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Biomass-Derived Polyurethanes
for Sustainable Future

Felipe M. de Souza, Pawan K. Kahol, and Ram K. Gupta

Abstract

This book chapter starts with an overview of the
ever-growing consumption of polyurethanes along with
the main challenges faced by researchers and industry
demonstrating how they fit into the current scenario. The
main routes to synthesize polyols are discussed in detail,
showing the versatility of polyurethane chemistry. Also
how green approaches can be introduced to turn process
sustainable, profitable, and many times demonstrating to
be more effective than petrochemical-based. This chapter
also focuses on biomaterials that are currently being used
in industry such as corn, soybean, rapeseed, and castor oil
as well as bio-renewable sources in ongoing research like
terpenes, terpenoids, and lignin. Their chemical modifi-
cation paths were discussed in detail, to give a proper
understanding of how to synthesize them and how their
properties can be matched with their petrochemical
counterparts. The main procedures covered for the green
synthesis include epoxidation, ring-opening, hydroformy-
lation, hydrogenation, ozonolysis, thiol-ene, and
transesterification.

Keywords

Bio-polyol � Polyurethanes � Green chemistry �
Vegetable oil � Terpenes � Lignin

1 Introduction

The polyurethanes are a vital class of polymers due to their
vast range of applications and properties. They are as clas-
sified as rigid, flexible, elastomer, thermoplastic, waterborne,
adhesive, coating, sealant, binders, and more which trans-
formed the modern industry by implementing low-cost
starting materials with high effectiveness. The polyurethanes
improved human quality of life in so many aspects that it
would be nearly impossible to detach them from daily life
nowadays (Szycher 1999). The polyurethane industry
established its share in the market back in 1937, thanks to
the research of Professor Dr. Otto Bayer and colleagues
(Seymour and Seymour 1989). Since then polyurethane
industry thrived reaching currently a $69.2 billion net worth
market in 2019, which projects a promising future with an
expected growth of around 5.0–5.6% per year by 2025
(Bhatnagar 2018). This increase comes from the many
applications of polyurethanes, for example, furniture indus-
tries, where a large quantity of polyurethanes are used for
making chairs, mattresses, and sofas. The flexible structure
of some foams allows them to be soft yet resistant to creep
maintaining their shape for long period; a common example
is the memory foam that adapts according to the body to
provide a proper rest, conceding its use in health centers to
relieve pressure sores (Collier 1996). The automotive
industry also takes advantage of polyurethanes to manufac-
ture seats, armrests, headrests, and interior components due
to both lightweight and strong mechanical properties, which
makes them fit precisely for this use, providing comfort as
well as fuel efficiency because of overall weight decrease
(Hăloiu and Iosif 2013). The footwear industry uses it for
similar reasons, to add comfort, durability, and resistance to
abrasion (Sacchetti et al. 1991). Due to their low heat
transfer properties, polyurethanes are usable as thermal
insulators in buildings, which besides providing a pleasant
environment also contributes to saving energy due to less
use of heaters and air conditioning, decreasing emissions of
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CO2 and greenhouse gases. For the same motive, they are
widely used in freezers, being responsible for an increase in
up to 60% of refrigeration efficiency after their implemen-
tation (Somarathna et al. 2018). Another field of their
application is on coatings, bonding agents, and sealants due
to their stability against corrosion, temperature amplitude,
and radiation, enabling them to connect or cover many
surfaces like rubber, wood, and even glass (Akindoyo et al.
2016). The classifications and applications of polyurethanes
worldwide can be observed in Fig. 1.

1.1 Chemicals for Preparation of Polyurethanes

The polyurethanes are synthesized through a reaction
between a hydroxyl (–OH) and isocyanate (–N=C=O)
groups that leads to the urethane linkage [–HN–C(O)–O–].
To form a polyurethane, both starting materials must have at
least bifunctionality as described in Fig. 2 (Ottenbrite 2001).
This reaction can be performed by using a vast number of
starting materials, granting many possible combinations that
provide a broad set of properties for the final products, which
is why polyurethanes are so versatile and continue to grow
every year (Charlon et al. 2014). The main reagents required
to make polyurethanes are polyols, isocyanates, catalysts,
surfactants, and blowing agents.

The polyols are compounds with two or more –OH
groups. There are two larger groups of polyols namely
polyether and polyester, which represent more than 80% of

oligo-polyols manufactured together (Ionescu 2006). The
main starting materials for the synthesis of polyether-based
polyols are given in Fig. 3. Because their structure has tense
bond angles (Bayer’s tension), they can be polymerized
through ring-opening polymerization, which can be initiated
by a starter polyol, which is a compound that contains typ-
ically 2 or 3 hydroxyl groups in its structure as described in
Fig. 4.

Polyesters are another large group used as polyols that
can be synthesized through an esterification reaction mostly
between dicarboxylic acids and di or polyols. A general
reaction describing esterification is shown in Fig. 5. Other
groups of polyols used for the synthesis of polyurethanes are
the polycarbonates, polyacrylics, and polybutadiene diols.
Their general structures are provided in Fig. 6. The polyols’
main chain size is an important factor that dictates the
properties of the final polyurethane in a way that high
molecular weight polyols (2000–10,000 Da) may yield more
flexible polyurethanes while shorter molecular weights or
smaller polyol molecules yield rigid ones (Ionescu 2006).

The isocyanates are the other main half component for the
synthesis of polyurethanes. Most of the isocyanates used for
the synthesis of polyurethanes are bifunctionality in nature
and thus referred to diisocyanates. The molecular structure
of isocyanates can vary from a more rigid to flexible which
can influence the properties of the final polyurethanes. For
example, with a proper combination of polyols, toluene
diisocyanate (TDI) provides polyurethanes with the most
rigid structure while hexamethylene diisocyanate (HDMI)

Fig. 1 Global usage of
polyurethanes

Fig. 2 General reaction between a polyol and diisocyanate to form a polyurethane
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produces flexible polyurethanes. Based on their properties,
they are applicable in thermal insulators (rigid), production
of mattresses (flexible), soles of shoes (elastomer), etc.

Figure 7 shows the name and structure of the most com-
monly used diisocyanates. Despite the essential role of iso-
cyanates in the synthesis of polyurethanes, the isocyanates
raise concern regarding their toxicity and environmental
issues. There is a growing need to find alternative synthetic
routes for polyurethanes that do not demand or at least
diminish the use of isocyanates. Recently, non-isocyanate-
based polyurethanes are being researched. For example, the
reaction between carbonated vegetable oil with
aminosiloxanes yielded a non-isocyanate compound able to
react with hydroxyl groups from natural-based materials
such as lignin, which demonstrated a promising alternative
route (Lee and Deng 2015).

The catalysts for polyurethanes are important to acceler-
ate the foaming process, which is crucial for the industry.
Mainly two types of catalysts are used, even simultaneously,
during the formulation of a foam. They can be amines or/and
metal complex-based compounds based on zinc, bismuth tin,
and lead. Some of the most common amine-based catalysts
are displayed in Fig. 8. Likewise the isocyanates, catalysts

Fig. 3 Main raw materials for polyether polyols synthesis

Fig. 4 General ring-opening polymerization for polyether polyols

Fig. 5 General polyesterification reaction for the synthesis of polyester polyols

Fig. 6 General structure of polycarbonate, polyacrylic, and polybuta-
diene based polyols

Biomass-Derived Polyurethanes for Sustainable Future 3



for polyurethanes are essential components, especially for
large scale applications, but also present both health and
environmental concerns regarding the lead and tin-based,
which again drive researchers to develop new approaches
that are less harmful and eco-friendly.

The surfactants in polyurethanes play the role of forming
an emulsion to allow proper mixing of the components,
which is important during the foaming process to control and
stabilize cell size as well as the structure of the foam to avoid
flaws. When used in non-foaming procedures, surfactants are

Fig. 7 Name and structure of
most common diisocyanates used
for making polyurethanes

Fig. 8 Name and structure of
common amine-based catalysts

4 F. M. de Souza et al.



used to prevent inner bubbles to obtain a uniform surface.
Generally, surfactants can be cationic or anionic, the first one
used for better emulsification action while the second to
provide stability against corrosion (Akindoyo et al. 2016).
Similar to surfactants, the blowing agents also have the role
of controlling the cellular size because of the formation of
bubbles within the foam. Blowing agents also minimize the
cost due to an increase in the volume of the foams, making
them less dense, which requires less material to cover a
larger area. However, there is an optimum amount of
blowing agent that can be added to the formulation; other-
wise, it can compromise the foam’s mechanical properties.
There are two types of blowing agents, chemical and
physical. Water is a chemical blowing agent as water reacts
with isocyanate during the foaming process to produce CO2

gas. Water is a preferred blowing agent for many industrial
foaming processes due to its effectiveness, low-cost, and
environmentally friendly nature. Physical blowing agents are
mainly gases that are physically injected during the foaming
process. The most commonly used physical blowing agents
were chlorofluorocarbon (CFC)-based compounds, although
they are effective but raised many environmental concerns as
they cause ascend to the stratosphere and deplete the ozone
layer (Kumaran and Bomberg 1990). The use of
chlorofluorocarbon-based compounds was restricted by the
Montreal Protocol back in 1989.

1.2 Importance of Green Chemicals
and Synthesis Methods

The worldwide concern about environmental issues came
mostly after the escalation of global warming due to high
emission levels of greenhouses gases, which led to interna-
tional protocols that pushed the development of new mate-
rials obtained from renewable sources. It became a general
concern as the production of plastics increased from 5 to 300
million tons per year from 1950 to 2019 (Dissanayake and
Sinha 2013). Very few countries are recycling plastics, for
example, the USA recycled about 8.4% of the produced
plastics while Europe recycled about 40% in 2017 (Zhao
et al. 2008; Kale et al. 2007). Notably, most nations are
slowly taking care of the environment, but there are some
issues to overcome such as contamination and technical
constraint that limits more recycling, emission of greenhouse
gases during the production of virgin plastics, and contam-
ination of the oceans that are estimated to be around 100
million tons. These factors are compelling to develop sus-
tainable routes for the production of commercial polymers
(Zhao et al. 2008; Chidambarampadmavathy et al. 2017;
Dodbiba and Fujita 2004).

Green synthesis involving new methods and chemicals
derived from plant-based sources offers several advantages

of being environmentally friendly and cost-effective com-
pared to oil-derived sources. Plant-based chemicals can be
produced annually while oil-based chemicals take several
years to reproduce. Another important feature of bio-based
materials is the possibility of turning them into biodegrad-
able, which not only gives them a proper final destination
but also implements a more effective recycling step to the
process compared to petrochemical-based materials (Akin-
doyo et al. 2016; Llevot et al. 2016). This scenario provides
a stable schedule for long-time production and pricing since
the harvesting of these renewable sources no longer requires
petroleum quarries that are spread randomly around the
globe, which leads to less friction between nations and
decrease the dependence in petro-based materials. Petro-
chemicals are widely used in many areas such as automotive,
households, aircraft, and clothing, which create a large
demand for the starting materials; hence, the use of alter-
native sources decreases the dependence of non-renewable
raw materials by providing reasonable and even cheaper
paths.

1.3 Characteristics of Biomaterials
for Polyurethanes

Many biomass-derived compounds can be used as raw
materials for the synthesis of polyols, mostly because of
unsaturations that can be converted into hydroxyls groups in
a variety of ways. Usually, primary or secondary hydroxyl
groups are often desired in the bio-derived compounds as
they are more reactive with isocyanates (Kolb et al. 2001;
Ramanujam et al. 2019; Ionescu and Petrović 2010). The
biomaterials suitable for polyols cover a broad range of
structures that grant distinct properties for their derived
polyurethanes. Few examples of suitable biomaterials and
their sources are given in Table 1 (Blasbalg et al. 2011;
Satoh et al. 2006; Sissener et al. 2018; Belgacem and Gan-
dini 2008).

2 Bio-Oils as a Renewable Resource
for Polyurethanes

The depletion and price instability of petroleum-based
resources and growing environmental concerns created a
need to find sustainable starting materials that provide sim-
ilar properties with low production cost compared to
petrochemical-derived products. To attend this requirement,
the scientific community made great efforts to create alter-
native routes for the synthesis of polyurethanes using
renewable sources. From this line of work, bio-polyols were
synthesized using various methods. For example, soybean
oil-based polyurethanes provide a rigid polyurethane with

Biomass-Derived Polyurethanes for Sustainable Future 5



mechanical, insulating, and thermal properties that are sim-
ilar to petrochemical-based polyurethanes (Mu et al. 2012).
In another approach, transesterification with glycerol cat-
alyzed by triethanolamine was used to synthesize castor
oil-based rigid polyurethane (Petrović et al. 2008). Another
interesting example was the conversion of rapeseed oil into
polyol through microwave synthesis that yielded a flexible
polyurethane (Dworakowska et al. 2012).

The starting point to consider the use of a bio-oil is the
presence of double bonds, which are the versatile reactive
sites that can be functionalized in many ways. Conversion of
a double bond to –OH group is one of the highly studied and
developed processes as it provides a reaction site for the
isocyanate to form urethane linkage (Ramanujam et al. 2019;
Zhang et al. 2018; Elbers et al. 2017). Some common
examples of bio-oils that have double bonds in their struc-
tures can be converted into polyols are soybean, corn,
canola, limonene, carvone, and palm oil (Ramanujam et al.
2019; Javni et al. 2003; de Souza et al. 2020). Some natural
oils can be directly used as polyols to make polyurethanes
due to the presence of hydroxyl groups in their structure.
Castor and Lesquerella oils are among the few natural oils
which possess hydroxyl groups in their structure and there-
fore could be used for the preparation of polyurethanes. Such
oils are currently implemented in the industrial production of
polyurethanes as well as in research and development.

Initially, the castor oil extracted from the castor plant,
Ricinus communis, had no commercial use due to its
unsuitability for diet as it contains a deadly protein named
ricin (Challoner and McCarron 1990). Also, the castor plant
spreads easily to other commercial crops making it even
more undesirable for formers to grow. However, after seeing
its commercial value for the production of polyurethanes and
increasing demand for renewable resources for industrial

applications, there has been increased interest in harvesting
castor plants mostly in India (Haynes et al. 2001; Milliano
et al. 2010; Mittal et al. 1991). The increased demand for
castor oil for industrial applications is due to the uniqueness
of the oil. Castor oil contains almost 90% of a single
triglyceride from glycerin and ricinoleic acid, which contains
a secondary hydroxyl group as well as unsaturation, while
most of the other oils possess a mixture as described in
Fig. 9 (Yeadon et al. 1959; Babb 2012; Ehrlich et al. 1959).
As noted, castor oil contains three hydroxyl groups in its
structure which allow castor oil to use polyols without any
chemical modification for the polyurethane industry. Also,
the presence of unsaturation opens many possibilities for
chemical modifications, which can provide a wide range of
properties (Hansen 1972; Moore and Norton 1953; Müller
2014). Currently, castor oil is widely used for flexible
polyurethane foams, rigid foams, elastomers, and lubricants
due to facile growth, extraction, low-cost, and improved
properties (Szycher 1999; Hablot et al. 2008; Javni et al.
1998).

Lesquerella oil, extracted from Lesquerella fendleri, also
presents a chemical structure similar to castor oil. Les-
querella oil contains a double bond at C11 and –OH group at
C14 in a backbone of 21 carbons. L. fendleri prefers slightly
dry and alkaline environments, therefore mostly found in
southwestern regions in the USA (Hayes and Kleiman 1992;
Dierig et al. 1996; Puppala and Fowler 1999). Although the
chemical structure of Lesquerella oil is suitable to use for the
polyurethane industry, the low quantity of extractable oil
from the plant (a maximum of 25% by weight) restricts its
industrial applications. Despite the low industrial demand of
L. fendleri for the polyurethane industry, it can be used for
food purposes as its seed is non-toxic and contains a high
protein of around 35% (Babb 2012; Dierig et al. 1996;

Table 1 Suitable compounds for polyols and its main characteristics and sources

Name C=C bonds Carbons Main sources

Oleic 1 18 Olive, canola, rapeseed, refined tall, sunflower and fish

Linoleic 2 18 Corn, cottonseed, soybean, refined tall and sunflower

a-linolenic 3 18 Linseed, refined tall, rapeseed and canola

c-linolenic 3 18 Linseed, refined tall, rapeseed and canola

Arachidonic 4 20 Eggs, beef, pork, and fish

Erucic 1 22 Fish, mustard seed, and rapeseed

Docosapentaenoic acid (DPA) 5 22 Poultry, finfish, and shellfish

Docosahexaenoic acid (DHA) 6 22 Finfish, poultry, and shellfish

Limonene 2 10 Orange peel, lemon, lime, and other citric fruits

Carvone 2 10 Caraway, spearmint, and dill

a-phellandrene 2 10 Turmeric, dill, angelica root and eucalyptus dive

Myrcene 3 10 Mango, hops, and lemongrass

6 F. M. de Souza et al.



Puppala and Fowler 1999). Nevertheless, Lesquerella-based
polyurethanes were developed for coating applications, due
to its proper chemical structure (Sharmin et al. 2015).

There are many versatile procedures to convert natural
oils into bio-polyols, such as epoxidation and ring-opening,
hydroformylation and hydrogenation, ozonolysis, thiol-ene,
and transesterification. The following sections discuss the
various methods to convert bio-oils into polyols.

2.1 Epoxidation and Ring-Opening Reactions

The epoxidation reaction consists of the insertion of an
oxygen atom into a double bond to create an oxirane ring,
which is a very reactive group due to the tension of the bonds
in a short cycle of three atoms, famously known as ‘Bayer’s
tension.’ This characteristic allows the epoxy groups to be
used as raw materials to produce epoxy resins, functionalized
alcohols, alkanolamines, glycols, and polymers such as
polyethers, polyesters, and polyurethanes (Cai et al. 2008).
There are four main ways to synthesize epoxy compounds
from olefins. The first method is epoxidation using percar-
boxylic acids; being m-chloroperoxybenzoic acid (MCPBA)
the most common, its mechanism can be described in Fig. 10
(Rios et al. 2005; Warwel and Klaas 1995; Bohnet 2003).
The second method is epoxidation through inorganic or
organic peroxides, such as transition metal-based, nitrile
hydrogen, and alkaline peroxides (Finn and Sharpless 1985).
This method is considered a clean method due to low cost and
high yield and widely used in industries (Goud et al. 2006).
The third method uses hypohalous acids of general formula

HOX and respective salts mostly to form epoxies in olefins
that present electron-withdrawing neighbor groups (Bohnet
2003). The fourth and most effective way is epoxidation
through molecular oxygen. This method does not require a
catalyst and is considered as the cleanest method. However, it
is not applied to the industry because it demands too specific
equipment and extensive safety measures due to the risk of
explosions (Cai et al. 2008; Bohnet 2003).

The synthesis of epoxies is applied to a variety of bio-oils
derived from corn, soybean, sunflower, linseed, safflower,
etc. The follow-up procedure usually consists of opening the
oxirane ring to turn it into a secondary hydroxyl group that
can react with diisocyanates to make polyurethane foams.
This reaction can be carried out in most of the epoxidized
bio-oils by performing reflux of methanol or other alcohols
under mild conditions such as temperatures between 35 and
45 °C, pressure around 0.1–0.2 MPa and catalyst, at which
the largest used one is tetrafluorboricacid (HBF4) a strong
Lewis acid (Ionescu et al. 2007). A general ring-opening
reaction is described in Fig. 11 (Ionescu et al. 2007; Dai
et al. 2009). Some possibilities reported by authors involve
ring-opening reactions for epoxidized bio-oils with larger
aliphatic alcohols that provided a change in properties
causing the resulting polyurethanes to lose some of its
mechanical properties due to increase of dangling groups but
increase environment stability because of higher hydropho-
bicity (Zhang et al. 2015). Also, synthetic routes have been
performed to introduce primary hydroxyl groups due to their
higher reactivity toward isocyanates by performing a
ring-opening reaction with ethylene oxide, mentioned as
ethoxylation (Ionescu et al. 2007).

Fig. 9 The chemical structure of
castor oil

Fig. 10 Epoxy formation
mechanism reaction for a general
olefin with MCPBA
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2.2 Hydroformation and Hydrogenation
Reactions

Hydroformylation involves the conversion of a double bond
into an aldehyde through a reaction with a gaseous mixture
of CO and H2 which requires a high temperature and pres-
sure to shift equilibria toward the product formation and
catalyst such as rhodium or cobalt phosphine complexes.
The obtained aldehyde can be reduced to alcohol through
hydrogenation, which is a reaction with hydrogen under
pressure and catalysts such as Pt, Raney Ni. General reac-
tions of both procedures were given in Fig. 12. These
technologies were implemented around 1950 and caused a
great impact in the chemical industry because they allowed
the conversion of many unsaturated organic compounds
such as precursors for fragrances, detergents, drugs and
currently used to synthesize polyols (Pino and Botteghi
2003; Ojima et al. 2000; Franke et al. 2012).

Hydroformation and hydrogenation reactions were suc-
cessfully used to converted soybean oil into polyol (Guo
et al. 2002). It was observed that catalysts have a significant
role in these reactions and affect the properties of the

polyurethanes. For example, rigid polyurethanes were
obtained when the synthesized polyol was catalyzed by
rhodium-based compounds, while rubbery polyurethanes
resulted when cobalt-based catalysts were used. The polyols
synthesized through this method present primary hydroxyl
groups, which are more reactive with isocyanates. The –OH
group in the middle of the chain causes a part of the back-
bone to act as a pendant group, leading to a plasticizing
effect. Therefore, such reactions and modifications can be
used to obtain flexible polyurethanes (Guo et al. 2002; de
Souza et al. 2012). Besides, hydroformylation and hydro-
genation are green and clean methods that are used in a
broad range of applications, allowing the chemical intro-
duction of primary hydroxyl groups within the backbone of
an unsaturated compound. Despite the requirements of high
temperature, pressure, and expensive catalyst, it is a widely
used technology in the industry (Frankel and Thomas 1972;
Frankel 1973; Frankel 1976).

2.3 Ozonolysis

The unsaturation within the vegetable oils’ backbone is the
main source for different reactions that allow their conver-
sion into polyols. Ozonolysis is another method to take
advantage of unsaturation in the vegetable oils to convert
them into polyols. This method differs from other mentioned
methods as it causes cleavage of both p and r bonds within
the carbon chain leading to the formation of two new
compounds. If the carbon attacked by ozone is primary,
carboxylic acid and an aldehyde or a terminal primary
alcohol (depending on condition) can be formed. If the
carbon attacked by ozone is secondary, a ketone will be
formed instead of an aldehyde as described in Fig. 13a, b.
The aldehyde and ketone can be reduced to primary and
secondary alcohol respectively in subsequent reactions as
described in Fig. 13c, d. For most known cases, fatty acids
derived from vegetable oils have linear chains, which lead to
the formation of aldehyde as a product of ozonolysis. These
aldehydes can be reduced to an terminal primary alcohol
yielding the general structure of a polyol shown in Fig. 14
(Petrović et al. 2005). Primary alcohol at the end of the chain
allows the whole backbone to be part of polyurethane’s
structure. Differently from a secondary hydroxyl group in
the middle of the chain, which after the reaction with iso-
cyanate would leave a hanging group that could act as
plasticizers, hence decreasing the mechanical properties.
This effect explains why rigid polyurethanes can be obtained
through this method, as it has been successfully employed to
synthesize polyols derived from vegetable oils, such as corn,
canola, and castor oil (Petrović et al. 2005; Narine et al.
2007a, b). Ozonolysis leads to side products such as car-
boxylic acids which are impurities since their reaction with

Fig. 11 General ring-opening reaction of epoxides

Fig. 12 General hydroformylation and hydrogenation reaction for the
conversion of double bonds into hydroxyl groups
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diisocyanate does not yield a polyurethane Fig. 13. This
makes a purification process necessary for this method.
Another factor that reinforces this need is that previous
studies showed that a vegetable oil converted into polyol
through ozonolysis may have a smaller hydroxyl number
than other methods. It happens because the chain is cleaved
at the double bond, which allows the formation of only one
terminal hydroxyl group per chain of a triglyceride, despite
the number of unsaturations that previously existed as
demonstrated in Fig. 14 (Zlatanić et al. 2002; Frollini et al.
2016). The procedure can be performed in many ways, for
example, by bubbling ozone into the reaction mixture along
with catalysts such as CaCO3, pyridines, or NaOH under low
temperature, followed by wash and purification of the polyol
under vacuum or low pressure (de Souza et al. 2012; Pet-
rović et al. 2005; Tran et al. 2005).

2.4 Thiol-Ene Reaction

The thiol-ene reaction was first reported around 1905 and
quickly became a very useful tool for many chemicals,
biochemical, and industrial procedures to fabricate coatings,
electronic adhesives, shape-memory foams for medicinal
applications and nanoengineered materials (Posner 1905;
Pappas 1985; Killops et al. 2008; Nair et al. 2010; Morgan

et al. 1977). The searching for sustainable routes to produce
renewable materials made both industry and researchers land
into the thiol-ene chemistry that grew and still growing into
one of the most beneficial methods. Thiol-ene reactions are
green, low-cost, high yield, and facile procedures that do not
require solvents and high temperatures (Desroches et al.
2011; Griesbaum 1970; Lluch et al. 2010). This method can
be performed by using a photoinitiator in the presence of
ultraviolet light, which prompted the addition of a mercaptan
(S–H) into a carbon–carbon double bond (C=C) through the
formation of a thiyl radical that attach to the double bond
followed by abstraction of hydrogen radical. It could also
lead to side reactions such as disulfide or hydrogen

Fig. 13 General ozonolysis of in
an olefin a not substituted,
b substituted followed by
reduction to a c primary alcohol,
and d secondary alcohol

Fig. 14 General structure of a vegetable-derived polyol from
ozonolysis
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recombination and formation of dimers as given in Fig. 15
(Morgan et al. 1977; Desroches et al. 2011; Hoyle et al.
2004). It can also be performed through ionic mechanisms
when clays and metal sulfides are used as catalysts (Hagberg
et al. 2007). The versatility of the thiol-ene reaction allows
the conversion of olefins using a mercaptan with virtually
any end group. Therefore, many bio-polyols can be syn-
thesized using bio-renewable oils such as corn (Ramanujam
et al. 2019), soybean (Yang et al. 2017), castor (Ionescu
et al. 2016), lignin (Liu and Chung 2017), limonene (Zhang
et al. 2018), carvone (de Souza et al. 2020), and many others
by functionalization of their unsaturation with mercapto
compounds containing a hydroxyl group at the end of their
structure, allowing a facile and green route to obtain
bio-polyols. Some kinetics studies made on thiol-ene reac-
tion showed that the higher electron density in the double
bonds is more the reactivity toward the thiyl radical. This
phenomenon is favorable for bio-oils since the majority of
them present linear and aliphatic chains that increase the

reactivity of the double bonds through the inductive effect of
the backbone (Morgan et al. 1977). Another factor is that the
thiol-ene reaction yields a primary hydroxyl group into the
chain as demonstrated in Fig. 16, which is more reactive
with isocyanate (Hoyle et al. 2004).

Fig. 15 General radical mechanism for a thiol-ene reaction. Adapted with permission (Hoyle et al. 2004). Copyright (2004) Wiley Periodicals,
Inc.

Fig. 16 General structure of a thiol-ene bio-derived polyol
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2.5 Transesterification Reaction

As previously mentioned, most of the oils derived from
plants are found in their triglyceride form, which requires
functionalization through many methods to convert them
into useful bio-based polyols for polyurethane industries.
The transesterification reaction is a method that relies on the
breaking of one or two of the ester bonds in the triglyceride
to yield one or two hydroxyl groups, hence increasing the
functionality and allowing proper reaction with diiso-
cyanates to make polyurethanes. The general transesterifi-
cation reaction can be described in Fig. 17. As noted, this
method provides a primary hydroxyl group that besides
increasing reactivity with isocyanate also does not leave any
pendant groups which generally increase mechanical prop-
erties. The reaction can be performed under mild tempera-
ture and catalyzed through alkaline media such as sodium,
potassium, or aluminum hydroxide beside others (Arniza
et al. 2015). Usually, transesterification is performed in
conjunction with other technologies such as epoxidation and
ring-opening, as described in Fig. 18, since there are
remaining unsaturated bonds from the other chains that can
be further functionalized with hydroxyl groups (Arniza et al.
2015; Ji et al. 2013; Kamil et al. 2011).

3 Terpenes as Green Starting Chemicals
for Polyurethanes

As demonstrated so far, many vegetable oils can be used in
industry as an alternative for non-renewable sources. Among
non-renewable sources for chemicals, terpenes are a large
group of bio-derived materials mostly originated from plants
as well as from insects, fungi, and aqueous microorganisms
(Wilbon et al. 2013). In plants, the terpenes are secondary
metabolic products that can function as a defense mechanism
to expel predators or to attract some insects to induce
pollination.

Dr. Otto Wallach, the Nobel Prize winner in Chemistry in
1910 for his research on alicyclic compounds, was the sci-
entist that discovered the structural pattern of terpenes and
created the ‘isoprene rule’ which stated that terpenes are
mostly substances with a 2-methyl-1,4-butadiene backbone
that derived from condensation reactions (Clark 1999). Later
in 1950, Leopold Ruzicka, also a Nobel Prize winner in
Chemistry in 1939, proposed the ‘biogenic isoprene rule’
that stated besides condensation, terpenes can also be
obtained through cyclization and rearrangement from pre-
cursors such as geranyl pyrophosphate, which can form

Fig. 17 General
transesterification reaction

Fig. 18 Follow-up procedure for
further functionalization of
general monoglyceride through
epoxidation and ring-opening
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different structures of terpenes Ruzicka 1953). The chemical
structure of a few terpenes is shown in Fig. 19.

As noted, terpenes present a diverse number of structures
that derive from similar carbon skeleton structures, yielding
many isomers (Ruzicka 1953). They also present oxygenated
derivatives named terpenoids that bear functions as car-
boxylic acids, aldehydes, ketones, and alcohols. This broad
range of materials find applications as insecticides, repel-
lents, cosmetics, medicine, polymers, and many others
(Wilbon et al. 2013; Carvalho and Fonseca 2006; Ameh
2014; Garin 1976; Silvestre and Gandini 2008; Beatson
2011).

The terpenes had early and fast passed applications in
polymer and materials science. But they got noticed mostly
after the work of Hermann Staudinger, the ‘father of polymer
science,’ due to his work in the ‘macromolecular hypothesis’
that awarded him the Nobel Prize in 1953 Furukawa 1998).
The base of his work was isoprene which had a great impact
in the industry for the production of latex that has many
applications such as gloves, balloons, and swim caps. The
polymerization reactions of the isoprene are described in
Fig. 20.

The 1,4-addition polyisoprene received special attention
because the double bond in the middle of the main chain
allows crosslink bonds. Later, Goodyear developed a pro-
cess named ‘vulcanization.’ It consisted of a mixture of a
copolymer of polyisoprene and polystyrene with
orthorhombic sulfur (S6) that breaks the double bonds cre-
ating a chemical linkage between two polymeric chains. This
process enhanced the mechanical properties, which made
possible the application in tires for vehicles (Obrecht et al.
2011).

Among terpenes, limonene is a low-cost and versatile
chemical widely used in the preparation of polyurethanes.
Hauenstein and his group used an interesting green approach
using limonene oxide and carbon dioxide as monomers to
synthesize a bio-derived polymer named poly(limonene
carbonate) shown in Fig. 21 (Hauenstein et al. 2016). This
synthesis is one of the rare cases in which carbon dioxide, a
greenhouse gas, is implemented into a polymeric chain along
with a bio-derived material. These starting materials
make this process both profitable and environmentally
friendly.

Fig. 19 Chemical structure of some terpenes

Fig. 20 Polymerization reactions of isoprene
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In theory, this process can be applied to most bio-derived
materials that present at least one double bond that can be
epoxidized. Also, the polymerization procedures do not
require large use of energy or expensive catalysts (Hauen-
stein et al. 2016; Park et al. 2013). Even 100% bio-derived
and isocyanate-free routes for polyurethane were obtained
from the work of Bahr et al. (2012) as described in Fig. 22.

Terpenes can be converted to polyols in several ways as
previously described. Among those, thiol-ene is a conve-
nient method that uses UV-light, either from an electric
source or sunlight, mild conditions such as room temperature
and solvent-free procedures, hence making it a facile and
environmentally friendly method (de Souza et al. 2020;
Gupta et al. 2014; Ranaweera et al. 2017). Many authors
reported terpene or terpenoid-based polyols for polyurethane
that yielded satisfactory properties compared to petro-based
polyurethanes (Zhang et al. 2018; Elbers et al. 2017; de
Souza et al. 2020). For example, Gupta and his research
group used a thiol-ene reaction to synthesize limonene-based
polyol for polyurethanes (Elbers et al. 2017; Ranaweera
et al. 2017; Gupta et al. 2015). A derivative of limonene,
limonene dimercaptan, was also used for the preparation of
polyol as shown in Fig. 23. The polyurethane foams pre-
pared using these limonene-based polyols showed thermal
stability up to 250 °C with regular shape cells and uniform
cell size distribution. The highest compressive strength of
195 kPa was observed for the foams from limonene-based
polyols.

Terpenes are also used as starting materials for different
chemicals. For example, Gupta and his team used limonene
as a starting material for the synthesis of Mannich polyol
(Gupta et al. 2015). Mannich polyols are amino-based aro-
matic compounds and polyurethane foams prepared using
aromatic polyols could provide fire resistance, high thermal,
and superior mechanical properties. The Mannich polyol
was synthesized in three steps. In the first step, Friedel–
Crafts alkylation of phenol with limonene was carried out in
the presence of HBF4 as a catalyst (Fig. 24). In the second
step, the Mannich base was synthesized by the reaction of
oxazolidine with phenol alkylated limonene. In the third
step, the Mannich base was propoxylated to synthesize
Mannich polyol. The polyurethane foams prepared using
limonene base Mannich polyol showed thermal stability up
to 250 °C with a high glass transition temperature of
about *200 °C. The high reactivity of the limonene-based
Mannich polyol makes it very suitable to use for ‘spray’
polyurethane foams.

a-Phellandrene is a monoterpene which contains two
endocyclic carbon double bonds in its structure.
a-phellandrene-based polyol was synthesized using thiol-ene
chemistry for the preparation of rigid polyurethane foams
(Elbers et al. 2017). a-Phellandrene was reacted with
2-mercaptoethanol and a-thioglycerol to synthesize two
polyols with different hydroxyl functionalities as shown in
Fig. 25. The prepared polyurethane foams showed high
closed-cell content (over 90%) with apparent density in the

Fig. 21 Polymerization reaction of poly(limonene carbonate). Adapted from Hauenstein et al. (2016)

Fig. 22 Synthesis of a limonene oxide-based polyurethane through isocyanate-free polymerization. Adapted with permission from Bähr et al.
(2012). Copyright (2012) The Royal Society of Chemistry
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Fig. 23 Synthesis of polyols
based on limonene by using
thiol-ene ‘click’ chemistry.
Adapted with permission from
Gupta et al. (2014). Copyright
(2014) Springer Nature

Fig. 24 Possible structures of
phenol alkylated with limonene.
Adapted with permission from
Gupta et al. (2015). Copyright
(2015) Springer Nature
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range of 28–39 kg/m3. It was observed that the polyol
synthesized using a-phellandrene and a-thioglycerol pro-
vided higher compressive strength of 220 kPa which could
be due to the higher hydroxyl functionalities of the polyol
compared to polyol synthesized using a-phellandrene and
2-mercaptoethanol.

4 Lignin for Green Polymers

Lignin is a raw material found in the cellular wall of the
plants, mostly in gymnosperm and angiosperms. It plays the
role of giving physical support, strength, protection against
external threats (animals, insects, microorganisms, etc.) and
forms a vascular system to transport water, due to its
hydrophobic nature. After cellulose, it is the largest com-
ponent of a plant (Belgacem and Gandini 2008). Cellulose is
a biopolymer composed of defined repeating units of sugar,
named as polysaccharides. Lignin, however, is different
because it presents a random tridimensional network struc-
ture composed of different proportions of coumaryl, con-
iferyl, and sinapyl alcohols as described in Fig. 26. These
compounds undergo biosynthetic routes that provide three
segments noted as p-hydroxyphenyl, guaiacyl, and syringil.
The different ratios of these segments within the plant give
different types of lignin (Laurichesse and Avérous 2014).

Lignin is largely produced by plants reaching almost 1 to
3 billion tons per year (Gellerstedt and Henriksson 2008).
The abundance of this resource makes it relevant to find
more industrial implementations to obtain sustainable,

environmentally friendly, and low-cost materials. Some
examples of the use of lignin are in animal feed, surfactants,
dyes, additives, and others; however, they represent around
only 2% of the usage of lignin (Lora 2008; Holladay et al.
2007; Lora and Glasser 2002). The largest consumption of
lignin comes from the pulp and paper industry, which use
almost 50 million tons per year (Ragauskas et al. 2006). The
paper industry uses several ways to process lignin such as
soda process, kraft and sulfite pulping that consists of
cleaving the ether bonds with the attack of strong alkali or
acid compounds to fragment lignin into lower molecular
weight products to be used for the production of paper with
better quality (Saake and Lehnen 2012; Alén 2000; Gierer
1980). Other examples are organosolv and steam explosion
lignin. Organosolv lignin process consists of organic sol-
vents, such as methanol, ethanol, methanoic, and ethanoic
acid used to separate lignin from woody components. It is
efficient but is also harmful to the environment (Pan et al.
2007). The steam explosion of lignin consists of high pres-
sure and temperature during a short time to promote the
cleavage of ether bonds. It is a promising and green
approach that yields lignin-based compounds with similar
characteristics of those from organosolv (Li et al. 2007). The
scientific community has been finding new routes to func-
tionalize lignin to give new applications. One of the reasons
to implement its use, besides the previously mentioned, is
due to the large presence of aromatic groups in its structure
that enables it to replace some of the petrochemical-based
materials. Two large areas had emerged for this studies; one
is catalytic cleavage and the other is polymeric modification.

Fig. 25 Synthesis of polyols based on a-phellandrene by thiol-ene ‘click’ chemistry. Adapted from Elbers et al. (2017)
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Catalytic cleavage is, in theory, similar to the industrial
application, in which the main objective is to break the ether
bonds in lignin’s structure to obtain fine chemicals and fuels
at the end of the process, and it is presenting ongoing pro-
gress using some models of lignin (Zakzeski et al. 2010;
Sergeev and Hartwig 2011). Polymeric modifications are
divided into physical blending or chemical bonding with
another polymer. In many reports, chemical bonding
demonstrated better enhancement of properties if compared
with blended ones (Kai et al. 2016, 2017). Some examples
are copolymers of lignin which presented good antioxidants
and in other case self-healing properties making it poten-
tially suitable for medical applications (Kai et al. 2015,
2017). Following the ideas of the functionalization of lignin,
some other methods such as thiol-ene were also adopted. Liu
and Chung (2017) were able to functionalize lignin using a
facile thiol-ene reaction through photoinitiators and UV-light
to introduce terminal double bonds that could be further used
to implement polymeric chains or several other functional
groups, as described in Fig. 27. It shows the versatility of
chemistry that can be applied to lignin allowing potential
industry applications.

Normally, lignin-based polyurethanes are tough and
brittle materials. To reduce brittleness, some studies were
performed such as a chemical introduction of longer chains
that act as plasticizers which caused an improvement in
elasticity and glass transition temperature. A green approach

for that manner used cardanol oil, which presents a backbone
of 15 carbons along with a phenolic group that acts as a
reactive site to be introduced into lignin’s structure (Tan
1996). Other approaches developed a lignin-based polyol for
polyurethane foam by performing direct oxypropylation
under alkaline media into lignin powder. It extended the
chain by introducing different ether groups that turned into a
processable low-viscosity liquid polyol (Tan 1996). In
comparison with a commercial polyurethane foam based on
sucrose and glycerol, the pure lignin-based presented higher
mechanical properties, which can clear a path for industry
applications. To perform the oxypropylation lignin and
propylene oxide were placed under high temperature and
pressure and catalyzed by alkaline media as described in
Fig. 28.

Lignin has been also used as a filler in polyurethanes. The
use of lignin as a filer offers the advantage of improved
mechanical strength and enhanced bio-content in the poly-
urethanes (Feldman and Lacasse 1994). Vanillin, an extract
of lignocellulosic, was used as a chain extender in the syn-
thesis of polyurethanes (Gang et al. 2017). Vanillin, as a
chain extender, does not only increase the bio-content in the
polyurethane but also enhanced Young’s modulus of 128%
and strain of 147% compared to control polyurethane.

Chemical modification of lignin can provide poly-
urethanes foams with specific applications. For example,
polyurethane foams with highly resilient properties were

Fig. 27 Functionalization of lignin through esterification followed by a thiol-ene reaction. Adapted with permission from Liu and Chung (2017).
Copyright (2017) American Chemical Society

Fig. 26 Main alcohol unit
components of lignin. Adapted
with permission from Zakzeski
et al. (2010). Copyright (2010)
American Chemical Society
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prepared using polyethylene glycol-grafted lignin (Wang
et al. 2019). Figure 29 shows the chemical modification of
alkali lignin with polyethylene glycol (PEG 2000). The
polyurethane foams prepared using polyethylene
glycol-grafted lignin showed high elastic recovery (>93%)
along with improved compression strength.

As discussed so far, lignin presents a broad range of
potential applications due to its versatility. The introduction
of this renewable material into the industry helps the envi-
ronment and decrease overall cost. The polyurethane
industry, however, is highly dependent on isocyanate, which
is a petrochemical-based material that brings health concerns
due to its toxicity. To decrease its use, Lee et al. obtained a
non-isocyanate route to produce polyurethane elastomers
based on both carbonated soybean oil and lignin (Lee and
Deng 2015). The introduction of lignin provided an increase
in mechanical properties, which shows an advantageous use
of this bio-renewable material. The synthesis of this green
elastomer was performed in a four-step reaction. First, soy-
bean oil was epoxidized. In the second step, it was carbon-
ated with CO2, while in the third step, an aminoalkyl

siloxane coupling agent was added to the carbonated group
yielding the urethane linkage. In the last step, lignin was
implemented into the chain through the reaction between its
phenolic groups with the siloxane groups. The reaction can
be described in Fig. 30.

5 Conclusion

The ongoing research is determined to find new alternative
routes that are low-cost, environmentally friendly, and sus-
tainable. It has been proven to be a challenging task; how-
ever, the crescent consumption of polyurethanes around the
globe pushes both industry and scientific community to
create new approaches that are sustainable and profitable.
Despite the increase of petrochemicals over the years, there
was also an increase in the consumption of bio-based
materials. Polyurethanes as extremely versatile polymers
cover a broad range of applications as well as materials that
can be used for its synthesis, opening many paths for new
sustainable and green approaches.

Fig. 28 Reaction involved in lignin oxypropylation. Adapted with permission from Li and Ragauskas (2012). Copyright (2012) Taylor & Francis
Group, LLC
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Fig. 29 Modification of alkali lignin with PEG2000. Adapted with permission (Wang et al. 2019). Copyright (2018) American Chemical Society
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Mechanochemistry: A Power Tool for Green
Synthesis

Demet Ozer

Abstract

Mechanochemistry has gained significant interest as a
powerful, more sustainable, timesaving, environmentally
friendly, and more economical synthesis method to
prepare new functional materials. This method depends
on the chemical and physicochemical transformations
through mechanical force forming by grinding and
milling. This study is a systematic review of the history,
principles, mechanisms, and kinetics of mechanochem-
istry. The effects of mechanochemical synthesis param-
eters (milling types, materials, size, time, temperature,
atmosphere, revolution speed, frequency, ball/powder
weight ratio, filling ratio, process control agents) were
detailed explained. The current researches about the
mechanochemical synthesis of co-crystals, inorganic
materials, metal–organic frameworks, porous organic
materials, and polymers, their respective characteristics,
challenges, and future improvements were briefly
discussed.
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1 Introduction

Green synthesis has excellent advantages compared with the
conventional methods such as safe to handle, the environ-
mentally friendly, eliminates wastes, reduces derivatives,
relatively inexpensive, energy-efficient, has renewable

feedstock, and biodegradable final products (Gonzalez-
Moragas et al. 2015; Pérez-Venegas and Juaristi 2020). In
recent years, green synthesis methods have widely applied to
prepare nanomaterials and nanocomposites (Mondal et al.
2020), catalysis (Gómez-López et al. 2020), metal–organic
frameworks (Kumar et al. 2020a), graphene quantum dots
(Kumar et al. 2020b), etc., for important applications such as
environmental, medical, pharmaceutical, drug delivery,
sensing, bio-imaging, energy storage, and cancer therapy
(Emami and Shayanfar 2020; Vaid et al. 2020).

Among the green synthesis methods, mechanochemistry
has already been extensively applied to prepare novel
materials in different industries as a clean, safe, time, and
energy-efficient synthesis approach (James et al. 2012).
Especially, the decrement of the large-scale use of a volatile
organic solvent has increased the usage of mechanochem-
istry as a green and eco-friendly synthesis method compared
with other solvent-based methods (Anastas and Tundo
2000). Today, mechanochemistry is accepted as a splendid
method for green chemistry due to several advantages such
as overall simplicity, consumption of minimum energy,
low-cost, less use or lack of hazardous solvents, recycling,
purification, and like these (Giannakoudakis et al. 2020).
The mechanochemistry is based on mechanical energy that
has formed from various types of grinding and milling
(Palazon et al. 2019; Mursalat et al. 2019). Hand grinding,
ball milling, mixer/shaker milling, and planetary milling
have mostly used types (Sopicka-Lizer 2010), and in recent
years, liquid (LAG), ion-liquid (ILAG), and polymer-
assisted grinding (POLAG) have developed to diversify
the efficiency of the process (Hasa et al. 2015). The milling
and grinding parameters (milling types, materials, size, time,
temperature and atmosphere, rotation speed, frequency,
ball/powder weight ratio, filling ratio, process control
agents) have directly affected the aim and direction of the
studies (Palaniandy and Jamil 2009). The mechanical
grinding and milling of solids not only produce new mate-
rials but also reduce to particles size, produce new surfaces,
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and increase the surface area. During grinding and milling,
the dislocations and defects were occurred in the crystalline
structure and new phases were formed in polymorphic
materials. Different types of chemical reactions were
observed like decomposition, oxidation–reduction, complex
formation, etc. (Fernandez-Bertran 1999).

Mechanochemistry has been carried out the systems
depending upon covalent (Beyer and Clausen-Schaumann
2005), coordination (Braga et al. 2006), and supramolecular
bonds (Braga et al. 2007). The mechanochemical synthesis
can be described as a chemical transformation through the
absorption of mechanical energy (McNaught and Wilkinson
1997) and widely used to prepare valuable products from
alloys to organic compounds (Boldyrev and Tkáčová 2000)
and resulted in many exciting developments in green
chemistry, supramolecular chemistry, pharmaceutical
chemistry, organic synthesis, catalysis, inorganic chemistry,
metal–organic frameworks, and organometallics (James and
Friščić 2013). The most used application areas were shown
in Fig. 1 and some recent examples and their application
areas were given in Table 1.

2 History of Mechanochemistry

The mechanochemistry has been applied dates back to pre-
historic times to ensure living conditions such as ceramics
for potteries and metals for submunitions via mechanical
treatments. The first inorganic materials, pigments, and
drugs were produced through grinding using the basics of
mechanochemistry (Boldyreva 2013). Spring and Lea pub-
lished the first systematic study at the end of the nineteenth
century (Takacs 2013). In 1966, mechanical activation was
developed as a powder preparation method that permitted the
fabrication of homogeneous products from elemental pow-
der mixtures (Suryanarayana 2001). After that new investi-
gations about minerals, inorganic compounds, and polymers
have been found using mechanochemistry (Baláž et al. 2005;
Fox 1975). Mechanical activation helps to extend solid
solubility limits and create new phases with fine dispersion
and diminution grain sizes. Different phase formations like

amorphous, crystalline, and quasicrystalline have been pos-
sible at low temperatures and scalable process (Surya-
narayana 2001).

The nomenclature of mechanochemistry got first used in
the scientific literature in 1919 (Ostwald 1919). The IUPAC
defined the mechanochemical synthesis as: “a chemical
reaction that is induced by the direct absorption of
mechanical energy” (Rightmire and Hanusa 2016).
Mechanochemistry is engaged in mechanochemical trans-
formations like compression, shear, or friction. The
mechanical actions such as grinding, milling, shearing,
sliding, or plastic deformation start the reactions (Kaupp
2009) and their effects are changeable according to released
heat. Explaining, utilizing, and progressing this method is a
significant topic from history to today for mechanochemistry
(Takacs 2013).

3 Principles of Mechanochemistry

In the mechanochemical synthesis, chemical reactions are
excited by mechanical energy. It is principally supplied
from hand grinding and mechanical milling without the
need of bulk solvent. Hand grinding (manual grinding) is
generally applied by a mortar and pestle (Takacs 2007) and
it is the simplest way for the generation of mechanical
energy (Cinčić et al. 2012). For mechanical milling, a
shaker, ball, or mill have generally used at various fre-
quencies from 5 to 60 Hz (Stolle et al. 2014). Common
grinding and milling apparatus were shown in Fig. 2. The
disadvantages of hand grinding are open and sensitive to
environmental factors, while mechanical milling presents
an enclosed solvent-free medium. The other advantages of
milling do not require any physical effort and greater power
allowed further systematic researches. The mechanical
energy is obtained from grinding and milling that effects an
enlarged crystalline solid like heating, decreasing particle
size, increasing surface area, fabricating new interfaces and
crystal defects, removal of passivating layers, amorphiza-
tion, and the formation of metastable polymorphs (Surya-
narayana 2001).

Fig. 1 Applications of
mechanochemistry
(Giannakoudakis et al. 2020).
Copyright 2019 Springer Nature
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For the development of functional materials with
mechanochemical synthesis, a new approaches have been
tried. One of them is liquid-assisted grinding
(LAG) (kneading) which is an effective method for poly-
morph control (Trask et al. 2005) and increases
co-crystallization rate (Nguyen et al. 2007). A small amount
of liquid is used and the ratio of liquid volume to reactant
weight (ƞ) is 0–2 µL mg−1. It gives an opportunity to
effectively optimize milling parameters (Friščić et al. 2009a)
and is widely used in pharmaceutical and organic chemistry
(Colacino et al. 2019a). In the ion-liquid-assisted grinding
(ILAG) method, small amounts of salt added to promote the
mechanochemical construction of materials (Friščić et al.
2010). Polymer-assisted grinding (POLAG) improves the
reaction rate and diversity during mechanochemical
co-crystallization (Hasa et al. 2015). To eliminate the dis-
advantageous of LAG, a small amount of polymer additive
can be added and the replacement of small-molecule liquids
with macromolecules can control the particle size. In an
example, various polyethylene glycols with different
molecular weight (200–10,000), viscosities, and melting
points were utilized, and POLAG has ensured better control
of powder particle size without solvate formation (Hasa et al.
2015).

3.1 Mechanisms and Kinetics
of Mechanochemistry

In 1967, Thiessen offered the magma-plasma theory to
explain mechanochemistry (Thiessen et al. 1967). In this
theory, due to mechanical energy, many excitation states
occurred at different relaxation times (Baláž 2008). After
that, several approaches and models were used to explain the
mechanism and kinetics of mechanochemistry (Tumanov
et al. 2011; Urakaev and Boldyrev 2000; Urakaev 2010).
One of them is eutectic melting and the submerged eutectic
temperatures below room temperature enable the formation
of co-crystal (Chadwick et al. 2007)). The dissolution in a
small amount of liquid added on co-grinding (Friščić et al.
2009b), a gas–solid reaction resulting from the sublimation
(Mikhailenko et al. 2004), and direct solid-state interdiffu-
sion of the components (Kuroda et al. 2004) are some of the
other methods using mechanochemistry. The major problem
of these methods is that the sample was treated with
impermanent mechanical pulses, and the time differences
were found between total and actual time for mechanical
treatment (Friščić et al. 2013). Kaupp explained the mech-
anism under mechanochemical milling through three basic
steps. First is the diffusion of reactants via mobile phase

Table 1 Some recent examples prepared by mechanochemical synthesis and their application areas

Example Synthesis method Application area References

Ti-bearing blast furnace slag (TS) Mechanochemical activation Reduction of nitric oxide
(NO) (removed 80.5% at 350 °C)

Hou et al.
(2020)

Nanofiber-cage LiFePO4/C Ultrasound-assisted wet media milling Electrification of the automobile
industry

Li et al. (2020)

Calcium diglyceroxide Semi-continuous mechanochemical
process

Biodiesel production (90% yield)
as a heterogeneous catalyst

Malpartida
et al. (2020)

Nanocrystalline nickel disulfide, NiS2 Ball milling Adsorption of methylene blue
(MB) dye (94% adsorbed)

Ulbrich et al.
(2020)

5-(4-hydroxy-3-methoxybenzylidene)
barbituric acid

The solvent-free mechanochemical
reaction in planetary ball mill

The Knoevenagel condensation Burmeister
et al. (2020)

Fe/FeOx@citrate colloids Oscillatory mill and coprecipitation Biomedical and environmental
remediation applications

Medina et al.
(2020)

The Diels–Alder mechanophore and
its corresponding polymers

Tunable flow-induced polymer
mechanochemistry

Mechanophore design Willis-Fox
et al. (2020)

Carbamoyl isatins and benzamides LAG mechanochemistry C–N coupling of amides and
isocyanates

Dayaker et al.
(2020)

Phenylhydrazono-N-methylene
fluorescein (PHMF)

Mortar and pestle Detecting cyanide ions as a
PHMF’s paper-strip sensor

Rathod et al.
(2020)

A pharmaceutical co-crystal of
ambrisentan

Mechanochemical grinding Drugs in the pharmaceutical
industry

Haneef and
Chadha (2020)

Polycrystalline targets of complex
sulfide semiconductors, CuInS2

Mechanosynthesis Film deposition in physical
vacuum techniques

Delmonte
et al. (2020)

High-value nano-lead sulfide A combined vacuum calcination and
two-step mechanochemical reaction

The recycling of spent lead-acid
batteries

Liu et al.
(2020)
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resulting a chemical reaction. Second is the nucleation and
growth of the product phase, and the last is the product
separation to expose fresh reactant surface (Kaupp 2003).
Currently, the mechanical activation and alloying are among
the emerging technologies to produce high-value products.
The mechanical treatment has come in an alternative tech-
nique for green chemistry with or without solvent (Mucsi
2019).

3.2 Effects of Reaction Parameters

The milling types (shaker, platenary, ball mill, and attritor),
the milling materials (vessels, jars, balls, bowls, and vials),
the milling size, the ball/powder weight ratio, the filling of a
vial, balls numbers, milling time, temperature and atmo-
sphere, rotation speed, frequency and process control agents
are the important milling parameters to optimize reaction
conditions. All of them directly affect the kinetic energy of
the balls and how mechanochemical reactions perform
(Howard et al. 2018).

Different mill types such as shaker mills (Takacs and
McHenry 2006), platenary mills (Brun et al. 1993), attritors
(Rydin et al. 1993), and uni-ball mills were studied in the
literature. Their capacities and speeds differ from each other.
They check the process by varying the milling temperature
and minimizing contaminations. The most used milling
types are shaker and planetary mills. The shaker mills are
applied to small samples, while planetary mills are used on

the industrial scale for sample processing and colloidal
grinding. The planetary mill is an effective method with
good reproducibility and reliability (Burmeister and Kwade
2013). In shaker mills, rapid side-to-side motions were
shown in a reaction vessel. The planetary mills have pots
that are connected to disk and rotate around the central axis.
The large strike energies of milling balls inside the pots that
increase the efficiency of grinding were formed through the
high rotational speed (Janot and Guérard 2005). In general,
the milling materials (vessels, jars, balls, bowls, and vials)
(Fig. 3) are tungsten carbide, stainless steel, tempered steel,
zirconia, corundum, agate, silicon nitride, chromium steel,
Cr–Ni steel, and plastic polyamide (Di and Bakker 1991).
Some of them are naturally occurring porous minerals. The
stainless steel (7.5 g/mL) is widely applied in short milling
and zirconia (5.6 g/mL) is generally selected in long milling
to avoid metal-contaminated (Štefanić et al. 2013). The
higher density can cause higher energy transfer, and in
conclusion, the product yield can be increased.

Themilling size directly changes the surface properties of
the synthesized materials. The large (or high density) balls
can supply high collision energy and increase the surface
activity that causes form the thermodynamically stable
product. The small balls increase the frictional action that
helps to form amorphous and metastable phases and they are
generally selected when if more efficient mixing is required.
The ball-to-powder weight ratio has been a crucial
parameter that correlates with kinetics. This ratio can be
changed from low values as 1:1 to high values 220:1

Fig. 2 Most used grinding and milling types of equipment. a Mortar
and pestle. b Automatic mortar (R). c Vertical vibrational mini-mill (F).
d Vibratory micro-mill (F). e Vibrational ball mill (R) and f with
temperature control (C). g Planetary ball mill (R). h Multisample mill

(A). (i) Twin-screw for continuous mechanochemical synthesis.
A = Automaxion, R = Retsch, F = Fritsch, C = Cryomill. Reprinted
with permission from Pérez-Venegas and Juaristi (2020). Copyright
(2020) ACS
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(Kis-Varga 1996). At high ratio, the number of collisions
increases, and more energy transfers, more heat originates,
and so mechanical activation takes place faster. By changing
these parameters, novel materials that have desired physical,
chemical, and optical properties have been produced. The
filling ratio of the vial is another significant parameter due
to the need for enough space for moving freely in the con-
tainer. When the amounts of balls and powders have been
small, the production rate has also been small. If the amounts
are large, not enough gaps find to move and the energy
affects less. For these reasons, 50% of the vial space must be
empty. The milling time has increased the yield of reaction
because the collision numbers and the total amount of
transferred energy have also increased. In some cases, the
product can be decomposed due to the increment of con-
tamination and the formation of undesirable phases with
long milling time (Suryanarayana 1995). The milling time
has also changed the morphology and mechanical properties
of products (Liu et al. 2012).

The revolution speed must be minimized to obtain the
desired product with high yield and quality. The results of
more powerful mixing and the increasing number of colli-
sions, the revolution speed increase, and the energy input
increase, higher yields, and better substrate conversion can
be obtained. High speeds may cause by-product formation or
the increasing temperature may cause the decomposition of
metastable phases (Kaloshkin et al. 1997). The temperature
increase can be useful if diffusion is required for powder
alloying (Maurice and Courtney 1990). The lower revolution
speed causes less energy consumption, lower cost, and more
energy-efficiency.

The milling temperature is also an important parameter
for mechanochemical synthesis. To decrease the tempera-
ture, liquid nitrogen can be used on the milling container.
For increasing temperature, electrical heating can be used in
the milling vial. Temperature changes directly affect the
solid solubility levels and phase formation (Hong et al.
1994). Rotation/oscillation frequency affects the yield,
selectivity, and similar properties of the reaction according
to the kinetics of the reactions. If the frequency increases,

side reactions occur and this negatively affects the yield
(Stolle et al. 2011). The milling atmosphere is another
important parameter. The inert atmospheres (helium and
argon) are widely used to reduce contaminations. Nitrogen
atmospheres can be used to form nitrides (Miki et al. 1992).
Hydrogen atmospheres can be applied for hydride formation
(Chen and Williams 1996). If the powders are reactive, both
oxides and nitrides can be produced in the air atmosphere.

The lubricants and surfactants can be utilized as a process
control agent to minimize the effects of cold welding
between powders and prevent agglomeration. When the
surfactants adsorb on the particle surfaces interfere with cold
welding, the surface tension decrease. Benzene, C-wax,
dodecane, paraffin, stearic acid, sodium chloride, boric acid,
borax, alumina, etc., have widely used as the process control
agents and during the milling process, they decompose and
interact with powder particles and produce the compounds.
The process control agents directly influence the final phase,
the solid solubility and contamination levels (Gaffet et al.
1993), and the glass-forming range (Ivison et al. 1992).

4 Mechanochemical Synthesis of Materials

4.1 Mechanochemical Synthesis of Co-crystals

Due to the green and clean process, mechanochemical syn-
thesis is utilized to investigate co-crystal in the pharmaceu-
tical industry (Vishweshwar et al. 2005), organic chemistry
(Friščić and MacGillivray 2005), and electronic materials
(Sokolov et al. 2006). Co-crystals are described by US-FDA
as “crystalline materials composed of two or more different
molecules, typically active pharmaceutical ingredient
(API) and co-crystal formers (coformers), in the same crystal
lattice” (U.S. Department of Health and Human Services
Food and Drug Administration 2018). Co-crystals consist of
at least two neutral organic molecules and connect with
intermolecular interactions (Tröbs and Emmerling 2014).
Co-crystallization has been used to improve properties like
dissolution rate, solubility, thermal stability, etc. (Aitipamula

Fig. 3 a Planetary mill,
b stainless steel vial (Janot and
Guérard 2005). Copyright (2005)
with permission from Elsevier
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et al. 2012; Braga et al. 2011). The first mechanochemical
synthesis of co-crystal was prepared by Toda and coworkers
in 1987 (Toda et al. 1987). The Kuroda and coworkers were
used simple co-grinding to form a new crystal depend on
racemic bis-ß-naphthol, benzoquinone, and anthracene with
novel coloristic properties (Kuroda et al. 2002). Direct
mixing is not enough to prepare new crystals (Lu and
Rohani 2009), but it helps to obtain precursor, hydrogen
bonds formation (Etter 1991), and determines polymorph
interconversion (Ojala and Etter 1992). The construction of
ternary and higher-order co-crystals still has challenges
without solvent (Friščić et al. 2006). Crystals are generally
soluble in waters or organic solvents. Liquid-assisted
grinding mechanochemistry has been used for co-crystals
in various industrial and technological processes (Braga
et al. 2013). The kinetics of co-crystal changed through
adding a little solvent. Cyclohexane-1,3cis,5cis-tricarboxylic
acid, and hexamethylenetetramine mixed in a ball mill with
small amounts of solvent for 20 min. According to solvent
type, the obtained co-crystals were changed (Shan et al.
2002). When caffeine and citric acid did not form a
co-crystal through neat grinding, liquid-assisted grinding
with water or organic solvents gave the pharmaceutical solid
into a 25 mL stainless steel grinding jar for 20 min (Karki
et al. 2007).

Mechanochemistry is also given a chance to prepare
multicomponent co-crystals. Thakuria and coworkers pre-
pared drug-drug and drug–nutraceutical multicomponent
solids. After neat grinding (NG), the conversion was
incomplete, and the amorphous phase formed. After
liquid-assisted grinding (LAG), coamorphous olanzapine-
nateglinide, and crystalline salts/salt hydrates of olanzapine
with the remaining coformers formed (Sarmah et al. 2020).
Roex and coworkers synthesized nine new multicomponent
crystalline materials using a series of three triazole,
7-chloroquinoline antimalarials, and two carboxylic acid
coformers. They showed that coformers can change some
physicochemical aspects of the drug molecules (Clements
et al. 2019).

4.2 Mechanochemistry in Inorganic Synthesis

Mechanical activation is widely used for inorganic synthesis
and ceramic technology to increase solid solubility and
reactivity at low temperature. Besides, for the preparation of
complex materials, ball milling has been used as the first step
of the process. The high-energy milling has been applied to
alter microstructure and to activate materials.

The metal oxides, mixed metal oxide, and supported
metal oxides were successfully synthesized using
mechanochemical synthesis as efficient catalysts for various
catalytic systems (Ralphs et al. 2013). Kamolphop and

coworkers have achieved low-temperature hydrocarbon
selective catalytic reduction of NOx without hydrogen and
solvent using Ag/Al2O3 catalyst prepared in a ball mill for
the first time. The silver precursor (nitrate, oxide, or powder)
was mixed with the alumina support through ball milling for
1 h and then calcined at 550 °C for 2 h. The catalytic effi-
ciency was compared with the wet-impregnation method.
The ball milling prepared catalyst shows higher activity for
the reduction of NOx than the Ag/Al2O3 catalyst prepared
via the wet-impregnation method due to the formation of the
defects on the alumina surface. The best catalyst prepared
from silver oxide indicated a 50% NOx conversion at 240 °C
and 99% at 302 °C (Kamolphop et al. 2011). Pardeshi and
Patil prepared zinc oxide using two steps solvent-free
mechanochemical method and examined the effects of
morphology on the photocatalytic activity. The catalysts
were synthesized through milling using zinc oxide and
oxalic acid in the agate. Calcination temperatures were
changed to control the morphology of the crystallites. The
growth rate of ZnO changes with the calcination temperature
range. The catalytic efficiency was investigated in the pho-
tocatalytic activity of ZnO in oxidative photocatalytic
degradation of resorcinol in water under the irradiation. With
increasing calcination temperature, the catalytic activity
decreases due to increasing particle size. When the zinc
oxide calcined from 400 to 550 °C, the same crystallite
growth rate and maximum photocatalytic degradation of
resorcinol were obtained (Pardeshi and Patil 2009). The
mechanochemical synthesis of titanium dioxide has been
prepared using different titanium source. During synthesis,
the milling duration, the ball milling power, and the atmo-
sphere are important parameters. In general, ball milling has
been used to reduce particle size and obtain metastable
polymorphs. However a small amount TiO2 was obtained
due to difficulties in controlling the temperature (Gian-
nakoudakis et al. 2020). The high-pressure modification of
TiO2 with an a-PbO2-type structure is formed through the
grinding of anatase in a planetary ball mill with stainless
steel vial. Rutile has not been formed directly ball milling of
anatase. Transient phases appear at the beginning and dis-
appear after long ball milling time. Three hours later, the
rutile was only found (Begin-Colin et al. 1994). In the
atmosphere, effects were studied using air, nitrogen, and
ammonia in planetary ball mill with 300 rpm rotation. When
Ti powder has been milled in N2 or NH3 atmospheres, the
resultants have been TiN. In the air atmosphere, in open
vials, titanium powder turned to titanium oxide and titanium
oxynitride while only titanium oxynitride formed in closed
vials (Lu et al. 2004). The kinetics and mechanisms of
titanium dioxide phase transformation were studied by Colin
and coworkers in 2000 and the powder/ball weight ratio is
the other important parameter for titanium dioxide trans-
formation (Begin-Colin et al. 2000). As an example of
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mixed oxide, high‐density lead zirconate titanate (PZT) has
been successfully synthesized by using a novel
mechanochemical method from the low-cost, widely avail-
able oxides without calcination an intermediate temperature.
According to milling time, particle sizes and crystallinity of
the products were changed (Xue et al. 1999). Strontium
manganite (SrMnO3) and strontium-doped lanthanum man-
ganite (La0.7Sr0.3MnO3, LSM3) have been prepared by
grinding the constituent oxides of SrO–MnO2 and La2O3–

SrO–Mn2O3–MnO2 using a planetary mill. The reactions
have proceeded with escalating grinding time. The product
has a strong agglomeration of fine grain nanosize particles
(Zhang et al. 2000). LiMO2 (M=Ti, Mn and Fe) has been
synthesized using lithium transition metals and metal oxides
in a ball mill. The resulting oxides have the rocksalt struc-
ture. The transition metal and lithium ions were randomly
ordered in the cation sites and after prolonged milling,
lithium oxide and oxygen were lost. As a-LiFeO2, cathodes
of the obtained materials have poor electrochemical perfor-
mance in lithium cells (Obrovac et al. 1998).

The efficient and rapid synthesis of various metal com-
plexes like mononuclear complexes, coordination clusters,
and spacious coordination cages was prepared by the
mechanochemical method (Garay et al. 2007). Tsuchimoto
and coworkers prepared polymeric vanadyl salen compound
using Schiff base reproduced from 5-nitrosalicylaldehyde and
diamines through mechanochemical reaction. The mono-
meric form of the obtained product is green, and the polymeric
form of the obtained product is orange. Through grinding with
sixteen zirconia balls (10 mm diameter in a zirconia-lined
vessel, the orange form turned to green form Tsuchimoto et al.
(2000). Orita and coworkers synthesized tetraplatinum square
through a solvent-free mechanochemical method using
bipyridyl and [Pt(NO3)2(en)] (en = ethylene diamine) in only
10 min and with only a few percents of by-products and 76%
yield (Orita et al. 2002). The same reaction was obtained with
the solvent at 100 °C for 4 weeks. That shows the time and
energy efficiency of the synthesis method (Fig. 4) (Garay
et al. 2007). Bowmaker and coworkers used solvent-mediated
mechanochemical synthesis for the formation of metal com-
plexes using silver halides and ethylene thiourea. For the AgI,
no reaction occurred between the dry reactants, whereas the
reaction was complete with a small amount of solvent in a
snap (Bowmaker et al. 2008).

Mechanochemistry has recently been used in inorganic
coordination chemistry. The first report about organometallic
synthesis appeared in the early 1990s and the preparation of
different cyclopentadienyl and metal-carborane complexes
were explained (Rightmire and Hanusa 2016). In previous
studies, grinding only activated the reaction and no products
were obtained without heat annealing (Petrova et al. 2002). In
an example, mechanochemical synthesis of iron chloride with
cyclopentadienides of alkaline metals was studied to form

ferrocene, and milling time increased the yield of ferrocene
formation (Makhaev et al. 1999). Multimetallic clusters are
also prepared through mechanochemical synthesis. The
reactions of Au(CuCPh)PPh3 and Ag(OTf) lead to the high
nuclearity species Ag12Au10(CuCPh)17(OTf)5(PPh3)3. The
same products are formedwhether the reactions are conducted
in acetone or with ball milling (Blanco et al. 2012). The first
example of mechanochemical synthesis of organometallic
pincer complexeswas prepared byAleksanyan and coworkers
in 2017. The synthesis of an organometallic PdII pincer
complex has been synthesized throughC-H bond activation of
the bis(thiocarbamate) ligand with PdCl2(NCPh)2 under
mechanochemical conditions both grinding inmortar for 1.5 h
and in ball mill for 115 s at gram scale (Aleksanyan et al.
2017).

Nanocrystalline chalcogenides display the novel physical
and chemical properties that differ from their bulk equiva-
lents and are applicable in several fields (Baláz et al. 2020).
Chalcogenides have gained a great variety of properties
through mechanochemical treatment (Baláž et al. 2017). The
antimony and bismuth sulfide are semiconductors with
interesting thermoelectric properties. The mechanochemical
synthesis of Sb2S3 and Bi2S3 nanoparticles using
high-energy milling was prepared at ambient temperature in
a planetary laboratory mill. Individual nanoparticles sound
in generate nanoparticle agglomerates during milling. The
particle sizes are 30 nm and 24 nm for Sb2S3 and Bi2S3,
respectively (Dutková et al. 2013). Besides metal sulfides,
metal selenides are used as semiconductors in materials
science. They have successfully been synthesized through a
simple, fast, and less-consumptive mechanochemical
method in a planetary and vibratory mill using the selected
metal and selenium powders as starting materials (Achi-
movičová et al. 2012; Kristl et al. 2016; Gotor et al. 2013).
Chalcogenide nanocomposites were successfully prepared
mechanochemical method. The Cu2ZnSnSe4 (CZTSe) solar
cells and Cu2ZnSnS4 (CZTS) nanocrystals were prepared by
a simple, environmentally friendly, and scalable
mechanochemical method (Park et al. 2014). The effects of
the milling time were observed and according to the XRD
analyses (Fig. 5a, b), after 3 h, the CZTS nanocrystals were
formed. The characteristic Raman scatterings (289, 335, and
364 cm−1) can be identified to CZTS (Fig. 5c) and no
impurity was found (Fernandes et al. 2011). The milling
time was also decreased the particle sizes of the obtained
nanocrystals.

4.3 Mechanochemistry in Organic Synthesis

For organic chemistry, ball milling has been an efficient
method for C–C bond formation (Rodriguez et al. 2007),
aldol condensation (Raston and Scott 2000), asymmetric

Mechanochemistry: A Power Tool for Green Synthesis 29



organic synthesis (Egorov et al. 2020), amine condensation
(Kaupp 2006), syntheses of heterocycles, enantioselective
synthesis (Avila-Ortiz et al. 2019), Baylis–Hillman reac-
tions (Mack and Shumba 2007), fullerene modifications
(Komatsu 2005) under solvent-free conditions (Cave et al.
2001). For organic synthesis, mechanochemistry was
widely used through mixer mill and planetary mill under
solvent-free conditions (Wang 2013). Stolle and coworkers
prepared a review about ball milling in organic syntheses
like C–C bond formation, preparation of heterocycles and
fullerenes, redox reactions, etc. (Stolle et al. 2011). Axels-
son and coworkers were prepared the Suzuki reaction under

mechanochemical and solvent-free conditions for the first
time (Nielsen et al. 2000). They published the coupling of
phenylboronic acid with aryl bromides using Pd(PPh3)4 as a
catalyst, and K2CO3 as a base. After 30–60 min milling, the
reaction was completed with excellent yields. Schneider and
coworkers have studied milling conditions on the Suzuki–
Miyaura reaction. The effects of milling parameters (the
revolutions per minute, milling time, the material, size, and
the number of milling balls and beakers) on the reaction
yield are investigated. The order of the parameters on the
formation of 4-acetylbiphenyl is revolution > milling
time > milling ball size > balls numbers > grinding

Fig. 4 Synthesis of a molecular square without solvent Garay et al. 2007). Reproduced by permission of RSC

Fig. 5 a, b XRD patterns of the precursors milled at various milling times. c Raman spectrum CZTS synthesized for 5 h. d The quaternary phase
diagram (Park et al. 2014). Reproduced by permission of RSC
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material (Schneider et al. 2009). The catalyst also affected
in organic mechanochemical synthesis. Hermann and
coworkers were prepared the amidation of benzamides with
sulfonyl azides using mechanochemical synthesis (Hermann
et al. 2016) and synthesis conditions were shown in Fig. 6
(Howard et al. 2018). The active cationic Ir(III) catalyst was
prepared in mixer mill using (Cp * IrCl2)2 and AgNTf2.
The amidated products were achieved high yield and short
reaction times (99 min) compared with solution-based
methods (12 h) as published by Chang and coworkers
(Lee et al. 2013).

The fullerenes are important materials because of their
potential applications in fuel cells (Coro et al. 2016),
molecular devices (Lai et al. 2014), optoelectronics (Cravino
and Sariciftci 2002), biomedical science (Partha and Conyers
2009), and nanotechnology (Rapoport et al. 2005). The
fullerene synthesis via mechanochemistry has some diffi-
culties due to solubility problems. Fullerenes are slightly
soluble in less polar solvents like CS2, toluene, chloroben-
zene, and insoluble in polar solvents such as methanol,
DMF, and water. Consequently, the solvent-free synthesis of
fullerenes using mechanochemistry has several advantages
such as without harmful organic solvent usage, fast reaction,
high yield, and selectivity compared with the solution-based
method. The serendipitous found of dumbbell-shaped C120

(Wang et al. 1997) and the several fullerene dimers and
trimers are made possible to use the mechanochemical
synthesis. The abundant fullerene molecules nearby can trap
the reaction intermediates to produce the dimeric (Murata

et al. 2001) and trimeric (Kunitake et al. 2002) forms by
assuming the excessively high concentration of C60/C70.

Mechanochemical organic synthesis is also important for
the pharmaceutical industry to produce drugs, active phar-
maceutical ingredients, and commodity chemicals (Colacino
et al. 2019b). This has also been named “medicinal
mechanochemistry” (Tan et al. 2016) that is a clean and
simple synthesis approach without solvent with highly
reducing the environmental impact for the fabrication of
biomolecules. As an example, using mechanochemical blitz
synthesis both in a vibrating and planetary mill, the
antiepileptic drug phenytoin was produced in moderate yield
(10–44%). With modified read synthesis, it was obtained in
86% yield by mechanochemistry (Fig. 7). The
mechanochemical synthesis was successfully applied with-
out solvent, reagents excess, and purification. As a result of
these, mechanochemistry was used as an eco-friendly,
cheap, time, and energy-efficient method to design the
antiepileptic drug phenytoin in good yield. In future studies,
mechanochemistry can be an alternative eco-friendly syn-
thesis method to Biltz synthesis for the pharmaceutically
interesting drug on a large scale (Konnert et al. 2014).

4.4 Mechanochemistry in Metal–Organic
Frameworks (MOFs)

Metal–organic frameworks have been important functional
materials due to various properties like designable structure,

Fig. 6 Synthesis conditions of
C–H amidation of benzamides
(Howard et al. 2018). Published
by RSC
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controllable morphology, high porosity, and surface area,
surface functionality, optical, electrical, and magnetic prop-
erties (Ozer 2020). In recent years, mechanochemical syn-
thesis has been an effective synthesis approach for metal–
organic frameworks due to simple, fast, and efficient reac-
tions with short reaction times, quantitative conversion, and
lack solvent (Do and Friščic  2017). While soluble metal
sources have been needed for the solution method, poorly
soluble sulfates, oxide, and carbonates have been used as
reactants resulting in a cleaner, more atom-efficient pro-
cesses that prevent the production of external bases and
mineral acids as by-products (Adams et al. 2008).

In recent years, liquid-assisted grinding (LAG) was widely
used to produce coordination polymers. Water and organic
solvents can affect the formation of intermediates as kinetic
products and different polymorphs were formed according to
liquid types (Strobridge et al. 2010). The liquid type is both
facilitating the reaction and acts as a structure-directing and
space-filling agent. Using different types and amounts of
grinding liquids, from zinc oxide and fumaric acid, different
products were formed and shown in Fig. 8. With four
equivalent water, the zigzag 1D polymer was formed while
linear 1D polymer was formed with three equivalent water.
Using organic solvent (ethanol or methanol), anhydrous 3D
coordination polymer with tetrahedral zinc center. When
adding water to organic solvent, due to the formation of
hydrogen bonds, the 2D polymer with octahedral zinc center
was formed (Friščić and Fábián 2009).

With changing milling time, MOF-74 was directly pre-
pared using ball milling from a metal oxide (ZnO),
2,5-dihydroxy terephthalic acid, and without bulk solvent

through liquid-assisted grinding in poly(methyl)methacrylate
jar (14 mL) with a single stainless steel ball. With increasing
milling time, the reaction mixture changed according to col-
ors. The waiting product was formed at 40 min and after
45 min, no traces of ZnO were visible in the p-XRD. Col-
lected pale-yellow microcrystalline product was formed
without any by-product as shown in Fig. 9 (Julien et al. 2016).

In previous studies, the solvothermal method has generally
been used for MOF synthesis, but the remaining solvents in
the pores can cause problems in different applications. To
show the synthesis method effects on the structural and sur-
face properties, the intensively studied metal–organic frame-
work HKUST-1 was prepared three different synthesis
approaches including mechanochemical, electrochemical,
and solution method. The crystallite sizes were found as
50 nm for the electrochemical method, 55 nm for the
mechanochemical method, and 31 nm for the solutionmethod
according to XRD analyses. BET surface analysis was given
in Table 2 and as to the synthesis method, surface areas of the
samples were changed. With the activation of
mechanochemical synthesis materials, solvents (acetic acid)
were removed and the highest surface area was obtained
compared with the other methods (Klimakow et al. 2010).

4.5 Mechanochemistry in Porous Organic
Materials (POMs)

Porous organic materials (POMs) have gained great attention
due to their potential applications as gas adsorption and
storage, separation, heterogeneous catalysis, etc. (Das et al.

Fig. 7 Mechanochemical syntheses of the antiepileptic drug phenytoin (Colacino et al. 2019b). Copyright 2019 by RSC
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2017). They are comprised of only light elements that have
accessible functionality, high stability in the air, and chem-
ical robustness to acids and bases (Zhang and Dai 2017).
PIM-1 was prepared through ball or manually grinding in a
mortar using different milling times and the obtained prod-
ucts were shown in Fig. 10. Zhang and coworkers were
prepared the polycondensation of 5,5,6,6-tetrahydroxy-
3,3,3,3-tetramethyl-1,1′-spirobisindane and tetrafluorotereph-
thalonitrile toward K2CO3 using stainless steel reactor along
with twelve stainless steel ball bearings (Zhang et al. 2015).
Color changes from white through green to yellow during
polymerization. Compared with the solvent-based method
(72 h), ball milling synthesis was complete only 15 min with
a 98% yield without solvent. As a result of mechanochem-
ical synthesis, the PIM-1 has a high molecular weight with
high solubility in dimethylformamide and tetrahydrofuran
due to the physical effects of the mechanical action. The ball
milling prevents rapid chain growth and chain termination
(Zhang and Dai 2017).

4.6 Mechanochemical Synthesis of Polymers

In the beginning, mechanochemistry has been applied to
break polymer chains or form short chains with low molec-
ular weights for polymer synthesis. The mechanochemical
parameters like energy input, dilution of the monomers, etc.,

are important to investigate the potential usage of this method
for polymers. As an example, in 2014, poly(phenylene)
vinylenes that are an important electroluminescent material,
were synthesized by a mechanochemical Gilch reaction as a
rapid, simple, and solvent-free synthetic route in a Retsch
mixer mill 400 at 30 Hz for 30 min. Effect of milling time
and frequency, base strength, solid-state dilution, and size of
milling balls were investigated and found that the polymer-
ization through ball milling is a rapid and efficient process
with up to 40 kDa average molecular weight and 70% yield
with the optimized condition (Ravnsbæk and Swager 2014).
For mechanochemical polymerization of styrene,
wet-grinding of quartz was applied in the styrene using a
vibrating ball mill with a laboratory scale and the polymer-
ization was connected with the total surface area of the
ground quartz (Hasegawa et al. 2001). Mechanochemistry is
also efficient for surface modification of polymers, as shown
by Fiss and coworkers who used P4O10 to conduct phos-
phorylation of synthetic polymers and cellulose, leading to
new flame-retardants (Fiss et al. 2019). The Moore and
coworker utilized a combined method with milling and fol-
lowed by aging to produce high molecular weight chitosan
biopolymers of unprecedented length. For deacetylation,
mechanochemical synthesis is a versatile and applicable
method with 98% yield and remarkably high molecular
weights (Nardo et al. 2019).

Fig. 8 Effects of grinding liquid
types and amounts (Friščić and
Fábián 2009). Copyright 2009 by
RSC
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Fig. 9 Mechanochemical
synthesis of MOF-74 (Julien et al.
2016). Copyright (2016) ACS

Table 2 Surface areas of
HKUST-1 synthesized by
different methods

Synthesis method BET surface area (m2/g) p/po range for BET fit

Mechanochemistry 758 0.004–0.029

Electrochemistry 1836 0.001–0.011

Solution 1184 0.001–0.011

Mechanochemistry and activation 1713 0.005–0.029

Reprinted with permission from Klimakow et al. (2010). Copyright (2010) ACS
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5 Conclusions

In summary, mechanochemical synthesis is a green, more
powerful, more sustainable, timesaving, environmentally
friendly, and more economical preparative method for the
synthesis of new and effective functional materials.
According to synthesis parameters (milling types, materials,
size, time, temperature and atmosphere, revolution speed,
frequency, ball/powder weight ratio, filling ratio, process
control agents), the chemical, thermal, surface, and other
properties of the materials can be improved. To reduce the
solvent usage, to prevent the solubility problem, to protect
the environment, mechanochemistry has been widely used in
different research areas and industries up to now and it will
have great importance for future studies.
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Future Trends in Green Synthesis

Suman Chowdhury, Atanu Rakshit, Animesh Acharjee,
and Bidyut Saha

Abstract

Green approach is an advance technique of synthetic
chemistry. It opens up a new vista of modified version of
known synthetic reactions in a newer way with associated
enlarged potentiality accompanied by sustainability.
Revolutionary measures against solvent-based reaction
have been invited in green routes. Organic solvents have
been substituted by non-organic media in organic
synthetic reactions to overcome the hazard of volatile
organic solvents and to preserve the greenness of the
reactions, following green principles, supported by green
matrices. This chapter illustrates the successive green
revolutionary measures in solvent-based organic chem-
istry followed by solvent-free synthetic routes and their
future trends in a nut shell.

Keywords
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Solvent-free synthesis

1 Introduction

The synthetic organic chemistry was generally discovered in
1828 by Wöhler while synthesising urea, a natural product,
from ammonium isocyanate (Dunn et al. 2010a). Since then,
time to time, many advancements in the synthetic procedures
have been attained and in the present times, the welfare of
human race is inconceivable without abundant synthetic
organic products obtained industrially. Quality of our survival

does intensely depend upon various pharmaceutical products,
foods and so many other products obtained synthetically. But
in most cases, the reagents or their sub-products are detri-
mental to health and also the processes are not sustainable on
the ground of pollution, energy consumption and economy.
The environmental protection agency (EPA) of USA reported
that more or less 100 billion tons of wastes come out of
industries every year. The wastes, cost around US$5 billion,
have terrifying environmental effect which affect human
health extremely. Ozone layer depletion is a typical example
of environmental threat which is caused by chlorofluorocar-
bons (CFCs) come from volatile hazardous organic solvents
(Mikami 2005). Hence, some greener eco-friendly or sus-
tainable procedures were really welcome from past few dec-
ades. At the beginning of the 1990s, Environmental
Protection Agency formulated the definition of green Chem-
istry or sustainable chemistry as the “Design of chemical
products and processes to reduce or eliminate the use and
generation of hazardous substances” (Anastas and Eghbali
2010). Green Chemistry being economically profitable aims
to reduce hazards across all the life-cycle stages. Synthetic
procedures in association with greener approaches can truly
termed as green synthesis. The designing concept is of prime
important feature of Green Chemistry. Designing requires
novelty, planning and systematic approaches. The twelve
Principles of Green Chemistry (Fig. 1), coined by Paul
Anastas and John Warner in 1998, are guiding framework to
reach the goal of sustainability and to reduce adverse conse-
quences by careful planning of chemical synthesis and
molecular design (Anastas and Eghbali 2010). In this chapter,
some major and prominent applications so far of green syn-
thesis and associated future trends have been focussed.

2 Green Chemistry Metrics

Scientists were put to a challenge to be deeply concerned
about the environmental impact of chemical processes for the
evolution of green chemistry. The evolution necessitated
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practical changes in industrial and academic processes sig-
nificantly, and to measure the “greenness” caused by the
practical changes, few valid and reliable approaches were
essential. Determining greenness does mean not only to
measure the waste quantities but also some additional but
meaningful factors are to be considered. So, green metrics are
that kind of means which can measure how greener a
chemical process is. The most common and useful metrics are
atom economy (AE), environmental factor (E factor), process
mass intensity (PMI) and reaction mass efficiency (RME).

2.1 Atom Economy (AE)

AE, proposed by Trost in 1991, is very widely known
measures of efficient chemical processes and is computed
from Eq. (1) (Dunn 2012)

Atom Economy ¼ Molecular mass of desired product
Molecular mass of all products

� 100%

ð1Þ
A higher value of AE clearly indicates more greenness of

any process. The atom economy can be easily understood
with the help of Baylis–Hillman reaction where the product
is impregnated with all the atoms present in the reactant
molecules and there is no side product. Hence, this reaction
has 100% AE value (Scheme 1).

On the other side, for Wittig reaction having three
by-products, atom economy is only 18.5% (Scheme 2).

Another elegant example of contrasting AE is production
of ibuprofen, a non-steroidal anti-inflammatory drug, in two
different routes via the common intermediate, p-iso-
butylacetophenone. The classical route (developed by the
Boots Pure Drug Company) with six successive steps has
comparatively low AE for sizeable amount inorganic salt
formation whereas the other route (developed by the Boots
Hoechst- Celanese company) produces it only in three cat-
alytic steps with high AE (Dunn et al. 2010a).

AE is very simple to understand but it possess some
demerits. It is calculated only from the reaction scheme, but
the yield percentage, even the stoichiometry, is not taken
into consideration.

2.2 Environmental Factor (E Factor)

This environmental factor, coined by Sheldon in 1992, is
formulated as kilograms of waste per kilogram of product
which measures waste products formed in a synthesis of fine
chemicals, pharmaceuticals or their intermediates (Table 1)
(Dunn 2012). An illustrative example is production of a
pharmaceutical intermediate phloroglucinol, a reprographic
chemical also, with Cr2(SO4)3, NH4Cl, FeCl2 and KHSO4 as
wastes (by-products) from 2,4,6-trinitrotoluene (TNT) in
nineteenth century. Calculation shows copious amount of
waste is formed in this synthesis with E factor of ca. 20.
Ranges of E factor values, differ according to different
chemical branches and industries, have been given in tabu-
lated form which are equally applicable for any product,
even in the production of laptops or mobiles. A higher E
factor indicates more waste with more environmental trace
and ideality is attained when the value is zero. This metric
includes the chemical yield, reagents, solvent losses, process
aids and even fuel. In the computation of E factor in aqueous
waste stream, only the inorganic salts and the organic
compounds in the water are considered but water is gener-
ally removed from consideration. Otherwise, water makes
high value of E factor making meaningful comparisons of
processes difficult (Dunn et al. 2010a; Dunn 2012)
(Scheme 3).

Fig. 1 Principles of green chemistry

EtO2C

+ RCHO
Catalyst EtO2C

R

OH

AE = 100 %

Scheme 1 Completely atomically economic Baylis–Hillman reaction
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2.3 Process Mass Intensity (PMI)

PMI, quite similar to E factor, is computed as the ratio of
mass of all the materials in any process and mass of the
desired product (Eq. 2). The ideal E factor value, zero, is
supposed to be a better reflection of the target of zero waste
than the ideal PMI of 1. In this case also water can be
included or excluded as per requirements.

ProcessMass Intensity ¼ Mass of all materials used tomake the product
Mass of product

¼ EFactorþ 1

ð2Þ
Process chemists choose PMI as the key metric in phar-

maceutical industry for the measurement of sustainability of
any synthetic process. Besides that, it is very easy to gen-
erate, measure, communicate data and can estimate green-
ness very fast. This mass-based metric focuses on process
input rather than output, and targets can be set to measure the
process sustainability quantitatively (Monteith et al. 2020).

2.4 Reaction Mass Efficiency (RME)

In 2001, the company GlaxoSmithKline (GSK) invented
RME as a practical metric for explaining the greenness of a
process. RME is computed as the percentage of mass of
product with respect to the sum of the masses of all corre-
sponding reactants in the balanced chemical equation
(Eq. 3).

ReactionMass Efficiency ¼ Mass of product
Mass osf all reactants

� 100

ð3Þ

Perhaps, RME is one of the most helpful metrics for
researchers in knowing the actual greenness of any processes
currently because it considers yield, stoichiometry and AE.
Solvents, catalysts, acids or bases for the neutralisation of
by-products cannot be included in the calculation but, any
solvent acting as reactant can be used (only the portion of
mass responsible for the product formation) (Dunn et al.
2010b; Dicks and Hent 2015).

3 Application of Green Concept in Synthesis

Actually, it is more important to apply green concepts in
practical purposes to check their viability than only to be
written theoretically on pages. There are no scarcity of such
practical examples from many past decades where the green
principles really have shown their profound positive
impacts.

3.1 Solvent-Based Organic Synthesis

It is undeniable that organic synthesis is one of the biggest
field wherein the green principles have provided its deepest
footprints effectively. It was from the very beginning,
organic synthesis was incurred with hazardous organic sol-
vents and the lion’s share of the reaction mass is possessed
by solvents of which 70% is burnt up for retrieving heat of
the reaction. Therefore, solvents are probably the most
essential and key portion of green chemistry (Anastas and
Eghbali 2010). Waste production, hazardousness, catalysis,
inflammability, etc., and many important features of syn-
thetic reactions can be controlled by choosing effective
solvent only, even an effective solvent can reduce multistep
reactions responsible for their separation, multiple

O

+ Ph3P+-CH3 Br- + BuLi

CH2

+ Ph3P=O + BuH + LiBr

MW = 96 278.3 58 86.9

Scheme 2 Wittig reaction with poor AE value

Table 1 E factors in different
chemical industry segments
(Dunn 2012)

Sector Volume/tonnes per year E factor (kg waste per kg product)

Oil refining 106–108 <0.1

Bulk chemicals 104–106 <1–5

Fine chemicals 102–104 5 to >50

Pharmaceutical 10–103 25 to >100
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by-products, their costly separation and huge energy con-
sumption also. So, revolutionary measures have been
adopted to gain sustainability, conforming to the green
matrices, by choosing effective greener solvents replacing
the organic solvents.

3.2 Aqueous Medium

There is no doubt that water is the greenest solvent of all
time for its abundance, cheap availability, non-
inflammability, nontoxicity and non-volatility making it
fully eco-friendly. Organic synthesis in aqueous medium
sounds weird to hear but, really it has come into existence
probably after the work of Breslow in 1980. It was a Diels–
Alder (D.A.) reaction (cycloaddition) of butenone with
cyclopentadiene undergone in water with 740 folds faster
rate than in isooctane and increased selectivity for endo
product (Rideout and Breslow 1980). As organic compounds
are insoluble in water, it was considered to be a contaminant
and was taken as a poor solvent for organic syntheses from
the inception. But in particular, polarity, hydrogen bonding,
hydrophobic effect and trans-phase interactions arising from
the structural uniqueness and associated physicochemical
properties of water impart influences in the reaction route
profoundly with much reactivity and selectivity. The find-
ings in aqueous solvent are justified by the hydrophobic
effect (Fig. 2) (Breslow 1991), as the work of Breslow was
also tested in protic solvents like ethanol and methanol
which resulted same as obtained in case of hydrocarbons.
The hydrophobic effect arises from the repulsion of
hydrophobic organic reagents with water molecules. This
effect inhibits the surface of hydrophobic aggregation of
reagents to come in contact with water molecules. Now, to
keep the hydrogen bonding among water molecules unaf-
fected, water molecules wrap around the hydrophobic

aggregates increasing the pressure inside the wrapper and
this internal pressure enhance the reaction rate to make
activation volume negative. Though, some reaction rates
may be facilitated also due to interfacial interaction between
the organic molecules and free hydroxyl groups of water
(Simon and Li 2012).

