not
have any image other than themselves. A cop C captures an image of R if R is
at a vertex (i, j) and C is at an image of (i, j).

A path is a monotone path if all its vertices are from different levels and the
first vertex is from level 0. A cop C guards level l if the robber cannot enter the
vertices of level l without getting captured by C in the subsequent cop move.

Recall that we refer (00 . . . 00, 0) as the start vertex. We have the following
lemma.

Lemma 1. Let (i, j) be a vertex of a butterfly network. Then there exists an
image (i′, j) of (i, j) such that there exists a monotone path from the start vertex
to (i′, j).

Proof. We follow a simple strategy to create such a monotone path P . We start
our path P from the start vertex. When we move from level l to l + 1, we take
a straight edge if the l + 1-th least significant bit of i is 0 and take a cross
edge otherwise. This way when we reach level j, at a vertex (i′, j), the j least
significant bits of i and i′ will be the same and each vertex of path P is in a
different level. Hence this path P is a monotone path from start to an image
(i′, j) of vertex (i, j). ��
Lemma 2. In a k-dimensional butterfly network, one cop can capture an image
of the robber in at most k steps.

Proof. Cop C begins at the start vertex. Let R be at a vertex (i, j). First, C will
find a monotone path P , from the start vertex to an image of R (by Lemma 1).
The cop will update the monotone path P dynamically following the moves of
R and will move forward through P until it reaches an image of R.

276 S. S. Akhtar et al.

Let R be at vertex (r, l). We will maintain the invariant that the last vertex
of P is (p, l) such that (p, l) is an image of R. Also in each cop move, C will
make a forward move on P . If at any point C and R are at the same level, then
observe that C has captured an image of R.

If R moves forward to increase the level from vertex (r, l) to (r′, l + 1), then
r and r′ differ in at most one bit (that is the (l + 1)-th least significant bit).
Before this move let the last vertex of P be (p, l). Since l least significant bits
of p and r are the same, l least significant bits of p and r′ are also the same. So
if the l + 1-th bit of p and r′ is the same, then we extend our path P using a
straight edge, else we extend P using a cross edge.

If R moves backward, then we truncate our path by one vertex. Suppose R
moves from (r, l) to (r′, l − 1). Here r and r′ differ in at most one bit, that is,
the l-th bit. Hence the first l − 1 bits of r, r′, p and p’s neighbour in level l − 1
are the same. So our invariant holds if we just remove the last vertex from our
path P .

Since in each cop move C is strictly increasing its level in a monotone path,
in at most k moves, both C and R will be in the same level. So C captures an
image of R in at most k steps. ��
Lemma 3. In a k-dimensional butterfly network, one cop can guard level k in
at most k steps.

Proof. In the level k of a k-dimensional butterfly network, each vertex has only
itself as an image. Thus, if R is in level k and C captures an image of R, then C
captures R. Hence, if C can ensure that after each cop move C has captured an
image of the robber R, then R cannot enter level k without being captured by
C.

Cop C starts by capturing an image of the robber (by Lemma2). In Lemma 2
we are maintaining a dynamic path P such that its last vertex (p, l) is an image
of R. When C captures an image of R, cop C is on the last vertex (p, l) of P . We
keep maintaining this dynamic path P as we did in Lemma 2 and C will remain
on last vertex of P . Let (p, l) be the last vertex of P and after the move of R,
the new last vertex of P is (p′, l′). Since vertices (p, l) and (p′, l′) are adjacent,
C can and will move to (p′, l′).

Thus, once C captures an image of R in a k-dimensional butterfly network,
R cannot enter level k. Hence C guards level k when C captures an image of R.

��
The following lemma is central to our strategy to capture R using two cops.

Lemma 4. Let R be restricted to levels from 0 to x, for 1 ≤ x ≤ k, in a k-
dimensional butterfly network. Then after a finite number of moves, one cop,
say C, can restrict the robber to levels from 0 to x − 1.

Proof. If x = k, then C can restrict R to levels from 0 to x−1 simply by guarding
level k (using Lemma 3).

If x < k, then we consider the recursive definition of butterfly networks.
If we consider the levels from 0 to x of a k-dimensional butterfly network and

Cops and Robber 277

consider only the x least significant bits of binary codes of rows, then we have
2k−x butterfly networks of dimension x. (If v = (i, j) was a vertex of original
network, then here we consider the vertex v as (i′, j), where i′ is a x bit binary
tuple containing x least significant bits of i.)

Now observe that, if R on a vertex of one of these x-dimensional butterfly
networks, say A, then R cannot leave A without entering the level x + 1 (as all
these x-dimensional butterfly networks are connected only through vertices of
level x+ 1). Now C will consider only the x least significant bits of the butterfly
network A and follow the strategy from Lemma3 to guard level x (here the
start vertex becomes the start vertex of A). Once C guards level x, the robber
R cannot enter level x and hence is restricted to levels from 0 to x − 1. ��
Theorem 1. Cop number for finite butterfly networks is two.

Proof. We give a cop strategy to capture R in a k-dimensional butterfly network
using two cops. In this strategy, cops keep restricting the robber territory level
by level, finally restricting R to level 0, where it cannot move. Then the cops
capture R.

Initially, R is restricted to levels from 0 to k. Using Lemma 4, one cop restricts
R to levels from 0 to k−1. While this cop guards R, other cop moves and restricts
R to levels from 0 to k − 2 using Lemma 4. Once R is restricted to levels from
0 to k − 2 by the second cop, the first cop guarding level k can be freed. (Cops
can do so because if R cannot enter level k − 1, it cannot enter level k.) This
way whenever cops restrict R using a new cop, the previous cop gets free and
restricts R further to smaller levels.

The cops, subsequently, restrict R to level 0 where one cop is ensuring the
guard position. Now the second cop moves and captures R. Hence two cops are
sufficient to capture the robber in a butterfly network.

To show that two cops are necessary, we prove a stronger result that all k-
dimensional butterfly networks, for k > 0, have cop number greater than 1. We
prove this by proving that k-dimensional butterfly networks, for k > 0, do not
have a corner vertex. For contradiction, suppose that u and v are two vertices of
a k-dimensional butterfly network such that u is a corner of v; so N [u] ⊆ N [v].
Thus u and v must be adjacent and hence must be in different but consecutive
levels. Now u has two neighbours in the level of v and one of them is v. Let the
other neighbour be x. If N [u] ⊂ N [v], then x ∈ N [v]. This is a contradiction as
x and v are in the same level. Hence there is no corner in a butterfly network.
So two cops are necessary to capture a robber in a butterfly network.

Hence the cop number for butterfly networks is 2. ��
Since the cops capture R by restricting R to smaller levels in each iteration

and each iteration takes O(k) time for a k-dimensional butterfly network (having
2k(k + 1) vertices), we have the following corollary.

Corollary 1. Capture time for a k-dimensional butterfly network using two cops
is O(k2).

278 S. S. Akhtar et al.

4 Solid Grids

In this section, we consider the game of cops and robber on solid grids. An
m × n grid is a set of points in two dimensions with integer coordinates (i, j)
where 0 ≤ i < m and 0 ≤ j < n, where each point represents a vertex and there
is an edge between two vertices if and only if the Euclidean distance between the
points representing these vertices 1. A graph is a solid grid if it has an embedding
such that it is a subset of a grid and all the internal faces have unit area.

We consider a grid representation of the solid grid graph. In this representa-
tion rows and columns are clearly defined.

A column path is a path which has all its vertices from the same column, say
ci, and both endpoints of this path have exactly one neighbour in ci, each. A
column ci may have multiple column paths. A column path P in column ci is a
boundary column path if vertices of P have neighbours only in P and in either
column ci+1 or in ci−1. See Fig. 2 for an illustration. Two column paths P and
P ′ are adjacent if some vertex p ∈ P and p′ ∈ P ′ have an edge.

Fig. 2. A solid grid. Here P, Q, R and S are some of the column paths, of which R
and S are boundary paths.

Let P be a column path of a solid grid graph G, and P have endpoints u and
v. It is easy to see that:

1. P is a shortest u, v-path.
2. If P is not a boundary column path, then G − P has at least two connected

components.

We have the following lemma.

Lemma 5. Let P be a column path in solid grid G and let S be one of the
components of G − P . Then S has a unique column path P ′ adjacent to P .

Proof. We will prove this by contradiction. Let P1 and P2 be two paths of com-
ponent S that are adjacent to P , such that bottom most vertex of P1 is in a
higher row that top most vertex of P2. Let the bottom most vertex of P1 be u

Cops and Robber 279

and top most vertex of P2 be v. Also let the neighbours of u and v in P be u′

and v′ respectively. Note that (u, v) can not be an edge, by definition of column
paths.

Let v′, x1, . . . , xk, u
′ be the path between u′ and v′ in P and u, y1, . . . , yj , v be

the shortest path between u and v in S. Then u, y1, . . . , yj , v, v
′, x1, . . . , xk, u

′, u
is an internal face of the solid grid and has area more than 1 (since (u, v) is not
an edge). Since it is not possible in a solid grid, this leads to a contradiction.

Hence S can have only one column path P ′ that is adjacent to P and this
proves our claim.

��
From Lemma 5, we have the following observation, which is central to our

strategy to capture R using two cops.

Observation 1. Let P be a column path in solid grid G and let R be in one of
the components of G − P , say S. Then if a cop is guarding the column path P ′

of S, that is adjacent to P , then R cannot leave the component S without being
captured.

Now we prove the following theorem.

Theorem 2. Cop number for solid grids is two.

Proof. We give a cop strategy to capture R using two cops. In this strategy, cops
will reduce the robber territory after every finite number of steps, subsequently
capturing the robber. Let the two cops be C1 and C2. Cops follow the following
strategy.

1. C1 begins by guarding a column path P . If P is a boundary path, then R is
restricted to G − P , else R is restricted to one of the connected components
of G − P , say S.

2. Now, cops find the column path P ′ in S that is adjacent to P , and C2 guards
P ′. This restricts R to S and hence we can free C1, which was guarding P
earlier.
R is now restricted to S and a column path P ′ is guarded by C2. This further
restricts R to either S −P ′ (if P ′ is a boundary column path of S) or to one
of the connected components of S − P ′. Let the connected component R is
restricted to be S′.
This situation is same as situation in the end of step 1. So, we rename C2 as
C1, C1 as C2, P ′ as P and S′ as S, and repeat step 2.

Here cops reduce the robber territory in each step. Subsequently, the robber will
be restricted to a single column and then C2 will capture R.

To see the two cops are necessary to capture a robber in some solid grids, we
can see that a cycle of 4 vertices, which is a solid grid, has cop number 2. ��

280 S. S. Akhtar et al.

5 Conclusion

In this paper, we studied the game of cops and robbers on butterfly networks
and solid grids. We showed that the cop number for both of them is 2.

For butterfly networks, in each iteration of the algorithm, a cop guards a
level of the network. Conventionally, in the cops and robber game on a graph G,
a set of cops guard a connected subgraph H of G, and cops stay on the vertices
of H. In our strategy, a cop guards a subgraph of the butterfly network that is
an independent set, and the cop never enters that subset until it can capture R.
We believe that this way of guarding a disconnected subgraph from a distance
can be useful in finding the cop number of other graph classes.

We gave an asymptotic bound on the capture time of butterfly networks
using two cops. It might be interesting to find the exact bounds on capture
time of butterfly networks (assuming optimal play from the robber). Moreover,
Luccio and Pagli [15] studied the cops and robber game on grids and studied if
increasing the cops can decrease the capture time. For a graph, they defined the
work Wk as k · capture(k), where capture(k) is the number of moves required by
k cops to capture the robber. Then they defined the speedup using j > i cops as
Wi/Wj . Since butterfly networks have an inherent structure to support parallel
computations, a natural question is whether more cops can work simultaneously
to give a speedup greater than one.

It is well-known that the cop number of grids is 2. We extended this result to
solid grids. A superclass of solid grids is the Partial grids, which are subgraphs of
grids. The cop number of partial grids is still not known. Cop number of partial
grids is lower bounded by solid grids which is 2 and upper bounded by planar
graphs which is 3 [1]. This motivates the question, whether the cop number for
partial grids is 2 or 3.

Acknowledgements. We would like to thank the IFCAM project Applications of
graph homomorphisms (MA/IFCAM/18/39). We would also like to thank Uma kant
Sahoo for positive discussions.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8,
1–12 (1984)

2. Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59,
5–37 (2006)

3. Balister, P., Bollobas, B., Narayanan, B., Shaw, A.: Catching a fast robber on the
grid. J. Combin. Theory Ser. A 152, 341–352 (2017)

4. Bonato, A., Inerney, F.M.: The game of wall cops and robbers. In: Senthilkumar,
M., Ramasamy, V., Sheen, S., Veeramani, C., Bonato, A., Batten, L. (eds.) Compu-
tational Intelligence, Cyber Security and Computational Models. AISC, vol. 412,
pp. 3–13. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0251-
9 1

5. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society (2011)

https://doi.org/10.1007/978-981-10-0251-9_1
https://doi.org/10.1007/978-981-10-0251-9_1

Cops and Robber 281

6. Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. Appl. Math. 14,
389–403 (1993)

7. Das, S., Gahlawat, H.: Variations of cops and robbers game on grids. In: Panda,
B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 249–259.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 21

8. Fomin, F., Golovach, P., Kratochvil, J., Nisse, N., Suchan, K.: Pursuing a fast
robber on a graph. Theor. Comput. Sci. 411, 1167–1181 (2010)

9. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theor.
Comput. Sci. 143, 93–112 (1995)

10. Hosseini, S.A., Mohar, B.: Game of cops and robbers in oriented quotients of the
integer grid. Discrete Math. 341(2), 439–450 (2018)

11. Isaza, A., Lu, J., Bulitko, V., Greiner, R.: A cover-based approach to multi-agent
moving target pursuit. In: Proceedings of The 4th Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (2008)

12. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion with local visibility.
SIAM J. Discrete Math. 1, 26–41 (2006)

13. Kinnersley, W.B.: Cops and robbers is EXPTIME-complete. J. Combin. Theory
Ser. B 111, 201–220 (2015)

14. Leighton, F.: Introduction to Parallel Algorithms and Architectures. Morgan Kauf-
mann, Burlington (1992)

15. Luccio, F., Pagli, L.: Cops and robber on grids and tori. ArXiv e-prints.
arXiv:1708.08255 (2017)

16. Maamoun, M., Meyniel, H.: On a game of policemen and robber. Discrete Appl.
Math. 17, 307–309 (1987)

17. Mehrabian, A.: The capture time of grids. Discrete Math. 311, 102–105 (2011)
18. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.

43, 253–259 (1983)
19. Quilliot, A.: Thése d’Etat. Ph.D. thesis, Université de Paris VI (1983)
20. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-

width. J. Combin. Theory Ser. B 58, 22–33 (1993)

https://doi.org/10.1007/978-3-319-74180-2_21
http://arxiv.org/abs/1708.08255

b-Coloring of Some Powers of Hypercubes

P. Francis1 , S. Francis Raj2 , and M. Gokulnath2(B)

1 Department of Computer Science, Indian Institute of Technology Palakkad,
Palakkad 678557, India
pfrancis@iitpkd.ac.in

2 Department of Mathematics, Pondicherry University, Puducherry 605014, India
francisraj s@yahoo.com, gokulnath.math@gmail.com

Abstract. The b-chromatic number b(G) of a graph G is the maximum
k for which G has a proper vertex coloring using k colors such that each
color class contains at least one vertex adjacent to a vertex of every
other color classes. In this paper, we mainly investigate on one of the
open problems given in [1]. As a consequence, we obtain an upper bound
for the b-chromatic number of some powers of hypercube. This turns out
to be the improvement of the existing bounds.

Keywords: b-coloring · b-chromatic number · Hypercubes · Powers
of graphs

2000 AMS Subject Classification: 05C15

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a
graph with vertex set V (G) and edge set E(G). A b-coloring of a graph G using
k colors is a proper coloring of the vertices of G using k colors in which each
color class has a color dominating vertex, that is, a vertex which has a neighbor
in each of the other color classes. The b-chromatic number, b(G) of G is the
largest k such that G has a b-coloring using k colors. The concept of b-coloring
was introduced by Irving and Manlove [2] in analogy to the achromatic number
of a graph G.

It is clear from the definition of b(G) that χ(G) ≤ b(G) ≤ Δ(G) + 1, where
χ(G) and Δ(G) denote the chromatic number of G and the maximum degree
of G respectively. The pth power of a graph G denoted by Gp is a graph whose
vertex set V (Gp) = V (G) and edge set E(Gp) = {xy : dG(x, y) ≤ p}, where
dG(x, y) denotes the distance between x and y in G.

Let [n] = {1, 2, . . . , n} and 2[n] = {A : A ⊆ [n]}, the power set of [n]. Let us
define the hypercube Qn in a slightly different way. For n ∈ N, V (Qn) = 2[n]

and for x, y ∈ V (Qn), xy ∈ E(Qn) if and only if |x�y| = 1. For 0 ≤ i ≤ n, let
Vi = {A ∈ 2[n] : |A| = i}. Let us define the simplicial ordering on the elements of
V (Qn) in the following way. For two distinct vertices x, y ∈ V (Qn), we say that
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 282–287, 2021.
https://doi.org/10.1007/978-3-030-67899-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_22&domain=pdf
http://orcid.org/0000-0003-2391-4625
http://orcid.org/0000-0001-5407-0520
http://orcid.org/0000-0002-8819-6102
https://doi.org/10.1007/978-3-030-67899-9_22

b-Coloring of Some Powers of Hypercubes 283

x precedes y, denoted by x < y, if |x| < |y| or |x| = |y| and min{x�y} ∈ x. Let
Im denote the first m elements of 2[n] in the simplicial ordering. Sometimes, we
refer to Im as an initial segment of size m in the hypercube. Also, let us define
the simplicial ordering of sets consisting of vertices of V (Qn) in the following
way. For A,B ⊆ V (Qn), we say that A precedes B, denoted by A < B, if
|A| < |B| or |A| = |B| and min{A�B} ∈ A, where min{A�B} is the first
set in the simplicial ordering of A�B. For A ⊆ 2[n] and p ∈ [n], let us define
Cp[A] = {y ∈ 2[n] : |x�y| ≤ p for every x ∈ A} and let Cp(A) = Cp[A]\A.

Let us recall some of the definitions due to Tsukerman [3] which are required
for this paper. For A ⊆ 2[n] and i ∈ [n], the i-sections of A are given by Ai− =
{x ∈ 2[n]\{i} : x ∈ A} and Ai+ = {x ∈ 2[n]\{i} : x ∪ {i} ∈ A}. Clearly, A =
Ai−∪(Ai++{i}) where A+{i} = {x∪{i} : x ∈ A}. Let us define i-compression of
A, denoted by Si(A), as follows: Si(A)i− = I|Ai−| ⊆ 2[n]\{i}, Si(A)i+ = I|Ai+| ⊆
2[n]\{i} and Si(A) = Si(A)i− ∪ (Si(A)i+ + {i})= I|Ai−| ∪ (I|Ai+| + {i}). Thus
either Si(A) = A or Si(A) < A in the simplicial ordering of sets. We say that A
is i-compressed if and only if A = Si(A).

For notation and terminologies not mentioned in this paper, see [4].
Let us recall the clique number and bounds for the b-chromatic number of

powers of hypercubes given in [1].

Theorem 1. [1] (i) For n ≥ 3 and 1 ≤ p ≤ n − 1, the clique size of Qp
n is

ω(Qp
n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
2∑

i=0

(
n
i

)
if p is even

2
p−1
2∑

i=0

(
n−1

i

)
if p is odd.

(ii) For all n ≥ 2 and
⌊

n
2

⌋
< p < n − 1, the b-chromatic number of Qp

n is

2n−1 ≤ b(Qp
n) ≤ 2n−1 +

⌊
ω(Qp

n)
2

⌋
.

In [1], the authors have also obtained the maximum number of common neighbors
for a clique of size 2 in Qp

n. Also, for a clique of larger size, they expected that
the number of common neighbors will be maximum if the vertices of the clique
in Qp

n are chosen as an initial segment in the simplicial order. This has been
mentioned as an open problem.

Problem 1. [1] let F ⊆ 2[n] such that for all A,B ∈ F , |A�B| ≤ p. Suppose
|F| = m, for some 2 ≤ m ≤ 2n−1, then for what kind of F will the |Cp[F]| be
maximum?

In Sect. 2, we have answered Problem 1 and we have shown that |Cp[F]| is
maximum if F is chosen as an initial segment in the simplicial ordering. As a
consequence, for

⌊
n
2

⌋
< p < n − 1, we have obtained an upper bound, better

than the existing bound given in Theorem 1, for the b-chromatic number of the
powers of hypercube.

284 P. Francis et al.

2 Bounds for the b-Chromatic Number of Some Powers
of Hypercube

Let us start Sect. 2 by answering Problem 1. First let us observe that the set of
all common neighbors of an initial segment of a power of hypercube is again an
initial segment of the power of hypercube.

Lemma 1. For any n, p ∈ N and a ∈ [2n], there exists an integer b ∈ [2n] such
that Cp[Ia] = Ib.

Proof. It is enough to prove that for any x, y ∈ 2[n] such that if x /∈ Cp[Ia] and
x < y, then y /∈ Cp[Ia]. Since x /∈ Cp[Ia], there exists a set z ∈ Ia such that
|x�z| ≥ p + 1. Let us first prove that y /∈ Cp[Ia] for the case x ∩ z = ∅.

Case 1: x ∩ z = ∅.
Clearly, z ⊆ xc and |x�z| = |x| + |z| ≤ n. Let us assume that the elements

in all the sets of 2[n] are arranged in ascending order. It is easy to observe that
yc < xc. Also, in simplicial ordering, for any integer q < |yc|, the set containing
the first q elements of yc is equal or comes before than the set containing the first
q elements of xc. Let k = max{0, (|x|+ |z|− |y|)} and let us define a set z′ ∈ 2[n]

which contains the first k elements in yc. Since |yc| = n − |y| ≥ |x| + |z| − |y|, z′

is a well defined set. If z′ = ∅, then z′ ∈ Ia. If z′
= ∅, then |z′| = |x|+ |z| − |y| =
|z| − (|y| − |x|) ≤ |z|. Since z is the set containing |z| elements of xc, we have
either z′ = z or z′ < z. In both cases, z′ ∈ Ia. Since z′ ⊆ yc, we have z′ ∩ y = ∅
and |z′�y| = |z′| + |y| ≥ |x| + |z| − |y| + |y| = |x| + |z| ≥ p + 1. Thus y /∈ Cp[Ia].

Case 2: x ∩ z
= ∅.
Let us define z0 = z\(x ∩ z). Clearly, z0 < z and |x�z0| > |x�z| ≥ p + 1.

Thus z0 ∈ Ia such that x∩ z0 = ∅ and |x�z0| ≥ p+1. By using Case 1, we have
y /∈ Cp[Ia]. ��
Let us recall a result due to Tsukerman [3] which is useful to prove our next
result.

Theorem 2. [3] for B ⊆ 2[n], if B is i-compressed for each i ∈ [n], but not an
initial segment, then |B| = 2n−1 and B is of the following form

B =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I�\{{n+3
2

, n+5
2

, . . . , n}} where n is odd and � =

n−1
2∑

i=0

(
n
i

)
+ 1

I�′\{{1, n
2
+ 2, n

2
+ 3, . . . , n}} where n is even and �′ =

n
2 −1∑

i=0

(
n
i

)
+

(
n−1
n/2

)
+ 1.

By using Lemma 1 and Theorem 2 and with some involved arguments, we obtain
a positive answer to Problem 1.

Theorem 3. For n, p ∈ N, if A ⊆ 2[n] such that for all x, y ∈ A, |x�y| ≤ p,
then |Cp[A]| ≤ |Cp[I|A|]|.

b-Coloring of Some Powers of Hypercubes 285

Finally, let us establish an improved upper bound for the b-chromatic number
of some power of hypercubes. Before doing it, let us observe a few results which
will help us get the upper bound. Let us start by giving a relationship between
the b-chromatic number and the number of common neighbors of a clique in
powers of hypercubes.

Lemma 2. For n, p ∈ N and � ≤ 2n−1, if b(Qp
n) ≥ 2n−1 + �, then there exists a

clique of size 2�, say A2�, such that |Cp(A2�)| ≥ 2n−1 − �.

Next, we have given an upper bound for the number of common neighbors for
some particular initial segments of some powers of hypercubes.

Lemma 3. For n being odd, n+1
2 ≤ p ≤ n−2, if r =

p−n−1
2∑

i=0

(
n
i

)
and s =

(p

p−n−1
2

)
,

then |Cp(I(r−s+1))| < 2n−1−(r−2s+1). For n being even, n
2 +1 ≤ p ≤ n−2, if

r′ =
p−n

2∑

i=0

(
n
i

)
+

(
n−1
p−n

2

)
and s′ =

(
p−1
p−n

2

)
, then |Cp(I(r′−s′+1))| < 2n−1−(r′−2s′+1).

In Lemma 4 and Lemma 5, we have established upper bounds for the b-chromatic
number of some particular powers of hypercubes.

Lemma 4. b(Q5
7) ≤ 26 + 9

Proof. Suppose b(Q5
7) ≥ 26 + 10, by Lemma 2, there exists A20 such that

|C5(A20)| ≥ 26−10. By Theorem 3, |C5(I20)| ≥ |C5(A20)| ≥ 26−10. Let us find
C5[I20] in Q5

7. I20 = {∅, {1}, {2}, . . . , {7}, {1, 2}, {1, 3}, . . . , {1, 7}, {2, 3}, {2, 4},
. . . , {2, 7}, {3, 4}}. So C5[I20] will contain all the vertices in V0, V1, V2, V3 and
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7} in
V4. Therefore, |C5(I20)| = 26 + 7 − 20 = 26 − 13 < 26 − 10, a contradiction. ��

Lemma 5. For n being odd and n ≥ 5, b(Q
n+1
2

n) ≤ 2n−1 +
⌊

n+1
4

⌋
.

Proof. On contrary, if b(Q
n+1
2

n) ≥ 2n−1 +
⌊

n+1
4

⌋
+ 1, then by using Lemma 2,

there exists a clique of size 2
(⌊

n+1
4

⌋
+ 1

)
, say A2(n+1

4 �+1) such that
∣
∣
∣C

n+1
2

(
A2(n+1

4 �+1)
)∣
∣
∣ ≥ 2n−1 − (⌊

n+1
4

⌋
+ 1

)
. Since 2

(⌊
n+1
4

⌋
+ 1

) ≥ n+1
2 +

1,
∣
∣
∣C

n+1
2

(
In+1

2 +1

)∣
∣
∣ ≥

∣
∣
∣C

n+1
2

(
I2(n+1

4 �+1)
)∣
∣
∣. One can easily observe that

∣
∣
∣C

n+1
2

(
In+1

2 +1

)∣
∣
∣ = 2n−1 − n+1

2 − 1 + 1 = 2n−1 − n+1
2 . By using Theorem 3,

we have
∣
∣
∣C

n+1
2

(
I2(n+1

4 �+1)
)∣
∣
∣ ≥

∣
∣
∣C

n+1
2

(
A2(n+1

4 �+1)
)∣
∣
∣. Thus 2n−1 − n+1

2 ≥
2n−1 − (⌊

n+1
4

⌋
+ 1

)
which implies, n ≤ 3, a contradiction. ��

Without much difficulty, one can observe Lemma 6.

Lemma 6. For n ≥ 9,
⌊

n
2

⌋
+3 ≤ p ≤ n−2, let r =

p−n
2 �∑

i=0

(
n
i

)
and s =

(p

p−n
2 �

)
,

then r ≥ 3s.

286 P. Francis et al.

Now with the help of Lemmas 1, 2, 3, 4, 5, 6 and Theorem 3, we have established
an upper bound for the b-chromatic number of some powers of hypercubes which
turns out to be an improvement of Theorem 1.

Theorem 4. For n being odd and n ≥ 5, n+1
2 ≤ p ≤ n−2, if r =

p−n−1
2∑

i=0

(
n
i

)
and

s =
(p

p−n−1
2

)
, then b(Qp

n) ≤ 2n−1 +
⌊

r−s
2

⌋
. For n being even and n ≥ 6, n

2 + 1 ≤

p ≤ n−2, if r′ =
p−n

2∑

i=0

(
n
i

)
+

(
n−1
p−n

2

)
and s′ =

(
p−1
p−n

2

)
, then b(Qp

n) ≤ 2n−1+
⌊

r′−s′
2

⌋
.

Proof. Let us start with n being odd. By using Lemma 4 and Lemma 5, for n
being odd, it is enough to assume that n ≥ 9 and n+3

2 ≤ p ≤ n − 2. Suppose
b(Qp

n) ≥ 2n−1 +
⌊

r−s
2

⌋
+ 1, then by using Lemma 2, there exists a clique of

size 2
(⌊

r−s
2

⌋
+ 1

)
, say A2(r−s

2 �+1) such that
∣
∣
∣Cp

(
A2(r−s

2 �+1)
)∣
∣
∣ ≥ 2n−1 −

(⌊
r−s
2

⌋
+ 1

)
. Since 2

(⌊
r−s
2

⌋
+ 1

) ≥ r−s+1, |Cp(Ir−s+1)| ≥
∣
∣
∣Cp

(
I2(r−s

2 �+1)
)∣
∣
∣.

By combining these results with Theorem 3 and Lemma 3, we can show that
2n−1 − (r − 2s + 1) ≥ 2n−1 − (⌊

r−s
2

⌋
+ 1

)
and this would imply that r < 3s.

When n is odd and p = n+3
2 , r < 3s will yield the following.

1 + n + n(n−1)
2 <

3(n+3
2)(n+1

2)
2

n2 − 8n − 1 < 0
n2 − 8n − 9 < 0

(n + 1)(n − 9) < 0
Thus n < 9, a contradiction to the assumption that n ≥ 9. Therefore, n+5

2 =
n−1
2 + 3 ≤ p ≤ n − 2.

Next let us consider n to be even with n ≥ 6 and n
2 +1 ≤ p ≤ n−2. Suppose

b(Qp
n) ≥ 2n−1 +

⌊
r′−s′

2

⌋
+ 1, then as done in the odd case we can show that

r′ < 3s′. But for n being even and n ≥ 6, if p = n
2 + 1, then r′ = 2n which is

greater than 3s′ = 3n
2 . Also, when n ≥ 8 and p = n

2 + 2, r′ < 3s′ implies the
following.

1 + n + n(n−1)
2 + (n−1)(n−2)

2 <
3(n

2 +1)(n
2)

2
5n2 − 14n + 16 < 0
5n2 − 14n + 8 < 0

(5n − 4)(n − 2) < 0
Thus n < 2, a contradiction to the assumption that n ≥ 8. So when n is

even, n ≥ 8 and n
2 + 3 ≤ p ≤ n − 2.

Let us introduce a new variable q in the following way, in order to prove
that r ≥ 3s in both parity of n. Let q = p − ⌊

n
2

⌋
and we rewrite r, r′, s, s′ as

r =
q∑

i=0

(
n
i

)
, r′ =

q∑

i=0

(
n
i

)
+

(
n−1

q

)
, s =

(
q+n

2 �
q

)
and s′ =

(
q+n

2 �−1
q

)
. It is clear

that r′ ≥ r and s ≥ s′. Since n ≥ 9 and q ≥ 3, by using Lemma 6, we get that
r ≥ 3s. This will also imply that r′ ≥ 3s′, a contradiction to both r < 3s and
r′ < 3s′ in the odd and even case respectively. ��

b-Coloring of Some Powers of Hypercubes 287

Acknowledgment. For the first author, this research was supported by Post Doc-
toral Fellowship, Indian Institute of Technology, Palakkad. And for the second
author, this research was supported by SERB DST, Government of India, File
no: EMR/2016/007339. Also, for the third author, this research was supported
by the UGC-Basic Scientific Research, Government of India, Student id: gokul-
nath.res@pondiuni.edu.in.

References

1. Francis, P., Francis Raj, S.: On b-coloring of powers of hypercubes. Discrete Appl.
Math. 225, 74–86 (2017)

2. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Appl.
Math. 91(1–3), 127–141 (1999)

3. Tsukerman, E.: Isoperimetric inequalities and the Alexandrov theorem. Master’s
thesis, Stanford University (2013)

4. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited
(2005)

Chromatic Bounds for the Subclasses
of pK2-Free Graphs

Athmakoori Prashant(B) and M. Gokulnath

Department of Mathematics, Pondicherry University, Puducherry 605014, India
11994prashant@gmail.com, gokulnath.math@gmail.com

Abstract. In this paper, we study the chromatic number for graphs
with forbidden induced subgraphs. We improve the existing χ-binding
functions for some subclasses of 2K2-free graphs, namely {2K2, H}-
free graphs where H ∈ {HV N, K5 − e, K1 + C4}. In addition, for
p ≥ 3, we find the polynomial χ-binding functions for several sub-
classes of pK2-free graphs, namely {pK2, H}-free graphs where H ∈
{HV N, gem, diamond, K5 − e, dart, C4, K1 + C4, P5}.

Keywords: Coloring · Chromatic number · χ-binding funtion ·
2K2-free graphs · pK2-free graphs

2000 AMS Subject Classification: 05C15, 05C75

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be
a graph with vertex set V (G) and edge set E(G). For any positive integer k, a
proper k-coloring of a graph G is a mapping c: V (G) → {1, 2, . . . , k} such that
for any two adjacent vertices u, v ∈ V (G), c(u) �= c(v). If a graph G admits
a proper k-coloring then G is said to be k-colorable. The chromatic number,
χ(G), of a graph G is the smallest k such that G is k-colorable. In this paper,
Pn, Cn and Kn respectively denotes the path, the cycle and the complete graph
on n vertices. The neighborhood N(x) of a vertex x is {u : ux ∈ E(G)} and
for S ⊆ V (G), we denote the neighborhood S by N(S) is ∪v∈SN(v). Also for
S, T ⊆ V (G), we define NT (S) = N(S) ∩ T . For S, T ⊆ V (G), let 〈S〉 denote
the subgraph induced by S in G and let [S, T] denote the set of all edges with
one end in S and the other end in T . If every vertex in S is adjacent with every
vertex in T , then [S, T] is said to be complete. For any graph G, let G denotes
the complement of G.

Let F be a family of graphs. We say that G is F-free if it contains no induced
subgraph which is isomorphic to a graph in F . For two vertex-disjoint graphs
G1 and G2, the join of G1 and G2, denoted by G1 + G2, is the graph whose
vertex set V (G1 + G2) = V (G1) ∪ V (G2) and the edge set E(G1 + G2) =
E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)}. In this paper, we write H
 G

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 288–293, 2021.
https://doi.org/10.1007/978-3-030-67899-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_23&domain=pdf
http://orcid.org/0000-0001-9427-5870
http://orcid.org/0000-0002-8819-6102
https://doi.org/10.1007/978-3-030-67899-9_23

Chromatic Bounds for the Subclasses of pK2-Free Graphs 289

whenever H is an induced subgraph of G. A clique (independent set) in a graph
G is a set of pairwise adjacent (non-adjacent) vertices. The size of a largest clique
(independent set) in G is called the clique number (independence number) of G,
and is denoted by ω(G)(α(G)).

A graph G is called perfect if χ(H) = ω(H), for every induced subgraph H
of G. A hereditary class G of graphs is said to be χ-bounded [7] if there is a
function f (called a χ-binding function) such that χ(G) ≤ f(ω(G)), for every
G ∈ G. We say that the χ-binding function f is special linear if f(x) = x + c
where c is a constant. If c = 1, then this special upper bound is called the Vizing
bound for the chromatic number. There has been extensive research done on
χ-binding function for various graph classes. See for instance, [8,10,11].

Throughout this paper, we use a particular partition of the vertex set of a
graph G as defined initially by Wagon in [12] and improved by Bharathi et al. in
[1] as follows. Let A = {v1, v2, . . . , vω} be a maximum clique of size ω(G), in short
we say ω. Let us define the lexicographic ordering on the set L = {(i, j) : 1 ≤ i <
j ≤ ω} in the following way. For two distinct elements (i1, j1), (i2, j2) ∈ L, we
say that (i1, j1) precedes (i2, j2), denoted by (i1, j1) <L (i2, j2) if either i1 < i2
or i1 = i2 and j1 < j2. For every (i, j) ∈ L, let Ci,j = {v ∈ V (G)\A : v /∈
N(vi)∪ N(vj)}\{ ⋃

(i′,j′)<L(i,j)

Ci′,j′}. Note that, for any k ∈ {1, 2, . . . , j − 1}\{i},
[vk, Ci,j] is complete. Hence ω(〈Ci,j〉) ≤ ω(G) − j + 2.

For 1 ≤ i ≤ ω, let us define Ii = {v ∈ V (G)\A : v ∈ N(a), for any a ∈
A\{vi}}. Since A is a maximum clique, for 1 ≤ i ≤ ω, Ii is an independent
set and for any x ∈ Ii, xvi /∈ E(G). Clearly, each vertex in V (G)\A is non-
adjacent to at least one vertex in A. Hence those vertices will be contained
either in Ii for some integer i, 1 ≤ i ≤ ω, or in Ci,j for some (i, j) ∈ L. Thus

V (G) = A ∪
(

⋃

1≤i≤ω

Ii

)

∪
(

⋃

(i,j)∈L

Ci,j

)

.

In [12], Wagon showed that the class of pK2-free graphs admit an O(ω2p−2)
χ-binding function for all p ∈ N. In particular, he showed that the χ-binding
function for 2K2-free graphs is

(
ω+1
2

)
. In [9], Karthick and Mishra proved that

the families of {2K2,H}-free graphs, where H ∈ {HV N, diamond, gem,K1 +
C4, P5, P2 ∪ P3,K5 − e} admit special linear χ-binding functions. In this paper,
we improve the bounds and show that the family of {2K2,HV N}-free graphs
and {2K2,K1 +C4}-free graphs admit the vizing bound when ω ≥ 4 and ω ≥ 3
respectively. Also, we prove that the family of {2K2,K5 − e}-free graphs are
ω-colorable when ω ≥ 5. Further, we prove that the families of {pK2,H}-
free graphs, where H ∈ {HV N, gem, diamond,K5 − e} admit linear χ-binding
function and the family of {pK2, dart}-free graphs admit a quadratic χ-binding
function. In addition, we show that the families of {pK2,H}-free graphs, where
H ∈ {C4,K1+C4, P5} admit O(ωp−1) χ-binding function. Some graphs that are
considered as a forbidden induced subgraphs in this paper are shown in Fig. 1.

Notations and terminologies not mentioned here are as in [13].

290 A. Prashant and M. Gokulnath

diamond dart gem P5 HVN

Fig. 1. Some special graphs

2 Coloring of Some Classes of 2K2-Free Graphs
and pK2-Free Graphs

Let us start this section by recalling some χ-binding results due to Wagon [12],
Gaspers and Huang [6] and Brandt [3].

Theorem 1. [12] If G is a 2K2-free graph, then χ(G) ≤ (
ω(G)+1

2

)
.

Theorem 2. [6] If G is a 2K2-free graph such that ω(G) ≤ 3, then χ(G) ≤ 4.

Theorem 3. [3] For p ≥ 3, if G is a pK2-free graph such that ω(G) = 2, then
χ(G) ≤ 2p − 2.

In [9], Karthick and Mishra have showed that if G is a {2K2,HV N}-free graph,
then χ(G) ≤ ω(G) + 3. In Theorem 4, we reduce the bound to ω(G) + 1 for
ω ≥ 4.

Theorem 4. If G is a {2K2,HV N}-free graph such that ω ≥ 4, then χ(G) ≤
ω(G) + 1.

Proof. Let G be a {2K2,HV N}- free graph such that ω ≥ 4. Let j ≥ 4. We
shall first show that Ci,j = ∅. If there exists a vertex a ∈ Ci,j , then there exist
at least two integers s, q ∈ {1, 2, . . . , j}\{i, j} such that avs, avq ∈ E(G) and
〈{a, vs, vq, vi, vj}〉 ∼= HV N , a contradiction. Thus V (G) = A∪C1,2∪C1,3∪C2,3∪(

⋃

1≤i≤ω

Ii

)

. By using similar arguments, we can show that NA(C1,3) = {v2}
and NA(C2,3) = {v1}. Moreover, we claim that [C1,3, Ik] = ∅ for k �= 2 and
[C2,3, I�] = ∅ for � �= 1. On contrary, for k �= 2, there exists a ∈ C1,3 and b ∈ Ik

such that ab ∈ E(G). Since ω(G) ≥ 4 and NA(C1,3) = {v2}, there exist at
least two integers s, q ∈ {1, 2, . . . , ω}\{2, k} such that avs, avq /∈ E(G) and thus
〈{a, v2, b, vs, vq}〉 ∼= HV N , a contradiction. Similarly, for � �= 1, we can show
that [C2,3, I�] = ∅.

Let the set of colors be {1, 2, . . . , ω + 1}. For 1 ≤ i ≤ ω, let us assign the
color i to the vertex vi and to all the vertices of Ii and assign the colors ω+1, 1
and 2 to the vertices of C1,2, C1,3 and C2,3 respectively. Clearly, this is a proper
coloring of G and thus χ(G) ≤ ω(G) + 1. ��

Chromatic Bounds for the Subclasses of pK2-Free Graphs 291

Note that, all those properties mentioned in Theorem 4 are due to the fact that
G is a HV N -free and hence those properties are also valid in Theorem 5.

For p ≥ 2, let us define a sequence of functions f1
p : N → N to serve as a

χ-binding function for {pK2,HV N}-free graphs as follows. For p, s ≥ 2, t ≥ 3,
m ≥ 4, f1

p (1) = 1, f1
2 (s) = s+1, f1

t (2) = 2t − 2, f1
t (3) = f1

t−1(3) + 2f1
t−1(2) + 3,

f1
t (m) = f1

t−1(m) + 2f1
t−1(m − 1).

Theorem 5. For p ≥ 2, if G is a {pK2,HV N}-free graph, then χ(G) ≤
f1

p (ω(G)).

Proof. When ω = 1, the result is obvious. Let us assume that ω ≥ 2. Let us
prove the result by induction on p. For p = 2, by using Theorem1, Theorem2
and Theorem4, the result holds. By induction hypothesis, for s ≥ 2, let us
assume that if G′ is an {sK2,HV N}-free graph, then χ(G′) ≤ f1

s (ω(G
′)).

Let G be an {(s + 1)K2,HV N}-free graph. By using Theorem3, the result
is true for ω(G) = 2. Let us consider ω ≥ 3. As observed in Theorem 4, we have

V (G) = A ∪ C1,2 ∪ C1,3 ∪ C2,3 ∪
(

⋃

1≤i≤ω

Ii

)

. For 1 ≤ i ≤ ω, assign the color i

to the vertex vi and to the vertices of Ii. Hence A ∪
(

⋃

1≤i≤ω

Ii

)

can be colored

with ω(G) colors. Clearly, for (i, j) ∈ L, each 〈Ci,j〉 is {sK2,HV N}-free and
ω(〈C1,3〉) ≤ ω(G) − 1 and ω(〈C2,3〉) ≤ ω(G) − 1.

Let us first consider ω(G) = 3. By using induction hypothesis, C1,2 can
be colored using f1

s (3) colors, C1,3 and C2,3 can be colored with f1
s (2) colors

separately. Thus V (G) can be colored with at most 3+f1
s (3)+2f1

s (2) = f1
s+1(3)

colors. When ω ≥ 4, by using similar strategies as done for ω = 3, with a little
more involvement we can show that V (G) can be colored with at most f1

s+1(ω)
colors. ��

Let us recall a result in chromatic number of {2K2, gem}-free graphs.

Theorem 6. [4] Let G be a {2K2, gem}-free graph, then χ(G) ≤ max{3, ω(G)}.
For p ≥ 2, let us define a sequence of functions f2

p : N → N to serve as a χ-binding
function for {pK2, gem}-free graphs as follows. For p ≥ 2, t, s ≥ 3, f2

p (1) = 1,
f2
2 (2) = 3, f2

2 (t) = t, f2
t (2) = 2t − 2, f2

t (s) = f2
t−1(s) + 2s − 2.

Theorem 7. For p ≥ 2, if G is a {pK2, gem}-free graph, then χ(G) ≤
f2

p (ω(G)).

Since diamond is an induced subgraph of gem, for p ≥ 2, f2
p (ω(G)) will be the

χ-binding function for {pK2, diamond}-free graphs as well.

Corollary 1. For p ≥ 2, if G is a {pK2, diamond}-free graph, then χ(G) ≤
f2

p (ω(G)).

In [9], Karthick and Mishra have showed that if G is a {2K2,K5 −e}-free graph,
then χ(G) ≤ ω(G)+ 4. In Theorem 8, we reduce the bound to 6 when ω(G) = 4
and we prove that G is ω(G)-colorable, for all ω(G) ≥ 5.

292 A. Prashant and M. Gokulnath

Theorem 8. If G is a {2K2,K5 − e}-free graph, then

χ(G) ≤
{
6 for ω(G) = 4
ω(G) for ω(G) ≥ 5.

Next, for p ≥ 2, let us define a sequence of functions f3
p : N → N to serve

as a χ-binding function for {pK2,K5 − e}-free graphs as follows. For p ≥ 2,
t ≥ 3, m ≥ 4, s ≥ 5, f3

p (1) = 1, f3
2 (2) = 3, f3

2 (3) = 4, f3
2 (4) = 6, f3

2 (s) = s,
f3

t (2) = 2t − 2, f3
t (3) = f1

t (3), f3
t (m) = f3

t−1(m) + 2f2
t−1(m − 1) + 3m − 6.

Theorem 9. If G is a {pK2,K5 − e}-free graph, then χ(G) ≤ f3
p (ω(G)).

Next, for p ≥ 2, let us define a sequence of functions f4
p : N → N to serve as a

χ-binding function for {pK2, dart}-free graphs as follows. For p ≥ 2, m, t ≥ 3,
s ≥ 4, f4

p (1) = 1, f4
2 (2) = 3, f4

2 (3) = 4, f4
2 (s) =

(
s+1
2

)
, f4

t (2) = 2t − 2, f4
t (m) =

f4
t−1(m) +

(
m+1
2

)
+ m − 2.

Theorem 10. If G is a {pK2, dart}-free graph, then χ(G) ≤ f4
p (ω(G)).

Next, let us recall a result due to Blazsik et al. in [2].

Theorem 11. [2] If G is a {2K2, C4}- free graph, then χ(G) ≤ ω(G) + 1.

For p ≥ 2, let us define a sequence of functions f5
p : N → N to serve as a χ-

binding function for {pK2, C4}-free graphs as follows. For p, s ≥ 2, m, t ≥ 3,

f5
p (1) = 1, f5

2 (s) = s + 1, f5
t (2) = 2t − 2, f5

t (m) =
m∑

i=2

f5
t−1(i).

Theorem 12. If G is a {pK2, C4}-free graph, then χ(G) ≤ f5
p (ω(G)).

In [9], Karthick and Mishra have showed that if G is a {2K2,K1+C4}-free graph,
then χ(G) ≤ ω(G) + 5. In Theorem 13, we improve the bound to ω(G) + 1.

Theorem 13. If G is a {2K2,K1 + C4}-free graph such that ω(G) ≥ 3, then
χ(G) ≤ ω(G) + 1.

For p ≥ 2, let us define a sequence of functions f6
p : N → N to serve as a χ-

binding function for {pK2,K1+C4}-free graphs as follows. For p, s ≥ 2, m, t ≥ 3,

f6
p (1) = 1, f6

2 (s) = s+1, f6
t (2) = 2t−2, f6

t (m) =
(

m∑

i=2

f6
t−1(i)

)

+f6
t−1(m−1)+1.

Theorem 14. If G is a {pK2,K1 + C4}-free graph, then χ(G) ≤ f6
p (ω(G)).

Next, let us recall a result due to Fouquet et al. in [5].

Theorem 15. [5] If G is a {2K2, P5}-free graph, then χ(G) ≤ 3
2ω(G).

Next, for p ≥ 2, let us define a sequence of functions f7
p : N → N to serve as

a χ-binding function for {pK2, P5}-free graphs as follows. For p ≥ 2, m, t ≥ 3
s ≥ 4, f7

p (1) = 1, f7
2 (2) = 3, f7

2 (3) = 4, f7
2 (s) = 3

2s, f7
t (2) = 2t − 2, f7

t (m) =

m +
m∑

i=2

f7
t−1(i).

Chromatic Bounds for the Subclasses of pK2-Free Graphs 293

Theorem 16. If G is a {pK2, P5}-free graph, then χ(G) ≤ f7
p (ω(G)).

Acknowledgment. For the first author, this research was supported by the Council of
Scientific and Industrial Research, Government of India, File No: 09/559(0133)/2019-
EMR-I. And for the second author, this research was supported by the UGC-Basic
Scientific Research, Government of India, Student id: gokulnath.res@pondiuni.edu.in.

References

1. Bharathi, A.P., Choudum, S.A.: Colouring of (P3 ∪P2)-free graphs. Graphs Comb.
34(1), 97–107 (2018)

2. Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced C4 and 2K2.
Discrete Math. 115(1–3), 51–55 (1993)

3. Brandt, S.: Triangle-free graphs and forbidden subgraphs. Discrete Appl. Math.
120(1–3), 25–33 (2002)

4. Brause, C., Randerath, B., Schiermeyer, I., Vumar, E.: On the chromatic number
of 2K2-free graphs. Discrete Appl. Math. 253, 14–24 (2019)

5. Fouquet, J.L., Giakoumakis, V., Maire, F., Thuillier, H.: On graphs without P5

and P5. Discrete Math. 146(1–3), 33–44 (1995)
6. Gaspers, S., Huang, S.: (2P2, K4)-free graphs are 4-colorable. SIAM J. Discrete

Math. 33(2), 1095–1120 (2019)
7. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania

Matematyki Applicationes Mathematicae 19(3–4), 413–441 (1987)
8. Karthick, T., Maffray, F.: Vizing bound for the chromatic number on some graph

classes. Graphs Comb. 32(4), 1447–1460 (2016)
9. Karthick, T., Mishra, S.: Chromatic bounds for some classes of 2K2-free graphs.

Discrete Math. 341(11), 3079–3088 (2018)
10. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs-a survey.

Graphs Comb. 20(1), 1–40 (2004)
11. Schiermeyer, I., Randerath, B.: Polynomial χ-binding functions and forbidden

induced subgraphs: a survey. Graphs Comb. 35(1), 1–31 (2019)
12. Wagon, S.: A bound on the chromatic number of graphs without certain induced

subgraphs. J. Comb. Theory Ser. B 29(3), 345–346 (1980)
13. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited

(2005)

Axiomatic Characterization
of the Median Function of a Block Graph

Manoj Changat1(B) , Nella Jeena Jacob1,
and Prasanth G. Narasimha-Shenoi2

1 Department of Futures Studies, University of Kerala,
Thiruvananthapuram 695581, India

mchangat@keralauniversity.ac.in, nellajeenaj@gmail.com
2 Department of Mathematics, Government College Chittur, Palakkad, India

prasanthgns@gmail.com

Abstract. A median of a profile of vertices (a sequence of vertices) on
a connected graph is a vertex that minimizes the sum of the distances to
the elements in the profile. The median function has as output the set
of medians of a profile. Median function is an important consensus func-
tion for the location of a desirable facility in a network. The axiomatic
characterization of the median function is studied by several authors on
special classes of graphs like trees and median graphs. In this paper, we
determine the median sets of all types of profiles and obtain an axiomatic
characterization for the median function on block graphs, an immediate
generalization of trees.

Keywords: Profiles · Block graph · Median sets · Median function ·
Axiomatic characterization

1 Introduction

Consensus is an important concept where the aggregation of processed data is
desired. Consensus is a collective opinion or a general understanding among a
group of agents or clients. Consensus functions are introduced to model the prob-
lem of achieving consensus amongst agents or clients in a rational way. The input
of a consensus function is information on the clients and the output concerns
the issue on which consensus should be reached. The problems of consensus can
also be treated in location theory as finding an optimal facility among possi-
ble locations. Facility location problems in the discrete case deal with functions
that find an appropriate location for a common facility or resource in a discrete
structure like a network, or a graph or an ordered set [10].

An arbitrary consensus function on a graph G = (V,E) can be defined on
the vertex set V which returns for every sequence of vertices (profile) of V a
non empty subset of V . Axiomatic studies in this area resulted in better under-
standing of the process of location and consensus. An interesting problem in

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 294–308, 2021.
https://doi.org/10.1007/978-3-030-67899-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_24&domain=pdf
http://orcid.org/0000-0001-7257-6031
http://orcid.org/0000-0002-5850-5410
https://doi.org/10.1007/978-3-030-67899-9_24

Axiomatic Characterization of the Median Function of a Block Graph 295

consensus theory is to find a set of axioms that characterizes a given consen-
sus function. The axiomatic study of social decision problems can be traced to
1950 with the seminal work of Kenneth Arrow [1], followed by Kemeny and
Snell where, perhaps for the first time, the axiomatic approach was joined with
consensus terminology [8]. Axiomatic characterization of the mean function is
due to Holzman in [7] and that of the median function by Vohra in [22] on the
continuous variant of a tree, where internal points of edges are also allowed as
locations. The discrete case of trees was first attempted by McMorris, Mulder
and Roberts [13], where they also characterized the median function on cube-free
median graphs using three simple and appealing axioms, known as anonymity
(A), betweenness (B) and consistency (C). Anonymity describes the property
that the output does not rely upon the ordering of the elements in the profile.
Betweenness implies that anything between two vertices has equal importance
and consistency means that if two profiles agree on some output, then the aggre-
gation of the two profiles agrees on that output. The A,B,C axioms are known
as universal axioms for the median function as these axioms are satisfied by
the median function on any connected graph. The median function has been
characterized on hypercubes and median graphs using only the A,B,C axioms
[13,18,19]. It is expected that the axioms depend on the consensus function at
hand and on the structure of the graph on which the function is studied as we will
see in this paper. The axiomatic characterization of other consensus functions
on trees studied were the mean function [11], the �p-function (discrete case) [12],
the center function [15,20]. So far, in most of the consensus functions mentioned
above, a characterization is only obtained on trees.

A block graph is a graph in which every block (maximal 2-connected sub-
graph) is a complete graph. Since trees are special cases of block graphs, they
are natural extensions to trees to consider for the axiomatic characterization
of the median function. In this paper motivated by the studies on the median
function on trees, we attempt for an axiomatic characterization of the median
function on block graphs.

The paper is organized as follows. In the remaining part of this section, we
fix the notations and terminology, in Sect. 2, we present a consensus strategy
known as plurality strategy for computing median sets of profiles. This strategy
will produce median sets on graphs having connected median sets. In Sect. 4,
some basic facts about the block graphs is discussed and determine the struc-
ture of median sets in block graphs. Based on the structure of the median sets,
we formulate the required axioms for the median function of block graphs and
describe the axiomatic characterization.

In this paper we consider only finite simple connected graphs G = (V,E)
with vertex set V and edge set E. The distance d(u, v) between u and v in G
is the length of a shortest u, v-path. The interval I(u, v) between two vertices u
and v in G consists of all vertices on shortest u, v-paths, that is: I(u, v) = {x :
d(u, x) + d(x, v) = d(u, v)}. A profile π of length k = |π| on G is a nonempty
sequence π = (x1, x2, . . . , xk) of vertices of V with repetitions allowed. We define
V ∗ to be the set of all profiles of finite length on V and x1, x2, . . . , xk are known

296 M. Changat et al.

as the elements of the profile. A vertex of π is a vertex that occurs as an element
in π. By {π} we denote the set of all vertices of π. Note that a vertex x may
occur more than once as element in π. If we say that x is an element of π,
then we mean an element in a certain position, say x = xj in the jth position. A
subprofile of π is just a subsequence of π. For convenience we also allow the empty
subprofile. Let π = (x1, x2, . . . , xk) and ρ = (y1, y2, . . . , y�) be two profiles. The
profile (x1, x2, . . . , xk, y1, y2, . . . , y�) is called a concatenation of π and ρ, and is
denoted by πρ. Note that in most cases we have πρ �= ρπ. By x ∈ π, we mean
that x is a vertex of the profile π. A consensus function on G is a function
L : V ∗ → 2V − ∅ that gives a nonempty subset of V as output for each profile
on G. For convenience, we write L(x1, x2, . . . , xk) instead of L((x1, x2, . . . , xk)),
for any function L defined on profiles, but will keep the brackets where needed.

The remoteness of a vertex v to a profile π is defined as D(v, π) =
k∑

i=1

d(v, xi).

A vertex minimizing D(v, π) is called a median of the profile. The set of all
medians of π is the median set of π and is denoted by Med(π).

We can also consider Med as a function from V ∗ to 2V − ∅, and then Med
function becomes the median function of G. Note that Med(x) = {x}, and
Med(x, y) = I(x, y). Also, if I(u, v)∩ I(v, w)∩ I(w, u) �= ∅, then Med(u, v, w) =
I(u, v) ∩ I(v, w) ∩ I(w, u). The median function has been studied extensively
on median graphs. A median graph is defined by the property that |I(u, v) ∩
I(v, w) ∩ I(w, u)| = 1, for any three vertices u, v, w. Equivalently, a median
graph is a graph such that any profile of length 3 has a unique median. See e.g.
[9,17,21] for structure theory and [13,14,19], for the axiomatic characterizations
for the median function on median graphs, using the A,B,C axioms mentioned
above. Formally, the A,B,C axioms are defined as follows.

(A) Anonymity: L(π) = L(xχ(1), xχ(2), . . . , xχ(k)), for any profile π =
(x1, x2, . . . , xk) on V and for any permutation χ of {1, 2, . . . , k}.

(B) Betweenness: L(u, v) = I(u, v), for all u, v in V .

(C) Consistency: If L(π) ∩ L(ρ) �= ∅, for profiles π and ρ, then L(πρ) =
L(π) ∩ L(ρ).

We may observe that the first and third axioms are defined without any
reference to the distance function. It can be seen that the median function Med
satisfies axioms (A), (B), (C) on any connected graph.

2 Plurality Strategy and Median Sets in Graphs

We present the plurality strategy on profiles of a graph G and describe the graphs
where median sets can be computed using this strategy.

For any three vertices, u, v, w in a graph G, if d(w, u) < d(w, v), then we say
that w is closer to u than to v. For a profile π and an arbitrary edge uv of a graph
G, we denote πuv as the subprofile of π consisting of all elements in π closer to u
than to v and πvu as the subprofile of π consisting of all elements in π closer to v

Axiomatic Characterization of the Median Function of a Block Graph 297

than to u. We call the pairs of subprofiles, (πuv, πvu) as a split. If |πuv| = |πvu|,
then we call (πuv, πvu) as a balanced split of π. We call (πuv, πvu) an unbalanced
split with respect to π if |πuv| > |πvu| or |πvu| > |πuv|. If (πuv, πvu) is an
unbalanced split with |πuv| > |πvu|, then πuv will be in the majority side of
the split. The majority strategy on graphs is introduced by Mulder in 1997 [16],
which can be adopted on a profile of vertices of a graph. The procedure is to
start from any initial vertex of the graph and always moving along edges to a
side where there is a majority of the profile lies and finally get stuck or moves
along a set of vertices and cannot move out of those vertices, which is called the
outcome of the majority strategy. It is proved in [16] that in the case of median
graphs, the outcome is precisely the median set of the profile independent of the
starting vertex. In this strategy, we do not compute the distance, but only the
number of vertices on each side of the edge that we move along.

Motivated by the majority strategy in graphs, another consensus strategy
called plurality strategy was introduced in [2]. It is defined below.

Plurality Strategy
Plurality strategy on a profile π for a graph G is the following.

1 Start at an initial vertex v.
2 If we are in v, and w is a neighbor of v with |πvw| ≤ |πwv|, then we move to

w.
3 We move only to a vertex already visited if there is no alternative.
4 We stop when

(a) We are stuck at a vertex v
or

(b) We have visited vertices at least twice, and, for each vertex v visited at
least twice and for each neighbor w of v, either w is also visited at least
twice or |πvw| > |πwv|.

5 Median set is the set of vertices where we get stuck or visited at least twice.

Example 1. Consider the block graph G shown in Fig. 1:

Fig. 1. Illustration of plurality strategy

Consider the profile π = (s, x, w, p, p, q). For starting the plurality strategy
from s, we compute, πsx = {s}, πxs = {x,w, p, p, q}, πxz = {s, x}, πxw = {x, s},
πwx = {w}, πyx = {p, p, q}, πxy = {x, s}, πyp = {s, x, w}, πpy = {p, p}, πyq =
{s, x, w}, πqy = {q}. Thus, |πsx| = 1, |πxs| = 5, |πxy| = 2, |πyp| = 3, |πpy| =
2, |πyq| = 3, |πqy| = 1, So if we apply the plurality strategy starting from s, we

298 M. Changat et al.

move to x, then to y and get stuck at y. So the outcome of plurality strategy
starting from y for profile π is y which is the median of π. Again, for π =
(s, s, s, p, q, q), for starting the plurality strategy from z, we compute, |πzx| =
0, |πxz| = 3, |πxs| = 3, |πsx| = 3, |πxy| = 3, |πyx| = 3, |πyp| = 3, |πpy| = 1, |πyq| =
3, |πqy| = 2. Thus from z, we move to x, then to s, then again to x, then to y. We
cannot move to p or q, so we back track from y to x to s. Thus we move around
the path s, x, y, which will be the outcome of the plurality strategy, which is also
the median of π. So, we get the path or interval I(s, y) as the median of π.

We have the following results from [2].

Lemma 1. [2] Let G be a connected graph and π a profile on G. Plurality strat-
egy makes a move from vertex u to vertex v if and only if D(v, π) ≤ D(u, π).

We have an immediate remark for Plurality strategy.

Remark 1. D(v, π) ≤ D(u, π) if and only if |πvu| ≤ |πuv| which is the condition
for plurality strategy to make a move from v to u.

The following theorem is proved in [2].

Theorem 1. [2] Following are equivalent for a connected graph G.

1. Plurality strategy produces Med(π) starting from an arbitrary vertex for all
profiles π.

2. Med(π) is connected for all profiles π.

3 Median Sets in Block Graphs

First we describe the preliminary notions and some basic facts about the block
graphs for our purpose. In the rest of this paper, we consider non-trivial block
graphs having at least two blocks. It may be noted that all internal vertices of the
unique induced path (same as shortest path) are cut vertices in a block graph.
Another fact is that for any three vertices u, v, w in a block graph G : I(u, v) ∩
I(u,w) = {u} implies that either all the vertices u, v, w lie on the same block or u
lies on the shortest v, w- path or u and v lie on the same block. In each of these
cases, it can be noted that d(v, w) ≥ max(d(u, v), d(u,w)). This observation
together with the fact that the intervals I(u, v) in a block graph is the unique
shortest u, v-path in G (the paths are trivially median graphs) implies that every
block graph is a quasi-median graph. Quasi-median graphs are non-bipartite
generalizations of median graphs and there are several characterizations of these
graphs, for e.g., [4,6]. The definition of a quasi-median graph which is more
relevant in the case of a block graph is the following. A graph G is a quasi-median
graph if every interval in G induces a median graph and for any three vertices
u, v, w: I(u, v) ∩ I(u,w) = {u} implies that d(v, w) ≥ max(d(u, v), d(u,w)). In
fact the family of block graphs is one of the maximal subclass of the family of
quasi-median graphs.

Axiomatic Characterization of the Median Function of a Block Graph 299

It may be observed that a quasi-median graph have all median sets connected
[3] and hence the plurality strategy will produce median sets for all profiles in a
quasi-median graph. Since block graphs are special class of quasi-median graphs,
have median sets connected for all profiles according to Theorem 1.

In this section we determine the structure of median sets for all profiles on
block graphs. Let π be a profile on G. Note that a vertex may occur more than
once as an element in π. A vertex with highest occurrence in π is called a plurality
vertex of π. We denote the set of plurality vertices of π by Pl(π). For a profile
π = (x1, x2, . . . , xi, . . . , xk), by π − xi, we mean the subprofile of π obtained by
deleting the vertex xi from the ith position of π. The vertex xi that occurs in
other positions in π, remain to be in π−xi in their respective positions. A profile
π is a balanced profile, if there exists an edge uv in G such that π = (πuv, πvu)
and |πuv| = |πvu|. A profile π is a unbalanced profile, if π is not a balanced
profile. That is, there doesn’t exists an edge uv in G such that π = (πuv, πvu)
and |πuv| = |πvu|. A profile π is called a complete profile if {π} induces a clique
in G. That is, all the vertices of a complete profile lies on a block B of G. A
profile π is called a partially complete profile, if π has a complete subprofile π1

consisting of at least half of |π|. It is to be noted that throughout this section,
we use the fact that any profile π (balanced or unbalanced) in a block graph G
can be represented as the concatenation of the subprofiles πuv and πvu; that is,
π = (πuv, πvu), for some edge uv in G. For profile π = (πuv, πvu) and a vertex
z, we use the terminology that z is closer to πuv to mean that z is closer to
vertices in πuv than the vertices in πvu.

Theorem 2. Let G be a block graph. The median sets of G are singleton set
{v}, v ∈ V (G), a set of vertices in a path or a block or a proper subset of a block.

Proof. Let π be a profile containing vertices from G.

Case 1: Let π = (v), then D(v, π) = 0 < D(x, π) for any x ∈ V (G) different
than v. Hence {v}, where v ∈ V are all the median sets. If π contains more than
one vertex, we proceed as follows.

Case 2: Let π = (u, v). Then by betweenness axiom we will get the output for
the profile of length 2. Hence Med(π) is the set of all vertices in the u, v-path.
i.e. Med(π) = I(u, v) for all u, v ∈ V .

Case 3: Let π be a complete profile. Suppose that every vertex of π occurs
only once in π. Let u be a vertex in π. Let v be a neighbour of u. There are
two possibilities for v. Either v /∈ {π} or v ∈ {π}. If v /∈ {π}, then it is clear
that πuv will be {u}, while πvu will be the empty set. Also, if v ∈ {π}, then
πuv is {u} and πvu is {v}. Hence by the plurality strategy starting from the
vertex u, we can move to all the vertices in π and nowhere else. Therefore
Med(π) = Pl({π}). If Pl({π}) �= ∅, let u ∈ Pl({π}). Then, for any neighbour
v of u, πuv will be the profile consisting u repeating according to the number of
times u occurs in π, where as πvu will be the empty set if v /∈ {π} and πvu will
be {v}, if v is profile vertex, but not a plurality vertex of π. If v ∈ Pl({π}), then

300 M. Changat et al.

πvu will be the profile consisting v repeating according to the number of times
v occurs in π. Then it clear that πuv and πvu have the same cardinality and
hence Med(π) = Pl({π}). Hence, for a complete profile π, Med(π) = Pl({π}),
if Pl({π}) �= ∅ and Med(π) = {π}, if Pl({π}) = ∅. Similarly, we can prove that
if π is a partially complete profile, then Med(π) = Pl({π1}), if Pl({π1}) �= ∅
and Med(π) = {π1}, if Pl({π1}) = ∅.

Case 4: π = (πuv, πvu) is a balanced profile.

Subcase 4.1: u, v /∈ π.
Let u1 be a vertex adjacent to u and closer to πuv. Then it is clear that |πu1u| ≤
|πuv|. If |πu1u| < |πuv|, then some vertex or vertices in πuv branches out from
vertex u, otherwise (if u1 is closer to πuv) |πu1u| = |πuv| and we can move to
u1 by the plurality strategy. Using the same strategy, we continue to move to
vertices ui, . . . , uk = x, i = 1, . . . , k, where u, u1, . . . , uk = x form a path, say
Pu,x in G. It is clear that |πuiui+1 | = |πui+1ui+2 | = |πuv|, for i = 1, . . . , k−2. Let z
be the first vertex adjacent to x and closer to πuv such that |πzx| < |πxz| = |πuv|.
Then some vertex or vertices in πuv branches out from vertex x. This implies
that removing x will disconnect the vertices in πuv or in other words x is a cut
vertex separating πuv and πvu.

Similarly following the same strategy to the side of πvu, we obtain a path
v, v1, . . . , v� = y, say Pv,y such that |πvivi+1 | = |πvi+1vi+2 | = |πvu|, for i =
1, . . . , � − 2. If we move to a vertex w adjacent to y and closer to πvu, then
|πyw| > |πwy|. This imply that y is a vertex that separates πuv and πvu and
closest to πvu. So the only alternative is to retrace the path Pv,y we took from y to
v and then from v to x through the path u,Pu,x and thus we have visited vertices
in the shortest x, y-path obtained by concatenating the paths Pu,x and Pv,y, at
least twice. Therefore, by plurality strategy the median set, Med(π) = I(x, y),
where x is the cut vertex that separates πuv and πvu and closest to πuv and y is
the cut vertex that separates πuv and πvu and closest to πvu.

Subcase 4.2: π = (πuv, πvu) is a balanced profile and either u, v or both u, v
belongs to π.
In this case, applying the plurality strategy similar to that of Subcase 4.1, we
can prove that Med(π) = I(x, y), where there are three cases for x, y according
as u ∈ π, v ∈ π or both u, v ∈ π. If u ∈ π and v /∈ π, then, it is clear that x = u
and y is a cut-vertex that separates πuv and πvu and closest to πvu. If v ∈ π and
u /∈ π, then, it is clear that x is a cut-vertex that separates πuv and πvu and
closest to πuv and y = v. If u, v ∈ π, then x = u and y = v.

Case 5: π is an unbalanced profile, which is not a complete profile nor a partially
complete profile. (Note that a complete profile or a partially complete profile is
an unbalanced profile).
Therefore there exists an edge uv such that π = (πuv, πvu) and either |πuv| >
|πvu| or |πvu| > |πuv|. Assume that |πuv| > |πvu|. Therefore, median set Med(π)
lies to the side of πuv. By plurality strategy we make a move from v to u as
|πuv| > |πvu|. We may continue to move from u through vertices of the path

Axiomatic Characterization of the Median Function of a Block Graph 301

v, u, u1 . . . uk = z to z by plurality strategy until |πu1u| ≥ |πuu1 | ≥ . . . ≥
|πui+1ui

| ≥ |πuiui+1 |, for i = 1, . . . , k − 1. There are two cases.

Subcase 5.1: |πu1u| > |πuu1 | > . . . > |πuiui+1 | > |πui+1ui
|, for i = 1, . . . , k − 1

and |πz′z| < |πzz′ | for all z′ ∈ N(z) \ {uk−1}.
Then, we are stuck at z and hence by plurality strategy, Med(π) = {x}.

Subcase 5.2: |πui+1ui
| = |πuiui+1 |, for some i = 1, . . . , k − 1.

Let r be the first index among i = 1, . . . , k such that |πur+1ur
| = |πurur+1 | so

that |πu1u| > |πuu1 | > . . . > |πurur−1 | > |πur−1ur
| and |πuj+1uj

| = |πujuj+1 |,
for j = r, . . . , k − 1. This implies that vertices in πuv branches out from ur so
that vertices in the subprofiles πuj+1uj

and πujuj+1 are equidistant from ur, for
j = r, . . . , k − 1. This is possible if and only if the vertices uj , for j = r, . . . , k
are mutually adjacent so that they form a clique and hence lie on some block.
Therefore, we move around the vertices, ur, for j = r, . . . , k − 1 any number of
times and hence by plurality strategy, Med(π) = {ur, . . . , uk}.

So, considering all the cases, we can summarize that the median sets of a
block graph G are the singleton set {v}, v ∈ V (G), a set of vertices in a path or
a block or a proper subset of a block. 	

Remark 2. The median sets of a block graph for all profiles π are as follows:

1. π = (x), then Med(π) = {x}.
2. π = (x, y), then Med(π) = I(x, y).
3. π = (πuv, πvu) is a balanced profile. If u, v /∈ π, then Med(π) = I(x, y) such

that x and y are vertices that separates πuv and πvu, where x is a vertex
closest to πuv and y is a vertex closest to πvu.

4. π = (πuv, πvu) is a balanced profile. If u ∈ π, then Med(π) = I(u, y) such
that y is a vertex that separates πuv and πvu closest to πvu.

5. π = (πuv, πvu) is a balanced profile. If v ∈ π, then Med(π) = I(x, v) such
that x is a vertex that separates πuv and πvu and closest to πuv.

6. π = (πuv, πvu) is a balanced profile. If u, v ∈ π, then Med(π) = I(u, v).
7. π = (πuv, πvu) is an unbalanced profile with |πuv| < |πvu|. Then

(a) Med(π) = {x} such that x is a vertex that separates πuv and πvu which
is closest to πuv.

(b) Med(π) = Pl(π1), when π is a complete profile or a partially complete
profile provided Pl(π1) �= ∅ and Med(π) = {π}, if Pl(π1) = ∅.

(c) Med(π) = V (K), where K is a clique in G (K can be the entire block of
G).

We conclude this section with two Lemmata for an unbalanced profile. These
two results will give us the median sets of profiles π from the median sets of
vertex deleted subprofiles π − x.

Lemma 2. Let π be an unbalanced profile in a block graph G with |π| = n. If⋂n
i=1 Med(π − xi) �= ∅, then Med(π) =

⋂n
i=1 Med(π − xi).

302 M. Changat et al.

Proof. Let G be a block graph and π = (πuv, πvu) with |πuv| > |πvu| be an
unbalanced profile having

⋂k
i=1 Med(π−xi) �= ∅. Let π = (x1, x2, . . . , xn), πuv =

(x1, x2, . . . , xk) and πvu = (xk+1, xk+2, . . . , xn). Let x ∈ ⋂n
i=1 Med(π − xi).

Assume that x /∈ Med(π). Therefore there exists some y ∈ V (G) such that

n∑

i=1

d(y, xi) <

n∑

i=1

d(x, xi) (1)

Since G is a block graph, there will be a unique x, y- shortest path. Since x ∈
Med(π−xi) for all xi ∈ π, we have that x is closer to πuv than to πvu. Therefore
all the y, xi- shortest paths will pass through x for all i = 1, 2, . . . , k. Therefore
all the x, xi - shortest paths will pass through y for all i = k + 1, k + 2, . . . , n.
So,

n∑

i=1

d(x, xi) =
k∑

i=1

d(x, xi) +
n∑

i=k+1

d(x, xi)

=
k∑

i=1

d(x, xi) +
n∑

i=k+1

(d(x, y) + d(y, xi))

<
k∑

i=1

(d(x, xi) + d(x, y)) +
n∑

i=k+1

(d(xi, y)) (2)

(as |πuv| > |πvu| we need at least one more d(x, y))

Equations 1 and 2 contradicts each other. Hence x ∈ Med(π).
Now let x ∈ Med(π).

x ∈ Med(π) ⇐⇒ D(x, π) is minimum

⇐⇒
n∑

i=1

d(x, xi) is minimum

⇐⇒
∑

j �=i

d(x, xj) is minimum

⇐⇒ x ∈ Med(π − xi),∀xi ∈ π

⇐⇒ x ∈
n⋂

i=1

Med(π − xi)

Hence the lemma. 	

Next lemma enable us to get the median sets of profiles π when the median

sets of vertex deleted profiles π − x have an empty intersection.

Lemma 3. Let π be an unbalanced profile in a block graph G with |π| = n and
n⋂

i=1

Med(π − xi) = ∅, then
n⋃

i=1

Med(π − xi) = Med(π).

