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Preface

The XIIIth International Workshop on Intelligent Statistical Quality Control took
place in Hong Kong from August 12 to 14, 2019. The invitational workshop was
jointly organized by Prof. K.-L. Tsui from the City University of Hong Kong, Prof.
S. Knoth from the Helmut Schmidt University in Hamburg, Germany, and Prof. W.
Schmid from the European University Viadrina in Frankfurt (Oder), Germany.

In line with the talks given at the workshop, the focus of the book is on major
areas of Statistical Quality Control (SQC). It consists of 22 papers that were carefully
selected and reviewed by the scientific program committee. The book is divided into
two parts. The majority of the papers address Statistical Process Control (SPC),
which is now often called Statistical Process Monitoring (SPM). Moreover, SPC
is the subject of Part I, whereas Part II is devoted to selected topics of SQC (e.g.,
measurement uncertainty analysis and data quality).

Statistical Process Control

To evaluate the performance of a control chart, variousmeasures have been proposed.
In practice, the most popular criterion is the Average Run Length (ARL). However,
it is often insufficient to summarize the run length behavior using the ARL, espe-
cially when the marginal distribution of the charting statistic is not the same for all
time points. Driscoll, Woodall, and Zou propose the Conditional False Alarm Rate
(CFAR) in such a situation. They emphasize that enforcing a constant CFAR allows
dealing with varying sample sizes, population sizes, or other influential covariates
appropriately.Moreover, they describe an unpretentious manner of implementing the
corresponding procedures.

In applications, the in-control parameters are frequently unknown. Goedhart
deals with the question of how the estimation of the unknown parameters using a
reference sample influences control chart performance in Phase II. This introduces
several challenges and tradeoffs regarding the design of a control chart. The author
provides an overview and critical discussion of the present literature. He focuses on
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the Shewhart mean chart for independent samples and analyzes both the normal case
and nonparametric approaches.

Knoth discusses the upper Exponentially Weighted Moving Average (EWMA)
control chart for the mean of beta-distributed variables. He analyzes several ways to
calculate the ARL of this chart. In particular, the Markov chain approximation and
the Nyström procedure to approximate the solution of the ARL integral equation are
investigated. The latter equation is dealt with, as well with collocation. In doing so,
the ARL function is approximated using Chebyshev polynomials whose coefficients
are determined by plugging them into the ARL integral equation. The Markov chain
approach, in some cases, only provides a crude approximation whereas collocation
yields reasonable results for all considered beta-distribution configurations.

Mahmood, Sanusi andXie consider the zero-inflated Conway-Maxwell-Poisson
(ZICOM-Poisson) distribution, which is applied to model over or under-dispersed
zero-defect datasets. They introduce several Cumulative Sum (CUSUM) type control
charts to detect an increasing shift in the rate parameter of the ZICOM-Poisson
distribution. In a simulation study, all considered charts are compared with each
other. As a measure of performance, the average number of observations to signal is
used.

Yang and Lu deal with a skewed quality characteristic. They develop an average
loss control chart for monitoring quality loss variation under skewed distributions.
The statistical properties of the proposed chart are investigated, and the out-of-control
behavior is analyzed using the ARL.

For a discrete quality characteristic, the ARL of a control chart for a parameter
of interest is usually not a continuous function in the control limits. This is why
the control limits cannot be determined such that the in-control ARL is equal to a
prespecified value. Another problematic feature is caused by the skewness of most
of the count distributions. Thus, a comparison of these charts is difficult. Morais,
Knoth, Cruz, andWeiß introduce ARL-unbiased CUSUM charts for detecting both
increases and decreases in the mean of binomial counts deploying randomization to
achieve exact ARL values. They consider the case of independent samples and first-
order autoregressive binomial counts. Explicit formulas (theMarkov chains are exact
models) for the ARLs of the introduced charts are derived.

Yashchin,Civil, Komatsu, andZulpa investigate earlywarning systems (EWSs)
for monitoring multi-stage data, in which downstream variables undergo changes
associated with upstream process stages. In such applications, the EWS monitoring
arm acts as a search engine that analyzes a number of data-streams for eachmonitored
variable. The authors discuss principles of developing and managing targets, with
examples from a supply chain operation.

Hryniewicz, Kaczmarek-Majer, and Opara address processes described by
indirectly observed data, such as telehealth systems. The available data can be used
to predict the characteristics of interest, which form a process to be monitored. If the
process of interest takes only a finite number of observations, the prediction problem
is related to a classification problem. The authors consider various classification
methods, such as logistic regression and combined classifiers. In the present case,
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the result of the classification is a process taking the values of 0 and 1. The authors
apply various control charts to these data considering autocorrelations.

Okhrin, Schmid, and Semeniuk present an overview of the literature on moni-
toring image processes. In most cases, the image is split into sub-images (regions of
interests) and certain characteristics of these regions, such as themean or the entropy,
are monitored. The introduction of the regions of interest leads to a dimension reduc-
tion; nevertheless, the resulting process typically still has a high dimension (around
400). The authors discuss various control charts for the image characteristic assuming
independent images and considering spatial correlations within an image. Thus, their
approach is more general than in previous literature where spatial dependence has
frequently not been directly considered. They compare several control procedures
with each other using an extensive simulation study.

Otto monitors a spatio-temporal process, presenting several examples. In prin-
ciple, a spatio-temporal process can be considered a multivariate time series with
a specific autocorrelation matrix determined by the spatial structure. In most appli-
cations, it is assumed to be isotropic. The proposed control chart is based on a
multivariate EWMA chart for time series, which has been studied in previous contri-
butions. The author uses parallel multivariate control charts driven by the fact that
spatial dependence decreases with an increasing distance between locations.

Huang, Jiang, and Shi consider the problem of monitoring warranty claims. To
modelwarranty claims, various distributions are used, such as thePoissondistribution
and the gamma-Poisson mixture model. The latter model typically results in a nega-
tive binomial distribution. However, if the gamma-distributed parameter is realized
differently from the standard setup, the final count distribution deviates considerably
from the latter one. For a specific setup driven by an application example, using the
log-likelihood approach, a control chart for detecting an increase in the intensity
is introduced. For this real data example on repair records of lifts installed for an
high-speed rail, how the results can be applied is shown.

Megahed, Jones-Farmer,Cai,Rigdon, andMohamed emphasize that computer
acquisition of human and physical data is becoming more pervasive with continued
technological advancements. Personal device data can be used as a proxy for human
operations. The motivation behind their paper is to encourage the quality commu-
nity to investigate relevant research problems that pertain to human operators. They
describe three application areas: identification of physical human fatigue, capturing
changes in a driver’s safety performance, andhuman authentication for cyber-security
applications.

Gan, Koh, and Ang describe an application of SPC in health monitoring. They
propose a risk-adjusted control statistic, which is the ratio of the surgical outcome
to the estimated probability of death. The main characteristic of this statistic is that
the resulting penalty score is substantially higher if a patient with low risk dies, and
the penalty score decreases sharply as the risk increases.

Wang and Zwetsloot employ functional data analysis to model and analyze
health data recorded over time. In addition, SPM helps to detect an early event. They
explore the usefulness of functional data analysis for prospective health surveillance
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and propose two strategies for monitoring using control charts. They apply their
findings to monthly ovitrap index data.

Zhao, Yan, Holte, Kerani, and Mei deal with the detection of hot spots, which
are defined as structured outliers that are sparse over the spatial domain but persistent
over time. They propose a tensor decomposition method to uncover when and where
the hot spots occur. The introduced method decomposes the tensor into three compo-
nents: a smooth global trend, local hot spots, and residuals. A LASSO approach is
used to estimate the model parameters and a CUSUMprocedure is used for detecting
hot spots.

Finally, Sparks, Joshi, Paris, and Karimi analyze EWMA control charts to
detect increases in event frequencies to flag outbreaks promptly. These charts use the
time between events, which is modeled by aWeibull distribution. The EWMAdesign
is adaptive and deals with both homogeneous and non-homogeneous processes. An
extensive discussion of an actual application completes this contribution.

Selected Topics from Statistical Quality Control

Suzuki, Takeshita, Ogawa, Lu, and Ojima discuss the evaluation of measurement
methods. They focus on ordinal categorical variables. Using methods that can be
applied to qualitative data, an analysis of a measurement precision experiment with
measurements involving ordinal categorical variables is investigated.

Steiner, MacKay, and Fan consider the assessment of a binary measurement
system with multiple operators when a gold measurement system is also available
(for the assessment study). To model the data, it is assumed that some parts are more
difficult to correctly classify than others. The assessment distinguishes between fixed
and random operator effects. For each, a conditional and marginal model and their
corresponding estimates of the parameters of interests are given.

Possolo deals with concepts, methods, and tools, evaluating measurement quality.
The contribution provides an overview that is illustrated with examples of applying
statistical methods that support measurement quality and guarantee the intercom-
parability of measurements made worldwide in all fields of commerce, industry,
science, and technology, including medicine.

Bodnar and Elster propose a new statistical method for analyzing data from
a key comparison when transfer standards are measured in two petals. Bayesian
treatment of the model parameters and of the random effects is suggested. The latter
can be viewed as potential laboratory effects that are assessed through the proposed
analysis. While the prior for the labaratory effects naturally is assigned as a Gaussian
distribution, theBerger andBernardo reference prior is taken for the remainingmodel
parameters.

Nishina analyzes how quality control activities can reduce the variability of
outcomes in the value chain. He considers three variabilities: the variability before
shipping to market, after shipping to market, and of the satisfaction with the market.
He discusses various activities to reduce variability.
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Benford’s law is used worldwide to detect nonconformance or data fraud for
numerical data.Kössler, Lenz, andWang analyze five empirical numerical datasets
of various sample sizes and evaluate the performance of Benford’s law by applying
various tests of goodness of fit.

The level of the workshop on Intelligent Statistical Quality Control is determined
by the quality of its papers. We believe that this volume truly represents the frontiers
of SQC. The editors would like to express their deep gratitude to the members of
the scientific program committee, who carefully invited researchers from around the
world and the reviewers of all submitted papers:

Sven Knoth, Germany
Fadel Megahed, USA

Wolfgang Schmid, Germany
Kwok L. Tsui, Hong Kong

Jiang Wei, China
William H. Woodall, USA

Additional Reviewers Include the Following:

Tomomichi Suzuki, Japan
Olgierd Hryniewicz, Poland
Emmanuel Yashchin, USA

Inez Maria Zwetsloot, Hong Kong
Stefan Steiner, Canada

Moreover, we thank Springer Heidelberg, for the continuing collaboration.

Hamburg, Germany
Frankfurt (Oder), Germany
September 2020
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Wolfgang Schmid
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Use of Conditional False Alarm Metric
in Statistical Process Monitoring

Anne R. Driscoll, William H. Woodall, and Changliang Zou

Abstract The conditional false alarm rate (CFAR) at a particular time is the prob-
ability of a false alarm for an assumed in-control process at that time conditional
on no previous false alarm. Only the Shewhart control chart designed with known
in-control parameters, or conditioned on the estimated parameters, has a constant
conditional false alarm rate. Other types of charts, however, can have their control
limits determined in order to have any desired pattern of CFARs. The important
advantage of the use of this CFAR metric is when sample sizes, population sizes
or other covariate information affecting chart performance vary over time. In these
cases, the control limit at a particular time can be obtained through control of the
CFAR value after the corresponding covariate value is known. This allows one to
control the in-control performance of the chart without the need to model or forecast
the covariate values. The approach is illustrated using the risk-adjusted Bernoulli
cumulative sum (CUSUM) chart.

Keywords Changepoint approach · CUSUM chart · Dynamic control limits ·
Risk-adjusted CUSUM chart · Time-varying structure

1 Introduction

Recently, the conditional false alarm rate (CFAR) has proved useful in designing
control charts, where this metric is defined as the probability of a false alarm for an
assumed in-control process at a particular time given no previous false alarm. The
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CFAR is analogous to the hazard function in reliability theory. This metric can be
used to determine the control limits for any type of chart. It is particularly useful
when the in-control (IC) parameter value varies over time due to a varying covariate
such as the sample size. In Sect. 2 we discuss what we refer to as the static use of the
CFAR. In these cases, the IC distribution of the observations is assumed to be known
before monitoring begins. We discuss the dynamic use of the CFAR in Sect. 3. In the
dynamic applications, the control limit at a particular time is not determined until the
corresponding value of a time-varying covariate is known. We use the design of the
risk-adjusted Bernoulli cumulative sum (CUSUM) chart as an example. We discuss
implementation issues in Sect. 4. In Sect. 5, we give some other situations in which
the CFAR could be used. Our conclusions are given in Sect. 6.

2 Static Use of CFAR

We consider a charting scheme consisting of two parts at time t : a detection statistic,
a({Xi }ti=1) which is function of the observations Xi s up to the time t , and a control
limit, L . The time of an alarm, T , is the run length

T = min{t : a({Xt }ti=1) ≥ L}.

The most commonly used criterion for evaluating the performance of a control chart
is the average run length (ARL), say EIC(T ). As recognized in the literature (e.g.,
Woodall and Montgomery 1999), it is often insufficient to summarize run length
behavior by the ARL, especially when the marginal distribution of the charting
statistic is not the same for all time points. In such situations, percentiles and the
standard deviation of the run length (SDRL)would providemore information. To this
end, the CFARmetric, which actually quantifies the uncertainty of run length, serves
as a reasonable measure for the design and evaluation of control charts. Only the
Shewhart control chart designed with known in-control parameters, or conditioned
on the estimated parameters, has a constant CFAR. Other types of charts, however,
can have their control limits determined in order to have any desired pattern of
CFARs. The CFARs of popular exponentially weighted moving average (EWMA)
andcumulative sum(CUSUM)methods are not constant over time, but the boundaries
of these charts can be adjusted such that their CFARs can be controlled to be a
specified constant. That is, we find a series of control limits Lt so that

Pr
(
a({Xi }ti=1) > Lt | a({Xi }si=1) < Ls, 1 ≤ s < t

) = α, for t > 1,

Pr (a(X1) > L1) = α,

for some pre-specified α.
This idea was first proposed by Margavio et al. (1995) and has been successfully

utilized by D. Hawkins and his colleagues in the parametric change-point-based
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control charts with unknown IC parameters, such as Hawkins et al. (2003), Hawkins
and Zamba (2005a, b), Zamba and Hawkins (2006, 2009). See also Zou et al. (2006,
2009) for its applications in profile monitoring.

In the use of CFAR above, it was typically assumed that one has a sequence of
independent, normally distributed data with known IC parameter values. If the IC
distribution of the variable or vector being monitored is known, as in Margavio et al.
(1995), then the control limit values at all time periods can be determined at the
beginning of monitoring in order to control the CFAR. One can use simulation or
numerical methods to determine the control limits. We refer to this case as the static
scenario. This is also the case for some nonparametric or distribution-free control
charts of which the run length distributions are the same for every continuous distri-
bution (or a broad family of distributions). Please refer to Zhou et al. (2009), Zou and
Tsung (2010), Hawkins and Deng (2010) and Holland and Hawkins (2014) for for-
mal use of CFAR in the design of univariate or multivariate distribution-free control
charts. Morais and Pacheco (2012) evaluated the CFAR papers on several different
types of control charts viewing the CFAR values over time as a hazard function.
Similar approaches were taken by Nishina and Nishiyuki (2003) and Nishina et al.
(2006).

It has been pointed out that the IC run length distribution is a geometric distribution
with parameterα if the CFAR is controlled to beα, just like the run length distribution
of the Shewhart chart. Some control charts perform quite well in terms of average run
length (ARL), say achieving a desired IC ARL and having quite small out-of-control
(OC) ARLs, but they may not be appealing if they have rather an unsatisfactory
run length distributions. With some charts, the specified in-control (IC) ARL is
attained with elevated probabilities of very short and very long runs, as compared
with a geometric distribution. This is reflected in a much larger SDRL than that
of a geometric distribution and an elevated probability of false alarms with short
runs, which, in turn, hurt an operator’s confidence in valid alarms. Too frequent
and excessive early false alarms render these charts useless and thus, unacceptable
in practice. The IC run length distribution is often considered to be satisfactory
if it is close to the geometric distribution or more generally its variation is less
than that of a geometric distribution. Controlling the CFAR at each time point is
essentially equivalent to performing a formal hypothesis test at each time point,
which automatically results in a geometric run length distribution. In this sense,
an “approximately” steady CFAR could be a useful benchmark for evaluating the
performance of a chart.

In most cases, it seems reasonable to determine control limits so that the CFAR is
constant over time. Any desired pattern of CFAR values can be specified, however.
A control chart with a “headstart”, for example, will have higher CFARs at the start
of monitoring. This would lead to quicker detection of process changes that occur
early in the monitoring. It seems most reasonable to compare the OC performance of
two competing methods only when the two corresponding sequences of CFARs are
the same. If one considers, for instance, a given CUSUM chart with constant control
limits compared to the CUSUM chart with the same IC ARL, but with DPCLs to
have a constant CFAR, the latter method will more quickly detect an early shift in
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the process. The CFAR is also useful when two adaptive procedures are compared,
such as the CUSUM or EWMA charts with adaptive tuning parameters to detect
a non-abrupt deterioration of a monitored process. In such situations, maintaining
a same CFAR will ensure that using OC ARLs and SDRLs as summary criteria is
well-grounded.

3 Dynamic Use of CFAR

The static use of theCFAR is usefulwith the designof somemethods, but is not always
particularly impactfulwhen applied to standardmethods. Inwhatwe consider amajor
contribution, Shen et al. (2013) used simulation or Markov chain methodology to
determine the control limits of an EWMA chart for monitoring with Poisson data
when the area of opportunity varies over time. The control limits vary over time to
maintain the CFAR at each time as a constant, and the control limit for a particular
time is determined only after the corresponding area of opportunity is known. This
procedure differs from the static use of CFAR in the sense that the control limits
are determined online along with the process observations rather than determined
before monitoring. That is, the control limits are data dependent. Benefiting from this
unique feature, the performance of Shen et al. (2013)’s approach is better than that of
competing methods because no model has to be specified for the area of opportunity.
We refer to this case as the dynamic scenario of CFAR. Basically speaking, in this
scenario, we usually have additional information, for instance, some covariates zt ,
observed over time along with the process variable of interest Xt . At time point t ,
once we obtain the observations (Xi , zi )ti=1, we find the control limit at time t via

Pr
(
a({Xi }ti=1) > Lt | a({Xi }si=1) < Ls, 1 ≤ s < t; zt

) = α.

The dynamic CFAR has been applied in a number of applications. Among others,
Huang et al. (2016) applied it to cumulative sum (CUSUM) charts for monitoring
the mean of a normal distribution when the sample size varies. Numerical methods
were used to determine the control limits. Zhang and Woodall (2015) applied the
CFAR approach to the design of the risk-adjusted Bernoulli CUSUM chart of Steiner
et al. (2000) that is used to monitor surgical outcomes. In this application, the IC
probability of an adverse surgical outcomevarieswidely frompatient-to-patient. This
is illustrated in Fig. 1 where the adverse outcome of interest is the 30-day mortality
rate. The standard risk-adjusted Bernoulli CUSUM chart has constant control limits
as shown in Fig. 2. The limits based on the CFAR, termed as dynamic probability
control limits (DPCL), vary over time as shown in Fig. 2. The difference is that
one needs to know the distribution of patient risk factors in order to obtain the
constant limits whereas this information is not required to obtain the dynamic limits.
The dynamic limit values are obtained one-by-one using simulation as the patient
information becomes known.
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Fig. 1 Predicted mortality rates p(t) of the first 1000 patients — Sequence 1 from Surgeon 1.
Reproduced from Zhang and Woodall (2015). Published with permission of © 2015 John Wiley &
Sons, Ltd

Fig. 2 Comparison of constant control limit (dashed line) and DPCLs (solid line) for comparable
IC ARLs for population with all patients. Reproduced from Zhang and Woodall (2015). Published
with permission of © 2015 John Wiley & Sons, Ltd

Figure 3 shows how the CFAR rate varies widely for the chart with a constant
control limit. We have tight control of the CFAR values, however, when the dynamic
control limits are used. If the risk population changes, the dynamic control limits will
automatically adjust, as illustrated in Fig. 4. The control limits can be determined
when one is interested in detecting improvements in quality in addition to detecting
process deterioration. The resulting limits are shown in Fig. 5. It is more difficult to
detect improvement because most patients are expected to survive more than thirty
days after surgery.