Cycloaddition-type Diels-Alder (D.A.) reaction, revealed
by Engberts et al., of 3-aryl-1-(2-pyridyl)2-propen-1-ones in
aqueous solvent is an excellent example of our present dis-
cussion. The said reaction showed 287 times greater rate in
aqueous medium than in acetonitrile (Scheme 4) (Li 2005).
It is worthy to note that the same reaction in presence of
water, Lewis acid and micellar catalyst [2.4mM Cu
(OSO3C12H25)2] was reported with 1,800,000 fold rate
enhancement than in acetonitrile.

Pirrung tested the influence of water in the multicompo-
nent transformations, for example, Ugi and Passerini reac-
tions thinking over the negative activation volumes.
According to their report, the reaction of 3-methylbut-
2-enoic acid, 3-methylbutanal and 2-isocyano-2-
methylpropane in water medium (Scheme 5) resulted in
the desired product with 100% yield only within 3.5 h
whereas in dichloromethane and dimethylformamide, the
yields were 50% after 18 h and 15% after 24 h, respectively.
They also reported that no product was found in methanol
(Pirrung and Sarma 2003, 2005).

In an industrial-level synthesis of 1-substituted-
4-cyano-1,2,3-triazoles from 2-chloroacrylonitrile and
organic azides, Novartis took water as solvent (Scheme 6)
(Chanda and Fokin 2009). He compared the result of his
experiment with the results of the same reaction in organic
solvents and he reported that 98% yield was obtained in
water which is very high in comparison to the others (46% in
n-heptane, 51% in toluene, 78% in dimethylformamide and
40% in ethanol). In water medium, unwanted side reactions
were minimised to improve the yield. Generally, hydrogen

NO2O2N

NO2

1. K2Cr2O7 /H2SO4 /SO3

2. Fe /HCl/ -CO2

H2N NH2

NH2

aq. HCl

80oC

HO OH

OH
Phlorogucinol

HO OH

OH

+ Cr2 (SO4)3 + 2 KHSO4 + 9 FeCl2 + 3 NH4Cl + CO2 + 9 H2O

392 2 X 136 9 X 127 3 X 53.5 44 9 X 18M W = 126

Product Byproducts

E factor = ca. 20

Scheme 3 Phloroglucinol
preparation from TNT
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chloride, a by-product, is produced in the 1,3-dipolar
cycloaddition after aromatisation and the medium becomes
acidic. Now, 2-chloroacrylonitrile gets polymerised both in
acidic and basic media, but in present case, the produced
hydrogen chloride goes to aqueous phase and
2-chloroacrylonitrile goes to organic phase and the reaction
proceeds easily without any hindrance of olefinic poly-
merisation yielding high percentage of product.

A nice reaction was reported by Aziz et al. where
selectivity of water increased the sustainability decreasing
environment impact. The reaction was synthesis of

b-aminoalcohols at room temperature, with high regio- and
stereoselectivity, from the reaction of epoxides and amines
in high yields in water (Scheme 7) (Azizi and Saidi 2005). In
every cases, the yields percentage in water were >90%, but
in ethanol, it was only 50% and in dichloromethane, ace-
tonitrile and di-ethylether, no product was found.

Hayashi et al. reported an asymmetric Mannich reaction
of some ketones with dimethoxyacetaldehyde, in an aqueous
solution, and p-anisidine in presence of an excellent
organocatalyst (Scheme 8) (Hayashi et al. 2007). The
organocatalyst was prepared by the Hayashi group using

Fig. 2 Hydrophbic effect in water solvent

+

N

NO2

O

N

NO2

O

25ºC
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(Cycloaddition)

Scheme 4 D.A. reaction in
water solvent
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Scheme 5 Passerini reaction in aqueous medium
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siloxy and tetrazole functional groups in presence of
pyrrolidine scaffold. This reaction gave high yield on using
only the aqueous solution of dimethoxyacetaldehyde (60%
solution in water) and required no additional water to gain
the benefit of high yield or selectivity (yields = 78% with
95% ee). Use of aqueous solution of the aldehyde also made
the work up process easier and the product extraction from
the crude mixture was possible by chromatography through
a silica gel column.

Mizoroki–Heck reaction an important organometallic
reaction which was repeated by Firouzabadi et al. in water
using insoluble Pd(0)L2 complex (Scheme 9). The Pd cata-
lyst, synthesised using 2-aminophenyldiphenylphosphinite
and palladium acetate, was found to catalyse the reaction of
aromatic halides and different alkenes in presence of water
and air at two different temperatures 80 and 95 °C
(Firouzabadi et al. 2009). After the completion of the reac-
tion, the catalyst can be used again about six more times to
get again 79–83% yields on an average.

Lemaire et al. used water soluble ammonium derivative
of BINAP analogue for ruthenium-catalysed asymmetric
hydrogenation of ethyl acetoacetate (Scheme 10) (Shaugh-
nessy 2009). The reaction was brought about in aqueous
phase efficiently giving 100% chemical yield with 97%

enantiomeric excess. The most promising fact is that the
catalyst can be reused about 9 times more with quite same
activity.

Gruttadauria and groups reported an asymmetric aldol
reaction of cycohexanone and p-nitrobenzaldehyde in water
medium catalysed by a substituted proline derivative at room
temperature with excellent selectivity and chemical yields
(99%) of the desired product (Scheme 11) (Giacalone et al.
2008). They developed the 4-substituted prolines
organocatalyst particularly with n-propylpyrene-1-
carboxylate as a substituent which shows high selectivity
at very low concentration even in presence of tap water
instead of distilled water and the said catalyst can be
repeatedly used with same activity. In organic solvents, the
reaction was found to give very poor yields.

The versatile function of water in organic syntheses came
into knowledge again after the work of Auge´ and groups.
They perfomed Claisen rearrangement of 6-b-glycosylallyl
vinylethers and concomitant reduction of the produced
aldehyde using sodium borohydride in water (Scheme 12)
(Xu and Queneau 2014). The reaction was completed with
full conversion to the desired product within one hour only
at 80 °C and no additional protection or deprotection steps
were needed making the reaction away from green
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Scheme 6 Triazole synthesis from azides and acrylonitrile in aqueous medium

O

R1

+ HN
R2

R3 R1
N

OH

R1
OH

N
R2 R3R2

R3

+

N

OH

N

OH

PhO
H
N

OH

Ph
N

OH

5- 24h
Water, rt

96% (100:0) 97% (100:0) 90% (100:0) 92% (76:24)

Yield (selectivity)

Scheme 7 b-aminoalcohols
synthesis from epoxides in water

MeO

H

O

MeO

NH2

MeO

O

+

N
H

TBDPSO

HN N

N
N

10 mol%
0ºC, 254h

(60% aqueous solution)

NH

MeO

MeO

MeO

O

78%

(In aqueous solvent)

(TBDPSO -
tert-Butyldiphenylsiloxane)

Scheme 8 Organocatalyzed
asymmetric Mannich reaction in
aqueous medium

46 S. Chowdhury et al.



chemistry. It is relevant to mention here that in toluene, the
reaction took 13 days to be completed from the substrate.

Such many reported synthetic reactions in water medium
have not been mentioned here, which really opened up new
avenues in the field of green synthesis (Vilotijevic and
Jamison 2007; Ohnmacht et al. 2008; Rogozinska et al.
2011; Wang et al. 2003; Hu and Manetsch 2010; Mamidyala
and Finn 2010).

Biocatalysis was the best way of green synthesis for all
time and to start any discussion about this the name “en-
zyme” must be spelt, in fact enzyme is the prime ingredient
that authorises the chemistry as green. History is the witness
that searching for suitable enzymes from nature for organic
syntheses is in vogue from old ages. Upto 1980s, enzymatic
reactions were performed in aqueous medium (Mikami
2005). But, enzymes being organic molecule hardly soluble

Ar Br + R
Ar

R

Ph2PO NH2
Pd(OAc)2 3mol%

NaOH or Cs2CO3 2equiv.
H2O, 80 or 95ºC, air

1- 10h

9 mol %

>80%

Scheme 9 Mizoroki–Heck
reaction in aqueous medium using
insoluble Pd–phosphinite
complex catalyst
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in water to be potential to conduct reactions with no limi-
tations. Non-aqueous solvents are more welcome in this
purpose. In life processes, also liposomes, the lipid bilayers
assist enzymatic reactions to happen in aqueous medium.
A smallest extent of water is essential to maintain the active
conformation of enzymes, which varies with the enzyme, but
proteins have no activity in fully dehydrated condition.
Therefore, the presence of water is critical for any kind of
biocatalytic reaction. Use of biocatalytic reaction in aqueous
medium is very common in food industries (Marques et al.
2012). But, biphasic medium, i.e. aqueous medium coupled
with another non-aqueous medium, is promising for bio-
catalytic reactions. Some discussions in this regard have
been provided in the later sections.

3.2.1 Micellar Media
Micelles, the nano-scale assemblies, (Fig. 3a) formed by
aggregation of amphiphilic surfactants (cationic, anionic,
neutral or Gemini type) are in equilibrium thermodynami-
cally, where monomers of surfactant swiftly exchange
among aggregates with an average lifetime of order 10−3–
10−2 s. One thing should be mentioned here that some liquid
polymers are also included in non-ionic or neutral surfac-
tants (Chowdhury et al. 2019a; Dwars et al. 2005). Surfac-
tants, above critical micelle concentration (CMC), exhibit
good catalytic activities in aqueous medium (Dwars et al.
2005). Micellar catalysis is one of the simplest methods,
even economic, in the field of catalytic reactions. It is also
abundantly used in detergency for attaining cleansing
property. Therefore, surfactants are termed not only as soapy
version of homogeneous catalysis but also as nano-reactors
having distinct features. Surfactants are versatile molecules
and very useful for many inconceivable purposes with some
magical features (Chowdhury et al. 2019a; Dwars et al.
2005; Sar et al. 2019). It being amphiphilic in nature helps
solubilising hydrophobic organic substrates in aqueous
medium. Moreover, surfactants make sure contacts between
substrates of different polarity controlling mutual heat
transfer and favouring their interaction that accounts for the
final transformation making the whole process environment
friendly with less waste production and less greenhouse
emissions as well as making E factor close to zero. Micellar
assembly encompasses the organic substrates and thus
increases the local concentration of the substrate favouring
compartmentalisation (Fig. 3b). Now, the concentration of
surfactants can be increased in aqueous medium to increase
the no of micelles – even to generate micro-emulsions which
encompass more substrates. Hydrophobic effect of surfac-
tants stabilises the organic substrates in the micellar cavity
making the overall concentration of the substrate in micellar
media greater than that in organic solvent and enhance
reactivity as well with distinctive chemo-, regio- and
stereo-selectivities. Water insoluble-charged metal catalysts

are also inherently soluble in oppositely charged micellar
media for coulombic interactions and reside on the periph-
eral surface as the second coordination sphere (Fig. 3b).
Thus, they can easily come close to the apolar substrates to
catalyse the reaction easily (Sorella et al. 2015). There are so
many examples of successful organic syntheses performed in
aqueous micellar media (Tomasek and Schatz 2013; Ohara
et al. 2014; Lipshutz et al. 2011; Isley et al. 2014a, b; Lin-
stadt et al. 2014).

The synthesis of quinoxalines from 1, 2-diamines (aro-
matic, hetero-aromatic or aliphatic) and 1,2-dicarbonyl
compounds (aromatic or aliphatic) at room temperature, a
dehydration reaction, using about fifty different surfactants is
a good example of micellar catalytic reaction, reported by
Chakraborti and co-workers (Scheme 13) (Kumar et al.
2013a). The micellar reactions produced more yield and
were faster than the reaction with no surfactants. The neutral
surfactants, for example, tween—40 among the all surfac-
tants displayed better yield production and their catalytic
activity follows the sequence: non-ionic surfactants > an-
ionic surfactants > Brønsted acid surfactants > cationic
surfactants. The high local concentration of the nonpolar
substrates within the micellar cavity facilitates the water
expulsion.

Another traditional reaction named Friedel-Craft acyla-
tion of aromatic rings which also gave very high yield in
aqueous medium in presence of cationic surfactants, for
example, cetyltrimethylammonium bromide (CTAB) or
cetyltrimethylammonium chloride (CTAC) at room temper-
ature. The reaction was carried out between acetyl chloride
and 1-halo-2-methoxynaphthalenes (Scheme 14). Some
other substrates, for example, 2-methoxynaphthalene, ani-
sole, 2-methoxypyridine, and 2-methoxypyrimidine were
also used under the same condition (Rajendar Reddy et al.
2013). In this process, sluggishness of the reaction, severity
of reaction condition, metal triflates, mineral acids and
production of wastes can be reduced by this method.

Hydration of alkyne is a very popular C–heteroatom bond
forming reaction which needs presence of transition metals
as catalyst to increase the electrophilicity of the alkyne. But,
in presence of surfactants, the reaction proceeded very nicely
in aqueous medium at 140 °C without using any transition
metal with effective hydration of aromatic alkynes terminally
and internally (Scheme 15). Terminal alkenes were also
found to be hydrated in this process (Nairoukh et al. 2013).

Oxidation of alcohols in aqueous acidic medium by Cr
(VI) is a very common reaction and it is very slow to move
to the product. The rate of oxidation of 2-propanol got
higher in presence of trace amount of Ru(III) and also in
SDS (sodium dodecyl sulphate) micellar medium separately
at 30 °C. But in presence of both Ru(III) and SDS micellar
media, the rate became around 8 times higher than that of the
uncatalysed propanol oxidation in absence of surfactant at
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the same temperature (Scheme 16) (Chowdhury et al.
2019b). The micellar reaction is truly an enhancement of the
oxidation reaction.

Another oxidation of an alicyclic alcohol in acidic
aqueous medium, cyclohexanol, was expedited repeating the
reaction in micellar media. In this, oxidation reaction Ce(IV)

Fig. 3 (a) Micellar aggregation. (b) Compartmentalisation of organic compounds by micellar formation in aqueous medium
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X

O

+

R Cl

O CTAB/CTAC
H2O, rt

X

O

X

O

+

R O

O

R

Major MinorR = Various alkyl groups
X = Br, Cl

Scheme 14 Cationic surfactants assisted Friedel-Craft acylation in aqueous medium

Future Trends in Green Synthesis 49



was used as an oxidant which oxidised cyclohexanol in
around 6 h at 28 °C having no catalyst but in presence of
small quantity of an anionic surfactant, SDS, the reaction
completed within only 21 min though in presence of CPC
(N-cetylpyridinium chloride), a cationic surfactant, the
reaction rate slowed down (Scheme 17) (Chowdhury et al.
2020a).

Oxidation of long-chain fatty aldehydes in aqueous
medium is not at all very easier. Octanal, such a long-chain
aldehyde was successfully oxidised to corresponding fatty
acid, caprylic acid, by Cr(VI) in acidic aqueous medium with
the help of surface phenomena in micellar media
(Scheme 18) (Chowdhury et al. 2020b). The reaction was
reported with good solubilising power and catalytic activity
of surfactants. In the reaction, SDS and TX-100 both ele-
vated the rate of the reaction considerably with their
increasing concentration and CPC does the opposite. The
micellar catalytic reaction was also reported with some rate
enhancing effect by some promoters (Phen, PA and Bpy)
which are actually hetero-aromatic bases in nature. The
micellar-promoted reactions display more enhancement
where the combination of SDS and Bpy was reported as the
best for such observation.

Micellar media is very useful in Diels-Elder reaction,
with a high atom economy, in the preparation of
4-amidyl-2-methyl-1, 2, 3, 4-tetrahydroquinolines, a phar-
macologically relevant molecule (Scheme 19) (Merchán
Arenas et al. 2013). In this case, using SDS in acidified
water a very high yield was produced diastereospecifically
and increasing the concentration of SDS above critical
micelle concentration the yield percentage was improved
more effectively.

Ruthenium-catalysed ring closing metathesis using, for
example, first-generation Grubbs, Hoveyda–Grubbs and
Zhan catalysts, is a very popular reaction. Such reactions
responded the catalytic behaviour of surfactants effectively.
In the ring closing reaction of N,N-diallyl tosylamine Gemini

bis-cationic surfactants (various common surfactants linked
with a spacer) showed improvement of catalytic efficiency of
metal catalysts in aqueous medium (Scheme 20) (Laville
et al. 2012). By NMR investigation, it was examined that
only the substrate molecule gets dissolved in the medium of
reaction, whereas the metal catalysts and the products
remained undissolved.

A very impressive contribution of micellar reaction was
announced by Ismail and groups in case of nitration of
aromatic compounds using nitric acid. The researchers
reported that in SDS micellar medium, nitration of aromatic
compounds steadily gave only para-isomer with strong
regioselectivity and higher atom economy even at room
temperature only within 30 min. Not only that, but also the
regiolselectivity was equally valid for other aromatic elec-
tron rich (like aniline) and electron poor substrates (having
nitro, carboxylic acid groups, etc.) as well and no protection
required in that case (Scheme 21) (Dey et al. 2013). High
yield, less tedious work up, no poly nitration and usages of
organic solvent make the process highly sustainable with
very small E factor. The substrate molecule gets dissolved in
the micellar medium of SDS and the micelles facilitate the
approach of substrate to the cationic nitronium ion.

Enantioselective asymmetric hydrogenation of itaconic
acid and dimethyl itaconate like important benchmark sub-
strates with chiral Rh(I) catalysts in methanol medium is a
very important reaction. The reactions were performed in
SDS and TX-100 media successfully with high
turnover-numbers (up to 1000) though the selectivity was
quite similar to the previous and the rates were rather lesser
than that in methanol (Scheme 22) (Schwarze et al. 2011).
The micellar media provide suitable membrane for the
recycling of the Rh(I) catalyst.

Suzuki coupling of aryl bromides and aryl chlorides is a
very well-known coupling reaction in presence of
ligand-free Pd catalyst which was repeated by Li and
co-workers in guanidinium ionic liquids containing six
lipophilic alkyl chains and reported with high yield. Here,
the guanidium ionic liquids acted as micellar media was
ensured by TEM analysis. Actually, the micelles of those
ionic liquids catalyse the reaction by stabilising the genera-
tion of elemental Pd-nanoparticles (*5.1 nm). The length of
the lipophilic chain of the guanidium molecule has strong
impact upon the reaction efficiency. In presence of hex-
aethylguanidinium bromide, the reaction between
4-bromoanisole and phenylboronic acid produced 30% more
product than the usual and in presence of
hexa-dodecyl-guanidinium bromide, almost 100% product
was obtained (Scheme 23) (Lin et al. 2011). Here also, the
micellar media provided an additional benefit of recycling
the elemental Pd catalyst without losing its significant
activity.
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Multicomponent reactions (MCRs) are good expansion of
chemist’s toolbox of sustainable organic synthesis. In this
type of reactions, at least three reactants combine in a single
pot to make a product having most of the atoms (preferably

all) of the reactants. High atom economy, mild reaction
condition, efficiency, great convergence and concerted steps
economy have made this methodology a transcendence.
Some very well-known examples of MCRs are Strecker,
Biginelli, Mannich, Passerini, Ugi, Groebke–Blackburn–
Bienaymé, Orru, etc., synthetic reactions (Cioc et al. 2014).
In all cases, the minimum atom economy is 80% and waste
production is also very minimal. But, use of benign solvents
was not in vogue beforehand. It comes into play compre-
hensively in this century (Touré and Hall 2009). Use of
micellar medium as solvent has really provided good
consequences.

In three-component one-pot synthesis of spirooxindole
derivatives, very important for the synthesis of pharmaceu-
ticals and natural products, weakly basic sodium stearate
was proved to be very efficient as micellar medium. The
micellar aggregations of weakly basic sodium stearates
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dissolved the substrate molecule forming colloidal disper-
sion and then stimulated the deprotonation of malononitrile
which reacted with isatin and next with a 1,3-dicarbonyl
compound to give 91–97% yield of the product (Scheme 24)
(Wang et al. 2010). It is very relevant to mention here that
use of SDS, SDBS (sodium dodecylbenzenesulfonate) or
any other weak bases, for example, acetate gave different
amount of yields in each cases.

Another example of multicomponent reaction is one-pot
synthesis of 3-amino alkylated indoles in aqueous micellar
medium via a Mannich-type reaction of secondary amines,
aldehydes and indoles. In presence of any Bronsted or Lewis
acid, the reaction produced mostly bis-indole derivative
whereas in micellar medium of SDS, it produced 3-amino
alkylated indoles in a smooth way with high selectivity and
very high yields (Scheme 25) (Kumar et al. 2013b). The
hydrophobic moiety of the anionic surfactant primarily
promotes the dehydration and cationic iminium formation
and the cationic additive reacts with indole for product for-
mation. In this procedure, about 25 different products were

synthesised easily within only 2–14 h with high yields (78–
94%).

Cu(I)-mediated Sonogashira-cyclisation of three-
components, i.e. o-halo-N-phenylbenzamides (I and Br),
phenylacetylene and indoles in one-pot is a very interesting
regioselective reaction which were tested using different
micellar media (Scheme 26) (Sarkar et al. 2013). Neutral
surfactants, PTS (polyoxyethanyl-a-tocopheryl sebacate) in
particular, and a base, triethylamine, gave the best result with
76% at 80 °C. The ligand, 2,20-(1E,10E)-(1R,2R)-
cyclohexane-1,2-diylbis(azan1-yl-1-lidene)bis(methan-1-yl-
1-ylidene)diphenol has a vital role in this reaction for the
activation of Cu(I) metal centre.

Micellar enzymology is a very important physicochemi-
cal line of research in biocatalysis. Enzymes can be of two
types: (1) hydrophilic or lyophobic and (2) hydrophobic or
lyophilic. The hydrophilic and hydrophobic moieties
impregnated surfactants can solubilise enzymes above CMC
forming supramolecular assemblies named micelles or
vesicles or o/w micro-emulsions, in aqueous medium, and
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reverse micelles or reverse vesicles or w/o micro-emulsions,
in organic solvents. In most cases, enzymes were found to be
more active in micellar medium (normal micelle or reverse
micelle) than in any pure solvent (water or organic solvent)
(Biasutti et al. 2008; Adlercreutz 2013). Stability of enzymes
under non-aqueous conditions is very crucial, which
depends upon (1) the character of the enzymes, (2) their state
of mobility, (3) the presence or absence of additives, for
example, sugars, (4) on the water content, and (5) sort of
non-aqueous solvent (Adlercreutz 2013; Cao and Matsuda
2016). In micellar media, all the factors are maintained very
carefully as per requirements. So, for in vitro biocatalytic
reaction, micellar enzymology has worldwide applications
(Biasutti et al. 2008; Adlercreutz 2013).

In 2004, Falcone and groups studied spectrophotometri-
cally the kinetics of a successful enzymatic hydrolysis of
2-naphthyl acetate by a-chymotrypsin (a-CT), a hydrophilic
and globular enzyme, in reverse micelles constructed by
sodium bis(2-ethylhexyl)sulfosuccinate (AOT), water and

n-heptane [water/AOT/n-heptane] (Scheme 27) (Darío Fal-
cone et al. 2004). In this reverse micellar reaction mixture,
addition of glycerine (GY) [water and a GY-water (38% v/v)
mixture], a non-aqueous polar solvent, exhibited significant
rate enhancement at pH �8.7 at about 25 °C. The half-life of
the enzymatic reaction in reverse micellar medium was
obtained 0.5 min, which is much larger than that of homo-
geneous non-enzymatic reaction (about 420 min). In both,
the reverse micellar hydrolysis quantitative yields of the
product were obtained. The rate enhancement, on addition of
water soluble GY to the reverse micellar medium, is attrib-
uted to the increased order of micellar matrix structure
causing decrease of the mobile nature of the enzyme mole-
cule and, hence, increase of its stability. In 2006, a biomi-
metic route was reported where haemoglobin was used in
polymerisation of aniline in SDS, CTAB and TX-100
micellar media. Good yields were obtained at pH = 2.0 (Hu
et al. 2006). Shome et al. presented a very relevant aspect of
micellar enzymology. They upheld that non-ionic surfactants
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can enhance the catalytic efficiency of surface-active
enzymes, for example, lipase, in cationic reverse micellar
media (Shome et al. 2007). They used CTAB as cationic
surfactant and displayed up to 200% rate enhancement in
presence of non-ionic surfactants, for example, Brij-30,
Brij-92, Tween-20, and Tween80. The rate enhancement
was mainly ascribed to the attenuated positive charge density
at the interface of cationic W/O microemulsions in presence
of the non-ionic surfactants. Similar trend of rate accelera-
tion was also inspected in case of peroxidase activity (Shome
et al. 2007).

3.2.2 Different Non-Aqueous Media
Some different non-aqueous media are also in good books of
modern researchers to replace hazardous organic solvents in
organic syntheses. Ionic liquids, fluorous media and super-
critical fluids are those promising non-aqueous solvents
which have been used extensively in this regard.

Ionic Liquids
Ionic liquids [ILs] are a kind of salts which are basically
liquid unlike solid salts and form by the ionic interaction of
mismatched cations and anions. Some structures of common
ILs have been produced for convenience (Fig. 4) (Mikami
2005). Amphiphilic nature of ILs has been revealed by many
investigations and ILs with long-chain imidazolium- and
pyridinium moieties behave like cationic surfactants in
aqueous solutions (Pei et al. 2018). ILs have some very good
qualities to be chosen as a green solvent. Firstly, the liquids
are salts; they cannot vapourise to pollute atmosphere and a
simple distillation is enough for product separation. Sec-
ondly, different organic, organometallic, inorganic and
polymeric compounds are highly soluble in the media
including catalysts, so organic syntheses can be carried out
in high concentration of the reagents. Even, it can dissolve
gaseous compound better than organic solvents. Thirdly,
ionic liquids are stable over a wide range of temperatures
(−96 to 300 °C) and kinetics can be controlled in these
media better than in water and organic solvents. Fourthly,
many organic solvents are immiscible with ionic liquids for
which they can be used in biphasic catalytic reactions and
product can be extracted easily from the catalyst. At the fifth,
though ionic liquids are of high price, large number
derivatives of the ionic liquids can be synthesised easily at
low cost and they are very tunable solvent (Mikami 2005;
Pârvulescu and Hardacre 2007; Hallett and Welton 2011).

In ionic liquid epoxidation of enones was done efficiently
in a basic aqueous solution of hydrogen peroxide requiring
no metal catalyst. In this case, hydrophobic [bmim][PF6] and
hydrophilic [bmim][BF4](bmim+=1-butyl-3-methylimidazo-
lium cation) both were used as the medium producing
quantitative yields of the desired epoxide in a very short time
(Scheme 28). The same strategy was used for the epoxida-
tion of chromones and flavonoids also (Bortolini et al. 2002;
Bernini et al. 2004).

The Suzuki–Miyaura coupling with good yield was
reported in a mixture of water and ammonium salt or
pyrrolidinium salt of BF4

− with ligand-free palladium cata-
lyst (Scheme 29) (Calò et al. 2005). The salts are of high
melting point (above 120 °C) but in water, they melt easily
and form a biphasic mixture at lower temperature (*50 °C
and 80 °C, respectively). In this reaction, the salts were
separated and purified though the recycling was not so good.

After few years, an interesting example of Swern oxida-
tion of a secondary alcohol in sulphide containing ionic
liquids was reported. Here, non-volatile sulphur-containing
compounds were grafted to the scaffold of imidazolium ionic
liquids (n = 2, 3 and 6) and oxidised to corresponding sul-
foxides by periodic acid. These sulfoxides actually oxidised
the secondary alcohol to ketones and the sulphur-containing
compound was regenerated easily in the process
(Scheme 30) (He and Chan 2006). The advantage over
normal Swern oxidation is that the sulphides or
sulphur-containing compounds used or generated in this
whole process were non-volatile and odourless, so this
process is quite eco-friendly. There are many more reactions
as such in the same field.

Microwave (MW)-assisted heterocyclic compounds syn-
thesis of ionic liquids is an advancement in the field of green
chemistry. MW acts as high-frequency electric field and it
can heat charged material (cations or anions) to synthesise
ionic liquids very fast reducing the reaction time to great
extent. There are many examples of MW-assisted reactions
reported so far. A couple of important examples of them
have been given below. (Pathak et al. 2016; Palou 2010).

A nice example of MW-assisted pyrazole derivatives
synthesis at room temperature was reported by Raghuvanshi
et al. The reaction of phthalhydrazide, aromatic aldehydes
and malononitrile was carried out in [bmim][OH] medium at
45 °C under the irradiation of high-frequency electric field to
synthesise 1H-pyrazolo[1,2-b]phthalazine-5,10-dione as sole
product (Scheme 31) (Singh et al. 2011).
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Scheme 27 Hydrolysis of 2-naphthyl acetate in presence of enzyme in reverse micelles
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Fig. 4 Cationic and anionic entities of some common ionic liquids
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Few years ago, a derivative of xanthene [1,8-dioxo-
octahydroxanthene] was synthesised very efficiently from
5,5-dimethyl-1,3cyclohexanedione (dimedone) and ben-
zaldehyde in [cmmim][BF4](cmmim+=1-carboxylmethyl-
3-methylimidazolium cation) IL medium by Dadhania and
co-workers, which was irradiated by MW (Scheme 32)
(Singh and Savoy 2020). The reaction procedure provided
reusability of catalyst, quantitative yields in a very little time
and work up was also very easier.

Biocatalysis in ionic liquids is a very relevant and ardent
topic of green chemistry which cannot be omitted in ILs by
any chance. Enzymes being an organic molecule have poor
solubility in aqueous medium. So, some non-aqueous media
were solicited and ionic liquids are really that kind of media.
Beside that the charged functional groups of enzymes may
interact with the counter ions of ionic liquids which may
enhance catalytic behaviour of enzymes (Sheldon et al.
2002; Sheldon and Pereira 2017).

Lipases (hydrolases) are the most extensively used bio-
catalytic enzymes because it can catalyse almost all kind of
organic synthetic reactions. There are many updated
instances of lipase-mediated synthesis of biodiesel using ILs
as reaction media (Scheme 33) (Itoh 2017). It is really an
interesting method of production of energy, one of the most
important needs in the world, by a sustainable way and so,
we accepted this example among the numerous. Moreover,
organic solvent-free separation of hydrophobic diesel from
the reaction medium has been perceived. There are many
such recent lipase-catalysed reactions in ionic liquids media.
Not only lipase but also many such enzymes like proteases,
cellulase, epoxide hydrolase, horseradish peroxidase (HRP),
alcohol dehydrogenase, cytochrome C, lyase, etc., have
profound positive impact in organic syntheses in a very
eco-friendly process (Li et al. 2015; Abe et al. 2012; Ou
et al. 2016; Mohammadyazdani et al. 2016; Dong et al.
2016; Daneshjoo et al. 2011; Rodrigues et al. 2014). But we
have no opportunity to discuss them here in detail.

Fluorous Media
Perfluorocarbons (PFCs) (Fig. 5) (Mikami 2005), the
fluorinated hydrocarbon analogues, can dissolve gases (due
to low surface tension) and they can be separated easily from
organic hydrocarbon solvents. Only for these qualities, they
were considered to give trial as solvent in biphasic organic

synthetic reactions of fluids (gas and liquid) and sometimes
for purification of products and catalysts. They were first
used by Zhu in 1993 as solvent in organic reaction. Time to
time, many more interesting features of PFCs were revealed,
which assists them to be greener solvent (Mikami 2005). In
fact, fluorous biphasic systems (FBS), first interpreted by
Horváth and Rábai, are widely exploited in many reactions
(Sheldon 2005). The characteristic features of fluorous sol-
vents (Mikami 2005; Sheldon 2005; Hobbs and Thomas
2007) are

1. At room temperature, the fluorous and organic phases are
not miscible. But, on increasing temperature, miscibility
and homogeneity of the two phases are achieved (Fig. 6).
On lowering temperature, the phases separate again. So,
the catalyst (organometallic catalyst) can be separated
from the product only by temperature variation, which
provides a basis for performing biphasic catalysis reac-
tion using fluorous solvents.

2. In catalytic reactions, fluorous catalyst can be extracted
as well as recycled directly from the reaction mixture and
organic product can be extracted using organic solvent.

3. Fluorous solvents are very inactive towards oxidant,
radicals, nucleophiles and electrophiles almost unlike the
common organic solvents.

4. They are less polar, non-protic solvents and not strongly
Lewis acidic or basic.

5. They are not too viscous to inhibit the movement of
reagents.

6. They are very friendly to environment for being less
volatile, non-toxic and having zero potential to deplete
ozone layer. Their greenhouse potential is also very low.

There are numerous examples of organic synthetic reac-
tions, where fluorous media have been discovered as a great
solvent and catalyst as well (Goto et al. 2005; Akiyama and
Mori 2015; Yan et al. 2010; Brittain et al. 2005; Trindade
et al. 2009; Zhang 2009).

Acetalisation of benzaldehyde with 1,3-propanediol and
Mukaiyama aldol reaction of an enol silyl ether with ben-
zaldehyde in neat organic medium in presence of fluorous
super Brønsted acid catalyst are interesting examples of
biphasic organic reaction (Scheme 34) (Akiyama 2007). In
this process, the recovery of the fluorous catalyst was very
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easier, it only needed precipitation by decreasing the tem-
perature of the reaction mixture to ambient temperature.

Mizoroki–Heck arylation reaction of acrylic acid in
fluorous medium was reported with both catalytic as well as
good solvent behaviour of fluorous medium. A fluorous Pd

catalyst was used as catalyst and F-626 was adopted as
reaction medium (Scheme 35) (Molnár 2011). The catalyst
was synthesised in situ using a fluorous IL and palladium
acetate. The products precipitated in the reaction as the
solubility of arylated carboxylic acids is very low in F-626.
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After the filtration of product and amine salts, recycling of
the fluorous Pd catalyst was possible for some more times.

The cross-coupling reactions, Mizoroki–Heck and the
Sonogashira reactions, also gave good response in organic/
fluorous biphasic medium (Scheme 36) (Matsubara et al.
2014). These reactions moved forward steadily producing
good yields of the desired product. The Pd catalyst was

recyclable and reusable in presence of the F-DMF in the
reaction medium.

A novel benzylation reagent, 2-benzyloxy-
1methylpyridinium triflate, was reported by Dudley et al.
in BTF solvent with higher yields (>95%) than in organic
solvents like toluene and 1,2-dichloroethane (Scheme 37)
(Sowmiah et al. 2018). Later, some studies of the reaction

Fig. 6 Miscibility of fluorous media with temperature variation
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confirmed the observations. Apart from this, the benzylation
also was successful by preparation of Dudley’s reagent
in situ (Scheme 38) (Yang and Dudley 2010).

Isomeric mixtures of methyl perfluorobutyl ether
(C4F9OCH3) are organic hybrid ether solvents, commercially
known as Novec 7100. In a report, Novec-7100 was suc-
cessfully discovered as a co-solvent with quite good yields,
where N-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate
was used for electrophilic fluorination of aryl Grignard
reagents (Scheme 39) (Petrone et al. 2016).

Fluorous solvent-based biocatalytic reaction is quite a
recent topic in research area. But not much work has been
reported yet thereof, for partial insolubility of enzymes in
fluorous solvents. But, “like dissolves like” so highly
fluorinated enzymes are soluble in fluorous solvents and
catalysts can be fluorinated by incorporating fluorous
ponytails therein (Hobbs and Thomas 2007; Sheldon and
Woodley 2018). This strategy allows fluorous solvents are
excellent to be used in multiphasic (biphasic or triphasic)
biocatalytic reactions coupled with organic solvent. Highly
fluorinated enzymes are readily soluble in fluorous media
and organic substrate is soluble in organic solvent. The
immiscible fluorous solution and organic solution can be
made miscible by raising temperature and after successful
reaction, the products can be obtained in the organic medium
only by cooling the reaction mixture. Even the enzyme, in
the fluorous medium, can be recycled and reused without
losing its activity (Lozano 2010; Zhang and Cai 2008).

Enantioselective esterification of rac-2-methylpentanoic
acid with a fluorinated alcohol catalysed by candida rugosa
lipase (CRL) is a good example of heterogeneous-type
biocatalytic reaction in FBS (perfluorohexane and hexane),
reported by Beier and O’Hagan (Scheme 40) (Beier and
O’Hagan 2002). The acidic substrate is soluble in hexane,
the alcohol and product (S-fluorinated ester) are soluble in
fluorous solvent. The reaction is termed as heterogeneous
due to insolubility of the CRL in either solvents. In the
reaction, only the (S)-2-methylpentanoic acid was selec-
tively converted to corresponding (S)-fluorinated ester and
unreacted (R)-2-methylpentanoic acid was obtained in

hexane. The catalyst was separated by filtration after the
reaction is over. A real homogeneous FBS reaction, where
the enzyme is soluble in flourous solvent, is very rare
because of trouble and difficulty in separation of enzyme
from products within the same fluorous solvent. If the sub-
strates get into organic solvent and only fluorinated enzyme
gets into fluorous solvent, the case will be more facilitating.
But, more research is expected in this field.

Supercritical Fluid
Any substance above its critical point is termed as super-
critical fluid (SCF). The critical point indicates the maximum
temperature (critical temperature, Tc) and pressure (critical
pressure, Pc) at which both phases (vapour and liquid) of the
substance exist in equilibrium (Fig. 7). Carbon dioxide has
the critical pressure 73.8 bar and temperature 31.1 °C. Water
is also a supercritical fluid for reaction chemistry (Tc =
374.0 °C, Pc = 220.6 bar) but its high critical point values
limits its application appreciably as a solvent. SCFs are
essential because of its dramatic changes in physical prop-
erties at small changes in pressure and temperature, espe-
cially around critical points (Mikami 2005; Boyère et al.
2014).

At critical point, the density of gas phase intersects and
equals to the density of the liquid phase of any substance.
So, there is no discrimination between the two phases at that
point (Fig, 8), which leads to an end of the boiling curve
(Fig. 7). The density of SCF is 100 times higher than that of
the gas and lower than the half density of the traditional
liquid (Mikami 2005; Hobbs and Thomas 2007).

The viscosity and diffusivity both depend upon temper-
ature and pressure. SCF has ten-fold lower viscosity and
higher diffusion rate in comparison to the liquid, which is
very helpful to make a reaction faster.

Most of the SCFs exert increase in dielectric constants
and thermal conductivities steeply with increase in pressure
near critical points.

SCFs having no surface tension, like gases, can spread
rapidly in the whole reaction volume and left no option other
than being miscible with gas compound.
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SCFs can dissolve liquid and solid compounds also in its
highly pressurised and liquid-like dense condition. So, the
solubility of the compounds can be changed by varying
pressure and products can also be separated by precipitation
according to our intention. So, SCFs are very powerful
solvent in organic synthesis and exceedingly important to
the bulk chemical industry. An extra benefit of using SCFs
as reaction medium is that, by changing the pressure of the
reaction medium, the phase number (single phase to bi-phase
or vice versa) of reaction can be controlled easily (Hobbs
and Thomas 2007).

For these salient features, SCFs are immensely useful as
catalysts and solvents in homogeneous or heterogeneous
organic reactions for many times (Machida et al. 2011; Firin
et al. 2013; Pavlovič et al. 2013; Onwudili and Williams
2006; Housaindokht and Monhemi 2013; Eckert et al. 1996).
Among the SCFs, supercritical carbon dioxide (scCO2) is a
very widely used ideal green reaction medium for its unique,
well understood physical and chemical properties as well as
its nontoxicity to the nature and to human beings. It is an
asphyxiant at high concentrations, but precautions can be
taken suitably to minimise the risk. It produces no hazardous
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waste or effluent like other organic solvents, because at
atmospheric pressure, CO2 is in gaseous state and easily can
escape from reaction medium without any severe treatment.
Non-polar solutes are more soluble in CO2 than polar
solutes, but with larger molecular quadrupole, the case is
quite opposite for scCO2. However, the solubility in scCO2

can be tuned by change in density, addition of co-solvent
and modification of solutes (Hobbs and Thomas 2007).
These unique features of scCO2 have smoothen many
uneven circumstances of organic synthesis intensely and we
have mentioned here some interesting examples.

Metal catalysts are necessary for hydrogenation and
nanoparticles of the metal catalysts are far more active in this
purpose. Such a case was reported where colloidal
Pd-nanoparticles supported with polymers were discovered
very efficient in catalysis of hydrogenation of
4-methoxycinnamic acid to 4-methoxyhydrocinnamic acid
in scCO2 at a 10 bar hydrogen-pressure at 56 °C
(Scheme 41) (Astruc 2007). More than 99% of the reactant

was successfully converted to the product in 20 s in this
process with high turnover frequency. The nanoparticles of
Pd were stabilised in the micro-emulsion of water-scCO2

medium and uniform dispersion of the nanoparticles there
caused fast movement of the reaction to the product. Similar
examples are also there, efficient hydrogenation of naph-
thalene and benzene using nanoparticles of Rhodium cata-
lyst in scCO2 (Ohde et al. 2004).

Many coupling reactions have been processed in scCO2

so far. Stille coupling is one of the remarkable and exem-
plary of them using Pd2(dba)3 (dba—dibenzalacetone) and P
[3,5-(CF3)2C6H3]3. In this reaction, the product,
vinyl-coupled-phenyl, was obtained quantitatively (>99%)
using iodobenzene and vinyl(tributyl)tin as reagent in the
supercritical solvent which is much higher than that obtained
in conventional method using triphenylphosphine as ligand
(Scheme 42) (Morita et al. 1998). The responsibility of this
achievement has been attributed to the greater solubility of
Pd complex in scCO2, which was also supported by another
Pd-catalysed popular coupling reaction, Heck reaction, using
PPh(C6F5)2—another fluorinated ligand (Fujita et al. 2002).

Base (DABCO—1,4-diazabicyclo[2.2.2]octane)-cata-
lysed Morita–Baylis–Hillman reaction of p-nitrobenzalde-
hyde with an electrophilic alkene in scCO2 was found with
higher rate than in organic solvents. The pressure required in
the experiment was as low as 80–100 bar and integrated
dehydration of the product led to symmetrical ether
(Scheme 43) (Rose et al. 2002). Unsymmetrical ethers was
also generated using other alcohol at the etherification step.

In the field of polymer synthesis, the contribution of
scCO2 is just indispensable. For high mass transfer, diffu-
sivity, low viscosity and tunable solvation property, scCO2

has captured a unique possession in this field. In this med-
ium, polymers can be synthesised smoothly via both
step-growth and chain-growth polymerisation. It is very

Fig. 7 Phase diagram for a SCF

Fig. 8 Change in physical state of biphasic system towards supercritical temperature
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notable that after the synthesis, the solid product can be
obtained only by simple depressurisation (Boyère et al.
2014).

The offering of scCO2 in polymerisation reaction was
realised towards the end of the last century. Till now, many
reactions have been processed in the medium including
RAFT (Reversible addition fragmentation chain transfer)
polymerisation (Birkin et al. 2011, 2013; Zong et al. 2008).
Many polyesters, polycarbonates, polyamides (nylons),
polyurethanes, polyureas, poly(ether carbonate)s and poly
(ether ester)s were easily synthesised in the supercritical
fluid medium (Fig. 9) (Boyère et al. 2014). An important
achievement by using this non-aqueous solvent, scCO2, is
the first homogeneous and heterogeneous synthesis of
polymeric fluorinated polymers (e.g. polymerisation of
1,1-dihydrofluorooctyl acrylate) (Scheme 44) (Du et al.
2009). With the help of biotechnology, a novel strategy of
bio-fuel production has been revealed on treatment of cel-
lulosic materials, the most abundant renewable biopolymer,
in this unique scCO2 medium (Medina-Gonzalez et al.

2012). This is really a fascinating and unprecedented fact in
the field of green chemistry. Metal-catalysed polymeric
syntheses are also not an exception of improvement in same
reaction medium (Islam et al. 2014a, b; Akbarinezhad 2014;
Guironnet et al. 2009).

In the mid-1980s, the enzymatic activities were devel-
oped in scCO2 and there are some merits of enzymatic
reactions in this medium unlike water. The biocatalytic
substances are insoluble in this medium, so easily separable
from it after the reaction is over. As the medium possesses
high diffusivity, the scCO2/solid reaction will be more
beneficial than in other liquid solvents. Moreover, the sep-
aration of the product is also easier than in aqueous solvent.
Apart from these, the tunable physical properties of this
solvent should not be forgotten ever in any adverse situation.
One relevant thing is to be mentioned here that, a minimum
volume of water is always present in the medium to prepare
buffer solution (Mikami 2005; Matsuda 2013).

In this purpose, lipases have been used widely as bio-
catalytic substance (Dias et al. 2018). Recently, in a
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I

+ SnBu3 + ISnBu3

cat. Pd2(dba)3+
P[3,5-(CF3)2C6H3]3

scCO2 (345 bar)
90°C, 5 h

>99%

Scheme 42 Efficient Stille coupling in scCO2

CHO

O2N

+

CO2Me

O2N

CO2Me

OH

DABCO
scCO2 (124 bar)

50°C, 24 h

O2N

CO2Me

O
O2N

CO2Me
-H2O

64% conversion

Scheme 43 DABCO-catalysed
Morita–Baylis–Hillman reaction
in scCO2

62 S. Chowdhury et al.



synthesis of a biodegradable star polycaprolactone by ring
opening polymerisation (ROP), Novozym 435 (Lipase B
from Candida Antarctica fixed on a solid support) was uti-
lised as biocatalyst in scCO2 effectively. In this reaction,
monomeric e-caprolactone (e-CL) and D-sorbitol were used
to synthesise the polymer star polycaprolactone. In presence
of scCO2, the conversion to the product was found very fast
(96% conversion in 7 h) at 60 °C. The same reaction was
also carried out in presence of conventional metal catalyst,
tin(II) 2-ethylhexanoate [Sn(Oct)2], and 96% conversion
took place in that case too but after 56 h at 95 °C
(Scheme 45) (Baheti et al. 2018).

Mixture of scCO2 and IL is a highly admiring biphasic
system for effective organic synthesis. ILs and scCO2 both
have tunable physical properties. ILs, polar solvent of no
vapour pressure, can solubilise organic, inorganic and
organometallic compounds. It can be miscible with scCO2 at
high temperature and so ILs are more compatible with
scCO2 in a two-phase system than any other solvents. Iso-
lation of products from ILs can also be undergone by using
scCO2 smoothly without requiring any organic solvent.
Metal-catalysed reactions get additional benefit of getting
metal complexes dissolved in ILs to enhance the reaction
rate (Pârvulescu and Hardacre 2007; Hallett and Welton
2011; Horng et al. 2016; Jessop et al. 2003).

There are striking evidences of effective biocatalytic
organic synthesis also in the biphasic system (Mikami 2005;
Sheldon and Pereira 2017). A fine instance is transesterifi-
cation of racemic secondary alcohols in presence of lipase in
scCO2/[bmim][NTf2] biphasic medium (Scheme 46) (Reetz
et al. 2002; Sheldon 2008). The benefits of this reaction
unlike the traditional methods were associated with easy
product/enzyme, product/solvent separations and effortless
recycling of the biocatalyst with no considerable loss of
activity at 40 °C. A similar transesterification reaction was
reported in the same year in presence of same enzyme in
scCO2/[bmim][NTf2] and scCO2/[bmim][PF6] medium with
equal benefits (Scheme 47) (Laszlo and Compton 2002).

Solvent-Free Synthesis
In chemistry, solvent is an essential part whenever any
reaction is supposed to carry out. It makes reaction medium
and takes care of transporting heat throughout the medium to
cause the reaction happen effectively. It takes care of the
solubilisation of solutes and rates and equilibrium status of
reactions considerably. But, the solvent, the largest chemical
species in any reaction, is also responsible for
eco-unfriendliness of organic reactions in many ways. In
following the guidelines of green chemistry, few hazardless
and benign solvents have been discussed so far. But, it was

Fig. 9 Some polymers
synthesized in the supercritical
fluid medium
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Scheme 44 Synthesis of polymeric fluorinated polymers by ROP in scCO2
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said that “the best solvent is no solvent” to overcome the
maximum unsustainability caused by solvents. So,
solvent-free synthesis is supposed to be the best possible
choice hitherto. It sounds weird to hear a reaction without
solvent but it happened in many common and important
reactions, for example, condensation of carbonyl com-
pounds, cycloadditions, alkylations, aromatic substitutions,
additions of amines, water, and alcohols, cyclisations,
eliminations, rearrangements, C–C coupling, cascade reac-
tions and catalysed reactions (Toda and Tanaka 2000).

There are many positive outcomes of solvent-free syn-
theses over the solvent-based reactions: (1) there is no
question of any collection, purification, and recycling from
reaction medium; (2) high yields are obtained (3) products
are pure enough and sometimes no chromatographic purifi-
cation, even recrystallisations, is necessary; (4) reactions are
sometimes extraordinarily faster than conventional organic
solvent-based reactions; (5) often no modern instrument and
their setting up is required; (6) mostly energy requirement is
also not too high; (7) preformed salts and metal-metalloid
complexes are not in use often; (8) there is no need of
protection-deprotection of functional groups; (i) batch

experiments at low cost is possible more eco-friendly than
conventional solvent-based methods. In association with
these advantages some disadvantages, for example, forma-
tion of “hot spots” and the possibility of runaway reactions,
are also present, which can be overcome technically (Cave
et al. 2001; Dunk and Jachuck 2000).

The understanding of molecular movements and contacts
between reactants of solvent-free synthetic reactions where
reagents are solids at reaction temperature, unlike the mis-
cible combinations of solid–liquid or liquid–liquid reagents,
were quite complex. But, later, it was comprehended and
demonstrated (Martins et al. 2009; Tanaka 2009). Actually,
in case of solid–solid combination, minimum requirements
are to be hosted to process the reaction. In solvent-free
solid–solid reaction, four mechanisms are employed for
activation (Fig. 10)—(1) mechanochemistry (grinding);
(2) microwave irradiation (MW); (3) ultrasound irradiation
(US); and (4) conventional thermal heating. In
mechanochemistry, the solid solute substances are grinded
physically by using mortar and pestle or by ball milling.
In MW irradiation, microwave is employed to the solutes
and the solutes absorb the waves to convert into thermal
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energy, which propagates through reaction mixture by
dielectrical heating. MW irradiation is the most effective
solvent-free solid–solid reaction process and in this internal
heating process reaction rate increases, yield percentage
increases significantly in comparison to the traditional
heating method. In US technique, powerful ultrasound is
used to irradiate the reagents till the product raising the
reaction temperature of range 4900–5200 K by cavitation
(Hobbs and Thomas 2007; Martins et al. 2009; Tanaka
2009). In the conventional thermal heating method, the
reaction mixture is heated using magnetic stirring and oil
bath. In this connection, it is worthy to mention that this
conventional thermal heating is quite inefficient and some-
times unable to produce any yield (Martins et al. 2009;
Tanaka 2009).

In last few decades, numerous reactions have been per-
formed in solvent-free conditions (Chandna et al. 2013;
Hernández and Juaristi 2010; Kanagaraj and Pitchumani
2010; Hasaninejed et al. 2012; Kumar and Sharma 2017; Li
et al. 2012; Panja and Saha 2013; Singh and Chowdhury
2012; Wen et al. 2012; Zhanga and Wang 2012). Atom
economy of these reactions are very high. Many organic

molecules can very easily be synthesised by this method
with less trouble.

Michael addition is an atom economic reaction. In 2011,
a simple catalyst-free as well as solvent-free synthesis of
nitroamines and nitrosulfides by following Michael addition
were reported by Choudhary et al. In the effective experi-
ment, high yields (>99%) were produced simply by grinding
the mixtures of amines and thiols individually with nitroo-
lefins (Scheme 48) (Choudhary and Peddinti 2011). The
process is so effective that it ended within few minutes only
at room temperature and requiring no purification of product.

In the same year, another solvent-free synthesis of
poly-substituted quinolines under microwave irradiation was
reported, in which a polyethylene glycol supported catalyst
(PEG-6000) was used effectively. The speciality of the
polymeric catalyst is its bio-degradability and modified by
sulphuric acid, presenting as PEG-OSO3H. In this Frie-
dländer-type synthesis, poly-substituted quinolines and
4-aminoquinolines were synthesised under the said condition
swiftly by condensing 2-aminoarylketones or anthraniloni-
trile with carbonyl compounds, unlike the conventional
method (Scheme 49) (Hasaninejad et al. 2011). The

Fig. 10 Mechanisms of
solid-solid solvent synthesis
reactions
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maximum yields (80–95%) were obtained within 12 min,
when 3 mol% of PEG-OSO3H and 600 W of microwave
irradiation was used at 130 °C in solvent-free condition.
After the reaction was over, the catalyst could be recycled
adding water in the medium followed by evaporation and the
water-insoluble product was separated and recrystallised
using ethanol. The recycled catalyst can be reused ten times
without undergoing any loss of activation.

In 2012, Huskić et al. reported appealing
mechanochemical solvent-free synthesis of nitrosobenzenes
by oxidation of different para derivatives of aniline using
potassium hydrogenperoxosulphate, also known as Oxone®,
(K2SO5.K2SO4.KHSO4) and featuring solvent-free purifica-
tion of the product only by sublimation under reduced
pressure (� 0.1 mbar) (Scheme 50) (Huskić et al. 2012).
From good to excellent yields (50–85%) were gained in the
study based upon the para substituent of anilines. The
para-iodoaniline yielded maximum. The yield % was found
to be enhanced while adding equimolar extent of basic
NaHCO3 to the reaction vessel.

In 2013, another outstanding nano-S-catalysed
solvent-free MCR was performed by Das and co-workers
to synthesise 1 Amidoalkyl-2naphthols using mortar and
pestle. In the preparation reaction, aldehyde derivatives,
naphthol and amides were grinded in mortar using the syn-
thesised S8 nanoparticles and quantitative yields were pro-
duced in a while at 50 °C, unlike the solvent-based method
using the conventional catalysts (Scheme 51) (Das et al.
2013). The nano-sized S8 catalyst could be used another five
times with no loss of its substantial activity. The determined
green metrics supported the intensive greenness of this
process.

Another efficient example of solvent-free heterocyclic
compounds synthesis in room temperature catalysed by
recyclable, in situ prepared, ZnO-NPs by ball-milling strat-
egy was reported by Sharma and co-workers. Different

derivatives of benzothiazole, benzimidazole and benzoxa-
zole were synthesised with quantitative yields (> 85%) in
30 min in this experiment which are environment friendly
with low E-factor. Various aldehydes were considered to
react with 2-aminothiophenol, o-Phenylenediamine and
2-aminophenol to obtain benzothiazole, benzimidazole and
benzoxazole, respectively (Scheme 52) (Sharma et al. 2014).
But the substituents in aldehydes were not found to show
any significant effect on the percentage of yields. It is
noteworthy that turnover number (TON), turnover frequency
(TOF) increased linearly with the amount of NPs but upto up
to 0.5 mol%. Maximum yields were obtained at rpm 600 of
ball-mill.

Solvent-free organic synthesis of heterocyclic compounds
using renewable chemicals is a very exciting fact and
demanding also nowadays. Such an interesting example of
solvent-free and metal-free short time (15–40 min) synthesis
of 1,4-dihydropyridines in presence of slight amount chi-
tosan nanoparticles (NPs) was reported few years ago. The
reaction was got going with Hantzsch synthesis using alde-
hyde, ethylacetoacetate, ammonium acetate and chitosan
NPs in a round bottom flask fitted with a magnetic stirrer at
80 °C (Scheme 53) (Safari et al. 2015). The chitosan NPs
were prepared by gelation of chitosan using heptamolybdate
anions and then it was made suitable to use by drying with
dry CO2 for 30 min. In this solvent-free synthesis, the rate
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and yields (* 90%) both were higher than that of
solvent-based synthesis.

Paal-Knorr synthesis is a very popular organic reaction
for heterocyclic compounds synthesis. Cho and co-workers
reported this reaction for synthesising underivatised pyrroles
by reaction of hexan-2,5-diones with aqueous NH4OH in
catalyst and solvent-free condition assisted by MW irradia-
tion (80 °C) and US technique (room temperature)
(Scheme 54) (Cho et al. 2015). In conventional method,
about 120 h is required to get quantitative product but in this
present method, the same was obtained in less than 1 h. MW
irradiation was discovered more effective than US strategy in
this process. Similarly, efficient solvent-free synthesis of
N-substituted pyrroles was also reported using
hexan-2,5-diones and amines by the same group with more
yields, even faster than the previous, but without using MW
irradiation or US strategy.

There are significant drawbacks of mechanochemistry—
lack of temperature control and scalability—for which twin
screw extrusion (TSE) was introduced. The melting tem-
peratures of reactants are very crucial in reactions especially
in solvent-free synthesis. TSE involves moving of the sub-
stances through a narrow restricted area by the rotation of a
pair of intermeshing, modular screws to get the desired
condition. Already, it has extensive use in food, polymer and

pharmaceutical industries, including reactive extrusion of
polymers (Crawford et al. 2017). In 2017, Crawford and
co-workers studied solvent-free Knoevenagel condensation,
a benchmark reaction, of barbituric acid with aldehydes
(vanillin, veratraldehyde and 5-bromovanillin) by TSE
(Scheme 55). In conventional solvent-based method, these
reactions take around 50 days to reach equilibrium. But, in
this ball-milling process, the reaction-completion times were
not more than 90 min at 25 Hz. TSE takes care of the
reaction temperature, and in these reactions, maximum
yields were produced at 160 °C at 55 rpm screw speed. The
same group also reported efficient solvent-free Aldol con-
densation and Michael addition using same apparatus
(Crawford et al. 2017).

Use of no solvent is the best way in the green synthesis.
In case of sustainable biocatalytic reactions also, an extra
benefit can be achieved under solvent-free condition. If one
or more of the reagents in biocatalytic reactions is a liquid
then mixing of substrate and enzyme is as simple as reac-
tions in non-aqueous solvents. But, for solid substrates and
solid catalysts, then, the reaction will not be accessed
smoothly. The lack of miscibility of substrate and enzyme
will limit the rate and yield of the reaction. There are two
approaches in this solvent-free biocatalytic reactions
—“heterogeneous eutectic” and “solid-to-solid” reactions.
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A minimum extent liquid phase is essential in both the
approaches, so that enzyme can conduct the reaction. In
heterogeneous eutectic approach, enzyme gets compatible
with the low melting (in general, <60 °C) eutectic mixture of
substrates (or in combination with very little adjuvant, for
example, water or organic compound). In the solid-to-solid
reaction, as the reactants are mostly in the solid state, an
added liquid phase is required for the reaction to occur. Both
the approaches are used extensively in organic synthesis
(Hobbs and Thomas 2007). To provide enzymes enough
resistance to influential conditions, for example, pH or
temperature enzyme immobilisation is very effective, espe-
cially for commercial uses. Enzyme immobilisation involves
modification of enzyme by binding to a solid support (car-
rier), entrapment and cross-linking (Sheldon and Pereira
2017). Though, immobilisation of enzymes are not fully free
of disadvantages. Enzymes have already been used in many
synthesis reactions in immobilised condition (Hobbs and
Thomas 2007).

In 2012, a solvent-free interesterification of acrylate
derivatives was catalysed by a lipase enzyme in a synthetic
process. Actually, allyl and dichloropropyl acrylates were
synthesised in the process from allyl and dichloropropyl
dodecanoates using whole cells (fungal resting cells) sup-
ported lipase-based commercial biocatalysts (e.g. CALB—
Candida antarctica lipase B) at temperature below 50 °C
under solvent-free condition (Scheme 56) (Varón et al.
2012). Quantitative yields of chlorohydrin acrylates were
produced in this green process which was a maiden
achievement and more advantageous than conventional
methods. There are examples where lipases have been also

used towards feasible and scalable solvent-free enzymatic
polycondensations (Pellisa et al. 2015).

Few years ago, Liu et al. proposed solvent-free enan-
tioselective aldol reactions of isatin derivatives with cyclic
ketones catalysed by Nuclease P1 extracting from Penicil-
lium citrinum (Scheme 57). The effective reaction was dis-
covered to be enantioselective in association with high
yielding (up to 95%) at mild condition. In conventional
solvent-based methods, poor yields were produced under
same reaction conditions. Harnessing Nuclease in this bio-
catalytic organic synthesis widens its applicability in phar-
maceutical industry also (Liu et al. 2014).

4 Future Trends

According to the Nobel Laureate Professor Ryoji Noyori
“Green Chemistry is not just a mere catch phrase; it is the
key to the survival of mankind.” (Noyori 2010) In addition,
the long discussion about organic synthesis with greener
approaches, the dependency of chemical reaction upon sol-
vent is understood in essence. Therefore, discovering more
appropriate solvent or solvent mixture from the hidden
treasure of chemistry is a prime task to climb the summit of
transcendence of green chemistry in the forthcoming future.

The hydrophobic effect and trans-phase activity of water
ameliorated organic synthetic path with a new version. It
provided mild reaction condition, good reactivity, selectiv-
ity, easy separation and recycling of catalysts. But, uncom-
mon reactivity and reverse selectivity of water unlike
organic solvents limited its further use in synthesis. Even, its
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nontoxicity could not make it completely green solvent. On
the contrary, the supramolecular aspects of micellar aggre-
gation have drawn a great attention in the field of green
synthesis (Acharjee et al. 2019a, b, 2020; Rakshit et al.
2020). Contribution of surfactants to almost all classes of
chemical transformations, as medium as well as catalyst of
reaction, is just undeniable. Sophisticate optimisation of
chemical nature, concentration and molar ratio of surfactants
can greatly influence the desired outcome of reaction.
Unique combination of catalyst, substrate and surfactant can
result some incredible happenings. Recently, preparation of
molecular capsule by new surfactants and their photoactive
encapsulation property has gained potential applications in
many technological fields, in catalysis and drug delivery
(Moscoso and Ballester 2017; Beaudoin et al. 2016). In
future, further research is necessary for some more multiple
applications, understanding and development of photocon-
trolled molecular capsules. In heterogeneous catalysis, sta-
bilisation of nanoparticles with controlled shape and its fate
in micellar media is attracting researchers for more research
in near future (Yin et al. 2015; Xi et al. 2018). Another very
important research is to discover suitable reversible
bio-surfactants for upgraded biocatalytic organic synthesis to
mimic green metabolic reactions in aqueous medium in
living organisms.

ILs are getting more attention, as non-aqueous media,
than fluorous media. The tunable property of ILs by
selecting appropriate ion-pairs has made them so unique.
Enzymes are very stable in some ILs for which they are
suitable for enzymatic reactions. Many organic compounds

are immiscible in ILs unlike fluorous solvents. Therefore,
ILs are very satisfactorily acceptable in biphasic reaction.
Whereas, in case of FBS, volatile organic solvents are to be
consumed for organic product separation. Hence, ILs are
supposed to be getting wider appreciation in near future in
green synthesis including industrial purpose than fluorous
media. The high price of fluorous solvent is also a limitation
of using it. The coupling of scCO2 with ILs is a great
combination in harnessing green synthesis. Some liquid
polymers, for example, poly(ethyleneglycol) (PEG), poly
(propyleneglycol) (PPG) or poly(tetrahydrofuran) (PTHF),
being biodegradable and widely tunable may be alternative
to slightly biodegradable ILs (Lozano 2010). CO2 in its
supercritical state with tunable solvent property and non-
toxicity has occupied a remarkable position as a green sol-
vent. But, in enzymatic reaction, the carbamate formation
and pH reduction due to carbonic acid formation have cre-
ated problems (Lozano 2010). So, some scope of research is
there to find way-out to overcome the problems. Synthesis of
solid nanocomposites, assembly of metal-organic framework
and amphiphiles may solve many challenging problems
hereafter in scCO2/IL biphasic medium (Zhang et al. 2014,
2016; Ivanova et al. 2015).

In the wake of this, one thing should not be forgotten that
solvent-free synthesis is more successful than solvent-based
system. In biocatalytic reactions also no exception happened.
But, in following solvent-based biocatalysis in living
organisms, finding some better green solvents is of utmost
importance and more exquisite research is necessary to
unfold this fact.
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Abstract

Nanoparticles are an inspiring group of nanostructured
materials with broad-spectrum applications in different
fields such as catalysis, antimicrobial treatment, drug
delivery, nanomedicine, environmental remediation, elec-
tronics, and chemical sensors. Nevertheless, the tech-
niques used for preparation are environmentally
unfriendly. Aiming to promote the greener synthesis of
nanoparticles, this chapter spotlights plant-mediated
eco-friendly and sustainable development of nanoparti-
cles. Naturally occurring plant extracts are enriched with
a plethora of various biologically active biomolecules and
secondary metabolites, including alkaloids, terpenoids,
flavonoids, enzymes, and phenolic substances. These
bioactive compounds can catalyze the reduction of metal
ions into biogenic nanoparticles in an eco-sustainable
single-step biosynthetic process. Additionally, the utiliza-
tion of plant extracts and their derived compounds
circumvents the necessity for capping and stabilizing
agents and generates bioactive size and shape-dependent
green nanoparticles. Herein, we have made an effort that

describes the synthesis of a wide range of metal-based
nanoparticles (platinum, gold, zinc oxide, silver, and
titanium dioxide nanoparticles) by using plant extract as a
green synthesis matrix. In addition, different parts of
plants that have widely been utilized for the biosynthesis
of these NPs with several sizes and shapes by biological
methodologies are briefly described. In conclusion, the
greener synthesis approaches are safer and easier to
exploit the massive preparation of nanostructured
particles.

Keywords

Nanotechnology � Metal nanoparticles � Green
chemistry � Plant extract � Secondary metabolites

1 Introduction

Nanotechnology may be described as the modification of
matter by different physical or chemical tactics for the for-
mation of substances with particular applications (Herlekar
et al. 2014). It can also be defined as the microscopic-sized
particle that has at least, one dimension much lesser than one
hundred nanometers in size (Thakkar et al. 2010).
Nanoparticles (NPs) possess many interesting applications
and multi-functional properties in diverse fields which
includes nutrition energy and medicine (Abbasi et al. 2016;
Ghorbanpour and Fahimirad 2017) because of their signifi-
cant surface-to-volume ratio and abundance of surface
atoms. Other considerable advantageous features of
plant-based nanoparticles are shown in Fig. 1. The biogenic
synthesis of monodispersed nanoparticles with particular
sizes and shapes was an undertaking in biomaterial science.
Also, it has garnered prodigious interest within the industry
of pharmacology for the cure of viral and bacterial infections
(Song and Kim 2009). The biological synthesis strategies are
prospective alternative as compared to other classical
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methods of synthesis due to the usage of extra-biological
compounds. The easy accessibility and rich biodiversity of
natural material had been enormously studied for the
biosynthesis of nanomaterials (NMs) (Monda et al. 2011).
Recently, the green synthesis of nanosized tubes, particles,
wires, and flowers was described. These biosynthesized
NMs exhibit great prospective in many diverse fields like
diagnosis, treatment, commercial product manufacturing,
and improvement surgical nanodevices (Bar et al. 2009).
Nanomedicines had made a great influence in the healthcare
sector by curing numerous chronic ailments. Therefore,
green biosynthesis of NPs is taken into consideration as the
building blocks of the coming near generations by control-
ling various health issues (Cruz et al. 2010).

Nowadays, nanotechnology has attracted great interest as
a promptly growing scientific field. Manipulation, charac-
terization, and fabrication of NPs are the foremost aims
observed in this new technology (Ghorbanpour and
Fahimirad 2017; Ahmed et al. 2016; Beyene et al. 2017).
Plant crude extracts of plants consist of unique secondary
metabolites like phenolic acid, terpenoids, flavonoids, and
alkaloids, wherein these metabolites are known to be the
reason for ions reduction during the biosynthesis of NPs
from different metals (Aromal and Philip 2012). These plant
metabolites are frequently used for redox reactions for the
preparation of eco-friendly NPs. Many earlier reviews are
revealing that these synthesized nanoparticles are efficiently
controlling the apoptosis, genotoxicity, and oxidative
stress-associated changes (Kim et al. 2007). Moreover, NPs
possess a wider range of applications in plant sciences and
the agriculture industry. For example, with the help of

bioprocessing technology, nanoparticles can convert agri-
cultural wastes and food into energy and many other useful
products.

2 Methods for Metallic Nanoparticle
Biosynthesis

Numerous procedures are utilized for the formation of dif-
ferent nanoparticles like chemical, biological, physical as
well as enzymatic. Chemical protocols are utilized to prepare
nanoparticles by way of the sol–gel, electrodeposition, and
vapor deposition (Oliveira et al. 2005), moist chemical, and
co-precipitation techniques (Gan et al. 2012), hydrolysis,
catalytic route, Langmuir–Blodgett approach and soft
chemical technique (Pileni 1997). Likewise, physical tech-
niques that are being used include ball milling, plasma arc-
ing, thermal evaporate, ultra-thin films, spray pyrolysis,
lithographic techniques, pulsed laser desorption, layer by
using layer growth, molecular beam epistaxis, sputter
deposition, and diffusion flame (Joerger et al. 2000).
Chemical and physical techniques are using stabilizing
agents, highly concentrated reductants, and high radiations
that are toxic and unsafe for humans and the environment.
Therefore, the biosynthesis of NPs is a single-step
bio-reduction procedure that uses lesser energy for the
synthesis of eco-friendly nanoparticles (Sathishkumar et al.
2009). Plant extracts, enzymes, fungi, bacteria, and
microalgae are different resources that are being used for the
biosynthesis of nanoparticles (Iravani (2011)). Table 1
depicts a recent list of biosynthesis of metallic nanoparticles
from various plant sources.

3 Green Biosynthesis of Metallic NPs

The procedures for acquiring NPs through different naturally
occurring compounds like sugars, plant extracts, vitamins,
micro-organisms, and biodegradable polymers might be
considered as appealing for nanotechnology. This biological
synthesis has led to the fabrication of a confined variety of
inorganic NPs (particularly, metallic NPs, though numerous
salts and metal oxides also are described). Among the
material noted above, primarily, plant-based substances are
to be the greatest source and are appropriate for the
large-scale formation of NPs (Iravani 2011). For the bio-
logical synthesis of metallic NPs, different parts of plants
like root, stem, leaf, seed, and latex are being utilized.
Polyphenols that are present in plants, for example, in wine,
tea, red grape pomace, and winery waste are supposed to be
the active and important agent required for the synthesis.
Green biosynthesis of nanoparticles offers advancement as
compared to other strategies as it is cost-efficient,

Fig. 1 Advantageous features of plant-based biosynthesis of
nanoparticles
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Table 1 Synthesis of metallic nanoparticles from various plant sources

Name of plant Part used Nanoparticles Size (nm) Morphology Functional groups/Bioactive
compounds

Applications References

Musa
paradisiaca

Peel Gold 100 – Amine, hydroxyl and
carboxyl groups

– [32]

Tea Leaves Gold 20 – – [33]

Pelargonium
graveolens

Leaves Gold – – Terpenoids – [35]

Azadirachta
indica

Leaves Gold – – – [36]

lemongrass Leaves Gold – Spherical – [37]

Diospyros kaki Leaves Gold 5–300 Spherical
and
hexagonal

– [39]

Mentha arvensis Leaves Gold 39 ± 15 Spherical
and
hexagonal

[40]

Pear Fruit Gold 200–500 Hexagonal
and
triangular

Organic acids, proteins,
peptides, amino acids, and
saccharides

– [41]

Garcinia
combogia

Fruit extract Gold – Spherical
shapes

– [42]

Pistacia
integerrima

(leaf galls) Gold 20–200 Carboxylic acid and
hydroxyl groups of
polyphenols

Antimicrobial and
antinociceptive
activities

[43]

Diopyros kaki Leaves Platinum 2–12 [58]

Cacumen
platycladi

Leaves Platinum 2.4 ± 0.8 Flavonoids and reducing
sugars

[53]

Ocimum
sanctum

Leaves Platinum 23 nm Gallic acid, ascorbic acid,
proteins, and terpenoids

[52]

Terminalia
chebula

Fruit <4 Nearly
spherical

Polyphenols [59]

Tea Platinum 30–60 Polyphenol [60]

Pelargonium
graveolens

Leaves Silver 16–40 [78]

Cinnamomum
camphora

Leaves Silver 55–80 spherical or
triangular

Water-soluble heterocyclic
and polyol components

[79]

Podophyllum
hexandrum

Leaves Silver 12–40 spherical
shaped

[82]

Alternanthera
dentate

Leaves Silver 50–100 spherical
shaped

Antibacterial [84]

Boerhaavia
diffusa

Whole plant Silver 25 spherical Antibacterial [86]

Taraxacum
officinale

Leaves Silver 15 Spherical Flavonoids, terpenoids, and
triterpenes

Role in disease
management

[83]

Sesuvium
portulacastrum

Callus Silver 5–20 spherical [87]

Tribulus
terrestris

Fruit Silver 16–28 spherical Antibacterial [88]

Cocous nucifera Inflorescence Silver 22 spherical Antimicrobial [89]

Abutilon
indicum

Leaves Silver 7–17 Spherical [90]

Ziziphoratenuior Leaves Silver 8–40 Spherical Carbonyl, hydroxyl, amine [91]

(continued)
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comparatively reproducible, simple, and it results in more
stable products (Kalaiarasi et al. 2010). Generally, biological
material offers an environmentally-friendly and green
chemical protocol for the production of valuable materials as
the biomaterial-based routes reduce the usage of toxic
chemicals (Parsons et al. 2007). Figure 2 shows a schematic
illustration of the biosynthesis of metallic nanoparticles
using various parts of the plant. Few different types of
synthesis for metallic NPs are as follows.

3.1 Gold Nanoparticles

Gold (Au) nanoparticles have been stated as an extensive
research tool in different fields of agriculture, medicine, and
health center due to their stability and biocompatibility
(Sheoran and Kaur 2018). Au is considered as one of the
extraordinary metals having a melting and boiling point of
1064 and 2808 °C, respectively. Numerous properties of Au,
like its incapability to react with oxygen and water and its
exceptional conductive properties, have made it very bene-
ficial for mankind. During the 5th millennium BC, gold
extraction began close to Bulgaria and is assumed that
“soluble” Au come to be seen approximately the 4th or fifth
centuries BC in China. The spectacular statue of
Touthankamon that was built in this time is proof. Earlier,
gold was known with various terms, like drinkable and
soluble Au, and Graham (Graham 1861) coined the term
“colloid.” The colloids of Au and the stunning ruby red color

have attracted people for lots of eras (Marie-Christine and
Didier 2004; Hough et al. 2011). Gold was widely utilized
for medicinal, cosmetic, and ornamental purposes (Savage
1975; Kunckels 1976). Drinkable Au was also used for the
cure of several health problems like arthritis, heart diseases,
tumors, dysentery, epilepsy, and venereal disease (Anil et al.
2013).

Gold nanoparticles (AuNPs) fascinated some researchers
inside the area of plant-based biosynthesis due to their ex-
ceptional applications and properties in biomedical, nan-
odevices, nonlinear optics, catalysis, and nanodevices (Huo
and Worden 2007). Gold nanoparticles offer promising
scaffolds for gene and drug delivery (Siddiqi and Husen
2017). These nanoparticles possess many useful features
such as monodispersity, tunable core size, tunning, and
transport of delivery processes and the large surface-to-
volume ratio (Han et al. 2007). The AuNPs can be formed
by green synthesis (Aromal and Philip 2012; Shankar et al.
2004a); however, the number of gold synthesis reports is
considerably lesser as compared to AgNPs. The size of
AuNPs varies within a range of 20–300 nm. For example,
gold nanoparticles (100 nm) have been prepared from the
peel extract of banana (Musa paradisiaca) by using simple,
eco-friendly, and non-toxic material (Bankar et al. 2010).
The crushed, boiled, acetone-precipitated, and dried powder
of banana peel was used for the reduction of chloroauric
acid. In this study, the enlargement of NPs into microwire
and microcubes networks to the periphery of the banana
sample was seen. The contribution of amine, hydroxyl, and

Table 1 (continued)

Name of plant Part used Nanoparticles Size (nm) Morphology Functional groups/Bioactive
compounds

Applications References

Chenopodium
album

Leaves Silver 10–30 Spherical [93]

Azadirachta
indica

Leaves Silver 10–35 Spherical [94]

Rosa canina flesh Zinc oxide Spherical Polar groups, a carbonyl
group

Antibacterial,
non-toxic and
antioxidant

[109]

Aloe
barbadensis

Leaves Zinc oxide 25–40 Spherical [115]

Nyctanthes
arbortristis

Leaves Titanium 100–150 [130]

Annona
squamosa

Fruit peel Titanium 23 ± 2 Spherical [132]

Solanum
trilobatum

Leaves Titanium Pediculocidal and
larvicidal activities

[134]

Catharanthus
roseus

Leaves Titanium 25–110 Larvicidal and
adulticidal
potential

[133]
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carboxyl groups was observed during the synthesis. Using
tea extracts, nanocomposites of gold nanoparticles can be
prepared. The extract was made in the solution of
1-methyl-2-pyrrolidinone during the process of nanoparti-
cles (20 nm) formation (Afzal et al. 2009). The AuNPs
formation in the polyaniline matrix was confirmed through
TEM. In another research by Wu and Chen (Wu and Chen
2007), a facile and green route was reported, by mixing rice
wine, soda, and Au (III) at pH 6.5 at a temperature of 25–55
°C without the use of any protective agent. No precipitation
occurred, and the resultant solution was stable after a few
months.

Shankar et al. (2003a) described the formation of AuNPs
by using the leaves of Pelargonium graveolens. It was stated
that present terpenoids in geranium leaves act as reducing and
capping material for a quick reduction of chloroaurate ions
toward the AuNPs of different sizes. Later on, these research
groups determined the formation of gold nanoparticles by
using different plants like Azadirachta indica (Shankar et al.
2004b) and lemongrass (Shankar et al. 2005). Prism-,
trapezoid-, rod-, and sphere-shaped gold nanoparticles were
formed from the black tea leaf extract. The tea phenols and
flavonoids are known to be the reason for efficient reduction

caused by the extract (Begum et al. 2009). Song et al. (2009)
stated that leaf extracts of Diospyros kaki and Magnolia
kobus successfully synthesize the extracellular gold
nanoparticles within a range of 5–300 nm having pentagonal,
triangular, spherical, and hexagonal shapes at the temperature
of 95 °C within few minutes. Babu et al. (2010) cited that
leaves of Mentha arvensis (ethanolic extract) formed AuNPs
of spherical and hexagonal shapes having approximately a
size of 39 ± 15 nm. Extract of pear fruit biosynthesized
hexagonal and triangular nanoparticles at room temperature
of 200–500 nm (Ghodake et al. 2010). The reason for the
synthesis of AuNPs is the presence of organic acids, proteins,
peptides, amino acids, and saccharides in pear fruit extract.
Rajan et al. (2014) used Garcinia cambogia (fruit extract) for
the biosynthesis of AuNPs of anisotropic and spherical
shapes. It was concluded that the shape of nanoparticles relies
on the reaction temperature and quantity of extract. In 2015,
Islam et al. (2015) and his research group stated that Pistacia
integerrima (leaf galls) reduces ions into the gold nanopar-
ticles. Carboxylic acid and hydroxyl groups of polyphenols
were known to be the reason for the process of reduction.
These polyphenols capped the NPs and making them more
stable in varied pH solution and at high temperatures. These

Fig. 2 Schematic illustration of biosynthesis of metallic nanoparticles from various parts of plant
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synthesized Au nanoparticles showed great potential in
antimicrobial, enzyme inhibition, muscle relaxant, and
antinociceptive activities. The mechanism of antimicrobial
activity of nanoparticles is shown in Fig. 3.

3.2 Platinum Nanoparticles

Noble metallic nanoparticles like silver, gold, platinum, and
palladium possess a wider range of different applications,
such as material science, medicine, pharmaceuticals, and
chemistry (Karikalan et al. 2016; Sahin et al. 2017). Among
them, platinum has few specific properties like good resis-
tance toward chemical attacks and corrosion, and high sur-
face area. For the synthesis of platinum nanoparticles
(PtNPs), till now, numerous methods have been used such as
sol–gel route, vapor deposition, and chemical precipitation.
However, these protocols have few limitations such as usage
of toxic and unsafe chemical, high cost and energy
requirements, multistep for preparation. To overcome these
limitations, recently, different plant-based syntheses of these
metallic nanoparticles, especially platinum nanoparticles,
have gained great attention because of their simple usage,
eco-friendly, and non-toxic nature.

Platinum (Pt) is one of the expensive, rare, and
high-density metals. Platinum nanoparticles are mostly used
in the form of suspension or colloid. The antioxidant ability
of PtNPs is one of the reasons for their extensive research
(Siddiqi and Husen 2016). The main application areas of
PtNPs are cancer therapy, polymer membranes, catalytic
converters, plastics, textiles, and nanofibers. PtNPs are being
extensively utilized as catalysts and in different biomedical
applications (Akhtar et al. 2013). In comparison with silver,
gold, and platinum, NPs are notably limited. The reaction
between an aqueous solution of Pt and plant extracts leads to
the following mechanism:

H2Pt
þ 6Cl� � 6H2O þ Plant molecule

! Pt0nano - particles

Specifically, the interest in PtNPs is because of their
unique structural, catalytic, and optical properties making
them a promising nanoparticle in catalysis and biomedical
applications (Chen and Holt-Hindle 2010; Pedone et al.
2017). Biological approaches for the biosynthesis of PtNPs
with the help of plant extracts have not been extensively
used. According to the literature survey, the plants that have
been used for the green synthesis for PtNPs are as follows:
Diospyros kaki (Song et al. 2010), Ocimum sanctum
(Soundarrajan et al. 2012), Anacardium occidentale (Sheny
et al. 2013), Cacumen platycladi (Zheng et al. 2013), Bidens
tripartitus (Dobrucka 2015), Punica granatum (Dauthal and
Mukhopadhyay 2015), Cochlospermum gossypium (Vinod
et al. 2011), Azadirachta indica, and Quercus glauca
(Thirumuran et al. 2016). Jae et al. (2010) prepared PtNPs
(2–12 nm) from a solution of H2PtCl6

∙6H2O, where leaf
extracts of Diopyros kaki were used as the agent for
reduction of ions. At a temperature of 95 °C with an extract
concentration of more than 10%, around 90% of platinum
ions were successfully converted into PtNPs. Zheng et al.
(2013) biologically synthesize PtNPs (2.4 ± 0.8 nm) by
using an extract of Cacumen platycladi at 90 °C having an
extract of 70% and reaction time of 25 h. During this reac-
tion, the flavonoids and reducing sugars performed an
important part in the reduction of the platinum ion as com-
pared to proteins. Likewise, Soundarrajan et al. (2012) used
the leaves of O. sanctum that acts as the reducing agent
during the biosynthesis of PtNPs of size 23 nm, whereas the
solution of H2PtCl6∙6H2O was used. Different compounds
of plants such as gallic acid, ascorbic acid, proteins, and
terpenoids acted as agents for reduction during the formation
of PtNPs. Kumar et al. (2013) isolated polyphenols from the
extract of Terminalia chebula that causes the one single-step
synthesis of platinum nanoparticles. They demonstrated that
the reduction of platinum (IV) to platinum (0) was due to the
presence of polyphenols in the T. chebula extracts.

Platinum nanoparticles, which were synthesized from tea
polyphenol, act as both capping and reducing agents. These
PtNPs were crystalline in nature, having a particle size of
30–60 nm, with a structure of face-centered cubic. Trans-
mission electron microscopy determines that the NPs were
of flower-shaped. The polyphenols present in tea include an
amount of different phenolic components that form the
complexes with the ions and quickly reduce them into
metallic nanoparticles of various sizes and shapes (Nada-
gouda and Varma 2008; Kim et al. 2008; Porcel et al. 2010).
The usage of different extracts from plant extracts for the
green biosynthesis of PtNPs relies on the fact that the pro-
cedure is easier, faster, reliable, cost-effective, and

Fig. 3 Mechanism of antimicrobial activity of nanoparticles
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eco-friendly and forms more stable nanoparticles as com-
pared to other classical methods (Mohanpuria et al. 2008).

3.3 Silver Nanoparticles

Usually, silver (Ag) is used as a catalyst for the oxidation of
ethylene to ethylene oxide and methanol to formaldehyde
(Nagy and Mestl 1999). Some of the features of Ag are good
conductivity, catalytic, antibacterial potential, and chemical
stability (Frattini et al. 2005). In the era of the Roman
Empire, silver nanoparticles were utilized by the founders of
glass, for the creation of the Lycurgus cup (fourth century
AD); now, this cup is in British Museum (Nagy and Mestl
1999; Parida et al. 2016). Before the 1980s, silver
nanoparticles (AgNPs) were used for isolated supports that
were utilized for signals in Raman spectroscopy for practical
and scientific concern (Frattini et al. 2005), revealing that
AgNPs exhibit a unique organization of high electrical
double-layer capacitance (Henglein 1999). Currently, the
formation of AgNPs is one of the most actively rising
developments in the colloid chemistry and continuously
increases in the scientific publications in around the last 20
years.

The mechanism of AgNPs synthesis is due to the
occurrence of the polyphenols in the extracts of different
plants, which causes the reduction of NPs. This reduction is
carried out by the removal of hydrogen due to the OH
groups present in polyphenols. The formation of silver
nanoparticles is being performed by various biological sys-
tems (Baker et al. 2013; Nath and Banerjee 2013; Makarov
et al. 2014; Płaza et al. 2014). Numerous plants and their
respective parts have been utilized for the formation of silver
nanoparticles. This formation involves the reaction of AgN
salt with the plant. The presence of a brownish-yellow color
confirms the formation of AgNPs.

At present, AgNPs have gained great attention and are
being considered as the most capable and useful NP for
different biological applications, including biomolecular
detection, therapeutics goals, food production and preser-
vation, agricultural purposes, antibacterial agents, drug
delivery (Ghorbanpour et al. 2018), bio-labeling, wound
healings, sensing, cosmetics, and water purifications (Zhang
et al. 2016). These NPs can be formed through protocols
(Mittal et al. 2013). Though the method of chemical
reduction is a common one for the formation of silver
nanoparticles, the usage of precarious and expensive chem-
icals has diverted the attention of researchers for the search
of new and alternative methods (Khan et al. 2015). Some
potential health risks were another reason for the search for
new methods and had attracted the attention of researchers
worldwide (Thakkar et al. 2010; Gade et al. 2011).

Recently, plant-based green biosynthesis of AgNPs is
rising into an important subdivision of nanotechnology, as it
gained importance and is developed due to its
cost-effectiveness and lesser toxicity (Chanel et al. 2017).
Silver has been considered and studied very extensively for
plant-based synthesis, and it has been known as a more rapid
and easier process as compared to the monotonous and
time-taking microbial synthetic methods (Akhtar et al.
2013). Shankar et al. (2003b) used leaf extracts of
Pelargonium graveolens for the extracellular formation of
AgNPs. Through mixing AgN solution and plant extract, a
quick reduction of Ag ions takes place followed by the
synthesis of crystalline and highly stable AgNPs (16–40 nm)
in solution. Later on, in 2007, Huang et al. (2007) displayed
that spherical or triangular-shaped silver nanoparticles of
size 55–80 nm can be prepared from the leaf extract of
Cinnamomum camphora. He discovered that water-soluble
heterocyclic and polyol compounds in the leaves of C.
camphora are responsible for silver ions reduction. Leela
and Vivekanandan (2008) compared the leaf extracts of
some different plants such as Sorghum bicolor, Basella alba,
Helianthus annuus, Saccharum officinarum, Zea mays,
Oryza sativa and for the formation of AgNPs and deter-
mined that H. annuus showed a speedy reduction of silver
ions. Similarly, Ahmad et al. (2010) used broth of Ocimum
sanctum for the biosynthesis of AgNPs and observed highly
stable NPs with a size of 5 ± 1.5 nm to 10 ± 2. In a
research conducted by Jeyaraj et al. (2013), the biological
preparation of silver nanoparticles from the leaf extracts of
Podophyllum hexandrum was described. The complete
reduction of silver ions was completed in 2.5 h at the tem-
perature of 60 °C and pH 4.5 with the formation of
spherical-shaped nanoparticles in the range of 12–40 nm.
Saratale et al. (2018) biosynthesized spherically and
monodispersed silver nanoparticles (15 nm) by using the leaf
extract of Taraxacum officinale. The presence of flavonoids,
terpenoids, and triterpenes is known to be the active com-
pounds present in extract for the synthesis of silver
nanoparticles.

By using the aqueous extract of Alternanthera dentate, a
rapid and green synthesis of AgNPs having spherical shaped
with a size of 50–100 nm was prepared. Within 10 min, the
silver ions were reduced into silver nanoparticles by the leaf
extract. These prepared AgNPs showed antibacterial poten-
tial against Escherichia coli, Klebsiella pneumonia, Ente-
rococcus faecalis, and Pseudomonas aeruginosa (Kumar
et al. 2014a). For the formation of AgNPs, Acorus calamus
was also used, and its antibacterial, anticancer, and antiox-
idant effects were determined (Nakkala et al. 2014a). In
2014, Nakkala et al. (2014b) and his research members used
the extract of Boerhaavia diffusa plant as the reducing
material for the formation of AgNPs. It was revealed from
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TEM and XRD that the prepared NPs possess a particle size
of 25 nm, spherical shape with a face-centered cubic struc-
ture. The antibacterial potential was determined against
Flavobacterium branchiophilum, Aeromonas hydrophila,
and Pseudomonas fluorescens; the highest sensitivity was
observed toward F. branchiophilumin as compared to the
two other bacteria. Similarly, Nabikhan et al. (2010) pre-
pared spherical AgNPs (5–20 nm) by using the callus extract
of Sesuvium portulacastrum L. a salt marsh plant.

The fruit of Tribulus terrestris L was dried and reacted
with Ag nitrate for the formation of silver nanoparticles. The
newly synthesized AgNPs possess a size of 16–28 nm with
spherical shape and were used to determine their antibacte-
rial potential against few multidrug-resistant bacteria like
Streptococcus pyogenes, Staphylococcus aureus, Pseu-
domonas aeruginosa, Escherichia coli, and Bacillus subtilis
(Gopinath et al. 2012). Methanolic and ethyl acetate extracts
of Cocos nucifera were used for the successful synthesis of
Ag nanoparticles (22 nm) and exhibited good antimicrobial
activity toward different bacterial strains such as Klebsiella
pneumoniae, Bacillus subtilis, Salmonella paratyphi, and
Pseudomonas aeruginosa (Mariselvam et al. 2014). Another
spherical-shaped and stable AgNPs were synthesized from
Abutilon indicum which also possesses good antimicrobial
potential against E. coli, S. typhi, B. substilus, and S. aureus
(Ashok et al. 2015). Leaves of Ziziphora tenuior were also
utilized for the preparation of AgNPs, and the nanoparticles
were characterized through different techniques. TEM anal-
ysis reveals the spherical shape and size of 8 to 40 nm, and
FTIR showed carbonyl, hydroxyl, amine, and some other
stabilizing functional groups (Sadeghi and Gholamhosein-
poor 2015). By using the leaves of Acalypha indica, a rapid
and green protocol for the formation of nanoparticles was
reported by Krishnaraj et al. (2010), where a successful
formation of nanoparticles was completed in 30 min
(Krishnaraj et al. 2010). A weed Chenopodium album was
reported in a rapid and facile biosynthesis of AgNPs. Its leaf
extract was used for the synthesis and results in NPs of the
size range of 10–30 nm, and its shape was spherical that was
inferred through TEM analysis (Dwivedi and Gopal 2010).
Similarly, silver nitrate was reduced by Azadirachta indica
(leaf extract) that results in the biosynthesis of silver
nanoparticles (10–35 nm) with spherical shape (Ramyal and
Subapriya 2012).

3.4 Zinc Oxide Nanoparticles

Zinc oxide (ZnO) is an n-type semiconducting metallic
oxide. ZnO nanoparticles (ZnONPs) have diverted the
attention of researchers in the past few years because of its
wider variety of applications in the field of optics, biomed-
ical systems, and electronics (Anbuvannan et al. 2015a;

Jamdagni et al. 2018). Different categories of inorganic
metallic oxides have been prepared in some latest findings
such as CuO, ZnO, and TiO2. Of all these metallic oxides,
ZnONPs have gained much interest as they are not costly to
synthesize, safe, and easily prepared (Jayaseelan et al. 2012).
ZnO as a metal oxide has been registered as generally rec-
ognized as safe (GRAS) by FDA US (Pulit et al. 2016).
These nanoparticles possess great semiconducting features
due to the large bandgap and high exciton binding energy
such as catalytic potential, wound healing, UV filtering, and
optics (Elumalai et al. 2015; Mirzaei and Darroudi 2017).
ZnONPs have been widely utilized in different cosmetics
such as sunscreen lotion, depending on its UV filtering
potential (Wodka et al. 2010). It also has extensive use in
biomedical fields like anticancer, antifungal, antibacterial,
antidiabetic, and drug delivery (Jain et al. 2014; Hameed
et al. 2016), while ZnO is being utilized in targeted drug
delivery and still has the constraint of cytotoxicity, which
has to be solved (Ma et al. 2013). Nanoflower, nanoflake,
nanorod, nanowire, and nanobelt are different morphologies
of ZnONPs that have been reported (Paulkumar et al. 2014;
Rajeshkumar et al. 2014).

Different parts of plants like leaf, fruit, stem, seed, and
root have been used for the formation of ZnONPs, as they
contain a sufficient quantity of phytochemicals. The usage of
natural extracts for biosynthesis is an eco-friendly and cheap
process that does not require any intermediate base groups
(Heinlaan et al. 2008). Plants produce large-scale synthesis
of stable nanoparticles with various sizes and shapes, and it
is one of the reasons that plants are the preferred source for
the formation of NPs (Qu et al. 2011a). The synthesis of
ZnO nanoparticles is achieved by bio-reduction, which
involves the reduction of metallic ions into 0 valences
metallic NPs. This process is assisted by different phyto-
chemicals such as polyphenolic compounds, amino acids,
vitamins, polysaccharides, terpenoids, and alkaloids secreted
from several plants (Heinlaan et al. 2008; Qu et al. 2011a).