Axiomatic Characterization of the Median Function of a Block Graph 303

Proof. Let π be an unbalanced profile with
n⋂

i=1

Med(π − xi) = ∅. Also let π =

(πuv, πvu) with |πuv| > |πvu|. Let x ∈
n⋃

i=1

Med(π − xi). Therefore x ∈ Med(π −
xi) for some xi ∈ π. Without lose of generality assume that xi = x1. Also since
n⋂

i=1

Med(π − xi) = ∅, there exists an xj so that x /∈ Med(π −xj). Again without

lose of generality we can assume xj = x2. Now, let us examine all possible cases
for x1, x2 with respect to their occurrence in πuv and πvu.

Case 1: x1, x2 ∈ π1.
Since x ∈ Med(π − x1) and Since |πuv| > |πvu| and x1, x2 ∈ πuv, either |πuv −
x1| = |πuv − x2| > |πvu| or |πuv − x1| = |πuv − x2| = |πvu|. If |πuv − x1| =
|πuv − x2| > |πvu|, then since x ∈ Med(π − x1), it follows by plurality strategy
that x ∈ Med(π − x2), a contradiction. If |πuv − x1| = |πuv − x2| = |πvu|, then
the profiles (πuv − x1, πvu) and (πuv − x2, πvu) are balanced profiles having the
same median sets and since x ∈ Med(π − x1), it follows by plurality strategy
again that x ∈ Med(π − x2), a contradiction. This implies that it is impossible
to have both x1, x2 ∈ πuv. That is, if x1 ∈ π1, then x2 /∈ π1 and vice versa.

Case 2: x1 ∈ πuv and x2 ∈ πvu.
Here |πuv| > |πvu| will imply that |πuv −x1| > |πvu −x2|. So x will also be closer
to πuv −x1 than πvu −x2. Since x ∈ Med(π−x1), it follows by plurality strategy
that x ∈ Med(π).

Case 3: x1 ∈ πvu and x2 ∈ πvu.
The median set of π will be closer to πuv than πvu since |πuv| > |πvu|. Now,
|πuv − x1| > |πvu − x2| and so by plurality strategy from v towards u, we come
to a vertex x in Med(π − x2) whenever x ∈ Med(π − x1). So x ∈ Med(π − x1)
implies that x ∈ Med(π − x2), which is a contradiction. So if x1 ∈ πvu, then
x2 /∈ πvu and vice versa.

Case 4: x1 ∈ πvu and x2 ∈ πuv.
This case is similar to that of Case 3 and here also, we infer that x ∈ Med(π−x2),
a contradiction. So this case also will not happen.

In all the above cases, we have proved that except Case 2, none of the other

case will happen. since
n⋂

i=1

Med(π − xi) = ∅, and in case 2, we have proved that

x ∈ Med(π). Hence
n⋃

i=1

Med(π − xi) ⊆ Med(π).

Conversely suppose x ∈ Med(π). Since |πuv| > |πvu|, choosing any vertex
xi ∈ πvu, we can see that x lies closer to πuv than πvu − xi, so that x ∈
Med(π −xi). So Med(π) ⊆

n⋃

i=1

Med(π − xi). Hence
n⋃

i=1

Med(π − xi) = Med(π).

	

304 M. Changat et al.

Remark 3. It is observed that in the proof Lemma 3, we do not use the assump-
tion that G is a block graph, but we have used the plurality strategy in the proof
to obtain the median vertex of profiles. So, it may be true that Lemma 3, works
for graphs with connected medians as the plurality strategy produces medians
of any profile for graphs with connected medians. The same may be true for
Lemma 2.

4 Axiomatic Characterization of the Median Function

In this section, we formulate the axioms for the characterization of median func-
tion in a block graph. We require three specialized axioms along with the uni-
versal axioms (A) and (C). The consistency axiom can be viewed as a means to
determine the output of a profile by the output of subprofiles: if we can write
π = π1π2 as the concatenation of the subprofiles π1 and π2, and it so happens
that the outputs of these subprofiles intersect, then we know the output of π.
There are two axioms for an unbalanced profile, where knowledge on the output
of vertex deleted subprofiles of π will give the output of π.

Let G = (V,E) be a block graph and let L be a consensus function on
G. We formulate the following axioms for a consensus function L for profiles
π = (πuv, πvu).

Axiom (BB): Betweenness of a Balanced profile
π = (πuv, πvu) is a balanced profile. If u, v /∈ π, then L(π) = I(x, y) such that x
and y are vertices that separates πuv and πvu where x is a vertex closest to πuv

and y is a vertex closest to πvu.
π = (πuv, πvu) is a balanced profile. If u ∈ π, then L(π) = I(u, y) such that y is
a cut-vertex that separates πuv and πvu closest to πvu.
π = (πuv, πvu) is a balanced profile. If v ∈ π, then L(π) = I(x, v) such that x is
a cut-vertex that separates πuv and πvu closest to πuv.
π = (πuv, πvu) is a balanced profile. If u, v ∈ π, then L(π) = I(u, v).

Axiom (IU): Inconclusiveness of an unbalanced profile If π is an unbal-
anced profile, then

L(π) =
n⋃

i=1

L(π − xi), if
n⋂

i=1

L(π − xi) = ∅

Axiom (CU): Conclusiveness of an unbalanced profile If π is an unbal-
anced profile, then

L(π) =
n⋂

i=1

L(π − xi), if
n⋂

i=1

L(π − xi) �= ∅

Remark 4. It is straightforward to observe that Axiom (BB) implies the
betweenness axiom (B) as the profile π = (x, y) is a balanced profile with respect
to any edge uv on the shortest x, y-path in G. Another observation is that a com-
plete or a partially complete profile π is an unbalanced profile which satisfies
axiom (IU), if |Pl(π)| = 1 and satisfies axiom (CU), otherwise.

Axiomatic Characterization of the Median Function of a Block Graph 305

Now we are in position to utilize the previous Lemmata to prove the main result:
that is, a characterization for the median function of a block graph.

Theorem 3. Let L be a consensus function on a block graph G. Then L is
precisely the median function Med of G if and only if L satisfies (A), (C), (BB),
(IU) and (CU).

Proof. If L = Med. The median function Med obviously satisfies (A) and (C).
By Theorem 2, the median function Med satisfies axiom (BB). By Lemma 3, the
function Med satisfies axiom (IU) and by Lemma 2, the function Med satisfies
axiom (CU). Therefore the function L satisfies all the axioms (BB), (IU) and
(CU). So we only have to prove the converse part.

Conversely, suppose that L is a consensus function on a block graph G sat-
isfying the five axioms (A),(C),(BB), (IU) and (CU). We have to show that
for every profile π, the consensus function L(π) returns the median set Med(π)
and hence L is the median function Med. We use induction on the length of the
profile to prove the converse. Let π be an arbitrary profile of length k, we split
the profile into different cases.

Case 1: π is a balanced profile.
Let π = (πuv, πvu), where |πuv| = |πvu| = 1. Let π = (x, y), x �= y. Since L
satisfies (BB) and hence axiom (B), we have L(x, y) = I(x, y). Also we know that
Med satisfies (B) and thus Med(x, y) = I(x, y). Therefore L(x, y) = Med(x, y).
Thus the theorem is true for |πuv| = |πvu| = 1.

Now let π = (πuv, πvu) be an arbitrary profile so that |πuv| = |πvu| ≥ 2. Let
π′

uv = (πuv − xi) and π′
vu = (πvu − xj). Clearly, |π′

uv| < |πuv| and |π′
vu| < |πvu|.

Also |π′
vu| = |π′

vu|. Let π′ = (π′
uv, π′

vu), then by the induction hypothesis L(π′) =
Med(π′) = I(x′, y′), where x′ and y′ are vertices defined by the following cases.

Subcase 1.1: If u, v /∈ π′ and so u, v /∈ π. Then by Remark 2, x′ is a vertex
separating π′

uv and π′
vu and closer to π′

uv and y′ is a vertex separating π′
uv and

π′
vu and closer to π′

vu.

Subcase 1.2: Either u ∈ π′ or v ∈ π′. If u ∈ π′, then by Remark 2, Med(π′) =
I(x′, y′) such that x′ = u and y′ is a vertex that separates π′

uv and π′
vu closest

to π′
vu. If v ∈ π′, then Med(π′) = I(x′, y′) such that x′ is a vertex that separates

π′
uv and π′

vu closest to π′
uv and y′ = v.

Subcase 1.3: u, v ∈ π′. Then by Remark 2, Med(π′) = I(x′, y′), where x′ = u
and y′ = v.
We have different possibilities for x′ and y′ and we use axiom (A) in several
places for rearranging the profile vertices.
If xi = x and xj = y ⇒ x′ = x′

i and y′ = x′
j ⇒ Med(x′

i, x
′
j) = I(x′

i, x
′
j).

If xi �= x and xj = y ⇒ x′ = x and y′ = x′
j ⇒ Med(x, x′

j) = I(x, x′
j).

If xi = x and xj �= y ⇒ x′ = x′
i and y′ = y ⇒ Med(x′

i, y) = I(x′
i, y).

If xi �= x and xj �= y ⇒ x′ = x and y′ = y ⇒ Med(x, y) = I(x, y).
Clearly, in each of these cases Med(π′) contain the vertices in I(x, y).
Let π = (π′, ρ′) where π′ = (π′

uv, π′
vu) and ρ′ = (xi, xj). By betweenness axiom

(B), we have L(xi, xj) = I(x′
i, x

′
j). Thus by consistency (C) and induction

306 M. Changat et al.

hypothesis, we get L(π) = L(π′ρ′)= L(π′) ∩ L(ρ′) = Med(π′) ∩ L(xi, xj) �= φ.
since Med satisfies consistency, we have Med(π′, ρ′) = Med(π). Thus,for a bal-
anced profile L(π) = Med(π).

Case 2: π = (πuv, πvu) with |πuv| > |πvu| is an unbalanced profile. Let π =
(x1, x2, . . . , xn)
By induction hypothesis, L(π − xi) = Med(π − xi).

Suppose that
n⋂

i=1

Med(π − xi) = ∅, then by axiom (IU), we have L(π) =

⋃n
i=1 L(π − xi) and by using Lemma 3, Med(π) =

n⋃

i=1

Med(π − xi). Thus,

L(π) = Med(π). Now suppose that
n⋂

i=1

Med(π − xi) �= ∅, then by axiom (CU),

L(π) =
n⋂

i=1

L(π − xi). By Lemma 2, Med(π) =
n⋂

i=1

Med(π − xi). Hence L(π) =

Med(π), in this case also. Thus for all unbalanced profiles π, L(π) = Med(π).
Since we have proved that L(π) = Med(π), for all profiles π, the proof is com-
plete. 	

4.1 Independence of the Axioms

To prove the independence of the axioms, we consider the following examples.

Example 2 (Consensus function L �= Med, satisfies (A), (BB) and (CU), but
not (IU) and (C)). Consider a simple block graph G consisting of two triangles
T1 and T2 joined by an edge xy, where T1 = (x1, x2, x) and T2 = (y1, y2, y). Let
π = (πuv, πvu) (for some edge uv in G) be any profile such that πuv ⊆ V (T1)

and πvu ⊆ V (T2). Define, L(π) =

⎧
⎪⎨

⎪⎩

Med(π) if πis a balanced profile,
{y} if |πvu| > |πuv|,
{x} if |πuv| > |πvu|.

L(π) doesn’t satisfy axiom (IU), for consider the profile π = (y1, y2, y). Here π is
an unbalanced profile with L(π) = {y}, L(π −y1) = {y, y2}, L(π −y2) = {y, y1},
L(π − y) = {y1, y2} and ∩

i
L(π − xi) = ∅, but ∪

i
L(π − xi) = {y1, y2, y} �= L(π).

Similarly L doesn’t satisfy (C), for consider the profiles π = (x1, y1) and ρ =
(y, y1). Here L(π) ∩ L(ρ) = {x1, x, y, y1} ∩ {y, y1} = {y, y1} �= L(πρ) = {y}.
(BB) holds for L, as L coincides with Med, for balanced profiles. To prove that
L satisfies (CU), consider an unbalanced profile π = (x1, x2, . . . , xn). Suppose
|πuv| > |πvu|, then n should be odd, and assume that |πuv| = |πvu −�|, � ≥ 1. We
prove the case when � = 1 as the case � > 1 is similar. Therefore, let n = 2k + 1
and w.l.o.g., we can consider the profile π as π = (x1, x2, . . . , xk, xk+1, y1, . . . , yk),
where {x1, x2, . . . , xk, xk+1} ⊆ V (T1) and {y1, . . . , yk} ⊆ V (T2). Let

n∩
i=1

L(π −
xi) �= ∅. This implies that

n∩
i=1

L(π − xi) = {xi}. By definition of L(π) = {x} and

thus (CU) holds for L.

Axiomatic Characterization of the Median Function of a Block Graph 307

Example 3 (Consensus function L �= Med, satisfies (A), (C), (CU) and (IU),
but not (BB)). Let G be a block graph with vertex set V . Define L(π) = V , for
all profiles π. It is trivial that L satisfies (A), (C), (IU). L satisfies (CU) trivially

as
k∩

i=1
Med(π −xi) �= ∅, for all profiles π. It is clear that L does not satisfy (BB).

Example 4 (Consensus function L �= Med, satisfies (A), (C), (BB) and (IU),
but not (CU) and (C)). Consider the graph G consisting of a complete graph
Kn together with a pendent edge xy attached to a vertex x in Kn. Clearly G is
a block graph. Define L as follows.

L(π) =

{
{π} for π with {π} ⊆ V (Kn)
Med(π) if y ∈ π.

L satisfies (A), (BB) and (IU). (BB) holds for L, since balanced profiles π with
{π} ⊆ V (Kn) are of the form (x�, y�), for some � ≥ 1 and L(π) = Med(π),
for profiles π containing vertex y. In both cases L satisfies (BB). (IU) holds

as the only unbalanced profiles π = (x1, . . . , xk) with
k∩

i=1
L(π − xi) = ∅ with

{π} ⊆ V (Kn), are those profiles with each xi ∈ π occurs only once. Then

L(π) = {x1, . . . , xk} =
k∪

i=1
L(π − xi). For unbalanced profiles π containing vertex

y, L(π) = Med(π) and so we can prove that L satisfies (IU), in this case. Clearly

L doesn’t satisfy (CU), as for the unbalanced profile π = (x1, x1, x2),
k∩

i=1
L(π −

xi) = {x1} �= L(π) = {π}. For profiles π = (x1, x1, x2) and ρ = (x1), �L(π) ∩
L(ρ) = {x1} �= L(πρ) = {x1, x2} and so L doesn’t satisfy (C) also.

We cannot construct examples of consensus functions L on a block graph
that satisfy the axioms (A), (BB) (CU) and (IU), but not (C); that satisfy
(A), (C), (BB), (CU), but not (IU); that satisfy (A), (C), (BB), (IU), but not
(CU); and (C), (BB), (CU), (IU), but not (A). It is already established that for
any consensus function, it is a hard problem to establish the independence of
the anonymity axiom (A), see [5]. From the construction of the examples for
independence of the axioms, we infer that for an arbitrary consensus function
on a block graph, the axioms (C), (CU) and (IU) may be related, and it may
be an interesting problem to check whether there exists such a relation.

References

1. Arrow, K.J.: Social Choice and Individual Values, vol. 12. Yale University Press,
London (2012)

2. Balakrishnan, K., Changat, M., Mulder, H.M.: The plurality strategy on graphs.
Australas. J. Comb. 46, 191–202 (2010)

3. Bandelt, H.J., Chepoi, V.: Graphs with connected medians. SIAM J. Discrete
Math. 15(2), 268–282 (2002)

4. Bandelt, H.J., Mulder, H.M., Wilkeit, E.: Quasi-median graphs and algebras. J.
Graph Theory 18(7), 681–703 (1994)

308 M. Changat et al.

5. Changat, M., Lekha, D.S., Mohandas, S., Mulder, H.M., Subhamathi, A.R.:
Axiomatic characterization of the median and antimedian function on a complete
graph minus a matching. Discrete Appl. Math. 228, 50–59 (2017)

6. Hagauer, J.: Skeletons, recognition algorithm and distance matrix of quasi-median
graphs. Int. J. Comput. Math. 55(3–4), 155–171 (1995)

7. Holzman, R.: An axiomatic approach to location on networks. Math. Oper. Res.
15(3), 553–563 (1990)

8. Kemeny, J.G., Snell, L.: Preference ranking: an axiomatic approach. Math. Models
Soc. Sci. 9–23 (1962)

9. Klavzar, S., Mulder, H.M.: Median graphs: characterizations, location theory and
related structures. J. Comb. Math. Comb. Comput. 30, 103–128 (1999)

10. McMorris, F., Neumann, D.: Consensus functions defined on trees. Math. Soc. Sci.
4(2), 131–136 (1983)

11. McMorris, F.R., Mulder, H.M., Ortega, O.: Axiomatic characterization of the mean
function on trees. Discrete Math. Algorithms Appl. 2(03), 313–329 (2010)

12. McMorris, F.R., Mulder, H.M., Ortega, O.: The �p-function on trees. Networks
60(2), 94–102 (2012)

13. McMorris, F.R., Mulder, H.M., Roberts, F.S.: The median procedure on median
graphs. Discrete Appl. Math. 84(1–3), 165–181 (1998)

14. McMorris, F.R., Mulder, H.M., Vohra, R.V.: Axiomatic characterization of location
functions. In: Advances in Interdisciplinary Applied Discrete Mathematics, pp. 71–
91. World Scientific (2011)

15. McMorris, F.R., Roberts, F.S., Wang, C.: The center function on trees. Netw.: Int.
J. 38(2), 84–87 (2001)

16. Mulder, H.M.: The majority strategy on graphs. Discrete Appl. Math. 80(1), 97–
105 (1997)

17. Mulder, H.M.: Median graphs.: a structure theory. In: Advances in Interdisciplinary
Applied Discrete Mathematics, pp. 93–125. World Scientific (2011)

18. Mulder, H.M., Novick, B.: An axiomatization of the median procedure on the n-
cube. Discrete Appl. Math. 159(9), 939–944 (2011)

19. Mulder, H.M., Novick, B.: A tight axiomatization of the median procedure on
median graphs. Discrete Appl. Math. 161(6), 838–846 (2013)

20. Mulder, H.M., Pelsmajer, M.J., Reid, K.: Axiomization of the center function on
trees. Australas. J. Comb. 41, 223–226 (2008)

21. Mulder, H.: The interval function of a graph, math. Centre Tracts 132 (1980)
22. Vohra, R.: An axiomatic characterization of some locations in trees. Eur. J. Oper.

Res. 90(1), 78–84 (1996)

On Coupon Coloring of Cartesian
Product of Some Graphs

P. Francis(B) and Deepak Rajendraprasad

Department of Computer Science, Indian Institute of Technology,
Palakkad 678557, India

{pfrancis,deepak}@iitpkd.ac.in

Abstract. Let G be a graph with no isolated vertices. A k-coupon color-
ing of G is an assignment of k colors to the vertices of G such that every
vertex contains vertices of all k colors in its neighborhood. The coupon
chromatic number of G, denoted χc(G), is the maximum k for which a
k-coupon coloring exists. In this paper, we present an upper bound for
the coupon chromatic number of Cartesian product of graphs G and H in
terms of |V (G)| and |V (H)|. Further, we prove that if G and H are bipar-
tite graphs then G�H has a coupon coloring with 2 min{χc(G), χc(H)}
colors. As consequences, for any positive integer n, we obtain the coupon
chromatic number and total domination number of n-dimensional torus
n

�
i=1

Cki with some suitable conditions to each ki, which turns out to be a

generalization of the result due to S. Gravier [Total domination number
of grid graphs, Discrete Appl. Math. 121 (2002) 119–128]. Finally, for
any r ≥ 0, d ≥ 2, we obtain the coupon coloring for the Hamming graph
Kd�Kd� · · · �Kd (2r times).

Keywords: Product graphs · Coupon chromatic number · Total
domination number · Torus

2000 AMS Subject Classification: 05C15, 05C63

1 Introduction

All graphs considered in this paper are simple and undirected without an isolated
vertex. Let Cn and Kn respectively denote the cycle and the complete graph on
n vertices. Let δ(G) denote the minimum degree of the graph G. For any two
vertices x, y ∈ V (G), let d(x, y) be the length of a shortest path between x and
y. The neighborhood N(x) of a vertex x is {u : ux ∈ E(G)} and for S ⊆ V (G),
we denote the neighborhood S by N(S) is ∪v∈SN(v). Let Zn be the set of all
integers modulo n.

The Cartesian product of two graphs G and H, denoted G�H, is a graph
whose vertex set is V (G) × V (H) = {(x, y) : x ∈ V (G) andy ∈ V (H)} and two
vertices (x1, y1) and (x2, y2) of G�H are adjacent if and only if either x1 = x2

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 309–316, 2021.
https://doi.org/10.1007/978-3-030-67899-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_25&domain=pdf
http://orcid.org/0000-0003-2391-4625
http://orcid.org/0000-0001-9101-8967
https://doi.org/10.1007/978-3-030-67899-9_25

310 P. Francis and D. Rajendraprasad

and y1y2 ∈ E(H) or y1 = y2 and x1x2 ∈ E(G). For each vertex u ∈ V (G),
〈{u} × V (H)〉 is isomorphic to H and it is denoted by Hu and for each vertex
v ∈ V (H), 〈V (G) × {v}〉 is isomorphic to G and it is denoted by Gv. For d ≥ 2,

let
d
�
i=1

Gi denotes G1�G2� · · · �Gd. For ri ≥ 2, we call
d
�
i=1

Cri a d-dimensional

torus graph.
The Hamming Graph, denoted Hn,q, has the vertex set (x1, x2, . . . , xn), for

1 ≤ i ≤ n, xi ∈ {0, 1, . . . , q − 1} and two q-ary n-tuples are adjacent if and only
if they differ in exactly one coordinate. The special case Hn,2 is a hypercube of
dimension n, denoted as Qn.

Let D ⊂ V (G), if N(D) ⊇ V (G)\D then D is a dominating set for V (G) and
if N(D) = V (G) then D is a total dominating set for V (G). The domination
(total domination) number of a graph G is the smallest cardinality among all the
dominating (total dominating) sets and is denoted γ(G) (γt(G)). The domatic
(total domatic) number of G is the maximum number of classes of a partition of
V (G) such that each class is a dominating (total dominating) set and is denoted
d(G) (dt(G)). The concept of total domatic number was introduced by Cockayne
et al. in [5] and investigated further in [2,14,15]. There has been a lot of papers
on total domination in graphs. See for instance, [3,7,11,13] and a survey of
selected topics by Henning in [10].

A new vertex coloring, namely coupon coloring, was introduced by Chen
et al. in [4] which relates the coloring and domination parameters. The concepts
of coupon chromatic number and total domatic number are the same. Note that
in any coupon coloring of G, each color class must be a total dominating set of
G. The motivation for the study of coupon coloring and its applications were
mentioned by Chen et al. in [4]. This concept was further studied in [1,6,12].

It is clear from the definition of coupon coloring, 1 ≤ χc(G) ≤ δ(G), for any
graph G without an isolated vertex. In this paper, we characterize some families
of graph which attain the upper bound. In this direction, first we present an
upper bound for the coupon chromatic number of G�H in terms of |V (G)| and
|V (H)|. Further, we prove that if G and H are bipartite graphs then G�H has a
coupon coloring with 2min{χc(G), χc(H)} colors. As consequences, when n is a
power of 2, we obtain the coupon chromatic number of n-dimensional hypercube
Qn is n and torus

n

�
i=1

Cri is 2n such that each ri ≡ 0(mod 4). Also, for any

positive integer d, we obtain the coupon chromatic number of d-dimensional

torus
d

�
i=1

Cki
is 2d, with some suitable conditions to each ki’s as according to

d is odd or even. In addition, we obtain the total domination number of d-

dimensional torus as mentioned above to be (
d∏

i=1

ki)/2d, which turns out to be a

generalization of the result due to S. Gravier in [7]. Finally, for any r ≥ 0, k ≥ 1,
we obtain the coupon coloring for the Hamming graph H2r,k.

On Coupon Coloring of Cartesian Product of Some Graphs 311

2 Coupon Coloring of Cartesian Product of Graphs

Let us start this section by considering some observations on the existence of an
r-coupon coloring of an r-regular graphs.

Proposition 1. Let G be an r-regular graph, r ≥ 1, and there exists an r-coupon
coloring for G, say f : V (G) → [r] = {1, 2, . . . , r}. Then
(i) Each color class of f has the same size |V (G)|

r [15].
(ii) r divides |V (G)| and r2 divides |E(G)|.
(iii) Each color class of f has an even number of vertices and G contains a
perfect matching.
(iv) Each color class of f is a minimal total dominating set.

Now, let us consider the relation between the domatic number of a graph G
and coupon chromatic number of its Cartesian product with some graph H.

Proposition 2. Let G and H be any two graphs without an isolated vertex, if
G has a domatic number r, then χc(G�H) ≥ r.

Next, we present an upper bound for the coupon chromatic number of Cartesian
product of graphs.

Theorem 1. For any two graphs G and H with no isolated vertices, we have
2 ≤ χc(G�H) ≤ max{|V (G)|, |V (H)|}.

Proof. Let G and H be any graphs without an isolated vertex of order m and n
respectively. Without loss of generality, let n ≥ m. Let us consider the coloring
of G�H as filling the cells of m × n grid with colors. For a cell (i, j), 1 ≤ i ≤ m,
1 ≤ j ≤ n, call the set of cells in the ith row and jth column except the cell
itself as a cross-hair at (i, j). There are mn cross-hairs, one corresponding to
each cell of the grid. Each cross-hair has m + n − 2 cells. Suppose the coloring
is a k-coupon coloring, then each cross-hair contains every other colors at least
once.

Claim. In any coupon coloring of G�H, each color should appear in at least m
cells.

Suppose a color c1 appears less than m times, then there exists a row i in
the grid which does not contain c1. Similarly, there is a column j which does
not contain c1 in the grid. In this case, the cross-hair at (i, j) does not contain
c1, and hence the coloring is not a coupon coloring. Thus the claim holds. Since
each color should appears in at least m cells and there are mn cells in the
grid, the maximum possible value of k in any coupon k-coloring is n. Thus
χc(G�H) ≤ n = max{|V (G)|, |V (H)|}.

It is easy to get the lower bound for χc(G�H).

The lower bound given in Theorem1 is tight for graphs with minimum degree
1 and the tightness of an upper bound which is follow from Corollary 1.

312 P. Francis and D. Rajendraprasad

Corollary 1. Let m,n be any two integers greater than 1 such that m ≤ n and
let G be any graph of order m with no isolated vertices, we have χc(G�Kn) = n.
In particular, χc(Km�Kn) = n.

An upper bound given in Theorem1 is not tight for cycles of length larger
than the size of the complete graphs.

Proposition 3. Let m,n be any two integers at least 3, we have χc(Cm�Kn) =
n.

By Proposition 2 and the domatic number of C3k is 3, we obtain Corollary 2.

Corollary 2. For any positive integer k, if G be any graph with minimum degree
1, then χc(G�C3k) = 3.

3 Coupon Coloring of Bipartite Graphs

In this section, we examine the families of bipartite graphs G and H such that the
coupon chromatic number of G�H attains its maximum possible value, namely,
δ(G�H). Let us start considering a lower bound for the coupon chromatic num-
ber of Cartesian product of any two bipartite graphs in terms of its coupon
chromatic numbers. The bound given in Theorem2 has been applied multiple
times in this paper.

Theorem 2. If G and H are bipartite graphs without isolated vertex, then
χc(G�H) ≥ 2min{χc(G), χc(H)}.

Proof. Let G and H be the bipartite graphs of order m and n respectively, and let
[X,Y] and [X ′, Y ′] be their bipartition. Let u0, u1, . . . , um−1 and v0, v1, . . . , vn−1

be the vertices of G and H. Note that, any graph G′ is l-coupon colorable for
all l such that 1 ≤ l ≤ χc(G′). Let g and h be the k-coupon coloring of G and
H, where k = min{χc(G), χc(H)} and let the k colors be {0, . . . , k − 1}. Now
consider the coloring f for the graph G�H. For 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1,

f((ui, vj)) =
{

(2g(ui) + 2h(vj))(mod 2k) if ui ∈ X
(2g(ui) + 2h(vj) + 1)(mod 2k) if ui ∈ Y.

By the coloring f , for any vertex ui ∈ X and vj ∈ V (H), the vertex (ui, vj)
receives the colors from the neighbors of vj in Hui

are {[2g(ui) + 2s](mod 2k) :
s ∈ {0, 1, . . . , k−1}} = {0, 2, . . . , 2k−2} and (ui, vj) receives the colors from the
neighbors of ui in Gvj

are {[2t + 2h(vj) + 1](mod 2k) : t ∈ {0, 1, . . . , k − 1}} =
{1, 3, . . . , 2k − 1}. Similarly, for any vertex ui ∈ Y and vj ∈ V (H), the vertex
(ui, vj) receives the colors {1, 3, . . . , 2k − 1} from the neighbors of vj in Hui

and
the colors {0, 2, . . . , 2k − 2} from the neighbors of ui in Gvj

. Thus, each vertex
(ui, vj) in G�H receives all the colors {0, 1, . . . , 2k −1} in its neighbors and f is
a coupon coloring using 2k colors. Hence χc(G�H) ≥ 2min{χc(G), χc(H)}. If
at least one of the graphs G, H is disconnected, then apply the same technique
to each component of G�H separately.

On Coupon Coloring of Cartesian Product of Some Graphs 313

The bound given in Theorem 2 is tight, which follows by taking G ∼= K2

and H ∼= C4n. Also, these graphs G and H violates the bound χc(G�H) ≥
2max{χc(G), χc(H)}. One of the simplest examples such that the strict inequal-
ity holds in Theorem2 is G ∼= H ∼= C6, by Proposition 2, we have χc(C6�C6) ≥ 3
but χc(C6) = 1. Theorem 2 is not true for all graphs in general. For G ∼= H ∼=
K2�K3, we have χc(G) = 3 and χc(G�H) < 6 = 2min{χc(G), χc(H)}.

As a consequences of Theorem 2 and (iii) of Proposition 1, we obtain the
following Corollaries. Also, the result proved for 2r-dimensional hypercube in

[4,9] follows from the fact that
2r

�
i=1

K2
∼= Q2r .

Corollary 3. For any two positive integers d, r, if Gi is a bipartite graph such

that χc(Gi) = δ(Gi) = d, 1 ≤ i ≤ 2r, then χc(
2r

�
i=1

Gi) = 2rd.

Corollary 4. Let r be any positive integer and Gi be any graph with no isolated

vertices, for 1 ≤ i ≤ 2r, we have χc(
2r

�
i=1

Gi) ≥ 2r. If each Gi contains a leaf,

then χc(
2r

�
i=1

Gi) = 2r. In particular, if Ti is a tree, then χc(
2r

�
i=1

Ti) = 2r and

χc(Q2r) = 2r.

Corollary 5. If n is a positive integer not a power of 2, then χc(Qn) < n. Also,
for any positive integer r, we have χc(Q2r+1) = 2r.

Corollary 6. Let r, k1, . . . , k2r be any positive integers such that ki ≡ 0(mod 4),

1 ≤ i ≤ 2r, we have χc(
2r

�
i=1

Cki
) = 2r+1.

From Corollary 6, we find the coupon chromatic number of torus graph of dimen-
sion 2r for every r ≥ 1 such that the length of the each cycle is congruent to
0(mod 4). In the remaining part of this section, we try to generalize this result
to a larger collection of tori. Suppose we consider d-dimensional torus graph for
any d ≥ 2. In [7], Gravier independently obtained the total domination number
for some torus by using the concept of tiling.

Theorem 3. [7] Let d, k1, k2, . . . , kd be any positive integers such that d ≥ 2

and ki ≡ 0(mod 4d), for 1 ≤ i ≤ d, we have γt(
d

�
i=1

Cki
) = (

d∏

i=1

ki)/2d. Moreover,

if d is even and for any positive integer ki, 1 ≤ i ≤ d such that ki ≡ 0(mod 2d),
then this equality still holds.

We use the same proof technique as mentioned by Gravier et al., in [8] and we
obtain coupon chromatic number and total domination number for some torus.
Let us first consider the odd dimensional torus.

Theorem 4. Let d, k1, k2, . . . , kd be any positive integers. If d is odd, at least two
ki’s are congruent to 0(mod 4d) and remaining ki’s are congruent to 0(mod 4),

then χc(
d

�
i=1

Cki
) = 2d.

314 P. Francis and D. Rajendraprasad

Proof. Let d, k1, k2, . . . , kd be any positive integers and let G ∼=
d

�
i=1

Cki
. Since

δ(G) = 2d, it is enough to give 2d coupon coloring for G. For 1 ≤ i ≤ d
and d is odd, by assumption there are at least two of ki’s are congruent to

0(mod 4d) and the remaining ki’s are congruent to 0(mod 4). The graph
d

�
i=1

Cki

is transitive, without loss of generality, let us take the two of ki’s which are
congruent to 0(mod 4d) be kd−1 and kd. Let us consider the vertices of G be
{(x1, x2, . . . , xd) : xi ∈ {0, 1, . . . , ki − 1}, 1 ≤ i ≤ d}. Now, let us consider the
subset F of V (G) formed by the vertices of the type

x =

(

x1, . . . , xd−2, (2a + ε)(mod kd−1), (2a + ε + 2db +
d−2∑

i=1

(2i + 1)xi)(mod kd)

)

where xi ∈ {0, 1, . . . , ki − 1} for 1 ≤ i ≤ d − 2, a ∈ Z kd−1
2

b ∈ Z kd
2d

and

ε =

{
0 if

∑d−2
i=1 xi ≡ 0 or 1 (mod 4)

1 if
∑d−2

i=1 xi ≡ 2 or 3 (mod 4).

Let us consider a bicoloring (black and white) of V (G). A vertex is black if and
only if

∑d
i=1 xi is even. Let B and W be the set of black and white vertices of

V (G) respectively. Since the sum of the co-ordinates of x equal to 2(2a + ε +
db +

∑d−2
i=1 (i + 1)xi), every vertex x ∈ F is black. In G, black and white vertices

are equal in number which equals to (
d∏

i=1

ki)/2.

Claim. N(F) = W
Let T be the d-dimensional torus which is isomorphic to C4� · · · �C4�C4d�C4d.
Note that the set F is periodic on the torus T . Since N(F) ⊆ W, we can prove the

claim by showing that |N(F)| = |W| = (
d∏

i=1

ki)/2. It is easy to check that |F ∩

V (T)| = (4d−2)(4d2)(4d2d) and |F| =
(
(4d−2)(4d2)(4d2d)

)
(

(
d−2∏

i=1

ki

4)(kd−1
4d)(kd

4d)
)

=
(
(
∏d−2

i=1 ki)(
kd−1
2)(kd

2d)
)

=
(

d∏

i=1

ki

)

/4d = |W|
2d . Also, for any vertex u ∈ V (G),

we have |N(u)| = 2d. For any two distinct vertices x, y ∈ F , it is enough to
show that N(x) ∩ N(y) = ∅, that is d(x, y) > 2. Let x = (x1, x2, . . . , xd) and
y = (y1, y2, . . . , yd) be any two distinct vertices in F , and let r be the distance
between (x1, x2, . . . , xd−2) and (y1, y2, . . . , yd−2), that is r =

∑d−2
i=1 |xi − yi|. If

r > 2 then the claim holds, so let us assume that r ≤ 2.
The proof of claim is similar to the proof given by Gravier et al., in [8] and

we have N(F) = W. Now, let us consider the set

F ′ = {x + (0, . . . , 0, 1, 0) : for all x ∈ F}.
Clearly, every vertex y ∈ F ′ is white. Similarly, we can prove that N(F ′) = B.
Also, N(F ∪ F ′) = W ∪ B = V (G) and thus F ∪ F ′ is a total dominating set
for V (G).

On Coupon Coloring of Cartesian Product of Some Graphs 315

For 0 ≤ i ≤ 2d − 1, let Pi = {y + (0, . . . , 0, 0, i) : for all y ∈ (F ∪ F ′)}.
For i �= j, Pi and Pj are disjoint and each Pi is a total dominating set which
partition V (G). Let g be the coloring such that g(x) = i, for all x ∈ Pi. Clearly,

g is a coupon coloring for G and thus χc(
d
�
i=1

Cki
) = 2d.

Next, let us obtain the coupon chromatic number for an even dimensional
torus by the proof techniques similar to the previous theorem.

Theorem 5. Let d, k1, k2, . . . , kd be any positive integers. If d is even, at least
two ki’s are congruent to 0(mod 2d) and remaining ki’s are congruent to

0(mod 4), then χc(
d

�
i=1

Cki
) = 2d.

As a consequence of Theorem 5, we obtain the coupon chromatic number of
generalized even dimensional torus in Corollary 7.

Corollary 7. Let d, d1, k, p, q, k1, k2, . . . , kd be any positive integers such that
d = 2pk, d1 = 2qk and 2 � k, 1 ≤ q ≤ p. If at least 2p−q+1 number of ki’s are
congruent to 0(mod 2d1) and remaining ki’s are congruent to 0(mod 4), then

χc(
d

�
i=1

Cki
) = 2d.

Corollary 8 is an immediate consequence of Theorem 4, Corollary 7 and (iv)
of Proposition 1 which turns to be a generalization of the result due to S. Gravier
in [7].

Corollary 8. Let d, d1, k, p, q, k1, k2, . . . , kd be any positive integers. If d is odd
and at least two ki’s are congruent to 0(mod 4d) and remaining ki’s are congru-

ent to 0(mod 4), then γt(
d

�
i=1

Cki
) = (

d∏

i=1

ki)/2d. Let d = 2pk, d1 = 2qk and 2 � k,

for 1 ≤ q ≤ p. If at least 2p−q+1 number of ki’s are congruent to 0(mod 2d1)

and remaining ki’s are congruent to 0(mod 4), then γt(
d
�
i=1

Cki
) = (

d∏

i=1

ki)/2d.

Note that, the family of torus given in Corollary 8 contains the family of a
torus as mentioned in Theorem 3. For example, the integer 24 can be expressed

as 20 × 24, 21 × 12, 22 × 6 and 23 × 3. Corollary 8 finds γt for the graphs
24

�
i=1

Cpi

where at least two pi ≡ 0(mod 48),
24

�
i=1

Cqi where at least four qi ≡ 0(mod 24)

and
24
�
i=1

Cri where at least eight ri ≡ 0(mod 12) and the remaining pi, qi, ri are

congruent to 0(mod 4) but Theorem3 only finds γt for the graph
24

�
i=1

Csi , where

each si ≡ 0(mod 48).
Finally, we obtain the coupon coloring for the Hamming graph H2k,r.

Theorem 6. For all k ≥ 0 and r ≥ 1, we have χc(H2k,r) ≥ 2k� r
2�.

316 P. Francis and D. Rajendraprasad

The proof is obtained by repeated application of Theorem2 to the complete
bipartite subgraph K� r

2 �,� r
2 � of Kr.

Note that an equality holds for the graph H1,k, H2,2k, and the problem
remains open for H2r,k, r ≥ 2 except H2r,2.

Acknowledgment. For the first author, this research was supported by Post Doctoral
Fellowship, Indian Institute of Technology, Palakkad.

References

1. Akbari, S., Motiei, M., Mozaffari, S., Yazdanbod, S.: Cubics graphs with total
domatic number at least two. Discussiones Math. Graph Theory 38, 75–82 (2018)

2. Aram, H., Sheikholeslami, S., Volkmann, L.: On the total domatic number of reg-
ular graphs. Trans. Comb. 1(1), 45–51 (2012)

3. Brešar, B., Hartinger, T.R., Kos, T., Milanič, M.: On total domination in the Carte-
sian products of graphs. Discussiones Math. Graph Theory 38, 963–976 (2018)

4. Chen, B., Kim, J.H., Tait, M., Verstraete, J.: On coupon coloring of graphs. Dis-
crete Appl. Math 193, 94–101 (2015)

5. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Net-
works 10, 211–219 (1980)

6. Goddard, W., Henning, M.A.: Thoroughly dispersed colorings. J. Graph Theory
88, 174–191 (2018)

7. Gravier, S.: Total domination number of grid graphs. Discrete Appl. Math. 121,
119–128 (2002)

8. Gravier, S., Mollard, M., Payan, C.: Variations on tilings in the Manhattan metric.
Geom. Dedicata. 76, 265–273 (1999)

9. Hahn, G., Kratochv́ıl, J., Širáň, J., Sotteau, D.: On the injective chromatic number
of graphs. Discrete Math. 256, 179–192 (2002)

10. Henning, M.A.: A survey of selected recent results on total domination in graphs.
Discrete Math. 309, 32–63 (2009)

11. Henning, M.A., Rall, D.F.: On the total domination number of Cartesian products
of graph. Graphs Comb. 21, 63–69 (2005)

12. Nagy, Z.L.: Coupon-coloring and total domination in Hamiltonian planar triangu-
lations. Graphs Comb. 34, 1385–1394 (2018)

13. Klavžar, S., Seifter, N.: Dominating Cartesian products of cycles. Discrete Appl.
Math. 59, 129–136 (1995)

14. Zelinka, B.: Total domatic number and degrees of vertices of a graph. Math. Slovaca
39, 7–11 (1989)

15. Zelinka, B.: Regular totally domatically full graphs. Discrete Math. 86, 71–79
(1990)

On the Connectivity and the Diameter
of Betweenness-Uniform Graphs

David Hartman1,2 , Aneta Pokorná1(B) , and Pavel Valtr3

1 Computer Science Institute of Charles University, Faculty of Mathematics
and Physics, Charles University, 118 00 Prague, Czech Republic

pokorna@iuuk.mff.cuni.cz
2 The Institute of Computer Science of the Czech Academy of Sciences,

Prague, Czech Republic
3 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, 118 00 Prague, Czech Republic
https://iuuk.mff.cuni.cz

https://kam.mff.cuni.cz

Abstract. Betweenness centrality is a centrality measure based on the
overall amount of shortest paths passing through a given vertex. A graph
is betweenness-uniform if all its vertices have the same betweenness cen-
trality. We study the properties of betweenness-uniform graphs. In partic-
ular, we show that every connected betweenness-uniform graph is either
a cycle or a 3-connected graph. Also, we show that betweenness uniform
graphs of high maximal degree have small diameter.

Keywords: Betweenness centrality · Betweenness-uniform ·
Connectivity · Distance

1 Introduction and Definitions

There are many complex networks that play a key role in our society. Well-known
examples include the Internet, systems of roads or railroads, electricity networks
or social networks. In such networks, it is often the case that information, people
or goods travel between different parts of the network, usually using shortest
paths between points. From this point of view, points with high throughput
are the most important, valuable and often also the most vulnerable parts of the
network. Evaluating importance of nodes via their ability to provide information
transfer might help in various application areas such as the human brain [10] or in
construction of utilized algorithms such as community detection algorithms [8].

A network can be viewed as a graph G with vertex set V (G) of size n and
edge set E(G) that has maximal degree Δ(G) and minimal degree δ(G). A graph
G has vertex connectivity κ(G), if |V (G)| > κ(G) and remains connected after
the removal of less than κ(G) vertices. We say that a graph is k-connected, if
it has vertex connectivity k. For a fixed vertex x, N(x) stands for the set of all
vertices adjacent to x. For two vertices x, y, the length of the shortest xy-path is
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 317–330, 2021.
https://doi.org/10.1007/978-3-030-67899-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_26&domain=pdf
http://orcid.org/0000-0003-3566-8214
http://orcid.org/0000-0002-7104-8664
http://orcid.org/0000-0002-3102-4166
https://doi.org/10.1007/978-3-030-67899-9_26

318 D. Hartman et al.

their distance d(x, y). Diameter d(G) of a graph G is then maxx,y∈V (G) d(x, y).
We denote the set {1, . . . , k} by [k].

A network centrality measure is a tool helping us to assess how important
are nodes in the network. For a connected graph, the betweenness centrality is
the following centrality measure evaluating the importance of a vertex x based
on the amount of shortest paths going through it:

B(x) :=
∑

{u,v}∈(V (G)\{x}
2)

σu,v(x)
σu,v

,

where σu,v denotes the number of shortest paths between u and v and σu,v(x)
denotes the number of shortest paths between u and v passing through x [6].

Note that we count over each (unordered) pair {u, v} only once. It would be
possible to count each pair both as uv and as vu. In such case we would obtain
the betweenness value that is two times larger than in the unordered version.
Similarly, we can define the betweenness centrality for an edge e in a connected
graph:

B(e) :=
∑

{u,v}∈(V (G)
2)

σu,v(e)
σu,v

where σu,v(e) is the number of shortest paths between u and v passing through
edge e. Note that B(e) ≥ 1 for every e ∈ E(G), as the edge always forms the
shortest path between its endpoints.

There is a close relationship between betweenness centrality of edges and
vertices. By summing up the edge betweenness of all edges incident with a vertex
x we obtain the adjusted betweenness centrality Ba(x) of this vertex. Relation
between normal and adjusted betweenness of a vertex is as follows

B(x) =
Ba(x) − n + 1

2
(1)

as has been shown by Caporossi, Paiva, Vukicevic and Segatto [3].
Betweenness centrality is frequently used in applications, even to identify

influential patients in the transmission of infection of SARS-CoV-2 [16]. It is
often studied from the algorithmic point of view [4,13]. Betweenness centrality
and its variants are also studied from the graph-theoretical perspective [1,2,9,
12,15,19]. In this paper we focus on graphs having the same betweenness on all
vertices.

A betweenness-uniform graph is a graph, in which all vertices have the same
value of betweenness centrality. Thus, betweenness-uniform graphs are graphs
with all vertices being equally important in terms of the (weighted) number of
shortest paths on which they are lying. Networks having this property (or being
close to it), are more robust and resistant to attacks, which causes betweenness-
uniformity to be a promising feature for infrastructural applications. Moreover,
betweenness-uniform graphs are also interesting from theoretical point of view.
When studying the distribution of betweenness in a graph, betweenness-uniform

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 319

graphs are one of the two possible extremal cases and have been already studied
by Gago, Hurajová-Coroničová and Madaras [7,11]. The other extremal case are
graphs where each vertex has a unique value of betweenness, which were studied
by Florez, Narayan, Lopez, Wickus and Worrell [14].

The class of betweenness-uniform graphs includes all vertex-transitive graphs,
which are graphs with the property that for every pair of vertices there exists
an automorphism, which maps one onto the other. It is easy to see that vertex-
transitive graphs are betweenness-uniform. Similarly, edge-transitive graphs are
graphs with the property that for each pair of edges there exists an automor-
phism of the graph mapping one edge onto the other. Pokorná [18] showed that
edge-transitive graphs are betweenness-uniform if and only if they are regular.
There are also betweenness-uniform graphs which are neither vertex- nor edge-
transitive. A construction of Gago, Hurajová-Corončová and Madaras [7] shows
that, for n large enough, there are superpolynomially many of these graphs of
order n. Also, all distance-regular graphs are betweenness-uniform [7]. Apart
from the above mentioned results, not much is known about characterisation of
betweenness-uniform graphs.

In this paper we prove two conjectures stated by Hurajová-Coroničová and
Madaras [11]. The first one is about the connectivity of betweenness-uniform
graphs. Having a connected betweenness-uniform graph, it is not too hard to
show that there cannot be any vertex cut of size one. Consider connected com-
ponents C0, . . . , Cp created by removing this cut vertex v. When we consider a
vertex a ∈ Ci for some i ∈ {0, 1, . . . , p}, only pairs of vertices from V (Ci) \ {a}
contribute to the betweenness of this vertex. On the other hand, all pairs of
vertices {a, b} such that a ∈ Ci and b ∈ Cj for i �= j contribute to betweenness
of the vertex v. Using these two observations, along with some general bounds,
we get the following property.

Theorem 1 (Gago, Hurajová-Coroničová and Madaras, 2013 [7]). Any
connected betweenness-uniform graph is 2-connected.

As we have mentioned above, vertex-transitive graphs are betweenness-uniform.
Thus, all cycles are betweenness-uniform. In this paper we show that cycles are
the only betweenness-uniform graphs which are not 3-connected, as has been
conjectured by Hurajová-Coroničová and Madaras [11].

Theorem 2. If G is a connected betweenness-uniform graph then it is a cycle
or a 3-connected graph.

A variant of this theorem has already been proved for vertex-transitive graphs
and for regular edge-transitive graphs [18]. Note that there exists a betweenness-
uniform graph, which is 3-connected and is not vertex-transitive, see Fig. 1.
This implies that we cannot generalize this result to claim that all betweenness-
uniform graphs are either vertex-transitive or 4-connected.

320 D. Hartman et al.

Fig. 1. Example of a 3-connected betweenness-uniform graph, which is not vertex
transitive.

The second conjecture of Hurajová-Coroničová and Madaras [11] proven in
the following theorem gives a relation between the maximum degree and the
diameter of a betweenness-uniform graph.

Theorem 3. If G is betweenness-uniform graph and Δ(G) = n−k, then d(G) ≤
k.

In fact, the bound in Theorem 3 can be still significantly improved to d(G) ≤⌊
k+5
2

⌋
; see Corollary 12 from Sect. 3.

2 Proof of Theorem 2

Before we start with the proof, we introduce some definitions and notation.
Betweenness centrality of a vertex u ∈ V (G) induced by a subset of vertices
∅ �= S ⊆ V (G) of a graph G is defined as

BS(u) :=
∑

{x,y}∈(S\{u}
2)

σx,y(u)
σx,y

Average betweenness of ∅ �= U ⊆ V (G) in G is

B̄(U) :=
∑

u∈U B(u)
|U | .

Average betweenness of U induced by ∅ �= S ⊆ V (G) is defined analogically as

B̄S(U) :=
∑

u∈U BS(u)
|U | .

There is a relationship between average distance in a graph and the average
betweenness of it’s vertices.

Lemma 4 (Comellas, Gago, 2007 [5]). For a graph G of order n,

B̄(V (G)) =
(n − 1)

2
·
(∑

(u,v)∈V (G)2 d(u, v)

n(n − 1)
− 1

)

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 321

Let G be a 2-connected graph, which is not 3-connected. We are going to
show that it is not betweenness-uniform, unless it is isomorphic to a cycle. The
following lemma gives a bound on average distance to a vertex in a 2-connected
graph.

Lemma 5 (Plesńık, 1984, [17]). Let G be a 2-connected graph on n vertices
and u ∈ V (G). Then ∑

v∈V (G) d(v, u)

n
≤

⌊n

4

⌋

and equality is obtained for G isomorphic to a cycle.

Let us consider a 2-connected graph G. We denote {p, q} to be the cut of
size two minimizing the size of the smallest connected component of G − {p, q},
which is denoted by K. Let k := |K| and K+ be the subgraph of G induced by
V (K) ∪ {p, q}.

Observation 6. Either we have k = 1 or both p, q have at least two neighbours
in K.

Fig. 2. Examples of the two possible situations from Observation 6.

There might exist one or more connected components in a graph L = G −
{{p, q} ∪ V (K)} denoted by L1, . . . , Lj . We denote � := |L|. See Fig. 2 for
notation and the two cases of Observation 6.

Throughout the proof, we use a notion based on a trivial observation below.

Observation 7. In a betweenness-uniform graph,

B̄(S) = B̄(R)

for any ∅ �= R,S ⊆ V (G).

A discrepancy between the average betweenness of the vertices of the cut and of
the vertices in component K is defined as

disc := B̄({p, q}) − B̄(V (K)).

322 D. Hartman et al.

Let us define discS := B̄S({p, q}) − B̄S(V (K)) for ∅ �= S ⊆ V (G). We split the
discrepancy according to which pairs of vertices contribute to it. Namely,

disc = disc(V (K+)
2) + disc(V (L)

2) + discV (K+)×V (L)

where
(
V (K+)

2

)
, resp.

(
V (L)

2

)
, denotes pairs of vertices with both vertices taken

from V (K+), resp. V (L), and V (K+)×V (L) denotes pairs with one vertex from
V (K+) and the second from V (L).

Using Observation 6, we are going to show that if |N(p) ∩ V (K)| ≥ 2 and
|N(q) ∩ V (K)| ≥ 2, then the discrepancy is always strictly positive and that
discrepancy is zero in the case k = 1 if and only if G is isomorphic to a cycle.

2.1 Vertices of the Cut Have at Least Two Neighbours in K

We start with the case |N(p) ∩ V (K)|, |N(q) ∩ V (K)| ≥ 2. In this case we have
the following useful observations.

Observation 8. Connected component K+ is 2-connected.

Proof. Let us assume that there is a vertex cut x of size one in K+. Observe
that x is also a cut of size one in K, because otherwise x would separate K from
{p, q}, which is not possible, since both p and q have at least two neighbors in
K. Let x ∈ V (K) such that K1, . . . , Kj are connected components of K − x.
Two situations can occur.

In the first situation, there exists a vertex of {p, q}, for example p, for which
there exists Ki, i ∈ [j] such that Ki ∩ N(p) = ∅. Let p′ := x and q′ := q. We
can observe that {p′, q′} is a vertex cut of G with the property that the smallest
component K ′ = Ki of G − {p′, q′} is smaller than K, which is a contradiction
with the choice of {p, q}.

In the second situation, both p and q have at least one neighbour in each
component of K − x. In this case it is clear that K+ − x is connected.

Counting disc(V (L)
2). We take any pair of vertices �1, �2 from V (L) and examine

how the shortest path between them influences the discrepancy. Basically, there
are three different types of shortest paths between �1 and �2.

1. The shortest path between �1 and �2 passes only through vertices of V (L). In
this case, the shortest path does not influence the discrepancy.

2. The shortest path between �1 and �2 passes through K, especially it enters
K by one cut vertex and leaves through the second cut vertex. This adds one
to B̄({p, q}) and at most one to B̄(V (K)).

3. The shortest path between �1 and �2 passes through p or q without visiting
component K. This adds something to B̄({p, q}) and nothing to B̄(V (K)).

Overall, we get that disc(V (L)
2) ≥ 0.

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 323

Counting disc(V (K +)
2). Using Lemma 5 and Observation 8 we obtain that the

sum of the lengths of all shortest paths from a fixed vertex in K+ is (k+2)2

4 .
Moreover, by multiplying the sum of shortest paths from a fixed vertex by the
number of vertices in K+, we obtain that the sum of all shortest paths in K+

is at most (k+2)3

4 .
To obtain an upper bound on B̄(V (K+)

2)(V (K)), we use the relation from

Lemma 4, where we use the sum of distances in K+, but use k for number
of vertices. This corresponds to dividing all the contributions of shortest paths
in K+ only to vertices of K. Note that some of the shortest paths might pass
though p or q, but this can only decrease the average betweenness of K. As a
result,

B̄(V (K+)
2)(V (K)) ≤ (k − 1)

2

(
(k+2)3

4

k(k − 1)
− 1

)
=

k2

8
+

1
k

+
3
2

Finally, we assume that B̄(V (K+)
2)({p, q}) = 0 to obtain a a lower bound on the

discrepancy. Then we get that

disc(V (K+)
2) ≥ 0 −

(k2

8
+

1
k

+
3
2

)
= −k2

8
− 1

k
− 3

2
.

Counting discV (K+)×V (L). Clearly, each path from K to L passes through at
least one vertex of the cut {p, q}, adding at least 1

2 to B̄V (K+)×V (L)({p, q}). As
a result, B̄V (K+)×V (L)({p, q}) ≥ k�

2 .
Now we show an upper bound on the average betweenness of K. Take any

x ∈ V (L) and suppose d(x, p) < d(x, q). The contribution of x to B̄(V (K)) is
maximized, when all paths from K+ to x pass through p. Otherwise, there exists
y ∈ V (K) such that the shortest path between x and y passes through q. This
means that d(y, q) + d(x, q) ≤ d(y, p) + d(x, p). Together with d(x, q) ≥ d(x, p),
we get d(y, q) ≤ d(y, p), so the path passes through smaller or the same number
of vertices of K, then it would if it went through p. From now on, we assume
that for each x ∈ V (L) there exists r ∈ {p, q} such that all paths from K+ to x
are passing through r and we denote s := {p, q} \ r.

We can use Lemma 5 and the fact that K+ is 2-connected to obtain that∑
v∈V (K+) d(v, r) =

∑
v∈V (K)∪{s} d(v, r) ≤ (k+2)2

4 . This corresponds to a sum of
distances travelled inside K by all paths from V (K) to a fixed x ∈ V (L). Note
that for any v ∈ V (K), vr-path of length d contributes d− 1 to the betweenness
of K and thus

B̄V (K+)×V (L)(V (K)) ≤ �

k

(∑
v∈V (K)∪{s}

(d(v, r) − 1)
)

≤ �

k

((k + 2)2

4
− (k + 1)

)
=

k�

4

324 D. Hartman et al.

When we take the lower bound on B̄V (K+)×V (L)({p, q}) and upper bound on
B̄V (K+)×V (L)(K) we can bound the discrepancy

discV (K+)×V (L) ≥ k�

2
−

(k�

4

)
=

k�

4
.

Together we obtain

disc = disc(V (K+)
2) + disc(V (L)

2) + discV (K+)×V (L) ≥ −k2

8
− 1

k
− 3

2
+ 0 +

k�

4
> 0

which holds for � ≥ k ≥ 4. It remains to discuss the cases � ≥ k = 2 and
� = k = 3.

Fig. 3. The five classes of graphs for which we do not obtain positive discrepancy by
the general computation.

Let k = 2 and V (K) = {a, b}. Observe that a and b are adjacent, because
otherwise K ′ = G[{a}] is a component of G − {p, q} smaller than K, which is a
contradiction with K being minimal. This implies that G corresponds to a graph
with the same K+ as in graph H1 shown in Fig. 3.

Let k = � = 3. Clearly, K is connected. Observation 8 also implies that if
there is a vertex cut x in K, then p and q are adjacent to all components of
K −x. This leaves us with the four classes of graphs H2,H3,H4,H5 from Fig. 3.
The discrepancy in these classes of graphs is positive, which can be shown by
counting discrepancy similarly as above together with using the knowledge of
the structure of K+. We omit these details for the sake of brevity.

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 325

We have seen that discrepancy is always greater than zero if |N(p) ∩ K| ≥ 2
and |N(q)∩K| ≥ 2, implying G is not betweenness-uniform in this case. From this
fact and Observation 6, we see that the size of the minimal connected component
K must be one if the 2-connected graph G is betweenness-uniform.

2.2 Vertices of Degree Two

Here we consider the case that |K| = 1 which means that G contains a vertex
v of degree 2. If L contains more connected components L1, . . . , Lj , we consider
a graph Gi := G[{p, q, v} ∪ V (Li)] for each of the components separately. Note
that each component Li of L is connected, so Gi is a 2-connected graph. We use
L := Li for simplicity in the text below.

Let p, q be the two neighbors of v. Let K be the one-vertex graph with vertex
v, let K+ := G[{p, v, q}] and let L := G[V \{p, q, v}]. Observe that if G contains
the edge pq, then there is no shortest path passing through v and thus B(v) = 0.
As a consequence, G is isomorphic to K3, because the only betweenness-uniform
graphs with betweenness value 0 are complete graphs [18]. Therefore, we assume
that G does not contain the edge pq from now on.

Throughout this section, we decompose discrepancy as follows:

disc = disc(V (L)
2) + disc

K+×V (L)∪ (K+
2)

Observe that disc(V (L)
2) ≥ 0 because every (shortest) path between two vertices

of L going through the vertex v of K must contain both p and q. We now focus
on paths with at least one end-vertex in the set {p, q, v}.

For a vertex w in G, set α(w) := d(w, p) − d(w, q). Let P be the shortest
path from p to q in G − v, and let λ be the number its vertices different from p
and q. Along the path P from p to q, the function α consecutively gets values
−λ − 1,−λ + 1, . . . , λ − 1, λ + 1. It follows that, depending on the parity of λ,
one of the following two cases happens:

Case 1: There are two consecutive vertices x, y on P such that

α(x) = −1, α(y) = 1.

Case 2: There are three consecutive vertices x, y, z on P such that

α(x) = −2, α(y) = 0, α(z) = 2.

Now, our first aim is to show that in both of the two cases the vertex v together
with one of the vertices x, y (and z) forms a 2-cut in G such that after removing
the vertices of the 2-cut from G, we obtain two components of equal or almost
equal size. Before considering Cases 1 and 2 separately, we prove the following
proposition.

326 D. Hartman et al.

Proposition 9. Let w ∈ V (L).

(i) If |α(w)| ≤ 1, then

discK+×{w} =
1
2
.

(ii) If α(w) = −2, then

discK+×{w} =
1
2

(
1 − σw,p

σw,q

)
∈

(
0,

1
2

)
.

(iii) If α(w) = 2, then

discK+×{w} =
1
2

(
1 − σw,q

σw,p

)
∈

(
0,

1
2

)
.

(iv) If |α(w)| ≥ 3, then
discK+×{w} = 0.

Proof.

(i) If |α(w)| ≤ 1, then all shortest paths from w to p avoid q and v, all shortest
paths from w to q avoid p and v, and every shortest path from w to v
goes through exactly one of the vertices p and q. Part (i) of the proposition
follows.

(ii) If α(w) = −2, then every shortest path from w to p avoids q and v. Every
shortest path from w to v visits p and avoids q. There are two types of
shortest paths between w and q. First type passes through both p and v,
second type avoids both of them. As d(w, p) + 2 = d(w, q), there are σw,p

paths passing through p and v. As a result, exactly σw,p of the σw,q shortest
paths from w to q visit p and v, all the other shortest paths from w to q
avoid both p and v. Part (ii) follows.

(iii) Analogous to the proof of part (ii), with the roles of p and q exchanged.
(iv) If α(w) ≤ −3 then all shortest paths from w to p visit none of the vertices

v and q, all shortest paths from w to v visit p and do not visit q, and all
shortest paths from w to q visit both p and v. Part (iv) then follows. The
case α(w) ≥ 3 is analogous, with the roles of p and q exchanged.

Suppose now that Case 1 holds. Due to Proposition 9 (i), discK+×{x,y} =
1/2 + 1/2 = 1. Further, we have disc{p}×{q} = −1, since the only shortest path
between p and q goes through v. Proposition 9 now implies that if disc = 0 then
every vertex w in V (L) \ {x, y} satisfies |α(w)| ≥ 3. Since the function α differs
by at most two on any pair of neighbors in L, {v, x} and {v, y} are 2-cuts of
G. Let Lp and Lq be the two connected components of the graph G − {x, y, v},
where p ∈ Lp and q ∈ Lq. We have α(w) ≤ −3 for every vertex w of Lp, and
α(w) ≥ 3 for every vertex w of Lq. It follows that Lp and Lq have the same
number of vertices, since otherwise if |V (Lp)| > |V (Lq)|, say, then B(p) > B(q).

If G is not a cycle, then, without loss of generality, the connected graph
H := G[V (Lp) ∪ {p, x}] is not a path from p to x. If H is 2-connected, we

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 327

can continue in the same way as in the second of the two cases described in
Observation 6. Otherwise there is a cut vertex t of H. Let Hp and Hx be the
two connected components of G− t, where p ∈ Hp and x ∈ Hx. Since H is not a
path from p to x, at least one of the two subgraphs of G induced by V (Hp)∪{t}
and by V (Hx) ∪ {t}, respectively, is not a path from p to t and from x to t,
respectively. We consider such a subgraph and check again if it is 2-connected.
Continuing this process, due to the 2-connectivity of G, we end up with a 2-cut
of G which cuts off a 2-connected component, which is a subgraph of H. Then
we can continue as in the second of the two cases described in Observation 6.
This ends the proof in Case 1.

Suppose now that Case 2 happens. We have disc{p}×{q} ≥ −1.
According to Proposition 9 (i), discK+×{y} = 1/2. According to Proposition 9

(ii),(iii),

discK+×{x,z} =
1
2

(
1 − σx,p

σx,q

)
+

1
2

(
1 − σz,q

σz,p

)
,

which is positive. It now follows from Proposition 9 (i) that |α(w)| ≥ 2 for every
vertex w ∈ V (L), w �= y, since otherwise disc > 0.

We have σx,q ≥ σx,p + σz,q. Similarly, σz,p ≥ σx,p + σz,q. Thus,

discK+×{x,z} =
1
2

(
1 − σx,p

σx,q

)
+

1
2

(
1 − σz,q

σz,p

)
≥

≥ 1
2

(
1 − σx,p

σx,p + σz,q

)
+

1
2

(
1 − σz,q

σx,p + σz,q

)
=

1
2
.

Proposition 9 now implies that if disc = 0 then every vertex w in V (L) \
{x, y, z} satisfies |α(w)| ≥ 3. It follows that {v, x}, {v, y}, {v, z} are 2-cuts in G.

Let Lp and Lq be the two connected components of the graph G − {v, y},
where p ∈ V (Lp) and q ∈ V (Lq). We have α(w) ≤ −3 for every vertex w ∈
V (Lp) \ {p, x}, and α(w) ≥ 3 for every vertex w ∈ V (Lq) \ {q, z}.

Since G is not a cycle, at least one of the following two conditions is satisfied:

(C1) Lp is not a path from p to x, or
(C2) Lq is not a path from q to z.

If both (C1) and (C2) hold, then without loss of generality, we suppose that
|V (Lp)| ≤ |V (Lq)|. Then we consider the graph H ′ := G[V (Lp) ∪ {v, y}] and
proceed on H ′ in the same way as we proceeded on H in Case 1.

Suppose now without loss of generality that (C1) holds and (C2) does not
hold. Then there is a single shortest path from z to q. It follows that |V (Lp)| ≤
|V (Lq)|, since otherwise B(p) > B(q). We now can again consider the graph
H ′ := G[V (Lp) ∪ {v, y}] and proceed on it in the same way as we proceeded on
H in Case 1. This finishes the proof in Case 2.

2.3 More Components

If G − ({p, q} ∪ V (K)) had only one connected component L, we are finished.
Otherwise, we know that L =

⋃j
i=1 Li and any Gi := G[{p, q, v} ∪ V (Li)] has

328 D. Hartman et al.

either positive discrepancy, or it is isomorphic to a cycle. We can observe that
for Gi and Gj with positive discrepancy,

Gi+j := G[V (K) ∪ {p, q} ∪ V (Li) ∪ V (Lj)]

has also positive discrepancy. This follows from the fact that whenever we obtain
positive discrepancy, it is due to the second of the two cases in Observation 8,
which has been solved in Subsect. 2.1. From there, it is clear that discrepancy
rises with growing difference between k and �. The only remaining case is that
each Li is isomorphic to a path between p and q. Suppose �i ∈ N(p) ∩ V (Li)
and �j ∈ N(p) ∩ V (Lj) for any two connected components Li, Lj of L. Then
the shortest path between �i and �j passes through p and avoids K, making
disc(V (L)

2) > 0, which leads to disc > 0.
By the results above, any 2-connected graph has either disc > 0, implying it

is not betweenness-uniform, or it has disc = 0 and is isomorphic to a cycle. This
finishes the proof of Theorem 2.

3 Relation Between Maximal Degree and Diameter
of Betweenness-Uniform Graphs

In this section we prove a conjecture of Hurajová-Coroničová and Madaras [11]
saying that betweenness-uniform graphs with high maximal degree have small
diameter.

Conjecture 10 ([11]). If G is a betweenness-uniform graph and Δ(G) = n−k,
then d(G) ≤ k.

In a previous article by Gago, Hurajová-Coroničová and Madaras [7], this con-
jecture has been proven for k = 1 and k = 2 and later Hurajová-Coroničová and
Madaras [11] proved the conjecture for k = 3 by showing that a betweenness-
uniform graph with Δ(G) = n − 3 has d(G) = 2 for n ≥ 4.

Theorem 11. Let G be 2-connected graph with Δ(G) = n − k. Then d(G) ≤

k+5

2 �.
Proof. Let u, v be vertices of maximal distance, which implies d(u, v) = d(G),
and y be a vertex with deg(y) = n − k. Due to G being 2-connected, there exist
at least 2 vertex disjoint paths P1, P2 between u and v. Suppose Pi = x0x1 · · · xj

of length j for some i ∈ {1, 2} contains at least three vertices y1, . . . y� of N(y).
Clearly, by exchanging the sequence y1 · · · y� by sequence y1yy� we create a new
path P ′

i of length at most j. The paths P ′
1 and P ′

2 have the following properties:

• each of them contains at most three vertices from {y ∪ N(y)}
• each of them has length at least d(G)
• each vertex from V (G) \ {y,N(y)} is contained in at most one of these paths

On the Connectivity and the Diameter of Betweenness-Uniform Graphs 329

Using these properties we can observe that each P ′
i contains at least d(G) − 4

vertices of V (G) − {u, v, y,N(y)}, because it contains at least d(G) + 1 vertices,
which means at least d(G) − 1 vertices from V (G) − {u, v} and at most three
vertices from {y ∪N(y)}. By summing vertices of V (G)\{u, v, y,N(y)} on these
paths with the size of {u, v, y,N(y)} we obtain a lover bound on the number of
vertices,

n ≥ 2(d(G) − 4) + 3 + (n − k)

giving d(G) ≤ k+5
2 . Since d(G) is an integer, we get d(G) ≤ ⌊

k+5
2

⌋
.

By combining Theorem 1 and Theorem 11 above, we obtain the following
corollary, which implies Theorem 3 for k ≥ 1.

Corollary 12. Let G be betweenness-uniform graph with Δ(G) = n − k. Then
d(G) ≤
k+5

2 �.
Using our Theorem 2, we can obtain an even better bound.

Acknowledgments. David Hartman and Aneta Pokorná were partially supported by
ERC Synergy grant DYNASNET grant agreement no. 810115. Pavel Valtr was partially
supported by the H2020-MSCA-RISE project CoSP- GA No. 823748.

References

1. Akgün, M.K., Tural, M.K.: k-step betweenness centrality. Comput. Math. Organ.
Theory 26(1), 55–87 (2019). https://doi.org/10.1007/s10588-019-09301-9

2. Barthelemy, M.: Betweenness Centrality, pp. 51–73. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-20565-6 4

3. Caporossi, G., Paiva, M., Vukicevic, D., Segatto, M.: Centrality and betweenness:
vertex and edge decomposition of the Wiener index. MATCH - Commun. Math.
Comput. Chem. 68 (2012)

4. Chehreghani, M.H.: An efficient algorithm for approximate betweenness central-
ity computation. Comput. J. 57(9), 1371–1382 (2014). https://doi.org/10.1093/
comjnl/bxu003

5. Comellas, F., Gago, S.: Spectral bounds for the betweenness of a graph. Lin-
ear Algebra Appl. 423(1), 74–80 (2007). https://doi.org/10.1016/j.laa.2006.08.027.
Special Issue devoted to papers presented at the Aveiro Workshop on Graph Spec-
tra

6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40, 35–41 (1977). https://doi.org/10.2307/3033543

7. Gago, S., Hurajová, J.C., Madaras, T.: On betweenness-uniform graphs. Czechoslo-
vak Math. J. 63(3), 629–642 (2013). https://doi.org/10.1007/s10587-013-0044-y

8. Girvan, M., Newman, M.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002). https://doi.org/10.1073/
pnas.122653799

9. Govorč in, J., Škrekovski, R., Vukašinović, V., Vukičević, D.: A measure for a bal-
anced workload and its extremal values. Discrete Appl. Math. 200, 59–66 (2016).
https://doi.org/10.1016/j.dam.2015.07.006

https://doi.org/10.1007/s10588-019-09301-9
https://doi.org/10.1007/978-3-319-20565-6_4
https://doi.org/10.1093/comjnl/bxu003
https://doi.org/10.1093/comjnl/bxu003
https://doi.org/10.1016/j.laa.2006.08.027
https://doi.org/10.2307/3033543
https://doi.org/10.1007/s10587-013-0044-y
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.dam.2015.07.006

330 D. Hartman et al.

10. Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS
Biol. 6(7), 1479–1493 (2008). https://doi.org/10.1371/journal.pbio.0060159

11. Coroničová Hurajová, J., Madaras, T.: More on betweenness-uniform graphs.
Czechoslovak Math. J. 68(2), 293–306 (2018). https://doi.org/10.21136/CMJ.
2018.0087-16

12. Kumar, R.S., Balakrishnan, K., Jathavedan, M.: Betweenness centrality in some
classes of graphs. Int. J. Comb. (2014). https://doi.org/10.1155/2014/241723

13. Lee, M.J., Choi, S., Chung, C.W.: Efficient algorithms for updating betweenness
centrality in fully dynamic graphs. Inf. Sci. 326, 278–296 (2016). https://doi.org/
10.1016/j.ins.2015.07.053

14. Lopez, R., Worrell, J., Wickus, H., Florez, R., Narayan, D.A.: Towards a charac-
terization of graphs with distinct betweenness centralities. Austr. J. Comb. 68(2),
285–303 (2017)

15. Majstorović, S., Caporossi, G.: Bounds and relations involving adjusted centrality
of the vertices of a tree. Graphs Comb. 31(6), 2319–2334 (2014). https://doi.org/
10.1007/s00373-014-1498-x

16. Nagarajan, K., Muniyandi, M., Palani, B., Sellappan, S.: Social network anal-
ysis methods for exploring SARS-CoV-2 contact tracing data. BMC Med. Res.
Methodol. 20(1) (2020). https://doi.org/10.1186/s12874-020-01119-3

17. Plesńık, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8(1),
1–21 (1984). https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190080102

18. Pokorná, A.: Characteristics of network centralities. Master’s thesis, Charles Uni-
versity, Prague, Czech Republic (2020). https://is.cuni.cz/webapps/zzp/detail/
215181/

19. Unnithan, S., Balakrishnan, K.: Betweenness centrality in convex amalgamation
of graphs. J. Algebra Comb. Discrete Struct. Appl. 6, 21–38 (2019). https://doi.
org/10.13069/jacodesmath.508983

https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.21136/CMJ.2018.0087-16
https://doi.org/10.21136/CMJ.2018.0087-16
https://doi.org/10.1155/2014/241723
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1007/s00373-014-1498-x
https://doi.org/10.1007/s00373-014-1498-x
https://doi.org/10.1186/s12874-020-01119-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190080102
https://is.cuni.cz/webapps/zzp/detail/215181/
https://is.cuni.cz/webapps/zzp/detail/215181/
https://doi.org/10.13069/jacodesmath.508983
https://doi.org/10.13069/jacodesmath.508983

Combinatorics and Algorithms

On Algorithms to Find p-ordering

Aditya Gulati(B), Sayak Chakrabarti, and Rajat Mittal

IIT Kanpur, Kanpur, India
{aditg,sayak,rmittal}@iitk.ac.in

Abstract. The concept of p-ordering for a prime p was introduced by
Manjul Bhargava (in his PhD thesis) to develop a generalized factorial
function over an arbitrary subset of integers. This notion of p-ordering
provides a representation of polynomials modulo prime powers, and has
been used to prove properties of roots sets modulo prime powers. We
focus on the complexity of finding a p-ordering given a prime p, an expo-
nent k and a subset of integers modulo pk.

