The Software for Formation of Technical )
Function Assessments Based e
on the Patent Analysis

Dmitriy Korobkin®, Sergey Fomenkov ®, Alexander Zlobin,
Dmitriy Shabanov, and Alexander Golovanchikov

Abstract Based on the developed method of construction of a database of technical
functions carried out by physical effects, realized the software with following func-
tions: (a) extraction of technical functions; (b) search of the physical effect descrip-
tion; (c) construction of term-document matrices “Patent - Technical Function” and
“Patent - Physical Effect”; (d) construction based on the reduced term-document
matrices the matrix “Physical Effect - Technical Function”. The system consists of
two main and independent parts: the patents repository and the semantic core. The
repository implements a standard CRUD interface for creating, reading, updating,
and deleting documents. The semantic core is a library that implements all text
processing functionality. The correctness of algorithms work was estimated on a
test sample, the method of extraction of technical functions showed the following
criteria: precision—0.87, recall—0.77, F—0.82, the method of search of physical
effect description showed precision—0.92.

Keywords Technical functions - Physical effects - Patents

1 Introduction

The chapter shows the developed method for the automated construction of a database
of technical functions performed by physical effects. For the synthesis of the physical
principle of operation of new technical systems [1] in several scientific approaches
[2, 3], physical effects (PE) are used. PE implements technical functions, which in
turn constitute the constructive functional structure of the technical system [4]. The
authors have developed a method for extracting descriptions of physical effects and
technical functions from US patent documents (USPTO) and Rospatent. The method
of automatic creation of a table of technical functions performed by physical effects
is based on identifying latent dependencies in term-document matrices «Physical
Effects-Patents» and «Technical Functions-Patents» [5].

D. Korobkin () - S. Fomenkov - A. Zlobin - D. Shabanov - A. Golovanchikov
Volgograd State Technical University, 28 Lenin Av, Volgograd 400005, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 137
A. G. Kravets et al. (eds.), Cyber-Physical Systems, Studies in Systems, Decision
and Control 350, https://doi.org/10.1007/978-3-030-67892-0_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67892-0_12&domain=pdf
https://orcid.org/0000-0002-4684-1011
https://orcid.org/0000-0001-9907-4488
https://orcid.org/0000-0001-8348-1759
https://doi.org/10.1007/978-3-030-67892-0_12

138 D. Korobkin et al.

The purpose of this work is to programmatically implement a formation system
of the matrix of technical functions performed by physical effects based on patent
array analysis.

2 The Methodology

The automated system (AS) should provide the following functions:

e Extraction of technical functions in the «Subject - Action - Object» (SAO) [6-8]
format from the texts of patent documents;

e Search for a description of the physical effect in the text of patent documents;

e Construction of the term-documentary matrix «Patent - Technical function», the
elements of which are the values of the frequency response TF-IDF [9] for the
corresponding technical function and patent document;

e Construction of the term-documentary matrix «Patent - Physical effect», the
elements of which are the values of the frequency response TF-IDF for the
corresponding physical effect and the patent document;

e Reduction of the space of technical functions for the term-document matrix
“Patent - Technical function» and the space of physical and technical effects
for the term-document matrix «Patent - Physical effect»;

e Construction from the reduced term-document matrices «Patent - Physical effect»
and «Patent - Technical function» of the matrix «Physical effect - Technical func-
tion» based on the method of cosines as a characteristic of the representations of
the physical effect and technical function in the space of patent.

AS is implemented in python version 3.7.2. For morphological tagging the
program TreeTagger [10, 11] is used, for syntactic parsing—UDPipe [12]. The infor-
mation structure of the input XML documents must conform to the document type
declaration (DTD) «us-patent-application», the version of the patent document must
conform to «v4.4 2014-04-03», which meets the general description of the «ST.36»
standard.

The AS consists of two main and independent parts (Fig. 1): the patent array
storage and the semantic core.