Zhang andWoodall (2017b) showed that estimation error has less effect on the per-
formance of the risk-adjusted Bernoulli CUSUM chart when the IC risk-adjustment
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Fig. 3 Comparison of conditional false alarm rates of constant control limit (lighter line) and
DPCLs (darker line) for comparable IC ARLs. Reproduced from Zhang and Woodall (2015).
Published with permission of © 2015 John Wiley & Sons, Ltd

Fig. 4 Control limits when population shifts from lowest scores to highest scores after 500 patients.
Reproduced from Zhang and Woodall (2015). Published with permission of © 2015 John Wiley &
Sons, Ltd

model is estimated. In another application, Zhang et al. (2017) applied the dynamic
control limit approach to the method proposed by Tang et al. (2015) which allows
for surgical outcomes with more than two possible results. Recently, Aytaçoǧlu and
Woodall (2020) proposed to use the DPCLs for CUSUM charts when monitoring
proportions with time varying sample sizes. Sogandi et al. (2019) generalizes Zhang
and Woodall (2015)’s method to the case of multistage processess.

The CFARmetric has also been used in the self-starting chart context. Aminnayeri
and Sogandi (2016) applied it to risk-adjusted monitoring, while Shen et al. (2016)
extended it for monitoring Poisson random variables.
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Fig. 5 Upper and lower DPCLs of the first 1,000 patients in Sequence 1 from Surgeon 1 with
α = 0.001. Reproduced from Zhang and Woodall (2017a). Published with permission of © 2016
John Wiley & Sons, Ltd

4 Implementation Methods

For a better understanding of the implementation of the CFAR approach to determine
the DPCLs, we sketch below the general algorithm for the simulation-based method
in order for a one-sided chart to have an approximately constant CFAR of α. The
algorithm applies in both the static and dynamic cases.

1. Generate N random values from the IC model to obtain N values of the first
control statistic.

2. Use the upper α-percentile of the empirical distribution of the control statistic as
thefirst control limit. Stop if the first observation from the process beingmonitored
leads to a control statistic value outside this limit.

3. Generate N values of the control statistic at the next time period by combining N
values selected at random from the immediately previous simulated values of the
control statistic that were below the control limit and N observations generated
from the IC model.

4. Use the upper α-percentile of the empirical distribution of the control statistic as
the control limit.

5. Repeats step (3) and (4) until the actual observed data lead to a value of the control
statistic that falls outside the control limit.

In some cases, N will need to be large, e.g., 100,000 or 1,000,000. With discrete
data, the percentile selected should be such that the CFAR is no larger than α. On
some occasions, no such percentile will exist and thus there will be no control limit
for that time period.
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If the observations have an assumed continuous distribution, it may be possible
to replace the simulation with a successive numerical integration approach. The use
of Markov chains may be another option.

5 Other Applications

The CFAR can be used dynamically to determine the control limits for any time-
weighted chart, such as the CUSUM and EWMA charts, when the IC distribution
varies over time. A few unstudied examples include (i) monitoring a sequence of
geometric random variables when the IC parameter p0 varies over time; (ii) monitor-
ing binomial random variables when either the sample size and/or the IC parameter
p0 varies over time; and (iii) monitoring exponential random variables when the IC
mean β0 varies over time. We strongly recommend that any CUSUM charts studied
allow the possibility of a slack region, as discussed by Woodall and Faltin (2019).
CUSUM charts based on an IC region, an indifference region, and an out-of-control
region of parameter values can make control charting more practical and prevent an
excessive number of alarms for process changes that are too small to be of practi-
cal importance. In such situations, the methods given in Woodall and Faltin (2019)
combined with CFAR control could be a promising direction.

The dynamic use of CFAR has also successfully been used by Yang et al. (2017)
to solve the problem of monitoring nonparametric profiles with time-varying sample
sizes or random predictors. Traditional profile monitoring schemes, whose control
limits are often determined before the monitoring begins, are constructed based on
assumed knowledge of profile sample sizes and predictors; see Woodall (2007) for
an overview. In practice, however, in some cases, the sample sizes or predictors
are random and our foreknowledge about them is not available. Yang et al. (2017)
proposed a kernel-based nonparametric profile monitoring scheme which integrates
the multivariate exponentially weighted moving average procedure with the DPCLs.

Chen et al. (2016) employed the CFAR to construct an exactly distribution-free
multivariate control chart for monitoring location parameters when only a small
reference dataset is available. Although multivariate process monitoring has been
extensively studied in the literature, designing distribution-free control schemes is
still challenging because the multivariate generalization of signs or ranks usually
does not have the distribution-free property over a wide class of distributions. The
key idea in Chen et al. (2016) is to construct a series of conditionally distribution-free
test statistics in the sense that their distributions are free of the underlying distribution
given the empirical distribution functions up to the current time. The success of the
proposed method, therefore, lies in the use of DPCLs to attain a specified CFAR.

We believe that the CFAR idea can be readily extended to other error rates, such
as the false discovery rate (FDR) when we consider individual surveillance of high
dimensional data streams. In many applications, it is often natural to assume that if
an alarm with respect to a stream is made at the current time, then the process for this
specific stream is usually halted. Only the streams with detection statistics within
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the threshold limits continue to be monitored at the next time. Du and Zou (2018)
pointed out that since the ongoing streams monitored currently are dynamic in the
sense that no alarm occurred previously, the conventional notion of FDR needs to be
generalized to accommodate the dynamic nature of online monitoring.

6 Conclusions

We strongly encourage the use of the CFAR. Advantages include desired IC perfor-
mance, approximately geometrically distributed IC run lengths, and no requirement
of any information or assumptions about covariates such as sample sizes or patient
risk factors. In addition, estimation error has less effect in cases when covariate
information is used because no covariate distribution has to be estimated.

Acknowledgements The authors are grateful to an anonymous referee for insightful comments
that have improved the article.
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Design Considerations and Trade-offs for
Shewhart Control Charts

Rob Goedhart

Abstract When in-control parameters are unknown, they have to be estimated using
a reference sample. The control chart performance in Phase II, which is generally
measured in terms of theAverageRunLength (ARL) or FalseAlarmRate (FAR),will
vary across practitioners due to the use of different reference samples in Phase I. This
variation is especially large for small sample sizes. Although increasing the amount
of Phase I data improves the control chart performance, others have shown that
the amount required to achieve a desired in-control performance is often infeasibly
high. This holds even when the actual distribution of the data is known. When the
distribution of the data is unknown, it has to be estimated as well, along with its
parameters. This yields even more uncertainty in control chart performance when
parametric models are applied. With these issues in mind, choices have to be made
in order to control the performance of control charts. We discuss several of these
choices and their corresponding implications.

Keywords Control charts · Nonparametric · Parameter estimation

1 Introduction

In the field of statistical processmonitoring (SPM)detecting changes in an underlying
process is of major interest. To aid in the detect these changes, various statistical
techniques have been developed, such as control charts. A common example of such
a chart is the Shewhart control chart to monitor the mean of a variable, based on
3-sigma limits. When in-control parameters are known, this control chart yields a
false alarm rate (FAR) of 0.27% for normally distributed data. This is equivalent to
an in-control average run length (ARL) of 370.
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In practice, the in-control parameters μ0 and σ0 are generally unknown and need
to be estimated from a Phase I reference sample. This requires an extensive Phase I
analysis, as the obtained sample and its corresponding process estimates should be
representative of the process. For example, the sample may contain contaminated
data, and thus not be in-control itself. This would lead to a biased estimation of the
process behavior, which in turn, affects the control chart performance in Phase II. A
possible approach to address this problem is to use robust estimators, as described in
Schoonhoven et al. (2011). A general overview of Phase I issues and considerations
is given by Jones-Farmer et al. (2014).

While the use of robust estimation methods can provide a substantial improve-
ment, it does not solve all the issues belonging to parameter estimation. Quesen-
berry (1993) recognized that, when parameters are estimated, consecutive false alarm
events are dependent. As a consequence, the unconditional run length distribution is
not geometric, as was previously assumed. He concluded that larger sample sizes are
required in order to let the control chart behave as if parameters are known. Another
important aspect of parameter estimation was not considered for this recommenda-
tion however, as shown by Saleh et al. (2015b) amongst others. They conclude that,
as a result of practitioner-to-practitioner variation, the sample size requirements
are much larger than suggested by Quesenberry (1993). For literature overviews on
research on control chart performance when parameters are estimated, we refer to
Jensen et al. (2006) and Psarakis et al. (2014).

In many situations, the sample size requirements for a sufficient control chart
performance may be unfeasibly large. As an alternative, several researchers have
proposed to adjust the control limits based on the sample size and the estimators
used, such that a certain control chart performance criterion is satisfied. Albers and
Kallenberg (2004a, b, 2005) provide two specific criteria as general directions for
control limit adjustment, namely the bias criterion and the exceedance probability
criterion. The first focuses on the unconditional run length distribution properties
(i.e., averaged over all practitioners), while the latter aims to provide a certain mini-
mum conditional performance for a large proportion of practitioners. Both of these
approaches can also be combined with different performance measures, such as the
FAR, ARL, or other similar run length characteristics.

After deciding on a design criterion and performance measure, one has to deter-
mine the estimation method to achieve it. This includes decisions on estimators to be
used as mentioned earlier, but more importantly also on the accompanying param-
eter and distributional assumptions made, as well as the Phase I sample size. One
of the most common assumptions in the literature of SPM is that process data are
normally distributed, and the indicated control chart performance is then based on
that assumption. However, data are often not normally distributed, which may sub-
stantially impact the actual performance of the control chart. To this end, more gen-
eral models such as nonparametric methods have been developed. See for example
Chakraborti et al. (2001, 2015) and Qiu (2018) for more information on nonpara-
metric statistical process control. When sample sizes are small, parametric methods
with appropriate distributional assumptions obviously perform better than nonpara-
metric alternatives. However, in that case, the appropriateness of these distributional
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assumptions is also more difficult to validate, while deviations from these assump-
tions can have a substantial impact on performance.

This contribution is organized as follows. In the next section, we discuss the
impact of parameter estimation, as well as several proposed initial countermeasures.
In Sect. 3, we elaborate on different criteria to consider when constructing a control
chart. After that, in Sect. 4, we elaborate on the distributional assumptions and
corresponding implications on the control chart performance. In Sect. 5, we discuss
the possible decisions regarding design parameters, such as sample size or strictness.
Finally, in Sect. 6, we provide some concluding remarks.

2 Parameter Estimation

Consider the Shewhart X̄ control chart to monitor the mean of a normally distributed
variable through subgroups of size n, which has control limits

UCL = μ0 + K
σ0√
n

,

LCL = μ0 − K
σ0√
n

,
(1)

where K = Φ−1(1 − α0/2), with α0 the nominal FAR. In practice, the values of μ0

and σ0 are generally unknown and need to be replaced by some estimates μ̂0 and σ̂0

respectively. This results in the estimated control limits

̂UCL = μ̂0 + K
σ̂0√
n

,

̂LCL = μ̂0 − K
σ̂0√
n

.

(2)

Many choices of estimators are possible, with the mean and median being common
estimators for location, and the sample standard deviation and average moving range
being common estimators for dispersion. A first property to consider for estimators
is the efficiency of the estimators. This is done by Cryer and Ryan (1990), who show
that the sample standard deviation is much more efficient than the average moving
range when considering individual observations from normally distributed data. A
similar conclusion was found by Mahmoud et al. (2010), who advise against the use
of sample ranges to estimate dispersion.Another dimension to consider for estimators
is the robustness, such that the estimation is less sensitive to contaminations in the
Phase I data. Several robust estimation methods are considered in Schoonhoven et al.
(2011), and Schoonhoven and Does (2012).

However, even when estimation is efficient and robust, there will still be estima-
tion uncertainty. Quesenberry (1993) recognized that, due to parameter estimation,
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control charts with estimated parameters did not behave as they should according to
the known parameter calculations. He suggested the use of a Phase I sample of at
least 400/(n − 1) subgroups of size n each, or around 300 observations when n = 1.
However, for this recommendation he did not consider the variation between practi-
tioners. Since different practitioners obtain different Phase I samples, their estimates
and corresponding control limitswill vary.As a consequence, the control chart perfor-
mance in terms of the FAR or ARLwill also vary. This effect is extensively discussed
by Saleh et al. (2015b), and is often referred to as the practitioner-to-practitioner
variability. This variation becomes less severe when the sample size increases, but
the original sample size suggestions from Quesenberry (1993) are not sufficient to
guarantee a performance equivalent to that of the known parameters situation. For
S2 and S charts Epprecht et al. (2015) conclude that the sample size requirements
are often closer to several thousands.

Instead of waiting until a sufficient amount of Phase I data is obtained, another
option is to make use of control charts that update the parameter estimates. Examples
of such methods are the self-starting control charts of Hawkins (1987) and Quesen-
berry (1991). The advantage of such methods is that the monitoring Phase II can
start early, and that the estimation error decreases over time as long as the process
remains in-control. However, when data contaminations are present or when there
is a shift or drift in the process mean, there is a possibility that these contamina-
tions are incorporated in the updated parameters when they are not detected directly.
This issue has been extensively investigated in Huberts et al. (2019). They conclude
that the practitioner-to-practitioner variation reduces substantially when the process
remains in-control or when the signals are correctly classified, and that the possible
performance deterioration depends on the type of control chart and the level of data
contamination.

3 Design Criteria

In many situations, the sample size requirements such as indicated in Epprecht et al.
(2015) may not be available. To that end, several authors have proposed the use of
adjusted control limits. Such an adjustment should be done to meet a certain per-
formance criterion. In general, two directions are possible for control limit adjust-
ment, which are the unconditional and conditional approach. Albers and Kallen-
berg (2004a, b) introduced their corresponding criteria as the bias criterion and the
exceedance probability criterion, respectively.

3.1 Bias Criterion

Without parameter estimation, the run length (RL) distribution would be geometrical
with parameter α0. From this, several run length properties can be calculated, such
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as the ARL (1/α0) or other functions g(α0) of the FAR. When parameters are esti-
mated consecutive false alarm events are dependent, as pointed out by Quesenberry
(1993). This means that the unconditional RL distribution (i.e., the RL distribution
after averaging out the effects of estimation error) is no longer geometric. As a con-
sequence, many properties of the unconditional RL distribution are different from
their nominal value. This was shown for example by Chen (1997), who determined
the average and standard deviation of the unconditional RL distribution when control
limits are estimated. The bias criterion aims to adjust the control limits such that the
control chart provides a specified in-control RL property (such as the FAR or ARL)
in expectation.

In particular, the conditional false alarm rate (CFAR, conditional on the estimated
control limits) can be written as

CFAR = 1 − P
(

̂LCL ≤ X̄i ≤ ̂UCL
)

, (3)

where X̄i is some in-control Phase II subgroup average at time period i . Conditional
on the estimates ̂LCL and ̂UCL , the (conditional) RL properties are geometric with
parameterCFAR.Theproperties of the conditionalRLdistribution for these estimates
can then be calculated as a function g of CFAR. For example, the conditional ARL
(CARL) is equal toCARL = g(CFAR) = 1/CFAR. The unconditional equivalent
of these properties is then equal to the expectation of these measures before the
control limits are estimated. In general, for any RL property g(CFAR), the bias
criterion aims to provide a control chart performance equal to a nominal value g(α0)

in expectation, or more specifically

E (g(CFAR)) = g(α0) . (4)

Several researchers have proposed adjustments to the control limit coefficient K in
(2) to achieve this for various performance measures. Examples of such adjustments
for Shewhart type control charts can be found in Albers and Kallenberg (2004b,
2005), Tsai et al. (2005), Goedhart et al. (2016) and Diko et al. (2017).

3.2 Exceedance Probability Criterion

While it may seem logical to aim for a certain performance in expectation, there could
still be a large probability of an unsatisfactory control chart performance for indi-
vidual practitioners due to practitioner-to-practitioner variation. When the process is
in-control, large FARvalues (or lowARLvalues) are undesirable, as that wouldmean
that the control chart produces many false signals. This could lead to a waste of time
and effort invested in finding a non-existing special cause. As an alternative design
criterion, Albers and Kallenberg (2004a, 2005) proposed the exceedance probabil-
ity criterion, which aims to provide a specified minimum in-control performance
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with a specified large probability by focussing on the conditional performance. For
example, when considering the CFAR as performance measure, this criterion can be
denoted as

P (CFAR ≤ α0) ≥ 1 − p , (5)

for some small probability p. Note that, since CARL = 1/α0 is a monotonically
decreasing function of α0, (5) is equivalent to P (CARL ≥ 1/α0) = 1 − p, which
would be the exceedance probability criterion for theCARLas performancemeasure.
Note also that, when considering individual observations (n = 1), this objective for
Shewhart control charts is equivalent to that of a tolerance interval (see e.g., Krish-
namoorthy and Mathew 2009).

In order to satisfy the criterion, the control limit coefficient K in (2) should
be adjusted. Various authors have proposed bootstrap, analytical and/or numerical
(approximation) methods to determine the required control limit adjustments. Exam-
ples of these are given in Albers and Kallenberg (2004a, 2005), Jones and Steiner
(2012), Gandy and Kvaløy (2013), Faraz et al. (2015), Saleh et al. (2015a), Goedhart
et al. (2017b, a, 2018).

While this approach limits the possibility of an insufficient in-control perfor-
mance, it does not remove the practitioner-to-practitioner variation. That means that
the ARL values tend to be larger after the adjustment. Although this is beneficial
in the in-control situation, one might expect that the out-of-control detection speed
would suffer substantially. However, as concluded by Faraz et al. (2015), Saleh et al.
(2015b) and Jardim et al. (2020) among others, the adjustments do not have too
much of an adverse effect on the out-of-control performance. For that reason, the
conditional approach of the exceedance probability criterion is suggested more often
in recent literature.

4 Distributional Assumptions

After deciding on the desired design criterion, the next step is to actually achieve it.
This requires appropriate modeling of the Phase I in-control distribution, where the
functional form and corresponding underlying distributional assumptions of control
limits form an important role. For example, the control limits as displayed in (2) are
designed for normally distributed data. When the data distribution is skewed, these
limits are no longer appropriate and the performance of the design criterion will not
be met.

4.1 Parametric Methods

When the distribution of the data is known, one can determine the required control
limits by using the corresponding probability limits. An S2 chart using probability
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limits to monitor the standard deviation of a normally distributed variable is one such
example of an approach since the monitoring characteristic follows a chi-squared
distribution. The same approach can be used for other distributions of interest. For
example, when considering the exceedance probability criterion, Krishnamoorthy
and Mathew (2009) provide tolerance intervals for a wide range of distributions.
However, in practice, the distribution of the data is generally unknown and has to
be estimated as well. This was also indicated by Albers et al. (2004), who divided
the total estimation error in two distinct factors: the model error and the stochastic
error. The first is caused by inadequate model assumptions, while the latter is the
result of estimation uncertainty such as considered in Sect. 3.