Jafarirad et al. (2016) and his research team experimented
and compared the results of zinc oxide nanoparticles that
were synthesized through two different methods—mi-
crowave irradiation (MI) and conventional heating (CH) and
results proved that MI took lesser time and faster reaction
rate for the formation of nanoparticles (Jafarirad et al. 2016).
Plants of family Lamiaceae have been widely used like
Plectranthus amboinicus (Fu and Fu 2015), Vitex negundo
(Ambika and Sundrarajan 2015), and Anisochilus carnosus
(Anbuvannan et al. 2015b) which showed NPs of different
shapes and sizes like quasi-spherical, rod-shaped, spherical,
and hexagonal. The findings demonstrate that an increase in
the concentration of the plant extract causes a decrease in the
size of nanoparticles (Fu and Fu 2015; Ambika and Sun-
drarajan 2015; Anbuvannan et al. 2015b). Azadirachta
indica (leaf extract) of family Meliaceae has been commonly

82 H. Munir et al.



used for the ZnONP biosynthesis (Bhuyan et al. 2015;
Madan et al. 2016). Sangeetha et al. (2011) synthesized
spherical and highly stable ZnONPs of size 25–40 nm from
the leaf extract of Aloe barbadensis. It was described that the
synthesized NPs were polydispersed and their particle size
can be controlled by changing the concentration of extract.
Similarly, spherical and highly stable NPs were synthesized
using Parthenium hysterophorus leaf extracts. Additionally,
Plectranthus amboinicus (leaf extract) was utilized for the
formation of zinc oxide NPs by Vijayakumar et al. (2015).
The synthesis of ZnONPs has also been performed by using
Sedum alfredii (Qu et al. 2011a), Physalis alkekengi (Qu
et al. 2011b), Pongamia pinnata (Sundrarajan et al. 2015),
flowers of Trifolium pratense (Dobrucka and Długaszewska
2016), and Cassia Auriculata (Ramesh et al. 2014; Suresh
et al. 2015). Qu et al. (2011b) synthesized crystalline ZnO
nanoparticles (72.5 nm) from Physalis alkekengi, and it can
grow in soils with high levels of Zn and can incorporate zinc
in its aerial parts.

3.5 Titanium Dioxide Nanoparticles

Titanium dioxide (TiO2) is the oxide form of Ti and occurs
naturally. It can be obtained from different minerals as
brookite, rutile, and anatase. The manufacturing and uti-
lization of TiO2 only in the USA have stayed is 1100
thousand tons since 1997, and it has been categorized as a
possible carcinogen for humans (Group 2B) by International
Agency for Research on Cancer (2010). TiO2 is a main and
vital metallic oxide nanoparticle that is being extensively
used in industrial photocatalytic processes, printing ink,
paints, paper, rubber, sunscreens, cosmetics, air cleaning
products, and car materials because of its biological, chem-
ical and physical features (Rajakumar et al. 2013). The
nanoparticles of TiO2 are being utilized in a wide variety of
applications such as sunscreens, drug delivery systems, food
preparation, and cosmetics (Grand and Tucci 2016; Shi et al.
2013; Robertson et al. 2010).

Due to its bright, white pigment, and high refractive
index, titanium dioxide is an ideal material used as a
whitening agent in different applications. Discovery of the
super-hydrophilicity and photocatalytic properties of TiO2

has also led to applications in some industries by producing
self-cleaning products as well as enhancing sterilization and
deodorizing processes. The biomedical applications of
nanoparticles synthesized from titanium dioxide have greatly
developed in recent few years. Research is being conducted
on these NPs to attenuate the effects of chemotherapy by
making cancer therapy more efficient and targeted (Wang
et al. 2015; You et al. 2016). Additionally, food-grade tita-
nium dioxide nanoparticles (TiO2NPs) are present in a range
of food products like gum, candy, donuts, marshmallows,

cookies, and some others. Toothpaste, shaving creams,
deodorants, conditioners, shampoos, and sunscreens are
some personal care products also containing food-grade
TiO2NPs (Weir et al. 2012).

Sundrarajan and Gowri (2011) synthesized titanium
nanoparticles by using titanium isopropoxide solution and
leaf extract of Nyctanthes arbortristis with a size range of
(100–150 nm). Similarly, TiO2NPs (25–100 nm) were also
biosynthesized from Jatropha curcas (aqueous extract)
(Hudlikar et al. 2012). An enzyme, curcain, and cyclic
peptides were recognized as the possible capping and
reducing compound in latex of J. curcas. Spherical-shaped
(23 ± 2 nm) nanoparticles were synthesized from the fruit
peel of Annona squamosa at room temperature with a time
of 6 h (Roopan et al. 2012). At room temperature, Solanum
trilobatum (leaves) were used for the formation of titanium
NPs that were having pediculicidal and larvicidal activities
(Rajakumar et al. 2013). Velayutham et al. (2011) use leaf
extracts of Catharanthus roseus for the synthesis of
TiO2NPs, and the synthesized nanoparticles were having
rough shape and size of 25–110 nm. These NPs possess
great adulticidal and larvicidal potential against Bovicola
ovis and Hippobosca maculata. Similarly, the synthesis of
TiO2NPs from plant Eclipta prostrata was reported by
Rajakumar et al. (2012). Santhoshkumar et al. (2014)
biosynthesize TiO2NPs from Psidium guajava (aqueous leaf
extract), antibacterial, and antioxidant potential of these
nanoparticles which was explored. By using 20 g/mL of
nanoparticles, the highest zone of inhibition was recorded
against E. coli and S. aureus. In another research conducted
by Priyadarshani et al. (2019), TiO2NPs of Cissus quad-
rangularis having significant bactericidal potential against
Staphylococcus and E. coli were also reported. Kumar et al.
(2014b) compared the antibacterial potential of two types of
biosynthesized titanium dioxide nanoparticles—one from
extracts of Hibiscus rosa-sinensis and one chemically syn-
thesized. The author concluded that nanoparticles synthe-
sized from plant extract showed higher activity as compared
to chemically synthesized ones.

4 Different Parts Used for the Synthesis
of Metallic Nanoparticles

Recently, green plant-based nanotechnology has diverted the
attention because of its wide applications in many different
fields. The metallic NPs like gold, zinc, silver, platinum,
nickel, copper, titanium oxide, and magnetite were biosyn-
thesized by using various plant parts and are being studied
extensively. Stem, fruit, root, seed, peel, callus, flower, and
gums are different parts that are utilized for the synthesis of
nanoparticles with various sizes and shapes by biological
methodologies (Chandran et al. 2006).
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4.1 Fruit

Fruit bodies of Tribulus terrestris and solution of silver
nitrate were utilized for the eco-friendly biosynthesis of
silver NPs (Gopinath et al. 2012). The presence of different
phytochemicals in the plant extracts causes the formation of
nanoparticles in only one step of reduction. The shape of
synthesized NPs was spherical and exhibits excellent
antimicrobial potential against the multidrug-resistant human
pathogens. Similar research was performed by Amarnath
et al. (2012) in which polyphenol from grapes was utilized
for the formation of palladium NPs and these nanoparticles
act very efficiently against different bacterial diseases. Fruit
extracts of Rumex hymenosepalus act as reducing and sta-
bilizing agents in the biosynthesis of silver nanoparticles.

4.2 Stem

The methanolic extract of Callicarpa maingayi (stem) was
used for the biosynthesis of AgNPs (Shameli et al. 2012).
The prepared extract consists of a group aldehyde that
mainly involves in the process of reduction of Ag into silver
nanoparticles. The functional groups such as amide I and
polypeptides are considered as the responsible groups for the
capping of ions to metallic NPs. The molecular findings on
the synthesis of Ag crystals are complicated and still not
completely known. According to some latest studies, AgNPs
bind with the proteinaceous outer cell of fungi and bacteria
that results in the breakage of lipoproteins of the microbial
cell wall. This is followed by the blockage of cell division
and leads to cell death. Vanaja et al. (2013) stated the
photosynthesis of silver nanoparticles by using extracts of
Cissus quadrangularis. The functional groups mainly the
amine, phenolics, and carboxyl are directly involved in the
reduction reaction. The synthesized NPs possess good
antibacterial potential toward Bacillus subtilis and Klebsiella
planticola (pathogenic bacteria).

4.3 Seeds

The seed extract of fenugreek contains many naturally
occurring bioactive compounds like lignin, saponin, vita-
mins, and high content of flavonoids. In the presence of
reducing agents, this extract of seed acts as a good surfactant
in the process of reduction of chloroauric acid for the for-
mation of nanoparticles. Seed extracts of different plants
contain some functional groups such as COO− group, C‚C,
and C‚N. This functional group serves as a surfactant of
AuNPs and flavonoids easily stabilize the electrostatic sta-
bilization during the synthesis of AuNPs (Mittal et al. 2013).
Macrotyloma uniflorum (aqueous extract) increases the rate

of reduction of Ag ion in the biosynthesis of AgNPs. Caffeic
acid present in the seed extracts is recognized to be the
reason for the increase in the reduction rate. Hence, the
present caffeic acid completes the reduction reaction of
nanoparticle synthesis within a minute.

4.4 Flowers

Petals of rose were utilized for the formation of gold
nanoparticles through an eco-friendly method by Noruzi
et al. (2011). This extract contains an ample amount of
proteins and sugars that are considered to be the main con-
stituents during the reduction of salt tetrachloroaurate into
the bulk of gold nanoparticles. Likewise, flowers of Clitoria
ternatea and Catharanthus roseus are also utilized for the
biosynthesis of different metallic nanoparticles of desired
sizes and shapes. Vankar and Bajpai (2010) also synthesize
AuNPs by using the flower extract of Mirabilis jalapa.

4.5 Leaves

Extracts of plant leaves also serve as a facilitator in the
biosynthesis of different metallic nanoparticles. Leaves of
several plants like Alternanthera sessilis, Murraya koenigii,
and Centella asiatica have been used for the said purpose.
Recently, Piper nigrum leaves were utilized for successful
biosynthesis of silver nanoparticles through an eco-friendly
protocol, as they contain important bioactive products. The
silver nanoparticles have an effective role in cancer medicine
for the treatment of different dreadful diseases. The presence
of piper longminine and longumine in Piper nigrum acts as
the agent for capping in preparation of silver nanoparticles
and can also improve the cytotoxic effects of the tumor cells
(Jacob et al. 2012). Another green preparation of AgNPs
from Artemisia nilagirica (leaves extract) was described by
Vijayakumar et al. (2013). These metallic nanoparticles
serve as a significant antimicrobial agent. Similarly, AgNPs
formed from different plant leaves can control many patho-
genic problems in humans.

5 Conclusions

In this chapter, we have summarized information about the
green and environmentally responsive production of various
metal nanoparticles. The presence of biologically active
molecules and secondary metabolites in plant extracts is
responsible to reduce metal ions to nanostructures in a rapid
single-step synthetic strategy. A large number of plant spe-
cies, their parts, and derived extract has been effectively
employed for the preparation of numerous kinds of
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nanoparticles and other nanostructured materials due to the
occurrence of abundant metabolic compounds, including
phenols, alkaloids, carbohydrates, terpenoids, and
bio-enzymes. It is worth noting that the utilization of plant
sources for nanoparticle biosynthesis obviates the require-
ment for capping and stabilizing agents. Taking into con-
sideration the inescapable applications of nanotechnology
and nanoscience in a range of modern everyday life, addi-
tional research is necessary to explore the unique physical
and chemical attributes of newly synthesized nanostructures.
From the future development perspective, Fig. 4 shows the
involvement of nanotechnology to further advance the
characteristics features and functionalization of nanoparticles
(Kudr et al. 2017; Bilal et al. 2019).
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Green Synthesis of Hierarchically Structured
Metal and Metal Oxide Nanomaterials

Malobi Seth, Hasmat Khan, Susanta Bera, Atanu Naskar,
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Abstract

Scientific and technological innovations are rapidly
occurring in today’s world. These innovations include
development of numerous functional nanomaterials
among which hierarchically structured nanomaterials
(HSNs) are most important owing to their enormous
applications in different fields like biomedical, wastewater
management, energy storage, sensing, and so on. Alter-
native to conventional synthesis methods which can cause
harmful effects to human health and environment, several
green chemical, physical and biological methods are
known for producing different metal and metal
oxide-based HSNs. It is to be noted that adoption of
these methods is increasing as these methods are envi-
ronmentally sustainable. Green chemical and physical
methods involve use of environmentally benign solvents
and reagents. In some cases, these are also energy
efficient. Additionally, several biological materials includ-
ing microorganisms, plants, biomolecules are known to
be well accepted as befitting reactants/templates for
synthesizing several HSNs. However, these methods
further need an in-depth mechanistic realization toward
large-scale production for practical applications. This
chapter is mainly focused upon an understanding of green
chemistry-based methodologies for the synthesis of metal
and metal oxide HSNs and their potential applications.
Finally, the present challenges and future prospect of the
methodologies toward making biocompatible and envi-
ronmentally sustainable HSNs with useful functional
properties for advanced applications are discussed briefly.

Keywords

Green synthesis � Green chemical, physical and
biological methods � Green reagents and templates
with green techniques � Metal and metal oxide
nanomaterials � Hierarchical nanostructures

1 Introduction

Scientific and technological innovations are rapidly occur-
ring in today’s world. More than often, the advancements in
research for these innovations are occurring at a cost of
multifold enhancement of environmental pollution. Human
civilization’s immense scientific prowess is causing the
worst of natural calamities of this century, making difficult
the coexistence of humans and our Mother Nature. After
years of exploitation, the scientific community has been
alarmed since last two decades and concentrating on mini-
mizing the harmful environmental impact of science toward
reducing the consumption of non-renewable resources and
approaching new paradigms for prevention of environmental
pollution (Gao et al. 2012). On this aspect, green chemistry
or sustainable chemistry came into limelight. The subject
basically concentrates on designing appropriate synthetic
methods toward minimizing the use of harmful
chemicals/reactants or eliminating the generation of haz-
ardous side products. The green synthesis of nanomaterials
is primarily based upon twelve principles that mainly include
the synthesis and use of non-toxic chemicals, utilization of
renewable feedstock, designing of energy efficiency and
degradable waste products (Kreuder et al. 2017). The
important of this green synthesis is to use environmentally
benign solvents and reagents; non-toxic reducing and cap-
ping agents that can in-turn minimize the generation of toxic
derivatives/products. Several nanomaterials can be synthe-
sized by adopting green synthesis methods (Gahlawat and
Roy Choudhury 2019; Hulkoti and Taranath 2014). Among
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these nanomaterials, metal and metal oxide-based nanoma-
terials with hierarchical structures have attracted significant
attention for both the aspects of fundamental and techno-
logical research (Gahlawat and Roy Choudhury 2019;
Yuliarto et al. 2019). In this regard, researchers have already
adopted green chemical, physical, and biological methods
for synthesizing various metal and metal oxide nanomate-
rials. Green chemical methods involve the use of environ-
mentally benign solvents and reagents. The physical
methods include microwave and light-assisted synthesis,
thermal deposition, electrochemical anodization, and so on.
In some cases, these methods are found to be energy efficient
as well as environmentally sustainable. Biological methods
involve the use of biologically active materials that function
as reagents and templates. These have advantages of being
cost effective, eco-friendly, and biocompatible. Also, these
are widely abundant in nature. In this purpose, microor-
ganisms like bacteria, fungi, algae, yeast, and also plant or
plant-derived materials are being used. It is noteworthy that
in the green synthesis method, the active chemicals/
phytochemicals from microorganisms and plants have been
used as reducing, structure directing, and capping agents
(Hulkoti and Taranath 2014; Mohammadinejad et al. 2016;
Ebrahiminezhad et al. 2018). In addition, the use of
biotemplates such as cellulose, collagen, eggshell mem-
branes, and butterfly wings as natural templates has also
been found in the synthesis of metal and metal oxide
nanomaterials (Zan and Wu 2016).

Nowadays, hierarchically structured nanomaterials
(HSNs) including metal and metal oxide-based nanomate-
rials are very interesting in fundamental science and also
these are highly useful for potential applications (Trogadas
et al. 2016). In this case, upon tactful designing of the
reaction conditions in the aforesaid green synthesis methods
with appropriate green reagents and templates, metal and
metal oxide-based HSNs can be synthesized effectively. It is
known that the term hierarchy comes from Greek words
hieros (sacred) and archein (rule) that refers to an institu-
tional framework where each and every unit are ranked
according to their importance. Also, the structural hierarchy
has reined in Mother Nature in umpteen variations of living
beings and biological materials from macroscopic to
microscopic scales. Moreover, the hierarchy of natural
materials arises from a complex reciprocity between surface
structure, morphology, and physical as well as chemical
properties of the biologically active components. Impor-
tantly, synthesized hierarchically structured nanomaterials
means higher dimension of a micro- or nanostructures con-
sisting of numerous assemblies of low dimensional
nanobuilding blocks arranged in a particularly organized
manner with less agglomerated configuration (Lee 2009).
The nanobuilding blocks that comprise a hierarchical
structure may be the array of nanoparticles creating different

shapes including but not limited to 1D nanowires, nanotubes
and nanobelts, 2D nanosheets and nanocubes, 3D
nanoflowers, superstructures and hollow structures or may
be the array of well-aligned meso- and microporous hierar-
chical structures. Hierarchical metal and metal oxide
nanostructures exhibit special properties like large surface
area with high surface-to-volume ratio. Sometimes, hierar-
chical porosity endows high antimicrobial activity, effective
photon-harvesting, and efficient charge transfer abilities
(Yuliarto et al. 2019; Yang et al. 2017). Such advanced
functional properties/special characteristics make them
advantageous for wide range of applications including
biomedical, photocatalysis, environmental remediation,
sensors, optoelectronics, photoelectrochemical energy con-
version and storage (Bera et al. 2016a,b,c,2017; Khan et al.
2020; Seth et al. 2020).

In this chapter, we critically discuss the state-of-the-art
research on the green synthesis of metal and metal
oxide-based HSNs, their growth mechanisms and applica-
tions in various fields. Further, the present challenges and
future prospect of green synthesized hierarchically structured
nanomaterials have been briefly discussed.

2 Advantages of Green Synthesis Methods

Typical bottom-up synthesis processes with toxic solvents
and hazardous chemical compounds as surfactants/
complexing/stabilizing/capping agents that are very tough
to decompose and most of them are non-recyclable (Yuliarto
et al. 2019) are generally used for obtaining metal and metal
oxides. Moreover, the chemical waste produced as side
derivatives/products obtained at the end of the synthesis can
have detrimental effects on environment, biodiversity, and
human health. These harmful wastes are present as (a) toxic
gases that lead to air pollution, (b) liquids which cause water
pollution, and (c) solids that are disposed on soil increase
ground water pollution. Hence, various attempts are found to
be taken to mitigate the pollution by minimizing the use of
hazardous chemicals by utilizing the synthesis methods of
green chemistry. It is worthy to note that the methods, sol-
vents, and chemicals/raw materials used for the synthesis of
metal and metal oxide nanomaterials via these pathways
have to be ecologically sound, energy efficient, recyclable
and non-toxic to human health and wildlife as well. Another
advantage of these methods is that the microorganisms and
plant/plant-derived extracts that are used for the synthesis
can mostly be used for multiple purposes in such a way that
the active biochemicals present in the extracts can function
simultaneously as reducing agents, capping agents, and
stabilizing agents as per the need of a particular material
synthesis (Hulkoti and Taranath 2014; Mohammadinejad
et al. 2016). In this way, the atom economy which is one of
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the vital principles of green chemistry is also being main-
tained. Sometimes, the hydrocarbons in the extracts can also
act as biofuels for making the final products. These are also
cost effective, biodegradable, and largely abundant in nature.
Also, the reaction conditions and methods of green chem-
istry can strategically be used for metal and metal oxide
HSNs synthesis. Moreover, the phase structure and mor-
phology as well as the size of the nanomaterials can be
controlled by tuning reaction temperature, time, concentra-
tion of extracts, and solvents toward the generation of
hierarchically structured nanomaterials (Yang et al. 2017). It
is also seen that in the biotemplate-mediated synthesis, the
creation of hierarchical nanomaterials is particularly efficient
as the nanostructures are replicated from the natural
micro/nanoscale hierarchical structures of naturally occur-
ring templates. After deposition, the biotemplate is to be
burnt off at higher temperatures via a suitable
calcination/heat treatment process that lead to create hierar-
chical network and/or arrays of meso- and macroporous
structure.

3 Green Synthesis Methods
for Hierarchically Structured Metal
and Metal Oxide Nanomaterials

Various methods are known today for the green synthesis of
HSNs via the formation of nanoparticles (NPs). These
methods involve the use of energy efficient techniques,
non-toxic green solvents and reagents as well as the use of
plant extracts or microbes (bacteria, fungi, yeast, and algae)
or biotemplates (Khandel et al. 2018). It is now distinct and
significant that the green synthesis is the most convenient
approach for the synthesis of the nanomaterials toward
restoring sustainable environment. It is an authentic and
unique way not only because of its non-toxicity to gradually
deteriorating environment at present but also, it can produce
contamination free nanoparticles with distinct hierarchical
morphologies. On the basis of different synthesis methods
used for the preparation of metal and metal oxide HSNs,
these can mainly be categorized into biological, physical,
and chemical methods (discussed details in the next
subsections).

3.1 Biological Methods

Application of various kinds of microorganisms (bacteria,
fungi, yeast, algae, etc.), plant and plant-derived substances
in the synthesis of HSNs have been discussed in this section.
These biological components/species are used as reactant
and/or templates.

3.1.1 Using Microorganism

Microorganisms as Reactant
Microorganisms (such as bacteria, fungi, and algae) are
appropriate candidates for the synthesis of nanomaterials
because of their unique ability to reduce metal ions toward
the formation with high growth rates (Gahlawat and Roy
Choudhury 2019). It is observed that some microbes with a
certain defense mechanism are evolved to fight off the tox-
icity excreted by heavy metals because microbes endure
harsh and toxic environment consistently. The defense
mechanisms which include intracellular sequestration, efflux
pumps, change in metal ion concentration and extracellular
precipitation help the bacteria to survive the generated
stresses. It is noteworthy that the aforementioned processes
are to be utilized for metal and metal oxide-based HSNs
synthesis for various applications (to be discussed later).

During synthesis of a specific nanometal, He et al. (2008)
observed that the bacteria Rhodopseudomonas capsulate
extracellularly reduced chloroaurate ions to AuNPs. The
proteins in the enzymes secreted by bacteria can reduce the
gold ions forming AuNPs which is further capped by the
protein molecules developing Au nanowires. Moreover, Rhi-
zopusoryzae fungi-mediated in vitro synthesis of
nanoflower-like stable AuNPs is also reported. In this case,
the cell wall of proteins played dominant role in the reduction
of gold ions and formation of AuNPs (Kitching et al. 2016).
In another example, the nanosheets of TiO2 architectures had
been synthesized by using three kinds of bacteria, namely
Staphylococcus aureus, Bacillus subtilis, and Escherichia coli
(Zhang et al. 2019a). The phospholipids leaking from bacteria
are found to be covering the generated TiO2 nanoparticles
creating steric barrier leading to the formation of nanosheets.
Instead of bacteria, yeast mold broth powder has also been
used for the synthesis of carbon-doped ZnO with a silver
heterostructure at the interfaces (Shen et al. 2015). It is
noticed that Saccharomyces cerevisiae present in yeast extract
can promote secondary ZnO aggregation, amino acids, or
other functional groups in the extract that suppressed the
growth along the c-axis toward the formation of various ZnO
superstructures. Furthermore, dextrose in the broth powder
can condense and form an amorphous film of carbon on the
ZnO particle surface with hierarchical morphology and helps
to introduce silver nanoparticles (Fig. 1). Different metals and
metal oxide nanomaterials with their hierarchical morpholo-
gies synthesized by using microorganisms as reactant are
displayed in Table 1.

Microorganism as Template
Microbial superstructures (like bacteria, fungi, yeast, and
algae) are generally used as biotemplate (Table 2) to direct
deposition, assembly, and patterning of metal and metal
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oxide-based HSNs by microbes-templating method (Zhou
et al. 2007). This method provides a sustainable, economi-
cal, and convenient strategy compared to traditional
template-directed method. The abundant functional groups
like carboxylic, phosphate, amine, etc., are present in
microbial cell wall along with enzymes to bind metal ions
via coordination or electrostatic attraction onto the cell. The
steps for surface activation or functionalization are found to
be reduced in this method. There are several mechanisms
developed by these species to overcome the toxic effects of
heavy metals (Hulkoti and Taranath 2014). It is observed
that when the cell walls are used as biotemplate, the replica
of metal and metal oxide nanostructures is formed.

A suitable example is Spirulina that had been used as
biotemplate for the fabrication of nanosheets assembly of
AgNPs (Sun et al. 2019). The intracellular highly ordered
texture of Spirulina typically contains bioactive components
such as nucleoid, layered thylakoid, polyhedral car-
boxysome, and so on. They can act as supporting base of
nanosheets that formed under the spatially repression of the
cellular structure. On the other hand, hollow porous ZnO
microspheres (Zhou et al. 2007) and hierarchical ZnO
nanostructures (Hussein et al. 2009) had been synthesized by
using the biotemplates, Streptococcus thermophiles and
Bacillus cereus, respectively. For the growth of hierarchical
ZnO nanostructures, Bacillus cereus had been used to

Fig. 1 SEM images of ZnO with hierarchical morphologies synthesized with Zn2+concentration of 12.5 mM (a), 25 mM (b), 50 mM (c), and
100 mM (d). Copyrights reserved to the American Chemical Society (Shen et al. 2015)

Table 1 Characteristics of metal/metal oxide HSNs synthesized using microorganisms as reactants

Reactant Nanomaterial Morphology/shape Dimension Property/application References

Bacteria

Rhodopseudomonas
capsulata

Au Nanowires Diameter,
50–60 nm

Microelectronics,
opt oelectronics,
nanoscale electronic
devices

He et al.
(2008)

Staphylococcus
aureus, Bacillus
subtilis, Escherichia
coli

TiO2 Nanosheets assembled hierarchical
architecture

– Photocatalytic and
electrocatalytic
applications

Zhang et al.
(2019a)

Bacillus subtilis ZnO Microsphere assembled by hair-like
nanostructure

Diameter,
10–15 nm

Photocatalytic dye
degradation

Dhandapani
et al. (2020)

Klebsiella
pneumoniae,
Escherichia coli and
Pseudomonas
jessinii

AgCl coated
with AgNPs

Cubes, flowers – – Müller et al.
(2016)

Yeast

Yeast mold broth C, Ag
modified
ZnO

Nanoplatelets, twin-nanodisks, thick
microdonuts, microapples wrapped by
graphene-like sheets, microspheres,
microhamburgers

Nanoplates,
30–50 nm

Photocatalytic
activity

Shen et al.
(2015)

Fungi

Rhizopusoryzae AuNPs Nanoflowers 24–62 nm Biomedical
applications

Kitching
et al. (2016)
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control intracellularly Zn2+deposition and nucleation/growth
of ZnO on or within B. cereus cell. This step had been
followed by calcination at 500 °C to form raspberry- and
plate-like structures, depending upon the organelles where
zinc species nucleate and act as template. On the other hand,
LPD-modified hierarchically porous TiO2 nanostructures
had been synthesized using Staphylococcus aureus as
biotemplate (He et al. 2014) (Fig. 2).

3.1.2 Using Plant
In green nanotechnology, plant-mediated synthesis is
popularizing among the researchers due to their cost-
effectiveness, biodegradability, biocompatibility, and

recyclability. Every part of a plant including flower, leaf,
fruit, pollen, grain, stem, seed, bark, bran, and peel can be
used as green reagents or templates for the biosynthesis of
nanomaterials (Ebrahiminezhad et al. 2018). These extracts
consist of various biologically active compounds (phyto-
chemicals) such as proteins, amino acids, vitamins,
polysaccharides, polyphenols, alkaloids, quinones, organic
acids, flavonoids, terpenoids, catechins, and co-enzymes
(Mohammadinejad et al. 2016). These compounds can act
as reducing agents/capping agents for metal and metal
oxide HSNs synthesis. Moreover, the HSNs can be pro-
duced by exploiting natural morphology of plant as
biotemplate.

Table 2 Characteristics of metal/metal oxide HSNs synthesized using microorganisms as template

Species Nanomaterial Morphology/shape Dimension Property/application References

Bacteria

Staphylococcus aureus,
Bacillus subtilis, and
Escherichia coli

TiO2 Nanosheets assembled
hierarchical architecture

– Photocatalytic and
electrocatalytic applications

Zhang
et al.
(2019a)

Streptococcus
thermophilus

ZnO Hollow porous
microspheres

Particle size, 20–
40 nm; pore size,
2.5–11 nm

– Zhou et al.
(2007)

Bacillus cereus ZnO Raspberry (composed
of nodules)- and
plate-like structures

Nodules, 20–
30 nm; plate
thickness, *25 nm

– Hussein
et al.
(2009)

Staphylococcus aureus TiO2 Hierarchically porous Macro and
mesopores

Photocatalytic oxidation and
reduction

He et al.
(2014)

Micrococcus lylae Co3O4 Porous, flower-like
microspheres

2–10 nm Electrochemical application Shim et al.
(2013)

Yeast

Yeast TiO2 Hierarchical
mesoporous

Pore size, 3–15 nm Biosensor, fuel cell, and
metal–air battery fields

Cui et al.
(2009)

Yeast TiO2 Lamella 50 nm Photodegradation of dye Bao et al.
(2012)

Yeast In2O3 Hollow microspheres *20 nm Photocatalytic dye
degradation

Pan et al.
(2018)

Yeast NiO/C Hollow microspheres 50 nm Anode for Li-ion batteries Tian et al.
(2018)

Fungi

Cladosporium
cladosporioides

NiO Nanostructured
microtubules

– Energy storage applications Atalay
et al.
(2016)

Algae

Spirulina AgNPs Nanosheets Nanogaps,
*4 nm

Antibacterial and surface
enhanced Raman scattering
(SERS) properties

Sun et al.
(2019)

Nannochloropsis oculata MnO/C Hierarchically porous 10–100 nm Catalysis, gas sensing, and
energy storage

Xia et al.
(2013)

Foraminiferal shells Co, Ag, Cu,
Pt, Au

3D hierarchical
structures

– Filter for water purification,
electrocatalysts for ethanol
oxidation

Diab et al.
(2019)
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Plant as Reactant
Extracellular plant-mediated synthesis of metal and metal
oxide nanomaterials/HSNs simply involves the use of plant
extract as reactant (Table 3). It is to be noted that the
preparation and mixing of extract into aqueous solution of
metal ions is to be performed in well-controlled condition.
As for example, dendritic silver nanostructure constructed
from AgNPs (Fig. 3) had been synthesized by using white
grape pomace extract (Carbone et al. 2019). Also, an inter-
esting dendritic nanostructure of Pd was formed in a coffee
ring-like fashion while banana peel is used as a reducing
agent (Bankar et al. 2010). The functional groups present in
the cellulose, pectin, and hemicelluloses—the main con-
stituents in banana peel–—are said to be acting as reducing
agents. Polyphenols present in the extract had been identified
as reducing and capping agents for the synthesis of the
different hierarchical nanostructures. In another study, black
grape skin extract had been used for the ZnO
superstructures/HSNs synthesis (Udayabhanu et al. 2017).
Interestingly, with increasing the concentration of the
extract, different structures (Mysore pak to canine teeth to
hollow pyramid to ornament gem) were formed. The authors
also reported the grape extract with polyphenols, flavanoids,
tannins, and phytolexins not only can perform as strong

reducing or capping agent for Zn2+but also can function as
fuel for the combustion of zinc nitrate at 500 °C toward the
formation of ZnO superstructures/HSNs. On the other hand,
amino acids and sugar in aloe extract had been used as
capping agents for encapsulation of Ti4+ions, forming
nanorods/nanoflowers of TiO2. It had been seen that the
morphology of the nanomaterial is dependent upon the
concentration of aloe extract (Li et al. 2020). It is interesting
to note that after adopting hydrothermal process, these
morphologies changed into 3D tripyramidal structure.

Plant as Template
The idea of using plant as biotemplate (Table 4) is to
introduce naturally occurring well-ordered and hierarchical
structures in artificially designed nanomaterials to enhance
their properties and functions by virtue of the generated
structures (Zan and Wu 2016). Plant-derived biotemplates
are very popular because of their availability in large
quantity, renewability, and cost-effectiveness. On this
aspect, wood is an excellent choice as biotemplate owing to
the presence of several species with hierarchically porous
macroscopic structures (Liu et al. 2009). In one relevant
example, Zn2+ions adsorbed onto the cell walls of wood
through capillary adsorption during infiltration of precursor

Fig. 2 SEM images of hierarchically porous TiO2 using a 1, b 4, c 12 and d 48 � 1011S. aureus as template. Copyrights reserved to the American
Chemical Society (He et al. 2014)
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solution and deposited onto the cell walls homogeneously.
After calcination, the wood template burnt off and hierar-
chically porous ZnO formed by preserving the original
template of wood. It is also noted that different nanostruc-
tures and nanoflowers of ZnO can be generated using palm
olein as biotemplate depending upon the concentration of

the template (Ramimoghadam et al. 2013a, b). In this case,
initially the self-assembly of palm olein was found to occur
followed by the arrangement of zinc acetate over the
self-assembly of olein forming a stable inorganic-organic
hybrid. In the final step, i.e., after template removal through
calcination, the ZnO nanostructures were distinctly formed.

Table 3 Characteristics of metal/metal oxide HSNs synthesized using plants as reagents

Reagents Nanomaterial Morphology/shape Dimension Property/application References

White grape
pomace

Ag Hierarchical dendritic
structure

33 ± 6 nm Electrochemical and
antifungal properties

Carbone
et al. (2019)

Banana peel Pd Coffee ring 50 nm – Bankar et al.
(2010)

Black grape skin ZnO Superstructures 20 nm Photocatalytic dye
degradation, antibacterial,
electrochemical sensing of
hydrazine

Udayabhanu
et al. (2017)

Aloe TiO2 3D tripyramidal
nanostrcutures, nanorods,
nanoflowers

*10 nm Photocatalytic degradation
of antibiotic materials

Li et al.
(2020)

Cynodondactylon
and
Cyperusrotundus
grass extracts

CuO Rice spikelet like
nanostrcutures, 1D,
nanorods, 2D nanoprisms,
3D nanoparticles

16 nm Antibacterial Suresh et al.
(2020)

Lemon juice, peel MnO2 Nanorods Diameter, *17 nm Electrode for LiB Hashem
et al. (2018)

Pepper Fe3O4–Pd Dendritic Pd, spherical
Fe3O4

Dendrites
diameter, <100 nm;
Fe3O4

nanoparticles, *50 nm

Superparamagnetic and
photocatalytic properties

Khaghani
et al. (2017)

Watermelon rind ZnO Nanorods interconnected
with small flower
formation

Length, 100–200 nm;
width, 80–130 nm

Photocatalytic and
optoelectronic applications

Singh et al.
(2017)

Azadirachta
indica

ZnO Plates, bullets, flower,
prismatic tip, closed pine
cone

Hexagonal NPs, 10–
30 nm

Photocatalytic dye
degradation, antibacterial
and antioxidant properties

Madan et al.
(2015)

Sapindus
mukorossi fruit

CuO Nanowires *10 nm Electrochemical sensing of
dopamine

Sundar et al.
(2018)

Rape pollen
grains

SnO2 Hierarchically porous
interconnected network

SnO2 membrane
thickness, *10 nm;
mesopore, 5–20 nm

Gas sensing Song et al.
(2012)

Fig. 3 SEM images (a, b) of
dendritic Ag from grape pomace.
Copyrights reserved to the
Elsevier (Carbone et al. 2019)
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In another example, the regenerated cellulose membrane
had been used as template for the synthesis of TiO2

nanorods (Mohamed et al. 2016). This study suggested that
the hydrophilic membrane promoted the interaction of
hydroxyl groups and Ti4+ ions by electrostatic attraction
toward the development of TiO2 nanoparticles that finally
made nanorods. It has also been reported that morph-TiO2

can be synthesized by replication of the structural features

of hierarchical and porous template-green leaves (Li et al.
2009).

3.1.3 Using Other Green Templates
As discussed in the previous subsections, a significant
attention has been paid upon the synthesis of HSNs using
biomaterials as templates. However, the research is not only
limited toward synthesizing metal and metal oxide HSNs by

Table 4 Characteristics of metal/metal oxide HSNs synthesized using plants as templates

Template Nanomaterial Morphology/shape Dimension Property/application References

Wood ZnO Hierarchically porous Pore size, 25–52 nm Gas sensing Liu et al. (2009)

Rice ZnO Flower-like, star like
structure

40–100 nm – Ramimoghadam
et al. (2013a)

Palm olein ZnO Flowers assembled by
nanoplates

*50 nm – Ramimoghadam
et al. (2013b)

Regenerated cellulose
membrane

TiO2 Nanorods Length, 45 nm; diameter,
10 nm

Photocatalytic dye
degradation

Mohamed et al.
(2016)

Green leaves TiO2 Porous
morph-structures

Layer
thickness, *15 nm; pore
size, *2–10 nm

Photocatalytic dye
degradation

Li et al. (2009)

Sunflower Pollen ZrO2 Spinous core–shell
microspheres

Nanoparticles, *50–
80 nm

Hydrogen storage Yang et al.
(2011)

Collagen fiber TiO2–CeO2 Nanofiber bundles 50–100 nm Lithium storage Wei et al. (2019)

Collagen fiber Cex/TiO2 Mesoporous nanofiber
bundles

Thickness, 20–50 nm;
pore size, 2–10 nm

Photocatalytic dye
degradation

Xiao et al.
(2013)

Peltophorum
pterocarpum pollen
grain

SnO2 Porous motif 16–25 nm Potential gas
sensing

Fazil et al.
(2015)

Basil leave extract Co3O4/C Porous nanorods
assembled by
nanospheres,
nanocapsules

Nanospheres diameters,
5–15 nm; nanocapsules,
10–20 nm length

Catalysed hydrogen
generation

Abu-Zied and
Alamry (2019)

Nanocellulose/alginate CeO2 3D porous
interconnected
nanostructures

Pore size, 2–3 nm – Moyer et al.
(2019)

Cotton SnO2 Porous microtubules Pore size, 23–47 nm Gas sensing Ma et al. (2019)

Apple pectin ZnO Hollow double-caged
peanut built from
nanorods

Nanorods, *100 nm Photocatalytic dye
degradation

Wang et al.
(2012)

China rose petal CeO2 Porous nanosheets Thickness, *7 nm;
pores size 2–4 nm

Potential catalyst Qian et al.
(2011)

Grapefruit exocarp SnO2 Hierarchically porous Pore size, 2–10 nm Formaldehyde gas
sensing

Zhang et al.
(2016)

Gingko leaves Co3O4 Hierarchically porous
structure

Nanoparticles, 30–100;
pores, 10–200 nm

Electrochemical
biosensing

Han et al. (2015)

Mung bean sprout BaCrO4 Dendritic
superstructures

50–150 µm long side
branches

Electronic light
device

Yan et al. (2006)

Onion inner coat SrCrO4 Dumbbell assembled
by nanorods

Nanorods width 30–
50 nm

– Chen et al.
(2008)

Starch Bi2O3 Nanorods 50 nm Catalyst for
oxidative
aromatization

Farzaneh et al.
(2017)
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using microorganisms or plant and plant-derived parts, rather
using different living organisms and their parts with unique
microstructures (Table 5). In this respect, Zhang et al. (2018)
reported the fabrication of Ag butterfly wing scale arrays
using butterfly wing as template. It is well known that but-
terfly wings have very unique and ordered 3D spatial
microstructures that are responsible for brilliant blue col-
oration and iridescence of their wings (Zhang et al. 2006). In
the analysis of chemical composition of wings, the presence
of proteins, amino acids are found as major functional
groups. These groups can absorb or interact with Zn2+ and
accelerate to crystallize as ZnO nanoparticles. Upon further
calcination and simultaneous pyrolysis of the scales, the
formation of ZnO hierarchical structures was observed
(Zhang et al. 2006). It is also seen that bioreplication of two
types of butterfly wings can led to produce quasi-
honeycomb-like, hollow concavities and cross-ribbing
structures of TiO2 deposited over fluorine-doped glass sub-
strate (Zhang et al. 2009).

Eggshell membrane (ESM) is another fascinating material
used as a biotemplate for controlling of nucleation, assem-
bling and patterning of unique morphologies of metal and
metal oxide HSNs (Zan and Wu 2016). Glycoprotein, a
component of shell membrane is made up of –NH2, –OH, –
COOH groups that act as structure directing as well as
capping agents for the synthesis of metal and metal oxide
nanoparticles/HSNs. In aqueous solution of metal oxide
precursors, the inorganic material cross-linked and poly-
merized toward the formation of inorganic/biotemplate
complexes which are mesoscopically ordered due to the
self-assembling nature of glycoprotein. The organics of
ESM biotemplate can be removed through high-temperature
calcination, leaving the network-like porous morphology of
metal oxide intact (Mallampati and Valiyaveetti 2013).
Biomorphic ZnO interwoven microfibers (Dong et al.
2007a), hierarchical mesoporous Mn3O4 (Mallampati and
Valiyaveetti 2012), and a series of 3D micro/nanocomposite
porous structured metal oxides such as CeO2, Co3O4, CuO,

Table 5 Characteristics of metal/metal oxide HSNs synthesized using green templates

Template Nanomaterial Morphology/shape Dimension Property/application References

Butterfly
wings
bioscaffold

AgNPs/graphene Butterfly wing scale arrays 50–150 nm Trace chemical
detection

Zhang et al.
(2018)

Butterfly
wings

ZnO Replica 15 nm – Zhang et al.
(2006)

Butterfly
wings

TiO2 Quasi-honeycomb-like structure,
two-dimensional array shallow
concavities structure

50–100 nm Potential application
on dye-sensitized
solar cell

Zhang et al.
(2009)

Eggshell
membrane

CeO2, Co3O4,
CuO, NiO and
ZnO

Interwoven microporous tubular
structures

Nanocrystallites, 20–
50 nm

Extraction of
nanoparticles from
water

Mallampati
and
Valiyaveetti
(2013)

Eggshell
membrane

ZnO Porous interwoven nanofibers Nanofiber diameter,
200 nm; pore
size, *1 nm

Highly efficient
photocatalysts,
optical devices

Dong et al.
(2007a)

Eggshell
membrane

Mn3O4 Porous fibrous network Crystallite size, *20 nm Dye adsorption Mallampati
and
Valiyaveetti
(2012)

Eggshell
membrane

SnO2 Interwoven hollow tubular
structure

Tube wall
thickness, *80 nm

– Dong et al.
(2006)

Eggshell
membrane

ZnO, Co3O4,
PdO

Hierarchically porous interwoven
nanofibrous structure

Pore size, 20–30 nm for
ZnO; 30 nm for Co3O4;
80 nm for PdO

– Dong et al.
(2007b)

Eggshell
membrane

Co3O4 3D hierarchically porous
interconnected nanofibers

*50 nm Non-enzymatic
electrochemical
detection of glucose

Fan et al.
(2016)

Glutamine ZnO Nanorods – Photocatalytic dye
degradation

Alkaim et al.
(2016)

Albumen ZnO Brush-like morphology assembled
by nanorods

90 nm – Nouroozi and
Farzaneh
(2011)
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NiO, and ZnO (Dong et al. 2007b) can be produced via a
hierarchical organization of nanocrystals using ESM as
biotemplate.

3.2 Physical and Chemical Methods

3.2.1 Green Techniques
Microwave-assisted process is a convenient approach for
heating. It is known as eco-friendly or green technique as in
this method, the microwave energy directly interacts with the
reaction system as opposed to the traditional heating tech-
nique (Lei et al. 2014). This method has several advantages
like fast and steady volumetric heating and substantial
reduction in synthesis time, causes to develop porous and
hierarchically structured metal and metal oxide nanomate-
rials. As an example, the advantage of microwave-assisted
synthesis over conventional hydrothermal heating can be
explained by virtue of the growth mechanism of hierarchical
CuO@reduced graphene oxide (rGO) (Yin et al. 2019). It is
seen that microwave irradiation can promote a heteronuclear
nucleation mechanism of monodispersed CuO NPs anchored
evenly over rGO nanosheets compared to large particles of
CuO randomly distributed on rGO nanosheets under
hydrothermal condition. Thermal decomposition of Zn

(NO3)2 at different temperatures led to generate different
ZnO superstructures/HSNs like hexagonal pyramids and
tulip, bud, apple, dahlia, sunflower, and wheat grains within
500 °C (Udayabhanu et al. 2016). Other than the
microwave-assisted synthesis, organic free electrodeposition
(Xia et al. 2018; Ji et al. 2019), anodization (Momeni et al.
2016), and light-assisted methods (Das et al. 2017; Hu et al.
2016) had also been reported as efficient green methods for
the synthesis of metal oxide HSNs (Table 6).

3.2.2 Green Reagents
Different amino acids (Kang et al. 2013; Gao et al. 2008),
metal powders (Zhang et al. 2011), biopolymers (Wang et al.
2016; Zong et al. 2016), salts (Chen et al. 2018) are gen-
erally used as green reagents (Table 7) for the green syn-
thesis of different nanomaterials. In this regard, Kang et al.
(2013) reported the green synthesis of nanosheets assembled
hierarchical silver microspheres in a surfactant/template-free
route using different amino acids as structure directing agent
and ascorbic acid as reducing agent. Interestingly, amino
acids with simple structures (e.g., alanine, glycine) and more
complicated structures (e.g., glycine, glutamine, asparagine)
would generate different microstructures. Ye et al. (2015)
reported the evolution of Pt–Au dendrimer-like HSNs sup-
ported on polydopamine-functionalized graphene. In this

Table 6 Characteristics of metal/metal oxide HSNs synthesized using alternate green techniques

Technique Nanomaterial Morphology/shape Dimension Property/application References

Microwave NiCo2O4 Flower-shaped microsphere
consisting of petal-like
nanosheets

Nanopetals
thickness, *15 nm; width,
0.1 µm

High performance
supercapacitor

Lei et al.
(2014)

Microwave CuO@rGO Hierarchical nanostructure 4–12 nm H2S-sensing Yin et al.
(2019)

Thermal
decomposition of
precursor

ZnO Superstructures-hexagonal
pyramid, flower, bud,
fruit-grain-like structures

– Photocatalysis of dye,
photoluminescence,
and electrochemical
biosensing

Udayabhanu
et al. (2016)

Electrodeposition Fe3O4 @Feo Dendritic Nanoparticles, 50 nm Phenol oxidation Xia et al.
(2018)

Organic free
electrodeposition

Ag/Cu2O Nanopyramids, nanoflakes,
nanoplates

Nanopyramids, * 311 nm
height

SERS applications Ji et al.
(2019)

Electrochemical
anodization

CuO Nanoneedles consist of a
bundle of irregular
polygonal wires

70–90 nm Photocatalytic dye
degradation

Momeni
et al. (2016)

Light assisted
method

MnO2 Nanoflowers assembled by
thin intersected nanosheets

Nanosheets
thickness, *4 nm

Photocatalytic
degradation of dye

Das et al.
(2017)

Light assisted MnO2 Desert rose-like 3D
hierarchical nanostructures
composed of curly and
interlaced nanosheets

Nanosheets, *50 nm Proposed
supercapacitor

Hu et al.
(2016)

Microwave CuO Hollow cocoon Thickness, 50 nm Applications in
biosensor, optical

Deng et al.
(2011)

(continued)
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process, initially, the reduction and self-polymerization of
dopamine results in polydopamine-functionalized graphene.
Afterward, the amine and catechol groups preferentially
attached with PtCl2− and AuCl− by electronic conjugation
which finally reduced by ascorbic acid to form the
nanocomposite. It is also known that surfactant free syn-
thesis (Chen et al. 2018; Sinhamahapatra et al. 2012) of
metal oxide-based HSNs is efficient in regard of atom
economized approach of green chemistry.

3.2.3 Green Solvents
A very promising category of green solvents is deep eutectic
solvents (DES) because these are cost effective, eco-friendly,
non-toxic and convenient for large-scale production com-
pared to traditional ionic liquids (Wang et al. 2018). These
green solvents (Table 8) are capable of producing different
hierarchical TiO2 structures (microrods and quasi-
crassulapeforata, quasi-peanuts and hierarchical micro-
spheres). Apart from these solvents, glycerol is a widely

Table 7 Characteristics of metal/metal oxide HSNs synthesized using alternate green reagents

Reagent Nanomaterial Morphology/shape Dimension Property/application References

Polyethylene
glycol (PEG)

Au–CuO Flower-like structure
composed of nanosheets

Nanosheets
thickness, * 30 nm;
nanoparticles, *1.8–
12 nm

Catalytic reduction of
p-nitrophenol

Gao et al. (2012)

Alanine,
glycine,
glutamine,
asparagine

Ag Hierarchical Ag
microsphere assembles
by nanosheets

Microspheres, 2–3 µm, 3–
4 µm diameter; nanosheets,
50–150 nm thickness

Sensitive chemical
detection and monitoring
plasmon-driven reactions

Kang et al.
(2013)

Tyrosine CuO Hierarchical hollow
micro/nanostructure
assembled by
nanosheets

Nanosheets, 250 nm
diameter

Electrode materials for
lithium-ion batteries

Gao et al. (2008)

Mg powder Ag Dendrites, dendritic
flowers and rods

Branches diameter, 40 nm Potential application in
fuel cells, SERS
detection

Zhang et al.
(2011)

Green
reagents

Co3O4/C Hierarchically
nanoporous

3–30 nm; pores, 2–4 nm Supercapacitor Wang et al.
(2016)

Food grade
sodium
alginate

d-MnO2 Nanosheets inter
tangled porous flowers

43 nm; micropore, 1–2 nm Supercapacitor Zong et al.
(2016)

Surfactant,
template free

SnO2 Dahlia-flower like
structure

Nanosheets thickness, 10–
15 nm; nanoparticles, 20–
50 nm

Photocatalytic dye
degradation

Chen et al.
(2018)

Ascorbic acid Pt–Au Dendrimer 26 nm 4-nitrophenol reduction Ye et al. (2015)

Surfactant
free

ZnO Porous nanoflakes
assembled
nanostructures

5–40 nm Solid catalyst Sinhamahapatra
et al. (2012)

D-(+)-glucose
powder

Cu2O–CuO Hydrangea
microspheres assembled
by nanosheets

Microspheres diameter, 3–
5 µm; nanosheets, 80 nm
thickness

– Yang et al.
(2013)

PEG Au NPs Hierarchically
mesoporous sponge

*12 nm Potential applications in
chemical and biological
analysis

Lee et al. (2016)

Green
reagents

Ag/WO3−x Nanowires, nanowires
bundles, 3D
chestnut-like
nanostructures

800 nm nanotips SERS sensing Huang et al.
(2017)

Green
template and
precursor

Mn3O4,
MnO2

Hierarchical
mesoporous
microcuboids assembled
by nanosheets

Nanosheets
thickness, *70 nm

Anode materials for
lithium-ion batteries

Hu et al. (2018)
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used green solvent. Hierarchical 3D wool ball-like ZnO
superstructures (Fig. 4) had been synthesized using urea
(additive)-glycerol/water/ethanol assisted hydrothermal
method. Glycerol had been used as chelating agent to Zn2+

as well as capping agent for regulating the morphology
while the presence of different dosages of urea controls the
morphology from urchin-like to wool ball-like structure of
ZnO (Singh et al. 2016). On the other hand, hierarchical
shuttle-shaped mesoporous ZnFe2O4 microrods assembled
by 1D nanorods had been synthesized using the combination
of green solvents, i.e., glycerol and water (Hou et al. 2015).
In this process, the viscosity of glycerol was more than
water. This influenced the diffusion rate of ions in glycerol
slower than water that led to higher aggregation rate of the

nanorods; eventually fused together to form the shuttle-
shaped structures. Similarly, flower-like CuO/ZnO hybrid
hierarchical nanostructures had been fabricated on copper
substrate in which ethylene glycol was used as reducing
agent as well as solvent (Beshkar et al. 2017).

4 Growth Mechanism of Metal and Metal
Oxide HSNs

On the basis of the above reported literature as described in
the previous sections/subsections of different green synthesis
methods/techniques used for the fabrication of metal and
metal oxide HSNs, one can classify the methods into

Table 8 Characteristics of metal/metal oxide HSNs synthesized using green solvents

Solvent Nanomaterial Morphology/shape Dimension Property/application References

DES (deep eutectic
solvents)

TiO2 Microspheres, quasi-microspheres,
microrods and
quasi-crassulapeforata-like structure
constructed by nanodisks

– Photocatalytic
water splitting

Wang
et al.
(2018)

Green solvent,
template free

ZnO Wool ball structure assembled by
nanoflakes

Thickness, 20–
25 nm

Photocatalytic dye
degradation

Singh
et al.
(2016)

Template/surfactant
free

ZnFe2O4 Shuttle-shaped mesoporous
microrods assembled by 1D
nanofiber subunits

Nanofibers, 100–
200 nm

Anode for LIBs Hou et al.
(2015)

Green solvent CuO–ZnO Flower ZnO
flower, *554 nm;
CuO
nanoparticles, *50–
90 nm

Anticorrosion
properties of thin
film

Beshkar
et al.
(2017)

Water solvent Co3O4 Nanoflakes assembled nanostructure Thickness, 2–3 nm H2O2 sensing Su et al.
(2015)

Green solvent WO3 Nanowires emerged from the edges
of stacked nanoplates

Nanowire
diameter, <20 nm

Photochemical
water splitting

Nayak
et al.
(2017)

Green solvent CoMn2O4 Porous micro/nanostructures 20–100 nm Anode for LIB Li et al.
(2017)

Fig. 4 FESEM images of hierarchical self-assembled 3D ZnO superstructures at different magnifications. Copyrights reserved to the American
Chemical Society (Singh et al. 2016)
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(a) physical, (b) chemical, and (c) biological methods
(Fig. 5). For understanding the growth mechanism of the
nanomaterials, it is essential to enter into the insights of the
different methods, i.e., green physical, green chemical and
green biological methods. In the literature, there are large
numbers of reports available that has already been discussed
in this chapter and the explanation on probable mechanistic
aspects related to growth of nanoparticles toward the for-
mation of hierarchically structured nanomaterials is also
discussed. However, no generalized growth mechanism is
yet found. This section describes the mechanistic pathways
of formation of metal/metal oxide HSNs synthesized by
physical, chemical, and biological methods with submethods
also.

4.1 Biological Method

In recent years, the biogenic synthesis process also known as
biological synthesis method toward producing metal/metal
oxide nanomaterials has attracted substantial attention
(Hulkoti and Taranath 2014). In this process, the nanoma-
terials can be synthesized using microorganisms and plant
extracts. The biosynthesis can actually provide nanoparticles
with ordered and controlled morphology (shape, size) and
physiochemical properties as compared to some chemical
and physical methods (Khandel et al. 2018; He et al. 2008).
In this respect, there are previous reports on biocompatible
and eco-friendly synthesis process based on microorganism
(Hulkoti and Taranath 2014). The synthesized products can
be used for pharmacological applications. However, one
major disadvantage is that the mass production of the
nanomaterials using microorganisms is often more expen-
sive because of existing some of the critical handling

protocols. On the other hand, the main advantage of
plant-based synthesis approaches over conventional methods
is being environmentally benign, low-cost, and scalable. In
these processes, the use of high temperature, pressure, and
toxic chemicals are not necessary. In brief, the microor-
ganism and plant can be used in two ways for the synthesis
of nanomaterials—(a) as reagent and (b) as template. In the
next subsection, we will further discuss how they can
function as reagents and templates.

4.1.1 Biomolecules as Reagents
It is important to mention that a common mechanism for the
synthesis of nanoparticles employing microbes, for example,
bacteria, fungi, algae, and yeast or biomolecules as reagents
has yet not been conceived distinctly. One of the reasons is
that the reaction mechanism of a biological reagent with a
specific reactant like metal ions leading the formation of
nanomaterials does not match with the other. In this respect,
the formation of nanomaterials by microbes is known as an
outcome of their defense mechanism toward the metal ions.
Most of the reported works referred to enzymes, proteins.
and lipids as the main biologically active materials that act as
reducing, capping, and structure directing agents during the
nanomaterials synthesis (Hulkoti and Taranath 2014;
Mohammadinejad et al. 2016; Carbone et al. 2019). This is
mostly due to of the defense mechanism of the microbes
toward reduction of metal ions (He et al. 2008) and their
aggregation with catalyzing the reaction medium (Dhanda-
pani et al. 2020). The cell wall of the microorganisms also
plays a crucial role in intracellular synthesis of
nanoparticles/HSNs. In this process, an electrostatic inter-
action occurs between the positive charge of metal ions with
the negative charge of the cell wall. The proteins that
composes the cell wall enzymes reduce metal ions, resulting

Fig. 5 Different green methods for the synthesis of metal and metal oxide HSNs
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the formation of nanoparticles/nanomaterials with hierar-
chical structures (Kitching et al. 2016).

Similarly, plants have ability to precisely producing a
variety of highly ordered hierarchical nanostructures. It is
seen that various water soluble plant metabolites such as
polyphenols, flavanoids, tannins, phytolexins, terpenoids,
proteins, flavonoids, alkanoids, limonoids, amino acids,
cellulose, saponin, pectin and hemicelluloses can act as
reducing, capping and complexing agents for the synthesis
of metal and metal oxide HSNs (Fig. 6) (Carbone et al. 2019;
Bankar et al. 2010; Udayabhanu et al. 2017; Li et al. 2020;
Suresh et al. 2020; Khaghani et al. 2017; Singh et al. 2017;
Madan et al. 2015; Sundar et al. 2018).

4.1.2 Biomolecules as Templates
In our nature, different microorganisms are present in
diverse morphologies such as spheres, rods, spirals, icosa-
hedrons, and so on (Hulkoti and Taranath 2014; Khandel
et al. 2018). Sometimes, these are varying size in length
starting from nano to mesoscopic scales providing the base
for metal ions that can act as low-cost and eco-friendly
templates in potential applications of micro- and

nanofabrication via green synthesis especially for hollow
micro/nanoporous metal and metal oxide nanomaterials. So
far, bacteria, fungi, yeast and algae have been employed
successfully as biotemplates for the synthesis of controllable
structures of various nanomaterials. A major advantage of
this process is the specific morphology of a microbe. This
offers a uniform and tunable biotemplate as base of the
metal ions. Functional groups like OH–, CHO–, COO–, etc.
present in the microbial cell wall bind the metal ions by
electrostatic force of attraction whereas the cell wall acts as
nucleation site of the metal ions. These avoid the need of
additional surface modifying or templating agent for further
ripening, self-assembly, and the growth of metal and/or
metal oxide toward the formation of hierarchical nanos-
tructures. After calcination, the decomposition of an organic
microbial template as well as escape of CO2 and H2O
occurs. Thus, one can make hierarchically porous nanos-
tructures and in some cases, it results in the formation of
hollow microstructures due to complete decomposition of
the template. A brief mechanism of the synthesis of hier-
archically ordered mesoporous TiO2 using yeast (Cui et al.
2009) as biotemplate is displayed in Fig. 7.

Fig. 6 Scheme for fabrication of tripyramidal and rod-like TiO2. Copyrights reserved to the Elsevier (Li et al. 2020)

Fig. 7 a Illustration of ordered hierarchical mesoporous TiO2 preparation process and b the corresponding HRTEM image of nano TiO2.
Copyrights reserved to the Elsevier (Cui et al. 2009)
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Nature has already performed a fine job in creating
humongous hierarchy in the structures of the living beings
and creatures such as insects, plants and plant-derived
products. Particularly, at the micro- and nanometer scales,
these naturally abundant structures show such degree of
elegance that it overshadows current man-made bioinspired
structures as synthesized in conventional manners
(Mohammadinejad et al. 2016; Ebrahiminezhad et al. 2018;
Zan and Wu 2016). In general, the process consists of two
dominant stages—(a) the assembly of the precursor and
(b) template removal (Zan and Wu 2016). At first, a
biotemplate is dipped into a precursor metal solution, which
then diffuses and permeates into the template. In the next, the
precursor metal ions self-assemble onto specific sites of the
template via a molecular recognition process, deposit
homogenously over the template by electrostatic attraction
between metal ions and the functional groups (carboxylic,
hydroxyl, amine, etc.) present in the cell wall template
and form a stable organic–inorganic
composite/hybrid/complex (Ramimoghadam et al. 2013a;
Han et al. 2015; Mallampati and Valiyaveetti 2012). In the
following steps, further growth of the precursor through the
template occurs in which the template acts as the structure
directing agent and the functional groups act as capping
agents. When the growth of the nanomaterial extends up to
its thickness capacity, the growth is ceased due to lack of
space. Afterward, as the template is removed by calcination,
porous metal/metal oxide nanomaterials are formed with
magnificent hierarchy of the replicated specific template.
Wood (Liu et al. 2009) (Fig. 8), pollen (Yang et al. 2011;
Fazil et al. 2015), nanofibers (Wei et al. 2019; Xiao et al.
2013; Moyer et al. 2019), leaf (Li et al. 2009; Abu-Zied and
Alamry 2019; Han et al. 2015), cotton (Mohamed et al.
2016; Ma et al. 2019), flower petals (Qian et al. 2011), fruit
exocarps, inner coats and sprouts (Yan et al. 2006; Chen
et al. 2008), rice and starch (Ramimoghadam et al. 2013a;
Farzaneh et al. 2017) are some of the plant-derived
biotemplates that had been used for the green synthesis for

variety of nanomaterials. On the other hand, butterfly wings
(Zhang et al. 2018,2006,2009) and eggshell membranes
(Mallampati and Valiyaveetti 2013; Dong et al. 2007a,b; Fan
et al. 2016), albumen (Nouroozi and Farzaneh 2011), and
glutamine (Nouroozi and Farzaneh 2011) are the examples
of widely used insect/animal-derived biotemplates.

4.2 Physical and Chemical Methods

The physical methods/techniques that are used in green
synthesis of hierarchically structured nanomaterials involve
requirement of less energy than the conventional methods.
These can also reduce the use of harmful solvents, surfac-
tants, and templates. Moreover, these are environment
friendly and often cost effective. Microwave-assisted syn-
thesis method is one of the most energy and time efficient
methods that has been used widely for the synthesis of
hierarchical nanomaterials (Lei et al. 2014; Tompsett et al.
2006). As the microwave energy increases, the heating rate
of the medium and time of the overall reaction are reduced
vis-á-vis a lower consumption of overall energy is possible.
Microwave synthesis allows more uniform heating of the
reaction mixture that leads to form homogeneous distribu-
tion of nanocrystals. This is expected to be one of the very
crucial parameters toward the formation of hierarchical
nanostructures.

Thermal decomposition and electrochemical deposition
are another green approaches for the synthesis of ultra-pure
nanostructured materials without using any fuel or leaving
off toxic side products to the environment. As for example,
3D hierarchical nanopyramids and nanosheets array of
Ag/Cu2O and CuO nanoneedles had been fabricated using
electrochemical deposition method (Ji et al. 2019; Momeni
et al. 2016). In this respect, a reported study suggested that
by controlling the reaction time and temperature, diverse
superstructures of ZnO can be obtained (Udayabhanu et al.
2016).

Fig. 8 FESEM images of
a carbonized wood and
b prepared ZnO using wood.
Copyrights reserved to the
Elsevier (Liu et al. 2009)
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Using the precursor materials that undergo visible
light-assisted decomposition is a unique and eco-friendly
method for the synthesis of hierarchical nanostructures of
especially metal oxides (Das et al. 2017; Hu et al. 2016). In
this method, high temperature, heat or reducing agents are
not required and only the presence of light is required for
accelerating the reaction toward formation of nanostructures.
For example, in a green and sustainable pathway, the
sunlight-assisted decomposition phenomenon of KMnO4

gives rise to hierarchical flower-like MnO2.
Environmentally benign reagents such as amino acid

(Gao et al. 2008), metal (Zhang et al. 2011), glucose (Yang
et al. 2013), polyethylene glycol (Gao et al. 2012; Lee et al.
2016), and dopamine (Ye et al. 2015) have been used in the
green synthesis of HSNs. In this case, the reagents can
perform multifunctions such as reducing agents, structure
directing agents, and capping agents in a surfactant and
template-free synthesis. Thus, atom economy that is one of
the principles of green synthesis can also be maintained
properly. Although the exact functional mechanism is very
difficult to investigate, the organic functional groups like
carboxylic and amines groups present in the green regents
are known to be responsible for their multifunctionalities. It
is noteworthy that biopolymer alginate has generally been
used as cross-linker for manganese ions to form hierarchi-
cally structured nanoporous metal oxide hybrids (Wang et al.
2016) (Fig. 9) whereas the reducing agent, surfactant and
structure directing agents are to be found responsible for
creating flower-like nanopetal assembly of d-MnO2 (Zong
et al. 2016).

Some of the reported studies show that no additional
foreign reagents and reducing agents have been used but
complex (Sinhamahapatra et al. 2012) and metal oxide
framework (Hu et al. 2018) can act as reducing and
structure directing/evolving agents for the synthesis of
hierarchical metal and metal oxide nanomaterials. Sin-
hamahapatra et al. (2012) reported the synthesis of hierar-
chically structured porous ZnO, where the assembled
bundles of woolen threads like hydrozincite,

Zn5(CO3)2(OH)6 architectures had initially been synthe-
sized and used as the precursor. Upon calcination, the
evolution of CO2 and H2O took place with the formation of
porous nanostructures of ZnO retaining original morphol-
ogy of hydrozincite (Fig. 10).

Sustainable solvents and additives are other important
materials used for the green synthesis of metal and metal
oxide HSNs. Water, ethanol, glycerol, ethylene glycol, and
urea are some of environmentally benign solvents and
additives that are used widely. These solvents function as
reducing agents (Beshkar et al. 2017), chelating/capping
agents (Singh et al. 2016), and structure directing agents
(Singh et al. 2016; Hou et al. 2015; Nayak et al. 2017) in the
synthesis process. The combination of hydrogen-bond
acceptors (glycine, betaine, or acetylcholine chloride) and
donors (urea, oxalic acid, ethylene glycol, or glycerinum)
had been used strategically for controlling the morphology
of TiO2 nanostructures where these materials played the role
of solvent, template, and inhibitor (Wang et al. 2018).

5 Applications of Hierarchically Structured
Metal and Metal Oxide Nanomaterials

In this section, different potential applications of green
synthesized metal and metal oxide nanostructures have been
discussed. These applications basically rely upon the prop-
erties of metal and metal oxides such as morphology and
porosity developed during the process of synthesis.

5.1 Biomedical Application

Nanomaterials produced by green synthesis methods have a
wide range of applications in biomedical and pharmaco-
logical fields for antibacterial, antifungal, and antioxidant
applications (Yuliarto et al. 2019). Due to small particle size
and high surface area of the nanomaterials, they can easily
attach to microbial membranes in a closer proximity

Fig. 9 a Schematic of the synthesis process and b SEM image of nanoporous Co3O4/C hybrids. Copyrights reserved to the American Chemical
Society (Wang et al. 2016)
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compared to their bulk counterparts (Seth et al. 2020).
Although, the mechanism of antimicrobial activity has not
been understood clearly, the physical damage of the cell
wall caused by the nanoparticles had been reported to be
responsible for cell death of microbes. Release of metal ions
from nanostructures is also said to be playing an important
role for the antimicrobial activity. In this respect, Spirulina
templated Ag nanosheets showed excellent bactericidal
activity against S. aureus. Additionally, the slow release of
Ag+ ions reduces the chance of adverse impact of ionic
silver to our environment (Sun et al. 2019). Moreover, a
study revealed that the Ag+ possess good adaptability. Thus,
it can be used in applications such as food safety. Fungi-
cidal activity of dendritic Ag nanoparticles against plant
pathogen F. Graminearum can practically be used in crop
plant protection (Carbone et al. 2019). It has been reported
that nanoflowers-shaped Au nanoparticles are hemocom-
patible and can be used as suitable bioconjugates in thera-
peutic and biomedical fields (Kitching et al. 2016). It is
important to note that the accessibility of Ag+ ions in the
hierarchical dendritic architecture had been reported to be
the limiting factor for its fungicidal activity. In another
example, ZnO superstructures showed antibacterial activity
against both gram positive and negative bacteria (Udayab-
hanu et al. 2017; Madan et al. 2015). Also, hierarchical
CuO nanostructures showed antibacterial activity against
gram positive and gram negative bacterial strains (Suresh
et al. 2020). The probable factor for killing the bacteria is
attributed to generation of reactive oxygen species (su-
peroxide and hydroxide radicals) formed by CuO nanos-
tructures and the affinity of amine as well as carboxylic acid
groups present on the cell wall of bacteria may result the
formation of Cu2+ ions. Moreover, CuO nanoparticles can
easily enter into comparatively bigger pores of bacteria
causing malfunction in cell enzyme resulting cell death.
They also have the potential antioxidant properties,

attributed to their small crystal size and hierarchical bullet
shaped morphology.

5.2 Environmental Remediation

5.2.1 Wastewater Treatment
To color the final products, various dyes are substantially
used in textile, paper, plastic, cosmetic, leather, drug and
food processing industries. These dyes are eventually
released into water bodies and soil that can severely affect
the environment, hamper the ecosystem of water body and
cause serious health hazards to human beings (Fang et al.
2019). A considerable amount of research had already been
performed for the fabrication of metal/metal oxide nano-
materials as efficient photocatalysts for degradation of the
organic dyes under UV/visible light irradiation (Bera et al.
2016c). In the photocatalysis process, toxic organic pollu-
tants photo-degrade into non-toxic by-products through
mineralization, without further waste production. In this
respect, semiconductor absorbs photon with energy equal or
more than the band gap of the semiconductor can generate
electrons and holes in the semiconductor system. If the
recombination rate of charge carriers is slow, the species will
travel to the surface, where the free electrons reduce oxygen
and forms peroxides/superoxides and holes that oxidize
water and forms OH· (Udayabhanu et al. 2017). These
highly reactive and unstable species finally lead to
photo-degrade organic dyes. It is also known that biosyn-
thesized nanomaterials exhibit an excellent photocatalytic
performance due to high surface-to-volume ratio and the
existence of higher number of active sites compared to
polycrystalline materials (Fang et al. 2019). Other important
factors that affect the photocatalysis performance are crys-
tallinity, porosity, particle size, morphology, particle size
distribution and band gap of a photocatalyst.

Fig. 10 Schematic for the synthesis of ZnO replications from hydrozincite. Copyrights reserved to the Royal Society of Chemistry
(Sinhamahapatra et al. 2012)
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TiO2 and ZnO are some of the well-known photocatalysts
mostly used in water pollution alleviation via photocatalysis
as they are cost effective, non-toxic, chemically, and
mechanically stable and they can easily form hierarchically
structured nanomaterials. In an example, hollow
double-caged peanut-like ZnO microstructures had been
reported for the photocatalytic degradation of methyl orange
under UV irradiation (Wang et al. 2012) (Fig. 11). After 180
min of irradiation, the characteristic peak of the dye was
found to be eliminated by ZnO. The large surface area of
nanorods assembled peanut structure and commodious
interspaces of ZnO microstructure are highly effective for the
diffusion and mass transportation of dye molecules and
hydroxyl radicals for photocatalytic degradation of dye. In
this respect, Li et al. (2009) reported an improvement
in photocatalytic activity of leaf templated hierarchical
porous morph-TiO2 than non-templated TiO2, indicating the
contribution of porous and layered nanostructure of
morph-TiO2 toward the catalytic activity.

Adsorption is also an efficient method of dye removal
from wastewater. Nanofibrous network of Mn3O4 had been
used for absorbing a wide range of organic dyes by elec-
trostatic attraction between the surface of Mn3O4 and
organic compounds in aqueous solution (Mallampati and
Valiyaveetti 2012).

5.2.2 Energy Storage
Transition metal oxide-based nanomaterials have been
widely used as potential electrode materials (PEMs) for
pseudocapacitors (Zhang et al. 2019b), Li-ion batteries
(Hashem et al. 2018; Wei et al. 2019; Gao et al. 2008; Hou
et al. 2015; Hu et al. 2018; Li et al. 2017), and superca-
pacitors (Wang et al. 2016; Zong et al. 2016; Sinhamahap-
atra et al. 2012). On this aspect, flower-like nanostructured
NiCo2O4 that composed of ultrathin nanopetals (thickness

*15 nm) having large specific surface combined with nar-
row pore size distribution can be considered as one of the
significant examples of PEMs (Lei et al. 2014). It is seen that
the flower-superstructure composed of mesoporous nano-
petals with high surface area is responsible for exhibiting
high capacitance and stability of NiCo2O4, as the nanopetals
can provide a large number of electroactive sites for Faraday
reaction. Consequently, the microflower can act as an
ion-buffering reservoir and expedites a quicker permeation
process of electrolyte into nanopetal matrix. Zhang et al.
reported (Zhang et al. 2019b) the synthesis of hierarchical
porous MnO@biocarbon (BC) nanocomposite using molted
salt assisted method. The highly porous HSN can be used as
supercapacitor electrode materials for electrochemical
energy storage as well as lithium-ion battery anodes.

5.2.3 Sensing
Gas sensing is analyzed by detection of the variation of
conductance of a sensing material that occurs because of the
surface reactions between the target gas molecules and the
sensing particles (Lee 2009). Obviously, for gas sensing, the
surface area with higher hierarchical porosity is required so
that the porous network with excellent interconnectivity and
mass transportability can supply plentiful connective multi-
scale channels toward the transportation of gas molecules to
directly sensing by metal oxide nanoparticles (Song et al.
2012). In addition, the temperature is a crucial factor
affecting the sensitivity of gas sensing performance of metal
oxide nanomaterials.

It is also noticed that pollen coats of rape pollen grains
have been used to synthesize highly connective hierarchical
porous network structure of SnO2 (Song et al. 2012).
Interconnected mesoporous network further can be extended
to macro- to nanoscale pores. This makes SnO2 an excellent
candidate for selective sensing of C2H5OH, CH3COCH3 and

Fig. 11 FESEM image (a) and photocatalytic study, (b) hollow peanut-like ZnO powder. Copyrights reserved to the Royal Society of Chemistry
(Wang et al. 2012).
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Cl2 (Fig. 12). In another example, wood template-mediated
synthesis of hierarchically porous ZnO showed exceptional
selective gas sensing for H2S (Liu et al. 2009). In this case,
the hierarchically porous ZnO with higher porosity and
surface area provided more surface adsorption positions and
reacting areas for oxygen and test gases that helped the target
gases to transfer more quickly leading to increase gas
response, in comparison to lower gas sensitivity of
non-template based ZnO.

Green synthesized 3D chestnut-like structures of Ag
decorated WO3−x are found to be used as clean, stable, and
recyclable SERS substrate which is able to identify and

provide the fingerprint structural information on various
analytes even at low concentration (Huang et al. 2017). The
material also has exceptional self-cleaning ability.

6 Present Challenges and Future Prospect

Nowadays, hierarchically structured metal and metal oxide
nanomaterials have been widely studied for their special
surface structures and remarkable applications in various
fields including but not limited to pharmaceutical, biomed-
ical, electronics and environmental remediation. These

Fig. 12 a FESEM image of SnO2, sintered at 700oC; b, c real-time response curves and d, e response dependens on gas concentrations of the
sinters; b, d to C2H5OH at 210 °C; c, e to CH3COCH3 at 290 °C. Copyrights reserved to the Royal Society of Chemistry (Song et al. 2012).
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nanomaterials are particularly in demand because of their
characteristic features like large surface area with excep-
tional surface morphology with high porosity. Biological
mode has become an important part of nanotechnology
where bioagents are used as reagents and templates for the
synthesis of hierarchical nanomaterials. However, certain
limitations are there in these nanomaterials for their practical
production and relevant applications. These must need to
be resolved by the scientific community. Firstly, one of the
major limitations lies in the lack of complete and in-depth
understanding of mechanism of biofabrication of the
nanoparticles/nanomaterials. There are several reports
available in literature where reasonable hypotheses had been
proposed to explain the experimental results and biologically
active molecules responsible for biomineralization of metal
ions using bioextracts/templates. However, a detailed anal-
ysis of the biochemical mechanism is further needed for the
development of green HSNs with desired and controlled
structure, size, morphology, dispersity, and related proper-
ties (Gahlawat and Roy Choudhury 2019; Deng et al. 2011)
toward their real applications. Secondly, large-scale pro-
duction of nanomaterials synthesized by adopting green
synthesis methods is mostly obstructed by inability to fully
control the structure, size, and morphology of hierarchical
nanomaterials along with other concerns toward polydis-
persity and low yield. The synthesis of nanomaterials at
ambient temperature by using natural reagents as
reducing/capping/structure directing agents without any
toxic additives may make the process for large-scale pro-
duction in cost-effective and environmental friendly. Also,
the large-scale production of monodispersed nanomaterials
with narrow size distribution and high yield can be achieved
by optimizing the diverse synthesis parameters such as
solution pH, temperature and time of reaction, concentration
ratio of biomolecules and metal precursors. Interestingly,
instead of bacteria, fungi can be used for the production of
humongous concentration of nanoparticles as fungi is able to
discharge larger amounts of proteins which lead to higher
productivity of nanomaterials. In addition, an exploration of
microbial diversity of novel, sustainable microorganisms
with varying shape may be used as reagent/template for the
synthesis of hierarchical nanomaterials. Often, the nanoma-
terials cannot be effectively separated or regenerated after
participating in catalytic/adsorption reactions, hence effec-
tive techniques must be established for this purpose. Finally,
the synthesis of HSNs using microorganisms is a slow-going
process that may take up to several hours or even few days.
Green chemical and physical methods as discussed in this
chapter can be established as less time-consuming method
because they need less time to complete and produce
materials with controlled shape and size and higher yield of
products. These methods are also easy to handle in com-
parison to microorganisms which have a high risk of

contamination. Another important issue is the biocompati-
bility and bioavailability of the produced nanomaterials and
their environmental sustainability. In this regards, more
extensive research and clinical trial are required to study the
cytotoxicity and genotoxicity of the synthesized nanomate-
rials for their practical use in biomedical, pharmaceutical and
agricultural fields as well as wastewater purification.

Without causing any further harm to our environment, the
green synthesis methods that evolved from the greatness of
nanotechnology toward production of large-scale hierarchi-
cally structured nanomaterials has a bright future for appli-
cation in various sectors like health, water, food, and energy.
A collaborative research is indeed necessary for under-
standing the detailed mechanistic aspects, exploration of
new biological agents and finding out innovation by
cost-effective biological, physical, and chemical green syn-
thesis methods.
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Bioprivileged Molecules

Shashi Kiran Misra, Devender Pathak, and Kamla Pathak

Abstract

Petrochemical based non-sustainable resources are being
utilized for the production of energy and various platform
chemicals. However, the fuel-based technology results
in hazardous outputs, and hence, sustainable green routes
are essential to save our resources and compensate energy
requisites. Alternative sustainable green synthesis
approach shifts the dependence from fossil fuels to the
bio-based feedstock. Lignocellulose (cellulose and hemi-
cellulose), wood, and crop residue, namely sugar cane,
herbs and wheat straw, are frequently utilized to generate
value-added platform molecules. The chapter portrays the
bioprivileged molecules recognized by the US Depart-
ment of Energy, their contribution to a drop-in replace-
ment, the green route(s) for their preparation and the
global market potential.

Keywords

Bioprivileged molecules � Green route preparation �
Sustainability � Applications

1 Introduction

Our planet is full of sustainable biomass encompassing
renewables and non-renewable assets. Enormous chemicals
acquired from biomass or their bioprocessing courses are
quite large. Of lately, bioprivileged molecules (biology-
derived molecules/intermediates) are being efficiently trans-
formed into miscellaneous innovative chemicals (drop-in

replacement and new entities) adorned with advanced
properties. The bioprivileged molecules exhibit some key
features such as these should be an intermediate chemical
molecule procured from biomass and cannot be acquired
from the petrochemical route. Also, these molecules can be
further transformed into other molecules and require mini-
mum subsequent reactions to produce novel and drop-in
replacements (Werpy and Petersen 2004). Bio-based pro-
curement of bioprivileged molecules is certainly advanta-
geous for agriculture, pharmaceutical, petrochemicals/
refineries, nutraceuticals and other consumer provisions
(Xiaowei et al. 2019). Many bio-origin polymers (starch,
cellulose) and biodegradable plastics such as polyethylene
(PE), polyvinylchloride (PVC) and polyethylene terephtha-
late (PET) are acquired from renewable assets. The annual
utilization of approximately 4.2 million tons of bioprivileged
molecules recorded in the year 2016 is estimated to increase
to about 6.1 million tons by the year 2021 (Brent and
Keeling 2017). In the year 2004, a survey was conceded by
Gene Petersen and Todd Werpy on the comprehensively
employed twelve bioprivileged molecules for their devel-
opment as innovative molecules and as a drop-in replace-
ment (Bozell and Petersen 2010; Bioprivileged Molecules
2018). Some of them are widely used; some are languished
and unloved by researchers depending on their potential. The
chapter elaborates the recognized bioprivileged molecules,
by the US Department of Energy, their contribution to a
drop-in replacement, green synthesis preparation route and
their global market potential.

2 Four Carbon 1,4-Diacids

2.1 Succinic Acid

Succinic acid, widely distributed in plants and animal tis-
sues, often known as spirit of amber (Fig. 1) is regarded as a
valuable molecule for the industries. Four multinational
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companies, namely BASF-Purac (Succinity), Myriant,
Reverdia (DSM-Roquette) and BioAmber, are engaged in
developing newer molecules/valuable replacement products
as adipic acid, maleic acid and phthalic anhydride, etc.
Myriant is involved in production of pure succinic acid as
bio-succinic acid from renewable biomass. Similarly,
Reverdia Enterprises, Italy, has been involved in the
production of sustainable Biosuccinium that is extensively
utilized for the synthesis of polybutylene succinate,
phthalate-free plasticizers, polyester polyols and 1,4
butanediol. These molecules are widely used in the pro-
duction of packaging materials, paints and footwear (Global
Succinic Acid Market Analysis Trends 2017).

Conventionally, succinic acid is produced from a
petroleum-based maleic anhydride process utilizing a C4

fraction of naphtha that is expensive and environmentally
hazardous. Hence, novel bioprocessing routes/fermentation
processes were innovated for the production of succinic
acid involving bacterial and fungal cells, enzymes and
cofactors that proved safe, economical and eco-friendly
(Nhuan et al. 2017). Chiefly, genetically engineered
Escherichia coli is considered as a viable microbe for the
production of succinic acid. Gene deletion of lactose
dehydrogenase and pyruvate formate lyase prevents the
formation of byproduct and assists the formation of suc-
cinic acid (Fig. 2).

Fig. 1 Physicochemical
properties of succinic acid

Fig. 2 Schematic illustration of the production of bioprivileged succinic acid
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Other microorganisms, namely Aspergillus niger,
Actinobacillus succinogenes, Arthrobactor tumenscens,
Salmonella typhimurium, Planococcus eucinatus and Xan-
thomonas citri, are also reported for the production succinic
acid and its derivatives (tetrahydrofuran, 1,4-diaminobutane,
1,4-butanediol and succindiamide). However, these
microorganisms require complex nutrients and culture pro-
cessing that may be unaffordable commercially.

Succinic acid has huge market potential owing to its
involvement in the production of more than thirty com-
mercially significant platform compounds. These com-
pounds find use in pharmaceuticals, nutraceuticals, foods
and paints/ink industries. Several precursors, surfactants,
antifoams, detergents and ion chelators are frequently pro-
duced using bio-based succinic acid (Table 1) due to their
nominal processing cost compared to the petroleum-based
molecules (Saxena et al. 2017).

Among the platform compounds of succinic acid, the
global market of 1,4-butanediol is highest (35%) owing to its
involvement in the preparation of plasticizer, food and
beverages, polyols, polybutylene succinate and pharmaceu-
tical solvents. Interestingly, 1,4-butanediol is considered as a
replacement molecule of maleic anhydride that is further
utilized for the synthesis of many other molecules.

2.2 Fumaric Acid

A dicarboxylic acid derivative fumaric acid (Fig. 3) is an
indispensable metabolite of several microorganisms.
Adorned with multiple functional moieties and procured
from renewable biomass, it can be easily transformed into
numerous other beneficial substances (Yang 2007). Used as
food acidulant since 1946, fumaric acid finds vital applica-
tions in the manufacturing of unsaturated polyester resins,
plasticizers, lubricating oils, paper resins and for preparation
of styrene-butadiene rubber. It is frequently utilized in sun-
dry food products, i.e., bread, corn and wheat pancakes,
biscuits, desserts, fruit juices, in beverages and nutraceuti-
cals, etc. owing to its pH lowering, porosity modifier and
shelf life amending properties of baked products.

Traditionally, a conventional petroleum-based scheme
(n-butane to maleic anhydride route) is utilized for its pro-
duction owing to cheap production and high yield. But,
increased oil prices and pollution-related issues dictated the
use eco-friendly renewable feedstock for the production of
fumaric acid. Pfizer developed a procedure based on fila-
mentous fungal fermentation of sugar for the preparation of
fumaric acid (Goldberg et al. 2006). The scheme requires
mild conditions, and is economical, safe without emission of
toxic gases and wastes. The production scheme is based on

Table 1 Applications of the
platform chemicals developed
through succinic acid

Platform chemicals Applications

1,4-Butanediol As solvent, in syntheis of plastics, elastic fibers and polyurethanes

Tetrahydrofuran Polyvinylchloride

Gamma-butyrolactone Paint strippers, nail polish removers, stain removers and circuit board cleaners

Succinamide As a key ingredient for synthesis of anti-convulsant therapeutics, i.e.,
ethosuximide, methsuximide and phensuximide
For assay of protein and peptides

Succinonitrile Vinyl foam

2-Pyrrolidone Used in inkjet cartridges, key molecule for the synthesis of povidone, cotinone,
ethosuximide, doxapram and the racetams, green solvent for water treatment

N-
Methyl-2-pyrrolidone

As solvent in petrochemical and plastics industries

Fig. 3 Physicochemical
properties of fumaric acid
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utilization of the neutralizing agent (CaCO3) that is acidified
with H2SO4 to attain a pH of 1 followed by extreme heating
(160 °C). The precipitated insoluble CaSO4 is removed
through filtration, and the crystallized fumaric acid is col-
lected at room temperature (Fig. 4). Generally, Rhizopus

arrhizus and Rhizopus oryzae are the best producers for
fumaric acid through aerobic or anaerobic fermentation. The
morphology and growth pattern of fungal species challenges
the product concentration and production yield, and thus, the
process is hard to scale-up commercially (Magnuson et al.
2004). The species of Mucor, Aspergillus and Cirinella are
also reported for the collection of fumaric acid (Jimé-
nez-Quero et al. 2017).

The global market of fumaric acid is vast as it is widely
used in paper, textile, paint, food and beverage industries
(Fig. 5). In pharmaceutical industry, methyl and propyl
fumarate esters of fumaric acid are used for the synthesis of
dermatological, anti-carcinogenic and anti-inflammatory
drugs (Das et al. 2016).

2.3 Malic Acid

Another carbon 1,4-diacid, malic acid, is considered as a key
molecule for the production of biodegradable polymers,
fabrics and resin products (Fig. 6). Low-value bio-based
malate salt is extensively utilized as a flavoring agent in the
food industry owing to its acidulated virtue.

Commercially, malic acid is processed by a reductive
scheme based on the phosphoenolpyruvate carboxykinase
pathway. The process entails carbon dioxide, neutralizing
salt and eukaryotic cultures, i.e., Aspergillus sp., Candida
sp., Penicillium sp. or prokaryotic Escherichia coli, Bacillus
subtilis, etc. Another method is the glyoxalate pathway that
utilizes acetyl-CoA, water and glyoxylate molecules with S.
cerevisiae to synthesize malate salt. Both methods are highly
reliant on the type of strain and method of processing to

Fig. 4 Schematic illustration of the preparation of fumaric acid
through fermentation

Fig. 5 Applications of fumaric
acid
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obtain cost-effective productivity (Fig. 7). A new method
reports utilizing Ustilago trichophora biomass for com-
mercial production of malic acid with glycerol at low pH that
minimizes the chances of contamination in large-scale pro-
duction. Moreover, this scheme requires minimum salts
(CaCO3/Ca(OH)2) for processing, thereby pose least envi-
ronmental hazard (Deng and Zhang 2016).

Like succinic and fumaric acid, malic acid can also be
derived into 1,4-butanediol compound that is a favorable
platform molecule for the synthesis of other compounds
including polymers, resins and plastics. Some fruits, i.e.,
sour apple, plums, cherries and grapes enriched with malic
acid are used for the production of wine globally. A re-
port says that acid deprived wines are flat in taste, and
hauling of malic acid makes them acceptable owing to
fruity flavor (Saguir et al. 2018). Pharmaceutically, malic
acid is extensively utilized as a substitute for citric acid to
formulate mouthwashes, dental tablets and effervescent

powders. Moreover, its chelating and antioxidant features
enable researchers to explore malic acid for delaying
oxidation of vegetable oils and enhancement of shelf life.
Malic acid synergizes the activity of the antioxidant,
butylated hydroxytoluene and thus retards rancidity of oils
and fats. Remedially, malic acid has been merged with
salicylic acid and benzoic acid to design topical creams
for the mitigation of burns, wounds, blisters and ulcers.
The literature also envisages oral and parenteral applica-
tions of malic acid to combat liver disorders (Brittain
2001).

3 Furan 2,5-Dicarboxylic Acid (FDCA)

A highly stable furan derivative, FDCA is a bioprivileged
molecule, adorned with two carboxylic acids in its chemical
structure (Fig. 8).

Fig. 6 Physicochemical
properties of malic acid

Fig. 7 Schematic representation
of malic acid production
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Bio-based FDCA obtained from plant-based sugars is
transformed into platform molecules that are used for
cost-effective development of plastic materials, polyesters and
is a suitable alternative for petroleum-based monomer, i.e.,
terephthalic acid. Recently, commercial production via green
synthesis route entailing glucose, fructose and hydrox-
ymethylfurfuraldehyde intermediate has been established.

Several bio-based and microbe oriented schemes are
reported for the successful production of FDCA owing to the
fact that these are less hazardous and economical with high
productivity. Genetically engineered P. putida S12, a
rod-shaped gram-negative bacterium has been explored for
the synthesis of FDCA from hydroxymethylfurfuraldehyde
intermediate. The microbially assisted process requires
considerable time (3 days) for the conversion of

hydroxymethylfurfuraldehyde to FDCA that is not feasible
for large-scale production and thus presents a challenge for
the sustainability of the green synthesis. An alternate
petrochemical route used for the production of furan
derivative is convenient but involves harmful compounds
that pose risk to the environment.

The production of FDCA from renewable biomass mostly
encompasses catalytic, non-catalytic and electrochemical
processes. The catalytic route is considered as the potential
pathway owing to its high productivity and manageable
reaction rate under mild conditions with minimum byproduct
generation (Fig. 9). Transition metal oxides and noble metal
oxides are frequently utilized for completion of the process
to produce FDCA depending upon the cost, availability,
recycling and yield.

Fig. 8 Physicochemical
properties of FDCA

Fig. 9 Production scheme for
furan 2,5-dicarboxylic acid from
biomass
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Owing to its stability, renewable feedstock, easy pro-
duction process and biodegradability, FDCA is a preferred
molecule for the manufacturing of polyesters and plastics
(Fig. 10). Bio-based FDCA has the potential to replace
numerous chemicals that are synthesized from the petroleum
route, i.e., adipic acid and terephthalic acid. Avantium
technologies, Netherlands, have merged with Cargill Inc.
Minnesota, US and developed an economical route to pro-
duce FDCA based on chemical catalysis, from easily
procurable sugar and starch-based feedstock as raw material
(Region and Segment Forecast 2015).

The global market of FDCA was more than 88.2 million
USD for the year 2014 and was expected to flourish with an
approximately 34% growth rate up to the year 2020. In the
pharmaceutical industry, diethyl esters of FDCA are vastly

utilized for the preparation of anesthetics. As a chelator,
FDCA is being explored for the management of kidney
stones (Lewkowski 2001).

4 3-Hydroxypropionic Acid (3-HPA)

3-hydroxypropionic acid is a three carbon optically inactive
molecule (Fig. 11), structural isomer of lactic acid and is
precursor for the synthesis of acrylic acid and the manu-
facturing of bioplastics. The presence of two functional
groups (hydroxyl and carboxyl) facilitates 3-HPA to trans-
form into a variety of value-added chemicals such as acrylic
acid, acrylonitrile, malonic acid, 1,3 propanediol, etc.via
chemical route (Werpy and Petersen 2004). These chemicals

Fig. 10 Derivatives and applications of FDCA

Fig. 11 Physicochemical
properties of 3-hydroxypropionic
acid

Bioprivileged Molecules 121



are 50% cost-effective and lessen greenhouse gas emission
by 75% as compared to the petrochemical route (Jung et al.
2014).

Green synthesis route has been opted for efficient pro-
duction of 3-HPA from biomass encompassing glycerol,
glucose and uracil metabolic pathways (Kumar et al. 2013).
Both acety-CoA dependent and independent glycerol meta-
bolic processes are widely applicable for the production of
3-HPA. Microorganisms that are acid resistant and capable
of synthesizing coenzyme B12, namely Lactobacillus reuteri,
Klebsiella pneumonia, E. coli and Corynebacterium glu-
tamicum are frequently involved in the bioconversion of
3-HPA from glycerol in the bioreactor (Fig. 12).