The patent array storage implements the functionality of storing and issuing to
the user the texts of patent documents and their meta-data, such as number, class
according to IPC classification [13], and so on. The storage implements the stan-
dard interface for CRUD operations for creating, reading (receiving), updating, and
deleting documents, as well as the functionality of writing queries to retrieve data,
which allows you to filter documents by the value of certain fields. Such an imple-
mentation allows, if necessary, to replace this module with any NoSQL storage in
the future. The document storage implementation stores the patent data and all the
necessary metadata locally in a specified directory. If cluster computing is required,
the data folder can be placed on any network file system that supports FUSE tech-
nology. From the program interface side, this storage is an interface that provides



The Software for Formation of Technical Function ... 139

Text post-processing ... Text extracuon
methods from files
Command line
* """" -
Data storage and mterface
Meta data - -~~~ R Eoeay
CRUD operation:

- - -
NLP Anahvzers - - - ] Exuacton method:
and Models of TFandPE | | [___. > Visuslissrion
5 4
Text preprocessing E creraerras | — R
eathiods . i Data structures > Data register

Fig. 1 Component diagram

a collection of documents in the form of a generator, which allows not to store the
entire requested sample in memory, but to retrieve data only when accessing them.

All work on extracting data from files of patent documents is delegated to a
separate library that implements the functionality of reading and extracting data for
specific formats of patent documents. All communication between the store and the
data extraction library is done through a set of data classes. The architecture of the
block for working with the data warehouse is presented in the form of class diagrams
(Fig. 2) and object diagrams (Fig. 3).

The functionality of the CRUD operation to the patent array is implemented in
the «Bulk» class that works with objects that implement the «Document» inter-
face—in this case, «Patent». The «DataFetcher» is responsible for extracting data
and creating data document objects. For its operation, two objects of classes are
needed that implement the «DocumentReader» and «DocumentParser» interfaces.
«DocumentReader» extracts the text of patents from patent document files in their
original formats (files from the USPTO database are contained in yourself several
patents, archives, and other data at once). «DocumentParser» is responsible for the
creation of document objects (class «Patent»). Since there are several dozen formats
of input files and formats of the documents themselves, for simplicity, most of them
are omitted in the diagram and replaced by the “...” sign, which symbolizes many



140 D. Korobkin et al.

UsptoApplicationddParser UsptoApplicationd3Parser ZippedXmiReader
~ meta: dict ~ meta: dict ~ meta: dict
+ _call_(text: string): Patent[) + __call_(text: string): Patent[*] + read(file: string): string[*]
J}' ‘; MergedXmiReader
DocumentParser DocumentReader ~ meta: dict
- meta: dict - :
meta: dict (<}——— + read(file: string): string[*]
+ __call__(text: string): Document[*) + __call__(filename: string): string[*]
\ ' '
""""""""" J - Bulk
Patent v \vi + data_fetcher: DataFetcher
+ number: int interface
& : “Iga";chn <] “““ t |+ create{d: Document)
+ title: string )

. + update(d: Document)
+ipc_class: string '

+ delete(d: Document)

L}

L}

L}

'

L}
+ abstract: string HandlerPool '

' "
+ summary: string + handles: Callable vt get(key: Lambda)

[} - ”
+ claims: string + _call_(args: Object[’]. ' + put(files: string[*])
+ description: string kwargs: Dict<string, Object ): Object [*] E X

v L
: DataFetcher

Document
+ fields: dict<string, Object>

+ reader. HandlerPool

+ parser: HandlerPool

Chain of Resposibility

+ serialize(o: Object): string

__call__(file: string[*]): Document[*]

+ deserialize(data: string): Object

Fig. 2 Document storage class diagram

bulk: Bulk
usplo_parser: usplo_feicher:
HandlerPool
AN \
usptodd_parser.. us| usplo_reader:

plo43_parser:
UsploApplicationd44Parser UsploApplication43Parser

Fig. 3 Patent storage object diagram



The Software for Formation of Technical Function ... 141

different implementations for each format. For the same reasons, the «HandlerPool»
class has been introduced, which is the standard «Chain-of-responsibility» design
pattern. «HandlerPool» stores a list of all registered handlers and, when a request
for processing arrives, delegates it to one of them, which makes it easy to add func-
tionality for processing new input data formats with small code changes. The class
object relationships are shown in Fig. 3.

