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Abstract In the global market the quality of products is a crucial factor separating
competitive companies within numerous industries. These firms may employ a loss
function to measure the loss caused by a deviation of the quality variable from
the target value. From the view of Taguchi’s philosophy, monitoring this deviation
from the process target value is important, but in practice many quality data have
distributions that are not normal but skewed. This paper thus develops an average
loss control chart for monitoring quality loss variation under skewed distributions.
We investigate the statistical properties of the proposed control chart and measure
the out-of-control process detection performance of the proposed loss control charts
by using the average run length. The average loss control chart illustrates the best
performance in detecting of out-of-control loss location for a left-skewed process
distribution and performs better than the existing median loss control chart.

Keywords Loss function · Non-normal distribution · Control chart · Run length

1 Introduction

Control charts are commonly used tools in process change detection for improving
the quality of manufacturing and service processes. In the past few years, more
and more statistical process control techniques have been applied to the service
industry, with control charts also becoming an effective tool to enhance service
quality. There have been a few studies in this area of the literature, including Tsung
et al. (2008), Ning et al. (2009), Yang et al. (2012), Yang and Yang (2013), Yang and
Wu (2017a, b), Yang and Jiang (2019). In practice, many service quality data follow
non-normal distributions. For example, the service time of a local bank branch is a
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critical service quality characteristic, and efficiently monitoring the location and/or
dispersion of service data is an important issue to bank managers. Bank service
data that have been analyzed tend to have a right-skewed distribution as shown in
Yang and Wu (2017a, b). Some other examples of service quality data are fatigue
symptoms of breast cancer patients Ho et al. (2014), passenger counts of Taipei’s
mass rapid transit (MRT) system on a weekday basis Yang and Yang (2013), and
health care costs Zhou et al. (2008). The commonly used Shewhart variables control
charts, whose statistical properties depend on a normality assumption, clearly may
not be suitable for monitoring service data when the variables exhibit non-normal or
unknown distributions. Furthermore, McCracken and Chakraborti (2013) note that
normality is often an elusive assumption, and discuss some available nonparametric
schemes for jointly monitoring location and scale in overviewing control charts for
joint monitoring mean and variance.

Product, service quality, and productivity loss are all crucial competitive factors
of companies in numerous industries, and the loss function is a popular method for
measuring the loss caused by variations in product or service quality. Taguchi (1986)
proposed that target values are vital during process specification, while Sullivan
(1984) emphasized the importance of monitoring deviations from the target value.
Because increases in the difference between themean and the target and/or variability
are the sources of out-of-control loss, it is crucial to monitor the loss variation of a
manufacturing or service process.

Scant research has been done to deal with monitoring process loss location. Exist-
ing loss-function-based control charts are based on the assumption that the in-control
mean of a process quality variable equals the target value; see, for example, Zhang
and Wu (2006) and Wu et al. (2009). However, in practice, the in-control process
mean may not actually be the process target, and diagnosing the source of an out-of-
control signal is crucial for correcting an out-of-control process loss location. Yang
(2013a, b), Yang and Lin (2014) and Yang et al. (2017) proposed loss-based control
charts in order to monitor the loss location that arises when quality variables deviate
from target values.

A major drawback of loss-based control charts is that almost all of them are based
on the assumption that the quality variable has a normal distribution. This paper
focuses on discussing a loss-based control chart under non-normal distributions. We
note that the sample median is more robust than the sample average for estimating
the population location as the former is less affected by extreme values Graham et al.
(2011). Motivated by this, Yang et al. (2017) considered using the median loss to
express the quality loss function under a non-normal distribution. For this reason,
the resulting loss-based control chart is called the median loss (ML) control chart
throughout their paper. Their ML chart and the optimal variable sampling intervals
median loss (VSI ML) chart both illustrate the best out-of-control detection perfor-
mance for the left-skewed distributed process among the considered left-skewed,
symmetric, and right-skewed distributions. Even under a normal distribution, they
illustrated that the resultingout-of-control detectionperformanceof theVSIMLchart
is better than the VSI average loss (AL) chart in Yang (2013b) and the weighted loss
(WL) control charts in Yang and Lin (2014), except for very small shifts in process
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mean. However, the properties of average loss (ALSN) control chart were not dis-
cussed for a non-normal distributed process. Here in this present study, we consider
that both the sample size and sampling interval are fixed and will examine whether
the ALSN control chart has better out-of-control detection performance than that of
the ML chart under a skew-normal distributed process. Hence, we proceed to derive
the ALSN control chart and discuss the out-of-control detection performances of the
ALSN control chart either when the process distribution is left-skewed, symmetric,
or right-skewed, respectively.