Our first algorithm gives a p-ordering for a set of size n in time
˜O(nk log p), where set is considered modulo pk. The subsets modulo pk

can be represented concisely using the notion of representative roots
(Panayi, PhD Thesis, 1995; Dwivedi et al., ISSAC, 2019); a natural
question is, can we find a p-ordering more efficiently given this succinct
representation. Our second algorithm achieves precisely that, we give a
p-ordering in time ˜O(d2k log p+nk log p+nd), where d is the size of the
succinct representation and n is the required length of the p-ordering.
Another contribution is to compute the structure of roots sets for prime
powers pk, when k is small. The number of root sets have been given
before (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb.
Theory, Ser. A, 2001), we explicitly describe all the root sets for k ≤ 4.

Keywords: Root-sets · p-ordering · Polynomials · Prime powers

1 Introduction

Polynomials over finite fields have played a crucial role in computer science
with impact on diverse areas like error correcting codes [8,14,22,23], cryptogra-
phy [11,17,20], computational number theory [1,2] and computer algebra [16,24].
Mathematicians have studied almost all aspects of these polynomials; factoriza-
tion of polynomials, roots of a polynomial and polynomials being irreducible or
not are some of the natural questions in this area. There is lot of structure over
finite field; we can deterministically count roots and find if a polynomials is irre-
ducible in polynomial time [18]. Not just that, we also have efficient randomized
algorithms for the problem of factorizing polynomials over finite fields [3,9].

The situation changes drastically if we look at rings instead of fields. Focusing
our attention on the case of numbers modulo a prime power (ring ZZpk , for a

The full version is available at https://arxiv.org/abs/2011.10978.
c© Springer Nature Switzerland AG 2021

A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 333–345, 2021.
https://doi.org/10.1007/978-3-030-67899-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_27&domain=pdf
https://arxiv.org/abs/2011.10978
https://doi.org/10.1007/978-3-030-67899-9_27

334 A. Gulati et al.

prime p and a natural number k ≥ 2) instead of numbers modulo a prime (field
Fp), we don’t even have unique factorization and the fact that the number of
roots are bounded by the degree of the polynomial. Still, there has been some
interesting work in last few decades. Maulik [19] showed bound on number of
roots sets, sets which are roots for a polynomial modulo a prime power. There
has been some recent works giving a randomized algorithm for root finding [4]
and a deterministic algorithm for root counting [10,13].

The concept of p-ordering and p-sequences for a prime p, introduced by Bhar-
gava [5], is an important tool in studying the properties of roots sets and polyno-
mials over powers of prime p [5,7,19]. Bhargava’s main motivation to introduce
p-ordering was to generalize the concept of factorials (n! for n ≥ 0 ∈ ZZ) from
the set of integers to any subset of integers. He was able to show that many
number-theoretic properties of this factorial function (like the product of any k
consecutive non-negative integers is divisible by k!) remain preserved even with
the generalized definition for a subset of integers [6].

For polynomials, Bhargava generalized Polya’s theorem, showing that the
GCD of the outputs of a degree k polynomial on a subset S of integers divides
the analogous factorial of k for S. He also gave a characterization of polynomials
which are integer valued on a subset of integers. Both results use a convenient
basis, using p-ordering, for representing polynomials on a subset of integers.

A similar convenient basis can be obtained for subsets of ZZpk . An interesting
problem for polynomials over rings, of the kind ZZpk , is to find the allowed root
sets (Definition 4). Maulik [19] was able to use this representation of polynomials
over ZZpk (from p-ordering) to give asymptotic estimates on the number of root
sets modulo a prime power pk; he also gave a recursive formula for root counting.

Our Contributions. While a lot of work has been done on studying the properties
of p-orderings [7,15,19], there’s effectively no work on finding the complexity of
the problem: given a subset of numbers modulo a prime power, find a p-ordering.
Our main contribution is to look at the computational complexity of finding p-
ordering in different settings. We also classify and count the root-sets for ZZpk ,
when k ≤ 4, by looking at their symmetric structure.
• p-ordering for a general set: Suppose, we want to find the p-ordering of a

set S ⊆ ZZpk so that |S| = n. A naive approach gives a ˜O(n3k log(p)) time
algorithm. We exploit the recursive structure of p-orderings and optimize the
resulting algorithm using data structures. These optimizations allow us to give
an algorithm that works in ˜O(nk log(p)) time. The details of the algorithm,
its correctness and time complexity is given in Sect. 3.

• p-ordering for a subset in representative root representation: A polynomial
of degree d in ZZpk can have exponentially many roots, but they can have
at most d representative roots [4,13,21] giving a succinct representation. In
general, any efficient algorithm for root finding or factorization should out-
put the roots in form of such representative roots (the complete set of roots
could be exponentially large). The natural question is, can we have an effi-
cient algorithm for finding a p-ordering where the complexity scales accord-
ing to the number of representative roots and not the size of the complete

On Algorithms to Find p-ordering 335

set. We answer this in affirmative, and provide an algorithm which works
in ˜O(d2k log p + nk log p + nd) time, where d is the number of representative
roots and n is the length of p-ordering. The details of this algorithm and its
analysis are presented in Sect. 4.

• Roots sets for small powers: A polynomial in ZZpk , even with small degree, can
have exponentially large number of roots. Still, not all subsets of ZZpk are a
root-set for some polynomial. The number of root-sets for the first few values
of k were calculated numerically by Dearden and Metzger [12]. Building on
previous work, Maulik [19] produced an upper bound on the number of root-
sets for any p and k. He also gave a recursive formula for the exact number
of root-sets using the symmetries in their structure. We look at the structure
of these root sets and completely classify all possible root-sets for k ≤ 4 (we
describe these in Sect. 5).

2 Preliminaries

The proofs for this section can be found in the full version.

Notation and Time Complexity: Our primary goal is to find a p-ordering of a
given set S ⊆ ZZpk , for a given prime p and an integer k > 0. Since the input size
is polynomial in |S|, log p, k; an efficient algorithm should run in time polynomial
in these parameters. For the sake of clarity, log k factors will be ignored from
complexity calculations; this omission will be expressed by using notation ˜O
instead of O in time complexity. We also use [n] for the set {0, 1, . . . , n − 1}.

Definition 1. For any ring S with the usual operations + and ∗, we define

S + a := {x + a | x ∈ S} and a ∗ S := {a ∗ x | x ∈ S}

p-ordering and p-sequence: We begin by defining the valuation of an integer
modulo a prime p.

Definition 2. Let p be a prime and a �= 0 be an integer. The valuation of the
integer a modulo p, denoted vp(a), is the integer v such that pv | a but pv+1

� a.
We also define wp(a) := pvp(a).

If a = 0 then both, vp(a) and wp(a), are defined to be ∞.

Bhargava [5] introduced the concept of p-ordering for any subset of a
Dedekind domain. We restrict to the rings of the form ZZpk (similar to ZZ)
which has been explained in [6]. p-ordering was introduced in a series of papers
to generalise the factorial function.

Definition 3 ([5]). p-ordering on a subset S of ZZpk is defined inductively.

1. Choose any element a0 ∈ S as the first element of the sequence.
2. Given an ordering a0, a1, . . . ai−1 up to i − 1, choose ai ∈ S\{a0, a1 . . . ai−1}

which minimizes vp((ai − a0)(ai − a1) . . . (ai − ai−1)).

336 A. Gulati et al.

The i-th element of the associated p-sequence for a p-ordering a0, a1, . . . an is
defined by

vp(S, i) =
{

1 i = 0,

wp((ai − a0)(ai − a1) . . . (ai − ai−1)) i > 0.

In the (i + 1)-th step, let x ∈ S \ {a0, a1, ..., ai−1} then the value vp((x − a0)(x −
a1) . . . (x − ai−1)) is denoted as the p-value of x at that step. If the step is clear
from context, we call the p-value of that element at that step as its p-value.

To take an example, S = {1, 3, 4, 6, 9, 10} ∈ ZZ33 has (4, 6, 1, 9, 3, 10) and
(3, 10, 6, 4, 9, 1) as two valid 3-orderings. The 3-sequence associated with both
these 3-orderings is (1, 1, 3, 3, 9, 27). At the first glance it is not clear why asso-
ciated p-sequences are same. In fact, Bhargava proved the following theorem.

Theorem 1 ([5]). For any two p-orderings of a subset S ⊆ ZZ and a prime p,
the associated p-sequences are same.

We notice few more facts about p-ordering.

Observation 2. Let S be a subset of integers, let (a0, a1, a2, ...) be a p-ordering
on S, then

1. For any x ∈ ZZ, (a0 + x, a1 + x, a2 + x, ...) is a p-ordering on S + x.
2. For any x ∈ ZZ, (x ∗ a0, x ∗ a1, x ∗ a2, ...) is a p-ordering on x ∗ S.

Observation 3. Let S be a subset of integers, let (a0, a1, a2, ...) be a p-ordering
on S. Then, for any x ∈ ZZ

1. vp(x ∗ S, k) = vp(S, k) + k · wp(x).
2. vp(S + x, k) = vp(S, k).

Theorem 4 ([19]). Let S be a subset of integers, let Sj = {s ∈ S | s ≡ j
(mod p)} for j = 0, 1, ..., p − 1, then for any x ∈ ZZ, s.t. x ≡ j (mod p),

wp

(

∏

ai∈S

(x − ai)
)

= wp

⎛

⎝

∏

ai∈Sj

(x − ai)

⎞

⎠ . (1)

Root Sets and Representative Roots:

Definition 4. A given set S is called a root set in a ring R if there is a poly-
nomial f(x) ∈ R[x], whose roots in R are exactly the elements of S.

It is non-trivial to check if a subset is a root set. For example, {0, 3} is not a
root set in ZZ32 , whereas a large set {0, 3, 6, 9, 12, 15, 18, 21, 24} ∈ ZZ33 is a root
set for a small degree polynomial x3.

The notion of representative roots in the ring ZZpk has been used to concisely
represent roots of a polynomial [4,13,21].

On Algorithms to Find p-ordering 337

Definition 5. The representative root (a + pi∗) is a subset of ZZpk ,

a + pi∗ := {a + piy | y ∈ ZZpk−i−1} (2)

For example, the set {1, 26, 51, 76, 101} ∈ ZZ53 can be represented as 1+25∗.
It gives a powerful way to represent big subsets concisely; a polynomial of degree
d in ZZpk can have at most d representative roots [4,13,21] (but exponentially
many roots). Extending a set S = {r1, · · · , rl} of representative roots corresponds

to the subset
l

⋃

i=1
ri ⊆ ZZpk . Conversely, we show that an S ⊆ ZZpk can be

uniquely represented by representative roots.

Definition 6. Let S ⊆ ZZpk , then the set of representative roots Srep =
{r1, ..., rl} (for ri = βi + pki∗, for some βi ∈ ZZpk and ki ∈ [k]) is said to
be a minimal root set representation of S if

1. S =
l

⋃

i=1
ri,

2. � ri, rj ∈ Srep : ri ⊆ rj,
3. ∀i :

⋃

b∈[p]

(

ri + pki−1 · b
)

� S

Theorem 5. Given any set S ⊆ ZZpk , the minimal root set representation of S
is unique.

We note a few observations about representative roots.

Observation 6. Given any two representative roots A1 = β1 + pk1∗ and A2 =
β2 + pk2∗, then either A1 ⊆ A2 or A2 ⊆ A1 or A1 ∩ A2 = ∅.

Observation 7. Let a1 ∈ β1 + pk1∗ and a2 ∈ β2 + pk2∗ be any 2 elements of
the representative roots β1 + pk1∗ and β2 + pk2∗ respectively, for β �= α2, then,

wp(a1 − a2) = wp(β1 − β2).

Observation 8. Let (a0, a1, ...) be a p-ordering on ZZpk , then (β + a0 ∗ pj , β +
a1 ∗ pj , β + a2 ∗ pj , ...) is a p-ordering on β + pj∗.

Proof. A simple proof of this theorem follows from Observation 2 and the fact
that 1, 2, 3, . . . form an obvious p-ordering in ZZpk . �
Observation 9. Let k < p, Sj := {s ∈ ZZpk | s ≡ j mod p} and f(x) be a
polynomial in ZZpk [x] with root-set A. If there exist α1, ..., αk ∈ A ∩ Sj such that
αi �≡ αj mod p2 for all (i, j) pairs, then Sj ⊆ A.

338 A. Gulati et al.

3 Algorithm to Find p-ordering on a Given Set

The naive algorithm for finding the p-ordering, from its definition, has time com-
plexity ˜O(n3k log(p)). The main result of this section is the following theorem.

Theorem 10. Given a set S ⊆ ZZ, a prime p and an integer k such that each
element of S is less than pk, we can find a p-ordering on this set in ˜O(nk log p)
time.

The proof of Theorem 10 follows from the construction of Algorithm 1.

Outline of Algorithm 1. We use the recursive structure of p-ordering given by
Maulik [19]. Crucially, to find the p-value of an element a at each step, we only
need to look at elements congruent modulo p to a (Theorem 4).

Suppose Sj is the set of elements of S congruent to j mod p. By the obser-
vation above, our algorithm constructs the p-ordering of set S by merging the
p-ordering of Sj ’s. Given a p-ordering up to some step, the next element for the
p-ordering of S is computed by just comparing the first elements in p-ordering of
Sj ’s (not present in the already computed p-ordering). The p-ordering of trans-
lated Sj ’s is computed recursively (Observation 2).

While merging the p-orderings on each of the Si’s, at each step we need
to extract and remove the element with the minimum p-value over all Sj ’s and
replace it with the next element from the p-ordering on the same set Sj . Naively,
it would need to find the minimum over all p number of elements taking ˜O(p)
time. Instead, we use min heap data structure, using only ˜O(log p) time for
extraction and insertion of elements.

Each node of the min-heap(H) contains the value of the element (given as
input) as value and a key, p-value. For every element there is another key set,
which stores the index of the subsets S0, S1, . . . Sp−1 to which it belongs. The
heap is sorted in terms of the p-value and whenever we do any operation like
extracting the minimum, or adding to the heap, we consider ordering given by
increasing value of the p-value attribute of the nodes.

3.1 Proof of Correctness

To prove the correctness of Algorithm 1, we need two results: Merge() procedure
works and valuation is computed correctly in the algorithm.

Theorem 11 (Correctness of Merge()). In Algorithm 1, given S be a subset
of integers, let for k ∈ {0, 1, ..., p − 1}, Sk = {s ∈ S | s ≡ k (mod p)}, then
given a p-ordering on each of the Sk’s, Merge(S0, S1, ..., Sp−1) gives a valid
p-ordering on S.

Proof Outline. We start with p-orderings on each of the non-empty sets
(S0, S1, ..., Sp−1), and create a heap taking the first element of each of these
p-ordering. At each successive step, we pick the element in the heap with min-
imum p-value to add to the p-ordering, and insert the next element from the
corresponding Sj to the heap.

On Algorithms to Find p-ordering 339

Algorithm 1. Find p-ordering
1: procedure merge(S0, S1, ..., Sp−1)
2: S ← []
3: for i ∈ [0, 1, ..., p − 1] do
4: for j ∈ [0, ..., len(Si) − 1] do
5: Si[j].set ← i

6: i0, i1, i2, ...ip−1 ← (0, 0, ..., 0)
7: H ← Create_Min_Heap(node = {S0[i0], ..., Sp−1[ip−1]}, key = p_value)
8: while H.IsEmpty()!=true do
9: a ← Extract_Min(H)

10: j ← a.set
11: if ij < len(Sj) then
12: ij ← ij + 1
13: Insert(H,Sj [ij])
14: S ← a
15: return S
16: procedure Find_p-Ordering(S)
17: if length(S)==1 then
18: S[0].p_value ← 1
19: Return S
20: S0, S1, ..., Sp−1 ← ([], [], ..., [])
21: for i ∈ S do
22: Si.value mod p.append(i)
23: for i ∈ [0, 1, ..., p − 1] do
24: Si ← Find_p-Ordering((Si − i)/p)
25: for j ∈ [0, ..., len(Si) − 1] do
26: Si[j].value ← p ∗ Si[j].value + i
27: Si[j].p_value ← Si[j].p_value + j

28: S ← merge(S0, S1, ..., Sp−1)
29: return S

In Algorithm 1, we use a sorted list I of non-empty Si’s, and only iterate over I
in steps 3-5, 23-28. Hence, decreasing the time complexities of these loops. We can
create/update the list I in the loop at steps 21-22.

We know that the valuation of any element in the combined p-ordering is
going to be equal to their valuation in the p-ordering over the set Sj containing
them (by Theorem 4). If we show that at each step the element chosen has the
least valuation out of all the elements left Merge() works correctly. We prove
this by getting a contradiction. If any element other than the ones obtained from
the heap is selected, we show that the p-value will be greater than what we get
from Merge(). The details of the proof can be found in the full version. �
Theorem 12 (Correctness of valuations). In Algorithm 1, let S be a subset
of integers, then Find_p-Ordering(S) gives a valid p-values for all elements
of S.

340 A. Gulati et al.

Proof Outline. The proof requires two parts: Merge() preserves valuation and
changes in the valuation due to translation does not induce errors.
• To prove that Merge() preserves valuation, we make use of the fact that

the combined p-ordering after merge has the individual p-orderings as a sub-
sequence. This is true as when an element is added to the p-ordering, the
power of p contributed to the p-sequence is only due to the elements in that
sequence which are congruent to this new element modulo p. So minimizing
the valuation over the entire sequence is same as minimizing the valuation
with respect to p in the sub-sequence which are elements congruent to one
number modulo p. And now minimizing the power of p in this sub-sequence is
same as finding a p-ordering on it. Hence, the valuation of each element in the
combined p-ordering is going to be equal to the valuation in the individual
p-ordering (by Theorem 4). Hence, Merge() preserves valuations.

• We show that the change in valuations due to translation (Step 24) are cor-
rected (Steps 26–27). This is easy to show by just updating the valuation
according to Observation 3.

Hence, valuations are correct maintained throughout the algorithm. The details
of the proof can be found in the full version. �
Using the above two theorems, we prove the correctness of Algorithm 1.

Proof of Correctness of Algorithm 1. For the base case, if S is a single-
ton, then the p-ordering over it is just a single element which is also what
Find_p-Ordering(S) gives. Let Find_p-Ordering() works for |S| < k, if
we show it works for |S| = k, then by induction, Find_p-Ordering() works
for sets of arbitrary sizes.

Let |S| = k, then when we break the set into S0, S1, ..., Sp−1 (Steps 20–22),
either all element belong in a single Si or get distributed into multiple sets. If
all of the elements are congruent to each other modulo p, then we apply the
recursive step until we reach a point when there is at least one element which is
not congruent to all the other elements in S, i.e. S breaks into subsets (Step 21).
This follows from the p-adic expansion being unique and not all elements being
same in our input set S. Since, by Observation 2, we know that the p-ordering on
reduced elements is preserved, we will get the correct p-ordering on the original
set. Hence, we only need to prove this for the later case.

Since all the element of the set Si follow ∀y ∈ Si, y ≡ i mod p, hence ∀y ∈ Si,
p | (y − i), this implies (Si − i)/p ⊂ ZZ. Hence, Find_p-Ordering((Si − i)/p)
gives a p-ordering on (Si − i)/p with the correct valuations associated with each
element (Theorem 12).

From Observation 2, we know that if (a0, a1, ...) is a p-ordering on
some set A, then (p ∗ a0 + i, p ∗ a1 + i, ...) is a p-ordering on p ∗ A + i.
Since, Find_p-Ordering((Si − i)/p) is a p-ordering on (Si − i)/p, then p ∗
Find_p-Ordering((Si − i)/p) + x is a p-ordering on Si (Steps 26–27).

Next, since we have valid p-orderings on S0, S1, ..., Sp−1, Merge(S0, S1, ...,
Sp−1) returns a valid p-ordering on S (Theorem 11). By induction, our algorithm
returns a valid p-ordering on any subset of integers. �

On Algorithms to Find p-ordering 341

3.2 Time Complexity

Theorem 13. Given a set S ⊂ ZZ of size n and a prime p, such that for all
elements a ∈ S, a < pk for some k, Algorithm 1 returns a p-ordering on S in
˜O(nk log p) time.

Proof. We break the complexity analysis into 2 parts, the time complexity for
merging the subsets Si’s and the time complexity due the to recursive step.

Time Complexity of Merge(S0, S1, ..., Sp−1) in Algorithm 1. Let |S0| + |S1| +
... + |Sp−1| = m. Then, the time complexity of making the heap (Step 7)
is ˜O(min(m, p)) (the size of the heap). Next, the construction of common p-
ordering(Steps 8–14) takes ˜O(m log p) time, this is because extraction of an ele-
ment and addition of an element are both bound by ˜O(log p) and the runs a
total of m times. Hence, the total time complexity of Merge(S0, S1, ..., Sp−1) is
˜O(min(m, p) + m log p) = ˜O(m log p) time.

Time Complexity of Algorithm 1. Let |S| = n and S ⊂ ZZpk . Then the recursion
depth of Find_p-Ordering(S) is bound by k. Now at each depth, all the
elements are distributed into multiple heaps(of sizes m1, m2, ..., mq). Hence, the
sum of sizes of all smaller sets at a given depth

∑q
i=1 mi < n. Hence, the time to

run any depth is
∑q

i=1
˜O(mi log p) = ˜O(n log p). Hence, total time complexity

for k depth is ˜O(nk log p). �
The proof of Theorem 10 follows from the proof of correctness of Algorithm 1

and time complexity obtained from Theorem 13.

4 Algorithm to Find p-ordering on a Set of Representative
Roots

The notion of representative roots (Definition 5) allows us to represent an expo-
nentially large subset of ZZpk succinctly. Further imposing a few simple condi-
tions on this representation, namely the minimal representation (Definition 6),
our subset is represented in a unique way (Theorem 5). A natural question arises,
can we efficiently find a p-ordering given a set in terms of representative roots?
For example, given a set {1, 2, 4, 7, 10, 11, 13, 16, 19, 20, 22, 25} and prime p = 3,
we can write this set as an union of root sets modulo 33 as {1 + 3∗, 2 + 32∗}.
A 3-ordering on this set is {1, 2, 4, 7, 11, 10, 20, 13, 16, 19, 22, 25}. In this section
we give an efficient algorithm to find a p-ordering of a given length n on a set
expressed in minimal representation.

Theorem 14. Given a set S ⊂ ZZpk , for a prime p and an integer k, that can be
represented in terms of d representative roots, we can efficiently find a p-ordering
of length n for S in ˜O(d2k log p + nk log p + np) time.

342 A. Gulati et al.

Outline of the Algorithm. The important observation is, we already have a nat-
ural p-ordering defined on a representative root (Observation 8). Since a p-
ordering on each representative root is already known, we just need to find a
way to merge them. Merging was easy in Algorithm 1 because progress in any
one of the p-ordering of an Sj did not affect the p-value of an element outside Sj .
However, in this case the exact increase in the p-value is known by Observation 7,
and is precisely equal to vp(βi − βj).

We are given with a set S containing d representative roots. It is of the
form {βi + p�i ∗ |i = 1, 2 . . . d}. We will use the notation S[i].value for βi and
S[i].exponent for �i in the pseudocode. Further, we can assume that the rep-
resentative roots are disjoint. If they are not, one representative root will be
contained in another (Observation 6), all such occurrences can be deleted in
˜O(d2k log p) time.

In our algorithm, we maintain an array of size d to store the valuations that
we would get whenever we add the next element from a representative root. To
update the i-th value of this array when an element from the j-th representative
root is added, we simply add the value vp(βi − βj) (i �= j). Hence, at each step
we find the minimum value in this array (in ˜O(d)) and add it to the combined
p-ordering (in ˜O(1)) and we update all the d values in this array (in ˜O(d)). We
repeat this process till we get the p-ordering of the desired length.

With the above intuition in mind, we develop Algorithm 2 to find the
p-ordering of length n on a subset S of ZZpk given in representative root
representation.

4.1 Proof of Correctness

To prove the correctness of this algorithm, we first prove that valuations are
correctly maintained.

Theorem 15. In Algorithm 2, Find_p-Ordering(S, n) maintains the correct
valuations on the set S of representative roots in valuations at every iteration
of the loop.

Proof Outline. All elements have 0 valuation at the beginning (Step 17). Also,
adding an element from the i-th representative root increases the valuation of
the j-th representative root by corr(i, j) (Step 28) for i �= j (Observation 7). The
increase for the next element of i is exponent times the increase in p-sequence
of ZZpk (Step 26) (Observation 8). So, we correctly update the valuations array
in each iteration. Please see full version for a proof. �
Proof of Correctness of Algorithm 2. By the definition of p-ordering we know
that at each iteration if we choose the element with the least valuation then
we get a valid p-ordering. By Theorem 15, we know that valuations array has
the correct next valuations. Hence, to find the representative root with the least
valuation, we find the index of the minimum element in valuations.

On Algorithms to Find p-ordering 343

Algorithm 2. Find p-ordering from minimal notation
1: procedure Correlate(S)
2: Corr ← [0]len(S)×len(S)
3: Corr ← [0]len(S)×len(S)
4: for j ∈ [1, ..., len(S)] do
5: for k ∈ [1, ..., len(S)] do
6: Corr[j][k] ← vp(S[j].value − S[k].value)
7: return Corr
8: procedure p-Exponent_Increase(n)
9: vp(1) ← 1

10: for j ∈ [1, ..., n] do
11: vp((j + 1)!) ← vp(j + 1) ∗ vp(j!)
12: p_exponent[j] ← vp((j + 1)!) − vp(j!)
13: return p_exponent

14: procedure Find_p-Ordering(S, n)
15: corr ← Correlate(S)
16: increase ← p-Exponent_Increase(n)
17: valuations ← [0]|S|
18: p_ordering ← {}
19: i1, i2 . . . i|S| ← 0
20: for i ∈ {1, 2, . . . n} do
21: min ← min{valuations}
22: index ← argmin{valuations}
23: p_ordering.append(S[index].value + pS[index].exponent ∗ iindex)
24: for j ∈ [1, ..., len(S)] do
25: if j = index then
26: valuations[j] ← valuations[j] + S[index].exponent ∗ increase[ij]
27: else
28: valuations[j] ← valuations[j] + corr(index, j)
29: iindex ← iindex + 1
30: return p_ordering

To add the next value, by Observation 8, we find the next element from the
p-ordering on the representative root. Hence, the element added has the least
valuation. Hence, Find_p-Ordering(S, n) returns the correct p-ordering. �

4.2 Time Complexity

Theorem 16. Given a set S ⊂ ZZpk , for a prime p and an integer k, that can
be represented in terms of d representative roots, Algorithm 2 finds a p-ordering
of length n for S in ˜O(d2k log p + nk log p + np) time.

Proof. Let S contains d representative roots of ZZpk and we want to find the
p-ordering up to length n, then, Correlate(S) runs a double loop, each
of size d, and each iteration takes ˜O(k log p), hence, Correlate(S) takes
˜O(d2k log p). p-Exponent_Increase(n) runs a single loop of size n where

344 A. Gulati et al.

each iteration takes ˜O(k log p) time, hence, it takes ˜O(nk log p). Then main
loop run a loop of size n, inside this loop we do O(d) operations on elements
of size log k, hence, it takes ˜O(nd) time. Hence, in total, our algorithm takes
˜O(d2k log p + nk log p + nd) time. �

Now, the proof of Theorem 14 follows directly from the proof of correctness
of Algorithm 2 and the time complexity analysis shown in Theorem 16.

5 Structure of Root Sets for a Given k

We know that ZZpk is not a unique factorization domain. In fact, even small
degree polynomials can have exponentially large number of roots as seen in
Sect. 2. Interestingly, not all subsets of ZZpk can be a root set (Definition 4).
Distinctly knowing the description of root sets can help us decide if a given set
is a root set. In this section, we discuss and distinctly describe all the root sets
in Zp2 , Zp3 and Zp4 .

Dearden and Metzger [12] showed that R is a root-set iff Rj = {r ∈ R | r ≡ j
(mod p)} is also a root-set for all j ∈ [p]. For example, we know that R =
{1, 4, 5, 7, 9, 10, 13, 14, 16, 19, 22, 23, 25} is the root set in ZZ33 for the polynomial
f(x) = (x−1)3(x−5)2(x−9), then R0 = {9}, R1 = {1, 4, 7, 10, 13, 16, 19, 22, 25},
and R2 = {5, 14, 23} are also root sets.

The number and structure of Rj is symmetric for all j. Let Npk be the number
of possible Rj ’s, then total number of possible root-sets become (Npk)p [12].

Let Sj = {s ∈ ZZpk | s ≡ j (mod p)}, we take the following approach to
find all possible root-sets Rj ’s. Given an Rj , define R = {(r − j)/p : r ∈ Rj}
to be the translated copy. We show that if R contains at least k many distinct
residue classes modp, then Rj = Sj (Observation 9). We exhaustively cover all
the other cases, when R contains less than k residue classes (possible because k
is small). For example, in ZZp3 , we find that

Rj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j + p · ∗,
(j + p · α1 + p2∗) ∪ (j + p · α2 + p2∗), for α1 �= α2 ∈ [p],
j + p · α + p2 ∗ , for α ∈ [p],
j + p · α1 + p2 · α2, for α1, α2 ∈ [p],
∅.

Please see full version for the classification of root sets (k ≤ 4) and its proof.

Acknowledgements. We would like to thank Naman Jain for helpful discussions.
R.M. would like to thank Department of Science and Technology, India for support
through grant DST/INSPIRE/04/2014/001799.

References
1. Adleman, L., Lenstra, H.: Finding irreducible polynomials over finite fields. In:

Proceedings of 18th Annual ACM Symposium on Theory of Computing (STOC),
pp. 350–355 (1986). https://doi.org/10.1145/12130.12166

https://doi.org/10.1145/12130.12166

On Algorithms to Find p-ordering 345

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in p. Ann. Math. 781–793 (2004)
3. Berlekamp, E.: Factoring polynomials over large finite fields. Math. Comput. 24,

713–735 (1970). https://doi.org/10.1090/S0025-5718-1970-0276200-X
4. Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings

and application to error correcting codes. Appl. Algebra Eng. Commun. Comput.
24(6), 413–443 (2013). https://doi.org/10.1007/s00200-013-0200-5

5. Bhargava, M.: P-orderings and polynomial functions on arbitrary subsets of
dedekind rings. Journal Fur Die Reine Und Angewandte Mathematik - J. REINE
ANGEW Math. 101–128 (1997). https://doi.org/10.1515/crll.1997.490.101

6. Bhargava, M.: The factorial function and generalizations. Am. Math. Mon. 107
(2000). https://doi.org/10.2307/2695734

7. Bhargava, M.: On p-orderings, rings of integer values functions, and ultrametric
analysis. J. Am. Math. Soc. 22(4), 963–993 (2009)

8. Bose, R., Ray-Chaudhuri, D.: On a class of error correcting binary group codes *.
Inf. Control 3, 68–79 (1960). https://doi.org/10.1016/S0019-9958(60)90287-4

9. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Math. Comput. 36 (1981). https://doi.org/10.2307/2007663

10. Cheng, Q., Gao, S., Rojas, J.M., Wan, D.: Counting roots for polynomials modulo
prime powers. Open Book Ser. 2(1), 191–205 (2019)

11. Chor, B., Rivest, R.: A knapsack type public key cryptosystem based on arithmetic
in finite fields. IEEE Trans. Inf. Theory 34 (2001). https://doi.org/10.1109/18.
21214

12. Dearden, B., Metzger, J.: Roots of polynomials modulo prime powers. Eur. J.
Comb. 18, 601–606 (1997). https://doi.org/10.1006/eujc.1996.0124

13. Dwivedi, A., Mittal, R., Saxena, N.: Efficiently factoring polynomials modulo p4.
In: International Symposium on Symbolic and Algebraic Computation (ISSAC),
pp. 139–146 (2019). https://doi.org/10.1145/3326229.3326233

14. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres, Revue de l’Association
Française de Calcul 2 (1959)

15. Johnson, K.: P-orderings of finite subsets of dedekind domains. J. Algebraic Com-
binatorics 30, 233–253 (2009)

16. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 261 (1982). https://doi.org/10.1007/BF01457454

17. Lenstra, H.W.: On the Chor—Rivest knapsack cryptosystem. J. Cryptol. 3(3),
149–155 (1991). https://doi.org/10.1007/BF00196908

18. Lidl, R., Niederreiter, H.: Finite Fields, vol. 20. Cambridge University Press, Cam-
bridge (1997)

19. Maulik, D.: Root sets of polynomials modulo prime powers. J. Comb. Theory, Ser.
A 93, 125–140 (2001). https://doi.org/10.1006/jcta.2000.3069

20. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic signif-
icance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS,
vol. 209, pp. 224–314. Springer, Heidelberg (1985). https://doi.org/10.1007/3-
540-39757-4_20

21. Panayi, P.N.: Computation of Leopoldt’s P-adic regulator. Ph.D. thesis, University
of East Anglia (1995)

22. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl.
Math. 8, 300–304 (1960). https://doi.org/10.2307/2098968

23. Sudan, M.: Decoding reed solomon codes beyond the error-correction bound. J.
Complexity 13, 180–193 (1997). https://doi.org/10.1006/jcom.1997.0439

24. Zassenhaus, H.: On hensel factorization ii. J. Number Theory 1, 291–311 (1969).
https://doi.org/10.1016/0022-314X(69)90047-X

https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1007/s00200-013-0200-5
https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.2307/2695734
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.2307/2007663
https://doi.org/10.1109/18.21214
https://doi.org/10.1109/18.21214
https://doi.org/10.1006/eujc.1996.0124
https://doi.org/10.1145/3326229.3326233
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF00196908
https://doi.org/10.1006/jcta.2000.3069
https://doi.org/10.1007/3-540-39757-4_20
https://doi.org/10.1007/3-540-39757-4_20
https://doi.org/10.2307/2098968
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1016/0022-314X(69)90047-X

Experimental Evaluation of a Local
Search Approximation Algorithm
for the Multiway Cut Problem

Andrew Bloch-Hansen1, Nasim Samei2, and Roberto Solis-Oba1(B)

1 Department of Computer Science, The University of Western Ontario,
London, ON N6A 5B7, Canada
{ablochha,rsolisob}@uwo.ca

2 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
nasim.samei@ist.ac.at

Abstract. In the multiway cut problem we are given a weighted undi-
rected graph G = (V, E) and a set T ⊆ V of k terminals. The goal is
to find a minimum weight set of edges E′ ⊆ E with the property that
by removing E′ from G all the terminals become disconnected. In this
paper we present a simple local search approximation algorithm for the
multiway cut problem with approximation ratio 2 − 2

k
. We present an

experimental evaluation of the performance of our local search algorithm
and show that it greatly outperforms the isolation heuristic of Dalhaus et
al. and it has similar performance as the much more complex algorithms
of Calinescu et al., Sharma and Vondrak, and Buchbinder et al. which
have the currently best known approximation ratios for this problem.

Keywords: Multiway cut · Approximation algorithms · Experimental
evaluation

1 Introduction

Given an undirected graph G = (V,E) with non-negative weights or costs on
the edges and a set T = {t1, t2, ..., tk} ⊆ V of k terminals, a multiway cut is
a set E′ ⊆ E of edges whose removal from G separates all the terminals from
each other. In the multiway cut problem the goal is to find a multiway cut with
minimum weight. For the case when k = 2 the multiway cut problem reduces to
the well known minimum s-t cut problem. For k ≥ 3 Dahlhaus et al. [8] proved
that the multiway cut problem is MAX SNP-hard.

The multiway cut problem has a variety of applications including task
scheduling in multi-processors systems [14], task allocation in parallel computing
systems [11], labelling the pixels of an image [3], integrated circuit layout design
[1,12] and combinatorial optimization [10].

Dahlhaus et al. [8] presented the first approximation algorithm for the mul-
tiway cut problem, called the isolation heuristic, which has approximation ratio
2 − 2

k . Calinescu et al [6] utilized an elegant geometric relaxation algorithm and
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 346–358, 2021.
https://doi.org/10.1007/978-3-030-67899-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_28

Experimental Evaluation of a Local Search Approximation Algorithm 347

improved the approximation ratio to 1.5 − 1
k . Karger et al. [9] used a similar

geometric relaxation technique to design a 12
11 -approximation algorithm for the

problem for the case when k = 3 and for general k they improved the approx-
imation ratio to 1.3438. Independently, Cunningham and Tang [7] designed an
approximation algorithm with the same approximation ratio 12

11 for the case
k = 3. Sharma and Vondrak [13] designed a better algorithm with approxi-
mation ratio 1.2965 based on the linear programming relaxation used in [6].
Buchbinder et al. [4,5] almost matched Sharma and Vondrak’s approximation
ratio, but using a much simpler algorithm. These last two algorithms have the
currently best known approximation ratio for the multiway cut problem.

In this paper we present a simple local search algorithm for the multiway cut
problem with approximation ratio 2− 2

k . Our algorithm is a simplification of the
local search algorithm in [3] for an energy minimization problem in image pro-
cessing which is also a 2-approximation algorithm for the multiway cut problem.
We not only improve the approximation ratio to 2 − 2

k but we show that this
ratio is tight. Due to space limitations the tight example is not included.

A modification of our local search algorithm can be used on two variations
of the multiway cut problem: 1) when some set of nodes needs to be in the
same partition, and 2) when certain nodes can only be in some partitions. These
results are not included because of the space limitations.

The main contribution of this paper is an experimental comparison of our local
search algorithm with four other approximation algorithms for the multiway cut
problem: Dahlhaus et al. [8] isolation heuristic, the algorithm of Calinescu et al.
[6], the algorithm of Sharma and Vondrak [13], and the algorithm of Buchbinder
et al. [4,5]. Even though our algorithm does not have the best known approxima-
tion ratio for the problem, our results show that in practice our algorithm per-
forms much better than the isolation heuristic [8] even though they have the same
theoretical worst-case approximation ratio. Furthermore, our algorithm has com-
parable performance, with respect to running time and the values of the solutions
that it produces, to the three currently best known algorithms for the multiway
cut problem: the algorithm of Calinescu et al. [6], the algorithm of Sharma and
Vondrak [13], and the algorithm of Buchbinder et al. [4,5].

Our results show that local search algorithms are easy to implement, they
are fast and produce high quality solutions. We hope that our research will help
increase the use of local search algorithms in practice.

2 Our Local Search Algorithm

As mentioned in the previous section our local search algorithm is a simplification
of the algorithm in [3]. Here for convenience we give a brief explanation of the
algorithm. Given a graph G = (V,E) and a set L of labels, a labelling function
f assigns a label to each node of G. A relabel operation R〈A,α, f〉 modifies a
labelling function f by changing the labels of all the nodes in a given set A ⊆ V
to some label α while keeping the other labels unchanged.

We can formulate the multiway cut problem as a labelling problem as follows:
Given a graph G = (V,E), a set of k terminals T = {t1, t2, ..., tk} ⊆ V and a set

348 A. Bloch-Hansen et al.

of k labels L = {α1, α2, ..., αk}, where each terminal ti has a fixed label αi, the
goal is to label the nodes in V − T in such a way as to minimize the total cost
of the set E′ of edges whose endpoints have different labels. Note that E′ is a
multiway cut for G and therefore finding a solution for this labelling problem is
equivalent to finding a minimum weight multiway cut.

The neighborhood function for a given labelling function f and label αi,
i = 1, 2, ..., k is defined as follows: Ni(f) = {all the labellings f ′ that can be
obtained by R〈A,αi, f〉, for all possible sets A ⊆ V }. Our local search algorithm
for the multiway cut problem is as follows.

Algorithm. MultiwayCut (G = (V,E), L, T)
In: Graph G = (V,E), set L of k labels, and set T ⊆ V of k terminals
Out: Labelling of a local optimum solution for the multiway cut problem
f ← any labelling function that assigns to each terminal a different label
success ← 1
while success = 1

success ← 0
for i ← 1 to k do

Compute a minimum cost labelling f ′ ∈ Ni(f)
if cost of labelling f ′ < cost of labelling f then

f ← f ′

success ← 1
end if

end for
end while
Output f

Note that algorithm MultiwayCut might not run in time that is polynomial
in the size of the input as each iteration of the while loop might only give a
marginal improvement in the cost of the solution, so it might need a very large
number of iterations to find a local optimum solution. We proceed as in [2] to
ensure a polynomial running time: Replace the condition of the if statement as
follows

if cost of labelling f ′ < (1 − ε)× cost of labelling f then

where ε is a positive value. With this change the maximum number of iterations
of the outer loop is O((log n + log(cmax)/ε), where n is the number of vertices
and cmax is the largest edge cost. Each iteration of the loop needs polynomial
time, so the running time of the algorithm is polynomial. This change causes the
approximation ratio of the algorithm to be at most 1

1−ε (2 − 2
k).

3 Finding a Minimum Cost Relabel Operation

A minimum cost labelling f ′ obtainable from f through a relabel R〈A,α, f〉 is
obtained by computing a minimum cut in the following graph Gα = (Vα, Eα):

Experimental Evaluation of a Local Search Approximation Algorithm 349

– Vα = {{α, α}, V, {⋃
(p,q)∈E apq}}, where α is a source node, ᾱ is a sink node

and apq are auxiliary nodes.
– Eα =

⋃
p∈V {(p, α), (p, α)}⋃

(p,q)∈E
f(p) �=f(q)

ε{p,q}
⋃

(p,q)∈E
f(p)=f(q)

(p, q)

The edges have assigned weights as shown in Table 1, where Pα is the set of
nodes labelled α in G.

Table 1. Weights for the edges in Gα.

Edge Weight Edge Weight

(α, ti), ti ∈ T ∞ if ti �∈ Pα 0 if ti ∈ Pα (p, apq), f(p) �= f(q) 0 if p ∈ Pα cost(p, q) if p �∈ Pα

(α, ti), ti ∈ T 0 if ti �∈ Pα ∞ if ti ∈ Pα (apq, q), f(p) �= f(q) 0 if q ∈ Pα cost(p, q) if q �∈ Pα

(α, p), p ∈ V − T 0 (p, q), f(p) = f(q) cost(p, q)

(α, p), p �∈ Pα 0 (α, apq), f(p) �= f(q) cost(p, q)

(α, p), p ∈ Pα ∞

Due to space limitation the proofs of the following lemmas are not included.

Lemma 1. Each minimal cut C of Gα of bounded cost separating α from ᾱ
defines a labelling f ′ for G that can be obtained from f through a relabel operation
and its cost is at most the cost of C. This labelling f ′ is defined as follows:
f ′(p) = α if (p, α) ∈ C and f ′(p) = f(p) if (p, α) ∈ C, ∀p ∈ V .

Lemma 2. A labelling f ′ obtained from f by a relabel operation R(A,α, f)
defines a minimal cut of Gα separating α from ᾱ of cost equal to the cost of f ′.

Theorem 1. There is a polynomial time algorithm that given a labelling func-
tion f for a graph G = (V,E) and a label α it computes a minimum cost labelling
f ′ that can be obtained from f through a single relabel operation R〈A,α, f〉.
Proof. The algorithm builds the graph Gα, computes a minimum cut C ′ of Gα

separating α from ᾱ and outputs the labelling f ′ defined by C ′ as described in
Lemma 1. To see that f ′ is a minimum cost labelling obtained from f through a
relabel operation, assume that there is a labelling f ′′ obtained from f through a
relabel operation of cost cost(f ′′) < cost(f ′). By Lemma 2, f ′′ defines a cut C ′′

of Gα separating α from ᾱ of cost cost(C ′′) = cost(f ′′). But then by Lemma 1,
cost(C ′′) = cost(f ′′) < cost(f ′) ≤ cost(C ′) contradicting C ′ is minimum.
�

4 Analysis of MultimayCut for the 3-Way Cut Problem

Since the analysis of our algorithm is a bit complex, we only sketch the analysis
for the case when k = 3. The analysis for the case when k > 3 is not included
because of the space limitations. Let α1, α2 α3 be the 3 labels, let f̂ be the
labelling function computed by MultiwayCut and f∗ be the labelling function
of a global optimal solution. We define partitions Â1, Â2, Â3 in the local optimal

350 A. Bloch-Hansen et al.

solution and A∗
1, A∗

2, A∗
3 in the global optima solution as follows: Âi = {v ∈

V |f̂(v) = αi} and A∗
i = {v ∈ V |f∗(v) = αi}, for all 1 ≤ i ≤ 3.

Note that if we perform a relabel operation on the local optimum solution,
we produce a new solution of the same or larger cost. We bound the cost of
the local optimal solution interms of the cost of the global optimum solution
using this local optimality property. Let Ŝ and S∗ be the sets of edges crossing
the partitions of the local optimal solution and of the global optimal solution,
respectively. Let Ŝp = Ŝ − S∗ and S∗

p = S∗ − Ŝ.
Let B̂αiαj

= {(v, u) ∈ E|f̂(v) = αi, f̂(u) = αj} and B∗
αiαj

= {(v, u) ∈
E|f∗(v) = αi, f

∗(u) = αj}, for all 1 ≤ i < j ≤ 3. Let P and Q be sets of
nodes and B be a set of edges. We define (B|P) = {(u, v) ∈ B|u, v ∈ P} and
(B|P : Q) = {(u, v) ∈ B| u ∈ P, v ∈ Q}. The cost C(B) of set B is the total
cost of the edges in B. We will compute two different bounds for the value of the
local optimum solution that will yield the approximation ratio of our algorithm.

First Bound. Let Ais = A∗
i ∩ Âi and Ais

c = Âi − Ais for i = 1, 2, 3. We
first perform the relabel operation R〈A1s

c, α2, f̂〉 which changes the label that f̂
assigns to nodes in A1s

c to α2: Thus, (1) it decreases the contribution to the cost
of the solution made by the set Δ1 of edges with one endpoint in A1s

c and one
endpoint in Â2, and (2) it increases the contribution to the cost of the solution
made by the set Δ2 of edges with one endpoint in A1s

c and the other in A1s.

Note that A1s
c = Â1−A1s = Â1∩(A∗

2∪A∗
3) and so Δ1 = (B̂α1α2 |A∗

2∪A∗
3 : V)

and Δ2 = (B∗
α1α3

∪B∗
α1α2

|Â1). Observe that set Δ = (B̂α1α2 |A∗
2)∪(B̂α1α2 |A∗

3) ⊆
Δ1 and sets (B̂α1α2 |A∗

2) and (B̂α1α2 |A∗
3) are disjoint. Then, after performing the

relabel operation R〈A1s
c, α2, f̂〉, by the local optimality condition we can show

that
C(B̂α1α2 |A∗

2) + C(B̂α1α2 |A∗
3) ≤ C(B∗

α1α3
∪ B∗

α1α2
|Â1). (1)

By performing R〈A1s
c, α3, f̂〉, R〈A2s

c, α1, f̂〉, R〈A2s
c, α3, f̂〉, R〈A3s

c, α1, f̂〉
and R〈A3s

c, α2, f̂〉 and adding the corresponding inequalities we can show that:

C(Ŝp) ≤ 2
[
C(S∗

p) −
(
C(B∗

α2α3
|Â1) + C(B∗

α1α3
|Â2) + C(B∗

α1α2
|Â3)

)]
. (2)

Adding C(Ŝ ∩ S∗) to the left hand side and 2C(Ŝ ∩ S∗) to the right hand
side of this last inequality we get

C(Ŝ) ≤ 2
[
C(S∗) −

(
C(B∗

α2α3
|Â1) + C(B∗

α1α3
|Â2) + C(B∗

α1α2
|Â3)

)]
. (3)

Second Bound. First, we perform the relabel operation R〈A∗
1, α1, f̂〉. This

operation decreases the contribution to the cost of the solution made by Θ1 =
(B̂α1α2 ∪ B̂α1α3 ∪ B̂α2α3 |A∗

1) = (Ŝ|A∗
1) and by Θ2 = (Ŝ ∩S∗|A∗

1 : Â1 ∩ (A∗
2 ∪A∗

3)).
Let Θ3 = (B∗

α1α2
∪ B∗

α1α3
|Â2) and Θ4 = (B∗

α1α2
∪ B∗

α1α3
|Â3). After perform-

ing the relabel operation R〈A∗
1, α1, f̂〉 the cost of the solution is increased

by the cost of edges in Θ3 and Θ4. By the local optimality property we get

Experimental Evaluation of a Local Search Approximation Algorithm 351

C(Θ3) + C(Θ4) − C(Θ1) − C(Θ2) ≥ 0. This inequality can be rewritten as fol-
lows since C(Ŝ ∩ S∗|A∗

1 : Â1 ∩ (A∗
2 ∪ A∗

3)) ≥ 0:

C(Ŝ|A∗
1) ≤ C(B∗

α1α2
∪ B∗

α1α3
|Â2) + C(B∗

α1α2
∪ B∗

α1α3
|Â3). (4)

We perform two more relabel operations: R〈A∗
2, α2, f̂〉 and R〈A∗

3, α3, f̂〉. Adding
the inequalities obtained from these 3 relabel operations we can show that

C(Ŝp) ≤ C(S∗
p) +

[
C(B∗

α2α3
|Â1) + C(B∗

α1α3
|Â2) + C(B∗

α1α2
|Â3)

]
. (5)

Finally, adding C(Ŝ ∩ S∗) to both sides of (5) we get our second bound,

C(Ŝ) ≤ C(S∗) +
[
C(B∗

α2α3
|Â1) + C(B∗

α1α3
|Â2) + C(B∗

α1α2
|Â3)

]
. (6)

Theorem 2. The approximation ratio of algorithm MultiwayCut for the 3-
way cut problem is 4

3 .

Proof. We multiply (6) by two and add it to (3) to get: 3C(Ŝ) ≤ 4C(S∗) ⇒
C(Ŝ) ≤ 4

3C(S∗).

5 Experimental Results

We compared our local search algorithm with four other approximation algo-
rithms for the multiway cut problem: the isolation heuristic [8], the algorithm of
Calinescu et al. [6], the algorithm of Sharma and Vondrak [13], and the algorithm
of Buchbinder et al. [4,5].

We implemented the algorithms in Java. The integer program solver Cplex
12.7, configured using default settings, was used to compute optimal solutions
for each test instance. The hardware used to run the experiments were a com-
puter using an Intel Core i5-5200U 220 GHz (4 CPUs) with 16 GB of RAM
and SHARCNET’s high performance computing clusters Orca, using an AMD
Opteron 2.2 GHz (4 CPUs) with 32 GB of RAM; Saw, using an Intel Xeon 2.83
Ghz (4 CPUs) with 16 GB of RAM, and Kraken, using an AMD Opteron 2.2
GHz (4 CPUs) with 8 GB of RAM.

To ensure a polynomial running time for our algorithm we chose the value
of ε such that (1 − ε

k2) was equal to 99/100. Cplex was used to solve the linear
programs needed for the algorithms of Calinescu et al. [6], Sharma and Vondrak
[13], and Buchbinder et al. [4,5].

5.1 Input Data

We used inputs from network benchmarks used in DIMACS competitions and
randomly generated networks. Even though past DIMACS competitions have not
included the multiway cut problem in their challenges, we were able to use net-
work benchmarks for maximum clique, maximum independent set, Steiner tree,

352 A. Bloch-Hansen et al.

Hamming instances, Keller’s conjecture instances, and p-hat generated instances
by considering only the largest connected component in each graph and choosing,
when needed, random edge capacities and terminals.

The structure of a graph impacts how well a multiway cut algorithm per-
forms. When edges incident on the terminals have much smaller capacities than
edges not incident on them, an optimal solution will simply select the edges inci-
dent on the terminals. Furthermore, when the number of edges is large, there may
be multiple independent isolating cuts of similar cost for each terminal; an opti-
mal solution will select cuts that share edges, while approximation algorithms
may choose cuts with a larger number of edges. We used these observations to
generate random instances that are difficult for the multiway cut algorithms.
Specifically, we generated three types of random graph instances.

Simple Random Graphs: Edges are added between pairs of randomly selected
vertices. After a specific number of edges is added, the largest connected com-
ponent is output.

Linear Decay Random Graphs: These are random graphs where an initial
edge density and capacity range is used for edges incident on terminal vertices,
and then the edge densities and capacities are linearly decreased as the distance
from the terminals increases.

Exponential Decay Random Graphs: These graphs are also created by
assigning an initial edge density and capacity range to edges incident on terminal
vertices, and then exponentially decreasing the densities and capacities as the
distance from the terminals increases.

Linear and exponential decay random graphs could model practical situations
such as strength and availability of wireless signals, traffic congestion around
popular destinations, or link capacity and topology in client-server networks.

Note that in the linear and exponential decay random graphs edges incident
on the terminals have large capacities, ensuring that cuts isolating terminals
are not the trivial ones. Edges located far from the terminals are given small
capacities, creating a “hot spot” of edges that likely belong to minimum cuts.

5.2 Test Cases

We studied how graph characteristics such as terminal density (k/n), edge capac-
ities, edge density (m/n), and number of vertices impact the solution quality.
We also studied the impact of changing the initial labeling scheme and the value
of ε for MultiwayCut. For all graph instances where terminals were randomly
chosen, k was set to be a fraction of the number of vertices. The fractions used
were 3/80, 1/16, 1/8, 1/4, 3/8, and 1/2. For all graph instances this ensured
that k was at least 3, but not so large that the problem was trivial.

Assigning larger capacities to edges incident on the terminals led to graph
instances whose optimal solutions include edges some distance away from the
terminals. We generated graph instances using two edge capacity schemes. In the
first scheme, edges incident on terminals were assigned rational capacities with

Experimental Evaluation of a Local Search Approximation Algorithm 353

values between 30 and 50, while other edges were assigned rational capacities
with values between 1 and 25 (in exponential decay random graphs) or between
1 and 45 (in linear decay random graphs). In the second scheme, edges incident
on terminals were assigned rational capacities between 1 and 100, while other
edges were assigned rational capacities between 1 and 50 (in exponential decay
random graphs) or between 1 and 90 (in linear decay random graphs).

We explored the impact of edge density on the solution quality. Both, the
graph instances obtained from the DIMACS competitions and the randomly gen-
erated graphs with very large edge densities tended to produce simple instances
for which all algorithms produced near optimum solutions. Therefore, we concen-
trated on generating random graphs with a small number of edges. The number
of edges chosen for each randomly generated graph were n, 2n, 3n, 4n, 5n, and
6n.

We used the following initial labelings for the local search algorithm:

One Each: Each terminal vertex was assigned a different label, and all of the
remaining vertices were assigned the label of the first terminal.

Clumps: Each terminal vertex was assigned a different label, and the terminals
were added to a queue. While the queue had vertices, the first vertex was removed
and the label of that vertex was assigned to all of its unlabeled neighbors, then
each of these neighbors was added to the end of the queue.

Random: Each terminal vertex was assigned a different label, and the terminals
were added to a queue. While the queue had vertices, the queue was randomly
shuffled, the first vertex was removed, and its label was assigned to all of its
unlabeled neighbors, which were then added to the queue.

Isolation Heuristic: The vertices were assigned labels corresponding to the
partitions selected by the isolation heuristic.

These initial labellings provided a variety of starting points that affected the
number of iterations of the algorithm. We also studied the trade-off between
solution quality and running time produced by the choice for the value of ε.

5.3 Results

For randomly generated graphs, 1,000 experiments were performed for each com-
bination of edge density and terminal density for 80 vertex and 160 vertex graphs.
Due to their large running times, only 100 experiments were performed on graphs
with 320 vertices. Graph instances obtained from the DIMACS competitions
have a large number of edges, hence only 25 to 100 experiments were performed
for each terminal density.

Input Networks. Table 2 shows a summary of the results1 for each of the
input networks. The value in each entry of the table is calculated by dividing
the value of the solution produced by an approximation algorithm by the value
1 The complete results are available at https://www.csd.uwo.ca/∼ablochha/rawdata.

pdf.

https://www.csd.uwo.ca/~ablochha/rawdata.pdf
https://www.csd.uwo.ca/~ablochha/rawdata.pdf

354 A. Bloch-Hansen et al.

of the optimum solution produced by Cplex. The column labeled “Avg” lists the
mean of all of the ratios in a test case, and the column labeled “Max” lists the
largest ratio produced in a test case. The rows are labeled with the name of the
input graph and the number of vertices. For each row, solutions from test cases
using different values for k, m, and edge capacities have been combined.

All of the approximation algorithms computed near optimum solutions for
the instances from the DIMACS competitions. The exponential decay random
graphs caused the highest ratios. The isolation heuristic performs the worst, as
it computes independent isolating cuts and fails to re-use edges to achieve lower
costs. This algorithm does particularly bad on linear and exponential decay ran-
dom graphs. The algorithms of Calinescu et al., Buchbinder et al., and Sharma
and Vondrak, which in the sequel we refer to collectively as the geometric relax-
ation algorithms, typically compute solutions close to the optimal but occasion-
ally produce solutions near their theoretical worst case performances.

Table 2. Ratios of the solutions computed by approximation algorithms to the opti-
mum, for benchmarks from the DIMACS competitions: maximum independent set
(Brock), maximum clique (Gen, C125), Hamming instances, Keller instances, p-hat
instances, and Steiner tree instances (ST); and for the randomly generated instances
with simple (SR), linear (GL), and exponential (GE) distributions.

Test case Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak

Avg Max Avg Max Avg Max Avg Max Avg Max

C125 n = 125 1.000 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Brock n = 200 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Gen n = 200 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hamming n = 256 1.000 1.003 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Keller n = 171 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

P-Hat n = 320 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ST n = 80 1.021 1.176 1.001 1.013 1.000 1.000 1.000 1.000 1.000 1.000

n = 160 1.021 1.137 1.000 1.015 1.000 1.000 1.000 1.000 1.000 1.000

n = 320 1.023 1.145 1.000 1.005 1.000 1.000 1.000 1.000 1.000 1.000

SR n = 80 1.031 1.507 1.001 1.133 1.000 1.038 1.000 1.034 1.000 1.024

n = 160 1.039 1.440 1.002 1.118 1.000 1.060 1.000 1.048 1.000 1.039

n = 320 1.032 1.326 1.002 1.128 1.000 1.000 1.000 1.000 1.000 1.000

GL n = 80 1.090 1.500 1.004 1.091 1.000 1.171 1.000 1.154 1.000 1.154

n = 160 1.106 1.600 1.010 1.133 1.000 1.068 1.000 1.089 1.000 1.093

n = 320 1.110 1.643 1.017 1.160 1.000 1.023 1.000 1.044 1.000 1.011

GE n = 80 1.120 1.500 1.006 1.087 1.000 1.292 1.000 1.292 1.000 1.196

n = 160 1.124 1.667 1.015 1.146 1.001 1.125 1.001 1.148 1.001 1.124

n = 320 1.176 1.476 1.031 1.216 1.000 1.074 1.000 1.068 1.000 1.056

Graph Characteristics. Table 3 shows a sample of results from the exponen-
tial decay random distributions, which produced the highest ratios across all
input networks. While for the exponential decay random graphs the algorithms
had the highest ratios, each algorithm only produced these high ratios in a small
subset of test cases. The isolation heuristic had its highest ratios when k was in

Experimental Evaluation of a Local Search Approximation Algorithm 355

the range of 0.125n to 0.25n, and when the number of edges was 2n. Our local
search algorithm and the geometric relaxation algorithms have similar perfor-
mance. These algorithms produced their highest ratios when k was in the range
of 0.0375n to 0.125n, and when the number of edges was between 2n and 5n.

The local search algorithm has similar performance as the geometric relax-
ation algorithms. When the number of terminals is small and the number of
edges is large, the worst values of the solutions computed by the local search
algorithm were close to the average values of its solutions. In contrast, the worst
values of solutions computed by the geometric relaxation algorithm were farther
from the average values of their solutions.

The local search algorithm performs best when k is small. For networks with
a large number of terminals the algorithm does not find global optimal solution
due to the large number of label configurations for the vertices. One possible
improvement for our algorithm on these network is to consider changing multiple
labels at the same time.

Table 3. Average and maximum ratios for several test cases on 80 vertex random
graphs with exponential decay distributions.

Test case Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak

Avg Max Avg Max Avg Max Avg Max Avg Max

k = 3 m = n 1.046 1.333 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

m = 2n 1.100 1.261 1.001 1.034 1.000 1.147 1.000 1.151 1.000 1.075

m = 3n 1.082 1.189 1.001 1.046 1.001 1.102 1.001 1.083 1.001 1.124

m = 4n 1.059 1.170 1.001 1.013 1.002 1.115 1.001 1.083 1.001 1.103

m = 5n 1.027 1.130 1.001 1.011 1.001 1.292 1.001 1.292 1.000 1.063

m = 6n 1.006 1.067 1.000 1.013 1.000 1.170 1.000 1.011 1.000 1.014

k = 5 m = n 1.128 1.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

m = 2n 1.230 1.365 1.001 1.038 1.000 1.082 1.000 1.052 1.000 1.153

m = 3n 1.183 1.298 1.001 1.032 1.001 1.124 1.001 1.085 1.000 1.139

m = 4n 1.106 1.216 1.002 1.022 1.004 1.125 1.004 1.106 1.003 1.101

m = 5n 1.065 1.187 1.003 1.024 1.004 1.226 1.003 1.127 1.003 1.091

m = 6n 1.034 1.113 1.002 1.014 1.001 1.061 1.001 1.117 1.001 1.196

k = 10 m = n 1.076 1.462 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

m = 2n 1.320 1.460 1.000 1.039 1.000 1.000 1.000 1.000 1.000 1.000

m = 3n 1.245 1.331 1.001 1.046 1.000 1.002 1.000 1.003 1.000 1.019

m = 4n 1.168 1.237 1.001 1.033 1.000 1.049 1.000 1.024 1.000 1.065

m = 5n 1.129 1.194 1.002 1.027 1.001 1.075 1.001 1.071 1.001 1.082

m = 6n 1.085 1.149 1.003 1.024 1.002 1.060 1.002 1.053 1.002 1.060

Running Time. A sample of running times for each approximation algorithm
is shown in Table 4. The isolation heuristic is the fastest algorithm. The running
times for the geometric relaxation algorithms include the time needed for Cplex
to compute solutions for the linear programs.

The running times of the algorithms of Calinescu et al., Sharma and Vondrak,
and Buchbinder et al. are very similar. The running times of these algorithms
scale very well with the size of the input graph. The running time of the local

356 A. Bloch-Hansen et al.

search algorithm depends heavily on how the minimum cut is computed and how
many relabel operations are performed. When the number of terminals is small,
the local search algorithm is faster than the geometric relaxation algorithms.

Table 4. Running times using 100 experiments for several test cases from the 80 vertex
and 160 vertex exponential decay distributions.

Isolation Heuristic Local Search Calinescu Buchbinder Sharma and Vondrak
Test Case Time (ms)

n = 80, k = 3

m = 2n 1 6 51 51 50
m = 3n 1 14 77 78 77
m = 4n 1 18 91 92 91

n = 80, k = 5

m = 2n 1 15 67 67 67
m = 3n 1 29 81 82 81
m = 4n 1 52 139 141 139

n = 80, k = 10

m = 2n 1 32 93 94 93
m = 3n 1 88 113 114 113
m = 4n 2 126 127 130 127

n = 160, k = 6

m = 2n 2 64 202 203 202
m = 3n 2 160 339 341 339
m = 4n 2 226 534 534 534

n = 160, k = 10

m = 2n 2 137 274 276 274
m = 3n 2 281 336 340 336
m = 4n 3 486 464 470 464

n = 160, k = 20

m = 2n 3 245 352 361 352
m = 3n 4 700 476 483 476
m = 4n 5 970 523 540 523

Initial Labeling and Value of ε. Figure 1 shows how the value of epsilon
affects the running times and solution quality for the local search algorithm on
the exponential decay graph distribution where m = 4n and k = 10. When
(1 − ε/k2) = 0.9975, the local search algorithm computes solutions very close
to the optimum but requires more time, especially in large graphs. As shown in
Table 4, we can use (1 − ε/k2) = 0.99 to compute high quality solutions quicker
than the other algorithms in small graphs. The local search algorithm can run
considerably faster by sacrificing solution quality.

The different initial labellings for the local search algorithm produced similar
solutions when (1 − ε/k2) was between 0.99 and 1.0. When (1 − ε/k2) was less
than 0.99, the initial labellings showed differences in performance. The One Each
labeling produced the worst solutions; since our random graph structures have
many edges and higher capacities on edges incident on terminals, this initial
labeling selected many edges with large capacities for the cuts. In contrast, the
Clumps initial labeling was closer to the optimal solution and was not signifi-
cantly affected when the value of (1 − ε/k2) decreased below 0.99.

When (1 − ε/k2) = 0.99 the local search algorithm terminates if it cannot
improve its previous best solution by at least 1%. Note that when the initial
labeling is very close to the optimal solution, the value of ε has less of an impact.

Experimental Evaluation of a Local Search Approximation Algorithm 357

Fig. 1. Results from the 160 vertex exponential decay graph distribution with m = 4n
and k = 10. Approximation ratios are compared against the epsilon value using the first
edge capacity scheme (top-left) and the second edge capacity scheme (bottom-left).
Running times are compared against the epsilon value using the first edge capacity
scheme (top-right) and the second edge capacity scheme (bottom-right). The x-axis
shows the value of ε/k2; the percentage of improvement to the previous best solution
required to continue the iterations of the algorithm.

5.4 Conclusion

We compared our local search algorithm with four other approximation algo-
rithms for the multiway cut problem. Even though the local search algorithm
has the same worst case approximation ratio as the isolation heuristic, its exper-
imental performance is much better. We observed competitive solution quality
of the local search algorithm compared to the algorithms of Calinescu et al.,
Buchbinder et al., and Sharma and Vondrak. On graphs with exponential decay
random distributions with k <= 0.125 and m >= 2n the worst solutions pro-
duced by our algorithm were much better than the worst solutions produced by
the geometric relaxation algorithms.

On networks with 80 vertices, the local search algorithm computed solutions
faster than the geometric relaxation algorithms when k was less than 0.125n,
with the smallest test cases being solved significantly faster by the local search
algorithm. On networks with 160 vertices, the local search algorithm computed
solutions faster than the geometric relaxation algorithms when k was less than
0.0625n, but did not scale well. Due to the ability to select the value for ε, the
local search algorithm is more flexible than the other algorithms.

358 A. Bloch-Hansen et al.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey.
Integr. VLSI J. 19(1–2), 1–81 (1995)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

4. Buchbinder, N., Naor, J.S., Schwartz, R.: Simplex partitioning via exponential
clocks and the multiway cut problem. In: ACM STOC, pp. 535–544. ACM (2013)

5. Buchbinder, N., Schwartz, R., Weizman, B.: Simplex transformations and the mul-
tiway cut problem. In: ACM-SIAM SODA, pp. 2400–2410. SIAM (2017)

6. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. In: ACM STOC, pp. 48–52. ACM (1998)

7. Cunningham, W.H., Tang, L.: Optimal 3-terminal cuts and linear programming.
In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol.
1610, pp. 114–125. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48777-8 9

8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

9. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms
for a geometric embedding of minimum multiway cut. Math. Oper. Res. 29(3),
436–461 (2004)

10. Lawler, E.L.: Combinatorial optimization: networks and matroids. Courier Corpo-
ration (1976)

11. Lee, C.H., Kim, M., Park, C.I.: An efficient k-way graph partitioning algorithm for
task allocation in parallel computing systems. In: First International Conference
on Systems Integration, pp. 748–751. IEEE (1990)

12. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-322-92106-2

13. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and
descending thresholds. In: STOC, pp. 724–733. ACM (2014)

14. Stone, H.S.: Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Trans. Softw. Eng. 1, 85–93 (1977)

https://doi.org/10.1007/3-540-48777-8_9
https://doi.org/10.1007/3-540-48777-8_9
https://doi.org/10.1007/978-3-322-92106-2

Algorithmic Analysis of Priority-Based
Bin Packing

Piotr Wojciechowski1, K. Subramani1(B), Alvaro Velasquez2,
and Bugra Caskurlu3

1 LDCSEE, West Virginia University, Morgantown, WV, USA
pwojciec@mix.wvu.edu, k.subramani@mail.wvu.edu
2 Information Directorate, AFRL, Rome, NY, USA

alvaro.velasquez.1@us.af.mil
3 TOBB University of Economics and Technology, Ankara, Turkey

caskurlu@gmail.com

Abstract. This paper is concerned with a new variant of Traditional
Bin Packing (TBP) called Priority-Based Bin Packing with Subset Con-
straints (PBBP-SC). In a TBP instance, we are given a collection of
items {a1, a2, . . . an}, with ai ∈ (0, 1) and a collection of unit-size bins
{B1, B2, . . . , Bm}. One problem associated with TBP is the bin mini-
mization problem. The goal of this problem is to pack the items in as
few bins as possible. In a PBBP-SC instance, we are given a collection
of unit-size items and a collection of bins of varying capacities. Asso-
ciated with each item is a positive integer which is called its priority.
The priority of an item indicates its importance in a (possibly infeasible)
packing. As with the traditional case, these items need to be packed in
the fewest number of bins. What complicates the problem is the fact
that each item can be assigned to only one of a select set of bins, i.e.,
the bins are not interchangeable. We investigate several problems asso-
ciated with PBBP-SC. Checking if there is a feasible assignment to a
given instance is one problem. Finding a maximum priority assignment
in case of the instance being infeasible is another. Finding an assignment
with the fewest number of bins to pack a feasible instance is a third. We
derive a number of results from both the algorithmic and computational
complexity perspectives for these problems.

1 Introduction

In this paper, we study the problem of Priority-Based Bin Packing (PBBP),
subject to subset constraints. PBBP shares some aspects with Traditional Bin
Packing (TBP) but is different in others. In the traditional bin packing problem,
we are given n items {a1, a2, . . . , an} with each ai ∈ (0, 1) and a collection of

This research is supported in part by the Air-Force of Scientific Research through Grant
FA9550-19-1-0177 and in part by the Air-Force Research Laboratory, Rome through
Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 359–372, 2021.
https://doi.org/10.1007/978-3-030-67899-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_29

360 P. Wojciechowski et al.

unit-sized bins {B1, B2, . . . , Bm}. The goal is to pack the items into as few bins
as possible, while respecting the capacity constraints of the bins. Bin packing is
a fundamental problem in combinatorial optimization [12]. Bin packing has been
used to model problems in a wide variety of domains such as transportation [20],
scheduling [24], VLSI design [16] and supply chain management [22]. Additional
application areas include palleting [28,30] and cutting stock problems [7]. The
bin packing problem is closely related to problems such as knapsack [18] and
subset sum [19].

Several variants and generalizations of the bin packing problem have been
studied in the literature. For instance, the generalization in [3] discusses the
case where bins have costs associated with them, in addition to capacities. In
this paper, we study a variant that finds applications in Security Aware Database
Migration (SADM) [26] and palleting [28]. This variant is called Priority-Based
Bin Packing with Subset Constraints (PBBP-SC). One of the features of our
variant is the uniformity in item sizes, i.e., all items have the same size. An
additional feature is that the set of bins into which an item may be placed
is constrained, these constraints being termed as subset constraints. The third
feature of our problem is that associated with each item is a non-negative number
called its priority. The priority of an item becomes significant, if the subset
constraints cannot be met and we need to choose which items are to be packed.
We show that the problems of feasibility and priority maximization (in case of
infeasible instances) can be solved in polynomial time, whereas the problem of
optimizing the number of bins (in case of feasible instances) is NP-hard. We
discuss a number of algorithmic strategies for the NP-hard variant.

2 Statement of Problems

In this section, we define the problems studied in this paper. These problems are
all associated with Priority-based Bin Packing with Subset Constraints (PBBP-
SC).

Definition 1 (PBBP-SC). An instance of Priority-based Bin Packing
with Subset Constraints (PBBP-SC) consists of the following:

1. Set of bins B where each bin bj ∈ B has capacity cj.
2. Set of items O where each item oi ∈ O has priority pi.
3. For each item oi ∈ O, a set Bi ⊆ B such that item oi can be packed into any

bin in the set Bi, but not into any bin in the set B \ Bi.

Throughout this paper, we use n to refer to the number of items and m to
refer to the number of bins. In an instance of PBBP-SC, each set Bi is called a
subset constraint since it determines which bins item oi can be packed in.

We study three problems associated with PBBP-SC instances. These are the
Feasibility Problem (FP), the Priority Maximization Problem (PMP), and the
Bin Minimization Problem (BMP). These problems are defined as follows:

Algorithmic Analysis of Priority-Based Bin Packing 361

Definition 2 (FP). The Feasibility Problem (FP): Given a PBBP-SC
instance P, can we pack the items in set O into the bins in set B such that,
every item oi ∈ O is packed into a bin in set Bi, and every bin bj contains no
more than cj items?

Definition 3 (PMP). The Priority Maximization Problem (PMP):
Given a PBBP-SC instance P, what is the maximum total priority of items
in set O that can be packed into the bins in set B such that, every item oi ∈ O
can only be packed into bins in set Bi, and every bin bj contains no more than
cj items?

Note that, if for a given PBBP-SC instance P FP is feasible, then PMP is
trivial since every item in set O can be packed. Thus, PMP is only interesting
on PBBP-SC instances where FP is infeasible.

Definition 4 (BMP). The Bin Minimization Problem (BMP): Given a
PBBP-SC instance P, what is the smallest subset B∗ ⊆ B such that every item
oi ∈ O is packed into a bin in set Bi ∩ B∗, and every bin bj contains no more
than cj items?

The principal contributions of this paper are as follows:

1. FP and PMP can be solved in polynomial time.
2. BMP is log-APX-complete.
3. BMP cannot be solved in time o(1.41m) or in time o(1.99k), where k is the

smallest number of bins needed to pack all of the items in O, unless the Strong
Exponential Time Hypothesis (SETH) fails [10].

3 Motivation

In this section, we briefly discuss two problems that have motivated our analysis
in this paper.

1. Security-Aware Database Migration (SADM) - The SADM problem was intro-
duced in [26]. In this problem, we are given a collection of databases (Di) of
various sizes that need to be assigned to migration shifts (Si). The shifts have
varying sizes themselves. Furthermore, each database is constrained by the
shifts to which it can be assigned. This models the fact that the expertise for
addressing the issues associated with a database can be found only in certain
shifts. For instance, it could be the case that database D1 can be migrated
only in shifts S4 and S7. We need to assign the databases to the shifts so that
these shift assignment constraints for each item are met. At the same time,
we wish to minimize the number of shifts used in the assignment, since shifts
correspond to man-hours used and are therefore expensive. Database packing
albeit with a different objective function is discussed in [27].

362 P. Wojciechowski et al.

2. Palleting - The Pallet Loading (PL) problem is concerned with packing large
quantities of cartons onto pallets. This problem finds applications in logis-
tics [13], supply chain optimization [29], and a host of other areas such as
container loading in ships [1]. The PL problem is closely related to both the
knapsack and the bin packing problems [8]; typically, the cartons in PL are 2-
dimensional or 3-dimensional, whereas the items in TBP are uni-dimensional.
In its simplest form, the goal is to maximize the number of cartons that are
loaded onto a pallet. Alternatively, as argued in [23], the goal is to minimize
the “wasted area”. In [28], the multi-pallet loading problem is considered.
This problem is similar to our bin packing variant; however, they do not
consider the subset constraints considered in this paper. In typical Air-Force
palleting applications [4], items to be loaded are constrained by which pallets
they can be loaded onto. Thus, the work in this paper finds direct applications
to Air-Force palleting problems.

4 Feasibility of PBBP-SC

In this section, we show that the feasibility problem for PBBP-SC can be solved
in polynomial time. This is done by a reduction to maximum matching.