In order to reduce the model error, various parametric approaches are possible.
The first option is to use data transformations or aggregations in order to make
the normal theory more applicable. For example, a common practice in SPM is
the use of subgroups. When considering the average of a subgroup, the normality
assumptions should becomemore appropriate due to the central limit theorem (CLT).
This approach is evaluated inHuberts et al. (2018) for various distributions. However,
they conclude that for the applications in SPM, the CLT should be used with caution.
Since the interest in SPM lies in the far end of the tails of the distribution, the
convergence to normality as indicated by CLT is not (quick) enough when the data
distribution is highly skewed or has wide tails. Other parametric alternatives are
to use data transformations to make normal theory more applicable (e.g., Box and
Cox 1964, Chou et al. 1998), or to use more general parametric models such as
the Pearson system of distributions. However, Goedhart (2018) illustrates that for
these methods, similar conclusions hold as for the use of the CLT. Because control
charts are generally based on small tail probabilities, minor model deviations can
cause major deviations in the obtained control chart performance. This leaves two
alternative directions to control the control chart performance when the distribution
is unknown: nonparametric methods and/or being more lenient in the in-control
performance demands.

4.2 Nonparametric Methods

There is a wide range of literature available on nonparametric estimation methods
in statistical process monitoring. For general information and detailed overview on
this literature, we refer to Chakraborti et al. (2001, 2015), Chakraborti and Gra-
ham (2019) and Qiu (2018). The main advantage of such methods is that the model
error is no longer an issue. Generally this means that the stochastic error increases,
which results in larger sample size requirements. For example, when using the non-
parametric tolerance intervals from Krishnamoorthy and Mathew (2009) to satisfy
the exceedance probability criterion in (5) when α0 = 0.0027 and p = 0.1, the mini-
mum sample size is already equal tom = 1440 individual observations. Adjustments
based on extrapolation are available to lower this requirement somewhat (see Young
and Mathew 2014, Goedhart et al. 2020).
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Fig. 1 Probability plot of m = 50 simulated observations from a t10 distribution

While this may seem like a major disadvantage of nonparametric methods, it is
important to realize that when sample sizes are small, parametric assumptions are
more difficult to validate in thefirst place.As a simple example, consider aStudent’s t-
distributionwithd f = 10 degrees of freedom (t10). This distribution has amean equal
to 0 and a standard deviation equal to 1.12. We simulate a random sample ofm = 50
individual observations (n = 1) from this distribution, and find estimates of the mean
and standard deviation of−0.008 and 1.150, respectively. For the Anderson–Darling
test for normality, we find an AD value of 0.370 and a p-value of 0.412. A probability
plot of the simulated sample is given in Fig. 1. In summary, there is no real reason
to reject the normality assumption at this point. However, if we consider the actual
quantiles of the t10 and the N (0, 1.12) distributions as a comparison, the differences
are quite large. In particular, the 1 − 0.00135 (1 − 0.0027/2) quantiles of these
distributions equal 3.96 and 3.36, respectively. This already leads to control chart
performance issues when the data distributions follow known theoretical functional
forms such as the normal and t-distribution, but in practice, even this is not the case.
As a consequence, it does not seem reasonable to expect an accurate estimate of
the 0.27% (or even 0.135% for two-sided control charts) percentiles of an unknown
probability distribution based on a small amount of data. This means that either
more data should be collected, or lower performance demands should be placed on
the control chart.



Design Considerations and Trade-offs for Shewhart Control Charts 21

5 Sample Size and Strictness

Following the aspects discussed in the previous sections, decisions have to be made
regarding the amount of Phase I data (m subgroups of size n) and the strictness of
the design criteria (α0, and possibly p).

When reliable data are available in abundance and/or easy to collect, this opens
up the way for the use of nonparametric methods for a more robust control chart
performance, even for small values of α0 and p. At the same time, the effect of
parameter estimation is then less severe in the first place, and distributional assump-
tions are easier to validate. When large amounts of data are not available, this is not
as straightforward. As mentioned earlier, data requirements for nonparametric meth-
ods are generally considered large. On the other hand, when the available datasets
are small, the appropriateness of a parametric model is difficult to validate, which
may lead to undesirable control chart performances as well when model errors are
substantial. An important consideration could be the reason behind the small sample.
For example, it could be because of high costs associated with sampling, or because
of the nature of the process. When sampling is difficult or costly in Phase I, this
probably also holds for the monitoring part in Phase II. Although a larger value of
α0 means a lower in-control ARL when time units are measured in a number of
observations, the impact could be limited when considering time instead. Therefore,
lowering the desired (minimum) in-control ARL, which would lower the sample size
requirements for a controlled control chart performance, may be required in such a
situation.

6 Concluding Remarks

Generally, the in-control behavior of a process is unknown and requires estimation
using a Phase I reference sample. This brings several challenges and trade-offs with
it regarding the design of a control chart. Although adding additional assumptions
improve the performance of statistical methods in theory when appropriate, they are
often difficult to validate in practice. To this end, it may be advisable to be more
conservative in the performance requirements instead. The issues considered also
hold for control charts other than Shewhart type charts and are relevant to other
statistical applications in a similar way.
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On the Calculation of the ARL for Beta
EWMA Control Charts

Sven Knoth

Abstract Accurate calculation of the Average Run Length (ARL) for exponentially
weighted moving average (EWMA) charts might be a tedious task. The omnipresent
Markov chain approach is a common and effective tool to perform these calculations
— see Lucas and Saccucci (1990) and Saccucci and Lucas (1990) for its application
in case of EWMA charts. However, Crowder (1987b) and Knoth (2005) provided
more sophisticated methods from the rich literature of numerical analysis to solve
the ARL integral equation. These algorithms lead to very fast implementations for
determining the ARLwith high accuracy such as Crowder (1987a), or the R package
spc (Knoth 2019) with its functions xewma.arl() and sewma.arl(). Crow-
der (1987a) utilized the popular Nyström method (Nyström 1930) which fails for
bounded random variables existing, for example, in the case of an EWMA chart
monitoring the variance. For the latter, Knoth (2005) utilized the so-called colloca-
tion method. It turns out that the numerical problems are even more severe for beta
distributed random variables, which are bounded from both sides, typically on (0, 1).
We illustrate these subtleties and provide extensions from Knoth (2005) to achieve
high accuracy in an efficient way.

Keywords Integral equation · Markov chain approximation · Collocation ·
Change point detection

1 Introduction

Compared to much more prominent continuous distributions such as the ubiquitous
normal or the slightly less popular exponential, gamma or Weibull distributions, the
beta distribution is sporadically used as vehicle for monitoring designs. There are a
few cases such asYousry et al. (1991) in a Bayes framework, Reynolds and Stoumbos
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(2005) providing a solid non-normal distribution example, Grigg and Spiegelhalter
(2007) and Gan and Tan (2010), Loke and Gan (2012), Gan et al. (2012) dealing
with risk-adjusted data in the field of health monitoring, where beta distribution
is treated within the field of statistical process monitoring (SPM). In addition, the
beta distribution is also used when handling order statistics in SPM, see Castagliola
(2001) as particular example and Graham et al. (2012) for more general statements.
However, only Loke and Gan (2012) explicitly monitored beta distributed variables
to detect changes in the risk distribution within a large set of future patients. While
Loke and Gan (2012) dealt with CUSUM (cumulative sum) charts, we analyze one-
sided EWMA (exponentially weighted moving average) charts. In summary, we
outline and evaluate numerical methods (Markov chain, Nyström, collocation) for
calculating ARL (average run length) values for upper EWMA control charts.

In Sect. 2, the beta distribution is described in detail, and the EWMA chart for
beta distributed data is introduced. Then, in Sect. 3, the aforementioned numerical
procedures are presented, including some new recipe patterns. Utilizing these algo-
rithms, we study their behavior for various shapes of beta distributions in Sect. 4.
Conclusions are given in Sect. 5.

2 The Beta Distribution and the EWMA Control Chart

The beta distribution appeared in the realm ofKarl Pearson’s distributions introduced
in Pearson (1895, 1916) as Pearson Type I and II distribution – see Lahcene (2013)
for historical details.We follow standard literature about statistical distributions such
as Johnson et al. (1995) or Forbes et al. (2011). For the sake of brevity, we use the
standardized version. Hence, let X be a continuous random variable on (0, 1) ([0, 1]
would be possible as well) having the following properties:

PDF f (x) = 1

B(α, β)
xα−1(1 − x)β−1

with B(α, β) = Γ (α)Γ (β)

Γ (α + β)
. (1)

CDF F(x) = B(x;α, β)

B(α, β)
= Ix (α, β)

with B(x;α, β) =
∫ x

0
tα−1(1 − t)b−1 dt . (2)

PDF and CDF denote the probability density and the cumulative distribution func-
tion, respectively. Note that the two parameters α and β are positive. Moreover,
Γ () denotes the gamma function. The functions B(, ), B(; , , ), and Ix (, ) are the
complete, incomplete, and regularized incomplete beta function, respectively. They
are implemented in standard mathematical or statistical software packages for easy
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Fig. 1 Selected beta density functions, on the left β is fixed at 8

deployment. In the sequel, we write X ∼ Beta(α, β) for declaring that X follows a
beta distribution with parameters α and β. Based on the mentioned literature:

E(X) = α

α + β
. (3)

Var(X) = αβ

(α + β)2(α + β + 1)
. (4)

Mode = α − 1

α + β − 2
for α, β > 1 .

Skewness = 2(β − α)
√

α + β + 1

(α + β + 2)
√

αβ
.

From (1), we conclude that 1 − X ∼ Beta(β, α). There are further interesting fea-
tures and connections to other distributions, see again Johnson et al. (1995) or Forbes
et al. (2011). In Fig. 1, we illustrate some typical beta distribution patterns choosing
α and β from {0.5, 1, 2, 4, 8}. First, β = 8 is fixed and α varies, while in the second
diagram, α and β coincide. The various shapes in Fig. 1 show the flexibility of the
beta distribution. Besides the uniform (α = β = 1) distribution, we recognize for
(α, β) = (1, 8) a similar shape as the exponential distribution (which is not bounded
to the right-hand side) and for (α, β) = (8, 8) a normal bell shape (again, a truncated
version).

In order to detect changes in the mean of X , we deploy EWMA control charts,
which were proposed by Roberts (1959). Hence, while observing sequentially
X1, X2, . . ., we apply the common EWMA smoothing.

Z0 = z0 = μ0 := Ein-control(X) ,

Zt = (1 − λ)Zt−1 + λXt , t = 1, 2, . . .
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An alarm is given, when Zt is large, that is at the time

L = inf{t ≥ 1 : Zt > cu} .

Upper control charts for the beta distribution could be transferred to lower ones by
using 1 − X ∼ B(β, α). The two-sided design will not be discussed here.

One can also incorporate a reflecting barrier to the EWMAsequence, seeYashchin
(1987), Crowder and Hamilton (1992), and Gan (1993). Furthermore, Yashchin
(1989) re-formulated this procedure as a special case of weighted CUSUM of type 2.
Note that such barriers were sometimes used for numeric approximations of conven-
tional EWMA ARL (e.g., see Waldmann 1986), but not as genuine control scheme
features. Contrary to the previous frameworks, our EWMA statistic Zt exhibits the
“natural” lower border 0. Therefore, it is less susceptible against inertia which is a
pronounced problem for EWMA sequences without this reflecting border, as was
demonstrated in Woodall and Mahmoud (2005). In the last paragraph of Sect. 4, we
briefly discuss these patterns.

The upper control limit could also be written as the usual “mean + value ×
asymptotic standard deviation” of Zt (t → ∞). For doing this, we recall that (in-
control case)

E(Zt ) = μ0 ,

Var(Zt ) = λ

2 − λ

(
1 − (1 − λ)2t

)
Var(X) → λ

2 − λ
Var(X) , t → ∞ .

Then we write

cu = μ0 +U

√
λ

2 − λ

√
Var(X) .

The design parameter cu alias U is chosen to give a pre-defined in-control ARL
(average run length). The latter is the most popular performance measure for control
charts and was introduced in Page (1954). When all Xt follow the same beta distribu-
tion (either the in-control one or some disturbed version), it quantifies the expected
number of observations (runs) until signal. Hence, we define � := E(L). There are
more sophisticated measures, but most of them are ARL related. In summary, the
ARL measure is essential to evaluate and calibrate control charts. Hence, its cal-
culation is an important prerequisite for utilizing control charts. Before presenting
some methods to calculate the ARL, we emphasize that it is useful to deal with the
ARL function �(z) for an arbitrary EWMA starting value Z0 = z. Besides the default
value �(z0), it is also useful to consider �(0) in the case of an increased mean (our
detection objective), because it provides a worst-case bound for the out-of-control
ARL.
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3 Numerical Methods to Calculate EWMA ARL

First, we describe the most popular approach, namely the Markov chain approxima-
tion which was introduced into the control chart field by Brook and Evans (1972) and
made popular for EWMA in Lucas and Saccucci (1990). It relies on the decomposi-
tion of the chart’s continuation region [0, cu] into N subintervals of size w = cu/N .
Then we replace the original movement of the EWMA statistic Zt by steps on the
grid w

2 ,
3w
2 , . . ., (2N−1)w

2 . The probabilities to move from interval i to j are collected
via

qi j = P
(
Zt ∈ (

( j − 1)w, jw
] | Zt−1 = (i − 0.5)w

)

= F

( [ j − (1 − λ)(i − 0.5)]w
λ

)
− F

( [ j − 1 − (1 − λ)(i − 0.5)]w
λ

)

in the matrixQ = (qi j ), i, j = 1, 2, . . . , N . Recall that F(·) denotes the CDF of the
beta distribution. Another, slightly more complicated approach to fill this matrix was
proposed by Hawkins (1992).

q̃i j = P
(
Zt ∈ (

( j − 1)w, jw
] | Zt−1 ∈ ((i − 1)w, iw]

)

≈
[
F

( [ j − (1 − λ)(i − 1)]w
λ

)
+ 4F

( [ j − (1 − λ)(i − 0.5)]w
λ

)
+

F

( [ j − (1 − λ)i]w
λ

)
− F

( [ j − 1 − (1 − λ)(i − 1)]w
λ

)
−

4F

( [ j − 1 − (1 − λ)(i − 0.5)]w
λ

)
− F

( [ j − 1 − (1 − λ)i]w
λ

)]
/6 .

Using standard results from Markov chain theory, we determine the solution of the
following linear equation system:

(I − Q)� = 1 ,

where I denotes the identity matrix of size N × N , 1 is a vector containing N ones,
and � yields the discrete approximation of the ARL function �(·). After solving this
equation, we need to pick the element that corresponds to z0. The following code
lines, written in R, demonstrate the simplicity and practicability of this approach.

1 ewmaU. arl <− function(lambda, cu, Alpha, Beta , z0, N=50) {
2 i <− 1:N; w <− cu /N
3 qij <− function( i , j ) {
4 pbeta( w∗( j −(1−lambda)∗( i−.5)) /lambda, Alpha, Beta) −
5 pbeta( w∗( j−1−(1−lambda)∗( i−.5)) /lambda, Alpha, Beta) }
6 QQ<− outer( i , i , qij )
7 one <− rep(1 , N) ; II <− diag(1 , N)
8 ARL<− solve ( II−QQ, one)
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9 arl <− ARL[round(z0 /w)]
10 arl
11 }

However, in the next section, we will see that quite large values of N are needed (for
both qi j and q̃i j ) to achieve decent accuracy.

Another algorithm to calculate the EWMA ARL is the Nyström method which
was utilized the first time for EWMA by Crowder (1987b). It starts with the ARL
integral equation,

�(x) = 1 +
∫ cu

0
�(y)

1

λ
f

(
y − (1 − λ)x

λ

)
dy ,

where f () is the PDF of the beta distribution. The core idea of the Nyström method
is to replace the integral on the right-hand side by a quadrature. We obtain

�(zi ) = 1 +
N∑
j=1

wj�(z j )
1

λ
f

(
z j − (1 − λ)zi

λ

)
.

Thequadratureweightswj and nodes z j , j = 1, 2, . . . , N , are either very simple ones
as for the Simpson rule or more sophisticated (and more effective) ones such as for
the Gauß-Legendre quadrature. By utilizing the product midpoint rule, we recover
the Markov chain equation system. The above system is solved in the usual way.
Afterward, by applying the Nyström interpolation based on �(z j ), j = 1, 2, . . . , N ,

�(z) = 1 +
N∑
j=1

wj�(z j )
1

λ
f

(
z j − (1 − λ)z

λ

)
,

we approximate theARL function for every 0 ≤ z ≤ cu . Aswe see later, the Nyström
method works well only for a few of our considered parameter situations.

A further numerical procedure to solve (approximately, but with high accuracy)
the aforementioned integral equation is collocation. An early treatment of collocation
for the ARL integral equation was given by Gianino et al. (1990). However, its first
“indispensable” application was Knoth (2005), where the ARL of S2 EWMA was
calculated. The basic principle is to approximate the function �(x) by, for example,
polynomials. Then the original problem is reduced to one of determining a finite
number of polynomial coefficients. We use, as in Knoth (2005), Chebyshev polyno-
mials defined for the interval [0, cu]. Using Chebyshev polynomials of order up to
N − 1, namely T ∗

0 (), . . ., T ∗
N−1(), we write

N∑
j=1

c j T
∗
j−1(zi ) = 1 +

N∑
j=1

c j

∫ min{(1−λ)zi+λ,cu}

(1−λ)zi

T ∗
j−1(y)

1

λ
f

(
y − (1 − λ)zi

λ

)
dy .
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By evaluating the above equation at reasonably chosen z = zi (here the roots of the
Chebyshev polynomial of order N ) and determining the definite integrals (deploying
quadrature again), we obtain a linear equation system. Note that we are able to treat
the special support of the beta variable X by adjusting the integral limits. Later we
see that this procedure, which was used in the same way for the upper EWMA S2

chart, works well for most of the considered parameter configurations. But for some
other, it deteriorates. Below we introduce a setup that accounts more effectively for
the bounded support of the beta distribution. In fact, a piece-wise design helps a lot
for these subtle configurations. We construct these subintervals starting from

(
cu − λ

1 − λ
, cu

]
,

which is the only subinterval allowing an alarm signal within the next observation.
The other subintervals are built in the same way, allowing a signal in at least two,
three, etc. observations. Some arithmetics give the number of subintervals K and
their shape [ak, bk], k = 1, 2, . . . , K :

K =
⌈
log(1 − cu)

log(1 − λ)

⌉
.

bk = 1 − 1 − cu
(1 − λ)K−k

, (bK = cU ) .

ak = max

{
0, 1 − 1 − cu

(1 − λ)K−k+1

}
, (a1 = 0) .

bk − ak = λ(1 − cu)

(1 − λ)K−k+1
, (subinterval widths) .

Eventually, we obtain a more complicated linear equation system, for zki ∈ [ak, bk],
k = 1, 2, . . . , K and i = 1, 2, . . . , N :

N∑
j=1

ck j T
∗
k, j−1(zki ) = 1 +

∑
l

N∑
j=1

cl j

∫ ...

...

T ∗
l, j−1(y)

1

λ
f

(
y − (1 − λ)zki

λ

)
dy (5)

The integral limits are nowmore involved.By accounting for the restricted supports of
T ∗
l,·(), the lower limit is given by max{(1 − λ)zki , al} and the upper one by max{(1 −

λ)zki + λ, bl}. Moreover, the summation over l = 1, 2, . . . , K could be reduced. It
ends already at min{k + 1, K } and starts possibly much later than at l = 1. For the
considered configurations we provide the number of intervals in Table 1, where the
EWMA constant is set to λ = 0.1, and the target in-control ARL to �! = 500.

Both collocation setups rely on reliable quadrature procedures. Knoth (2005)
showed that substitutions improve the standard Gauß-Legendre quadrature a lot. One
idea is to substitute x2 = y − (1 − λ)zki to make the quadrature robust for α < 1
(density f () not bounded at 0). In case of the piece-wise design, we can apply this
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Table 1 Some example configurations, alarm thresholds cu (akaU ), and number K of subintervals
for the piece-wise collocation design; λ = 0.1, �! = 500

(α, β) (0.5,8) (1,8) (2,8) (4,8) (8,4) (8,2) (8,1) (8,0.5)

cu 0.114208 0.178124 0.276491 0.412137 0.738949 0.862811 0.936718 0.974214

U 3.162384 2.939243 2.764543 2.627252 2.409846 2.270129 2.097802 1.886420

K 2 2 4 6 13 19 27 35

(α, β) (8,8) (4,4) (2,2) (1,1) (0.5,0.5)

cu 0.570147 0.596072 0.628256 0.664641 0.700625

U 2.521399 2.512603 2.500164 2.486026 2.473469

K 9 9 10 11 12

idea also for β < 1 by setting x2 = (1 − λ)zki + λ − y to deal with f () that is now
not bounded at 1. The latter is applied for l = k + 1 in (5). Another transformation
used here is to perform partial integration when computing the terms of (5).