The paper is organized as follows. Section 2 introduces the sampling distribu-
tion of the median loss for a quality variable, X , with a skew-normal distribution.
Section 3 illustrates the control limits of the ML chart for various sample sizes and
out-of-control detection performances for small to moderate shifts in mean and vari-
ance. Section 4 derives the distribution of sample average loss, constructs the ALSN
control chart, and measures its out-of-control detection performance for small to
moderate shifts in mean and variance. Section 5 compares the out-of-control detec-
tion performance between the proposed ALSN chart and the ML chart in Yang et al.
(2017) by considering the process with left-skewed, symmetric, and right-skewed
normal distribution, respectively. Section 6 summarizes the findings and provides a
recommendation.

2 The ML Control Chart

2.1 The Skew-Normal Distribution

We let the random variable X have a skew-normal distribution with location
parameter ξ0 ∈ (−∞,∞), scale parameter a0 ∈ (0,∞), and shape parameter b ∈
(−∞,∞), i.e., X ∼ SN (ξ0, a0, b). From Azzalini (1985), the probability density
function (pdf) of X is:

fX (x) = 2

a0
ϕ

(
x − ξ0

a0

)
Φ

(
b
x − ξ0

a0

)
, x ∈ (−∞,∞) , (1)

where ϕ(·) and Φ(·) are respectively the pdf and cumulative distribution function
(cdf) of the standard normal distribution.

In (1) we know that if b = 0, then the skew-normal distribution will reduce to the
normal distribution with mean ξ0 and standard deviation a0. The distribution is right-
skewed if b > 0 and is left-skewed if b < 0. The plot of the pdfs for b = −2, 0, 3 is
shown in Fig. 1.

The cumulative distribution function (cdf) of the skew-normal random variable
X is:
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)
− 1

π

∫ b
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[
− 1

2

(
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a0

)2
(1 + y2)

]

1 + y2
dy , x ∈ (−∞,∞) .

(2)

2.2 The Loss Function

The loss function is defined as L = k(X − T )2. Let Xi , i = 1, 2, . . . , n, be a random
sample from the in-control distribution of SN (ξ, a, b). The sample median loss
depends on the sample size being odd or even. We only consider the case where the
sample size is an odd value for easier derivation of the distribution of the sample
median loss.

Denote the sample statistic of median loss as ML = (X − T )2
(( n+1

2 )
, where ML

is the loss value separating the higher half from the lower half of a loss data sample.
For a loss dataset, this may be thought of as the “middle” loss value.

Referring to Yang et al. (2017), the derived cdf of ML is as follows.

FML(t) =
∫ t

0
fM(u) du

= n![(
n−1
2

)!]2
∫ t

0
F(X−T )2(u)
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,
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2

)
, t > 0 ,

(3)

where B(x, a, b) = ∫ x
0 ta−1(1 − t)b−1 dt is an incomplete beta function.

We determine the ML control chart based on the cdf of ML in order to monitor
the changes in the loss location or, equivalently, to monitor the shifts in the in-control
population mean (or the deviation of μ0 − T ) and/or standard deviation.

2.3 The Design of a Median Loss Control Chart

We first establish the ML control chart with a specified false alarm rate α by using
Eq. (3). The upper control limit (UCL) and the lower control limit (LCL) of the ML
chart are obtained by taking the inverse cdf of ML – that is:

UCL = F−1
ML(1 − α/2) , LCL = F−1

ML(α/2) . (4)

The process is deemed to be out-of-control if the monitoring statistic ML is smaller
than LCL or larger than UCL; otherwise, the process is considered to be in-control.