Let P be a PBBP-SC instance. From P, we construct the corresponding
bipartite graph G = 〈U, V,E〉 as follows:

1. For each bin bj ∈ B, create the vertices uj,1 through uj,cj . We can assume
without loss of generality that cj ≤ n.

2. For each item oi ∈ O, create the vertex vi. Additionally, create the edges
(vi, uj,1) through (vi, uj,cj) for each bj ∈ Bi. Observe that for item oi, we
create

∑
bj∈Bi

cj edges.

Example 1. Let P be the following PBBP-SC instance:

1. B = {b1, b2} where c1 = c2 = 2.
2. O = {o1, o2, o3} where B1 = {b1}, B2 = {b1, b2}, and B3 = {b2}.

PBBP-SC instance P corresponds to the bipartite graph G in Fig. 1.

v1 v2 v3

u1,1 u1,2 u2,1 u2,2

Fig. 1. Bipartite graph G corresponding to PBBP-SC P.

Algorithmic Analysis of Priority-Based Bin Packing 363

Theorem 1. P is feasible if and only if the corresponding graph G has a match-
ing of size n.

Proof. First, assume that P is feasible. Thus, there exists a packing P that
assigns every item oi ∈ O to a bin P (oi) ∈ Bi such that no bin exceeds its
capacity. From the packing P , we can construct a matching M in G as follows:
For each item oi ∈ O, if oi is the kth item packed into bin P (oi), add the edge
(vi, uP (oi),k) to M .

Note that P packs every item in O. Thus, M is a matching in G of size n.
Now assume that G has a matching M of size n. By construction, G is bipar-

tite and |V | = n thus every vertex in V must be matched. From the matching
M we can construct a packing P as follows:

1. For every vertex vi ∈ V consider the edge (vi, uj,k) ∈ M .
2. Pack item oi into bin P (oi) = bj .

By construction, the edge (vi, uj,k) ∈ E if and only if bj ∈ Bi and k ≤ cj .
Thus, P assigns every item oi ∈ O to a bin P (oi) ∈ Bi and no bin exceeds its
capacity. Consequently, P is a valid packing and P is feasible. �	

From a given PBBP-SC instance P the corresponding graph G can be con-
structed in parallel by a CREW-PRAM machine. Note that a CREW-PRAM
is a parallel random access machine whose processors can simultaneously read
data from the same location but cannot simultaneously write data to the same
location [14].

This construction is performed follows:

1. For each item oi ∈ O, use a single processor to create the vertex vi. This
requires a total of n processors.

2. For each bin bj ∈ B and each l = 1 . . . cj , use a single processor to create the
vertex uj,l. This requires a total of

∑m
j=1 cj ≤ m · n processors.

3. For each item oi, each bin bj ∈ Bi, and each l = 1 . . . cj , use a single processor
to create the edge (vi, uj,l). This requires a total of

∑n
i=1

∑
bj∈Bi

cj ≤ m · n2

processors.

Each of these steps takes constant time. Thus, the graph G can be con-
structed in constant time using a CREW-PRAM with m · n2 processors. Conse-
quently, this is an AC0 reduction [25].

Using the algorithm in [6], a maximum matching in G can be found in time
O(min{|V | · k, |E|} +

√
k · min{k2, |E|}) where k is the size of the maximum

matching. By construction, in the graph G, |V | = n, |U | =
∑m

j=1 cj ≤ m · n,
and |E| =

∑n
i=1

∑
bj∈Bi

cj ≤ m · n2. Thus, the maximum matching of G can be
found in time O(n2.5). However constructing G takes time O(|V | + |U | + |E|) ⊆
O(m · n2). Thus, FP can be solved in time O(n2 · (m +

√
n)).

Additionally, the problem of finding a maximum matching in a bipartite
graph can be reduced to FP.

364 P. Wojciechowski et al.

Let G = 〈U, V,E〉 be a bipartite graph. From G, we construct the corre-
sponding PBBP-SC instance P as follows:

1. For each vertex uj ∈ U , create the bin bj with capacity cj = 1.
2. For each vertex vi ∈ V , create the item oi with subset constraint Bi = {bj :

(vi, uj) ∈ E}.

Corollary 1. G has a matching of size n if and only if the corresponding PBBP-
SC instance P is feasible.

Proof. Note that G is precisely the bipartite graph that would be constructed
from P by the previous reduction, except with each vertex uj,1 renamed to uj .
Thus, by Theorem 1, G has a matching of size n if and only if P is feasible. �	

From a given bipartite graph G the corresponding PBBP-SC instance P can
be constructed in parallel by a CREW-PRAM machine as follows:

1. For each vertex uj ∈ U , use a single processor to create the bin bj . This
requires a total of |U | processors.

2. For each vertex vi ∈ V , use a single processor to create the item vi. This
requires a total of |V | processors.

3. For each vertex vi and each vertex uj such that (vi, uj) ∈ |E|, use a single
processor to add the bin bj to the set Bi. This requires a total of |E| processors.

Each of these steps takes constant time. Thus, the PBBP-SC instance P can
be constructed in constant time using a CREW-PRAM with max{|V |, |U |, |E|}
processors. Consequently, this is an AC0 reduction [25].

Both of the reductions are AC0 reductions. Thus, FP is AC0 equivalent to
the maximum matching problem for bipartite graphs. Maximum matching is
not currently known to be P-complete nor is it known to be in NC [2]. If the
complexity of maximum matching is established, then AC0 equivalence means
that the same complexity applies to our problem.

4.1 Priority Maximization

The reduction from FP to maximum matching can be adapted to solve PMP by
adding weights to the edges in the bipartite graph.

Let P be a PBBP-SC instance. From P, we construct the corresponding
weighted bipartite graph GW = 〈U, V,E, c〉 as follows:

1. For each bin bj ∈ B, create the vertices uj,1 through uj,cj . We can assume
without loss of generality that cj ≤ n.

2. For each item oi ∈ O, create the vertex vi. Additionally, create the edges
(vi, uj,1) through (vi, uj,cj) with weight pi for each bj ∈ Bi. Observe that for
item oi, we create

∑
bj∈Bi

cj edges.

Example 2. Let P be the following PBBP-SC instance:

1. B = {b1, b2} where c1 = c2 = 2.
2. O = {o1, o2, o3} where B1 = {b1}, B2 = {b1, b2}, and B3 = {b2}. Additionally,

p1 = 3, p2 = 2, and p3 = 1.

Algorithmic Analysis of Priority-Based Bin Packing 365

PBBP-SC instance P corresponds to the weighted bipartite graph GW in Fig. 2.

Theorem 2. P has a packing that packs items with a total priority of W if and
only if the corresponding graph GW has a matching of weight W .

v1 v2 v3

u1,1 u1,2 u2,1 u2,2

3 3 2 2
2 2

1 1

Fig. 2. Weighted bipartite graph GW corresponding to PBBP-SC P.

Proof. First, assume that there exists a packing P that packs items with a total
priority of W . Let O′ ⊂ O be the set of items packed by P . Thus, every item
oi ∈ O′ is packed into bin P (oi) ∈ Bi such that no bin exceeds its capacity.
Additionally,

∑
oi∈O′ pi = W .

From the packing P , we can construct a matching M in GW as follows: For
each item oi ∈ O′, if oi is the kth item packed into bin P (oi), add the edge
(vi, uP (oi),k) to M .

Consider an item oi ∈ O. If oi ∈ O′, then M contains an edge from vertex
vi. By construction, this edge has weight pi. If oi �∈ O′, then M does not contain
any edge from vertex vi. Thus,

∑

el∈M

c(el) =
∑

oi∈O′
pi = W.

Consequently, M is a matching in GW with total weight W .
Now assume that GW has a matching M with total weight W . Thus,∑

el∈M c(el) = W . From the matching M , we can construct a packing P as
follows:

1. For every vertex vi ∈ V matched by M , consider the edge (vi, uj,k) ∈ M .
2. Pack item oi into bin P (oi) = bj . By construction, the edge (vi, uj,k) ∈ E if

and only if bj ∈ Bi and k ≤ cj . Thus, no bin exceeds its capacity.

Let O′ be the set of items packed by P . Consider the vertex vi. If vi is
matched by M , then oi ∈ O′. Additionally, there is an edge (vi, uj,k) ∈ M with
weight pi. If vi is not matched by M , then oi �∈ O′. Thus,

∑

oi∈O′
pi =

∑

el∈M

c(el) = W.

Consequently, P packs items with a total priority of W . �	

366 P. Wojciechowski et al.

Using the algorithm in [11], a maximum weight matching in GW can be found
in time O(|E| · (|U |+ |V |)+ (|U |+ |V |)2 · log(|U |+ |V |)). By construction, in the
graph GW, |V | = n, |U | =

∑m
j=1 cj ≤ m ·n, and |E| =

∑n
i=1

∑
bj∈Bi

cj ≤ m ·n2.
Thus, the maximum weight matching of GW can be found in time O(m2 · n2 ·
(n+log m)). However constructing G takes time O(|V |+ |U |+ |E|) ⊆ O(m ·n2).
Thus, PMP can be solved in time O(m2 · n2 · (n + log m)). Note that a faster
algorithm for maximum weight matching will decrease the time it takes for this
reduction to solve the PMP problem (down to a minimum time of O(m · n2)).

5 Bin Minimization

In this section, we examine the bin minimization problem for PBBP-SC.
First, we look at the complexity of approximating the minimum number of

bins. We do this by showing that BMP is complete for the complexity class log-
APX. Note that log-APX is the class of optimization problems for which there
is a polynomial time algorithm that approximates the optimal solution to within
a factor logarithmic in the size of the input [21]. We do this by relating BMP to
the Minimum Set Cover (MSC) problem. This problem is defined as follows:

Given a set S = {x1, . . . , xn} and a collection of subsets Sj ⊆ S for j =
1 . . . m, what is the minimum number of subsets whose union is S? This problem
is known to be log-APX-complete [9].

From an MSC instance SC, we can construct a PBBP-SC instance P as
follows:

1. For each subset Sj , create the bin bj with capacity cj = n.
2. For item xi ∈ S, create item oi with subset constraint Bi = {bj : xi ∈ Sj}.

Lemma 1. SC has a cover of size k if and only if P has a valid packing using
k bins.

Proof. First assume that SC has a cover C of size k. From C, we construct a
packing P of P as follows:

1. For each item xi ∈ S, let 1 ≤ j ≤ m be the smallest number such that Sj ∈ C
and xi ∈ Sj .

2. Pack item oi into bin P (oi) = bj .

Since xi ∈ Sj , by construction bj ∈ Bi. Additionally, each bin in P has
capacity n, thus no bin exceeds its capacity. Since |C| = k, only k bins are used
by P . Consequently P is a valid packing using only k bins.

Now assume that P has a valid packing P using only k bins. We construct a
cover C of SC as follows: For each bin bj ∈ B, if bj is used by P , add Sj to C.

Since P is a valid packing, every item oi is assigned to a bin P (oi). By
construction, item xi is covered by the set corresponding to bin P (oi). Since this
set is in C, C is a cover of S. Since P uses only k bins, |C| = k as desired. �	

Algorithmic Analysis of Priority-Based Bin Packing 367

Note that this is a strict reduction since it runs in linear time and preserves
the value of the optimization function. Thus, BMP is log-APX-hard. Now we
need to show that BMP is in log-APX. This will be done by providing an
approximation algorithm.

Observe that the reduction from set cover only produces PBBP-SC instances
where the capacity of the bins is effectively unlimited. Thus, when the capacities
matter, the problem may become more difficult to approximate. We show that
this is not the case.

We now use the fact that PMP is in P to construct an approximation algo-
rithm for BMP. This results in Algorithm 5.1.

For a feasible PBBP-SC instance P, let Opt(P) be the optimal number of
bins needed to pack all of the items in O. We now prove that Approx-Min-
Bins(P) ≤ (1 + log m) · Opt(P).

Algorithm 5.1. Approximation Algorithm for BMP
Input: Feasible PBBP-SC instance P
Output: Approximate number of bins needed to pack every item in O.

1: procedure Approx-Min-Bins(P)
2: Let S := ∅ be a set of bins.
3: Let O(S) be a set of objects with maximum cardinality that can be packed into

S. � O(S) can be found in polynomial time by solving PMP.
4: while O(S) �= O do
5: Let bj be the bin such that |O(S ∪ {bj})| is maximized.
6: S := S ∪ {bj}.

7: return |S|.

Theorem 3. Approx-Min-Bins(P) ≤ (1 + log m) · Opt(P).

Proof. Let P ∗ be a valid packing of P that uses a minimum number of bins and
let B∗ ⊆ B be the set of bins used by P ∗. Note that |B∗| = Opt(P). Additionally,
let S be the set of bins constructed by Algorithm 5.1.

Let Si be the set constructed by the ith iteration of the while loop in Algo-
rithm 5.1. Since the objects in O(Si) can be packed into the bins in Si and the
objects in O can be packed into Si∪B∗, we have that the objects in O\O(Si) can
be packed into the bins in B∗ \Si by some packing Pi. For each bin bj ∈ B∗ \Si,
let xi,j be the number of objects packed into bin bj by Pi. We can assume without
loss of generality that xi,j ≥ xi+1,j .

Thus, after the ith iteration of the while loop,
∑

bj∈B∗\Si
xi,j = |O \ O(Si)|.

Consequently,
∑

bj∈B∗\Si
(xi,j − xi+1,j) = |O(Si+1) \ O(Si)|.

Let bj be a bin in B∗. We have that either bj ∈ S or every object that could
be packed into bin bj is packed into a bin in S. Thus, there is a smallest kj such
that either:

368 P. Wojciechowski et al.

1. Every object that could be packed into bj belongs to the set O(Skj
).

2. Bin bj is in Skj+1.

Thus, for each i ≤ kj , bin bj could have been added to set Si by Algorithm
5.1. However, in each of these iterations there existed a bin that could add more
objects to the current packing. Thus, |O(Si)| ≥ |O(Si−1 ∪ {bj})|. Since at least
xi−1,j objects in O \ O(Si−1) can be packed into bin bj , |O(Si−1 ∪ {bj})| ≥
|O(Si−1)| + xi−1,j . Thus, xi−1,j ≤ |O(Si)| − |O(Si−1)|.

This means that

kj−1∑

i=0

xi,j − xi+1,j

|O(Si+1) \ O(Si)| ≤
kj−1∑

i=0

xi,j − xi+1,j

xi,j
≤

kj−1∑

i=0

xi,j∑

l=xi+1,j

1
xi,j

≤
kj−1∑

i=0

xi,j∑

l=xi+1,j

1
l

=
x0,j∑

l=xkj,j

1
l
.

We have that x0,j ≤ m. Additionally, since no objects in O \ O(Skj
) can be

packed into bj , xkj ,j = 0. Thus,
∑kj−1

i=0
xi,j−xi+1,j

|O(Si+1)\O(Si)| ≤ ∑m
l=1

1
l ≤ 1 + log m.

This means that

|S| =
|S|−1∑

i=0

1 =
|S|−1∑

i=0

∑
bj∈B∗\Si

xi,j − xi+1,j

|O(Si+1) \ O(Si)|

=
∑

bj∈B∗

kj−1∑

i=0

xi,j − xi+1,j

|O(Si+1) \ O(Si)| ≤ |B∗| · (1 + log m).

Thus, Algorithm 5.1 is a (1 + log m) approximation algorithm for BMP. �	
Since, for any feasible PBBP-SC instance P the optimal number of bins

needed to pack all of the items in O can be approximated to within a factor
of (1 + log m), we have that BMP belongs to the class log-APX. We already
showed that BMP is log-APX-hard. Thus, BMP is log-APX-complete.

5.1 Lower Bounds

We now show that BMP is unlikely to be solved in time o(1.41m) or in time
o(1.99k), where k is the smallest number of bins needed to pack all of the items
in O.

These bounds are derived using the Strong Exponential Time Hypothesis
(SETH) which is defined as follows:

For each r ≥ 3, let sr be the smallest value such that r-SAT can be solved in
time O∗(2sr·n′

) where n′ is the number of variables in the formula. The SETH is
the hypothesis that limr→∞ sr = 1 [5]. An immediate consequence of the SETH
is that, in general, SAT cannot be solved in time o((2 − ε)n

′
) for any ε > 0 [17].

Algorithmic Analysis of Priority-Based Bin Packing 369

Let Φ be a CNF formula with m′ clauses over n′ variables. From Φ, we
construct a PBBP-SC instance P as follows:

1. For each variable xi of Φ, let d+i be the number of clauses which use the literal
xi and let d−

i be the number of clauses which use the literal ¬xi.
2. For each variable xi of Φ, create the bin b2·i−1 with capacity c2·i−1 = d+i + 1

and create the bin b2·i with capacity c2·i = d−
i + 1. Additionally, create the

item oi with Bi = {b2·i−1, b2·i}.
3. For each clause φj ∈ Φ, create the item on′+j . For each variable xi:

(a) If φj uses the literal xi, then add bin b2·i−1 to Bn′+j .
(b) If φj uses the literal ¬xi, then add bin b2·i to Bn′+j .

Note that P has n = m′ + n′ items and m = 2 · n′ bins. We now show that
P has a packing P that uses k = n′ bins if and only if Φ is satisfiable.

Theorem 4. P has a packing that uses n′ bins if and only if Φ is satisfiable.

Proof. By construction, the sets B1 through Bn′ are mutually disjoint. Thus,
the items o1 through on′ must be packed into separate bins. This means that
no packing of the items in O uses fewer than n′ bins. Additionally for each
i = 1 . . . n′, either bin b2·i−1 or bin b2·i must be used.

First assume that P has a packing P that uses n′ bins. Observe that if for
any i = 1 . . . n′ both bin b2·i−1 and bin b2·i are used, then P must use at least
(n′ + 1) bins. Thus, P cannot use both of these bins.

From P , we construct an assignment x to Φ as follows: For each i = 1 . . . n′

1. If P uses bin b2·i−1, set variable xi to true.
2. If P uses bin b2·i, set variable xi to false.

Now consider a clause φj ∈ Φ. The item on′+j is either packed into bin b2·i−1

or bin b2·i for some i = 1 . . . n′. If item on′+j is packed into bin b2·i−1, then by
construction, clause φj contains the literal xi. Additionally, bin b2·i−1 is used by
packing P . Thus, the assignment x sets the variable xi to true. Consequently,
φj contains a true literal and is satisfied by x.

If item on′+j is packed into bin b2·i, then by construction, clause φj contains
the literal ¬xi. Additionally, bin b2·i is used by packing P . Thus, the assignment
x sets the variable xi to false. Consequently, φj contains a true literal and is
satisfied by x.

Since x satisfies every clause of Φ, Φ is satisfiable.
Now assume that Φ is satisfiable. Thus, there exists an assignment x that

satisfies every clause in Φ. From x, we construct a packing P of P as follows:

1. For each variable xi, if xi is true, then pack item oi into bin b2·i−1. Otherwise,
pack item oi into bin b2·i.

2. For each clause φj ∈ Φ, let lj be a literal in φj set to true by x. If lj is the
literal xi for some variable xi, then pack item on′+j into bin b2·i−1. If lj is
the literal ¬xi for some variable xi, then pack item on′+j into bin b2·i.

370 P. Wojciechowski et al.

The constructed packing P has the following properties:

1. If x set the variable xi to true, then the literal ¬xi is false. Thus, no item
will be packed into bin b2·i. If x set the variable xi to false, then the literal
xi is false. Thus, no item will be packed into bin b2·i−1. This means that for
each variable xi, P does not use both bin b2·i−1 and bin b2·i. Consequently,
P uses at most n′ bins.

2. By construction, every item oj is packed into a bin in Bj .
3. The literal xi appears in d+i clauses. Thus at most d+i + 1 = c2·i−1 items are

packed into bin b2·i−1. Similarly, the literal ¬xi appears in d−
i clauses. Thus,

at most d−
i + 1 = c2·i items are packed into bin b2·i. Consequently, no bin is

packed beyond its capacity.

Thus, P is a valid packing of PBBP-SC instance P. Consequently, P has a
packing that uses n′ bins. �	

Thus, if there were a o(1.41m) algorithm for BMP, then the feasibility of Φ
would be determined in time o(1.412·n′

) ⊆ o(1.99n
′
). This violates the SETH.

Thus, it is unlikely that such an algorithm exists. Similarly, it is unlikely that
there is a o(1.99k) time algorithm for BMP.

6 Conclusion

In this paper, we discussed a new variant of the traditional bin packing problem
called priority-based bin packing (PBBP). The PBBP problem is similar to the
generalized bin packing problem described in [3], but has several distinct features.
The notion of subset constraints introduced in this paper finds applications in
several domains other than the ones described in this paper. We showed that the
feasibility problem in PBBP is in P. This is similar to traditional bin packing
but different from generalized bin packing; the feasibility problem in the latter
is NP-hard. We investigated two optimization problems related to the PBBP
problem, viz., the bin minimization problem (for feasible instances) and the
priority maximization problem (for infeasible instances). We showed that the bin
minimization problem is log-APX-complete, while there exists a polynomial
time algorithm for the priority maximization problem.

From our perspective, the following open problems are worth pursuing:

1. A new measure of optimization - The focus of the BMP problem is minimizing
the total number of bins used. However, there is an alternative metric, viz.,
minimizing the index of the last bin used. The optimal solutions obtained
under the last metric are in general different from those obtained under the
total number of bins metric. For a detailed discussion of this metric and its
application to database migration, see [26].

2. Parameterized algorithms - As mentioned before, in the case of TBP, we can-
not hope for a fixed-parameter algorithm, when the parameter is the number
of bins, since bin packing is NP-hard, even when the number of bins is at

Algorithmic Analysis of Priority-Based Bin Packing 371

most 2. However, this does not apply in the case of BMP, since in BMP the
items have the same size. We believe that the techniques discussed in [15]
may be helpful in designing a fixed-parameter tractable algorithm for BMP.

3. Bi-objective optimization - Both the bin minimization problem and the pri-
ority maximization problem are special cases of the following bi-objective
problem: Given unit-sized items with priorities, a collection of bins, subset
constraints relating items and bins, and two numbers K1 and K2, is there a
packing of items into the bins, such that the subset constraints are satisfied,
at most K1 bins are used and the sum of the priorities of the packed items is
at least K2? Clearly, this problem is NP-hard. The question is whether we
can develop a dynamic programming algorithm for this problem.

References

1. Alvarez-Valdés, R., Parreño, F., Tamarit, J.M.: A branch-and-cut algorithm for
the pallet loading problem. Comput. Oper. Res. 32, 3007–3029 (2005)

2. Anari, N., Vazirani, V.V.: Matching is as easy as the decision problem, in the NC
model. CoRR, abs/1901.10387 (2019)

3. Baldi, M.M., Bruglieri, M.: On the generalized bin packing problem. ITOR 24(3),
425–438 (2017)

4. Ballew, B.: The distributor’s three-dimensional pallet-packing problem: a mathe-
matical formulation and heuristic solution approach, p. 111, March 2000

5. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
75–85. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0 6

6. Chandran, B.G., Hochbaum, D.S.: Practical and theoretical improvements for
bipartite matching using the pseudoflow algorithm. CoRR, abs/1105.1569 (2011)

7. Csirik, J., Johnson, D.S., Kenyon, C., Orlin, J.B., Shor, P.W., Weber, R.R.: Fast
algorithms for bin packing. J. Comput. Syst. Sci. 8(8), 272–314 (1974)

8. Paul Davies, A., Bischoff, E.E.: Weight distribution considerations in container
loading. Eur. J. Oper. Res. 114(3), 509–527 (1999)

9. Escoffier, B., Paschos, V.T.: Completeness in approximation classes beyond apx.
Theor. Comput. Sci. 359(1), 369–377 (2006)

10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithm, 1st edn. Springer, Hei-
delberg (2010)

11. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman Company, San Francisco (1979)

13. Hodgson, T.J.: A combined approach to the pallet loading problem. IIE Trans.
14(3), 175–182 (1982)

14. JaJa, J.: Introduction to Parallel Algorithms, 1st edn. Addison Wesley, Boston
(1992)

15. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013)

16. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3D-strip
packing. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, 22–26 January 2006, pp.
143–152. ACM Press (2006)

https://doi.org/10.1007/978-3-642-11269-0_6

372 P. Wojciechowski et al.

17. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 41–71 (2011)

18. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley, Hoboken (1990)

19. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley, New York (1999)

20. Paquay, C., Limbourg, S., Schyns, M.: A tailored two-phase constructive heuristic
for the three-dimensional multiple bin size bin packing problem with transportation
constraints. Eur. J. Oper. Res. 267(1), 52–64 (2018)

21. Paschos, V.: An overview on polynomial approximation of NP-hard problems.
Yugoslav J. Oper. Res. 19, 3–40 (2009)

22. Perboli, G., Gobbato, L., Perfetti, F.: Packing problems in transportation and
supply chain: new problems and trends. Proc. - Soc. Behav. Sci. 111(5), 672–681
(2014)

23. Ram, B.: The pallet loading problem: a survey. Int. J. Prod. Econ. 28, 217–225
(1992)

24. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin
packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)

25. Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by
circuits. SIAM J. Comput. 13, 409–422 (1984)

26. Subramani, K., Caskurlu, B., Acikalin, U.U.: Security-aware database migration
planning. In: Brandic, I., Genez, T.A.L., Pietri, I., Sakellariou, R. (eds.) ALGO-
CLOUD 2019. LNCS, vol. 12041, pp. 103–121. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58628-7 7

27. Subramani, K., Caskurlu, B., Velasquez, A.: Minimization of testing costs in
capacity-constrained database migration. In: Disser, Y., Verykios, V.S. (eds.)
ALGOCLOUD 2018. LNCS, vol. 11409, pp. 1–12. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19759-9 1

28. Terno, J., Scheithauer, G., Sommerweiß, U., Riehme, J.: An efficient approach for
the multi-pallet loading problem. Eur. J. Oper. Res. 123(2), 372–381 (2000)

29. Vargas-Osorio, S., Zuniga, C.: A literature review on the pallet loading problem.
Lampsakos 15, 69–80 (2016)

30. Zhou, K.: The pallet loading method of single category cargo based on railway
containerized transport. In: Proceedings of the 2018 10th International Conference
on Computer and Automation Engineering, ICCAE 2018, Brisbane, Australia, 24–
26 February 2018, pp. 243–249. ACM (2018)

https://doi.org/10.1007/978-3-030-58628-7_7
https://doi.org/10.1007/978-3-030-58628-7_7
https://doi.org/10.1007/978-3-030-19759-9_1
https://doi.org/10.1007/978-3-030-19759-9_1

Recursive Methods for Some Problems
in Coding and Random Permutations

Ghurumuruhan Ganesan(B)

Institute of Mathematical Sciences, HBNI, Chennai, India
gganesan82@gmail.com

Abstract. In this paper, we study three applications of recursion to
problems in coding and random permutations. First, we consider locally
recoverable codes with partial locality and use recursion to estimate the
minimum distance of such codes. Next we consider weighted lattice rep-
resentative codes and use recursive subadditive techniques to obtain con-
vergence of the minimum code size. Finally, we obtain a recursive relation
involving cycle moments in random permutations and as an illustration,
evaluate recursions for the mean and variance.

Keywords: Locally recoverable codes · Partial locality · Minimum
distance · Lattice identification codes · Minimum size · Random
permutations · Cycle moments

1 Introduction

Recursive techniques are used quite frequently in coding to obtain bounds on
code sizes. As a typical example, the Singleton bound [9] obtains bounds on sizes
of n−length codes by reducing the problem to that of an (n − 1)−length code.
Similarly, recursive relations are also frequent in terms related to permutations
like for example, Stirling numbers of the first kind [8]. In this paper, we study
further applications of recursive methods to problems in coding and random
permutations.

The paper is organized as follows: In Sect. 2, we consider locally recoverable
codes with partial locality and estimate the minimum distance of such codes
(Theorem 1) using iterations on subcodes. Next, in Sect. 3, we study lattice
representative codes with weights and prove asymptotic convergence of the min-
imum size, using subadditive techniques (Theorem 2). Finally, in Sect. 4, we
establish a recursion for cycle moments of random permutations (Theorem 3)
and illustrate our result for the cases of mean and variance (Corollary 1).

2 Locally Recoverable Codes with Partial Locality

Locally recoverable codes for erasures have tremendous applications in dis-
tributed storage and retrieval [12] and it is therefore important to understand the
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 373–384, 2021.
https://doi.org/10.1007/978-3-030-67899-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_30

374 G. Ganesan

properties of such codes. Typically each erasure correction is performed using a
locality set of small size and it is of interest to design codes capable of correcting
multiple erasures simultaneously. Such codes are also known as locally repairable
codes and storage-bandwidth tradeoff and construction of such codes has been
well-studied; for an overview we refer to the recent survey [2]. For distinction,
we refer to codes above as fully locally recoverable codes since every symbol
position has a locality set of small size associated with it. In [7], bounds are
obtained for the minimum distance of linear fully locally recoverable codes in
terms of the size of the locality sets. Later [5] studied bounds on the minimum
distance of non-linear systematic fully locally recoverable codes.

In this section, we study minimum distance of locally recoverable codes with
partial locality. We assume that only a subset of symbol positions have locality
set size at most r and obtain bounds on the minimum distance. Let n ≥ k ≥ 1 be
integers and let A be a set of cardinality #A = q. A set C ⊆ An of cardinality qk

is defined to be an (n, k)−code.
For a set U ⊆ {1, 2, . . . , n} and an integer j ∈ {1, 2, . . . , n} \ U , we say that

position j is determined by U if there exists a function gj such that

cj = gj (ci : i ∈ U) =: gj (U) (2.1)

for all codewords c = (c1, . . . , cn) ∈ C. In words, the symbol at the jth position
of any codeword can be determined from the symbols with positions in U . The
set FU of all positions determined by U is called the reach of U . For integer 1 ≤
w ≤ n, we define

L(w) = L(w, C) := max
U :#U=w

#FU . (2.2)

For any w ≥ 1 we have that L(w, C) ≤ Δ(w), where Δ(w) = qw if C is a linear
code and Δ(w) = qqw

otherwise. We remark here that qqw

is the total number
of maps from Aw to A.

Definition 1. For integers τ, r ≥ 2 and a subset Θ ⊆ {1, 2, . . . , n}, we say that
the code C has (Θ, τ, r)−local correction capability if for every subset P ⊆ Θ of
size τ, there exists a set TP ⊆ {1, 2, . . . , n} \ P of size at most r such that each
position in P is determined by TP .

We define TP to be the r−locality set corresponding to the set P. Also if Θ =
{1, 2, . . . , n}, we say that C has (τ, r)−local correction capability.

For example, consider the binary linear code C formed in the following way:
For k ≥ 10 and a word (c1, . . . , ck) ∈ {0, 1}k, let di1,i2,i3 := ci1 ⊕ ci2 ⊕ ci3

where ⊕ denotes addition modulo two. There are
(
k
3

)
=: n − k − 1 such

terms {di1,i2,i3} which we relabel as ck+1, . . . , cn−1. Finally we let cn := ⊕k
i=1ci.

We let (c1, . . . , cn) be the codeword corresponding to the word (c1, . . . , ck). The
collection of codewords C has (Θ, τ, r)−local correction capability with Θ =
{1, 2, . . . , n − 1}, τ = 1 and r = 3. For example to recover c1, we use the relation

d1,2,3 ⊕ d1,2,4 ⊕ d1,3,4 = c1.

Recursive Methods in Coding 375

In general, each bit cj , 1 ≤ j ≤ k can be recovered in a similar manner.
Because k ≥ 10, the bit cn cannot be recovered by using any three bits
of {c1, . . . , cn−1}.

Let C be any code with (Θ, τ, r)−local correction capability. For words x =
(x1, . . . , xn) and y = (y1, . . . , yn) in C we define the Hamming distance between x
and y to be d(x,y) :=

∑n
i=1 11(xi �= yi), where 11(.) denotes the indicator function.

The minimum distance of C is then defined as d(C) := minx,y∈C d(x,y). We have
the following result.

Theorem 1. Let C be any (n, k)−code with (Θ, τ, r)−parallel correction capa-
bility and let θ = #Θ. The minimum distance of C satisfies

d(C) ≤ n − k + 1 − T · τ, (2.3)

where T is the largest integer t such that

t · r ≤ k − 1 + θ − n and t · r + Δ(t · r) ≤ θ − τ + 1. (2.4)

To obtain the bound (2.4), we proceed as in [5] and iteratively construct a
sequence of codes with decreasing size, until no further reduction is possible.
We use the pigeonhole principle at the end of each step and obtain the sufficient
conditions that allow continuation of the iteration procedure. In the proof below,
we see that the first estimate in (2.4) determines the maximum number of itera-
tions the procedure can proceed before we run out of codewords to choose from
and the second estimate in (2.4) determines the maximum number of iterations
for which we are able to choose a “fresh” locality set.

Finally, we recall that n−k+1 is the Singleton bound [9] and is the maximum
possible minimum distance of an (n, k)−code. Therefore the parameter T is in
some sense, the “cost” for requiring partial locality.

Proof of Theorem 1. Let P1 ⊆ Θ be any set of size τ and let I1 := TP1 =
{l1, . . . , lm1},m1 ≤ r be the corresponding locality set of cardinality at most r as
defined in the paragraph following (2.2) that determines the value of the symbols
in positions in P1. For x = (x1, . . . , xm1) ∈ Am1 , let C(x) = C (x, I1) be the set
of codewords of C such that the symbol in position lj equals xj for 1 ≤ j ≤ m1.

The number of choices for x is at most qm1 and there are qk codewords in C.
Therefore by pigeonhole principle, there exists x1 such that

#C(x1) ≥ #C
qm1

= qk−m1 . (2.5)

We set C1 := C(x1) and let J1 := FI1 be the reach of I1 (see (2.1)) with
cardinality τ ≤ #J1 ≤ Δ(r). The first inequality is true since P1 ⊆ J1 and the
second estimate follows from (2.1). By construction, all words in the code C1 have
the same values in the symbol positions determined by J1; i.e., if a = (a1, . . . , an)
and b = (b1, . . . , bn) both belong to C1, then aj = bj for all j ∈ J1.

We now repeat the above procedure with the code C1 assuming that r+n−θ <
k, where θ := #Θ. If R1 := Θ \ (I1 ∪ J1) is the set of positions not encountered
in the first iteration then

376 G. Ganesan

#R1 ≥ #Θ − #J1 − #I1 ≥ θ − Δ(r) − r (2.6)

since #J1 ≤ Δ(r). For a set P ⊆ R1 of size τ, let I(P) := TP
⋂

R1 be the
union of positions within the locality sets of the selected τ positions in P, not
encountered in the first iteration.

Suppose for every P ⊆ R1, we have I(P) = ∅. This means that all sym-
bols with positions in R1 can simply be determined by the symbol values with
positions in I1 ∪ J1. This in turn implies that the symbols with positions in I1

determine all the symbols with positions in Θ. Using r + n − θ < k we then get
that the total number of words in the code C is at most

q#I1 · qn−#Θ = qm1+n−θ ≤ qr+n−θ < qk,

a contradiction. Thus there exists P2 ⊆ R1 of size τ whose corresponding
set I2 := I(P2) is not completely contained in I1 ∪ J1.

Letting 1 ≤ m2 ≤ r denote the cardinality of I2 and using the pigeonhole
principle as before, we get a code C2 ⊆ C1 of size

#C2 ≥ #C1

qm2
≥ qk−m1−m2 ≥ qk−2r

and all of whose words have the same symbol values in the positions determined
by I1 ∪I2. In the above, we use the estimate for C1 obtained in (2.5). As before,
let J2 ⊆ {1, 2, . . . , n} be the set of positions of the codeword symbols determined
by the set I1∪I2 so that P1∪P2 ⊆ J2. The set I1∪I2 has cardinality at most 2r
and so we have from (2.2) that the reach J2 has cardinality

2τ ≤ #P1 + #P2 ≤ #J2 ≤ Δ(2r).

If R2 := Θ \ (I1 ∪ I2 ∪ J2) , then #R2 ≥ θ − 2r − Δ(2r). Continuing this
way, after the end of t iterations, we have a code Ct of size

#Ct ≥ qk−∑t
j=1 #Ij ≥ qk−t·r (2.7)

and a set Rt ⊆ Θ of remaining positions not fixed so far, with cardinality

#Rt ≥ θ −
t∑

j=1

#Ij − #Jt ≥ θ − t · r − Δ(t · r). (2.8)

The above procedure can therefore be performed for at least T steps where T is
the largest integer t such that

t · r ≤ k − 1 + θ − n and t · r + Δ(t · r) ≤ θ − τ + 1. (2.9)

The first condition in (2.9) ensures that k − T · r ≥ 1 and so the code CT has at
least two codewords. The second condition in (2.9) ensures that the set Pj ⊆ Θ
of symbols we pick is at least τ and so

#Jj ≥
j∑

l=1

#Pl ≥ j · τ (2.10)

for each 1 ≤ j ≤ T.

Recursive Methods in Coding 377

Since CT ⊆ C, the minimum distance d(CT) of CT is at least the minimum
distance d(C) of C. By definition we recall that the symbol values in positions
determined by the set

⋃
1≤j≤T Ij

⋃
JT := {1, 2, . . . , n} \ QT is the same for all

the words in CT . For every word x = (x1, . . . , xn) ∈ CT , we therefore let xT =
(xi)i∈QT

be the reduced word obtained by just considering the symbols in the
remaining positions determined by QT . Defining the reduced code DT = {xT :
x ∈ CT } we then have that the minimum distance d(DT) ≥ d(CT) ≥ d(C).

The length of the each word in DT equals n−#QT and so using the estimate
for #DT = #CT from (2.7) and the Singleton bound we have

d(DT) ≤

⎛

⎝n −
T∑

j=1

#Ij − #JT

⎞

⎠ −

⎛

⎝k −
T∑

j=1

#Ij

⎞

⎠ + 1.

Thus d(DT) ≤ n − k + 1 − #JT ≤ n − k + 1 − T · τ, by (2.10). Using the fact
that d(C) ≤ d(DT), we then get (2.3).
�

3 Lattice Representative Codes

Representative codes [10] (also known as hitting sets in some contexts) are impor-
tant from both theoretical and application perspectives. In [11] the minimum
size of hitting sets that intersect all combinatorial rectangles of a given volume
are studied. Explicit constructions were described using expander graphs and
random walks. Later [14] determined lower bounds for the hitting set size of
combinatorial rectangles and also illustrated an application in approximation
algorithms. Recently [4] used fractional perfect hash families to study construc-
tion of explicit hitting sets for combinatorial shapes.

In this section, we study lattice representative codes for weighted rectangles
where each vertex is assigned a positive finite weight. We study the minimum size
of a representative code that intersects all subsets of a given minimum weight.
For integers d,m ≥ 1 let S = S(m) := {1, 2, . . . ,m}d. We refer to elements of S
as points and for a point v = (v1, . . . , vd) ∈ S, we refer to vi as the ith entry.
For each point v ∈ S, we assign a finite positive weight w(v). For a set U ⊆ S
the corresponding weight w (U) :=

∑
v∈U w(v) is the sum of the weights of the

points in U . The size of U is the number of points in U and is denoted by #U .
Let

1 = inf
m

min
v∈S(m)

w(v) ≤ sup
m

max
v∈S(m)

w(v) =: β < ∞ (3.1)

and for 0 < ε < 1 say that B ⊆ S is an ε−representative code or simply
representative code if B ∩ U �= ∅ for any set U ⊆ S of weight w (U) ≥ ε · md.

The following result obtains an estimate on the minimum size bm of an
ε−representative code.

Theorem 2. For any 0 < ε < 1 and β ≥ 1 we have that

md · (1 − ε) ≤ bm ≤ md ·
(

1 − ε

β

)
+ 1. (3.2)

378 G. Ganesan

Suppose the weight function satisfies the following monotonicity relation: If u
and v are any two points of S differing only in the ith entry and ui > vi, then
the weights w(u) ≤ w(v). We then have

bm

md
−→ λ (3.3)

as m → ∞ where 1 − ε ≤ λ ≤ 1 − ε
β .

Thus there exists a fraction of vertices in a large rectangle that hits all sets of
a given minimum weight. Moreover, if the weight assignment is monotonic, then
the scaled minimum representative code size converges to a positive constant
strictly between 0 and 1.

An example of non-trivial weight assignment that satisfies the monotonicity
relation is the following: Defining w(1, 1) := 2 we iteratively assign the weight of
each vertex in the set {1, 2, . . . , i + 1}d \ {1, 2, . . . , i}d as 1 + 1

i . The conditions
in Theorem 2 are then satisfied with β = 2.

Proof of Theorem 2. We begin with the proof of (3.2). Throughout we assume
that d = 2 and an analogous analysis holds for general d. If F is any represen-
tative code of S, then by definition, the weight of the set S \ F is at most εm2

and since the weight of each vertex is at least one (see (3.1)), we get that the
number of points in S \ F is at most εm2. This implies that the size of F is at
least (1 − ε)m2 and so bm ≥ (1 − ε)m2.

To find an upper bound on bm, we let T ⊆ S be any “critical” set such that
the weight of T is at most εm2−1 and the weight of T ∪{v} for any point v ∈ S\T
is at least εm2. The set S \ T is then a representative code of S and since the
weight of any point is at most β (see (3.1)), we get that the number of vertices
in T is at least ε

β · m2 − 1. This in turn implies that bm ≤ m2
(
1 − ε

β

)
+ 1. This

proves (3.2).
To prove (3.3), we use a subsequence argument analogous to the proof of

Fekete’s lemma. For integers m ≥ r ≥ 1, we let m = k · r + s, where k ≥ 1
and 0 ≤ s ≤ r − 1 are integers and split {1, 2, . . . ,m}2 into four sets

S1 := {1, 2, . . . , kr}2, S2 := {1, 2, . . . , kr} × {kr + 1, kr + 2, . . . , kr + s},

S3 := {kr + 1, . . . , kr + s} × {1, 2, . . . , kr} and S4 := {kr + 1, . . . , kr + s}2.
Thus S2 is essentially a “rotated” version of S3. For 1 ≤ i ≤ 4, let Gi(ε)
be a representative code of Si and let R be any set in {1, 2, . . . ,m}2 of
weight w (R) ≥ εm2 = ε(kr+s)2. We first see that

⋃4
i=1 Gi(ε) is a representative

code of {1, 2, . . . ,m}2. Indeed if Ri = R ∩ Si, then using the fact that w (R) =∑4
i=1 w (Ri) , we get that either w (R1) ≥ ε(kr)2 or w (R2) ≥ εkrs or w (R3) ≥

εkrs or w (R4) ≥ εs2. Consequently, we must have that R
⋂ ⋃4

i=1 Gi(ε) �= ∅.
If b(i) denotes the minimum size of a representative code of Si, then from the

discussion above we get

bkr+s ≤
4∑

i=1

b(i) ≤ b(1) + 2krs + s2 ≤ b(1) + (2k + 1)r2 (3.4)

Recursive Methods in Coding 379

where the second inequality in (3.4) follows from the trivial estimate that the
size of any representative code of Ri is at most the total number of points in Ri

and the final inequality in (3.4) follows from the fact that s ≤ r.
To estimate b(1), we split S1 := {1, 2, . . . , kr}2 into k2 disjoint rectangles Ti,

1 ≤ i ≤ k2 each containing r2 points with T1 = {1, 2, . . . , r}2. If ci denotes the
minimum size of a representative code of Ti, then using the weight monotonicity
relation, we get that ci ≤ c1. To see this is true suppose T2 = {1, 2, . . . , r}×
{r+1, . . . , r+2r} so that T2 = T1+(r, 0) is obtained by translation of T1. If U ⊂ T2

is any set of weight at least εr2 then U − (r, 0) ⊆ T1 also has weight at least εr2,
by the weight monotonicity relation. Consequently if W1 is a representative code
of T1, then W1 +(r, 0) is a representative code of T2. Thus c2 ≤ c1 and the proof
of general ci is analogous.

From (3.4) and the discussion in the above paragraph, we get that
bm = bkr+s ≤ k2br + (2k + 1)r2 and so

bm

m2
≤ k2br + (r2(2k + 1))

m2
=

(
kr

kr + s

)2 (
br

r2
+

2k + 1
k2

)
.

If m → ∞ with r fixed, then k = k(m, r) = m−s
r ≥ m−r

r → ∞ as well and
so kr

kr+s → 1. This in turn implies that

lim sup
m

bm

m2
≤ lim sup

m

(
br

r2
+

2k + 1
k2

)
=

br

r2
. (3.5)

Since r ≥ 1 is arbitrary we get from (3.5) that

lim sup
m

bm

m2
= lim inf

r

br

r2
= inf

r

br

r2
=: λ.

Also, the bounds for λ follow from (3.2).
�

4 Random Permutations

Random permutations and applications are frequently encountered in comput-
ing problems and it is of interest to study the cycle properties of a randomly
chosen permutation. The papers [6], [13] studied limiting distributions for the
convergence of the number of cycles and cycles lengths of a uniform random per-
mutation, after suitable renormalization. Later [1] used Poisson approximation
and estimates on the total variation distance to study the convergence of the
overall cycle structure to a process of independent Poisson random variables.
Recently [3] have used probability generating functions to study convergence of
number of cycles of uniform random permutations conditioned not to have large
cycles, scaled and centred, to the Gaussian distribution.

From the combinatorial aspect, Stirling numbers of the first kind and gener-
ating functions have been used to study random permutation statistics. Using
the Flajolet-Sedgewick theorem it is possible to enumerate permutations with

380 G. Ganesan

constraints [8]. In this section, we use conditioning to obtain a recursive relation
involving cycle moments of random permutations. As an illustration, we com-
pute recursive relation involving the mean and the variance of the number of
cycles in a uniformly random permutation.

We begin with a couple of definitions. A permutation π of {1, 2, . . . , n} is
a bijective map π : {1, 2, . . . , n} → {1, 2, . . . , n}. The total number of possible
permutations of {1, 2, . . . , n} is therefore

n! := n · (n − 1) · · · 2 · 1.

A cycle of length k in a permutation π is a k−tuple (i1, . . . , ik) such that π(ij) =
ij+1 for 1 ≤ j ≤ k − 1 and π(ik) = i1. Every number in {1, 2, . . . , n}
belongs to some cycle of π and this provides an alternate representation of π;
for example (1345)(267)(89) is the cycle representation of the permutation π
on {1, 2, . . . , 9} satisfying π(1) = 3, π(3) = 4, π(4) = 5, π(5) = 1, π(2) =
6, π(6) = 7, π(7) = 2, π(8) = 9, π(9) = 8.

Let Π denote a uniformly chosen random permutation of {1, 2, . . . , n} defined
on the probability space (Ωn,Fn,Pn) so that

Pn(Π = π) =
1
n!

for any deterministic permutation π. Let Nn = Nn(Π) be the random number
of cycles in Π and for integers n, s ≥ 1, set μ0,s := 0 and μn,s := ENs

n. We have
the following result.

Theorem 3. For integers n, s ≥ 1 we have

μn,s = 1 +
1
n

s∑

r=1

n−1∑

j=1

(
s

r

)
μj,r, (4.1)

where
(
s
r

)
= s!

r!(s−r)! is the Binomial coefficient.

From the recursive structure of equation (4.1), we then have that μn,s could be
computed using the previous values {μj,r}j≤n−1,r≤s.

As a Corollary of Theorem 3 we have the following recursive relations for the
mean and variance of Nn.

Corollary 1. The mean μn := μn,1 satisfies μ1 = 1 and the recursive equation

μn = 1 +
1
n

n−1∑

i=1

μi (4.2)

for n ≥ 2. The sequence Hn :=
∑n

j=1
1
j is the unique sequence satisfying (4.2).

The variance vn = var(Nn) := μn,2 − μ2
n,1 satisfies v1 = 0 and the recursive

equation

vn = 1 +
1
n

n−1∑

i=1

vi − Hn

n
. (4.3)

The sequence Mn := Hn −
∑n

i=1
1
i2 is the unique sequence satisfying (4.3).

Recursive Methods in Coding 381

Using (4.2), (4.3) and the recursive relation (4.1), we could similarly compute
higher order moments.

We prove Theorem 3 and Corollary 1 in that order.

Proof of Theorem 3. To obtain the desired recursive relation, we condition on
the length of the first cycle and study the number of cycles in the remaining set
of elements.

Let S1 denote the cycle of the random permutation Π containing the num-
ber 1 and let L1 = #S1 be the length of S1 so that S1 is an L1−tuple. If L1 =
k ≤ n−1, then Π induces a permutation σ : {1, 2, . . . , n−k} → {1, 2, . . . , n−k}
on the remaining n − k numbers {1, 2, . . . , n} \ S1 in the following way. Arrange
the numbers in {1, 2, . . . , n} \ S1 in increasing order j1 < j2 < . . . < jn−k and
suppose that π(jl) = ml for 1 ≤ l ≤ n − k. The induced permutation σ then
satisfies ml = jσ(l) for 1 ≤ l ≤ n − k.

Conditional on L1 = k we now see that σ is uniformly distributed in the sense
that for any deterministic permutation σ0 : {1, 2, . . . , n − k} → {1, 2, . . . , n − k}
we have

Pn (σ = σ0|L1 = k) = Pn−k(σ0) =
1

(n − k)!
. (4.4)

To see (4.4) is true, we first write

Pn (σ = σ0|L1 = k) =
Pn ({σ = σ0} ∩ {L1 = k})

Pn(L1 = k)
. (4.5)

If k = 1, then the numerator in the right side of (4.5) is 1
n! . Moreover, if the first

cycle simply consists of the single element 1, then the remaining n − 1 numbers
can be arranged in (n − 1)! ways and so Pn(L1 = 1) = (n−1)!

n! . Thus (4.4) is true
for k = 1.

For 2 ≤ k ≤ n − 1, we have from (4.5) that Pn (σ = σ0|L1 = k) equals
∑

(i1,...,ik−1)
Pn ({σ = σ0} ∩ {S1 = (1, i1, . . . , ik−1)})

∑
(i1,...,ik−1)

Pn(S1 = (1, i1, . . . , ik−1))

where the summation is over all k − 1 tuples (i1, . . . , ik−1) containing distinct
elements. For any (1, i1, . . . , ik−1), the term

Pn ({σ = σ0} ∩ {S1 = (1, i1, . . . , ik−1)}) =
1
n!

(4.6)

and

Pn(S1 = (1, i1, . . . , ik−1)) =
(n − k)!

n!
(4.7)

since there are (n− k)! ways to permute the remaining n− k elements of the set
{2, . . . , n} \ {i1, . . . , ik−1}. Substituting (4.6) and (4.7) into (4), we get (4.4).

Summing (4.7) over all k − 1 tuples with distinct entries (for which there
are (n−1)·(n−2) · · · (n−k+1) choices), we also get that Pn(L1 = #S1 = k) = 1

n .

382 G. Ganesan

From the discussion in the previous paragraph, we get that the above relation
holds for all 1 ≤ k ≤ n. Thus

μn,s = EnNs
n =

n∑

k=1

En(Ns
n|L1 = k)Pn(L1 = k) =

1
n

n∑

k=1

En(Ns
n|L1 = k). (4.8)

If k = n then Nn = 1 and if 1 ≤ k ≤ n − 1, then Nn = 1 + Mn, where Mn is
the number of cycles in the induced permutation σ. Therefore we get from (4.8)
that

μn,s =
1
n

+
1
n

n−1∑

k=1

En ((1 + Mn)s|L1 = k) . (4.9)

Using the conditional distribution equivalence (4.4), we have for 1 ≤ k ≤ n−1
that En ((1 + Mn)s|L1 = k) equals

En−k(1 + Nn−k)s = 1 +
s∑

r=1

(
s

r

)
En−kNr

n−k, (4.10)

by the Binomial expansion. Substituting (4.10) into (4.9) we get (4.1).
�
Proof of Corollary 1. We begin with the proof of (4.2). Setting s = 1 in (4.1)
and μn = μn,1, we get that μ1 = 1 and for n ≥ 2, we get that μn satisfies (4.2).
We first see by induction that Hn as defined in Proposition 1 satisfies (4.2).
For n = 2, this statement is true and suppose Hl satisfies (4.2) for 1 ≤ l ≤ n−1.
For l = n, the right side of (4.2) evaluated with μi = Hi equals

1 +
1
n

n−1∑

i=1

i∑

j=1

1
j

= 1 +
1
n

n−1∑

j=1

n−1∑

i=j

1
j

= 1 +
1
n

n−1∑

j=1

n − j

j
, (4.11)

by interchanging the order of summation in the second equality. The final term
in (4.11) equals Hn and this proves the induction step.

Suppose now that {bn} is some sequence satisfying (4.2) with b1 = 1 and
let un = bn − Hn denote the difference. The sequence {un} satisfies u1 = 0
and un = 1

n

∑n−1
i=1 ui for all n ≥ 2. Thus u2 = u1

2 = 0 and iteratively, we
get un = u2 = 0 for all n ≥ 2. Thus Hn is the unique sequence satisfying (4.2).

We now obtain the variance estimate as follows. Letting dn := μn,2 and μn :=
μn,1 = Hn, we get from (4.1) that

dn = 1 +
1
n

n−1∑

i=1

(di + 2μi) = 2μn − 1 +
1
n

n−1∑

i=1

di, (4.12)

since 1
n

∑n−1
i=1 μi = μn − 1 (see (4.2)). From (4.12) we get that vn = dn − μ2

n

equals

vn =
1
n

n−1∑

i=1

(di − μ2
i) +

1
n

n−1∑

i=1

μ2
i − (μn − 1)2

=
1
n

n−1∑

i=1

vi +
1
n

n−1∑

i=1

μ2
i − (μn − 1)2.

Recursive Methods in Coding 383

It only remains to see that 1
n

∑n−1
i=1 μ2

i − (μn − 1)2 = 1 − Hn

n and for that we
use μi = Hi =

∑i
j=1

1
j (see (4.2)) to first get that 1

n

∑n−1
i=1 μ2

i equals

1
n

n−1∑

i=1

i∑

j1=1

i∑

j2=1

1
j1 · j2

=
1
n

n−1∑

j1=1

n−1∑

j2=1

n−1∑

i=max(j1,j2)

1
j1 · j2

1
n

n−1∑

j1=1

n−1∑

j2=1

(n − max(j1, j2))
j1 · j2

=
1
n

n−1∑

j1=1

Δ(j1), (4.13)

where Δ(j1) =
∑j1

j2=1
n−j1
j1·j2 +

∑n−1
j2=j1+1

n−j2
j1·j2 equals

n−1∑

j2=1

n

j1 · j2
−

j1∑

j2=1

1
j2

−
n−1∑

j2=j1+1

1
j1

.

Thus 1
n

∑n−1
i=1 μ2

i equals

n−1∑

j1=1

n−1∑

j2=1

1
j1 · j2

− 1
n

n−1∑

j1=1

j1∑

j2=1

1
j2

− 1
n

n−1∑

j1=1

n−1∑

j2=j1+1

1
j1

. (4.14)

The first term in (4.14) is

n−1∑

j1=1

n−1∑

j2=1

1
j1 · j2

= H2
n−1 =

(
Hn − 1

n

)2

and the second term in (4.14) is

1
n

n−1∑

j1=1

j1∑

j2=1

1
j2

=
1
n

n−1∑

j1=1

Hj1 = Hn − 1

using the fact that μn = Hn satisfies (4.2). The third term in (4.14) equals

1
n

n−1∑

j1=1

n − 1 − j1
j1

=
(

n − 1
n

) (
Hn − 1 − 1

n

)

after rearrangement of terms. Substituting these three expressions into (4.14),
we get that 1

n

∑n−1
i=1 μ2

i equals 1 + (Hn − 1)2 − Hn

n , which is what we wanted to
prove. Finally, arguing as before, we also have that Mn is the unique sequence
satisfying (4.3).
�

Acknowledgements. I thank Professors Rahul Roy, V. Guruswami, C. R. Subrama-
nian and the referees for crucial comments that led to an improvement of the paper. I
also thank IMSc for my fellowships.

384 G. Ganesan

References

1. Arratia, R., Tavaré, S.: The cycle structure of random permutations. Ann. Probab.
20, 1567–1591 (1992)

2. Balaji, S.B., Krishnan, M.N., Vajha, M., Ramkumar, V., Sasidharan, B., Kumar,
P.V.: Erasure coding for distributed storage: an overview. Sci. China Inf. Sci. 61
(2018)

3. Betz, V., Schäfer, H.: The number of cycles in random permutations without long
cycles is asymptotically Gaussian, ALEA. Lat. Am. J. Probab. Stat. 14, 427–444
(2017)

4. Bhaskara, A., Desai, D., Srinivasan, S.: Optimal hitting sets for combinatorial
shapes. Theory Comput. 9, 441–470 (2013)

5. Forbes, M., Yekhanin, S.: On the locality of codeword symbols in non-linear codes.
Discrete Math. 324, 78–84 (2014)

6. Gončarov, V.: On the field of combinatory analysis. Am. Math. Soc. Trans. 19,
1–46 (1962)

7. Gopalan, P., Huang, C., Simitci, H., Yekhanin, S.: On the locality of codeword
symbols. IEEE Trans. Inf. Theory 58, 6925–6934 (2012)

8. Graham, R., Knuth D., Patashnik, O.: Concrete Mathematics. Addison-Wesley,
Boston (1989)

9. Huffman, W.C., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge
University Press, Cambridge (2003)

10. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)

11. Linial, N., Luby, M., Saks, M., Zuckerman, D.: Efficient construction of a small
hitting set for combinatorial rectangles in high dimension. Combinatorica 17, 215–
234 (1997)

12. Rashmi, K.V., Shah, N.B., Kumar, P.V.: Optimal exact-regenerating codes for
distributed storage at the MSR and MBR points via a product-matrix construction.
IEEE Trans. Inf. Theory 57, 5227–5239 (2011)

13. Shepp, L.A., Lloyd, S.P.: Ordered cycle lengths in a random permutation. Trans.
Am. Math. Soc. 121, 340–357 (1966)

14. Sunil Chandran, L.: A lower bound for the hitting set size for combinatorial rect-
angles and an application. Inf. Process. Lett. 86, 75–78 (2003)

Achieving Positive Rates
with Predetermined Dictionaries

Ghurumuruhan Ganesan(B)

Institute of Mathematical Sciences, HBNI, Chennai, India
gganesan82@gmail.com

Abstract. In the first part of the paper we consider binary input chan-
nels that are not necessarily stationary and show how positive rates can
be achieved using codes constrained to be within predetermined dictio-
naries. We use a Gilbert-Varshamov-like argument to obtain the desired
rate achieving codes. Next we study the corresponding problem for chan-
nels with arbitrary alphabets and use conflict-set decoding to show that
if the dictionaries are contained within “nice” sets, then positive rates
are achievable.

Keywords: Positive rates · Predetermined dictionaries

AMS 2000 Subject Classification: Primary · 94A15 · 94A24

1 Introduction

Achieving positive rates with low probability of error in communication channels
is an important problem in information theory [3]. In general, a rate R is defined
to be achievable if there exists codes with rate R and having arbitrarily small
error probability as the code length n → ∞. The existence of such codes is
determined through the probabilistic method of choosing a random code (from
the set of all possible codes) and showing that the chosen code has small error
probability.

In many cases of interest, we would like to select codes satisfying certain
constraints or equivalently from a predetermined dictionary (see [2,7] for exam-
ples). For stationary channels, the method of types [4,5] can be used to study
positive rate achievability with the restriction that the dictionary falls within the
set of words belonging to a particular type. In this paper, we study achievability
of positive rates with arbitrary deterministic dictionaries for both binary and
general input channels using counting techniques.

The paper is organized as follows: In Sect. 2, we study positive rate achiev-
ability in binary input channels using predetermined dictionaries. Next in Sect. 3,
we describe the rate achievability problem for arbitrary stationary channels and
state our result Theorem 2 regarding achieving positive rates using given dictio-
naries. Finally, in Sect. 4, we prove Theorem 2.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 385–396, 2021.
https://doi.org/10.1007/978-3-030-67899-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_31

386 G. Ganesan

2 Binary Channels

For integer n ≥ 1, an element of the set {0, 1}n is said to be a codeword or simply
word, of length n. Consider a discrete memoryless symmetric channel with input
alphabet {0, 1}n that corrupts a transmitted word x = (x1, . . . , xn) as follows.
If Y = (Y1, . . . , Yn) is the received (random) word, then

Yi := xi11(Wi = 0) + (1 − xi)11(Wi = 1) + ε11(Wi = ε) (2.1)

for all 1 ≤ i ≤ n, where 11(.) denotes the indicator function and ε denotes the
erasure symbol. If Wi = 1, then the bit xi is substituted and if Wi = ε, then xi

is erased. The random variables {Wi}1≤i≤n are independent with

P(Wi = 1) = pf (i) and P(Wi = ε) = pe(i) (2.2)

and so the probability of a bit error (due to either a substituted bit or an erased
bit) at “time” index i is pf (i) + pe(i). Letting W := (W1, . . . ,Wn), we also
denote Y =: h(x,W) where h is a deterministic function defined via (2.1). We
are interested in communicating through the above described channel, with low
probability of error, using words from a predetermined (deterministic) dictionary.

Dictionaries

A dictionary of size M is a set D ⊆ {0, 1}n of cardinality #D = M. A subset C =
{x1, . . . ,xL} ⊆ D is said to be an n−length code of size L, contained in the
dictionary D. Suppose we transmit a word picked from C, through the channel
given by (2.1) and receive the (random) word Y. Given Y we would like an
estimate x̂ of the word from C that was transmitted. A decoder g : {0, 1, ε}n → C
is a deterministic map that uses the received word Y to obtain an estimate of
the transmitted word. The probability of error corresponding to the code C and
the decoder g is then defined as

q(C, g) := max
1≤i≤L

P (g (h (xi,W)) �= xi) , (2.3)

where W = (W1, . . . ,Wn) is the additive noise as described in (2.1).
We have the following definition regarding achievable rates using predeter-

mined dictionaries.

Definition 1. Let R > 0 and let F := {Dn}n≥1 be any sequence of dictionaries
such that each Dn has size at least 2nR. We say that R > 0 is an F−achievable
rate if the following holds true for every ε > 0 : For all n large, there exists a
code Cn ⊂ Dn of size #Cn = 2nR and a decoder gn such that the probability of
error q(Cn, gn) < ε.

If Dn = {0, 1}n for each n, then the above reduces to the usual concept of rate
achievability as in [3] and we simply say that R is achievable.

For 0 < x < 1 we define the entropy function

H(x) := −x · log x − (1 − x) · log(1 − x), (2.4)

Achieving Positive Rates 387

where all logarithms in this section to the base two and have the following result.

Theorem 1. For integer n ≥ 1 let

μf = μf (n) :=
n∑

i=1

pf (i) and μe = μe(n) :=
n∑

i=1

pe(i)

be the expected number of bit substitutions and erasures, respectively in
an n−length codeword and suppose

min (μf (n), μe(n)) −→ ∞ and p := lim sup
n

1
n

(2μf (n) + μe(n)) <
1
2
. (2.5)

Let H(p) < α ≤ 1 and let F := {Dn}n≥1 be any sequence of dictionaries satisfy-
ing #Dn ≥ 2αn, for each n. We have that every R < α−H(p) is F−achievable.
For a given α, let p(α) be the largest value of p such that H(p) < α. The above
result says that every R < α − H(p) is achievable using arbitrary dictionaries.
We use Gilbert-Varshamov-like arguments to prove Theorem 1 below.

As a special case, for binary symmetric channels with crossover probabil-
ity pf , each bit is independently substituted with probability pf . No erasures
occur and so

μf (n) = npf and μe(n) = 0.
Thus p = 2pf and from Theorem 1 we therefore have that if H(2pf) < α, then
every R < α − H(2pf) is achievable.

Proof of Theorem 1

The main idea of the proof is as follows. Using standard deviation estimates, we
first obtain an upper bound on the number of possible errors that could occur
in a transmitted word. More specifically, if T denotes the number of bit errors
in an n−length word and ε > 0 is given, we use standard deviation estimates
to determine T0 = T0(n) such that P(T > T0) ≤ ε. We then use a Gilbert-
Varshamov argument to obtain a code that can correct up to T0 bit errors. The
details are described below.

We prove the Theorem in two steps. In the first step, we construct the code C
and decoder g and in the second step, we estimate the probability of the decoding
error for C using g. For x,y ∈ {0, 1}n, we let dH(x,y) =

∑n
i=1 11(xi �= yi) be the

Hamming distance between x and y, where as before 11(.) denotes the indicator
function. The minimum distance of a code is the minimum distance between any
two words in a code.
Step 1: Assume for simplicity that t := np(1+2ε) is an integer and let d = t+1.
For a word x let Bd−1(x) be the set of words that are at a distance of at most d−1
from x. If C ⊆ D is a maximum size code with minimum distance at least d,
then by the maximality of C we must have

⋃

x∈C
Bd−1(x) = D. (2.6)

This is known as the Gilbert-Varshamov argument [6].

388 G. Ganesan

The cardinalities of D and Bd−1(x) are 2αn and
∑d−1

i=0

(
n
i

)
respectively and

so from (2.6), we see that the code C has size

#C ≥ 2αn

∑d−1
i=0

(
n
i

) (2.7)

and minimum distance at least d. Also since p < 1
2 , we have for all small ε > 0

that
(
n
i

) ≤ (
n

d−1

)
=

(
n

np(1+2ε)

)
and so

∑d−1
i=0

(
n
i

) ≤ n · (
n

np(1+2ε)

)
. Using Stirling

approximation we get
(

n

np(1 + 2ε)

)
≤ 4en · 2nH(p+2pε)

and so from (2.7), we get for δ > 0 that

#C ≥ 1
4en2

· 2n(α−H(p+2pε)) ≥ 2n(α−H(p)−δ) (2.8)

provided ε > 0 is small.
We now use a two stage decoder described as follows: Suppose the received

word is Y and for simplicity suppose that the last e positions in Y have been
erased. For a codeword x = (x1, . . . , xn), let xred := (x1, . . . , xn−e) be the
reduced word formed by the first n − e bits. Let Cred = {xred : x ∈ C} be
the set of all reduced codewords in the code C formed by the first n − e bits.

In the first stage of the decoding process, the decoder corrects bit substitu-
tions by collecting all words S ⊆ Cred whose Hamming distance from Yred is min-
imum. If S contains exactly one word, say zred, the decoder outputs zred as the
estimate obtained in the first step of the iteration. Otherwise, the decoder out-
puts “decoding error”. In the second stage of the decoding process, the decoder
uses zred to correct the erasures. Formally let Se := {x ∈ C : xred = zred} be
the set of all codewords whose first n − e bits match zred. If there exists exactly
one word z in Se, then the decoder outputs z to be the transmitted word. Else
the decoder outputs “decoding error”.

Step 2: Suppose a word x ∈ C was transmitted and the received word is Y.
Let W = (W1, . . . ,Wn) be the random noise vector as in (2.1) and let

Tf :=
n∑

i=1

11(Wi = 1)

be the number of bits that have been substituted so that

ETf =
n∑

i=1

pf (i) = μf (n),

by (2.2). By standard deviation estimates (Corollary A.1.14, pp. 312, [1]) we
have

P (|Tf − μf (n)| ≥ εμf (n)) ≤ 2e− ε2
4 μf (n) ≤ ε

2
(2.9)

Achieving Positive Rates 389

for all n large, by the first condition of (2.5). Similarly if Te =
∑n

i=1 11(Wi = ε)
is the number of erased bits, then

P (|Te − μe(n)| ≥ εμe(n)) ≤ 2e− ε2
4 μe(n) ≤ ε

2
(2.10)

for all n large.
Next, using the second condition of (2.5) we have that

(2μf (n) + μe(n))(1 + ε) ≤ np(1 + 2ε) = t

for all n large and so from (2.9) and (2.10) we get that P (2Tf + Te ≥ t) ≤ ε
for all n large. If 2Tf + Te ≤ t, then by construction the decoder outputs x as
the estimate of the transmitted word. Therefore a decoding error occurs only
if 2Tf + Te ≥ t which happens with probability at most ε. Combining with (2.8)
and using the fact that δ > 0 is arbitrary, we get that every R < α − H(p)
is F−achievable.
�

3 General Channels

Consider a discrete memoryless channel with finite input alphabet X of size N :=
#X , a finite output alphabet Y and a transition probability pY |X(y|x), x ∈
X , y ∈ Y. The term pY |X(y|x) denotes the probability that output y is observed
given that input x is transmitted through the channel.

For n ≥ 1 we define a subset Dn ⊆ X n to be a dictionary. A sub-
set C = {x1, . . . , xM} ⊆ Dn is defined to be an n−length code contained within
the dictionary Dn. Suppose we transmit the word x1 and receive the (random)
word Γx1 ∈ Yn. Given Γx1 we would like an estimate x̂ of the word from C that
was transmitted. A decoder g : Yn → C is a deterministic map that “guesses”
the transmitted word based on the received word Γx1 . We denote the probability
of error corresponding to the code C and the decoder g as

q(C, g) := max
x∈C

P (g(Γx) �= x) . (3.1)

To study positive rate achievability using arbitrary dictionaries, we have a
couple of preliminary definitions. Let pX(.) be any probability distribution on
the input alphabet X and let H(X) := −∑

x∈X pX(x) log pX(x) be the entropy
of a random variable X where the logarithm is to the base N here. Let Y be a
random variable having joint distribution pXY (x, y) with the random variable X
defined by pXY (x, y) := pY |X(y|x) · pX(x). Thus Y is the random output of the
channel when the input is X. Letting pY (y) :=

∑
x pXY (x, y) be the marginal

of Y we have that the joint entropy and conditional entropy [3] are respectively
given by

H(X,Y) = −
∑

x,y

pXY (x, y) log pXY (x, y)

and
H(Y |X) = −

∑

x,y

pXY (x, y) log pY |X(y|x).

390 G. Ganesan

The following result obtains positive rates achievable with predetermined
dictionaries for the channel described above.

Theorem 2. Let pX , pY and pXY be as above and let 0 < α ≤ H(X). For
every ε > 0 and for all n large, there is a deterministic set Bn with size at
least Nn(H(X)−2ε) and satisfying the following property: If Dn is any subset of Bn

with cardinality Nn(α−2ε) and

R < α − H(Y |X) − H(X|Y) − 7ε (3.2)

is positive, then there exists a code Cn ⊂ Dn containing NnR words and a
decoder gn with error probability q (Cn, gn) < ε.

Thus if the sequence of dictionaries F := {Dn}n≥1 is such that Dn ⊂ Bn for
each n, then every R < α − H(Y |X) − H(X|Y) is F−achievable. Also, set-
ting α = H(X) and Dn = Bn also gives us that every R < H(X) − H(X|Y) −
H(Y |X) is achievable in the usual sense of [3], without any restrictions on
the dictionaries. For context, we remark that Theorem 1 holds for arbitrary
dictionaries.

To prove Theorem 2, we use typical sets [3] together with conflict set decoding
described in the next section. Before we do so, we present an example to illustrate
Theorem 2.

Example

Consider a binary asymmetric channel with alphabet X = Y = {0, 1} and tran-
sition probability

p(1|0) = p0 = 1 − p(0|0) and p(0|1) = p1 = 1 − p(1|1).

To apply Theorem 2, we assume that the input has the symmetric distribu-
tion P(Xi = 0) = 1

2 = P(Xi = 1) so that the entropy H(X) equals its maximum
value of 1. The entropy of the output H(Y) = H(q) where q = 1−p0+p1

2 and the
conditional entropies equal

H(Y |X) =
1
2

(H(p0) + H(p1)) and H(X|Y) =
1
2

(H(p0) + H(p1)) + 1 − H(q).

Set p0 = p and p1 = p + Δ. If both p and Δ are small, then H(q) is close to
one and H(p0) and H(p1) are close to zero. We assume that p and Δ are such
that

α0 := H(Y |X) + H(X|Y) = H(p) + H(p + Δ) + 1 − H

(
1 − Δ

2

)

is strictly less than one and choose α > α0. Every R < α − α0 is
then F−achievable as in the statement following Theorem 2 and every R <
1 − α0 is achievable without any dictionary restrictions, in the usual sense of [3].

In Fig. 1, we plot 1 − α0 as a function of p for various values of the asymmetry
factor Δ. For example, for an asymmetry factor of Δ = 0.05 we see that positive
rates are achievable for p roughly up to 0.08.

Achieving Positive Rates 391

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

R
at

e
(1

−
α 0

)

zero crossover probability (p = p0)

(Δ=0)

(Δ=0.05)

(Δ=0.1)

Fig. 1. Plotting the rate 1 − α0 as a function of p for various values of the asymmetry
factor Δ.

4 Proof of Theorem 2

We use conflict set decoding to prove Theorem 2. Therefore in the first part of
this section, we prove an auxiliary result regarding conflict set decoding that is
also of independent interest.

4.1 Conflict Set Decoding

Consider a discrete memoryless channel with finite input alphabet X0 and finite
output alphabet Y0 and transition probability p0(y|x), x ∈ X0, y ∈ Y0. For con-
venience, we define the channel by a collection of random variables θx, x ∈ X0

with the distribution P (θx = y) := p0(y|x) for y ∈ Y0. All random variables are
defined on the probability space (Ω,F ,P). For ε > 0, x ∈ X0 and y ∈ Y0 we
let D(x, ε) and C(y, ε) be deterministic sets such that

P (θx ∈ D(x, ε)) ≥ 1 − ε and C(y, ε) = {x : y ∈ D(x, ε)}. (4.1)

We define D(x, ε) to be an ε−probable set or simply probable output set corre-
sponding to the input x and for y ∈ Y0, we denote C(y, ε) to be the ε−conflict
set or simply conflict set corresponding to the output y. There are many possi-
ble choices for D(x, ε); for example D(x, ε) = Y0 is one choice. In Proposition 1
below, we show however that choosing ε−probable sets as small as possible allows
us to increase the size of the desired code. We also define

dL(ε) := max
x∈X0

#D(x, ε) and dR(ε) := max
y∈Y0

#C(y, ε) (4.2)

where #A denotes the cardinality of the set A.

392 G. Ganesan

As before, a code C of size M is a set of distinct words {x1, . . . , xM} ⊆ X0.
Suppose we transmit the word x1 and receive the (random) word θx1 . Given θx1

we would like an estimate x̂ of the word from C that was transmitted. A
decoder g : Y0 → C is a deterministic map that guesses the transmitted
word based on the received word θx1 . We denote the probability of error cor-
responding to the code C, the decoder g and the collection of the probable
sets D := {D(x, ε)}x∈X0 as

q(C, g,D) := max
x∈C

P (g(θx) �= x) . (4.3)

We have the following Proposition.

Proposition 1. For ε > 0 let D = {D(x, ε)}x∈X0 be any collection of ε−probable
sets. If there exists an integer M satisfying

M <
#X0

dL(ε) · dR(ε)
, (4.4)

then there exists a code C ⊆ X0 of size M and a decoder g whose decoding error
probability is q(C, g,D) < ε.

Thus as long as the number of words is below a certain threshold, we are guaran-
teed that the error probability is sufficiently small. Also, from (4.4) we see that
it would be better to choose probable sets with as small cardinality as possible.