The selection of microorganisms is based on ease of
availability, process suitability, productivity and process
cost. Moreover, the strains of microorganisms are highly
dependent on the presence of enzymes, by-products and
process conditions (Dishisha et al. 2014). Sugarcane, beet
sugar and hydrolyzed corn starch are other renewable
feedstocks that can be betrothed for the cultivation of
microorganisms for the production of 3-HPA. Many physi-
cal, chemical and biological pretreatment procedures are

proposed for bioconversion from these lignocellulose waste
originated sugars.

A valuable molecule, acrylic acid of 3- HPA, has been
used for the production of fibers, paints and plastics. Some
successful industries like Cargill Inc., Triveni Interchem
Private Limited, Lion Apparel, are global developers of
3-HPA (Market Research Report 2019). Table 2 summarizes
potential applications of the molecules derived from 3-HPA.

5 Glucaric Acid

Biomass-derived glucaric acid has garnered considerable
attention as it can be utilized for the synthesis of bioenergy
and several other platform chemicals. Value-added molecule
glucaric acid was recognized as bioprivileged molecule by
the US Department of Energy in 2004 (Werpy and Petersen
2004). It is also known as saccharic acid. Belonging to a
family of oxidized sugars, it is highly functionalized mole-
cule adorned with four chiral carbons (Fig. 13).

Important key intermediates, adipic acid and hyper-
branched polyesters are biosynthesized from bio-based

Fig. 12 Processing scheme for 3-hydroxypropionic acid
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glucaric acid (Smith et al. 2012). Furthermore, thismolecule is
widely used in the formation of phosphate-free detergents,
anti-corrosive additives, biodegradable cleaner, adhesive,
coating material and various therapeutic molecules (Diamond
et al. 2014). Glucaric acid and its derivatives, namely glucaro-
c-lactone, glucaro-d-lactone, glucarolactone and polyhy-
droxypolyamides, are utilized in foods and pharmaceuticals.

Commercially, glucaric acid is produced from glucose
either by electrochemical, biochemical or chemocatalytic
oxidation routes (Bin et al. 2014). Figure 14 summarizes
bio-based corn stover biomass-based commercial routes,
namely heterogenous catalyst promoted oxidation and
homogenous nitric acid oxidation for the production of
glucaric acid, (Besson et al. 2014). The former method is a
complex process although high yield has been reported in a
Rennovian patent (Boussie et al. 2013). The process is
accomplished by utilizing platinum on carbon catalyst (Pt/C)
and 45% KOH mixed oxidizing mixture. On the other hand,
the homogenous nitric acid oxidation is processed under
mild atmospheric conditions (40 °C, 2 bars), with glucose
and nitric acid as initial precursors. The yield of glucaric acid
is comparatively less owing to the simultaneous production
of co-products, gluconic acid and tartaric and citric acid
(Moon et al. 2009).

The leading industries, Rivertop Renewables and DTI
based in Virginia, USA utilize sugar-based feedstock
through D-glucose oxidation for efficient production of more

than 9 million pounds of sodium glucarate salt per year
(Renewables and DTI exceed nameplate capacity of first
glucarate production facility 2016). Other units, Johnson
Matthey Process Technologies and Rennovia, England fol-
low catalytic aerobic oxidation of glucose for the collection
of value-added molecule, glucaric acid (2015).

An exclusive property associated with glucaric acid is its
efficiency to modify the tensile strength/ mechanical strength
of polymers. Therefore, it is extensively used for altering
certain mechanical parameters of polymeric resin by multi-
ple folds. It tends to lessen the melting temperature of
polyvinyl alcohol, hence modifies the fiber draw ratio. The
literature cites improvement in fiber properties by modulat-
ing the strength and moisture resistance by the addition of
glucaric acid in lignin (Lu and Ford 2018). Another mole-
cule glucaric acid 1,4-lactone has gained popularity in Asian
countries due to its anticancer activity (Walaszek 1990).The
D-glucarate exhibited suppression of cell proliferation,
inflammation thus improving the body’s defense mechanism
by removing tumor promoters (Zoltaszek et al. 2008).

6 Glycerol

Glycerol (propane- 1,2,3-triol), another bioprivileged mole-
cule, is frequently derived from biomass and is involved in
the development of both bridging chemicals and drop-in

Table 2 Potential applications of
platform molecules derived from
3-HPA

Platform
molecules

Potential applications

Acrylic acid Coating, masonry, adhesive, water treatment chemical

Acrylamide Paper, dye, plastics, wastewater treatment, thickening agent

Acrylonitrile acrylic and modacrylic fibers, nitrile rubbers, nitrile barrier resins

1,3-propanediol Polytrimethylene terephthalate, cosmetics, textile

Malonic acid Gamma-nonalactone, valproate, cinnamic acid

Methyl acrylate Amphoteric surfactants, coatings, adhesives, fibers, plastics, textiles, elastomers,
thickeners and inks

Propiolactone Surgical instruments, enzyme, vaccines, tissue grafts and as a sterilant of biological
products

Fig. 13 Physicochemical properties of glucaric acid
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replacements (Fig. 15). The presence of three hydroxyl
groups in glycerol accounts for its stability and versatility of
the molecule (Kenar 2007).

It finds vital usage in industries by the virtue of its
sweetness and has been used as humectant, viscosity mod-
ifier, adhesive, plasticizer, icing agent, lubricant and as a
cosolvent (Ayoub and Abdullah 2012). It is also a formu-
lation ingredient for the preparation of toothpaste, mouth-
wash, shaving creams, skincare products, for tablet coating
and as levigating agent to reduce particle size. Being an

effective moisturizer for the skin, it has a vital position in the
cosmeceuticals market. Glycerol is also applied as a
non-toxic antifreeze agent owing to the formation of
hydrogen bonds with water molecules. In confectionery, it
prevents sugar crystallization and acts as a preservative.
Cellophane, a packaging material, is prepared after the
addition of glycerol in cellulose as it provides plasticity to
the film and hence avoids brittleness. Of lately, glycerol
has garnered renewed interest owing to the biodiesel
production.

Fig. 14 Different bio-based processes for the development of glucaric acid

Fig. 15 Physicochemical
properties of glycerol
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Several strategies like transesterification of fats (Fig. 16),
saponification of soap, hydrolysis of oil and fermentation of
yeast are generally utilized for the commercial development
of glycerol (Bagnato et al. 2017).

Glycerol is also produced as a byproduct of biodiesel
formation and hence can be termed as green synthesis.
Figure 17 summarizes the derivatives of glycerol that are
utilized for various industrial applications.

Global crude glycerol produced from biodiesel has aug-
mented from 200,000 tons to 1.224 million tons in the last
decade (Yang et al. 2012). One of the reports projects a con-
tinuous increment of glycerol market size by 965.8 USD in the
timeline of 2019–2023. Several active manufacturers, namely
Cargill, Procter and Gamble, Archer Daniels Midland and
Emery Oleochemicals are leading producers and marketers of
glycerol all over the world. However, increased value drifts in
fatty acid/vegetable oils that are core sources for the prepara-
tion of glycerol, pose main constraint in its production.

7 Aspartic Acid

Aspartic acid a non-essential amino acid is synthesized from
the central metabolic route by the metabolism of carbohy-
drates. Naturally, aspartic acid is found abundantly in

animals (oysters and sausage meat) and vegetables (sugar-
cane, molasses of sugar beet and sprouting seeds). The
presence of both amino and carboxylic acid in its structure
(Fig. 18) offers several reactions/processes for the further
development of platform molecules that are effectively uti-
lized in nutrition, medicine and physiological functions.
Acrylamide, synthesized from aspartic acid via Milliard
reaction, is used for the generation of acrylic acid and
polyacrylamide used to treat wastewater. Alpha-deamination
of aspartic acid results in fumaric and malic acid that are
used in the paper and food industry.

Clinically, aspartic acid is used by clinicians for research
on depression and immunity. Additionally, it is also used to
generate energy from carbohydrates, liver detoxification
from drugs and for enhancing resistance to fatigue. Besides
serving as a nutritional supplement, aspartic acid is widely
used in the agriculture for the development of fertilizers and
organic chemicals.

Preparation of bio-based aspartic acid follows one phase
process utilizing lignin/glucose-based feedstock mediated
through catalytic transformation (Fig. 19). Microbe medi-
ated production of aspartic acid has also been reported using
microorganisms like Pseudomonas fluorescence, E. coli,
B.subtilis, Proteus vulgaris and Aerobacter aerogenes
(Anderson and Katahira 2016; Lee and Hong 1988).

Fig. 16 Schematic illustration of
glycerol preparation
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The literature published in 1965 described a biochemical
route for the preparation of aspartic acid utilizing E.coli and
enzymes. Aspartic acid may also be obtained from the
enzymatic conversion of fumaric acid. Although molecules
transformed from petrochemicals/fossils feedstocks are
easier to process but owing to ecological pollution and
emission of carbon dioxide, green chemistry approach is
advocated. Thus, fermentation route based on sugar sub-
stances is preferred for production of aspartic acid.

Aspartic acid is utilized in food, medicine, nutraceuticals
and agriculture sectors. In the year 2012, its global require-
ment was 35.6 kilo tons that is consistently increasing owing
to its utilization for production of aspartame (non-saccharide
sweetener) and polyaspartic acid. Augmented applications of
polyaspartic acid and its sodium salt in paints, oilfield
chemicals and pharmaceuticals affirm an established market
of aspartic acid. Increased market growth in medical indus-
tries is predicted owing to the escalating demands of mag-
nesium aspartate and calcium aspartate as feed supplements.

Fig. 18 Physicochemical
properties of aspartic acid

Fig. 17 Glycerol and its transformed derivatives after different reactions

Fig. 19 Green synthetic route of aspartic acid
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8 Itaconic Acid

Naturally occurring itaconic acid (methylene succinic acid)
was first reported by Baup in 1836 as a byproduct during
citric acid distillation (Pomogailo et al. 2010). It is a
value-added molecule owing to its biodegradability and
exclusive chemical property due to the presence of two
carboxylic groups that offer polymerization and oxidation
(Fig. 20). Itaconic acid is more reactive than other biopriv-
ileged molecules, namely fumaric acid and maleic acid
(Tomic et al. 2010).

Itaconic acid has been extensively exploited as a key
molecule for preparation of plastics, synthetic fibers and
paints. Many itaconate metallic salts, diesters and anhydrides
are commercially utilized for preparation of N-substituted
pyrrolidones that are employed in the synthesis of shampoos,
herbicides and detergents (Milsom and Meers 1985). It is
added to organo-siloxanes (a hardening agent) for the
designing contact lens, in napkins/diapers as binders and as
biocompatible glass ionomer cement in dentistry (Okabe
et al. 2009). In pharmaceuticals, itaconic acid finds versatile
applications as antibacterial, wound healing agent, analgesic
and for the synthesis of biofuel additives, namely 3-methyl
tetrahydrofuran and 2-methylbutanediol (Lucia et al. 2006).

Itaconic acid is a biological metabolite found in numerous
strains of Aspergillus. Extensive research has been carried
out to determine the biosynthetic pathway, its regulation,
high yielding strain and the enzymes to catalyze the process
of formation of itaconic acid (Klement and Buchs 2013).
Commercially, Aspergillus itaconicus and A. terreus are
ideal strains utilized in the fermentation process owing to the
high yield and better tolerance to shear/stress. Apart from
these, strains of Ustilago, Candida and Pseudomonas are
also used for fermentation (Fig. 21). Submerged solid fer-
mentation including sugar/molasses is typically designed
and enzyme catalyzed to process bioconversion of
cis-aconitate to itaconate.

Non-toxic bioprivileged molecule, itaconic acid finds
global usage in styrene-butadiene rubber, chelant dispersant
agents, superabsorbent polymers, methyl methacrylate and

latex. Superabsorbent polymers procured from itaconic acid
are utilized in the manufacturing of detergents, cosmetics
and skin and hygiene care products. Itaconic acid is trans-
formed into various derivatives through several reactions
like hydrogenation, amination, reductive amination and
carboxylation (Fig. 22).

The annual global production of itaconic acid was
approximately 41,000 tons in the year 2011 that increased
progressively and is projected to be 50,000 tons by 2020.
The worldwide market growth of bio-based itaconic acid is
proposed to surge from 83.8 million dollars from the year
2017 to 102.3 million dollars for the year 2022 due to its
value-added product: unsaturated polyester resin. Qingdao
Langyatai Company, China, is the major producer of ita-
conic acid with an annual turnover of 20,000 tons. Other
countries such as the UK (Itaconix Corporation), India
(Alpha Chemika), Japan (Iwata Chemical) and South Korea
(Aekyung Petrochemical) are actively engaged in the pro-
duction of itaconic acid.

9 3-Hydroxybutyrolactone

3-hydroxybutyrolactone finds versatile applications in both,
medical and healthcare arena. It is an imperative precursor
for various chiral drugs such as atorvastatin calcium,
lovastatin, rosuvastatin, linezolid and ezetimibe (Fig. 23).
Many pharmaceutical industries such as Pfizer (Lipitor),
AstraZeneca (Crestor) and Zybox are involved in the syn-
thesis of 3-hydroxybutyrolactone derived molecules.

The cyclic C4 molecule readily undergoes several
chemical transformations for the synthesis of C3 chiral
molecules enclosing tetrahydrofuran, amides, epoxides,
nitriles and lactones (Hollingsworth and Wang 2000). Apart
from statins, this value-added molecule is also utilized for
the development of carbapenem (a class of c-lactam antibi-
otic), oxazolidinones (antimicrobials) and L-carnitine (nu-
traceutical). Various conventional chemical routes for the
synthesis of 3-hydroxybutyrolactone such as ketoreductase
and cofactor recycling, nitrilase catalyzed desymmetrization,

Fig. 20 Physicochemical
properties of itaconic acid
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aldolase catalyzed condensation and epoxide hydrolase cat-
alyzed hydrolysis are synthetic pathways that are based on
non-renewable and non-sustainable sources. These approa-
ches use aggressive processing conditions, catalysts,
reagents and tedious purification steps.

Currently, a metabolically engineered technique involv-
ing E. coli bacteria is being utilized for the production of
3-hydroxybutyrolactone. A renewable and sustainable
glucose-based process has been adopted for production of
this chiral value-added molecule (Fig. 24).

Fig. 22 Derivatives of itaconic acid

Fig. 21 Production of itaconic acid and its derivatives
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10 Sorbitol

Sorbitol is employed in pharmaceuticals, cosmeceuticals and
other industries owing to its favorable properties. The
prominent use of sorbitol (Fig. 25) in the pharmaceutical
sector is its use in sugar-free liquid preparation, tablet diluent
and as a stabilizer for suspensions, vitamins, antacid to

prevent crystallization. Table 3 compiles major applications
of sorbitol in different domains of industries.

Commercially, sorbitol is synthesized via biosynthetic
route through fermentation. Cellulose derivative feedstock is
fermented either using yeast (Saccharomyces cerevisiae) or
fungi (Candida boidinii) under anaerobic conditions (Sil-
veira and Jonas 2002). The obtained crude sorbitol is puri-
fied either by basic ion exchange resin or by electrodialysis

Fig. 23 Physicochemical properties of 3-hydroxybutyrolactone

Fig. 24 Bio-based pathway for synthesis of 3-hydroxy-c-butyrolactone and the therapeutic molecules derived from it
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(Fig. 26). Although this process is eco-friendly and does not
liberate carbon footprints, it is not commercially adaptable
compared to the petrochemical route. Process optimization
for the selection of high-yielding microbes and operating
conditions is required for large-scale production.

Initially, sorbitol production was limited to North America
and Europe, but initiation of production of vitamin C through

sorbitol encouraged the Asian countries to set up sorbitol
production units. China and Indonesia are the top producers
and suppliers of sorbitol. The increased demand for
low-caloric sweeteners in the United States and European
countries has been fueling the global market of sorbitol. The
worldwide market size of sorbitol was estimated at approxi-
mately 3.79 billion dollars in the year 2017 with a growth
rate of 8%. It is a preferred formulative ingredient in medi-
cated chewing gums and dental products as a sugar substitute.

11 Xylitol

A five carbon containing sugar alcohol (Fig. 27), xylitol is
naturally found in fruits (grapes, strawberry, banana and
yellow plum), vegetables (cauliflower, onion and carrot),
seaweeds and mushrooms. However, its extraction from
these sources is challenging and tedious. It is commonly
used as a natural sweetener in many products meant for
diabetics as its metabolism is autonomous and independent
of insulin. In medicine and health care, it finds applications
in preventing tooth decay, ear infection, as parenteral
nutrition and in infusion therapy.

In pharmaceutical sector, it is used in the manufacturing
of a variety of pharmaceutical products, namely

Fig. 25 Physicochemical properties of sorbitol

Table 3 A compilation on
applications of sorbitol in various
sectors

Category Applications Reference

Dental products,
i.e., toothpaste

Humectant, emulsifier, sweetener, prevents crystallization of
abrasives

Deis and
Kearsley
(2007)

Food, confectionery
and beverages

Dietary energy, nutritive sweetener, sugar-free chewing gum Shwide-Slavin
et al. (2012)

Pharmaceuticals Humectant, diluent, emulsifying agent, stabilizing agent,
non-ionic surfactant, a precursor for vitamin C

Sefcovicova
et al. (2011)

Platform chemicals
production

Ethylene glycol, propylene glycol, glycerol, sorbose Chen et al.
(2013)

Cosmetics Stable moisturizer, prevent loss of moisturizer, maintain
hydration in the skin

Muizzuddin
et al. (2013)

Others Plasticizer, an additive in biocomposite, cross-linking agent Liu et al. (2013)

Fig. 26 Green synthesis of sorbitol
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mouthwashes, lozenges, fluoride tablet, tonics, vitamins,
coated tablets and syrups (Burt 2006). Compared to other
sugar substances, xylitol containing products are preferred in
the diabetes care system as it has an insignificant effect on
insulin secretion and thus regulates weight management. It
checks the development of plaque from bacteria, tooth decay
and oral cavity. It facilitates the improvement of dental
health by preventing the demineralization of enamel and
arouses salivary flow. Its multipurpose functions in oral
healthcare products are presented in Fig. 28.

Conventionally, xylitol is synthesized by a chemical
route through hydrogenation of D-xylose at elevated tem-
perature in the presence of nickel as catalyst (Ojamo et al.
2009). Exclusive refining steps, i.e., lignocellulose extrac-
tion, hydrogenation, crystallization and purification are
carried out to get pure xylitol that makes the process quite
expensive and non-feasible for large-scale production (Saha
2003). An alternative biotechnological approach to produce
xylitol includes microbial fermentation and enzymatic

conversion, wherein xylitol is processed from biowaste
(corn cob, pulp and paper). These processes are
cost-effective and give high yield (Fig. 29). Few bacteria
like Gluconobacter oxydans, Mycobacterium smegmatis
and Enterobacter liquefaciens are utilized in the fermenter
for collection of xylitol (Suzuki et al. 2002). However,
fungus and recombinant yeast are reported as the best
producers (approximately 70% yield) among the microor-
ganisms (Chung et al. 2002).

Several companies of the Asia Pacific and Latin America
are focusing on the preparation of xylitol through biotech-
nological route as it is sustainable and eco-friendly. The
market size of xylitol was estimated at 737.2 million dollars
in the year 2015 that is projected to reach 1.37 billion dollars
by the year 2025. The low-calorie molecule xylitol is fre-
quently added as a sugar substitute in diabetic sweetener.
The American Academy of Pediatric Dentistry has issued
guidelines regarding appropriate uses of xylitol in the
pediatric formulations for better health.

Fig. 27 Physicochemical
properties of xylitol

Fig. 28 Comprehensive
applications of xylitol
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12 Glutamic Acid

Glutamic acid is a non-essential amino acid (Fig. 30) and is
involved in the biosynthesis of proteins that transmit
chemical information to all parts of the body. Glutamic acid
was identified by German Chemist K. H. Ritthausen in the
year 1866 during the processing of wheat gluten with sul-
furic acid (Alger and Teyler 1976). Further, Kikunae Ikeda,
a Japanese research scholar collected brown crystals of
glutamic acid after evaporation of kombu broth. Thereafter,
he patented monosodium glutamate, a salt of glutamic acid;
the molecule was extensively explored as a food additive
and taste enhancer (Vlakh et al. 2016).

In human body, glutamic acid or its glutamate salt is
involved in the biosynthesis of inhibitory neurotransmitter
gamma amino butyric acid (GABA) (Reeds et al. 2000).
Naturally, it occurs in a variety of foods, i.e., cheese, meat,
fish, eggs and soy sauce. The umami tasting glutamic acid is
added to beverages and soft drinks to enhance flavor. In
cosmeceuticals, it is been used in hair restoration and
anti-wrinkle products. L-glutamic acid is often used in
pharmaceutical analysis conducted by ion chromatography.
A plant growth enhancer auxigro, approved by US Envi-
ronmental protection agency, contains 30% glutamic acid
and is sprayed on vegetables and crops for high productivity
(Biorationals: ecological pest management database. Auxi-
growp. Attra.ncat.org/https://www.emeraldbio.com).

Fig. 29 Comparative chemical
and biotechnological routes for
xylitol synthesis

Fig. 30 Physicochemical
properties of glutamic acid
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The production methods of glutamic acid include chem-
ical synthesis, chemo-enzyme route and fermentation
methods. Commercially, a biotechnology-based fermenta-
tion approach is accepted for large-scale production. In a
submerged fermenter, the gram-positive Corynebacterium
glutamicum, a facultative anaerobic bacteria, carbon and
nitrogen sources (glucose and urea) along with biomass
(palm/sugarcane/cassava starch wastes) are added together to
produce glutamic acid. Ambient conditions such as pH 7.0–
8.0, temperature between 30 and 40 °C and stirring for 40–
48 h are recommended (Fig. 31). Subsequently, centrifuga-
tion, filtration and crystallization are carried out sequentially
to obtain pure glutamic acid (Flickinger 2010).

Worldwide, the demand for glutamic acid is anticipated to
hike significantly due to its applications in food, poultry and
pharmaceutical domains. Monosodium glutamate listed as
“Generally recognized as safe” by USFDA is popularly
added in preparation of snacks, seasoning blends and noo-
dles. The global market size of this non-essential amino acid
was estimated at approximately 2.9 million tons in the year
2014 and is expected to be surge more than 4 million tons to
the year 2023 with an annual growth rate of 7.5%. Major
companies involved in its preparation are Ajinomoto Co.
Inc. (Japan), Sunrise Nutrachem Group (China), Kyowa
Hakko Bio Co. (Japan) and Prinova U.S.LLC (North
America).

13 Levulinic Acid

Levulinic acid or 4-oxopentanoic acid was listed as bio-
privileged molecule in 2004 by the US Department of
Energy after screening of 300 molecules. The polar organic
keto acid was first identified by a Dutch professor G.
J. Mulderin in 1840 during heat treatment of fructose in the
presence of hydrochloric acid. In the year 1953, a US
company Quaker Oats designed a method for the continuous
preparation of levulinic acid that was recognized as a
potential platform molecule in the year 1956 (Girisuta 2007).
Although it has both keto and carboxylic functional groups
(Fig. 32) that undergo various chemical reactions (redox,
substitution, esterification and polymerization), the molecule
was ignored for quite some time. Of lately, the industrial
value of levulenic acid and its derivatives has paved way for
their usage (Fachri et al. 2015).

It finds use in different domains of agriculture, pharma-
ceuticals and cosmetics. The literature highlights the versa-
tile role of this value-added molecule in preparation of
resins, animal feed, coating materials, plasticizer and anti-
freeze agent and in textiles (Table 4). It is also used in
smoke/cigarettes to enhance the delivery of nicotine to
neural receptors (Keithly et al. 2005). Its derivative,
delta-aminolevulinic acid, is utilized for the eradication of
tiny insects from lawns and grain crops owing to its

Fig. 31 Green synthesis-based
biotechnological route for the
preparation of glutamic acid
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biodegradable herbicidal activity. Some anti-inflammatory,
anti-allergic and medicated transdermal patches have also
been prepared with levulinic acid.

Conventionally, levulinic acid is prepared by acidic
hydrolysis of furfuryl alcohol and acetyl succinate ester. The
hazardous output from fuel-based technology/processes
needs to be substituted by a sustainable green synthesis
route to save resources and compensate energy requisites.
Lignocellulose, manure, wood and brewery wastes are fre-
quently used as sustainable bio-based feedstock applied in
biorefinery approaches to synthesize value-added products
(Yan et al. 2015). Levulinic acid is prepared through
hydrolysis of cellulose for the synthesis of platform chemi-
cals. Obtained cellobiose that is composed of several glucose
units joined with b-glycoside bonds is treated with solid acid
catalyst CP-SO3H at 170 °C for 10 h in a stainless steel
container to get levulinic acid (Zuo et al. 2014). It can also
be prepared using a batch reactor containing corn starch,
sulfuric acid, water under preset pressure and temperature.
The concentration and amount of sulfuric acid affect the
productivity of levulinic acid (Cha and Hanna 2002).

The market of levulinic acid is segregated based on its
applications such as pharmaceutical, cosmeceuticals, agri-
culture and food industry. Geographically, the provinces of
North America, Asia Pacific, Middle East, Africa and

Europe are involved in the marketing of levulinic acid. The
global demand estimated at 2606.2 tons in the year 2013 is
expected to rise 3820 by the year 2020 with a growth rate of
4.8%. Segetis, DuPont and Biofine are the major industries
involved in the preparation of levulinic acid derivatives,
namely methyltetrahydrofuran and aminolevulenic acid.

14 Emerging Molecules

In addition to the above discussed biopreveliged molecules,
there are a few emerging bioprivileged molecules such as
muconic acid, 5-hydroxymethylfurfural and triacetic acid
lactone. Muconic acid is formed during catabolism and
detoxification of aromatic chemicals in some microbes. It is
biotransformed into several petrochemical equivalent
chemicals such as adipic acid, caprolactam and terephthalic
acid. On partial hydrogenation of muconic acid,
3-hexenedioic acid is obtained that cannot be prepared via
petrochemical route (Rorrer et al. 2016).

Another molecule, 5-hydroxymethylfurfuralis obtained
from dehydration of fructose can be transformed into furanic
acid and its derivative, 2,5-dimethylfuran. These molecules
exhibit antifriction/anti-wear properties and are used as
lubricant additive in gasoline. 2,5-bis (hydroxy methyl)

Fig. 32 Physicochemical
properties of levulinic acid

Table 4 Few commercial
applications of levulinic acid
derivatives (Ji et al. 2015)

Levulinic acid derivatives Commercial applications

Hydroxyvaloric acid Fuel additives, paints, resins

Acetyl acrylic acid Copolymerization

Diphenolic acid Epoxy resin, paint, adhesive, lubricants

Valerolactone Biofuel, solvent, fuel additive

Esters of levulinic acid Fuel additive, plasticizer, fool flavoring

Aminolevulinic acid Insecticide, herbicide, and chemotherapy

Succinic acid Solvent, polymer, pesticide

2-methylene valerolactone Fuel additive, biofuel

1,4-pentanediol Polymer, fine chemicals, solvent

2-methyltetrahydrofuran Fuel additive, solvent

Ethyl levulinate Fragrance and perfumes

Angelica lactone Fuel additive, solvent
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furan is utilized for the synthesis of stiff polyurethane foam
(Dunlop et al. 1982). Lastly, triacetic lactone (TAL) is found
in plants as secondary metabolites and is commercially
prepared through bioengineered efforts. TAL derived pro-
gestone and dehydroacetic acid finds their utility in health
care owing to the antimicrobial action. Other value-added
molecules styrenylpyrones and sorbic acid used as

anti-obesity and food preservative, respectively, are prepared
from TAL as precursor (Xie et al. 2006). Comprehensive
applications of these emerging biopriviledged molecules are
summarized in Fig. 33.

A summary the green synthetic modes and applications of
the above described biopriviledged molecules has been
comprehensively tabulated in Table 5.

Fig. 33 Applications of muconic acid, HMF and TAL

Table 5 A summary of green synthesis route and potential applications of bioprivileged molecules

Bioprivileged
molecule

Green synthesis route Potential applications

Succinic acid Bioprocessing route that involves bacterial cells (Escherichia
coli) with enzymes and cofactors that are safe, economical
and eco-friendly

Preparation of several precursors, surfactants, antifoams,
detergents, chelators and synthesis of anti-convulsant
therapeutics (ethosuximide, methsuximide and
phensuximide, etc.)

Fumaric acid Aerobic and anaerobic fermentation utilizing species of
Mucor, Aspergillus and Cirinella with neutralizing agent
(CaCO3) under extreme conditions (pH 1, 160 °C)

For synthesis of dermatological, anti-carcinogenic and
anti-inflammatory drugs
Precursor for L-aspartic acid and malic acid
Acidulant, flavoring agent, coating agent and preservative

Malic acid Bioprocessed reductive and glyoxalate pathways under
acidic condition in the presence of eukaryotic cultures, i.e.,
Aspergillus sp., Candida sp., Penicillium sp. and Ustilago sp.

Formulation of mouthwash, dental tablets, topical creams
and effervescent powders
It is used as chelating agent and antioxidant that delays
oxidation of vegetable oils

(continued)
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15 Conclusion

Natural resources are being consumed extensively that is
impacting the limited non-renewable assets, presenting
critical environmental issues and elevated greenhouse gas
emissions. To overcome these issues, sustainable biotech-
nological processes based on green synthesis are being
extensively explored for production of bioprivileged
molecules. The bioprivileged molecules have the potential
to resolve several waste management problems, i.e.,
development of disposable plastics and biodegradable pes-
ticides. They also enrich bioeconomy through the conver-
sion of biomass and waste stream into value-added
products and bioenergy. Selection of appropriate bio-based

feedstock, processing technique, microorganism, ambient
parameters (temperature, catalyst and enzymes), for a par-
ticular molecule is quite challenging as it has an intense
impact on the cost of the product. Moreover, channelization
of biomass for ready to use is a lengthy process and tedious
compared to the petrochemical route. Additionally, com-
petition for land, environmental pressure, policy inconsis-
tency, large financing requirements, climatic change
agreements, energy obligations and food security are
experienced obstacles for industries. Apart from cited issues
and hurdles, there is an intense need for uplifting bio-based
sustainable resources through favorable policy design, suf-
ficient feedstock supply chain, wider business support and
access to downstream markets both for novel and drop-in
replacement molecules.

Table 5 (continued)

Bioprivileged
molecule

Green synthesis route Potential applications

Furan
2,5-dicarboxylic
acid (FDCA)

The biocatalytic route of biomass (lignocellulose) in the
presence of genetically engineered P. putida S12

Manufacturing of polyesters and plastics
Suitable replacement for synthetic terephthalic acid
Its film and fibers are used as packaging material. Fungicide
and corrosion inhibitor

3-hydroxy
propionic acid
(3-HPA)

Acetyl CoA dependent and independent glycerol metabolic
processes that involve acid resistant microorganism in the
bioconversion of biomass into 3-HPA

As a precursor of variety of value-added chemicals such as
acrylic acid, acrylonitrile, malonic acid, 1, 3-propanediol
Used in coating, masonry, adhesive, as water treatment
chemical

Glucaric acid Corn stover route employing homogenous and heterogenous
oxidation of cellular enzyme treated biomass

Formation of phosphate-free detergents, anti-corrosive
additives, biodegradable cleaner, adhesive, coating material
and various therapeutic molecules

Glycerol Glycerol and biodiesel both are concomitantly prepared from
triglyceride transesterification of oil containing feed stocks

Humectant, viscosity modifier, adhesive, plasticizer, icing
agent, lubricant and cosolvent for the preparation of
toothpaste, mouthwash, shaving creams, skincare products

Aspartic acid Catalytic biotransformation of glucose-based feedstock in the
presence of Pseudomonas fluorescence, E. coli, B. subtilis,
Proteus vulgaris and Aerobacter aerogenes, etc.

Formation of paints, oilfield chemicals, superabsorbent
polymers and sweetener aspartame, muscle strengthening
protein. As a feedstock (magnesium aspartate and calcium
aspartate)

Itaconic acid Enzyme catalyzed bioconversion process utilizing
Aspergillus itaconicus and A. terreus strains

Synthesis of styrene-butadiene rubber, chelant dispersant
agents, superabsorbent polymers, methyl methacrylate and
latex

3-hydroxy
butyrolactone

Metabolically engineered technique involving E. coli
bacteria that hydrolyses glucose-based feedstock

Active precursor of atorvastatin calcium, lovastatin,
rosuvastatin, linezolid, ezetimibe
Synthesis of carbapenems, oxazolidinones and L-carnitine

Sorbitol Fermentation of lignocellulose in the presence of yeast
(Saccharomyces cerevisiae) or fungi (Candida boidinii)
under anaerobic conditions

Plasticizer, humectant, diluent, emulsifying agent, stabilizing
agent, nonionic surfactant
Precursor for vitamin C
Production of ethylene glycol, propylene glycol, glycerol,
sorbose

Xylitol Biotechnological approach involving enzymatic conversion
of biowastes in presence of Gluconobacter oxydans,
Mycobacterium smegmatis and Enterobacter liquefaciens

Diabetic sweetener, dietary substance, pharmaceutical
ingredient, skin care (cleanser), tooth remineralization, etc.

Glutamic acid Biomass bioconversion in presence of gram-positive
Corynebacterium glutamicum under ambient conditions (pH
7.0–8.0, 30–40 °C and stirring time 40–48 h)

Monosodium glutamate food additive, flavoring agent in
beverages and soft drinks
Applied as hair restorer and added in anti-wrinkles products

Levulinic acid Catalytic conversion of Cellulose based biomass followed by
fermentation

Resins, animal feed, coating materials, plasticizer, antifreeze
agent, fuel additive, biodegradable herbicidal, etc
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Membrane Reactors for Green Synthesis

Hamidreza Bagheri, Ali Mohebbi, and Hadis Eghbali

Abstract

The chemical industries have been identified as the most
important source of environmental contamination. Two
critical processes in a chemical industry are separation and
reaction. Membrane reactor [MR] field has been concen-
trated on novel membrane materials to be combined in a
compressed structure. This kind of reactors can perform
two roles: reaction and separation media. Subsequently,
they are very useful to adjust concentrations of products
and reactants. Membrane reactors, due to synergistically
performing many operations, containing separation and
reaction in one unit, are highly desirable in green synthesis
and environmental protection. In the past three decades,
there has been wide investigations in the green synthesis
processes because of sustainable development, industrial
safety and environmental worries, which makes green
synthesis a promising substitute to the conventional
synthesis methods. Promoting the efficiency of these green
processes leads to the protection of the environment and
personal safe. We reviewed several existing studies
relevant to MRs for green synthesis applications.
The MR can be applied in the synthesis of different
components like ammonia, liquid fuels, methanol through
reverse water gas shift reaction, enzyme synthesis using
supercritical–ionic liquid system and reactions based on
photocatalytic. Several parameters like operating temper-
ature, pressure, feed flow rate in both side of MR, which
affect the MR efficiency, are investigated. The MRs
application for the synthesis green fuel including hydrogen
and biofuels is reviewed. Then, the biocatalyst membrane
reactor is introduced as a more effective reactor due to

compactness and higher conversion, biocatalyst stability
and activity. Finally, we focused on applications of
photocatalyst MRs in wastewater treatment.

Keywords

Biofuel � Biomembrane � Green synthesis � Membrane
reactors � Methanol � Photocatalyst

1 Introduction

A membrane reactor [MR] is a physical apparatus, which
consists of a chemical process with a separation process to
remove products or add reactants (Oliveira et al. 2020).
Chemical reactors based on membranes are known as mem-
brane reactor. The reaction selectivity with respect to an
objective compound is increased appropriately, which leads to
adjust the local reactants concentration (Colli et al. 2019;
Espinosa et al. 2018; Chen et al. 2020). A unit of membrane
separation is applied particularly for regulation of the product
and reactant concentrations using coupling the chemical
reactor unit with membrane separation (Oliveira et al. 2020;
Venezia et al. 2020; Nunes et al. 2019). In the last two dec-
ades, this technique has attracted universal research and leads
to the development of many chemical process (Heyse et al.
2019; Nagy 2018; Hedayati et al. 2016). Indeed, a membrane
plays two different roles: (1) as a separator and (2) as a reactor
(Kisszekelyi et al. 2019). The MRs including two pipes that
reaction occurs in inner tube (occupied using catalyst particle)
and the permeated products are removed using inert gas
flowing in outer side (Colli et al. 2019; Ibrahim et al. 2020;
Briceño et al. 2013). There are two structures of the mem-
brane reactor: (1) a membrane separator and a reactor appa-
ratus, which are connected in series state and (2) a MR
combines, a membrane separator and a reactor in a single unit
(Nagy 2018; Itoh et al. 2020; Al-Juaied et al. 2001). Inte-
grated membrane reactor system is shown in Fig. 1.
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Membrane-based processes are mostly using dense, por-
ous and thin perm-selective layers provided using metal,
inorganic and organic materials (Kisszekelyi et al. 2019;
Bagheri et al. 2019; Avila et al. 2014). The choice of a dense
or a porous film and the type of material applied for making
a membrane depend on the preferred operating temperature,
separation process and driving force and furthermore, the
material selection depends on the preferred selectivity and
presence and on mechanical and thermal stability desires
(Espinosa et al. 2018; Avila et al. 2014; Meng et al. 2015).
There are several membrane reactor structures at laboratory
scale, which concentrate on the distribution of product and
reactant to ameliorate selectivity–conversion efficiencies
(Chen et al. 2020; Heyse et al. 2019; Murmura et al. 2017;

Pomier et al. 2007). There are six membrane reactor con-
cepts based on several problems, which can be solved by
membranes in the reactor (Fig. 2). All of these reactor
structures are used for improving the chemical reaction yield
and selectivity (Saw et al. 2018; Herrero and Ibanez 2015).
Consequently, it is very important to understand the relation
between selectivity, temperature and local concentrations
behavior (Murmura et al. 2017).

A membrane can be applied for several applications:
catalyst support, reactant distribution and dosing, catalyst
retention, reactants selective extraction and separation
(Sherbo et al. 2019; Sheikhi-Kouhsar et al. 2015). The lab-
oratory scale investigation and application of several types
of membrane reactors as a promising unit operation started

Fig. 1 Integrated membrane reactor system. Reprinted with permission of Nagy (2018)

Fig. 2 Different concepts of membrane reactors. Modified after Briceño et al. (2013)
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in the 1980s (Nagy 2018; Zhang et al. 2020; Veismoradi
et al. 2019). There are many applications for MR. For
instance, a MR can be applied in wastewater treatment,
reaction combined with pervaporation, dosing, organic
matter removal (like chemical oxygen demand and biologi-
cal oxygen demand processes), removal of organic
micro-contaminants and selective removal (e.g., H2 from gas
steam reforming) (Wang et al. 2020; Zhao et al. 2020;
Bagheri et al. 2019; Wu and Ghoniem 2019; Cannilla et al.
2018; Kumar et al. 2017; Boyd et al. 2005).

Usually, membranes are made of ceramic or organic
materials. The production cost in polymeric membranes is
low; however, these membranes are at degradation and
fouling risk due to the variation in their pore size (Con-
stantinou et al. 2019; Maji and Chakraborty 2019; Chakra-
borty and Mazzanti 2020; Chen et al. 2009). In contrariwise,
some properties like high durability and quality have made
membranes that made of ceramic materials, a promising
choice for membrane producers. However, membranes
based on ceramic materials are costly and they are impos-
sible for industrial applications. Subsequently, most pro-
ducers apply membranes that made of polymeric materials
for bioreactors (Kumari et al. 2020; Najafpour 2015; Dixon
1999). The materials typically applied in polymeric mem-
brane are given in Table 1.

Membranes are made in different modules like spiral,
frame and plate and hollow fiber (Liu et al. 2020; Li et al.
2019). The hollow fibers are extruded in long fibers and
collected in the modules. In this type, driving force is
difference of pressure through the MR (Su et al. 2020;
Lyagin et al. 2010). Flow pattern over the membrane
reactors is dead-end or cross-flow. In dead-end method,
feed is injected to the MR vertically and feed applied to the
MR may rejected as a waste or pass through the MR. In
cross-flow method, feed moves parallel to the MR surface
(Najafpour 2015; Tran et al. 2013; Vankelecom 2002;
Yuan et al. 2020).

Green chemistry is defined as chemical processes design
and products that decrease the employ of hazardous mate-
rials. Green chemistry is described as sustainable chemistry,
chemistry that is benign using pollution prevention and
design at the molecular level (Pu et al. 2007). This devel-
oping field distinguishes that through the design phase of
any chemical process, product and synthesis, minimized
danger must be observed as an efficiency criterion (Lee et al.
2020; Oosterhout et al. 2018). This new chemistry branch
looks for an alternative a new solvent with less dangerous to
the environment and human health to protect the ecosystem
from hazardous conventional solvents. Supercritical fluids
[SCF], ionic liquids [ILs] and water are known as green
solvent (Low et al. 2020; Mohammadzadeh et al. 2020;
Bagheri et al. 2019). Many advantages are repeated about
ILs and SCFs as green solvents to develop new processes.
When a fluid is subjected to a pressure and a temperature
higher than its critical points, the fluid is said to be `̀ su-
percritical''. In a supercritical region, the fluid exhibits par-
ticular properties and has an intermediate behavior between
that of a liquid and a gas (Kölsch et al. 2002). Two advan-
tageous fluids, which are applied as SCF, are water and
carbon dioxide [CO2]. CO2 has moderate critical tempera-
ture and pressure, low-cost, availability and non-toxicity (Bu
et al. 2017; Farsi and Jahanmiri 2014). However, supercrit-
ical water is highly corrosive. Because of unique properties
of SCFs, they are attractive as environmentally to replace for
organic solvents in material processing and chemical reac-
tions (Bagheri et al. 2018; Capello et al. 2007). ILs are kind
of room temperature liquid salts that is stable on air and
moisture. ILs as a new class of solvent are unique topic from
three decades ago, and the number of published documents
has grown rapidly (Bagheri and Mohebbi 2017; Akin et al.
2014). These liquids have significant properties like high
chemical and thermal stability, negligible vapor pressure,
good ionic and electrical conductivity, non-flammability,
wide electrochemical range and low melting point (Low

Table 1 Polymeric materials applied in polymeric membrane

Material Advantage Disadvantage

Cellulose acetate Low cost Narrow pH range
Biologically active

Polyacrylonitrile Low cost, applied for ultrafiltration
membranes

Chemically resistant is less than PVDFa

Polyethersulfone and
polysulfone

Cl2 tolerance
Sensible price

Fragile material needs support and flow inside to outside

PVDF High Cl2 tolerance
Simple cleaning chemicals

Cannot retain pH > 10

Polypropylene Low cost
High power of hydrogen range tolerance

No Cl2 tolerance
Costly cleaning chemicals needed

Modified after Najafpour (2015)
aPolyvinylidene fluoride
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et al. 2020; Wang and Chiu 2008). ILs are low melting point
organic salts, which leads to be liquids phase at ambient
temperature. The thermal decomposition temperature of IL is
in order of 474 K, and their boiling points are not detectable
(Chambreau et al. 2012). ILs can be composed of a large
number of anions and cations. The ILs properties depend on
the size and nature of both their anion and cation parts.
Consequently, selecting of favorite anions and cations, many
ILs are designed for various applications (Lapeña et al.
2019). ILs have other scientific properties like outstanding
thermal stability, organic and inorganic compounds, satis-
factory dissolution properties with water, wide electro-
chemical windows, tunable viscosity, high ionic
conductivity and highly polar and no coordinating (Bagheri
and Ghader 2017; Wahidin et al. 2016).

Green synthesis has been considered as one of the
promising method for synthesis of nanoparticles due to their
biocompatibility, low toxicity and eco-friendly nature. Green
synthesis focuses on chemical reactions that use environ-
mentally benign reaction media and are conducted in benign
reagents (Nalawade et al. 2006). This method has attracted
more consideration over the last two decades, because of the
need for the environmentally harmless reaction develop-
ment, while attaining high yield and specificity (Zha et al.
2019; Wolfson et al. 2007). Indeed, green synthesis is a
developing field in chemical area and provides environ-
mental and economic advantages as an alternative to phys-
ical and chemical methods (Cue and Zhang 2009). In this
method, nontoxic harmless reagents that are biosafety and
eco-friendly are applied. Green synthesis is needed to avoid
the dangerous and unwanted by-products or production via
the build-up of eco-friendly, sustainable and reliable syn-
thesis methods (Pollet et al. 2014). Applying natural
resources and desirable solvent systems (like organic sys-
tems) is required to attain this purpose (Rao et al. 2017).

This communication gives a review of the green synthesis
reactions using MR. The main aim of the present chapter is
to describe the application of MRs in green synthesis pro-
cesses. Subsequently, the most practicable and industrial
synthesis based on MR is discussed, and various green
synthesis processes are investigated.

2 Chemical Reaction Enzymatic MR Using
Supercritical CO2-IL

The enzymes applying in conventional solvents have sig-
nificantly increased enzymes technological utilization, like
the probability of performing reactions synthetic using
hydrolytic enzymes and enhancement of the organic com-
ponents solubility (Nalawade et al. 2006; Zha et al. 2019;
Wolfson et al. 2007; Cue and Zhang 2009; Pollet et al.
2014). However, volatile organic solvents (VOSs) have a

harmful effect on the human health and environment and it is
subsequently necessary to extend novel alternatives for the
synthesis of enzyme catalyzed in environmentally reaction
medium (Antonia et al. 2007). SCFs like CO2 have lately
indicated as a new alternative to VOSs. The solvent power
of SC-CO2 can be adjusted using varying either the tem-
perature or pressure (Bagheri et al. 2018, 2019). For the
mentioned reasons, SC-CO2 is regularly designated as a
green solvent designer. Applying SC-CO2 as a new media
for enzymatic reactions has attracted significant attention.
However, SC-CO2 has an adverse effect on enzyme activity
due to the chemical modification of the free amino groups,
local pH changes caused by CO2, or conformational changes
produced during the pressurization/depressurization steps,
making it necessary to develop new enzyme stabilization
strategies (Antonia et al. 2007).

ILs have newly appeared as exciting non-aqueous reaction
media for reactions based on enzyme catalyzed and they show
a unique ability to stabilization of free enzymes. Conse-
quently, the efficiency of ILs to preserve enzymes versus very
harsh SC-CO2 conditions has been described (Brennecke and
Maginn 2001). ILs are made from an organic cation, like
tetraalkylammonium, dialkylimidazolium salts and an inor-
ganic anion (Bagheri and Mohebbi 2017; Antonia et al.
2007). Indeed, ILs have received much attention as alternative
to conventional organic solvents, because of negligible vapor
pressure and thermal and chemical stability. SC-CO2/IL
two-phase systems have indicated good behavior to perform
green bio-catalytic processes in nonaqueous media (Kamat
et al. 1995). The success of these two-phase systems is related
to high solubility of SC-CO2 in IL phase; however, IL solu-
bility in SC-CO2 phase is non-detectable. Indeed, high dif-
fusivity of SC-CO2 (Fig. 3) leads to a decrease ILs viscosity,
which improves the mass transfer between two phases
(Antonia et al. 2007).

The application of MRs establishes an effort to integrate
catalytic conversion, product concentration and recovery
and separation of catalyst in a single process (Antonia et al.
2007). Antonia et al. (2007) investigated mass transfer and
chemical reactions, which occur in MRs for ester synthe-
sizing in SC-CO2/IL two-phase systems in an effort to
develop the green enzymatic design in the mentioned
systems (Antonia et al. 2007). They studied the butyl
propionate synthesis of vinyl propionate, catalyzed using
Candida Antarctica lipase B as reaction media and was
carried out in IL, C6H14/IL and SC-CO2/IL. Moreover, the
IL/C6H6 compounds partition coefficients included in the
transesterification reaction were calculated. They used
various ILs (i.e., [Omim][PF6], [Bdimim][PF6], [C4mim]
[PF6] and [C4mim][TFSI] ([NTf2] = [TFSI]) to study
selectivity, mass transfer and activity of Candida Antarc-
tica lipase B [CLAB] for the suggested biotransformation
(Antonia et al. 2007).
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2.1 Ionic Liquid Media Effect on Free CLAB

Reaction catalysts based on lipase are affected by the reaction
media used. The influence of four ILs ([Omim][PF6], [Bdmim]
[PF6], [C4mim][PF6] and [C4mim][TFSI]) on the selectivity
and activity of CALB for the butyl propionate synthesis using
transesterification of vinyl butyrate and 1-butanol at 324 K
was investigated (Antonia et al. 2007). The reaction of enzy-
matic was further more performed in C6H14, for synthesis of
catalyzed lipase ester in nonaqueous media, in similar condi-
tions to compare the efficiency of applied ILs as reaction
environment. Figure 4 indicates the synthetic activity and
selectivity using the enzyme in C6H14 and in the various ILs
(Antonia et al. 2007). Referring to Fig. 4, the activity of the
enzyme in all of the mentioned above ILs was higher than that
in C6H14, indicating the greater neoteric solvents suitability for
the suggested reaction. Subsequently, the activity of enzyme
order detected in ILs was: [C4mim][PF6] < [Bdmim][PF6] <
[C4mim][TFSI] < [Omim][PF6]. Originally, for the ILs with
the same anion, the hydrophobicity increased by increasing the
alkyl group length on the cation (Antonia et al. 2007; Ropel
et al. 2005). According to Fig. 4, the synthetic activity was
gradually increased with increasing ILs hydrophobicity for the
similar anion (Antonia et al. 2007; Persson and Bornscheuer
2003). Indeed, difference in selectivity between the mentioned
ILs is specific abilities to decrease water activity in the enzyme
environment.

Subsequently, an increase in the IL hydrophobicity leads
to increase water molecules, which can play as nucleophile
acceptors in the transesterification reaction and consequently
lead to a loss in selectivity (Antonia et al. 2007).

2.2 Butyl Propionate Synthesis Using Active
Membranes SC-CO2 and SC-CO2/IL

The butyl propionate synthesis performance, from 1-butanol
and vinyl propionate catalyzed using CLAB immobilized on
dynamic membranes at 324 K and 8 MPa in SC-CO2 and
SC-CO2/IL two-phase systems, was investigated (Antonia
et al. 2007). Four ILs, i.e., [Omim][PF6], [Bdimim][PF6],
[C4mim][PF6] and [C4mim][TFSI] were used to investigate
the effect of various anions and cations on selectivity and
activity of immobilized CLAB. Figure 5 indicates the
immobilized CLAB selectivity and synthetic activity on
membranes that made of ceramic materials in SC-CO2 media
and in the four above-mentioned SC-CO2/IL two-phase
systems (Antonia et al. 2007; Mori et al. 2005).

Referring to Fig. 5, the immobilized lipase synthetic
activity in SC-CO2/IL two-phase systems is lower compared
to SC-CO2 mentioned alone. Mori et al. (2005) observed
similar results in C6H14/IL two-phase systems. They
revealed enzymatic membranes, which are provided with
simple free CALB adsorption on surface, were more reactive
compared to membranes provided by ILs. For the mentioned
SC-CO2/IL two-phase systems, the activity of synthetic
increased in the subsequent order: [Bdimim][PF6] < [
C4mim][PF6] < [C4mim][TFSI] < [Omim][PF6] that was in
contract by the activity order observed using CLAB in
homogeneous IL systems ([C4mim][PF6] < [Bdmim]
[PF6] < [C4mim][TFSI] < [Omim][PF6]) except for [Bdi-
mim][PF6] and [C4mim][PF6] (Antonia et al. 2007).

The substrate transport mechanism includes three steps
(see Fig. 6). The first step is substrates diffusion through the

Fig. 3 Transport properties vs.
solvent power for different
solvents. Modified after Herrero
and Ibánez (2015).
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diffusion layer of the SC-CO2 phase to the interface of
SC-CO2/IL. The second step is the substrates partitioning
between the IL and SC-CO2 phase, and final step is diffusion
in the IL phase into the immobilized enzyme (Antonia et al.
2007). The products and substrates partition coefficients of
the transesterification reaction between the ILs and C6H14 in
the second step were obtained and given in Table 2. C6H14

selected as organic solvent reference due to C6H14 solvent

ability is similar to SC-CO2 in moderate operating condi-
tions (Antonia et al. 2007).

Referring to Table 2, the order observed in the substrates
partition coefficients was: [C4mim][TFSI] > [Omim]
[PF6] > [C4mim][PF6] > [Bdimim][PF6]. Consequently, the
mixtures with high IL/ C6H14 partition coefficients were
detected in ILs (Antonia et al. 2007). This order could
describe the variation in the primary reaction rate order

Fig. 4 Selectivity and synthetic
activity variations of free Candida
Antarctica lipase B for butyl
propionate synthesis in
C6H14 and in various ILs at
T = 323 K. Modified after
Antonia et al. (2007)

Fig. 5 Selectivity and synthetic
activity variations of immobilized
Candida Antarctica lipase B in
four different IL/SC-CO2

two-phase systems and SC-CO2

media at T = 323 K and
P = 80 bar. Modified after
Antonia et al. (2007)
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between [C4mim][PF6] and [Bdimim][PF6] in the SC-CO2/
IL two-phase systems with respect to IL applied as homo-
geneous media. Then, the higher partition coefficient for
[C4mim][PF6] indicates more substrates absorption in this IL
and subsequently an easier interaction between the enzyme
catalytic core and the substrates (Antonia et al. 2007; Lozano
et al. 2001). In addition, the partition coefficient indicates the
reaction substrates are more strongly detected in [C4mim]
[TFSI] compared to [Omim][PF6]. This fact leads to having
the lower change in the activity values between [Omim]
[PF6] and [C4mim][TFSI] in the two-phase system (see
Fig. 5) with respect to in the homogeneous media (see
Fig. 4).

2.3 Butyl Propionate Synthesis Using Active
Membranes in Hexane/IL

The capability of free CLAB to catalyze butyl propionate
synthesis of 1-butanol vinyl and propionate was investigated
in hexane/IL two-phase systems at 324 K in sequence to
better find out of reaction in SC-CO2/IL two-phase systems
(Antonia et al. 2007). It is required to indicate that CLAB

plays in the ILs phase and which C6H14 was selected as
second phase due to C6H14 solvent ability is comparable to
supercritical carbon dioxide solvent ability in mild operating
conditions. The selectivity exhibited and synthetic activity
using CALB in C6H14 and in various hexane/IL two-phase
systems are shown in Fig. 7. As observed in Fig. 7, the
synthetic activity indicated the used lipase in hexane/IL
two-phase systems was lower compared to C6H14 mentioned
alone (Antonia et al. 2007). Subsequently, applying
hexane/IL two-phase systems leads to significant limitations
in mass transfer.

It has furthermore been detected that an increment in the
synthetic activity in above-mentioned C6H14/ionic liquid
two-phase systems pursue the identical order as the synthetic
activity in SC-CO2/IL two-phase system. Subsequently, the
obtained results in hexane/IL two-phase systems confirm
those in SC-CO2/IL two-phase systems and emphasize the
presence of IL affects the mass transfer and enzyme activity
in IL/SC-CO2 two-phase systems (Antonia et al. 2007). In
hexane/IL two-phase systems, the selectivity was higher
than when C6H14 was alone (see Fig. 7). The similar
behavior was indicated with the immobilized enzyme in
SC-CO2/IL two-phase systems, which SC-CO2 was applied
as reaction media.

3 Mixed Ionic Electronic MR

Separation and reaction are two fundamental processes in
chemicals industries. Many difficulties, like high cost, energy
consumption, huge occupancy region are in the chemical
industries (Schulz et al. 2011). Subsequently, it is immediate
and imperative to extend novel processes to overcome men-
tioned difficulties. MR has the capability of coupling sepa-
ration and reaction processes in a unit operation that is
important for chemical processes shortening (Maina et al.
2019). Mixed ionic electronic conducting O2 penetrable MR
is a kind of compressed membranes of ceramic material,
which can conduct oxygen ions and electrons using 100%
selectivity of O2 permeation (Li et al. 2016). The partial
pressure gradient of oxygen is oxygen permeation driving
force across the oxygen-permeable membrane. These kinds of
MRs have a well capability of coupling oxygen-related
reaction and separation process (Li et al. 2019).

Fig. 6 Mechanism of substrate transport from SC-CO2 phase to the
immobilized enzyme in a IL/SC-CO2 two-phase system. Reprinted with
permission of Antonia et al. (2007)

Table 2 IL-hexane partition
coefficient values of components
in four ILs: [Bdimim][PF6],
[C4mim][PF6], [Omim][PF6] and
[C4mim][TFSI]

Component [Bdimim][PF6] [C4mim][PF6] [Omim][PF6] [C4mim][TFSI]

Propionic acid 1.31 2.66 2.43 6.77

Butyl propionate 0.03 0.15 0.49 0.51

1-Butanol 0.68 2.46 3.63 5.21

Vinyl propionate 0.22 0.71 1.15 1.10

Modified after Antonia et al. (2007)
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Balachandran et al. (1995) applied methane in a
La0.2Sr0.8Co0.2Fe0.8O3−d perovskite MR and described the
membrane broke after performing for an insufficient minute.
Consequently, many research studies have concentrated on
improving materials of membrane with high thermal and
chemical stability in partial oxidation operating conditions of
methane reaction (Wu et al. 2016). The membrane based on
cobalt materials, like SrCo0.8Fe0.2O3−d, has a best perme-
ability for oxygen; however, the easy-reduction feature of Co
makes them unstable in reducing ambient conditions (Wei
et al. 2013). Subsequently, the perovskite membrane materi-
als extension for partial oxidation of methane reaction was
piecemeal transition from low and high cobalt containing to
oxides based on free cobalt containing. The usual materials
were Ba0.5Sr0.5Co0.8Fe0.2O3−d (Wang et al. 2003), La1
−xSrxCo1−yFeyO3−d (Jin et al. 2000), BaZrxCoyFe1−x−y O3−d

(Wang et al. 2009), Ba (Ce, Zr, Y)x Fe1−xO3−d (Zhu et al.
2006) and La1−xSrxGa1−yFeyO3−d (Ritchie et al. 2001). Typ-
ically, the main source of oxygen feed in oxygen-permeable
MR for partial oxidation of MR is air. Replacing it by gaseous
oxides, like H2O (Zhu et al. 2015), NO (Jiang et al. 2009) and
CO2 (Liang et al. 2017), makes theMRmore efficient because
of the additional products achievement.

Li et al. (2019) investigated an asymmetric
Sm0.15Ce0.85O1.925 (75 wt%) with Sm0.6Sr0.4Al0.3Fe0.7O3−d

(25 wt%) dual-phase mixed ionic electronic conducting O2

permeable MR to produce NH3 synthesis gas (i.e., N2/
H2 = 0.33) and liquid fuels synthesis gas (i.e. CO/H2 = 0.5).
They investigated the effects of CH4 concentration, CH4 flow

rate, steam flowrate and temperature on the performance of
the MR. The schematic of the reactor is illustrated in Fig. 8.
Catalyst based on Ruthenium material was used to catalyze
the reactions in sides I and II. High efficiency was attained
using the two-phase MR and the membrane material had a
good structure stability (Li et al. 2019).

3.1 Methane Flow Rate and Concentration
Effects on Side II of Membrane

Li et al. (2019) studied the influence of methane concen-
tration on side II of membrane on the MR performance
(including carbon dioxide selectivity and methane conver-
sion). Figure 9 indicates effects of methane flow rate and
concentration on carbon monoxide selectivity and methane
conversion. The methane conversion (xCH4 ) and carbon
monoxide selectivity (SCO) are calculated using the follow-
ing equations (Li et al. 2019):

xCH4 ¼ 1� CCH4

CCH4 þCCO þCCO2

� �
� 100 ð1Þ

SCO ¼ CCO

CCO þCCO2

� �
� 100 ð2Þ

where C is the component concentration. As can be seen in
Fig. 9a, methane conversion increases slowly as the con-
centration of methane increases. However, the carbon
monoxide selectivity decreases slightly with an increase in

Fig. 7 Selectivity and synthetic
activity variations of free Candida
Antarctica lipase B in four
different IL/hexane two-phase
systems and SC-CO2 media at
T = 323 K. Modified after
Antonia et al. (2007)
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concentration of methane. Subsequently, a higher concen-
tration of methane leads to better MR efficiency (Li et al.
2019). The methane flow rate unlike the methane concen-
tration, has significant effect on methane conversion and
carbon monoxide selectivity (Fig. 9b). As observed in
Fig. 9b, methane conversion and CO selectivity have
opposite behavior with the increase of methane flow rate.

3.2 Steam Flow Effect on Side I of Membrane

The influence of steam flow on side I of membrane on
methane conversion and carbon monoxide selectivity, and
particularly the MR energy consumption for NH3 synthesis
gas and liquid fuels synthesis coproduction, is complicated (Li
et al. 2019). Consequently, the efficiency of the asymmetric
Sm0.15Ce0.85O1.925/Sm0.6Sr0.4Al0.3Fe0.7O3−d MR with several
steam flow rates was investigated. The results indicated, an
increase in the H2/N2 ratio decreases the H2/N2 production
rate on MR side I. However, this ratio has negligible effect on
the liquid fuels synthesis gas. This phenomenon indicates that
varying the N2/H2mixed gas online requests to regulate the air
feed rate on MR side I (Li et al. 2019).

3.3 Temperature Effect

The temperature effect on efficiency of the asymmetric
Sm0.6Sr0.4Al0.3Fe0.7O3−d/Sm0.15Ce0.85O1.925 MR is investi-
gated in this section.

To test the maximum MR ability at various temperatures
and achieve best quality of synthesis gas, the selectivity of
CO was adjusted 91% and the methane flow rate regulated
using temperature. The CO selectivity is optimal parameter
for MR at various temperatures. The results are indicated in
Fig. 10. As one can see, the optimal specific flow rate of
methane is increased with increasing in temperature. Indeed,
particular flow rate is applied to indicate the MR area
capacity (Li et al. 2019).

The conversion of steam on MR side I is a key factor to
calculate the MR consumption of energy. High conversion
of steam is proportional to low consumption of energy for
the energy reduction for the heating and the unconverted
steam vaporization. As shown in Fig. 11, due to the limited
O2 permeability of the O2 permeable membrane, the steam
conversion on membrane side I decreases quickly with the
increase of H2O/CH4 molar ratio. When the H2O/CH4 molar
ratio is reduced to 1.43, the corresponding steam conversion
is high up to 57%, which is 1.2 � 105 times of the steam
equilibrium conversion of water splitting reaction at 900 °C.
The corresponding energy saving compared to the industrial
processes is expected as high as 66%, which is close to the
theoretically highest energy saving of 70% (Li et al. 2019).

4 Green Synthesis of Methanol
in a Membrane Reactor

One of the greatest hazards to environment and humanity is
global warming. Carbon dioxide accumulation in the atmo-
sphere is the main source of global warming (Samimi et al.
2019; Rafiee et al. 2018). Methanol [MeOH] is great interest
for the carbon dioxide conversion with hydrogen. MeOH is
used in the energy industries and petro-chemical for energy or
chemical application, hydrogen fuel cell and vehicle fuel
(Samimi et al. 2019). H2 must be produced through a renew-
able energy (like biomass, geothermal, solar, wind and water
splitting). Two processes of direct and indirect for synthesis of
MeOH are applied using carbon dioxide conversion (Fig. 12).
In direct method, H2 and CO2 are directly converted into
MeOH. At first step, CO2 hydrogenation leads to syngas
produced based on reverse water gas shift [RWGS] reaction,
after that syngas as a raw material is used to produce MeOH.
The reverse water gas shift is described as (Rafiee et al. 2018):

CO2 þH2 $ COþH2O ð3Þ
Indirect conversion process of carbon dioxide leads to

produce green methanol, due to the feedstock includes

Fig. 8 Illustration of the
asymmetric oxygen-permeable
membrane reactor. Reprinted with
permission of Li et al. (2019)
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carbon dioxide and renewable hydrogen (Samimi and
Rahimpour 2018; Jadhav et al. 2014). In this method, water
perm-selective membrane is used in the RWGS (Vooradi
et al. 2018). Figure 12 indicates a schematic diagram of both
methods. In the first method, the process contains of a
MeOH synthesis and RWGS reactor (Fig. 12a). The feed-
stock (hydrogen and carbon dioxide) is shared in two sep-
arated streams: The mainstream is forwarded to the RWGS
reactor and another one is required to regulate the produced
syngas composition. Hydrogen and carbon dioxide are

converted to H2O and CO by the RWGS reaction (Samimi
et al. 2019). The products of reaction that contain water and
syngas are transported to a condenser, and remove H2O from
the stream (water is toxin for Cu/ZnO/Al2O3 catalyst).
Finally, the syngas is fed to MeOH synthesis reactor. The
procedure of operation in the second method is originally the
same as the first method, except in which a hydroxyl soda
lite membrane was used for H2O removal in the reverse
water gas shift reactor (Samimi et al. 2019). An illustration
of RWGS MR is given in Fig. 13.

Fig. 9 Influences of (a) methane
concentration and (b) methane
flow rate on methane conversion
and carbon monoxide selectivity
at T = 1174 K. Modified after of
Li et al. (2019)
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Samimi et al. (2019) applied Fe2O3/Cr2O3/CuO catalyst
in RWGS MR for production of MeOH. The used membrane
is made of a zeolite material that can separate water in an
excellent manner. They compared the two mentioned
methods for the production of MeOH. The results indicated
the inlet pressure and temperature have significant effect on
RWGS MR performance.

At a confident CO2/H2 ratio and feed flow rate, the CO2

conversion and consequently CO yield are proportional to
pressure and temperature of feed for both methods.

Therefore, changing the operating conditions of RWGS
reactor (pressure and temperature) leads to increase pro-
duced syngas composition (Samimi et al. 2019). Because of
using water perm-selective membrane to separate water, the
CO2 conversion is dependent on Pinlet and it enhances with
increasing in Pinlet. Indeed, water separation driving force is
increased with increasing pressure difference between reac-
tion and permeation sides. Subsequently, water removing
leads to shift the RWGS reaction (Eq. 3) into more CO
production and CO2 consumption.

Fig. 10 Temperature influence
on carbon monoxide selectivity
and methane conversion. The
steam flow rate value was
1.75 mL/s. Modified after of Li
et al. (2019)

Fig. 11 H2O/CH4 molar ratio
effects at 1174 K. Comparison
between energy saving and steam
conversion and industrial
processes. Modified after of Li
et al. (2019)
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They furthermore compared the results of H2 and CO2

conversions between RWGS reactor and RWGS mem-
brane reactor (Fig. 14). Hydrogen and carbon dioxide as
the feed (RWGS reaction) are consumed to produce car-
bon monoxide and water. In the RWGS reactor, the H2

and CO2 conversions are increased through the length of
reactor and the constant trend is observed after reaching to
the equilibrium state.

However, in the reverse water gas shift membrane reac-
tor, H2O eliminating through the members causes transfer-
ring thermodynamic equilibrium into consumption of H2 and

CO2 and consequently, more conversions are obtained with
respect to the reverse water gas shift reactor (Samimi et al.
2019). Figure 15 compares the results of both methods at the
same operating conditions. MeOH is produced 13042 and
13584 kg/h, while production rate of H2O is 5167 and
6209 kg/h in methods 1 and 2, respectively. Method 2 can
produce 542 kg of MeOH per hour more in compared to
method 1 (i.e., 4.16% increase in production rate of MeOH),
that is a significant amount. Consequently, in method 2,
higher carbon monoxide concentration in the produced
syngas is obtained.

Fig. 12 Illustration of the indirect conversion of CO2 process, (a)
method 1 (process involves a reverse water gas shift and a reactor of
methanol synthesis) and (b) method 2 (same as method 1 except using

H-SOD (hydroxy sodalite) membrane in the reverse water gas shift
reactor). Reprinted with. permission of Samimi et al. (2019)
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The results indicated that method 2 is better to method 1,
because of the following reasons (Samimi et al. 2019;
Samimi et al. 2018; Ribeirinha et al. 2017):

• Higher CO and CO2 conversions were obtained in the
second method.

• More appropriate composition of synthesis gas was
achieved in second method.

• There is no necessity for additional water elimination
from syngas in the second method.

• MeOH production in the second method is 542 kg/h
more than the first method.

• Production of water was reduced 16% in method 2 than
method 1.

5 Green Fuel Energy

Fossil fuel consumption produces greenhouse gases, the
leading cause of global warming and climate change.
Besides, natural petroleum sources are depleted by
ever-increasing demand (Ardito et al. 2019). Renewable
energies are the solution to climate change and mounting
global energy demand. Therefore, researchers have focused
on finding and developing alternative energy sources like
solar energy, hydrogen energy, wind energy, bioenergy and
green oxygenated fuels (Ardito et al. 2019; Chakraborty and
Mazzanti 2020; Shuba and Kifle 2018; Edwards et al. 2008;
Nord and Haupt 2005). These sources of power are called

Fig. 13 Illustration of reverse
water gas shift MR. Reprinted
with permission of Samimi et al.
(2019)

Fig. 14 Comparison between
conversions of H2 and CO2 along
reverse water gas shift reactor and
reverse water gas shift membrane
reactor. Modified after Samimi
et al. (2019)
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clean or green energy because they can be produced from
renewable sources by sustainable, clean and innovative
technologies to substitute for pollutant technologies (Chak-
raborty and Mazzanti 2020). In this context, we reviewed
some of these energies like hydrogen and biofuels, which
can be produced by the membrane reactor technology in
clean pathways.

5.1 Green H2 Energy

Among the sustainable and recyclable energy sources,
hydrogen is a valuable energy carrier due to clean energy
sources and its high conversion efficiency. For these reasons,
hydrogen has been suggested as a beneficial resource for fuel
cells (Edwards et al. 2008). Conventional hydrogen gas
production processes like steam reforming of methane and
hydrocarbons, oxidation of fossil fuels and autothermal
reforming consume a lot of energy. They require high tem-
peratures (over 850 °C) (Armor 1999). Membrane reactors,
solar energy for electrolysis of water, selective oxidation of
methane, oxidative dehydrogenation, electrolysis of water
using fuel cells, bio-fermentation and biomass conversion
are alternative developing technologies for producing H2.
These technologies benefit from low energy consumption
processes, less equipment and more environmental-friendly
compared to conventional methods (Armor 1999; Hanley
et al. 2018; Kapdan and Kargi 2006).

The membrane reactor produces hydrogen by applying
hydrogen-selective removal by the membrane (Armor 1999;
Kikuchi 2000). H2 has a high density of energy. The tem-
perature of H2 rises, and it becomes flammable when the

concentration increases greater than 4% (Farina et al. 2007).
Using a membrane reactor, H2 can be removed from the
reaction system, which results in a decrease in operating
temperature and an increase in reactant conversion (Yun and
Oyama 2011). Therefore, many researchers have focused on
the use of H2 perm-selective membrane material to achieve
H2 in ultra-purity. Some examples of these materials are
palladium composites, which can enhance dehydrogenation
(Armor 1999; Chen et al. 2020; Jo et al. 2018). Pd com-
posites have excellent characteristics for hydrogen purifica-
tion, such as high hydrogen permeability, selectivity,
significant chemical compatibility and durability (Hayakawa
et al. 2019).

Ammonia has high hydrogen atom content. The conven-
tional process of producing hydrogen from ammonia is per-
formed at high temperature and requires independent
separation unit for hydrogen purification (Jo et al. 2018). The
efficient decomposition of ammonia and hydrogen purification
is essential for every technology that uses ammonia as a
hydrogen-carrier source. (Zhang et al. 2019). Jo et al. (2018)
suggested a novel compact tubular membrane reactor in con-
junction with a fuel cell that converted NH3 to electrical
energy. In this membrane reactor, reaction and separation are
implemented in one step. The reactor comprised tubular Pd/Ta
composite membrane and Ru/La-Al2O3 pellet catalysts for the
decomposition of ammonia. In this reactor, NH3 flow passes
through the packed pellet catalysts, and decomposition reac-
tion (2NH3 ! N2 + 3H2) takes place while simultaneously
the produced hydrogens permeate into Pd/Ta membrane. The
membrane has high H2 permeability and can reduce the
operating temperature of NH3 dehydrogenation (400–450 °C).
It provides the in situ purification of hydrogen in the reactor.

Fig. 15 Comparison between
the efficiency of method 1
(process involves a RWGS and a
methanol synthesis reactor) and
method 2 (same as method 1
except using H-SOD membrane
in the RWGS reactor) in water
and MeOH production rate.
Modified after Samimi et al.
(2019)
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Permeated hydrogen stream (over 99.9999% pure hydrogen)
with a negligible amount of NH3 (< 1 ppm) is immediately
directed to the fuel cell to generate electricity (Fig. 16). The
advantages of this reactor can be classified as listed below (Jo
et al. 2018):

• Environmentally friendly technique.
• Reaction-separation implemented in one step.
• Ultra-pure hydrogen extraction.
• Energy consumption is low.
• No additional processing equipment is required.
• Removing other purification units for operating fuel cells.
• There are no practical limitations for related reactions

concerning composite membranes.

Itoh et al. (2020) presented a tube-wall catalytic MR,
which able to decrease ammonia decomposition temperature
to below 400 °C and increase ammonia conversion by nearly
100% via designing of a reactor with excellent heat transfer
characteristics and applying Pd membrane. In this MR, the
inside of the reactor tubular shell was covered with the Ru
catalyst layer and the outside shell was exposed to heat. By
this design, a more uniform direct heat supply can be
achieved to catalyst compared to MR with catalyst packed
bed and resulted in a high ammonia conversion at lower
temperatures than conventional MR (Itoh et al. 2020).

In another research (Zhang et al. 2019), a new configu-
ration of catalytic design of MR is applied to produce
hydrogen from NH3. The catalytic MR consisted of a Ru
catalyst, which is impregnated in a supported porous
yttria-stabilized zirconia tube coated by a thin Pd film. In
conventional membrane reactors, the catalyst particle is
packed in the interior or within the annulus surrounding a
tubular hydrogen-permeable membrane (Fig. 17). The tra-
ditional method suffers from two significant hydrogen
transport limitations. The first limitation is effective diffusion
within pellets. The second limitation is the radial diffusion of
hydrogen through the bed and the support to the membrane
surface before being swept in retentive flow. By the new
design, it is possible to overcome transport limitations and
make operating temperature as low as 400 °C and a purity
degree of H2 99.7% (Zhang et al. 2019).

Chen et al. (2016) utilized Pd/Ag ceramic membrane
reactor to synthesize valuable biomaterial (amides and ureas)
and hydrogen. Urea derivatives are important bioactive
compounds. They are used in various areas like pharma-
ceuticals, therapeutics, chemical dyes and agricultural pes-
ticides. Conventional methods for the synthesis of urea
suffer from a significant amount of toxic phosgene, phosgene
derivatives and CO. Another vital precursor is an amide, an
essential functional group in proteins, peptides and many
synthetic polymers. The standard amide production methods
are complicated and produce a large amount of waste (Chen
et al. 2016). Amides and urea are produced by catalytic
dehydrogenative coupling of amines and volatile alcohols.
The Pd-Ag/ceramic membrane has catalytic and selective
features. Hydrogen permeates into the MR and is removed
from the reaction system. The selective removal of produced
hydrogen could monitor the process by overcoming chemi-
cal equilibrium and avoiding pressure build-up in the reac-
tor. Produced hydrogen could be stored and used in a fuel
cell (Chen et al. 2016).

5.2 Biofuel Energy

Biofuels energy is a kind of renewable energy derived from
living organisms and biological sources like microorgan-
isms, algae, animal, plant and waste biomass. These
resources are nontoxic, biocompatible, biodegradable and
renewable. Using biofuels has advantages over fossil fuels
such as lower harmful emission (lower greenhouse gases)
and less carbon (Shuba and Kifle 2018). Among biofuel
sources, algae are one of the best sustainable feedstocks
(Anto et al. 2020). Waste products can feed algae, and they
can degrade some harmful materials into safe ones. Besides,
algae are reproduced rapidly and produce suitable biomass
for biofuel. Thus, algae provides benefits for environment
and green chemistry by waste treatment and biofuel pro-
duction (Mata et al. 2010; Kumar et al. 2010; Hou et al.
2020). Microalgae can convert greenhouse gases like CO2 to
biomass (CO2 fixation) (Mata et al. 2010). Membrane
bioreactors provide more microalgae proliferation and CO2

fixation than conventional reactor technologies such as

Fig. 16 Scheme of MR for sustainable H2 production, NH3 flow in
membrane reactor and decomposition reaction (2NH3 ! N2 + 3H2)
occur by heterogeneous pellet catalysts. Hydrogen permeate into Pd/Ta

membrane and directly feed proton exchange membrane fuel cell (PEM
FC). Reprinted with permission of Jo et al. (2018)
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bubbling systems (Kumar et al. 2010). Among membrane
bioreactors, the hollow fiber membrane reactors have a
strong performance for microalgae cultivation (Kumar et al.
2010). Hollow fiber membrane reactors have several bene-
fits. The first advantage is the large area per unit volume
(over 30 cm2/cm3). Besides, they provide excellent mass
diffusion, sustainable mass transfer pathways, especially
when living organisms are growing, compactness, microor-
ganism protection from turbulent hydrodynamic stresses and
supporting microorganism attachment (Kumar et al. 2010;
Eghbali et al. 2016). Flocculation and filamentous charac-
teristics of algae are the greatest challenges when we use a
membrane reactor for algae cultivation (Nhat et al. 2018).

Surface modification of the hollow membrane can reduce
membrane fouling. Embedding nano-TiO2 photocatalyst
within the hollow membrane improves the hydrophilicity of
membrane surface and reduces membrane fouling around
50% lower than that of conventional polyvinylidene fluoride
hollow fiber (Hu et al. 2015). Using graphene oxide in the
hollow membrane surface also improves the antifouling
ability of the membrane (Wu et al. 2020). Algae hollow fiber
membrane reactors can significantly treat wastewaters from
chromium, ammonia-nitrogen and phosphorus and produce
large amounts of biomass (Hu et al. 2015; Wu et al. 2020;
Costa et al. 2019). One of the attractive sources of biofuel
energy is waste biomass with plant origin (Clark 2019).
Plant origin biomass produces biofuels like bioethanol,
biohydrogen, biodiesel, biogas, biochar and syngas, in
which valuable biochemical materials can be provided from

them (Hood et al. 2013; McKendry 2002). In this field, MR
can be utilized for several applications such as cell immo-
bilization for fermentation of biomass and separation and
purification of biofuel and organic extractant from substrates
(Qureshi and Ezeji 2008).

5.3 Green Fuel Additive

The fuel additive, acetaldehyde dibutylacetal (1, 1-
dibutoxyethane, DBE) is a derivative of acetal. Acetals are
a kind of green fuel additive that can reduce the emission of
particulate matter by blending with diesel and increase diesel
cetane number. Pereira et al. (2012) performed a
single-process numerical study on a moving bed membrane
reactor integrated with pervaporation membrane reactors.
Their results showed that the hybrid system could be a very
efficient and promising process than the moving bed mem-
brane reactor alone. It has more productivities and fewer
adsorbent consumptions for the same purity and conversion
criteria.

6 Biocatalyst Membrane Reactors

Enzymes as biocatalyst have a distinct advantage in green
chemistry; in their presence, the reactions all perform in mild
conditions (around ambient temperature and pressure). They
consume lower energy, form minimum by-product and have

Fig. 17 (a) Packed-bed MR, (b) cross section of packed-bed MR, (c) catalyst membrane reactor, (d) cross section of catalyst MR. Modified after
Zhang et al. (2019)
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higher specificity (enzymes catalyze only a single type of
reaction and often they work only on one or a few substrate
compounds) compared to chemical catalysts (Ugur Nigiz and
Durmaz 2016; Sheldon 2005). Besides, some enzymes can
biodegrade hazardous environmental pollutant compounds.
For example, oxidoreductases are used to biodegrade dye,
pharmaceutical and phenolic compounds (Zdarta et al. 2019).
Enzymatic reactors combine two processes: enzymatic reac-
tion (degradation or conversion) and membrane separation.
Both procedures can be carried out at the same time or in a
sequence (Su et al. 2020; Brunetti et al. 2018). Referring to
the biocatalyst state, the biocatalyst MRs are classified into
two categories: free or suspended biocatalyst membrane
reactor and immobilized biocatalyst membrane reactor. In the
suspended enzyme membrane reactor, the biocatalyst is free
and suspended in the reaction mixture, and the membrane acts
as separator (Prenosil and Hediger 1988).

The immobilized biocatalyst membrane reactors are
divided into three categories (Ugur Nigiz and Durmaz 2016):

• Enzymatic batch reactor: pieces of heterogeneous bio-
catalyst membrane (biocatalyst is immobilized or
embedded in the membrane) is placed in a conventional
batch reactor.

• Biocatalyst membrane reactor: biocatalyst membrane
performs both reaction and separation processes.

• Pervaporation biocatalyst membrane reactor (PVBCMR):
vacuum pressure is utilized in the reactor. The biocatalyst
membrane has a non-porous structure. Therefore, the
evaporative separation takes place in the biocatalyst
membrane.

Depending on reaction conditions, a free or immobilized
enzymatic membrane reactor can be applied. Immobilization
form has more benefits, such as improving the thermal and
chemical stability of enzymes (Prenosil and Hediger 1988;
Bilal et al. 2018; Jesionowski et al. 2014).

Pervaporation biocatalyst membrane reactor is preferred
when it comes to immobilized biocatalyst membrane reac-
tors. The energy consumption, operation time, capital and
operation cost are lower. Secondly, the product has a higher
purity level. Thirdly, in situ product extraction has a high
conversion of the substrate. Finally, producing green organic
solvent (Ugur Nigiz and Durmaz 2016) and removing
additional separation are other benefits. PVBCMR can be
utilized to produce ‘green organic solvent.’ Green organic
solvents are critical in green chemistry. They should be
relatively nonhazardous, nontoxic, noninflammable and
noncorrosive. The emissions of the green organic solvent are
completely low and environmentally safe (Sheldon 2005).
The ethyl lactate is ‘green solvent’ because it has high
boiling temperature, low vapor pressure and relatively

nontoxic nature. In this research, PVBCMR was imple-
mented to synthesize ethyl lactate from ethanol and lactic
acid in mild operating conditions. The membrane of
PVBCMR consisted of two layers, including the lipase
biocatalyst layer and sodium alginate separation layer. The
advantages of this PVBCMR compared to the batch reactor
were: 1) higher acid conversion (two times higher), and 2)
biocatalyst membrane has excellent stability and activity
(Ugur Nigiz and Durmaz 2016). The critical challenges in
enzymatic membrane reactors are low stability and efficiency
of enzyme catalysts. Many studies focused on developing
enzyme technology by protein and genetic engineering,
immobilization techniques to reduce enzyme limitations
(Madhavan et al. 2017).

The membrane of the enzymatic membrane reactor can be
composed of magnetic nanoparticles and porous polymer.
Magnetic nanoparticles can act as an enzyme carrier for
enzyme immobilization into the membrane and nanofillers to
form organic–inorganic membrane. This type of membrane
has the capability of magnetic reversibility. The reversible
magnetic force improves the dispersion of the enzymes over
the membrane surface, allowing retention of the enzyme by a
large pore, i.e. high-flux membrane. As a result, enzyme
recovery becomes very convenient (Jiang et al. 2017;
Gebreyohannes et al. 2015).

7 Photocatalytic Membrane Reactors

Photocatalytic membrane reactors (PMRs) combine photo-
catalysts with the membrane separation process. These types
of reactors are mostly used for the purification of water and
wastewater treatment. Photocatalyst in the presence of light
can potentially decompose the organic and toxic pollutants
into less toxic or harmless inorganic molecules (de Oliveira
et al. 2020; Riaz and Park 2019). The most critical operating
parameters in the design of PMR include the loading of
photocatalysts, the initial concentration of reactant, light
wavelength, light intensity, pH, temperature, flow rate, oxi-
dants and ions (de Oliveira et al. 2020; Riaz and Park 2019).
Several PMR configurations have been proposed. They can
be classified into two main categories: immobilized photo-
catalyst system and suspended photocatalyst system. Due to
the free photocatalytic active surface, suspended photocata-
lyst reactors have higher photocatalytic activity than the
immobilized photocatalytic reactor. However, the photocat-
alyst must be separated from the reaction medium after
detoxification (de Oliveira et al. 2020; Riaz and Park 2019).

Among photocatalysts, TiO2 nanoparticle is frequently
used in PMR, because TiO2 has unique properties like high
chemical stability, less toxicity, low cost and high surface to
volume ratio and consequently more active site for the
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reaction (Riaz and Park 2019). de Oliveira et al. (2020)
presented a coupling of PMR and membrane bioreactor
(MBR) for oil refinery wastewater treatment. TiO2

nano-photocatalyst and recycled osmosis membrane were
employed in PMR. TiO2 nanoparticles were synthesized with
a green method by microwave radiation and utilized as a
suspended nanoparticles catalyst in the PMR reaction mix-
ture. This PMR can degrade the chemical oxygen demand
(COD) of the organic matter in the MBR permeate by up to
60%. Compared to the system operated without photocata-
lyst, the membrane resistance attributed to fouling was 7.3
times lower and the membrane has good stability (de Oliveira
et al. 2020). In another research, TiO2 nano-photocatalysts
were immobilized on the surface of c-Al2O3 ceramic mem-
brane, and they were utilized in PMR for the treatment of
synthetic oily wastewater. The results showed high permeate
flux and very high total organic carbon (TOC) removal effi-
ciency (Fig. 18) (Golshenas et al. 2020).

Another photocatalyst in the PMR process is ZnO
nanoparticle. It can act as a strong adsorber and improve the
filtration property of the membrane. Desa et al. (2019)
applied a nano-composite of ZnO capped with polyethylene
glycol (ZnO-PEG) as photocatalyst in aid of the polypiper-
azine amide membrane to solve dye wastewater degradation
problem. The textile industry discharges annually about
5000 tonnes of toxic dye components into the environment.
The implementation results of this PMR under the optimum
operational conditions (pH = 11, 0.10 g/L ZnO-PEG load-
ing and 75% dilution of industrial textile wastewater)

showed a complete degradation of the color and turbidity of
the wastewater as well as membrane fouling reduction (Desa
et al. 2019). Tungsten oxide (WO3) is another photocatalyst
that is suitable for textile dyeing wastewater treatment
(Sathya et al. 2020). WO3 has been known as a harmless,
stable and low-cost photocatalyst, which reduces energy
consumption due to its performance under solar irradiation
(Dong et al. 2017). Pure WO3 and its combination with 1%
graphene oxide separately were utilized in a photocatalytic
hollow membrane bioreactor. The reactor includes a photo-
catalytic and polyethersulphone hollow membrane bioreac-
tor units, which is implemented on a pilot scale. The results
showed that graphene oxide enhances the photocatalytic
property of tungsten oxide. Therefore, the combination of
tungsten oxide with graphene oxide improves the efficacy of
dyes degradation in comparison with pure tungsten oxide.
When the hollow membrane bioreactor was integrated with
the photocatalyst unit, the efficiency of removal color and
chemical oxygen demand increased to 45% and 28%,
respectively (Sathya et al. 2020).

8 Conclusions

This chapter discusses the preference of membrane reactors
for green synthesis. As evidenced throughout the context,
membrane reactors employed separation and reaction pro-
cesses in one unit render several advantages. Low energy
consumption, high conversion, easy process control, mild

Fig. 18 Effect of c-Al2O3

membrane with and without TiO2

photocatalysts in two oil
concentrations (500 and
1000 ppm) and different flow
rates on TOC removal. Modified
after Golshenas et al. (2020)
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operation conditions, low wastes production and being
environmentally safe are few benefits to name. Membrane
reactors have been improved based on individual applica-
tions. Thus, the essential designing parameters are different
in each case. In membrane reactors for green H2 synthesis,
hydrogen perm-selectivity of the membrane is the most
crucial parameter. A sufficient amount of biofuel is extracted
from a biomembrane reactor with excellent mass transfer
properties like hollow fiber membrane reactors. Types of
photocatalyst, enzyme engineering and immobilization for
biocatalyst membrane reactors are critical factors in MR.
The common challenge in all of the membrane reactors is the
fouling of membranes. The characterization and experi-
mental results demonstrate that the efficiency of a membrane
reactor is higher than that of conventional reactors.
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Abstract

Catalytic membrane reactors (CMRs) are predictable to
develop a green and maintainable skill in chemical
engineering which synergistically conducts separations
and reacts. The use of a ceramic membrane is commonly
known in CMR as it enables all temperature and chemical
reaction and separation to be carried out in severe
environments. Within this segment, a detailed description
and review of various applications adopt specific defini-
tions and principles for membrane reactor operation. Such
programs are classified according to the items addressed.
The essay explores and assesses from the present
viewpoint the ability of the different definitions. Because
production rates are precise diverse and in general at
actual poor technology readiness levels (TRL), they have
not joined a list with admiration for price effectiveness,

operation quality, and applicability. To facilitate more
oriented research and growth, however, it is important to
demonstrate a single or limited number of membrane
reactors on a market-applicable size and expense.

Keywords

Membrane � Reactors � Green synthesis � Hydrogen �
Syngas � Ammonia

1 Introduction

The petrochemical and biochemical industries are important
actors in the world economy, and chemical processes are
crucial to both reactions and separations. However, particu-
larly energy-intensive methods are the most modern methods
of industrial separation, such as distillation. To address
environmental and energy problems, the enhancement in
efficacy in reactions and separations is thus becoming
important. Membrane division is a large-scale and effective
alternative splitting strategy, successful both in energy costs
and in total costs (Dixon 2003; Marcano and Tsotsis 2002;
Thursfield et al. 2012; Dong et al. 2011). The assimilation of
reaction (mostly catalytic reaction) with the split-up of
desirable goods has drawn substantial interest from science
and engineering investigators. The idea of CMRs is the
membrane-dependent synthesis of separations with catalytic
reactions (Mushtaq et al. 2014a; Sagir et al. 2014a).

The systematic elimination of the drug, solidification
(such as the solidified catalyst), delivery of a catalyst, and
supporting catalysts (in some situations, the mucosa itself
serves as a catalyst) are the most symbolic features of
CMRs. The CMR not only blends membrane split-up with a
catalytic procedure; rather, the two processes establish a
combination that integrally connects them into one package.
Climate, sustainable chemistry, and chemical engineering
can be accomplished by CMR implementation with lower
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energy usage, lower emissions, and improved efficiency.
Since most catalytic reactions occur in harsh environments,
including elevated temperatures, extreme pressure, and cor-
rosive gasses or solutions, most CMRs occur utilizing
inorganic membranes (both simple solutions and acidic
ones). Such inorganic membranes are usually pottery
membranes (e.g., metal oxides) and have an apparent
advantage compared to the polymeric membranes in terms of
chemistry and thermal resilience, tolerance to foulage,
mechanical force, and life span. Such advantages have given
a broad application in CMRs to inorganic membranes, such
as ceramic membranes. The thick ceramic membrane, a form
of a gas separation membrane, is used to support one form of
CMR. Mixed ionic electronic membranes of perovskite form
are among the most rigid ceramic membranes tested (Dixon
2003; Marcano and Tsotsis 2002; Thursfield et al. 2012;
Dong et al. 2011). Such a membrane has a general config-
uration of ABO3, where A representing a lanthanide, an
earth-alkaline part, or a combination of both, however, B is
usually an agent of transformation. The characteristics of the
membranes of perovskite are closely related to and com-
posed of the cations of A- and B-site. Such membranes have
ionic oxygen, and electrical conductivities concurrently and
technically have a 100% selectivity of oxygen at high tem-
peratures (normally more than 700 °C). The higher oxygen
flux (perm selectivity) and the higher catalytic ability of
these membranes reflect the most attractive qualities. Many
big catalytic gas-phase processes can be carried out on
perovskite-type membranes in CMRs on perovskite-type
membranes such as natural gas extraction, hydrogen pro-
cessing, and absorption of greenhouse gases (Sagir et al.
2014b, 2016).

These CMRs have, therefore, often been investigated in
the last ten years. For instance, Dixon (2003), Bouwmeester
(2003), Yang et al. (2005), Marcano and Tsotsis (2002),
Thursfield et al. (2012), Liu et al. (2006), Wei et al. (2013),
and Dong et al. (2011) were among the examples of such
reviews. Furthermore, numerous outstanding reports of
mixed membrane materials have been published. The
authoritative references to content theory and fundamental
research are a chapter published by Bouwmeester and Gel-
lings (1997) in 1997 and a study article by Sunarso et al.
(2008) in 2008. A permeableclay membrane is used for the
other type of CMRs, especially in heterogeneous cataloging
procedures. A membrane with suitable size will efficiently
isolate the catalyst after the reaction slurry in the existence of
deferred ultrafine or neuro-sized catalyst. The isolation and
delivery of the catalyst may be accomplished concurrently
with the correct reactor layout design, which may improve
the catalytic reaction as far as selectivity and performance is
concerned (Talebian et al. 2015; Shahzad et al. 2018).

Difficult conditions (high temperatures and atmospheres
which can reduce or are corrosive) need adequate material

stability, and reaction efficiency is the difficulties intricate in
the production and activity of these membrane containers. In
demand to maximize energy and price performance, specific
resources with long-term durability, like a catalyst, must,
therefore, be produced (Mushtaq et al. 2014b). The mea-
surable analysis of membrane container power is highly
difficult for several criteria that may be added to determine,
particularly if a product mixture, such as syngas, is required.
Throughout the literature, there was no standardized system
developed. Nonetheless, selectivity (for the commodity
requested), (1) alteration ratio (of the educt), and (2) yield
for the ranking membrane reactors are of interest. The
selectivity quantifies the sum of the substance that is
required, plus undesired by-products for all products. The
alteration rate is proportional to the comparative reactant
number, and the yield determines how much of the sub-
stance you choose to produce that you may define as
selectivity of conversion times. The faradaic quality that
represents the dependent of conveyed electrons contributing
to the response is often used. In the current-supported
modes, this is particularly helpful in measuring the output of
a process and in measuring the electricity demand (Azam
et al. 2014; Mushtaq et al. 2014c; Sagir et al. 2014c).