Ikil =
∫ max{(1−λ)zki+λ,bl }

max{(1−λ)zki ,al }
T ∗
l, j−1(y)

1

λ
f

(
y − (1 − λ)zki

λ

)
dy

= T ∗
l, j−1(y)F

(
y − (1 − λ)zki

λ

)∣∣∣∣
max{(1−λ)zki+λ,bl }

max{(1−λ)zki ,al }

−
∫ max{(1−λ)zki+λ,bl }

max{(1−λ)zki ,al }
t∗l, j−1(y)F

(
y − (1 − λ)zki

λ

)
dy .

Again, T ∗
l, j−1() denote the modified Chebyshev polynomials and t∗l, j−1() stand for

their first derivatives. The latter can be determined easily by applying the rule
t j (x) = j/(1 − x2)

(
Tj−1(x) − xTj (x)

)
for j > 1 (plus t0(x) ≡ 0 and t1(x) ≡ 1).

The versions without “∗” correspond to the ordinary Chebyshev polynomials on
[−1, 1]. It holds that t∗l, j−1(y) = 2/(bl − al) tl, j−1

(
(2y − al − bl)/(bl − al) − 1

)
for

y ∈ [al, bl ] and, of course, T ∗
l, j−1(y) = Tj−1

(
(2y − al − bl)/(bl − al) − 1

)
. More

sophisticated modifications are possible,but the latter works well enough for practi-
cal purposes.

In the following section, we compare the twoMarkov chain designs, the Nyström
procedurewith bothGauß-Legendre andSimpson rule nodes, and collocationwithout
and with piece-wise setup of the base functions.

4 Comparison Study

Westartwith themost popularARLcalculation technique, theMarkov chain approxi-
mation following Lucas and Saccucci (1990).We consider two (α, β) configurations,
one (1, 8) works well and another one (8, 1) that leads to problematic behavior. The
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Fig. 2 Classic Markov chain approximation of an upper EWMA chart for two beta distributions.
True � is 500, λ = 0.1, N runs from 10 to 1000 by 1

EWMA smoothing constant is set to λ = 0.1 throughout this section. Figure 2 illus-
trates the resulting ARL approximation patterns, augmented with some potentially
improving numerical extensions (dashed lines). The conclusions are twofold. On
the one hand, we observe combinations where the Markov chain approximation is a
reasonable tool to calculate EWMA ARL in case of beta distributions. On the other
hand, we discover others where it does not stabilize for N up to 1000. In particular,
most of the ARL approximations for (8, 1) in Figs. 2 and 3 are far away from the
correct value 500 so that parts of the profiles are not visible.

Applying convergence acceleration techniques (see Brezinski 1985, for some
more theoretical thoughts) might help. Popular attempts in the statistical process
monitoring literature are Brook and Evans (1972), Lucas (1982), Lucas and Saccucci
(1990), and Hawkins (1992). The latter deploys Richardson extrapolation and yields
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Fig. 3 Markov chain approximation following Hawkins (1992) of an upper EWMA chart. True �

is 500, λ = 0.1, N runs from 10 to 1000 by 1
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Fig. 4 Nyström method with Gauß-Legendre nodes for an upper EWMA chart. True � is 500,
λ = 0.1, N runs from 10 to 1000 by 1

some impressive results for a couple of designs (see Yashchin 2019, for a recent
example). We added to Figs. 2, 3, 4, 5, 6, and 7 corresponding numbers (for N =
8, 16, 32, . . . , 1024, drawn as dashed lines) to provide some illustrations for the beta
distribution. As mentioned in Knoth (2006) for CUSUM control charts monitoring
normal variance, these techniques are effective only for well behaving convergence
patterns — compare here the two cases (1, 8) and (8, 1), for example.

Applying the more advanced Markov chain design relying on ideas of Hawkins
(1992) does not lead to improvement, as illustrated in Fig. 3. Below we will see
examples where the design of Hawkins performs slightly better than the original
Markov chain setup. For both Markov chain frameworks, the Richardson extrapo-
lation yields some improvements for the raw Markov chain results. However, the
collocation results, presented below, are substantially closer to the true ARL values.
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Fig. 5 Nyström method with Simpson rule nodes for an upper EWMA. True � is 500, λ = 0.1, N
runs from 10 to 1000 by 1
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Fig. 6 Collocation for an upper EWMA chart. True � is 500, λ = 0.1, N runs from 5 to 250 by 1

After performing a similar study for solving the ARL integral equation with
the Nyström method as in Crowder (1987b), we show excellent results for (8, 8)
and for (2, 8), where the convergence patterns are already unstable (see Fig. 4). At
least, for (8, 8), the Nyström method works excellently as for EWMA monitoring
the normal mean. However, (2, 8) exhibits a worse behavior. The parameter pairs
(α, β) = (4, 8), (8, 4), and (4, 4) yield more stable patterns, but not as good as
(8, 8). For all other pairs from Table 1, the Nyström method with Gauß-Legendre
nodes collapses completely, meaning highly oscillating patterns without suitable
regularities. Hence, this method is applicable only for approximately bell-shaped
beta distributions. Next, we look at Nyström with simpler node designs based on
the Simpson rule. Figure 5 indicates that it converges slower than Gauß-Legendre in
case of (8, 8). But it behaves considerably better for (2, 8) than themore complicated
Gauß-LegendreNyström,which is quite surprising.Nonetheless, it does not converge
for half of the pairs in Table 1 so that it is not the method to go.

Initially, we were assuming that collocation deals with all the above problems in a
reasonable way. Applying collocation to the four presented parameter combinations,
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Fig. 7 Collocation, piece-wise basis, for an upper EWMA chart. True � is 500, λ = 0.1, N runs
from 2 to 300 by 1, but K ∗ N ≤ 360

we obtain the following patterns. Because the collocation procedure is considerably
slower than the competitors for fixed N , we deal only with 5 ≤ N ≤ 250, which
leads to reasonable accurate ARL evaluations. Except for (8, 1), collocation seems
to be a reliable method to calculate the ARL of an EWMA control chart monitoring
beta variables. Already for small values of N , the ARL approximation is stabilized.
However, the intractable parameter pair (8, 1) not only requires high values of N
to stabilize, but the stabilized value differs also from the true value. Because of the
reduced smoothness of the ARL function at some points (see Fig. 8), the collocation
utilizing polynomials defined on the complete range [0, cu] deteriorates. Therefore,
the piece-wise defined polynomials – see previous section – might help.

Our last scheme, collocation with piece-wise defined base functions, is illustrated
in Fig. 7. This time, the matrix dimension is the product of the polynomial order
N and the number of subintervals K . The intricate pair (8, 1) is now under control.
In general, the piece-wise collocation algorithm works sufficiently well. Below we
check the accuracy of both collocation designs and the Markov chain approach with
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Fig. 8 Beta EWMA ARL function �(z) for 2z0 − cu ≤ z ≤ cu

higher resolutions while confirming the results with the Monte Carlo studies. In
addition, we explore the most demanding (α, β) configurations, where at least one
of the components is equal to 0.5.

Before validating the accuracy,we provide some �(z) profileswhichmight explain
the difficulties we have to deal with. In particular, we see cusps in the �() profiles for
β = 1 and β = 0.5. It turns out that these cusps are at the interval borders we used
for our piece-wise design, that is, at bK−1, bK−2, . . . (bK = cu). Hence, it seems
reasonable to approximate �() on the corresponding intervals separately. It would
probably be sufficient to utilize fewer than K intervals, because �() gets progressively
smoother along these interval borders. In addition, for smaller β, the descent of �(z)
from z = z0 to z = cu becomes steeper. For upper control charts of beta distributions
with small β, the upper control limit cu is quite close to the upper limit of the support
of the monitored variable.

As a final confirmation, we explored for the following (α, β) configurations the
“high accuracy” behavior of the Markov chain approximation (N goes up to 5000)
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Fig. 9 High accuracy study for peculiar setups – Markov chain approximation and collocation
methods. The Monte Carlo results added (mean + three times standard error for 108 (gray) and 109

(blue) replicates)

and both collocation setups (N similar to the above figures). The computations were
carried out for (0.5, 8), (1, 8), (8, 1), (8, 0.5) and the symmetric pairs (2, 2), (1, 1),
(0.5, 0.5). In order to judge the spread of themore or less fluctuating approximations,
we add the Monte Carlo results utilizing 108 and 109 replications by plotting their
averages and lines at average plus/minus three times the corresponding standard
errors. For the first two pairs, (0.5, 8) and (1, 8), in Fig. 9, we conclude that the
Markov chain approximation works reasonably well, though it requires large values
of N to achieve high accuracy. But both collocation designs demonstrate that high
accuracy could be achieved already for N = 21 and K × N = 38, respectively. This
is in contrast to the Markov chain approximation, where even for the five largest
values of N ∈ {4996, . . . , 5000}, the range of the ARL approximations is larger
than 0.007, while for collocation we achieved the final five digits after the decimal
point quite early. Hence, for configurations with α considerably smaller than β,
both collocation procedures deliver high accuracy with little computation time. The
Markov chain might be used, but be sure to have the matrix dimension of at least
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Fig. 10 High accuracy study for further peculiar setups – Markov chain approximation and collo-
cation methods. The Monte Carlo results added (mean + three times standard error for 108 (gray)
and 109 (blue) replicates)

N = 500 to approximate theARLwithin 0.02% accuracy (first digit after the decimal
point).

Turning to the mirrored designs, namely (8, 0.5) and (8, 1), Fig. 10 indicates that
the quality of three of our algorithms degrades considerably. Only the piece-wise col-
location approach yields satisfactory results. Of course, it needs larger dimensions
than for “nicer” beta distributions because of the large number of considered subin-
tervals, K . For the less demanding case, (8, 1), the Markov chain results will work
in a pinch. They seem to behave better than collocation with the full base functions.
For the most difficult case, (8, 0.5), we observe that only the piece-wise colloca-
tion design delivers reliable results. The other (and simpler) collocation procedure
departs from the true value so that it is not visible on that scale. And the Markov
chain results vary heavily so that a final approximation result is difficult to pick, even
for dimensions around 5000 (Fig. 11).
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Fig. 11 High accuracy study for symmetric setups – Markov chain approximation and collocation
methods. The Monte Carlo results added (mean + three times standard error for 108 (gray) and 109

(blue) replicates)
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Finally, we look at three symmetric setups, (2, 2), (1, 1), and (0.5, 0.5). The most
inoffensive patterns could be seen, not surprisingly, for (2, 2). Only the full collo-
cation behaves strangely (spread and systematic deviation). It is clearly dominated
by the piece-wise design. Fortunately, the number of subintervals K is quite small
(≤ 12) so that the polynomial order N could be larger. Looking at the beta configu-
ration (1, 1) that corresponds to the uniform distribution, we see a further worsening
of the full collocation approach. The Markov chain behaves sufficiently well. Yet
again, piece-wise collocation provides the best performance. Its computation could
be accelerated further because the quadratures could be replaced by explicit formulas
deploying the simple shape of the density of X in this case. Similar to the problematic
non-symmetric example (8, 0.5), the symmetric (0.5, 0.5) is quite difficult in terms
of ARL calculation. Surprisingly, theMarkov chain and piece-wise collocation work
out better for the symmetric version. Recall that the corresponding density of X is
unbounded at x = 0 and x = 1.
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In summary, piece-wise collocation yields for all considered beta distributions
reasonable ARL approximations. For most of our examples, the simple collocation
is satisfactory as well. The Markov chain approximation works always, but it needs
a large matrix dimension to provide high accuracy.

Finally,we look at the fullARL function �() to illustrate potential limitations of our
EWMA control chart design. In Fig. 12, we consider the numerically manageable
in-control case (1, 8) and the out-of-control cases α ∈ {1.5, 2, 3} with unchanged
β = 8. Hence, the mean increases from 1/9 ≈ 0.11 to 1.5/9.5 ≈ 0.16, 2/10 = 0.2,
and 3/11 ≈ 0.27, respectively. First we notice that in the in-control case, �(z) does
not change much for 0 ≤ z ≤ 1.2z0. For the out-of-control case α = 1.5, however,
�(0) = 44.7 is considerably larger than the typically reported �(z0) = 34.2. Con-
cluding from the conditional steady-state distribution (the bell-shaped curve in the
out-of-control diagrams of Fig. 12; it is a proxy for the distribution of the EWMA
statistic just before the change happens), the extreme �(0) appears to be less impor-
tant and might be replaced by �(z0.001) = 40.8, where z0.001 ≈ 0.055 is the 0.001
quantile of the steady-state distribution. There remains a gap between these two val-
ues, namely 40.8 and 34.2. But the possible introduction of a reflecting barrier to our
EWMA design to avoid very large out-of-control ARL values is not imperative. The
picture does not change for the more pronounced changes α ∈ {2, 3}.

5 Conclusions

Calculating the ARL of upper EWMA charts applied to beta distributed data is a
difficult task. Essentially, it is driven by the bounded support of the beta distribu-
tion. The biggest problems occur, for upper charts, if the parameter β is small, in
particular smaller than or close to 1. The most popular approach, the Markov chain
approximation, works well if only crude accuracy (typically within 1%, except for
the troublesome configurations) is needed. If one is interested in more than that, then
in many cases simple collocation does an excellent job while solving numerically
the ARL integral equation. In all other cases, we highly recommend the piece-wise
collocation approach. The corresponding subintervals have to be chosen accordingly.
Recall that lower control charts could be dealt with by reverting the two beta parame-
ters and evaluating the resulting upper control chart. The two-sided design, however,
will be considered in future work. Fortunately, the piece-wise design would need
much fewer subintervals in this case, because the so-called continuation region of
the control chart will be much shorter. However, it is possible that further refinement
of this decomposition is needed to attain high accuracy.
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Flexible Monitoring Methods for
High-yield Processes

Tahir Mahmood, Ridwan A. Sanusi, and Min Xie

Abstract In recent years, advancement in technology brought a revolutionary
change in the manufacturing processes. Therefore, manufacturing systems produce
a large number of conforming items with a small amount of non-conforming items.
The resulting dataset usually contains a large number of zeros with a small num-
ber of count observations. It is claimed that the excess number of zeros may cause
over-dispersion in the data (i.e., when variance exceeds mean), which is not entirely
correct. Actually, an excess amount of zeros reduce the mean of a dataset which
causes inflation in the dispersion. Hence, modeling and monitoring of the products
from high-yield processes have become a challenging task for quality inspectors.
From these highly efficient processes, produced items are mostly zero-defect and
modeled based on zero-inflated distributions like zero-inflated Poisson (ZIP) and
zero-inflated Negative Binomial (ZINB) distributions. A control chart based on the
ZIP distribution is used to monitor the zero-defect process. However, when addi-
tional over-dispersion exists in the zero-defect dataset, a control chart based on the
ZINB distribution is a better alternative. Usually, it is difficult to ensure that data is
over-dispersed or under-dispersed. Hence, a flexible distribution named zero-inflated
Conway–Maxwell–Poisson (ZICOM-Poisson) distribution is used to model over or
under-dispersed zero-defect dataset. In this study, CUSUMcharts are designed based

T. Mahmood (B) · R. A. Sanusi · M. Xie
Department of Systems Engineering and Engineering Management, City University of Hong
Kong, Tat Chee Avenue, Kowloon, Hong Kong
e-mail: tmahmood@ouhk.edu.hk

R. A. Sanusi
e-mail: rasanusi2-c@my.cityu.edu.hk

M. Xie
e-mail: minxie@cityu.edu.hk

T. Mahmood
Department of Technology, School of Science and Technology, The Open University of Hong
Kong, Ho Man Tin, Kowloon, Hong Kong

R. A. Sanusi
Department of Community Health Sciences, Rady Faculty of Health Sciences, University of
Manitoba, Winnipeg, MB, Canada

© Springer Nature Switzerland AG 2021
S. Knoth and W. Schmid (eds.), Frontiers in Statistical Quality Control 13,
Frontiers in Statistical Quality Control,
https://doi.org/10.1007/978-3-030-67856-2_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67856-2_4&domain=pdf
mailto:tmahmood@ouhk.edu.hk
mailto:rasanusi2-c@my.cityu.edu.hk
mailto:minxie@cityu.edu.hk
https://doi.org/10.1007/978-3-030-67856-2_4


46 T. Mahmood et al.

on the ZICOM-Poisson distribution. These provide a flexible monitoring method for
quality practitioners. A simulation study is designed to access the performance of the
proposed monitoring methods and their comparison. Moreover, a real application is
presented to highlight the importance of the stated proposal.

Keywords Conway-Maxwell–Poisson · High-yield process · Over-dispersion ·
Random shocks · Zero-inflated

1 Introduction

In most of the manufacturing processes, the quality of the process is determined
based on the fraction of nonconforming items produced in the production batches.
Such count data is discrete in nature and commonly modeled by the count mod-
els such as Poisson, Geometric, Bernoulli, Binomial, and Negative Binomial (NB)
distributions (Mahmood 2020). The most common Poisson distribution is an equi-
dispersed distribution (i.e., where mean and variance are equal) and the charts based
on it were known by c and u control charts (Montgomery 2009). The Bernoulli
and Binomial distributions are considered as under-dispersed models (i.e., where
the variation is smaller than the mean) and, the p and np charts are designed on
these distributions (Gan 1990). Further, the negative Binomial and Geometric dis-
tributions are considered as over-dispersed models (i.e., where the variation is more
substantial than the mean), and the conventional Geometric (g) control chart was
designed on the basis of geometric distribution (for more details see Xie et al. 2000
and Riaz et al. 2017). In real scenarios, it is a challenging task to find the ade-
quate model among the discussed above. Therefore, Shmueli et al. (2005) provide a
revived flexible model known as Conway–Maxwell–Poisson (COM-Poisson) distri-
bution, which can fit over-dispersed data, as well as, efficiently fit under-dispersed
and equi-dispersed data.

For the monitoring purpose, Sellers (2012) proposed a Shewhart structure based
on the COM-Poisson distribution and showed that it is a flexible and generalized
structure of the p, c, and u charts. In the study, the structure is based on the k-
sigma limits, which provides false conclusions in the case of an asymmetric COM-
Poisson distribution (Saghir et al. 2013). Alternatively, Saghir et al. (2013) suggest
another Shewhart structure based on the probability limits approach. Also, Saghir
and Lin (2014c) introduced an exponentiallyweightedmoving average (EWMA) and
a generalized EWMA (GEWMA) structures based on COM-Poisson distribution.
Under the COM-Poisson distribution, Alevizakos and Koukouvinos (2019), Saghir
andLin (2014b), andSaghir andLin (2014a), respectively, proposed a doubleEWMA
(DEWMA), a cumulative sum (CUSUM), and amultivariate Shewhart-type schemes.
For more details on these charts, interested readers may read Saghir and Lin (2015)
and Ali et al. (2016).

In most of the industrial processes, count dataset consists of a large number of
zeros and is termed as zero-defect or high-yield dataset.Moreover, in healthcare stud-
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ies, this type of dataset is referred to as rare health-related events. The above-stated
count models provide biased and inadequate estimates while fitting the high-yield
dataset. Therefore, to overwhelm the effect of zero excess, zero-inflated version of
the ordinary models are derived. Lambert (1992) introduced a zero-inflated Poisson
(ZIP) distribution, McCullagh and Nelder (1983) derived a zero-inflated Negative
Binomial (ZINB) distribution, Chang and Gan (1999) proposed a zero-inflated geo-
metric (ZIG) model, and Barriga and Louzada (2014) presented zero-inflated COM-
Poisson (ZICOM-Poisson) distribution. Further, Sellers and Raim (2016) and Sim
et al. (2018) discussed more properties of the ZICOM-Poisson distribution.