Proof of Proposition 1

Code Construction: We recall that by definition, given input x, the output θx

belongs to the set D(x, ε) with probability at least 1 − ε. Therefore we first
construct a code C = {x1, . . . , xM} containing M distinct words and satisfying

D(xi, ε) ∩ D(xj , ε) = ∅ for all xi, xj ∈ C. (4.5)

Throughout we assume that M satisfies (4.4). To obtain the desired distinct
words, we use following the bipartite graph representation. Let G = G(ε) be a
bipartite graph with vertex set X0 ∪ Y0. We join x ∈ X0 and y ∈ Y0 by an edge
if and only if y ∈ D(x, ε). The size of D(x, ε) therefore represents the degree
of the vertex x and the size of C(y, ε) represents the degree of the vertex y.
By definition (see (4.2)) dL = maxx∈X #D(x, ε) and dR = maxy∈Y #C(y, ε)
denote the maximum degree of a left vertex and a right vertex, respectively,
in G. We say that a set of vertices {x1, . . . , xM} is disjoint if for all i �= j, the
vertices xi and xj have no common neighbour (in Y0). Constructing codes with
disjoint ε−probable sets satisfying (4.5) is therefore equivalent to finding disjoint
sets of vertices in X0.

We now use direct counting to get a set of M disjoint vertices {x1, . . . , xM}
in X0. First we pick any vertex x1 ∈ X0. The degree of x1 is at most dL and
moreover, each vertex in D(x1, ε) ⊆ Y has at most dR neighbours in X0. The total
number of (bad) vertices of X0 adjacent to some vertex in D(x1, ε) is at most

Achieving Positive Rates 393

dL ·dR. Removing all these bad vertices, we are left with a bipartite subgraph G1

of G whose left vertex set has size at least N0− dL ·dR where N0 = #X0. We now
pick one vertex in the left vertex set of G1 and continue the above procedure.
After the ith step, the number of left vertices remaining is N0 − i · dL · dR and
so from (4.4) we get that this process continues at least for M steps. The words
corresponding to vertices {x1, . . . , xM} form our code C.

Decoder Definition: Let C be the code as constructed above. For decoding, we
use the conflict-set decoder defined as follows: If y ∈ D(xj , ε) for some xj ∈ C
and the conflict set C(y, ε) does not contain any of word of C \ {xj}, then we
set g(y) = xj . Otherwise, we set g(y) to be any arbitrary value; for concreteness,
we set g(y) = x1.

We claim that the probability of error of the conflict-set decoder is at most ε.
To see this is true, suppose we transmit the word xi. With probability at least
1 − ε, the corresponding output θxi

∈ D(xi, ε). Because (4.5) holds, we must
necessarily have that y /∈ D(xk, ε) for any k �= j. This implies that the conflict-
set decoder outputs the correct word xi with probability at least 1 − ε.
�

We now prove Theorem 2 using typical sets and conflict set decoding.

4.2 Proof of Theorem 2

For notational simplicity we prove Theorem 2 with X = Y = {0, 1}. An analo-
gous analysis holds for the general case.

The proof consists of three steps. In the first step, we define and estimate
the occurrence of certain typical sets. In the next step, we use the typical sets
constructed in Step 1 to determine the set Bn in the statement of the Theorem.
Finally, we use Proposition 1 to obtain the bound (3.2) on the rates.

Step 1: Typical Sets: We define the typical set

An(ε) = (An,1(ε) × An,2(ε))
⋂

An,3(ε) (4.6)

where
An,1(ε) = {x ∈ X n : 2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε)},

An,2(ε) = {y ∈ Yn : 2−n(H(Y)+ε) ≤ p(y) ≤ 2−n(H(Y)−ε)}
and

An,3(ε) = {(x, y) ∈ X n × Yn : 2−n(H(X,Y)+ε) ≤ p(x, y) ≤ 2−n(H(X,Y)−ε)}

with the notation that if x = (x1, . . . , xn), then p(x) :=
∏n

i=1 p(xi).
We estimate P(An,1(ε)) as follows. If (X1, . . . , Xn) is a random element

of X n with {Xi} i.i.d. and each having distribution p(.), then the random

394 G. Ganesan

Fig. 2. The set Dn(x, ε) obtained from the sets An,i(ε), 1 ≤ i ≤ 3.

variable log p(Xi) has mean H(X) and so by Chebychev’s inequality

P(Ac
n,1(ε)) = P

(∣∣∣∣∣

n∑

i=1

log p(Xi) − nH(X)

∣∣∣∣∣ ≥ nH(X)ε

)

≤ 1
n2H2(X)ε2

E

(
n∑

i=1

log p(Xi) − nH(X)

)2

=
1

nH2(X)ε2
E (log p(X1) − H(X))2

which converges to zero as n → ∞. Analogous estimates hold for the sets An,2(ε)
and An,3(ε) and so

P(An(ε)) ≥ 1 − ε2 (4.7)

for all n large.

Step 2: Determining the set Bn: We now usethe set An(ε) defined above to deter-
mine the set Bn in the statement of the Theorem as follows. For x ∈ An,1(ε),
let

Dn(x, ε) := {y ∈ An,2(ε) : (x, y) ∈ An(ε)}.

In Fig. 2, we illustrate the sets {An,i(ε)}1≤i≤3 and the set An(ε). The rectan-
gle EFGH denotes An,1(ε) × An,2(ε) and the oval set A3 represents An,3(ε).
The hatched region represents An(ε). The line yz represents the set Dn(x, ε)
for x ∈ An,1(ε) shown on the X−axis.

From Fig. 2 we see that

∑

x∈An,1(ε)

⎛

⎝
∑

y∈Dn(x,ε)

p(x, y)

⎞

⎠ =
∑

(x,y)∈An(ε)

p(x, y) ≥ 1 − ε2 (4.8)

Achieving Positive Rates 395

by (4.7). Letting

An,4(ε) :=

⎧
⎨

⎩x ∈ An,1(ε) :
∑

y∈Dn(x,ε)

p(y|x) ≥ 1 − ε

⎫
⎬

⎭ , (4.9)

we split the summation in first term in (4.8) as L1 + L2 where

L1 =
∑

x∈An,4(ε)

⎛

⎝
∑

y∈Dn(x,ε)

p(y|x)

⎞

⎠ p(x) ≤
∑

x∈An,4(ε)

p(x) = P (An,4(ε)) (4.10)

and

L2 =
∑

x∈An,1(ε)\An,4(ε)

⎛

⎝
∑

y∈Dn(x,ε)

p(y|x)

⎞

⎠ p(x)

≤ (1 − ε)
∑

x∈An,1(ε)\An,4(ε)

p(x)

≤ (1 − ε)P
(
Ac

n,4(ε)
)
. (4.11)

Substituting (4.11) and (4.10) into (4.8) we get

1 − ε · P (
Ac

n,4(ε)
) ≥ L1 + L2 ≥ 1 − ε2

and so P
(
Ac

n,4(ε)
) ≤ ε. Because An,4(ε) ⊆ An,1(ε), we therefore get that

1 − ε ≤ P (An,4(ε)) =
∑

x∈An,4(ε)

p(x) ≤ 2−n(H(X)−ε)#An,4(ε).

Setting Bn = An,4(ε) we then get

#Bn ≥ 2n(H(X)−ε) · (1 − ε) ≥ 2n(H(X)−2ε)

for all n large.

Step 3: Using Proposition 1: For α ≤ H(X), we let Dn be any set of size 2n(α−2ε)

contained within Bn. Let G be the bipartite graph with vertex set Xc ∪ Yc

where Xc := Dn, Yc := An,2(ε) and an edge is present between x ∈ Xc and y ∈ Yc

if and only if (x, y) ∈ An(ε). We now compute the sizes of the probable sets and
the conflict sets in that order.

For each x ∈ Xc we have by definition (4.9) of An,4(ε) that
∑

y∈Dn(x,ε)

p(y|x) ≥ 1 − ε (4.12)

and so we set Dn(x, ε) to be the ε−probable set corresponding to x ∈ Dn. To
estimate the size of Dn(x, ε), we use the fact that (x, y) ∈ An(ε) and so

p(y|x) =
p(x, y)
p(x)

≥ 2−n(H(X,Y)+ε)

2−n(H(X)−ε)
= 2−n(H(Y |X)+2ε). (4.13)

396 G. Ganesan

Thus
1 ≥

∑

y∈Dn(x,ε)

p(y|x) ≥ #Dn(x, ε) · 2−n(H(Y |X)+2ε)

and consequently
#Dn(x, ε) ≤ 2n(H(Y |X)+2ε). (4.14)

Finally, we estimate the size of the conflict set C(y, ε) for each y ∈ Yc. Again
we use the fact that if (x, y) is an edge in G then (x, y) ∈ An(ε) and so

p(x|y) =
p(x, y)
p(y)

≥ 2−n(H(X,Y)+ε)

2−n(H(Y)−ε)
= 2−n(H(X|Y)+2ε). (4.15)

Thus
1 ≥

∑

x∈C(y,ε)

p(x|y) ≥ #C(y, ε) · 2−n(H(X|Y)+2ε)

and we get that #C(y, ε) ≤ 2n(H(X|Y)+2ε). Using this and (4.14), we get that
the conditions in Proposition 1 hold with

N0 = 2n(α−2ε), dL(ε) = 2n(H(Y |X)+2ε) and dR(ε) = 2n(H(X|Y)+2ε).

If M = 2nR with R < α−H(X|Y)−H(Y |X) − 7ε, then (4.4) holds and so there
exists a code containing M = 2nR words from Dn giving an error probability of
at most ε with the conflict set decoder.
�

Acknowledgement. I thank Professors Rajesh Sundaresan, C.R. Subramanian and
the referees for crucial comments that led to an improvement of the paper. I also thank
IMSc for my fellowships.

References

1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley Interscience, Hoboken (2008)
2. Bandemer, B., El Gamal, A., Kim, Y.-H.: Optimal achievable rates for interference

networks with random codes. IEEE Trans. Inf. Theory 61, 6536–6549 (2015)
3. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (2006)
4. Csiszár, I., Körner, J.: Graph decomposition: a new key to coding theorems. IEEE

Trans. Inf. Theory 27, 5–12 (1981)
5. Csiszár, I.: The method of types. IEEE Trans. Inf. Theory 44, 2505–2523 (1998)
6. Huffman, W.C., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge

University Press, Cambridge (2003)
7. Zamir, R.: Lattice Coding for Signals and Networks. Cambridge University Press,

Cambridge (2014)

Characterization of Dense Patterns
Having Distinct Squares

Maithilee Patawar1(B) and Kalpesh Kapoor2

1 Department of Computer Science and Engineering, Indian Institute of Technology
Guwahati, Guwahati, India
maith176101104@iitg.ac.in

2 Department of Mathematics, Indian Institute of Technology Guwahati,
Guwahati, India

kalpesh@iitg.ac.in

Abstract. The square conjecture claims that the number of distinct
squares in a word is at most equal to the length of the word. While the
conjecture is still open, there have been attempts to define patterns rep-
resenting a collection of words with a large number of distinct squares.
We study the properties of words having the maximum number of dis-
tinct squares. These properties are then used to define general criteria to
characterize dense patterns. We show that there are infinitely many dense
patterns by giving a pattern generator and use the rate of introduction
of new squares to compare any two dense patterns. We also give a new
dense pattern, P , and prove that it is better than the earlier patterns.

Keywords: Distinct squares · Word patterns · Word combinatorics

1 Introduction

The study of periodic structures reveals many properties of words. Periodicity
of words has been an extensively studied topic in word combinatorics, see for
example [7]. A square is a concatenation of two identical words. It is the smallest
possible periodic structure and most frequently occurring repetitive element in a
word. Consequently, the number of squares in a word has been a topic of interest
for many researchers and many conjectures about squares have been proposed
in the literature [1,3,5]. The earliest conjecture [5] that has remained open is
that the number of distinct squares in a word of length n is less than or equal
to n.

In general, the proposed conjectures on distinct squares are supported by
patterns that attempt to pack as many distinct squares as possible [5,6]. A
pattern is a structure that generates a family of words containing similar types
of squares. In this work, we investigate the square conjecture using patterns.
Our main contributions are listed below:

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 397–409, 2021.
https://doi.org/10.1007/978-3-030-67899-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_32&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_32

398 M. Patawar and K. Kapoor

(a) Identification of properties of words with the maximum number of distinct
squares.

(b) We give general criteria to define dense patterns and to compare these pat-
terns.

(c) It is shown that there are infinitely many dense patterns.
(d) We introduce a new pattern that produces words with more number of dis-

tinct squares than the existing patterns.

The rest of the paper is organized as follows. Section 2 describes the necessary
notations required to understand the concept of dense patterns. We also mention
previous conjectures and their supporting patterns. To build new patterns with
more squares than the existing patterns, Sect. 3 proves some properties of words
containing the maximum number of distinct squares for a given length. Using
these properties, we define a dense pattern and give a structure to get many
such patterns. Next, Sect. 4 modifies the structures of some existing patterns to
make them dense patterns and provide a criterion to compare them. Finally,
conclusions and future directions are given in Sect. 5.

2 Preliminaries and Related Work

Let Σ be an alphabet. A word w is a finite sequence of letters drawn from Σ.
Any non-empty subsequence of consecutive letters in w is a subword of w. The
length of a word w is denoted by |w| and is equal to the number of symbols in
w. The word, w, with |w| = 0 is referred to as empty word and is denoted by
ε. We use N to denote the set of non-negative integers. Let Σn be the set of
words of length n ∈ N defined over an alphabet Σ. Further, Σ∗ =

⋃

n∈N

Σn and

Σ+ =
⋃

n∈N−{0}
Σn = Σ∗ − {ε}.

The concatenation of two words x and y is the word x.y or simply xy. The
concatenation is an associative operation. The ith power of a word w, denoted
by wi is defined recursively as w1 = w and wk = wk−1w for k ≥ 2. The concate-

nation of a collection of words w1, . . . , wk is denoted by
k⊙

i=1

wi. Let w = pvs be

a word, where p, v and x are words in Σ∗. Then the words p and s are called as
prefix and suffix, respectively, of the word w.

A square is a word of the form uu, where u ∈ Σ+. A word, w, is said to
be primitive if w = ur for some u implies r = 1. A word, w, is non-primitive if
w can be expressed as ur for some u ∈ Σ∗ and r ∈ N − {0, 1}. A square uu is
said to have primitive base, if u is a primitive word otherwise it is said to have
non-primitive base. A subword u is a border of w if it is both prefix and suffix
of w. Suppose w = xy is a word where x, y ∈ Σ+. Then, the word yx is said to
be a conjugate of the word w.

A word w is said to contain a square uu if w can be written as xuuy for some
x, y ∈ Σ∗. We will denote the set of all distinct squares in a word w by DS(w).
The maximum number of distinct squares in a word of length n is denoted by
MaxNS(n). Formally, MaxNS(n) = max{k | w ∈ Σn and |DS(w)| = k}.

Characterization of Dense Patterns Having Distinct Squares 399

A number n ∈ N is referred to as a no-gain length if MaxNS(n) is equal to
MaxNS(n−1), else it is a gain length. Let MaxDS(n) be the set of words with
length n having the maximum number of distinct squares. Formally,

MaxDS(n) = {w | w ∈ Σn and ∀u ∈ Σn · |DS(w)| ≥ |DS(u)|}.

As mentioned earlier, the square conjecture claims that for a word w,
|DS(w)| < |w| and a pattern named ‘Q’ attempts to reach this bound [5]. Let
w = a1a2 . . . an be a word. We borrow the notation si from [5] to denote the
number of squares that starts at a location i for the last time in a word, where
1 ≤ i ≤ n. The same study shows that si ≤ 2 for any word over a fixed alphabet.
As in [4], we use the term FS double square for a square with s1 = 2. It is proved
that the upper bound on the number of distinct squares in a word of length n
is � 11n

6 � [4]. Jonoska et al. [6] explored the square conjecture and predicted a
different upper bound for the words over a binary alphabet.

Another conjecture claims that the maximum number of primitive base dis-
tinct squares in a word w over an alphabet Σ never exceeds |w| − |Σ| [3]. The
upper bound for the number of distinct squares in a square uu has been shown to
be 1.57|u| [1]. The claim is supported by a pattern which can produce a square
w with at most 0.625|w| distinct squares.

In the next section, we identify some characteristics of words for a given
length with the maximum number of distinct squares.

3 Square-Maximal Words and Dense Patterns

It is conjectured that the maximum number of distinct squares is achieved for
a binary alphabet [8]. In the rest of the paper, we assume that the underlying
alphabet is binary containing letters ‘a’ and ‘b’. The exact characterization of
the set MaxDS(n) is not known. In other words, to check if a word belongs
to the set MaxDS(n), it is required to exhaustively search in the set of all 2n

possible words. A word is called a square-maximal word if it belongs to a set
MaxDS(n).

The function MaxNS is non-decreasing, and the difference between two suc-
cessive values of MaxNS is at most two. Let n ∈ N be a no-gain length. Then,
for any word w ∈ MaxDS(n − 1), both lw and wl are in MaxDS(n), where
l ∈ {a, b}. Thus, for a no-gain length n, the cardinality of the set MaxDS(n)
is always more than that of the set MaxDS(n − 1). Thus, it is important to
characterize words for gain lengths because it enables to generate words with
no-gain lengths. For this reason, in the following results, we generally focus on
the gain lengths.

Consider a word w in MaxDS(n), where n is a gain length. Every letter in
the word w must be part of some square in the set DS(w). Otherwise, removing
a letter that is not part of any square will give a smaller word with MaxNS(n)
squares, which is not possible as n is a gain length. Suppose w = w1w2 for some
w1, w2 ∈ Σ+. We refer to the squares whose last occurrence starts and ends in
w1 and w2, respectively, by cross(w1, w2).

400 M. Patawar and K. Kapoor

Lemma 1. Let n ∈ N be a gain length and w be a word in MaxDS(n). Further,
let w = w1w2 where w1, w2 ∈ Σ∗ such that |DS(w)| = |DS(w1)| + |DS(w2)|.
Then, |DS(w1) ∩ DS(w2)| = k ≥ 0 if and only if |cross(w1, w2)| = k.

Proof. We have, |DS(w)| = |DS(w1| + |DS(w2)| − |DS(w1) ∩ DS(w2)|
(if) Suppose the sets DS(w1) and DS(w2) have k squares in common. Then, it

must be the case that at least k rightmost squares starts in w1 and ends in
w2 to satisfy the premise |DS(w)| = |DS(w1)| + |DS(w2)|.

(only if) Suppose there are k rightmost squares that begin and end in words w1

and w2, respectively. Define

sqw1 = DS(w1) − DS(w2), sqw2 = DS(w2) − DS(w1),
sqcomm = DS(w1) ∩ DS(w2), sqcross = DS(w) − (DS(w1) ∪ DS(w2))

Note that sqcross is the set of distinct squares that begin in w1 and end
in w2 which are not present in w1 or w2. Therefore, the number of distinct
squares in w is, |DS(w)| = sqw1 + sqw2 + sqcomm + sqcross. Since |DS(w1)| +
|DS(w2)| = sqw1 + sqw2 + 2 ∗ sqcomm, we get

|sqcross| = |sqcomm|
��

If for a gain length n, the relation MaxNS(n) = MaxNS(n1) + MaxNS(n −
n1) holds for some n1 < n, then n1 cannot be equal to 1 or n − 1. Assume
w = w1w2 where |w1| = n1 > n

2 �. If |DS(w1)| < MaxNS(n1) or |DS(w2)| <
MaxNS(n − n1), then the set cross(w1, w2) is non-empty. In the following lem-
mas, we find some properties of square-maximal words in which both the sub-
words w1 and w2 are from the respective MaxDS sets.

Lemma 2. Let a word w = w1w2 ∈ MaxDS(n) for some gain length n ∈ N

such that |w1| ≤ |w2|. If |cross(w1, w2)| = 0 then the length of the smallest
border of the word w is greater than |w1|.
Proof. The condition |cross(w1, w2)| = 0 implies DS(w1w2) = DS(w2w1). No
proper suffix of the word w1 can be a prefix of the word w2. Otherwise, w1 = w′

1u
and w2 = uw′

2 will imply DS(w′
1u.uw′

2) = DS(w′
1uw′

2) for some non-empty
words w′

1, w′
2, u. Similarly, no proper suffix of the word w2 can be a prefix of the

word w1. Therefore, the length of the smallest border of the words w1w2 and
w2w1 must be greater than |w1|. ��
Lemma 3. Let n ∈ N be a gain length and w be a word in MaxDS(n) with w =
w1w2 such that |DS(w)| = |DS(w1)| + |DS(w2)| and DS(w1) ∩ DS(w2) = ∅.
Then, {a2, b2} ⊆ DS(w).

Proof (By contradiction). Assume DS(w) contains at most one square from
{aa, bb}. If both a2 and b2 are not in w then the word w must be of the form (ab)k

for some positive integer k > 0. However, such a word cannot be in MaxDS(n).

Characterization of Dense Patterns Having Distinct Squares 401

Consider the case in which only one among a2 or b2 is a subword of w.
Without loss of generality, assume aa /∈ DS(w1), aa /∈ DS(w2) and bb ∈ w
implying a square bb is either in set DS(w1) or DS(w2). If b2 is a subword of
w1, then the structure of w2 depends on the initial and final letters of w1. As a
result, w2 is either b(ab)j or (ab)j for some j ∈ N. If the subword w1 starts and
ends with the same letter, say ‘a’ then w1 = aua where u ∈ Σ+ and w2 = b(ab)j .
However, as the word w3 = (ab)j .a contains |DS(w2)| distinct squares, the word
w′ = w1w3 will also be in the set MaxDS(|w|). Here w3 does not satisfy the
constraint on border given in Lemma 2. Therefore, the length |w| must be a
no-gain length, which is a contradiction.

Now, suppose w1 starts and ends with different letters, say w1 = aub. In
this case, the only possible structure for w2 is (ab)j . Similar to the previous
case, we have a contradiction as the word aub.b(ab)j−1 will also be in the set
MaxDS(|w|). ��
Lemma 4. Let n ∈ N be a gain length and w be a word in MaxDS(n) with
w = w1w2 such that |DS(w)| = |DS(w1)| + |DS(w2)| and DS(w1) ∩ DS(w2) =
∅. Then, for some integer k > 2 and u1, u2 ∈ Σ+, we have w1 = aku1a

k and
w2 = bku2b

k. Further, the factorization of a word w as w1.w2 is unique.

Proof. We know from Lemma 3 that, for a given gain length, any word containing
the maximum number of distinct squares must have the trivial squares, viz. a2

and b2. These squares can be in either w1 or in w2. Accordingly, we consider
two cases for w1 and w2 depending on whether they start with the same or the
different letters. We show that among all possible structures, only one structure
mentioned in Case II satisfies all the given conditions.

Case I Assume w1 and w2 start with the same letter. Suppose the words a2 and
b2 are in the set DS(w1). Then, these trivial squares cannot be in the set
DS(w2). Thus, the word w2 must be of the form (ab)k for some integer
k > 2. Also, the square (ba)2 cannot be in the set DS(w1), otherwise
the square (ab)2 will also be in the set DS(w1). So the squares (ab)2

and (ba)2 cannot be in the word w1. But then we have another word
w′ = w1.(ba)k which has |DS(w)| number of distinct squares implying
that w is a no-gain length since the word w′ has a border whose length
is less than |w1| which contradicts the assumption.
Consider another alternative wherein the trivial squares aa and bb are
subwords of the words w1 and w2, respectively. Then the subwords w1

and w2 must end and begin, respectively, with ‘ab’, which again does
not satisfy the assumption that n is a gain length.

Case II Suppose w1 and w2 start with two different letters. To satisfy the con-
straint on border mentioned in Lemma 2, suppose w1 begins and ends
with the letter ‘a’. Let a2 ∈ DS(w2), then the word w1 begins with ab
and the word w2 ends with ab, thereby the word w2w1 has a border of
length smaller than |w1|. Therefore, it must be the case that the struc-
tures of the word w1 and w2 are aku1a

k and bku2b
k, respectively, such

402 M. Patawar and K. Kapoor

that k > 1 and DS(u1) ∩ DS(u2) = ∅. Note that if there is a factoriza-
tion of the subword w1 as w11w12 such that cross(w11, w12) = ∅, then a2

will be a subword of w11 and not of w12. However, every subword w12 of
length more than one will always ends with an a2. So, the subword w1 =
w11w12 cannot have cross(w11, w12) = ∅. Now, another factorization
w = w3w4 that satisfies the condition |DS(w)| = |DS(w3)| + |DS(w4)|
is possible if w3 = aku1ak−1 and w4 = a.bku2b

k. However, in such a case,
by Lemma 2, n will be a no-gain length. Therefore, the factorization of
w as w1.w2 is unique. ��

Let Σ be an alphabet and w = l1 . . . ln be a word, where li ∈ Σ for 1 ≤
i ≤ n. We refer to the letters l1 and ln as terminal letters of w. Any letter
that is not a terminal letter is a non-terminal letter of w. In Lemma 4, it is
shown that a square-maximal word, say w = w1w2 of length n can have at
most one w1 that satisfy cross(w1, w2) = ∅. The lemma implies that there are
exactly two non-terminal letters of w which cannot be non-terminal letters in any
rightmost square of w. We now explore a gain length n for which MaxNS(n) >
MaxNS(n1) + MaxNS(n − n1) and identify the structure of a square-maximal
word.

Lemma 5. Let n ∈ N such that MaxNS(n) > MaxNS(n1) + MaxNS(n −
n1) for some integer n1 ∈ {1, . . . , n − 1} and w ∈ MaxDS(n). The following
statements hold:

(a) |DS(w)| > |DS(w1)| + |DS(w2)| for all w1, w2 such that w = w1w2.
(b) cross(w1, w2) �= ∅ for all w1, w2 such that w = w1w2.

Proof. (a) Suppose |w1| = n1. Then, the maximum value of the expression
|DS(w1)| + |DS(w2)| is |MaxDS(n1)| + |MaxDS(n − n1)|. As MaxNS(n)
> MaxNS(n1) +MaxNS(n − n1), the relation |DS(w)| > |DS(w1)| +
|DS(w2)| follows.

(b) We conclude from (a) that the rightmost square starts in w1 and ends in w2

for all subwords w1. So, the set cross(w1, w2) is non-empty for every w1.

��
Following lemma inspects the characteristics of terminal letters in a square-
maximal word.

Lemma 6. Let n ∈ N be a gain length and w ∈ MaxDS(n).

(a) If MaxNS(n) = MaxNS(n − 1) + 1, then every terminal letter of w is the
terminal letter in exactly one rightmost square of w.

(b) If MaxNS(n) = MaxNS(n − 1) + 2, then w begins with an FS double
square and the last letter of w is a terminal letter of two squares in DS(w).

Proof. As n is a gain length, MaxNS(n) − MaxNS(n − 1) = i ∈ {1, 2}.
The first letter of a word w ∈ MaxDS(n) must be a part of exactly i distinct
squares. Otherwise, removing the first letter will result in a word of n − 1 length
containing more than MaxNS(n − 1) distinct squares which is not feasible.
Similar argument applies for the last letter of a word w. ��

Characterization of Dense Patterns Having Distinct Squares 403

We observe, from Lemma 6, that the square-maximal words for successive
gain lengths always begin and end with a square. We have observed in the manual
inspection of square-maximal words for lengths up to 40 that if such a word ends
with the longest primitive square, then extending it further with the prefix of it’s
square base results in a longer square-maximal word. In the following lemma,
we explain one such way to introduce new square(s) using a prefix of a square
base.

Lemma 7. Let w = uu be a primitive base square such that |u| > 1 and v be a
proper prefix of u. Then, |DS(w.v)| ≥ |DS(w)| + |v|.
Proof. Assume, u = u1u2...un. A square uu has all conjugates of u, and every
letter of the first u in w begins with a distinct conjugate. Similarly, for a word
uu.v every letter of the word v adds a new square, that is, a conjugate of uu.

The number of new squares added by a prefix v is more than |v| if the word
begins with an FS double square. An FS double square is a primitive square that
begins with two rightmost squares. The structure of the base of an FS double
square is known to be (xy)e1(x)(xy)e2 [4]. Here, x and y ∈ Σ+ and the integers
e1, e2 satisfy e1 ≥ e2 ≥ 0. A word beginning with an FS double square introduces
|v| + |v′| new distinct squares for some non-empty longest common prefix v′ of
the words x and y, where |v′| ≤ |v|. ��

A pattern is a way to represent a family of words sharing similar characteris-
tics. In the following section, we employ the properties of square-maximal words
identified above to define a dense pattern.

3.1 Dense Patterns

We use the notation T (x) to denote a function from N → Σ+. For example,
T (x) = axb generate words {b, ab, a2b, a3b, . . .}. We refer to a function T (x) as a
pattern. For a word, w, the distinct-square density, α(w) is defined as the ratio
|DS(w)|

|w| and it is known that no upper bound on α(w) is sharp [8]. We extend
the definition of the distinct-square density to a pattern, T (x), and define it as

αT = lim
x→∞

|DS(T (x))|
|T (x)|

The distinct-square density of a pattern depends on the number of no-
gain lengths between two successive words generated by the pattern. A high
distinct-square density indicates more gain lengths or equivalently less no-
gain lengths. The difference between lengths of successive words generated
by a pattern need not be a constant. For every positive integer, x, a pat-
tern T (x) introduces |DS(T (x))| − |DS(T (x − 1))| new squares. The num-
ber of no-gain lengths introduced in T (x − 1) to obtain T (x) is defined as
NT (x) = (|T (x)| − |T (x − 1)|) − (|DS(T (x))| − |DS(T (x − 1))|). A good pattern
should minimize the value of NT (x). In Sect. 4, we use |DS(T (x))| and NT (x)
to compare different patterns.

404 M. Patawar and K. Kapoor

As mentioned before, we are interested in characterizing the words in a set
MaxDS(n), where n is a gain length. To do so, we use the properties of square-
maximal words. A word w = w1w2 ∈ MaxDS(n) satisfies either |DS(w)| >
|DS(w1)| + |DS(w2)| or |DS(w)| = |DS(w1)| + |DS(w2)|. In the latter case,
Lemma 4 shows that such a word has a unique factorization where the subword
w1 = w11w12 always satisfy the relation |DS(w1)| > |DS(w11)|+|DS(w12)|. The
only possible structures for this case has w1 = aku1b

k and w2 = bku2b
k. These

subwords cannot have any squares in common, so given a subword w1, it is easy
to find w2. We, therefore, use the relation |DS(w)| > |DS(w1)| + |DS(w2)| to
obtain a dense pattern. The interpretation of the relation given in Lemma 5 is
included in the next definition.

Definition 1 (Dense Pattern). A pattern, T (x), is said to be a dense pattern
if and only if it satisfies the following conditions.

(a) αT ≥ 1, and
(b) For all x ∈ N, if T (x) = w1w2 then cross(w1, w2) �= ∅, where w1, w2 ∈ Σ+.

A word produced by a dense pattern is known as a dense word. The following
lemma provides an aid to verify the second condition in Definition 1.

Lemma 8. Let w = u1u2 . . . uk be a word such that for all i ∈ {2, . . . , k − 1},
the subword si−1.ui.pi+1 is a rightmost square in DS(w) and u1p2 (sk−1uk) is
the first (the last) rightmost square of w for some non-empty prefix and suffix,
pi and si, respectively, of ui. Then, cross(w1, w2) �= ∅ for all w1, w2 such that
w = w1w2.

Proof. The word w begins and ends with a rightmost square. For 1 < i < k,
the structure of a rightmost square si−1.ui.pi+1 ensures that every non-terminal
letter in w is also a non-terminal letter in any rightmost square of w. Thus, for
all w1 and w2 such that w = w1w2 implies cross(w1, w2) �= ∅. ��
Now, we define a pattern P as follows:

P (x) = a.(a1ba2b...ay).

⎧
⎨

⎩

x−2⊙

i=y−1

(baibai+1bai+2)

⎫
⎬

⎭
.(bax−1baxbax−1bab)a (1)

where x and y are positive integers and y = x
2 � ≥ 4. Similar to the squares in

a word obtained from the pattern Q described in [5], the words generated by
the pattern P have three types of distinct squares. These are (i) trivial squares
having only letter a, squares with exactly two b′s, and (ii) squares with exactly
four b′s. All the squares in the last two types are primitive squares.

A set of primitive square and all its conjugates in the word has the structure
described in Lemma 7. Refer Table 1 for the length and the number of distinct
squares in a word that can be obtained by the pattern P . We check the pattern
against the definition of dense patterns. For this, we first verify that the subwords
of this pattern satisfy the criterion (b) of the Definition 1.

Characterization of Dense Patterns Having Distinct Squares 405

Table 1. Properties of the words generated by the pattern P

x mod 2 |P (x)| |DS(P (x))|
0 1

8
(10x2 + 36x + 40) 1

8
(10x2 + 20x + 24)

1 1
8
(10x2 + 32x + 38) 1

8
(10x2 + 16x + 22)

Lemma 9. The following subword, w, of a word generated by the pattern P
satisfies cross(w1, w2) �= ∅ for any w1, w2, where w = w1w2, y ≥ 4 and x > 6.

(a) w = a1ba2b . . . ay

(b) w =

{
x−2⊙

i=y−1

(baibai+1bai+2)

}

(bax−1baxbax−1bab)a

Proof. (a) We can write w according to Lemma 8 by using the rightmost squares
in {(aba)2, (abaa)2, (abaaa)2 . . . , (abay−2)2}. Thus, the relation holds true for
given w.

(b) Consider the rightmost instances of the squares in a subset R of DS(w),
where R = {(aibai+1ba2)2, (ai+1bai+2ba2)2, ..., (ax−1baxba2)2, (bai)2, (ba)2}.
We can use the squares in R to rewrite the word in the structure mentioned
in Lemma 8 in which w begins and ends with squares (bai)2 and (ba)2,
respectively. ��

Lemma 10. The pattern P is a dense pattern.

Proof. The distinct-square density of P is one (refer Table 1). A word generated
by the pattern P is the concatenation of two subwords given in Lemma 9. The
lemma shows that these subwords individually qualifies the last condition of
the Definition 1. We use the same subset of rightmost squares to write P (x)
according to Lemma 8. Thus, P is a dense pattern. ��

It is possible to modify a pattern to convert it into a dense pattern. Accord-
ingly, we change the structure of some existing patterns to make them dense
patterns. We discuss this later in Sect. 4. We first show that there exist infinitely
many dense patterns using a pattern generator.

Theorem 1. There are infinitely many dense patterns.

Proof. The following pattern generator generates infinitely many dense patterns.

Gen(x, y) = a.(a1b.a2...b.ay).

⎧
⎨

⎩

x−2⊙

k=(y−1)

(bakbak+1bak+2)

⎫
⎬

⎭

.(bax−1b.ax)(bax−1b.ab).a (2)

406 M. Patawar and K. Kapoor

where x, y ∈ N such that 3 ≤ y ≤ (x − 3). Every value of y gives a different
pattern and we use G3, G4, ..., Gy to denote these patterns.

|Gy(x)| =
1
2
(3x2 + 9x − 2y2 + 10) (3)

|DS(Gy(x))| =
1
2
(3x2 + 4x − 2y2 + 2y + 6 − (x mod 2)) (4)

Equations (3) and (4) shows that the distinct-square density of each Gy is one.
Further, the subwords of any of these patterns are as given in Lemma 9. Thus,
Gy is a dense pattern. ��
Note that every Gy supports the ‘stronger’ square conjecture [6]. Also, it is
possible to get more dense patterns by replacing the letters (a, b) in the generator
explained in Theorem 1 with certain words.

We continue to discuss these patterns where we compare the existing best
known patterns with the pattern P .

4 Comparison of P with the Existing Patterns

The patterns described in Sect. 2 have varying distinct-square densities. We use
the Definition 1 to verify existing patterns for a dense pattern. Accordingly, the
distinct-square density of a pattern must approach to one. This condition makes
us omit the patterns of lower densities. Patterns given in [1,2] have a distinct-
square density less than one while the distinct-square density of patterns in [5,6]
approaches one. So, we verify only Q and JMS against the definition of a dense
pattern. The pattern Q [5] is defined as follows.

Q(x) =
x⊙

i=2

aibai−1baib

We compute the distinct-square density of pattern Q using the Eqs. (5) and (6).

|Q(x)| =
1
2
(3x2 + 7x − 10) (5)

|DS(Q(x))| =
1
2
(3x2 + 2x − 10 − (x mod 2)) (6)

αQ = lim
x→∞

|DS(Q(x))|
|Q(x)| = 1 (7)

For |w1| = 1, the word Q(x) = w1w2 satisfy cross(w1, w2) = ∅. So, Q is not a
dense pattern. However, the pattern, Q′, obtained by removing the first letter
from Q(x) makes it a dense pattern.

Q′(x) = (ababa2b).
x⊙

i=3

aibai−1baib

Characterization of Dense Patterns Having Distinct Squares 407

We have |DS(Q′(x))| = |DS(Q(x))| and |Q′(x)| = |Q(x)| − 1, therefore, the
distinct-square density of Q′ is one. A set of rightmost squares as mentioned in
Lemma 8 exists for Q′, that is, R ⊂ DS(Q′) where

R = {(ab)2, (aba2baa)2, (aba3baa)2, . . . , (abai−1baa)2, (ai−1baib)2}

Hence, the pattern Q′ is a dense pattern.
A stricter bound for the number of distinct squares is conjectured in [6] and is

supported by a pattern called as JMS. It is a simple pattern with the structure:

JMS(x) =
x⊙

i=1

aib

Following equations give the length and the number of distinct squares in
JMS(x).

|JMS(x)| =
1
2
(x2 + 3x) (8)

|DS(JMS(x))| =
1
2
(x2 − 2 − (x mod 2)) (9)

The distinct-square density of the pattern obtained with above equations as
αJMS = 1. Similar to Q(x), a word JMS(x) = w1w2 satisfies cross(w1, w2) = φ
for |w2| = 1. We remove the last letter of JMS(x) to get a word that satisfies
the condition (b) of Definition 1:

JMS′(x) =

{
x−1⊙

i=3

aib

}

.ax

The distinct-square density of pattern JMS′ is one, and we can use Lemma
9 to show that it is a dense pattern. Both the patterns Q′ and JMS′ construct
words using the same principle to increase the number of distinct squares. They
maximize the distinct primitive squares to achieve a higher distinct-square den-
sity, as mentioned in Lemma 7. Let us see a criterion to compare the dense
patterns.

4.1 Comparing Dense Patterns

We obtained two dense patterns Q′ and JMS′ from the existing patterns. Also,
the newly proposed pattern P met all the conditions that are defined for a dense
pattern. A pattern that reaches to its distinct-square density quickly is the best
pattern. It is evident that if a pattern introduces a lot of no-gain lengths between
its successive words, then it will move slowly towards its density. We, therefore,
use a notation βT to determine the rate of a pattern T to arrive its distinct-
square density. The notation is valid for a pattern that has at least one no-gain
length between its successive words.

408 M. Patawar and K. Kapoor

Definition 2 (Gain lengths per no-gain length). Let x ∈ N. The term
βT (x) is the ratio of number of distinct squares in T (x) that are not in T (x− 1)
to the number of no-gain lengths between T (x) and T (x − 1), that is,

βT (x) =
|DS(T (x))| − |DS(T (x − 1))|

NT (x)

We get βQ′(x) and βJMS′(x) from Eqs. (5), (6), (8) and (9) as follows:

βQ′(x) =
3x

2
or

3x − 1
3

and βJMS′(x) =
x

1
or

x − 1
2

(10)

Lemma 11. For all positive integers x > 4, there exists y ∈ N with |JMS′(x)| >
|Q′(y)| and |DS(JSM ′(x))| < |DS(Q′(y)|.
Proof. The statement holds since βJMS′(x) < βQ′(x) (see Eq. (10)). ��
Theorem 2. Pattern P is the lower bound for MaxNS(n).

Table 2. New Distinct Squares per new No-Gain Length

βT (x) x mod 2 = 0 x mod 2 = 1

βQ′(x) 1.5x x − 0.33

βP (x) 1.5x + 0.5 x + 0.5

Proof. The Lemma 11 shows that the pattern Q′ is better than the pattern
JMS′. We enlist the β values of patterns Q′ and P in Table 2. It shows that the
rate of approaching the distinct-square density of pattern P is faster than that
of Q′. ��
Corollary 1. For every word, Q′(x), there exists a word, P (y), such that
|Q′(x)| > |P (y)| and |DS(Q′(x))| < |DS(P (y))| where x and y ∈ N and x > 5.

5 Conclusion and Future Work

We analyzed different patterns and tried to build a structure to pack maximum
number of distinct squares. In this context, we found that a square if extended
with its square base, adds a conjugate of the square for every newly added letter.
We defined a dense pattern, P , using this property and presented a generator to
obtain infinite number of dense patterns. The existing patterns are modified to
qualify the definition of dense pattern and compared with the proposed dense
pattern P . It is concluded that P is the new lower bound for the square conjec-
ture. Since a primitive square has maximum number of conjugates, we conjecture
that such a structure has maximum number of distinct primitive squares. The
proposed structure of building dense patterns introduces at most one distinct
square per letter. Another direction for exploration is to consider extending an
FS double square where every added letter adds two new distinct squares.

Characterization of Dense Patterns Having Distinct Squares 409

References

1. Amit, M., Gawrychowski, P.: Distinct squares in circular words. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 27–37.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 3

2. Blanchet-Sadri, F., Osborne, S.: Constructing words with high distinct square den-
sities. In: International Conference on Automata and Formal Languages. EPTCS,
vol. 252, pp. 71–85 (2017)

3. Deza, A., Franek, F., Jiang, M.: A d-step approach for distinct squares in strings. In:
Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 77–89. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21458-5 9

4. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discret. Appl. Math. 180, 52–69 (2015)

5. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory Ser. A 82(1), 112–120 (1998)

6. Jonoska, N., Manea, F., Seki, S.: A stronger square conjecture on binary words. In:
Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014.
LNCS, vol. 8327, pp. 339–350. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-04298-5 30

7. Lothaire, M.: Applied Combinatorics on Words, vol. 105. Cambridge University
Press, Cambridge (2005)

8. Manea, F., Seki, S.: Square-density increasing mappings. In: Manea, F., Nowotka,
D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 160–169. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23660-5 14

https://doi.org/10.1007/978-3-319-67428-5_3
https://doi.org/10.1007/978-3-642-21458-5_9
https://doi.org/10.1007/978-3-319-04298-5_30
https://doi.org/10.1007/978-3-319-04298-5_30
https://doi.org/10.1007/978-3-319-23660-5_14

Graph Algorithms

Failure and Communication
in a Synchronized Multi-drone System

Sergey Bereg1(B), José Miguel Dı́az-Báñez2, Paul Horn3, Mario A. Lopez4,
and Jorge Urrutia5

1 Department of Computer Science, University of Texas at Dallas, Richardson, USA
besp@utdallas.edu

2 Department of Applied Mathematics II, University of Seville, Seville, Spain
3 Department of Mathematics, University of Denver, Denver, USA

4 Department of Computer Science, University of Denver, Denver, USA
5 Instituto de Matemáticas, Universidad Nacional Autónoma de México,

Mexico City, Mexico

Abstract. A set of n drones with limited communication capacity is
deployed to monitor a terrain partitioned into n pairwise disjoint closed
trajectories, one per drone. In our setting, there is a communication link
between two trajectories if they are close enough, and drones can com-
municate provided they visit the link at the same time. Over time, one or
more drones may fail and the ability to communicate and stay connected
decreases. In this paper we study two properties related to communica-
tion: isolation and connectivity. First, we provide efficient algorithms,
both centralized and decentralized, for determining the connected com-
ponents induced by the set of surviving drones. Second, we study isola-
tion and connectivity under a probabilistic failure model and show that,
in the case of grids, the system is quite robust in the sense that it can
tolerate a large probability of failure before drones become isolated and
the system loses full connectivity.

Keywords: Unmanned aerial vehicles · Synchronized communication
system · Communication graph · Connectivity · Probabilistic model

S. Bereg—Partially supported by NSF award CCF-1718994.
J. M. Dı́az-Báñez—Partially supported by Spanish Ministry of Economy and Compet-
itiveness project MTM2016-76272-R AEI/FEDER, UE and European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant
#734922.
P. Horn—Partially supported by Simons Collaboration Grant #525039.
M. A. Lopez—Partially supported by a University of Denver John Evans Award.
J. Urrutia—Partially supported by PAPIIT Grant IN105221, UNAM.

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 413–425, 2021.
https://doi.org/10.1007/978-3-030-67899-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_33

414 S. Bereg et al.

1 Introduction

Teams of Unmanned Aerial Vehicles (UAVs), colloquially known as drones, are
becoming a trend in the last few years for their use in a wide variety of appli-
cations such as area monitoring, precision agriculture, search and rescue, explo-
ration and mapping, and delivery of products, to name a few; see [10–12] and
references therein for a comprehensive survey on the topic. The coordination of
a team of autonomous vehicles enables the execution of tasks that no individ-
ual autonomous vehicle can accomplish on its own, and thus there has been an
increasing interest in studying teams of drones that cooperate with each other.
In such multi-drone systems a desired collective outcome arises from the inter-
action of the drones with each other and with their environment, via a set of
installed sensors and communication devices.

The problems raised in this paper assume the framework recently proposed
in [7]. A partition of a terrain to be covered is given and every drone is assigned a
different section of the partition. Each drone travels on a fixed closed trajectory
while performing a prescribed task, such as monitoring its assigned area. In order
to allow cooperation, each drone needs to communicate periodically with other
drones. Since the UAVs have a limited communication range, two of them need
to be in close proximity of each other in order to communicate. In [7] the authors
presented a framework to survey a terrain in the scenario described above. As
an abstraction, they considered a model in which each drone is modeled by a
single point that flies on a unit circle at constant speed, and this speed is the
same for all the drones. They assume, w.l.o.g., that one time unit is the time
required by a robot to complete a tour of a circle. These circles may intersect at
a single point but do not cross. The communication between two robots can take
place if their corresponding circles touch, and it is carried out at the point of
intersection. They also showed how to generalize the results to a more realistic
model. In [7] it is assumed that the unit disk graph defined by the given set of
circles (trajectories) is connected, they call it the communication graph.

The main problem addressed in [7] is to obtain a synchronization schedule,
that is, to assign a starting position and travel direction to each trajectory so
that if n drones follow this schedule, every pair of them traveling in two adjacent
circles pass through the intersection point of their trajectories at the same time.
A set of trajectories with a synchronization schedule conform a synchronized
communication system (SCS) [7]. In the same paper, the authors also discuss
necessary and sufficient conditions for the existence of a synchronization sched-
ule. For an illustration see Fig. 1 and related video1. Note that although not
every pair of robots can communicate directly, a robot may relay a message to
another robot through a sequence of intermediate message exchanges.

If the system is synchronized, as described above, a robot can easily detect
the failure of a neighboring robot. If a robot di in trajectory Ci arrives at the
communication point between Ci and another trajectory Cj , and it fails to meet
another robot, it will assume that the robot in Cj is no longer functional. Under

1 https://www.youtube.com/watch?v=T0V6tO80HOI.

https://www.youtube.com/watch?v=T0V6tO80HOI

Failure and Communication in a Synchronized Multi-drone System 415

Fig. 1. Examples of synchronized communication systems. The robots in the SCS are
represented by solid black points. (a) The communication graph is a grid. (b) The
communication graph is a tree. If the white drones leave the system, the black drones
become isolated.

such circumstances, a reasonable strategy is for di to switch to Cj at this point
and take over the task of the missing robot. In [7], this strategy is called the
shifting strategy. Under the shifting strategy, an undesirable phenomenon, known
as isolation, may occur. A drone is isolated if it fails permanently to meet other
drones. The three black drones in Fig. 1(b) never meet, and thus they are isolated.
A ring is the closed path followed by an isolated drone. Each ring is composed
of sections of various trajectories and has a direction of travel determined by
the direction of movement in the participating trajectories. Each section of a
trajectory between two consecutive link positions participates in exactly one
ring, thus the rings in an SCS are pairwise disjoint. The number of rings and its
length depends on the communication graph. Figure 2 illustrates some examples.
See [2] for a study on rings and the isolation phenomenon.

Fig. 2. SCSs with two rings (a); one ring (b) and three rings (c).

In [7], neighboring circles are assigned opposite travel directions (clockwise
and counterclockwise) so as to enable the shifting strategy. From now on we work
with SCSs where every pair of neighboring circles have opposite travel directions
and, consequently, the communication graph is bipartite. Under this model, our
main contributions are the following:

1. Connected components. Consider a system in which some drones may have
failed. Two drones belong to the same connected component if they can
exchange messages, possibly through a sequence of intermediaries. We provide

416 S. Bereg et al.

efficient algorithms for computing the connected components of the system,
both centralized (where a central server is privy of a snapshot of the system,
Theorem 2) and decentralized (using only the information that drones can
gather while flying and meeting other drones, Theorem 4). For the case of
grids, the required flying time can be proportional to the number of trajec-
tories, and this bound is tight (Theorem 3).

2. Probabilistic failure model. We address the robustness of a system in which
drones survive with probability p, and study two properties: full connectivity
and drone isolation. For t × t grids, we establish sharp thresholds for the
existence of isolated drones (Theorem 5) and connectivity (Theorem 6). These
results show that the system is extremely robust to random failure as these
thresholds are o(1) as t → ∞. For general grids, we provide less sharp results
(Theorems 7 and 8).

2 Related Work

There is a vast literature related to communication strategies for a team of robots
monitoring a given area. Our scenario shares similarities with work on patrolling
agents [9] where the drones patrol along predefined paths making observations
and synchronize with their teammates during a very limited time to share data.
Typically, research has focused mostly on construction and validation of working
systems, rather than more general and formal analysis of problems. In this paper,
we study some algorithmic and probabilistic problems related to communication
in the particular framework of a synchronized communication system (SCS)
proposed in [7].

Recently, the study of stochastic UAV systems has attracted considerable
attention in the field of mobile robots. This approach has several advantages
such as shorter times to complete tasks, cost reduction, higher scalability, and
more reliability, among others [13]. In a pure random mobility model, each node
randomly selects its direction, speed, and time independently of other nodes.
Some models include random walks, random waypoints or random directions.
See [3] for a comprehensive survey. The framework assumed in this paper is not
a pure random walk model but the use of stochastic strategies in the shifting
protocol generates random walks [4]. In the same work, the authors evaluate both
the coverage and communication performance of a SCS and show the validity of
two random strategies compared with the deterministic one.

On the other hand, several algorithmic and combinatorial problems have
been studied within a SCS using the deterministic shifting strategy. In [1,2] the
authors propose various quality measures for a synchronized system regarding
the resilience of a network in the presence of failures. Computing these measures
leads to interesting combinatorial and algorithmic problems.

3 Computing the Connected Components

Assume we have a SCS where a subset of drones left the system and the surviving
drones apply the shifting protocol. We call the resulting system a partial SCS.

Failure and Communication in a Synchronized Multi-drone System 417

While some pairs of drones may communicate directly, communication between
other pairs may rely on passing information through other drones; in some cases
communication between drones may be impossible. We define the drone com-
munication graph GD as the graph whose vertices are the drones, two of which
are adjacent if the corresponding drones communicate directly at some point
in time. The connected components of this graph identify which sets of drones
can, directly or indirectly, communicate with each other. It is easy to see that
communication through other robots can sometimes be faster than direct com-
munication, e.g. it may take a long time for two drones to communicate directly.
In this section we show how to compute the connected components in the drone
communication graph under two models of computation:

1. Centralized: Suppose a central server contains the full information of a SCS,
including the set of drone trajectories and the initial locations of the drones.
How can the connected components of the SCS be found efficiently?

2. Decentralized: Suppose the drones themselves can pass messages when they
pass by each other. How can they determine the other drones in their con-
nected component, and how quickly can this be accomplished?

Note that in the second case, the drones do not know how many other drones
are active or where they are; they merely learn what drones are active as they
meet other drones and exchange information. For that reason, the complexity of
both problems is different. The complexity of our algorithm in the first case, is
the number of steps the central server needs to be computed, while in the second
case it is the flying time of the drones before each drone knows its connected
component.

Nonetheless, we show that for the s × t grid both problems can be solved
with highly efficient algorithms. The key notion for our results is the use of the
token graph introduced in [1]. We assume that at time 0 each drone di holds a
token ti. This establishes a bijection between the drones and the tokens. When
two drones meet, they exchange their tokens. The token graph GT of a drone
system is the graph whose vertices are the tokens, two of which are adjacent if
at some time the corresponding tokens are exchanged. Note that each token ti
stays in the same ring of drone di. Thus, the token graph can also be defined
using drones as vertices where two drones are adjacent if they encounter each
other in a system where only two drones exist. We have the following result.

Theorem 1. Two drones of GD are in the same component if and only if the
corresponding tokens are in the same component in GT .

In the case of an s × t grid with only two drones, the drones encounter each
other if and only if they are in the same row or the same column [1]. We call it
RC-property of the token graph.

Theorem 2. The connected components in GD can be computed in polynomial
time in the centralized model. Furthermore, they can be computed in O(st) time
in the s × t grid.

418 S. Bereg et al.

Proof. The token graph can be computed in polynomial time and its connected
components can be computed in linear time using breath-first search. For the
s × t grid, we compute a subgraph of the token graph where the vertices are
the drones and two drones are adjacent if (i) their circles are in the same row
or column, and (ii) there are no other drones in the circles between them. This
graph can be computed in O(st) time (by checking every row and column of the
grid) and its connected components are the same as in GD. Again, they can be
computed in linear time using breath-first search. ��

3.1 Decentralized Computation

The goal in the decentralized model is for each drone di to compute C(di), its
connected component in GD. We use the following algorithm. Each drone di

maintains a list L(di) of some drones from C(di). Initially, we set L(di) := {di}.
When drones di and dj meet at some time, they replace both L(di) and L(dj)
with the union L(di) ∪ L(dj). It is clear that if we follow this protocol long
enough, all drones will know their connected components (that is L(di) = C(di)
for all i.) Our goal is to give bounds for the running time of this approach.

We emphasize, again, that the time measured here is actually flying time of
the drones, i.e. how long do the drones have to fly until they each, individually,
know the other drones own components. We ignore, then, the computation of
the set unions involved as this is negligible compared with the actual flying time
from one communication point to another. We further assume that a unit time
is needed to navigate a trajectory. We begin with sharp bounds for the problem
on a t × t grid.

Theorem 3. On the t × t grid, at time t · (t − 1) we have that L(d) = C(d) for
all drones d. Furthermore, there are drone configurations that require Ω(t2) time
until L(d) = C(d) for all drones d.

Proof. We use the idea of tokens. At the beginning (time 0), each drone di holds
token ti; recall that when two drones encounter each other they exchange tokens
(along with taking the union of their respective lists). Let d(i,m) denote the
drone holding token ti at time m. Thus, d(i, 0) = di. Note that d(i,m) is always
in the same component as drone di as it holds ti due to a sequence of interactions
with other drones, each passing ti to the next drone of the sequence. Moreover,
L(d(i,m)) ⊆ L(d(i,m′)) if m ≤ m′ as whenever tokens are exchanged, the lists
are passed along.

Fix an (arbitrary) drone d0 and consider any drone dk in C(d0). Let
d0, d1, . . . , dk be the shortest path between d0 and dk in the token graph. By
the construction of the token graph as an RC-graph, it is easy to see that the
diameter of the token graph is at most t − 1, and in particular k ≤ t − 1. Note
that ti and ti+1 are in the same row or column, and hence drones holding them
meet within time t. This implies that, for instance, d1 ∈ L(d(0, t)) at time t as
when the drones with token t0 and t1 meet, the label d1 is passed to the drone
holding token t0. Inductively, it follows di ∈ L(d(0, i · t)) at time i · t: the label

Failure and Communication in a Synchronized Multi-drone System 419

di is given to the drone carrying token ti−1 in the first time t, then to the drone
carrying token ti−2 in the next time t, until it at last is passed to the drone hop-
ing token t0. This shows that L(d(0, t(t − 1)) is complete at time k · t ≤ (t − 1)t
and as d0 is arbitrary, this completes the proof.

We now provide a set of drones {d1, . . . , dk} which show this time can be
quadratic. For this set of drones, d1
∈ L(d(k,m)) until time m = Ω(t2). The
construction involves a set of drones {d1, . . . , dk} on the t × t grid satisfying the
following conditions:

1. di and di+1, for i = 1, 2, . . . , k share the same row or column, and there are
no rows or columns with more than two drones.

2. The distances di,i+1 between di and di+1 are decreasing, for i = 1, 2, . . . , k.
3. The polygonal chain formed by the union of the segments connecting di to

di+1 is a spiral polygonal chain; see Fig. 3.
4. Drones on the same column move in opposite directions (clockwise and coun-

terclockwise) along their ring, while drones in the same row move in the same
direction.

Fig. 3. (a) Drones are arranged in a spiral polygonal chain. (b) The bold line represents
the propagation of the label d1 through the system for times ≤ t. Drones holding tokens
t3 and t4 meet at p1 and p2.

The key observation is that the drone holding token ti will only meet the
drones holding token ti+1 and ti−1 and by placing the drones carefully, the
intersections will be set up so that the label of d1 will only propagate through a
small number of consecutive drones in time t.

Consider four consecutive drones in {d1, . . . , dk}; without loss of generality
assume these are d1, d2, d3 and d4. We claim that at time t, the only elements
in {d1, . . . , dk} with d1 ∈ L(d(i, t)) are i = 1, 2, 3. To see this, observe that since
d1,2 > d2,3, t2 meets t3 the first time before it meets t1. The label d1 is thus
added to the list of the drone holding token t3 during the second time the drones

420 S. Bereg et al.

holding tokens of t2 and t3 meet. At this point t3 has already swapped with t4
twice. Hence d1
∈ L(d(4, t)) at time t.

Figures 3a and 3b illustrate first this setup and then the process itself.
Figure 3 illustrates how the threshold of knowledge of drone d1 moves forward
through the process Note it never moves from the drone holding token t1 directly
to, say, that holding token t3 as even though the rings of these drones intersect,
drones holding these tokens never directly communicate due to the timing. It
follows that to reach the drone holding token t2i label d1 will take t(i+1) time. ��

For a general system, a similar argument can be used to prove the following.

Theorem 4. Consider a general system of N drones on n trajectories and ring
lengths r1, r2, . . . , rk. Then at time N · max{lcm(rl, rm) : l
= m}, L(di) = C(di)
for all drones di, i = 1, · · · , N .

4 Communication Within a Probabilistic Failure Model

In this section we study the connectivity of GD under random failure. We prove
sharp thresholds for the properties of containing an isolated vertex and for con-
nectivity. We remark that our results are quite similar to those for the well known
Erdős-Rényi random graph [8], but our setting differs in two crucial ways. First
the ‘host graph’ (which can be thought of as the RC-graph for the full system)
is not complete; nor is the resulting random GD a subgraph of the full GD as
which drones directly communicate within a subsystem differs from that of the
full. Second, while most work generalizing results of the Erdős-Rényi graph to
more general host graphs (see, e.g. [5,6]) takes a random set of edges, we actually
take a random set of vertices. A side effect is that the properties we study are
not monotone; additional drones surviving may break these properties.

Theorem 5. Consider a full drone system in the t×t grid, where drones survive
with probability p. Let I denote the event that some drone is isolated. Fix an
arbitrary ε > 0.

(a) If p = (1 + ε) ln t
2t then as t → ∞, then P(I) → 0.

(b) If p = (1 − ε) ln t
2t then as t → ∞, then P(I) → 1.

Proof. For (a), note that there are t2 drone locations and in order for a drone to
be isolated it must survive and all others in its row and column must fail. Hence
the expected number of isolated drones is

t2p(1 − p)2t−1 ≤ t2pe−p(2t−1) = (1 + ε)
t ln t

2
exp

(
−(1 + ε)

(2t − 1)
2t

ln(t)
)

→ 0,

where we note that for t sufficiently large (1 + ε) (2t−1)
2t > 1, so that the expo-

nential term is O(t−(1+ε′)). (a) then follows by Markov’s inequality.

Failure and Communication in a Synchronized Multi-drone System 421

For (b), note that the expected number of isolated drones in this situation is

t2p(1−p)2t−1 ≤ t2pe−p(2t−1) = (1−ε)
t ln t

2
exp

(
−(1 − ε)

(2t − 1)
2t

ln(t)
)

≥ tε/2,

assuming that t is sufficiently large.
For (b), then it suffices, by Chebyschev’s inequality, to show that if X is the

number of isolated drones in the system, to show that Var(X) = o(E[X]2). Note
that X can be written as

∑
(i,j)∈[t]2 Xi,j , where Xi,j is the event that the drone

in the (i, j)th position is isolated. Then

Var(X) ≤ E[X] +
∑

(i,j) �=(k,l)∈[t]2

(
E[Xi,jXk,l] − E[Xi,j]E[Xk,l]

)
.

We bound the sum. If i = k or j = l, then E[Xi,jXk,l] = 0, and E[Xi,j] =
E[Xk,l] = p(1 − p)2t−1. As the covariance terms being sum are negative these
terms can be discarded for upper bounding the variance. For the other terms,
where (i, j) and (k, l) are different in both coordinates, E[Xi,jXk,l] = p2(1 −
p)4t−4 and there are at most t4 terms of this type and these summands contribute
at most

t4
(
p2(1 − p)4t−4 − p2(1 − p)4t−2

)
= E[X]2((1 − p)−2 − 1) = o(E[X]2),

where the last equality follows from the form of p. Hence, by Chebyschev’s
inequality X ∼ E[X] with probability tending to one, and thus are isolated
drones. ��
Remark 1. Note that for (a), if suffices that p ≥ (1 + ε) log t

t – this follows as
the expected number is decreasing in as p increases (assuming that p ≥ 1

2t−1 .)
Extending the lower bound works so long as the expected number of isolated
drones tends to infinity.

Remark 2. Theorem 5(a) implies that, even for fairly small p, the number of iso-
lated drones is 0 with high probability. At the threshold, the number of surviving
drones is only O(t log t), while t2 −O(t log t) drones fail in this case. This should
be compared with the 1-isolation resilience of the grid, the minimum number of
drones whose failure can result in an isolated drone, which is O(t) [1].

Theorem 6. Consider a full drone system in the t×t grid, where drones survive
with probability p. Let C denote the event that the system of drones is connected
(that is, all drones can communicate with one another). Fix an arbitrary ε > 0.

(a) If p = (1 + ε) ln t
2t then as t → ∞, then P(C) → 1.

(b) If p = (1 − ε) ln t
2t then as t → ∞, then P(C) → 0.

Proof. Note that (b) follows directly from Theorem 5, as if there is an isolated
drone (and more than one drone, as there is at such a p with high probability)
then the system is not connected.

422 S. Bereg et al.

We proceed to prove (a). We have already shown that when p = (1 + ε) ln t
t

that there are no components of size 1. We still need to show there is a unique
component. To do this, we study a modified breadth first search in the RC-graph,
introduced in the previous section. Recall, that performing a breadth-first search
in the RC-graph (where vertices are drones and they are joined if they in the
same row or column) reveals the connected component of a vertex.

To show that there is precisely one component in this setting, we study a
slightly modified tree finding algorithm. An exposing tree inside of a component
is a rooted tree generated as follows: Choose an initial root vertex (drone) to
explore. Add all vertices in its row and column to a queue. Now, each vertex in
the queue is iteratively explored. When a vertex is explored, vertices in their row
or column are added to the queue if either their row or column is different from
those already added to the queue. Since every vertex being explored was added
to the queue it shares either a row or column with one of the other vertices
previously explored, and each vertex is responsible for ‘exposing’ a new row or
new column (with the initial vertex responsible for exposing both.) The set of
explored vertices forms the exposing tree.

Generating an exposure tree ends with a subset of a connected component
which is both non-empty and possibly proper – but vertices in the component
and not in the tree share both a row and a column with vertices in the tree. It
also ends with a drone from each of some j columns and k rows (where j and k
are determined by the process) and j + k − 1 vertices. Furthermore, the process
ending means that there are no vertices in either of those j columns outside of
the k rows and likewise none in the k rows outside of the j columns.

Claim: The probability that the exposing tree process ends with 2 ≤ j + k ≤
t + 1 vertices from some starting point tends to zero.

Note that if there are two components, their rows and columns must be
disjoint, and hence one of the non-trivial components must have j +k ≤ t. Thus
the claim will complete the proof of the theorem.

Fix � = j + k. The number of potential exposing trees with � − 1 vertices
in the t × t grid can be estimated (roughly) as follows. The degrees in the tree
can be represented by a sequence of non-negative integers (a1, a2, . . . , a�) with∑

ai = � − 2 where a1, a2 are the row and column degrees of the first vertex,
and ai is the number of vertices added when the i − 1st vertex from the queue
is explored. The number of such solutions is bounded by

(
2�−2

�

) ≤ 4�. There
are fewer than t2 · t(�−2) = t� ways of choosing the vertices that are exposed.
Note that this is a rather large over-count: it assumes there are t choices each
time, when in reality there is a falling factorial type term and also introduces an
ordering when exposing the children of a given vertex. None the less, this upper
bounds the number of potential processes for a given � is at most 4�t�.

Now: for a given one of these potential processes, the j + k − 1 = � − 1
vertices explored must all survive, and the other vertices of their j columns
outside of the k rows, and k rows outside of the j columns, must all fail. This
has probability pj+k−1(1 − p)(t−j)k+(t−k)j = pj+k−1(1 − p)t(j+k)−2jk. Finally

Failure and Communication in a Synchronized Multi-drone System 423

note that jk ≤ (j+k)2

4 so that regardless of the individual j, k – for any potential
process with � = j + k fixed the probability of ending is at most

pj+k−1(1 − p)(t−(j+k)/2)·(j+k) = p�−1(1 − p)(t−�/2)·�

A union bound over potential exposing trees, shows that the probability that
the process ends with a given value of � is at most

4�t�p�−1(1 − p)(t−�/2)·� = 4� · t((1/2 + ε) ln(t))�−1(1 − p)t−�/2·�

≤ exp
(

ln(t) + �

(
ln(4(1/2 + ε)) + ln ln(t) − (1/2 + ε)

ln t

t
(t − �/2)

))
.

In the last inequality here, we used the inequality 1 − x ≤ e−x along withe
definition of p. Hence, per a union bound over potential � it suffices to show that

t+1∑
�=2

exp
(

ln(t) + �

(
ln(4(1/2 + ε)) + ln ln(t) − (1/2 + ε)

ln t

t
(t − �/2)

))
→ 0

as t → ∞. To do this, we note that for 2 ≤ � ≤ 10, these terms are o(1)
individually as for � ≤ 10 � · (1/2 + ε) · ln(t)

t (t − �/2) > (1 + ε/2) ln(t) assuming
t is large enough. For t + 1 ≥ � ≥ 8, the dominant part of the terms comes from

� · (1/2 + ε)
ln t

t

(
t − 1

2

)
> (2 + ε/2) ln(t).

Thus these terms are actually o(t−1) and as there are fewer than t such terms
in total the sum is o(1) as desired. ��

4.1 General Grids

Theorems 5 and 6 above consider the specialized case where the initial setting is
a full t × t grid. The case of general systems, even the case of general s × t grids
is significantly more complicated. Indeed, in s× t grids, the asymptotic behavior
of how s and t are taken to go to infinity in comparison with one another can
give rise to a number of different behaviors, depending on the values of s and t.

For instance, when s > 1 is fixed, while t goes to infinity the isolation thresh-
old and connectivity threshold differ from each other, and both differ greatly
from the above. In this case, we have the following:

Theorem 7. Consider a full drone system s × t, where drones survive with
probability p, where s > 1 is fixed as t → ∞.

1. If p = ω(1/t), then P(I) → 0.
2. If p = o(1/

√
t), then P(C) → 0 while if p = ω(1/

√
t), then P(C) → 1

We only sketch the simple proof.

424 S. Bereg et al.

Proof. For (a), the probability a row contains at most one drone is tp(1 − p)t−1 +
(1 − p)t and if p = ω(1/t) this tends to zero and the result follows from a union
bound. For (b), if p = o(1/

√
t) the expected number of columns containing two

drones is
(

s
2

) · t ·p2 → 0, which implies the resulting communication graph is dis-
connected as there will be no communication between rows. Once p = ω(1/

√
t),

each of the
(

s
2

)
pairs of rows will have some column where there is a drone in

that column in both rows with high probability, and this forces connectivity. ��
When both s and t both tend to infinity, the situation becomes more complicated,
and we do not pursue a full investigation here. We do note, however, that the
following holds:

Theorem 8. Consider a full drone system in the s × t grid, where drones survive
with probability p. If s ≤ t and s → ∞ then if p = (1 + ε) ln(s)s , then P(C) → 1.

This follows as here an s× s system contained in the grid is both connected and
contains a drone in each row and column.

Acknowledgment. This work was initiated at the IX Spanish Workshop on Geo-
metric Optimization, El Roćıo, Huelva, Spain, June 18–22, 2018. We thank the other
participants of that workshop - L.E. Caraballo, M.A. Heredia and I. Ventura - for
helpful discussions and contribution to a creative atmosphere.

References

1. Bereg, S., Brunner, A., Caraballo, L.-E., Dı́az-Báñez, J.-M., Lopez, M.A.: On the
robustness of a synchronized multi-robot system. J. Comb. Optim. 39(4), 988–1016
(2020). https://doi.org/10.1007/s10878-020-00533-z

2. Bereg, S., Caraballo, L.E., Dı́az-Báñez, J.M., Lopez, M.A.: Computing the k-
resilience of a synchronized multi-robot system. J. Comb. Optim. 36(2), 365–391
(2018)

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

4. Caraballo, L.E., Dı́az-Báñez, J.M., Fabila-Monroy, R., Hidalgo-Toscano, C.:
Patrolling a terrain with cooperrative UAVs using random walks. In: 2019 Int’l
Conference on Unmanned Aircraft Systems (ICUAS), pp. 828–837. IEEE (2019)

5. Chung, F., Horn, P.: The spectral gap of a random subgraph of a graph. Internet
Math. 4(2–3), 225–244 (2007)

6. Chung, F., Horn, P., Lu, L.: Percolation in general graphs. Internet Math. 6(3),
331–347 (2009)

7. Dı́az-Báñez, J.M., Caraballo, L.E., López, M.A., Bereg, S., Maza, J.I., Ollero, A.:
A general framework for synchronizing a team of robots under communication
constraints. IEEE Trans. Robot. 33(3), 748–755 (2017)

8. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
9. Farinelli, A., Iocchi, L., Nardi, D.: Distributed on-line dynamic task assignment for

multi-robot patrolling. Auton. Robots 41(6), 1321–1345 (2016). https://doi.org/
10.1007/s10514-016-9579-8

10. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks
for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutor.
18(4), 2624–2661 (2016)

https://doi.org/10.1007/s10878-020-00533-z
https://doi.org/10.1007/s10514-016-9579-8
https://doi.org/10.1007/s10514-016-9579-8

Failure and Communication in a Synchronized Multi-drone System 425

11. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey.
Networks 72(4), 411–458 (2018)

12. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone
networks: communications, coordination, and sensing. Ad Hoc Netw. 68, 1–15
(2018)

13. Yanmaz, E., Costanzo, C., Bettstetter, C., Elmenreich, W.: A discrete stochastic
process for coverage analysis of autonomous UAV networks. In: 2010 IEEE Globe-
com Workshops, pp. 1777–1782. IEEE (2010)

Memory Optimal Dispersion
by Anonymous Mobile Robots

Archak Das , Kaustav Bose(B) , and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{archakdas.math.rs,kaustavbose.rs,buddhadeb.sau}@jadavpuruniversity.in

Abstract. Consider a team of k ≤ n autonomous mobile robots ini-
tially placed at a node of an arbitrary graph G with n nodes. The dis-
persion problem asks for a distributed algorithm that allows the robots
to reach a configuration in which each robot is at a distinct node of the
graph. If the robots are anonymous, i.e., they do not have any unique
identifiers, then the problem is not solvable by any deterministic algo-
rithm. However, the problem can be solved even by anonymous robots
if each robot is given access to a fair coin which they can use to gen-
erate random bits. In this setting, it is known that the robots require
Ω(log Δ) bits of memory to achieve dispersion, where Δ is the maxi-
mum degree of G. On the other hand, the best known memory upper
bound is min{Δ, max{log Δ, log D}} (D = diameter of G), which can
be ω(log Δ), depending on the values of Δ and D. In this paper, we close
this gap by presenting an optimal algorithm requiring O(log Δ) bits of
memory.

Keywords: Mobile robots · Dispersion · Depth-first search ·
Distributed algorithm · Randomized algorithms

1 Introduction

1.1 Background and Motivation

A considerable amount of research has been devoted in recent years to the study
of distributed algorithms for autonomous multi-robot system. A multi-robot sys-
tem consists of a set of autonomous mobile computational entities, called robots,
that coordinate with each other to achieve some well defined goals, such as form-
ing a given pattern, exploration of unknown environments etc. The robots may be
operating on continuous space or graph-like environments. The most fundamen-
tal tasks in graphs are Gathering [3,6,7,11,14–18,23–25,29,30] and Explo-
ration [4,5,9,10,12,13,28]. A relatively new problem which has attracted a lot
of interest recently is Dispersion, introduced by Augustine and Moses Jr. [2].
The problem asks k ≤ n robots, initially placed arbitrarily at the nodes of an
n-node anonymous graph, to reposition themselves to reach a configuration in
which each robot is at a distinct node of the graph. The problem has many prac-
tical applications, for example, in relocating self-driven electric cars to recharge
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 426–439, 2021.
https://doi.org/10.1007/978-3-030-67899-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_34&domain=pdf
http://orcid.org/0000-0002-1630-3052
http://orcid.org/0000-0003-3579-1941
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-030-67899-9_34

Memory Optimal Dispersion by Anonymous Mobile Robots 427

stations where finding new recharge stations is preferable to multiple cars queu-
ing at the same station to recharge. The problem is also interesting because of its
relationship to other well-studied problems such as Exploration, Scattering
and Load Balancing [2].

It is easy to see that the problem cannot be solved deterministically by a set
of anonymous robots. Since all robots execute the same deterministic algorithm
and initially they are in the same state, the co-located robots will perform the
same moves. This is true for each round and hence they will always mirror
each other’s move and will never do anything different. Hence, throughout the
execution of the algorithm, they will stick together and as a result, dispersion
cannot be achieved. Using similar arguments, it can be shown that the robots
need to have Ω(log k) bits of memory each in order to solve the problem by any
deterministic algorithm [2]. However, it has been recently shown in [26] that if
we consider randomized algorithms, i.e., each robot is given access to a fair coin
which can be used to generate random bits, then Dispersion can be solved by
anonymous robots with possibly o(log k) bits of memory. In [26], two algorithms
are presented for Dispersion from a rooted configuration, i.e., a configuration
in which all robots are situated at the same node. The first algorithm requires
each robot to have O(max{log Δ, log D}) bits of memory, where Δ and D are
respectively the maximum degree and diameter of G. The second algorithm
requires each robot to have O(Δ) bits of memory. In [26], it is also shown that
the robots require Ω(log Δ) bits of memory to achieve dispersion in this setting.
Notice that while the memory requirement of the second algorithm is clearly
ω(log Δ), that of the first algorithm too can be ω(log Δ) depending on the values
of Δ and D. In this paper, we close this gap by presenting an asymptotically
optimal algorithm that requires O(log Δ) bits of memory.