The second part (semantic core) is a library that implements all the functionality
for text processing:

e graphemic and lexical analysis, implemented in the form of text processors, as
well as adapters to third-party word processing libraries such as NLTK [14];

e morphological and syntactic analysis, implemented in the form of adapters to
third-party libraries TreeTagger, MaltParser [15, 16], UdPipe, and others;

e gyntactic and semantic analysis—packages for working with PE and TF that
programmatically implement the methods and data structures described in this
work.

The architecture of the semantic core block is presented in the form of class
diagrams (Figs. 4, 5) and object diagrams (Fig. 6).

Registry Conll TreeTagger
+ stop_words: string[*] +id: int + model: treetagger.Model
+ del_roles: string[*] + form: string + _call__(text: string): Conli[*]
+ role_map: dict + lemma: string .
+ upostag: string .
y + xposiag: siring
SaoExtractor
+ feats: string
+ registry: Registry
+ head: int '
+ reduce(tree: ConliTree): ConliTree " i
+ deprel. string UdPipe
+ extract(ree; ConliTree): SAO [*) + deps: string + model: udpipe. Model
+ misc: string
+ __call__(text: string): ConliTree[*]
SAO + create(fields: list): Conll
+ subjects(): ConliTree [] + parse(text: string): Conli[*]
+ action(): ConliTree &
+ objects(): ConliTree [*] ConliTree <
> + parent: ConliTree
+ create(fields: list). SAQ pat
+ data: Conll
+ parse{text: string): SAO [*]
+ children: ConilTree[*]
¢ + add_children(data: Conll): ConliTree
ConliRender

+ remove_children{node: ConliTree)

+ render(tree; ConliTree): BinaryStream

+ next()

+ save_image(ree: ConliTree,
filename: string)

Fig. 4 Semantic core class diagram



142 D. Korobkin et al.

Chain Pipeline

+ steps: Callable |+ steps: Callable

+ __call__(o: Object): Object

L}
: + __call__(items: lterable): lterable
L}

lgssasae

'S
---------- D “Calable[<F=7mm
o

- '
- 1 -
"

EE——

PatternReplacer SentenceTokenizer WordTokenizer
+ pattern: re.Pattern + lokenizer: sent_tokenizer + tokenizer: sent_tokenizer
+ repl: string + slop_words: sent_tokenizer + stop_words: sent_tokenizer
+ __call__(text: string): string + __call__(text: string): string + __call__(text: string): string
Y Y
nitk.sent_tokenizer | | nitk.TweeterTokenizer

Fig. 5 Pipeline data processing class diagram

splite_text:
Pipeline

/

e

clean text: sent_tokenize: word tokenize:

Chain SentTokenizer WordTokenizer
remove numbering; remove formulas: ... | normalize spaces:
PatternReplacer PatternReplacer PatternReplacer

Fig. 6 Diagram of Pipeline data processing objects

In the approach when data is the root cause, the main emphasis is on: storage struc-
tures and work with different formats and notations (classes SAO, Conll, ConllTree,
etc.) [17] and processors of this data, taking data in one format as input and producing
morphological (class TreeTagger), syntactic (UdPipe class), semantic analysis, such
as extracting technical functions (SaoExtractor class).