The expectation (μ0) and variance (σ 2
0 ) of in-control X areμ0 = ξ0 + a0

b√
1+b2

√
2
π

and σ 2
0 = a20

[
1 − 2b2

π(1+b2)

]
, respectively. Let δ3 denote the dispersion parameter that

satisfies μ0 − T = δ3σ0. For a skewed distribution, we set δ3 > 0.
Table 1 gives the control limits of the ML chart for various combinations of n =

5, 11, δ3 = 0, 1, 2, and b = −500,−2, 0, 2 and 500 under ARL0 = 370.4, μ0 = 0,

Table 1 Control limits of the ML chart with ARL0 =370.4

n b δ3

0 1 2

(LCL ,UCL) (LCL ,UCL) (LCL ,UCL)

5 –500 (0.006, 3.573) (0.021, 4.958) (0.157, 10.331)

–2 (0.004, 3.707) (0.016, 6.190) (0.176, 12.086)

0 (0.004, 3.754) (0.012, 6.868) (0.198, 13.099)

2 (0.004, 3.707) (0.009, 7.546) (0.283, 14.040)

11 500 (0.006,3.573) (0.003, 8.354) (0.618, 15.135)

–500 (0.036, 1.661) (0.132, 4.264) (0.800, 9.290)

–2 (0.027, 2.192) (0.102, 4.374) (0.814, 9.463)

0 (0.028, 2.268) (0.075, 4.498) (0.796, 9.713)

2 (0.027, 2.192) (0.054, 4.542) (0.855, 9.802)

500 (0.036, 1.661) (0.020, 4.729) (0.907, 10.078)
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and σ0 = 1. From Table 1 we can see that the widths of the control limits become
narrower when n increases and b and δ3 are fixed, and the widths of the control limits
become wider when δ3 increases and n and b are fixed. When δ3 = 0, the widths of
the control limits are the widest for a symmetric (b = 0) distributed quality variable.
When δ3 >0, the widths of the control limits become wider under an increasing b or
when the distribution of the quality variable changes from left-skewed, to normal, to
right-skewed.

3 Performance Measurement of the ML Chart

WefixARL0 at a desired level, for example 370.4, while for an out-of-control process
average run length (ARL1) being smaller is better. Here, ARL0 for the ML chart is:

ARL0 = 1/
(
1 − P(LCL < ML < UCL | in-control ML)

)
. (5)

Suppose that X∗ is the quality characteristic for the out-of-control process, and
X∗ ∼ SN (ξ ∗, a∗, b) hasmeanμ1 = μ0 + δ1σ0, δ1 �= 0, and standard deviation σ1 =
δ2σ0, δ2 ≥ 1. The power (1 − β) is the probability that the out-of-control median loss
statistic (ML∗) is larger than UCL or smaller than LCL – that is:

1 − β = 1 − P(LCL < ML∗ < UCL) = FML∗(LCL) + 1 − FML∗(UCL) .

Hence, we obtain:

ARL1 = 1

1 − β
= 1

FML∗(LCL) + 1 − FML∗(UCL)
, (6)

where FML∗(·) is the cdf of the out-of-control median loss statistic.
Table 2 illustrates the out-of-control detection performance of the ML chart for

the shifts in mean and standard deviation, δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, the dispersion
parameter, δ3 = 0, 1, 2, ARL0 = 370.4, n = 5,μ0 = 0, σ0 = 1, and the quality vari-
ablewith the left half normal (b = −500), left-skewed (b = −2), symmetric (b = 0),
right-skewed (b = 2), and right half normal (b = 500) distributions. In Table 2 we
can see, whether b = −500,−2, 0, 2, or 500, that ARL1 decreases when δ1 and/or
δ2 are far away from δ1 = 0 and/or δ2 = 1 under a specified δ3 (≥ 0); the ARL1 of
the ML chart decreases when δ3 rises for a specified combination of (δ1 > 0, δ2 > 0,
b); and the ARL1s of the ML chart with the left-skewed distributed (b < 0) quality
variable are all smaller than those of the quality variable with symmetric (b = 0) and
right-skewed (b > 0) distributions. These findings suggest that the ML chart has the
best performance for the left-skewed distributed quality variable.
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Table 2 ARL1 of the ML chart (n = 5)