1.2 Related Works

Dispersion was introduced in [2] where the problem was considered in specific
graph structures such as paths, rings, trees as well as arbitrary graphs. In [2], the
authors assumed k = n, i.e., the number of robots k is equal to the number of
nodes n. They proved a memory lower bound of Ω(log k) bits at each robot and a
time lower bound of Ω(log D) rounds for any deterministic algorithm to solve the
problem in a graph of diameter D. They then provided deterministic algorithms
using O(log n) bits of memory at each robot to solve Dispersion on lines, rings
and trees in O(n) time. For rooted trees they provided an algorithm requiring
O(Δ + log n) bits of memory and O(D2) rounds and for arbitrary graphs, they
provided an algorithm, requiring O(n log n) bits of memory and O(m) rounds
(m is the number of edges in the graph). In [19], a Ω(k) time lower bound was
proved for k ≤ n. In addition, three deterministic algorithms were provided in
[19] for arbitrary graphs. The first algorithm requires O(klogΔ) bits of memory
and O(m) time, (Δ = the maximum degree of the graph), the second algorithm
requires O(D log Δ) bits of memory and O(ΔD) time, and the third algorithm
requires O(log(max(k,Δ))) bits of memory and O(mk) time. Recently, a deter-
ministic algorithm was provided in [20] that runs in O(min(m, kΔ) log k) time

428 A. Das et al.

and uses O(log n) bits of memory at each robot. In [22], the problem was studied
on grid graphs. The authors presented two deterministic algorithms on anony-
mous grid graphs that achieve simultaneously optimal bounds with respect to
both time and memory complexity. For the first algorithm, the authors consid-
ered the local communication model where a robot can only communicate with
other robots that are present at the same node. Their second algorithm works in
global communication model where a robot can communicate with other robots
present anywhere on the graph. In the local communication model, they showed
that the problem can be solved in an n-node square grid graph in O(min(k,

√
n))

time with O(log k) bits of memory at each robot. In the global communication
model, the authors showed that it can be solved in O(

√
k) time with O(log k)

bits of memory at each robot. In [21], the authors extended the work in global
communication model to arbitrary graphs. They gave three deterministic algo-
rithms, two for arbitrary graphs and one for trees. For arbitrary graphs, their first
algorithm is based on DFS traversal and has time complexity of O(min(m, kΔ))
and memory complexity of Θ(log(max(k,Δ))). The second algorithm is based
on BFS traversal and has time complexity O(max(D, k)Δ(D + Δ)) and mem-
ory complexity O(max(D,Δ log k)). The third algorithm in arbitrary trees is
a BFS based algorithm that has time and memory complexity O(D max(D, k))
and O(max(D,Δ log k)) respectively. In [1], the problem was studied on dynamic
rings. Fault-tolerant Dispersion was considered for the first time in [27] where
the authors studied the problem on a ring in presence of Byzantine robots.
In [26], randomization was used to break the Ω(log k) memory lower bound
for deterministic algorithms. In particular, the authors considered anonymous
robots that can generate random bits and gave two deterministic algorithms
that achieve dispersion from rooted configurations on an arbitrary graph. The
memory complexity of the algorithms are respectively O(max{log Δ, log D}) and
O(Δ). For arbitrary initial configurations, they gave a random walk based algo-
rithm that requires O(log Δ) bits of memory, but the robots do not terminate.

1.3 Our Results

We study Dispersion from a rooted configuration on arbitrary graphs by a
set of anonymous robots with random bits. In [26], two algorithms with mem-
ory complexity O(max{log Δ, log D}) and O(Δ) were reported. The question of
whether the problem can be solved with O(log Δ) bits of memory at each robot
was left as an open problem. In this paper, we answer this question affirmatively
by presenting an algorithm with memory complexity O(log Δ). The lower bound
result presented in [26] implies that the algorithm is asymptotically optimal with
respect to memory complexity.

Organization. In Sect. 2, we describe the model and introduce notations that
will be used in the paper. In Sect. 3, we describe the main algorithm. In Sect. 4,
we prove the correctness of our algorithm and establish the time and memory
complexity. In Sect. 5, we discuss some future research directions.

Memory Optimal Dispersion by Anonymous Mobile Robots 429

2 Technical Preliminaries

Graph. We consider a connected undirected graph G of n nodes, m edges,
diameter D and maximum degree Δ. For any node v, its degree is denoted by
δ(v) or simply δ when there is no ambiguity. The nodes are anonymous, i.e.,
they do not have any labels. For every edge connected to a node, the node has
a corresponding port number for the edge. For every node, the edges incident to
the node are uniquely identified by port numbers in the range [0, δ − 1]. There
is no relation between the two port numbers of an edge. If u, v are two adjacent
nodes then port(u, v) denotes the port at u that corresponds to the edge between
u and v.

Robots. Robots are anonymous, i.e., they do not have unique identifiers. Each
robot has O(log Δ) bits of space or memory for computation and to store infor-
mation. Each robot has a fair coin which they can use to generate random bits.
Each robot can communicate with other robots present at the same node by
message passing: a robot can broadcast some message which is received by all
robots present at the same node. The size of a message is no more than its
memory size because it can not generate a message whose size is greater than
its memory size. Therefore, the size of a message must be O(log Δ). Also, when
there are many robots (co-located at a node) broadcasting their messages, it is
not possible for a robot to receive all of these messages due to limited memory.
When there is not enough memory to receive all the messages, it receives only
a subset of the messages. The view of a robot is local: the only things that a
robot can ‘see’ when it is at some node, are the edges incident to it. The robots
have access to the port numbers of these edges. It cannot ‘see’ the other robots
that may be present at the same node. The only way it can detect the presence
of other robots is by receiving messages that those robots may broadcast. The
robots can move from one node to an adjacent node. Any number of robots are
allowed to move via an edge. When a robot moves from a node u to node v, it
is aware of the port through which it enter v.

Time Cycle. We assume a fully synchronous system. The time progresses in
rounds. Each robot knows when a current round ends and when the next round
starts. Each round consists of the following.

– The robots first performs a series of synchronous computations and commu-
nications. These are called subrounds. In each subround, a robot performs
some local computations and then broadcasts some messages. The messages
received in the ith subround are read in the (i + 1)th subround. The local
computations are based on its memory contents (which contains the messages
that it might have received in the last subround and other information that
it had stored) and a random bit generated by the fair coin.

– Then robots move through some port or remains at the current node.

Problem Definition. A team of k (≤ n) robots are initially at the same node
of the graph G. The Dispersion problem requires the robots to re-position

430 A. Das et al.

themselves so that i) there is at most one robot at each node, and ii) all robots
have terminated within a finite number of rounds.

3 The Algorithm

3.1 Local Leader Election

Before presenting our main algorithm, we give a brief description of the Lead-
erElection() subroutine. We adopt this subroutine from [26]. When k ≥ 1
robots are co-located together at a node, LeaderElection() subroutine allows
exactly one robot to be selected as the leader within one round. Formally, 1) if
k = 1, the robot finds out that it is the only robot at the node, 2) if k > 1, after
finitely many rounds (with high probability), i) exactly one robot is elected as
leader, ii) all robots can detect when the process is completed. Each robot starts
off as a candidate for leader. In the first subround, every robot broadcasts ‘start’.
If a robot finds that it has received no message, it then concludes that it is the
only robot at the node. Otherwise, it concludes that there are multiple robots at
the node and does the following. In each subsequent subround, each candidate
flips a fair coin. If heads, it broadcasts ‘heads’, otherwise it does not broadcast
anything. If a robot gets tails, and receives at least one (‘heads’) message, it
stops being a candidate. This process is repeated until exactly one robot, say
r, broadcasts in a given sub-round. In this subround, r broadcasts ‘heads’, but
receives no message, while all other non-candidate robots have not broadcasted,
but received exactly one message. So r elects itself as the leader, and all robots
detect that the process is completed. The process requires O(1) bits of memory
at each robot and terminates in O(log k) subrounds with high probability.

3.2 Overview of the Algorithm

In this subsection, we present a brief overview of the algorithm. The execution
of our algorithm can be divided into three stages. In the first stage, the robots,
together as a group, perform a DFS traversal in the search of empty nodes,
starting from the node where they are placed together initially. We shall call this
node the root and denote it by vR. Whenever the group reaches an empty node,
they perform the LeaderElection() subroutine to elect a leader. The leader
settles at that node, while the rest of the group continues the DFS traversal. Note
that the settled robot does not terminate. This is because when the robots that
are performing the DFS return to that node, they need to detect that the node
is occupied by a settled robot. Recall that a robot cannot distinguish between an
empty node and a node with a terminated robot. Therefore, the active settled
robot helps the travelling robots to distinguish between an occupied node and an
empty node, and also provides them with other information that are required to
correctly execute the DFS. The size of the travelling group decreases by one, each
time the DFS traversal reaches an empty node. The first stage completes when
each robot has found an empty node for itself. Let rL denote the last robot

Memory Optimal Dispersion by Anonymous Mobile Robots 431

that finds an empty node, vL, for itself. Although dispersion is achieved, this
robot will not terminate. The other settled robots do not know that dispersion
is achieved and will remain active. Therefore rL needs to revisit those nodes and
ask the settled robots to terminate. First rL will return to the root vR via the
rootpath which is the unique path in the DFS tree from vL to vR. This is the
second stage of the algorithm. In the third stage, rL performs a second DFS
traversal and asks the active settled robots to terminate. Since the active settled
robots play a crucial role in the DFS traversal, rL needs to be careful about
the order in which it should ask the settled robots to terminate. Finally, rL
terminates after it returns to vL.

In Table 1, we give details of the variables used by the robots. If
variable name is some variable, then we shall denote the value of the variable
stored by r as r.variable name.

Table 1. Description of the variables used by the robots

Variable Description

role It indicates the role that the robot is playing in the algorithm. It
takes values from {explore, settled, return, acknowledge,
done}. Initially, role ← explore

entered It indicates the port through which the robot has entered the
current node. Initially, entered ← ∅. For simplicity, assume that
it is automatically updated when the robot entered a node

received It indicates the message(s) received by the robot in the current
subround. After the end of each subround, the messages are
erased, i.e., it is reset to ∅. Initially, received ← ∅

direction It indicates the direction of movement of a robot during a DFS
traversal. It takes values from {forward, backward}. Initially,
role ← forward

parent For a settled robot on some node, it indicates the port number
towards the parent of that node in the DFS tree. Initially,
parent ← ∅

child For a settled robot on some node that is on the rootpath, it
indicates the port number towards the child of that node in the
DFS tree that is on the rootpath. Initially, child ← ∅

visited For a settled robot on some node, it indicates whether the node
where the robot is settled has been visited by rL in the third
stage. Initially, visited ← 0

3.3 Detailed Description of the Algorithm

A pseudocode description of the algorithm is presented in the full version [8] of
the paper. In the starting configuration, all robots are present at the root node

432 A. Das et al.

vR. Initially, role of each robot is explore. In the first stage, the robots have
to perform a DFS traversal together as a group. This group of robots is called
the exploring group. Whenever the exploring group reaches an empty node (a
node with no settled robot), one of the robots will settle at that node, i.e., it
will change its role to settled and remain at that node. For the rest of the
algorithm, it does not move. However, it stays active and checks for any received
messages. A settled robot can receive three types of messages:

– it may receive a query about the contents of its internal memory
– it may receive an instruction to change the value of some variable
– it may be asked to terminate.

When queried about its memory, it broadcasts a message containing its role,
parent, child and visited. If it is asked to change the value of some variable or
terminate, then it does so accordingly. Any robot with role explore, return or
acknowledge, in the first sub-round of any round, broadcasts a message querying
about internal memory of any settled robot at the node. If it receives no message
in the second sub-round, then it concludes that there is no settled robot at that
node. Whenever the robots find that there is no settled robot at the node, during
the first stage, they start the LeaderElection() subroutine to elect a leader.
For any robot r, LeaderElection() results in one of the following outcomes:

– it is elected as the leader
– it is not elected as the leader
– it finds that it is the only robot at that node.

In the first case, it changes r.role to settled and sets r.parent equal to
r.entered. Recall that r.entered is the port through which it entered the cur-
rent node and in the beginning, r.entered is set to ∅. We shall call r.parent the
parent port of the node where r resides. We shall refer to a robot that has set
its role to settled as a settled robot. In the second case, it will continue the
DFS: if r.entered = ∅, it leaves via port 0 and if r.entered �= ∅, it leaves via
port (r.entered + 1) mod δ. If (r.entered + 1) = r.entered mod δ, it changes
its variable direction to backward before exiting the node. Recall that the vari-
able direction is used to indicate the direction of the movement during a DFS
traversal. In the third case, it changes r.role to return.

Now consider the case where the robots find that there is a settled robot
at the node. If the direction is set to forward when they encounter the settled
robot, it indicates the onset of a cycle. So the robots change the direction to
backward and leave the node via the port through which they entered it. Now
suppose that the direction is set to backward when they encounter the settled
robot. Recall that the robots have received from the settled robot, say a, a
message which contains a.parent. The robots check if a.parent is equal to the
port number through which it entered, say z, plus 1 (modulo the degree of the
node). If yes, it implies that the robots have moved through all edges adjacent to
the node, and hence they leave the node via a.parent which is the port through
which they entered for the first time. If no, then it means that they have not

Memory Optimal Dispersion by Anonymous Mobile Robots 433

moved through the port (z + 1)modδ before. So they change the direction to
forward and leave via (z + 1)modδ.

The DFS traversal in the first stage ends when a robot, say rL, with role
set to explore, finds that it is the only robot at a node, say vL. Recall that
when this happens, rL changes its role to return. At this point, the first stage
ends, and the second stage starts. It then leaves vL via the port through which it
entered. In each of the following rounds where the role of rL is return, it does the
following. In the first subround, it broadcasts a query. In the next subround, it
receives a message from the settled robot at that node which contains its parent.
If the obtained value of parent, say x, is not ∅, it means that rL is yet to reach the
root vR. Then rL broadcasts an instruction for the settled robot to change the
value of its child to the port via which rL entered the node. This value of child
will be called the child port of the node. After broadcasting the instruction, rL
leaves through the port x. If x = ∅, then it means that rL has reached the root
vR. In this case, rL broadcasts the same instruction and then changes the values
of rL.role, rL.direction and rL.entered to respectively acknowledge, forward
and ∅. At this point the second stage ends, and the third stage starts.

In the following rounds, rL with role acknowledge does the following. In
the first sub-round, it broadcasts a query. It either receives a reply or does
not. If it receives a message, then it contains the values of parent, say x, and
child, say y, and visited of the settled robot at that node. Now, the value of
variable visited can be 0 or 1. If the value of visited is 0, it denotes that the
settled robot is visited for the first time in the third stage. The robot rL then
broadcasts a message instructing the settled robot to change the value of its
variable visited to 1. Now (rL.entered + 1)modδ can be equal to rL.entered
(the case of one degree node) or y or neither of them. In the former case, it
changes its variable direction to backward. In the first two cases, it broadcasts
a message instructing the settled robot to terminate and leaves through port
(rL.entered + 1)modδ. If (rL.entered + 1)modδ is neither equal to rL.entered,
nor equal to y, rL just exits through (rL.entered+1)modδ without broadcasting
any message for termination. If the value of visited is 1, it denotes that the
settled robot has been visited before in the third stage. If the value of variable
direction of rL is forward, it changes the value of direction to backward and
exits through the port through which it entered the node at the previous round.
Otherwise the value of variable direction of rL is backward. In this case, three
sub-cases arise. If (rL.entered + 1)modδ is equal to x, then rL broadcasts a
message instructing the settled robot to terminate, and then rL exits through
the port (rL.entered + 1)modδ. Otherwise if, (rL.entered + 1)modδ is equal to
y, then also rL broadcasts a message instructing the settled robot to terminate,
changes the variable direction to forward and then rL exits through the port
(rL.entered+1)modδ. If (rL.entered+1)modδ is neither equal to x, nor y, then
rL changes direction to forward and exits through (rL.entered+1)modδ. Now,
we consider the case where rL in third stage does not receive any answer to its
query. If its direction is set to forward, it changes its direction to backward and
then exits through the same port by which it entered the node in the previous

434 A. Das et al.

round. If its direction is set to backward, then it means that rL was at vL in
the previous round. So rL changes its role to done and leaves the node through
the port via which it entered. Then it will reach vL in the next round and it will
find that its role is done and terminate.

4 Correctness Proof and Complexity Analysis

In this section, we give a brief outline of the proof. Readers are referred to the
full version [8] of the paper for the detailed proof.

The first stage of our algorithm is the same as that of [26]. The robots simply
perform a DFS traversal. Whenever a new node is visited, one of the robots
settle there. The DFS continues until k distinct nodes are visited. To see that
the DFS traversal can be correctly executed in our setting, it suffices to verify
that the robots can correctly ascertain 1) if a node is previously visited and 2)
if all neighbors of a node have been visited. For 1), observe that the presence
of settled robot at a node indicates that the node has already been visited. So,
when the robots with direction forward go to a node which has a settled robot,
it backtracks, i.e., it changes its direction to backward and leaves the node via
the port through which it had entered. For 2), observe that the port p through
which robots first enters a node v is set as its parent port, i.e., the robot settled
at v sets its variable parent to p. Then the robots will move through all other
ports with direction forward in the order p + 1, p + 2, . . . , δ − 1, 0, 1, . . . , p − 1
(unless the DFS is stopped midway for k distinct nodes have been visited).
This is because if the robots leaves via a port q (with direction forward), it
re-enters v via the same port q after some rounds (with direction backward) and
then leaves via (q + 1)modδ(v) (with direction forward) in the next round if
(q + 1)modδ(v) �= p. Clearly, when (q + 1)modδ(v) = p, it indicates that the
robots have moved through all ports other than p with direction forward, i.e.,
all neighbors of v have been visited. The robots can check if (q + 1)modδ(v) = p
because their variable entered is equal to q and the variable parent of the robot
settled at v is equal to p. Therefore, have the following result.

Theorem 1. There is a round t1, at the beginning of which

1. each node of G has at most one robot
2. role of exactly one robot rL is explore and the role of the remaining k − 1

robots is settled

3. if V ′ ⊆ V is the set of nodes occupied by robots, then G[V ′] (the subgraph of
G induced by V ′) is connected

4. if E′ ⊆ E is the set of edges corresponding to the variable parent of robots in
R\{rL} and variable entered of rL, then the graph T = T (V ′, E′) is a DFS
spanning tree of G[V ′],

5. rL is at a leaf node vL of T .

There is a unique path, i.e., the rootpath vR = v1, v2, . . . , vs = vL in T (V ′, E′)
from vR to vL. Furthermore, for any consecutive vertices vi, vi+1 on the path 1)

Memory Optimal Dispersion by Anonymous Mobile Robots 435

if i + 1 < s, the variable parent of the settled robot at vi+1 is set to port(vi+1, vi)
and 2) if i + 1 = s, the variable entered of robot rL at vi+1 is set to port(vi+1, vi).
So, according to our algorithm, rL will move along this path to reach vR. For
each node vi, i < s, on the rootpath, when rL reaches vi along its way to vR,
it instructs the settled robot at vi to set its variable child to port(vi, vi+1).
Therefore, we have the following result.

Theorem 2. There is a round t2, at the beginning of which

1. rL is at vR with rL.role = return

2. each node of T (V ′, E′)\{vL} has a settled robot
3. if vR = v1, v2, . . . , vs = vL is the rootpath and ri is the settled robot at vi, i < s,

then ri.child = port(vi, vi+1)
4. if r is a settled robot on a non-rootpath node, then r.child = ∅.

From round t2 + 1, rL will start a second DFS traversal. This DFS traversal is
trickier than the earlier one because the settled robots will one by one terminate
during the process. Recall that the settled robots played important role in the
first DFS. We shall prove that rL will correctly execute the second DFS traversal.
In fact, we shall prove in Lemma 1 (see the full version [8]) that the DFS traversal
in the first stage is exactly same as the DFS traversal in the third stage in the
sense that if the exploring group is at node v at round i < t1 (in the first stage),
then rL is at node v at round t2 + i (in the third stage).

Let us first introduce a definition. In the following definition, whenever we
say ‘at round’, it is to be understood as ‘at the beginning of round’. Round i in
the first stage is said to be identical to round j in the third stage if the exploring
group at round i and rL at round j are at the same node, say u and one of the
following holds:

I1 At round i, there is no settled robot at u, the exploring group contains more
than one robot and the variable direction for each robot in the exploring
group is set to forward. At round j there is a settled robot at u with its
variable visited set to 0. The variables direction and entered of rL at round
j are equal to those of each robot in the exploring group at round i.

I2 At round i, there is a settled robot at u, the variable direction for each robot
in the exploring group is set to forward and the variable entered for each
robot in the exploring group is �=∅. At round j, either there is a terminated
robot at u, or there is a settled robot at u with its variable visited set to 1.
The variables direction and entered of rL at round j are equal to those of
each robot in the exploring group at round i.

I3 At round i, there is a settled robot at u, the variable direction for each robot
in the exploring group is set to backward and the variable entered for each
robot in the exploring group is �=∅. At round j, there is an active settled
robot at u with its variable visited set to 1. The variables direction and
entered of rL at round j are equal to those of each robot in the exploring
group at round i.

436 A. Das et al.

Lemma 1. Round i is identical to t2 + i for all 1 ≤ i < t1.

Theorem 3. By round t2 + t1 all the settled robots have terminated.

Proof. A settled robot at a non-rootpath node will terminate if rL moves from
that node to its parent and a settled robot at a rootpath node will terminate if
rL moves from that node to its child. Recall that if v is a non-rootpath node,
then in Phase 1 the exploring group leaves it via its parent port once. Also, if v
is a rootpath node other than vL, then in Phase 1 the exploring group leaves it
via its child port once. So the result follows Lemma 1.

Theorem 4. At round t2 + t1 + 2, rL terminates at vL.

Proof. It follows from Lemma 1 that rL will be at vs−1 at round t2 + t1 − 1.
It is easy to see that it will then move to vs = vL with direction forward.
So at round t2 + t1, rL is at vL with direction set to forward. Since vL has no
settled robot, rL will change its direction to backward and exit through the port
through which it entered vL. But moving through this port leads to vs−1. The
settled robot at this node is already terminated by Theorem 3. Hence at round
t2 + t1 + 1, rL enters with direction backward a node where it does not receive
any message. So it will then change its role to done and exit the port through
which it entered the node. Therefore, at round t2 + t1 + 2, rl again returns to
vL, this time with role done, and hence will terminate.

Theorem 5. The algorithm is correct and requires O(log Δ) bits of memory at
each robot, which is optimal in terms of memory complexity. The worst case
round complexity is Θ(k2) rounds (assuming that LeaderElection() termi-
nates each time).

Proof. The correctness follows from the above results. The LeaderElection()
subroutine costs O(1) bits of memory for each robot. Among the variables, role,
visited and direction costs O(1) bits of memory, and the variables entered,
parent, child, received costs O(log Δ) bits of memory for each robot. Hence
the algorithm requires O(log Δ) bits of memory at each robot. The optimality
follows from the lower bound result proved in [26].

Exactly k distinct nodes are visited in our algorithm. In the first stage, move-
ment of the exploring group takes O(m′) rounds where m′ is the number of edges
in the subgraph of G induced by these k vertices. Clearly m′ = O(k2). So the
first stage requires O(k2) rounds. The third stage requires (k2) rounds as well
since apart from the last two rounds, it is exactly identical to the first stage.
Clearly the second round takes O(k) rounds. So the overall round complexity is
O(k2). To see that our analysis is tight, we show an instance where Ω(k2) rounds
will be required. Consider the graph of size k in Fig. 1. Here port(vR, v1) = 0,
port(v1, vR) = 0, port(v1, v2) = 1, port(v1, vL) = 2. Here, after reaching v1, the
exploring group will go v2. It is easy to see that Θ(k2) rounds will be spent inside
the (k − 3)−clique. Finally the last robot will return to v1 and then move to vL.

Memory Optimal Dispersion by Anonymous Mobile Robots 437

e
u

qi
lc

ez
is

f
o

k −
3

vR v1

v2

vL

Fig. 1. An example where the algorithm requires Θ(k2) rounds to complete.

5 Concluding Remarks

We have presented a memory optimal randomized algorithm for Dispersion
from rooted configuration by anonymous robots. This resolves an open problem
posed in [26]. Time complexity of our algorithm is Θ(k2) rounds in the worst case
(assuming that LeaderElection() terminates each time). Any algorithm that
solves the problem requires Ω(k) rounds in the worst case. To see this, consider
a path with n ≥ k nodes with all robots initially at one of its one degree nodes.
An interesting open problem is to close this gap.

For arbitrary configuration, the random walk based algorithm presented in
[26] requires the robots to stay active indefinitely. Therefore an interesting open
question is whether it is possible to solve the problem by anonymous robots from
non-rooted configurations without requiring robots to stay active indefinitely.

Acknowledgement. We would like to thank Pritam Goswami for valuable discus-
sions. The first two authors are supported by UGC, Govt. of India, and NBHM DAE,
Govt. of India respectively. We would like to thank the anonymous reviewers for their
valuable comments which helped us to improve the quality and presentation of the
paper.

References

1. Agarwalla, A., Augustine, J., Moses Jr, W.K., Madhav, S.K., Sridhar, A.K.: Deter-
ministic dispersion of mobile robots in dynamic rings. In: Bellavista, P., Garg, V.K.
(eds.) Proceedings of the 19th International Conference on Distributed Computing
and Networking, ICDCN 2018, Varanasi, India, January 4–7, 2018, pp. 19:1–19:4.
ACM (2018). https://doi.org/10.1145/3154273.3154294

https://doi.org/10.1145/3154273.3154294

438 A. Das et al.

2. Augustine, J., Moses Jr, W.K.: Dispersion of mobile robots: a study of memory-
time trade-offs. In: Proceedings of the 19th International Conference on Distributed
Computing and Networking, ICDCN 2018, Varanasi, India, January 4–7, 2018, pp.
1:1–1:10 (2018). https://doi.org/10.1145/3154273.3154293

3. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Optimal gathering by asynchronous
oblivious robots in hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B.
(eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 102–117. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14094-6 7

4. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph
exploration. IEEE Trans. Robot. 27(4), 707–717 (2011). https://doi.org/10.1109/
TRO.2011.2121170

5. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph
exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008).
https://doi.org/10.1145/1383369.1383373

6. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012). https://
doi.org/10.1007/s00446-011-0141-9

7. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014). https://doi.org/
10.1007/s00446-014-0212-9

8. Das, A., Bose, K., Sau, B.: Memory optimal dispersion by anonymous mobile
robots. CoRR abs/2008.00701 (2020). https://arxiv.org/abs/2008.00701

9. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by
energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018).
https://doi.org/10.1007/s00224-017-9816-3

10. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collabora-
tive graph exploration. Inf. Comput. 243, 37–49 (2015). https://doi.org/10.1016/
j.ic.2014.12.005

11. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74(2),
908–946 (2016). https://doi.org/10.1007/s00453-015-9982-0

12. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51(1), 38–63 (2004). https://doi.org/10.1016/j.jalgor.2003.10.
002

13. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph explo-
ration. ACM Trans. Algorithms 2(3), 380–402 (2006). https://doi.org/10.1145/
1159892.1159897

14. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 9

15. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Gathering on rings for
myopic asynchronous robots with lights. In: 23rd International Conference on Prin-
ciples of Distributed Systems, OPODIS 2019, December 17–19, 2019, Neuchâtel,
Switzerland. LIPIcs, vol. 153, pp. 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019). https://doi.org/10.4230/LIPIcs.OPODIS.2019.27

16. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36),
3235–3246 (2010). https://doi.org/10.1016/j.tcs.2010.05.020

17. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008). https://doi.org/10.1016/j.
tcs.2007.09.032

https://doi.org/10.1145/3154273.3154293
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1007/s00446-011-0141-9
https://doi.org/10.1007/s00446-011-0141-9
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/s00446-014-0212-9
https://arxiv.org/abs/2008.00701
https://doi.org/10.1007/s00224-017-9816-3
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1007/s00453-015-9982-0
https://doi.org/10.1016/j.jalgor.2003.10.002
https://doi.org/10.1016/j.jalgor.2003.10.002
https://doi.org/10.1145/1159892.1159897
https://doi.org/10.1145/1159892.1159897
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1016/j.tcs.2007.09.032
https://doi.org/10.1016/j.tcs.2007.09.032

Memory Optimal Dispersion by Anonymous Mobile Robots 439

18. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Com-
put. Sci. 399(1–2), 141–156 (2008). https://doi.org/10.1016/j.tcs.2008.02.010

19. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In:
Proceedings of the 20th International Conference on Distributed Computing and
Networking, ICDCN 2019, Bangalore, India, January 04–07, 2019, pp. 218–227
(2019). https://doi.org/10.1145/3288599.3288610

20. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on
arbitrary graphs. In: Algorithms for Sensor Systems - 15th International Sympo-
sium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSEN-
SORS 2019, Munich, Germany, September 12–13, 2019, Revised Selected Papers,
pp. 23–40 (2019). https://doi.org/10.1007/978-3-030-34405-4 2

21. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the
global communication model. In: Mukherjee, N., Pemmaraju, S.V. (eds.) ICDCN
2020: 21st International Conference on Distributed Computing and Networking,
Kolkata, India, January 4–7, 2020, pp. 12:1–12:10. ACM (2020). https://doi.org/
10.1145/3369740.3369775

22. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids.
In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol.
12049, pp. 183–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39881-1 16

23. Luna, G.A.D., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. Theor. Comput. Sci. 811, 79–98 (2020). https://doi.
org/10.1016/j.tcs.2018.10.018

24. Miller, A., Pelc, A.: Fast rendezvous with advice. Theor. Comput. Sci. 608, 190–
198 (2015). https://doi.org/10.1016/j.tcs.2015.09.025

25. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in
networks. Distrib. Comput. 29(1), 51–64 (2016). https://doi.org/10.1007/s00446-
015-0253-8

26. Molla, A.R., Moses, W.K.: Dispersion of mobile robots: the power of randomness.
In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–500.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 30

27. Molla, A.R., Mondal, K., Moses, W.K.: Efficient dispersion on an anonymous ring
in the presence of weak Byzantine robots. In: Pinotti, C.M., Navarra, A., Bagchi,
A. (eds.) ALGOSENSORS 2020. LNCS, vol. 12503, pp. 154–169. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-62401-9 11

28. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2),
281–295 (1999). https://doi.org/10.1006/jagm.1999.1043

29. Stefano, G.D., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017).
https://doi.org/10.1007/s00446-016-0278-7

30. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014).
https://doi.org/10.1145/2601068

https://doi.org/10.1016/j.tcs.2008.02.010
https://doi.org/10.1145/3288599.3288610
https://doi.org/10.1007/978-3-030-34405-4_2
https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1016/j.tcs.2018.10.018
https://doi.org/10.1016/j.tcs.2018.10.018
https://doi.org/10.1016/j.tcs.2015.09.025
https://doi.org/10.1007/s00446-015-0253-8
https://doi.org/10.1007/s00446-015-0253-8
https://doi.org/10.1007/978-3-030-14812-6_30
https://doi.org/10.1007/978-3-030-62401-9_11
https://doi.org/10.1006/jagm.1999.1043
https://doi.org/10.1007/s00446-016-0278-7
https://doi.org/10.1145/2601068

Quantum and Approximation Algorithms
for Maximum Witnesses of Boolean

Matrix Products

Mirosław Kowaluk1(B) and Andrzej Lingas2

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
kowaluk@mimuw.edu.pl

2 Department of Computer Science, Lund University, 22100 Lund, Sweden
Andrzej.Lingas@cs.lth.se

Abstract. The problem of finding maximum (or minimum) witnesses
of the Boolean product of two Boolean matrices (MW for short) has
a number of important applications, in particular the all-pairs lowest
common ancestor (LCA) problem in directed acyclic graphs (dags). The
best known upper time-bound on the MW problem for n × n Boolean
matrices of the form O(n2.575) has not been substantially improved
since 2006. In order to obtain faster algorithms for this problem, we
study quantum algorithms for MW and approximation algorithms for
MW (in the standard computational model). Some of our quantum
algorithms are input or output sensitive. Our fastest quantum algo-
rithm for the MW problem, and consequently for the related problems,
runs in time Õ(n2+λ/2) = Õ(n2.434), where λ satisfies the equation
ω(1, λ, 1) = 1 + 1.5λ and ω(1, λ, 1) is the exponent of the multiplication
of an n × nλ matrix by an nλ × n matrix. Next, we consider a relaxed
version of the MW problem (in the standard model) asking for report-
ing a witness of bounded rank (the maximum witness has rank 1) for
each non-zero entry of the matrix product. First, by adapting the fastest
known algorithm for maximum witnesses, we obtain an algorithm for
the relaxed problem that reports for each non-zero entry of the product
matrix a witness of rank at most � in time Õ((n/�)nω(1,logn �,1)). Then,
by reducing the relaxed problem to the so called k-witness problem, we
provide an algorithm that reports for each non-zero entry C[i, j] of the
product matrix C a witness of rank O(�WC(i, j)/k�), where WC(i, j) is
the number of witnesses for C[i, j], with high probability. The algorithm
runs in Õ(nωk0.4653 + n2+o(1)k) time, where ω = ω(1, 1, 1).

1 Introduction

If A and B are two n × n Boolean matrices and C is their Boolean matrix
product then for any entry C[i, j] = 1 of C, a witness is an index k such that
A[i, k] ∧ B[k, j] = 1. The largest (or, smallest) possible witness for an entry is
called the maximum witness (or minimum witness, respectively) for the entry.

The problem of finding “witnesses” of Boolean matrix product has been stud-
ied for decades mostly because of its applications to shortest-path problems [1,2].
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 440–451, 2021.
https://doi.org/10.1007/978-3-030-67899-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_35&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_35

Quantum and Approximation Algorithms for Maximum Witnesses 441

The problem of finding maximum witnesses of Boolean matrix product (MW for
short) has been studied first in [6] in order to obtain faster algorithms for all-pairs
lowest common ancestor (LCA) problem in directed acyclic graphs (dags) [9]. It
has found many other applications since then including the all-pairs bottleneck
weight path problem [18] and finding for a set of edges in a vertex-weighted graph
heaviest triangles including an edge from the set [19]. The fastest known algo-
rithm for the MW problem and the aforementioned problems runs in O(n2+λ)
time [6], where λ satisfies the equation ω(1, λ, 1) = 1 + 2λ. The currently best
bounds on ω(1, λ, 1) follow from a fact in [4,11] (see Fact 4 in Preliminaries)
combined with the recent improved estimations on the parameters ω = ω(1, 1, 1)
and α (see Preliminaries) [13,15]. They yield an O(n2.569) upper bound on the
running time of the algorithm (originally, O(n2.575) [6]). For faster algorithms in
sparse cases, see [5].

In this paper, we study two different approaches to deriving faster algorithms
for the problem of computing maximum (or minimum) witnesses of the Boolean
product of two n × n Boolean matrices (MW for short). The first approach is to
consider the MW problem in the more powerful model of quantum computation.
The other approach is to relax the MW problem (in the standard model) by
allowing its approximation.

In the first part of our paper, we present quantum algorithms for the MW
problem assuming a Quantum Random Access Machine (QRAM) model [17].
First, we consider a straightforward algorithm for MW that uses the quan-
tum minimum search due to Dürr and Høyer [7] for each entry of the product
matrix separately in order to find its maximum witness1. It runs in Õ(n2.5) time.
By adding as a preprocessing a known output-sensitive quantum algorithm for
Boolean matrix product, we obtain an output-sensitive quantum algorithm for
MW running in Õ(n

√
s + s

√
n) time, where s is the number of non-zero entries

in the product matrix. By refining the straightforward algorithm in a differ-
ent way, we obtain also an input-sensitive quantum algorithm for MW running
in Õ(n2 + n1.5m0.5) time, where m is the number of non-zero entries in the
sparsest among the two input matrices. Then, we combine the idea of multi-
plication of rectangular submatrices of the input Boolean matrices with that of
using the quantum minimum search of Dürr and Høyer in order to obtain our
fastest quantum algorithm for MW running in Õ(n2+λ/2) time, where λ satisfies
the equation ω(1, λ, 1) = 1 + 1.5λ. By the currently best bounds on ω(1, λ, 1),
the running time of our algorithm is O(n2.434). We obtain the same asymptotic
upper time-bounds for the aforementioned problems related to MW.

In the second part of our paper, we consider a relaxed version of the MW
problem (in the standard model) asking for reporting a witness of bounded rank
(the maximum witness has rank 1) for each non-zero entry of the matrix prod-
uct. First, by adapting the fastest known algorithm for maximum witnesses, we
obtain an algorithm for the relaxed problem that reports for each non-zero entry
of the product matrix a witness of rank at most � in time Õ((n/�)nω(1,logn �,1)).

1 For somewhat related applications of the quantum minimum search of Dürr and
Høyer to shortest path problems see [16].

442 M. Kowaluk and A. Lingas

Then, by reducing the relaxed problem to the so called k-witness problem,
we provide an algorithm that reports for each non-zero entry C[i, j] of the
product matrix C a witness of rank O(�WC(i, j)/k�) with high probability,
where WC(i, j) is the number of witnesses for C[i, j]. The algorithm runs in
Õ(nωk0.4653 + n2+o(1)k) time.

Organization. In Preliminaries, we provide some basic notions and/or facts
on matrix multiplication and quantum computation. In Sect. 3, we present our
basic procedure for searching an interval of indices for the maximum witness,
the straightforward quantum algorithm for MW implied by the procedure, and
the output-sensitive and input-sensitive refinements of the algorithm. In Sect. 4,
we present and analyze our fastest in the general case quantum algorithm for
MW. In Sect. 5, we present our approximation algorithms for MW in the stan-
dard computational model. For applications of our quantum algorithms to the
problems related to MW as well as additional remarks the reader is referred to
the full version [12].

2 Preliminaries

For a positive integer r, we shall denote the set of positive integers not greater
than r by [r].

For a matrix D, Dt denotes its transpose.
A witness for a non-zero entry C[i, j] of the Boolean matrix product C of

a Boolean p × q matrix A and a Boolean q × r matrix B is any index k ∈ [q]
such that A[i, k] and B[k, j] are equal to 1. The number of witnesses for C[i, j] is
denoted by WC(i, j). A witness k for C[i, j] is of rank h if there are exactly h − 1
witnesses for this entry greater than k. The witness of rank 1 is the maximum
witness for C[i, j]. The witness problem is to report a witness for each non-zero
entry of the Boolean matrix product of the two input matrices. The maximum
witness problem (MW) is to report the maximum witness for each non-zero entry
of the Boolean matrix product of the two input matrices.

Recall that for natural numbers p, q, r, ω(p, q, r) denotes the exponent of fast
matrix multiplication for rectangular matrices np ×nq and nq ×nr, respectively.
The following recent upper bound on ω = ω(1, 1, 1) is due to Le Gall [13].

Fact 1. The fast matrix multiplication algorithm for n × n matrices runs in
O(nω) time, where ω is not greater than 2.3728639 [13] (cf. [20]).

Alon and Naor provided almost equally fast solution to the witness problem
for square Boolean matrices in [2]. It can be easily generalized to include the
Boolean product of two rectangular Boolean matrices of sizes n × nq and nq ×
n, respectively. The asymptotic matrix multiplication time nω is replaced by
nω(1,q,1) in the generalization.

Fact 2. For q ∈ (0, 1], the witness problem for the Boolean matrix product of an
n × nq Boolean matrix with an nq × n Boolean matrix can be solved (determin-
istically) in Õ(nω(1,q,1)) time.

Quantum and Approximation Algorithms for Maximum Witnesses 443

Let α stand for sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2 + o(1)}. The following recent
lower bound on α is due to Le Gall and Urrutia [15].

Fact 3. The inequality α > 0.31389 holds [15].

Coppersmith [4] and Huang and Pan [11] proved the following fact.

Fact 4. The inequality ω(1, r, 1) ≤ β(r) holds, where β(r) = 2 + o(1) for r ∈
[0, α] and β(r) = 2 + ω−2

1−α (r − α) + o(1) for r ∈ [α, 1] [4,11].

It will be the most convenient to formulate our quantum algorithms in the
model of Quantum Random Access Machine (QRAM) saving the reader a lot of
technical details of alternative formulations in the quantum circuit model [17].
Thus, our quantum algorithm can access any entry of any input matrix A in an
access random manner (cf. [14,16]). More precisely, following [16], we assume
that there is an oracle OA which for i, j ∈ [n] and z ∈ {0, 1}∗, maps the state
|i〉|j〉|0〉|z〉 into the state |i〉|j〉|A[i, j]〉|z〉. When a whole table T is stored in
the random access memory of QRAM such an oracle oT corresponding to T is
implicit. We shall estimate the time complexity of our quantum algorithms in
the unit cost model, in particular we shall assign unit cost to each call to an
oracle. In case the time complexity of our quantum algorithm exceeds the size
of the input matrices, we may assume w.l.o.g. that the input matrices are just
read into the QRAM memory.

Following Le Gall [14], we can generalize the definition of a quantum algo-
rithm for Boolean matrix product to include the MW problem.

Definition 1. A quantum algorithm for witnesses of Boolean matrix product (or
the MW problem) is a quantum algorithm that when given access to oracles OA

and OB corresponding to Boolean matrices A and B, computes with probability
at least 2/3 all the non-zero entries of the product A×B along with one witness
(the maximum witness, respectively) for each non-zero entry.

Note the probability of at least 2
3 can be enhanced to at least 1 − n−γ , for

γ ≥ 1, by iterating the algorithm O(log n) times. When the size of the input is
bounded by poly(n), one uses the term almost certainly for the latter probability.

In fact, all our quantum algorithms for MW but the output sensitive one
report also “No” for each zero entry of the product matrix.

3 Quantum Search for the Maximum Witness

One can find the maximum witness for a given entry of the Boolean product of
two Boolean n × n matrices in Õ(

√
n) time with high probability by recursively

using Grover’s quantum search [10] interleaved with a binary search. However,
the most convenient is to use a specialized variant of Grover’s search due to Dürr
and Høyer [3,7] for finding an entry of the minimum value in a table.

444 M. Kowaluk and A. Lingas

Fact 5 (Dürr and Høyer [7]). Let T [k], 1 ≤ k ≤ n be an unsorted table where all
values are distinct. Given an oracle for T, the index k for which T [k] is minimum
can be found by a quantum algorithm with probability at least 1

2 in O(
√

n) time.

Using this fact, we can design the following procedure MaxWit(A,B, i, j)
returning the maximum witness of the entry C[i, j] (if any) of the product C of
two Boolean n × n matrices A and B.

Procedure. MaxWit(A,B, i, j)

Input: oracles corresponding to a Boolean p × q matrix A and a Boolean q × r
matrix B, and indices i ∈ [p], j ∈ [r].
Output: if the C[i, j] entry of the Boolean product C of A and B has a witness
then its maximum witness in [q] otherwise “No”.

1. n ← max{p, q, r}
2. Define an oracle for a virtual, one-dimensional integer table T [k], k ∈ [q] by

T [k] = 2n − A[i, k]B[k, j]n − k.
3. Iterate O(log n) times the algorithm of Dürr and Høyer for T and set k′ to

the index minimizing T.
4. If T [k′] < n then return k′ as the maximum witness otherwise return “No”.

Lemma 1. Let β be a positive integer. By repetitively using the algorithm of
Dürr and Høyer, MaxWit(A,B, i, j) can be implemented in Õ(β

√
n) time such

that it returns a correct answer with probability at least 1 − n−β.

Proof. To begin with observe that for k, k′ ∈ [q], if k �= k′ then T [k] �= T [k′].
This obviously holds for k, k′ ∈ [q] if A[i, k]B[k, j] = A[i, k′]B[k′, j] as well when
A[i, k]B[k, j] �= A[i, k′]B[k′, j]. Furthermore, the value of T [k] can be computed
with the help of the oracles for A, B in constant time in the QRAM model. Next,
suppose that the minimum value of T is achieved for the index k′. It is easily
seen that if T [k′] < n then k′ is the maximum witness of C[i, j] and otherwise
C[i, j] does not have any witness. By running the minimum search algorithm
of Dürr and Høyer O(β log n) times, we can identify the maximum witness of
C[i, j] with probability at least 1 − n−β in Õ(β

√
n) time. �

By Lemma 1, a straightforward Õ(n2.5)-time method for MW is just to run the
procedure MaxWit(A,B, i, j) with appropriately large constant β for each entry
C[i, j] of the product matrix C. We shall refer to this method as Algorithm 1.
(see the full version [12] for a pseudo-code). Note that this returns also “No” for
zero entries of C.

An Output-Sensitive Algorithm for MW. By adding as a preprocessing
a known output-sensitive quantum algorithm for the Boolean product of the
matrices A and B, Algorithm 1 can be transformed into an output-sensitive one
too.

Algorithm 2

Input: oracles corresponding to Boolean n × n matrices A, B.

Quantum and Approximation Algorithms for Maximum Witnesses 445

Output: maximum witnesses for all non-zero entries of the Boolean product
of A and B.

1. Run an output-sensitive quantum algorithm for the Boolean product C of A
and B;

2. for all non-zero entries C[i, j] do
MaxWit(A,B, i, j)

Theorem 1. The MW problem can be solved by a quantum algorithm in
Õ(n

√
s + s

√
n) time, where s is the number of non-zero entries in the

product.

Proof. Consider Algorithm 2. Due to Step 1, the procedure MaxWit is called
only for non-zero entries of C. Hence, the total time taken by Step 2 is Õ(s

√
n)

by Lemma 1 with any fixed β. It is sufficient now to plug in the output-sensitive
quantum algorithm for Boolean matrix product due to Le Gall [14] running
in Õ(n

√
s + s

√
n) time to implement Step 1. In order to obtain enough large

probability of the correctness of the whole output, we can iterate the plug in
algorithm a logarithmic number of times and pick enough large β in Lemma 1.
We obtain the output-sensitive upper bound claimed in the theorem. �

An Input-Sensitive Algorithm for MW. We can also refine the straightfor-
ward quantum algorithm for MW in order to obtain an input-sensitive quantum
algorithm for MW.

Algorithm 3

Input: Boolean n × n matrices A, B,
Output: maximum witnesses for all non-zero entries of the Boolean product
of A and B and “No” for all zero entries of the product.

1. For each column j of the matrix B compute the sequence Kj of indices k ∈ [n]
in decreasing order such that B[k, j] = 1 by using the oracle for the matrix
B. Construct a one dimensional integer table Sj of length |Kj | such that for
s ∈ [|Kj |], Sj [s] is the s-th largest element in Kj .

2. for all i, j ∈ [n] do
(a) Define an oracle for a virtual, one-dimensional integer table Ti,j of length

|Kj | such that for s ∈ [|Kj |], Ti,j [s] = 2n − A[i, Sj [s]]n − Sj [s]. (The
value of Ti,j [s] can be retrieved in constant time by using the oracle for
the matrix A and the table Sj .)

(b) Iterate O(log n) times the algorithm of Dürr and Høyer for Ti,j and set
s′ to the index minimizing Ti,j .

(c) If Ti,j [s′] < n then return Sj [s′] (i.e., n − Ti,j [s′]) as the maximum witness
for C[i, j] otherwise return “No” for C[i, j].

Theorem 2. The MW problem for the Boolean product of two Boolean n ×
n matrices, with m1 and m2 non-zero entries respectively, admits a quantum
algorithm running in Õ(n2 + n1.5

√
min{m1,m2}) time.

446 M. Kowaluk and A. Lingas

Proof. Consider Algorithm 3. Its correctness follows from the definition of the
tables Ti,j , in particular the fact that each of them has distinct values. Let us
estimate the time complexity of Algorithm 3. We may assume w.l.o.g. that the
number of non-zero entries in the matrix B is m2. Steps 1, 2(a) and 2(c) can be
easily done in Õ(n2) total time. In Step 2(b), computing the maximum witnesses
for the entries in the i-th row of the product matrix takes Õ(

∑n
j=1

√|Kj |) time
by Fact 5. Since

∑n
j=1 |Kj | ≤ m2 and the arithmetic mean does not exceed

the quadratic one, we obtain
∑n

j=1

√|Kj | ≤ n
√

m2
n . Consequently, Algorithm 2

runs in Õ(n2 + n2
√

m2
n) time.

As in case of Algorithms 1 and 2, we can pick enough large constant at log n
in the upper bound on the number of iterations of the algorithm of Dürr and
Høyer in order to guarantee that the whole output of Algorithm 3 is correct
with probability at least 2

3 . Hence, by the time analysis of Algorithm 3 and
A × B = (Bt × At)t, we obtain the theorem. �

4 The Fastest Method: Combining Rectangular Boolean
Matrix Multiplication with Quantum Search

The best known algorithm for MW from [6] relies on the multiplication of rect-
angular submatrices of the input matrices. We can combine this idea with that
of our procedure MaxWit based on the quantum search for the minimum in
order to obtain our fastest quantum algorithm for MW.

Algorithm 4

Input : oracles corresponding to Boolean n×n matrices A, B, and a parameter
� ∈ [n].
Output: maximum witnesses for all non-zero entries of the Boolean product
of A and B, and “No” for all zero entries of the product.

1. Divide A into �n/�� vertical strip submatrices A1, ..., A�n/�� of width � with
the exception of the last one that can have width ≤ �.

2. Divide B into �n/�� horizontal strip submatrices B1, ..., B�n/�� of width � with
the exception of the last one that can have width ≤ �.

3. for p ∈ [�n/��] compute the Boolean product Cp of Ap and Bp

4. for all i, j ∈ [n] do
(a) Find the largest p such that Cp[i, j] = 1 or set p = 0 if it does not exist
(b) if p > 0 then return �(p − 1) + MaxWit(Ap, Bp, i, j) else return “No”.

Lemma 2. Algorithm 4 runs in time Õ((n/�)nω(1,logn �,1) + n3/� + n2
√

�).

Proof. Steps 1, 2, take O(n2) time. Step 3 requires O((n/�)nω(1,logn �,1)) time.
Step 4(a) takes O(n2 × n/�) time totally. Finally, Step 4(b) requires Õ(n2

√
�)

time totally by Lemma 1. �
By Lemma 1 with sufficiently large β and the time analysis in Lemma 2, we can
obtain trade-offs between preprocessing time and answering a maximum witness
query time depending on �. See Theorem 3 in the full version [12].

Quantum and Approximation Algorithms for Maximum Witnesses 447

Finding � Minimizing the Total Time. By Lemma 2, the total time taken
by Algorithm 4 for maximum witnesses is

Õ((n/�) · nω(1,logn �,1) + n3/� + n2
√

�).

By setting r to logn � our upper bound transforms to Õ(n1−r+ω(1,r,1) + n3−r +
n2+r/2). Note that by assuming r ≥ 2

3 , we can get rid of the additive n3−r term.
Hence, by solving the equation 1 − λ + ω(1, λ, 1) = 2 + λ/2 implying λ ≥ 2

3 by
ω(1, λ, 1) ≥ 2 and setting sufficiently large β in Lemma 1, we obtain our main
result.

Theorem 3. Let λ be such that ω(1, λ, 1) = 1 + 1.5λ. The maximum witnesses
for all non-zero entries of the Boolean product of two n × n Boolean matrices
can be computed almost certainly by a quantum algorithm in Õ(n2+λ/2) time.

Note that by Fact 4, the solution λ of the equation ω(1, λ, 1) = 1 + 1.5λ is
satisfied by λ = 1−α (ω−1)

1.5 (1−α)−(ω−2) + o(1). Note also that λ is increasing in ω and
decreasing in α. Hence, the inequality λ < 0.8671 holds by Fact 1 and Fact 3.
We obtain the following concrete corollary.

Corollary 1. The maximum witnesses for all non-zero entries of the Boolean
product of two n × n Boolean matrices can be computed almost certainly by a
quantum algorithm in Õ(n2.4335) time.

For the applications of our quantum algorithms to the related important prob-
lems in graph algorithms listed in Introduction see the full version [12].

5 Approximation Algorithms

In this section, we present two approximation approaches to MW in a standard
computational model. The first approach follows the idea of the fastest known
algorithm for MW [6] but instead of searching the final index intervals where the
respective maximum witnesses are localized some witnesses from the intervals are
reported. The second approach relies on the repetitive applying the deterministic
algorithm for multiple witnesses from [8] and the goodness of its approximation
for a matrix product entry depends on the number of witnesses for the entry.

The Method Based on Rectangular Matrix Multiplication. By slightly
modifying the algorithm for MW [6] (or, the quantum Algorithm 4) based on
fast rectangular multiplication, we can obtain a faster approximation algorithm.
For a given �, it reports for each non-zero entry of the Boolean matrix product
a witness of rank not exceeding � instead of the maximum witness. In the time
analysis of the approximation algorithm, we rely on the fact that witnesses for
non-zero entries of the Boolean product of two Boolean matrices can be reported
in time proportional to the time taken by fast Boolean matrix multiplication
up to polylogarithmic factors (see Fact 2).

448 M. Kowaluk and A. Lingas

Algorithm 5

Input : Boolean n × n matrices A, B, and a parameter � ∈ [n].
Output: witnesses for all non-zero entries of the Boolean product of A and B
having rank not exceeding � and “No” for all zero entries of the product.

1. Divide A into �n/�� vertical strip submatrices A1, ..., A�n/�� of width � with
the exception of the last one that can have width ≤ �.

2. Divide B into �n/�� horizontal strip submatrices B1, ..., B�n/�� of width �
with the exception of the last one that can have width ≤ �.

3. for p ∈ [�n/��] do
4. Compute the Boolean product Cp of Ap and Bp along with single witnesses

for all positive entries of the product
5. for all i, j ∈ [n] do

(a) Find the largest p such that Cp[i, j] = 1 or set p = 0 if it does not exist
(b) if p > 0 then return the found witness of Cp[i, j] else return “No”

Lemma 3. Algorithm 5 runs in time Õ((n/�)nω(1,logn �,1)).

Proof. Steps 1, 2, take O(n2) time. Step 3 requires Õ((n/�)nω(1,logn �,1)) time by
a straightforward generalization of the Õ(nω)-time algorithmic solution to the
witness problem for square Boolean matrices given in Fact 2 to include rect-
angular Boolean matrices. Step 4(a) takes O(n2 × n/�) time totally. Finally,
Step 4(b) requires O(n2) time totally. It remains to observe that the term
Õ((n/�)nω(1,logn �,1)) dominates the asymptotic time complexity of the algorithm
by ω(1, logn �, 1) ≥ 2. �
Theorem 4. For all non-zero entries of the Boolean matrix product of two
Boolean n × n matrices, witnesses of rank not exceeding � can be reported in
time Õ((n/�)nω(1,logn �,1)).

The Method Based on Multi-witnesses. A straightforward method to
obtain single witnesses of rank O(�WC(i, j)/k�) for the nonzero entries C[i, j]
of the Boolean product C of two Boolean n × n matrices is to iterate a ran-
domized algorithm for single witnesses for the entries of C [2]. After O(k log n)
iterations such witnesses can be reported with high probability. This straightfor-
ward method takes Õ(nωk) time. We provide a more efficient algorithm for this
problem based on the algorithm for the so called k-witness problem from [8].

The k-witness problem for the Boolean matrix product of two n × n Boolean
matrices is to produce a list of r witnesses for each positive entry of the product,
where r is the minimum of k and the total number of witnesses for this entry.

In the following fact from [8], the upper bounds have been updated by incor-
porating the more recent results on the parameters ω (Fact 1) and α [15].

Fact 6 [8]. There is a randomized algorithm solving the k-witness problem
almost certainly in time Õ(n2+o(1)k + nωk(3−ω−α)/(1−α)), where α ≈ 0.31389
(see Fact 3). One can rewrite the upper time bound as Õ(nωkμ + n2+o(1)k),
where μ ≈ 0.46530.

Quantum and Approximation Algorithms for Maximum Witnesses 449

Algorithm 6

Input: Boolean n × n matrices A, B, and a parameter k ∈ [n] not less than
4.
Output: single witnesses Wit[i, j] for all non-zero entries C[i, j] of the Boolean
product C of A and B such that rank(Wit[i, j]) ≤ 4�WC(i, j)/k� with prob-
ability at least 1

2 − e−1.

1. D ← B;
2. initialize n × n integer matrix Wit by setting all its entries to 0;
3. for q = 1, ..., O(log n) do

(a) run an algorithm for the k-witness problem for the product F of the
matrices A and D;

(b) for all 1 ≤ i, j ≤ n, set Wit[i, j] to the maximum of Wit[i, j] and the
maximum among the reported witnesses for F [i, j];

(c) uniformly at rand om set each 1 entry of D to zero with probability 1
2 .

TW (n, k) will stand for the running time of the k-witness algorithm for
the Boolean product of the two input Boolean matrices of size n × n used in
Algorithm6.

Lemma 4. Algorithm 6 runs in Õ(TW (n, k) + n2k) time.

Proof. The block of the while loop can be implemented in O(TW (n, k) + n2k)
time. It is sufficient to observe that the block is iterated O(log n) times. �
Lemma 5. For 1 ≤ i, j ≤ n and k ≥ 4, the final value of Wit[i, j] in Algorithm
5 is a witness of C[i.j] with rank at most 4�WC(i, j)/k� with probability not less
than 1

2 − e−1.

Proof. We may assume with out loss of generality that WC(i, j)/k > 1 since
otherwise the maximum witness for C[i, j] is found already in the first itera-
tion of the block of the while loop. Let � = �log2 WC(i, j)/k�. A witness of
the entry C[i, j] survives � + 1 iterations of the block of the while loop with
probability 2−�−1. Hence, after � + 1 iterations of the block of the while loop
the expected number of witnesses of the entry C[i, j] that survive does not
exceed k/2. Consequently, the number of witnesses of C[i, j] that survive does
not exceed k with probability at least 1

2 . They are reported as witnesses of
F [i, j] in the � + 2 iteration. On the other hand, the probability that none
of witnesses not greater than 4WC(i, j)/k survives the � + 1 iterations is at
most (1 − 1

2�+1)4WC(i,j)/k ≤ e−1 by k ≥ 4. Observe that for events A and B,
Prob(A ∩ B) ≥ 1− Prob(Ā ∪ B̄) ≥ 1− Prob(Ā)− Prob(B̄). Hence, at least one
witness of rank at most 4WC(i, j)/k survives � + 1 iterations and it is reported
in the � + 2 iteration with probability at least 1 − 1

2 − e−1 ≥ 1
2 − e−1. �

Theorem 5. Let C be the Boolean product of two Boolean n×n matrices and let
k be an integer not less than 4. One can compute for all non-zero entries C[i, j]
single witnesses of rank O(�WC(i, j)/k�) in Õ(nωk0.4653+n2+o(1)k) time almost
certainly.

450 M. Kowaluk and A. Lingas

Proof. By Lemma 5, it is sufficient to iterate Algorithm 5 O(log n) times to
achieve the probability of at least 1 − n−β , β ≥ 1. The time complexity bound
follows from Lemma 4 by the upper bound on TW (n, k) from Fact 6. �

Assuming the notation from the theorem, we obtain the following corollary.

Corollary 2. There is a randomized algorithm that for 4 ≤ k ≤ n0.4212 com-
putes for all non-zero entries C[i, j] single witnesses of rank O(�WC(i, j)/k�)
almost certainly in time substantially subsuming the best known upper time bound
for computing maximum witnesses for all non-zero entries of C. In particular, if
the number of witnesses for each entry of C is upper bounded by w ≤ n0.4212 then
by setting k = w, we obtain for all non-zero entries of C a witness of rank O(1)
almost certainly, substantially faster then maximum witnesses for these entries.

Acknowledgments. The authors thank Francois Le Gall for a useful clarification of
the current status of quantum algorithms for Boolean matrix product. The research
has been supported in part by Swedish Research Council grant 621-2017-03750.

References

1. Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean matrix multipli-
cation and for shortest paths. In: Proceedings of 33rd Symposium on Foundations
of Computer Science (FOCS), pp. 417–426 (1992)

2. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

3. Ambainis, A.: Quantum search algorithms. SIGACT News 35(2), 22–35 (2004)
4. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Symb. Comput.

1, 42–49 (1997)
5. Cohen, K., Yuster, R.: On minimum witnesses for Boolean matrix multiplication.

Algorithmica 69(2), 431–442 (2014)
6. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common

ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1–2), 37–46 (2007)
7. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:

9607.014 (1996/1999)
8. Gąsieniec, L., Kowaluk, M., Lingas, A.: Faster multi-witnesses for Boolean matrix

product. Inf. Process. Lett. 109, 242–247 (2009)
9. Grandoni, F., Italiano, G.F., Lukasiewicz, A. Parotsidis, N., Uznanski, P.: All-Pairs

LCA in DAGs: breaking through the O(n2.5) barrier. To Appear in Proc. SODA
2021. CoRR abs/2007.08914 (2020)

10. Grover. L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of Annual ACM Symposium on Theory of Computing (STOC), pp. 212–
219 (1996)

11. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications. J.
Complex. 14, 257–299 (1998)

12. Kowaluk, M., Lingas, A.: Quantum and approximation algorithms for maximum
witnesses of Boolean matrix products. CoRR abs/2004.14064 (2020)

13. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
39th International Symposium on Symbolic and Algebraic Computation, pp. 296–
303 (2014)

http://arxiv.org/abs/9607.014
http://arxiv.org/abs/9607.014

Quantum and Approximation Algorithms for Maximum Witnesses 451

14. Gall, F.: A time-efficient output-sensitive quantum algorithm for Boolean matrix
multiplication. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 639–648. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35261-4_66

15. Le Gall, F., Urrutia, F.: Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In: Proceedings of SODA 2018, pp. 1029–
1046 (2018)

16. Navebi, A., Vassilevska Williams, V.: Quantum algorithms for shortest path prob-
lems in structured instances. arXiv:1410.6220 (2014)

17. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

18. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted
graphs. Algorithmica 59, 621–633 (2011)

19. Vassilevska, V., Williams, R., Yuster, R.: Finding heaviest H-subgraphs in real
weighted graphs, with applications. ACM Trans. Algorithms 6(3), 441–4423 (2010)

20. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proceedings of 44th Annual ACM Symposium on Theory of Computing
(STOC), pp. 887–898 (2012)

https://doi.org/10.1007/978-3-642-35261-4_66
https://doi.org/10.1007/978-3-642-35261-4_66
http://arxiv.org/abs/1410.6220

Template-Driven Rainbow Coloring
of Proper Interval Graphs

L. Sunil Chandran1, Sajal K. Das2, Pavol Hell3, Sajith Padinhatteeri4,
and Raji R. Pillai1(B)

1 Indian Institute of Science, Bengaluru, India
{sunil,rajipillai}@iisc.ac.in

2 Missouri University of Science and Technology, Rolla, USA
sdas@mst.edu

3 Simon Fraser University, Burnaby, Canada
pavol.hell@gmail.com

4 Birla Institute of Technology and Science Pilani, Pilani, India
sajith@hyderabad.bits-pilani.ac.in

Abstract. For efficient design of parallel algorithms on multiprocessor
architectures with memory banks, simultaneous access to a specified sub-
graph of a graph data structure by multiple processors requires that the
data items belonging to the subgraph reside in distinct memory banks.
Such “conflict-free” access to parallel memory systems and other applied
problems motivate the study of rainbow coloring of a graph, in which
there is a fixed template T (or a family of templates), and one seeks to
color the vertices of an input graph G with as few colors as possible, so
that each copy of T in G is rainbow colored, i.e., has no two vertices the
same color. In the above example, the data structure is modeled as the
host graph G, and the specified subgraph as the template T . We call such
coloring a template-driven rainbow coloring (or TR-coloring). For large
data sets, it is also important to ensure that no memory bank (color)
is overloaded, i.e., the coloring is as balanced as possible. Additionally,
for fast access to data, it is desirable to quickly determine the address
of a memory bank storing a data item. For arbitrary topology of G and
T , finding an optimal and balanced TR-coloring is a challenging prob-
lem. This paper focuses on rainbow coloring of proper interval graphs (as
hosts) for cycle templates. In particular, we present an O(k · |V | + |E|)
time algorithm to find a TR-coloring of a proper interval graph G with
respect to k-length cycle template, Ck. Our algorithm produces a color-
ing that is (i) optimal, i.e., it uses minimum possible number of colors
in any TR-coloring; (ii) balanced, i.e, the vertices are evenly distributed
among the different color classes; and (iii) explicit, i.e., the color assigned
to a vertex can be computed by a closed form formula in constant time.

Keywords: Rainbow coloring · Template · TRB-coloring · Proper
interval graph

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 452–470, 2021.
https://doi.org/10.1007/978-3-030-67899-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_36&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_36

Template-Driven Rainbow Coloring of Proper Interval Graphs 453

1 Introduction

Efficient and scalable implementation of parallel algorithms on multiprocessor
architectures with multiple memory banks depends on how fast the items in
the underlying data structure can be accessed in parallel. To simultaneously
access the data items required for a computation by multiple processors, the
pertinent data must reside in different memory banks. This problem of “conflict-
free” access to parallel memory systems can be formulated as rainbow coloring of
templates corresponding to the items to be accessed in a host graph representing
the data structure [2,6].

For example, following an insertion or deletion in a binary heap constructed
as a complete binary tree, the re-heapification (i.e., readjusting the heap) always
takes place along a single path from the root to some of the leaves. Thus, parallel
(re-)heapification, which may appear very sequential in nature due to level-by-
level adjustment of the heap property, will be efficient if all data items lying
on any path from the root to any of the leaves can be accessed simultaneously
[8]. Here the host graph G is the heap data structure represented as a complete
binary tree while the template is any root-to-leaf path.

As another example, the problem is to color the nodes of the k-dimensional
binary hypercube, Qk (host graph), having numerous applications in multipro-
cessor interconnection networks, databases, and coding theory, such that every
d-dimensional subcube Qd (template), for 1 ≤ d ≤ k, is rainbow colored [7].

In the following let us provide yet another example suggesting the problem
is a natural one, even for proper interval graphs and cycle templates. Time-
dependent applications like human contact networks or social networks can be
modeled as proper interval graphs when there is a need to satisfy some con-
straints like “First Come First Served”. Certain sub-structures (e.g., paths or
cycles) in such graphs may provide useful information, for example, circular
spreading of a disease along a long cycle of a contact network.

For illustration, let each member x of a community of people (say, a club or
organization), denoted as S, visit a common meeting place for a certain interval
of time, say f(x), every day. Two members x, y ∈ S interact with each other
only if their corresponding intervals intersect, i.e., f(x) ∩ f(y) �= ∅. Therefore,
the contact graph corresponding to the members of this community represents
an interval graph. Furthermore, this is a proper interval graph if the meeting
place follows certain rules like the first member to arrive always leaves first
(e.g., if they come to consult a doctor). Consider the spread of a disease based
on contacts at such a meeting place. In particular, some epidemiology studies
examine how the disease spreads along contact paths or cycles. The goal is to
compute the probability of the disease infecting a person when multiple contact
paths exist between an individual and an infected person. When the disease
is a global pandemic like COVID-19, the contact network can presumably be
very large due to the fact that the community/organization may consist of a
large number of members. Therefore, it is required to process a huge amount
of data belonging to long cycles or multiple paths in the contact network in a
short period of time, requiring high performance computing in a multiprocessor

454 L. S. Chandran et al.

environment. Specifically, we need to retrieve cycles of a specified length from the
memory banks as efficiently as possible so as to process various data connected
to the spread of the pandemic along with the details of patients belonging to
various cycles.

The above examples motivate the following definition. Let G be a host graph
and T be a template, which is a fixed graph (or a family of graphs). A template-
driven rainbow coloring (in short, TR-coloring) of G with respect to T is a vertex
coloring of G such that all subgraphs of G isomorphic to T (or any member of
the family T of graphs) are rainbow colored, i.e., no two vertices of T are assigned
the same color. The minimum number of colors in a TR-coloring of a host graph
G for a given template T will be denoted by χR

T (G).
We observe that TR-coloring generalizes the usual notion of proper coloring

since a proper vertex coloring of the host graph G is actually a TR-coloring of
G for the template T = P2, the path on two vertices (i.e., an edge). If T is the
set of all paths on at most k + 1 vertices, the TR-coloring becomes the well-
known k-distance coloring of graphs, where the vertices have to obtain different
colors if they are at a distance at most k. (This can also be seen as simply a
proper coloring of the power graph Gk, obtained from G by adding all edges
between vertices of distance at most k.) Hence the notion of TR-coloring with
path templates is reasonably well-explored [13]. In this paper, we consider what
may be considered the next natural template family, namely the cycles.

Load Balancing. In the parallel memory system example, if the graph is rel-
atively large, it becomes important to ensure that no memory bank (hence a
color) is overloaded. In other words, the vertices of the graph have to be almost
equally shared among different memory banks (i.e., color classes), recalling that
the vertices having the same color will be stored in the same memory bank. We
may capture the requirement of balancing the color classes by demanding that
the difference between the cardinality of the largest and smallest color classes is
at most τ , a constant or a slow growing function of the number of vertices |V |
in G. Such a load balanced coloring of G is called a τ -balanced TR-coloring, or
simply TRB -coloring when τ = 1. The minimum number of colors required for
τ -balanced TR-coloring of G with respect to a template T will be denoted by
χτ -RB

T (G), or simply χRB
T (G) when τ = 1.

Explicit Computation of Colors. Another requirement from practical con-
siderations is the following. It is very advantageous to know an explicit formula
for the memory bank address to which the data items corresponding to a vertex
i are stored. In our model, this means that the color of any vertex i is computed
easily by a closed form expression. Such a coloring where the color assigned to a
vertex i has an explicit formula in terms of i will be called an explicit coloring.

In summary, for TR-coloring of a graph, our goal is to design efficient algo-
rithms that guarantee that the resulting coloring is (i) optimal, i.e., it uses the
minimum possible number of colors; (ii) balanced, i.e., the vertices are evenly dis-
tributed among the different color classes; and (iii) explicit, i.e., the color assigned
to a vertex can be computed in constant time (by a closed form formula).

Template-Driven Rainbow Coloring of Proper Interval Graphs 455

1.1 Related Work

The graph theory community has traditionally studied different variants of rain-
bow coloring problems, both for vertex and edge coloring. Several of these prob-
lems analyze the existence of certain types of rainbow colored template graphs
(e.g., rainbow paths, cycles, subtrees, or matchings) with maximum possible
number of vertices (edges) in a host graph that has been colored by a proper
(or some other) coloring [1,4,12,14]. Moreover, some of the rainbow coloring
problems for induced subgraphs as templates, are closely related to certain fun-
damental open problems on the chromatic number of graphs [11,18].

In the literature, there also exist problems seeking vertex or edge coloring
(not necessarily proper) of the host graph in which copies of certain templates
are required to be rainbow colored. A related problem, the so-called rainbow
connection number studied in the last ten years, seeks an optimal coloring of
the vertices (or edges) of the host graph such that between any pair of vertices
there is a rainbow path [15]. A variant of this concept is known as the strong
rainbow coloring, where a rainbow shortest path is sought between any pair of
vertices. Finally, very strong rainbow coloring implies all shortest paths of the
host graph are required to be rainbow colored [3].

Concerning the conflict-free data access in a multiprocessor architecture,
there are algorithms for TRB -coloring when the host graph G and the template
T have special topological structure. For example, in [8] the authors proposed
optimal and explicit TRB -coloring algorithms where the host graph G is a q-
ary tree or binomial tree, and the template T is a path or a subtree. In [2], an
optimal TR-coloring of path templates is proposed in hosts like two-dimensional
arrays, circular lists, and complete trees. An optimal and explicit TRB -coloring
of tori and hypercube graphs (as hosts) for star templates is presented in [6].
Most of the earlier work focuses on TRB -coloring of special graphs that possess
certain characteristics useful for specified templates. In general, the problem is
highly challenging for arbitrary topology of G and T , due to the overlapping of
different instances of T in G.

1.2 Our Contributions

In this paper, we consider proper interval graphs as hosts, and cycles Ck of length
k as templates.

We emphasize that finding a balanced template-driven rainbow coloring is
challenging for arbitrary topology of G and T . It also appears hard in the full
class of interval graphs, even for simple templates such as cycles. We view this
work on proper interval graphs as the first step towards treating the more general
case of interval graphs. Our major contributions are as follows.

– We present an algorithm that computes an optimal and explicit TRB -coloring
of a proper interval graph G with respect to the cycle template Ck. Our most
technical contribution is proving the correctness of the proposed algorithm.
While the algorithm is greedy-like and simple to state, the proof of correctness
requires a detailed structural analysis.

456 L. S. Chandran et al.

– The time complexity of the algorithm is O(k · |V |+ |E|), which is O(|V |+ |E|)
when k is a constant. Furthermore, in many of the applied contexts, the
average degree is a bounded by a constant. For such sparse graphs, |E| =
O(|V |), and thus our algorithm runs in linear time.

The paper is organized as follows. Section 2 introduces preliminary concepts
and terminology. Section 3 describes our algorithm for TRB -coloring of a proper
interval graph G for template Ck. Section 4 proves the correctness and Sect. 5
summarizes the algorithm and time complexity. Finally we conclude the paper.

2 Preliminaries

An interval graph is an undirected graph G(V,E) such that the vertices can be
represented by intervals on the real line, where two vertices are adjacent if and
only if the corresponding intervals intersect. The corresponding set of intervals
is called the interval representation of G. We denote by left(vi) and right(vi)
the left and right endpoints, respectively, of an interval vi ∈ V (G). The left end
ordering of an interval graph G is an ordering of the vertices of G according
to the left end point of vertices in the corresponding interval representation.
That is, if v1v2 . . . vn is a left end ordering of V (G), then left(vi) < left(vi+1) for
1 ≤ i ≤ n − 1. (We may assume that the endpoints of the representing intervals
are distinct.) For each vertex vi ∈ V (G), a higher (respectively, lower) indexed
adjacent vertex of vi in the ordering is called a right (respectively, left) neighbor
of vi. For vi, vj with i < j, the symbol [vi, vj] denotes the ordered set of vertices
from vi to vj in the ordering including both vi and vj . Similarly, (vi, vj] is the
set [vi, vj] excluding vi and including vj .

A proper interval graph G is an interval graph which admits an interval
representation such that no interval is properly contained in another interval. It
follows from the definition of a proper interval graph that if we use the right end
ordering, we would obtain the same ordering of vertices, since left(vi) < left(vj)
if and only if right(vi) < right(vj). Thus we shall call v1v2 . . . vn the ordering of
G and use the symbol < in this sense. The following well-known fact provides
much useful information about proper interval graphs.

Proposition 1 [16]. For any connected proper interval graph G, if u, v and w
are any three vertices of V (G) such that u < v < w with respect to the left end
ordering of the graph, then uw ∈ E(G) implies uv ∈ E(G) and vw ∈ E(G).

In particular, the set of left neighbors of a vertex u in a proper interval
graph G form a clique; the same is true for its right neighbors. Moreover, all right
(respectively, left) neighbors of u occur consecutively in the ordering immediately
after (respectively, before) vertex u. In other words, if v is the last right neighbor
of u, then the set of right neighbors of u is exactly (u, v]. The closed right
neighborhood of a vertex u ∈ V (G) is denoted by Nright(u). That is Nright(u) =
{u} ∪ {right neighbors of u}. We also cite the following useful fact.