The main concept that is taken as a basis is the Data Pipeline. Most of the existing
Batch Processing systems are based on this principle. In this work, we use several
third-party libraries based on a data pipeline, which has its implementation specific
to the data format they use (matrices, token sequences, etc.). It was decided not to use
one of the existing pipelining systems due to their cumbersomeness and specificity,
but to implement a simpler and more flexible implementation based on the «Iterator»
design pattern and functional programming elements. The main idea is to build a
chain of tasks, implemented based on the «Command» design pattern, which allows



The Software for Formation of Technical Function ... 143

implementing delayed execution of a certain set of functions. Text processors are
examples of this approach (Fig. 5). An illustrated principle has been applied to the
entire system.

The diagram shows the text processors «PatternReplacer», « WordTokenizer» and
«SentenceTokenizer» that process text at different levels: as a sequence of symbols,
words, and sentences respectively. “PatternReplacer” is intended for replacing or
deleting blocks of text by a pattern, instances of this class implement their specific
functionality, for example, for deleting formulas and numbering paragraphs, as
illustrated in Fig. 6. The classes «WordTokenizer» and «SentenceTokenizer» add
functionality to similar classes of the NLTK library. «WordTokenizer» combines
several words into one for named entities according to the input rules. «Sentence-
Tokenizer» segments sentences. These classes are designed to eliminate from the
text constructions that do not carry semantic significance in the framework of the
problem being solved but negatively affect the correctness of the work of morpho-
logical and syntactic analyzers. The classes described above implement the standard
«Command» design pattern, which allows you to create deferred objects and build
task chains (the «Chain» class) or pipelines (the «Pipeline» class) for processing
data. The «Chain» class represents a chain of execution, stores a list of handlers that
implement the «Callable» interface, passes the input data (a single object) to the
first, its result to the next, and so on along the chain. The Pipeline class implements
similar functionality but works with a collection of objects.

3 Research Results

Command-line interfaces for working with the data storage (Fig. 7) and the semantic
core (Fig. 8) were implemented.

By the physical effect model, each of its components is described by a regular
expression, an example of a description is given in Table 1, for clarity, the pattern is

root@notebook:~2 . /bulk.py -h
Bulk command line tool.

Usage:
bulk put <file>... [--override]
bulk 1ist [--verbose|--count=<kn=>]
bulk stat
bulk -h | --help
bulk --verston

Options:
<h --help Show this screen.
--version Show version,
--override Override existing documents.
--verbose Verbose mode.

Fig. 7 Data storage command-line interface



144 D. Korobkin et al.

root@notebook:-# ./semcore.py -h
SemCore command line tool.

Usage:
semcore morph <file>...
semcore synt <file>... [--output=(conll | picture)]
semcore sao <file»... [--outputs=(conll | plcture)])
sencore effect <file>... [--output=(plain | table)]

sencore -h | --help
semcore --version
Optlons:
-h --help Show this screen.
--version Show version.

Fig. 8 Semantic core command-line interface

Table 1 Description of the physical effect “Ohm’s Law”

Component Description Pattern
Input Impact Electrical field [weak] electric[al] field
Characteristic of impact | weak
Physical quantity electric field strength (electric[al] field) density |
(V/m) pressure) | voltage
Output | Impact electricity
Characteristic of impact Direct, alternating, ([alternating | direct | ionic |

electronic, mixed, ionic mixed]
[electric[al]] current) | AC |
DC

Physical quantity current density (A/m**2) | [electric[al]] current density

Object conductor, semiconductor | [semi]conductor | resistance
| resistor

presented in the following form: optional parts of the pattern are presented in square
brackets, alternatives are listed, separated by the “I” symbol. Examples of found
descriptions of the physical effects are shown in Table 2.

Examples of found descriptions of technical functions in SAO format are shown
in Table 3.

The correctness of the algorithms was proved on a test sample prepared manually.
Technical functions were extracted from the «Summary of Invention» [18, 19] field of
the document, and physical effects were searched for in the «Description» field [20].
The test sample was composed of 60 patent documents and includes 480 technical
functions and a description of 20 physical effects, with one document describing
only one physical effect.