We chose to categorize the different processes according
to the goods we needed. Therefore, we have selected many
chemicals that can be synthesized in clay membrane con-
tainers that lead to ions (Dong et al. 2011; Czuprat and Jiang
2011; Hashim et al. 2011) and concentrate on.

2 Applications of Membrane Reactors
in Reaction Engineering

2.1 Syngas Production

Syngas is a combination of H2 and CO formed synthetically.
It may be more refined into NH3 through a Haber–Bosch
cycle or transformed into man-made fuels by Fischer–
Tropsch. This is the most valuable intermediary commodity
in the chemical industrial sector. Syngas is also a process in
turning regular gas or coal into liquid fuel, typically formed
from restricted oil resources (Wilhelm et al. 2001), in the
application of gas to liquid goods. The specific H2/CO ratios
of DME (dimethyl ether), 2/1 for liquid fuel production, and
3/1 for more processing of the CO for ammonia
(Aasberg-Petersen et al. 2011) are required depending on the
final product. Ceramic membranes had the benefit of being
extremely thermochemical in content, oxygen supply regu-
lation, and overall oxidation, and coke forming decreased.
Incomplete oxidation, steam restructuring, reversing the
water–gas shift, and dry methane reforming will create
syngas. Specific hydrocarbons, degradation, water, and CO2

comprise the primary causes. Strong materials like wood or
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biomass (Åberg et al. 2015) and coke furnace gas are
potential feedstocks (Razzaq et al. 2013). The reactions just
need to be triggered thermally. Heat may be generated by
certain additives, including industrial waste power or solar
thermal energy through a renewable process (Agrafiotis et al.
2014). Electrical power input is not required. Various
methods of heat reforming in which methane and heat are
normally transferred to catalytic reactors are traditional
methods to manufacture syngas on an industrial basis. The
processes and necessary catalysts are outlined in
Aasberg-Petersen et al. (2011). Catalyst deactivation and
coke forming (Iaquaniello et al. 2015) reflect much of the
problems in traditional process paths. Also explored in
combination fixed and membrane processes are the possi-
bilities for price savings even in well-recognized large-scale
manufacturing (Usachev et al. 2011).

2.2 Hydrogen Production

H2 is a potential upcoming energy transporter and is now a
significant chemical raw material, for instance in ammonia
synthesis and liquid fuel processing. For stationary and
mobile fuel cell systems, it can be turned into energy very
quickly and directly burning without toxic pollution for
potential gas turbine projects. H2 is a chief constituent of
power-to-gas designs that store changing lunar or wind
power in a chemical system, generating mainly through
electrolysis a gas-based powertransporter (Gahleitner 2013;
Yilmaz et al. 2015). Methane and other hydrocarbons are the
conventional methods of processing of hydrogen. Hydrogen,
CO2, and CO (water–gas change reaction, autothermal
reforming) must be isolated during this phase to produce an
extremely pure substance, so this raises the difficulty and
expense of the method.

This classic approach relies mainly on fossil fuels (Lu and
Xie 2016), which generate large emissions of CO2. Impor-
tant CO2 control may be the way to rising the total pollution
by utilizing fossil fuels (Voldsund et al. 2016). Storage space
and user preferences for the future are still required. In this
context, the utilization of biogas as a crude material is an
enticing alternate (Hajjaji et al. 2016). Suleman et al. (2016)
have demonstrated that sustainable hydrogen processing has
a far lower environmental effect than utilizing conventional
fuels. The development of hydrogen employing mixed
conductive ceramic membrane reactors is accomplished by
three reactions: the separation of energy, the reaction to
vapor–gas changes, and autothermic change. As the mem-
brane material is fundamentally aggressive, no electric
power input is needed. The thermal activation of the lattice
dispersal of the charged species allows transportation
through the membrane suitable at reaction temperature, as

already described (Sagir et al. 2014d; Ullah et al. 2015;
Mushtaq et al. 2015; Talebian et al. 2018).

Varied oxygen particle electron conductors just as varied
proton–electron conductors might be utilized for the creation
of hydrogen in a clay layer reactor. The 100% hydrogen
selectivity of thick permeable ceramic hydrogen membranes
is a benefit. Consequently, further purification steps should
be dispensed for the following operations. In the (Sammells
and Mundschau 2006; Fontaine et al. 2008; Kreuer 2003;
Ivanova et al. 2013, 2016) work, there are suitable mem-
brane materials with perovskite and fluoric structures. Their
stability, particularly in acidic environments, i.e., should be
given special attention. While several perovskite materials
are carbonated, thermal as well as chemical stability mate-
rials have been recorded at temperatures over 1000 °C
(Ivanova et al. 2013; Sagir et al. 2018; Ullah et al. 2019a).
Dual-phase technologies may also be used to further
improve the durability and efficiency of products. These
materials may be cer-met or cer-cer and thus incorporate a
strictly ionic with a virtuously electronic step of conduction
(Ullah et al. 2019b; Tahir et al. 2019; Ramasamy et al. 2016;
Rosensteel et al. 2016; Rebollo et al. 2015). In this study, the
emphasis is not on existing hydrogen processing methods
(e.g., electrical electrolysis), while they provide exciting
potentials such as a methane reformer or an incomplete
hydrocarbon oxidizing (Athanassiou et al. 2007). For more
methods, the reader is referred to Lucas-Consuegra et al.
(2014), Liu et al. (2002), Zhu et al. (2016).

2.3 CO2 Thermal Decomposition

A possible approach to carbon dioxide recovery and uti-
lization is called the thermal decay of CO into O2. Never-
theless, the thermodynamic equilibrium prevents the
decomposition of carbon dioxide. High-intensity energy
sources including an extremely high temperature (>1727 °C)
are needed in an implementation container to achieve a good
conversion. Incorporating the TDCD and POM responses in
a thick CMR suggests a substantial improvement in carbon
dioxide used for the production of POM reaction oxygen (Jin
et al. 2008, 2006; Zhang et al. 2007, 2009, 2014). Within the
sight of an upheld palladium(Pd) catalyst, the TDCD
responses happen toward one side of the layer, and methane
interacts with oxygen (the oxygen that penetrates from the
TDCD) on the other end, through a maintained nickel cat-
alyst (Sagir and Talebian 2020; Sagir et al. 2020). The
selectivity of carbon monoxide and CO2 oxidation at 900 °C
was 100%, while 15.8%, respectively (Jin et al. 2008). The
decomposition of carbon dioxide is favorable to the
improved oxygen permeation density under environmental
conditions. The flow of oxygen in the cycle will typically be
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facilitated by raising the membrane width (i.e., where con-
centrations are calculated by the diffusion of bulk). Zhang
et al. (2009) rendered coupling reactions with a smaller
thickness of a thin tubular SCFA membrane that permitted
the flux of oxygen to increase above the disk-like layer. At
950 °C, the transfer of CO2 exceeded around 17%, which is
better than the transfer accomplished with the same operat-
ing temperature by utilizing a disk-like membrane. POMs
can enhance the driving energy and facilitate CO2 decay
from the opposite end of the membrane to the TDCD. In this
situation, however, the membrane was probably in a some-
what more complicated setting, because on one side CO2/CO
was exposed while on the other hand CH4/CO/H2 was
exposed. As stated in the earlier segment, a balance is
required in a membrane reactor among high oxygen pene-
trability and adequate chemical constancy. Thus, the TDCD
and POM link responses were formulated as a composite
system of three layers (porous/dense/porous). The decrease
resistance, carbon dioxide tolerance, and strong penetrability
functions were divided into the layers of, respectively,
SBFM, LSM-YSZ, and SCFNb. This architecture is
important as each layer has its unique purpose and leads
synergistically to enhancing stabilization and conversion.
The current reactor obtained a carbon reduction of 20.58% at
900 °C and can be run continuously for over 500 h (Zhang
et al. 2014).

2.4 Higher Hydrocarbon Production

In the form of higher hydrocarbons (also termed C2+

hydrocarbons or literature C2 hydrocarbons), molecules that
are essential intermediate products in chemistry are
describable as chains composed of binary or other carbon
atoms (e.g., aromatics, olefins, and alkanes). Higher hydro-
carbons, such as polymer synthesis (Karakaya and Kee
2016), can often be used in liquid fuels or employed as
simple chemicals. Methane can be converted into developed
hydrocarbons by Fischer–Tropsch synthesis, but direct
alteration will be desirable without the intermediary stage of
syngas processing (Alvarez-Galvan et al. 2011). There is,
however, no clear conversion process currently necessary to
perform in Fischer–Tropsch. Ethane and ethylene are the
primary components of the active conversion (Stoukides
2006). There is also an enticing mixture of aromatic
compounds.

In general, layer procedures are very encouraging, par-
ticularly for energy-efficient separation tasks, for usage in
the petrochemical industry (Ravanchi et al. 2009). The
ceramic membrane reactors can be equipped for all com-
bined oxygen ion, electron, and proton or neutron conduc-
tors. The reaction temperature of catalysts (e.g. 800 °C for
direct methane conversion) may be reduced (Karakaya and

Kee 2016). The combination of methane, hydrogenation,
dehydrogenation, and dehydro-aromatization can be
achieved to synthesize greater hydrocarbons using mixed-
conducting ceramic membranes (Kirchen et al. 2013).
Methane (Wood 2015), oxygen, and alkanes such as ethane
are the primary ingredients for the reactions. Often, by
adding an external power supply to the membrane (Mor-
ejudo et al. 2016), it can increase the efficiency of the
reactors. The cutting-edge technology for extremely
energy-intensive hydrocarbon processing is the thermal
or catalytical splashing of crude petroleum feedstocks
(Sadrameli 2015; Fakhroleslam and Sadrameli 2019).
Certain potential drugs, such as dimethyl ether (DME) (Farsi
et al. 2016; Azizi et al. 2014; Saeidi et al. 2014; Torrente-
Murciano et al. 2014; Atsonios et al. 2016), that are not
mentioned here are also available.

2.5 Methane Production

Methane is the key natural gas portion and one of the leading
energy supplies at present. In several countries worldwide,
methane is used for the production of heat and energy is a
well-developed distribution network. In certain industrial
processes, methanol is often used as a feedstock. The
development of ammonia synthesis high pure hydrogen is an
example. Throughout the future, the usage of carbon dioxide
and surplus wind drive as a chemical drive transporter would
be an essential application (Jürgensen et al. 2014). Methane
can be processed utilizing CO2 methanation and mixed-
leading clay layers. The primary pollutants are CO2 and
hydrogen from energy, such as water and biomass. Coke
oven gas is an effective feedstock. By adding an external
power supply on the membrane, the necessary hydrogen can
be generated. Catalytical methanation reactors are most
commonly run on set catalyst sheets and at temperatures of
around 400 °C (Schildhauer and Biollaz 2015) utilizing
biomass as a feedstock. The usage of CO2, which can play a
significant part in decreasing overall CO2 pollution from
various chemical activities, is highly essential in generating
synthetic methane. Certain potential goods may be produced
with CO2 and H2 in addition to methane. Saeidi et al. (2014)
explore this subject.

2.6 Ammonia Production

Ammonia is one of the world's most widely processed
compounds. For fertilizer processing, it is primarily used as
an intermediary component. Pharmaceuticals and coolants
are other uses. Ammonia may also be considered as a
possible storage medium for hydrogen since it comprises
three molecular atoms of hydrogen (Klerke et al. 2008).
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The storage of ammonia is better than hydrogen oil. At the
pressure of a few bar (Giddey et al. 2013), it can be lique-
fied. The ammonia delivery with the appropriate network is
in theory necessary. This may also be used onboard vehicles
as a refrigerating medium (Zamfirescu and Dincer 2008). For
stationary applications or as an additional control source,
ammonia may also be used as a chemical in concrete oxide
fuel cells. The key advantage is that it produces no methane
and can be run at the end worker without CO2 (Afif et al.
2016). Releases of CO2 are based on the process of ammonia
production and the energy sources utilized for production
(Lan et al. 2012).

The standard route of production is the Haber–Bosch
method, established in the early twentieth century (Haber
and Oordt 1905). It is a great-pressure method performed at
approximately 200–300 bars and up to 500 °C. When uti-
lizing membrane reactors, the reaction resistance to atmo-
spheric conditions will be reduced. This topic has also been
addressed by a variety of analysis papers, with more com-
prehensive details (Amar et al. 2011; Garagounis et al.
2014). Comparison with the traditional method Haber–
Bosch (Kugler et al. 2014), estimates for membrane reactor
usage have shown that gross energy use can be reduced by
20%. This will be an immense increase, given that the
production of ammonia worldwide is about 200 million tons
annually (Giddey et al. 2013). Electrochemical ammonia
production may be used in the manufacture of ammonia with
diverse-leading clay layers. The key pipes are N2 and H2, of
which the water separation on the membrane will also
contain hydrogen. The use of polymer membrane, for
example, Nafion, too, is interesting, but will not be more
included in the study. Synthesis of electrochemical ammonia
is a way of processing at mild temperatures of about 500 °C,
ammonia without heavy strain. To carry out electrochemical
ammonia synthesis (Skodra and Stoukides 2009), unadul-
terated proton or O2 particle conductors required an outside
supply of force. Renewable electricity from wind or solar
power systems will also be installed.

Different perovskites, for example, barium cerates and
fluorites, including cerium oxide with strong proton con-
ductivity are suitable membrane materials. In addition to the
pure ionic conduction of ceramics, the potential ammonium
discovery may involve varied ionic electronic clay resources
or even double-stage cermet, or cer-resources. No reports
covering this field are currently accessible, and only the
existing method is listed. A ceramic oxygen membrane is
used for the synthesis of ammonia to benefit from the active
usage of wet nitrogen (Amar et al. 2014; Deibert et al.
2017) or also wet air (Lan et al. 2014) for a reaction. The
idea is to use water as a supply of hydrogen. Water
spreading reaction happens in theory on the side of the
cathode. The residual hydrogen will bind with nitrogen to
ammonia when it is absorbed by the membrane, which

ensures, there is no need for significant pretreatment.
Ammonia forming concentrations are typically less than for
proton leading membranes on an order of magnitude. It is
therefore important to produce specially formulated cata-
lysts. However, if a mixed conductor is used, a lower per-
meate PO2 is required, which is only feasible through
another process, e.g., partial methane oxidation. As the
Haber–Bosch NH3 production method is being used com-
mercially for more than 100 years, detailed work has been
carried out on catalysts to enhance the efficiency of reactors
of a great scale. Nevertheless, the production of appropriate
and specifically developed catalysts is still in the initial
stage with regards to the electrochemical ammonia synthe-
sis. Screening experiments have been performed to identify
acceptable transition metal catalysts for alternative catalyst
materials (Skulason et al. 2012; Abghoui et al. 2015;
Abghoui and Skúlasson 2015). Electrochemical ammonia
synthesis members are also precious metals such as Ru
(Back and Jung 2016).

Future work is expected to increase the production of
ammonia to a point that is consistent with the conventional
ammonia synthesis method in the field of catalysts. For
example, the construction of small-scale ammonia plants
may be a potential niche use. This is very complicated,
owing to the heavy maintenance rates when current
large-scale buildings are demolished.

3 Environmental Impacts

In this situation, there is no main incentive to manufacture a
drug, but the emphasis is on decomposing toxic compounds.
Environmental considerations may result in the spin-off of a
membrane reactor. An illustration here is the nitrogen oxi-
des, which also arise when hydrocarbon fuels are combusted
in the soil. Czuprat and Jiang (2011) also suggested an
increase of the N2O conversion from 25% to almost 100%
by eliminating oxygen from BaCox–FeyZrzO3-d (BCFZ,
x + y + z = 1). As seen in (Kondratenko and Ovsitser 2008),
it is often possible to pair them with certain oxygen-intensive
reactions such as oxidative ethane dehydrogenating. Cat-
alytic research was carried out by Konsolakis et al. (2015) to
create CuO–CeO2 catalysts through a variety of synthesis
pathways, which is essential for that reaction. More work is,
however, required to improve nitrogen oxide-reduction
operating systems.

The decomposition of H2S, which can also act as a
feedstock for the manufacture of hydrogen, is another
function if the amount is appropriate. The development of
H2S hydrogen originating in the Black Sea was shown by
Ipsakis et al. (2015) and Kraia et al. (2016).
BaZr0.85Y0.15O3-d membranes proton-conducting is therefore
applied successfully.
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4 Conclusions and Future Recommendations

There is still the substantial curiosity in this technology
despite more than 20 years of work into high-temperature
ceramic membrane reactors even though it has not been
used in commercial applications. There has been tremen-
dous development, for instance on syngas, but there are
other challenges, for example, with the stabilization of
products, scalability, and joining and screening of layer
constituents in modules. However, the attention in mem-
brane reactor technology in recent years has again increased
because of the great number of science papers recorded in
this review study, as well as the high performance and
subsequent energy-saving potential. Present features of such
processes include the usage of CO2 and heat as well as the
combining of diverse reactions. Whether as a simple
chemical or as an energy transporter, hydrogen may be
used. All the processes of hydrogen separation, water–gas
change response, and autothermic reform are encouraging;
however, concerning hydrogen flux by layer and particu-
larly engineered catalysts, these also need to be further
developed. Higher hydrocarbons including ethylene are
essential chemical feedstock. Direct synthesis of the ethy-
lene production cycle by methane coupling will allow sig-
nificant energy savings and generate a huge added benefit.
But, at present, the technology is still at an early stage and
the cost and reliability are not ideal, it cannot compare with
conventional, high-scale processes. A drop in the deposition
of coke caused a significant issue by catalyst deactivation,
which is the extreme benefit of dehydrogenation and
methane dehydro-aromatization utilizing clay layer con-
tainers. In the production of numerous chemical composites,
for example, liquid fuel, or in the Haber–Bosch NH3

manufacture cycle, Syngas is one big intermediate compo-
nent. Fractional oxidation is probably the best progressive
method in the field of clay layer containers as oxygen
porous layers have already been produced with high flux
and adequate stability. The selection of catalysts is very
simple since Ni metal is a quite effective choice.

Manufacturing and upscaling are becoming the next
moves toward industrialization. CO2 methanation incorpo-
rates two main objectives: CO2 utilization and carbon con-
servation. The method will provide an alternative to water
electrolysis energy storage and has the benefit of using
current natural gas distribution networks. Ammonia syn-
thesis is one of the oldest processes and one of the most
significant. This is well designed and configured for this
purpose already. Many processing facilities with ammonia
run on an extremely big scale. However, electrochemical
ammonia production has several significant benefits con-
cerning feedstock and health materials. Water may serve as a
hydrogen source without strain or carbon raw materials. At

present, however, the levels of ammonia synthesis are too
small to deal effectively with large plants. This can be
addressed by focusing on small-scale development of
ammonia. Besides, membrane reactors allow the combina-
tion of various reactions so that synergies between them can
be effectively produced. This combination will affect thermal
administration and the distribution of reactants positively.
The bulk of literature findings are focused on studies of
laboratory size. Improved performance and reliability have
become and remained a significant problem for all of the
works studied. An efficient process with an established film
material or layer worked with long-term steadiness for a
(computing) optimized method has not been effectively
engineered as planned. To connect a film reactor to the
current procedure with no addition, no additional output and
cost–benefit will be generated. Transdisciplinary work is
therefore utterly necessary. A limited number of successful
methods have to be established for the introduction of the
first test case, in which flexible and lucrative components,
part designs, and development measures are required
immediately. A great deal of advancement in material sci-
ence, including joining and sealing technologies, has been
illustrated in this chapter, so that the analysts have a positive
perspective on this technology. However, this issue would
have to be resolved through substantial efforts (and time).
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Photo-Enzymatic Green Synthesis: The
Potential of Combining Photo-Catalysis
and Enzymes

Pravin D. Patil, Shamraja S. Nadar, and Deepali T. Marghade

Abstract

In nature, photoautotroph organisms are capable of
converting solar energy into chemical energy. Inspired
by this phenomenon, natural photosynthesis could serve
as an inspiration for the generation of artificial photosyn-
thetic platforms. In particular, connecting photo-catalysis
with biocatalysis can provide an efficient biotransforma-
tion system, which is highly selective and environmen-
tally benign. In this chapter, the photo-catalytic pathways
involved have been discussed in detail. Further, the
structural and catalytic mechanisms of enzymes involved
in light-driven catalysis are categorized. Moreover, the
chapter highlights the incorporation of nanoparticles in
the photo-catalytic system as an enzyme activator to make
the process efficient and cost-effective. The application of
photo-biocatalysis in various biotransformations has been
explained with the state-of-the-art examples in halogena-
tions, decarboxylation, and epoxidation. The chapter
mainly focuses on the enzymes associated with
light-driven catalysis along with the probable mechanism
involved. Several applications of enzyme-assisted
photo-catalysis while exploring the correlation of factors
affecting the overall process are comprehensively
explored. Finally, strategies for the large-scale imple-
mentation of photobiocatalyst for the production of a
variety of chemicals via biological route are briefly
discussed.

Keywords

Biocatalysis � Photo-catalysis � Bio-photo-catalysis �
Simple and cascadic systems � Photo-enzymatic
reduction � Co-factor regeneration � Sustainable
chemistry � Green synthesis

1 Introduction

The everlasting exigence for the development of efficient,
stable, and greener catalysts possessing high selectivity for
the improvement of synthetic chemical processes has led to
several challenges and opportunities. In recent years,
inspiring from the natural biochemical reactions, scientists
have employed natural enzymes with the exquisite selec-
tivity to synthesize the required products (Seel and Gulder
2019). It is worth mentioning that combining enzymatic and
chemical catalysts is a bit complex method considering the
varying nature of chemical and biological catalysts that
make them naturally incompatible with each other. Typi-
cally, enzymes are not compatible with harsh reaction con-
ditions, such as high temperatures and pressures (Gacs et al.
2019). However, by employing light, the process can be
made compatible with the enzymes. A novel hybrid
enzymatic/photo-catalytic approach inspired by the natural
photosynthesis process has now emerged as a new chal-
lenging field to explore. The combined approach of utilizing
solar energy coupled with photo-catalysis and biocatalysis
can make the process greener.

The hybrid enzymatic/photo-catalytic approach has been
extensively researched out for the synthesis of valued
products using several pathways, including hydroxylation,
epoxidation, asymmetric reduction, etc. (Lee et al. 2018).
The capability of nicotinamide adenine dinucleotide phos-
phate (NADPH) to liberate electrons and proton makes it a
useful co-factor for biocatalytic redox alterations. The
Baeyer–Villiger oxidation is primarily useful for the
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synthesis of various food additives and medicines by
employing redox enzymes (or oxidoreductases). Torres
Pazmiño et al. efficiently developed a novel bifunctional
biocatalyst and modified Baeyer–Villiger oxidation with an
efficient regeneration of coenzyme having three distinct
Baeyer–Villiger monooxygenases and a phosphate dehy-
drogenase (Torres Pazmiño et al. 2008). This approach
yielded chiral intermediates involved in the formulation of
bioactive compounds. The production of methanol from CO2

using formate dehydrogenase (FDH), formaldehyde dehy-
drogenase (FaDH), and alcohol dehydrogenase (ADH) with
an efficient revival of a co-factor (nicotinamide adenine
dinucleotide hydride (NADH)) using visible light and TiO2-
based photo-catalysts was effectually demonstrated by Are-
sta et al. (2014). Similarly, Van Schie et al. used
flavo-monooxygenases as biocatalysts for the selective
epoxidation of styrene and its derivatives (Schie et al. 2019).

The synthesis of enantiomerically pure amines has
become a matter of interest as amines are imperative for the
synthesis of drugs and natural products of high values. Gacs
et al. developed a sophisticated biocatalytic method for the
transition of amine moiety using pyridoxal-5-phosphate
(PLP)-dependent x-transaminases (x-TAs) for the formation
of active pharmaceutical ingredients (Gacs et al. 2019).
Zhang and his team successfully exhibited photon-driven
biocatalytic decarboxylation of lower members of carboxylic
acid series applying photodecarboxylase derived from
Chlorella variabilis NC64A (CvFAP) (Zhang et al. 2019a).
Tremblay et al. investigated a hybrid enzymatic/photo-
catalytic approach for photosynthesis using bacterium Ral-
stonia eutropha and water-spitting g-C3N4-catalase
photo-catalyst for bioplastic production where the yield was
found to be increased by 1.84-fold (Tremblay et al. 2020).
The other fields, including oxidation of thioethers through
enantioselective sulfoxidation, halogenations of aromatic
compounds using flavoenzymes, oxidative lactonization by
horse liver alcohol dehydrogenase (HLADH), oxyfunction-
alizations, etc., employing to hybrid enzymatic/photo-
catalytic processes are widely studied (Seel and Gulder
2019). After reviewing several cases of photo-catalysis, it
can be assumed that the harboring natural enzymes with
co-factors having photosensitizing properties of
photo-catalysts can boost the selectivity and productivities of
various high-valued compounds to the uppermost level.

2 Principle

In the photo-catalytic transformations, the ultraviolet (UV)–
visible-light-induced progression of photoexcited electrons
and holes in semiconductor (photo-catalyst) with filled
valence and empty conductance band plays an important role
in boosting the transformation (Tseng et al. 2010). In the last

few decades, photooxidation transformations sprouted as
sustainable atom-economic alternative methods to combat
various environmental issues. The high refractive index, UV
absorption, dielectric constant, photo-stability, nontoxicity,
and good photo-catalytic activity shoved TiO2 (anatase
form, band gap energy = 3.2 eV) as extensively used cata-
lyst while solving a variety of environmental problems
(Khalid et al. 2015). Further, the downsides such as high
band gap, surface photo-activation under UV range, petite
quantum efficiency, and lower photooxidation rate with TiO2

were tackled by doping with transition metals and carbon
(Pt, Au, Ag, Cr, V, C3N4, Nb2O5, etc.) (Khalid et al. 2015;
Zhou et al. 2006; Torkian and Amereh 2016).

Typically, in enzymatic transformations, the natural
enzymes employed as a homogeneous catalyst can facilitate
the particular process. Unlike traditional metal catalysts,
enzymes do not amend the thermodynamic equilibrium point
of reaction and ultimately enhance the rate and feasibility of
the reaction. These biological catalysts are found to be
efficient due to specific properties of proteins conferred with
chemical receptive nature and electrophoretic properties. The
enzymatic catalytic processes have wide applicability and
been employed since primitive civilizations. Generally, these
enzymes-catalyzed reactions proceed through the formation
of the enzyme–substrate complex (Bhatia and Bhatia 2018).
In co-factor-assisted biocatalysis, the amino acid side chains
of protein (enzyme) act as a binding site for distinct func-
tional groups present on the surface of co-factors, which
assist the catalysis. The co-factors then bind with the sub-
strate, which provokes a conformational reaction on the
active site (Bhatia and Bhatia 2018). Despite several
advantages, enzymatic catalysis suffers a few shortcomings
of enzymatic transformations, such as limited variability of
substrates, less stability, and expensive manufacturing
process.

Photo-catalysts have been broadly employed in
solar-induced redox chemistry in the recent past. The com-
bined approach of light-driven catalysis and biocatalysis is
extensively applied to obtain mass production of desirable
products. The studies proved that the hybrid light-driven
biocatalysis methods have high competence in terms of
sustainability and bulk production. The redox enzymes (or
oxidoreductases) were widely utilized to catalyze various
oxidation–reduction reactions to produce valuable products
through the photon-induced biocatalysis pathway. The gen-
eralized mechanism of this redox enzyme-catalyzed
photo-biocatalysis process was explained by Lee et al.
(2018). In general, electron transference expedites the redox
biocatalytic processes. For instance, the catalytic activity of
the enzyme (oxidoreductase) hinges on an external source
for electron supply, which is utilized in the transformation of
the substrate into a desirable product. The most commonly
used external source or natural redox equivalent is the
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nicotinamide adenine dinucleotide (NAD+) co-factor. The
presence of delocalized p electrons in a conjugated system of
NAD+ is responsible for its photo-catalytic activity. NAD+ is
capable of the simultaneous liberation of two electrons and
one proton for enzyme-catalyzed reduction and oxidation
transformation. On photon impact, these loosely held p
electrons get excited to higher energy levels, procuring a
reducing power of NAD+. The liberated electron from
photo-catalyst NAD+ activates the redox enzymes either
directly or indirectly through electron mediators (Lee et al.
2018). The transfer of photo-activated electron through
photosensitized chemical moiety can stimulate an ample
range of redox enzymes for various biocatalytic processes,
as reported in the latest research (Gacs et al. 2019; Lee et al.
2018; Kim et al. 2019; Granone et al. 2018).

3 Enzymes Involved in Light-Driven
Catalysis

The photo-induced electron can be transferred via direct or
indirect pathway using organic (or inorganic) photosensi-
tizers to activate the redox enzyme to catalyze various bio-
transformation reactions (Schmermund et al. 2019). Mostly,
the enzyme from oxidoreductases class is used for catalyzing
redox transformation by interchanging electrons between
enzyme active site and electron mediator(s). There are two
different pathways to activate the redox enzyme, i.e., direct
and indirect pathways for the photo-activation of enzymes
(Schie et al. 2019). The detailed mechanism of
photo-activation of the enzyme is illustrated in Fig. 1 (Lee
et al. 2018). In direct photo-activation, photo-induced elec-
tron directly swaps between a photosensitizer and biocata-
lyst, which works as an electrochemical donor and acceptor,
simultaneously. On the other hand, in some cases, electron
mediator(s) is acting as an intermediate counterpart to
facilitate electron transfers between the enzyme active site
and photosensitizer (indirect photo-activation) (Lee et al.
2019a, b).

Generally, the FDH and NADH are acting as a coupling
agent in photoelectrochemical reactions. When photosensi-
tizers absorb ultraviolet (or visible) light, it triggers the
change in the redox states from a ground level to a higher
excited level. This induces the delocalization of electrons
that extinguishes via oxidation of e− donor to conduct the
reactions (Höfler et al. 2018; Garrone et al. 2015). The
enzymes involved in photo-catalysis can be categorized on
the basis of prosthetic groups, e.g., heme-containing
enzymes (peroxidases, cytochrome P450s, etc.),
flavins-containing enzymes (e.g., old yellow enzymes
(OYEs), Baeyer–Villiger monooxygenases (BVMOs)), and
metal (iron or copper) clusters-containing enzymes (e.g.,
carbon monoxide dehydrogenases, nitrogenases, and

hydrogenases) (Gabruk and Mysliwa-Kurdziel 2015; Hanf
et al. 2012). The list of reaction components and photosen-
sitizer is summarized in Table 1.

3.1 Heme-Containing Enzymes

In the biological catalytic system, metal ions (mostly biva-
lent) play a critical part in electron transfer reactions along
with the activation (Shaik et al. 2011; Maurya et al. 2020a).
Iron is one of the vital components in biological structures,
which generally forms complex, iron protoporphyrin. It is a
more versatile part of proteins that functions as electron
transfer and signaling (Poulos 2014). In bio-electrochemical
applications, heme (iron) can form various reduced and
oxidized states during the electron transfer and catalytic
reaction. However, heme can exhibit different catalytic as
well as functional properties, depending on a proteinaceous
environment around the heme molecules (Dawson 1988;
Maurya et al. 2020b). This engenders excellent applicability
for the heme-containing protein in bio-electrochemical and
photo-catalytic reactions. Moreover, the potential (E0′)
needed for the transformation between ferrous and ferric
states can be altered depending on the protein structure
(Dailey 1997; Sono et al. 1996). For example, horseradish
peroxidase (HRP) exhibits E0′ of -0.27 V; on the other hand,
for cytochrome c, it is +0.26 V. There are three
heme-containing enzymes such as cytochrome P450s, per-
oxidases, and peroxygenases, most commonly used in var-
ious photochemical reactions (Stiborová et al. 2000).

3.1.1 Cytochrome P450
The cytochrome P450 is the most popular heme-proteins
which were thoroughly studied for their electrochemical
properties and applications. The family of cytochrome P450s
is an illustrative cysteinatoheme-containing enzyme that
plays a key role in the metabolic pathways and oxidative
transformations of endogenous or exogenous molecules
(Ener et al. 2010). Structurally, it is mainly made up of two
catalytic domains: flavin-containing and heme-containing
reductase domain (Zanger and Schwab 2013). These cat-
alytically active domains catalyze the oxidation of co-factors
(mostly, NADPH) to gain electrons, which is further trans-
ferred to the reductase domain for photo-catalytic reactions
(Urlacher and Girhard 2012). In a typical electron transfer
reaction cycle, the heme-containing domain transfers two
electrons, which undergoes stepwise reduction. One of the
electrons reduces Fe(III) heme to become a Fe(II) state,
followed by conversion of molecular oxygen to dioxygen
complex. Another electron produces a nucleophilic com-
pound. These two reactions of protonation generate elec-
trophilic and nucleophilic species, which react with the
reactant at the active site (Urlacher et al. 2004; Bernhardt
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2006; Urlacher and Girhard 2019). The cytochrome P450 is
able to catalyze an array of scientifically beneficial bio-
transformation reactions, such as oxidation, sulfoxidation,
decarboxylation, and hydroxylation, and of a wide range of
reactant such as fatty acids and antibiotics (Girvan and
Munro 2016). Also, cytochrome P450 was employed in
various bioremediation processes such as the biodegradation
of environmentally harmful compounds such as insecticides,
pesticides, and other agrochemicals (Jones et al. 2001;
Kellner et al. 1997).

3.1.2 Peroxidases
Peroxidase enzyme is another class of heme-containing
protein-containing Fe(III)–heme protoporphyrin that func-
tions as a binding site (Hofrichter et al. 2010). In the cat-
alytic cycle, it liberates two electrons, which are utilized for
the reduction of hydrogen peroxide, further pursued by the
oxidation of substrate molecules carried through two inter-
mediates (Kalsoom et al. 2015). In most of the catalytic
peroxide-based reduction, methylene blue is used as an
activator for peroxidase under visible light. In one of the
examples, peroxidase reduced oxo-ferryl p-cation and
exhibited a multifold greater affinity peroxidase active site
(Karmee et al. 2009). In another example, researchers con-
ducted light-driven reactions by peroxidase immobilized
onto Pt-doped magnetic films (Kamada et al. 2012). Further,
peroxidase was activated by visible-light-induced excitation,
which appeared via oxidation of an organic substrate (Chen
et al. 2009). In most of the reactions, the photoreactions were

initially supplied with peroxide followed by termination
accompanied by enzyme deactivation. In some cases, the
combination of semiconductor–enzyme offered control of
light-driven oxidation reactions without the need for any
chemicals (Paul et al. 2014). The enzyme from peroxide
family was mostly used in various decolorization and
remediation of wastewater containing industrial dyes such as
sulfonephthalein dye, brilliant cresyl blue, methylene blue,
orange G, azo, and anthraquinone dyes (Husain 2010). Thus,
peroxidase-based photo-catalytic treatment will provide an
efficient biotechnological process for continuous color and
aromatic compound removal from various industrial efflu-
ents at large scale (Dutta et al. 2012).

3.2 Flavin-Based Enzyme

In this enzyme family, prosthetic agent flavin molecules are
tightly bound to the enzyme to catalyze a wide range of
biotransformation reactions through electron transfer
(Joosten and Berkel 2007). Generally, the flavin group
involves FAD and FMN as a prosthetic component. They
can exist in three redox states: (i) oxidized, (ii) one-electron
reduced, and (iii) reduced by two electrons (Walsh and
Wencewicz 2013). The catalytic reduction of flavin
enzymes is shown in Fig. 2. However, the properties of
flavins are drastically altered by substitution and nonco-
valent interactions surrounding protein (Losi 2007; Chaiyen
et al. 2012; Romero et al. 2018).

Fig. 1 Schematic illustration of direct and indirect photo-activation of redox enzymes by photo-induced electron transfer (Copyright 2018 John
Wiley and Sons. All rights reserved, reprinted with permission) (Lee et al. 2018)

176 P. D. Patil et al.



Ta
b
le

1
A

su
m
m
ar
y
of

re
do

x
en
zy
m
at
ic

re
ac
tio

ns
dr
iv
en

by
di
re
ct

tr
an
sf
er

of
ph

ot
o-
in
du

ce
d
el
ec
tr
on

s

E
nz
ym

e
fa
m
ily

E
nz
ym

e
A
ct
iv
e

si
te
/c
o-
fa
ct
or

E
le
ct
ro
n
so
ur
ce

Ph
ot
os
en
si
tiz
er

A
pp

lic
at
io
ns

R
ef
er
en
ce
s

H
em

e-
co
nt
ai
ni
ng

en
zy
m
e

C
yt
oc
hr
om

e
P4

50
H
em

e
D
ie
th
yl
di
th
io
ca
rb
am

at
e

R
u(
(O

M
e)
2b

py
)2
Ph

en
A

O
xi
da
tio

n,
su
lf
ox

id
at
io
n,

de
ca
rb
ox

yl
at
io
n,

hy
dr
ox

yl
at
io
n

T
ra
n
et

al
.

(2
01

3)

Pe
ro
xi
da
se
s

H
em

e
T
ri
et
ha
no

la
m
in
e

E
os
in

Y
D
ec
ol
or
iz
at
io
n
an
d
re
m
ed
ia
tio

n
of

w
as
te
w
at
er

K
am

ad
a

et
al
.(
20

12
)

Fl
av
in
-b
as
ed

en
zy
m
e

B
ae
ye
r–
V
ill
ig
er

m
on

oo
xy

ge
na
se
s

Fl
av
in

ad
en
in
e

di
nu

cl
eo
tid

e
(F
A
D
)

E
th
yl
en
ed
ia
m
in
et
et
ra
ac
et
ic

ac
id

(E
D
T
A
)

FA
D

B
io
tr
an
sf
or
m
at
io
n
of

m
on

o-
an
d

bi
cy
cl
ic

ke
to
ne
s

T
ag
lie
be
r

et
al
.(
20

08
)

O
ld

ye
llo

w
en
zy
m
e

Fl
av
in

m
on

on
uc
le
ot
id
e

(F
M
N
)

E
D
T
A
,
H
2O

,
an
d

tr
ie
th
an
ol
am

in
e

FM
N

an
d
ro
se

be
ng

al
T
ra
ns
-h
yd

ro
ge
na
tio

n
of

co
nj
ug

at
ed

30
6
C
=C

do
ub

le
bo

nd
s

M
if
su
d

et
al
.

(2
01

4a
)

M
et
al

cl
us
te
r-
ca
nt
er
ed

en
zy
m
e

H
yd

ro
ge
na
se
s

[F
eF
e]

an
d

[N
iF
eS
e]

cl
us
te
r

A
sc
or
bi
c
ac
id
,
E
D
T
A
,

H
2O

,
an
d
tr
ie
th
an
ol
am

in
e

3-
M
er
ca
pt
op

ro
pi
on

ic
ac
id

ca
pp

ed
C
dS

na
no

ro
d
an
d
ca
rb
on

ni
tr
id
e–
T
iO

2
hy

br
id

H
yd

ro
ge
n
pr
od

uc
tio

n
fr
om

w
at
er

A
da
m

et
al
.

(2
01

7)

Photo-Enzymatic Green Synthesis: The Potential of Combining … 177



3.2.1 Baeyer–Villiger Monooxygenases
Flavin-containing monooxygenases signify highly attractive
biocatalytic tools due to their unique way of catalyzing wide
spectra of monooxygenation reactions with a remarkable
selectivity (Malito et al. 2004). Baeyer–Villiger monooxy-
genases catalyze the insertion of an oxygen atom into a
carbon–carbon bond of a carbonylic substrate in the pres-
ence of NADPH and molecular oxygen (Berkel et al. 2006).
Structurally, they are made up of two-domain architecture;
one domain is for FAD-binding, and other domain is for
NADPH-binding. These two domains protect the active site
within the cleft. Surprisingly, the active form of monooxy-
genase sequence motif was formed by a surface loop that
connects to both domains (Huijbers et al. 2014; Leisch et al.
2011). The active site contains arginine, which was active as
a stabilization agent for the peroxyflavin intermediate.
Baeyer–Villiger monooxygenases are often utilized in vari-
ous synthetic chemistry, typically, in oxidation reaction
(Pazmino et al. 2010; Gonzalo et al. 2010). The over-
whelming diversity of catalytic properties of Baeyer–Villiger
monooxygenases permits access to many different classes of
valuable chemicals. They were investigated mostly for the
conversion of mono- and bicyclic ketones, camphor, a few
aryl aliphatic ketones, and some steroids (Balke et al. 2012,
2018).

3.2.2 Old Yellow Enzymes
The enzymatic transformation of stereoselective alkene
reduction is catalyzed by enzymes derived from bacteria,
fungi, and plants collectively called ‘old yellow enzyme’
Seel and Gulder 2019). The old yellow enzyme is a
single-domain enzyme containing an a/b barrel fold with the
molecular weight around 45 kDa. There are two different
structural barrels: bottom barrel, which is structurally made

up of a b-hairpin, and top barrel containing Si-face for FMN
binding and the active site Karplus et al. 1995; Williams
et al. 2004). The old yellow enzyme catalyzes the asym-
metric reduction of C=C bonds via Michael-type addition by
reduction of flavin. Also, in nature, they play a crucial role in
numerous routes such as enoyl-CoA reductase in fatty acid
biosynthesis, morphine biosynthesis, and the biosynthesis of
jasmonic acid (Toogood et al. 2010). One of the research
teams revealed direct activation of an old yellow enzyme
homolog derived from B. subtilis using flavins and EDTA as
a photosensitizer and an electron donor, respectively. These
components have the potential catalyzing ketoisophorone
reduction with TOF of 1.26 � 104 h−1 (Pesic et al. 2017).
The biocatalytic reduction of activated CC bonds was mostly
carried out by OYEs in synthetic biocatalysis (Winkler et al.
2018). Also, they catalyzed the stereospecific
trans-hydrogenation of conjugated C=C double bonds, cre-
ating up to two new chiral centers Rauch et al. (1868).

3.3 Metal Cluster-Centered Enzyme

In most of the redox enzymes, metal clusters are a crucial
counterpart that shows significant electrochemical and cat-
alytic properties under a biocompatible environment (Evans
and Pickett 2003). Among different metal clusters, the iron–
sulfur clusters are associated with various biological activi-
ties such as electron transfer, catalysis, and gene expressions.
The electron transfer properties are depending upon the
oxidation state switching between the (II) and (III) and
portentous scaffold around the clusters (Johnson et al. 2005).
Because of this unique structure, they can control potentials
in the range of −500 to +300 mV, and hence they can cat-
alyze the reaction very efficiently (Lill 2009). There are a

Fig. 2 Catalytic cycle of flavin redox reactions (©2018 Walter de Gruyter GmbH, Berlin/Boston, reprinted with permission) (König et al. 2019)
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few well-known metal-centered enzymes involved in
photo-catalysis, such as nitrogenases, carbon monoxide
dehydrogenases, and hydrogenases that are briefly described
in the next sections (Fontecave 2006).

3.3.1 Hydrogenases
Hydrogenases have been intensively studied iron-containing
metalloprotein, which can produce hydrogen gas with the
reduction of the proton. They can be categorized into various
types depending on the combination of the iron cluster with
other metal at active sites (Lubitz et al. 2014). Generally,
iron can form the clusters with Se and Ni in the form of Fe–
S, Fe–Fe, and Fe–Ni (Caputo et al. 2015). In various
research works, hydrogenases were activated directly by
creating a bridge between organic/inorganic photosensitizers
and enzymes via covalent bonding or physical adsorption
(Brown et al. 2012; Sakai et al. 2013). Mostly, hydrogenases
are very susceptible to molecular oxygen and undergo irre-
versible structural inactivation (Zhao et al. 2016). Oxygen
tolerance is a crucial concern in the exploitation of hydro-
genases for the biosynthesis of hydrogen gas. In order to
overcome this issue, researchers came up with a platform
that provides a favorable environment for the redox enzyme
by avoiding contact with molecular oxygen. In another
strategy, the hydrogenase was genetically modified, where
one of the terminals ligated and substitutes with isosteric
selenocysteine (Reisner et al. 2009). The replacement of the
selenocysteine helps to demonstrate higher polarizability.
The exceptional configuration permits for reducing product
inhibition with enhanced overall catalytic properties, and the
unavailability of photon resonance-active oxidized state
(Adam et al. 2017; Parkin et al. 2008).

3.3.2 Carbon Monoxide Dehydrogenases
The nickel and iron comprising dehydrogenases derived
from Carboxydothermus hydrogenoformans can catalyze the
biotransformation of carbon monoxide and carbon dioxide
(Jeoung et al. 2014; Woolerton et al. 2011). There are four
different clusters, namely cluster A to cluster D. Each cluster
has a different metalloprotein and different functional and
catalytic properties. Every monomer comprises two types of
clusters: 4Fe–4S (cubane-type, cluster B) and Ni4Fe–4S
(active site, cluster C). Additionally, 4Fe–4S (cluster D), a
cluster attached to the dimer interface, covalently links both
monomers (Dobbek et al. 2001). One of the research groups
validated catalytic reduction of carbon dioxide to carbon
monoxide by immobilizing carbon monoxide dehydroge-
nases, and photosensitizers on different metal oxide
nanoparticles made up of zinc, titanium, etc. (Woolerton
et al. 2010). During visible light excitation, photosensitizers
inject electrons into the metal oxides through the conduction
band. The photoexcited electrons access the cluster (D) of
dehydrogenase that is delivered to the active site of the

enzyme via a second cluster (B) where CO2 to CO conver-
sion occurred while the holes generated in photosensitizers
were quenched by 2-(N-morpholino) ethanesulfonic acid, a
sacrificial electron donor (Qin et al. 2008). Further, the
researchers concluded that the morphology and chemical
composition of nanomaterials drastically manipulated pho-
ton generation and transportation, which altered the total
photo-biocatalytic activity (Roth et al. 2010).

4 Nanoparticle-Based Activation of Enzyme

The utmost prerequisite of photo-biocatalysis was to switch
over the photo-catalytic activity from the UV range toward
the visible region to make the process more economical and
eco-friendly. The other prerequisite of photo-biocatalysis
was to regenerate co-factors (e.g., NADH or NADPH) for
the activity while making the process efficient and
cost-prohibitive. This was achieved by activation of an
enzyme using doped or coupled photo-catalyst nanoparticles
(Lee et al. 2014). Aprile and the team noted that the
photo-catalytic property of TiO2 was not accelerated simply
by doping or alteration in composition (Aprile et al. 2008).
Further, it was perceived that by reducing the size of TiO2 to
nanometric scale, a highly ordered titanium was obtained
with a large surface area and increased porosity. These
morphological modifications upgraded the photo-catalytic
characteristic by initiating quantum effects and the constraint
of electrons in limited space. In this context, it was experi-
mentally illustrated that the TiO2 nanotube accompanying a
stretched diffusion length of charge carriers unveiled the
exceptional photo-catalytic activity. These observations
promoted the use of nanoparticles to activate and enhance
enzymatic activity. Generally, the nano-biocatalytic pro-
cesses include nano-scaled photo-catalyst, oxidase reductase
enzymes, mediators, and electron donors. It is largely
explored by scientists for solar-induced manufacturing of
commodity valued chemicals with photochemically
co-factor regeneration (Patil and Yadav 2019).

The concept was further employed in stereospecific
hydrogenation of ketoisophorone into (R)-levodione using
impregnated gold nanoparticles (NPs) impregnated on TiO2

as photo-catalyst along with natural oxidoreductase enzyme
and FAD+ as mediator and co-factor, respectively (Maciá-
Agulló et al. 2015). The study signifies that coupling TiO2

with Au nanoparticles boosted the photo-catalytic properties
in visible light range. Further, the transition metal
nanoparticles-doped TiO2 photo-catalyst was extensively
utilized in photo-biocatalysis. Lee et al. synthesized
silica-coated nanomolecules of NaYF4 doped with mixed Yb
and Er or Yb and Tm and successfully employed it along
with a photosensitizer named Rose Bengal (RB), redox
enzymes, and nicotinamide co-factors (e.g., NADH,
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NADPH), in near-infrared (NIR) light range for the synthesis
of L-glutamate (Lee et al. 2014). The group further reported
higher efficiency of RB/Si–NaYF4:Yb, Er nanoparticles,
than RB/Si–NaYF4:Yb, Tm nanoparticles for the
NIR-induced enzymatic conversion of a-ketoglutarate to L-
glutamate. This work recommended the use of adaptable
usage of NIR light in the production of high-valued chem-
icals using coupled photo-catalyst nanoparticles.

In textile industries, synthetic azo dyes are widely utilized
that produce several toxic organic water pollutants. Azo and
team developed a unique hybrid photo-catalytic enzymatic
system encompassed of c-Fe2O3 nanoparticles (IONPs) as a
photo-catalyst with low band gap (2.2–2.3 eV), azo reduc-
tases, FMN as co-factors, NADPH, and 2-(N-morpholino)
ethanesulfonic acid (MES) as an electron donor (Nehme
et al. 2020). The high degree of photoexcited electron–hole
recombination hindrance of IONPs photo-catalysts was
overcome by fastening coupled catechol moiety and flavin
on the surface of IONP photo-catalyst. The IONPs
photo-catalysts efficiently degraded azo dye by absorbing
visible light via accelerating the activity of azo reductases.
Moreover, the flavin-coated iron oxide nanoparticles were
found to be convenient to store at room temperature for a
longer duration. These studies highlighted the development
of efficient visible-light-induced photo-biocatalysis for the
production of high-valued chemicals. However, the devel-
opment of the economic photo-biocatalytic system needs
robust co-factors (e.g., NADPH, FMN, FAD, etc.) to attain
regeneration competence. Conventionally, regeneration of
NADH co-factors has been triumphed using enzymatic
recycling by whole-cell extracts, which is uneconomical for
large-scale production. In recent years, several co-factor
regeneration approaches have been explored (Hollmann
et al. 2010).

Brown et al. reported the photo-induced biocatalytic
conversion of aldehydes to alcohols using ADH, biohybrid
complexes of CdSe quantum dots, and ferredoxin (Brown
et al. 2016). The process was found to be efficient for the
regeneration of NADPH co-factors. They pragmatically
illustrated the proficiency of quantum dots and ferredoxin
complexes to regenerate NADPH by employing Ther-
moanaerobium brockii ADH and iso-butyraldehyde. The
thrust for low-cost and more eco-friendly process encour-
aged Choudhury et al. to develop a low-cost
photo-biocatalytic system for the asymmetric reduction of
prochiral ketones into chiral secondary alcohols using
biomass-derived nonmetallic carbonaceous photo-catalysts
(Choudhury et al. 2014). The system was comprised of
ADHs biocatalyst and graphene-based nano-photo-catalyst
with Cp*[Rh(bpy)H]+ as a metallic mediator and NADPH as
a co-factor. This biomimetic endeavor efficiently produced
chiral pharmaceutical valued 1-phenyl ethanol and their
derivatives (with 64 to 74% conversion rate) along with

nicotinamide co-factor (NADPH) regeneration under visible
light. This study propelled researchers toward the develop-
ment of more eco-friendly, cost-effective, and solar
light-driven photo-catalytic/biocatalytic cascade production
of high-valued chemicals.

5 Applications in Photo-Biocatalysis

Photo-catalysis can copulate either to isolated enzyme/cell
lysate containing enzymes, whole-cell system, or artificial
enzymes of interest, as depicted in Fig. 3. Moreover, there
are multiple synthetic transformation pathways to carry out
light-driven enzyme catalytic reactions as illustrated in
Fig. 4.

5.1 Isolated Enzymes/Cell Lysates

Reduction of Carbonyl Functional Group
Active sites of the enzyme can facilitate a chiral environment
that makes it ideally suitable for enantiospecific catalysis
(Vaidya et al. 2020; Patil and Yadav 2018). Several isolated
enzymes or cell lysates have been employed in the reduction
of carbonyl functionalities. Commercially obtainable Ther-
moanaerobium brockii alcohol dehydrogenase (tbADH) was
employed to attain the conversion of aldehydes (Brown et al.
2016). The needed reducing equivalents were regenerated
(photochemically) with the help of a photo-catalyst (CdSe
QD) and biohybrid complexes of ferredoxin NADP+

reductase (FNR) that are specific to NADPH, from green
algae (Chlamydomonas reinhardtii). FAD containing FNR
can transfer a hydride to NADP+ by corresponding natural
photosynthesis where a donation of two electrons occurs.
The oxidation of ascorbic acid originates electrons in the
process. Similarly, chiral 1-phenylethanols were yielded via
enzymatic reduction when ketones were used as substrates
(Choudhury et al. 2012). Several researchers in the recent
past reported comparable findings (Höfler et al. 2018;
Choudhury et al. 2014). Nevertheless, the applicability of
FNR as a relay enzyme is still constrained due to its limited
specificity concerning phosphorylated nicotinamide
co-factors.

Decarboxylation of Carboxylic Acids
Lu et al. extracted CYP102A1 (P450BM3) reductase from
Bacillus megaterium and coupled it with a cytochrome P450
enzyme (OleTJE) to synthesize self-sufficient protein,
OleT-BM3R. It carried out decarboxylation of fatty acids
into linear a-olefins. The activity of engineered P450BM3’s
hydroxylase was noted 1000-folds higher than those of other
P450 fatty acid hydroxylases. The reason for the boosted
activity is possibly due to high ferricyanide and cytochrome
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Fig. 3 a Principle of
light-induced electron abstraction
by photosensitizers and electron
transfer to redox enzymes (upper
pathway) or generation of the
oxidant H2O2 in situ (lower
pathway). b Whole-cell
photo-biocatalysis.
c Photoenzymes are
light-dependent enzymes
catalyzing photochemical
reactions (Copyright 2019 John
Wiley and Sons. All rights
reserved, reprinted with
permission) (Seel and Gulder
2019)
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c reduction rates, which facilitate the rapid electron transfer
in reductase (BM3R) (Lu et al. 2018). Furthermore, terminal
alkenes can be generated from natural oils via decarboxy-
lation of acids and served as chemical building blocks
(feedstocks) in the production of biofuels or polymers.
OleTJE enzyme originated from Jeotgalicoccus sp. ATCC
8456 was found to be capable of yielding terminal alkenes.
The photochemical generation of H2O2 (in situ) via reaching
the hydrogen peroxide shunt pathway of OleTJE enhanced
the overall enzyme activity (Zachos et al. 2015). Recently,
Zhang and the team exhumed photodecarboxylase from
Chlorella variabilis NC64A (CvFAP) that emerged as a
promising and efficient bio-photo-catalyst for the transfor-
mation of long-chain fatty acids into alkane. The thermo-
dynamically favored catalytic cycle closed up when the
flavin adduct intermediate (CH3–FAD–) protonated to
release the alkane product and regenerate the oxidized FAD
(Zhang et al. 2019a).

Reduction of Alkenes
Old yellow enzyme (OYE YqjM) derived from B. subtilis
was regenerated independently of NADPH (Taglieber et al.

2008). Cell lysate holding reaction mixtures was irradiated
with white light in the presence of an electron donor (EDTA)
and free FMN. It triggered a reduction of an alkene with
reasonable enantioselectivity (88% ee). Another report sug-
gested that E. coli cell lysate containing endogenous NemA
(N-ethylmaleimide reductase) might be accountable for the
diminished enantioselectivity on the usage of lysates (OYE
recombinant) of E. coli (Bernard et al. 2012). In another
study, a heterogeneous semiconductor (TiO2-deposited gold
NPs) was employed as a photo-catalyst to the water oxida-
tion while coupling it to the ene-reduction using OYE
homologue (TsOYE) from Thermus scotoductus SA-01
(Mifsud et al. 2014b). The UV light irradiation of ketoiso-
phorone could obtain a 64% yield. Several researchers in the
recent past reported similar findings (Peers et al. 2016; Grau
et al. 2009; Lee et al. 2017; Kim et al. 2018). The stereo
selective trans‐hydrogenation of activated C=C bonds was
carried out by Lee and his team utilizing enoate reductases as
bio-photo-catalyst. They reported the transformation of
xanthene dyes to the prosthetic flavin moiety mediated
through NADPH‐free, direct transfer of photoexcited elec-
trons. In this study, the enantioselective reduction of 2‐

Fig. 4 Multiple synthetic
transformation pathways
facilitated by the combination of
light as an energy source and the
catalytic power of enzymes
(Copyright 2018 John Wiley and
Sons. All rights reserved,
reprinted with permission) (Lee
et al. 2018)
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methylcyclohexanone (C=C bonds) into (R)‐2‐methylcyclo-
hexanone (80–90% yield with 99% enantiopure) was carried
out in the absence of NADH under white light-emitting‐
diode illumination (Lee et al. 2017).

Oxidation Through C, H Activation
Several synthetically challenging transformations such as
halogenations, decarboxylations, and oxyfunctionalizations
can be catalyzed using oxidative enzymes. Though oxidation
in synthetic chemistry is not environmentally friendly due to
the extreme reaction conditions, it can naturally perform
under mild conditions by employing H2O2 as an oxidant or
molecular oxygen. The cytochrome P450 is one such
enzyme that is competent in triggering selective oxidations
of carbon and hydrogen (Monti et al. 2011) to yield alcohols
corresponding to the aromatic and inactivated carbon atoms
involved. The P450 BM3 (CYP102A1), a mutational toler-
ant and self-sufficient enzyme obtained from B. megaterium,
is extensively utilized to achieve the highest catalytic
hydroxylation activity (Whitehouse et al. 2012). Further,
photo-enzymatically assisted conversion of fatty acid to
lauric acid was yielded using a combination of deazaflavin
with P450 BM3 under irradiation of visible light (100 W
lamp) (Zilly et al. 2009). In another report, oxidation of ethyl
group containing C, H occurred following cleavage of the
hemiacetal formed in situ where cell-free extracts of P450
BM3 were employed to achieve dealkylation (Lee et al.
2013). Alternatively, hydroxylation through C, H activation
can be enabled using peroxygenases that utilize H2O2

(Holtmann and Hollmann 2016). The photo-induced H2O2

generation approaches coupled with the peroxygenase from
Agrocybe aegerita (AaeUPO) were studied by Hollmann
and the team. The efficiency of the hydroxylation of various
alkylbenzenes and alkanes upsurges when photosensitizer
FMN and sacrificial electron donor EDTA incorporated in
the process (Zhang et al. 2018). In this regard, a few more
related reports were investigated (Dong et al. 2018; Chu-
rakova et al. 2011; Willot et al. 2019).

Epoxidation of Alkenes and Styrene
Peroxygenase enzymes are also capable of catalyzing
epoxidations. Epoxides can be yielded using light-driven
H2O2 generation in the presence of styrene as substrates
(Churakova et al. 2011). It was found that the double bond
conformation highly influences the activity/selectivity of
epoxidations through enzymatic assistance. In another
report, FADH2 prosthetic groups can be reduced with dif-
fusible flavo-monooxygenase from VLB120 strain of Pseu-
domonas sp. and can be favorably regenerated, employing
direct excitation of photochemicals using a white light bulb
(Schie et al. 2019). In recent decade, two-component, dif-
fusible flavin monooxygenase (2CDFMO) enzyme is con-
sidered as pliable biocatalysts for selective epoxidation. Van

Schie et al. successfully employed 2CDFMOs as
bio-photo-catalysts for selective epoxidation of styrene and
its derivatives using reduced form of flavin adenine dinu-
cleotide (FADH2) regenerated by a NADPH-dependent
reductase. The accelerated reaction rates and the enantiose-
lectivity of 2CDFMOs bio-photo-catalysts reported 95–99%
formation of styrene epoxides (Schie et al. 2019).

Oxidative Lactonizations
In most of the Baeyer–Villiger oxidation research works,
BVMOs were employed to transform aldehydes into the
corresponding formyl esters. An inventive BVMO from
Dietzia species is used as catalyst in the formation of profen
aldehyde (Bisagni et al. 2014). The phenylacetone
monooxygenase (PAMO) derived from Thermobifida fusca
coupled with FAD and electron donor EDTA boosted the
yield enantiomer-differentiating Baeyer–Villiger oxidation
up to 93% and enantioselectivity to 92–97% ee (Holtmann
and Hollmann 2016). In another biocatalytic approach of
Baeyer–Villiger oxidation, lactones can be accessed by
employing HLADH that converts a,x-diols to monoalde-
hydes in a two-step oxidation reaction. These intermediates
maintaining equilibrium with the cyclic hemiacetals can
further be converted into lactones where photoexcited flavin
is employed to regenerate NAD+. Further, H2O2 was trapped
by adding a catalase into the reaction mixture, which is a
by-product formed in stoichiometric amounts. Similarly, an
efficient photoexcitation of flavin can be achieved using blue
light (LED sources) (Schroeder et al. 2018). Employ-
ing EDTA as electron reservoirs instead of NADPH in
photo-induced Baeyer–Villiger (BV) reaction reduced the
complexity of the regeneration system (Hollmann et al.
2007).

Oxidation of Thioethers
Photo-biocatalysis has been employed in enantioselective
sulfoxidation reactions. A robust enzyme named chloroper-
oxidase (CPO) originated from Caldariomyces fumago can
be used for the transformation where oxidative stress of CPO
is minimized via photochemical generation of H2O2 based
on flavin (Perez et al. 2009). It was noted that the enan-
tioselectivity of the process was highly influenced by the
electron donor, where EDTA yielded enantiopure (>99% ee)
product (Churakova et al. 2013). Moreover, a
surfactant-stabilized (two-liquid-phase system) could further
improve the photo-biocatalytic sulfoxidation system.

Halogenations of Aromatic Compounds
Halogen substituents are found to be essential for function-
alization, considering their ability to enhance bioactivity of
organic compounds. Halogenases (flavin-dependent) can
transfer regioselective oxidative halogen to organic com-
pounds where chemical synthesis is constrained. However,
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wider adoption is limited due to the demand for co-factor
regeneration. In a recent report, co-factors such as FAD was
efficiently regenerated using a direct transfer of
photo-induced electrons (Schroeder et al. 2018). Another
class in the category, vanadium-dependent haloperoxidases
(VHPOs), a halogenase enzyme that relies on H2O2 as an
oxidant, was reported for the conversion of brominated
products from thymol (Dong et al. 2018; Sabuzi et al. 2015).
Further, a new robotic photo-biocatalytic method is imple-
mented by Seel and the team for the chlorination and
bromination of hetero-aromatic compounds using
vanadium-dependent haloperoxidases derived from Acary-
ochloris marina (AmVHPO) and Curvularia inaequalis in
combination with FMN. Besides, the application of tertiary
amines containing buffers as an external sacrificial electron
donor and conducting the experiment under with blue LEDs
hugely increased excitation of the heterogeneous
photo-catalyst (Seel et al. 2018).

Photo-Biocatalytic Cascade Systems
Synergistic catalysis can drastically enhance the efficiency of
photo-biocatalysis, considering that the approach offers
access to corresponding reactivity fields while reaching far
beyond the regeneration of co-factors. Photo-biocatalytic
cascades are mainly categorized into three types as follows;
(a) sequential reactions comprising minimum two distin-
guished but independent steps where the addition of reagents
or solvent exchange can take place, (b) concomitant reac-
tions that are being carried out concurrently in the same
medium while facilitating minimum two irreversible levels,
and (c) collective systems facilitating minimum of two
simultaneous reactions in the same medium (often com-
prising an initial reversible followed by an irreversible step)
(Litman et al. 2018). Recent advancements in
photo-biocatalytic cascades have enabled the direct conver-
sion of several types of harmful, unstable, and difficult to
isolate intermediates. A group of researchers demonstrated
the photothiolation of ketones (a, b-unsaturated) with a
subsequent (asymmetric) reduction where a light-triggered
substrate was functionalized while employing an enzymatic
transformation (Lauder et al. 2018). Similarly, a reaction
sequence of photo-biocatalytic cascade inscribed the devi-
ating access to a mixture of diverse carboxyl and carbonyl
derivatives and amines derived from a simple source of
alkanes (Zhang et al. 2019b). A few more related reports
were investigated in the recent past (Turner 2018; Yang et al.
2018). Gacs and his team successfully carried out one-pot
sequential photooxidation and reductive amination of race-
mic alcohols into enantiomeric amines. In this cascade sys-
tem, acetophenone was synthesized in the first step through
oxidation of rac-1-phenylethanol interceded by sodium
anthraquinone-2-sulfonate (SAS) and heterogeneous gra-
phitic carbon nitride (g-C3N4) as photo-catalysts. The study

highlighted that the photooxidation of aromatic substrates
facilitated much faster reaction rate with a boosted yield. The
reductive amination of intermediate ketone was carried out
using transaminase cascade comprised of Aspergillus terreus
(ATxTA), Bacillus megaterium (BMxTA), Chromobac-
terium violaceum (CVxTA), Pseudomonas fluorescens
(PFxTA), and Vibrio fluvialis (VFxTA). The use of a cas-
cade system effectively transforms non-chiral substrates into
prochiral products in the high enantiomeric form Gacs et al.
(2019).

Whole-Cell Systems
Whole-cell systems can easily outperform isolated and
purified enzymes-assisted biocatalytic processes due to their
enhanced operational stability, additionally protected by cell
environment. Moreover, whole-cell systems facilitate direct
regeneration and harness of co-factors by redox-active
enzymes. Several phototrophic organisms offer the natural
capability to regenerate co-factors using solar power. Some
endogenous enzymes originated from wild-type cyanobac-
teria have been investigated for catalyzing multiple reac-
tions, including asymmetric reductions of carbonyl groups
(Nakamura et al. 2000) and functionalization of monoter-
penes (Balcerzak et al. 2014). A few more related reports
were investigated in the recent past (Górak and Zymańc-
zyk-Duda 2015; Yamanaka et al. 2015; Bartsch et al. 2015).
Similarly, a group of researchers observed that eosin Y could
penetrate into the cytoplasm of E. coli having heme domains
of enzymes (P450). Under the illumination of visible light,
white light-emitting plates could directly transfer
photo-induced electrons (Park et al. 2015).

Artificial (Metallo) Enzymes
The accelerated development in protein engineering expe-
dites the extension of the naturally available catalysts (Nadar
et al. 2020). One such approach has been intriguing scientific
minds where a blend of chemo-biocatalysis occurs via
acquainting unnatural, entirely chemically derived catalytic
entities into chiral protein frameworks. Several photosensi-
tizers incorporated with artificial photoenzymes have been
investigated in the recent past. Cheruzel et al. attached a
photosensitizer (Ru(II)) to a non-native residue of cysteine,
typically positioned near the heme co-factor, facilitating
electron transfer between the photoexcited Ru and Fe atoms
(Ener et al. 2010). It was observed that the hybrid enzyme
was photochemically regenerated while not being dependent
on NADPH. In a similar report, the application of hybrid
catalysts was further confirmed by implementing them in a
photo-catalytic cascade reaction system (Sosa et al. 2018).
They coupled an earlier described process for photoredox
trifluoromethylation (Beatty et al. 2015) with the enzymatic
C, H oxidation. In this study, several hybrid enzymes were
examined, all featuring the Ru(II) complex 18c as a
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photosensitizer component attached to the non-native single
cysteine L407C (Lam et al. 2016). Further, for the catalytic
alteration of drugs (e.g., simvastatin, lovastatin, omeprazole,
etc.) and steroids (e.g., 17b-estradiol), an eosin Y (EY) at-
tached to the photoactivated heme domain of P450 can be
employed to facilitate photo-induced electron transfer (Park
et al. 2015). The inorganic co-factor iron–sulfur (Fe–S)
clusters are a crucial factor for redox enzymes for improved
ligand-binding and catalytic properties under ambient con-
ditions. For the direct photo-activation of hydrogenases, a
fusion of [FeFe]- or [NiFe]-hydrogenase into PS-I in the
presence of alkenedithiols creates a junction between inor-
ganic photosensitizers and hydrogenases (Lubner et al.
2011). In this regard, a few more related reports were
investigated in the recent past (Tran et al. 2011, 2013; Kato
et al. 2014).

6 Summary and Future Scope

Biotransformation is anticipated to meet the growing
demand for fuels and chemicals by sustainable and greener
routes. The combination of redox photo-enzymatic in the
presence of light can expedite the transformation of photon
energy value-added chemicals, which helps to make the
synthetic system more eco-friendly. In most of the research,
artificial photo-catalysis has been restricted to the production
of hydrogen gas and the mitigation of carbon dioxide.
A variety of redox oxidoreductase enzymes is available for
photo-catalysis; however, a few of them have been evaluated
for redox conversion in the presence of light, which hints at
enormous prospects for upcoming research work. Also, there
is a need to understand the mechanism behind the
photo-catalysis to perform various biotransformation pro-
cesses. There are still certain challenges and major issues in
photo-enzymatic catalysis, which must be addressed before
wider adoption. In most of the photo-catalytic reactions, the
co-factors are required to maintain efficient activities of
enzymes. The major hurdles in the use of co-factors are the
physical separation and regeneration of co-factor after the
reaction. Firstly, photosensitizers are no stable as they are
certainly undergoing rapid oxidation and degradation. Sec-
ondly, as the photo-catalytic enzymes are homogenous in
nature, they are very difficult to separate from the reaction
mixture. To overcome these problems, co-factors and
enzymes can be immobilization on various matrices, such as
magnetic nanoparticles, carbon dots, and other nanomateri-
als. In another strategy, the role of co-factors and mediators
can be eliminated by direct activation of oxidoreductase
enzymes in the presence of light. However, the direct
photo-activation of enzyme suffers from low turnover
activities due to poor electron transfer efficiencies. The
efficiency of light-driven biocatalysis can be improved by

rapid and easy transfer of photo-induced electrons between
photosensitizer and enzyme. Hence, the mechanism and
basic understanding of photo-catalytic reactions are needed
in order to improve efficiency. Another major hurdle is the
stability of enzyme during the photo-catalytic reactions.
Recent advances in protein engineering and molecular bio-
logical evolution helped to increase stability (in terms of
chemical, mechanical, and storage stability) or specificity
(regio-, chemo- and stereoselectivity) of biocatalysts and
thus have helped to overcome certain obstacles in biocatal-
ysis. Also, various researchers developed a variety of novel
immobilization strategies such as the incorporation of
nanomaterials, biopolysaccharides, functionalized polymers,
and co-immobilization of multiple biocatalysts that can
make a robust biocatalytic process which is amenable to
gram scale and can quickly implement in large-scale oper-
ations. However, to make the process industrially viable,
there are certain requirements that need to be met, such as
high turnover numbers (TONs), high concentration, and high
conversion/yield.
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Biomass-Derived Carbons and Their Energy
Applications
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Abstract

In this chapter, a few interesting findings on renewable
carbons derived from various biomass precursors and their
electrochemical applications, especially supercapacitors
and lithium-ion batteries were discussed. Electrochemical
energy storage devices are progressively crucial since it
helps in a significant reduction in the use of different
fossils-based resources. The use of energy storage devices
in a particular system rests on the nature of the electrode
materials. Among an extensive range of electrodes,
biomass-based carbons have gained significant considera-
tion as an electrode because of their variable physico-
chemical features, environmental concern, and commercial
value. We have also discussed a few recent developments
of biomass-derived carbons and some important techniques
such as carbonization and activation conditions that control
their property and performance of carbon electrodes.
Besides, some of the parameters such as pore structure,
surface property, and degree of graphitization, which
regulate the electrochemical functioning of the device were
discussed in detail. In the final section of this chapter, we
included some energy storage applications of biomass-
based carbons, and their effectiveness as an electrode were
summarized. In brief, this chapter provides a fundamental
understanding of several biomass-derived carbon materials
and suggests the essential strategies for the fabrication of
various energy storage systems.

Keywords

Biomass � Porous structure � Supercapacitors � Li-ion
batteries

1 Introduction

Increased use of non-renewable fossil fuels including natural
gas, oil, and coal has escalated several environmental con-
cerns (Grey and Tarascon 2017). With swift communal
growth and increased insistence for growth of miniaturized
portable devices, high volumetric functional storage devices
are considered essential. This effort minimizes the volume of
devices generated mainly due to increasing and the crucial
drive to develop inexpensive, renewable energy storage
devices (Niu et al. 2013). Among them, batteries and
supercapacitors have been in limelight due to their overall
performances. Batteries that can display extended cyclabil-
ity, conventional rate performance, and high energy density
which are considered essential for the manufacture of more
powerful electric vehicles and portable devices with exten-
ded life (Prasankumar et al. 2019). On the other hand,
supercapacitor-based systems like hybrid electric vehicles,
digital communications, etc., are recognized as promising
material for modern electronics applications owing to their
elevated-power density, extended cyclability, lightning
charge/discharge rate, and enhanced safety (Merlet et al.
2012). Furthermore, it is well known that an electrode plays
an integral role in energy storage devices; therefore, effi-
ciency, cost-effectiveness, environmental friendliness, and
sustainability of electrode need consideration during the
formulation of new electrodes. So far, various electrode
materials have been developed, using precursors such as
carbon (Zhai et al. 2011; Karnan et al. 2016), metal oxides/
hydroxides (Fan et al. 2007), and conducting polymers
(Meng et al. 2017). Among them, metal oxides, hydroxides,
and polymers are considered non-renewable systems since

T. Prasankumar � M. Ashokkumar (&)
Department of Materials Science and Nano Engineering,
Rice University, Houston, TX 77005, USA
e-mail: ma37@rice.edu

T. Prasankumar � S. Jose
School of Physics, Madurai Kamaraj University,
Madurai, 625021, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Inamuddin et al. (eds.), Advances in Green Synthesis, Advances in Science, Technology & Innovation,
https://doi.org/10.1007/978-3-030-67884-5_10

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67884-5_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67884-5_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67884-5_10&amp;domain=pdf
mailto:ma37@rice.edu
https://doi.org/10.1007/978-3-030-67884-5_10


they pose an environmental risk and considered expensive.
Hence, it is essential to exploit easily accessible renewable
resources.

Researchers widely studied different biomasses, as a
reliable renewable sources available on planet, which are
used for different applications such as capture of carbon
dioxide (CO2) gases (Boyjoo et al. 2017), hydrogen storage
(Blankenship and Mokaya 2017), solar cells (Wang et al.
2014a), treatment of water contaminants (Ma et al. 2017),
and energy applications (Chen et al. 2018; Wang et al.
2018). The presence of exceptional specific surface area
(SSA), electrical conductivity, engineered pore size, and
substantial mechanical strength marks these resources as an
ideal material for various applications. Additionally, the
biomass-based activated carbon electrodes deliver an out-
standing capacitance and remarkable energy density because
of their increased surface area. Significant efforts have been
carried out to derive biomass-based carbons for superca-
pacitor applications, including the selection of precursors,
carbonization, and activation process to produce carbons in
high yield with precise control over pore geometry and
distribution. In general, the selection of precursors was based
on elemental composition, cost, easy availability, and
molecular structure. For instance, rice (Zhu et al. 2017),
wheat straw (Liu et al. 2018a), pistachio (Hu et al. 2007),
and catkins (Su et al. 2017) are chosen as sources owing to
their easy availability and low cost. Whereas eggshell
membranes (Li et al. 2012), Auricularia (Long et al. 2015),
kombucha (Dai et al. 2017), and orange peel (Ranaweera
et al. 2017) were selected due to their exclusive porous and
hierarchical microstructures. A few others include Bacillus
subtilis (Zhu et al. 2013), human hair (Qian et al. 2014),
chitin (Duan et al. 2016), animal bones, skins, and fish scales
(Gao et al. 2016). In this chapter, some of the recent
advancements in the formulation of biomass-based activated
carbons were highlighted. Also, a few parameters which
influence the property of derived material and their appli-
cation studies related to supercapacitors and Li-ion batteries
(LIBs) have been discussed.

2 Types of Biomass Materials

To date, a great variety of biomasses has been explored for
the formation of porous carbon. In the below sections, a few
biomass sources which were used to derive carbon materials
have been discussed briefly.

2.1 Plant-Based Carbons

The chemical composition of plants changes quantitatively
from each other within the same species. Table 1 displays
the chemical composition in percentage (%) of various
plant-based biomasses. For instance, the palm shell contains
a combination of lignin and cellulose of around 83% with a
larger portion of cellulose. Another example is jute and
hemp which contains cellulose of about 64 and 67%
approximately. The percentage of cellulose is comparably
greater when compared to other sources such as poplar
leaves (22%), scots pine stem wood (40%), and switchgrass
(33–46%). This approximate value gives an idea of how the
chemical composition of plant species, i.e., cellulose change
which results in a significant change in the elemental com-
position of derived carbons.

To be specific, the actual carbon yield is determined by
the mass ratio of cellulose, hemicellulose, lignin, and the
composition of the chemical compounds present in plants.
For instance, lignin is well known for its thermal stability
that plays a vital part and helps in the evolution of a higher
percent of carbons/chars when compared to other plant
sources. The composition of cellulose, hemicellulose, and
lignin are displayed in Fig. 1

2.2 Fruit-Based Carbons

Alike plant biomass, fruit-derived carbons also vary with the
portions of fruit, growth condition, and the chemical com-
position of the species. Some of the chemical components

Table 1 Chemical compositions of different plant-based biomass (Liu et al. 2018b)

Biomass Moisture (%) Lignin (%) Cellulose (%) Hemicellulose (%) Extractives (%) Reference

Rice straw – 10–18 32–41 15–24 – Zhu et al. (2017)

Coconut coir 13.68 46.48 21.46 12.36 8.77 Arsene et al. (2013)

Corn stover – 18–22 37–42 20–28 – Kumar et al. (2009)

Palm shell – 53.4 29.7 – – Daud and Ali (2004)

Olive waste – 28.0 44.8 – – Zanzi et al. (2002)

Scots pine stem wood – 27.0 40.7 26.9 5.0 Raisanen and
Athanassiadis (2013)

Sunflower seed hull 11.8 28.7 31.3 25.2 – Curvetto et al. (2005)
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present in fruit-based biomass are shown in Table 2 which
includes remarkable components such as crude fibers, pro-
teins, ash, lipids, and moisture. The crude protein in pulp is
found to be *4–14% and the peel is around 2–18%,
respectively. While the lipid content in pulp is reported to be
*1.4–28% and in peels, it ranges from 0.7 to 9.9%. Overall,
in combination, the fruit peel and pulp were found to exhibit
crude protein *5–43% and lipids content approximately 3–
28%. During heat treatment, the crude protein and lipids
decompose at a reduced heat (*300 °C) because of the loss
of organic contents and this limits the overall yield of
derived carbons (Nawar 1969). The chemical present fruit
biomasses are exhibited in Table 2.

2.3 Animal-Based Carbons

Chitin is considered a promising precursor for the formation
of carbons due to chemical stability and abundance. Chitin is
different from cellulose and possesses rigorous intermolecular
hydrogen bonds and crosslinking networks of chitin-glycan
complexes (Schwarz and Moussian 2007), which gives chitin

a superior thermal strength than cellulose and thus yields a
better percentage of carbon. Numerous animal sources, such
as insects, mollusks, and crustaceans are used to derive chitin
(Jin et al. 2019). Similar to plant and fruit-based biomass, the
carbon yield was found to vary significantly according to the
extraction process, precursors, and mechanical/chemical pro-
cessing conditions (Kovaleva et al. 1772). The animal bio-
mass resources such as horns, hooves, and hairs are identified
as a valuable source for the formation of various carbon
materials. For instance, carbonaceous flakes derived from
human hair displayed notable SA, improved specific capaci-
tance, and extended stability when used as electrodes for
supercapacitors (Qian et al. 2014). Apart from chitin, animal
skins are considered as an abundant source of protein, which
is primarily composed of different amino acids (Chatterjee
et al. 2018). A few reports suggest the formation of heteroa-
tom and metal atom functionalized carbons using various
tannery and slaughterhouse wastes (Ashokkumar and Ajayan
2020). The derived carbon materials were used for studies
related to Li-ion batteries (Wei et al. 2011) and supercapaci-
tors (Huang et al. 2011). The compositions of animal bone,
skin, and fish scale are illustrated in Fig. 2.

Fig. 1 Chemical configurations of a cellulose, b hemicellulose, and c lignin. Reproduced with permission from Springer Nature, 2015 (Biswas
et al. 2015)
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2.4 Microorganism-Based Carbons

Microorganisms are an exciting source for the formation of
carbons apart from plants, animals, and fruit-based biomass
resources. Mushrooms (Fig. 3a, c) and yeasts (Fig. 3b, d) are
reported as one of the potential biomasses to derive carbons.
Table 3 shows the chemical compositions of some
microorganisms (Abou Raya et al. 2014; Wang et al. 2014b).

The microorganism-based biomass comprises of chitin,
which crosslinked with glucan, acts as an essential compo-
nent to derive carbons during the carbonization process
(Arroyo et al. 2016). These biomasses primarily consist of
cellulose, which is analogous to the carbonization behavior
displayed by plant/fruit-based materials resulting in better
carbon yields. The other components, i.e., fat, ash, etc.,
present in the crude protein leads to an immediate

Table 2 Chemical compositions of typical fruit-based biomass (Liu et al. 2018b)

Biomass Fruit part Moisture Ash Crude protein Total lipids Crude fiber

Avocado
Morais et al. (2017)

Seed 67.2 ± 0.6 2.3 ± 0.4 9.6 ± 1.6 3.9 ± 0.3 10.7 ± 2.8

Raw peel 65.7 ± 3.1 1.5 ± 0.3 6.3 ± 1.1 3.5 ± 0.7 46.9 ± 2.7

Oven-dried peel 4.0 ± 0.1 2.0 ± 0.3 6.4 ± 0.2 4.7 ± 0.4 43.9 ± 2.1

Pineapple
Morais et al. (2017)

Seed – – – – –

Raw peel 82.7 ± 0.7 5.0 ± 0.4 8.8 ± 0.6 1.1 ± 0.2 16.3 ± 2.5

Oven-dried peel 8.8 ± 0.2 5.1 ± 0.1 7.3 ± 0.9 1.3 ± 0.1 15.9 ± 2.4

Banana
Morais et al. (2017)

Seed – – – – –

Raw peel 89.8 ± 0.3 12.8 ± 0.9 9.7 ± 0.3 5.5 ± 0.1 24.2 ± 0.2

Oven-dried peel 7.6 ± 0.2 13.4 ± 1.8 9.4 ± 0.4 6.1 ± 0.2 23.5 ± 3.8

Fig. 2 Structures and compositions of a bone, b skin for livestock and poultry, and c scale and skin of fish. Reproduced with permission from
Advanced Functional Materials, 2019 (Jin et al. 2019)
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decomposition of highly volatile organics and which leads to
reduced carbon content. Among various microorganism-
based ingredients, mushrooms are considered as one of the
chief and economical sources to derive carbons.

3 Activation of Biomass-Derived Carbons

3.1 Activation of Carbons

As discussed above, porous carbons are synthesized through
different methods and most commonly activated using
chemical or physical techniques. In general, the activation of
carbons was carried out at an inert condition and tempera-
tures between 600 and 800 °C. The nature and chemical
composition of the precursor is one of the influential vari-
ables that control the comprehensive property of formed
carbons (Williams and Reed 2006). The chemical activation
includes the usage of activating agents like potassium
hydroxide (KOH), phosphoric acid (H3PO4), sodium
hydroxide (NaOH), etc. It is observed that chemical activa-
tion has more advantages over the physical activation tech-
nique since it helps in the satisfactory formation of pores,
with much control over their pore geometries. Moreover, this
method guides toward carbons with high SA and better
yields. Also, it involves a single step with a lower pyrolysis
temperature, and chemical activation is more preferred for
supercapacitor and other energy storage applications.

3.1.1 Chemical Activation of Carbons
Potassium hydroxide is one of the commonly used materials
for the chemical activation of carbons, which involves redox
reaction mechanism where the carbon compounds are
scratched by the K-containing species, resulting in abundant
micro/mesopores. This action boosts the metallic K group to
embed toward the carbon network and enlarge the carbon
frames which guides toward a substantial surge in pores in
the derived carbon network. The formed porous carbons
exhibit a high SSA due to the activation process. The
duration of the heating, temperature, and the activation agent
is considered to play an essential role in fine-tuning the
porosity. Numerous carbon structures with a great variety of
pore textures were synthesized using nature-based biomass
precursors, including animals, food, and plant wastes, and
using KOH as an activator. For example, Huang et al. pyr-
olyzed fish scales at 950 °C in combination with KOH (1:1
ratio). The formed fish scale-carbons displayed hierarchical
lamellar carbon with ordered porosity, exhibiting numerous
macropores, extraordinarily high SSA (*2200 m2 g−1), and
pore volume (*2.70 cm3 g−1) (Chen et al. 2010). A few
other works have demonstrated the usage of KOH to prepare
a diverse variety of activated porous carbon using precursors
such as bones of pig (Huang et al. 2011), sheep (Li et al.
2017), cattle (Zhang et al. 2019), fish scales (Wang et al.
2015a), and bones (Ai et al. 2017). Careful control of
pyrolysis temperature and KOH dosage resulted in car-
bons with interconnected mesopores and macrospores.

Fig. 3 a Early stage of
Auricularia thailandica on
sawdust medium, Reproduced
with permission from Springer
Nature, 2017 (Bandara et al.
2017). b SEM of Saccharomyces
cerevisiae. Reproduced with
permission from Elsevier, 2003
(Sunner et al. 2003). c SEM
image of Psilocybe cubensis. The
arrow indicates the germ pores.
Reproduced with permission from
Elsevier, 2003 (Tsujikawa et al.
2003). d SEM of a yeast cell.
Reproduced with permission from
Elsevier, 2015 (Zhang et al.
2015a)
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Additionally, the activation agents, like H3PO4 and zinc
chloride (ZnCl2), were also used during the process of
activation to yield carbons with the better performance
(Prahas et al. 2008). The SSA and pore sizes of the activated
carbon procured after ZnCl2 and KOH activation revealed
remarkable transformations in their network. The carbon
samples with higher SSA and a combination of micro/
mesopores displayed better supercapacitor performance.
Figure 4 demonstrates various conventional methods which
were used to convert biomass into carbon materials.

3.1.2 Carbon Activation Through Physical
Method

Physical activation comprises of two steps. The first step
involves pyrolysis, in an inert condition to derive carbons, and
the second step is gasification. The SSA and porosity of the
material are improved due to the use of oxidizing gases which
include air, steam, or CO2 (El-Hendawy et al. 2001). In
general, the pyrolysis procedure removes volatile resources
from the organic bio-resources, while the gasification opens

the closed pores due to the decomposition of tar-like products
inside the pores. Besides, the active spots intensify as addi-
tional organics burn due to oxidizing agent, which results in
the removal of unwanted residual impurities from the system
and leads to the enhanced porous structure. Yang et al.
demonstrated a one-step carbonization process using coconut
shells to synthesize activated carbon under CO2 atmosphere
(Yang et al. 2010). The carbon displayed high surface
area and a microporous volume of about 1667 m2 g−1,
and *0.87 cm3 g−1, respectively, in optimized activated
condition, which is greater than that of the same biomass
which is carried out using steam activation process (Mi et al.
2012). The observed results exposed that SSA, pore volume
improved because of pyrolysis duration, activation condition
and the rate of gas flow. Compared to chemical activation,
physical activation of biomass resulted in more yield and bulk
density, but with an extremely reduced pore size and SSA due
to a lower degree of carbon activation. However, the chemical
activation method does not have influence over the SSA and
electronic properties of the carbon matrix.

Table 3 Chemical compositions
of some typical microorganisms
(Liu et al. 2018b)

Microorganisms Carbohydrates Crude
fiber

Crude
protein

Crude
fat

Ash Ref.

Agaricus
bisporus

42.56 13.21 33.85 2.41 7.97 Abou Raya et al.
(2014)

B. aereus 34.0 17.0 26.9 2.1 8.5 Wang et al.
(2014b)

Fig. 4 Conventional methods to
convert the biomass into carbon
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3.1.3 Self-activation of Carbons
The self-activation process does not require additional acti-
vating reagents like physical and chemical activation tech-
niques. It consists of two activation segments. The first part
involves the utilization of gases released throughout the
pyrolysis procedure to activate the transformed carbon
(Bommier et al. 2015). The second part employs inorganic
materials (like K+) that were inherently loaded into biomass
precursors which helps in the activation of transformed
carbon (chemical self-activation) (Biswal et al. 2013).
A one-step annealing process to derive high SSA activated
carbons was achieved using cellulose-derived material
(Bommier et al. 2015). The self-activation was accomplished
due to the gases generated during the process of pyrolysis.
This method efficiently uses gas released during the car-
bonization process to etch the carbon surfaces followed by
activating them for better performance.

3.2 Pyrolysis Techniques

Pyrolysis technique has been employed to produce char and
carbons (Asensio et al. 2013). It is a process that is used to
breakdown the organic complexes thermochemically in the
absence of an oxygen atmosphere. In general, pyrolysis can
be divided into primary and secondary stages. In the pre-
liminary stage, the temperature instable organic constituents
are removed due to dehydration process, which produce
bio-oil as a by-product during the condensation process. The
heavyweight hydrocarbons are converted into char or gases
in the second stage, which are further transformed into
carbonaceous materials (Meyer et al. 2011). The pyrolysis
conditions are varied from each other based on the product
yields and the operating conditions (Goodman et al. 2013).
For example, slow pyrolysis can be carried out at lesser
temperatures (*300–400 °C), under the reduced heating
degrees (*1 − 12 °C/s), and extended residence period
(>5 min). Whereas the flash-pyrolysis emerges under higher
temperatures (500–600 °C) (Meyer et al. 2011). For exam-
ple, Huang et al. carbonized the pig bone at 850 °C, fol-
lowed by acid pickling. The formed carbon exhibited a
highly ordered porosity with a surface area of *850 m2 g−1

(Huang et al. 2011) and it followed development of micro
and mesopore carbons. In another attempt, Redepenning and
co-workers produced animal waste-derived porous carbon
with a superior SSA of *1350 m2 g−1 by pyrolyzing cattle
bone at *950 °C (Goodman et al. 2013). However, at a
slightly lower temperature (800 °C), he obtained hierarchical
porous carbon with SSAs in between 560 to 770 m2 g−1.
Similarly, Lee et al. studied the comparative difference of
five different agriculture wastes such as paddy straw using
slow heat treatment and reaching a maximum temperature of
500 °C (Lee et al. 2013). He observed the formation of

well-ordered pores with high SSA when sugar cane bagasse
and wood stem were used as a source. Nevertheless, the
other precursors displayed reduced porosity with a low
surface area. Overall, in the pyrolysis method, factors such
as residence period, temperature, the particle size of pre-
cursors, and the heating rate were found to determine the
evolution of carbons. Some of the important criteria which
influence the property of carbons electrodes are summarized
as follows.

3.2.1 Effect of Temperature
Yang et al. heat-treated various biomass such as hickory
wood, bamboo, etc., at identical temperatures and observed a
reduction in char due to temperature increase (Sun et al.
2014). The carbon pyrolyzed around 600 °C exhibited a
nonporous configuration, signifying the formation of ultra-
thin plate-like structures. However, the carbons obtained at
temperatures more than 800 °C revealed ordered pores with
excessive SSAs ranging between 1400 and 2500 m2 g−1. It
is observed that, as the temperature elevated, micropores
progressively converted to mesopores, and the pore volume
was boosted to *1.829 cm3 g−1 for the carbons pyrolyzed
at 1100 °C. Garcia-Perez et al. reported a similar observation
during the pyrolysis of Douglas fir wood at a temperature
range between 350 and 600 °C (Suliman et al. 2016).

3.2.2 Effect of Residence Time
Residence time is considered as an additional variable which
affects the distribution of products in different phases. As
discussed, a large quantity of char yield can be obtained at
prolonged residence period resulting in a better char yield
since it takes more time for the re-polymerization to occur.
Similarly, shorter residence time causes incomplete
re-polymerization. Hou et al. studied the influence of with-
hold period using rapeseed stem pyrolyzed at a temperature
between 150 and 800 °C and at withhold period around 10–
100 min. The yield of the char decreased gradually with
increases in residence time, which was due to the removal of
organics. Choi et al. experimented with the yellow poplar
wood under fast pyrolysis condition with the withhold
duration between 1.1 and 7.7 s (Zhao et al. 2018), and he
observed a surge in char produce with an escalation in res-
idence period.

3.2.3 Heating Rate Effect
Also, the rate of heating was found to affect the yield percent
to a certain degree. For instance, Mahinpey et al. examined
the devolatilization of wheat straw based on the effect of
heating. A growth in char production was observed *11.5–
25% as the heating frequency boosted from 5 to 20 °C/min
(Mani et al. 2010). This could be due to the heat transfer
effect which takes place in the inner core of the biomass. In
the process of slow heating, the decomposition of the
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biomass results in gradual loss of volatiles organics and
hence exhibits decreased char yields. This observation was
plausible on account of more loss of volatiles that occur at
higher heating rates which induce diminishing of pore walls
to become thinner and hence decreased the SA and the pore
volume remarkably.

3.2.4 Size of the Particle
The size of particle also depends on the rate of heating. It is
perceived that the lesser size of the particles delivers
enhanced SSA that permits extra heat to distribute inside the
core of the biomass system. Thus, it enhances the pyrolytic
reactions and reduces the char yield that is formed during
pyrolysis. An increase in char yield is seen with particle size
(Yadav and Jagadevan 2019).

3.3 Microwave-Assisted Technique

Microwave-assisted heat treatment is a rapid, simplistic, and
energy-saving technique that was used for the effective
conversion of biomasses into carbons. Using this technique,
micropore and mesopore carbons were produced with a heat
withheld duration between 6 and 30 min where the carbon
aerogel becomes chemically activated during microwave
irradiation (Calvo et al. 2013). This method also yields
activated carbons of well-modified surface chemistry, and a
remarkable decrease in the micropore volume and size was
observed (Puligundla et al. 2016).