δ1 δ2 b δ3

0 1 2

1 1 –500 13.869 2.059 2.027

–2 22.527 4.764 4.615

0 24.152 8.146 8.113

2 25.040 14.131 14.131

500 22.726 22.207 22.207

2 2 –500 1.415 1.067 1.065

–2 1.618 1.164 1.158

0 1.829 1.313 1.312

2 2.027 1.588 1.588

500 2.308 2.308 2.308

1 2 –500 2.010 1.577 1.715

–2 2.757 2.393 2.579

0 3.317 3.355 3.528

2 4.176 4.882 4.889

500 6.860 6.867 6.452

2 2 –500 1.326 1.168 1.190

–2 1.523 1.335 1.351

0 1.757 1.554 1.563

2 2.052 1.874 1.875

500 2.519 2.522 2.522

4 The Average Loss Control Chart

4.1 The Distribution of Average Loss

The Taguchi loss function is defined as L = k(X − T )2. Without loss of generality,
we set k = 1. In order to design an average loss control chart, suppose that a sequence
of random samples X1, X2, . . . , Xn of size n are taken from SN (ξ0, a0, b).We further
define the sample average loss (AL) as:

AL = 1

n

n∑
i=1

(Xi − T )2 = n − 1

n
S2X + (X̄ − T )2 . (7)

The first step to construct the ALSN chart is to find the distribution of AL when
X follows a skew-normal distribution. Since the exact distribution of AL is not
available, we use Edgeworth expansion (for example, see Hall 1992) to approximate
the distribution of AL .
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Edgeworth (1905) derived Edgeworth expansion that relates the cdf of a random
variable having expectation zero and variance 1 to the cumulative density function
(cdf) of the standard normal distribution using Chebyshev–Hermite polynomials.

Since the in-control Xi follows SN (ξ0, a0, b), we can obtain the first and the
second moments of Li = (Xi − T )2 by using the Chebyshev–Hermite polynomials.
Hence, the expectation and the standard deviation of L (μL and σL ) can be obtained
by the moments of L .

If we define Zn = √
n(AL − μL)/σL , then we can approximate the pdf of Zn by

Edgeworth expansion:

fZn (z) ≈ ϕ(z) − 1√
n

(
1

6
λ3Φ

(4)(z)

)
+ 1

n

(
1

24
λ4Φ

(5)(z) + 1

72
λ2
3Φ

(7)(z)

)
, (8)

where Φ(r)(z) = (−1)r−1Her−1(z)ϕ(z), Her−1(z) is the Chebyshev–Hermite poly-
nomial, and λr is the r th cumulant of (L − μL)/σL (see Hall 1992).

We can therefore obtain the cdf of AL by the following.

FAL(t) = P(AL ≤ t) = P

(
Zn ≤

√
n(t − μL)

σL

)
= FZn

(√
n(t − μL)

σL

)

≈ Φ

(√
n(t − μL)

σL

)
− 1√

n

(
1

6
λ3Φ

(3)

(√
n(t − μL)

σL

))

+ 1

n

(
1

24
λ4Φ

(4)

(√
n(t − μL)

σL

)
+ 1

72
λ2
3Φ

(6)

(√
n(t − μL)

σL

))
. (9)

The accuracy of this approximation is examined by the Pearson χ2 goodness-of-
fit test. We find when the number of random samples m is 2000 or 1000 and the
sample size n = 11 that the test reveals that the approximated cdf has no significant
difference from the cdf using Monte Carlo simulation.

4.2 The Design of an Average Loss Control Chart

Using Eq. (9), the upper control limit (UCL) and lower control limit (LCL) of an
average loss control chart with false alarm rate α are expressed as follows.

UCL = F−1
AL (1 − α/2) , LCL = F−1

AL (α/2) . (10)

We let the ALSN control chart represent the average loss control chart throughout
the paper and estimate the control limits using Monte Carlo simulation.

Table 3 lists the control limits of the ALSN chart with ARL0 = 370.4 for various
combinations of n = 5, 11, δ3 = 0, 1, 2, b = −500,−2, 0, 2, 500,μ0 = 0, and σ0 =
1. From the table we can see that the widths of the control limits become narrower
when n increases and b and δ3 are fixed, and the widths of the control limits become
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Table 3 Control limits of the ALSN chart

n b δ3

0 1 2

(LCL ,UCL) (LCL ,UCL) (LCL ,UCL)

5 –500 (0.095, 4.468) (0.000, 4.718) (0.950, 9.275)

–2 (0.083, 3.984) (0.167, 5.647) (0.991, 11.009)

0 (0.024, 3.665) (0.114, 6.431) (1.062, 12.117)

2 (0.083, 3.984) (0.040, 7.377) (1.190, 13.315)