TF extraction method: accuracy—~0.87, completeness—0.77, and F-measure—
0.82.

Search for PE description: accuracy—0.92.



The Software for Formation of Technical Function ... 145

Table 2 Examples of searching for descriptions of technical functions in the text of a patent

Ne

Determined PE

Input data

1

PE Ne 303 «Thermo-photoelectric effect»

Patent US6380534B1

The amplitude of the Brillouin peaks and the
frequency shift of the Brillioun peaks
compared with the Rayleigh peak is a measure
of the voltage and temperature of the optical
fiber at the point from which the light was
backscattered

PE Ne 37 « Ohm’s law»

Patent US2965301A

Conductors, as indicated, are connected to the
resistors for application thereto of
factor—representing voltages and/or currents
and for deriving therefrom an output, all as
more fully explained hereinafter

Table 3 Examples of searching for technical functions in the text of a patent

Ne | Determined SAO Input data

1 S: method and apparatus Patent US6380534B1
A: measure ...A method and apparatus for measuring the
O: temperature and strain within a temperature and strain within a structure
structure consists of having optical fibres incorporated
S: optical fibres in the structure, passing pulses of light down
A: pass the fibre and detecting the backscattered
O: pulses of light down the fibre light...
S: optical fibres
A: detect
O: backscattered light

2 S: object of the invention Patent US2965301A

A: provide
O: simple and reliable multiplier-divider
computer unit of increased capacity.

S: object of the invention

A: provide

O: simple and reliable D.C.
multiplier-divider computer unit

...object of the invention is the provision of a
simple and reliable multiplier-divider
computer unit of increased capacity.

Another object of the invention is the
provision of a simple and reliable D.C.
multiplier-divider computer unit...

To test the method of constructing a database of technical functions performed

by physical effects, a combination of test and design samples was made, measuring
60 and 10 thousand patent documents, respectively.

We will assume that for a specific document of the test sample, a correspondence

between the PE and the TFs implemented by it has been determined, if at least 80%
of the technical functions marked by experts in the document and correctly found at
the stage of testing the method for extracting TF technical functions were marked in
the TF-PE matrix for this PE. This threshold value is introduced in connection with
the possible exclusion of technical functions at the stage of reducing their space.



146 D. Korobkin et al.

According to the results of testing, the accuracy of extracting technical functions
performed by physical effects was 0.78.

4 Discussion

The theoretical value of this work lies in the developed methodology for analyzing
graphical representations of mathematical formulas to expand the description of
scientific and technical effects and create an automated system on its basis.

5 Conclusion

The reported study was funded by RFBR (research project 18-07-01086), RFBR and
Administration of the Volgograd region (projects 19-47-340007, 19-41-340016).

References

1. Orloff, M.: Inventive Thinking Through TRIZ: A Practical Guide, p. 352. Springer, Heidelberg
(2006). https://doi.org/10.1007/978-3-540-33223-7

2. Vayngolts, I., Korobkin, D., Fomenkov, S., Golovanchikov, A.: Synthesis of the physical opera-
tion principles of technical system. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos,
P. (eds.) CIT&DS 2017. CCIS, vol. 754, pp. 575-588. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-65551-2_42

3. Korobkin, D., Fomenkov, S., Kravets, A.: Methods for extracting the descriptions of sci-tech
effects and morphological features of technical systems from patents. In: IISA 2018 (2018).
https://ieeexplore.ieee.org/document/8633624

4. Davydova, S., Korobkin, D., Fomenkov, S., Kolesnikov, S.: Modeling of new technical systems
using cause-effect relationships. In: IISA 2018 (2018). https://ieeexplore.ieee.org/document/
8633683

5. Korobkin, D., Shabanov, D., Fomenkov, S., Golovanchikov, A.: Construction of a Matrix «Phys-
ical Effects — Technical Functions» on the Base of Patent Corpus Analysis. Creativity in Intel-
ligent Technologies and Data Science (CIT&DS 2019), pp. 52-68. (Ser. Communications in
Computer and Information Science (CCIS); Volume 1084) (2019)