The standard u chart produces a high false alarm rate, even when the exact prob-
ability limits of the ordinary Poisson distribution are used to monitor the high-yield
processes. Therefore, Xie and Goh (1993) initiated a Shewhart structure based on the
ZIP distribution, which was further extended by Xie et al. (1995) and Chang and Gan
(1999). In monitoring literature, several studies are developed on the methods for
the ZIP, ZIG, and ZINB models, which are comprehensively reviewed in Mahmood
and Xie (2019). Specifically, He et al. (2012, 2014) proposed CUSUM structures
based on likelihood ratio statistics for the ZIP process. He et al. (2012) proposed
p − λ CUSUM chart and He et al. (2014) developed CRL-ZTP CUSUM chart using
conforming run length (CRL) idea, for detecting increasing shifts in the ZIP process
parameters. Motivated by He et al. (2012, 2014), we design similar structures based
on the ZICOM-Poisson distribution to monitor an increasing shift in the mean and
zero-inflation parameter of the process. To the best of our knowledge, there may not
exist a single monitoring study based on the ZICOM-Poisson distribution. Hence,
this study is designed to incorporate the following prime objectives:

1. To provide the generalized structure of the CUSUM charts proposed by He et al.
(2012, 2014), which would be flexible for the over/under/equi-dispersed datasets.

2. To design a simulation-based comparative study between the suggested CUSUM
structures.

3. Implementation of the proposed CUSUM charts on the real-data scenario.

The rest of this article is arranged as follows: In Sect. 2, we describe the zero-
inflated COM-Poisson model. In Sect. 3, the structure of the proposed control charts
is given, and the performance evaluations are discussed in Sect. 4. In Sect. 5, we
provide the comparative analysis of the proposed charts. In Sect. 6, we present a
case study using a LED dataset. Finally, Sect. 7 includes summary, conclusions, and
recommendations drawn from the proposed study.

2 The Zero-Inflated Conway-Maxwell-Poisson
(ZICOM-Poisson) Distribution

TheConway–Maxwell–Poisson (COM-Poisson) distributionwas originated byCon-
way and Maxwell (1962). It was revived by Shmueli et al. (2005). The probability
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mass function of the COM-Poisson distribution for a random variable Y is defined
as follows:

Pr(Y = y) = λy

(y!)νZ(λ, ν)
; y = 0, 1, 2, . . . , (1)

where λ > 0 is the usual rate parameter of the Poisson distribution, ν is the disper-
sion parameter and Z (λ, ν) = ∑∞

j=0 λ j/( j !)ν normalizes the distribution. For more
details about the normalizing factor, see Gillispie and Green (2015).

In the ZICOM-Poisson process, outcomes emanate from the two processes such
as the first process models zeros with a proportion p (zero-inflation) and p/z(λ, ν)

(zeros coming from COM-Poisson distribution); and another process models the
nonzero counts from the zero-truncated COM-Poisson distribution (for details on
zero-truncated COM-Poisson distribution, see Chou et al. (2015). Thus, the ZICOM-
Poisson model for a random variable Y can be formulated as follows:

Pr (Y = y) =
{

(1 − p) + p
Z(λ,ν)

, i f y = 0
p λy

(y!)ν Z(λ,ν)
, i f y > 0

. (2)

The mean and variance of the ZICOM-Poisson distribution are, respectively, given
by

E (Y ) = (1 − p)

(

λ
1/ν − ν − 1

2ν

)

, (3)

and

Var (Y ) = (1 − p)

(
1

ν
λ
1/ν + p

(

λ
1/ν − ν − 1

2ν

)2
)

. (4)

The ZICOM-Poisson distribution is the generalized form of many under-dispersed
(ν > 1) and over-dispersed (ν < 1) models. Specifically, the ZICOM-Poisson dis-
tribution reduces to the ZIP model when (ν = 1) and to the ZIG distribution when
(ν = 0).

3 Monitoring Methods Based on ZICOM-Poisson
Distribution

A standard structure of a control chart consists of two decision lines named as upper
control limit (UCL) and lower control limit (LCL). A process is declared stable or
in an in-control (IC) state when sample points lie within decision lines. Else, it is
declared unstable or in an out-of-control (OOC) state when sample points exceed
decision lines (Mahmood et al. 2019). One of the traditional control charts is the
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Shewhart chart, proposed by Shewhart (1926). It is efficient in detecting large shifts
in process parameters. However, the EWMA (Roberts 1959) and the CUSUM (Page
1954) charting structures are efficient in detecting small to moderate shifts in the
process parameters. More discussion on the CUSUM charts, one may read Faisal
et al. (2018) and Abbas et al. (2020). This study designs a CUSUM structure for the
timely detection of small to moderate increasing shifts in the rate (λ) and the zero-
inflation (p) parameters of the ZICOM-Poisson distribution. The proposed CUSUM
structures are given in the following subsections.

3.1 The p− λ CUSUM Chart

The p − λCUSUM chart is the combination of two CUSUM charts (i.e., p CUSUM
chart and λ CUSUM chart) to detect an increasing shift in the parameters (i.e., λ

and/or p) of the ZICOM-Poisson distribution.

3.1.1 The p CUSUM Chart

The p CUSUM chart is designed to detect an increasing shift in the zero-inflation
parameter of the ZICOM-Poisson distribution. As a Phase II method, we assume
that the IC parameters of the ZICOM-Poisson distribution are p0, λ0, and ν and are
known. The p CUSUM chart is designed to detect a shift from p0 to p1 (where
p1 > p0). Based on the likelihood ratio method, the p CUSUM statistic is obtained
by;

Bi = max (0, bi + Bi−1) ; i = 1, 2, . . . (5)

where the initial value of the statistic is set at zero (i.e., B0 = 0) and the reference
value bi is obtained by

bi =
⎧
⎨

⎩

ln
(
1−p1+(p1/Z(λ0,υ))

1−p0+(p0/Z(λ0,υ))

)
yi = 0

ln
(

p1
p0

)
yi > 0

. (6)

If Bi > hb, an upward shift in p is signaled, where hb is the control limit that is
selected to achieve the desired IC performance.

3.1.2 The λ CUSUM Chart

The λ CUSUM chart is designed to monitor an increasing shift in the rate parameter
of the ZICOM-Poisson distribution. The λCUSUM chart is designed to detect a shift
from λ0 to λ1 (where λ1 > λ0). The λ CUSUM statistic is obtained by
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Li = max (0, Mi + Li−1) ; i = 1, 2, . . . , (7)

whereλ0 = 0. The reference valueMi is based on the log-likelihood ratio and defined
as

Mi =
⎧
⎨

⎩

ln
(
1−p0+(p0/Z(λ1,ν))

1−p0+(p0/Z(λ0,ν))

)
yi = 0

yi ln
(

λ1
λ0

)
+ ln

(
Z(λ0,ν)

Z(λ1,ν)

)
yi > 0

. (8)

If Li > hl , an upward shift in λ is signaled, where hl is the control limit that is
selected to achieve the desired IC performance. It is noted that the p − λ CUSUM
chart based on the ZICOM-Poisson distribution converts to the p − λ CUSUM chart
for the ZIP model (He et al. 2012) when the dispersion parameter equals to one (i.e.,
ν = 1).

3.2 The CRL-ZTCOMP CUSUM Chart

The CRL-ZTCOMPCUSUM chart is also a combination of CRL CUSUM chart and
ZTCOMP CUSUM chart. This chart is also designed to detect an increasing shift in
the parameters (i.e., λ and/or p) of the ZICOM-Poisson distribution.

3.2.1 The CRL CUSUM Chart

The conforming run length (CRL) is the number of conforming products between
successive nonconforming products. Therefore, a CRL value is observed when a
nonconforming product is seen. The random variable CRL follows a geometric dis-
tribution under the assumption of an independently and identically distributed (i.i.d)
dataset. The CRL CUSUM statistic is obtained by;

Ci = max (0, k − CRLi − Ci−1) ; i = 1, 2, . . . (9)

where the initial value is selected as zero (i.e., C0 = 0) and the reference value k is
calculated by using the same formula as Bourke (1991)

k = ln (p1/p0)

ln [(1 − p1) / (1 − p0)]
+ 1. (10)

Where p0 is the IC zero-inflation parameter and p1 is the shifted parameter to be
detected quickly. If Ci > hc, an upward shift in p is signaled, where hc is the control
limit that is selected to achieve the desired IC performance.
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3.2.2 The ZTCOMP CUSUM Chart

The ZTCOMP CUSUM chart is developed to monitor an increasing shift in the rate
parameter of the ZTCOM-Poisson distribution. It detects a shift from λ0 to λ1 (i.e.,
λ1 > λ0). The ZTCOMP CUSUM statistic is obtained by

Ti = max (0, Ni + Ti−1) ; i = 1, 2, . . . (11)

where initial value is assumed to be zero (i.e., T0 = 0) and the reference value Ni is
based on the log-likelihood ratio statistic of zero-truncatedCOM-Poisson distribution
(for details, see Chou et al. 2015), which is defined as

Ni = yi ln

(
λ1

λ0

)

+ ln

(
Z (λ0, ν)

Z (λ1, ν)

)

+ ln

(
Z (λ1, ν) [Z (λ0, ν) − 1]

Z (λ0, ν) [Z (λ1, ν) − 1]

)

. (12)

If Ti > ht , an upward shift inλ is signaled, where ht is the control limit that is selected
to achieve the desired IC performance. It is worthy of note that, when the dispersion
parameter equals to one (i.e., ν = 1), the CRL-ZTCOMP CUSUM chart reduces to
the CRL-ZTP CUSUM chart proposed by He et al. (2014). Next, we discuss the IC
design along with the OOC performance of both proposed CUSUM structures.

4 Performance Evaluations

This section includes the definition of the performance measure used to compute
the competency of the proposed charts. IC and OOC parameters settings and the
development of control limits are also discussed in this section.

4.1 Performance Measure

Saghir and Lin (2014b) suggested the average number of observations to signal
(ANOS) as a performance measure, to evaluate the performance of CUSUM charts
based on the COM-Poisson distribution. Similarly, we have adoptedANOSmeasures
to assess and compare the performance ability of the proposed charts. The ANOS is
defined as the expected number of items inspected from the beginning of the process
until a signal is highlighted by a control chart. The ANOS is further categorized as
ANOS0: ANOSwhen parameters of theZICOM-Poisson distribution are IC or under
the null hypothesis, and ANOS1: ANOS when parameters of the ZICOM-Poisson
distribution are OOC or under the alternative hypothesis. In the CRL-ZTCOMP
CUSUM chart, the ANOS for CRL CUSUM chart is calculated by adopting the
formula of Bourke (1991);
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ANOS = 1

r
E(Number of T N S to signal), (13)

where TNS is termed as terminal nonconformity sequence and define as a run of
the conforming items followed by a nonconforming item. r is the probability of
nonconformities which is defined as r = p (Z (λ, ν) − 1/Z (λ, ν)) in a ZICOM-
Poisson process. For the ZTCOMPCUSUMchart, the same formula is used, but TNS
is replaced with the number of observations in a ZICOM-Poisson process. Further,
the decision is made such that on the fixed ANOS0, a chart having the minimum
ANOS1 is declared as the best chart as compared to all others under consideration.

4.2 IC and OOC Parameters for the Simulation Study

In this study, we have carried out an extensive simulation study with 106 iterations to
evaluate the performance ability of the p − λCUSUM chart and the CRL-ZTCOMP
CUSUMchart.An illustration is provided inFig. 1 to express the relationshipbetween
the probability of observing zero counts and different combinations of ZICOM-
Poisson parameters.

The probability of zero counts against ZICOM-Poisson parameters λ ranging
from 1 to 10, p0 = 0.1 and 0.2, with ν = 0.5 are portrayed in Fig. 1a; with ν = 1
are presented in Fig. 1b, and with ν = 2 are plotted in Fig. 1c. It is revealed that the
probability of a zero count approaches 1 − p as λ increases. It is clearly seen that the
λ have some effect on the probability of observing a zero count given the dispersion
parameter ν. When ν = 0.5 than λ ≤ 3 has effect on the probability of observing a
zero count. Similarly, when ν = 1 and 2 than λ ≤ 6 and λ ≤ 8 have effect on the
probability of observing a zero count, respectively. Hence, for the brevity in the
simulation study, two IC values are selected for the zero-inflation parameter of the
ZICOM-Poissondistribution such as p0 = 0.1 and p0 = 0.2. Similarly, two ICvalues
of the rate parameter of ZICOM-Poisson distribution are considered such as λ0 = 4
and λ0 = 6. The dispersion parameter (ν) plays a vital role in the ZICOM-Poisson
distribution. The ZICOM-Poisson model covers under-dispersed models (when ν is
set above one), over-dispersed models (when ν is set below one), and equi-dispersed
model (when ν is equals to one). Hence, to provide proper coverage to all models,
we consider three IC values of the dispersion parameter such as ν = 0.5, ν = 1, and
ν = 2.

It is also noted from Fig. 1 that, as p and λ increases, the frequency of non-zero
counts being observed also increases. Therefore, this study is designed to monitor
an increasing shift in the zero-inflation and rate parameters of the ZICOM-Poisson
distributionwith fixed dispersion parameter. Hence, two shift sizes of each parameter
p and λ are pre-determined for the CUSUM charts to have fast detections such as
p1 = 1.25p0, p1 = 1.5p0, λ1 = λ0 + 1, and λ1 = λ0 + 2. Moreover, several shifts
are introduced in the parameters to evaluate the OOC performance of the p − λ and
CRL-ZTCOMP CUSUM charts, which are provided below:
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Fig. 1 An illustration of the relationship between the probability of observing zero counts and
different combinations of ZICOM-Poisson parameters; a ν = 0.5, b ν = 1, and c ν = 2

• For the zero-inflation parameter: when p0 = 0.1, shifts are introduced as p =
0.2, 0.3, 0.4, and 0.5, while for p0 = 0.2, shifts are considered as p = 0.25, 0.30,
0.40,, and 0.50.

• For rate parameter, shifts are considered as λ0 + 1, λ0 + 2, λ0 + 3, and λ0 + 4.

4.3 Derivation of Control Limits

As mentioned above that the p − λ CUSUM chart has the control limits hb and hl ,
while the CRL-ZTCOMPCUSUM chart has decision lines hc and ht . The procedure
to find the control limits for the stated charts is illustrated in the following steps:

(i) Generate an IC dataset of fixed sample size n = 10000 from ZICOM-Poisson
distribution. This can be easily done using the R package of Sellers et al. (2017).
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(ii) Estimates the reference value b andM for the p − λCUSUMchart. Also, obtain
the CRL value (N ) and reference values (k) for the CRL-ZTCOMP CUSUM
chart. Based on these values, get the charting statistics for all CUSUM charts.

(iii) Use an arbitrary value as a control limit for the respective control chart and plot
the CUSUM statistic value against the control limit.

(iv) Repeat steps i–iii, a large number of runs to obtain specified ANOS0.
(v) If specified ANOS0 is not achieved, adjust the previous arbitrary value and

repeat steps i–iv until the specified ANOS0 is achieved.

It is noted that the p − λ CUSUM chart is the combination of p CUSUM chart and
λ CUSUM chart. Hence, to obtain ANOS0 = 200 for p − λ CUSUM chart, the
ANOS0 is set at 352 for the individual p CUSUM chart and λ CUSUM chart. Simi-
larly, to obtain ANOS0 = 200 for the CRL-ZTCOMPCUSUM chart, the ANOS0’s
for the CRL CUSUM chart and the ZTCOMP CUSUM chart is set at 370. Further,
the control limits are reported in Table 1 with respect to different choices of IC
parameters of the ZICOM-Poisson distribution.

Table 1 Control limits of the proposed CUSUM structures
λ1 ν0 p0 λ0 p1 = 1.25p0 p1 = 1.5p0

hb hl hc ht hb hl hc ht

λ0 + 1 0.5 0.1 4 1.100 2.060 31.982 2.074 1.760 2.060 24.234 2.065

0.5 0.1 6 1.100 2.050 31.900 2.040 1.750 2.050 24.400 2.060

0.5 0.2 4 1.530 2.730 20.600 2.700 2.380 2.740 14.600 2.700

0.5 0.2 6 1.560 2.700 20.600 2.710 2.330 2.730 14.500 2.710

1.0 0.1 4 1.090 1.330 30.450 1.380 1.760 1.340 23.200 1.340

1.0 0.1 6 1.090 1.220 30.600 1.230 1.760 1.220 23.600 1.234

1.0 0.2 4 1.530 1.850 19.493 1.851 2.330 1.870 14.220 1.850

1.0 0.2 6 1.530 1.700 20.400 1.690 2.330 1.700 14.500 1.698

2.0 0.1 4 1.050 0.730 25.000 0.689 1.700 0.750 20.000 0.691

2.0 0.1 6 1.050 0.640 29.000 0.620 1.700 0.650 23.300 0.620

2.0 0.2 4 1.410 1.100 16.200 1.100 2.220 1.100 12.220 1.100

2.0 0.2 6 1.500 0.900 18.260 0.930 2.290 0.930 13.300 0.930

λ0 + 2 0.5 0.1 4 1.080 1.160 32.000 1.150 1.750 1.200 24.160 1.410

0.5 0.1 6 1.120 1.390 32.100 1.370 1.750 1.170 24.160 1.396

0.5 0.2 4 1.540 2.100 20.500 2.100 2.350 2.000 14.550 2.000

0.5 0.2 6 1.550 2.254 20.620 2.254 2.330 2.254 14.500 2.254

1.0 0.1 4 1.080 1.700 30.000 1.710 1.740 1.700 23.200 1.700

1.0 0.1 6 1.080 1.760 31.200 1.750 1.750 1.760 23.700 1.760

1.0 0.2 4 1.530 2.480 19.420 2.460 2.340 2.475 14.230 2.470

1.0 0.2 6 1.530 2.340 20.420 2.340 2.360 2.340 14.500 2.340

2.0 0.1 4 1.030 1.230 26.000 1.150 1.700 1.220 20.300 1.150

2.0 0.1 6 1.050 1.060 29.000 1.040 1.700 1.080 22.000 1.050

2.0 0.2 4 1.450 1.650 16.100 1.580 2.240 1.650 12.200 1.600

2.0 0.2 6 1.500 1.480 18.280 1.480 2.290 1.500 13.300 1.480
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5 Results and Discussions

For brevity, the OOC study is only reported for p0 = 0.2. The findings of p − λ

CUSUMandCRL-ZTCOMPCUSUMcharts, at fixed dispersion parameter ν = 0.5,
are presented in Table 2. The few results for p1 = 1.25p0 are discussed below:

• When λ0 is set at IC value 4 and λ1 = λ0 + 1, a shift in the zero-inflation parameter
(i.e., p = 0.30) results in 73.32% and 62.00% decrease in the ANOS0 values of
the p − λ CUSUM and CRL-ZTCOMP CUSUM charts, respectively. Further,
a change in the zero-inflation parameter (i.e., p = 0.50) results in 90.69% and
78.96% decrease in the ANOS0 values of the p − λCUSUM and CRL-ZTCOMP
CUSUM charts, respectively, for the parameter setting λ0 = 6 and λ1 = λ0 + 2.

• Forfixed p0 = 0.2, a shift in the rate parameter (i.e.,λ = 6) under parameter setting
λ0 = 4, and λ1 = λ0 + 2 results in 96.75% and 96.74% reduction in the ANOS0
values of the p − λ CUSUM and CRL-ZTCOMP CUSUM charts, respectively.
However, a shift λ = 9 with parameter setting λ0 = 6 and λ1 = λ0 + 1 results in
97.40% and 97.41% decrease in the ANOS0 values of the p − λ CUSUM and
CRL-ZTCOMP CUSUM charts, respectively.