3.4 Carbonization by Hydrothermal

Hydrothermal carbonization (HTC) is an alternative tech-
nique to produce the carbon with pores for energy storage
applications. In this process, a combination of water and
carbon sources was subjected to heat at two different tem-
peratures conditions such as from 150 to 300 °C for
reduced-temperature HTC and between 300 and 800 °C for
elevated temperature of HTC (Zhang et al. 2015b). This
method reduces the amount of hydrogen and oxygen formed
and leads to the formation of electrodes with an improved
surface area. Jain et al. used this technique to carbonize
coconut shells under various hydrothermal conditions using
zinc chloride (ZnCl2) and hydrogen peroxide (H2O2) as an
activator. The mesoporous carbon exhibited a specific
capacitance of around 240 F g−1 and cyclability of 2000
sequences. The electrode material also delivered a 7.6 Wh
kg−1 at a higher power density of 4.5 kW kg−1 (Jain et al.
2015). Likewise, Wu et al. (2013) examined that the
hydrothermal treatment of watermelon which leads to for-
mation of three-dimensional (3D) carbon gels which had
more porous spongy structure.

3.5 Ionothermal Carbonization

Ionothermal carbonization is a one-stage process for syn-
thesizing porous carbons using biomass resources. In gen-
eral, ionic liquids are known due to reduced melting point
value, high thermal, and chemical stability. This method was
used to generate carbons with enhanced SSA and the
extended pore volume (Chang et al. 2015). Pampel et al.
observed an extraordinary SSA of 2160 m2 g−1 and a pore
volume of *1.70 cm3 g−1 for carbons synthesized using
glucose and potassium chloride (KCl). Also, it was shown
that the addition of a higher amount of KCl had a significant
influence in the pore size and SSA of formed carbon and
this helped to attain a gravimetric capacitance of around
206 F g−1 (Pampel et al. 2016).

3.6 Template Method

This technique was attempted to restrict/reduce the porosity
in carbons by using hard and soft templates. The carbons
obtained through hard templating/nano-casting approaches
were found to reproduce the morphology of templates
reversely. Different carbon structures were developed using
this method, some of them include hierarchical porous car-
bon monoliths, carbon nanosheets, ordered mesoporous
carbon (OMC) matrix, and carbon spheres. The carbons
derived using this method are found to be highly meso-
porous. Estevez et al. investigated the double templating
approach (Estevez et al. 2013) by joining silica and ice
templating accompanied by physical activation. The formed
carbons were found to be highly interconnected with the
presence of macro, meso, and micropore characteristics.

4 Energy Storage Applications of Biomass
Carbons

4.1 Supercapacitors

Supercapacitors (SCs) have gained substantial attention in
energy storage applications, including hybrid automobile
electric vehicles, memory back-up devices, etc., due to their
rapid charging-discharging rates and extended cyclability.
Based on the energy storage mechanism, supercapacitors are
divided into three categories, i.e., (1) electric double layer
capacitors (EDLCs), (2) pseudocapacitors, and (3) hybrid
capacitors. In EDLCs, the electrostatic storage was achieved
due to the separation of charge in the Helmholtz layer which
happens at the interface between the surface of the electrode
and the electrolyte (Gao et al. 2011). In this type, porous
carbon materials such as activated carbon, mesoporous
carbon, and its derivatives were used as an electrode.
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These materials have high SSA, enhanced porosity,
extraordinary electrical conductivity, exceptional chemical,
and thermal stability. On the other hand, PCs are centered on
the redox effects that happen mostly on the surface of the
electrodes. Hence, it exhibits a high amount of charge
storage capacity; however, reduced rate capability and
cyclability were seen when compared to EDLCs. Recent
studies propose biomass-derived carbons as an exciting
candidate to develop a wide range of SCs electrode or
substrates with effective pseudocapacitive behavior. Efforts
such as tuning of pore structure, surface modifications were
carried out to develop SCs with high performance. Sche-
matic representations (Fig. 5i, ii, and iii), the SEM images of
HPC/PANI composite, human hair, and orange peel are
shown in Fig. 5a–j, respectively.

Yu et al. discussed the synthesis of ordered
nitrogen-doped carbon (HPC)/polyaniline (PANI) nanowire
arrays using the in situ polymerization method which for-
mulates a hierarchically porous carbon structure. The pre-
pared electrode materials delivered enhanced specific

capacitance of *383 and 1080 F g−1 for HPC and
HPC/PANI in 1 M H2SO4, respectively, besides, they
exposed a SSA of about 923 m2 g−1. They have also
assembled the asymmetric supercapacitor, which exhibits
specific capacitance (*130 F g−1), and energy density
(60.3 Wh kg−1), with a good cycling steadiness of 91.6%
capacitance following 5000 cycles (Pingping et al. 2016).
Wenjing et al. demonstrated Chinese human hair fibers for
the synthesis of heteroatom functionalized carbon flakes
through the carbonization process. The human hairs were
heat treated at 800 °C which exhibited enhanced charge
storage with a specific capacitance of 340 F g−1 and cycla-
bility more than 20,000 cycles (Qian et al. 2014). Similarly,
Subramani et al. investigated three-dimensional (3D) non-
porous carbon material obtained from orange peel wastes.
The derived carbon materials were investigated for the fab-
rication of symmetric flexible solid-state supercapacitor
(SSC) and found to display high energy density.
Nano-porous carbon exhibits an extraordinary specific
SSA of 2160 m2 g−1 and an average pore volume of

Fig. 5 (i) Schematic and SEM illustrations (a, b) of HPC/PANI
composite, Reproduced with permission from Advanced Energy
Materials, 2016 (Pingping et al. 2016). (ii) Flow diagram for the
fabrication and SEM images (c, d) of human hair, Reproduced with

permission from Energy and Environmental Science, 2014 (Qian et al.
2014). (iii) Schematic representation and SEM micrographs (e–j) of
orange peel, Reproduced with permission from Energy Technology and
Environmental Science, 2017 (Kaipannan et al. 2017)
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0.779 cc g−1. The fabricated cell delivered an enhanced
specific capacitance of 460 F g−1. It also exhibited remark-
able electrochemical steadiness of about 98% for 10,000
cycles (Kaipannan et al. 2017). Table 4 shows the superca-
pacitor behavior of some biomass origin carbon electrodes.

4.2 Li/Na-Ion Batteries

In typical, graphite is studied as a prominent anode for com-
mercial Li-ion batteries (LIBs) owing to their
cost-effectiveness, electrical conductivity, extended cycling
stability, and eco-friendly nature (Shen et al. 2012). But it is
reported to exhibit a lesser capacity of *370 mAh g−1 and a
reduced rate capability since the Li+ diffusion coefficient was
at a lower value. Thus, it fails to solve the immediate
requirement for the development of advanced power systems
such as hybrid electric vehicles (HEVs) and unmanned aerial
vehicles (UAVs). Hence, significant attempts have been put
forth to derive high-performance carbon-based materials that
can have an extraordinary capacity, great rate performance,
and easy availability. Peng et al. investigated the possibility of
deriving micro-nano-structure hard carbons using filter papers.
The formed carbons were used to develop Na-ion battery and
reported to have a better reversible capacity of 286 mAh g−1

following 100 cycles and at an applied current of 20 mA g−1.
The observed exceptional electrochemical functioning
demonstrates that these cheap carbons could be a favorable
anode for Na-ion batteries (Peng et al. 2016). Zhu et al. dis-
cussed cotton cellulose as an alternative to preparing porous

carbon. The formed carbons had a SSA of 1260 m2 g−1. The
derived carbon was used as an anode and resulted in a
reversible capacity of 793 mAh g−1 and current density of
0.5 A g−1 following 500 cycles (Chunyu and Tomohiro
2016). Some of the battery performance and the cyclability of
the biomass-originated carbon anodes are tabulated in Table 5.
The schematic illustration (Fig. 6a) and the SEM images of
filter paper-derived carbon are displayed in Fig. 6b, c.
The SEM images of cotton-derived porous carbon (Fig. 6d),
the rate capabilities, cycle performance, and the galvanostatic
charge–discharge profiles are demonstrated in Fig. 6e, f.

5 Conclusion

The quest for a spotless, renewable source is of high sig-
nificance due to the depletion of traditional resources and to
reduce the amount of CO2 generated. Biowastes are con-
templated as one of the most versatile, green, and renewable
resources for the production of comprehensive variety of
carbon structures. These carbon materials are reported to
possess interesting characteristics suitable for several appli-
cations related to environmental and energy conversion/
storage. More specifically, the consumption of various nat-
urally available biomass resources to derive functional por-
ous carbons with significant impact in multiple fields is
considered green, economical, and sustainable. Though, the
processing ability, molecular arrangement, and overall
functioning of synthesized bio-derivative carbons are
intensely interconnected with chemical configuration,

Table 4 Supercapacitor performance and the related structural parameters of some biomass-derived carbons (Liu et al. 2018b)

Precursor Biomass-derived carbon Activation
method

SSA (m2 g−1) Pore volume
(cm3 g−1)

Specific
capacitance
(F g−1)

Cycling stability
(cycles)

Poplar catkin
Su et al. (2017)

Nitrogen and oxygen-
doped carbon

ZnCl2/C = 3:1,
800 °C, 2 h

1462.5 1.31 251 *100% 1000

Auricularia
Long et al. (2015)

Porous graphene-like
carbon (PGC)

One-pot
hydrothermal

1103 0.54 374 99% 10,000

Human hair
Qian et al. (2014)

Heteroatom-doped porous
carbon flakes (HMC)

KOH/C = 2:1,
800 °C, 2 h

1306 0.90 445 98% 20,000

Orange peel
Kaipannan
et al. (2017)

3D nonporous
carbon

KOH/C = 3:1,
600 °C, 1 h

2160 0.77 460 98% 10,000

Table 5 Comparison of cycling
and rate performance of the
carbon anodes

Sample Cyclability Reference

Sweet potato-derived carbon nanoparticles 200 cycle, 320 mAh g−1 Peng et al. (2015)

Porous carbon nanofiber webs derived
from bacterial cellulose

100 cycle, 914 mAh g−1 Wang et al. (2015b)

Carbon fibers from bamboo chopsticks 300 cycle, 710 mAh g−1 Jian et al. (2014)
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microscopic structure, including sublevel microstructural
features of the precursors used for synthesis. Thus, it
necessitates the sensible design, including careful selection
of precursor, carbonization, and activation technique to
acquire high-performance carbon or carbon composites from
biomass with enhanced surface area and pore hierarchy.
However, an improved process, including efficient activation
and heteroatom doping, can lead to the development of
high-performance carbons with tuned order and enhanced
conductivity for superior electrochemical applications. In
summary, some of the engineered carbons derived from
cost-effectiveness, eco-friendly biomass resources, which
can act as an excellent candidate for the development of
various supercapacitors and Li-ion batteries with enhanced
electrochemical performance, high-rate capability, and
cycling stability were discussed in this chapter.
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Green Synthesis of Nanomaterials
via Electrochemical Method

Aamir Ahmed and Sandeep Arya

Abstract

In nanotechnology, the application of hazardous chemi-
cals and by-products has always been a concern. The
green synthesis involves the method and ingredients
which are not threatening to the human beings and the
environment. The electrochemical method has the poten-
tial to be a part of the green synthesis technique. In green
electrochemical synthesis, the application of non-toxic
solvents such as water, ionic liquids, plant extract, and
safe chemical solvents as an electrolyte is the main focus.
The simple electrochemical methods along with elec-
trodeposition are such green electrochemical techniques
that have been used by the vast majority of researchers for
nanomaterial synthesis. Also, there is a need for more
researchers to work using this green technique so that we
can take one more step toward our dream of sustainable
development.

Keywords

Synthesis � Green � Electrochemical � Nanomaterials �
Electrodeposition � Sustainable development �
Eco-friendly� Plant extract�Nanoparticles�Nanosheets

1 Introduction

Nanotechnology in recent years has been one of the most
rapidly growing concepts in science and technology. It has
played a key role in the development of materials at
nanoscale having unique properties in comparison with their
bulk counterparts. The development of scanning tunnel
microscope (STM) and atomic microscope (AM) has

allowed scientists to see things at the atomic level which
eventually led to the revolutions in nanotech. Most of the
current researchers believe that “nanotechnology is the
future.” Nanotechnology has a huge potential to develop
new devices, sensors, solar cells, new systems, medicines,
etc., in the various fields of research and studies (Mirzaei and
Darroudi 2017; Arruda et al. 2015). These nanoparticles or
materials have the size in the range of nanometers (10−9 m)
and possess catalytic properties, chemical stability, enhanced
thermal conductivity, and unique optical properties; all due
to their large surface area-to-volume ratio (Agarwal et al.
2017). Basically, there are two methodologies used for
nanoparticle synthesis, i.e., “top-down” and “bottom-up”
approach. The top-to-bottom approach makes use of various
techniques such as milling, grinding, and sputtering to break
down bulk material into small particles having the size in
nanometers. This approach was used in ancient times and
that is the reason we have some remarkable antiques like
Lycurgus cup, the windows of Notre Dame Cathedral, the
extraordinarily sharp and shiny Damascus swords, etc.
Another method that is used for the synthesis of nanoma-
terials is the bottom-to-up approach. In this method, the
nanoparticles are synthesized from the atomic or molecular
level by the mechanism of self-assembly. It includes
chemical and biological methods such as electrochemical
methods, sol-gel, and flame spraying. (Mathur et al. 2018).
This is the most commonly used method in modern times
and is less laborious, and the particle size and shape can be
controlled as well.

The chemical methods are mostly used in the synthesis of
nanomaterials by most of the researchers. In this method,
chemical solvents and solutes are used for the synthesis of
the nanoparticles. The methods include sol-gel method,
hydrothermal synthesis, chemical vapor deposition, electro-
chemical method, etc. The chemicals used are toxic and
sometimes the nanomaterials obtained also possess toxic
features. For example, cadmium (Cd) used for the prepara-
tion of cadmium sulfide (CdS) nanoparticles is very toxic,
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mercury (Hg) used in the preparation of nanoparticles is also
very harmful to living beings, and nickel (Ni) used in the
preparation of Ni-based nanoparticles and nanowires is also
very toxic and harmful. In some cases, the solvent used also
possess toxicity. So, the problem with this most popularly
used chemical method is the application of toxic chemicals
and the toxic by-products. Also, the disposal of these
products is a matter of concern. The researchers are, thus,
more focused on the application of the “green synthesis”
method for the production in nanotechnology.

2 Green Synthesis

Green is beautiful and striking (Rajendran et al. 2016). The
term “green” is used in context to the earth; as these are the
methods developed to save the earth and living beings on it
from hazardous products. In products such as soaps, deter-
gents, shoes, toothpaste, and shampoo, the application of
various nanomaterials has been prominent. Nanoparticles of
materials such as gold (Au) (Tsai and Thiagarajan 2010;
Thiagarajan et al. 2009; Thiagarajan et al. 2011), silver
(Ag) (Tsai et al. 2010; Balamurugan et al. 2009; Balamu-
rugan and Chen 2009), and platinum (Pt) (Li et al. 2011) are
widely used in these products. Moreover, the nanomaterials
find their application in the medical and pharmaceutical
industry as well, where they are mostly used by human
beings and when disposed of finally enter the earth and its
environment. It is extensively accepted today that the green
synthesis involves the method and ingredients which are not
threatening to the human beings and the environment. Green
synthesis or green chemistry (Matlack 2001) includes the
application of safer solvents, new materials, and catalysts
that are more efficient in producing the nanomaterials and
safe at the same time. In order to achieve this goal, the
application of resources presents in nature and the perfect
solvent is very important. Green synthesis is the use of
techniques and methods that reduce the application and
production of hazardous products that are harmful to the
environment. Some of the key features of green synthesis are
summarized in Fig. 1.

In nanotechnology, the application of hazardous chemi-
cals and by-products has always been a concern. In order to
stop or evade the production of these harmful products, the
technique of “green synthesis” is required to achieve
eco-friendly and sustainable production methods (Singh
et al. 2018). This is the reason why most of the researchers
are laying emphasis on the application of green synthesis
techniques in nanotechnology. In the year 2005, the Noble
Prize for chemistry was given to Chauvin, Grubbs, and
Schrock for their work “a great step forward for green
chemistry” which clearly is an indication of the development
and popularity of green synthesis techniques. This was also a

step to encourage more researchers toward the application of
green methods in their synthesis techniques.

The green synthesis has actually two components, i.e.,
biological and chemical methods. The biological methods
make use of microorganisms and plant extracts. Whereas in
the chemical methods, use of the eco-friendly chemicals and
solvents is the main concern. In some cases, the plants’
extract is also used in the chemical synthesis of nanomate-
rials. In this section, we will try to give just a brief idea of
these components of the green synthesis.

2.1 Application of Biology in Green Synthesis

In this method of green synthesis, the researchers make use
of the microorganism for the preparation of nanoparticles.
The mostly used organisms are fungi, yeast, plants, and
bacteria. Bacteria is the microorganism species that has been
used widely in the field of biotechnology for processes such
as bioleaching, genetic engineering, and bioremediation
(Gericke and Pinches 2006). Bacteria has always been an
option for the preparation of nanomaterials due to its metal
ions reducing ability (Iravani 2014). And various bacterial
species such as actinomycetes and prokaryotic bacteria have
been successfully applied for metal or metal oxide
nanoparticle synthesis.

The metal or metal oxide nanoparticle synthesis mediated
through fungi is also an efficient technique. The presence of
an intracellular enzyme in various species of fungi makes
them the superior biological agents in metal/metal oxide
nanoparticle synthesis (Chen et al. 2009). Moreover, the
nanoparticles synthesized using fungi have well-defined
morphology, and in competition, to bacteria, these can
produce a larger amount of nanoparticles (Mohanpuria et al.
2008). Also, they have reducing components such as pro-
teins or enzymes on the surface of their cell as compared to
other microorganisms (Narayanan and Sakthivel 2011). The
enzymatic reduction on the cell wall or inside the cell of
fungi results in the formation of metallic nanoparticles.
Nanoparticles of metal/metal oxide such as Au, titanium
(Ti), Ag, titanium oxide (TiO2), and zinc oxide (ZnO) have
been prepared using various fungi species.

Yeast is another species that has been utilized for the
nanoparticle synthesis. Some 1500 species of yeast have
been identified so far (Yurkov et al. 2011) and it is a single
cell microorganism mostly present in a eukaryotic cell.
Many research groups have reported the synthesis of
nanoparticles using various yeast species. Silver and gold
nanoparticles have been reported to be synthesized using
yeast species.

Plants take minerals from the soil and have the ability to
collect certain heavy metals in their parts. Also, the plants
have the ability to reduce metal salts into nanoparticles as
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they contain biomolecules like protein, carbohydrate, and
coenzyme. This is the reason that in recent times the syn-
thesis of nanoparticles using plant extract has gained much
popularity. Many researchers have synthesized metal/metal
oxide nanoparticles using plant leaf extract, fruit extract, or
other parts of a plant. This method using plant extract for
synthesis is simple, cheap, efficient, eco-friendly, and also an
alternative to various conventional methods. Using various
plant species, nanoparticles can be synthesized employing
the “one-pot” method. The one-pot method is a technique
used in chemistry in which various chemical reactions are
performed on a reactant in a single reactor or pot so that the
efficiency of the chemical reaction can be enhanced. First,
gold and silver nanoparticles were synthesized using various
plant extracts. The reference to these research papers will be
provided in the later section of this chapter. Using plants
such as oat (Avena sativa), aloe vera (Aloe barbadensis
miller), lemon (Citrus limon), brown mustard (Brassica
juncea), alfalfa (Medicago sativa), coriander (Coriandrum
sativum), neem (Azadirachta indica), tulsi (Osimum sanc-
tum), and lemongrass (Cymbopogon flexuosus), various
results have been published for synthesizing gold and silver
nanoparticles (Singh et al. 2018).

2.2 Green Synthesis Based on the Application
of Solvent

In a synthesis process, the role of solvent is fundamental
regardless of the synthesis process we use. Water, a uni-
versal solvent, is considered to be a suitable solvent in all
synthesis techniques as it can dissolve most of the sub-
stances. “The best solvent is no solvent, and if a solvent is
desirable then water is ideal” was said by Sheldon regarding
water as a solvent (Shanker et al. 2016). The unique fact

about water is that it is easily available on earth (as 70% of
the earth is water) and is also cheap. Water is also non-toxic
posing, no threat to the environment. Hence, it is most
widely used in the green synthesis technique. In nanotech-
nology, water has been used as a solvent in various pub-
lished works. For example, gold and silver nanoparticles
were synthesized using a bifunctional molecule and gallic
acid in an aqueous medium at room temperature (Yoosaf
et al. 2007). Also, using the laser ablation technique, gold
nanoparticles were synthesized in an aqueous medium
(Sylvestre et al. 2004). Due to the advent of technology,
various other solvents have also been developed and used for
synthesizing nanoparticles such as ethyl lactate (derived
from processing corn), non-toxic liquids, plant extract, and
ionic liquids. Thus, it can be easily understood that in the
green synthesis, we either used water as a solvent or
non-toxic and eco-friendly liquids as a solvent. In recent
times, most of the researchers are focusing on the use of
plant extracts along with water as a solvent in the
nanoparticle synthesis.

3 Computational Data and Analysis

In this section of the chapter, we will look into some of the
computational data that has been published in the journals
regarding the trends in the synthesis of nanoparticles. The
data that we will present here will be based on the green
synthesis technique used in recent years and the current
global trends. The first plot in Fig. 2 that we present here is
about the number of papers that have been published in the
reputed journals from 2003 up to 2017 using the green
synthesis method for nanoparticle production. It is clear from
the plot that the trend using green synthesis techniques for
nanoparticle production has been growing. In the year 2003,

Fig. 1 The diagrammatic
representation of the features of
Green synthesis
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the number of papers published using this technique was
only one, whereas up to 2017 the number of papers pub-
lished increased to 35. Thus, it can be observed from the plot
that the trend (green synthesis) is coming into mainstream
research.

The next plot is about the citations of the research paper
published using green synthesis throughout the years. And
again from the plot in Fig. 3, it can be clearly observed that
the popularity of the subject is increasing every year. As
more are the papers cited, that means that more researchers
are interested in the subject.

And the final plot that we present here is about the
countries that are showing quite a growth in using green
synthesis techniques for the production of nanoparticles.
From the plot in Fig. 4, India has been the country with the
most number of papers published in the reputed journals
using the green synthesis procedure for nanoparticle syn-
thesis. Followed by India are China, the USA, Egypt, Iran,

etc. Up to 2015, India was not among the leading countries
that were prominent in the field of nanoscience and nan-
otechnology. China, the USA, Germany, Japan, France, and
South Korea were the leading countries toward the research
in the nanotech field. But India showed a significant
prominence in the field of nanotech using the green synthesis
method. This may all be due to the availability of abundant
natural resources in the country and also India has a
long-standing role in sustainable development. Also, in the
year 2000, investments made through a Program on Nano-
materials: Science and Devices by the Department of Sci-
ence and Technology (DST) led to the serious development
in India regarding nanotechnology.

The discussion made above based on some computational
data reveals that there is a growing trend for the green
synthesis techniques in nanotechnology. This clearly sup-
ports the use of electrochemical methods for the green
synthesis of nanomaterials. In this chapter, we are focused
only on the “electrochemical method for green synthesis.”
We will try to cover up the basic concepts of the electro-
chemical methods and its connection with the green tech-
nique of synthesis. In the final part of the chapter, we will
also look into some of the works published in the journals
where the electrochemical method was used as a green
synthesis method.

4 Electrochemical Method

The electrochemical method is the process in which an
electric current is passed through a medium bringing chem-
ical changes. This process is commonly known as electrolysis
and the branch of science that deals with this phenomenon is
called electrochemistry. All the chemical changes are brought
due to the electron, so the electron is the key factor in elec-
trochemistry. The whole setup of the electrolysis is called an
electrochemical cell. And the medium through which elec-
tron passes is known as an electrolyte. There are at least two
electrodes in an electrochemical cell. The electrodes may be
conducting such as liquid and solid metals, graphite, semi-
conductors, or can be inert such as electrodes made of carbon
and platinum. An anode is an electrode connected to the
positive terminal of the battery and the cathode is an electrode
connected to the negative terminal of the battery. In an
electrochemical reaction, the electrodes can be changed
easily. Whereas the electrolyte can be aqueous or
non-aqueous, solid, conducting polymer, molten salts, etc.,
and cannot be changed during an electrochemical reaction.
The electrolyte carries the charge provided by the electrodes
and this brings about the chemical changes. So, the electro-
chemical process can be summed in a sentence; electricity
generated brings the chemical change due to the movement of
electrons from one electrode to another electrode through an

Fig. 2 Plot for the number of publications since 2003 up to 2017,
Reproduced from Ribeiro et al. (2020) CC BY-NC 4.0

Fig. 3 Plot for the number of citations of papers based on green
synthesis technique throughout the years, Reproduced from Ribeiro
et al. (2020) CC BY-NC 4.0
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electrolyte. The setup and working of an electrochemical cell
are shown in Figs. 5 and 6. In an electrochemical cell, when
electricity is passed through an electrolyte, cations, and
anions are generated. These ions are then deposited on their
respective electrodes, i.e., cation on the cathode and anion on
the anode of an electrochemical cell.

The term “green electrochemistry” was most probably
used by Pletcher and Weinberg for the first time in its history

(Gupta et al. 2019). The main aim of explaining briefly about
an electrochemical cell and its working was to show how the
electrochemical method easily relates to the green synthesis.
First, the electricity used to start an electrochemical reaction
is environmentally friendly. Second is the choice of an
electrolyte which will be used in the cell. Water is mostly
used as an electrolyte in an electrochemical reaction which
already discussed above is the part of green synthesis.
Moreover, salts (non-toxic) dissolved in water are also used
as electrolytes, thus incurring no threat to the environment.

Fig. 4 The plot for the countries
having the most number of papers
published using green synthesis
for nanoparticles throughout the
years, Reproduced from Ribeiro
et al. (2020) CC BY-NC 4.0

Fig. 5 An electrochemical cell

Fig. 6 Working of an electrochemical cell
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Also, non-toxic solvents can be used as an electrolyte adding
to the merits of the electrochemical method as a green
synthesis technique. Third, the electrochemical reactions are
usually carried out in low temperatures and non-volatile
media reducing the consumption of energy, accidents (re-
lease), material failure, etc. Thus, the electrochemical
method has the potential to be a part of the green synthesis
technique and the above discussion explains why it is being
widely used by the researchers. We would like to mention
here that the research work in which water, non-toxic sol-
vents, etc., are used for synthesizing nanoparticles by the
electrochemical green method will be discussed separately in
the final part of the chapter.

5 Electrodeposition Method

Electrodeposition is an electrochemical process in which a
solid is deposited on the metal surface. Being easy to carry
out and cheap at the same time, it acts as a basis for various
industrial processes (Pasa and Munford 2006). This method
is most widely used in the field of nanotechnology for the
synthesis of nanomaterials, i.e., nanoparticles and nanowires.
In recent years, it has been proved to be a very successful
and efficient method for the synthesis of nanowires. The
electrodeposition setup is similar to that of an electrochem-
ical cell consisting of an electrolyte, electrodes, and a power
source. When the current is passed through an electrolyte,
the cations and anions are deposited on the respective
electrodes (metal surface). The main difference between
electrolysis and electrodeposition is that in electrolysis, an
electric current is used to carry a chemical reaction, whereas,
in electrodeposition, an electric current is used to deposit one
metal on another.

In nanotechnology, the electrochemical deposition pro-
vides a direct one-step process for the development of
nanostructures. And the nanostructures synthesized using the
electrodeposition method have been found to be electrically
active, thus possessing various applications in bio-sensing
(Welch and Compton 2006; Campbell and Compton 2010),
fuel cells (Maillard et al. 2005; Tian et al. 2007; Day et al.
2007), etc. Also, the electrodeposition method is cheap,
selective, free from surfactants, and allows the nanoclusters
to be tuned by simply changing the composition of elec-
trolyte and parameters of deposition (Kibsgaard et al. 2012;
Paunovic 2006; Staikov 2007). Materials are deposited
without any expensive vacuum equipment. Originally, the
electrodeposition was used for the production of metallic
mirrors and surfaces resistant to corrosion. But in 1805,
Luigi V. Burgnatelli who was an Italian professor, deposited
Au on the metallic surface using a gold dissolved solution
and a battery. And it is to him that the discovery of elec-
trodeposition is attributed. Forty years later, John Wright

from England revealed that the electroplating of silver and
gold can be done using an electrolyte made of potassium
cyanide. It was with this discovery, the electrodeposition
became a vital industrial technique for the shelling of metallic
objects in order to make them decorative and
corrosion-resistant. Successively, various metals such as Ni,
zinc (Zn), and tin (Sn); alloys such as brass were deposited in
the next coming years. For about 100 years, the main idea
behind using the electrodeposition technique was to cover the
surfaces of materials using noble metals. But in the year
1940, the electronic industry revived the electrodeposition
method. The gold was electrodeposited for various applica-
tions in the electronic components for the first time. The
microsystems and microelectromechanical systems (MEMS)
were developed using the electrodeposition of various metals,
alloys, and semiconductors. For developing most of these
microsystems, a simple aqueous electrolyte of metals such as
Ni, copper (Cu), Au, Pt, iron (Fe), and lead (Pb) was used.
Among these, nickel has been widely used in the micro-
electronic systems. The electrodeposited nickel and its alloys
have been used in microsystem electronics for the making
latch precision gears, flexure spring arms, and motors. The
microelectronics added very much to the advancement of the
electrodeposition technique. Various models were developed
for deposition method in order to ensure that mass is trans-
ported to the electrodes, new and safer baths for electrolytes
were developed, DC power supplies were developed, whole
new kinetics was developed to understand the charge trans-
fer, nucleation, and growth in the electrodeposition tech-
nique, etc. All these efforts were made in microelectronics
which eventually led to the great improvement in the elec-
trodeposition and its use for large-scale manufacturing. Since
microelectronics is electronics at a very small scale; this
eventually led to the utilization of electrodeposition in the
nanotechnology because in nanotechnology we deal with the
materials on a small scale (nanoscale).

5.1 Experimental Setup for Electrodeposition

On the industrial scale, the electrodeposition just requires a
DC power supply and an electrochemical cell. In this
method, the current between the electrodes is kept constant
(DC supply) and is most commonly known as the gal-
vanostatic plating system. It is simple, cheap, and easy to
deposit. There is also another method for electrodeposition
known as the potentiostatic method. This is the most famous
and most common one used at the laboratory and industrial
scale. In this method, an extra electrode known as a refer-
ence electrode is used in the electrochemical cell. With the
introduction of the reference electrode, the experimental
setup for electrochemical deposition changed which is
shown in Fig. 7.
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There are three electrodes, namely—working electrode,
reference electrode, and counter electrode. Silver, gold,
platinum, inert carbon, and boron, etc., are mostly used as
working electrodes. It is the working electrode where the
reaction of main importance occurs in an electrochemical
deposition (Kissinger and Heineman 1996; Bard et al. 2000;
Zoski 2007). Whereas the counter electrode allows the
passage of current to balance the current observed at the
working electrode (Bard and Faulkner 2001). There is also a
potentiostat that controls the potential difference between
working and counter electrode, thus maintaining the poten-
tial difference across working and a reference electrode. In
the modern era, with the advancement in science and tech-
nology, a more sophisticated setup has been built for per-
forming the electrochemical deposition. The setup consists
of an electrochemical workstation which has a potentiostat
and a relevant software on one end, and the electrochemical
setup inside Faraday cage at the other end. The electro-
chemical cell is designed with such a perfection that it can
hold a working, reference, and counter electrode appropri-
ately. Besides deposition, the potentiostat and the
three-electrode cell can be used for various electrochemical
investigations such as voltammetry, cyclic voltammetry
(CV), linear sweep voltammetry (LSV), impedance, Tafel
plot, and chronocoulometry.

The potentiostatic method is all due to the development
and advancement of electrochemical science. In this science,
the electrochemical reactions taking place at the surface of
an electrode are studied carefully. After a careful

investigation, the electrochemist came up with the idea of a
reference electrode which can be used to measure the drop in
the potential that occurs near the surface of electrodes. The
development of this reference electrode was based on the
assumption that there are sufficient ions in an electrolyte to
evade ohmic voltage drop and the maximum voltage sup-
plied by the battery appears near the surface of the electrodes
which results in the formation of a charge region there. It is
necessary to find out (measure) the voltage drop across these
charge regions, as these regions control the force which is
responsible for an ion to reduced state transformation. By
introducing the reference electrode, the potential drop across
electrodes can be measured which will help to investigate the
reactions taking place at the electrodes (working or counter).
The reference electrode can be made of a simple metal foil.
But there must be a standard reference electrode that can be
used to measure the drop in potential across electrode sur-
face (working) in different electrolytes. The electrochemist
chose a hydrogen electrode and all the electrode potentials
are measured relative to this reference electrode. The stan-
dard hydrogen electrode (SHE), which is most commonly
used is fabricated by passing hydrogen gas over the surface
of an immersed platinum foil. The following reaction
responsible for the operation of SHE takes place:

H2 $ 2Hþ þ 2e�

There are various other reference electrodes used such as
calomel electrode (Hg/Hg2Cl2) and silver/silver chloride
electrode (Ag/AgCl). These are stable, strong, and are easily
fabricated than SHE (Gupta et al. 2019).

The electrochemical deposition is also an electrochemical
method used for the synthesis of nanomaterials. And as
already discussed, by choosing the environment-friendly
solvent and salts the method can be very helpful in the green
synthesis technique.

6 Research Work: Using Green
Electrochemical Methods
for Nanomaterials Synthesis

This is the final and important section of this chapter.
Because in this section, we will discuss the research that has
been going on making use of the green synthesis techniques
for nanomaterials; especially the electrochemical method.
The section will include some research works published in
the reputed journals where an electrochemical green method
has been used for nanomaterial synthesis.

Dao TriThuc et al. published a paper “green synthesis of
colloidal silver nanoparticles through the electrochemical
method and their antibacterial activity” (Thuc et al. 2016). In
the paper, an environmentally friendly and easy method was

Fig. 7 Schematic representation of the setup for electrodeposition,
Reproduced with permission from Gupta et al. (2019). Copyright 2019,
Elsevier
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used to synthesize colloidal nanoparticles of silver using
distilled water, tri-sodium citrate, a DC voltage, and silver
bars. The synthesis was carried out at room temperature. The
particles were spherical in shape with a size of
19.77 ± 4.3 nm. The particles were investigated for their
antibacterial activity against species like Pseudomonas
aeruginosa, Escherichia coli, and Staphylococcus aureus.

There were also various reports of synthesizing silver
nanoparticles using plant or fruit extract. Leaf extract of
Eugenia jambolana was utilized to synthesize silver
nanoparticles (Firdous et al. 2017). Silver particles were
synthesized using Rhynchotechum ellipticum leaves
(Hazarika et al. 2014) and Hesperidin (Stephen and
Seethalakshmi 2013). Application of pepper leaf extract as a
capping and reducing agent for silver nanoparticles synthesis
has also been reported (Mallikarjuna et al. 2014). Some other
reducing agents for silver nanoparticles synthesis have also
been reported such as natural rubber (Guidelli et al. 2011),
cinnamon (Saliem et al. 2016), a stem derived callus of red
apple (Umoren et al. 2014), lemongrass (Masurkar et al.
2011), fruit extracts of Malus domestica, coffee and tea
extract (Nadagouda and Varma 2008), egg white (Lu et al.
2012), soluble starch (Vigneshwaran et al. 2006), and black
tea (Begum et al. 2009). With silver nitrate as a substrate,
silver nanoparticles of size 50 nm were grown using alfalfa
(Medicago sativa) and mustard green (Brassica juncea)
(Harris and Bali 2008). These are all the green synthesis
methods for silver nanoparticles.

On a substrate of gold and copper salts, icosahedra of gold
(4 nm) and copper (2 nm) were observed and investigated
using M. Sativa (alfalfa) (Gardea-Torresdey et al. 2002) and
Iris pseudacorus (yellow iris) (Manceau et al. 2008),
respectively. Gold nanoparticles of size 20–40 nm have been
reduced using rose geranium (Pelargonium graveolens)
extract (Shankar et al. 2006). Also, the gold hexagons and
triangles of size 50–100 nm were synthesized using neem
(Azadirachta indica) extract (Shankar et al. 2004). The cubic
In2O3 nanoparticles (5–50 nm) were produced using leaf
extract of aloe vera plant (Maensiri et al. 2008).

Fauziatul Fajaroh et al. published a paper “Thermal sta-
bility of silica-coated magnetite nanoparticles prepared by an
electrochemical method” (Fajaroh et al. 2013). By the oxi-
dation of iron electrically in water, magnetite nanoparticles
were synthesized and the particle size was found to be 10–
30 nm. Then, the particles were coated using silica in dilute
sodium silicate solution and the size of coated particles was
9–12 nm.

Jitendra Kumar Sharma et al. fabricated CuO nanoparti-
cles using the leaf extract of Calotropis gigantean in an
aqueous solution (Sharma et al. 2015). The particles syn-
thesized were used as electro-catalytic material in the elec-
trodes of a dye-sensitized solar cell.

Na Liu et al. published a paper “A versatile and ‘green’
electrochemical method for synthesis of copper and other
transition metal oxide and hydroxide nanostructures” (Liu
et al. 2008). The synthesis involved water as an electrolyte
and no special chemicals, surfactants were utilized to pro-
duce CuO, Cu(OH)2, Cu2O nanostructures with variant
morphologies. The nanostructures of ZnO, Fe3O4, Ni(OH)2,
and FeOOH were also synthesized using the same technique.

Rakesh et al. published a paper “Synthesis of Chromium(III)
Oxide Nanoparticles by Electrochemical Method and Mukia
Maderaspatana Plant Extract, Characterization, KMnO4

Decomposition and Antibacterial Study” (Rakesh et al. 2013).
The nanoparticles of chromium oxide were synthesized by
reducing potassium dichromate solution with plant extract of
Mukia Maderaspatana. The synthesized Cr2O3 nanoparticles
were used as a catalyst for decomposing KMnO4 and its
antibacterial propertieswere investigatedagainstE. coli bacteria.

A. Serrà et al. published their work in which they syn-
thesized CoPt nanoparticles using ionic liquids via a green
electrochemical method (Serrà et al. 2014). This was a
unique work of its kind, easy synthesis technique,
eco-friendly, and simple. In this work, the ability of ionic
liquid microemulsions as microreactors was combined with
the potential of electrodeposition for synthesizing nanopar-
ticles. The microemulsions have long been established as a
synthesis procedure for metal, metal oxide, and inorganic
nanomaterials. The CoPt nanoparticles synthesized in this
work were of size range 10–120 nm.

Lingchao Qian et al. fabricated FePO4 nanoparticles for
their application in LiFePO4/C cathode materials using an
electrochemical method (Qian et al. 2012). In this work,
amorphous and unique FePO4 nanoparticles were synthe-
sized with particle size ranging from 20 to 80 nm. The
particles find their application as cathode material for
LiFePO4/C cathode.

Fauziatul Fajaroh et al. published their work as “Synthesis
of magnetite nanoparticles by surfactant-free electrochemical
method in an aqueous system” (Fajaroh et al. 2012). In their
work, they presented a simple and green electrochemical
method for synthesizing magnetic nanoparticles making use
of plain water as an electrolyte and iron as an anode. And
various parameters that affect the development of magnetic
nanoparticles were also investigated. The parameters
observed were the spacing between the electrodes and the
effect of OH− ions and current density on the development of
magnetite nanoparticles. The particles synthesized were of
size 10–30 nm exhibiting ferromagnetic properties.

Min Zhou et al. synthesized Au-Ag alloy nanoparticles
using a one-step electrochemical method (Zhoua et al. 2006).
In this method, they made use of the Polyvinylpyrrolidone
(PVP) along with silver and gold salt. The method was
environmentally friendly, safe, and easy.
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Sayed M.Ghoreishi et al. synthesized gold and silver
nanoparticles using an electrochemical green method. In
their synthesis, they made the use of Rosa damascene flower
extract as a stabilizing and a reducing agent (Ghoreishi et al.
2011). The approach they used was cheap, simple, long time
effective, and environmentally friendly. The average size of
gold and silver nanoparticles synthesized was reported to be
in a range of 10–30 nm.

Ping Yu et al. described a method for the green electro-
chemical preparation of metallic nanoparticles (Yu et al.
2010). In this work, they explained their strategy for the Pt
metal nanoparticles as an example. The particles synthesized
were uniform and spherical in shape with an average
diameter of about 100 nm. They demonstrated how the
deposition of metal nanoparticles can be made specific by
simply adjusting the reducing potential of ionic liquids used
as green solvents. This study opened new gates for the
controlled and green metal nanoparticle synthesis requiring
no reducing and capping agents, no toxic substrates, and
high pressure.

Kim et al. prepared Au and Pt nanoparticles by devel-
oping a one-phase preparation technique using
thiol-functionalized ionic liquids (TFILs) as stabilizers (Kim
et al. 2004). Lazarus et al. prepared silver nanoparticles
using an electrochemical method with both spherical and
hexagonal shapes in an ionic liquid (BmimBF40) (Lazarus
et al. 2012).

Aoqi Li et al. synthesized gold nanocrystals by varying
the water content in deep eutectic solvents (DESs) using a
green electrochemical method (Li et al. 2016). The
nanocrystals synthesized were of different morphologies and
were investigated for their electro-catalytic activity toward
ethanol in alkaline media.

Hongcai Gao et al. synthesized PtNi nanoparticle-
graphene nanocomposites using green and one-step elec-
trochemical technique (Gao et al. 2011). They actually
reduced the graphene oxide and metal precursors electro-
chemically. The nanocomposites obtained were successfully
tested for the detection of non-enzymatic glucose.

Hui-Lin Guo et al. published their work as “A Green
Approach to the Synthesis of Graphene Nanosheets” (Guo
et al. 2009). The high-quality graphene sheets were syn-
thesized by the electrochemical reduction of graphite oxide
(exfoliated). The method was described to be green and
material contamination free.

Haitao Li et al. synthesized fluorescent carbon nanopar-
ticles using a green, low energy electrochemical method, and
the nanoparticles were investigated for their photolumines-
cence properties (Li et al. 2011). The nanoparticles were
prepared by one-step sodium hydroxide (NaOH)-assisted
treatment of ethanol. The method described was also
reported to be a future prospect in the synthesis of fluores-
cent carbon nanoparticles.

Su-Juan Li et al. synthesized gold-graphene nanocom-
posite using a green, simple, and controllable electrochem-
ical synthesis mechanism (Li et al. 2012). The
nanocomposite was reported to be sensitive toward dopa-
mine, confirmed by its CV analysis.

Peng Miao et al. synthesized carbon nanodots using a
green electrochemical synthesis technique (Miao et al.
2015). The nanodots were successfully applied for Fe3+ ions
assay and were found to be practically applicable in real
water samples as well, thus making them useful for envi-
ronmental analysis.

Krishna M. Deshmukh et al. demonstrated a one-pot,
green electrochemical synthesis of palladium nanoparticles
using ionic liquids for the first time (Deshmukh et al. 2011).
The method was reported to be surfactants and capping
agent-free. The nanoparticles synthesized were investigated
for their activity toward Suzuki coupling reaction of halides
(un-activated).

Surjit Sahoo et al. reported a green, energy-saving elec-
trodeposition synthesis of porous manganese-cobalt sulfide
(MCS) nanosheet array on Ni-foam substrate for superca-
pacitor applications (Sahoo and Rout 2016). The nanosheets
were described to be of potential application as superca-
pacitor electrodes.

Sheng Liu et al. synthesized Pt/graphene nanocomposite
using a green electrochemical method (Liua et al. 2010).
Their synthesis consists of a series of electrochemical pro-
cesses and exhibited high and better stability and catalytic
activity toward the oxidation of methanol.

R. Dehdari Vais et al. reported a one-step green elec-
trodeposition method for the synthesis of gold nanostruc-
tures with different morphologies (Vais et al. 2016). The
gold nanostructures of different morphologies were synthe-
sized using DC potential, eco-friendly additives, and ultra-
sonic irradiation. The method was described to be a potential
method for the preparation of other noble metal nanostruc-
tures of different morphologies.

Na Liu et al. synthesized graphene nanosheets using
water and ionic liquids via a one-step electrochemical
method (Liu et al. 2008). The method was reported to be
green, facile, simple, and fast. Virendra V. Singh et al.
developed graphene nanosheets directly from the pencil
using a green electrochemical synthesis route (Singh et al.
2012). The nanosheets were then investigated for surface
plasmon resonance (SPR) sensing of Salmonella typhi.

The above-mentioned work is just a few milestones of the
long list that has been published using an electrochemical
green method for synthesis. The main aim of citing this work
was to bring it into the notice that a huge number of
researchers are employing this method for the synthesis
process. And there is a need for more researchers to work
using this green technique so that we can take one more step
toward our dream of sustainable development. With global
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climate change and global events leading to the degradation
of the environment, it is the duty of researchers to work for
the benefit of the environment. Thus, there is a global need
that the synthesis in research work is done using “green”
methods. The electrochemical method is one such method
and can be used by researchers to achieve this global aim.

7 Conclusion

The chapter is about the use and development of green
electrochemical synthesis mechanism in nanotechnology.
There is a huge demand for the application of green synthesis
techniques in the field of science and technology to achieve
the aim of sustainable development, and nanotechnology is
no exception to this. Researchers are making their efforts
toward sustainable development using green methods. The
electrochemical method is also one of the methods that can be
used to achieve this goal. Recent developments have shown
the potential that the electrochemical method possesses as a
green synthesis route. This route has been followed by many
researchers in nanotechnology, encouraging more research-
ers to apply this method in their synthesis. In the chapter, we
have tried to briefly introduce this method and also cited
some efficient work published using this green technique.
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Microwave-Irradiated Synthesis of Imidazo
[1,2-a]pyridine Class of Bio-heterocycles:
Green Avenues and Sustainable
Developments

Ravi Kant Yadav and Sandeep Chaudhary

Abstract

A fused heterocyclic bioactive class of molecule, i.e.,
imidazo[1,2-a]pyridine abbreviated as “IP” had been
comprehensively studied over the last 2–3 decades due to
the presence of wide array of biological activities.
Various synthetic routes have been applied for the
preparation of IPs but microwave-irradiated synthesis
has been recognized as an effective, fast, and high-
yielding methodology. Herein, this chapter incorporates
some of the most significant microwave-assisted prepa-
ration of IPs reported so far in the literature.

Keywords

Imidazo[1,2-a]pyridines � Microwave-assisted organic
synthesis (MAOS) � N-heterocyclic compounds �
5,6-fused heterocycles

1 Introduction

The search of medicinally privileged N-containing hetero-
cyclic structures, present as a part or as a whole in several
naturally occurring natural products and other pharmaceuti-
cally important therapeutics, has been recognized as a
rapidly emerging and constitutional theme of drug discovery
(Pastor et al. 1995). In this context, bridge-headed
N-containing heterocyclic core constitutes an important
class of N-heterocyclic compounds due to its amicable
existence in numerous natural products and its synthetic
congeners (Pastor et al. 1995).

Among these class of bio-heterocycles, imidazo[1,2-a]
pyridines (IPs) encompassing five-membered imidazole

moiety fused with six-membered pyridine ring have been
recognized as a “drug bigotry” (Kappe et al. 2009; Lu and
Zhang 2004) and are endowed with a varied array of phar-
maceutical properties such as anti-bacterial (Schwerkoske
et al. 2005), antifungal (Masquelin et al. 2006), antiviral
(DiMauro and Kennedy 2007; Rousseau et al. 2007),
antiprotozoal (Tu et al. 2007), anti-inflammatory (Rousseau
et al. 2007), anti-tumor (Rousseau et al. 2007), antipyretic,
analgesic, peptic ulcer, anti-tuberculosis, hypnoselective,
and anxioselective (Adib et al. 2010) activities (Bagdi et al.
2015). Imidazo[1,2-a]pyridine or its similar skeletal core is
also present in several clinically used drugs/therapeutics
such as Zolpidem I (sedative), Alpidem II and Saridipem III
(both anxiolytic), Olprinone IV (heart failure), Zolimidine
V (peptic ulcer), Minodronic acid VI (Osteoporosis),
GSK812397 VII (anti-HIV), YM-201627 VIII (anti-tumor),
and many other drug-like molecules (Fig. 1) (Bagdi et al.
2015). Additionally, some instances had been appealed to be
antiplatelet agents, cardiotonics, acetylcholinesterase
(ACE) inhibitors (Howard 1996), angiotensin II antagonists
(Howard 1996), gastric H+/K+-ATPase inhibitors (Vagin
et al. 2002), cyclin-dependent kinase inhibitors (Cai et al.
2006), b-amyloids imaging agents in Alzheimer’s disease
(Lockhart et al. 2005), bradykinin B-2 receptor
antagonists/agonists (Heitsch 2002), 5-HT3 antagonists
(Ohta et al. 1996), and UV-induced keratinocyte apoptosis
inhibitors (Enguehard-Gueiffier et al. 2005).

Apart from this, IP-containing heterocycles were also
blended with fluorescent activity. Experimental studies fur-
ther revealed that an increase in fluorescent activity has been
observed when C-2 site of IP core is replaced with
phenyl/naphthyl group (Pordel et al. 2017; Stasyuk et al.
2012; Catalán et al. 1992). Thus, the development of a fast
and an efficient synthetic protocols of IP-based heterocycles
becomes an attractive target for Chemist worldwide.

Microwave (MW)-assisted organic synthesis came out as
a recent modification in chemical transformation and first
report published in 1986 but after that more than 3500
articles have been online and counting are increasing day by
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day (Kappe et al. 2009). Many synthetic methodologies have
been illustrated for the preparation of IPs but, in recent years,
the importance of microwave-assisted organic synthesis
(MAOS) has been identified as a masterstroke for its fast and
efficient synthesis (Polshettiwar and Varma 2008). It has
been well-established that the usage of microwave irradia-
tion has been known to introduce the persuasive and con-
trollable heating source for any particular type of
MW-assisted organic reactions (Hoz et al. 2005). There-
fore, microwave-irradiated synthesis of IPs has been exten-
sively reconnoitered and showed better selectivity, shorter
reaction time, high yields and diminished formation of
by-products via suppressing side reactions (Elgemeie and
Hamed 2014).

In this chapter, we accommodate most of the important
historical development of microwave-irradiated synthesis of
imidazo[1,2-a]pyridines observed during the past 2–3 dec-
ades. This chapter will also cover the developments of most
efficient methodology practiced in the synthesis of
imidazopyridines-based drugs/therapeutics.

Based on synthetic procedures, so far, reported in the
literature, all the microwave-assisted synthesis of imidazo
[1,2-a]pyridines have been divided into three sections.

2 Microwave-Assisted Synthesis
of 2-arylimidazo[1,2-a]pyridines
[Abbreviated as 2-Aryl-IPs].

2-Aryl-IPs (1), the basic skeleton of substituted 5,6-fused
heterocycles, have been found in several synthetic/ naturally
occurring pharmaceutically important molecules (Ramsden
1996). Therefore, microwave-irradiated preparation of
2-aryl-IPs is described year wise in a sequential manner.

2.1 Synthesis of Fused Bicyclic Heteroaryl
Boronates and Imidazopyridine-Quinazoline
Hybrids Under MW-irradiations

Erin F. DiMauro et al. in 2006 synthesized various fused
bicyclic heteroaryl boronates 4a-h in moderate yield which
were further utilized to prepare dimer of fused heterocycles via
one-pot Suzuki coupling of 4a-h with 6-bromoquinazolin-
2-amine 5 which furnished imidazopyridine-quinazoline hybrids
6a-g in moderate yield (Scheme 1) (DiMauro and Vitullo 2006).

5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
pyridin-2-amine 2 reacts with a-bromoketones 3a-h in
ethanol under microwave irradiation at 130 °C for 30 min
furnished imidazo[1,2-a]pyridine-6-boronates 4a-h as an
intermediate which, then, subjected to one-pot Palladium-
catalyzed Suzuki Coupling in a mixture of H2O and ethanol
(1:3 ratio) as solvent at 90 °C for 30 min under microwave
irradiations furnished 6a-g in 26–54% yield range
(Scheme 1) (DiMauro and Vitullo 2006).

2.2 MW-Irradiated Synthesis of IPs Using
Multi-Component Strategy Under Neat
Conditions

In 2010, Mehdi Adib et al. synthesized imidazo[1,2-a]pyr-
idine 10 using multi-component reaction. It initially involves
the reaction of pyridine 7 with a-bromoketones 8 in situ

Fig. 1 Structures of some clinically used drugs based on imidazo[1,2-a]pyridines (IPs) and imidazo[2,1-b]thiazoles
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which furnished N-phenacylpyridinium bromides as an
intermediate which, then, undergone microwave-assisted
nucleophilic addition of ammonium acetate 9 under solvent-
free conditions at 180 °C for 4 min afforded the imidazo
[1,2-a]pyridines 10a-j in excellent yields using simple
starting materials (Scheme 2) (Adib et al. 2010).

The reaction mechanistic pathway involved two steps.
Initially, pyridine 7 undergone nucleophilic addition on the
a-bromoketones 8 formed N-phenacyl pyridinium bromide
salt. Then, in the next step, the pyridinium ion get attacked
by ammonium acetate 9 (act as a source of –NH2) formed
adduct I, which then generates dihydro imidazo[1,2-a]pyr-
idine intermediate II upon cyclization. The cyclized product
II furnished 10 via aerial oxidation in excellent yields
(Fig. 2) (Adib et al. 2010).

2.3 One-Pot, Three-Component Synthesis
of 2-Phenyl-H-Imidazo[1,2-a]pyridine Under
MW-Irradiations

A one-pot, multi-component, atom economical, benign, dom-
ino green preparation of 2-phenyl-H-imidazo[1,2-a] pyridine
in excellent yields have been reported by Kourosh Motevalli
et al. in the year 2012 (Scheme 3) (Motevalli et al. 2012).

This domino strategy involves the reaction with pyridine
7, substituted phenacyl bromides 11a-h and 12 [guanidine or

urea or thiourea] at 150 °C for 3–4 min under microwave
irradiation afforded the corresponding 2-phenyl-H-imidazo
[1,2-a] pyridines 13a-h in 75–85% yield range. The tenta-
tive mechanistic pathway occurs via the initial reaction of
pyridine 7 and phenacylbromide 11a using microwave
irradiations at 100 °C for 1 min. formed N-Phenacyl pyri-
dinium bromide A. Then, guanidine hydrochloride 12 was
added into the same reaction mixture and further subjected to
MW-irradiations with a power of 600 W at 150 °C for 2–
3 min (Make: ETHOS 1600, Milestone) forms the interme-
diate B which, after the release of HBr, resulted in the for-
mation of adduct C. This adduct C on further cyclization and
aromatization via releasing of the formamide molecule forms
the desired 13a in 79% yield (Motevalli et al. 2012).

2.4 Microwave-Assisted Amine-Triggered
Benzannulation Strategy for
the Preparation of
2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines

In 2012, Shanmugam Muthusubramanian and his coworkers
gave a metal-free, proficient MW-assisted, amino-triggered
benzannulation approach for the formation of 2,8-diaryl-6-
aminoimidazo-[1,2-a]pyridines (Nagaraj et al. 2012).

The reaction of aryl(4-aryl-1-(prop-2-ynyl)-1H-imidazol-
2-yl)methanone 14a-h with several substituted

Scheme 1 Synthesis of imidazo[1,2-a]pyridine-6-boronates 4a-h
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dialkylamines 15a-h under microwave condition at 80 °C
for 10 min. using 4 Å molecular sieves in catalytic amount
which furnished several substituted 2,8-diaryl-6-
aminoimidazo[1,2-a]pyridines 16a-s in 15–94% yield
range (Scheme 4) (Nagaraj et al. 2012).

2.5 MW-Assisted NaHCO3-catalyzed Synthesis
of Imidazo[1,2-a]pyridines in PEG400 Media
and Its Practical Application in the Synthesis
of 2,3-Diaryl-IP Class of Bio-Heterocycles

Sabine Berteina-Raboin and her coworkers (2014) reported a
straight forward NaHCO3-catalyzed efficient preparation of

substituted imidazo[1,2-a]pyridine 19a-p via the reaction of
substituted 2-aminopyridine 17a-j with several substituted
a-bromoketones 18a-g dissolved in PEG400 medium under
MW-irradiation conditions at 120 °C for 10 min (Scheme 5)
(Heibel et al. 2014).

The above methodology was then practically applied in
the one-pot synthesis of 2,3-diaryl-IP class of
bio-heterocycles 20a-u in 36–80% yield range (Scheme 7).
The procedure involves initially the one-pot reaction of
substituted 2-aminopyridine 17a-j with several substituted
a-bromoketones 18a-g dissolved in PEG400 medium using
MW-irradiation conditions at 120 °C for 10 min and then, in
the same pot, aryl bromides was added in the presence of

Scheme 2 MW-irradiated synthesis of imidazo[1,2-a]pyridines using multi-component strategy under solvent-free conditions

Fig. 2 Tentative mechanism for the synthesis of 10a-j
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Palladium acetate (1 mol%), potassium acetate (4 equiv.)
using MW-irradiation conditions at 220 °C for 1 h furnished
2,3-diarylimidazo[1,2-a]pyridine 20a-u without the use of
any ligand. PEG400 (polyethylene glycol) has been recog-
nized as a suitable medium for the one-pot condensation
reaction. It has also been described that functional groups
containing electron-donating and electron-withdrawing
groups showed tolerance under optimized reaction condi-
tions, particularly at para-and meta-positions (Scheme 6)
(Heibel et al. 2014).

2.6 MW-Irradiated, Ligand-Free,
Palladium-Catalyzed, One-Pot 3-component
Reaction for an Efficient Preparation
of 2,3-Diarylimidazo[1,2-a]pyridines

Hong-yu Li and his coworkers (2014) reported a unique
MW-irradiated, ligand-free, Palladium (Pd)-catalyzed,
one-pot 3-component reaction for an efficient preparation of
2,3-diaryl-IPs in excellent yields (Scheme 7) (Wang et al.
2014a). This methodology had been described superior due
to high availability of commercial grade reagents and wide

substrate scope. 2-aminopyridine 21a-d, a-bromoketones
22a-e and aryl bromide 23a-o were reacted in the presence
of Pd(OAc)2/KOAc and potassium acetate dissolved in DMF
as solvent under microwave irradiation at 160 °C for an hour
which furnished 2,3-diaryl-IPs analogues 24a-x in 56–85%
yield range. The one-pot mechanistic pathway proceeds with
the reaction of 2-aminopyridine with a-bromoketone which
furnished the imidazo[1,2-a]pyridine skeleton which then
undergone Pd-catalyzed Suzuki product under microwave
irradiations afforded the C-3 arylated product in good yields
(Wang et al. 2014a).

2.7 MW-Assisted Water-PEG400-mediated
Synthesis of 2-Phenyl-IP
via Multi-Component Reaction (MCR)

Santosh A. Jadhav et al. (2016) reported a water-PEG400-
mediated synthesis of 2-phenyl-IP 28 via multi-component
reaction using MW-irradiations (Scheme 8) (Jadhav et al.
2016).

An efficient, simple and fast, one-pot microwave-assisted
green methodology involves the multi-component reaction

Scheme 3 Synthesis of microwave-assisted 2-phenyl-H-imidazo[1,2-a]pyridine
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Scheme 4 Microwave-irradiated synthesis of 2,8-diaryl-6-aminoimidazo-[1,2-a]pyridine via amine-activated benzannulation approach

Scheme 5 MW-assisted NaHCO3-catalyzed synthesis of 19a-p in PEG400 medium
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of succinimide 25, substituted acetophenones 26a-f, and
substituted 2-aminopyridine 27a-d in the stoichiometric
amount of AgI and catalytic amount of iodine in the mixture
of PEG400 and H2O (2:1) serving as green solvent at 350 W
at 95–100 °C for 7–8 min furnished substituted
2-phenylimidazo[1,2-a]pyridines 28a-k in 89–98% yield
range (Scheme 8). The unique feature of this methodology is
the in situ generation of a-haloketones for the synthesis of
targeted molecule (Jadhav et al. 2016). The probable
mechanism of this reaction had been depicted as shown in
Fig. 3 (Jadhav et al. 2016).

2.8 Microwave-Irradiated Synthesis of Imidazo
[1,2-a]pyridines Under Neat, Catalyst-Free
Conditions

Dulin Kong et al. in the same year 2016 gave a simple,
solvent-free, catalyst-free, high-yielding greener approach
toward synthesis of 2-phenylimidazo[1,2-a]pyridines 29a-j
(Scheme 9) (Kong et al. 2016).

Similar to previously reported synthetic procedures,
substituted 2-aminopyridines 17a-d reacts with substituted
a-bromoketones 18a-d under MW-irradiation at 65 °C for

Scheme 6 Sequential one-pot synthesis of 20a-u in PEG400 solvent

Scheme 7 Pd-catalyzed synthesis of 2,3-diarylimidazo[1,2-a]pyridines 24
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15–20 min afforded 2-phenylimidazo[1,2-a]pyridines 29a-j
in 83–90% yield range (Scheme 9) (Kong et al. 2016).

2.9 Green Synthesis of Imidazo[1,2-a]pyridines
in H2O

Sheela Gopal M. and Anitha I. reported (2016) water-
mediated synthetic protocol of 2-phenylimidazo[1,2-a]
pyridines 30a-h via the combination of 2-aminopyridine 17a
and a-bromoketones 18a-h under MW conditions for 1 min.
at 300 W in moderate to excellent yield (Scheme 10) (Gopal
and Anitha 2016).

2.10 Microwave-Assisted Neat Synthesis
of Substituted 2-Arylimidazo[1,2-a]
Pyridines

Tejeswararao Dharmana and Mallika Swapna (2017)
reported a MW-assisted neat method for the synthesis of
substituted 2-arylimidazo[1,2-a]pyridines 31a-i using the
previously reported starting materials, i.e., substituted
2-aminopyridine 17a-c and substituted a-bromoketones
18a-g in the presence of [1-(4-sulfonic acid) butylpyri-
dinium hydrogen sulfate] as green solvent at 100 °C for 30 s
in 87–95% yield range (Scheme 11) (Dharmana and Swapna
2017).
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Scheme 8 AgI-catalyzed synthesis of 2-arylimidazo[1,2-a]pyridines

Scheme 9 Neat, catalyst-free, MW-assisted synthesis of 2-phenylimidazo[1,2-a]pyridines 29a-j
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2.11 Microwave-Assisted Nano SiO2 Neat
Synthesis of Substituted 2-Arylimidazo
[1,2-a]pyridines

In 2018, Tejeswararao Dharmana et al. have synthesized the
2-phenylimidazo[1,2-a]pyridines 31a-i via the fusion of
substituted 2-aminopyridine 17a-c and substituted
a-bromoketones 18a-g in catalytic assistance with nano-
SiO2 under MW-irradiations at 100° C for 30 s in 87–95%
yield range (Scheme 12) (Dharmana et al. 2018).

2.12 Microwave-Assisted NaHCO3-Catalyzed
Synthesis of 2-phenyl-IPs

Juan C. Rodríguez et al. (2020) synthesized the
2-phenylimidazo[1,2-a]pyridines 20a-t via the simplest
route taking 2-aminopyridine 17a and substituted

a-bromoketones 18a-w under microwave irradiation
conditions. In this report, initially microwave-assisted
N-bromosuccinimide (NBS)/p-toluenesulfonic acid (PTSA)
catalyzed synthesis of phenacyl bromides 18a-w were car-
ried out via the bromination of different acetophenones in
15 min in 50–99% yield range. Then, the conjugation of
these molecules 18a-w having variety of substitution with
2-aminopyridine 17a in the presence of sodium bicarbonate
in MeOH at 80 °C for 1 min under MW-irradiations
furnished imidazo[1,2-a]pyridine derivatives 20a-t (20
examples) in 24–99% yield range. With substrate 18u-w
(R1 = NHPh, 2,6-OMe and 2,4-OMe), the product 20u-w
was not formed at all under the said reaction conditions.
It has also been found that the improved yields in the
present methodology was observed as compared to other
more tedious methodologies such as thermally and
mechanically assisted routes (Scheme 13) (Rodriguez et al.
2020).

Fig. 3 Probable reaction mechanism for the synthesis of 28a-k

Scheme 10 Water-mediated synthesis of 2-phenylimidazo[1,2-a]pyridines 30a-h
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3 Microwave-Assisted Synthesis
of 3-amino-2-arylimidazo[1,2-a]pyridines
[3-amino-2-aryl-IPs]

3-Amino-2-aryl-IPs (32), the C-3 amino substitution in the
basic skeleton of substituted 5,6-fused heterocycles, have
been also prepared in the laboratory via microwave-assisted
reactions. Therefore, so far, the details of the synthetic
protocols via microwave irradiations have been described
year-wise in a sequential manner.

3.1 Microwave-Irradiated Synthesis
of 3-aminoimidazo[1,2-a]pyridines
via Fluorous Multi-component Pathway

Yimin Lu and coworkers (2004) described the MW-
irradiated synthesis of 3-aminoimidazo[1,2-a]pyridines 37c
via fluorous multi-component strategy which involves Sc
(OTf)2-catalyzed reaction of fluorous tagged benzaldehyde
33c, substituted 2-aminopyridine 34 and substituted iso-
cyanide 35 using either under MW-irradiation at 150 °C for
10 min using DCM/MeOH (3:1) as a solvent or under
thermal conditions at 80 °C for 120 min which, after
purification of the reaction mixture by fluorous-solid-phase
extraction (F-SPE) method afforded pure fluorous-tagged
3-aminoimidazo[1,2-a]pyridines 36c in 29–103% yield
range (Scheme 14c). The required fluorous benzaldehyde
was prepared by the reaction of hydroxylated benzaldehyde

Scheme 11 Synthesis of substituted 2-arylimidazo[1,2-a]pyridines 31a-i in ionic liquid media

Scheme 12 Preparation of substituted 2-arylimidazo[1,2-a]pyridines 31a-i using nano SiO2 as a catalyst
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Scheme 14 Solution-phase preparation of 37a (A), solid-phase synthesis of 37b (B), and fluorous syntheses of 37c (C)
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to perfluoro-octane sulfonyl fluoride (Scheme 14c) (Lu and
Zhang 2004).

A series of substituted 3-aminoimidazo[1,2-a]pyridine
derivatives were designed to synthesize utilizing microwave
as well as fluorous methodologies for up surging he speed of
the reaction by decreasing the purification time in solution-
phase parallel synthesis. The multi-component reactions of
perfluorooctanesulfonyl-tagged benzaldehydes 33c with
substituted 2-aminopyridines 34 and substituted isocyanides
35 furnished 36c which on subjection to Palladium-
catalyzed reactions with boronic acids/thiols furnished
biaryls/aryl sulfides 37c in 29–103% yield range. It has been
noticed in this strategy that the reaction mixtures had been
purified either via fluorous-solid-phase extraction (F-SPE)
technique or crystallization methods.

The three-component solution-phase syntheses of 37a
were delivered by Blackburn and other groups which
involves the fusion of substituted aldehydes 33a, substituted
2-aminopyridines 34, and substituted isonitriles 35 at 25 °C
for 48–72 min followed by the treatment with acid chloride
R4COCl (Scheme 14a) (Blackburn et al. 1998). This
multi-component reactions (MCRs) get completed at ambi-
ent temperature, and purifications of the desired product 37a
were conducted by resin capture and release (Blackburn
et al. 1998a). Another solid-phase synthesis was developed
by Blackburn group using polymer-supported aldehydes 33b
in order to streamline the purification of condensation
products (Scheme 14b) (Blackburn and Guan 2000). Yimin
Lu and Wei Zhang reported a dual methodology incorpo-
rating both microwave irradiations and the fluorous-tagging
strategy (Zhang 2004) in order to accelerate the reaction and
the purification processes (Scheme 14c). Further, 36c was
subjected to Palladium-catalyzed coupling reactions which
afforded 37c without the tagging of the fluorous group and
having another point of diversification (–Y–R4) (Lu and
Zhang 2004).

This paper also illustrates the three functions of perfluoro
alkane sulfonyl tag in the fluorous approach, i.e., (1) as the
protection of phenolic group before the condensation reac-
tion; (2) as the tagging of phase for the separation of dif-
ferent compounds in the reaction mixture; as well as
(3) acting as an activator in C–C coupling reaction. All the
fused products 37a-c installed with four variable site (R1 to
R4) along with another diversity of Y (=nothing or S). It can
be concluded that a microwave-assisted fluorous MCRs
synthetic route followed by microwave-irradiated post-
condensation reactions had been established for the synthe-
sis of 3-amino-IP derivatives 37a-c. Palladium-catalyzed
coupling of the fluorous sulfonates either with boronic

acids/thiols furnished biaryls and aryl sulfides 37c, respec-
tively, under MW-irradiations. Liquid chromatography with
mass spectrometry (LC–MS) techniques or thin-layer chro-
matography (TLC) observation were utilized to study these
conversions. The F-SPE separation technique or recrystal-
lization methods were found fruitful in this reaction (Lu and
Zhang 2004).

3.2 MW-Irradiated Synthetic Protocol
for 3-aminoimidazo[1,2-a]pyridines via MCR
Pathway

Christopher Hulme and his coworkers (2005) stated a
one-step solution-phase MCR protocol for the direct syn-
thesis of a series of 3-amino-IPs 39a-l (Scheme 15) (Sch-
werkoske et al. 2005). It involves the Sc(OTf)2-catalyzed
reaction of benzaldehyde 33a-g, substituted 2-aminopyridine
34a-d and trimethylsilyl cyanide 38 used in place of iso-
cyanide 35 in MeOH under MW-irradiation at 140 °C for
10 min (Schwerkoske et al. 2005).

3.3 MW-Assisted Sequential Ugi/Strecker
Reactions Involving 3-Center-4-Component
and 3-Center-5-Component MCR Strategy

Christopher Hulme and his coworkers (2006) further
extended their work and prepared 3-aminoimidazo[1,2-a]
pyridines 40; 3-iminoaryl-IPs 41a-h as well as imidazo[1,2-
a]pyridyn-3-ylamino-2-acetonitrile 42a-f via microwave-
assisted sequential Ugi/Strecker reaction (Scheme 16)
(Masquelin et al. 2006).

These non-isocyanide-based 3-center-4-component and
3-center-5-component MCR protocol were found to generate
substrate-controlled products using polymer-bound catalytic
Scandium Triflate [PS-Sc(OTf)3] in methanol solvent under
MW conditions at 140 °C for 5 min and 20 min furnished
41a-h and 42a-f, respectively. When substituted
2-aminopyridine 34a-k, substituted aldehyde 33a-d and
trimethylsilyl cyanide (TMSCN) 38 were taken in 1:0.9:1
equivalents, respectively; it furnished pseudo-Ugi reaction
product, i.e., 3-aminoimidazo[1,2-a]pyridines 40 in 0–10%
yield range. However, when 34a-k, 33a-d and 38 were taken
in 1:2.2:1 equivalents, respectively (increasing the amount of
aldehyde from 0.9 to 2.2 equivalents); it afforded
3-iminoaryl-imidazo[1,2-a]pyridines 41a-h extensively in
31–51% yield range. Sequentially, when these reagents were
taken into the proportion of 1:4:3 equivalents, respectively;
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Scheme 15 One-step solution-phase MCR procedure for the direct synthesis of 3-amino-IPs 39a-l

Scheme 16 MW-assisted sequential Ugi/Strecker reactions for the synthesis of 3-iminoaryl-IPs 41a-h and imidazo[1,2-a]
pyridyn-3-ylamino-2-acetonitrile 42a-f
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then, it afforded imidazo[1,2-a]pyridyn-3-ylamino-2-
acetonitrile 42a-f in 52–77% yield range. (Scheme 16)
(Masquelin et al. 2006). The structure of few synthesized
compounds is shown in Fig. 4.

3.4 One-Pot, 4-component Cyclization/Suzuki
Coupling Leading to the Rapid Formation
of 2,6-Disubstituted-3-Amino-IPs Under
Microwave Irradiations

DiMauro et al. (2007) had given a unique one-pot
MW-irradiated preparation of 3-aminoimidazo[1,2-a]
pyridines-6-boronates 44a-o via UGI type 4-component
reaction strategy utilizing the MgCl2-catalyzed reaction of
pinacol ester of 2-aminopyridine-5-boronic acid 43, substi-
tuted aldehyde 33a-g, substituted isocyanide 35a-e in MeOH
solvent under N2 condition at 160 °C for 10 min. Further-
more, 3-aminoimidazo[1,2-a]pyridines-6-boronates 44a-o
were utilized as an efficient building block/ intermediate
for the further Pd-catalyzed Suzuki coupling with different
arylhalides 45a-d under microwave conditions furnished
2,6-disubstituted-3-amino-IPs 46a-n in 42–68% yield range
(Scheme 17) (DiMauro and Kennedy 2007).

In this report, special emphasis had been given for the
usefulness of pinacol ester of 2-aminopyridine-5-boronic
acid 44a-o as an efficient building block for the C–C bond
formation. It was also mentioned that the boronate was
found to be well-tolerable toward cyclization reaction cat-
alyzed by MgCl2; and simultaneously, palladium-catalyzed

Suzuki reaction was also occurred smoothly in the presence
of Mg2+ salts (DiMauro and Kennedy 2007).

3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo
[1,2-a]pyridines Using MW Conditions

Amanda L. Rousseau and coworkers (2007) reported unique
MCR protocol to synthesize 3-aminoimidazo[1,2-a]pyridine
47a-l utilizing 2-aminopyridine 17a, substituted aldehyde
33a-c and substituted isocyanide 35c-d/35f-g as a starting
materials under microwave heating using ZnCl2 and Mont-
morillonite clay K10 as a catalytic system in 1,4-dioxane as
solvent at refluxing condition for 1–5 h (Scheme 18)
(Rousseau et al. 2007).

3.6 Microwave-Promoted Preparation of N-
(3-arylmethyl-2-oxo-2,3-dihydroimidazo
[1,2-a]pyridin-3-Yl)Benzamides

Tu et al. (2007) described a novel methodology to synthesize
fused heterocyclic core containing imidazo[1,2-a]
pyridine-2-ones having benzyl as well as benzamido groups
in habiting at C-3 position simultaneously. Thus, the reac-
tion of 2-aminopyridine 17a with several substituted
4-arylidene-2-phenyl-5(4H)-oxazolones 48a-l in ethane-
1,2-diol as a solvent under MW-irradiations at 120 °C
for 4–7 min afforded N-(3-arylmethyl-2-oxo-2,3-
dihydroimidazo[1,2-a]pyridin-3-yl)benzamides 49a-o in

Fig. 4 Structures of few
synthesized molecules 41a-c and
42a-c
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58–78% yield range (Scheme 19).The plausible mechanism
of this reaction had been shown in Fig. 5. Under ambient
conditions, the lone pair of electrons on nitrogen atom of
amino group in 2-aminopyridine 17a attacks on the carbonyl
carbon atom of the oxazole 48a-l which generated hydroxy
intermediate I. The intermediate I through electronic rear-
rangement gives intermediate II which undergone conden-
sation to give rise to the formation of the targeted core 49a-l
in good yields (Tu et al. 2007).

3.7 MW-Assisted Multi-component Neat
Synthesis of Benzimidazolyl-Imidazo[1,2-a]
pyridines

In 2013, Barnali Maiti et al. have reported the greener
method using multi-component and solvent-free

MW-methodology for the preparation of benzimidazolyl-
imidazo[1,2-a]pyridine 51–53 (Scheme 20) (Maiti et al.
2013). The methodology utilizes Sc(OTf)3-catalyzed
reaction of 2-aminopyridinyl-benzimidazole-5-carboxylate
50a-e, substituted aldehyde 33a-i and different isocyanides
35a-c/35h-i under MW-irradiations at 135 °C for 5–10 min.
In this reaction, three types of benzimidazolyl-imidazo[1,2-
a]pyridines 51–53 had been formed and the synthesis of
these final product were totally dependent on the linkage of
2-aminopyridine to the main core of benzimidazole to form
2-aminopyridinyl-benzimidazole-5-carboxylate 50a-e.

Benzimidazole-linked amino pyridine 50a-e reacts with
Sc(OTf)3 activated aldehyde 33a-i afforded imine as an
intermediate, which then underwent 5-exo-dig cyclization
via nucleophilic addition reaction with isonitriles
35a-c/35h-i, respectively, to furnish imidazo[1,2-a]pyridine
intermediate (Fig. 6). Re-aromatization of this intermediate

Scheme 17 Utility of 44a-o in the Pd-catalyzed Suzuki coupling for the synthesis of 46a-n
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Scheme 18 MW-assisted ZnCl2-catalyzed MCR protocol of 47a-o

Scheme 19 Microwave-promoted synthesis of 47a-o
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Fig. 5 Tentative mechanism

Scheme 20 MW-irradiated synthesis of 51–53
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gives the final compound 51–53 in 72–90% yield range
(Maiti et al. 2013).

3.8 MW-Assisted Groebke–Blackburn–Bienaymé
(GBB) Reaction for the Synthesis
of Chromones-imidazo[1,2-a]pyridine
Hybrid

In 2015, Gámez-Montaño and coworkers had explained the
synthetic methodology of chromones-imidazo[1,2-a]pyr-
idine hybrid 55a-t via GBB reaction (Scheme 21) (Kishore
et al. 2015).

In this methodology, 3-formylchromone 54a-b,
2-aminopyridine 17a-b and substituted isonitriles 35a-e
acted as a reactants using InCl3 and ClCH2COOH as a
catalyst in dry MeOH under microwave conditions at 85 °C
for 1 h under N2 atmosphere furnished chromones-imidazo
[1,2-a]pyridine hybrid 55a-t in 70–93% yield range
(Scheme 21) (Kishore et al. 2015).

3.9 Synthesis of Chromones-Imidazo[1,2-a]
pyridine (Chromones-IP) Hybrid
via MW-irradiated GBB Strategy

Gámez-Montaño and coworkers (2019) developed an unique
eco-friendly-irradiated GBB methodology (20 mol%
NH4Cl/EtOH) for the preparation of chromones-IP hybrid

57a-e involving the two highly important structurally
core based on medicinal chemistry point of view, i.e.,
chromones and imidazo[1,2-a]pyridine. In this strategy,
3-formylchromone 56, 2-aminopyridine 17a, and several
substituted isocyanides 35a-e were reacted with 20 mol%
NH4Cl in EtOH under MW-irradiations at 80 °C for 15 min
which afforded chromones-imidazo[1,2-a]pyridine hybrid
57a-e in 21–36% yield range (Scheme 22) (Zarate-
Hernandez et al. 2019).

4 MW-irradiated Miscellaneous Synthesis
of Other Imidazo[1,2-a]pyridines (IPs)

This segment incorporates various other derivatives of
IPs, particularly functionalized at C-3 position, such as
pyrazinyl (59a-m); carboalkoxy (62a-p); 1,2,3,5,6,7-
hexahydroimidazo[1,2-a]pyridine (65a-r); hydroxy
(68a-q), 2,3-disubstituted IPs (71a-t); alkoxymethyl
(74a-u); and formyl (76a-o), etc. have been discussed
via microwave irradiations year-wise in a sequential
manner.

4.1 MW-Promoted Synthesis of 3-pyrazinyl-IPs

In 2010, Michael Raymond Collins and coworkers have
challenged the direct Palladium-catalyzed methodology of
direct arylation strategy and gave procedure for the synthesis

Fig. 6 Probable mechanism for the synthesis of 52
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of 3-pyrazinyl-IPs 59 comparatively in much better yields.
Thus, imidazo[1,2-a]pyridines on Pd-catalyzed direct aryla-
tion with 2,6-dichloropyrazine 17a-b/17g afforded
3-pyrazinyl-IPs 59a-b/59 g in relatively lower (3–40%)
yields. However, in the modified method, vinyl ether has

converted into hemiacetal 58 named “2-bromo-2-
(6-chloropyrazin-2-yl)-1-ethoxyethan-1-ol” which acts as a
reactant along with 2-aminopyridine 17a-m which resulted
into the development of 3-pyrazinyl-imidazo[1,2-a]pyridines
59a-m in 31–76% yield range. It had been observed that the

Scheme 21 MW-assisted GBB reaction: Synthesis of chromones-imidazo[1,2-a]pyridine hybrid 55a-t

Scheme 22 Modified MW-irradiated synthesis of 57a-e
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C-6 substitutions (CH3, OMe) in 2-aminopyridine signifi-
cantly lower the product yield in comparison with unsub-
stituted or some other substitution on 2-aminopyridines
(Scheme 23) (Collins et al. 2010).

4.2 Conventional and MW-assisted Fast
Synthesis of Substituted IPs Under Neat
Conditions

Kaushik C. Chunavala et al. in 2011 described a solvent- and
catalyst-free synthetic protocol for the preparation of
phenylimidazo[1,2-a]pyridine-3-carboxylate 62a-h core
from the reaction of 2-aminopyridine 60a-f and b-keto ester
61a-c using Al2O3 as a catalyst under microwave irradiation
for 1 min. with time gap of 5 s after 15 s of irradiation
(Scheme 24) (Chunavala et al. 2011).

A tentative mechanism for the development of products
62a-p from 60a–f is shown in Fig. 7. It has been assumed
that the preliminary reaction of the 2-aminopyridine 60 with
a-bromo-b-keto esters 61 furnished intermediate I. Subse-
quently, the more stable conjugated intermediate II was
formed from intermediate I by the elimination of a water
molecule. Lastly, intramolecular cyclization of intermediate
II afforded the desired imidazo[1,2-a]pyridine-3-
carboxylates 62 via loosing HBr molecule in 85–95%
yield range (Chunavala et al. 2011).

4.3 MW-Irradiated, 3-component, Domino
Reaction for the Fast Synthesis of IPs
Utilizing the Application of Functionalized
N,S-Ketene Acetals

In 2013, Ming Li et al. successfully disclosed the major
application of functionalized N,S-ketene acetals, i.e., ethyl 2-
(3-oxo-3-arylpropanethioamido)-acetates 63a-e to synthesis
substituted 6-benzoyl-2-oxo-5-thioxo-1,2,3,5,6,7-hexahy-
droimidazo[1,2-a]pyridine-8-carbonitrile 65a-r via
DABCO-catalyzed domino annulations with malononitrile
64 and substituted aldehyde 33a-j under microwave irradi-
ation at 400 W at 78 °C for 5 min. The most characteristic
features of this inimitable reaction were that eight different
active sites were involved along with simultaneous forma-
tion of three new C–C bonds and two C–N bonds. Fur-
thermore, two new rings were constructed with complete
utilization of all reactants efficiently with the loss of H2O
and ethanol (EtOH) molecule. The microwave power sig-
nificantly improves the yield of the reaction and was found
directly proportional with the yield of the reaction. The
employment of reaction in lower power decreased the yield
and vice versa. This green cascade multi-component reac-
tions serves to provides several diverse imidazo[1,2-a]
pyridines derivatives (Scheme 25) (Li et al. 2013).

Mechanistically, 63 deprotonates to give its anionic
synthons A which reacts with the intermediate B formed via

Scheme 23 Preparation of 3-pyrazinyl-imidazo[1,2-a]pyridines 59a-m
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Knoevenagel condensation of malononitrile 64 with alde-
hydes 33. Then after, Michael addition between A and
B furnished adduct C which underwent an array of elec-
tronic rearrangements involving N-cyclization and
imine-enamine tautomerization afforded the give final pro-
duct 65 in up to 89% yield (Fig. 8) (Li et al. 2013).

4.4 A Petasis-Based Cascade Methodology
to Access 3-hydroxy Functionalized
2-arylimidazo[1,2-a]pyridines Under
Microwave Irradiation Conditions

In 2014, Hong-yu Li and coworkers reported a novel
microwave-assisted Petasis-based cascade multi-component
reaction for the preparation of functionalized 2-arylimidazo
[1,2-a]pyridin-3-ols 68a-q (Scheme 26). Substituted
2-aminopyridine 17a-g, substituted arylboronic acid 66a-j
and glyoxylic acid 67 were reacted in Dimethylformamide

(DMF) under MW-irradiation conditions at 160 °C for
30 min. furnished substituted 2-arylimidazo[1,2-a]
pyridin-3-ol 68a-q in 45–85% yield range (Scheme 26)
(Wang et al. 2014b). In this multi-component reaction
pathway, the yield of the desired product dependent on the
substitution on 2-aminopyridine ring and aryl boronic acid.
It was identified that the electron-rich pyridines and boronic
acids afforded higher yield than that of electron-withdrawing
group containing counterparts (Wang et al. 2014b).

The tentative mechanism for the formation of 68a-q via
MW-irradiated, one-pot, Petasis-based domino MCR path-
way is shown in Fig. 9. Compounds 17, 66, and 67 were
reacted under standard Petasis reaction mechanism afforded
intermediate I which, then, undergone intramolecular
nucleophile cyclization which subsequently followed by
dehydroxylation and aromatization afforded the thermody-
namically stable 68. Further validation of the proposed
mechanism had been performed by converting intermediate
I directly into 68 (Fig. 9) (Wang et al. 2014b).

Scheme 24 Synthesis of phenylimidazo[1,2-a]pyridine-3-carboxylate 62a-h

Fig. 7 Plausible mechanism for the construction of 62
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Scheme 25 MW-assisted DABCO-catalyzed domino synthesis of substituted 65a-r

Fig. 8 Proposed mechanism for the formation of 65
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Scheme 26 Microwave-assisted Petasis-based cascade approach for the synthesis of 68a-q

Fig. 9 Probable mechanism for the formation of 68 from 17, 66 and 67
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4.5 Synthesis of 2,3-Disubstituted-IPs
via One-Pot MCR Under MW-Irradiated
Conditions

In 2015, Shaik Karamthullam et al. developed
iodine-catalyzed methodology for the preparation of
2,3-disubstituted-IPs 71a-t. Substituted aryl-glyoxals 69a-d
(replaced the lachrymatory a-haloketones), cyclic 1,

3-dicarbonyls 70 and substituted 2-aminopyridines 17a-f
were reacted with iodine (30 mol%) in ethanol at 130 °C for
15 min. under microwave irradiations furnished
2,3-disubstituted-IPs 71a-t in 58–84% yield range
(Scheme 27) (Karamthulla et al. 2015).

Mechanistic pathway involves Knoevenagel-type con-
densation to form the intermediate A. Then, 2-aminopyridine
undergone aza-Michael addition with intermediate A which

Scheme 27 Access to 2,3-substituted-IPs 71a-t using I2 as a catalyst
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formed another intermediate B which subsequently under-
gone cyclization by the loss of H2O molecule afforded 71
(Scheme 27) (Karamthulla et al. 2015).

4.6 MW-Irradiated TsOH-Catalyzed,
Solvent-Free Synthesis of IPs via MCR
Strategy

In 2015, Zhang et al. reported a multi-component,
solvent-free synthetic protocol for imidazo[1,2-a]pyridines
unsubstituted at C-2 position using MW-irradiation condi-
tions. In this methodology, the reaction of substituted
2-aminopyridine 17a-i, 3-phenylpropiolaldehyde 72 and
substituted alcohol 73 in the presence of TsOH under
MW-irradiated and solvent-free conditions at 100 °C for
15 min. which afforded substituted 3-alkoxyalkyl-IPs 74a-u
in 75–87% yield range (Scheme 28) (Zhang and Jiang 2015).

The formation of IP unsubstituted at C-2 site is the
characteristic feature of this methodology, making it a
unique protocol. The tentative mechanism of this reaction
initiates with the reaction of 2-aminopyridine 17 with alde-
hyde 72 which furnished imine as an intermediate I. Inter-
mediate II is formed by the attack of alcohol to the alkyne of
intermediate I. The cyclization and proton transfer in inter-
mediate II with the help of TsOH afforded the desired
product substituted 3-alkoxyalkyl-IPs 74a-u (Fig. 10)
(Zhang and Jiang 2015).

4.7 Synthesis of Substituted-3-Formyl-Imidazo
[1,2-a]pyridines Using MW-Irradiated
Conditions

In 2019, Katarzyna M. Błazewska and coworkers reported a
metal-free strategy for the synthesis of substituted
3-formyl-IPs 76a-o via the reaction of substituted
2-aminopyridine 17a-m and 2-bromomalonaldehyde 75 in
the mixture of EtOH and H2O as a solvents in the ratio of 1:1
under MW-irradiation conditions at 110 °C for 20 min in
23–86% yield range (Scheme 29) (Kusy et al. 2019).

The presence of the -CHO group in IPs is served as a very
prominent building blocks for further functionalization. The
mechanism involves the reaction of 2-aminopyridine 17a
and bromo malonaldehyde 75 formed imine A where was
isolated and well-characterized through NMR spectroscopy
and MS spectrometry. The imine A underwent cyclization
with the removal of hydrogen bromide (HBr) molecule
which furnished imidazo[1,2-a] pyridine-3-carbaldehydes
76a (Fig. 11) (Kusy et al. 2019).

5 Discussion and Summary

Imidazo[1,2-a]pyridine-based bio-heterocycles had been
considered as a very important synthon/motif in
medicinal/pharmaceutical chemistry as it has been blended
with a varied array of biological activities. Consequently, the

Scheme 28 Preparation of substituted 3-alkoxyalkyl-imidazo[1,2-a]pyridines 74a-u under MW-assisted reaction
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imidazo[1,2-a]pyridines synthesis had been recognized as a
decisive factor in designing core-ring of many currently
marketed/leads/under clinical trial drug candidates.

Many reports had been published in the literature for the
preparation of IP utilizing conventional heating source of

energy. However, in past 2–3 decades, environmentally
benign, fast, and efficient green synthesis is in focus and
microwave-assisted organic synthesis (MAOS) has been an
integral part of such green and sustainable developments in
the field of chemical synthesis.

Fig. 10 Proposed mechanism for the formation of 74a-u

Fig. 11 Tentative mechanism for the synthesis of 76a

Scheme 29 Metal-free synthesis of 76a-o under MW-irradiated conditions
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So, in the last 2–3 decades, several microwave-assisted
synthesis of IPs had been established in view of generating
greener approach for the sustainable synthetic routes. Sev-
eral derivatives of IPs, for example, 2-aryl-IPs [4a-h, 6a-g,
10a-j,13a-l, 16a-s, 19a-p, 20a-u, 24a-x, 28a-k, 29a-j,
30a-h, and 31a-i]; various other derivatives particularly
functionalized at C-3 position, for example, amino [37a-c,
39a-l, 40, 41a-h, 42a-f, 46a-n, 47a-l, 49a-l, 51–53, 55a-t,
57a-e]; pyrazinyl (59a-m); carboalkoxy (62a-p);
1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine (65a-r);
hydroxy (68a-q), 2,3-disubstituted-IPs (71a-t);alkoxymethyl
(74a-u), and formyl (76a-o) have been reported to be syn-
thesized via microwave irradiations in overall good to
excellent yields.

Microwave-assisted fused bicyclic heteroaryl boronates
4a-h had been effectively utilized to construct
imidazopyridine-quinazoline hybrids 6a-g, albeit in low to
moderate yields (Scheme 1). However, high yields of
2-phenylimidazo [1,2-a]pyridine 10a-j had been produced
when in situ prepared N-phenacylpyridinium bromides (re-
action of 7 with 8)undergone MW-assisted nucleophilic
addition of NH4OAc 9 (acts as a source of nitrogen) under
solvent-free conditions (Scheme 2). Another methodology
afforded high yields of 2-phenylimidazo[1,2-a]pyridine
16a-s (upto 94%) via metal-free amino-triggered benzan-
nulation approach under microwave irradiations (Scheme 4).
Sequentially, one-pot, 3-component synthesis (Scheme 3)
and NaHCO3-catalyzed synthesis in PEG400 media
(Scheme 5) were found effective methods; AgI/I2/Water:
PEG400 catalytic system at 350 W (Scheme 8); catalyst- and
solvent-free green synthesis (Scheme 9) and another one in
H2O or ionic liquids or nano-SiO2 (Schemes 10, 11 and 12)
were found to be the best catalytic greener synthetic
approach of 2-phenyl-IPs as far as the sustainable point of
view is concerned. Vast substrate scope with large variation
in yields was observed for the MW-assisted synthesis of
2,8-diaryl-6-aminoimidazo[1,2-a]pyridines (Scheme 7).

MW-irradiation and fluorous methodologies were simul-
taneously engaged to accelerate the reaction and decreasing
the purification time in solution-phase synthesis via the
utilization of F-SPE technique (Scheme 14). MW-assisted
sequential Ugi/Strecker reactions involving 3-center-4-
component and 3-center-5-component MCR pathway were
employed for the preparation of 3-aminoimidazo[1,2-a]
pyridines 40; 3-iminoaryl-imidazo[1,2-a]pyridines 41a-h
and imidazo[1,2-a]pyridyn-3-ylamino-2-acetonitrile 42a-f
using polymer-bound scandium salt [PS-Sc(OTf)3] as cata-
lyst (Scheme 16). Use of MgCl2 is very useful for the
synthesis of 3-aminoimidazopyridines-6-boronates with

moderate substrate scope having good yields (Scheme 17).
Ethylene glycol in microwave is responsible for the unique
synthesis of N-(3-Arylmethyl-2-oxo-2,3-dihydroimidazo
[1,2-a]pyridin-3-ylbenzamides keeping two heterocycles in
one frame with limited substrates and moderate yield
(Scheme 19). Benzimidazolyl-imidazo[1,2-a]pyridine and
imidazo[1,2-a]pyridine-Chromones hybrids have also
been synthesized under MW conditions using
2-aminopyridinyl-benzimidazole-5-carboxylate as a starting
materials and Groebke–Blackburn–Bienaymé reaction
methodology, respectively (Schemes 20 and 21). Imidazo
[1,2-a]pyridine-chromones had also been reported to be
synthesized in moderate to high yield taking InCl3/
ClCH2COOH as a catalytic system in dry carbinol (MeOH)
under MW-irradiation conditions (Scheme 21).