6. Park, H., Yoon, J., Kim, K.: Identifying patent infringement using SAO based semantic
technological similarities. Scientometrics 90, 515 (2012)

7. Manning, C., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

8. Yufeng, D., Duo, J., Lixue, J.: Patent Similarity Measure Based on SAO Structure. Chin.
Sentence Clause Text Inf. Process. 30(1), 30-36 (2016)

9. Vasilyev, S., Korobkin, D., Kravets, A., Fomenkov, S., Kolesnikov, S.: Extraction of cyber-
physical systems inventions’ structural elements of Russian-language patents. Cyber-Physical
Systems: Advances in Design & Modelling, pp. 55-68. https:/link.springer.com/book/10.1007/
978-3-030-32579-4#toc (Book ser. Studies in Systems, Decision and Control (SSDC); vol. 259)
(2020)


https://doi.org/10.1007/978-3-540-33223-7
https://doi.org/10.1007/978-3-319-65551-2_42
https://ieeexplore.ieee.org/document/8633624
https://ieeexplore.ieee.org/document/8633683
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-030-32579-4#toc

The Software for Formation of Technical Function ... 147

10.

11.

12.

13.

14.

19.

20.

Guo, J., Wang, X., Li, Q., Zhu, D.: Subject—action—object-based morphology analysis for
determining the direction of technological change. Technol. Forecast. Soc. Change 105, 27-40
(2016)

Lee, J., Kim, C., Shin, J.: Technology opportunity discovery to R&D planning: key technolog-
ical performance analysis. Technol. Forecast. Soc. Change 119, 53-63 (2017)

Moehrle, M.G., Walter, L., Geritz, A., Muller, S.: Patent-based inventor profiles as a basis for
human resource decisions in research and development. R&D Manag. 35(5), 513-524 (2005)
No, H.J., Lim, H.: Exploration of nanobiotechnologies using patent data. J. Intellect. Prop.
4(3), 109-129 (2009)

Wang, X., Wang, Z., Huang, Y., Liu, Y., Zhang, J., Heng, X, et al.: Identifying R&D partners
through subject—action—object semantic analysis in a problem & solution pattern. Technol.
Anal. Strateg. Manag. 29, 1-14 (2017)

. Wich, Y., Warschat, J., Spath, D., Ardilio, A., Koénig-Urban, K., Uhlmann, E.: Using a text

mining tool for patent analyses: development of a new method for the repairing of gas turbines.
In: 2013 Proceedings of PICMET 2013 Technology Management in the IT-Driven Services
(PICMET), pp. 1010-1016. IEEE, 2013, July

. Yoon, J., Kim, K.: Identifying rapidly evolving technological trends for R&D planning using

SAO-based semantic patent networks. Scientometrics 88(1), 213-228 (2011)

. Yoon, J., Kim, K.: Detecting signals of new technological opportunities using semantic patent

analysis and outlier detection. Scientometrics 90(2), 445-461 (2012)

. Yoon, B., Park, 1., Coh, B.Y.: Exploring technological opportunities by linking technology and

products: Application of morphology analysis and text mining. Technol. Forecast. Soc. Change
86, 287-303 (2014)

Zhang, Y., Zhou, X., Porter, A.L., Gomila, J.M.V.: How to combine term clumping and
technology roadmapping for newly emerging science & technology competitive intelligence:
“problem & solution” pattern based semantic TRIZ tool and case study. Scientometrics 101(2),
1375-1389 (2014)

Mel’Cuk, I.: Dependency Syntax Theory and Practice. SUNY, New York (1988)



	 The Software for Formation of Technical Function Assessments Based on the Patent Analysis
	1 Introduction
	2 The Methodology
	3 Research Results
	4 Discussion
	5 Conclusion
	References