Template-Driven Rainbow Coloring of Proper Interval Graphs 457

Proposition 2 [17]. For any connected proper interval graph G with the order-
ing v1 . . . vn, there exists a Hamiltonian path Pn = v1, v2, . . . , vn.

Table 1 in Appendix A.1 lists the summary of notations used in this paper.

3 TRB-Coloring of Proper Interval Graphs with Cycle
Templates

In this section we describe an efficient algorithm for optimal TRB -coloring of
proper interval graphs when the template is a cycle Ck.

When the template T = C3 = K3, the TR-coloring is easy for all perfect
graphs. A graph G is called perfect if the chromatic number of each induced
subgraph of G is equal to the size of the largest clique in that subgraph. Observe
that interval graphs are perfect [10], so this takes care of our problem for the
template C3. Note that χRB

K3
(G) = χR

K3
(G) = 1 if G has no triangles, so we may

focus on perfect graphs G with at least one triangle.

Theorem 1. If G is any perfect graph with at least one triangle, then for the
template T = K3, we have χR

K3
(G) = χ(G). In particular, if G is a proper

interval graph then χRB
K3

(G) = χR
K3

(G) = χ(G).

Proof. If G does not have a triangle, then obviously χRB
K3

(G) = χR
K3

(G) = 1. If
it contains a triangle then let ω be the size of the largest clique. Since G is a
perfect graph, it admits a proper ω coloring and χ(G) = ω. Observe that any
proper coloring of G is a TR-coloring for template T = K3. Therefore, we have
χR

K3
≤ ω. Moreover, every proper interval graph G has a balanced proper coloring

with χ(G) colors, according to [19]. Thus χRB
K3

≤ ω also holds. On the other hand,
χR

K3
(and hence also χRB

K3
) is also at least ω. This is because the vertices of any

maximum clique Kω has to be colored with distinct colors since otherwise some
triangles will not be rainbow colored. Therefore χR

K3
= χ(G) = ω. �	

Thus we obtain an optimal TR-coloring of perfect graphs and TRB -coloring
for proper interval graphs with template C3. (The coloring is also explicit, see
[10,19].) The case of template Ck with k > 3 is significantly more involved, and
does not appear to be easy to solve for perfect graphs, or even for interval graphs.
However, we are able to propose an efficient algorithm for optimal TRB -coloring
with template Ck, k ≥ 4, when the host graph is a proper interval graph.

Let G be a proper interval graph and let T = Ck be the template, for k ≥ 4.
We first make some simplifying assumptions. Since every cycle of G is contained
in a unique biconnected component, we may assume that G is biconnected. A
minimum TR-coloring of G can easily be constructed from minimum TR-coloring
of the biconnected components, since these components form a tree structure, in
fact a path structure in the case of proper interval graphs [17]. The biconnected
components of a graph are easily computed by a depth-first search. (Edges of
G that do not lie in any cycles are not in any biconnected component, but they
can be ignored, as can all biconnected components with fewer than k vertices.)

We state a property of biconnected proper interval graphs G from [17].

458 L. S. Chandran et al.

Proposition 3 (Lemma 4.1, [17]). Let G be a biconnected proper interval graph.
Any vertex except the last two vertices in the left end ordering of G has at least
two right neighbors.

The preceding property implies the existence of a k-cycle Ck containing any
k consecutive vertices in a left end ordering of G. To see this, consider a bicon-
nected proper interval graph G with a left end ordering σ = v1v2 . . . vn. Let
vi, vi+1, . . . , vi+k−1 be k consecutive vertices in σ. By Proposition 2 the ver-
tices vi, vi+1, . . . , vi+k−1 constitute a path, say P in G. Observe that any vertex
vj ∈ V (P), for i ≤ j ≤ i + k − 3, is adjacent to vertex vj+2 by Proposition 3.
Hence we have one of the following k-cycles in G, depending on the parity of k.

Ck =

{
vi, vi+2, vi+4 . . . , vi+k−3, vi+k−1, vi+k−2, vi+k−4 . . . , vi+1, vi, if k is odd,

vi, vi+2, vi+4 . . . , vi+k−2, vi+k−1, vi+k−3 . . . , vi+1, vi, otherwise.

If there exists a k-cycle containing a pair of vertices u, v in G, then the
following lemma (see Appendix A.2 for a proof) shows the existence of a k-cycle
with any pair of vertices in the interval [u, v] in the left end ordering of G.

Lemma 1. In any biconnected proper interval graph G, if u precedes v in a left
end ordering of G and there is a k-cycle Ck of G containing both u and v, then
there exists a k-cycle Ck of G containing both u′ and v′ for any u′ and v′ such
that u ≤ u′ ≤ v′ ≤ v.

Let G be a biconnected proper interval graph with ordering σ = v1v2 . . . vn.
We denote by pk(G) the maximum of j − i + 1 such that there exists a k-cycle
Ck of G containing vi, vj with i < j. We call the parameter pk(G) the k-span of
G. It turns out to be a lower bound on the number of colors required for both
TR-coloring and TRB -coloring of G.

Corollary 1. When T = Ck and G is a biconnected proper interval graph, we
have the lower bounds χRB

T (G) ≥ χR
T (G) ≥ pk(G).

Proof. The first inequality is trivial. To prove the second inequality, note that
by definition of pk(G) there exist two vertices u and v in G such that they are
pk(G) vertices apart with respect to the ordering, and some k-cycle of G contains
both u and v. It now follows from Lemma 1 that all vertices in the interval [u, v]
in the ordering must obtain different colors. Therefore, χR

T (G) ≥ pk(G). �	

In fact, this lower bound is achievable, and we have χRB
T (G) = pk(G).

Theorem 2. Let G be a biconnected proper interval graph with ordering σ =
v1v2 . . . vn. The function color(vi) = i mod pk(G) is an explicit balanced TR-
coloring of G with respect to template Ck. Therefore χRB

T (G) = χR
T (G) = pk(G).

Indeed, this is a proper coloring, since no copy of Ck involves vertices further
apart than pk(G) and therefore all copies of Ck are rainbow colored. It is optimal
by Corollary 1, and it is balanced because of the way the colors are calculated.

Template-Driven Rainbow Coloring of Proper Interval Graphs 459

To compute the k-span pk(G), we calculate for each vertex vi its pivotal vertex
pivot(vi), defined as the vertex vj with the highest index j for which there exists a
k-cycle of G containing both vi and vj . Clearly, the k-span pk(G) is the maximum
distance from any vi to its pivotal vertex pivot(vi). Note that the value pivot(v)
is computed only for vertices v ∈ V (G) such that |[v, vn]| ≥ k.

It remains to explain how to find the pivotal vertices. We find pivot(vj),
vj ∈ V (G) by locating a vertex w to the right of vj in the ordering, such that
there exist two internally disjoint paths of length �k

2 � and k
2 �, each between vj

and w. For this we compute 2·�k
2 � distinct special vertices Si

a and Si
b, 1 ≤ i ≤ �k

2 �.
This requires an iterative process explained in the next subsection.

3.1 Special Vertices and Pivots

To find pivot(v), v ∈ V (G), we compute special vertices Si
a and Si

b, 1 ≤ i ≤ �k
2 �.

Let Nright(v) be the set consisting of v and all its right neighbors ordered by
<. Let S1

a and S1
b be the last two vertices in Nright(v), where S1

a < S1
b . (By

Proposition 3, there always exist two such neighbors other than v.) For i ≥ 1,
let us define three operations for computing Si

a and Si
b.

– rightmost(x) = the last vertex of Nright(x), where x is either Si
a or Si

b;
– a-shift(i) = the operation to reset Si

a to its immediate left neighbor; and
– b-shift(i) = the operation to reset Si

b to its immediate left neighbor.

The special vertices Si
a and Si

b, 1 ≤ i ≤ �k
2 � with respect to a vertex v are

iteratively computed by Procedure 1, which is illustrated in Appendix A.3.
We note that Procedure 1 may fail to produce k − 1 distinct special vertices,

as it is possible that Si
a = vn or Si

b = vn for some i < �k/2�, or S
�k/2�
a = vn

when k is odd. In that case we set pivot(v) = vn. Otherwise, if there exist k − 1
distinct vertices Si

a and Si
b in G, we define pivot(v) as follows. (Note that even

though the exponent in the expression is always �k
2 �, the subscripts differ for

odd and even values of k.)

pivot(v) =

{
S

k−1
2

b , if k is odd,

S
k
2
a , if k is even.

(3.1)

The main technical difficulty is in proving the correctness of these calcula-
tions. They are the backbone of the algorithm, as once the value pk(G) is known
an optimal coloring of G is described in Theorem 2.

We first show that the execution of a-shift and b-shift operations cannot
occur simultaneously. Consider a biconnected proper interval graph G and let
v ∈ V (G) be the vertex for which Si

a and Si
b, 1 ≤ i ≤ � k

2
�, are computed.

460 L. S. Chandran et al.

Procedure 1: Computing special vertices(v)

1 Initialize S0
a := S0

b := v
2 Let vn be the last vertex in the ordering of G

3 for 1 ≤ i ≤ �k
2 � do

4 Set Si
a = rightmost(Si−1

a)
5 If Si

a = vn then exit
6 If Si

a = Si−1
b then do b-shift(i − 1)

7 Set Si
b = rightmost(Si−1

b)
8 If Si

b = vn then exit
9 If Si

b = Si
a then do a-shift(i)

Proposition 4. For i ≥ 2, a-shift(i) is mutually exclusive with b-shift(i − 1)
and b-shift(i) operations.

The proof is given in Appendix A.2.
We now show that Proposition 4 together with the property of proper interval

graphs (Proposition 1) guarantee the adjacency and a strict ordering among the
vertices Si

a and Si
b, for all i. Let S0

a = S0
b = v. For simplicity of presentation, let

A0 = S0
b , A1 = S1

a, A2 = S1
b , A3 = S2

a, A4 = S2
b , That is Si

a = A2i−1, 0 < i ≤
�k
2 � and Si

b = A2i, 0 ≤ i ≤ �k
2 �.

Proposition 5. A0 < A1 < A2 < . . . < At, where t = 2 · �k
2 �, and Ai−1 is

adjacent to Ai, for 0 < i ≤ t.

The proof is given in Appendix A.2.

4 Proof of Correctness

In Subsect. 4.1 we show that the vertex v along with these k − 1 special vertices
forms a k-cycle which we call the ‘canonical cycle’. (The shifting in Procedure
1 is necessary to ensure the existence of a k-cycle using these special vertices.)
In Subsect. 4.2 we show that no k-cycle of G contains both v and any vertex
w > pivot(v) in the ordering. These two facts then imply that the computed
value pivot(v) is indeed the pivotal vertex for v.

4.1 Constructing the Canonical Cycle with Special Vertices

Suppose first that vertex v ∈ V (G) has k − 1 distinct special vertices defined by
Procedure 1. We construct the following canonical k-cycles Co

k (for odd k) and
Ce

k (for even k).

Co
k = v, S1

a, . . . , S
k−1
2

a , S
k−1
2

b , S
k−1
2 −1

b , . . . , S1
b , v, if k is odd, (4.1)

Ce
k = v, S1

a, . . . , S
k
2 −1
a , S

k
2
a , S

k
2 −1

b , . . . , S1
b , v, if k is even. (4.2)

Template-Driven Rainbow Coloring of Proper Interval Graphs 461

Proposition 5 guarantees the adjacency of consecutive vertices in Co
k and Ce

k.

Since Procedure 1 defines pivot(v) as S
k−1
2

b for odd k and S
k
2
a for even k, Eqs.

(4.1) and (4.2) give k-cycles containing v and pivot(v) in the respective cases.
Note that sometimes k−1 special vertices are not defined. In this case pivot(v)

is assigned to be the last vertex vn in the ordering of G. Construction of Ck con-
taining v and pivot(v) in this special case is explained in Appendix A.3 with some
illustrative examples. The following Corollary summarizes the above discussion.

Corollary 2. Let G be a biconnected proper interval graph and v ∈ V (G). The
value pivot(v) computed by Procedure 1 has the property that there exists a k-
cycle containing both v and pivot(v).

4.2 Absence of k-Cycles Beyond the Pivots

To prove the correctness of our algorithm, it only remains to show that the
algorithm correctly determines the pivotal vertices. Recall that Corollary 2 shows
that there exists a k-cycle containing v and pivot(v), for each v ∈ G. Hence it
remains to prove the following fact.

Proposition 6. Let G be a biconnected proper interval graph and v ∈ V (G).
Then G has no k-cycle containing v and any vertex w > pivot(v) in the ordering.

Since this is trivial if pivot(v) = vn, we may assume that v has k − 1 distinct
special vertices Si

b and Si
a. To prove the proposition, we use the lemma below,

which matches any possible cycle C involving both v and w, with the existing
special vertices S0

a = v, S1
a, . . . , S

� k
2 �

a , S0
b = v, S1

b , . . . , S
� k

2 �
b for the vertex v.

Lemma 2. Suppose that C is a cycle including both v and w, where w >
pivot(v). There exist two disjoint sets X,Y ⊆ C with exactly

⌊
k
2

⌋
vertices each,

such that X contains exactly one vertex of each interval (Si−1
a , Si

a], and Y con-
tains exactly one vertex of each interval (Si−1

b , Si
b], for i = 1, 2, . . . ,

⌊
k
2

⌋
.

The proof is given in Appendix A.2.
By Lemma 2 there exists a unique representative of C in each of the ranges

(Si−1
a , Si

a], (Si−1
b , Si

b], for 1 ≤ i ≤ �k
2 �. Thus there are k − 1 distinct vertices in

the cycle C lying in (v, pivot(v)]. Since w > pivot(v), and C is assumed to be
a cycle through v and w, there are at least (k − 1) + 2 = k + 1 vertices in C.
Therefore the cycle C contains more than k vertices, proving Proposition 6.

5 The Overall Algorithm and Its Complexity

We summarize our algorithm as follows. The input is a proper interval graph H.

1. Compute biconnected components G of H, and process each G separately.
2. Find the ordering of each biconnected proper interval graph G.
3. Compute for each vertex v of G its special vertices and its pivot(v).

462 L. S. Chandran et al.

4. Compute the k-span pk(G).
5. Set pk := max

G
pk(G), the maximum of all pk(G) on biconnected components

G in H.
6. Color the vertices of H, from left to right in the ordering, with pk colors

iteratively. That is a vertex vi in the ordering gets color(vi) := i mod pk.

We have shown that the algorithm is correct on each biconnected component
G of H. Since each cycle in H is completely contained inside a unique biconnected
component, a TR-coloring of each G ensures a TR-coloring of the graph H. Since
pk(G) colors are enough to get a TR-coloring of G, any pk ≥ pk(G)-coloring
as described in Theorem 2 also ensures a TR-coloring of the component G.
Therefore a pk coloring of H as described in Step 6 above is a TR-coloring with
respect to the template Ck. Since pk = max

G
pk(G), there exists a biconnected

component Gi such that pk = pk(Gi) and hence the TR-coloring of the graph
H is optimal. At last, the iterative distribution of pk colors among the vertices
of H ensures the balancing part.

Now we consider the complexity. Step 1 is computed by a simple depth first
search in time O(|V | + |E|). Step 2 is performed by a recognition algorithm for
proper interval graphs, in time O(|V |+ |E|) [5,9]. The special vertices and pivots
are computed by Procedure 1 and the remarks following it, as is the span of G.

Theorem 3. The proposed algorithm produces an optimal TRB-coloring of a
proper interval graph G, for the template Ck, in O(k · |V | + |E|) time.

Proof. By the preceding remarks, it only remains to discuss Steps 3–6. The right
neighborhood Nright(v) of each vertex v ∈ G can be obtained by a linear traversal
of the ordered list of vertices in O(|V |) time, and the computation of the special
vertices requires at most �k

2 � iterations, each of which takes constant time. Hence,
the computation of special vertices requires O(k) time. The span is computed from
the pivots in O(|V |) time. The bound given incorporates all these.

6 Conclusions

Motivated by several applied problems, we formulated a template-driven rainbow
coloring problem, and proposed an efficient TR-coloring algorithm of proper
interval graphs for k-cycle templates. For fixed k, the algorithm runs in O(|V |)
time for sparse graphs. Thus it is a practical algorithm and can be experimentally
evaluated at scale. It remains for future investigation to explore TR-coloring
and TRB -coloring of general interval graphs, for cycle templates and for other
templates that may occur in applications, such as stars.

Acknowledgements. This collaboration started while S. K. Das and P. Hell were
visiting the Indian Institute of Science, Bangalore in fall 2019. S. K. Das was partially
supported by the Satish Dhawan Visiting Chair Professorship at IISc (September-
December, 2019) and the US National Science Foundation grant CCF-1725755. P.
Hell was supported by the Smt Rukmini Gopalakrishnachar Chair Professorship
at IISc (November-December, 2019). S. Padinhatteeri was supported by the grant
PDF/2017/002518 from Science and Engineering Research Board, India.

Template-Driven Rainbow Coloring of Proper Interval Graphs 463

A Appendix

A.1 Notations

The notation used in this paper is summarized in Table 1.

Table 1. Notations

A.2 Proofs of Lemmas and Propositions

Proof (Proof of Lemma 1).
Let σ = (v1v2 . . . vn) be a left end ordering of G. Suppose there exists a

k-cycle C1
k containing both the vertices u and v such that v1 ≤ u < v ≤ vn.

Let u′, v′ ∈ [u, v] such that u′ < v′. We show how to construct a k-cycle C2
k

containing the vertices u′ and v′ by modifying C1
k . We may assume that not

both u′ and v′ already are in C1
k .

Suppose v′ /∈ C1
k . Let y be the first vertex among the right neighbors of v′

in the ordering such that y ∈ V (C1
k). Consider the neighbors of y in V (C1

k), say
x and x′. Let us assume that x < y < x′. Since y is the first right neighbor of
v′ in C1

k we have x < v′ < y and the adjacency of x to y implies x and v′ are
adjacent (See Proposition 1). Let w1 be the leftmost and w2 be the rightmost
vertices of V (C1

k) with respect to the ordering. (Note that in some cases w1 = u
and w2 = v.) Hence both the neighbors of w2 in V (C1

k), say z and z′, are left
neighbors of w2 and assume z < z′. Therefore z < z′ < w2 and since w2 is
adjacent to z, the vertices z and z′ are adjacent by Proposition 1. Thus we
construct the k-cycle, C2

k from C1
k by the following steps when y �= w2.

(i) replace the edge xy with the path xv′y, (ii) delete the vertex w2 and (iii)
add the edge zz′.

If y = w2 then replacing y by v′ in C1
k gives a k-cycle. This is because in

this case the neighbors of w2 in C1
k are also adjacent to v′ by Proposition 1.

464 L. S. Chandran et al.

Thus we have successfully constructed a k-cycle containing the vertices v′ and
u. If u′ /∈ C1

k then we follow similar arguments as above to add the vertex u′ in
C2

k . In this case y becomes the last vertex among the left neighbors of u
′
in the

ordering and replace w1 with w2 in the above arguments. Thus the new cycle
C2

k is a k-cycle containing both u′ and v′. If u′ ∈ C1
k or v′ ∈ C1

k then addition of
v′ or u′ is sufficient to get C2

k . �	

Proof (Proof of Proposition 4). Suppose while determining Si
a the operation

a-shift(i) is invoked. This implies rightmost(Si−1
b) = rightmost(Si−1

a) and the
procedure Compute special vertices(v) assigns Si

b to the vertex rightmost(Si−1
b)

and reassigns Si
a to the immediate left vertex of rightmost(Si−1

b) in the order-
ing of V (G). Moreover, a-shift(i) makes the vertices corresponding to Si

a and
Si

b consecutive in the ordering. Now suppose b-shift(i) is invoked. This implies
rightmost(Si

a) = Si
b. Since Si

b and Si
a are consecutive, rightmost(Si

a) = Si
b implies

Si
a has only one right neighbor and it is Si

b. since Si
a has only one right neigh-

bor, Si
b, it means that Si

a = vn−1 and Si
b = vn by Propositions 2 and 3. But

then, Procedure 1 is terminated at the ith iteration of the loop, so b-shift(i)
cannot have been invoked, a contradiction. Therefore, a-shift(i) and b-shift(i)
are mutually exclusive.

Now assume b-shift(i − 1) is invoked. By similar arguments as above, this
implies rightmost(Si−1

a) = Si−1
b and the procedure Compute special vertices(v)

assigns Si
a as rightmost(Si−1

a) itself and reassigns Si−1
b as immediate left neighbor

of Si
a. This makes Si−1

b and Si
a as consecutive vertices in the ordering. Therefore,

rightmost(Si−1
b) can never be Si

a; otherwise it must be by Propositions 2 and 3
that (Si−1

b) = vn−1 and Si
a = vn. But then, Procedure 1 is terminated before the

calculation of Si
b, so a-shift(i) cannot have been invoked, a contradiction. Thus

a-shift(i) and b-shift(i − 1) are mutually exclusive. �	

Proof (Proof of Proposition 5). The proof is by induction on i, where i ≤ t.
As base case take i = 2. It is easy to verify that A0 < A1 < A2 since A2 =
rightmost(A0) and A1 =rightmost(A0) − 1. Moreover by Proposition 1, A1 and
A2 are adjacent. Thus for i = 2, the statement is true. Now let i > 2. As induc-
tion hypothesis, assume that A0 < A1 < . . . < Ai−1 and Ai−2 is adjacent to
Ai−1. Since Ai−1 is adjacent to Ai−2, we can infer that Ai−2 < Ai−1 ≤ right-
most(Ai−2). According to the the way the special vertices Sj

a and Sj
b are calcu-

lated, (see Procedure 1), we have Ai = rightmost(Ai−2) or rightmost(Ai−2) − 1;
the second case occurs if and only if a corresponding a-shift(i) or b-shift(i)
occurs. We consider both the cases below.

Case 1. Ai = rightmost(Ai−2): From Ai−1 ≤ rightmost(Ai−2), we infer
Ai−1 ≤ Ai. Note that Ai−1 = rightmost(Ai−3) or rightmost(Ai−3) − 1. Since
rightmost(Ai−3) ≤rightmost(Ai−2) = Ai, we have Ai−1 = Ai only if right-
most(Ai−3) = rightmost(Ai−2). However, in this case, there is either a-shift(j)
or b-shift(j) depending on whether Ai−1 = Sj

a or Sj
b , for j = � i−1

2 �; and Ai−1 will
be fixed to rightmost(Ai−3)−1 which is same as rightmost(Ai−2)−1 = Ai −1 in
this special case. It follows that Ai−1 �= Ai and therefore Ai−1 < Ai, as required.

Template-Driven Rainbow Coloring of Proper Interval Graphs 465

Case 2. Ai = rightmost(Ai−2) − 1. This occurs because rightmost(Ai−1) =
rightmost(Ai−2), and either a-shift or b-shift occurs. Ai = rightmost(Ai−2) − 1
which is the same as rightmost(Ai−1) − 1 in this special case. Given that
rightmost(Ai−1) ≥ (Ai−1 + 1) + 1 (by Proposition 3), we have Ai = right-
most(Ai−1) − 1 ≥ Ai−1 + 1 > Ai−1, as required.

Since Ai−2 < Ai−1 < Ai and Ai is a neighbor of Ai−2, by Proposition 1, we
see that Ai−1 is adjacent to Ai as claimed. �	

Proof (Proof of Lemma 2). Partition C into two internally disjoint paths
P1, P2 from v to w, and let, for any special vertex z of v, the symbol
NEXTt(z), t = 1, 2, denotes the first vertex of Pt that strictly follows z in the
ordering of G. We describe below a useful property of the functions NEXTt(x),
t = 1, 2.

– Suppose first that z = Si
a for some i.

• If a-shift(i+1) occurs and NEXTt(z) = rightmost(z), then NEXTt(z) =
Si+1

b .
• Otherwise, NEXTt(z) ∈ (Si

a, Si+1
a].

– Now suppose that z = Si
b.

• If b-shift(i+1) occurs and NEXTt(z) = rightmost(z), then NEXTt(z) =
Si+2

a .
• Otherwise, NEXTt(z) ∈ (Si

b, S
i+1
b].

In the first case NEXTt(z) ≤ rightmost(z) and unless a-shift(i+1) occurs we
have Si+1

a = rightmost(z). Even in the case a-shift(i+1) occurs, we will have
Si+1

a =rightmost(z)− 1 and therefore if NEXTt(z) < rightmost(z), we still have
NEXTt(z) ≤ Si+1

a .
In the second case, we have rightmost(z) = Si+1

b , unless b-shift(i+1) occurs.
Since NEXTt(z) ≤ rightmost(z) , in this case NEXTt(z) ≤ Si+1

b . Even if b-
shift(i+1) occurs, we will have Si+1

b = rightmost(z) − 1.
Therefore if NEXTt(z) < rightmost(z) we have NEXTt(z) ≤ Si+1

b as claimed.
We now proceed to construct the sets X,Y by induction on i. For i = 1, we

take X = {w1} and Y = {u1}, where w1, u1 are the neighbors of v on the paths
P1 and P2. Since both u1, w1 ≤ rightmost(v) = S1

b and S1
a = S1

b −1, it is easy to
see that one of them belongs to (S0

a, S1
a], and so it is placed in X as x1, and the

other is in (S0
b , S1

b], so it can be placed in Y as y1. Now assume that for i = p the
statement of the lemma is true, and we already have distinct vertices x1, . . . , xp

in X and distinct vertices y1, . . . , yp in Y . We proceed to define xp+1 and yp+1.

Note that for yp+1 to be different from all previous xi, yi, it is sufficient to
ensure that yp+1 ∈ (Sp

b , Sp+1
b] since this interval does not intersect any of the

intervals (Sj−1
α , Sj

α] for j ≤ p where α = a, b. Moreover (Sp
a , Sp+1

a] intersects only
with (Sp−1

b , Sp
b] from the previously considered intervals, and therefore the only

element xp+1 has to avoid in the previously constructed xi, yi is yp. It follows
that once we establish that xp+1, yp+1 are in the appropriate intervals, we just
have to show that xp+1 �= yp and xp+1 �= yp+1 in order to complete the proof. In

466 L. S. Chandran et al.

the following let yp belong to path Pt where t ∈ {1, 2}, and let Pr be the other
path, i.e. yp �∈ Pr.

Case 1. a-shift(p + 1) occurs and NEXTr(Sp
a) = rightmost(Sp

a).
Let xp+1 = NEXTt(S

p
b) and yp+1 = NEXTr(Sp

a) = Sp+1
b ∈ (Sp

b , Sp+1
b].

Now clearly xp+1 = NEXTt(S
p
b) �= yp+1 = Sp+1

b since they belong to dif-
ferent paths. Since a-shift(p + 1) occurs, b-shift(p + 1) cannot occur. Thus
rightmost(Sp

b) = Sp+1
b = yp+1 �= xp+1. It follows that xp+1 = NEXTt(S

p
b) ≤

rightmost(Sp
b) − 1 ≤ Sp+1

b − 1 = Sp+1
a , due to a-shift(p+1). It follows that

xp+1 ∈ (Sp
b , Sp+1

a] ⊆ (Sp
a , Sp+1

a]. Moreover, since xp+1 > Sp
b and yp ≤ Sp

b , we
have xp+1 �= yp.

Case 2. b-shift(p + 1) occurs and NEXTt(S
p
b) =rightmost(Sp

b).
Let xp+1 = NEXTr(Sp

a) and yp+1 = NEXTr(Sp+1
a). We first note that

xp+1 ∈ (Sp
a , Sp+1

a]: This is because since b-shift(p + 1) occurs, a-shift(p + 1)
cannot occur. Clearly xp+1 �= yp since both belong to different paths. More-
over xp+1 �= yp+1 since yp+1 > Sp+1

a . Note that yp+1 ≤rightmost(Sp+1
a) =

Sp+2
a =rightmost(Sp

b) (by definition of b-shift(p+1)), but in this situation, right-
most(Sp

b) = NEXTt(S
p
b), which is a vertex of path Pt and thus cannot be yp+1

which belongs to path Pr. So, yp+1 ≤rightmost(Sp
b)−1 = Sp+1

b , by the definition
of b-shift(p + 1). Therefore yp+1 ∈ (Sp+1

a , Sp+1
b] ⊂ (Sp

b , Sp+1
b], as required.

We note that Cases 1 and 2 cannot occur simultaneously by Proposition 4.

Case 3. Neither Case 1 nor Case 2 occurs.
We set xp+1 = NEXTr(Sp

a) and yp+1 = NEXTt(S
p
b). Clearly xp+1 �= yp+1

since they do not belong to the same path. Also yp �= xp+1 since yp ∈ Pt and
xp+1 ∈ Pr. Moreover, xp+1 ∈ (Sp

a , Sp+1
a], since the special case where this is not

applicable is handled in Case 1; and yp+1 ∈ (Sp
b , Sp+1

b] since the special case
where this is not applicable is handled in Case 2. �	

A.3 Examples: Constructing a k-cycle with Special Vertices

First we explain the construction of a k-cycle containing v and pivot(v) when
k − 1 special vertices are not defined. This happens when the last vertex vn

in the ordering of G is assigned to some special vertex. Let Sj
x, x ∈ {a, b} be

the first special vertex computed such that Sj
x = vn. Observe that the value

pivot(v) is computed only for vertices v ∈ V (G) such that |[v, vn]| ≥ k. Here
pivot(v) = vn = Sj

x. If x = a, then C
′
= v, S1

a, . . . , Sj
a, Sj−1

b , . . . , S1
b , v or if x = b,

then C
′

= v, S1
a, . . . , Sj

a, Sj
b , Sj−1

b , . . . , S1
b , v is a cycle containing the vertices v

and pivot(v). But this cycle C
′

may not be a k-cycle since j ≤ �k
2 �. (Note that

j < �k
2 � except when Sj

x = S
� k

2 �
a = vn in the case of odd cycles.) To have a

k-cycle Ck containing v and pivot(v) we add vertices to C ′ in the following way.
Let |V (C ′)| = k′ and k′ < k. Then we add m = k − k′ vertices from (v, vn)

to the cycle C ′ to form the k-cycle Ck. Since |[v, vn]| ≥ k there are m vertices
from (v, vn) that are not in V (C ′). Let y1y2 . . . ym be such m vertices such that

Template-Driven Rainbow Coloring of Proper Interval Graphs 467

v < y1 < y2 < · · · < ym < vn with respect to the ordering. Since the special
vertices Si

x partition the set [v, vn] into (Si−1
x , Si

x], 1 ≤ i ≤ j, the m vertices
y1y2 . . . ym belong to some of these parts. If {yi, yi+1, . . . , yi+t} ⊆ [Sp−1

x , Sp
x],

for some 1 ≤ p ≤ j, 1 ≤ i ≤ m and 0 ≤ t ≤ m − i, then we replace the
edge Sp−1

x Sp
x in C ′ by the path Sp−1

x , yi, yi+1, yi+2, . . . , yi+t, S
p
x. The adjacency

of these vertices is guaranteed by Proposition 5 and Proposition 1. This process
is continued until all the m vertices are added to the cycle C ′ transforming it to
a k-cycle containing both v and pivot(v) = vn.

The following examples illustrate the construction of a k-cycle containing v
and pivot(v). Example 1 illustrates the computation of special vertices Si

a and
Si

b for finding the pivotal vertex with respect to each vertex v ∈ V (G). It also
shows the construction of the canonical even cycle and odd cycle. Example 2
shows the existence of a k-cycle when the computation of Si

a and Si
b ends before

i = �k
2 �.

Example 1: Consider the proper interval graph G in Fig. 1. The vertices of G
are labeled according to the left end ordering. Vertex v11 is a cut vertex and
hence, G has two biconnected components H1 and H2 with ordered vertex sets
{v1, . . . , v11} and {v11, . . . , v14} respectively. Suppose the template is T = C8

and consider the vertex v1 in H1. Then for 1 ≤ i ≤ 4, the special vertices
Si

a and Si
b with respect to v1 are computed iteratively as follows. (See Fig. 2).

Fig. 1. A proper interval graph G with two biconnected components, H1 and H2

The canonical cycles for template T = C8 and T = C9 are shown in Fig. 3,
as (a) and (b) respectively. The solid lines are the edges of the cycles.

468 L. S. Chandran et al.

Fig. 2. Computational stages of Si
a and Si

b, 1 ≤ i ≤ � k
2 � for the vertex v1 ∈ V (H1)

Fig. 3. a) The canonical cycle for template T = C8 containing v1 and pivot(v1) b) the
canonical cycle for template T = C9 containing v1 and pivot(v1)

Example 2: For the proper interval graph G in Fig. 1, let the template be T =
C4. Let us compute the pivotal vertex for vertex v7 in H1. The computation
of special vertices Si

a and Si
b for finding pivot(v7) ends before i = �k

2 �. Since
S1

b = v11, the last vertex in H1, pivot(v7) = v11. Figure 4(a) shows the induced
subgraph of H with vertex set [v7, v11]. Figure 4(b) shows a cycle of length 3
containing v7, S

1
a, and S1

b . Figure 4(c) shows an even cycle for template T = C4

containing v7 constructed by replacing the edge v7S
1
a by the path v7, v8, S

1
a.

Template-Driven Rainbow Coloring of Proper Interval Graphs 469

Fig. 4. a) Si
a and Si

b vertices defined for the vertex v7 ∈ V (H1) b) A cycle of length 3
(solid lines) containing v7, S

1
a and S1

b c) An even cycle for template T = C4 containing
v7 and pivot(v7)

References

1. Balogh, J., Molla, T.: Long rainbow cycles and hamiltonian cycles using many
colors in properly edge-colored complete graphs. Eur. J. Combin. 79, 140–151
(2017)

2. Bertossi, A.A., Pinotti, M.C.: Mappings for conflict-free access of paths in bidi-
mensional arrays, circular lists, and complete trees. J. Parallel Distrib. Comput.
62, 1314–1333 (2002)

3. Chandran, L.S., Das, A., Issac, D., van Leeuwen, E.J.: Algorithms and bounds
for very strong rainbow coloring. In: Bender, M.A., Farach-Colton, M., Mosteiro,
M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 625–639. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77404-6 46

4. Chen, H.: Long rainbow paths and rainbow cycles in edge colored graphs - a survey.
Appl. Math. Comput. 317, 187–192 (2018)

5. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: A simple linear
time recognition of unit interval graphs. Inf. Process. Lett. 55, 99–104 (1995)

6. Das, S.K., Finocchii, I., Petreschi, R.: Conflict-free star-access in parallel memory
systems. J. Parallel Distrib. Comput. 66, 1431–1441 (2006)

7. Das, S.K., Pinotti, M.C.: Conflict-free access to templates of trees and hyper-
cubes in parallel memory systems. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997.
LNCS, vol. 1276, pp. 1–10. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0045066

8. Das, S.K., Pinotti, M.C.: Optimal mappings of q-ary and binomial trees into paral-
lel memory modules for fast and conflict-free access to path and subtree templates.
J. Parallel Distrib. Comput. 60, 998–1027 (2000)

9. Deng, X.T., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular arc graphs and proper interval graphs. SIAM. J. Comput. 25, 390–403
(1996)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, p. 57. Elsevier, Amsterdam (2004)

11. Gyárfás, A., Sárkäzy, G.N.: Induced colorful trees and paths in large chromatic
graphs. Electron. J. Combin. 23, P4.46 (2016)

12. Kostochka, A.V., Yancey, M.: Large rainbow matchings in edge-colored graphs.
Combin. Probab. Comput. 21, 255–263 (2012)

13. Kramer, F., Kramer, H.: A survey on the distance-coloring of graphs. Discrete
Math. 308, 422–426 (2008)

https://doi.org/10.1007/978-3-319-77404-6_46
https://doi.org/10.1007/BFb0045066
https://doi.org/10.1007/BFb0045066

470 L. S. Chandran et al.

14. LeSaulnier, T.D., Stocker, C.J., Wenger, P.S., West, D.B.: Rainbow matching in
edge-colored graphs. Electron. J. Combin. 17, N26 (2010)

15. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graph. Combin.
29, 1–38 (2013)

16. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-
put. Math. Appl. 25, 15–25 (1993)

17. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval
graphs. Inf. Process. Lett. 87, 153–161 (2003)

18. Scott, A., Seymour, P.: Induced subgraphs of graphs with large chromatic number
IX: rainbow paths. Electron. J. Combin. 24, 2.53 (2017)

19. de Werra, D.: Some uses of hypergraph in timetabling. Asia-Pac. J. Oper. Res. 2,
2–12 (1985)

Minimum Consistent Subset of Simple
Graph Classes

Sanjana Dey1(B), Anil Maheshwari2, and Subhas C. Nandy1

1 ACM Unit, Indian Statistical Institute, Kolkata, India
info4.sanjana@gmail.com

2 School of Computer Science, Carleton University, Ottawa, Canada

Abstract. In the minimum consistent subset (MCS) problem, a con-
nected simple undirected graph G = (V, E) is given whose each node
is colored by one of the colors {c1, c2, . . . , ck}, and the objective is to
compute a subset C ⊆ V such that for each node v ∈ V , its set of nearest
neighbors in C (with respect to the hop-distance) contains at least one
vertex of the same color as v. The decision version of the MCS problem
is NP-complete for general graphs. Even for planar graphs, the prob-
lem remains NP-complete. We will consider some simple graph classes
like path, caterpillar, bi-chromatic spider, bi-chromatic comb, etc., and
propose polynomial-time algorithms for solving the problem on those
graphs.

1 Introduction

The geometric variation of the consistent subset problem was first introduced
by Hart [4]. Let P be a set of multi-colored points in the plane. A consistent
subset of P is a set S ⊆ P such that for every point p ∈ P\S, the closest point
among the points in S has the same color as that of p. In the minimum consistent
subset problem, the objective is to find a consistent subset of P with minimum
cardinality. In [6], it is shown that the decision version of this problem is NP-
complete even for three-colored point sets in R

2. In the same paper, the author
proposed an O(n2) time algorithm for the minimum consistent subset problem
with two colored point sets where one set is a singleton. The general version of
the minimum consistent subset problem for bicolored points is NP-hard [5]. In
[1], the consistent subset problem for collinear points is solved in O(n2) time.
Recently, a sub-exponential time algorithm for the consistent subset problem in
R

2 is proposed in [2]. It is also shown that in O(n lg n) time one can test whether
the size of the minimum consistent subset of a bicolored point set in R

2 is 2 or
not. In the same paper, an O(n) time algorithm is presented for the collinear
points, thereby improving the previous running time by a factor of Θ(n). They
also propose an O(n6) time dynamic programming algorithm for points arranged
on two parallel lines.

The general definition of the minimum consistent subset (MCS) problem was
given in [3] where a ground set X and a constraint t is given. The objective is
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 471–484, 2021.
https://doi.org/10.1007/978-3-030-67899-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_37

472 S. Dey et al.

to compute subsets X ′ ⊆ X that satisfy the constraint t. They proposed the
following application for reducing the data communication overheads: Transmit
the pair (t,X ′) to a user. The user can classify (its color) each element of the
ground set X using X ′ and the constraint t. In the geometric variation of MCS
an appropriate distance measure serves as the constraint. In this paper, we study
the following graph-theoretic version of the consistent subset problem:
Let G = (V,E) be a graph whose nodes are classified into k classes, namely
V1, . . . , Vk. The objective is to choose subsets V ′

i ⊆ Vi, i = 1, . . . , k such that
for each member v ∈ V , if v ∈ Vi then among its nearest neighbors in ∪k

i=1V
′
i

there is a node of V ′
i , and

∑k
i=1 |V ′

i | is minimum. The distance between a pair
of nodes u and v is the number of nodes in the shortest path from u to v, and
will be referred to as hop-distance(u, v).

In [3], an application of the geometric version of consistent subset problem is
mentioned in the context of reverse clustering. Here, a ground (point) set P ∈ R

2

and a training (colored point) set P ′ are given. The points in P are classified
(colored) according to their respective nearest neighbor in P ′. In the context
of graphs, this application is not directly applicable since a node v ∈ V may
have several nearest neighbors of different colors in V ′. Thus, the applications
suggested may not be strictly applicable here. For each such element, one needs to
compare its properties with a limited number of elements, to decide its correct
group. As an example, we can mention an application of our problem in the
citation networks. Each author is a node and there is an edge between two
nodes if an author cites the other. Also, each author is assigned with a category
stating his/her research interests. One can use the consistent subset of this graph
to prepare the editorial board of a journal so that each paper is assigned to an
editor of the approximately similar research interest.

Our Contribution: To the best of our knowledge, there is not enough study
about the minimum consistent subset problem in graphs. The status of the prob-
lem is even unknown for trees. In [1], it was shown that the decision version
of the minimum consistent subset problem is NP-complete for general graphs
G = (V,E). The hardness reduction uses the minimum dominating set problem
on an undirected graph. Using the same reasoning, one can claim that the MCS
problem for a planar graph is NP-hard. In this paper, we present polynomial-
time algorithms for the MCS problem for some simple graph classes, namely, (i)
path, (ii) caterpillar, (iii) spider and (iv) comb. We first consider the bichromatic
version of these problems. We introduce the concept of run, gate and block to
partition the graph into subgraphs so that each subgraph can be handled inde-
pendently with limited interactions with its ‘neighboring’ subgraphs. The non-
trivial part of this approach using these structures is to design techniques to
carefully handle the limited interaction. The basic idea is to use these structures
from the given graph G to create a new graph H, called overlay graph. In doing
so, we reduce the minimum consistent subset problem on G to finding a shortest
s-t path in this new graph H. Minor tailoring of the algorithm for path works

Minimum Consistent Subset of Simple Graph Classes 473

for the cycle graph. The multi-chromatic version for paths and cycles can also be
solved using the same algorithm in linear time. Algorithms for the bichromatic
version of the MCS problem are proposed for caterpillar graph, spider graph and
comb graph with time complexity O(n), O(n2), and O(n2) respectively, where
n is the number of nodes in the graph. In the rest of the paper, we will use C to
denote a minimum consistent subset of the input graph G.

2 Bichromatic Paths

In a path (or line) graph G = (V,E), the nodes in V are listed in the order
p1, p2, . . . , pn. Each pair of consecutive nodes define an edge of the graph, i.e.,
E = {(pi, pi+1), i = 1, 2, . . . , n − 1}. Each node has degree two except the two
terminal nodes of the path that have degree one. In a bichromatic path graph,
each node is assigned with one color in {red, blue}. A run is a consecutive set of
nodes of the same color on the path (see Fig. 1). In a run of length 1, the node
itself is always selected.

Fig. 1. Runs in a path graph: each black rectangle denotes a run. (Color figure online)

Lemma 1. In the minimum consistent subset of a path graph, each run will
have at least one and at most two nodes in C. Moreover, exactly one node will
be sufficient1 from the first and the last run.

Algorithm: Consider a pair of adjacent runs Rj and Rj+1. Assume, without
loss of generality, |Rj | ≤ |Rj+1|. For each member pi ∈ Rj , there exists at most
three members, say pk, pk+1, and pk+2 ∈ Rj+1, such that if pi is included in C
then any one of those three members of Rj+1 must be included in C to satisfy the
consistency property of the boundary nodes of Rj and Rj+1 that are adjacent
to each other. Thus, (pi, pk+θ) forms a valid-pair for θ = 0, 1, 2 (Fig. 2).

Fig. 2. Valid pairs: (pi, pk), (pi, pk+1) and (pi, pk+2).

1 As the first run will have just one other run to its right, we need to select a node
depending on its closest node of opposite color in the second run. Similarly for the
last run.

474 S. Dey et al.

We define the overlay graph H = (V ∪ D,F) as follows. The nodes of H are
the nodes of G, and k dummy nodes D = {d1, . . . , dk}, where k is the number
of runs. The edges in the set F are of two types. For each valid-pair, we add
a directed type-1 edge in F . For each node pi in a run Rj we add two directed
type-2 edges (pi, dj) and (dj , pi) in F . The weight of each type-1 edge is 0. The
type-2 edges incident to D\{d1, dk} have weight 1. Each type-2 edge incident
to {d1, dk} has weight 0. For the complete demonstration of the graph H. A
forward s-t path is a path from s to t where the indices of the pi nodes appear
in increasing order. Now we find the shortest forward s-t path with s = d1 and
t = dk in the graph H, and remove the dj ’s to obtain MCS of the original path
graph G.

Theorem 1. The shortest s-t path of the overlay graph H gives the minimum
consistent subset of the path G, and it executes in O(n) time.

Note: A minor tailoring of the same algorithm works for a bichromatic cycle
graph G = (V,E), where the nodes in V are connected in a closed chain.

3 Bichromatic Caterpillar Graph

A caterpillar G = (V,E) is a tree in which every node is within distance 1 from a
path in G, called skeleton. The nodes in V that are not on the skeleton are termed
as dangling nodes. Thus, V = S ∪ D, where the nodes in S are on the skeleton,
and D contains the dangling nodes from all nodes in S. I.e., D =

⋃
v∈S Dv,

where Dv is the set of nodes dangling at the node v ∈ S. Each dangling node in
Dv is at distance 1 from a node v ∈ S. In this section, we will consider the MCS
problem for a bichromatic caterpillar where each node of V is colored by red or
blue. The cases |V | = 1 or 2 can be solved trivially. If |V | ≥ 3, then we assume
that the first and the last node of the skeleton consist of at least one dangling
node. If the first (resp. last) node v of the skeleton does not have any dangling
node and the node adjacent to v is u, we can consider node v as the dangling
node of u.

Observation 1. If any node on the skeleton S has two dangling nodes p, q of
opposite colors, then C = {p, q}.

So, we consider the cases where V does not satisfy Observation 1. In other
words, if more than one dangling node is present at a node v ∈ S, then they are
all of the same color. Consider two structures as shown in Fig. 3(a, b) consisting
of three nodes (p, q, r), where node r ∈ S is of arbitrary color, and is attached to
two nodes p and q of opposite colors. As we are considering instances that do not
satisfy Observation 1, both p and q cannot be dangling at node r. Without loss
of generality, let us assume that p ∈ S and q ∈ Dr. We now define the concept of
gate where node r is called the base of the gate. The two cases shown in Fig. 3(a)
and 3(b) are referred to as left-gate and right-gate respectively. The existence of
a left-gate (resp. right-gate) (p, q, r) implies that by choosing {p, q} in C all the

Minimum Consistent Subset of Simple Graph Classes 475

Fig. 3. (a) Left gate. (b) Right gate. (c) Visulalizing Observation 1. (d) A caterpillar
with only left gate (OLG). (e) A caterpillar with both gates (BG). Dotted regions
signify the part of the caterpillar covered by the gates.

nodes to the right (resp. left) of that gate, including the base node r, are covered2,
and we need to compute the minimum consistent subset of the subgraph of G
that is attached with p ∈ S at its left (resp. right) side. Here, the following four
situations need to be considered depending on the occurrence/non-occurrence of
left and/or right-gate.

NG: There is no gate in G.
OLG: Only left-gate(s) is/are present in G. The leftmost left-gate is called LG.
ORG: Only right-gate(s) is/are present in G. The rightmost right-gate is called
RG.
BG: Both left-gate(s) and right-gate(s) are present in G. Here LG and RG are
defined as above.

Handling OLG: We find LG = (pLG, qLG, rLG). Let SR and SL be two sets of
nodes in S that are to the right of rLG and to the left of pLG, respectively.

Observation 2. (a) If C contains {pLG, qLG} and no node from SR then all the
nodes in SR

⋃
(∪u∈SR

Du), irrespective of their colors, are covered by C.
(b) If DpLG

�= ∅ or the color of all the dangling nodes (DpLG
) of pLG are of

same color as that of pLG, then no members of DpLG
need to be included in C;

otherwise all the members of DpLG
are included in C.

As LG is the left-most left gate, there does not exist any gate in SL. Thus,
we solve the MCS problem for SL as the NG case.

Observation 3. If all the nodes in SR are of color(qLG), then instead of includ-
ing {pLG, qLG} in C an appropriate pair {p′, q′} may be included in C, where
p′ ∈ SL and q′ ∈ SR, to reduce the size of the MCS C.
2 By the term “a node v ∈ V is covered by C” we mean that the nearest (or one of
the nearest) node of node v in C is of color(v).

476 S. Dey et al.

Thus, if Observation 3 is satisfied in the OLG case then C can be obtained
by ignoring the dangling nodes at node r of LG (all are of color color(q) by
Observation 1) and processing the problem instance as the NG case, explained
later.

Handling ORG: We first find RG = (pRG, qRG, rRG), the right-most right gate.
Next, this case is handled analogously as the case OLG.

Handling BG: We identify LG = (pLG, qLG, rLG) and RG = (pRG, qRG, rRG).
Here, two different scenarios may arise: (i) LG is to the left of RG, and (ii) LG
is to the right of RG.

In Case (i), only one of the pairs (pLG, qLG) and (pRG, qRG) is included in
C as was done in the OLG and ORG case. Hence, the portion of S to the right
of rLG or the left of rRG will be covered depending on whether LG or RG is
considered for inclusion in C. If (pLG, qLG) (resp. (pRG, qRG)) be considered for
inclusion in C then SL (resp. SR) satisfies an NG case, and needs to be solved
separately. In our algorithm, we will obtain the solutions by considering LG and
RG for inclusion in C separately, and then choose the solution of smaller size.

In Case (ii), The nodes {pLG, qLG, pRG, qRG} need to be included in C. As
mentioned earlier, if the color of all the nodes in DpLG

(if any) are different from
color(pLG), then DpLG

needs to be included in C. Similarly, if the color of all the
nodes in DpRG

is different from color(pRG), then DpRG
needs to be included in

C. Thus, the portion to the left of rRG and to the right of rLG are covered. Here
also Observation 3 may apply for LG or RG or both. Accordingly, the unsolved
part Smid (the portion between pRG and pLG) will be defined. We process Smid

as the NG case.

Handling NG: We now describe the method of handling a part S′ of S that
is not covered by any gates. It may happen that S = S′. Similar to the concept
of run in Sect. 2, here we define block as a connected component in S′ of the
same color (see Fig. 4, where each block is highlighted by a box). Let us recall
from Observation 1 that the dangling nodes (if any) attached to any node of S′

are of the same color. As S′ does not contain any gates, we have the following
observation.

Fig. 4. Caterpillars with the blocks highlighted.

Observation 4. (a) If a pair of adjacent nodes (u and v say) on the skeleton
are of opposite color then each of them (u and v) can not have any dangling
node of its own color.

Minimum Consistent Subset of Simple Graph Classes 477

(b) If a block on the skeleton has exactly one node (say w), then the dangling
nodes (if any) of w are all of color different from that of w (as mentioned
in part (a)). We will name such a node w as split-node.

Lemma 2. Each block in the NG scenario will have at least one and at most
two representatives in C.

By Observation 4 and Lemma 2, each split node (along with its dangling
nodes) is included in C. Thus, S′ is further divided using split-nodes. Let us now
consider each of these unsolved parts separately and solve as in Sect. 2.

Theorem 2. The proposed algorithm for the caterpillar is correct, and produces
optimum result in O(n) time.

4 Bichromatic Spider Graph

In a bichromatic spider graph G(V,E), V = {v} ∪k
i=1 Vi; v is called the center,

which may be of color red or blue, and each Vi is a path of bi-colored nodes of
length ni whose one end is connected with v. The set E are the edges that form
the k paths. |V | =

∑k
i=1 |Vi|+1, and |E| =

∑k
i=1 |Vi|. We will refer each path Vi

as the leg of the spider. In each Vi, the run attached to v is referred to as first run
of that leg, and will be denoted as ρi. The subsequent runs in Vi are numbered
accordingly. We will use C to denote the minimum cardinality consistent subset
for the spider graph G. We will also use C(u) to denote a minimum size consistent
subset of G among all possible consistent subsets that contain u.

Observation 5. C must contain (i) at least one member of the set
(∪k

i=1ρi)
⋃{v}, and (ii) at least one member from each run, excepting its first

run, in every leg of the spider.

In order to compute the minimum consistent subset, we need to consider
the following three situations depending on the color of the first run ρi of each
leg Vi in the spider: (i) ρi, i = 1, 2, . . . , k are of same color, but it is different
from that of v, (ii) ρi, i = 1, 2, . . . , k are of same color as that of v, and (iii) ρi,
i = 1, 2, . . . , k are of different colors.

If the input instance satisfies case (i), then v must be included in C. We
compute a minimum consistent subset C′ as C′ = (∪k

i=1Ci)
⋃{v}, where Ci is the

minimum consistent subset of the path (leg) Vi ∪ {v} assuming that v is chosen
in Ci. This can be computed as in Sect. 2 with t = v. We set χ =

∑k
i=1 |Ci| + 1.

Now, we will consider case (ii), where v and ρi, i = 1, 2, . . . , k are of same
color. We initialize C and χ as in the earlier case, i.e., C = (∪k

i=1Ci)
⋃{v}. Next,

we test whether the size of the minimum consistent subset can be improved if v
is not chosen in C.

Let u ∈ ∪k
j=1ρj , and U be the path segment from v to u. We use (i) Ci(u) to

denote the minimum sized consistent subset of Vi ∪U where u is included, and it
is the node in Ci(u) closest to v, and (ii) Ĉi(u) is the minimum sized consistent
subset of the path (Vi \ U) ∪ {u} that includes u (see Fig. 5).

478 S. Dey et al.

Fig. 5. Ci(u): optimum solution for Vi∪U , and Ĉj(u): optimum solution for Vj \U ∪{u}:

Lemma 3. If v �∈ C then there exists at least one node u ∈ ∪k
i=1ρi in C. If the

node u ∈ ρj belongs to C, and is closest to v with respect to hop-distance, then
C = Ĉj(u)

⋃
(∪i=1,...,k,i �=jCi(u)).

Ci(u) is also computed using the algorithm of Sect. 2 for the graph G con-
structed for the path Vi ∪ U . Note that, Ci(u) may contain another node
w ∈ ρi (in addition to u). But, as u is closest to v among the nodes in
Ci(u), w must satisfy hop-distance(v, u) ≤ hop-distance(w, u). Thus, while con-
structing the overlay graph, we add the edges (w, u) for w ∈ ρi satisfying
hop-distance(v, u) ≤ hop-distance(w, u). If there exists any edge (w, u) with
color(w) �= color(u) (from the run of Vi adjacent to ρi to the node u), we must
have hop-distance(v, u) ≤ hop-distance(w, u) (for the consistency of node v in
Ci(u)). Needless to say no edge (w, u) will be present in the graph for w ∈ U .
Now, the shortest path in this overlay graph will produce a minimum size con-
sistent subset Ci(u) for Vi ∪ U .

If case (iii) appears, one needs to consider the gates around the node v.
Let us name the run adjacent to the node v along Vi (resp. Vj) as R ≡ ρi of
color red (resp B ≡ ρj of color blue). If two nodes p ∈ R and q ∈ B in C
with hop-distance(p, v) = hop-distance(q, v), then all the nodes in V \{Vi ∪ Vj}
are covered with respect to their consistency. We need to add the minimum
consistent subsets Ci(p) for Vi that includes p, and Cj(q) for Vj that includes
q. The size of the consistent subset χ is updated if the existing χ > |Ci(p)| +
|Cj(q)|. Note that, the hop-distance of u and w from v may be anything in
{1, 2, . . . ,min(|R|, |B|)}. A single execution of the algorithm for the path (Sect. 2)
returns the size of all the consistent subsets of Vi (resp. Vj) with every node uα,
α ∈ {1, . . . , |R|} (resp. wβ , β ∈ {1, . . . , |B|}) as its element that is closest to
v. We run the algorithm of Sect. 2 for every leg Vi of the spider, and the total
time needed is O(|V |). Now, we consider each pair of legs, say Vi and Vj whose
runs R = ρi and B = ρj adjacent to v are of different colors, say red and blue.
Assume that color(v) = red. For each α ∈ {1, 2, . . . ,min(|R|, |B|)}, compute
χij

α = min(C(v
i
α−1), C(v

i
α), C(v

j
α)), and set Cij = minmin(|R|,|B|)

α=1 χij
α . If color(v) =

blue then similar steps are needed to compute Cij . Finally, report the optimum

solution C satisfying |C| = min{|Cij |
∣
∣
∣
∣for all i, j such that color(ρi) �= color(ρj)}.

The entire execution needs time O(n + (maxk
i=1 ρi))2 = O(n2).

Theorem 3. The proposed algorithm correctly computes C of a spider graph G
in O(n2) time, where n is the number of nodes in the graph G.

Minimum Consistent Subset of Simple Graph Classes 479

5 Bichromatic Comb Graph

A comb graph G = (V,E) consists of a path S of m nodes, called skeleton,
and each node pi ∈ S is attached with a path D(pi) (called leg) of size ni

(≥ 1) that includes pi also. Thus, |D(pi) ∩ S| = 1. Here, V = ∪m
i=1D(pi) with

|V | =
∑m

i=1 ni = n. The edges in E are defined by the edges in the path S
and the dangling path D(pi) at each skeleton vertex pi, i = 1, . . . ,m. As in
other problems, we assume that the nodes in G are bicolored. The objective is
to choose a minimum consistent subset C ⊆ V for the graph G.

We will use the following notations to describe our algorithm:

– A run in the skeleton is a maximal set of consecutive nodes having the same
color. Assume that S = S1∪. . .∪Sk, where Sj is the j-th run; k is the number
of runs in S.

– For a node pi ∈ S, Ψ(pi) denotes the run in D(pi) attached to the node pi.
– As in Sect. 3, here also we define a block for a connected set of nodes of the

same color. For an element pi ∈ Sj , B(pi) is the block of nodes ∪q∈Sj
Ψ(q),

each of color(pi). Thus B(pi) is same for each pi ∈ Sj .
– L(pi) ⊂ S is the subset of nodes in S that are to the left of pi ∈ S. Similarly,

R(pi) ⊂ S is the subset of nodes in S that are to the right of pi ∈ S.

We will use the idea of Sect. 2 to formulate the problem as the shortest s-t
path problem of an overlay graph H = (U,F) whose nodes U = ∪m+1

i=0 Ψ(pi),
where ∪m

i=1Ψ(pi) is the union of the run of all the legs attached to the skeleton,
Ψ(p0) = s, and Ψ(pm+1) = t. An edge (q, r) ∈ F , q ∈ Ψ(p�), r ∈ Ψ(p�′) if 	 �= 	′,
i.e., q, r are not in the same leg. The cost of the edge w(q, r) is computed as
follows. For any two nodes p� and p�′ , we have the following two scenarios:

– If B(p�) = B(p�′), i.e., p� and p�′ belong to the same block. We identify a pair
of consecutive vertices θ, θ′ ∈ S such that θ (resp. θ′) is nearer to p� (resp.
p�′).

– If p� and p�′ belong to two adjacent runs, and there exists a pair of consecutive
vertices θ, θ′ ∈ S with color(θ) �= color(θ′) such that θ (resp. θ′) is nearer to
p� (resp. p�′)

Now, w(q, r) is the sum of the sizes of the consistent subsets of (i) D(pα) for all
nodes pα on the skeleton from p� to θ with q as the only node in the last run of
the path D(pα)⊕{pα, . . . , q}, and (ii) D(pβ) for all nodes pβ on the skeleton from
p�′ to θ′ with r as the only node in the last run of the path D(pβ) ⊕ {pβ , . . . , r},
where ⊕ is the concatenation operator.

Before describing the algorithm, we first state the following preprocessing
phase.

Preprocessing: For each node q ∈ ∪m
i=1Ψ(pi), we create an array σq of size m

as stated below. Let pi and pj belong to the same run, say Sα, of the skeleton,
and q ∈ Ψ(pj). The i-th node of σq contains the size of the constrained minimum

480 S. Dey et al.

consistent subset of D(pi), denoted by C(D(pi), q), with the constraint that only
q (∈ B(pi)) from the last run is in that consistent subset (see Fig. 7(b)).

Step 1: Generation of C(D(pi), q) for all the nodes q ∈ ∪m
i=1Ψ(pi).

– Let pi ∈ Sα. Compute μ = maxq∈B(pi) hop-distance(pi, q), and let X be a
chain of μ nodes of color(pi). Create a path Π = D(pi) ⊕ X. The first run of
Π starts from the leaf node of D(pi) and its last run is Ψ(pi) ⊕ X.

– Create the overlay graph H for the path Π as in Sect. 2; its s node is connected
to all the members in the first run of Π, and t node is connected to all the
nodes in the last run of Π. Each node q ∈ Π is attached with a weight field
w(q), initialized with ∞.

– We execute the algorithm of Sect. 2 on the path Π. After execution of the
algorithm, it will contain the size of the minimum consistent subset of D(pi)
that contains the node q of the last run.

– Note that, as in Sect. 2, here also in the minimum consistent subset of Π, the
members present from both the first run and the last run are exactly one.
Thus, for each node q ∈ Π, if the weight w(q) = ∞ then it implies that there
does not exist any consistent subset of D(pi) with only the node q in the last
run of Π.

Step 2: Assign the value of σq(i) (= C(D(pi), q)) for each node q ∈
∪pj∈B(pi)Ψ(pj) with the w value of the θ-th elements of Π where θ = |Ψ(pi)| +
hop-distance(q, pi).

Algorithm: As in Sect. 3, here also we define three types of gates. Each gate
is a tuple (a, b, c) of nodes in V , where b ∈ S (colored black in Fig. 6), may be
of any color; nodes a and c are of opposite colors (say red and blue). Unlike the
case of caterpillar, here a, c may not always be adjacent to b. However, a and c
are equidistant from b and all the nodes on the path from b to a (resp. b to c),
excluding b, are of same color.

Fig. 6. Gates in comb graph. Fig. 7. Data structure σq: (a) σq(i) for j �= i, (b) σq(i)
for j = i

Minimum Consistent Subset of Simple Graph Classes 481

left-gate Lq,pi,r: It is a tuple (q, pi, r), where pi ∈ S, r ∈ D(pi), q ∈ D(pj),
pj ∈ L(pi) such that hop-distance(q, pi) = hop-distance(pi, r), and all the
nodes on the path from q to pi−1 are of color(q), and all the nodes on the
path from r to D(pi)\{pi} are of color(r) (see Fig. 7(a (i)). Here pi is referred
to be the base node for this left-gate. If {q, r} of this left-gate is included in
C, then all the nodes in R(pi) along with their dangling legs are covered.

right-gate Rq,pi,r: It is a tuple (q, pi, r), where pi ∈ S is the base node, r ∈
D(pi), q ∈ D(pj) where pj ∈ R(pi), hop-distance(q, pi) = hop-distance(pi, r),
and all the nodes on the path from q to pi−1 are of color(q) (see Fig. 7(a
(ii)). Here pi is referred to be the base node for this right-gate. If {q, r} of
this right-gate is included in C, then all the nodes in L(pi) along with their
dangling legs are covered.

path-gate Pq,pi,r: It is a tuple (q, pi, r), where pi ∈ S is the base node, q ∈ D(pj),
r ∈ D(pj′); pj , pj′ ∈ S are respectively in the left and right sides of pi (Fig. 7(a
(iii)). Inclusion of this gate in C implies inclusion of the following nodes in C.

{q, r}
⋃

(
⋃

pθ∈L(pj)

C(D(pθ), q))
⋃

(

i−1⋃

θ=j

C(D(pθ), q))
⋃

(

j′
⋃

θ=i+1

C(D(pθ), r))
⋃

(
⋃

pθ∈R(p
j′)

C(D(pθ), r))

The elements in D(pi) are already covered for the choice of q, r in C.

Arguing as in Sect. 3, here also if left-gates (resp. right-gates) are present
in the problem instance, then the base node of the left-most (resp. right-most)
left-gates (resp. right gates) needs to be considered. However, in both the cases,
the q and r node need to be appropriately chosen to minimize the size of C.

In a sequential scan from left to right, we can identify the base node p� of
the left-most left-gate, and the base node pr of the right-most right-gate. If left
gate (resp. right gate) is not present, then we set 	 = −∞ (resp. r = ∞). As in
Sect. 3, here also, we need to consider the four situations, namely NG, OLG,
ORG and BG.

5.1 Handling OLG and ORG Case

If Lq,pi,r is the only gate present in V then we include {q, r} in C. Thus, the nodes
in R(pi) are covered, and we have C = {q, r}⋃ C(D(r), r)

⋃
pθ∈L(pi)

(D(pθ), q).
Note that, if q ∈ Ψ(pj) and pi, pj ∈ Sα then for all θ ∈ {i−1, . . . , j}, C(D(pθ), q)
is already computed in the preprocessing step, and its size is available in σq(θ).
Thus, we need to compute only C(L(pj), q), and

C = {q, r}
⋃

C(D(pr), r)
j⋃

θ=i−1

C(D(pθ), q))
⋃

C(L(pj), q),

It needs to be mentioned that L(pj) (the portion of S to the left of pj) does not
contain any gate, and is to be processed as the NG case.

The ORG case is similarly handled for a right gate Rq,pi,r. Here,

482 S. Dey et al.

C = {q, r}
⋃

C(D(pr), r)
j⋃

θ=i+1

C(D(pθ), q)
⋃

C(R(pj), q),

where (i) the size of C(D(pθ), q)) are available in σq(θ) for θ ∈ {i+ 1, . . . , j} and
(ii) R(pj) is to be processed as an NG case to compute C(R(pj), q).

5.2 Handling BG Case

– if 	 ≤ r, then we need to compute (i) the size of C considering only the left-
most left-gate using the method for OLG case, and also (ii) the size of C
considering only the right-most right-gate as in ORG case. The minimum of
them is reported as the optimum C.

– if 	 > r, then the R(p�) and the L(pr) part are already covered. We need to
compute the consistent subset of the portion L(p�)

⋂
R(pr) as the NG case.

5.3 Handling NG Case

Now, we will explain the processing of the portion of S as the NG instance.
From now onwards, we will use S for this portion of the given instance of the
problem. We create a multi-partite overlay graph H = (U,F) with the nodes
U = U0 ∪ U1 ∪ U2 ∪ . . . ∪ Um ∪ Um+1 where Ui corresponds to pi ∈ S, and
its nodes correspond to the elements of Ψ(pi), i = 1, 2, . . . ,m; U0 = {s} and
Um+1 = {t}. Let us remind that, if the last node of the minimum consistent
subset (C(D(pi), q)) of the leg D(pi) is q ∈ Ψ(pj) (pi, pj belongs to the same run
of S) then |C(D(pi), q)| is available in σq(i).

Needless to say, there is no edge between any pair of nodes in Ui, i = 1, . . . , m.
For a pair of sets U� and U�′ , we add an edge between every pair of nodes (q, r),
where q ∈ U� and r ∈ U�′ . The edge weights are computed as follows:

Type-0 edge: The node s ∈ U0 is connected with every node of U1 ∪ . . . Ur1 ,
where p1, . . . , pr1 ∈ S1 (where r1 is the length of S1, the first run of S). If
q ∈ U�, where 	 ≤ r1, then the weight of the directed edge (s, q) is ω(s, q) =
∑�−1

i=1 σq(i) + 1
2σq().

Type-1 edge: For a pair of nodes (q, r) where q ∈ U� and r ∈ U�′ and the
corresponding elements p� ∈ Sα and p�′ ∈ Sα+1 then the cost ω(q, r) of the
type-1 edge (q, r) is computed as follows (see Fig. 8(a)):

– Let pθ and pθ+1 be two consecutive elements in S that belong to Sα and
Sα+1 respectively. If the consistency condition for pθ (θ − 	 ≤ 	′ − θ) and
for pθ+1 ((θ + 1) − 	 ≤ 	′ − (θ + 1)) are satisfied then we set
ω(q, r) = 1

2σq() +
∑α

j=�+1 σq(j) +
∑�′−1

j=α+1 σr(j) + 1
2σr(′);

– otherwise we set ω(q, r) = ∞.
Type-2 edge: For a pair of nodes (q, r) where q ∈ U� and r ∈ U�′ and both the

corresponding elements p�, p�′ ∈ Sα then the cost ω(q, r) of the type-2 edge
(q, r) is computed as follows (see Fig. 8(b)):

Minimum Consistent Subset of Simple Graph Classes 483

– compute λ = �hop-distance(q,r)
2 �.

– If λ > max(hop-distance(q, p�),hop-distance(r, p�′)) then we can get pθ ∈
S such that hop-distance(q, pθ) = λ. In such a case, for all elements
in Ψ(p�), . . . Ψ(pθ) the nearest element will be q, and for all elements
Ψ(pθ+1), . . . Ψ(p�′) the nearest element will be r, and we set
ω(q, r) = 1

2σq() +
∑λ

j=�+1 σq(j) +
∑�′−1

j=λ+1 σr(j) + 1
2σr(′);

– otherwise we set ω(q, r) = ∞.
Type-0′ edge: Uβ ∪. . .∪Um is connected with t ∈ Um+1, where pβ , . . . , pm ∈ Sk

(last run of S). If q ∈ U�, where β ≤ 	 ≤ m, then the weight of the directed
edge (q, t) is ω(q, t) = 1

2σr() +
∑m

i=�+1 σq(i).

Fig. 8. (a) Type 1 edge. (b) Type 2 edge.

Now, a shortest path from s to t in the overlay graph H will give the size of
the minimum consistent subset. The following two notes are important for the
correctness of the algorithm:

Note-1: We need to specifically mention that the weight of an edge is equal
to the sum of the size of the minimum consistent subset of the legs whose
corresponding elements in S are covered by that edge. Thus, for a valid edge
(q, r) (i.e., λ > max(hop-distance(q, p�),hop-distance(r, p�′))), if any one of
σq(j) in the first sum or any one of σr(j) in the second sum is ∞, then ω(q, r)
is set to ∞.

Note-2: In order to avoid duplicate counting, we have added 1/2 of the cost of
each (one or two) terminal leg covered by an edge to the weight of that edge.

Theorem 4. The aforesaid algorithm correctly computes the minimum consis-
tent subset of a comb graph in O(m(m + n)) time, where m = |S| (the size of
the skeleton) and n = |V | (the total number of nodes in the input graph G).

References

1. Banerjee, S., Bhore, S., Chitnis, R.: Algorithms and hardness results for nearest
neighbor problems in bicolored point sets. In: Bender, M.A., Farach-Colton, M.,
Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 80–93. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-77404-6 7

https://doi.org/10.1007/978-3-319-77404-6_7

484 S. Dey et al.

2. Biniaz, A., et al.: On the minimum consistent subset problem. In: Friggstad, Z.,
Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 155–167.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 12

3. Gao, B.J., Ester, M., Cai, J.-Y., Schulte, O., Xiong, H.: The minimum consistent
subset cover problem and its applications in data mining. In: Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2007, pp. 310–319 (2007)

4. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory
14(3), 515–516 (1968)

5. Khodamoradi, K., Krishnamurti, R., Roy, B.: Consistent subset problem with two
labels. In: Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp.
131–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 11

6. Wilfong, G.: Nearest neighbor problems. In: Proceedings of the Seventh Annual
Symposium on Computational Geometry, SCG 1991, pp. 224–233 (1991)

https://doi.org/10.1007/978-3-030-24766-9_12
https://doi.org/10.1007/978-3-319-74180-2_11

Computational Complexity

Balanced Connected Graph Partition

Satyabrata Jana1(B), Supantha Pandit2, and Sasanka Roy1

1 Indian Statistical Institute, Kolkata, India
satyamtma@gmail.com, sasanka.ro@gmail.com

2 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India
pantha.pandit@gmail.com

Abstract. We study a variation of the graph partition problem on col-
ored graphs called the k-Balanced Connected Graph Partition (k-BCGP)
problem. We are given a connected non-unicolor graph G where the ver-
tices in G have colored either red or blue and a positive integer k. The
k-BCGP problem seeks a partition of G into k non-empty connected sub-
graphs such that each subgraph is as balanced (contains the same number
of red and blue vertices) as possible i.e., minimizing the maximum unbal-
ancedness across all k connected subgraphs where the unbalancedness of
a connected subgraph of G is defined as the absolute difference between
the number of red and blue vertices in that subgraph.

We target some special classes of graphs namely, paths, trees, bipartite
graphs, planar bipartite graphs, and chordal graphs with different values
of k. For each of these classes either we prove NP-hardness or design
a polynomial-time algorithm. More specifically, on the positive side, we
design a polynomial-time algorithm for the k-BCGP problem on paths.
For trees, we present a polynomial-time algorithm only for any fixed k.
On the negative side, we prove that the k-BCGP problem is NP-hard for
the bipartite graphs when the value of k is 2. For planar bipartite graphs,
we prove the NP-hardness of the k-BCGP problem where k is a part of
the input. We further prove that the k-BCGP problem is also NP-hard
for the chordal graphs when k = 2. We also show that these NP-hard
problems do not admit any constant factor approximation algorithms.

Keywords: NP-hardness · Balanced partition · Trees · Paths ·
Bipartite graphs · Planar graphs · Chordal graphs

1 Introduction

Partition graphs into non-empty subgraphs and optimize certain parameters on
those subgraphs are well studied in the literature [2,6–8,12,14]. We study a new
variation, the k-BCGP problem, of the graph partition problem on a connected
non-unicolor graph G where the vertices of G have colored either red or blue
(we call it as a red-blue graph). By saying non-unicolor, we mean all vertices
in G should not have the same color. We say that a connected red-blue graph

c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 487–499, 2021.
https://doi.org/10.1007/978-3-030-67899-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_38&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_38

488 S. Jana et al.

is balanced if it contains the same number of red and blue vertices. Otherwise,
we say it is unbalanced . For a graph, we define the unbalancedness, in short ubn
as the absolute difference between the number of red and blue vertices in that
graph. Note that for a balanced graph, ubn is zero.

We define a partition of a graph G(V,E) with vertex set V and edge set E as
follows: For a graph G(V,E), a k-partition of G is a set of k subgraphs Gi of G

such that each Gi is a non-empty connected subgraph satisfying
⋃k

i=1 V (Gi) = V
and V (Gi)∩V (Gj) = ∅ for all i, j (�= i) where 1 ≤ i, j ≤ k. Further, if we assume
that G is a red-blue graph, a subgraph of G is called balanced connected subgraph
if it is connected and contains the same number of red and blue vertices. We
define the unbalancedness (UBN) of a partition {G1, G2, . . . , Gk} on G as the
maximum ubn over all the k parts in that partition i.e., max{ubn(Gi) : 1 ≤ i ≤
k}, where ubn(Gi) is the absolute difference between the number of red and
blue vertices in Gi. k-BCGP problem seeks a partition that is having minimum
unbalancedness. We use some standard notations throughout the paper. For any
graph G, V (G) denotes the set of all vertices in G. Also for U ⊆ V (G), we denote
G[U] and N [U] to define the subgraph induced by U in G and neighbors of U in
G including U itself, respectively. We now formally define the k-BCGP problem
as follows.

k-Balanced Connected Graph partition (k-BCGP): Given a con-
nected non-unicolor graph G, where the vertices of G are colored either
red or blue, and a positive integer k, the objective is to partition G into
k non-empty connected subgraphs G1, G2, . . . , Gk such that it minimizes
max1�i�k ubn(Gi), where ubn(Gi) is the absolute difference between the
number of red and blue vertices in Gi. We call this optimal value as UBN of
k-BCGP on G.