Various C-3 substituted imidazo[1,2-a]pyridines deriva-
tives such as 3-pyrazinyl-imidazo[1,2-a]pyridines hybrid
(59a-m); phenylimidazo[1,2-a]pyridine-3-carboxylates
(62a-p); 6-benzoyl-2-oxo-5-thioxo-1,2,3,5,6,7-hexahyd-
roimidazo[1,2-a]pyridine-8-carbonitriles (65a-r); 2-arylimi-
dazo[1,2-a]pyridin-3-ol (68a-q), 2,3-disubstituted imidazo
[1,2-a]pyridines (71a-t);3-alkoxyalkyl-imidazo[1,2-a]pyridi-
nes (74a-u); and 3-formyl substituted imidazo[1,2-a]pyridines
(76a-o), etc., had also been reported to be prepared via
microwave irradiations variable from good to excellent yields.

6 Conclusion

This chapter highlights all the MW-irradiated synthetic
methodologies for the imidazo[1,2-a]pyridine heterocycles
and its derivatives during the last 2–3 decades as
MW-assisted synthesis has taken its place in much higher
rank than the conventional heating due to its cost effective,
fast and green methodology in the preparation of IPs. Some
of the reactions via microwave technique produces excep-
tional yields as observed in the formation of 2-phenylimidazo
[1,2-a]pyridines (NaHCO3/PEG400; AgI/I2/Water:PEG400;
catalyst-free neat green synthesis; H2O/Ionic liquids/Nano
SiO2) and 3-aminoimidazo[1,2-a]pyridines (fluorous
multi-component reactions). It has been interpreted that the
imidazo[1,2-a]pyridines at C-2/C-3 positions had been
highly explored and several medicinally important drug
candidate have C-2 and/or C-3 substitutions. Hence, these
two sites are very important in sustainability point of view.
These microwave-assisted methodologies could offer
medicinally important core in fast and efficient ways and can
be utilized to generate more imidazo[1,2-a] pyridines ana-
logues for fastening medicinal chemistry and drug discovery.
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IP Imidazo[1,2-a]pyridine
ACE Acetylcholinesterase
DMF Dimethylformamide
MCR Multi-component reaction
NBS N-Bromosuccinimide
PTSA p-Toluene sulfonic acid
NMR Nuclear magnetic resonance
MS Mass spectrometry
DABCO 1,4-Diazabicyclo[2.2.2]octane
MW Microwave
MAOS Microwave-assisted organic synthesis
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Green Hydrogen Synthesis Methods

Meltem Yildiz and Murat Efgan Kibar

Abstract

Hydrogen is considered as the cleanest fuel of the future
due to its environmental friendliness. Since each of the
hydrogen production methods is not always green, there
has been a need to redesign processes to minimize waste,
increase efficiency, and make it more environmentally
friendly. This chapter discusses hydrogen generation
techniques according to principles of green chemistry.
These methods have been utilized for each twelve
principles to decide whether they can correspond the
deficiencies. Thermochemical, electrochemical, and bio-
logical methods for hydrogen production were
investigated.

1 Introduction

Hydrogen is a glimmer of hope for its economically viable,
financially promising, and energy-efficient solutions to
address apprehension caused by the reduction in fossil fuel
reserves. Today, the majority of the energy requirement in the
world is provided by fossil fuel sources, but it is expected it
will be consumed at the next 50 years. Very important and
serious studies around the world have resolved hydrogen a
very essential and promising energy carrier. Storage of
energy accessed by different techniques such as wind tur-
bines and solar panels can take place through hydrogen, the
most common element in the universe.

Hydrogen is considered to be a great white hope fuel as it
is environment-friendly. However, H2 is not always green
according to the differentiation of the production method.
Every hydrogen production processes cannot provide the
green chemistrys’ 12 principles which are “waste prevention,

atom economy, less hazardous chemical syntheses, design-
ing safer products, safer solvents and auxiliaries, design for
energy efficiency, use of renewable feedstocks, reduce
derivative, catalysis, design for degradation, pollution pre-
vention, and inherently safer chemistry for accident
prevention”.

Numerous methods are used for the production of
hydrogen, including thermochemically, electrolytically, and
biologically. Wang and coworkers (2019) classify hydrogen
production sources as water and biomass. Water electrolysis,
water thermolysis, photocatalytic water splitting, and ther-
mochemical water splitting are technologies that use water
for hydrogen production. Also, electrolysis, microbial and
chemical methods have been classified as biomass-based
hydrogen production techniques (Wang et al. 2019). In this
chapter, we summarize these hydrogen production methods
and discuss the connection between the green chemistry of
the studies in the literature.

2 Thermochemical Processes

In thermochemical processes, water is separated into H2 and
O2 by chemical reactions using heat. Thus, thermal energy is
transformed into hydrogen energy. Thermochemical hydro-
gen production methods and their importance in terms of
“Green Chemistry” are summarized below.

2.1 Methane Decomposition

Natural gas, containing over 95% methane, is one of the
main sources for hydrogen production. Hydrogen production
from methane has been focused on steam reforming, CO2

reforming, partial oxidation, and catalytic reforming reac-
tions. All these methods use oxygen to produce hydrogen
from methane. Using catalysts decreases process tempera-
ture and increases the hydrogen amount (Kheirollahivash
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et al. 2019). Because of the high cleavage energy of the C–H
bond of the molecules of methane, it is very difficult for
methane to decompose to oxygen-free C2 hydrocarbons and
hydrogen using the conventional catalytic method (Shuan-
ghui et al. 2013). Hydrogen production by the plasma
method is thermodynamically less costly than other methods
such as steam reforming (Jeremias 2018).

The fact that plasma technology is far from thermody-
namic equilibrium brings a solution to this situation (Dincer
2012). For this purpose, equilibrium (thermal) plasma and
non-equilibrium (non-thermal) plasma systems can be used
in methane conversion to hydrogen. The methane decom-
position to form hydrogen and carbon can be written as in
Eq. 1 (Dincer 2007);

CH4 þ 75:3kJ/mole ! C sð Þ þ 2H2 ð1Þ
The plasma method to produce hydrogen takes place by

simultaneous decomposition of natural gas into hydrogen
and solid carbon regard to an external electrical energy
source. Various plasma reactors (Bespalko 2014; Qian et al.
2020; ZhiPeng et al. 2011; Mishra et al. 2004; Aleknaviciute
et al. 2013; Massa et al. 2018; Khadir et al. 2017; Zhang
et al. 2014; Xu 2007; Jasiński et al. 2008, 2011; Moshrefi
et al. 2012; Moshrefi and Rashidi 2014) have been used in
the literature.

If the hydrogen production method using plasma is
evaluated considering the principles of green chemistry, it
appears that it provides many benefits for converting elec-
tricity into chemical energy. This method meets the “atom
economy” and “reducing derivatives” principles of green
chemistry. Since the same production method produces
carbon black as a by-product, it prevents the first principle of
green chemistry, “waste prevention” from being fulfilled.
Also, the use of high voltage as an energy source should be
marked as providing the “energy efficiency”. So, “using
renewable feedstocks” principle is not provided (Celik and
Yildiz 2017).

2.2 Dry or Steam Methane Reforming

One method to convert CO2 and CH4 into synthesis gas is
methane dry reforming. This process has gained much
importance according to its ambient interest and great use of
energy (Gao et al. 2020). The reaction can be written as it
can be seen in Eq. 2;

CH4 þCO2 ! 2COþ 2H2DH
0
298 ¼ 248 kJ mol�1 ð2Þ

When recent studies are examined, it can easily be seen
that scientists have attracted much attention due to the
environmental benefit and effective use of energy to methane
dry reforming studies. The leading studies are aimed at

improving the catalytic properties of the catalysts used in
this reaction. After the noble metal-based catalysts that have
been studied for many years, studies in recent years have
turned to Ni-based catalysts for economic reasons. Although
the effectiveness of different catalysts in this reaction has
been studied, the expected improvements have not been
possible due to the problems with the quick deactivation of
the catalysts (Chen et al. 2020; Akri et al. 2017).

SMR reaction has a very important place for synthesis gas
production (Lunsford 2000). It is the process of converting
gas or liquid fossil fuels such as methane into synthesis gas
(Eq. 3). In SMR, H2 and CO occur as a result of steam and
methane reaction that is highly endothermic (Gao et al.
2020).

CH4 þH2O ! COþ 3H2DH
0
298 ¼ 206 kJ mol�1 ð3Þ

The reactions were performed at high temperatures and
pressures (Farsi and Monsouri 2016). Steam methane
reforming is economical and effective method for H2 pro-
duction. To improve the efficiency of this process, different
catalysts with different properties are used. In literature,
noble metals such as ruthenium (Homsi et al. 2014), rho-
dium (Hassan et al. 2016), palladium (Fernandes and Soares
2006), iridium (Cheah et al. 2018), and platinum (Castro
et al. 2018) are used as the active element on catalysts. Also,
nickel-based catalysts were studied at large amounts because
of its catalytic activity, lower cost, and higher availability
properties (Giuliano and Gallucci 2018).

One of the most important problems in the long-term use
of Ni catalysts is the formation of carbon deposits that turn
into carbon filaments on the catalyst surface. Various studies
have been carried out to solve this problem. The results
acquired with nickel catalysts showed that attributed the
performance of the alkaline catalysts to the large oxygen
storing capability and the ability to increase the disintegra-
tion of active metals (Pashchenko 2019; Oliveira Rocha
et al. 2019; Zeppieri et al. 2010).

Hydrogen production via the steam methane reforming
method satisfies renewable feedstocks (7), derivative
reduction (8), and catalysis (9) items of green chemistry
principles. Unfortunately, this method produces CO as waste
by this method depending on the chosen reaction conditions,
and, this reaction is against the atomic economy (2). Also,
using high temperature and pressure prevents this reaction to
provide the 6th principle (energy efficiency) of green
chemistry.

2.3 Coal Gasification

With this process, coal turns into hydrogen, CO, and CO2 at
high temperatures (>700 °C) with oxygen. The CO formed
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then reacts with H2O to react to form CO2 and H2. The
composition of gases obtained by gasification of coals
depends on the reaction ability of coal, type of gases used,
and applied gasification process (pressure, temperature, coal,
and the flow directions of the gas, etc.).

Coal is a fuel that is abundant and low-cost, prone to
hydrogen. However, concerns over the control of CO2

released into the atmosphere raise some doubts for its future
use (İrfan et al. 2011). Important reactions encountered
about coal gasification reactions (Eqs. 4–8) can be listed as
seen in Table 1. The thermodynamic states of the reactions
are cited from Sajjad and Rasul (2015). In reaction 4, water
vapor combines with carbon to form CO and H2 gases
mixture called “synthesis gases”.

Except for the reactions listed in Table 1, homogeneous
reactions also occur between the gas products and/or sub-
stances used as gasifiers. All of the gasification reactions
begin with pyrolysis. As a result of thermal decomposition,
CO2, CH4, saturated and unsaturated hydrocarbons are
formed. They interact with each other again during gasifi-
cation. The post-reaction products are CO, CO2, and H2.

CO is a product of this hydrogen production procedure.
And also, it is a reactant of water–gas shift reaction, CO
reacts with H2O, and the product is CO2.

Water–gas reaction occurs between water and carbon
(coke or coal) at high temperatures and pressures. The
products of the reaction such as CO2 and H2 are called
synthesis gas and can be overly useful in fixing with metallic
heterogeneous catalysts. The Boudouard reaction is impor-
tant according to its transforming capability of the carbon
content and non-combustible carbon dioxide into a usable
gas-carbon monoxide property. And also, the heating value
of the produced syngas increases. Partial oxidation is the
burning of hydrocarbons in an oxygen environment less than
necessary. In general, the efficiency of partial oxidation is
50% lower than steam reforming. The combustion of coal
causes approximately 15% CO2 formation in the flue gas.
Due to the low CO2 concentration and the presence of other
gas types such as sulfur oxides, it is difficult to capture CO2

from flue gas (İrfan et al. 2011).
Reactions at equilibrium mean that carbon monoxide is

always produced and waste generation is an inevitable
ending (violation of the first principle). And also, the atom
economy is impossible (violation of the second principle),

and the reactions take place at high temperatures and pres-
sures (violation of the sixth principle). This method meets
the principles of raw materials, derivative reduction, and
catalysis.

2.4 Biomass Gasification

Biomass can be explicable as renewable organic resources
such as corn stover, wheat straw, switchgrass, and organic
urban wastes. Gasification is a suitable method to obtain
hydrogen from these renewable resources. Hydrogen from
biomass is produced mostly by pyrolysis and gasification
(Cao et al. 2020).

Pyrolysis is the process of gasification of biomass without
oxygen. Since there is no oxygen, there are other HCs in the
gas mixture coming out after the treatment. An extra step
should be used to separate these hydrocarbons from the gas
mixture to obtain a clean mixture of H2, CO, and CO2. Also,
another step required for H2 production is carried out, and
carbon monoxide is converted into carbon dioxide by steam.
The direct conversion of biomass into liquid fuel by pyrol-
ysis still has not resolved problems today (Prasertcharoensuk
et al. 2019).

An oxidizing agent is used in the biomass gasification
method and occurs at higher temperature (Cao et al. 2020).
Biomass gasification has two main routes for hydrogen
production as (i) steam gasification of biomass, (ii) super-
critical water gasification of biomass.

2.4.1 Steam Gasification
This method includes the process that converts raw materials
to high-temperature inflammable gases as H2, CO, CO2, and
hydrocarbons. It facilitates the introduction of water vapor as
a gasifier. Reaction temperature, biomass ratio, and gasifi-
cation working conditions have a crucial effect in the
hydrogen content of the synthesis gas to be produced. Steam
is the gas that is accepted as the most suitable gasifier (Cao
et al. 2020). The biomass vapor gasification reaction mainly
involves carbon gasification reactions such as carbon gasi-
fication, water–gas shift, methane reforming, and hydrocar-
bon reforming. The catalysts and adsorbents to be used in all
these reactions are of great importance for the purity and
amount of hydrogen to be obtained.

Table 1 Important reactions
encountered in coal gasification
reactions (Sajjad and Rasul 2015)

Chemical synthesis Reaction Thermodynamic sate

Water–gas shift reaction (4) CþH2O ! COþH2 DH = +118.5 kJ/mol

Boudouard reaction (5) CþCO2 ! 2CO DH = +159.9 kJ/mol

Gasification with hydrogen (6) Cþ 2H2 ! CH4 DH = −87.5 kJ/mol

Partial oxidation (7) Cþ 1
2 O2 ! CO DH = −123.1 kJ/mol

Combustion (8) CþO2 ! CO2 DH = −406.0 kJ/mol
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2.4.2 Supercritical Water Gasification
Water has incomparable physical properties over the critical
conditions, resulting in better transport properties due to
high diffusion abilities, low viscosities, and new reaction
alternatives for hydrolysis or oxidation (Reddy et al. 2014).
SCWGs’ future looks bright in hydrogen production. The
supercritical water gasification process uses the supercritical
water properties as 374 °C and 22.1 MPa. That is, the
essential feature that distinguishes SCWG relates to gasifi-
cation media, namely supercritical water. Biomass compo-
nents such as lignocellulose can split into smaller molecules
and produce synthesis gas during supercritical water gasifi-
cation (SCWG).

For biomass gasification reactions, unfortunately, waste
generation cannot be prevented (1st principle of green
chemistry), atom economy cannot be satisfied, and deriva-
tives exist (8th principle of green chemistry). Also, the input
energy required to observe the 6th principle of energy effi-
ciency should not be excessive. “Use of raw materials” and
“catalysts” requirements of green chemistry can be achieved
by this method (7th and 9th principles of green chemistry).

2.5 Biomass-Derived Liquid Reforming

Biomass sources are converted into biomass-based fluids
such as cellulosic ethanol, bio-oils, or other liquid biofuels.
The process of converting biomass-based liquids into
hydrogen can be produced by a few steps. Firstly H2, CO,
and CO2 are produced from liquid fuel using a catalyst.
Then, carbon monoxide formed at the previous stage is
reacted with steam at high-temperature “water–gas shift
reaction” to produce CO2 (Cortright et al. 2002).

Hydrogen production with the help of liquids from bio-
mass is like reforming of natural gas. However, fluids from
biomass are made up of larger molecules with more carbon
atoms than natural gas and are therefore more difficult to
regenerate. Studies with different catalysts are ongoing to
increase the efficiency and the selectivity in the literature.

2.6 Solar Thermochemical Hydrogen

High temperature is required to carry out reactions required
for hydrogen production by thermochemical water separa-
tion processes. With this production method, chemicals can
be reused in every cycle. Dias and coworkers (2018) defined
five different thermochemical routes for solar hydrogen
production as solar (i) thermolysis, (ii) thermochemical
cycles, (iii) reforming, (iv) cracking, and (v) gasification. All
of these pathways involve endothermic reactions (Dias and
Mendes 2018).

Difficulties remain in the research and development of
suitable reactors for the commercial development of all these
methods. Reaction efficiency and durability should be
increased for the thermochemical cycle.

3 Electrolytic Processes

3.1 Electrochemical

Electrolysis, a hopeful option for hydrogen production from
renewable sources, uses electricity to separate water into H2

and O2. Units called electrolyzers are the rigs where this
reaction takes place. Electrolyzers include an electrolyte to
separate anode and a cathode. There are various types of
electrolyzers due to the electrolyte material involved.
Equation 9 shows the reaction:

H2O �!electricity
H2 gð Þ þ 1=2O2 gð Þ ð9Þ

The most basic electrolysis cell system is alkaline elec-
trolysis, a method extensively used in the industry. Besides,
there are different types of electrolyzers such as polymer
electrolyte membrane electrolyzers, alkaline electrolyzers,
and solid fuel electrolyzers. Polymer electrolyte membrane
electrolyzer (PEME) splits water molecules into hydrogen
and oxygen gas. PEME is a widely used technology that
produces “green hydrogen`̀ . In the PEME, as hydrogen ions
selectively advance to the cathode, water molecules flow
from an external cycle and in the cathode, and hydrogen gas
is generated. In alkaline electrolyzers, OH− ions generate H2

on the cathode side. It can be possible to recover and reuse
the alkaline solution that is used as electrolyte. Solid oxide
electrolyzer produces hydrogen with the help of water
electrolysis using a solid oxide or ceramic electrolyte.
Nevertheless, since it is a commercialized electrolyzer, the
alkaline system was evaluated in this study in terms of green
chemistry properties. The alkali electrolysis method is suit-
able for the first principle from the green chemistry princi-
ples as it is a non-waste method, the 2nd principle because it
provides the atomic economy principle, the 7th principle
because it uses water as a renewable raw material, and the
8th principle because it does not have derivatives. Unfortu-
nately, the use of KOH does not accord principles 3 and 12.
It can also be assumed that principle 10 is violated in terms
of having an unknown cell material life.

3.2 Photo-Electrochemical

Hydrogen production by the photo-electrochemical method
can also be realized by the electrolysis of water with the
photoelectrode, an electrode coated with photocatalyst
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materials. In a photocatalytic reaction, a photon hits the
photocatalyst to form an electron–hole pair, thereby
obtaining an electric charge. A photo-electrochemical cell
also consists of electrodes, such as an electrolysis cell. But
one or both electrodes are photoelectrodes, and at least one
of them is a semiconductor. Hydrogen production in this
way is a promising solar hydrogen pathway and offers high
conversion efficiency potential at low operating temperatures
using thin film and/or particulate semiconductor materials at
low-cost temperatures (Steinfeld 2005).

Hydrogen production via photo-electrochemical methods,
many of green chemistry methods can be satisfied. This
method can be accepted as the greenest hydrogen production
method. There is no waste formation by photo-
electrochemical method, and therefore, it provides princi-
ple 1. It is also suitable for the second principle of green
chemistry because it provides the atomic economy principle.
KOH is not used in this method as in alkaline electrolysis,
and therefore, it is in accordance with principle 5. It fulfills
principle 7 because it uses renewable resources, principle 8
due to a one-step reaction, and finally the principle 9 of
green chemistry due to the use of photocatalyst.

4 Biological Processes

Hydrogen can be obtained by using microorganisms which
are called biohydrogen. According to the process, hydrogen
is produced from carbon sources generally renewable energy
resources (Saratale et al. 2019; Wang et al. 2020). The
operating conditions are attractive related to ambient tem-
perature and atmospheric pressure (Chandrasekhar et al.
2015). Therefore, the mentioned reasons make biohydrogen
production processes important. Unfortunately, biohydrogen
production processes are not interested deeply for
industrial-scale due to low production yields (Sinha and
Pandey 2011; Sung et al. 2003). At present, hydrogen pro-
duction from natural gases, heavy oil, naphtha, and coal is
more favorable, and the hydrogen is produced from these
raw materials comprise almost 90% of all hydrogen pro-
duction (Hallenbeck et al. 2019). High demand for fossil
fuels causes the depletion of the sources. Other hydrogen
production methods such as by electrolysis are 4%, and only
1% of hydrogen production is available from biomass. To
minimize the pressure on fossil fuel usage, the alternative
production methods have to be improved and might be
integrated into commercial hydrogen production systems.

Although the biohydrogen production level is low, it is
still a promising production method due to its mild oper-
ating conditions. By using renewable energy sources, bio-
hydrogen production can be categorized as

(i) Photofermentation, (ii) Dark fermentation, (iii) Biopho-
tolysis (direct and indirect), and (iv) Microbial electrolysis
cell (MEC) (Xu 2007; Mohanraj et al. 2019; Nikolaidis and
Poullikkas 2017). In general, according to economical
experts or low levels of hydrogen production, biohydrogen
production is given by the first two categories, but the other
categories also have to be considered related to their
improvements in literature.

4.1 Photofermentation

In the photofermentation process, biohydrogen can be pro-
duced by the decomposition of organic matters. The pho-
tosynthetic bacteria decompose the substrate with
nitrogenase catalysis. Nitrogen-fixing purple non-sulfur
bacteria are the most commonly preferred specie to pro-
duce biohydrogen (Ghosh et al. 2017). In photofermentation,
all types of purple bacteria and green bacteria are able to
convert light energy to chemical energy. The first mecha-
nism is given by Eq. 10.

N2 þ 8Hþ þ 8e� þ 16ATP ! 2NH3 þH2 þ 16ADPþ 16Pi
ð10Þ

If nitrogen exists, nitrogenase enzyme catalyses the
reduction of N2–NH3, and during the reduction reaction,
1 mol of H2 is produced per mole of N2. On the other hand,
under limited nitrogen, the nitrogenase enzyme catalyses the
reaction in a different pathway. Now, the reduction of pro-
tons is responsible for hydrogen production in Eq. 11.

2Hþ þ 2e� þ 4ATP ! H2 þ 4ADPþ 4Pi ð11Þ
By comparing the Eqs. (10) and (11), 4 times more bio-

hydrogen can be produced by nitrogen-limited conditions
with the same energy demand. Hydrogen production by
photofermentation method meets most of the principles
except the complex reaction system, which is the 8th prin-
ciple of green chemistry. Working under ambient T and P,
microorganisms acting as catalysts make this production
method quite Green.

4.2 Dark Fermentation

Anaerobic or facultative bacteria can also produce hydrogen
by using preferably simple sugars as substrates such as glu-
cose without using light energy, means in the dark media. In
dark fermentation, glucose is converted to pyruvate through
glycolysis. While the pyruvate is formed, the decomposition
differs according to the enzymes. If the enzyme is
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pyruvate-formate lyase, liquid products such as lactate,
acetate, and ethanol are formed. On the other hand, ethanol,
propionate, butyrate, and butanol are the end products of
pyruvate ferredoxin oxidoreductase mechanism with regard
to the type of the microorganism and fermentation media
(Balachandar et al. 2013). The theoretical hydrogen produc-
tion yield is 4 mol H2 mol−1 glucose, Eq. 12.

C6H12O6 þ 2H2O ! 2CH3COOHþ 2CO2 þ 4H2 ð12Þ
According to Eq. 13, final product is butyric acid,

C6H12O6 þ 2H2O ! 2CH3CH2COOHþ 2CO2 þ 2H2

ð13Þ
It was concluded that the concept of green chemistry

fulfills the principles 6, 7, 9, and 10, respectively, since it
uses biomass during hydrogen production with this method
and is studied under moderate temperature and pressure
conditions. However, the production of wastes such as CO2

does not meet the principles of green chemistry 1, 2, and 8
due to the fact that it does not provide the atomic economy
principle due to organic acid production and creates wastes
as a result of complex biological mechanisms.

4.3 Biophotolysis

Biophotolysis is a reaction series of photochemical reactions
that are triggered by absorption of light energy and continues
by converting to chemical energy. Molecular hydrogen and
oxygen are produced during the direct biophotolysis process
by dissociation of the water molecule, Eq. 14.

2H2O �!Light energy
2H2 þO2 ð14Þ

Green algae and cyanobacteria produce hydrogen by bio-
photolysis. Related to Eq. 14, green algae generate H2 in the
reduction side of photosystem I and generate O2 in the oxi-
dation side of photosystem II (Hay et al. 2013). While the O2

is produced, another limitation occurs, reversible hydroge-
nase is sensitive to O2, and this phenomenon inhibits the H2

production. To overcome this limitation, an indirect biopho-
tolysis process can be suggested. According to indirect bio-
photolysis, O2 and H2 evolution can be separated temporally
or spatially. Therefore, indirect biophotolysis arises from two
degrees. The first degree, CO2, is fixed by cyanobacteria to
convert it to a carbon source, and then, hydrogen production
proceeds (Deo et al. 2012; Lam and Lee 2013). The overall
hydrogen production mechanism through cyanobacteria is
represented by Eqs. 15 and 16 (Xiao et al. 2010).

6H2Oþ 6CO2 �!Light energy
C6H12O6 þ 6O2 ð15Þ

C6H12O6 þ 6H2O �!Light energy
12H2 þ 6CO2 ð16Þ

The biophotolysis method meets most of the green
chemistry principles applicable as in the dark fermentation
method. Likewise, it does not comply with the 8th principle,
and it is concluded that it meets the 1, 2, 6, 7, 9, and 10th
principles.

4.4 Microbial Electrolysis Cell

Microbial electrolysis cell (MEC) is a promising technology
for H2 production from degradable matters such as
wastewater (Mohan et al. 2013) and organic substrates
(Escapa et al. 2016; Rahman et al. 2016). Electrochemically
active bacteria refer to respiring bacteria produce CO2,
electrons, and protons by oxidizing the organic substrates.
The bacteria have the ability to transfer the electrons to the
anode. The generated protons released to the solution. The
electrons at the anode travel to the cathode. The reaction on
the cathode produces hydrogen by combining the electrons
and protons (Kadier et al. 2016). Electrochemical reactions
are represented in Eqs. 17 and 18 (Cardeña et al. 2019;
Rivera et al. 2019). Anode reaction is given for acetate
oxidation.

Oxidation (anode):

C2H4O2 þ 2H2O ! 2CO2 þ 8Hþ þ 8e� ð17Þ
Reduction (cathode):

8Hþ þ 8e� ! 4H2 ð18Þ
MEC requires an external power supply to input a voltage

to initiate the cathodic proton reduction. In Fig. 1, the
overview of biohydrogen production is given. These cells
can benefit from renewable biomass sources and clean
hydrogen production from wastewater. Of course, there are
some basic challenges. For example, the hydrogen produc-
tion rate is low and should be increased.

There are several mechanisms for biohydrogen produc-
tion, but these processes have some advantages and disad-
vantages. Especially, biohydrogen production from organic
wastes offers an environmentally friendly process compared
to thermochemical and physicochemical routes. Although
biohydrogen production is an environmental method, the
production yield and rate are the bottleneck of commer-
cialization. These problems should be addressed through for
the economical and technological viability otherwise
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biohydrogen will not contribute to the hydrogen economy
and sustainable growth.

5 Conclusions

Each of the hydrogen production methods is examined in
this study by considering 12 principles which are accepted as
the basis of green chemistry. Three main hydrogen pro-
duction processes (thermochemical, electrochemical, and
biological) were evaluated per each principle, and the results
were discussed.

As all hydrogen production methods are compared, the
results are as follows: Electrolysis is a greener option to
plasma arc dissociation. When thermal methods are com-
pared, it is concluded that the best choice for the environ-
ment is the thermal decomposition method. Biomass vapor
reform or gasification methods may be an alternative since
such high temperatures can only be achieved by using
contradictory nuclear energy sources. It is concluded that the
best alternative to the environment among the hybrid sys-
tems is photo-electrochemical water splitting. And, conse-
quently, all biological methods are environmentally friendly
because they use mimic or natural pathways.
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Fundamental and Principles of Green
Synthesis

Mukta Sharma and Manoj Sharma

Abstract

The hazard factors attributed to chemical and physical
methods used in the synthesis of organic, inorganic,
hybrid, coordinated compounds have led to the emer-
gence of alternative methods that do not pose any risk to
the environment. “Green Synthesis” is an evolving
science that accords benefits to the environment and to
the economy. In recent years, the application of “Green
Synthesis” in the production of vital components using
techniques of bionanotechnology has provided benefits
and alternatives to physical and chemical methods. The
fundamental, principle, and concept of “Green Synthesis”
is based on the twelve standard principles of “Green
Chemistry”. These principles involve the process of
sustainability, saving consumption of energy, low toxic
potential of chemical reagents and final products formed,
minimum harm to the ecosystem, low risk to global
warming, use of resources exploited naturally, and other
agrarian wastes generated rationally. The practices and
systems of “Green Synthesis” have not only been made
pragmatic in the synthesis of many well-known chemical
compounds including but not limiting to nanoparticles of
metals and nonmetals but also to improve various other
materials such as polymers, bioplastics, and aerosols. This
has been achieved by adopting new routes of sustainabil-
ity and using new materials. Physical methods such as
ball mill, heating assisted with microwave irradiation,
hydrothermal processes when used in combination with
precursors of natural origin pose significant importance
not only in the greener synthesis but also in the

biosynthesis and solventless procedures and techniques.
Non-hazardous solvents such as plant extracts, bacteria,
viruses, fungi, and yeasts are also part of “Green
Synthesis”. The chapter highlights the fundamental and
principles governing “Green Synthesis”.

Keywords

Greensynthesis�Greenchemistry�Bionanotechnology�
Sustainable chemistry

1 Introduction

During the past three decades, rampant exploitation of
chemical resources and other metallic and nonmetal agents
for faster productivity and low cost have led to the delete-
rious effect on the ecosystem. This includes utility and
exploitation of chemicals to prevent corrosion which is a
major challenge in different industries (automobile, phar-
maceutical, food, etc.). Studies conducted by Sharma et al.
(2009), Sharma and Singh (2011) have explored corrosion
inhibitors under different concentrations. The chronic
exploitation of chemicals and their associated deleterious
effects on ecosystems have necessitated the demand of
“Green Synthesis” using the concepts of “Green Chemistry”.
The application of this emerging science has paved the way
for new paradigms to achieve sustainable approaches in the
area of production of pharmaceuticals, food and beverages,
solvent and paint industry, petroleum (biofuels), and paper
industry. In 1991, for the first time, the term “Green
Chemistry” was presented to the scientific fraternity. The
term was mainly used to describe the processes and methods
for reducing or eliminating substances that are detrimental to
the ecosystem along with robust scientific approaches for
reduction of chemical exposure to the environment and
humans. A large number of green processes have been
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widely applied for energy conservation and generation,
purification of water, and in the arena of pharmaceuticals.

The hazardous nature in a chemical substance is attrib-
uted due to its molecular structure. The different hazards can
be categorized as:

• Biohazards (due to biological substances that cause risk
to living organisms)

• Hazards due to toxicity of chemicals or drugs (e.g.,
mortality, cancer, toxic epidermal necrolysis)

• Hazards due to physical properties of chemicals (e.g.,
explosion, flammability)

• Hazards on ecosphere (e.g., variation in climatic condi-
tions, ozone layer depletion, global warming, etc.)

The principles of “Green Synthesis” are based on the
twelve key principles of “Green Chemistry”, according to
which if these principles are practiced there is either no
impact or at least there is a less deleterious influence on
living beings and on the ecosystem (Alberto and Ade 2013).
Henceforth, a pragmatic approach on “Green Synthesis”
needs to be adopted for more robust and effective outcomes
(Ribeiro et al. 2010). Although it is difficult for the existence
of an absolute “Green Synthesis”, however, pragmatically
the term “Greener Synthesis” is more rational as an alter-
native. The description of principles of green chemistry was
documented by Anastas et al. (1998). Although the princi-
ples laid down are simple, valuable, and useful (Parveen
et al. 2016), these lack in describing the detailed processes
more particularly the scaling up of chemical processes in
industrial settings and the assessment of the financial impact.
Pragmatically, the processes involved in “Green Synthesis”
can reduce harmful effects on the ecosystem, but they cannot
solely preclude the interaction and impact of hazardous
substances on the atmospheric surroundings. The principle
(s) can be used for the progression and development of
systems and processes that not only reduce waste formation
but also are more energy efficient and utilize organic sol-
vents that are safer. These standards can be used

• to produce less toxic substances;
• to produce low quantities of by-products and their

derivatives.
• to reduce cost of the synthesis of final compounds. This is

achieved by reducing precursor loss and formation of
intermediary compounds during final compound synthesis;

• to lower chemical hazards by using less toxic and safe
alternate chemical substances like extracts from plant
origin;

• to minimize energy consumption by using ideal condi-
tions (normal pressure and room temperature);

• to generate sustainable sources of raw material;

• to decrease the generation of waste by evading steps of
reaction and additional chemicals;

• to make use of catalyst(s) for formation of products of
high yield;

• to prevent contamination through study of reaction
intermediates;

• to produce and use small quantities of reactants for pre-
vention of hazards and accidents that may occur due to
chemical explosions, leakages etc.

It is worthwhile to note that the green synthesis processes
are inexpensive, possess cost effectiveness, and commonly
generate products with enhanced quality thereby facilitating
non-evasion of any regulations and laws related to the
environment.

“Green Synthesis” has importance and applications in
organic chemistry as the hazardous organic substances and
solvents pose severe damage to the ecosystem. The utility of
green techniques in the arena of organic chemistry mainly
comprises activation of carbon–hydrogen bond; usage of
ionic liquids as green solvents; use of water; reactions
conducted using microwaves, ultraviolet waves, and ultra-
sound (Hang et al. 2012). The main characteristic features of
green techniques in the utility and application of organic
chemistry mainly include the precise choice of solvent and
conduct of reactions assisted with catalyst use. While using
green techniques, it is recommended that aromatic solvents
containing chlorine shall not be used as these are not only
volatile but also toxic and detrimental to the ozone layer.
Accordingly, the approach shall be for the alternate non-
aqueous, nonvolatile and polar solvents, for example ionic
liquids. Other greener techniques include microwave irra-
diations, organic reactions in carbon dioxide supercritical
medium without solvents. In several reactions where toxic
benzene is used as a solvent, in such reactions the solvent
toluene can act as an alternate. The other green alternative
includes use of solvents that are biodegradable (Do 2016).
The wide applications of green methods are further extended
to synthesize drugs, synthesize medicinal compounds for the
purpose of clinical development in the treatment of tropical
and other diseases. The term “Green Synthesis” differs from
“Biosynthesis” in the sense that while “Biosynthesis” means
the usage and application of extracts from plant, microbes,
algae, and fungi, the term “Green Synthesis” is mainly to
address the concerns related to minimization of deleterious
effects of chemicals on the living beings and ecosystem.

In the recent past, the utility of green technologies has
mainly been in the synthesis of nanoparticles (metal nature)
for pharmaceutical use in the form of targeted drug delivery.

This chapter provides an overview of applicability of
fundamentals and principles of “Green Synthesis” in the
current research activities using green technology methods.
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2 Fundamentals and Principle in “Green
Synthesis”

The fundamental and principles of “Green Synthesis” based
on different green technology methods are as follows:

(A) Physical Methods
• Mechano synthesis using ball mill
• Radiation through non-ionization process (mi-

crowave irradiation)
• Synthesis mediated by ultrasound technology
• Synthesis induced by magnetic field
• Synthesis using hydro(solvo)thermal technology

(B) Chemical Methods
• Use of solvents and catalysts

(C) Biological Methods (Biogenesis)

2.1 Physical Methods

In accordance with the requirements of “Green Synthesis”
although methods of “Green Chemistry” like mechanical
synthesis and microwave techniques are widely used, how-
ever, some of these methods like synthesis using magnetic
fields are very less common. During past decades novel
cleaner synthetic methods have been developed for chemical
transformations using the approaches of mechanochemistry.
Microwave technology has been applied in the processes
involving drying, calcination, sintering, and other chemical
processes control. Microwave sintering has shown more
effectiveness than conventional sintering, and hence, this
technology has been applied to ceramics and sintered pow-
der. Studies on inorganic nanoparticles and ultrafine particles
using hydrothermal synthesis processes have further shown
the applicability of greener techniques (Chudoba and Woj-
narowicz 2018; Darr et al. 2017; Ye et al. 2018). The dif-
ferent physical methods used in the process of “Green
Synthesis” mainly include:

2.1.1 Mechano Synthesis Using Ball Mill
Mechanical energy is required to drive chemical reactions
efficiently and effectively. This can be achieved by applying
mechanical energy using a ball mill. Such type of synthesis
achieved using mechanical energy is also known as
mechanochemical synthesis or tribochemical synthesis. The
concept of mechanochemical synthesis is not only extensively
used in organic chemistry for synthesis of compounds but for
its applications in processes involving inorganic solid-state as

well (Ranu and Stolle 2016; Margetic and Štrukil 2016). The
ball mill procedure not only enhances efficiency of energy but
also circumvents the involvement of toxic solvents and
reagents. Owing to its simplicity and nonhazardous nature to
the environment, the ball mill has been widely considered as a
good and widely acceptable tool for green chemistry and
green synthesis. Further, the mechanochemical synthesis
reaction and microwave-irradiated processes do not involve
any use of solvents and can also take place at room temper-
ature. Other reactions that can be carried out using ball mill are
those reactions which involve the usage of reducing, oxidiz-
ing agents for oxidation and reduction purpose; synthesis of
polymers; synthesis of coordinate compounds; synthesis of
compounds involving coupling reaction using dehydrogena-
tive processes; formation of peptides and amino acids. There
are certain reactions in which organic substrates being used
are sensitive to the temperature, for example reactions which
involve formation of carbon–carbon bond, carbon–nitrogen
bond like during synthesis of imines, azines, oximes, imines,
guanidine compounds, amine arylation, etc., carbon–oxygen
bond, carbon–halogen bond, reactions involving cycloaddi-
tions, oxidations, reductions, and other similar reactions. In
such types of synthesis reactions, mechanosyntheis is essen-
tially required and is highly useful. An example of widely
used mechanosynthesis equipment using ball mill technique
is high energy Retsch planetary-type ball mill (ScienceDirect
2016).

2.1.2 Radiation Through Non-ionization Process
(Microwave Irradiation)

The use of non-ionization radiation process for heating is the
fast, effective, clean, and cheap method used as a green
mode of heating in the synthesis of organic and inorganic
compounds as it does not require any organic solvents to be
used for heating. This is based on the principle of dipolar
polarization, conduction, and is widely recognized as a
conservative tool for heating in synthetic chemistry (Cra-
votto et al. 2017). Microwave irradiation techniques are the
non-ionizing radiation techniques having no effect on the
molecular structure. The electromagnetic energy generated
during irradiation gets transformed into heat energy which
further pushes interaction amongst compounds. Since
microwave irradiation and reactants experience an altered
interfacial interaction so a minimum energy is required for
the purpose of heating with no need of further escalating the
process (Kitchen 2013). Heating through microwave irradi-
ation heavily relies on the dielectric constant of a substance.
Accordingly substances like water, methanol, acetone get
heated rapidly, whereas substances like aliphatic hydrocar-
bons, toluene, carbon tetrachloride have differences. Fol-
lowing are the characteristic features of heating through
microwave irradiation.
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• microwave-heated substances are hotter at interior, and
the external surface is cooler;

• microwave heating is a volumetric phenomenon;
• less energy is involved in transfer of heat;
• heating process is fast and prompt due to fast transfer or

conduction of heat in the form of microwave radiations;
• heating does not involve any medium requirement;

Heating through the microwave irradiation process is
boon in chemical engineering as it facilitates volumetric
heating efficiently and effectively thereby reducing further
costs, for example, nanoparticles can be produced using
different frequencies of microwave in a much shorter time as
compared to conventional mode of heating (Leadbeater and
McGowan 2010). The generation and transmission of
microwaves involve the electrical system and source of
microwaves from magnetrons. At small scale, chemical
reactions have been carried out using commercially available
laboratory-scale microwave reactors at high temperature and
pressure. The various applications of microwave heat-
mediated synthesis include synthesize of polymers, synthe-
sis of pharmaceuticals, and many other secondary plant
metabolites (Bogdal and Prociak 2007; Dworakowska et al.
2012; Kappe et al. 2012).

2.1.3 Synthesis Mediated by Ultrasound
Technology

When sound waves possess frequency of more than the
human auditory range varying from 20 to 100 kHz, these
form ultrasound. The applications of ultrasound are mainly
based on the process of cavitation which may be formed in
any liquescent medium. At frequencies of 20–100 kHz, the
sound waves mainly result in formation, expansion, and
implosion (shrinking) of bubbles present in the liquids
thereby leading to the process of cavitation. Ultrasound
mediated technology is eco-friendly as it rarely causes any
damage to raw/fresh materials due to heat. In a recent review
conducted by Chen et al. (2019), it has been seen that
ultrasound-mediated thermal technology is widely used in
the prevention of contamination from microbes in food
industry, pharmaceutical industry wherein it has been used
as sterilizing agent, disinfectant, for inactivation of enzymes,
etc. Ultrasound-mediated technology has emerged as an
efficient and green technology for processing of food items
that are ready to eat.

Recent advancements in ultrasound technology have been
widely used in the environmental and energy applications. In
an overview given by Jayaraman et al. (2020), the integra-
tion of electrochemistry with ultrasound technology (Sono-
electrochemistry) provides many advantages. These
advantages mainly include but are not limited to faster rate
of reaction, increased activation of surfaces.

2.1.4 Synthesis Induced by Magnetic Field
The integration of chemical reduction reaction with external
source of magnetic field is the basis of synthesis mediated
through magnetic field. The synthesis using magnetic fields
heavily relies on various parameters including but not lim-
ited to temperature of the ongoing reaction, pH of the entire
reaction, magnetic field strength, surfactants presence, and
other solvents. These factors exert an impact on physical,
chemical, and mechanical properties of wire-like materials
and alter their chemical, physical, and mechanical properties
(Krajewski 2017). Currently, this has served as an alternative
to traditional synthesis methods which require harmful sol-
vents that are toxic in nature. The traditional methods can
also require extra steps for synthesis and may lead to gen-
eration of unsolicited substances, residues. During synthesis
of desirable substances, the additional steps required in the
synthesis can be minimized using the technology of mag-
netic field. The progress of formation of desired substances
can be affected using magnetic field-assisted technology.
Although this mode of synthesis has many advantages,
however, owing to its limitation related to magnetic field, it
can be applied to the substances where compounds as
reactants and products formed possess magnetic properties.

In a study conducted by Samadi et al. (2018), the
nanoparticles of cobalt ferrite were synthesized using mag-
netic field-assisted technology. The methodology involved
co-precipitation in a reverse mode and further analysis of
magnetic and other structural characteristics using electron
microscope (field emission), diffractometer, and vibrating
sample magnetometer. The outcome of the study revealed
that the powder with larger unit cells gets produced in the
presence of an external field and not in the nonexistence of
any external field.

In the study, there was an accrual in the coercivity and
magnetization. No significant changes were seen in mor-
phology and particle size.

In another study by Xia et al. (2015), the magnetic
characteristics, surface, and shape of ferric oxide nanopar-
ticles were altered using magnetic fields during thermal
decomposition.

Nanoparticles of Bi6Fe2Ti3O18 (BFTO) have also been
synthesized using hydrothermal methods. The methods were
adopted in a large magnetic field as this can affect the growth
behavioral characteristics (Liu 2020).

The compounds containing cobalt, nickel, and bismuth
can facilitate the synthesis through magnetic fields as these
have ferromagnetic characteristics (Wu et al. 2010; Hu and
Sugawara 2009).

Nanoparticles have been generated using solvothermal
procedures mediated with magnetic fields (Yang et al. 2020).
This is regarded as a green synthesis method as it reduces
generation of waste. It is worthwhile to mention that the
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magnetic field application does not produce any supple-
mentary product.

2.1.5 Synthesis Using Hydro(Solvo)thermal
Technology

The synthesis using hydro(solvo)thermal technology
involves heating of solvents in closed vessels. The solvents
in these sealed vessels are heated using pressure technology,
for example in autoclaves (Li et al. 2015). The procedure is
termed as “hydrothermal” when water is used as a solvent
and “solvothermal” when organic compound is used as a
solvent. A thick walled cylinder made of stainless steel is
used as an autoclave.

The autoclaves work differently depending on the type of
material which may include alloys of high strength, material
made from quartz, glass. From the purpose of “Green
Chemistry”, hydrothermal reactions have been regarded as
more appropriate and eco-friendly as these can be widely
used to produce different materials. In solvothermal pro-
cesses, organic solvents for example amine, methanol, and
toluene are largely used.

For preparation of nanomaterials, the methods using
technology of hydrothermal and solvothermal processes are
widely used as these synthesis methods produce large
quantities of high crystalline nanomaterials at a low cost.
These synthesis methods can be integrated with magnetic
fields and microwaves.

2.1.6 Photocatalysis
This is one of the methods of “Green Synthesis” that involve
chemical reaction occurring in the presence of light and a
semiconductor that enhances the rate of reaction in its
presence (photocatalyst). The process of photocatalysis has
applications in removal of cyanotoxins from polluted water
bearing small and large permeable rocks (aquifer). Owing to
its capability, the process of photocatalysis has got many
applications like deodorization, fogg removal, antibacterial,
etc. (Crisenza Giacomo and Melchiorre 2020).

Photocatalytic reactions are also used in the synthesis of
organic compounds. The catalytic phenomenon in photore-
dox reactions facilitates sustainability as it fulfills principles
of Green Chemistry. In a photoredox reaction, the primary
energy source is obtained from light energy which is not
only free of cost but is also nonhazardous to nature and
highly energy efficient. Unlike the thermal activation process
where high temperature or other harsh conditions are
required to achieve the desired reaction process, photons
provide sufficient energy to attain the desired reactivity
without such conditions. The photocatalysts are
light-absorbing species that are used in low quantity (cat-
alytic reagent). When these photocatalysts reach an excited
state, they stimulate the transfer of a single electron to form
stable compounds, for example, a large number of

heterocyclic compounds of nitrogen have been synthesized
by photo-oxygenation of furan derivatives (Crisenza Gia-
como and Melchiorre 2020).

2.2 Chemical Methods

2.2.1 Use of Solvents and Catalysts
For green synthesis, it is imperative to make use of materials
in the form of solvents and catalysts which do not pose risk
to the environment. The role of catalysts is significant in
reducing environment pollution as these are known to reduce
usage of organic compounds that are volatile (Menges
2018). A large number of waste compounds and other
by-products can be eliminated using catalytic methods.
There are two types of catalytic reactions, homogenous
catalysis, and heterogeneous catalysis which may be used on
the basis of type of reaction needed. A homogeneous cat-
alytic reaction is a reaction involving liquid/liquid (single
phase) phase and heterogeneous catalytic reaction is
bi-phasic or multi-phasic. Homogenous catalysis saves
energy by lowering down temperature conditions. Catalysts
are compounds of very expensive metals, and therefore, any
significant loss would be very expensive to purchase.

Like catalysts, solvents used for green synthesis must
possess the characteristics of biodegradability, low toxic
potential, recyclability, and water immiscibility. The com-
monly used solvents include polyethylene glycols, water,
and ionic liquids. Glycerol is the widely used solvent as it is
biodegradable, nontoxic, readily available, cheap, high
boiling point, possess low vapor pressure, high polarity, has
capacity to get solubilized with both organic and inorganic
compounds. Other solvents include supercritical carbon
dioxide, supercritical water which is widely used in syn-
thesis of polymers. The technology of supercritical fluid is
widely used in processes such as cleansing, polymerization,
and extraction.

The concept of green synthesis also utilizes dry media to
synthesize green compounds. The processes such as heating,
microwave technique, and ultrasound reduce contamination.
These are eco-friendly and can be scaled up for green syn-
thesis reactions.

2.3 Biological Methods

The biological synthesis methods include usage of
microorganisms, plants, and animals for their capabilities
and capacity to synthesize nanoparticles (metallic) using
“Green Synthesis” techniques. The natural sources (mi-
croorganisms, plants, and animals) have been evaluated for
the “Green Synthesis” of diverse metallic nanoparticles
without involving any toxic chemical and other hazardous
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material. In last decades, there has been significant devel-
opment in the production of nanoparticles using techniques
of biosynthesis (Venkateswarlu et al. 2013). Green synthesis
methods based on biological methods not only make use of
viruses, bacteria, and yeasts but also make use of secondary
plant metabolites extracted from seed, root, leaf, and stem as
these behave as reducing agents or as stabilizing agents
(Yallappa et al. 2015). Several forms of algae are also used
as these possess capabilities for removal of toxic metals
thereby converting them into more usable forms (Patel et al.
2014).

The rate of success of green synthesis process using
microbes and animals is not that attractive as compared to
the method adopted using plant extracts. Research activities
conducted with plants of varying taxonomic groups have
elicited capabilities of these plants for capping and green
synthesis (St. Angelo and Hartz 2012; Punuri et al. 2011). In
addition to plants, green synthesis potential has been
exhibited by biomolecules derived from animal sources such
as silk, chitosan, and alginates (Aramwit et al. 2014; Hem-
lata et al. 2020).

Owing to easy availability, usage in treatment of human
and animal malignancies, and edible use, angiosperms have
been largely used for green synthesis of metallic nanoparti-
cles (Petrovska 2012). Their use has also avoided the use of
hazardous and toxic chemical substances such as citrate of
trisodium and sodium borohydride. Plants detoxify higher
concentration of copper which is required as a micronutrient.
Plants detoxify copper by a reduction process involving
reduction of copper ions into copper neutral atoms, and
copper is required as micronutrient for plants. Higher con-
centration of copper is detoxified by plants by the reduction
of cuprous ions (Cu2+) into neutral atoms and successively
into nanoparticles of copper (Manceau et al. 2008). From the
formation of nanoparticles, it can be established that type of
plant and extract of its type of part, pH of synthesis process,
heavily affects quantity, size, and morphology of nanopar-
ticles. Among pteridophytes, the pteris genus plants were
studied by De Britto et al. (2012) in reference to synthesis of
silver nanoparticles. The maximum antibacterial properties
were shown by Pteris biaurita silver nanoparticles. The
antibacterial properties have also been seen in nanoparticles
synthesized from fern Nephrolepi sexaltata (Das et al. 2020).

Bryophytes also produce compounds that are biologically
active and in a way similar to pteridophytes safeguard
themselves from other living organisms. These active com-
pounds help bryophytes in protection. Algae are macro-
scopic or microscopic, multicellular or unicellular organisms
mainly present on moist surface, sea water or fresh water
(Dahoumane et al. 2017). These can be categorized in dif-
ferent kingdoms as plantae, bacteria, protozoa, and chro-
mista. Algae of different types have been screened for green
synthesis of nanoparticles of gold (Senthilkumar et al. 2019;

Rahman et al. 2020). The mechanism of action for synthesis
of nanoparticles by algae involves cationic accumulation and
reduction. In a study conducted by Khanna et al. (2019) on
applications, characterization, and synthesis of algae-based
nanoparticles, the species of saragassum (Sargassum spp.)
and chorella (Chorella spp.) were widely experimented to
develop nanoparticles of zinc oxide, silver, and gold. The
role of algal enzymes has also been explored for biosyn-
thesis of marine caretonids. In a study conducted by
Dautermann et al. (2020), it was seen that biosynthesis of
fucoxanthin was catalyzed by violaxanthinde-epoxidase
(VDL). The enzyme violaxanthin de-epoxidase is an
enzyme that exhibits photoprotective action and functions
mostly in algae and plants.

Synthesis of metallic nanoparticles using microbes is also
one of the approaches in green synthesis. In biotechnology,
the interaction of metal with microbes is well recognized
vide processes such as biocorrosion, bioremediation,
biomineralization, and bioleaching (Joshi et al. 2014;
Haferburg and Kothe 2007). For synthesis, it is imperative
that metallic toxicity shall be overcome by bacteria. The
metallic nanoparticles and nanocrystals exhibit the same
characteristics whether synthesized using chemical processes
or microbes.

3 Application of “Green Synthesis”

3.1 Synthesis of Metal Salts, Metal Complexes,
and Metal Organic Frameworks

The application of “Green Synthesis” methods have been
realized in synthesis of organic compounds using green
processes as these adhere to the twelve rules of green
chemistry (Unterlass 2016; Deshmukh and Bhanage 2018;
Chen 2018). For example, microwave treatment technique
has been used in obtaining high yield of benzimidazole
derivatives in a short span of time. Green synthesis tech-
niques have also resulted in development of compounds for
pharmacological action, for example thalidomide, pyrim-
idine derivatives, and methyl nitroacetate (Liu et al. 2018;
Benjamin and Hijji 2017). The characteristic features of
these processes include milder conditions and high yields.

“Inorganic–organic hybrid materials” are inorganic
building blocks present in an organic, polymeric, and matrix
in the colloidal form. The salient features of these hybrid
molecules involve the presence of considerably less amount
of inorganic polymeric component than that of the organic
component. Owing to features related to conductivity,
magnetic properties, catalytic or redox activities, and enri-
ched mechanical strength, these compounds can consider-
ably be used in improving current technologies for
membranes, fuel cells, and electronic devices. The principles
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of green chemistry which are appropriate for organic syn-
thesis can be largely applied in the synthesis of hybrid
materials also. Thus, the biodegradable and biocompatible
surfactants are required to make the hybrid materials of
organic and inorganic components compatible. Green
methods have been analyzed separately for organic and
inorganic components. Renewable resources can be used in
the case of inorganic colloids, whereas organic components
can be used using green routes and other renewable sources
(Choudhary et al. 2013). In accordance with green chemistry
principles, the essential parameters required in the synthesis
of metallic organic frameworks mainly include: (i) solvent,
(ii) sources of cation, and (iii) synthesis conditions such as
temperature and pressure of the reactor. During synthesis of
metallic organic frameworks, all precursors shall be used in
maximum considering that any waste or side product may be
reused. For this, oxides of metal or lesser sulfate hydroxides
are widely used as metal sources thereby avoiding loss of
toxic anions in the form of chlorides, nitrates or perchlorates.

3.2 Synthesis of Metallic Nanoparticles

In the synthesis of nanoparticles through green synthesis
methods, capping agents are mainly used for prevention of
aggregation of nanoparticles, to control shape of nanoparti-
cles and stabilization. The examples of capping agents used
in the nanochemistry mainly include long-chain hydrocar-
bons, polymers such as polyvinyl alcohol, polyethylene
glycol, polyacrylic acid, and polystyrene. For synthesis of
nanoparticles, following agents are considered as greener :
(i) polysaccharides such as starch, dextran with mild capping
ability, and water solubility characteristics as these allow
escaping toxic solvents and further allow easy separation of
nanoparticles from reaction media; (ii) biomolecules such as
peptides and proteins possessing high biocompatibility; and
(iii) other small molecules which act as capping agents. The
natural products used during the synthesis of nanoparticles
and nanomaterials can be applied as surfactants, capping
agents, solvents, reactants, carriers, catalysts, and templates.
The ligands are used to coat the surface of nanoparticles to
stabilize them and prevent agglomeration. The ligands used
in the nanoparticle synthesis include alkynyls, thiols, ami-
nes, phosphines, and carbenes. Low and large-scale syn-
thesis of nanoparticles can be carried out using water and
supercritical fluids such as carbon dioxide. Green methods
such as microwave- and ultrasound-assisted synthesis are
required to synthesize larger nanoparticles. The ultrasonic
treatment allows formation of small nanoparticles and
maintenance of the same without any further agglomeration.
After synthesis and preparation, nanoparticles thus formed
are separated from the reaction medium using precipitation
and washing method (Gour and Jain 2019).

3.3 Synthesis of Elemental Nanoparticles
of Nonmetals

The synthesis of elemental nanoparticles of nano-metals can
be done using a greener route involving allotropic forms of
carbon nanosize, nanodots, and nanotubes (Zahid et al.
2018). The techniques such as microwave, hydrothermal,
and pyrolysis have been mainly used in the synthesis of
nanoparticles. Microwave pyrolysis method has been used in
a study conducted on the green synthesis of nitrogen-doped
carbon dots from sesame seeds (Roshni and Divya 2017). In
the study, the characterization of carbon dots was done using
techniques such as fluorescence spectroscopy, visible spec-
troscopy, and Fourier transform infra-red spectroscopy
(FTIR) techniques. The results in the study indicated carbon
dots that were highly fluorescent, photostable, and soluble in
aqueous solvents. The study demonstrated an environment
and cost friendly, waste-recyclable synthetic method for
preparation of carbon dots.

4 Nanoparticles of Metal and Nonmetal
Oxide

The nanoparticles are usually the oxides of metals. The
green methods employed in their formation include vapor
phase oxidation method, hydrothermal, polyol method,
condensation for nanoparticles of zinc oxide;
co-precipitation method, thermal decomposition method for
nanoparticles of magnetite; spray pyrolysis, heating through
laser, hydrothermal methods for nanoparticles of indium
oxide (Singh 2018; Kalpana and Rajeswari 2018). In pro-
cesses including the ones where plant extracts are used, the
formation of hydroxides occurs first followed by decompo-
sition by annealing/calcination.

5 Conclusion

Green synthesis methods have necessitated the importance
of alternate to chemical and toxic substance use. The
methods based on the principle of green synthesis have
exhibited large potential in the synthesis of nanoparticles
which are used as novel agents in treatment of various ail-
ments. For exploitation of various methods of “Green Syn-
thesis”, it is imperative to understand the various underlying
principles and mechanisms involved in the process. The
green processes such as microwaves, ultrasound, plant-based
extracts, and biosynthesis processes involving a wide variety
of microorganisms have resulted in generation of high yield
of nanoparticles.

Microwave irradiation method enhances the kinetics of
reaction. Reducing agents such as starch and glucose can
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also be further used in synthesis of nanoparticles.
Nanoparticles synthesized using extracts from plants mainly
use aqueous solvent rather than any chemical solvent.
Ultrasound-assisted techniques facilitate nanoparticle syn-
thesis in a controlled manner. Different varieties of
microorganisms exert enzymatic reactions and act as a cat-
alyst in the nanoparticle synthesis. Biosynthesis methods are
advantageous as they are cheap, economical, have low
requirements for energy, and do not require high pressure.
These methods mainly make use of algae, fungi, viruses,
bacteria, yeast, and extracts of plants thereby acting as an
ideal source of “Green Synthesis”. Biosynthesis method
reduces the toxicity associated with a metal compound with
the help of enzymes present in the microbes. The funda-
mentals and principles discussed have a wide role in
reducing carbon footprints which is the need of hour in the
circumstances of ozone layer depletion and to lessen foot
prints of carbon.
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Electrochemical Green Synthesis

N. Suresh Kumar, R. Padma Suvarna, K. Chandra Babu Naidu,
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Abstract

Nowadays, numerous green processes are being
employed for purification of water, generation of energy,
fabrication of various materials, etc. The main theme of
the green process is eliminating or reducing hazardous
properties such as flammability, toxicity, change of
climate conditions and overheating through modifying
the structure of the chemical substances. Further, in green
synthesis, the shape and morphology of the nanoparticles
can be regulated through employing plant extracts. In
addition, the consistent properties can be achieved by
controlling the morphology at the time of biosynthesis
process which influences their optical, electrochemical
and physical properties. This chapter is mainly focused on
electrochemical properties of recently synthesized mate-
rials by green synthesis approach. In addition, the
applications of prepared materials in supercapacitors,
electrochemical hydrogen storage and the role of electro-
chemical green synthesis in fabrication of dopamine
sensors are also discussed.

Keywords

Green synthesis � Nanoparticles � Biodegradability �
Supercapacitors � Hydrogen storage

1 Introduction

In science and technology, one of the major research topics
receiving the tremendous advancement in recent years is
nanotechnology. In general, the term nanotechnology is
referred to as a branch of science which deals with the study
of materials in nano-range, usually between 1 and 100 nm.
The materials which are in nanoscale consist of large surface
area to volume ratio and show high chemical stability,
improved catalytic activity, thermal conductivity, electrical
conductivity, etc. (Agarwal et al. 2017) Owing to distinct
physicochemical properties, the nanomaterials have great
potential to introduce newfangled devices, structures and
nanoplatforms with imminent bids in diverse fields of sci-
ence such as pharmaceuticals, bio-engineering and dentistry
(Mirzaei and Darroudi 2017; Arruda et al. 2015; Rafique
et al. 2017). These superior properties gained much attention
by many researchers to discover novel synthesis techniques
for the preparation of nanomaterials. However, based on the
precursors, overall preparation techniques are categorized
into two types which are top-down and bottom-up tech-
niques. The examples for top-down techniques are ball
milling, grinding, laser ablation, sputtering, etc., in which
appropriate bulk material is shattered down to fine small
particles with the help of size reduction process. Similarly,
the examples for bottom-up technique are electrochemical
methods, chemical reduction, hydrothermal, solvothermal,
sol–gel, etc., in which the nanoparticles are prepared with
the help of biological and chemical reactions, where the
nanoparticles are grown by self-assembly of atoms. The
production of substantial amount of nanoparticles within
very short time is one of the greatest advantages of the
conventional synthesis techniques. But in this synthesis
method, in order to maintain stability, the toxic chemicals
are used which cause toxicity in the environment. In this
regard, the researchers from all over the world focused on
synthesizing the nanoparticles by green synthesis technique.
Usually, the green synthesis can be partly accomplished by
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replacing the toxic organic solvents with non-toxic organic
solvents or water. Any reactions, chemicals and processes
which are hazardous to environment and humans are com-
pletely evaded in green synthesis (Salam et al. 2014).
Therefore, the green synthesis is a good choice for the
preparation of nanoparticles because in green synthesis, the
non-toxic and ecofriendly nanoparticles can be prepared
from natural extracts. Hence, emerging green technique is
important for the prospect of nanomaterials in future. In this
chapter, we have focused on recent developments in elec-
trochemical green synthesis of materials along with their
applications in various fields.

2 Green Synthesis

The term green approach came into light in the year 1991,
which was designed to decrease the exposure of humans and
environment from hazardous and toxic substances or
chemicals. Nowadays, numerous green processes are being
employed for purification of water, generation of energy,
fabrication of electronics, etc. The main theme of the green
process is eliminating or reducing hazardous properties such
as flammability, toxicity, change of climate conditions and
overheating through modifying the structure of the chemical
substances. So, green synthesis involves the preparation of
materials without/at least reducing the harmful effect on
environment and human health. Generally, green synthesis
can be achieved by.

(i) utilization of microorganisms such as yeasts, bacteria,
fungi, etc.,

(ii) utilization of plants of plant extracts and
(iii) utilization of templates like viruses, deoxyribonucleic

acid (DNA), membranes, diatoms, etc.

Furthermore, ecofriendliness, cost effectiveness, pre-
venting unnecessary wastes, lower hazard chemical reac-
tions, renewable sources, biodegradability, etc., are
considered as advantages of green approach over other
techniques (Alberto and Ade 2013; Ribeiro et al. 2010).
Owing to all these reasons, the green synthesis gained
tremendous attention in material synthesis.

3 Electrochemical Green Synthesis

Nowadays, advancement in electronic technology and dee-
per dependence of people on compact electronic devices
such as hybrid-electric vehicles, mobiles and laptop require
more energy to consume the natural sources such as fossil
fuels cannot satisfy these excessive energy demands. This
also causes energy deficiency and environment pollution.

The introduction of suitable energy storage devices becomes
most necessary to fulfill the current energy requirements
(Shen et al. 2016). In this concern, the electrochemical
energy storage has been getting much attention for promis-
ing applications in electric vehicles and renewable energy
systems from intermittent solar and wind resources. Owing
to their high power and energy densities, outstanding cyclic
stability, quick charge/discharge rates, environmental
friendliness, etc., the supercapacitors have considerable
potential for using next generation electrochemical energy
storage devices (Lukatskaya et al. 2016). However, the
component materials, exclusively the materials are utilized
in their electrodes which can greatly influence the perfor-
mance of the supercapacitors. Conventional techniques
(hydrothermal, solvothermal, sol–gel, etc.) are being used to
fabricate electrode materials in nano-range; nevertheless,
these methods have their own disadvantages such as toxicity
and external additives during which the reaction is consid-
ered as damaging to environment and health (Besner et al.
2008; Kumar and Yadav 2009). Thus, the researchers have
been putting continuous efforts from last decade to attain
new production techniques with low impact on environment
(Paul et al. 2016).

In recent years, to overcome the drawbacks of traditional
synthesis techniques, researchers focused on the fabrication
of nanomaterial thru green synthesis which is ecofriendly
and economical (Suvith and Philip 2014). Further, in green
synthesis, the shape and morphology of the nanoparticles
can be organized by employing medicinal plant extracts. In
addition, the consistent properties can be achieved by con-
trolling the morphology at the time of biosynthesis process
which influences their optical, electrochemical and physical
properties. In this chapter, electrochemical properties of
recently synthesized materials by greener approach and their
supercapacitor and electrochemical hydrogen storage appli-
cations have been discussed.

In this connection, by using the by-products of orange
such as orange peel and extract of orange juice as bases for
biological antioxidants (e.g., flavonoids, ascorbic acid, pec-
tins and phenolic compounds), Abuzeid et al. (2019) pre-
pared the nanosized a-MnO2 materials via cost-effective
green synthesis technique for the first time for supercapacitor
electrode applications. They reported that the X-ray
diffraction (XRD) analysis confirms the a-MnO2 structures
with some secondary phases. Transmission electron micro-
scope (TEM) images disclosed the nanosized nature of the
prepared materials. Further, the distribution of pore size and
N2 adsorption and desorption of isotherms of the prepared
compounds orange peel MnO2 (OP-MnO2) and orange juice
MnO2 (OJ-MnO2) exhibited the surface areas as 8.40 and
5.63 m2 g−1. From the above results, the surface area of
OP-MnO2 dominates the surface area of OJ-MnO2. In addi-
tion, the electrochemical studies revealed that at 0.5 Ag−1
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current density, the OP-MnO2 compound exhibits the
specific capacitance of 139 Fg−1, whereas OJ-MnO2 com-
pound exhibits the specific capacitance of 50 Fg−1. Hence,
among the prepared materials, OP-MnO2 compound can be
the potential aspirant for supercapacitor electrode materials.
Further, Matinise et al. (2018) demonstrated the preparation
of ZnFe2O4 nanocomposites by using green synthetic route
in which natural plant extract called Moringa Oleifera acted
as chelating and capping agent throughout synthesis of
nanocomposites. As-prepared composites exhibit good
crystallinity which is confirmed by XRD studies. Electro-
chemical impedance spectroscopy (EIS) and cyclic voltam-
metry (CV) investigations revealed the electrochemical
behavior of ZnFe2O4 nanocomposites. Further, from the
EIS calculations, the time constant is found to be 5.2001 �
10–4 s/rad and exchange current of 6.594 � 10–4 A is
obtained. Furthermore, the fabricated glassy carbon loaded
ZnFe2O4 (GCE/ZnFe2O4) electrode shows the excellent
voltammetric response, and electrochemical performance
confirms that the prepared composites are suitable for fab-
ricating the supercapacitor electrode materials with good
electrochemical performance.

In continuing this development, for the first time, by
using the garbage collected Huggies (used baby diaper),
Atchudan et al. (2019), synthesized novel mesoporous
nitrogen-doped carbon nano-grass (N-CNG) through car-
bonization at 800 °C temperature under argon atmosphere
for flexible supercapacitor applications. Figure 1 exhibits the
schematic representation of preparation of N-CNG from the
used baby diaper (Atchudan et al. 2019). They reported that
the prepared N-CNG shows grass-like morphology with
large surface area of 183 m2g−1 and mean pore size of
3.3 nm.

On the basis of novel morphology and porosity, N-CNG
can serve as good electroactive material. Besides, in order to
explore the electrochemical properties of prepared
nano-grass, the N-CNG is coated on a carbon cloth (CC).
Furthermore, it was found that the CV curves which are in
quasi-rectangular shape reveal the considerable capacitive
behavior of N-CNG. Moreover, at the current density of
0.5 Ag−1, N-CNG has large specific capacitance of 81 Fg−1

and also shows the excellent retention of specific capacitance
about 95% even after 10,000 charge–discharge cycles. In
addition, with increasing current density, the specific
capacitance is decreased in a very slower rate which evi-
denced the excellent rate capability of prepared N-CNG. All
the results evidenced the N-doped carbon nano-grass can be
promising for supercapacitor applications.

Anand et al. (2019) prepared zinc oxide (ZnO) nanopar-
ticles utilizing almond gum (Prunus dulcis) via greener
synthesis route. The XRD studies revealed that ZnO
nanoparticles exhibit wurtzite structure with hexagonal
phase. Besides, from the Fourier transform infrared spectral

(FTIR) analysis, it is observed that the cutoff wavelength is
243.93 nm, and the direct band obtained is 5.17 eV. The
high-resolution scanning electron microscopy (HRSEM)
images show the homogeneous agglomeration in the mor-
phology of the prepared ZnO particles with mean particle
size of 25 nm. Further, the electrochemical properties of the
ZnO nanoparticles are carried out by CV and EIS. From the
CV curve (Anand et al. 2019), it is clear that owing to dif-
fusion mechanism between the electrode and electrolyte,
there is an increment in current density with respect to the
scan rates. Also, the CV curve is increased with scan rate
which results in the enhancement in capacitive performance
of the ZnO nanoparticles. The EIS studies revealed the
electrochemical properties of prepared materials from the
Nyquist plots (Anand et al. 2019). At higher-frequency
regime, straight line indicates the Warburg impedance which
causes diffusion control and interfacial charge transfer pro-
cess which strongly influences the electrochemical perfor-
mance of prepared materials. Moreover, at high-frequency
region, ZnO has low internal resistance. Hence, all the out-
comes suggest that green-synthesized ZnO nanoparticles can
be suitable for electrochemical capacitor applications.

In addition, through electrochemical green synthesis route,
Sportelli et al. (2020) prepared ZnO nanoparticles and
explored the properties of the obtained nanoparticles. They
reported that the preparedmaterials exhibitflower and rod-like
structures based on concentration ratio. The agar diffusion
technique confirms the consistent antimicrobial efficiency
of the prepared benzyl-hexadecyl-dimetylammoniumchloride
(BAC) and poly-diallyl-(dimethylammonium)chloride
(PDDA) containing ZnO materials against B. subtilis. Hence,
the present approach can be considered as more efficient
technique than other conventional techniques for producing
elongated ZnO nanomaterials in cationic capping agents and
aqueous solution. Further, Herrero-Calvillo et al. (2020)
explored electrochemical properties of the gold nanoparticles
prepared by green chemical technique using different con-
centrations of Loeselia mexicana leaf extract. They reported
that the prepared nanoparticles exhibit spherical and
triangular-shaped morphologies confirmed by scanning elec-
tron microscopy (SEM) analysis, and the leaf extract con-
centration greatly influences the morphology of the gold
nanoparticles. Finally, the cyclic voltammetry analysis
revealed the gold nanotriangles showing superior electro-
chemical response and stability over gold nanospheres. In
addition, the gold nanotriangles have large specific surface
area which influences the degradation efficiency of the
methylene blue, rhodamine-B and gentian violet organic dyes
in catalytic activity. Rashmi et al. (2020) reported the elec-
trochemical, photocatalytic and antimicrobial properties of the
silver oxide nanoparticles prepared with the help of green
combustion technique utilizing Centella asiatica and tridax
plant powder. Novel pentacyclic ingredients of Centella

Electrochemical Green Synthesis 269



asiatica and triterpene constituents of tridax powder boost up
the biological, electrochemical and photocatalytic activities of
silver oxide nanoparticles. They reported that the prepared
nanoparticles cathodic and anodic peak potentials display
hysteresis in voltage range of 0.3–0.1 Vwhich is confirmed by
cyclic voltammetric analysis. Besides, in photocatalytic
activity, they observed high percentage of deprivation of
acid-orange-8 dye by the prepared nanoparticles. In addition,
antimicrobial studies carried in contradiction of S. epidermidis
and S. aureus and antifungal studies carried out against A.
fumigates and A. aureus revealed that the silver oxide
nanoparticles have the ability to prevent the development of
several disease-causing pathogens. Therefore, silver oxide
nanoparticles that are prepared via green combustion tech-
nique can serve as active electrode material in electrochemical
supercapacitor, good photocatalyst and excellent antimicro-
bial agent. Owing to this, silver oxide nanoparticles may
contribute to numerous environmentally benign industrial
applications.

In designing an electrical double-layer capacitor (EDLC)
with improved power and energy densities, carbon materials
with optimized hierarchical pore structures play a pivotal
role. In this regard, the advancement in the synthesis tech-
niques gained significant attention for producing larger
amount of hierarchically porous carbon (HPC) materials. In

continuing this, Koo Kim et al. (2020) demonstrated a facile
and ecofriendly technique called spray pyrolysis for syn-
thesizing hierarchical pore-structured carbon materials. They
reported that two steps were involved in preparation of HPC
materials: in first step the spray solution comprising sucrose,
H2SO4 and NaCl is aerosolized using ultrasonic nebulizer to
provide NaCl-templated carbon microspheres, whereas the
second step is the activation step followed by cleaning to
obtain HPC. Figure 2 illustrates procedure for synthesis of
NaCl-activated carbon microsphere through spray pyrolysis
and post-treatment (Koo Kim et al. 2020). Further, the pre-
pared HPC materials exhibit large specific surface area of
1704 m2g−1 and pore volume of 1.81 cm3g−1. Besides, the
outcomes suggest that the HPC consists of interconnected
mesoporous network which offers short diffusion length
leading to efficient ion transportation and low ionic resis-
tance. Furthermore, the electrochemical studies disclosed
that, at the current density of 30 Ag−1, the prepared HPC
materials show high specific capacitance of 102 Fg−1 along
with outstanding cyclic retention of 92% even after 10,000
charge–discharge cycles at 10 Ag−1 as an electrode in
organic electrolyte-based EDLC. Hence, all outcomes sug-
gest that proposed HPC materials are promising candi-
dates for supercapacitor as well as energy storage
applications.

Fig. 1 Preparation of N-doped carbon nano-grass from the garbage collected baby diaper (Atchudan et al. 2019)
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In addition, Wang et al. (2019) demonstrated a facile,
cost-effective and ecofriendly green synthesis technique for
synthesizing TiN/C composites. Herein, the proposed green
synthesis route contains two steps: Initially in the dispersion
process the nitrogen and titanium sources are combined with
the help of complexing agent, subsequent annealing of
complexing compound precursors in nitrogen atmosphere to
get TiN/C composites. Besides, annealing temperature and
the amount of the complexing agent are greatly influencing
the microstructure of the prepared composites. The prepared
composites exhibit large specific surface area of 148 m2g−1.
Further, the electrochemical studies revealed that when
TiN/C composites were utilized as electrodes in superca-
pacitors, the composite shows large specific capacitance of
159 Fg−1 at a current density of 0.5 Ag−1 similarly 96 Fg−1

at a current density of 20-Ag−1. The proposed simple and
cost-effective strategy might be the prominent approach for
production of metal nitride/carbon composites for a large
scale without harming the environment.

Owing to cost effectiveness and low utility
ruthenium-based materials like RuO2 attracted much in
supercapacitors. However, these ruthenium-based materials

exhibit non-degradable nature. Generally, leaf extracts of
Acalypha indica, Aspasaths linearis, Dictyota dichotoma,
etc., have been using as capping, stabilizing and reducing
agents in biogenesis of ruthenium nanoparticles. In addition,
Akarkara (Anacyclus pyrethrum) is a medicinal plant; the
extracts of the Akarkara can also serve as reducing agent in
the biogenesis of ruthenium nanoparticles. To overcome the
drawbacks of ruthenium-based materials, using extracts of
Akarkara as reducing agent Nisha et al. (2020), synthesized
the RuO2 nanoparticles through green synthesis technique
without adding any external catalyzing agent for reaction.
Further, they explored the structural and electrochemical
properties of prepared ruthenium oxide nanoparticles. From
structural analysis, it is clear that the RuO2 nanoparticles are
highly crystalline with mean crystallite size of 13 nm and
spherically shaped. Besides, the cyclic voltammetric studies
revealed that RuO2 nanoparticles shows high stability after
repeating usage and the carbon nanosheet coated with the
prepared nanoparticles exhibit high specific capacitance of
209 Fg−1 at scan rate of 5 Mv s−1. These green-synthesized
RuO2 nanoparticles can also be employed as electrode
materials in electrochemical capacitors. Bashir et al. (2020)

Fig. 2 Schematic representation of synthesis of NaCl-activated carbon microsphere through spray pyrolysis and post-treatment (Koo Kim et al.
2020)
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demonstrated the electrochemical performance of NiFe2O4-
nanoparticles synthesized via green chemistry route using
extracts of Persa americano seeds. The presence of metal
oxide bonds is confirmed by FTIR and XRD studies dis-
closed the spinel structure of NiFe2O4 nanoparticles.
Besides, morphological studies showed the nano-cube
shapes of the prepared nanoparticles with mean size of
15–20 nm. From UV-Visible spectra, optical band gap is
found to be 4.25 eV. Further, they explored the electro-
chemical properties of the prepared nanoparticles by CV and
EIS analysis. It is clear from the CV curves (Bashir et al.
2020) that the prepared NiFe2O4 nanoparticles as electrodes
exhibit excellent capability rate and electrochemical
reversibility which indicates that fast diffusion for charge
transfer kinetics among electrode and analyte. As well, the
redox peak increases linearly with respect to scan rate which
endorses the steadiness of NiFe2O4 nanoparticles on elec-
trode. In addition, the EIS plot or Nyquist plot (Bashir et al.
2020) of GCE/NiFe2O4 electrode provides the information
about capacitance and charge transfer resistance. From the
Nyquist plot, it is noticed that low value of charge transfer
resistance reveals quick transfer of charges between elec-
trode and electrolyte which in turn confirms excellent con-
ductivity of prepared nanoparticles. Hence, the regulated
charge transfer kinetics, diffusion process, large electronic
conductivity and improved electrochemical stability of pre-
pared NiFe2O4 nanoparticles recommend them as prominent
candidates for applications in electrochemical capacitors.

With the help of hydrothermal-assisted green synthesis
technique and using Punica granatum (pomegranate) juice as
a reducing agent, Das et al. (2020) prepared nickel and silver
nanoparticles and explored electrochemical properties of the
prepared nanoparticles by decorating them on reduced gra-
phene oxide (rGO). They reported that the Ni/Ag@rGO
electrode exhibits excellent electrochemical properties. Fur-
ther, EIS studies revealed that the green-synthesized
Ni/Ag@rGO electrode exhibits low electrode resistance of
30 Ω along with large electroactive area of 0.149 cm2 and
roughness factor of 0.379, which indicates the presence of
large amount of active sites in prepared nanocomposites that
are responsible for electron transfer process. Besides, by
applying the prepared electrode materials, the square wave
voltammetry (SWV) is performed to detect the ascorbic acid
(AA) electrochemically, which disclosed the linear range of
4.89–90.09 lM, limit of detection (LOD) of 0.16 µM and
detection sensitivity of 23,381.8 µAcm−2 mM−1, respec-
tively. The interference study confirms the AA detection
capability of Ni/Ag@rGO electrode material. It also shows
outstanding stability up to 45 days. All the results indicate
that the green-synthesized Ni/Ag@rGO composite can be a
prominent candidate for supercapacitor applications.

Owing to low toxicity, good electrical conductivity, high
charge density, low cost, excellent environmental stability,

etc., polypyrrole (PPy) gained considerable research attention
toward supercapacitor electrode applications (Zhang et al.
2019). However, during repeated charge and discharge pro-
cess PPy polymer backbone experiences shrinking and
swelling which lead to volumetric changes and in turn causes
cycling instability (Huang et al. 2016). In addition, in con-
ventional preparation techniques PPy shows poor capacitive
performance due to inhibition of diffusion of electrolyte ions.
Hence, numerous techniques have seen light to improve the
electrochemical performance of the PPy through modifying
its morphology or establishing the composite with highly
conductive carbon-based materials (Luo et al. 2018). On the
other hand, PPy shows various structures in nano-level which
includes nano-wires/rods/tubes, nano-brushes, nanosheets,
hallow spheres, etc., which can have several advantages
compared to bulk PPy. Among, PPy nanotubes provide short
diffusion paths and large area for electrolyte–electrode inter-
face. Therefore, PPy tubes received considerable attention for
supercapacitor electrode applications. Massive research work
has been going on PPy-based electrode materials to expand
the electrochemical performance of the supercapacitors. In
continuing this advancement and to overcome the drawbacks
of conventional preparation techniques, Jyothibasu and Lee
(2020) proposed a one-step synthetic technique called
chemical oxidative polymerization to prepare PPy-based
electrode materials with improved electrochemical perfor-
mance. By using ecofriendly natural plant extract called
curcumin (haul out from spice turmeric (Curcuma longa) and
chemically it is a diarylheptanoid), they prepared ultra-long
hollow PPy tubes. Further, PPy tubes (PPyT:PPyC1T1,
PPyC1T2,PPyC1T4, PPyC2T2,andPPyC3T2) are synthe-
sized under diverse circumstances and combining with
functionalized carbon nanotubes(f-CNTs) to form freestand-
ing electrodes. However, PPyC3T2/f-CNT electrode exhibits
homogeneous morphology, hierarchically porous structure,
outstanding electrochemical properties among all prepared
electrode materials. The electrochemical studies revealed that
PPyC3T2/f-CNT electrode at high mass loading of
30 mgcm−2 and 2 mAcm−2 current density shows large areal
capacitance of 11,830.4 mFcm−2. Furthermore, asymmetric
supercapacitor fabricated with PPyC3T2/f-CNT electrode
shows outstanding areal capacitance of 2732 mFcm−2 at
2 mAcm−2 along with excellent cyclic retention of 118%
even after 12,500 cycles, and it also shows high energy den-
sity of 242.84 µWhcm–2 and power density of
129.35 mWcm−2. Hence, all these outcomes evidenced that
the prepared PPyC3T2/f-CNT can serve as prominent elec-
trode material in high-performance supercapacitors.

In addition, Zhu et al. (2020) prepared PPy-coated man-
ganese vanadate nano (Mn(VO3)2@PPy) nanocomposite via
green synthesis approach. First, they prepared Mn(VO3)2
precursors by hydrothermal technique, and then precursors
are wrapped by PPy to attain Mn(VO3)2@PPy nanoflower
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composites. The electrochemical studies revealed that the
prepared nanocomposites exhibit discharge capacity of
102.6 mAhg−1 at 0.1 Ag−1 current density and specific
discharge capacitance of 75.3 mAhg−1 at 1 Ag−1. It also
shows 100% cyclic stability after 500 cycles. All the out-
comes suggest that the prepared Mn(VO3)2@PPy nano-
flower composites can serve as positive electrode materials
in electrochemical capacitors.

Sahan et al. (2019) synthesized CoO@Co3O4@C com-
posite via green synthesis technique by using Punica
granatum extract for electrochemical applications. They
reported that the prepared composite exhibits mixed phases
as confirmed by XRD, and all the precursors are distributed
on amorphous carbon network confirmed by SEM analysis.
The electrochemical properties are studied by cyclic
voltammetry and galvanostatic charge–discharge measure-
ments which revealed that the prepared composite exhibits
reversible specific capacitance of 447 mAhg−1 after ten
cycles at 100 mAg−1 and reversible specific capacitance of
10 mAhg−1 after 50 cycles at 50 mAg−1 along with
improved cyclic and rate capability. This enhanced electro-
chemical performance evinced that CoO@Co3O4@C com-
posite can be suitable for electrochemical applications.

As we know that multiple morphologies of cobalt–nickel
hybrid materials exhibit considerable electrochemical activ-
ity due to multiple valence states. By using homogeneous
precipitation technique, Yang et al. (2020) prepared Co–Ni
hollow microspheres by using urea as precipitation reactant
for the detection of dopamine. Further, ammonia and water
are the decomposition products, and also the entire process
does not contain any organic solvents. Hence, the entire
preparation technique is environmentally friendly. Besides,
the electrochemical studies revealed the excellent electro-
chemical activity of the prepared nanospheres as sensor
electrodes. CV curves (Yang et al. 2020) with dopamine
concentrations are observed at scan rate of 50 Mv s−1.
However, the oxidation peak potential is observed at
0.379 V, and the peak current is found to be 17.88 A.
Nevertheless, the oxidation peak is influenced by the con-
centration of dopamine owing to quick reaction rate of
dopamine. Further, redox potential increases with respect to
the dopamine concentration. All these results specify that the
proposed material can be utilized as modified electrode
material for the detection of dopamine through electro-
chemical process.

4 Applications in Electrochemical Hydrogen
Storage

In recent years, the research on hydrogen storage attracted
immense attention because it is an inexpensive and good
energy carrier also. In fuel cells, the hydrogen in used to

generate electricity without emitting any pollutants like CO2

into the atmosphere and water as its only by-product (Fang
et al. 2006; Kim et al. 2016). Numerous metal oxides are
being used in hydrogen storage, which can be prepared by
various chemical, physical and electrochemical approaches
(Ouyang et al. 2017). Among, electrochemical hydrogen
storage is commonly used to store hydrogen because in
electrochemical method hydrogen adsorption occurs directly
in aqueous medium at the time of electrochemical decom-
position (Zhang et al. 2014). However, one of the major
challenges in electrochemical method is finding appropriate
materials as a source for hydrogen storage with good dis-
charge capacity. Till now, researchers introduced various
materials such as metal oxides (Butt et al. 2014), CNTs
(Mohammadi et al. 2016) and alloy/graphene composites
(Ouyang et al. 2014) for hydrogen storage. Owing to low
surface acidity, good chemical stability and high thermal
conductivity, zinc aluminate (ZnAl2O4) is considered as one
of the prominent materials for hydrogen storage (Battidton
et al. 2014). Till now, ZnAl2O4 is prepared by different
techniques such as sol–gel, hydrothermal and thermal
decomposition for applications various fields.

Recently, with the help of green synthesis technique,
Gholami et al. (2018) synthesized ZnAl2O4 nanoparticles
and ZnAl2O4/graphene nanocomposites for electrochemical
storage applications in which green tea and olive leaf
extracts are used as reagents. They reported that the prepared
materials exhibit good structural and morphological prop-
erties as confirmed by XRD and SEM analysis. Further,
under 1 mA current in 6 M KOH electrolyte, they tested
hydrogen storage performance of prepared materials with
chronopotentiometry technique and also compared their
Coulombic efficiency. Figure 3 represents the flowchart of
synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocompos-
ites and their cyclic performance (Gholami et al. 2018). The
prepared materials exhibit the highest discharge capacity of
3100 mAhg−1 and Coulombic efficiency of 67.5%. The
outcomes of the investigation suggest that the prepared
ZnAl2O4 nanoparticles and ZnAl2O4/graphene nanocom-
posites are prominent candidates for hydrogen storage. In
addition, using the novel fuel, for the first time,
Zinatloo-Ajabshir et al. (2019) prepared Dy2Ce2O7

nanoparticles by green synthesis route for electrochemical
storage applications. Besides, they prepared different
Dy2Ce2O7 nanoparticles with different structures by varying
fig extract at different temperatures. All the prepared struc-
tures exhibit different hydrogen storage properties and
Coulombic efficacy which is confirmed by chronopoten-
tiometry method at potash solution. All results suggest that
the Dy2Ce2O7 nanoparticles molded with aid of fig extract
at 400 °C show good electrochemical hydrogen storage
properties, i.e., maximum discharge capacity observed
for above-said sample is 3070 mAhg−1 after 18
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charge/discharge cycles, and it also exhibits good Coulom-
bic efficacy. Hence, the Dy2Ce2O7 nanoparticles originated
with the assistance of fig extract at 400 °C are the good
candidate for electrochemical hydrogen storage. Finally, the
usage of fig extract as new and ecofriendly fuel can be
important to fabricate the nanostructured Dy2Ce2O7

nanoparticles which are efficiently capable for electro-
chemical hydrogen storage and can be beneficial for energy
storage technology.

Ecofriendly nature is one of the major advantages of
electrochemical green synthesis. In practical point of view,
the electrochemical reactions generally show good func-
tional group tolerance. In addition, the electrochemical
reactions provide energy-saving option at elevated pressure
and temperatures. Owing to their high-reaction efficacy,
electrochemical techniques require short reaction time as
compared to traditional techniques. Further, the electro-
chemical reaction can easily be stopped at any time by
turning-off the power switch, whereas traditional methods

require frequent quenching. Finally, most of the electro-
chemical methods such as electrochemical–synthetic
approaches for 1,4-dicyanobutane and sebacic-acid have
fruitfully accomplished the industrialization (Pletcher and
Walsh 1990). However, despite of having many advantages,
still some shortcomings exist in application point of elec-
trochemical green synthesis. For instance, to enhance the
conductivity of solution, some techniques use the hazardous
electrolytes which results in a higher risk of explosion. The
selection of corrosive solvents, flammable and toxic solvents
may also negatively impact on safety features of entire
process. The usage of these additives also leads to produc-
tion of higher amount of waste (Anastas and Warner 1998;
Anastas and Eghbali 2010). In order to overcome these, the
researchers have to be focused on developing new ion
exchange membranes, electrode materials, electrolytic cells
and electrochemical mediators, also, diminishing, recycling
and even avoiding the usage of supporting electrolytes.
Finally, current researchers are attentive on the designing

Fig. 3 Flowchart of synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposites and their cyclic performance (Gholami et al. 2018)
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and manufacturing of novel electrolyzers which can improve
the efficiency and practical applicability of electrochemical
green synthesis (Yuan and Lei 2020).

5 Conclusions

Electrochemical green synthesis is simple, ecofriendly,
economical for the production of materials with good
physical and electrochemical properties. Owing to this
electrochemical green synthesis of gains, the considerable
research attention in fabricating inexpensive and ecofriendly
materials for diverse applications was developed. In this
chapter, we have explored some of the recent materials such
as a-MnO2, ZnFe2O4, N-CNG, ZnO, RuO2, NiFe2O4,
Ni/Ag@rGO, ZnAl2O4, Dy2Ce2O7, Co–Ni and CoO@-
Co3O4@C have been prepared via green synthesis route, and
their applications in electrochemical capacitors, hydrogen
storage, detection of dopamine, antimicrobial, etc., have
been discussed as well.
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Enzyme-Mediated Synthesis of Heterocyclic
Compounds

Deepshikha Rathore, Geetanjali, and Ram Singh

Abstract

Heterocyclic compounds are cyclic organic molecules
possessing at least one atom other than carbon in the ring
structure. They are a widely used class of organic
compounds. The heterocyclic scaffolds represent the
central framework of many biologically active molecules.
The other applications, like agrochemicals, veterinary
products, dyes, etc., also make them essential. Due to its
high global demand, there is always a need for new and
efficient methodology in synthesizing these molecules.
The sustainable process with a minimal environmental
impact is the need of the present day and biocatalysis
supports this. Enzymes are biocatalysts and play a
progressively significant role in the synthesis of hetero-
cyclic molecules. This chapter discusses the utility of
different enzymes for the synthesis of nitrogen-, oxygen-
or both containing heterocyclic molecules.

Keywords

Enzyme � Biocatalysts � Heterocyclic compounds �
Green synthesis � Sustainable synthesis

1 Introduction

Heterocyclic compounds are cyclic organic molecules pos-
sessing at least one atom other than carbon in the ring
structure (Sabir et al. 2015). Their both properties, physical
and chemical, are reliant on the presence of heteroatom(s).

These compounds find their applications in almost all types
of industries, including pharmaceuticals, agrochemicals,
dyes, and pigments and others (Joule and Mills 2013; Rudi
et al. 2005; Broughton and Watson 2004; Arunkumar 2015;
Arora et al. 2012; Kozikowski 1984). Due to its increasing
demand, researchers continuously keep an eye on their
synthetic routes. They are always trying to develop various
efficient and environmentally friendly methodologies (Busto
et al. 2011; Feber 2004; Shoda et al. 2016). The conven-
tional methods, like chemical catalysis, electrochemical,
microwave-assisted, and using ionic liquids, solid and
solution phase synthesis, are some of the well-known
methods (Busto et al. 2011; Feber 2004; Shoda et al.
2016). Still, the development of a sustainable synthetic
process is widely explored in organic synthesis. Biocatalysis
has shown potential towards the synthesis of organic mole-
cules, including heterocyclic molecules in a sustainable and
environmentally friendly manner (Milner and Maguire 2012;
Mane et al. 2018; Wu et al. 2019; Singh et al. 2006).

Biocatalysis is the use of bio-based catalysts or enzymes
in organic synthesis (Dalal et al. 2016; Xie et al. 2013; Li
et al. 2008; Xiang et al. 2013, 2014; Xue et al. 2012; Ding
et al. 2015). Apart from the other advantages possessed by
enzyme-catalyzed reactions, they also take care of the pro-
duction of single enantiomers instead of racemic mixtures
(Singh et al. 2006). The two fundamental properties of cat-
alysts also apply to enzyme-catalyzed reactions: (i) increase
in the rate of reaction; and (ii) remain non-consumed after
the reaction. The focus of research revolves around the
development of stereo-, regio- and chemo-selective reactions
(Shoda et al. 2016; Kobayashi et al. 1997, 1996). Different
classes of enzymes such as hydrolases, oxidoreductases,
transferase, lyase, isomerase and ligase perform different
types of reactions (Fig. 1) (Shoda et al. 2016; Singh et al.
2006; Groger and Asano 2012; Webb 1992).