500 (0.095, 4.468) (0.000, 8.324) (1.112, 14.469)

11 –500 (0.282, 3.220) (0.595, 3.739) (2.147, 7.954)

–2 (0.262, 2.902) (0.568, 4.312) (2.023, 8.869)

0 (0.224, 2.692) (0.509, 4.806) (1.958, 9.523)

2 (0.262, 2.902) (0.443, 5.413) (1.984, 10.265)

500 (0.282, 3.220) (0.288, 6.020) (1.913, 11.000)

wider when δ3 increases and n and b are fixed. When δ3 = 0, the width of the
control limits is the widest for a symmetric (b = 0) distributed quality variable.
When δ3 > 0, the widths of the control limits become wider under an increasing b
or for the distribution of quality variable changing from left-skewed, to normal, to
right-skewed.

5 Performance Measurement of the ALSN Control Chart

To measure the detection performance of the proposed ALSN control chart, we
let the out-of-control mean and standard deviation be μ1 = μ0 + δ1σ0, δ1 �= 0,
and σ1 = δ2σ0, δ2 ≥ 1, where δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, δ3 = 0, 1, 2, and b =
−500,−2.0, 2, 500. We estimate the ARL1s using Monte Carlo simulation.

Table 4 illustrates the out-of-control detection performance of the ALSN chart for
the changes in mean and standard deviation, δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, the disper-
sion parameter, δ3 = 0, 1, 2, ARL0 = 370.4, n = 5, μ0 = 0, σ0 = 1, and the quality
variable with the left half normal (b = −500), left-skewed (b = −2), symmetric
(b = 0), right-skewed (b = 2), and right half normal (b = 500) distributions. In this
table we can see whether b = −500,−2, 0, 2, or 500 that ARL1 decreases when
δ1 and/or δ2 are far away from δ1 = 0 and/or δ2 = 1 under a specified δ3 ≥ 0); the
ARL1 of the ALSN chart decreases when δ3 rises for only mean changes (δ1 = 1, 2),
but is almost same for δ3 = 1 and δ3 = 2; and the ARL1s of the ALSN chart with
the left-skewed distributed (b < 0) quality variable are all smaller than those of
the quality variable with symmetric (b = 0) and right-skewed (b > 0) distributions,
except for δ1 = 1 and δ2 = 1. These findings suggest that the ALSN chart has better
performance for the left-skewed distributed quality variable.
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Table 4 ARL1 of the ALSN chart (n = 5)

δ1 δ2 b δ3

0 1 2

1 1 –500 190.23 1.754 1.604

–2 29.969 3.002 2.976

0 13.037 4.718 4.707

2 12.993 7.874 7.611

500 10.049 11.795 11.147

2 1 –500 1.578 1.012 1.009

–2 1.415 1.039 1.038

0 1.346 1.095 1.088

2 1.544 1.234 1.200

500 1.903 1.504 1.413

2 1 –500 1.953 1.150 1.253

–2 1.701 1.416 1.621

0 1.653 1.712 1.964

2 1.908 2.155 2.416

500 2.031 2.496 2.836

2 2 –500 1.125 1.024 1.034

–2 1.160 1.068 1.093

0 1.183 1.139 1.169

2 1.300 1.263 1.287

500 1.423 1.442 1.453

We further compare theARL1s between the proposedALSNchart and the existing
ML chart for a process with a skew-normal distribution. From the resulting Tables 2
and 4 we can see under b = −500,−2, 0, 2, 500, respectively, that the ARL1s of
the ALSN chart performs better than those of the ML chart whether the process has
small or moderate changes in location and/or dispersion.

6 Conclusions

In this paper we propose a newALSN control chart to monitor the changes in process
loss location or in the deviation of process mean and target and/or variance when
the distribution of a process is not symmetric but left-skewed or right-skewed. We
also develop the numerical approaches for calculating control limits and ARL of
the ALSN control chart are developed. Through numerical analyses, the proposed
ALSN chart shows reasonable and reliable detection ability compared to the ML
chart. Furthermore, the proposedALSN chart illustrates best out-of-control detection
performance for the left-skewed distributed quality variable.We thus recommend the
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application of the proposed ALSN chart for process loss location monitoring. In the
future,we suggest to study the exponentiallyweightedmoving averageALSNcontrol
chart, adaptive control schemes and the effect of contamination by outliers.
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