• For fixed λ0 = 4 and λ1 = λ0 + 1, a shift in zero-inflation parameter (i.e., p =
0.30) and rate parameter (i.e., λ = 7) results in 3.44 and 5.19 ANOS1 values of
the p − λ and CRL-ZTCOMPCUSUM charts, respectively. Moreover, for λ0 = 6
and λ1 = λ0 + 2, a shift in both parameters (i.e., p = 0.40 and λ = 8) results in
3.29 and 6.46 ANOS1 values of the p − λCUSUM and CRL-ZTCOMPCUSUM
charts, respectively.

Table 3 consists of the results for p − λCUSUMandCRL-ZTCOMPCUSUMcharts
at fixed dispersion parameter ν = 1. Some findings for p1 = 1.5p0 are discussed
below:

• At fixed λ0 = 4 and λ1 = λ0 + 1, a shift p = 0.30 results in 86.97% and 75.79%
reduction in the ANOS0 values for p − λ CUSUM and CRL-ZTCOMP CUSUM
charts, respectively. Further, on the parameter setting λ0 = 6 and λ1 = λ0 + 2, a
change p = 0.50 results in 91.52% and 80.85% decrease in the ANOS0 values of
the p − λ CUSUM and CRL-ZTCOMP CUSUM charts, respectively.

• At fixed p0 = 0.2, λ0 = 4, and λ1 = λ0 + 2, a shift λ = 5 results in 65.09 and
66.85 ANOS1 values for p − λ CUSUM and CRL-ZTCOMP CUSUM charts,
respectively. However, on the parameter setting λ0 = 6 and λ1 = λ0 + 1, a change
λ = 10 results in 10.35 and 15.97 ANOS1 values of the p − λ CUSUM and
CRL-ZTCOMP CUSUM charts, respectively.

• At fixed λ0 = 4 and λ1 = λ0 + 1, shifts p = 0.30 and λ = 8 results in 94.85% and
91.98% reduction in the ANOS0 values of the p − λCUSUMandCRL-ZTCOMP
CUSUM charts, respectively. Further, in the case where λ0 = 6, and λ1 = λ0 + 2,
a shift in both parameters (i.e., p = 0.50 and λ = 8) results in 93.95% and 85.57%
decrease in the ANOS0 values of the p − λCUSUMandCRL-ZTCOMPCUSUM
charts, respectively.
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Table 2 The ANOS profile of the proposed CUSUM structures with fixed dispersion parameter
ν = 0.5
p0 λ0 λ λ1 = λ0 + 1 λ1 = λ0 + 2

p1 = 1.25p0 p1 = 1.5p0 p1 = 1.25p0 p1 = 1.5p0

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

0.20 4 4 199.90 201.07 201.94 200.36 201.72 200.36 200.12 199.69

0.25 4 4 90.86 112.26 94.50 113.29 90.95 111.16 92.48 111.46

0.30 4 4 53.32 76.39 52.37 74.57 52.93 75.63 52.38 73.77

0.40 4 4 27.97 51.97 25.83 47.23 27.41 51.19 25.44 46.78

0.50 4 4 18.84 42.73 16.85 37.66 18.76 42.01 16.62 37.23

0.20 6 6 200.85 200.87 201.11 199.83 199.86 199.98 199.99 199.98

0.25 6 6 92.47 111.52 92.40 111.95 89.21 106.20 88.97 109.15

0.30 6 6 53.70 75.77 52.16 73.65 52.70 74.90 50.98 72.30

0.40 6 6 28.29 51.73 25.63 47.26 27.39 50.74 25.18 46.51

0.50 6 6 19.11 42.46 16.87 37.66 18.60 42.08 16.51 37.08

0.20 4 5 16.26 16.26 16.47 16.51 18.66 18.40 18.49 18.43

0.20 4 6 6.82 6.88 6.80 6.82 6.49 6.52 6.51 6.48

0.20 4 7 5.24 5.19 5.17 5.18 5.14 5.10 5.11 5.09

0.20 4 8 4.94 5.01 4.99 5.00 5.07 5.00 5.09 5.00

0.20 6 7 16.65 16.69 16.93 16.44 19.01 18.79 18.92 18.42

0.20 6 8 7.06 7.13 7.17 7.09 6.57 6.54 6.42 6.49

0.20 6 9 5.18 5.22 5.14 5.23 5.14 5.10 5.15 5.10

0.20 6 10 5.04 5.01 5.04 5.01 5.00 5.00 4.98 5.00

0.30 4 4 6.85 76.30 53.32 74.33 52.96 75.82 51.07 73.68

0.30 4 5 5.40 16.33 10.86 16.47 12.15 18.33 12.31 18.42

0.30 4 6 4.58 6.86 4.58 6.88 4.39 6.50 4.30 6.47

0.30 4 7 3.44 5.19 3.48 5.18 3.38 5.10 3.43 5.11

0.30 4 8 2.73 5.01 3.31 5.00 3.31 5.00 3.34 5.00

0.30 6 6 53.82 76.53 51.77 73.99 52.69 74.95 51.20 72.41

0.30 6 7 11.12 16.42 11.28 16.52 12.69 18.42 12.56 18.16

0.30 6 8 4.73 7.14 4.74 7.08 4.34 6.52 4.34 6.45

0.30 6 9 3.47 5.22 3.47 5.24 3.42 5.11 3.37 5.10

0.30 6 10 3.37 5.01 3.37 5.01 3.34 5.00 3.36 5.00

0.20 4 6 6.99 6.87 6.93 6.84 6.47 6.50 6.59 6.47

0.25 4 6 5.54 6.90 5.45 6.86 5.26 6.52 5.21 6.55

0.30 4 6 4.89 6.89 4.65 6.90 4.33 6.45 4.34 6.47

0.40 4 6 3.53 6.87 3.44 6.86 3.28 6.50 3.28 6.53

0.50 4 6 2.94 6.87 2.74 6.85 2.64 6.48 2.61 6.52

0.20 6 8 7.03 7.06 7.05 7.04 6.53 6.46 6.54 6.50

0.25 6 8 5.64 7.11 5.67 7.10 5.25 6.47 5.18 6.49

0.30 6 8 4.73 7.10 4.74 7.08 4.39 6.49 4.33 6.47

0.40 6 8 3.53 7.17 3.54 7.12 3.29 6.46 3.25 6.46

0.50 6 8 2.82 7.09 2.83 7.10 2.63 6.49 2.63 6.51
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Table 3 The ANOS profile of the proposed CUSUM structures with fixed dispersion parameter
ν = 1
p0 λ0 λ λ1 = λ0 + 1 λ1 = λ0 + 2

p1 = 1.25p0 p1 = 1.5p0 p1 = 1.25p0 p1 = 1.5p0

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

0.20 4 4 201.96 199.45 201.19 199.30 201.17 200.75 199.54 199.15

0.25 4 4 94.76 113.82 94.19 115.61 92.62 114.57 92.84 118.02

0.30 4 4 54.92 78.35 53.65 76.71 54.66 76.98 52.50 75.93

0.40 4 4 28.90 52.00 26.22 48.25 28.45 51.43 25.98 47.45

0.50 4 4 19.31 42.70 17.33 38.23 18.93 42.36 17.25 38.12

0.20 6 6 200.06 199.64 201.98 200.23 199.98 201.63 201.12 199.94

0.25 6 6 93.63 114.89 93.52 116.22 92.93 115.01 94.01 114.12

0.30 6 6 54.48 78.26 52.71 77.44 53.97 78.27 52.54 76.07

0.40 6 6 28.69 52.66 26.34 48.86 28.29 52.48 26.61 48.22

0.50 6 6 19.31 43.86 17.33 38.72 19.11 43.27 17.05 38.29

0.20 4 5 63.48 64.32 63.64 63.67 67.03 65.73 65.09 66.85

0.20 4 6 31.55 32.21 31.57 31.94 30.40 30.36 30.29 31.37

0.20 4 7 20.62 20.96 20.76 21.09 19.01 19.29 18.96 19.73

0.20 4 8 15.62 15.72 15.50 15.96 14.03 14.37 13.95 14.74

0.20 6 7 76.74 74.35 75.16 75.96 78.08 77.14 76.52 77.51

0.20 6 8 39.90 38.81 39.52 39.68 37.42 37.96 37.28 37.73

0.20 6 9 26.12 25.59 26.30 26.55 23.61 24.21 23.77 24.26

0.20 6 10 20.04 19.21 19.65 19.92 17.55 17.76 17.75 17.93

0.30 4 4 55.06 77.90 53.30 76.55 54.44 76.77 52.03 75.89

0.30 4 5 35.07 51.79 33.93 49.83 34.27 50.40 33.28 50.37

0.30 4 6 20.48 31.30 20.13 30.46 19.56 29.39 19.12 29.69

0.30 4 7 13.77 20.88 13.85 20.82 12.49 19.28 12.16 19.80

0.30 4 8 10.42 15.91 10.35 15.97 9.28 14.49 9.18 14.70

0.30 6 6 54.16 78.53 53.33 77.20 53.74 78.09 53.59 76.05

0.30 6 7 39.43 56.44 37.99 55.59 38.49 56.64 37.31 54.41

0.30 6 8 25.20 36.81 24.62 37.01 23.97 35.30 23.27 34.94

0.30 6 9 17.33 25.57 17.25 26.47 15.67 23.84 15.72 23.61

0.30 6 10 13.25 19.24 13.11 19.99 11.72 17.73 11.65 17.87

0.20 4 6 31.86 31.94 31.65 31.78 30.48 30.48 30.09 31.27

0.25 4 6 24.85 31.60 24.79 31.45 23.68 29.96 23.37 30.64

0.30 4 6 20.29 31.06 20.28 30.38 19.15 29.54 18.90 29.68

0.40 4 6 14.88 29.49 14.48 28.51 13.75 27.82 13.47 27.45

0.50 4 6 11.54 28.03 11.09 27.01 10.73 26.46 10.24 25.98

0.20 6 8 39.94 38.55 39.35 39.51 37.60 38.01 37.87 37.57

0.25 6 8 31.00 38.29 30.58 38.88 29.36 37.30 28.87 36.59

0.30 6 8 25.17 36.94 24.49 37.33 23.68 35.51 23.31 34.78

0.40 6 8 17.57 34.32 17.13 33.93 16.56 32.63 16.01 31.39

0.50 6 8 13.61 32.14 12.89 30.87 12.65 30.84 12.17 28.86
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At fixed dispersion parameter ν = 2, findings of the p − λ CUSUM and CRL-
ZTCOMP CUSUM charts are reported in Table 4. Few results for p1 = 1.25p0
are discussed below:

• On the parameter setting λ0 = 4 and λ1 = λ0 + 1, a change p = 0.25 may cause
53.15% and 39.87% decrease in the ANOS0 values of the p − λ CUSUM and
CRL-ZTCOMP CUSUM charts, respectively. Further, a change in the zero-
inflation parameter (i.e., p = 0.30) may result in 72.51% and 60.33% reduction
in the ANOS0 values of the p − λ CUSUM and CRL-ZTCOMP CUSUM charts,
respectively, for the parameter setting λ0 = 4, and λ1 = λ0 + 2.

• For the parameter setting p0 = 0.2, a change λ = 7 may result in 51.56 and 54.58
ANOS1 values of the p − λCUSUMandCRL-ZTCOMPCUSUMcharts, respec-
tively, for the parameter setting λ0 = 4 and λ1 = λ0 + 2. However, at λ0 = 6 and
λ1 = λ0 + 1, a shift λ = 6 results in 36.49 and 55.06 ANOS1 values of the p − λ

CUSUM and CRL-ZTCOMP CUSUM charts, respectively.
• Whenλ0 = 4 andλ1 = λ0 + 1, shifts in both parameters (i.e., p = 0.30 andλ = 6)
may cause 81.80% and 72.39% reduction in the ANOS0 values of the p − λ

CUSUM and CRL-ZTCOMP CUSUM charts, respectively. Further, for the fixed
λ0 = 6 and λ1 = λ0 + 2, shifts p = 0.30 and λ = 8 result in 79.45% and 69.54%
decrease in the ANOS0 values of the p − λCUSUMandCRL-ZTCOMPCUSUM
charts, respectively.

In conclusion, increasing shift in rate parameter has a severe effect on the performance
ability of both charts, but the chart show relatively same performance against these
kinds of changes. When shifts are introduced in the zero-inflation parameter, the
p − λ CUSUM outperforms the CRL-ZTCOMP CUSUM chart. Moreover, when
shifts are presented in both parameters, again, the p − λCUSUMhas better detection
ability as compared to the CRL-ZTCOMP CUSUM chart.

6 An Example

In a real scenario, we apply the CUSUM charts based on the ZICOM-Poisson distri-
bution to the light-emitting diode (LED) packaging industry dataset adopted fromHe
et al. (2012, 2014). Similarly, we have used the first 96 IC observations (after exclud-
ing four values which are greater than 10) and obtained estimates as p̂0 = 0.1268,
λ̂0 = 3.003, and ν̂ = 0.6643. It is clearly seen that ν̂ < 1, which is the evidence that
the dataset is also suffering from over-dispersion and hence, the ZIP distribution is
not an appropriate model for the LED dataset. Further, we designed CUSUM struc-
tures by fixing ANOS0 = 200, p1 = 1.5 p̂0, and λ1 = λ̂0 + 2. The p − λ CUSUM
is plotted in Fig. 2 with its control limits hb = 1.95 and hl = 2. However, the CRL-
ZTCOMP CUSUM chart with limits hc = 20 and ht = 2.09 is plotted in Fig. 3.

The p CUSUM chart based on the ZICOM-Poisson showed 26 OOC signals with
indexes 162–164 and 174–196, while the λ CUSUM chart based on the ZICOM-
Poisson model revealed 39 OOC points with indexes 100–110 and 129–156. The
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Table 4 The ANOS profile of the proposed CUSUM structures with fixed dispersion parameter
ν = 2
p0 λ0 λ λ1 = λ0 + 1 λ1 = λ0 + 2

p1 = 1.25p0 p1 = 1.5p0 p1 = 1.25p0 p1 = 1.5p0

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

p − λ CRL-
ZTCOMP

0.20 4 4 200.43 199.44 200.85 199.83 201.66 200.15 199.52 201.10

0.25 4 4 93.89 119.92 95.69 123.07 95.95 119.31 94.79 123.13

0.30 4 4 56.51 80.04 55.74 82.83 56.69 79.83 54.61 81.20

0.40 4 4 29.22 51.86 27.67 49.85 29.76 51.90 27.60 49.93

0.50 4 4 19.80 41.37 18.19 39.15 20.11 41.14 18.09 38.48

0.20 6 6 199.82 201.97 201.42 200.37 201.04 201.03 199.99 200.71

0.25 6 6 96.06 118.73 96.69 119.38 96.17 115.80 91.15 117.76

0.30 6 6 56.25 79.44 54.87 78.58 55.26 79.74 53.34 78.40

0.40 6 6 29.44 52.75 26.77 49.24 29.19 52.26 26.35 48.70

0.50 6 6 19.86 42.81 17.43 38.77 19.72 42.64 17.26 38.74

0.20 4 5 113.50 112.96 112.38 113.82 114.49 114.73 111.59 115.38

0.20 4 6 72.78 74.73 72.00 74.38 73.51 75.64 71.12 75.20

0.20 4 7 53.30 55.30 53.27 54.77 51.56 54.58 50.66 54.85

0.20 4 8 42.12 43.71 41.59 43.65 40.25 43.45 39.56 43.82

0.20 6 7 126.25 130.87 126.89 129.29 128.48 130.11 125.86 130.02

0.20 6 8 88.16 90.41 87.87 90.74 88.21 89.34 86.17 88.40

0.20 6 9 65.37 68.47 66.78 67.67 65.61 66.44 63.83 65.61

0.20 6 10 52.32 55.43 53.52 54.76 51.58 53.59 50.99 52.33

0.30 4 4 55.61 80.78 55.38 82.37 56.47 80.90 54.56 82.87

0.30 4 5 45.21 66.86 43.77 66.73 44.44 67.15 43.48 66.43

0.30 4 6 36.49 55.06 35.69 54.42 35.94 54.56 34.58 54.16

0.30 4 7 30.37 46.83 29.67 45.76 29.04 46.67 28.24 45.73

0.30 4 8 25.16 39.58 24.97 39.15 24.01 39.34 23.28 38.92

0.30 6 6 55.95 80.42 54.47 78.64 56.55 79.87 51.98 77.54

0.30 6 7 49.03 71.63 47.72 70.05 48.83 70.14 45.91 68.60

0.30 6 8 42.17 63.12 41.12 60.77 41.70 61.61 39.23 59.48

0.30 6 9 36.03 55.13 35.35 53.64 36.04 53.13 33.54 51.73

0.30 6 10 31.12 48.62 30.69 46.64 30.30 46.49 29.22 44.45

0.20 4 6 72.25 73.10 72.06 74.50 72.75 75.09 70.83 75.08

0.25 4 6 49.91 65.05 49.33 64.29 49.42 65.04 48.27 64.27

0.30 4 6 36.57 55.48 35.81 54.49 36.00 55.28 34.99 54.61

0.40 4 6 22.97 43.54 21.83 41.61 22.07 42.98 20.75 41.40

0.50 4 6 16.54 37.03 15.38 35.21 15.81 36.92 14.51 34.80

0.20 6 8 86.81 91.51 88.14 89.58 88.94 89.75 85.47 88.50

0.25 6 8 58.83 76.12 58.45 74.37 58.84 75.33 57.00 73.19

0.30 6 8 42.27 62.90 40.81 61.06 41.31 61.23 39.42 59.85

0.40 6 8 25.33 47.64 23.72 44.74 25.07 46.53 22.91 43.71

0.50 6 8 17.85 40.63 16.20 37.06 17.63 39.89 15.70 36.37
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Fig. 2 The p − λ charts based on the ZICOM-Poisson distributions for the LED dataset

CRL CUSUM chart based on the ZICOM-Poisson has captured 8 OOC signals with
indexes 26 and 28–34. However, the ZTCOMPCUSUM chart reveals 8 OOC signals
with indexes 13–15 and 18–22. Hence, it is revealed that the CUSUM structures
based on the ZICOM-Poisson distribution are the general setups, which can also be
able to cover underlying dispersion (i.e., over or under) of the dataset. Specifically,
the p − λ CUSUM chart provides a detailed diagnosis as compared to the CRL-
ZTCOMP CUSUM chart.

7 Summary, Conclusions, and Recommendations

Most of the high-yield processes produce datasets which contains a large number of
zeros with a small amount of count observations. Such datasets are often known as
zero-defect and rare health-related datasets. Some researchers claimed that the super-
fluous zeros might cause over-dispersion in the data (i.e., when variance exceeds
mean), which may not be wholly accurate. Sometimes, a surplus zero counts may
reduce the mean of a dataset which causes inflation in the dispersion. Hence, zero-
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Fig. 3 The CRL-ZTCOMP CUSUM charts for the LED dataset

inflated models (i.e., ZIP, ZIG, and ZINB) were designed to fit high-yield datasets.
However, in practice, it is difficult to ensure that the monitoring dataset follows the
over-dispersed (i.e., ZINB), under-dispersed (i.e., ZIG), or equi-dispersed (i.e., ZIP)
distribution. Therefore, the ZICOM-Poisson distribution is an alternative model,
which is not only flexible to data dispersion but also a generalized form of all the
above-stated distributions. From the last two decades, several monitoring methods
were designed based on the zero-inflated models (e.g., ZIP, ZIG, and ZINB distri-
butions). However, there may not exist any monitoring study based on the ZICOM-
Poisson distribution, to the best of our knowledge. Hence, following He et al. (2012,
2014), we design CUSUM structures based on the ZICOM-Poisson distribution.