In this chapter, the enzyme-catalyzed synthesis of pyr-
roles, indoles, phenazines, benzocarbazoles, benzimidazoles,
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pyrazoles, benzofurans, chromenes, dioxins, lactones and
oxazolidinones have been discussed.

2 Enzyme-Mediated Synthesis
of Heterocyclic Compounds

Enzyme-mediated synthesis is based on the ability of its
active site to allow a particular substrate to enter into it and
further get transformed into a suitable product (Yang et al.
2015; Kłossowski et al. 2013). Many name reactions like
Morita–Baylis–Hillman reaction (Reetz et al. 2007), Michael
addition (Zhang et al. 2017a), aldol addition (Li et al. 2008)
and others (Hu et al. 2012; Wang et al. 2017) have been
successfully carried out using enzyme-catalyzed method.
Some of the important enzyme-mediated reactions have been
discussed in this section towards the synthesis of hetero-
cyclic compounds.

2.1 Nitrogen-Containing Heterocycles

Nitrogen heterocycles are mainly found in peptides and alka-
loids, and these both are most widely spread in mostly
all-natural products. The one, two and more number of
nitrogen-containing heterocycles with 5-, 6- and 7-membered
aromatic compounds is very important moiety in the field of
medicine (Jampilek (2019); Vitaku et al. 2014; Singh and
Geetanjali 2011). The synthesis of N-containing heterocyclic
molecules has always been explored for sustainable processes

(Veer and Singh 2019; Poonam 2019; Chauhan and Geetanjali
2000; Chauhan et al. 2003). There is always demand for the
wide-structural diversity of N-heterocycles and hence explo-
ration of synthetic protocols. They are prepared by synthetic
reactions as well as via enzymatic methods. The biosynthetic
pathways of naturally occurring heterocyclic compounds help
in designing their enzymatic synthetic paths (Hemmerling and
Hahn 2016; Junghanns et al. 1995).

2.1.1 Pyrroles
Pyrroles are five-membered ring, N-containing heterocyclic
molecule which showed their utility in diverse biological
activities, speciality polymeric materials, etc. (Trofimov et al.
2004; Bellina and Rossi 2006). The Paal–Knorr reaction has
been used to synthesize the derivatives of N-substituted
pyrrole in 60–99% yield catalyzed by a-amylase obtained
from hog pancreas. This reaction was standardized using
aniline (R=Ph) and 2,5-hexanedione as the starting materials
(Fig. 2) (Zheng et al. 2013). The a-amylase from hog pan-
creas yielded N-phenyl-2,5-dimethylpyrrole in 94% yield;
however, from Aspergillus oryzae gave the same product in
65% yield. This suggests that the sources of enzyme also play
important role in product formation.

The authors have optimized the biocatalyst from eight
different enzymes they tried for the reaction. The optimized
enzyme, a-amylase from hog pancreas under mild reaction
condition such as 50 °C temperature in methanol showed
excellent activity using wide variety of primary amines
(Zheng et al. 2013). The reactions showed high yields and
better efficiency under mild reaction conditions.

Reactions catalyzed 
by enzymes

Transfer of a group 
from one molecule 

to another

Hydrolysis of 
chemical bond

Non hydrolytic 
cleavage of a bond

Rearrange the 
existing atom of the 

molecule

Synthesis of a new 
bond with the use 

of ATP

Oxidation and 
Reduction

O
xi
do

re
du
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Fig. 1 Reactions catalyzed by enzymes in organic synthesis
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2.1.2 Indoles
Spirooxindoles are indole derivatives present in many sec-
ondary metabolites and biologically important molecules
(Ding et al. 2006; Galliford and Scheidt 2007). These
molecules have been synthesized using enzymes as biocat-
alysts (Chai et al. 2011). The reaction of isatin, malononitrile
and ethyl acetoacetate in the presence of lipase from porcine
pancreas (PPL) in water–ethanol gave spirooxindole
derivatives in 82–95% yield (Fig. 3) (Chai et al. 2011). The
reaction condition with respect to reaction time, catalyst,
temperature and solvent was optimized by the authors.

The use of others solvents like acetone, dichloromethane,
hexane, chloroform, tetrahydrofuran, acetonitrile and
dimethylformamide either did not promote the reaction or
gave only moderate yield (Chai et al. 2011). Other com-
mercially available hydrolytic enzymes were also evaluated
for the reaction but PPL gave better results. The enzymes
amano lipase M from Mucor javanicus and Amano lipase A
from Aspergillus niger also gave the products in 82 and 84%
yield, respectively. The lipase acrylic resin from Candida
antarctica gave only trace of spirooxindoles. This was
proposed that the specific spatial conformation along with
the tertiary structure of PPL gave better yield of spirooxin-
dole derivatives (Chai et al. 2011).

2.1.3 Phenazines
Phenazine is dibenzo annulated pyrazine with the formula
(C6H4)2N2. Their derivatives are multifunctional in nature
and successfully used in pharmaceuticals (Zhuo et al. 2013;
Gamage et al. 2006), energy sectors (Okazaki et al. 2017;
Lee et al. 2010), sensors (Pauliukaite et al. 2010), etc. Due to
their broad applications, enzymatic synthesis has also been
performed on this molecule synthesis (Sousa et al. 2014,

2018). Sousa et al. studied the use of Laccases, a
multi-copper oxidase for the synthesis of phenazine and
phenoxazinone frameworks from substituted aromatic ami-
nes (Fig. 4) (Sousa et al. 2014). This has been observed that
the laccase-catalyzed reactions give only water as waste
product when reactions are performed in aqueous solvent
systems (Witayakran and Ragauskas 2009; Mikolasch and
Schauer 2009). The reaction was performed under mild
reaction condition using solvent methanol in phosphate
buffer (pH 6–7) at temperature of 37 °C under aerobic
conditions. The enzymatic oxidation of meta, para-dis-
ubstituted amine derivatives afforded phenazines. With the
starting reagent, 1,2-diaminobenzene, 2,3-diaminophenazine
was formed in 66% yield, whereas with ortho-aminophenol,
phenoxazine formed in 83% yield (Sousa et al. 2014). The
oxidation of 1-amino-2-naphthol with PPL at pH 7 gave
14H-dibenzo[a,j]phenoxazine-5,6-diol in 59% yield (Fig. 5)
(Sousa et al. 2014).

This group further utilized the optimized protocol for a
one-step asymmetric phenazines and phenoxazinones syn-
thesis using spore coat protein A (CotA)-laccase enzyme as
catalyst from ortho-substituted diamines and ortho-sub-
stituted hydroxylamines through aerobic oxidations (Sousa
et al. 2018). Some of the other similar molecules synthesized
using similar procedure with different reactants are given
with their yields in Fig. 6 (Sousa et al. 2014, 2018).

2.1.4 Benzocarbazoles
Carbazole consists of two six-membered benzene rings fused
on either side of a five-membered nitrogen-containing ring.
This is based on indole structure where a second benzene
ring is fused at the 2–3 position of indole. Carbazole
derivatives possess pharmaceutical properties (Knölker and

Fig. 2 Condensation of aniline and 2,5-hexanedione

Fig. 3 Synthesis of different spirooxindole derivatives
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Reddy 2002; Pecca and Albonico 1971) and have applica-
tions in material sciences (Grazulevicius et al. 2003; Lia and
Grimsdale 2010).

Sousa et al. performed the enzymatic synthesis of
carbazoles using CotA laccase (Sousa et al. 2015). The
oxidation of the meta, para-disubstituted arylamine
2,4-diaminophenyldiamine afforded benzocarbazole deriva-
tive in 74% yield and hence developed a clean method to
construct in one-step C–C and C–N bonds (Fig. 7) (Sousa
et al. 2015). The electrochemical behaviour of the target
substrate plays essential role for product formation through an
intramolecular oxidative coupling step (Sousa et al. 2015).

2.1.5 Benzimidazoles
Benzimidazole is a bicyclic heteroaromatic system which is
composed of a benzene ring fused with an imidazole ring,
i.e. five-membered ring with three number of carbon and two
nitrogen is attached. It is occurring in nature as part of the
vitamin B12 molecule with chemical formula C7H6N2. This
type of molecules possesses therapeutic properties including
broad-spectrum anthelmintic, fungicidal or antimicrobial
action (Salahuddin and Mazumder 2017).

Wang et al. in 2010 developed an efficient synthesis of
bioactive compound in an ecologically and economically
favourable way (Wang et al. 2010). In their study, they devel-
oped the enzyme-mediated synthesis of 2-alkylbenzimidazole.

o-Phenylenediamine is used as primary reactant for the syn-
thesis of the desired product (Fig. 8). In this synthesis, o-phe-
nylenedimine reacted with the corresponding ester in the
presence of immobilized lipase fromMucor miehei (MML) as a
catalyst. This mixture was stirred at 50 °C for 60 h to complete
the reaction and achieve the synthesis of benzimidazole
derivatives (Wang et al. 2010). The reaction with other hydro-
lases like lipase acrylic resin from Candida antarctica B,
Amano lipase M from Mucor javanicus and lipase from Can-
dida rugosa gave low to poor yields. The spatial conformation
of the lipases plays very important role in the product formation
(Chai et al. 2011; Wang et al. 2010).

2.1.6 Pyrazoles
Pyrazoles are five-membered heterocyclic molecules pos-
sessing two nitrogen atoms in the ring. Pyrazole derivatives
are biologically active compounds and also useful for other
applications like dyes and luminophores (Mishra and Sasmal
2011; Stellrecht and Chen 2011). These molecules have
been synthesized through enzyme-catalyzed reaction. Mane
et al. used a whole cell biocatalyst, Saccharomyces cerevisae
(Baker’s yeast), with 1,3-dicarbonyl compound and
hydrazines at room temperature to give the N-substituted
pyrazole derivatives in 70–92% yield through oxidative
cyclocondensation reaction (Fig. 9) (Mane et al. 2015). This
synthetic method was found to be useful to a series of

Fig. 4 Laccase-catalyzed
reactions with substituted
aromatic amines

Fig. 5 Laccase-catalyzed
synthesis of 14H-dibenzo[a,j]
phenoxazine-5,6-diol
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pyrazole derivatives where fermented Baker’s yeast played
role in efficient cyclocondensation 1,3-diketones with
hydrazines/hydrazides. The study also suggested that the

presence of the enzyme lipase in Baker’s yeast accelerated
the reaction leading to the desired pyrazole derivatives
(Mane et al. 2015).

Fig. 6 Examples of laccase-catalyzed synthesis of some molecules

Fig. 7 Chemoenzymatic synthesis of benzocarbazole

Fig. 8 Enzyme-mediated 2-alkylbenzimidazole synthesis
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Pyranopyrazoles are another important group of hetero-
cyclic compounds. A four-component cyclocondensation
reaction of hydrazine hydrate, malononitrile, ethyl acetoac-
etate and benzaldehyde afforded 6-amino-3-methyl-4-(3-
nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
using lipase from fungi Aspergillus niger as catalyst
(Fig. 10) (Bora et al. 2013). This method of synthesis was
successfully utilized for different carbonyl compounds as
one of the reactant yielding dihydropyrano[2,3-c]pyrazoles
in 75–98% yield (Bora et al. 2013). The cyclic ketones also
successfully gave spiro-substituted dihydropyrano[2,3-c]
pyrazoles in 70–80% yield. The enzyme showed its utility
towards wide range of substrates, reusability and mild
reaction condition, i.e. room temperature and ethanol sol-
vent. The study was also done on lipases from different
sources such as Pseudomonas cepacia, Amano AK, Peni-
cillium camemberti, Porcine pancreas and Aspergillus niger
giving the yield of 65, 72, 75, 91 and 95%, respectively,
for the product 6-amino-3-methyl-4-(3-nitrophenyl)-
2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile.

2.2 Oxygen-Containing Heterocycles

There is no doubt that oxygen-containing heterocycles play
important role in industrial, medicinal and nutritional
applications due to their diverse biological functions and
natural abundance (Venkatachalam and Kumar 2019). Their
synthetic methods are always being explored. There are
many chemical synthetic methods to produce oxygen-
containing heterocycles but due to toxicity and unfriendly
approach towards environment and economy, there is
demand for green synthesis. Enzyme-mediated synthesis is

one of the methodologies to produce oxygen-containing
heterocyclic compounds.

2.2.1 Chromenes
4H-chromene derivatives are shown their potential in various
pharmaceutical activities (Zhang et al. 2018). They have been
synthesized with the help of immobilized mucor miehei lipase
(Fig. 11) through multi-component reaction using aldehydes,
active methylene compounds and suitable nucleophile in 81–
96% yield (Fig. 12) (Zhang et al. 2018). The immobilization
of enzymes on magnetite nanoparticles (MNPs) has advan-
tages for low mass transfer resistance, high specific surface
area and easy separation from the reaction mixture in the
presence of magnetic field (Vaghari et al. 2016; Hola et al.
2015). Zhang et al. used silica-coated MNPs as starting
material whose surface was functionalized with
3-aminopropyltriethoxy silane to introduce amino groups.
This was further treated with 2,4,6-trichloro-1,3,5-triazine
(TCT) to develop support for covalent immobilization of
enzyme (Zhang et al. 2018; Abbasi et al. 2016; Ranjbakhsh
et al. 2012). Xu et al. also reported lipase-catalyzed synthesis
of tetrahydrochromene derivatives using 1,3-dicarbonyl
compound, aldehyde and malononitrile (Xu et al. 2011).

2.2.2 Dioxins
Dioxin is 6-membered heterocyclic, non-aromatic organic
molecule which consists of four carbon atoms and two
oxygen atoms. The molecular formula is C4H4O2. It is also
refereed to 1,4-dioxin or p-dioxin. There is an isomeric form
which is 1,2-dioxin (o-dioxin) and is very unstable due to its
peroxide nature. Agarwal et al. in 2014 proposed an enzy-
matic synthesis of polybrominated dioxins by using
monooxygenase halogenase CPY450 Bmp7 as catalyst in

Fig. 9 Baker’s yeast catalyzed synthesis of pyrazoles

Fig. 10 Dihydropyrano[2,3-c]
pyrazole synthesis
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the reaction using bromocatechol as substrates (Fig. 13)
(Agarwal and Moore 2014). Both bromocatechol and the
electrophilic quinone, i.e. 3,5-dibromo-1,2-dibenzoquinone
undergo coupling reaction in the presence of CYP450 Bmp7
enzyme as catalyst to produce dibenzo-p-dioxins. In this
case, the benzoquinone provided both 1,4-dioxin oxygen
atoms (Fig. 13) (Agarwal and Moore 2014). This reaction
method is indicative of synthetic hetero-Diels–Alder cou-
pling between orthoquinones and enamines leading to the
formation of 1,4-benzodioxin frameworks. The whole reac-
tion has very mild reaction conditions. The synthesis of
desired dioxins can be achieved at room temperature. Excess
bromine was quenched by the addition of sodium thiosul-
phate, and the reaction was extracted twice with the ethyl
acetate. This methodology was simple, quite easy to handle
and environment-friendly (Agarwal and Moore 2014).

2.2.3 Lactones
Lactones are cyclic esters and have potential applications in
the field of synthetic intermediates, pharmaceutical mole-
cules and polymers (Fischer and Pietruszka 2010). A mon-
oclonal antibody (Fig. 14) was utilized as biocatalyst for the
synthesis of -lactone (Kitazume et al. 1996). This antibody
behaved as enzyme-like catalyst (abzyme) leading to the

formation of carbon–carbon bond through the generation of
carbanion and the internal nucleophilic attack on the car-
bonyl carbon to give -lactone (Fig. 15) (Kitazume et al.
1996). Drozdz et al. gave a chemoenzymatic method for the
synthesis of lactone using catalyst acyltransferase from
Mycobacterium smegmatis in high yield of 84–99% through
Baeyer–Villiger (BV) oxidation method (Drożdż et al.
2016). The enzyme retained its activity even in harsh reac-
tion condition like oxidation with 60% aq. H2O2 at 45 °C.
The practical potential of this method was established by the
use of different ketones as starting material to give their
corresponding lactones (Drożdż et al. 2016).

2.2.4 Benzofuran
A five-membered ring possessing an oxygen atom fused
with a benzene ring is known as benzofuran. Benzofuran
derivatives have wide range of applications mainly in the
field of pharmaceutical industries. They exhibited selective
cytotoxicity against tumourigenic cell lines (Hayakawa et al.
2004), antiviral and antitumor and activities (Kim et al.
2006), and pharmaceutical agents (Murata et al. 2003;
Murota et al. 1990). Kidwai et al. gave an enzymatic syn-
thesis of this molecule (Kidwai et al. 2013). They studied the
enzymatic oxidation of catechols/hydroquinones in aqueous
solution using laccase as a catalyst and pyrazolin-5-ones as
co-substrate (Fig. 16). Here, the enzyme laccase performs
one-electron oxidation on catechol to quinone which
undergoes 1,4-addition reaction with co-substrate to develop
furan ring leading to benzofuro[2,3-c]pyrazolin-5-ones
derivatives (Fig. 16) (Kidwai et al. 2013). The optimized
synthetic process has been successfully extended towards the
synthesis of a new series of benzofuropyrazole derivatives
through the coupling of 3-methyl-1-phenyl-pyrazolin-5-
one/3-methyl-pyrazolin-5-one and catechols/hydroquinones
(Kidwai et al. 2013).

Fig. 11 Covalent immobilization of lipase enzyme

Fig. 12 Enzymatic synthesis of 4H-chromenes

Fig. 13 Enzymatic synthesis of dioxin catalyzed by CYP450 Bmp7 (X=Br)
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2.3 Nitrogen- and Oxygen-Containing
Heterocycles

Heterocycles possessing nitrogen and oxygen in single ring
or in a molecule are well-known moiety in medicinal
chemistry. Their utility as immunomodulator, antifungal,
psychotropical, antibacterial, neuro-related drugs, etc., has
been established (Bhattacharya et al. 1991; Kakeya et al.
1998; Danielmeier and Steckhan 1995; Mishra et al. 2019).
This section discusses the enzymatic synthesis of those
heterocyclic molecules which have nitrogen and oxygen as
heteroatoms.

2.3.1 Oxazolidinones
Oxazolidinones are nitrogen- and oxygen-containing
five-membered heterocyclic molecules possessing varied
applications (Kakeya et al. 1998; Danielmeier and Steckhan
1995). Yadav et al. studied the synthesis of 3-ethyl-1,3-
oxazolidin-2-one using Novozyme 435 as catalyst from
2-aminoalcohol and dimethyl carbonate in 61–89% yield
(Fig. 17) (Yadav and Pawar 2014). Among the eight

immobilized lipases studied, the Candida antarctica lipase B
(Novozyme 435) was considered as the choice of the catalyst
for the reaction. The authors optimized the effect of various
parameters like catalyst loading, temperature, agitation
speed, solvent and mole ratio for the reaction (Yadav and
Pawar 2014).

The lipase-catalyzed reaction was also utilized for the
synthesis of enantioenriched oxazolidinone derivatives with
excellent enantiopurities (Zhang et al. 2015). The reaction of
2-(methylamino)-1-phenylethanol and disubstituted carbon-
ate as substrates yielded corresponding oxazolidinone in
46% yield with an absolute (S)-configuration as the major
enantiomer (ee 92%) (Fig. 18) (Zhang et al. 2015). Different
lipases such as from Burkholderia (Pseudomonas) cepacia,
Pseudomonas fluorescens and Candida antarctica were
studied. The immobilized P. cepacia gave better result and
faster substrate transformation in chosen solvent tert-butyl
methyl ether (Zhang et al. 2015). Various enzyme-mediated
synthesized heterocyclic compounds have been represented
in Table 1.

3 Summary and Outlook

Heterocyclic compounds are industrially essential molecules.
Their history started in the eighteenth century, and since then,
they developed themselves as both natural products and
synthetic molecules. There is always a demand for the
wide-structural diversity of heterocycles and hence

Fig. 14 Keyhole limpet haemocyanin (KLH) antibody

Fig. 15 d-Lactone synthesis with abzyme catalyst

Fig. 16 Benzofuro [2,3-c]
pyrazolin-5-ones synthesis
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Fig. 17. 3-Ethyl-1,3-oxazolidin-2-one synthesis

Fig. 18 Synthesis of oxazolidinone through lipase-catalyzed reaction

Table 1 Various enzyme-mediated synthesized heterocyclic compounds

S. No. Heterocyclic compounds Enzyme used for synthesis References

1 N-Substituted pyrrole derivatives Amylase from hog pancreas Zheng et al. (2013)

2 Spirooxindole derivatives Lipase from porcine pancreas Chai et al. (2011)

3 Phenazine derivatives Laccases Sousa et al. 2014)

4 Phenoxazinone derivatives Laccases Sousa et al. (2014), Mihovilovic
(2006), Bruyneel et al. (2009)

5 Carbazole derivatives CotA laccase Sousa et al. (2015)

6 2-Alkylbenzimidazole derivatives Immobilized lipase from Mucor miehei Wang et al. (2010)

7 Pyrazole derivative derivatives Saccharomyces cerevisae (Baker’s yeast) Mishra and Sasmal (2011)

8 Pyranopyrazole derivatives Lipase from Aspergillus niger Bora et al. (2013)

9 4H-Chromene derivatives Immobilized mucor miehei lipase Zhang et al. (2018)

10 Tetrahydrochromene derivatives Lipase Xu et al. (2011)

11 Dioxin derivatives Monooxygenase halogenase CPY450 Bmp7 Agarwal and Moore(2014)

12 d-Lactone derivatives Abzyme Kitazume et al. (1996)

13 Lactone derivatives Acyltransferase from Mycobacterium smegmatis Drożdż et al. (2016)

14 Benzofuran derivatives Laccase Kidwai et al. (2013)

15 3-Ethyl-1,3-oxazolidin-2-one derivatives Novozyme 435 Yadav and Pawar (2014)

16 Oxazolidinone derivatives Lipase Zhang et al. (2015)

(continued)
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exploration of synthetic protocols. Due to the environmental
issues related to chemical synthesis, the researchers started
looking for alternatives to chemical synthesis in accordance
with green and sustainable chemistry. Out of the several
modified methods, biocatalysis or using enzymes for syn-
thesis showed potential. The enzymatic heterocyclic syn-
thesis has contributed significantly to the structural diversity
of heterocyclic compounds. This also allowed their applica-
bility in various fields. No doubt, the chemical synthesis has
also provided structural diversity, but for many asymmetric
syntheses has better been performed using enzymatic
methods.

This chapter discussed the enzymatic synthesis of nitro-
gen- and oxygen-containing or possessing both the atoms
heterocyclic molecules. The synthesis of pyrroles, indoles,
phenazines, benzocarbazoles, benzimidazoles, pyrazoles,
benzofurans, chromenes, dioxins, lactones and oxazolidi-
nones has been discussed. This has been observed that the
enzyme-catalyzed reactions are more suitable than chemical
reactions due to their high selectivity and mild reaction
conditions. With the development of genetic engineering and
enzyme engineering, the cost of enzymes continues to
decrease. Enzyme activity and stability continue to increase.
The superiority of enzymatic clean production is definitely
promoting breakthrough development in this field.
Enzyme-catalyzed biotransformation technology represents
the future development of this synthetic industry.
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Abstract

In material science, “green synthesis” has achieved more
attention as an environmentally sustainable, trustable and
eco-friendly way for the large-scale synthesis of nano-
material containing metal and metal oxides. Metal
nanoparticles like silver and gold are synthesized by
utilizing plant extracts. Further, metal oxides of Zn, ZnO
and copper (CuO) are also synthesized by using plant
metabolites. It is an essential tool for decreasing the
detrimental effects and has great contribution in various
applications such as drug delivery, dentistry, X-ray
imaging and agricultural engineering and in many more
fields. Synthesis of metal nanoparticles and metal oxide
nanoparticles by following a greener route is summarized
in this chapter. This chapter also throws light on the
various applications of metal and metal oxide nanopar-
ticles in different fields.

Keywords

Green synthesis � Nanoparticles � Metal oxide
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1 Introduction

Nanotechnology or nanoscience is the field that majorly
constitutes the synthesis of particles which ranges from 1 to
100 nm. These ranges of nanoparticles (NPs) are used in an

array of areas such as in physical science, chemical science,
pharmaceutical industries, molecular biology and material
sciences (Heiligtag and Niederberger 2013; De et al. 2008).
In the past several decades, various NPs involving silver,
gold, copper and copper oxide, zinc oxide nanoparticles,
etc., have been synthesized among which silver NPs
(AgNPs) have found a variety of different applications.
Different techniques can be applied to control the size as
well as shapes of the nanoparticles (Abid et al. 2002; Itakura
et al. 1995; Pol et al. 2002; Stiger et al. 1999; Harfenist et al.
1996; Komarneni et al. 2002; Liz-Marzán and Lado-Touriño
1996; Petit et al. 1993; Heath et al. 1997). Among these
various techniques, the most important method is solid-state
synthesis for synthesizing NPs of desired shape and size.
This method of synthesis is mainly based on the grinding
technique. But in the case of inorganic and organic sub-
strates, this method involves the use of solvent. The use of a
solvent in this method is quite limited, and this limited
exposure of solvent leads to the fabrication of materials with
unique structure and composition which is beneficial for
piezoelectric substances (Iravani et al. 2014). As the syn-
thesis of NPs by solid-state involves minimum use of sol-
vents, it is considered as a green synthetic approach (Roy
and Barik 2010). The characteristics of the NPs generally
depend on their shape, size, composition, and its crystalline
form. The two other methods such as top-down and
bottom-up approaches have been implemented to synthesize
nanomaterials having a suitable shape, size and functional-
ities, which are illustrated in Fig. 1. Metallic nanoparticles
are especially useful due to its different catalytic, electrical as
well as optical characteristics. The colloidal nanoparticle of
silver is one of the extensively used nanomaterials, and
application of it in various fields generally depends on its
desired shape and size (Kim 2007; Polte 2015; El Khoury
et al. 2015; Al-Namil et al. 2019). Silver nanoparticles are
used in numerous fields such as biotechnology, medicine
and catalysis. For example, silver nanoparticles are synthe-
sized with Acacia nilotica pod and modified glassy carbon
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electrode, when undergoes reduction with benzyl chloride
exhibits more catalytic properties as compared to the use of
glassy carbon and metallic silver electrode only. The com-
bination of silver nanoparticles with the extract of Gloriosa
superba promotes the degeneration of the dye methylene
blue. The production of nanoparticles of Ag using the most
nonhazardous and safe reagent curcumin, is considered as a
solid-state green synthetic approach. The formation of
nanoparticles by the usage of curcumin is a magnificent way
for the green synthetic method. The shape and size of the
silver nanoparticles are affected by the change in the tem-
perature during the synthesis. Hence, temperature plays a
very important role in the formation of the nanoparticles.
The preparation of curcumin conjugated silver nanoparticles
has been used as a catalyst to reduce p-nitrophenol.

To enhance the physical and chemical properties of
nanosized metal particles, further investigations have been
employed to dominate its structure, shape and size. The par-
ticle size at nanometers enables them for many applications
such as in biological and different optoelectronic devices,
mainly due to its efficient optical as well as electronic char-
acters (Alivisatos 1996; Coe et al. 2002; Bruchez et al. 1998).
There are numerous chemical and physical synthesis tech-
niques by which silver nanoparticles can be synthesized.
These are laser ablation, dispersion, electrochemical, chemical
reduction and photochemical reduction. In a few of these
techniques, some reagents are required as a surface passivator
to avoid the accumulation of nanoparticles. To synthesize
large amounts of nanoparticles, organic passivators like
thiourea, mercaptoacetate and thiophenol are used which lead

to environmental contamination due to their toxicity (Bae
et al. 2002; Smetana et al. 2005; Liu and Lin 2004; Sandmann
et al. 2000; Yu 2007; Tan et al. 2002; Petit et al. 1993;
Vorobyova et al. 1999; Mallick et al. 2005; Pattabi and Uchil
2000; Ravindran et al. 1999). As the majority of the tech-
niques used to synthesize nanoparticles involve a variety of
toxic reagents and solvents, the formation of nanoparticles by
the biosynthetic process is obtaining significance in the pre-
sent scenario as it involves greener and eco-friendly ways of
synthesizing nanoparticles. To illustrate this, a large amount
of inorganic substance has been biosynthesized such as the
synthesis of silver nanoparticles by microorganism (Mandal
et al. 2006; Basavaraja et al. 2008; Vigneshwaran et al. 2006,
2007; Shahverdi et al. 2007a, b). The problems regarding the
preparation of nanoparticles and its standardization in a
greener way can be resolved by adopting biosynthetic pro-
cesses. Among the various biosynthetic processes, the meth-
ods involving different microorganisms specifically
prokaryotic bacteria have gained great interest. Klaus et al.
have illustrated the synthesis of silver-based nanoparticles at
the cell poles in the microorganism Pseudomonas stutzeri
AG259 (Klaus et al. 1999). Eukaryotic organisms like Ver-
ticillium sp. have been used to synthesize the metal
nanoparticles which is reported by Sastry et al.

They reported about the easier processing and management
of biomass by replacing bacteria with fungi (Pum and Sleytr
1999; Sleytr et al. 1999). Some microorganisms that produce
inorganic nanomaterials such as S-layer bacteria (Lovley et al.
1987; Philipse and Maas 2002) and magnetotactic bacteria
(Philipse and Maas 2002; Dickson 1999) are the best

Fig. 1 Different approach for
synthesis of nano particles from
different sources
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examples of synthesizing nanoparticles in an environmentally
friendly way. The microscopic organisms like actinomycetes,
fungi and bacteria have been investigated in the production of
metal nanoparticles like Ag NPs. The usage of whole parts of
the plant in the synthesis of nanoparticles is a new and
promising frontier in the synthesis of nanoparticles in greener
ways. Although the gold nanoparticles (AuNPs) are bio-
compatible, still it may have detrimental effects in medical
operation due to the absorbance of some hazardous chemical
substances on the surface of AuNPs during its preparation by
using chemical synthesis process. To avoid these hazardous
chemical substances and to make the nanoparticle more bio-
compatible, synthesizing the NPs with plant extracts or
microorganisms is a lucrative alternative. Production of metal
nanoparticles by utilizing plant derivatives is more beneficial
than other environmentally favorable biological methods, and
it removes the complicated methods of preserving and
maintaining the microorganism cell cultures. Synthesis of
gold and silver nanoparticles by using plant extracts and their
applications is reported by Jose-Yacaman and co-workers
(Dickson 1999; Gardea-Torresdey et al. 2002; Gardea-
Torresdey et al. 2003). The above methods which utilize
natural ways are considered as green synthetic methods of
synthesis for metal nanoparticles.

Nowadays, the preparation of green Ag nanoparticles has
been carried out by utilizing various natural products such as
neem (Azadirachta indica) leaf broth, aloe vera plant extract,
green tea (Camellia sinensis), leguminous shrub (Sesbania
drummondii), starch, lemongrass leaves extract (Shankar
et al. 2004a, b; Chandran et al. 2006; Vilchis-Nestor et al.
2008; Sharma et al. 2007; Vigneshwaran et al. 2006; Bakar
et al. 2007), etc. From an economic point of view, the Jat-
ropha curcas plant is most essential as biodiesel is taken out
from its seed on a large scale. Nevertheless, the plant Jat-
ropha latex has some ethnic medical treatment such as blood
coagulating and wound healing. Apart from this, it is also
corrosive and irascible to skin. From the widespread litera-
ture review, the latex of J. curcas contains the major con-
stituents of curcacycline A (a cyclic octapeptide),
curcacycline B (a cyclic nonapeptide) and curcain (an
enzyme). After analyzing the function of peptides during the
preparation of nanoparticles, the researchers hypothesized to
develop a “green” route for nanoparticle preparation by
utilizing J. latex owing to its reducing as well as capping
properties. The acquired metal nanoparticles were analyzed
by various advanced techniques such as UV-visible spec-
troscopy, X-ray diffraction (XRD) and high-resolution
transmission electron microscopy (HRTEM) study. Other
important metal/metal oxide nanoparticles are Cu/CuO
nanoparticles and are used in several applications such as
solar energy conversion, high-temperature superconductors,
batteries, antimicrobials, gas sensors and so on. For many
centuries, people have been using Cu metal and its

complexes for different purposes such as fungicides, algae-
cides, for water purification as well as antifouling and
antibacterial agents (Perelshtein et al. 2009). The Cu
nanoparticles were synthesized by using plant materials like
stem latex of Euphorbia nivulia and magnolia leaf extract.
The excellent or magnificent antimicrobial performance
against Escherichia coli cells is the main function of these
nanoparticles. This nanoparticle is also treated as nontoxic in
aqueous conditions and hence may exhibit anti-cancer
activity (Ghorbani et al. 2015). Copper (Cu) and copper
oxide (CuO) nanoparticles are considered as prospective
antimicrobial agents against various infectious organisms
like Pseudomonas aeruginosa, Bacillus subtilis, E. coil,
Staphylococcus aureus, Vibria cholera and Syphillis typhus.
The role of nontoxic gum arabic in the synthesis of
nanoparticles was explored by the scientists Kattumuri and
co-workers (2007). They used it as a natural hydrocolloid
and nonpoisonous for the synthesis of biocompatible gold
nanoparticles, which was then used in diagnostic and
medicinal applications. The natural gum acts as a nontoxic
carrier for in vivo applications of NPs. There are various
methods that have been used for the preparation of copper
oxides (CuO) nanoparticles such as electrochemical, sono-
chemical, sol-gel, solvothermal synthesis, solid-state reac-
tion, quick precipitation and microwave irradiation (Carnes
and Klabunde 2003; Vijaya Kumar et al. 2001; Xu et al.
1999; Hong et al. 2002). The synthesized copper nanopar-
ticles have been characterized by various instruments like
Tem, SEM, UV-Vis and FT-IR spectrophotometer. From the
analysis, it has been observed that the copper oxide
nanoparticles have some antibacterial activity. Recently, it
was found that copper oxide (CuO) nanoparticles are used in
the gas sensor. Thus, in the face of the availability of such a
wide array of methods to synthesize NPs, it is challenging to
find beneficial, favorable, nontoxic and natural products to
synthesize metal nanoparticles in an aqueous medium. The
nanoparticles formed by the plant are more stable and have
diverse shapes and sizes. Apart from this, the rate of pro-
duction of NPs is faster in presence of the plant product as
compared to the microorganisms (Iravani et al. 2014).

The main principle of green chemistry is the biosynthesis
of metal/metal oxide by utilizing eco-friendly techniques
without the use of severe and various toxic reducing agents
like ethylene glycol, hydrazine hydrate, dimethylformamide,
sodium borohydride and expensive chemicals. Most of the
reducing agents are connected with different natural toxicity
and biological toxicity. Currently, the removal of waste and
the managing of renewable processes by the utilization of the
basic rule of green chemistry are most necessary to execute
advanced eco-friendly processes for the synthesis of different
nanoparticles with controlled size and shapes (Raveendran
et al. 2003; Rao et al. 2002). Among various polysaccha-
rides, hydrocolloids having high-molecular-weight
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macromolecules such as agar-agar, alginate, guar, starches,
carrageenan, gums (karaya, tragacanth and arabic), the most
essential, economical and easily available are the gums.
They have various applications like viscosifiers, food
emulsifiers, sweeteners, thickeners, and the drug discharge
changer in pharmaceutical applications (Rana et al. 2011).
Generally, India produces gum karaya (GK) extensively and
exports it, with the main importer being the European
countries. The different research groups studied the occur-
rence, production, structure, and both physical and chemical
properties, as well as the food and nonfood utilization of
gums karaya. The GK has a little acetylated polysaccharide
and has a derivative structure with a molecular mass of
16.0 � 109 Da and is associated under replacement of
Rhamnogalacturonoglycan (pectic)-kind tree gums. It con-
sists of neutral sugars (galactose and rhamnose) and acidic
sugars (galacturonic acids and glucuronic acid) about 60%
and 40%, respectively. In the synthesis of nanoparticles, the
gum acts as a capping agent as well as a reducing agent
(Laha et al. 2019). The field of biosynthesis of various metal
nanoparticles by plants is still a budding field with a lot of
scope of research. The preparation of metal nanoparticles by
utilizing plant extracts, exudates, deactivated plant tissues
and different parts of the plant is a current alternative method
for the preparation of eco-friendly nanoparticles, which is a
profitable as well as environmentally accepted (Huang et al.
2007). The bioreduction of metal nanoparticles by a com-
bination of biomolecules found in plant extracts (e.g.,
polysaccharides, enzymes, organic acids like citrates, amino
acids, proteins, and vitamins) is naturally favorable, still
chemically complex. These metal nanoparticles act as
antibacterial agents against the human pathogenic bacteria
generally S. aureus and E. coli. Many industries apply color
pigment for their products, and analysis of these coloring
substances has shown that the color gets discharged in water
which causes environmental pollution. These dye contami-
nants are chemically stable. Hence, technologies like
hydrogen peroxide oxidation and UV radiation are not able
to completely degrade these color pigments. In recent times,
there is increasing use of photocatalytic processes in the
successful degradation of these color pigments (Sankar et al.
2014). The metal nanoparticles are the best for degradation
of color pigment, and it can be synthesized by two methods
like physical and chemical methods. Figure 1 shows the
different approach for the synthesis of nanoparticles from
different sources.

2 Green Synthesis

Green chemistry employs a set of principles in chemical
reactions that decreases the production of unpredictable and
dangerous substances as a byproduct of the chemical reaction.

The green synthesis is easy, efficient and environmentally
friendly and is preferred over the conventional techniques
which can eliminate the use of wastes such as nontoxic or
hazardous chemical, a renewable resource, improve atom
efficiencies and catalyst usage in place of reagents. Among the
various methods, there is an increase in the interest and
demand of green synthesis methods. Green synthesis is a
prominent region in the bio-nanotechnology field and gives
environmental and economic benefits even as a preference to
physical and chemical methods. The physical methods
involve diffusion flame synthesis of nanoparticles, thermal
evaporate, spray pyrolysis, ultra-thin films, lithographic
techniques, layer-by-layer growth, etc. The chemical methods
include chemical vapor deposition and chemical solution
deposition. The main purpose of green synthesis methods is to
implement the processes which are sustainable. The various
green synthesis methods involving plant extracts or microor-
ganism are used as reducing agents for the synthesis of
nanoparticles (Luechinger et al. 2010). The key merits of the
green synthesis method are shown in Fig. 2.

2.1 Green Approach for Synthesis of NPs

Previously, researchers generally use conventional pro-
cesses, but now they have demonstrated well-known green
methods which are the most useful for the formation of metal
nanoparticles with fewer disadvantages, less expensive and
can be easily characterized. Physical and chemical methods
of nanoparticle synthesis or combination have various
stresses on the atmosphere by virtue of their harmful meta-
bolic activity. The best useful and beneficial procedure is
plant-based metal nanoparticle synthesis. The metal salts
amalgam reacts with the extract of the plant, and the reaction
completes in a few minutes at room temperatures (Abdel-
ghany et al. 2018). This method has increased much interest
among metals like transition metal nanoparticles of silver
and gold. Further metal oxides such as zinc oxides and
copper oxide nanoparticles are also synthesized by this
method. The metal nanoparticles synthesized by this method
are most protective as compared with alternative metallic
nanoparticles. The formation of nanoparticles by green
methods could be increased effectively. The synthesis of
nanoparticles by normal conventional methods involves the
usage of excess chemicals, which is detrimental and poi-
sonous for the environment and also creates undesirable and
unfavorable results on human health. The green synthesis
process is more important due to its possibilities for
decreasing the generation of many harmful byproducts in the
synthesis of nanoparticles (Hussain et al. 2016). Therefore,
the plant extracts, amino acids and vitamins are enormously
used in the current times due to their more utilization in
green synthetic processes.

292 M. Hembram et al.



2.1.1 From Vitamins
The preparation of silver as well as palladium nanoparticles
for the synthesis of nanowires, nanospheres, as well as
nanorods through the use of vitamin B2 which acts as both
capping and reducing agents has been reported in recent
times. The nanorods and nanowires are synthesized by the
utilization of vitamin B2, which acts as a reducing agent.
This is an excellent perspective in the nanotechnology field
which recommends the usage of crucial agents for the
improvement of this area, for instance, their influence on
distinct tumor cells (Nadagouda and Varma 2006). In the
synthesis of various nanoparticles, chitosan is used as a
stabilizing agent. Ascorbic acid is used as a reducing as
well as capping agents in many nanoparticle syntheses.
During the synthesis of nanoparticles, chitosan plays an
important role and the nanoparticle concentration is directly
preoperational to the concentration of chitosan used (Zain
et al. 2014). The expansions of nanoparticles of their reli-
able and homogeneous size are carried out by applying
ascorbic acid which acts as capping and reducing materials.
Nicotinamide adenine dinucleotide (NAD) which is manu-
factured from plants acts as a reducing agent during the
glycolysis process. This method has been found to be the
most profitable in the development of silver nanoparticles
(Anjum et al. 2016).

2.1.2 From Enzymes
Enzymes have been utilized for the preparation of metal
nanoparticles. Purified and specific enzymes take part in the
pure synthesis of metal nanoparticles. The growth of pure
nanoparticles depends on the substrate nature of the enzyme.
The polymeric-layered enzyme having more layers has
strong electrostatic interactions which is a potential molecule

for the preparation of bi-metallic metal nanoparticles fol-
lowing a greener route (Smuleac et al. 2011). Extracellular
amylase enzymes have been used for the synthesis of gold
nanoparticles which reduces the AuCl to make the reaction
(Manivasagan et al. 2015). Gold nanoparticles have been
synthesized using sulphate reduced enzyme which is col-
lected from E. coli by ion-exchange chromatography. These
synthesized nanoparticles have good antifungal activity
against human pathogenic fungi (Gholami-Shabani et al.
2015). Agri waste is loaded in different biological com-
pounds, and the use of these biomolecules acts as a reducing
agent for the synthesis of nanoparticles. The agri waste used
for the synthesis of nanoparticles is Cocos nucifera coir,
corn cob, fruit seeds and peels, wheat and rice bran, palm oil,
etc. (Adelere and Lateef 2016). In another work, beet juice
has been applied for the synthesis of NPs. In this process,
decreasing the amount of beet juice increases the particle
size of the NPs. This process enhances the catalytic activity
of NPs. Green tea extracts are also used for the synthesis of
bimetallic NPs of Fe/Pd. The green tea extracts act as a
reducing agent as well as the capping agent for the synthesis
(Smuleac et al. 2011). Redox enzymes coated on the AuNPs
can perform as an electron transmitter between biocatalyst
and electrode. These NPs can be used in different sensor
applications.

2.2 Biobased Methods

Among various methods, the production of nanoparticles by
biobased methods is highly reliable, secure, well character-
ized than the chemical methods. These chemical methods are
not generally eco-friendly and less secure.

Fig. 2 Key merits of green
synthesis methods
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2.2.1 Bacteria
The development of AgNPs from the supernatants of the
cell-free culture has been carried out by Shivaji and their
co-workers (Shivaji et al. 2011). They have worked on psy-
chrophilic bacteria Pseudomonas antarctica, Pseudomonas
proteolytica, Pseudomonas meridiana, Arthrobacter ker-
guelensis, Arthrobacter gangotriensis, Bacillus indicus and
Bacillus cecembensis and made stable NPs in a dark place for
8 months. Simon Silver has given an explanation of the
bacterial resistance in the culture media and also reduces the
toxicity in the solution media by employing a particular gene
(Silver 2003). Other type of bacteria such as P. stutzeri
AG259 have been used for the successful synthesis of Ag and
Au nanocrystals. The bacteria Geobacter sp. Magnetospiril-
lum magnetotacticum intake the iron and convert it to ferric
oxide. These ferric ions are then reduced, and magnetite is
formed inside the magnetosome vesicles, where ferritin keeps
these nanoparticles solubilized. These nanoparticles pro-
duced have high purity and are mono-dispersed in nature.
Similarly, there are many thermophilic bacteria that serve as a
versatile process for the preparation of Ag and Au nanopar-
ticles, which are often environmentally friendly and it also
reduces the downstream processing cost. In one report it is
shown that with the aid of the bacteria Shewanellao nei-
densis, gold nanoparticles with size as low as 2 nm have been
synthesized. It is also interesting to note that by using various
bacterial strains, the size of nanoparticles can be modulated
from around 2 nm on the lower side to around 400 nm on the
higher side. This shows that various bacterial strains can be
exploited to synthesize nanoparticles of various shapes and
sizes (Menon et al. 2017).

2.2.2 Yeasts and Fungi
Silver oxide is synthesized into a nano- and properly scat-
tered form by the metabolic action of a microorganism,
Fusarium oxysporum. The process is controlled by the
release of nitrate reductase which gives stable AgNPs
(Ahmed et al. 2018). Platinum NPs have been synthesized
with the help of Alternaria alternata. The NPs are collected
from the culture filtrate of the species and characterized by
using different techniques. From the different investigations,
it is known that the NPs having the particle size of 2–30 nm,
and different shapes like spherical and triangular can be
synthesized. From the FTIR spectra, it shows O–H stretch-
ing and C–H stretching bands due to the presence of dif-
ferent organic residues present in the solution like amide
protein bonds (Sarkar and Acharya 2017). Selenium NPs
have been synthesized by using fungi Candida albicans. The
fungi C. albicans with the chitosan is used as a reductive
agent in the synthesis of the selenium NPs (Lara et al. 2018).
Trichoderma viride has been applied for the synthesis of
AgNPs from silver nitrate solution by extracellular

biosynthesis method (Fayaz et al. 2010). A stable and
smaller size AgNPs have been developed by using F.
oxysporum with size 5–15 nm (Pantidos and Horsfall 2014).
This biological method of synthesis is considered as envi-
ronmentally benign, nontoxic and clean. Various microor-
ganisms produce intracellular or extracellular metal
nanoparticles having different shapes, sizes and efficiency. In
order to control the size of silver nanoparticles, F. oxyspo-
rum has opted. Optimization parametrically displayed the
very minute size of the particle on treating F. oxysporum at
50 °C with silver nitrate. Antibacterial property against S.
aureus and E. coli displayed the highest zone of inhibition of
1.6 and 2 mm, respectively, with these silver nanoparticles.

2.2.3 Algae
Several algae have been used for the biorecovery of metal
from the liquid sources. Different algae like cyanobacteria
and eukaryotic green have been utilized for the recovery of
metal (Bakir et al. 2018). Uma Suganya et al. have reported
that the use of algae protein from Spirulina platensis in
green synthesis of AuNPs. The property of a high
surface-to-volume ratio and small size of gold nanoparticles
enhance the antibacterial properties on interaction with
microorganisms. Nanomaterials change the bacterial cell
membrane permeability, thereby forming gaps which reduce
the respiratory chain enzymes activity finally leading to the
death of a cell. Gold nanoparticles functionalized with drug
like doxorubicin have been reported to be effective in the
delivery and transport of drug into the human body. Gold
nanoparticles functionalized with S. platensis protein act as
an effective antibacterial system for gram positive bacteria.
S. platensis protein of blue green algae of freshwater is
preferred for research owing to its characteristics like anti-
cancer, antiviral and antioxidant properties. It is reported that
S. platensis aqueous extracts exhibit inhibitory activity on
Langerhan cells, peripheral blood mononuclear cells and
viral replication of human T cells. Owing to the development
of resistance toward multiple drugs in bacteria, there is a
need for the development of new antibacterial systems
against gram negative and positive bacteria. In case of gram
negative bacteria, there is a presence of a thin cell wall
which is more prone to antibacterial activities of nanoma-
terial in comparison to the gram positive bacteria. Opposite
to this, gram positive bacteria has a thick peptidoglycan
layer of cell wall like a mesh, which displays high resistance
toward different antibacterial substances. S. aureus and B.
subtilis (example of gram positive bacteria) cause different
types of pathogenic health problems that need to be con-
trolled by stronger inhibitory systems. The mechanism of the
formation of the AuNPs is to control the size by the
reduction of silver particles of chloroauric acid to Au0 with
the aid of algae protein (Suganya et al. 2015).
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3 Metal Oxide Nanoparticles Synthesized
from Green Synthesis

3.1 Copper Oxide (CuO)

The copper oxide (CuO) nanoparticles are formed by the use
of a colloidal heat combination process. The integrated
copper oxide was disinfected and dehydrated to gain the
different sizes and shapes of the metal oxide nanoparticles
(Padil and Černík 2013). Nanoparticle-based sensor for the
detection of nitrate ions was reported by Manoj and
co-workers. By using the substrate carboxymethyl cellulose
(CMC), they informed that this method produces extremely
sturdy and impressionable nanoparticles of copper (Manoj
et al. 2018). The highly biocompatible and stable copper
nanocomposite is used for electrochemical sensing. Pro-
duction of copper nanoparticles which are stabilized by
carboxymethyl cellulose in presence of aqueous media is
reported. For surface properties identification of produced
copper nanoparticles, studies like X-ray photoelectron
spectroscopic and X-ray diffraction are performed. These
copper nanoparticles are subjected to dispersion with carbon
nanotubes which are multi-walled, and the final dispersion is
placed on a carbon glassy electrode for obtaining modified
copper multi-walled glass carbon electrode. The glassy
carbon electrode after modification exhibits a better oxida-
tion peak for nitrite oxidation. This altered electrode shows
great reproducibility and selectivity and is applied success-
fully for determining real nitrite samples.

3.2 Zinc Oxide (ZnO)

The zinc oxide nanoparticle has been synthesized by the use
of Cassia auriculate blossom extract which produced
nanoparticles in the size range of about 110–280 nm
(Ramesh et al. 2014). These different nanoparticles like ZnO
and Ag/ZnO nanoparticles that are acquired by green syn-
thesis have been used in clinical antimicrobial
wound-healing bandages (Khatami et al. 2018). Coffee and
Prosophis fracta are used for cost effective and environ-
mentally benign production of zinc oxide and silver
nanoparticles, where zinc oxide and silver nanoparticles are
characterized physicochemically by SEM, X-ray diffraction,
and UV-visible spectroscopy. Zinc oxide and silver
nanoparticles synthesized by the green method consists of an
average size of 26 and 16 nm, respectively. Zinc oxide and
silver nanoparticles and their mixture show a minimum
inhibitory concentration against P. aeruginosa and Acine-
tobacter baumannii cultures. Mixed silver–zinc oxide and
zinc oxide and silver nanoparticles were impregnated with
cotton wound bandages, and it has been observed that both

the nanoparticles exhibit antibacterial property in bandages.
This type of antibacterial bandages displayed effectiveness
in covering and treatment of wounds which are sensitive to
infection like burn or diabetic wounds.

3.3 Silver and Gold

The two important nanoparticles like silver and gold
nanoparticles are considered as the most useful in various
fields such as catalysis, medicine, sensing, optoelectronics,
etc. Francis et al. reported the microwave-assisted synthesis
of silver and gold nanoparticles utilizing the extract of leaves
M. glabrata. Various metal nanoparticles can be synthesized
by using this plant material from the respective sources of
the metal salts. These nanoparticles are used for the purifi-
cation of water due to their enormous antimicrobial activity
preventing pathogenic microscopic organisms such as
P. aeruginosa, Bacillus pumilus, E. coli, Penicillium
chrysogenum, Aspergillus niger and S. aureus (Francis et al.
2017). Synthesis of silver nanoparticles is synthesized in a
more economical way by using microorganisms, Bacilus
subtilus 10,833 and Bacilus amylococus 1853 (Ghiuță et al.
2018). The general problem of this method is the con-
sumption of more time, impurity and lack of reproducibility
to some extent. The combination of gold nanoparticles with
three different microorganisms such as yeast, fungus and
bacteria has been analyzed by Shen et al. (2015). They have
reported that the size of nanoparticles with different
microorganisms used is 22.2, 9.5 and 18.8 nm, respectively.
They also observed that fungus exhibits better results rela-
tive to other microorganisms. Green synthesis of CeO2

nanoparticle has been synthesized by using the aerial extract
of Prosopis farcta (Miri and Sarani 2018).

3.4 Cerium Oxide (CeO2)

CeO2 nanoparticle has been used as an antioxidant for the
treatment of obesity (Pourkhalili et al. 2011). The CeO2

nanoparticles not only possess fast electron transfer kinetics
but also act as a classic co-immobilization catalyst for var-
ious enzymes like glucose oxidase, horseradish peroxidase
and cholesterol oxidase (Njagi and Kagwanja 2011). Cerium
oxide nanoparticle has been synthesized using G. superba
leaf which increases the antibacterial activity of the
nanoparticles. The shape of the synthesized nanoparticles is
spherical, and the size is about 5 nm (Arumugam et al.
2015). Sarani and Miri have studied cerium oxide
nanoparticles which are synthesized biologically. According
to their study, P. farcta ethereal parts aqueous extract can be
utilized for cerium oxide nanoparticle biosynthesis and
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provides round-shaped NPs with 30 nm size. This plant
consists of a phenolic functional group which acts as cap-
ping and reducing agents. The particles produced by
biosynthesis are subjected to characterization through FTIR,
Raman, EDX, FESEM, TEM, PXRD, and UV-Vis. There is
a characteristic peak of CeO2 nanoparticles at 317 nm con-
firming the spherical shape. TEM and FESEM showed that
the size of the nanoparticles is 30 nm and uniform and EDX
reported that only oxygen and cerium existed in the sample
which is biosynthesized (Miri and Sarani 2018). The range
of concentrations between 0 and 800 Âµg per mL of cerium
oxide nanoparticles displayed nontoxicity, and hence, it can
be considered that this category of nanoparticles is effective
for applications in sectors like drug delivery and medicine.

4 Applications of Green Nanotechnology

In current years, there is spurring attention from many
researchers to expand green nanotechnology as well as to
increase its publication regularly in science. Application of
nanoparticles synthesized by following a greener route pos-
sess distinct effects when compared with nanoparticles syn-
thesized by other routes. Nanoparticles synthesized following
the greener route are very useful in the field of pharmaceutical.

4.1 Application of Nanoparticles in Agriculture

Novel nanosized materials derived from materials obtained
from plant sources have established one more platform for
these advanced classes of materials. Pesticides with nan-
odimension and fertilizers interweave with coatings with
nanosize and nanoherbicides. In conventional agriculture,
the number of agrochemicals which reach the active site of
the crops is extremely low in number. This low number
turnout to the plants mainly happens due to chemical
leaching, hydrolysis, photolysis and microbial ingestion.
Nanoparticles help in delivering the agrochemicals in the
field to the plants in a controlled manner and avoid the major
factors which lead to the low number turnout of these
chemicals to the plants. It is seen that graphene oxide film
encapsulated with potassium nitrate leads to prolonged
release of the fertilizers in the field (Shang et al. 2019).
Similarly, conjugating nanoparticles with the agrochemicals
protect these chemicals from degradation and increases their
effectiveness. Nanoparticles carrying foreign DNA as
delivery vectors are used to modify target genes in many
plants (Shang et al. 2019). In an interesting research work,
silicon dioxide nanoparticles carrying DNA sequences have
been used to modify gene targets in corn and tobacco plants.

Similarly, the CRISPR/Cas9 system has been used in a
phenomenally successful manner to edit genomes in plants
but has a low delivery efficiency (Shang et al. 2019). In this
regard, nanoparticles increase the efficiency of the system by
enhancing the specificity of the CRISPR/Cas9 system
(Shang et al. 2019; Rossi et al. 2019; Wang et al. 2019;
Zheng et al. 2005; Iqbal et al. 2019; Hojjat and Kamyab
2017; Wang et al. 2018; Sturikova et al. 2018)

4.2 Dentistry

The silver nanoparticles (Ag–NP) are used in the bandage
and dental appliances. Connecting silver nanoparticles into
orthodontic gum can enhance the chemical bonding in the
cement which is used for orthodontic application (Burdușel
et al. 2018). For centuries, silver has been utilized for oral
health care for tooth restoration and dental amalgams and
attracted researchers throughout the world during the
nineteenth century. Other fields for silver nanoparticles
applications include implantology, endodontic dentistry,
restorative dentistry and dental prostheses. Silver in the
form of nanosilver diamine fluoride has potential effects in
behaving as prophylaxis, but it also has few side effects like
staining of teeth. The reduction of silver nanoparticles size
leads to an increase in the contact surface considerably and
hence silver antimicrobial activity improves, and utilization
of silver nanoparticles reduces teeth black staining which
generally results due to silver diamine fluoride applications.
This resin can be used for denturing or filling base materials
for restorative dentistry (Hamouda 2012). Hence, for
improvement of their antimicrobial and physico-mechanical
characteristics, incorporation of acrylic resin denture base
material with silver nanoparticles has been developed. The
oral environment is an active system that generally gets
filled with many pathogenic microorganisms, and hence,
implant and dental materials have a high risk if they get
contaminated. In this context, nanosystems based on silver
incorporated with dental composite, orthodontic cement,
and adhesive resin display potential results. Additionally,
silver nanoparticles also have challenging and attractive
dental applications like utilization as a biocide or biostatic
coatings for traditional dental implants based on titanium.
Even though silver nanoparticles exhibit effective properties
for dental applications, there is a certain area where its
application is restricted owing to its toxicity in certain
biological environments (Anu 2016; Argueta-Figueroa et al.
2014). Hence, prior to silver nanoparticles applications in
dentistry, there must be vigorous research for biofunctional
performance and physicochemical features optimal
compromise.
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4.3 X-Ray Imaging

The gold nanoparticles are used as the primary application
on the point of X-ray as it demonstrates a nontoxicity, high
X-ray retention coefficient, surface functionalization for
colloidal dependability and simplicity of engineered control
(Jakhmola et al. 2012; Hainfeld et al. 2004; Cho 2005). In
the field of X-ray imaging, alternative emerging solutions
are being developed. Gold nanoparticles exhibit very high
contrasting properties. Apart from these various kind inor-
ganic nanoparticles are gadolinium, bismuth, platinum, and
silver (Dadashi et al. 2018). In comparison to iodinated
substance, the inorganic nanoparticles include a higher
absorption coefficient of X-ray producing higher contrast
thereby reducing the amount of dosage and substantial
control during the process of synthesis. The control of
bioconjugation chemistry, growth and nucleation of inor-
ganic materials are simple and capable of adapting to
specified targeting systems. The contrast agent role is to
enhance the internal body structure visibility by modifying
the contrast between various tissues. The contrast between
tissues takes place because of X-ray various attenuation
during their movement to the detector through the body.
For fulfilling this requirement, the X-ray contrast system
should be different from X-ray attenuation from the sur-
rounding organ and tissue. X-ray absorption by any kind of
material is dependent on the mass absorption coefficient of
contrast medium elements as well the energy of X-ray,
sample thickness, concentration, etc. (Boisselier and Astruc
2009). Various applications of nanoparticles are shown in
Fig. 3.

4.4 Drug Delivery

Due to the comprehensive appearance of gold nanoparticles
such as nontoxicity, physicochemical properties, controlled
disparity, biocompatibility, remarkable optical and viable
flexibility, it performs as an imperative nanocarrier in the
drug delivery process. Viruses are mostly used in the
delivery of genes to the desired targets inside the cells, but
they raise many safety concerns such as cytotoxicity and
immune responses. To avoid these complications, synthetic
DNA delivery systems majorly based on nanotechnology are
very good alternatives. In this prospect, gold nanoparticles
are the major active candidates in gene delivery. It is shown
that gold nanoparticles capped with quaternary ammonium
ions bind strongly to the DNA and hence protect them from
nucleases. Nanoparticles grafted with nucleic acid strands
such as siRNA are used for delivery inside the cells. It is also
shown that RNA modified with polymeric nanoparticles acts
as a delivery system and can silence particular genes in HuH
cells. In another work, nanoparticles conjugated with fluor-
ophores when incubated with cells exhibited the efficient
uptake of the nanoparticles which takes place by the process
of endocytosis, and it happens due to the adsorption of the
serum protein on the surface of the particles. Similarly,
nanoparticles are also used in the delivery of a variety of
therapeutic proteins such as insulin. Nanoparticles stabilized
by chitosan help in the absorption of insulin and the trans-
mucosal delivery of insulin. Therefore, taking all these into
account nanoparticles are emerging as a promising delivery
system for many drugs and genes (DeLouise 2012; Ghosh
et al. 2008; Han et al. 2007a, b, c; Kim et al. 2009; Duncan

Fig. 3 Applications of nano particles

Solid-State Green Synthesis of Different Nanoparticles 297



et al. 2010; Trono et al. 2011; Brown et al. 2010; Dhar et al.
2008; Paciotti et al. 2006; Khan et al. 2014).

5 Conclusion

The solid-state green synthesis of different metal/metal oxide
nanoparticles has been increasing more interest in various
research fields such as chemical, physical, biomedicine,
material science, biosensing, dentistry, pharmaceuticals and
many others. Recently, people are very conscious about the
advantages of metal nanoparticle synthesis by utilizing the
plant extract, and it has also high efficiency as reducing,
stabilizing and capping agents. The production of nanopar-
ticles by using natural resources is nontoxic, low cost, sus-
tainable, eco-friendly, protection to human health, and there
is no chemical effect for medical and biological applications.
The synthesized nanoparticles by virtue of the green route
are more useful and reliable in comparison with physico-
chemical methods.

References

(a) Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM,
Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in
green synthesis of silver nanoparticles and their applications: about
future directions. A review. BioNanoSci 8(1):5–16.
(b) Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yamin-
sky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotech-
nologies: synthesis of metal nanoparticles using plants. Acta
Naturae (aнглoязычнaя вepcия) 6(1):20

Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver
nanoparticles in solution from a silver salt by laser irradiation.
Chem Commun 7:792–793

Adelere IA, Lateef A (2016) A novel approach to the green synthesis of
metallic nanoparticles: the use of agro-wastes, enzymes, and
pigments. Nanotech Rev 5(6):567–587

Ahmed AA, Hamzah H, Maaroof M (2018) Analyzing formation of
silver nanoparticles from the filamentous fungus Fusarium oxyspo-
rum and their antimicrobial activity. Turkish J Biol 42(1):54–62

Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and
quantum dots. Science 271(5251):933–937

Al-Namil DS, El Khoury E, Patra D (2019) Solid-state green synthesis
of Ag NPs: higher temperature harvests larger Ag NPs but smaller
size has better catalytic reduction reaction. Sci Rep 9(1):1–9

Anjum S, Abbasi BH, Shinwari ZK (2016) Plant-mediated green
synthesis of silver nanoparticles for biomedical applications:
challenges and opportunities. Pak J Bot 48(4):1731–1760

Anu K (2016) Wet biochemical synthesis of copper oxide nanoparticles
coated on titanium dental implants. Int J Adv Res Sci Eng Technol
3:1191–1194

Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ,
Olea-Mejía OF (2014) Synthesis, characterization and antibacterial
activity of copper, nickel and bimetallic Cu–Ni nanoparticles for
potential use in dental materials. ProgNat SciMater Int 24(4):321–328

Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S,
Karthika V (2015) Synthesis of cerium oxide nanoparticles using

Gloriosa superba L. leaf extract and their structural, optical and
antibacterial properties. Mater Sci Eng, C 49:408–415

Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles
by laser ablation of a silver target in NaCl solution. Appl Surf Sci
197:628–634

Bakar NA, Ismail J, Bakar MA (2007) Synthesis and characterization of
silver nanoparticles in natural rubber. Mater Chem Phys 104(2–
3):276–283

Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018)
Cyanobacteria as nanogold factories: chemical and
anti-myocardial infarction properties of gold nanoparticles synthe-
sized by Lyngbya majuscula. Mar Drugs 16(6):217

Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A
(2008) Extracellular biosynthesis of silver nanoparticles using the
fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine:
preparations, imaging, diagnostics, therapies and toxicity. Chem
Soc Rev 38(6):1759–1782

Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B,
Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanopar-
ticles for the improved anticancer drug delivery of the active
component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998)
Semiconductor nanocrystals as fluorescent biological labels.
Science 281(5385):2013–2016

Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A,
Andronescu E (2018) Biomedical applications of silver nanoparti-
cles: an up-to-date overview. Nanomaterials 8(9):681

Carnes CL, Klabunde KJ (2003) The catalytic methanol synthesis over
nanoparticle metal oxide catalysts. J Mol Catal A: Chem 194(1–
2):227–236

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006)
Synthesis of gold nanotriangles and silver nanoparticles using
Aloevera plant extract. Biotechnol Prog 22(2):577–583

Cho SH (2005) Estimation of tumour dose enhancement due to gold
nanoparticles during typical radiation treatments: a preliminary
Monte Carlo study. Phys Med Biol 50(15):N163

Coe S, Woo WK, Bawendi M, Bulović V (2002) Electroluminescence
from single monolayers of nanocrystals in molecular organic
devices. Nature 420(6917):800–803

Dadashi S, Poursalehi R, Delavari H (2018) Optical and structural
properties of oxidation resistant colloidal bismuth/gold nanocom-
posite: an efficient nanoparticles based contrast agent for X-ray
computed tomography. J Mol Liq 254:12–19

De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in
biology. Adv Mater 20(22):4225–4241

DeLouise LA (2012) Applications of nanotechnology in dermatology.
J Invest Dermatol 132(3):964–975

Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BEE (2008) Natural
gum reduced/stabilized gold nanoparticles for drug delivery
formulations. Chem Eur J 14(33):10244–10250

Dickson DP (1999) Nanostructured magnetism in living systems.
J Magn Magn Mater 203(1–3):46–49

Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as
drug and biomacromolecule delivery systems. J Controlled Release
148(1):122–127

El Khoury E, Abiad M, Kassaify ZG, Patra D (2015) Green synthesis of
curcumin conjugated nano silver for the applications in nucleic acid
sensing and anti-bacterial activity. Colloids Surf, B 127:274–280

Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue
orange light emission from biogenic synthesized silver nanoparti-
cles using Trichoderma viride. Colloids Surf, B 75(1):175–178

Francis S, Joseph S, Koshy EP, Mathew B (2017) Green synthesis and
characterization of gold and silver nanoparticles using Mussaenda

298 M. Hembram et al.



glabrata leaf extract and their environmental applications to dye
degradation. Environ Sci Pollut Res 24(21):17347–17357

Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J,
Troiani HE, Santiago P, Yacaman MJ (2002) Formation and
growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2
(4):397–401

Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG,
Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source
for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

Ghiuță I, Cristea D, Croitoru C, Kost J, Wenkert R, Vyrides I,
Munteanu D (2018) Characterization and antimicrobial activity of
silver nanoparticles, biosynthesized using Bacillus species. Appl
Surf Sci 438:66–73

Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z,
Akbarzadeh A, Riazi G, Ajdari S, Razzaghi-Abyaneh M (2015)
Enzymatic synthesis of gold nanoparticles using sulfite reductase
purified from Escherichia coli: a green eco-friendly approach.
Process Biochem 50(7):1076–1085

Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of
copper nanoparticles using culture supernatants of Salmonella
typhimurium. Orient J Chem 31(1):527–529

Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold
nanoparticles in delivery applications. Adv Drug Deliv Rev 60
(11):1307–1315

Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold
nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49
(18):N309

Hamouda IM (2012) Current perspectives of nanoparticles in medical
and dental biomaterials. J Biomed Res 26(3):143–151

Han G, Ghosh P, De M, Rotello VM (2007a) Drug and gene delivery
using gold nanoparticles. NanoBiotechnology 3(1):40–45

Han G, Ghosh P, Rotello VM (2007b) Functionalized gold nanopar-
ticles for drug delivery. Nanomedicine 2(1):113–123

Han G, Ghosh P, Rotello VM (2007c) Functionalized gold nanopar-
ticles for drug delivery. Nano Med 2(1):113–123

Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL (1996)
Highly oriented molecular Ag nanocrystal arrays. J Phys Chem 100
(33):13904–13910

Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase
diagrams and super lattices of organically functionalized metal
nanocrystal monolayers: the influence of particle size, size distri-
bution, and surface passivant. J Phys Chem B 101(2):189–197

Heiligtag FJ, Niederberger M (2013) The fascinating world of
nanoparticle research. Mater Today 16(7–8):262–271

Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on
Fenugreek seed germination under salinity levels. Rus Agric Sci 43
(1):61–65

Hong ZS, Cao Y, Deng JF (2002) A convenient alcohothermal
approach for low temperature synthesis of CuO nanoparticles.
Mater Lett 52(1–2):34–38

Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Hong J (2007)
Biosynthesis of silver and gold nanoparticles by novel sundried
Cinnamomum camphora leaf. Nanotechnology 18(10):105104

Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green
synthesis of nanoparticles and its potential application. Biotech Lett
38(4):545–560

Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of
silver nanoparticles on growth of wheat under heat stress. Iranian J
Sci Technol Trans A: Sci 43(2):387–395

Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014)
Synthesis of silver nanoparticles: chemical, physical and biological
methods. Res Pharm Sci 9(6):385

Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization
of ultrafine metal particles in ethanol by UV irradiation using a
photo initiator. Langmuir 11(10):4129–4134

Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles
based contrast agents for X-ray computed tomography. Adv Healthc
Mater 1(4):413–431

Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM,
Katti KV (2007) Gum arabic as a phytochemical construct for the
stabilization of gold nanoparticles: in vivo pharmacokinetics and
X-ray-contrast-imaging studies. Small 3(2):333–341

Khan AK, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles:
synthesis and applications in drug delivery. Tropical J Pharm Res
13(7):1169–1177

Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG
(2018) Applications of green synthesized Ag, ZnO and Ag/ZnO
nanoparticles for making clinical antimicrobial wound-healing
bandages. Sustain Chem Pharm 10:9–15

Kim JS (2007) Reduction of silver nitrate in ethanol by poly
(N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570

Kim CK, Ghosh P, Rotello VM (2009) Multimodal drug delivery using
gold nanoparticles. Nanoscale 1(1):61–67

Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based
crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci
96(24):13611–13614

Komarneni S, Li D, Newalkar B, Katsuki H, Bhalla AS (2002)
Microwave-polyol process for Pt and Ag nanoparticles. Langmuir
18(15):5959–5962

(a) Laha B, Goswami R, Maiti S, Sen KK (2019) Smart karaya-locust
bean gum hydrogel particles for the treatment of hypertension:
optimization by factorial design and pre-clinical evaluation. Carbo-
hyd Polym 210:274–288. (b) Aspinall GO, Khondo L, Williams BA
(1987) The hex-5-enose degradation: cleavage of glycosiduronic
acid linkages in modified methylated Sterculia gums. Can J Chem
65(9):2069–2076. (c) Krishnappa PB, Badalamoole V (2019)
Karaya gum-graft-poly (2-(dimethylamino) ethyl methacrylate)
gel: an efficient adsorbent for removal of ionic dyes from water. Int
J Biol Macromol 122:997–1007

Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA,
Lopez-Ribot JL, Nash KL (2018) Synergistic antifungal effect of
chitosan-stabilized selenium nanoparticles synthesized by pulsed
laser ablation in liquids against Candida albicans biofilms. Int J
Nanomed 13:2697

Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine
silver nanoparticles from bulk silver substrates in aqueous solutions
by sono electrochemical methods. Electrochem Commun 6
(11):1163–1168

Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of
silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12
(15):3585–3589

Lovley DR, Stolz JF, Nord GL, Phillips EJ (1987) Anaerobic
production of magnetite by a dissimilatory iron-reducing microor-
ganism. Nature 330(6145):252–254

Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010)
Bottom-up fabrication of metal/metal nanocomposites from
nanoparticles of immiscible metals. Chem Mater 22(1):155–160

Mallick K, Witcomb MJ, Scurrell MS (2005) Self-assembly of silver
nanoparticles in a polymer solvent: formation of a nano chain
through nanoscale soldering. Mater Chem Phys 90(2–3):221–224

Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P
(2006) The use of microorganisms for the formation of metal
nanoparticles and their application. Appl Microbiol Biotechnol 69
(5):485–492

Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ,
Kim SK (2015) Production of a-amylase for the biosynthesis of
gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol
Macromol 72:71–78

Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK,
Boukherroub R (2018) Towards green synthesis of monodisperse

Solid-State Green Synthesis of Different Nanoparticles 299



Cu nanoparticles: an efficient and high sensitive electrochemical
nitrite sensor. Sens Actuators B: Chem 266:873–882

Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic
synthesis of gold nanoparticles, characterization, and its applica-
tions. Res Eff Technol 3(4):516–527

Miri A, Sarani M (2018) Biosynthesis, characterization and cytotoxic
activity of CeO2 nanoparticles. Ceram Int 44(11):12642–12647

(a) Nadagouda MN, Varma RS (2006) Green and controlled synthesis
of gold and platinum nanomaterials using vitamin B2:
density-assisted self-assembly of nanospheres, wires and rods.
Green Chem 8(6):516–518. (b) Nadagouda MN, Varma RS (2008)
Green synthesis of Ag and Pd nanospheres, nanowires, and
nanorods using vitamin: catalytic polymerisation of aniline and
pyrrole. J Nanomater

Njagi JI, Kagwanja SM (2011) The interface in biosensing: improving
selectivity and sensitivity. In: Interfaces and interphases in analyt-
ical chemistry. American Chemical Society, pp 225–247

Paciotti GF, Kingston DG, Tamarkin L (2006) Colloidal gold
nanoparticles: a novel nanoparticle platform for developing multi-
functional tumor-targeted drug delivery vectors. Drug Dev Res 67
(1):47–54

Padil VVT, Černík M (2013) Green synthesis of copper oxide
nanoparticles using gum karaya as a biotemplate and their
antibacterial application. Int J Nanomed 8:889

Pantidos N, Horsfall LE (2014) Biological synthesis of metallic
nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol
5(5):1

Pattabi M, Uchil J (2000) Synthesis of cadmium sulphide nanoparticles.
Sol Energy Mater Sol Cells 63(4):309–314

Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A,
Gübitz G, Gedanken A (2009) CuO–cotton nanocomposite: forma-
tion, morphology, and antibacterial activity. Surf Coat Technol 204
(1–2):54–57

Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver
nanocluster in AOT reverses micelles. J Phys Chem 97(49):12974–
12983

Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic
bacteria: chain formation and colloidal stability. Langmuir 18
(25):9977–9984

Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM,
Gedanken A (2002) Sonochemical deposition of silver nanoparti-
cles on silica spheres. Langmuir 18(8):3352–3357

Polte J (2015) Fundamental growth principles of colloidal metal nanopar-
ticles–a new perspective. CrystEngComm 17(36):6809–6830

Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M,
Baeeri M, Mohammadirad A, Abdollahi M (2011) Biochemical and
cellular evidence of the benefit of a combination of cerium oxide
nanoparticles and selenium to diabetic rats. World J Diab 2(11):204

Pum D, Sleytr UB (1999) The application of bacterial S-layers in
molecular nanotechnology. Trends Biotechnol 17(1):8–12

Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green syntheis
of zinc oxide nanoparticles using flower extract cassia auriculata.
J Nanosci Nanotechnol 2(1):41–45

Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ (2011)
Modified gums: approaches and applications in drug delivery.
Carbohyd Polym 83(3):1031–1047

Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002)
Size-dependent chemistry: properties of nanocrystals. Chem Eur J
8(1):28–35

Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis
and stabilization of metal nanoparticles. J Am Chem Soc 125
(46):13940–13941

Ravindran TR, Arora AK, Balamurugan B, Mehta BR (1999)
Inhomogeneous broadening in the photoluminescence spectrum of
CdS nanoparticles. Nanostruct Mater 11(5):603–609

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects
of foliar application of zinc sulfate and zinc nanoparticles in coffee
(Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

Roy N, Barik A (2010) Green synthesis of silver nanoparticles from the
unexploited weed resources. Int J Nanotechnol 4:95

Sandmann G, Dietz H, Plieth W (2000) Preparation of silver
nanoparticles on ITO surfaces by a double-pulse method. J Elec-
troanal Chem 491(1–2):78–86

Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS,
Ravikumar V (2014) Green synthesis of colloidal copper oxide
nanoparticles using Carica papaya and its application in photocat-
alytic dye degradation. Spectrochim Acta Part A Mol Biomol
Spectrosc 121:746–750

Sarkar J, Acharya K (2017) Alternaria alternata culture filtrate
mediated bioreduction of chloroplatinate to platinum nanoparticles.
Inorganic Nano-Metal Chem 47(3):365–369

Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA
(2007a) Rapid synthesis of silver nanoparticles using culture
supernatants of Enterobacteria: a novel biological approach. Process
Biochem 42(5):919–923

Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007b)
Synthesis and effect of silver nanoparticles on the antibacterial
activity of different antibiotics against Staphylococcus aureus and
Escherichia coli. Nanomed Nanotechnol Biol Med 3(2):168–171

Shang Y, Hasan M, Ahammed J, Li M, Yin H, Zhou J (2019)
Applications of nanotechnology in plant growth G and crop
protection: a review. Molecules 24(14):2558

Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au,
Ag, and bimetallic Au core–Ag shell nanoparticles using Neem
(Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M
(2004b) Biological synthesis of triangular gold nanoprisms. Nat
Mater 3(7):482–488

Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T
(2007) Synthesis of plant-mediated gold nanoparticles and catalytic
role of biomatrix-embedded nanomaterials. Environ Sci Technol 41
(14):5137–5142

Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of
antibacterial silver nanoparticles using psychrophilic bacteria.
Process Biochem 46(9):1800–1807

Silver S (2003) Bacterial silver resistance: molecular biology and uses
and misuses of silver compounds. FEMS Microbiol Rev 27(2–
3):341–353

Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell
surface layers (S layers): from supramolecular cell structure to
biomimetics and nanotechnology. Angew Chem Int Ed 38(8):1034–
1054

Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical
silver nanoparticles by digestive ripening, stabilization with various
agents, and their 3-D and 2-D super lattice formation. J Colloid
Interface Sci 284(2):521–526

Smuleac V, Varma R, Baruwati B, Sikdar S, Bhattacharyya D (2011a)
Nanostructured membranes for enzyme catalysis and green synthe-
sis of nanoparticles. Chemsuschem 4(12):1773–1777

Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011b) Green
synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for
reductive degradation of chlorinated organics. J Membr Sci 379(1–
2):131–137

Stiger RM, Gorer S, Craft B, Penner RM (1999) Investigations of
electrochemical silver nanocrystal growth on hydrogen-terminated
silicon (100). Langmuir 15(3):790–798

Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc
nanoparticles and plants. J Hazard Mater 349:101–110

Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V,
Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated

300 M. Hembram et al.



synthesis of gold nanoparticles and its antibacterial efficacy against
gram positive organisms. Mater Sci Eng, C 47:351–356

Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic
acid-functionalized silver nanoparticles synthesized in one-phase
system. J Colloid Interface Sci 249(2):336–345

Trono JD, Mizuno K, Yusa N, Matsukawa T, Yokoyama K, Uesaka M
(2011) Size, concentration and incubation time dependence of gold
nanoparticle uptake into pancreas cancer cells and its future
application to X-ray drug delivery system. J Rad Res 52(1):103–109

Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasub-
ramanya RH (2006a) Biomimetics of silver nanoparticles by white
rot fungus, Phaenerochaete chrysosporium. Colloids Surf, B 53
(1):55–59

Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV
(2006b) A novel one-pot ‘green’ synthesis of stable silver
nanoparticles using soluble starch. Carbohyd Res 341(12):2012–
2018

Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP,
Paralikar KM, Balasubramanya RH (2007) Biological synthesis of
silver nanoparticles using the fungus Aspergillus flavus. Mater Lett
61(6):1413–1418

Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A, Norwig J
(2001) Sonochemical preparation and characterization of nanocrys-
talline copper oxide embedded in poly (vinyl alcohol) and its effect
on crystal growth of copper oxide. Langmuir 17(5):1406–1410

Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA,
Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA

(2008) Solventless synthesis and optical properties of Au and Ag
nanoparticles using Camellia sinensis extract. Mater Lett 62(17–
18):3103–3105

Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver
nanoparticles by interphase reduction. Colloids Surf, A 152(3):375–
379

Wang X, Sun W, Zhang S, Sharifan H, Ma X (2018) Elucidating the
effects of cerium oxide nanoparticles and zinc oxide nanoparticles
on arsenic uptake and speciation in rice (Oryza sativa) in a
hydroponic system. Environ Sci Technol 52(17):10040–10047

Wang Y, Lin Y, Xu Y, Yin Y, Guo H, Du W (2019) Divergence in
response of lettuce (var. ramosa Hort.) to copper oxide
nanoparticles/microparticles as potential agricultural fertil-
izer. Environ Pollut Bioavailability 31(1):80–84

Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ (1999)
Preparation and characterization of CuO nanocrystals. J Solid State
Chem 147(2):516–519

Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by
Na+–poly (c-glutamic acid)–silver nitrate complex via chemical
reduction process. Colloids Surf, B 59(2):171–178

Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and
copper nanoparticles using ascorbic acid and chitosan for antimi-
crobial applications. Carbohyd Polym 112:195–202

Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength
of naturally aged seeds and growth of spinach. Biol Trace Elem Res
104(1):83–91

Solid-State Green Synthesis of Different Nanoparticles 301


	Contents
	1 Biomass-Derived Polyurethanes for Sustainable Future
	Abstract
	1 Introduction
	1.1 Chemicals for Preparation of Polyurethanes
	1.2 Importance of Green Chemicals and Synthesis Methods
	1.3 Characteristics of Biomaterials for Polyurethanes

	2 Bio-Oils as a Renewable Resource for Polyurethanes
	2.1 Epoxidation and Ring-Opening Reactions
	2.2 Hydroformation and Hydrogenation Reactions
	2.3 Ozonolysis
	2.4 Thiol-Ene Reaction
	2.5 Transesterification Reaction

	3 Terpenes as Green Starting Chemicals for Polyurethanes
	4 Lignin for Green Polymers
	5 Conclusion
	References

	2 Mechanochemistry: A Power Tool for Green Synthesis
	Abstract
	1 Introduction
	2 History of Mechanochemistry
	3 Principles of Mechanochemistry
	3.1 Mechanisms and Kinetics of Mechanochemistry
	3.2 Effects of Reaction Parameters

	4 Mechanochemical Synthesis of Materials
	4.1 Mechanochemical Synthesis of Co-crystals
	4.2 Mechanochemistry in Inorganic Synthesis
	4.3 Mechanochemistry in Organic Synthesis
	4.4 Mechanochemistry in Metal–Organic Frameworks (MOFs)
	4.5 Mechanochemistry in Porous Organic Materials (POMs)
	4.6 Mechanochemical Synthesis of Polymers

	5 Conclusions
	References

	3 Future Trends in Green Synthesis
	Abstract
	1 Introduction
	2 Green Chemistry Metrics
	2.1 Atom Economy (AE)
	2.2 Environmental Factor (E Factor)
	2.3 Process Mass Intensity (PMI)
	2.4 Reaction Mass Efficiency (RME)

	3 Application of Green Concept in Synthesis
	3.1 Solvent-Based Organic Synthesis
	3.2 Aqueous Medium
	3.2.1 Micellar Media
	3.2.2 Different Non-Aqueous Media
	Ionic Liquids
	Fluorous Media
	Supercritical Fluid
	Solvent-Free Synthesis



	4 Future Trends
	References

	4 Plant-Mediated Green Synthesis of Nanoparticles
	Abstract
	1 Introduction
	2 Methods for Metallic Nanoparticle Biosynthesis
	3 Green Biosynthesis of Metallic NPs
	3.1 Gold Nanoparticles
	3.2 Platinum Nanoparticles
	3.3 Silver Nanoparticles
	3.4 Zinc Oxide Nanoparticles
	3.5 Titanium Dioxide Nanoparticles

	4 Different Parts Used for the Synthesis of Metallic Nanoparticles
	4.1 Fruit
	4.2 Stem
	4.3 Seeds
	4.4 Flowers
	4.5 Leaves

	5 Conclusions
	References

	5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials
	Abstract
	1 Introduction
	2 Advantages of Green Synthesis Methods
	3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials
	3.1 Biological Methods
	3.1.1 Using Microorganism
	Microorganisms as Reactant
	Microorganism as Template

	3.1.2 Using Plant
	Plant as Reactant
	Plant as Template

	3.1.3 Using Other Green Templates

	3.2 Physical and Chemical Methods
	3.2.1 Green Techniques
	3.2.2 Green Reagents
	3.2.3 Green Solvents


	4 Growth Mechanism of Metal and Metal Oxide HSNs
	4.1 Biological Method
	4.1.1 Biomolecules as Reagents
	4.1.2 Biomolecules as Templates

	4.2 Physical and Chemical Methods

	5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials
	5.1 Biomedical Application
	5.2 Environmental Remediation
	5.2.1 Wastewater Treatment
	5.2.2 Energy Storage
	5.2.3 Sensing


	6 Present Challenges and Future Prospect
	Acknowledgements
	References

	6 Bioprivileged Molecules
	Abstract
	1 Introduction
	2 Four Carbon 1,4-Diacids
	2.1 Succinic Acid
	2.2 Fumaric Acid
	2.3 Malic Acid

	3 Furan 2,5-Dicarboxylic Acid (FDCA)
	4 3-Hydroxypropionic Acid (3-HPA)
	5 Glucaric Acid
	6 Glycerol
	7 Aspartic Acid
	8 Itaconic Acid
	9 3-Hydroxybutyrolactone
	10 Sorbitol
	11 Xylitol
	12 Glutamic Acid
	13 Levulinic Acid
	14 Emerging Molecules
	15 Conclusion
	References

	7 Membrane Reactors for Green Synthesis
	Abstract
	1 Introduction
	2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL
	2.1 Ionic Liquid Media Effect on Free CLAB
	2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL
	2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL

	3 Mixed Ionic Electronic MR
	3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane
	3.2 Steam Flow Effect on Side I of Membrane
	3.3 Temperature Effect

	4 Green Synthesis of Methanol in a Membrane Reactor
	5 Green Fuel Energy
	5.1 Green H2 Energy
	5.2 Biofuel Energy
	5.3 Green Fuel Additive

	6 Biocatalyst Membrane Reactors
	7 Photocatalytic Membrane Reactors
	8 Conclusions
	References

	8 Application of Membrane in Reaction Engineering for Green Synthesis
	Abstract
	1 Introduction
	2 Applications of Membrane Reactors in Reaction Engineering
	2.1 Syngas Production
	2.2 Hydrogen Production
	2.3 CO2 Thermal Decomposition
	2.4 Higher Hydrocarbon Production
	2.5 Methane Production
	2.6 Ammonia Production

	3 Environmental Impacts
	4 Conclusions and Future Recommendations
	Acknowledgements
	References

	9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes
	Abstract
	1 Introduction
	2 Principle
	3 Enzymes Involved in Light-Driven Catalysis
	3.1 Heme-Containing Enzymes
	3.1.1 Cytochrome P450
	3.1.2 Peroxidases

	3.2 Flavin-Based Enzyme
	3.2.1 Baeyer–Villiger Monooxygenases
	3.2.2 Old Yellow Enzymes

	3.3 Metal Cluster-Centered Enzyme
	3.3.1 Hydrogenases
	3.3.2 Carbon Monoxide Dehydrogenases


	4 Nanoparticle-Based Activation of Enzyme
	5 Applications in Photo-Biocatalysis
	5.1 Isolated Enzymes/Cell Lysates

	6 Summary and Future Scope
	References

	10 Biomass-Derived Carbons and Their Energy Applications
	Abstract
	1 Introduction
	2 Types of Biomass Materials
	2.1 Plant-Based Carbons
	2.2 Fruit-Based Carbons
	2.3 Animal-Based Carbons
	2.4 Microorganism-Based Carbons

	3 Activation of Biomass-Derived Carbons
	3.1 Activation of Carbons
	3.1.1 Chemical Activation of Carbons
	3.1.2 Carbon Activation Through Physical Method
	3.1.3 Self-activation of Carbons

	3.2 Pyrolysis Techniques
	3.2.1 Effect of Temperature
	3.2.2 Effect of Residence Time
	3.2.3 Heating Rate Effect
	3.2.4 Size of the Particle

	3.3 Microwave-Assisted Technique
	3.4 Carbonization by Hydrothermal
	3.5 Ionothermal Carbonization
	3.6 Template Method

	4 Energy Storage Applications of Biomass Carbons
	4.1 Supercapacitors
	4.2 Li/Na-Ion Batteries

	5 Conclusion
	Acknowledgements
	References

	11 Green Synthesis of Nanomaterials via Electrochemical Method
	Abstract
	1 Introduction
	2 Green Synthesis
	2.1 Application of Biology in Green Synthesis
	2.2 Green Synthesis Based on the Application of Solvent

	3 Computational Data and Analysis
	4 Electrochemical Method
	5 Electrodeposition Method
	5.1 Experimental Setup for Electrodeposition

	6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis
	7 Conclusion
	References

	12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments
	Abstract
	1 Introduction
	2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs].
	2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations
	2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions
	2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations
	2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines
	2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles
	2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines
	2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR)
	2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions
	2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O
	2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines
	2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines
	2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs

	3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs]
	3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway
	3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway
	3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy
	3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations
	3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions
	3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides
	3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines
	3.8 MW-Assisted Groebke–Blackburn–Bienaymé (GBB) Reaction for the Synthesis of Chromones-imidazo[1,2-a]pyridine Hybrid
	3.9 Synthesis of Chromones-Imidazo[1,2-a]pyridine (Chromones-IP) Hybrid via MW-irradiated GBB Strategy

	4 MW-irradiated Miscellaneous Synthesis of Other Imidazo[1,2-a]pyridines (IPs)
	4.1 MW-Promoted Synthesis of 3-pyrazinyl-IPs
	4.2 Conventional and MW-assisted Fast Synthesis of Substituted IPs Under Neat Conditions
	4.3 MW-Irradiated, 3-component, Domino Reaction for the Fast Synthesis of IPs Utilizing the Application of Functionalized N,S-Ketene Acetals
	4.4 A Petasis-Based Cascade Methodology to Access 3-hydroxy Functionalized 2-arylimidazo[1,2-a]pyridines Under Microwave Irradiation Conditions
	4.5 Synthesis of 2,3-Disubstituted-IPs via One-Pot MCR Under MW-Irradiated Conditions
	4.6 MW-Irradiated TsOH-Catalyzed, Solvent-Free Synthesis of IPs via MCR Strategy
	4.7 Synthesis of Substituted-3-Formyl-Imidazo[1,2-a]pyridines Using MW-Irradiated Conditions

	5 Discussion and Summary
	6 Conclusion
	Acknowledgements
	References

	13 Green Hydrogen Synthesis Methods
	Abstract
	1 Introduction
	2 Thermochemical Processes
	2.1 Methane Decomposition
	2.2 Dry or Steam Methane Reforming
	2.3 Coal Gasification
	2.4 Biomass Gasification
	2.4.1 Steam Gasification
	2.4.2 Supercritical Water Gasification

	2.5 Biomass-Derived Liquid Reforming
	2.6 Solar Thermochemical Hydrogen

	3 Electrolytic Processes
	3.1 Electrochemical
	3.2 Photo-Electrochemical

	4 Biological Processes
	4.1 Photofermentation
	4.2 Dark Fermentation
	4.3 Biophotolysis
	4.4 Microbial Electrolysis Cell

	5 Conclusions
	References

	14 Fundamental and Principles of Green Synthesis
	Abstract
	1 Introduction
	2 Fundamentals and Principle in “Green Synthesis”
	2.1 Physical Methods
	2.1.1 Mechano Synthesis Using Ball Mill
	2.1.2 Radiation Through Non-ionization Process (Microwave Irradiation)
	2.1.3 Synthesis Mediated by Ultrasound Technology
	2.1.4 Synthesis Induced by Magnetic Field
	2.1.5 Synthesis Using Hydro(Solvo)thermal Technology
	2.1.6 Photocatalysis

	2.2 Chemical Methods
	2.2.1 Use of Solvents and Catalysts

	2.3 Biological Methods

	3 Application of “Green Synthesis”
	3.1 Synthesis of Metal Salts, Metal Complexes, and Metal Organic Frameworks
	3.2 Synthesis of Metallic Nanoparticles
	3.3 Synthesis of Elemental Nanoparticles of Nonmetals

	4 Nanoparticles of Metal and Nonmetal Oxide
	5 Conclusion
	Acknowledgements
	References

	15 Electrochemical Green Synthesis
	Abstract
	1 Introduction
	2 Green Synthesis
	3 Electrochemical Green Synthesis
	4 Applications in Electrochemical Hydrogen Storage
	5 Conclusions
	References

	16 Enzyme-Mediated Synthesis of Heterocyclic Compounds
	Abstract
	1 Introduction
	2 Enzyme-Mediated Synthesis of Heterocyclic Compounds
	2.1 Nitrogen-Containing Heterocycles
	2.1.1 Pyrroles
	2.1.2 Indoles
	2.1.3 Phenazines
	2.1.4 Benzocarbazoles
	2.1.5 Benzimidazoles
	2.1.6 Pyrazoles

	2.2 Oxygen-Containing Heterocycles
	2.2.1 Chromenes
	2.2.2 Dioxins
	2.2.3 Lactones
	2.2.4 Benzofuran

	2.3 Nitrogen- and Oxygen-Containing Heterocycles
	2.3.1 Oxazolidinones


	3 Summary and Outlook
	References

	17 Solid-State Green Synthesis of Different Nanoparticles
	Abstract
	1 Introduction
	2 Green Synthesis
	2.1 Green Approach for Synthesis of NPs
	2.1.1 From Vitamins
	2.1.2 From Enzymes

	2.2 Biobased Methods
	2.2.1 Bacteria
	2.2.2 Yeasts and Fungi
	2.2.3 Algae


	3 Metal Oxide Nanoparticles Synthesized from Green Synthesis
	3.1 Copper Oxide (CuO)
	3.2 Zinc Oxide (ZnO)
	3.3 Silver and Gold
	3.4 Cerium Oxide (CeO2)

	4 Applications of Green Nanotechnology
	4.1 Application of Nanoparticles in Agriculture
	4.2 Dentistry
	4.3 X-Ray Imaging
	4.4 Drug Delivery

	5 Conclusion
	References