The k-BCGP problem is a variation of the graph partition problem. Chen
et al. [6] mention that the graph partitioning problem and its closely related
problems have applications in various fields including image processing, cluster-
ing, computational topology, information, library processing, etc. Some of these
applications may be well-suited for the k-BCGP problem. More specifically,
partitioning of a connected graph into a certain number of balanced connected
subgraphs can be used for modeling several problems in databases, operating
systems and cluster analysis [17].

We can motivate the k-BCGP problem with an application as follows. Let
there are n districts (assuming together all form a connected region) and each
district is governing by a political party from {X,Y }. Now we want to partition
these districts into k parts such that each part is connected and can be as
balanced (contains the same number of districts run by X and Y) as possible.
This implies that each party has the same dominant power in each connected
part.

Balanced Connected Graph Partition 489

1.1 Previous Work

Graph partitioning is a well-studied problem in the literature. Many variants of
this problem has been studied in the last four decades. Chen et al. [6] introduced
the following problem called the cardinality k-BGP : given a connected graph
G = (V,E), cardinality k-BGP problem seeks a partition of V into k non-empty
subsets V1, V2, . . . , Vk such that G[Vi] is connected for every i = 1, 2, . . . , k, and
max1≤i≤k|Vi| is minimized. This problem is NP-hard on bipartite graphs,for
any fixed k ≥ 2 [8]. k-BCGP problem is closely related to the cardinality k-
BGP problem. In our problem definition, we restrict our input to be a non-
unicolor graph. The reason behind this restriction is that k-BCGP problem on
a unicolor graph is exactly the same as the cardinality k-BGP problem which is
a well-studied problem. Chen et al. [6] also studied the weighted version of this
problem and provided approximation algorithms for various values of k.

Chleb́ıková [7] showed that for any ε > 0, it is NP-hard (even for bipar-
tite graphs) to approximate the maximum balance (min(|V1|, |V2|), V1 ∪ V2 =
V, V1 ∩ V2 = ∅) of the partition for G = (V,E) into two connected subgraphs
with an absolute error guarantee of |V |1−ε. Chleb́ıková [7] also give a PTAS
within ratio 4/3 for vertex-weighted 2-BGP problem. Chataigneret al. [17] proved
that for any fixed k ≥ 2, cardinality max-min k-BGP problem is NP-hard on
k-connected graphs unless P = NP. Also, this problem cannot be approximated
within 6/5 unless P = NP, when k is part of the input. In the literature, the
weighted version of the k-BGP problem is also studied as the minimum spanning
k-forestproblem. This problem on trees is well studied in the literature [3,14],
which admits a linear time exact algorithm. Dyer et al. [8] introduced another
type of partition problem, called the π1V k(π2): that checkswhether the vertices
of a graph with property the π1 can be partitionedinto equal sized subsets (having
size k) so that each subset induces a graph satisfying property the π2. Previously
it was known that when π1 has no restriction then for k ≥ 3, V k(connected)
is NP-complete [10]. Dyer et al. [8] showed that planar V k(connected) is NP-
complete. He also proved that each of the following problems is NP-complete
for k ≥ 3: planar bipartite V k (connected), planar bipartite V k(tree), planar
bipartite V k(path). Madkour et al. [12] introduced the edge-weightedvariant of
the k-BGP problem. Here the input is an edge -weighted graph and an integer
k, and the goal is to partition the vertex set into k sets such that each subset
induces a connected graph that minimizes the weight of the heaviest subgraph,
where the weight of each subgraph isthe weight of a minimum spanning tree of
the graph induced by the vertices in that subgraph. Madkour et al. [12] proved
that this problem is NP-hardon general graphs for any fixed k ≥ 2, and pro-
posed two k-approximation algorithms. Later Vaishali et al. [16] showed that
for k = 2 this problem remains NP-hard on graphs having all edges of equal
weight, and presented a lineartime algorithm for the problem when the input
graph is a tree. There is another variant of the partitioning problem in literature
[11] called as k-balanced partitioning problem. Here the goal is to partition the
vertices of a graph into k parts of equal size such that each part induce a con-
nected graph that it minimizes the total weight of the edges connecting different

490 S. Jana et al.

subgraphs. The k-balanced partitioning problem can be considered in the exact
form (all parts need to be of equal size) and in a relaxed (or bi-criteria) variant,
where their sizes are at most c ∗ n/k. The bound of O(

√
log n log k) presented

by Krauthgamer et al. [11] is for a relaxed variant. For an exact variant, the
special case k = 2 is the famous minimum bisectionproblem, which is known to
be NP-hard [15]. Andreev and Raecke [1] also worked on a relaxed part and pre-
sented a bicriteria polynomial time approximation algorithm with an O(log2 n)-
approximation algorithm. Matić et al. [13] considered another problem, called
the maximally balanced connected partition (MBCP) problem in graphs. Given
a vertex-weighted graph with vertex set V , the goal of MBCP is to partition
V into two nonempty sets V1 and V2, such that subgraphs of G induced by V1

and V2 are connected and that minimize the difference between the sums of the
weights of vertices from V1 and V2. MBCP is proved to be NP hard [13]. Matić
et al. also describes two heuristic algorithms: greedy algorithm and genetic algo-
rithm, for the same problem. Recently, Bhore et al. [4,5] studied a problem of
finding a largest size (cardinality of the vertex set) balanced connected subgraph
in a simple connected bicolored graph. They showed polynomial-time algorithms
and NP-hardness results for various classes of graphs.

1.2 Our Contributions

➥ We design polynomial-time algorithms for the k-BCGP problem on paths
(O(kn2) time) and trees (O(nk) time) with n vertices (Sect. 2).

➥ We prove that 2-BCGP problem is NP-hard in bipartite graphs (Sect. 3).
➥ We prove that the k-BCGP problem is NP-hard for the planar bipartite

graphs where k is not fixed (Sect. 4).
➥ We prove that 2-BCGP problem is NP-hard in chordal graphs (Sect. 5).

In this paper, we prove that in each of the NP-hard problems (items 2–4 above),
it is NP-hard to find a partition that has a solution of cost zero i.e., UBN = 0.
This implies that, these NP-hard problems do not admit any constant factor
approximation algorithms.

2 k-BCGP Problem on Trees and Paths

We give polynomial-time algorithm for the k-BCGP problem on trees. We fur-
ther provide an improved algorithm for the k-BCGP problem on paths.

2.1 Trees

Let T be a tree that contains n vertices. Observe that removing k − 1 edges
(arbitrarily choosen) from T produces k many connected subgraphs. So we try
removing each possible k−1 edges from the n−1 edges of T . For each choice, we
calculate the maximum unbalancedness over all connected subgraphs. Finally,
we return the subgraphs for which the maximum unbalancedness is minimum.

Balanced Connected Graph Partition 491

We now calculate the time taken by the algorithm. There are O(nk−1) ways of
choosing k − 1 edges from n − 1 edges of T . Computing the unbalancedness in
a connected subgraph of size m takes O(m) time. So for a partition, the time
needed for calculating maximum unbalancedness is O(n). Hence, the total time
requirement is O(nk).

2.2 Paths

Here we present a dynamic programming based algorithm that solve the k-
BCGP problem for paths in O(kn2) time. Let P1,n be a path with n vertices
v1, v2, . . . , vn, where E(P1,n) = {(vi, vi+1) : 1 ≤ i < n}. For a pair of integers i, j
where 1 ≤ i ≤ j, we denote Pi,j to define the subgraph of P1,n induced by the
vertices vi, vi+1, . . . , vj . For each pair (i, t), where 1 ≤ i ≤ n and t ≤ k, we define
D[i, t] to be the UBN of t-BCGP problem on P1,i. Our main goal is to compute
D[n, k]. We now describe how to compute D[i, t]. For the base cases D[1, t] = 1
when t = 1 and D[1, t] = 0 when t > 1. For a pair (i, t), to compute D[i, t], we
make use of (i) D[i′, t − 1] and (ii) ubn(Pi′+1,i) for all i′ where 1 ≤ i′ < i. Then
we use the following recurrence for computing D[i, t].

D[i, t] = min
∀i′,1≤i′<i

{max(D[i′, t − 1], ubn(Pi′+1,i))}

Correctness: We have to show that D[n, t] produce minimum unbalancedness
over all k partitions. i.e., UBN of k-BCGP on P1,n. Let us assume that in an
optimal solution, say S of k-BCGP problem on P1,n, H be the subgraph in
S that contains the vertex vn and j be the smallest index such that vj ∈ H.
Clearly, UBN of (k − 1)-BCGP problem on P1,j−1 ≤ UBN of k-BCGP on P1,n,
and ubn(Pj,n) ≤ UBN of k-BCGP on P1,n. So, we can correctly compute the
value of D[n, t], by comparing the value of D[i − 1, k − 1] and ubn(Pi,n) for all i
where 1 ≤ i < n.

Time Complexity: We need to fill two tables. Table 1 is for computing ubn(Pi,j)
for all i, j where 1 ≤ i ≤ j ≤ n. Table 2 is for computing D[i, t], where 1 ≤ i ≤ n
and t ≤ k. First we fill all the entries in table 1. The total number of entries
in this table is O(n2). We can use the following process to compute ubn(Pi,j)
efficiently. Let ri,j and bi,j denote the number of red and blue vertices in Pi,j .
Clearly ubn(Pi,j) = |ri,j − bi,j |. Now ri,j = r1,j − r1,i−1 and bi,j = b1,j − b1,i−1.
Initially computing r1,i and b1,i for all i, 1 ≤ i ≤ n takes linear time. As for each
pair (i, j), computing ubn(Pi,j) takes constant time, hence we can fill all the
entries in table 1 in O(n2) time. Next, the number of entries in table 2 is nk. By
the recurrence for computing D[i, t], to fill one entry it needs O(n) comparisons.
Hence we can fill all the entries in table 2 in O(kn2) time. Hence we conclude
with the following theorem.

Theorem 1. The k-BCGP problem on a path with n vertices can be solved
inO(kn2) time.

492 S. Jana et al.

3 2-BCGP Problem on Bipartite Graphs

We show that the 2-BCGP problem is NP-hard for the bipartite graphs. We
give a reduction from the Dominating Set (DOM) problem, which is known to
be NP-complete on general graphs [10]. Given a graph G with vertex set V , edge
set E, and an integer k. The dominating set problem asks whether there exists
a set U ⊆ V such that |U | ≤ k and N [U] = V , where N [U] denotes neighbors of
U in G including U itself.

During the reduction, we first generate a graph H = (R ∪ B,E′) from an
instance X(G, k) of the dominating set problem. Next, we show that H is bipar-
tite.

Reduction: Let G = (V,E) be graph with n vertices V = {v1, v2, . . . , vn}. We
construct a connected bicolored graph H = (R ∪ B,E′), where R and B are the
sets of red and blue vertices, respectively in H, with the following way:

– For each vertex vi, 1 ≤ i ≤ n, we add a blue vertex vi ∈ B, a red vertex
v′

i ∈ R, and add an edge (vi, v
′
i) ∈ E. For each edge (vi, vj) ∈ E, we add two

edges (vi, v
′
j), (v

′
i, vj) in E′.

– Add a path of k red vertices starting at r1 and ending at rk. Then we add n
edges (r1, vi) in E′ for all i, 1 ≤ i ≤ n.

– Add a path of (n − k) blue vertices starting at u1 and ending at un−k. Then
we add n edges (u1, vi) in E′ for all i, 1 ≤ i ≤ n.

– Add a path of (n2 − kn + 2k) blue vertices starting at b1 and ending at
b(n2−kn+2k). Then we add the edge (rk, b1) in E′.

– For each red vertex v′
i ∈ R, where 1 ≤ i ≤ n, take a path of (n − k − 1)

red vertices starting at ri
1 and ending at ri

n−k−1. Then we add the edges
{(ri

1, v
′
i) : 1 ≤ i ≤ n} into E′.

Fig. 1. Construction of the instance H = (R∪B, E′) of the 2-BCGP problem, where
R and B are the sets of red and blue vertices, respectively in H.

Balanced Connected Graph Partition 493

– For each blue vertex vi ∈ B, where 1 ≤ i ≤ n, we add two red vertices vi1, vi2

in R and add two edges (vi1, vi2) and (vi, vi1) into E′.

This completes the construction. See Fig. 1 for an illustration of this construction.
The number of vertices and edges are 2(n2+2n−nk+k) and (2|E|+2n2−2kn+
5n + 2k − 2). Clearly, the construction of H can be done in polynomial time.
Also, it is easy to verify that the graph H is balanced with (n2 + 2n − nk + k)
vertices of each color. Now we prove the following lemmas.

Lemma 1. If H ′ is a balanced connected subgraph of H such that u1 ∈ V (H ′)
and (V \V (H ′)) induces a non-empty balanced connected subgraph of H then
r1 /∈ V (H ′).

Proof. We prove it by contradiction. Let us assume that H ′ is a balanced con-
nected subgraph of H such that H ′ contains both u1 and r1 where (V \V (H ′))
induces a non-empty balanced connected subgraph of H. Also we assume
that |V (H ′) ∩ {v′

1, . . . , v
′
n}| = t1 and |V (H ′) ∩ {v1, . . . , vn}| = t2. Clearly,

t2 �= 0 (because of connectivity between u1 and r1 in H ′). As u1 ∈ V (H ′)
and G[V \V (H ′)] is connected so V (H ′) contains all the blue vertices in
{u1, . . . , un−k}. Also if vi ∈ V (H ′) then V (H ′) must contain both the red ver-
tices vi1 and vi2. Similarly, if v′

j ∈ V (H ′) then V (H ′) should include all the red
vertices {rj

1, r
j
2, . . . , r

j
n−k−1}. As r1 ∈ V (H ′) so {r1, . . . , rk, b1, . . . , bn2−kn+2k} ⊂

V (H ′).Now the number of red and blue vertices in H ′ is 2t2 + t1(n − k) + k and
t2+(n−k)+(n2−kn+2k), respectively. As H ′ is balanced, so 2t2+t1(n−k)+k =
t2 + (n − k) + n2 − kn + 2k. This implies t2 + t1(n − k) = n2 − kn + n. Now this
will be satisfied only when t2 = t1 = nholds. This implies V = V (H ′), that is a
contradiction. �

By a similar argument, we can prove the following lemma.

Lemma 2. If H ′ is a balanced connected subgraph of H such that u1 ∈ V (H ′)
and (V \V (H ′)) induces a non-empty balanced connected subgraph of H then
V (H ′) ∩ {v′

1, v
′
2, . . . , v

′
n} = ∅.

Lemma 3. G has a dominating set of size k if and only if H has a zero solution
i.e., UBN = 0 in 2-BCGP. More specifically, exactly one way we can partition
H into two balanced connected subgraphs, one of them contains 4(n−k) vertices
and the other contains 2(n2 − nk + 3k) vertices.

Proof. Assume that G has a dominating set U of size k. Let X =
{vi, vi1, vi2 : vi /∈ U} ∪ {uj : 1 ≤ j ≤ (n − k)} and Y = V (H)\X. Now
|X| = 4(n−k) and |Y | = 2(n2−nk+3k). It is easy to verify that both G[X] and
G[Y] are balanced connected. Hence, H can be partitioned into two balanced
connected subgraphs, one of cardinality 4(n − k) and other 2(n2 − nk + 3k).
Hence H has a zero solution in 2-BCGP.

On the other hand, assume that H has a zero solution in 2-BCGP, i.e.,
there exists a partition of H into two balanced connected subgraphs, say H1

and H2. Without loss of generality, assume that u1 ∈ V (H1). By Lemma 1

494 S. Jana et al.

and 2, r1 /∈ V (H1) and V (H1) ∩ {v′
1, v

′
2, . . . , v

′
n} = ∅. Also as u1 ∈ V (H1) so

{u1, u2, . . . , un−k} ⊂ V (H1). Let |V (H1) ∩ {v1, v2, . . . , vn}| = t. If vi ∈ V (H1)
then V (H1) must contain vi1 and vi2. As H1 is balanced, so 2t = t+(n−k), that
implies t = (n − k). Therefore H1 is a balanced connected subgraph of H with
size 4(n − k). Let U = {vj : vj /∈ V (H1)} with |U | = k. As H has a zero solution
in 2-BCGP, so G[V (H)\V (H1)] is balanced connected. As G[V (H)\V (H1)] is
connected so the subgraph of H induced by U ∪ {v′

i : 1 ≤ i ≤ n} is connected.
Hence the corresponding vertices of U in G are a dominating set of size k. �

It is easy to see that the graph we constructed from the DOM problem in
Fig. 1 is indeed a bipartite graph. Hence we conclude the following theorem.

Theorem 2. The2-BCGP problem is NP-hard for bipartite graphs.

4 k-BCGP Problem on Planar Bipartite Graphs

In this section, we prove that the k-BCGP problem is NP-hard for planar bipar-
tite graphs where k is not fixed.

We give a reduction from the Planar 3-Dimensional Matching (P3DM) prob-
lem, that is known to be NP-complete [9]. In a 3-Dimensional Matching (3DM)
problem, we are given three sets A, B, and C of cardinality n each and a set T of
triples from A × B × C. The objective is to decide whether there exists a subset
T ′ ⊆ T of triples such that T ′ = n and T ′ contains all the elements in A, B, and
C. We now construct a bipartite graph on the instance X(A ∪ B ∪ C, T) of the
3DM problem as follows. For each element of A ∪ B ∪ C and each triple in T we
take a vertex. There is an edge between a vertex corresponding to a triple in T
and a vertex corresponding to an element in A∪B ∪C if and only if the element
in A ∪ B ∪ C belongs to that triple in T . A P3DM problem is a 3DM problem
whose underline bipartite graph is planar.

During the reduction, we generate an instance G = (R ∪ B, E) of the m-
BCGP problem from an instance X(A∪B ∪C, T) of the P3DM problem. Next,
we show that G is a planar bipartite graph.

Reduction: Let X(A ∪ B ∪ C, T) be an instance of the P3DM problem where
A = {a1, . . . , an},B = {b1, . . . , bn}, C = {c1, . . . , cn}, and T = {t1, t2, . . . , tm}.
In each triple ti ∈ T , we denote the elements from A,B, and C as ti1, ti2, and
ti3, respectively. We construct a connected bicolored graph G = (R ∪ B, E),
where R and B are the sets of red and blue vertices, respectively in G, with the
following way:

– For each element α ∈ A ∪ B ∪ C, add a red vertex α ∈ R.
– For each ti ∈ T , add a blue vertex ti ∈ B.
– For each ti = (ti1, ti2, ti3), add three edges (ti, ti1), (ti, ti2), and (ti, ti3) to the

edge set E.
– For each vertex tj , 1 ≤ j ≤ m, add a red vertex rj and join the edge (tj , rj).
– For each vertex ai ∈ R, 1 ≤ i ≤ n, take a path of three blue vertices starting

with bi
1 and ending with bi

3. Then we join the edge (ai, b
i
1).

Balanced Connected Graph Partition 495

Fig. 2. Construction of the instance G = (R ∪B, E) of the m-BCGP problem, where
R and B are the sets of red and blue vertices, respectively in G. (Color figure online)

This completes the construction. See Fig. 2 for the complete construction.
Clearly, the numbers of vertices and edges in G are polynomial in terms of the
numbers of elements and triples in X; hence, the construction can be done in
polynomial time. We now have the following observation.

Observation 1. There exists no balanced connected subgraph H in G such that
V (H) ∩ {t1, . . . , tm} = ∅ and each connected subgraphs in G[V (G)\V (H)] is
balanced.

Lemma 4. X(A ∪ B ∪ C, T) is a yes instance of the P3DM problem if and only
if G has a zero solution i.e., UBN = 0 in the m-BCGP problem. More specifically,
exactly one way we can partition G into m balanced connected subgraphs such
that n of them contain exactly 8 vertices and the remaining (m − n) connected
subgraphs contain exactly 2 vertices.

Proof. Assume that X(A ∪ B ∪ C, T) is an yes instance in the P3DM prob-
lem, i.e., there is a T ′ ⊆ T with |T ′| = n such that T ′ contains all the ele-
ments of A,B and C. Let T ′ = {tx1 , tx2 , . . . , txn

} ⊆ {t1, . . . , tm}. Recall that
txi

= (txi1, txi2, txi3), for all i, 1 ≤ i ≤ n. Let X be the set {Gx1 , . . . , Gxn
}

of n connected subgraphs, where Gxi
is the connected subgraph induced by

the vertices {txi
, txi1(= aβ), txi2, txi3, rxi

, bβ
1 , bβ

2 , bβ
3} in G. Also let Y be the set

{Gα : tα /∈ T ′} of (m − n) connected subgraphs, where Gα is a path of two ver-
tices tα ∈ B and rα ∈ R. Now it is easy to verify that X ∪Y = G1∪G2∪ . . .∪Gm

where each Gi, 1 ≤ i ≤ m is balanced connected and
⋃m

i=1 V (Gi) = R∪B. Hence
G has a zero solution in m-BCGP.

On the other hand, assume that G has a zero solution in m-BCGP, i.e., there
exists a partition of G into m balanced connected subgraphs, say G1, . . . , Gm.
Using Observation 1 we can say that, each Gi contains exactly one vertex from
{t1, . . . , tm}. Without loss of generality assume that G1 contains b13.Clearly a1 ∈
G1. Also G1 contain exactly one vertex, say ti from {t1, . . . , tm}. Now ti ∈ G1

496 S. Jana et al.

implies that ri must be in G1. As G1 is balanced so G1 must contain two red
vertices ti2 and ti3. By this we get a triple from T that contain a1. By a similar
argument with bj

3, 2 ≤ j ≤ n, we get a triple that contain aj . As G1, . . . , Gm is
a partition of G, hence we get a set T ′ ⊆ T of n triples such that T ′ contains all
the elements of A,B and C. �

It is easy to see that the graph constructed from the P3DM problem in Fig. 2
is indeed a planar bipartite graph. Hence we conclude the following theorem.

Theorem 3. Thek-BCGP problem is NP-hard for planar bipartite graphs,
where k is not fixed.

5 2-BCGP Problem on Chordal Graphs

In this section, we prove that the 2-BCGP problem is NP-hard for chordal
graphs. We give a reduction from the Exact-Cover-by-3-Sets (EC3Set) problem,
which is known to be NP-complete [10]. In this EC3Set problem, we are given
a set U with 3k elements and a collection S of m subsets of U such that each
si ∈ S contains exactly 3 elements. The objective is to find an exact cover for U
(if one exists), i.e., a sub-collection S′ ⊆ S such that every element of U occurs
in exactly one member of S′. During the reduction, we generate an instance
G = (R ∪ B, E) of the 2-BCGP problem from an instance X(S,U) of the
EC3Set problem. Next, we show that G is a chordal graph.

Reduction: Let X(S,U) be an instance of the EC3Set problem where S =
{s1, s2, . . . , sm} and U = {u1, u2, . . . , u3k}. We construct a connected bicolored
graph G = (R ∪ B, E), where R and B are the sets of red and blue vertices,
respectively in G, with the following way:

– For each set si ∈ S, 1 ≤ i ≤ m, we add a blue vertex si ∈ B.
– For each element uj ∈ U, 1 ≤ j ≤ 3k, we add a red vertex uj ∈ R.
– For each set si = {uα, uβ , uγ} ∈ S, we add three edges (si, uα), (si, uβ), and

(si, uγ) to the edge set E.
– Add a path of k(2 + 3k + 3m) blue vertices starting at b1 and ending at

bk(2+3k+3m). Then we add m edges (b1, si) in E for all i, 1 ≤ i ≤ m.
– Add a path of (m − k) red vertices starting at r1 and ending at rm−k. Then

we add m edges (r1, si) in E for all i, 1 ≤ i ≤ m.
– For each red vertex ui where 1 ≤ i ≤ 3k, take a path of (k + m) red vertices

starting at ri
1 and ending at ri

k+m. Then we add the edges {(ri
1, ui) : 1 ≤ i ≤

3k} into E.
– We add the edges, between each pair of vertices si and sj , for all i, j(�= i)

where 1 ≤ i, j ≤ m, into E.

This completes the construction. See Fig. 3 for the complete construction.
Clearly, the numbers of vertices and edges in G are polynomial in terms of the
numbers of elements and sets in X; hence, the construction can be done in
polynomial time. We now prove the following lemma.

Balanced Connected Graph Partition 497

Fig. 3. Construction of the instance G = (R∪B, E) of the 2-BCGP problem. For the
clarity of the figure we omit the edges between each pair of vertices si and sj , for all
i, j(�= i) where 1 ≤ i, j ≤ m. (Color figure online)

Lemma 5. If H is a balanced connected subgraph of G such that r1 ∈ V (H)
and (V \V (H)) induces a non-empty balanced connected subgraph of G then b1 /∈
V (H).

Proof. We prove it by contradiction. Let us assume that H is a balanced con-
nected subgraph of G such that H contains both r1 and b1, where (V \V (H))
induces a non-empty balanced connected subgraph of G. Also we assume
that |V (H) ∩ {s1, . . . , sm}| = t1 and |V (H) ∩ {u1, . . . , u3k}| = t2. Clearly,
t1 �= 0 (because of connectivity between b1 and r1 in H). As b1 ∈ V (H) and
G[V \V (H)] is a connected subgraph of G so V (H) contains all the blue vertices
in {b1, . . . , bk(2+3k+3m)}. Also if ui ∈ V (H) then V (H) must contain all the red
vertices from {ri

j : 1 ≤ j ≤ (k + m)}. Now the number of red and blue vertices
in V (H) is (m − k) + t2(k + m + 1) and t1 + 2k + 3k(k + m), respectively. As
H is balanced, so (m − k) + t2(k + m + 1) = t1 + 2k + 3k(k + m). This implies
m + t2(k + m + 1) = 3k + t1 + 3k(k + m). Now this will be satisfied only when
t1 = m and t2 = 3k holds. This implies that V = V (H), a contradiction. �

By a similar argument, we can prove the following lemma.

Lemma 6. If H is a balanced connected subgraph of G such that r1 ∈ V (H) and
(V \V (H)) induces a non-empty balanced connected subgraph of G then V (H) ∩
{u1, u2, . . . , u3k} = ∅.

Now, we prove the following lemma.

Lemma 7. The instance X of the EC3Set problem has a solution if and only if
H has a zero solution i.e., UBN = 0 in the 2-BCGP.

498 S. Jana et al.

Proof. Assume that the EC3Set problem has a solution. Let S∗ be an optimal
solution in it. Let X = {si : si /∈ S∗}∪{rj : 1 ≤ j ≤ (m−k)} and Y = V (G)\X.
Now |X| = 2(m−k) and |Y | = 6k(1+k+m). It is easy to verify that both G[X]
and G[Y] are balanced connected. So H can be partitioned into two balanced
connected subgraphs, one of cardinality 2(m − k) and other is 6k(1 + k + m).
Hence G has a zero solution in 2-BCGP.

On the other hand, assume that G has a zero solution in 2-BCGP, i.e.,
there exists a partition of G into two balanced connected subgraphs, say G1

and G2. Without loss of generality, assume that r1 ∈ H1. By Lemma 5 and 6,
b1 /∈ V (G1) and V (G1)∩{u1, u2, . . . , u3k} = ∅. Also {r1, r2, . . . , rm−k} ⊂ V (G1).
As G1 is balanced so |V (G1) ∩ {s1, s2, . . . , sm}| = m − k. Let S∗∗ = {sj : sj /∈
V (G1)} with |S∗∗| = k. As G has a zero solution in 2-BCGP, so G[V \V (G1)]
is balanced connected. As G[V \V (G1)] is connected, the subgraph of G induced
by S∗∗ ∪ {ui : 1 ≤ i ≤ 3k} is connected. Hence, the corresponding elements of
S∗∗ in S give an exact cover for U . �

Notice that, each cycle in G must contain a pair of vertices from {si : 1 ≤
i ≤ m}. As E contains the edges between each pair of vertices si and sj , for all
i, j(�= i) where 1 ≤ i, j ≤ m, so the graph we constructed in Fig. 3 is indeed a
chordal graph. Hence we conclude the following theorem.

Theorem 4. The 2-BCGP problem is NP-hard for chordal graphs.

References

1. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

2. Apollonio, N., Becker, R., Lari, I., Ricca, F., Simeone, B.: Bicolored graph parti-
tioning, or: gerrymandering at its worst. Discrete Appl. Math. 157(17), 3601–3614
(2009)

3. Becker, R.I., Schach, S.R., Perl, Y.: A shifting algorithm for min-max tree parti-
tioning. J. ACM 29(1), 58–67 (1982)

4. Bhore, S., Chakraborty, S., Jana, S., Mitchell, J.S.B., Pandit, S., Roy, S.: The
balanced connected subgraph problem. In: Pal, S.P., Vijayakumar, A. (eds.) CAL-
DAM 2019. LNCS, vol. 11394, pp. 201–215. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-11509-8 17

5. Bhore, S., Jana, S., Pandit, S., Roy, S.: Balanced connected subgraph problem in
geometric intersection graphs. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA
2019. LNCS, vol. 11949, pp. 56–68. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36412-0 5

6. Chen, Y., Chen, Z.-Z., Lin, G., Xu, Y., Zhang, A.: Approximation algorithms for
maximally balanced connected graph partition. In: Li, Y., Cardei, M., Huang,
Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 130–141. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36412-0 11

7. Chleb́ıková, J.: Approximating the maximally balanced connected partition prob-
lem in graphs. Inf. Process. Lett. 60(5), 223–230 (1996)

8. Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into connected
subgraphs. Discret. Appl. Math. 10(2), 139–153 (1985)

https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1007/978-3-030-36412-0_11

Balanced Connected Graph Partition 499

9. Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. J. Algorithms 7(2), 174–184
(1986)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

11. Krauthgamer, R., Naor, J., Schwartz, R.: Partitioning graphs into balanced com-
ponents. In: SODA 2009, pp. 942–949. SIAM (2009)

12. Madkour, A.R., Nadolny, P., Wright, M.: Finding minimal spanning forests in a
graph. arXiv preprint arXiv:1705.00774 (2017)

13. Matić, D., Božić, M.: Maximally balanced connected partition problem in graphs:
application in education. Teach. Math. 29, 121–132 (2012)

14. Perl, Y., Schach, S.R.: Max-min tree partitioning. J. ACM 28(1), 5–15 (1981)
15. Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput.

Sci. 1, 237–267 (1976)
16. Vaishali, S., Atulya, M.S., Purohit, N.: Efficient algorithms for a graph partitioning

problem. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 29–42.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7 3

17. Wakabayashi, Y., Chataigner, F., Salgado, L.B.: Approximation and inapproxima-
bility results on balanced connected partitions of graphs. Discret. Math. Theor.
Comput. Sci. 9(1), 177–192 (2007)

http://arxiv.org/abs/1705.00774
https://doi.org/10.1007/978-3-319-78455-7_3

Hardness Results of Global Roman
Domination in Graphs

B. S. Panda(B) and Pooja Goyal

Computer Science and Application Group, Department of Mathematics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

bspanda@maths.iitd.ac.in, poojaagoyal92@gmail.com

Abstract. A Roman dominating function (RDF) of a graph G = (V, E)
is a function f : V → {0, 1, 2} such that every vertex assigned the value 0
is adjacent to a vertex assigned the value 2. A global Roman dominating
function (GRDF) of a graph G = (V, E) is a function f : V → {0, 1, 2}
such that f is a Roman dominating function of both G and its comple-
ment G. The weight of f is f(V) = Σu∈V f(u). The minimum weight of
a GRDF in a graph G is known as global Roman domination number of
G and is denoted by γgR(G). Minimum Global Roman Domination
is to find a global Roman dominating function of minimum weight and
Decide Global Roman Domination is the decision version of Mini-
mum Global Roman Domination. In this paper, we show that Decide
Global Roman Domination is NP-complete for bipartite graphs and
chordal graphs. We also show that Minimum Global Roman Domina-
tion cannot be approximated within a factor of (1

2
− ε) ln |V | for any

ε > 0 unless P = NP. On the positive side, we propose an O(ln |V |)-
approximation algorithm for Minimum Global Roman Domination
for any graph G = (V, E).

Keywords: Global Roman domination · NP-complete ·
Approximation algorithm

1 Introduction

Let G = (V,E) be a finite, simple and undirected graph with vertex set V
and edge set E. A set D ⊆ V is called a dominating set of G if every vertex
v ∈ V \D is adjacent to at least one vertex in D. The domination number of G
is the minimum cardinality among all dominating sets of G and it is denoted by
γ(G). Minimum Domination is to find a dominating set of minimum cardinality
and Decide Domination is the decision version of Minimum Domination.
Domination in graphs has been studied extensively and has several applications
(see [6,7]). A set D ⊆ V is called a global dominating set (GD-set) of G if
D is dominating set for both G and its complement G. The global domination
number of G is the minimum cardinality among all global dominating sets of G
and it is denoted by γg(G). Minimum Global Domination is to find a global
dominating set of minimum cardinality.
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 500–511, 2021.
https://doi.org/10.1007/978-3-030-67899-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67899-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-67899-9_39

Hardness Results of Global Roman Domination in Graphs 501

A Roman dominating function (RDF) of a graph G is a function f : V →
{0, 1, 2} such that any vertex u with f(u) = 0 has at least one neighbor v with
f(v) = 2. The weight of f is f(V) = Σu∈V f(u). The minimum weight of a RDF
in a graph G is known as Roman domination number of G and is denoted by
γR(G). Minimum Roman Domination is to find a Roman dominating function
of minimum weight and Decide Roman Domination is the decision version of
Minimum Roman Domination. The concept of Roman domination was defined
by Ian Stewart in an article entitled “Defend the Roman Empire!” [11]. Further,
Cockayne et al. [3] initiated the study of Roman domination. Roman domination
has been studied from algorithmic point of view in [2]. It has been proved that
Decide Roman Domination is NP-complete in bipartite graphs and chordal
graphs (see [9]).

A global Roman dominating function (GRDF) of a graph G is a function
f : V → {0, 1, 2} such that f is a Roman dominating function of both G and
its complement G. The weight of f is f(V) = Σu∈V f(u). The minimum weight
of a GRDF in a graph G is known as global Roman domination number of G
and is denoted by γgR(G). The concept of global Roman domination has been
introduced in [1,10].

Minimum global Roman domination and its decision version are defined as
follows:

Minimum Global Roman Domination (Minimum GRD)
Instance: A graph G = (V,E).
Solution: A minimum global Roman dominating function f of G.

Decide Global Roman Domination (Decide GRD)
Instance: A graph G = (V,E) and a positive integer r.
Question: Deciding γgR(G) ≤ r?

In this paper, we study the complexity of Minimum Global Roman Dom-
ination. The rest of the paper is organized as follows. In Sect. 2, we present
some pertinent definitions and some preliminary results. In Sect 3, we show
the NP-completeness result of Decide Global Roman Domination in bipar-
tite graphs and chordal graphs. In Sect 4, we propose an approximation algo-
rithm with approximation ratio 4(1+ln |V |), to approximate Minimum Global
Roman Domination in a graph. In Sect 5, we show that Minimum Global
Roman Domination cannot be approximated within (12 −ε) ln |V | for any ε > 0
unless P = NP.

2 Preliminaries

Let G = (V,E) be a finite, simple and undirected graph with no isolated vertex.
The open neighborhood of a vertex v in G is NG(v) = {u ∈ V | uv ∈ E} and the
closed neighborhood is NG[v] = {v}∪NG(v). The degree of a vertex v is |NG(v)|
and is denoted by dG(v). If dG(v) = 1, then v is called a pendant vertex and
the neighbor of a pendant vertex is called a support vertex. The minimum and

502 B. S. Panda and P. Goyal

the maximum degree of G will be denoted by δ(G) and Δ(G), respectively. For
D ⊆ V , G[D] denote the subgraph induced by D. We use the standard notation
[k] = {1, 2, . . . , k}.

A bipartite graph is an undirected graph G = (X,Y,E) whose vertices can
be partitioned into two disjoint sets X and Y such that every edge has one end
vertex in X and the other in Y . A bipartite graph G = (X,Y,E) is complete
bipartite if for every x ∈ X and y ∈ Y , there is an edge xy ∈ E. A complete
bipartite graph with partitions of size |X| = m and |Y | = n, is denoted Km,n.
In particular for m = 1, K1,n is known as star graph. A graph G = (V,E) is
said to be a chordal graph if every cycle of length at least four has a chord, i.e.,
an edge joining two non-consecutive vertices of the cycle.

For a graph G = (V,E), a Roman dominating function f : V → {0, 1, 2}
can be denoted by (V0, V1, V2), where Vi = {v ∈ V | f(v) = i} for i ∈ {0, 1, 2}.
Note that there exists a one to one correspondence between the function f :
V → {0, 1, 2} and the ordered partition (V0, V1, V2) of V . Thus, we will write
f = (V0, V1, V2).

Observation 1 (see [10]). For any graph G, γg(G) ≤ γgR(G) ≤ 2γg(G).

Observation 2 (see [10]). Let G be any graph. Then γgR(G) = γR(G) if and
only if there exists a γR(G)-function f = (V0, V1, V2) such that for every vertex
in V0 there is a vertex in V2 such that they are not adjacent.

Observation 3 (see [3]). For any graph G = (V,E), γ(G) ≤ γR(G) ≤ 2γ(G).

3 NP-Completeness Results

In this section, we show that decide global Roman domination is NP-complete for
bipartite graphs and chordal graphs. For this we recall the definition of Exact-
3-Cover.

Exact-3-Cover (X3C)
Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets
of X.
Question: Does C contain an exact cover for X, that is, a subcollection C ′ ⊆ C
such that every element in X occurs in exactly one member of C ′?

Theorem 4. Decide Global Roman Domination is NP-complete for bipar-
tite graphs.

Proof. Given a function f : V → {0, 1, 2} of weight at most r for a bipartite
graph G = (V,E), it can be checked in polynomial time whether f is a global
Roman dominating function of G. Hence, Decide Global Roman Domina-
tion is in NP for bipartite graphs. To show the hardness, we give a polyno-
mial reduction from Exact-3-Cover, which is known to be NP-complete (see
[8]). Given an arbitrary instance (X, C) of X3C, X = {x1, x2, . . . , x3q} and
C = {C1, C2, . . . , Ct}. We construct a bipartite graph G = (V,E) from the
instance (X, C) as follows:

Hardness Results of Global Roman Domination in Graphs 503

• For each vertex xj ∈ X, we construct a subgraph Hj obtained from a
vertex yj and three stars K1,3 centered at uj , vj and wj , by adding edges
yjuj , ujvj , vjwj , wjyj . Further, join vertex xj with yj .

• For each Ci ∈ C, we add a vertex ci and a star K1,3 centered at di. Add edge
cidi.

• Finally add edges xjci if and only if xj ∈ Ci.

Clearly, the graph G is a bipartite graph. We show an example
in Fig. 1, bipartite graph G is obtained from the system (X, C), where
X = {x1, x2, x3, x4, x5, x6} and C = {{x1, x2, x3}, {x2, x4, x5}, {x3, x5, x6},
{x4, x5, x6}}.

Fig. 1. An illustration of the construction of G from system (X, C) in the proof of
Theorem 4.

Now to complete the proof, it suffices to prove the following claim:

Claim. The system (X, C) has an exact cover if and only if the graph G has a
global Roman dominating function with weight at most 20q + 2t.

Proof. Suppose that C ′ is a solution of (X, C). We construct a GRDF h on G
with h(V) = k, where k = 20q + 2t. We label all pendant vertices by 0. All uj ’s,
vj ’s, wj ’s and di’s are labelled by 2. Also, every xj and yj are labelled by 0. For
any i, we label ci by 2 if Ci ∈ C ′ and label ci by 0 if Ci /∈ C ′. Observe that since
C ′ exists, its cardinality is exactly q, and so the number of ci’s with weight 2 is
q. Since C ′ is a solution for X3C, any vertex of X has a neighbor labelled by 2.
Every vertex ci has a neighbor di labelled by 2. Hence, h is a RDF of G with
h(V) = 2q + 2t + 3 · 6q = k. It can be easily observed that every vertex v of the
graph G of label 0 is adjacent to a vertex of label 2 as well as non-adjacent to a
vertex of label 2. Thus, h is a GRDF of the graph G of weight 20q + 2t.

Conversely assume that G has a GRDF h1 = (V0, V1, V2) of weight k =
20q + 2t. Clearly, h1(V (Hj)) ≥ 6 for every j ∈ [3q]; in particular h1(uj) =
h1(vj) = h1(wj) = 2. Thus, h1(yj) = 0. Also, h1(di) = 2 for every i ∈ [t] and for
every pendant vertex p of G, h1(p) = 0. Next we show that no xi needs to be
assigned a positive value.

504 B. S. Panda and P. Goyal

Claim. If h1(V) = k then for each xj ∈ X, h1(xj) = 0.

Proof. Assume h1(V) = k and there exist l(≥ 1) xj ’s such that h1(xj) �= 0. The
number of xj ’s with h1(xj) = 0 is 3q − l. Since h1 is a GRDF, each xj with
h1(xj) = 0 should have a neighbor ci with h1(ci) = 2. So the number of ci’s
required with h1(ci) = 2 is 	 3q−l

3
. Hence h1(V) = 2t + 18q + l + 2	 3q−l
3
, which

is greater than k, a contradiction. Therefore for each xj ∈ X, h1(xj) = 0. ��
Since each ci has exactly three neighbors in X, clearly, there exist q number of
ci’s with weight 2 such that each xj is adjacent to ci of weight 2. Consequently,
C ′ = {ci | h1(ci) = 2} is an exact cover for C. This completes the proof of
claim. ��

Therefore, Decide Global Roman Domination is NP-complete for bipar-
tite graphs. This completes the proof of theorem. ��

Next, we show that Decide Global Roman Domination remains NP-
complete in chordal graphs.

Theorem 5. Decide Global Roman Domination is NP-complete for
chordal graphs.

Proof. Clearly, Decide Global Roman Domination is in NP for chordal
graphs. To show the hardness, we give a polynomial reduction from Exact-3-
Cover, which is known to be NP-complete (see [8]). Given an arbitrary instance
(X, C) of X3C, X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}. We construct a
chordal graph G = (V,E) from the instance (X, C) as follows:

• For each vertex xj ∈ X, we construct a subgraph Hj obtained from a
vertex yj and three stars K1,3 centered at uj , vj and wj , by adding edges
yjuj , ujvj , vjwj , wjyj , yjvj . Further, join vertex xj with yj .

• For each Ci ∈ C, we add two vertices bi, ci and a star K1,3 centered at di.
Add edge cibi, bidi and cick for every i, k ∈ [t].

• Finally add edges xjci if and only if xj ∈ Ci.

Illustration of the construction of G from the set system (X, C) is given in Fig. 2.
Clearly, the graph G is a chordal graph.

Now to complete the proof, it suffices to prove the following claim:

Claim. The system (X, C) has an exact cover if and only if the graph G has a
global Roman dominating function with weight at most 20q + 2t.

Proof. Due to space constraint, we omit the proof of claim.

Therefore, Decide Global Roman Domination is NP-complete for chordal
graphs. This completes the proof of theorem. ��

Hardness Results of Global Roman Domination in Graphs 505

Fig. 2. An illustration of the construction of G from system (X, C) in the proof of
Theorem 5.

4 Approximation Algorithm

In this subsection, we propose an approximation algorithm for Minimum
Global Roman Domination whose approximation ratio is a logarithmic fac-
tor in the size of the input. To obtain the approximation ratio of Minimum
Global Roman Domination, we require approximation ratio of Minimum
Global Domination. Further, to obtain approximation ratio of Minimum
Global Domination, we use known approximation algorithms for the Mini-
mum Domination and Minimum Set Cover.

The following approximation result is known for Minimum Domination.

Theorem 6 [4]. Minimum Domination in graph G with maximum degree
Δ(G) can be approximated with an approximation ratio of 1 + ln(Δ(G) + 1).

By Theorem 6, there exists a polynomial time algorithm, APPROX-DOM-SET
algorithm, that outputs a dominating set D of a graph G of order n and achieves
the approximation ratio of 1 + ln(Δ(G) + 1); that is, |D| ≤ (1 + ln(Δ(G) +
1))γ(G) ≤ (1 + ln |V |)γ(G).

Next we need to recall Minimum Set Cover. Let X be any non-empty set.
Let F be a collection of subsets of X. A set C ⊆ F is called a set cover of X, if
every element of X belongs to at least one element of C. Minimum Set Cover
is to find a minimum cardinality set cover of X. The following approximation
result is known for Minimum Set Cover.

Theorem 7 [4]. Minimum Set Cover for the instance (X,F) can be approx-
imated with an approximation ratio of 1 + ln q, where q = max{|S| : S ∈ F}.

By Theorem 7, there exists an APPROX-SET-COVER algorithm with input
(X,F), that outputs a set cover C in polynomial time such that cardinality of
the set cover C is at most 1 + ln q times the cardinality of the optimal set cover
of (X,F), where q is the cardinality of the maximum cardinality set of F .

506 B. S. Panda and P. Goyal

Next, we propose an algorithm APPROX-GD-SET to compute an approxi-
mate solution of Minimum Global Domination. Our algorithm works in two
stages: in the first stage, we compute a dominating set D of the given graph
G = (V,E) using algorithm APPROX-DOM-SET. In the second stage, we find
an additional set Q of vertices such that D ∪ Q becomes a GD-set of G. We
select the set Q in such a way that every vertex v ∈ V \(D ∪ Q) has at least
one vertex in D ∪ Q which is not adjacent to v. To select this set Q, we first
construct an instance (X,F) of Minimum Set Cover, and then use the algo-
rithm APPROX-SET-COVER to compute a set cover C of X. Thereafter, we
construct Q from C such that D ∪ Q becomes a GD-set of G.

Assume that D is a dominating set of the given graph G obtained by
the algorithm APPROX-DOM-SET. Next, we illustrate the construction of an
instance (X,F) of Minimum Set Cover. Let X be the subset of all vertices
v in V \D such that v does not have any non-adjacent vertex in D, that is,
|D ∩ (V \NG(v))| = 0. For a vertex v in the graph G, the set of all vertices which
are non-adjacent to v is denoted by V \NG(v). Let V \D = {u1, . . . , up}. Let
Si = X ∩ (V \NG(ui)) for i ∈ [p]. Thus, Si is the set of all vertices in X which
are non-adjacent to ui in G. We now define F = {S1, . . . , Sp}. Thus, (X,F) forms
an instance of Minimum Set Cover. Now, let C be the set cover obtained by
the algorithm APPROX-SET-COVER. Let Q = {ui ∈ V \D | Si ∈ C}. Note
that for each vertex x ∈ X, there must exist at least one vertex w ∈ Q such that
NG(x) ∩ {w} = ∅, because C is a set cover of X. Thus, D ∪ Q is a GD-set of G.
Next, we summarize the approximation algorithm APPROX-GD-SET.

Algorithm 1. APPROX-GD-SET
Input: A graph G = (V, E).
Output: A GD-set Dg of graph G.
begin

Compute a dominating set D of G using algorithm APPROX-DOM-SET;
Construct an instance (X, F) of Minimum Set Cover as defined above;
if X == ∅ then

Dg = D;
else

Compute a set cover C of (X, F) using algorithm APPROX-SET-COVER;
Q = {ui ∈ V \D | Si ∈ C};
Dg = D ∪ Q;

return Dg;

We note that the algorithm APPROX-GD-SET returns a GD-set of a given
graph G = (V,E) in polynomial time. We are now in a position to prove the
following theorem.

Theorem 8. Minimum Global Domination in a graph G can be approxi-
mated with an approximation ratio of 2(1 + ln |V |).

Hardness Results of Global Roman Domination in Graphs 507

Proof. In order to prove the theorem, we show that the GD-set Dg returned
by our algorithm APPROX-GD-SET is an approximate solution of Minimum
Global Domination with an approximation ratio of 2(1 + ln |V |); that is,
|Dg| ≤ 2(1 + ln |V |)γg(G).

The algorithm APPROX-DOM-SET returns a dominating set D of G with
an approximation ratio 1 + ln |V |; that is, |D| ≤ (1 + ln |V |)γ(G).

Similarly, for the instance (X,F) of Minimum Set Cover, the algorithm
APPROX-SET-COVER returns a set cover C of X with an approximation ratio
(1 + ln q), where q is the cardinality of a largest set in F . Since the graph G
has minimum degree δ(G), |V \NG(ui)| ≤ |V | − δ(G) for each i ∈ [p]. Thus,
|Si| ≤ |V | − δ(G) ≤ |V | for all i ∈ [p]. Hence, the cardinality of each set of F
is at most |V |, implying that q ≤ |V |. Thus, if C∗ is an optimal set cover of the
instance (X,F), then |C| ≤ (1 + ln |V |)|C∗|.

Recall that Q = {ui ∈ V \D | Si ∈ C}, and so |Q| = |C|. Let Q∗ = {ui ∈
V \D | Si ∈ C∗}. Then |Q∗| = |C∗| and |Q∗| denotes the minimum number of
vertices needed to extend a dominating set D of G to a GD-set of G. We note that
the minimum number of vertices needed to extend a set of vertices to a GD-set
of G is no more than the global domination number of G. Hence, |C∗| ≤ γg(G).

|Dg| = |D ∪ Q| = |D| + |Q| = |D| + |C| ≤ (1 + ln |V |)γ(G) + (1 + ln |V |)|C∗|
≤ 2(1 + ln |V |)γg(G).

The GD-set Dg, returned by the algorithm APPROX-GD-SET, is therefore an
approximate solution of Minimum Global Domination with an approxima-
tion ratio of 2(1 + ln |V |). This completes the proof of the Theorem 8. ��

Next, we propose an algorithm APPROX-GRDF to compute an approximate
solution of Minimum Global Roman Domination. In our algorithm, first we
compute a global dominating set Dg of the input graph G using the approxi-
mation algorithm APPROX-GD-SET. Next, we construct an ordered partition
f = (V0, V1, V2) of V in which every vertex in Dg will be labelled by 2 and the
remaining vertices will be labelled by 0.

Now, let f = (V \Dg, ∅,Dg) be the ordered partition returned by APPROX-
GRDF algorithm. It can be easily seen that every vertex v ∈ V is assigned with
weight either 0 or 2. Since Dg is a global dominating set of G, every vertex
v ∈ V \Dg labelled by 0 is adjacent to a vertex u ∈ Dg labelled by 2 as well as
non-adjacent to a vertex w ∈ Dg labelled by 2. Thus, f gives a global Roman
dominating function of G. We note that the algorithm APPROX-GRDF com-
putes a global Roman dominating function of a given graph G in polynomial
time. Hence, we have the following result.

Theorem 9. Minimum Global Roman Domination in a graph G = (V,E)
can be approximated with an approximation ratio of 4(1 + ln |V |).
Proof. Let Dg be the global dominating set returned by the algorithm APPROX-
GD-SET and f be the global Roman dominating function returned by the algo-
rithm APPROX-GRDF. It can be observed that f(V) = 2|Dg|. It is known

508 B. S. Panda and P. Goyal

Algorithm 2. APPROX-GRDF
Input: A graph G = (V, E).
Output: A global Roman dominating function f = (V0, V1, V2) of graph G.
begin

Compute a global dominating set Dg of G using algorithm APPROX-GD-SET;
f = (V \Dg, ∅, Dg);
return f ;

that |Dg| ≤ 2(1 + ln(|V |))γg(G). Therefore, f(V) ≤ 4(1 + ln(|V |))γg(G). Thus
Observation 1 leads to f(V) ≤ 4(1 + ln(|V |))γgR(G). Thus, Minimum Global
Roman Domination in a graph G can be approximated with an approximation
ratio of 4(1 + ln |V |). ��

5 Lower Bound on Approximation Ratio

In this subsection, we obtain a lower bound on the approximation ratio of Min-
imum Global Roman Domination for any graph. To obtain our lower bound
we give an approximation preserving reduction from Minimum Set Cover. We
need the following theorem proved in [5].

Theorem 10 [5]. Minimum Set cover for set system (U, C) cannot be approx-
imated within (1 − ε) ln |U | for any ε > 0 unless P = NP.

We are ready to prove the inapproximability of Minimum Global Roman
Domination.

Theorem 11. Minimum Global Roman Domination for any graph G =
(V,E) cannot be approximated within (12 − ε) ln |V | for any ε > 0 unless P= NP.

Proof. Given an instance (U, C) of Minimum Set Cover, where U =
{u1, u2, . . . , uq}. C = {C1, C2, . . . , Ct}. Now we construct a graph G = (V,E)
in polynomial time as follows.

• For each element uj in the set U , add three vertices xj , yj and zj in G.
• For each set Ci in the collection C, add a vertex ci in the vertex set of G.

Also, add edges cick for every i, k ∈ [t] and i �= k.
• Next we add two stars K1,3 centered at r and s. Add edges {rs, rci | i ∈ [t]}.
• If an element uj belongs to set Ci, then add edges xjci, yjci and zjci in G.

We show an example in Fig. 3, where graph G is obtained from the set system
(U, C) with U = {u1, u2, u3} and C = {{u1, u2}, {u2, u3}, {u3, u1}, {u3}}.

Claim. γgR(G) = 2|S∗| + 4, where S∗ is the minimum cardinality set cover of
the system (U, C).

Hardness Results of Global Roman Domination in Graphs 509

Fig. 3. An illustration of the construction of G from the system (U, C) in the proof of
Theorem 11.

Proof. Let S∗ be a minimum set cover of G. We define a function f : V →
{0, 1, 2} as follows.

f(v) =
{

2, if v ∈ {u | u ∈ S∗} ∪ {r, s}
0, otherwise.

Since S∗ is a set cover for (U, C), every element of U belongs to at least one
element of S∗. So, we label all vertices of the set {xi, yi, zi | i ∈ [q]} by 0. Next,
we label r and s by 2 and every pendant vertex adjacent to r and s by 0. Since
{ci | Ci ∈ C} forms a clique. Hence, every ci /∈ S∗ of label 0 is adjacent to a
ck ∈ S∗ of label 2. Hence, f is a RDF of H with f(V) = 4 + 2|S∗|. It can be
easily observed that every vertex of the graph G of weight 0 is adjacent to a
vertex of weight 2 as well as non-adjacent to a vertex of weight 2. Thus, f is a
GRDF of the graph G of weight 4 + 2|S∗|. Thus, for a minimum weight GRDF
f∗ of G, f∗(V) ≤ 4 + 2|S∗|.

Conversely, let f∗ = (V0, V1, V2) be a minimum weight GRDF of G. Clearly,
weight of a subgraph K1,3 must be at least 2. Hence, f∗(r) = f∗(s) = 2 and
every pendant vertex of r and s will be labelled by 0. Since each element uk ∈ U
corresponds to three vertices xk, yk and zk in G, any optimal solution of G will
never assign non-zero weights to these three vertices. Let uk ∈ U . Then there
exists a set Cl ∈ C such that uk ∈ Cl and f∗(cl) = 2, f∗(xk) = f∗(yk) = f∗(zk) =
0. Hence, for every uk ∈ U , there exists a Cl ∈ C such that weight of cl is 2 under
f∗, i.e. f∗(cl) = 2. Hence, all weight 2 vertices of V ∩ {cj | j ∈ [t]} will form a
set cover of (U, C). So, S = {Ci | ci ∈ V2}. Thus, for a minimum cardinality set
cover S∗, 2|S∗| ≤ 2|S| ≤ f∗(V) − 4.

Hence, f∗(V) = 2|S∗| + 4. This completes the proof of claim. ��
Now, for the resulting graph G one can now confine to GRDF h consisting

of {r, s} and a subset S of C corresponding to a set cover, hence we have h(V) =
2|S| + 4.

Suppose that Minimum Global Roman Domination can be approximated
within a ratio of α, where α = (12 − ε) ln(|V |) for some fixed ε > 0, by some

510 B. S. Panda and P. Goyal

polynomial time approximation algorithm, say Algorithm A. Next, we propose
an algorithm A′ to compute a set cover of a given set system (U, C) in polynomial
time. Clearly, algorithm A′ is polynomial time algorithm as algorithm A is a

Algorithm 3. A′: Approximation Algorithm for Minimum Set Cover

Input: A set system (U, C)
Output: A minimum set cover S of (U, C).
begin

if (there exists a minimum set cover S of (U, C) of cardinality < l) then
return S;

else
Construct a graph G as described above;
Compute a GRDF f of G using algorithm A;
S = {Ci ∈ C | f(ci) �= 0};
return S;

polynomial time algorithm. Since l is a constant, step 1 of the algorithm can be
executed in polynomial time. Note that if S is computed in Step 1, then S is
optimal. So we analyze the case where |S| ≥ l.

Let S∗ be an optimal set cover in (U, C). It is clear that |S∗| ≥ l. Let S be
the set cover computed by algorithm A′. Then

|S| =
h(V) − 4

2
≤ h(V) ≤ α · γgR(G) ≤ α(2|S∗| + 4) ≤ 2α

(
1 +

2
|S∗|

)
|S∗|

≤ 2α
(
1 +

2
l

)
|S∗|

Hence, algorithm A′ approximates Minimum Set Cover for given set system
(U, C) within the ratio 2α(1 + 2

l).
Let l be a positive integer such that 2

l < ε
2 . Then algorithm A′ approximates

Minimum Set Cover for given set system (U, C) within the ratio 2α(1 + 2
l) ≤

2(12−ε)(1+ ε
2) ln |V | = (1−ε′) ln |U | for ε′ = ε2

2 + 3ε
2 as ln |V | = ln(3|U |+|C|+8) ≈

ln |U | for sufficiently large value of |U |.
Therefore, the Algorithm A′ approximates Minimum Set Cover within

ratio (1 − ε) ln(|U |) for some ε > 0. By Theorem 10, if Minimum Set Cover
can be approximated within ratio (1 − ε) ln(|U |) for some ε > 0, then P = NP.
Hence, if Minimum Global Roman Domination can be approximated within
ratio (12 − ε) ln(|V |) for some ε > 0, then P = NP. This proves that Minimum
Global Roman Domination cannot be approximated within (12 − ε) ln(|V |)
for any ε > 0 unless P = NP. ��

6 Conclusion

In this paper, we have shown that Decide Global Roman Domination is
NP-complete for bipartite graphs and chordal graphs. We have proposed a 4(1+

Hardness Results of Global Roman Domination in Graphs 511

ln |V |)-approximation algorithm for finding minimum weight GRDF in any graph
G. Further, we have presented inapproximability result of Minimum Global
Roman Domination.

References

1. Atapour, M., Sheikholeslami, S.M., Volkmann, L.: Global roman domination in
trees. Graph. Combin. 31(4), 813–825 (2015)

2. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T., McRae,
A.A.: The algorithmic complexity of roman domination

3. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discrete Math. 278(1–3), 11–22 (2004)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of
the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 624–633.
ACM (2014)

6. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics.
Marcel Dekker Inc., New York (1998)

7. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker Inc., New York (1998)

8. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

9. Liu, C.-H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Combin.
Optim. 26(3), 608–619 (2013)

10. Pushpam, P.R.L., Padmapriea, S.: Global roman domination in graphs. Discrete
Appl. Math. 200, 176–185 (2016)

11. Stewart, I.: Defend the Roman empire!. Sci. Am. 281(6), 136–138 (1999)

Author Index

Akhtar, Sheikh Shakil 272

Bereg, Sergey 413
Blažej, Václav 196
Bloch-Hansen, Andrew 346
Bose, Kaustav 426

Caskurlu, Bugra 359
Chakrabarti, Sayak 333
Chandran, L. Sunil 452
Changat, Manoj 222, 234, 294

Das, Archak 426
Das, Arun Kumar 43
Das, Sajal K. 452
Das, Sandip 43, 179, 259, 272
Dev, Subhadeep Ranjan 179
Dey, Palash 83
Dey, Sanjana 471
Díaz-Báñez, José Miguel 413

Francis, P. 282, 309

Gahlawat, Harmender 272
Gaikwad, Ajinkya 135
Ganesan, Ghurumuruhan 373, 385
Garg, Apoorv 16
Gokulnath, M. 282, 288
Goyal, Pooja 500
Gulati, Aditya 333
Gupta, Arya Tanmay 66
Gurski, Frank 95

Hartman, David 317
Hell, Pavol 452
Horn, Paul 413

Jacob, Nella Jeena 294
Jana, Satyabrata 487
Joseph, Mary Shalet Thottungal 234

Kapoor, Kalpesh 397
Keikha, Hamidreza 165

Keikha, Vahideh 165
Kirubakaran, V. K. 209
Kloks, Ton 55
Komander, Dominique 95
Kowaluk, Mirosław 440

Lingas, Andrzej 440
Lokhande, Swapnil A. 66
Lopez, Mario A. 413
Luo, Kelin 3

Maheshwari, Anil 471
Maiti, Arnab 83
Maity, Soumen 135
Mantas, Ioannis 151
Mittal, Rajat 333
Mohades, Ali 165
Mondal, Kaushik 66
Mukherjee, Joydeep 43

Nandy, Subhas C. 471
Narasimha-Shenoi, Prasanth G. 234, 294
Narayanaswamy, N. S. 247
Nezhad, Ferdoos Hossein 222

Opler, Michal 196

Padamutham, Chakradhar 32
Padinhatteeri, Sajith 452
Palagiri, Venkata Subba Reddy 32
Panda, B. S. 500
Pandey, Arti 55
Pandit, Supantha 487
Patawar, Maithilee 397
Pillai, Raji R. 452
Pokorná, Aneta 317
Prahlad Narasimhan, Kasthurirangan 122
Prashant, Athmakoori 288

Raj, S. Francis 282
Rajendraprasad, Deepak 309
Ranade, Abhiram 16
Rao, Siddani Bhaskara 259

Reddy, I. Vinod 109
Rehs, Carolin 95
Roy, Sasanka 487

Sahoo, Uma kant 259
Samei, Nasim 346
Sarvottamananda, Swami 179
Sau, Buddhadeb 426
Savić, Marko 151
Schrezenmaier, Hendrik 151
Shalu, M. A. 209
Sharma, Amatya 83
Šileikis, Matas 196
Solis-Oba, Roberto 346

Spieksma, Frits C. R. 3
Srinivasan, Adarsh 247
Stadler, Peter F. 222
Subramani, K. 359

Tripathi, Shuvam Kant 135

Urrutia, Jorge 413

Valtr, Pavel 196, 317
Velasquez, Alvaro 359

Wojciechowski, Piotr 359

514 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Width Parameters for Hard and Easy Problems
	Matching and Spanning Trees in Geometric Graphs
	Contents
	Approximation Algorithms
	Online Bin Packing with Overload Cost
	1 Introduction
	2 Lower Bounds
	2.1 Proving Theorem 1
	2.2 Lower Bounds for Convex Cost Functions

	3 Upper Bounds: Proving Theorem 2
	References

	Scheduling Trains with Small Stretch on a Unidirectional Line
	1 Introduction
	2 Preliminaries
	2.1 Network Definition and Problem Statement
	2.2 The Chain-Hole View

	3 An O(1)-Approximation of the Optimal Max-Stretch
	3.1 Schedule for a Single Class Using only Preexisting Holes
	3.2 The Overall Scheduling Algorithm

	4 NP-Hardness
	5 Conclusion
	A Proof of Lemma 2
	References

	Algorithmic Aspects of Total Roman and Total Double Roman Domination in Graphs
	1 Introduction
	2 Bounded Tree-Width Graphs
	3 Threshold Graphs
	4 Chain Graphs
	5 Approximation Algorithm and Complexity
	5.1 Approximation Bounds
	5.2 Approximation Algorithm
	5.3 Approximation Completeness

	References

	Approximation Algorithms for Orthogonal Line Centers
	1 Introduction
	2 Preliminaries
	3 A 2-factor Approximation Algorithm
	4 A (74, 32) bi-criteria approximation algorithm
	References

	Semitotal Domination on AT-Free Graphs and Circle Graphs
	1 Introduction
	2 Preliminaries
	3 Linear-Time Approximation Algorithm
	4 Polynomial-Time Exact Algorithm
	4.1 Construction of G' from G
	4.2 Algorithm to Find a Minimum Total Dominating Set of G'

	5 NP-Completeness Result on Circle Graphs
	6 Conclusion
	References

	Burning Grids and Intervals
	1 Introduction
	2 Preliminary Definitions and Symbols
	3 Related Works
	4 Burning Grids
	5 Burning Interval Graphs
	5.1 Interval Graph Construction
	5.2 Example Construction
	5.3 NP-Completeness

	6 More Hardness Results
	7 Conclusion
	References

	Parameterized Algorithms
	On Parameterized Complexity of Liquid Democracy
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Problem Definition

	3 Results: Algorithmic Hardness
	4 FPT Algorithms
	5 Structural Results
	6 Conclusion and Future Direction
	References

	Acyclic Coloring Parameterized by Directed Clique-Width
	1 Introduction
	2 Preliminaries
	2.1 Directed Graphs
	2.2 Acyclic Coloring of Directed Graphs

	3 Acyclic Coloring of Directed Co-graphs
	4 Parameterized Algorithms for Directed Clique-Width
	5 Conclusions and Outlook
	References

	On Structural Parameterizations of Load Coloring
	1 Introduction
	2 Preliminaries
	2.1 Graph Classes
	2.2 Clique-Width

	3 Graphs of Bounded Clique-Width
	3.1 Upper Bound
	3.2 Lower Bound

	4 Parameterized Algorithms
	4.1 Distance to Cluster Graphs
	4.2 Distance to Co-cluster Graphs
	4.3 Distance to Threshold Graphs

	5 Special Graph Classes
	6 Conclusion
	References

	One-Sided Discrete Terrain Guarding and Chordal Graphs
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Results

	2 Preliminaries
	3 Terrains and Chordal Graphs
	References

	Parameterized Complexity of Locally Minimal Defensive Alliances
	1 Introduction
	2 Basic Notations
	3 Locally Minimal Strong Defensive Alliance on Trees
	4 FPT Algorithm Parameterized by Neighbourhood Diversity
	5 Graphs of Bounded Treewidth
	6 Conclusion
	References

	Computational Geometry
	New Variants of Perfect Non-crossing Matchings
	1 Introduction
	1.1 Related Work
	1.2 Problem Variants Considered and Our Contribution

	2 Monochromatic Points in General Position
	2.1 MinMin1 and MaxMax1 Matchings in General Position

	3 Points in Convex Position
	3.1 MinMin1 and MaxMax1 Matchings in Convex Position
	3.2 MinMin2 and MaxMax2 Matchings in Convex Position

	4 Points on a Circle
	4.1 MaxMin1 Matching on a Circle
	4.2 Other Matchings on a Circle

	5 Doubly Collinear Points
	5.1 MinMin2 and MaxMax2 Matchings on Doubly Collinear Points
	5.2 MinMax2 and MaxMin2 Matchings on Doubly Collinear Points

	6 Conclusions and Future Work
	References

	Cause I'm a Genial Imprecise Point: Outlier Detection for Uncertain Data
	1 Introduction
	2 Minimum Diameter
	3 Smallest Enclosing Circle with Outliers
	4 Bounding Box
	References

	A Worst-Case Optimal Algorithm to Compute the Minkowski Sum of Convex Polytopes
	1 Introduction
	2 Preliminaries
	3 Augmented Face Lattice of Convex Polytopes
	3.1 Face Lattice of a Convex Polytope
	3.2 Data Structure for a Face Lattice
	3.3 Augmenting a Face Lattice
	3.4 Determination of the Dimension of the Minkowski Sum of Faces

	4 The Minkowski Sum of Two Convex Polytopes
	4.1 Necessary and Sufficient Conditions for the Faces of P Q
	4.2 The Minkowski Sum Algorithm
	4.3 Minkowski Sum from Other Input Representations
	4.4 An Example to Prove Worst-Case Optimality

	5 The Minkowski Sum of Multiple Convex Polytopes
	6 Concluding Remarks and Acknowledgments
	References

	On the Intersections of Non-homotopic Loops
	1 Introduction
	2 Setup and Notation
	3 General n
	4 Case n = 2
	5 Proof of Proposition1
	References

	Graph Theory
	On cd-Coloring of Trees and Co-bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 Trees
	4 Co-bipartite Graphs
	5 P5-free Graphs
	6 Double-Split Graphs
	7 Conclusion
	References

	Cut Vertex Transit Functions of Hypergraphs
	1 Introduction
	2 Cut Vertex Transit Functions of Graphs
	3 Cut Vertex Transit Function of Hypergraphs
	3.1 Notation and Terminology

	References

	Lexicographic Product of Digraphs and Related Boundary-Type Sets
	1 Introduction
	2 Preliminaries
	3 Lexicographic Product of Directed Graphs
	3.1 D1 D2, D1 Is a DDLE Digraph
	3.2 Cn D2, Cn Is a Dicycle
	3.3 D1 D2, D1 Is a Symmetric Digraph

	References

	The Connected Domination Number of Grids
	1 Introduction
	1.1 Preliminaries and Terminology

	2 Bounds on the Connected Domination Number
	2.1 Known Upper Bounds
	2.2 New Lower Bounds
	2.3 Gap Between Lower and Upper Bounds

	3 Conclusions and Further Research
	References

	On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs
	1 Introduction
	1.1 Degree Sequences and Graph Realization Problem
	1.2 Eccentricities in Pseudoline Arrangement Graphs
	1.3 A Brief Review on Pseudoline Arrangement Graphs
	1.4 Tools, Definitions and Notations

	2 Pseudoline Arrangement Graph Realization Problem
	2.1 Proof of Necessity of Theorem1
	2.2 Constructions and Operations
	2.3 Proof of Sufficiency of Theorem1

	3 Eccentricities in Pseudoline Arrangement Graphs
	3.1 Basic Results on Eccentricities
	3.2 Diameter and Characterization of Vertices with Maximum Eccentricity

	4 Final Remarks
	4.1 Alternate Proof of d23 in Theorem1 Using Wiring Diagrams

	References

	Cops and Robber on Butterflies and Solid Grids
	1 Introduction and Results
	1.1 Organisation

	2 Definitions
	3 Butterfly Networks
	4 Solid Grids
	5 Conclusion
	References

	b-Coloring of Some Powers of Hypercubes
	1 Introduction
	2 Bounds for the b-Chromatic Number of Some Powers of Hypercube
	References

	Chromatic Bounds for the Subclasses of pK2-Free Graphs
	1 Introduction
	2 Coloring of Some Classes of 2K2-Free Graphs and pK2-Free Graphs
	References

	Axiomatic Characterization of the Median Function of a Block Graph
	1 Introduction
	2 Plurality Strategy and Median Sets in Graphs
	3 Median Sets in Block Graphs
	4 Axiomatic Characterization of the Median Function
	4.1 Independence of the Axioms

	References

	On Coupon Coloring of Cartesian Product of Some Graphs
	1 Introduction
	2 Coupon Coloring of Cartesian Product of Graphs
	3 Coupon Coloring of Bipartite Graphs
	References

	On the Connectivity and the Diameter of Betweenness-Uniform Graphs
	1 Introduction and Definitions
	2 Proof of Theorem 2
	2.1 Vertices of the Cut Have at Least Two Neighbours in K
	2.2 Vertices of Degree Two
	2.3 More Components

	3 Relation Between Maximal Degree and Diameter of Betweenness-Uniform Graphs
	References

	Combinatorics and Algorithms
	On Algorithms to Find p-ordering
	1 Introduction
	2 Preliminaries
	3 Algorithm to Find p-ordering on a Given Set
	3.1 Proof of Correctness
	3.2 Time Complexity

	4 Algorithm to Find p-ordering on a Set of Representative Roots
	4.1 Proof of Correctness
	4.2 Time Complexity

	5 Structure of Root Sets for a Given k
	References

	Experimental Evaluation of a Local Search Approximation Algorithm for the Multiway Cut Problem
	1 Introduction
	2 Our Local Search Algorithm
	3 Finding a Minimum Cost Relabel Operation
	4 Analysis of MultimayCut for the 3-Way Cut Problem
	5 Experimental Results
	5.1 Input Data
	5.2 Test Cases
	5.3 Results
	5.4 Conclusion

	References

	Algorithmic Analysis of Priority-Based Bin Packing
	1 Introduction
	2 Statement of Problems
	3 Motivation
	4 Feasibility of PBBP-SC
	4.1 Priority Maximization

	5 Bin Minimization
	5.1 Lower Bounds

	6 Conclusion
	References

	Recursive Methods for Some Problems in Coding and Random Permutations
	1 Introduction
	2 Locally Recoverable Codes with Partial Locality
	3 Lattice Representative Codes
	4 Random Permutations
	References

	Achieving Positive Rates with Predetermined Dictionaries
	1 Introduction
	2 Binary Channels
	3 General Channels
	4 Proof of Theorem 2
	4.1 Conflict Set Decoding
	4.2 Proof of Theorem 2

	References

	Characterization of Dense Patterns Having Distinct Squares
	1 Introduction
	2 Preliminaries and Related Work
	3 Square-Maximal Words and Dense Patterns
	3.1 Dense Patterns

	4 Comparison of P with the Existing Patterns
	4.1 Comparing Dense Patterns

	5 Conclusion and Future Work
	References

	Graph Algorithms
	Failure and Communication in a Synchronized Multi-drone System
	1 Introduction
	2 Related Work
	3 Computing the Connected Components
	3.1 Decentralized Computation

	4 Communication Within a Probabilistic Failure Model
	4.1 General Grids

	References

	Memory Optimal Dispersion by Anonymous Mobile Robots
	1 Introduction
	1.1 Background and Motivation
	1.2 Related Works
	1.3 Our Results

	2 Technical Preliminaries
	3 The Algorithm
	3.1 Local Leader Election
	3.2 Overview of the Algorithm
	3.3 Detailed Description of the Algorithm

	4 Correctness Proof and Complexity Analysis
	5 Concluding Remarks
	References

	Quantum and Approximation Algorithms for Maximum Witnesses of Boolean Matrix Products
	1 Introduction
	2 Preliminaries
	3 Quantum Search for the Maximum Witness
	4 The Fastest Method: Combining Rectangular Boolean Matrix Multiplication with Quantum Search
	5 Approximation Algorithms
	References

	Template-Driven Rainbow Coloring of Proper Interval Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 TRB-Coloring of Proper Interval Graphs with Cycle Templates
	3.1 Special Vertices and Pivots

	4 Proof of Correctness
	4.1 Constructing the Canonical Cycle with Special Vertices
	4.2 Absence of k-Cycles Beyond the Pivots

	5 The Overall Algorithm and Its Complexity
	6 Conclusions
	A Appendix
	A.1 Notations
	A.2 Proofs of Lemmas and Propositions
	A.3 Examples: Constructing a k-cycle with Special Vertices

	References

	Minimum Consistent Subset of Simple Graph Classes
	1 Introduction
	2 Bichromatic Paths
	3 Bichromatic Caterpillar Graph
	4 Bichromatic Spider Graph
	5 Bichromatic Comb Graph
	5.1 Handling OLG and ORG Case
	5.2 Handling BG Case
	5.3 Handling NG Case

	References

	Computational Complexity
	Balanced Connected Graph Partition
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 k-BCGP Problem on Trees and Paths
	2.1 Trees
	2.2 Paths

	3 2-BCGP Problem on Bipartite Graphs
	4 k-BCGP Problem on Planar Bipartite Graphs
	5 2-BCGPProblem on Chordal Graphs
	References

	Hardness Results of Global Roman Domination in Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Completeness Results
	4 Approximation Algorithm
	5 Lower Bound on Approximation Ratio
	6 Conclusion
	References

	Author Index