We design a simulation study, and the results reveal that the rate parameter (λ) has
a significant effect on the performance of the CUSUM structures as compared to the
zero-inflation parameter (p). It is also noted that both CUSUM structures (i.e., p − λ

CUSUM and CRL-ZTCOMPCUSUM) show almost equal performance when shifts
are introduced in (λ). However, under the variations in p, the p − λ CUSUM out-
performs the CRL-ZTCOMP CUSUM chart. Further, behavior of the stated charts is
also observed under the shifts in both parameters and results revealed that the p − λ

CUSUM has better detection ability as compared to the CRL-ZTCOMP CUSUM
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chart. It is noted that the current study is designed under zero-state condition, one
may extend it by considering the steady-state approach, head starts method (i.e., the
false initial responsemechanism). Another good prospect of this research is to design
a single monitoring scheme for the CUSUM structures to detect shifts in both param-
eters simultaneously. That is, to have a separate chart (with one plotting statistic),
instead of the proposed two side-by-side charts, for monitoring increasing shifts in
the parameters of p − λ CUSUM and CRL-ZTCOMP CUSUM. Furthermore, this
study is compiled on the basis of known in-control parameters; estimation of these
parameters under unknown scenario will also be a future research contribution.
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An Average Loss Control Chart Under a
Skewed Process Distribution

Su-Fen Yang and Shan-Wen Lu

Abstract In the global market the quality of products is a crucial factor separating
competitive companies within numerous industries. These firms may employ a loss
function to measure the loss caused by a deviation of the quality variable from
the target value. From the view of Taguchi’s philosophy, monitoring this deviation
from the process target value is important, but in practice many quality data have
distributions that are not normal but skewed. This paper thus develops an average
loss control chart for monitoring quality loss variation under skewed distributions.
We investigate the statistical properties of the proposed control chart and measure
the out-of-control process detection performance of the proposed loss control charts
by using the average run length. The average loss control chart illustrates the best
performance in detecting of out-of-control loss location for a left-skewed process
distribution and performs better than the existing median loss control chart.

Keywords Loss function · Non-normal distribution · Control chart · Run length

1 Introduction

Control charts are commonly used tools in process change detection for improving
the quality of manufacturing and service processes. In the past few years, more
and more statistical process control techniques have been applied to the service
industry, with control charts also becoming an effective tool to enhance service
quality. There have been a few studies in this area of the literature, including Tsung
et al. (2008), Ning et al. (2009), Yang et al. (2012), Yang and Yang (2013), Yang and
Wu (2017a, b), Yang and Jiang (2019). In practice, many service quality data follow
non-normal distributions. For example, the service time of a local bank branch is a
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critical service quality characteristic, and efficiently monitoring the location and/or
dispersion of service data is an important issue to bank managers. Bank service
data that have been analyzed tend to have a right-skewed distribution as shown in
Yang and Wu (2017a, b). Some other examples of service quality data are fatigue
symptoms of breast cancer patients Ho et al. (2014), passenger counts of Taipei’s
mass rapid transit (MRT) system on a weekday basis Yang and Yang (2013), and
health care costs Zhou et al. (2008). The commonly used Shewhart variables control
charts, whose statistical properties depend on a normality assumption, clearly may
not be suitable for monitoring service data when the variables exhibit non-normal or
unknown distributions. Furthermore, McCracken and Chakraborti (2013) note that
normality is often an elusive assumption, and discuss some available nonparametric
schemes for jointly monitoring location and scale in overviewing control charts for
joint monitoring mean and variance.

Product, service quality, and productivity loss are all crucial competitive factors
of companies in numerous industries, and the loss function is a popular method for
measuring the loss caused by variations in product or service quality. Taguchi (1986)
proposed that target values are vital during process specification, while Sullivan
(1984) emphasized the importance of monitoring deviations from the target value.
Because increases in the difference between themean and the target and/or variability
are the sources of out-of-control loss, it is crucial to monitor the loss variation of a
manufacturing or service process.

Scant research has been done to deal with monitoring process loss location. Exist-
ing loss-function-based control charts are based on the assumption that the in-control
mean of a process quality variable equals the target value; see, for example, Zhang
and Wu (2006) and Wu et al. (2009). However, in practice, the in-control process
mean may not actually be the process target, and diagnosing the source of an out-of-
control signal is crucial for correcting an out-of-control process loss location. Yang
(2013a, b), Yang and Lin (2014) and Yang et al. (2017) proposed loss-based control
charts in order to monitor the loss location that arises when quality variables deviate
from target values.

A major drawback of loss-based control charts is that almost all of them are based
on the assumption that the quality variable has a normal distribution. This paper
focuses on discussing a loss-based control chart under non-normal distributions. We
note that the sample median is more robust than the sample average for estimating
the population location as the former is less affected by extreme values Graham et al.
(2011). Motivated by this, Yang et al. (2017) considered using the median loss to
express the quality loss function under a non-normal distribution. For this reason,
the resulting loss-based control chart is called the median loss (ML) control chart
throughout their paper. Their ML chart and the optimal variable sampling intervals
median loss (VSI ML) chart both illustrate the best out-of-control detection perfor-
mance for the left-skewed distributed process among the considered left-skewed,
symmetric, and right-skewed distributions. Even under a normal distribution, they
illustrated that the resultingout-of-control detectionperformanceof theVSIMLchart
is better than the VSI average loss (AL) chart in Yang (2013b) and the weighted loss
(WL) control charts in Yang and Lin (2014), except for very small shifts in process
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mean. However, the properties of average loss (ALSN) control chart were not dis-
cussed for a non-normal distributed process. Here in this present study, we consider
that both the sample size and sampling interval are fixed and will examine whether
the ALSN control chart has better out-of-control detection performance than that of
the ML chart under a skew-normal distributed process. Hence, we proceed to derive
the ALSN control chart and discuss the out-of-control detection performances of the
ALSN control chart either when the process distribution is left-skewed, symmetric,
or right-skewed, respectively.

The paper is organized as follows. Section 2 introduces the sampling distribu-
tion of the median loss for a quality variable, X , with a skew-normal distribution.
Section 3 illustrates the control limits of the ML chart for various sample sizes and
out-of-control detection performances for small to moderate shifts in mean and vari-
ance. Section 4 derives the distribution of sample average loss, constructs the ALSN
control chart, and measures its out-of-control detection performance for small to
moderate shifts in mean and variance. Section 5 compares the out-of-control detec-
tion performance between the proposed ALSN chart and the ML chart in Yang et al.
(2017) by considering the process with left-skewed, symmetric, and right-skewed
normal distribution, respectively. Section 6 summarizes the findings and provides a
recommendation.

2 The ML Control Chart

2.1 The Skew-Normal Distribution

We let the random variable X have a skew-normal distribution with location
parameter ξ0 ∈ (−∞,∞), scale parameter a0 ∈ (0,∞), and shape parameter b ∈
(−∞,∞), i.e., X ∼ SN (ξ0, a0, b). From Azzalini (1985), the probability density
function (pdf) of X is:

fX (x) = 2

a0
ϕ

(
x − ξ0

a0

)
Φ

(
b
x − ξ0

a0

)
, x ∈ (−∞,∞) , (1)

where ϕ(·) and Φ(·) are respectively the pdf and cumulative distribution function
(cdf) of the standard normal distribution.

In (1) we know that if b = 0, then the skew-normal distribution will reduce to the
normal distribution with mean ξ0 and standard deviation a0. The distribution is right-
skewed if b > 0 and is left-skewed if b < 0. The plot of the pdfs for b = −2, 0, 3 is
shown in Fig. 1.

The cumulative distribution function (cdf) of the skew-normal random variable
X is:
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− 1

π

∫ b
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− 1

2
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)2
(1 + y2)

]

1 + y2
dy , x ∈ (−∞,∞) .

(2)

2.2 The Loss Function

The loss function is defined as L = k(X − T )2. Let Xi , i = 1, 2, . . . , n, be a random
sample from the in-control distribution of SN (ξ, a, b). The sample median loss
depends on the sample size being odd or even. We only consider the case where the
sample size is an odd value for easier derivation of the distribution of the sample
median loss.

Denote the sample statistic of median loss as ML = (X − T )2
(( n+1

2 )
, where ML

is the loss value separating the higher half from the lower half of a loss data sample.
For a loss dataset, this may be thought of as the “middle” loss value.

Referring to Yang et al. (2017), the derived cdf of ML is as follows.

FML(t) =
∫ t

0
fM(u) du

= n![(
n−1
2

)!]2
∫ t

0
F(X−T )2(u)

n−1
2
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2

)
, t > 0 ,

(3)

where B(x, a, b) = ∫ x
0 ta−1(1 − t)b−1 dt is an incomplete beta function.

We determine the ML control chart based on the cdf of ML in order to monitor
the changes in the loss location or, equivalently, to monitor the shifts in the in-control
population mean (or the deviation of μ0 − T ) and/or standard deviation.

2.3 The Design of a Median Loss Control Chart

We first establish the ML control chart with a specified false alarm rate α by using
Eq. (3). The upper control limit (UCL) and the lower control limit (LCL) of the ML
chart are obtained by taking the inverse cdf of ML – that is:

UCL = F−1
ML(1 − α/2) , LCL = F−1

ML(α/2) . (4)

The process is deemed to be out-of-control if the monitoring statistic ML is smaller
than LCL or larger than UCL; otherwise, the process is considered to be in-control.

The expectation (μ0) and variance (σ 2
0 ) of in-control X areμ0 = ξ0 + a0

b√
1+b2

√
2
π

and σ 2
0 = a20

[
1 − 2b2

π(1+b2)

]
, respectively. Let δ3 denote the dispersion parameter that

satisfies μ0 − T = δ3σ0. For a skewed distribution, we set δ3 > 0.
Table 1 gives the control limits of the ML chart for various combinations of n =

5, 11, δ3 = 0, 1, 2, and b = −500,−2, 0, 2 and 500 under ARL0 = 370.4, μ0 = 0,

Table 1 Control limits of the ML chart with ARL0 =370.4

n b δ3

0 1 2

(LCL ,UCL) (LCL ,UCL) (LCL ,UCL)

5 –500 (0.006, 3.573) (0.021, 4.958) (0.157, 10.331)

–2 (0.004, 3.707) (0.016, 6.190) (0.176, 12.086)

0 (0.004, 3.754) (0.012, 6.868) (0.198, 13.099)

2 (0.004, 3.707) (0.009, 7.546) (0.283, 14.040)

11 500 (0.006,3.573) (0.003, 8.354) (0.618, 15.135)

–500 (0.036, 1.661) (0.132, 4.264) (0.800, 9.290)

–2 (0.027, 2.192) (0.102, 4.374) (0.814, 9.463)

0 (0.028, 2.268) (0.075, 4.498) (0.796, 9.713)

2 (0.027, 2.192) (0.054, 4.542) (0.855, 9.802)

500 (0.036, 1.661) (0.020, 4.729) (0.907, 10.078)
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and σ0 = 1. From Table 1 we can see that the widths of the control limits become
narrower when n increases and b and δ3 are fixed, and the widths of the control limits
become wider when δ3 increases and n and b are fixed. When δ3 = 0, the widths of
the control limits are the widest for a symmetric (b = 0) distributed quality variable.
When δ3 >0, the widths of the control limits become wider under an increasing b or
when the distribution of the quality variable changes from left-skewed, to normal, to
right-skewed.

3 Performance Measurement of the ML Chart

WefixARL0 at a desired level, for example 370.4, while for an out-of-control process
average run length (ARL1) being smaller is better. Here, ARL0 for the ML chart is:

ARL0 = 1/
(
1 − P(LCL < ML < UCL | in-control ML)

)
. (5)

Suppose that X∗ is the quality characteristic for the out-of-control process, and
X∗ ∼ SN (ξ ∗, a∗, b) hasmeanμ1 = μ0 + δ1σ0, δ1 �= 0, and standard deviation σ1 =
δ2σ0, δ2 ≥ 1. The power (1 − β) is the probability that the out-of-control median loss
statistic (ML∗) is larger than UCL or smaller than LCL – that is:

1 − β = 1 − P(LCL < ML∗ < UCL) = FML∗(LCL) + 1 − FML∗(UCL) .

Hence, we obtain:

ARL1 = 1

1 − β
= 1

FML∗(LCL) + 1 − FML∗(UCL)
, (6)

where FML∗(·) is the cdf of the out-of-control median loss statistic.
Table 2 illustrates the out-of-control detection performance of the ML chart for

the shifts in mean and standard deviation, δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, the dispersion
parameter, δ3 = 0, 1, 2, ARL0 = 370.4, n = 5,μ0 = 0, σ0 = 1, and the quality vari-
ablewith the left half normal (b = −500), left-skewed (b = −2), symmetric (b = 0),
right-skewed (b = 2), and right half normal (b = 500) distributions. In Table 2 we
can see, whether b = −500,−2, 0, 2, or 500, that ARL1 decreases when δ1 and/or
δ2 are far away from δ1 = 0 and/or δ2 = 1 under a specified δ3 (≥ 0); the ARL1 of
the ML chart decreases when δ3 rises for a specified combination of (δ1 > 0, δ2 > 0,
b); and the ARL1s of the ML chart with the left-skewed distributed (b < 0) quality
variable are all smaller than those of the quality variable with symmetric (b = 0) and
right-skewed (b > 0) distributions. These findings suggest that the ML chart has the
best performance for the left-skewed distributed quality variable.
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Table 2 ARL1 of the ML chart (n = 5)

δ1 δ2 b δ3

0 1 2

1 1 –500 13.869 2.059 2.027

–2 22.527 4.764 4.615

0 24.152 8.146 8.113

2 25.040 14.131 14.131

500 22.726 22.207 22.207

2 2 –500 1.415 1.067 1.065

–2 1.618 1.164 1.158

0 1.829 1.313 1.312

2 2.027 1.588 1.588

500 2.308 2.308 2.308

1 2 –500 2.010 1.577 1.715

–2 2.757 2.393 2.579

0 3.317 3.355 3.528

2 4.176 4.882 4.889

500 6.860 6.867 6.452

2 2 –500 1.326 1.168 1.190

–2 1.523 1.335 1.351

0 1.757 1.554 1.563

2 2.052 1.874 1.875

500 2.519 2.522 2.522

4 The Average Loss Control Chart

4.1 The Distribution of Average Loss

The Taguchi loss function is defined as L = k(X − T )2. Without loss of generality,
we set k = 1. In order to design an average loss control chart, suppose that a sequence
of random samples X1, X2, . . . , Xn of size n are taken from SN (ξ0, a0, b).We further
define the sample average loss (AL) as:

AL = 1

n

n∑
i=1

(Xi − T )2 = n − 1

n
S2X + (X̄ − T )2 . (7)

The first step to construct the ALSN chart is to find the distribution of AL when
X follows a skew-normal distribution. Since the exact distribution of AL is not
available, we use Edgeworth expansion (for example, see Hall 1992) to approximate
the distribution of AL .
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Edgeworth (1905) derived Edgeworth expansion that relates the cdf of a random
variable having expectation zero and variance 1 to the cumulative density function
(cdf) of the standard normal distribution using Chebyshev–Hermite polynomials.

Since the in-control Xi follows SN (ξ0, a0, b), we can obtain the first and the
second moments of Li = (Xi − T )2 by using the Chebyshev–Hermite polynomials.
Hence, the expectation and the standard deviation of L (μL and σL ) can be obtained
by the moments of L .

If we define Zn = √
n(AL − μL)/σL , then we can approximate the pdf of Zn by

Edgeworth expansion:

fZn (z) ≈ ϕ(z) − 1√
n

(
1

6
λ3Φ

(4)(z)

)
+ 1

n

(
1

24
λ4Φ

(5)(z) + 1

72
λ2
3Φ

(7)(z)

)
, (8)

where Φ(r)(z) = (−1)r−1Her−1(z)ϕ(z), Her−1(z) is the Chebyshev–Hermite poly-
nomial, and λr is the r th cumulant of (L − μL)/σL (see Hall 1992).

We can therefore obtain the cdf of AL by the following.

FAL(t) = P(AL ≤ t) = P

(
Zn ≤

√
n(t − μL)

σL

)
= FZn

(√
n(t − μL)

σL

)

≈ Φ

(√
n(t − μL)

σL

)
− 1√

n

(
1

6
λ3Φ

(3)

(√
n(t − μL)

σL

))

+ 1

n

(
1

24
λ4Φ

(4)

(√
n(t − μL)

σL

)
+ 1

72
λ2
3Φ

(6)

(√
n(t − μL)

σL

))
. (9)

The accuracy of this approximation is examined by the Pearson χ2 goodness-of-
fit test. We find when the number of random samples m is 2000 or 1000 and the
sample size n = 11 that the test reveals that the approximated cdf has no significant
difference from the cdf using Monte Carlo simulation.

4.2 The Design of an Average Loss Control Chart

Using Eq. (9), the upper control limit (UCL) and lower control limit (LCL) of an
average loss control chart with false alarm rate α are expressed as follows.

UCL = F−1
AL (1 − α/2) , LCL = F−1

AL (α/2) . (10)

We let the ALSN control chart represent the average loss control chart throughout
the paper and estimate the control limits using Monte Carlo simulation.

Table 3 lists the control limits of the ALSN chart with ARL0 = 370.4 for various
combinations of n = 5, 11, δ3 = 0, 1, 2, b = −500,−2, 0, 2, 500,μ0 = 0, and σ0 =
1. From the table we can see that the widths of the control limits become narrower
when n increases and b and δ3 are fixed, and the widths of the control limits become
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Table 3 Control limits of the ALSN chart

n b δ3

0 1 2

(LCL ,UCL) (LCL ,UCL) (LCL ,UCL)

5 –500 (0.095, 4.468) (0.000, 4.718) (0.950, 9.275)

–2 (0.083, 3.984) (0.167, 5.647) (0.991, 11.009)

0 (0.024, 3.665) (0.114, 6.431) (1.062, 12.117)

2 (0.083, 3.984) (0.040, 7.377) (1.190, 13.315)

500 (0.095, 4.468) (0.000, 8.324) (1.112, 14.469)

11 –500 (0.282, 3.220) (0.595, 3.739) (2.147, 7.954)

–2 (0.262, 2.902) (0.568, 4.312) (2.023, 8.869)

0 (0.224, 2.692) (0.509, 4.806) (1.958, 9.523)

2 (0.262, 2.902) (0.443, 5.413) (1.984, 10.265)

500 (0.282, 3.220) (0.288, 6.020) (1.913, 11.000)

wider when δ3 increases and n and b are fixed. When δ3 = 0, the width of the
control limits is the widest for a symmetric (b = 0) distributed quality variable.
When δ3 > 0, the widths of the control limits become wider under an increasing b
or for the distribution of quality variable changing from left-skewed, to normal, to
right-skewed.

5 Performance Measurement of the ALSN Control Chart

To measure the detection performance of the proposed ALSN control chart, we
let the out-of-control mean and standard deviation be μ1 = μ0 + δ1σ0, δ1 �= 0,
and σ1 = δ2σ0, δ2 ≥ 1, where δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, δ3 = 0, 1, 2, and b =
−500,−2.0, 2, 500. We estimate the ARL1s using Monte Carlo simulation.

Table 4 illustrates the out-of-control detection performance of the ALSN chart for
the changes in mean and standard deviation, δ1 = 1.0, 2.0, δ2 = 1.0, 2.0, the disper-
sion parameter, δ3 = 0, 1, 2, ARL0 = 370.4, n = 5, μ0 = 0, σ0 = 1, and the quality
variable with the left half normal (b = −500), left-skewed (b = −2), symmetric
(b = 0), right-skewed (b = 2), and right half normal (b = 500) distributions. In this
table we can see whether b = −500,−2, 0, 2, or 500 that ARL1 decreases when
δ1 and/or δ2 are far away from δ1 = 0 and/or δ2 = 1 under a specified δ3 ≥ 0); the
ARL1 of the ALSN chart decreases when δ3 rises for only mean changes (δ1 = 1, 2),
but is almost same for δ3 = 1 and δ3 = 2; and the ARL1s of the ALSN chart with
the left-skewed distributed (b < 0) quality variable are all smaller than those of
the quality variable with symmetric (b = 0) and right-skewed (b > 0) distributions,
except for δ1 = 1 and δ2 = 1. These findings suggest that the ALSN chart has better
performance for the left-skewed distributed quality variable.
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Table 4 ARL1 of the ALSN chart (n = 5)

δ1 δ2 b δ3

0 1 2

1 1 –500 190.23 1.754 1.604

–2 29.969 3.002 2.976

0 13.037 4.718 4.707

2 12.993 7.874 7.611

500 10.049 11.795 11.147

2 1 –500 1.578 1.012 1.009

–2 1.415 1.039 1.038

0 1.346 1.095 1.088

2 1.544 1.234 1.200

500 1.903 1.504 1.413

2 1 –500 1.953 1.150 1.253

–2 1.701 1.416 1.621

0 1.653 1.712 1.964

2 1.908 2.155 2.416

500 2.031 2.496 2.836

2 2 –500 1.125 1.024 1.034

–2 1.160 1.068 1.093

0 1.183 1.139 1.169

2 1.300 1.263 1.287

500 1.423 1.442 1.453

We further compare theARL1s between the proposedALSNchart and the existing
ML chart for a process with a skew-normal distribution. From the resulting Tables 2
and 4 we can see under b = −500,−2, 0, 2, 500, respectively, that the ARL1s of
the ALSN chart performs better than those of the ML chart whether the process has
small or moderate changes in location and/or dispersion.

6 Conclusions

In this paper we propose a newALSN control chart to monitor the changes in process
loss location or in the deviation of process mean and target and/or variance when
the distribution of a process is not symmetric but left-skewed or right-skewed. We
also develop the numerical approaches for calculating control limits and ARL of
the ALSN control chart are developed. Through numerical analyses, the proposed
ALSN chart shows reasonable and reliable detection ability compared to the ML
chart. Furthermore, the proposedALSN chart illustrates best out-of-control detection
performance for the left-skewed distributed quality variable.We thus recommend the
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application of the proposed ALSN chart for process loss location monitoring. In the
future,we suggest to study the exponentiallyweightedmoving averageALSNcontrol
chart, adaptive control schemes and the effect of contamination by outliers.
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Abstract Counted output, such as the number of defective items per sample, is often
assumed to have a marginal binomial distribution. The integer and asymmetrical
nature of this distribution and the value of its target mean hinders the quality control
practitioner from dealing with a chart for the process mean with a pre-stipulated in-
control average run length (ARL) and the ability to swiftly detect not only increases
but also decreases in the processmean. In this paperwe proposeARL-unbiased cumu-
lative sum (CUSUM) schemes to rapidly detect both increases and decreases in the
mean of independent and identically distributed as well as first-order autoregressive
(AR(1)) binomial counts. Any shift is detected more quickly than a false alarm is
generated by these schemes and their in-control ARL coincide with the pre-specified
in-control ARL. We use the R statistical software to provide compelling illustrations
of all these CUSUM schemes.
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1 Introduction

Shewhart quality control charts have a widely known limitation: they are not partic-
ularly swift when it comes to the detection of small-to-moderate shifts. The reason
being that these charts only use the last observed value of their control statistics to
decide whether or not a signal should be triggered.

The rationale of the cumulative sum (CUSUM) control statistic, introduced by
Page (1954), is building up by addition of differences between a score Xt and a
reference value k. If this control statistic exceeds the decision interval value h, a
signal is triggered by the CUSUM control chart and the parameter is deemed out-of-
control.

CUSUM charts, like most quality control charts, are usually assessed by deter-
mining their average run length (ARL) profile. The ARL is undisputedly the most
popular performance metric and represents the average number of samples taken
before a signal is triggered by the chart.

The reference value k of the CUSUM chart should be chosen to be between the
target process mean and the process mean level that the CUSUM chart is to detect
promptly, observed Lucas (1985). Another recommendation can be discerned in
Lucas (1985): after k is selected, the decision interval h is chosen in order to give a
sufficiently large in-control ARL.

CUSUM control charts/schemes:

• give an indication of small-to-moderate shifts earlier than their Shewhart coun-
terparts (see e.g., Ewan and Kemp 1960; Lucas 1985; Gan 1993; Hawkins and
Olwell 1998, pp. 7–8; Montgomery 2009, p. 402);

• can be related to Wald sequential probability ratio tests (SPRT) (Johnson and
Leone 1962);

• and their (asymptotic) optimality properties for detecting a change in distribution
have been thoroughly discussed (Lorden 1971; Pollak 1985).

As expertly put by Lucas (1985), two-sided CUSUM schemes to detect either an
increase or a decrease in the process mean are obtained by running simultaneously
two one-sided CUSUM charts for this parameter. The standard upper and lower
one-sided CUSUM charts have control statistics given by

S+
t = max{0, S+

t−1 + (Xt − k+)} (1)

S−
t = max{0, S−

t−1 + (k− − Xt )} (2)

(respectively), where

• {Xt : t ∈ N} is the output process;
• the starting values are S+

0 = S−
0 = 0, that is, the fast initial response (FIR) feature

Lucas and Crosier (1982) has not been adopted; k+ and k− are the reference values
of each one-sided chart.
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If the control statistic S+
t (resp. S−

t ) exceeds the decision interval value h
+ (resp. h−),

then a signal is prompted at sample t by the upper (resp. lower) one-sided CUSUM
charts at sample t .

1.1 A Handful of CUSUM Charts and Schemes for
Independent Counts

Counts of nonconforming items (resp. defects) arise frequently in statistical pro-
cess control (SPC) and are assumed to have a marginal binomial (resp. Poisson)
distribution.

As far as we have investigated, Ewan and Kemp (1960, Sects. 13–14) were the
first authors to propose the use of CUSUM charts to detect persistent shifts in the
mean of independent and identically distributed (i.i.d.) Poisson output from a target
value μ0 to an out-of-control level μ1. Ewan and Kemp (1960, Sect. 15) go on to
add that some of the results they obtained for the Poisson variate can also be used to
formulate schemes to control the fraction nonconforming, provided this proportion
is very small so that the Poisson distribution may be used to describe the sampling
distribution of the number of nonconforming items in a fixed size sample.

Lucas (1985) suggests that the reference value should be selected to be close to
k = (μ1 − μ0)/[ln(μ1) − ln(μ0)] and when k ≥ 1 the reference value will usually
be rounded to the nearest integer. If a two-sided CUSUM scheme is put to use and its
constituent upper and lower one-sided charts are meant to swiftly detect sustained
shifts from μ0 to the off-target levels μ+

1 (μ+
1 > μ0) and μ−

1 (μ−
1 < μ0), then the

reference values should be equal to

k∗ = μ∗
1 − μ0

ln(μ∗
1) − ln(μ0)

, ∗ = +, −. (3)

Lucas (1985) advocates the use of two-sided CUSUM schemes for the mean
of i.i.d. Poisson output, explains how to obtain its RL performance metrics, states
under which conditions the ARL can be obtained in terms of the ARL of the one-
sided CUSUM constituent charts, and yet does not provide tables for the ARL of
those two-sided schemes.

We are convinced that Gan (1993) is a seminal paper when it comes to the use of
CUSUM charts in the detection of sustained shifts in the fraction of nonconforming
items.

Gan (1993) and Hawkins and Olwell (1998, p. 123) suggest that the reference
value of the upper and lower one-sided CUSUM chart for i.i.d. binomial output
should be selected as close as possible of

k∗ = n × ln[(1 − p0)/(1 − p∗
1)]

ln[(1 − p0)p∗
1/(1 − p∗

1)p0]
, ∗ = +, −. (4)
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Recall that np0 is the nominal expected number of nonconforming items per
random sample of size n, and np+

1 (resp. np−
1 ) denotes the corresponding out-of-

control value that we want to quickly detect by making use of the upper (resp. lower)
one-sided CUSUM for this sort of output.

Let us remind the reader that the reference values in (3) and (4) were obtained
by capitalizing on the relation between the SPRT and the CUSUM procedure, as
described in detail by Hawkins and Olwell (1998, pp. 139–140, 145–147), for the
general exponential family with a single parameter and for the Poisson and binomial
families.

Hawkins and Olwell (1998, p. 108) refer the routines ANYARL and ANYGETH
to deal with one-sided CUSUM charts for i.i.d. binomial, Poisson, and negative
binomial output. ANYARL returns the ARL of the chart for a given h and ANYGETH
attempts to find a suitable h for the target in-control ARL. Hawkins and Olwell
(1998, pp. 108–110, 124–126) go on to illustrate the use of these two routines for
i.i.d. Poisson and binomial counts.

1.2 A Few CUSUM Charts and Schemes for Autocorrelated
Counts

Autocorrelation among successive counts is a more realistic assumption while deal-
ing for instance with very high sampling rates (Rakitzis et al. 2017). Moreover, it
has been amply shown in the literature that we need indeed specific charts/schemes
to monitor autocorrelated counts such as the ones mentioned in the comprehensive
review inWeiß (2018, Chap. 8) or found inWeiß (2009a, Chap. 20), Weiß and Testik
(2009) propose an upper one-sided CUSUM chart to monitor the mean of first-order
integer-valued autoregressive (INAR(1)) Poisson counts. Yontay et al. (2013) dis-
cuss upper and lower one-sided CUSUM charts and two-sided CUSUM schemes for
Poisson INAR(1) output.

Weiß and Testik (2012) discuss CUSUM charts to control counts modeled by
the integer-valued counterpart to the usual first-order autoregressive conditional het-
eroskedasticity models, INARCH(1). Additionally, Rakitzis et al. (2017) introduce
separate upper and lower one-sided charts tomonitor themean of binomialAR(1) and
beta-binomialAR(1) counts, and provide practical guidelines for the statistical design
of these charts. Ottenstreuer et al. (2018) proposed a combined Shewhart-CUSUM
scheme with a switching limit to monitor not only i.i.d. and INAR(1) Poisson counts,
but also Gaussian output.
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1.3 On ARL-Unbiased Charts for Discrete Output

While dealing with a control chart/scheme, the in-control ARL should never be
smaller than any out-of-control ARL. This behavior of the ARL profile means,
according to Knoth andMorais (2013, 2015), that the chart satisfies what Ramalhoto
and Morais (1995, 1999) called the primordial criterion and Pignatiello et al. (1995)
and Acosta-Mejía and Pignatiello (2000) expertly termed an ARL-unbiased chart.

On being questioned about ARL-unbiased charts for parameters of discrete dis-
tributions, we are bound to reply that the SPC literature is scarce and we ought to
mention:

• the attempts to derive ARL-unbiased charts that resulted in nearly or approxi-
mately ARL-unbiased designs, such as the np-chart proposed by Acosta-Mejía
and Pignatiello (1999), the geometric chart found in Zhang et al. (2004), and
the cumulative count conforming (CCC) chart under group inspection (CCCG)

promoted by Zhang et al. (2012);
• the control charts that are indeed ARL-unbiased, specifically the EWMA−p chart
(to monitor the variance for process data with non-normal or unknown distribu-
tions) proposed by Yang and Arnold (2015), the c- and np- charts derived by
Paulino et al. (2016) and Morais (2016), the geometric and CCCG charts found in
Morais (2017), the c-chart for Poisson INAR(1) counts proposed by Paulino et al.
(2019), the thinning-based exponentially weighted moving average (TEWMA)
found in Morais et al. (2018) for the mean of i.i.d. Poisson counts, and the EWMA
chart proposed by Morais and Knoth (2020) for this same mean.

Having all this in mind, we review the derivation of the ARL of the one-sided
CUSUMcharts and the two-sided CUSUM scheme (Sect. 2), propose ARL-unbiased
versions of the two-sided CUSUM schemes for the mean of i.i.d. binomial counts
(Sect. 3) and of binomial AR(1) counts (Sect. 4), and wrap up the paper briefly dis-
cussing some related topics worthy of future research (Sect. 5).

We use the R statistical software to provide instructive illustrations of all these
schemes and to assess their in-control and out-of-control performance.

2 The ARL of CUSUM Charts and Schemes for i.i.d.
Counts

Throughout this section let us assume that:

• {Xt : t ∈ N} is a sequence of i.i.d. counts;
• the reference value k∗ and the upper control limit h∗ are, for ∗ = +, −, positive
rational numbers written as k∗ = a∗/b∗ and h∗ = c∗/b∗, where a∗, b∗, c∗ ∈ N.
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2.1 Upper and Lower One-Sided CUSUM Charts

{S∗
t : t ∈ N0} constitutes aMarkov chain with state spaceS ∗ = {0, 1/b∗, 2/b∗, . . . ,

c∗/b∗, (c∗ + 1)/b∗, . . . }.
The transition probabilities referring to the upper one-sided CUSUM chart,

pi+, j+ = P(S+
t = j+ | S+

t−1 = i+), i+, j+ ∈ S +, are equal to:

• for i+ ∈ S + and j+ = 0,

pi+, j+ = P(S+
t = 0 | S+

t−1 = i+)

= P[i+ + (Xt − k+) ≤ 0]
= P(Xt ≤ k+ − i+); (5)

• for i+ ∈ S + and j+ ∈ S +\{0},

pi+, j+ = P(S+
t = j+ | S+

t−1 = i+)

= P[i+ + (Xt − k+) = j+]
= P(Xt = k+ + j+ − i+). (6)

As for the lower one-sided CUSUM chart, the transition probabilities pi−, j− =
P(S−

t = j− | S+
t−1 = i−), i−, j− ∈ S − are given by:

• for i− ∈ S − and j− = 0,

pi−, j− = P(S−
t = 0 | S−

t−1 = i−)

= P[i− + (k− − Xt ) ≤ 0]
= P(Xt ≥ k− + i−); (7)

• for i− ∈ S − and j− ∈ S −\{0},

pi−, j− = P(S−
t = j− | S−

t−1 = i−)

= P[i− + (k− − Xt ) = j−]
= P(Xt = k− − j− + i−). (8)

Let u∗ ∈ {0, 1/b∗, 2/b∗, . . . , c∗/b∗} be the initial value of the control statistic
S∗
t , ∗ = +, −. If S∗

t > h∗ = c∗/b∗ then a signal is triggered at sample t by the
associated one-sided CUSUM chart and its run length is given by

RL∗,u∗
(p) = min{t ∈ N : S∗

t > h∗ = c∗/b∗ | S∗
0 = u∗}, ∗ = +, −. (9)

Capitalizing on the work by Brook and Evans (1972), we can derive the ARL
of the one-sided CUSUM chart with control statistic S∗

t as the expected value
of a time to absorption of a Markov chain with transient (or in-control) states
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T ∗ = {0, 1/b∗, 2/b∗, . . . , c∗/b∗} and absorbing (out-of-control) state correspond-
ing to S∗

t > h∗. By doing so, we get

ARL∗,u∗ = e�
u∗ × (I∗ − Q∗)−1 × 1∗, ∗ = +, −, (10)

where

• e�
u∗ is the (u∗ + 1)-th vector of the orthogonal basis for R(c∗+1);

• I∗ represents the identity matrix with rank (c∗ + 1);
• Q∗ = [pi∗, j∗ ]i∗, j∗∈T ∗ is the sub-stochasticmatrix governing the transitions between
the transient (i.e., in-control) states of the absorbing Markov chain;

• 1∗ is a column-vector with (c∗ + 1) ones.

2.2 The Two-Sided CUSUM Scheme

{(S+
t , S−

t ) : t ∈ N0} is a bivariate Markov chain with state space S = S + × S −
and transition probabilities

p(i+,i−) ( j+, j−) = P(S+
t = j+, S−

t = j− | S+
t−1 = i+, S−

t−1 = i−).

A double subscript was obviously used to index any state; (0, 0) represents a two-
sidedCUSUMschemewith both constituent chartsCUSUMat zero,whereas (i+, i−)

refers to a two-sided CUSUM scheme with upper (resp. lower) one-sided CUSUM
chart in state i+ (resp. i−).

Keeping in mind that the two control statistics of the two-sided CUSUM control
scheme are S+

t = max{0, S+
t−1 + (Xt − k+)} and S−

t = max{0, S−
t−1 + (k− − Xt )}

the probabilities of transitioning from state (i+, i−) to state ( j+, j−) can be easily
derived and written in terms of indicator functions:

• for j+ = 0 and j− = 0,

p(i+,i−) ( j+, j−)

= P(S+
t = 0, S−

t = 0 | S+
t−1 = i+, S−

t−1 = i−)

= P[i+ + (Xt − k+) ≤ 0, i− + (k− − Xt ) ≤ 0]
= P(k− + i− ≤ Xt ≤ k+ − i+) × 1[0,k+−k−](i+ + i−); (11)

• for j+ = 0 and j− ∈ S −\{0},
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p(i+,i−) ( j+, j−)

= P(S+
t = 0, S−

t = j− | S+
t−1 = i+, S−

t−1 = i−)

= P[i+ + (Xt − k+) ≤ 0, i− + (k− − Xt ) = j−]
= P(Xt ≤ k+ − i+, Xt = k− − j− + i−)

= P(Xt = k− − j− + i−) × 1(−∞,k+−k−](i+ + i− − j−); (12)

• for j+ ∈ S +\{0} and j− = 0,

p(i+,i−) ( j+, j−)

= P(S+
t = j+, S−

t = 0 | S+
t−1 = i+, S−

t−1 = i−)

= P[i+ + (Xt − k+) = j+, i− + (k− − Xt ) ≤ 0]
= P(Xt = k+ + j+ − i+, Xt ≥ k− + i−]
= P(Xt = k+ + j+ − i+) × 1(−∞,k+−k−](i+ + i− − j+); (13)

• for j+ ∈ S +\{0} and j− ∈ S −\{0},

p(i+,i−) ( j+, j−)

= P(S+
t = j+, S−

t = j− | S+
t−1 = i+, S−

t−1 = i−)

= P[i+ + (Xt − k+) = j+, i− + (k− − Xt ) = j−]
= P(Xt = k+ + j+ − i+, Xt = k− − j− + i−)

= P(Xt = k+ + j+ − i+) × 1{k+−k−}(i+ + i− − j+ − j−). (14)

Once we derived these transition probabilities, we can extend the use of the
Markov chain approach and obtain the ARL function using the procedure described
by Lucas and Crosier (1982). Thus, we shall consider an absorbing Markov chain
with a set of transient (or in-control) states T = T + × T − and a single absorbing
state comprising all the out-of-control states of the original Markov chain character-
ized by (i+, i−), with i+ > h+ or i− > h−.1 We can find the ARL of the two-sided
CUSUM scheme with no head start using only one matrix inversion,

ARL = e�
0 (I − Q)−1 1, (15)

where

• e�
0 is the first vector of the orthogonal basis for R(c++1)×(c−+1);

• I represents the identity matrix with rank (c+ + 1) × (c− + 1);
• Q = [p(i+,i−) ( j+, j−)](i+,i−),( j+, j−)∈T ;
• 1 is a column-vector with (c+ + 1) × (c− + 1) ones.

1Notice that the transient states can be ordered as follows: (0, 0), (0, 1/b−), . . . , (0, c−/b−),

(1, 0), (1, 1/b−), . . . , (1, c−/b−), . . . , (c+/b+, 0), (c+/b+, 1), . . . , (c+/b+, c−/b−).
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2.3 Relating the ARL of One-Sided CUSUM Charts and the
Two-Sided CUSUM Scheme

According to Lucas (1985), the ARL of the two-sided CUSUM scheme with initial
state (S+

0 , S−
0 ) = (u+, u−), ARLu+,u−

, can be obtained directly from the ARL of two
one-sided charts, under certain conditions. Indeed, if

h+ + k+ − k− ≥ u+ + u− (16)

h− + k+ − k− ≥ u+ + u− (17)

k+ − k− ≥ h+ − h− (18)

k+ − k− ≥ h− − h+, (19)

then

ARLu+,u− = ARL+,u+
ARL−,0 + ARL+,0ARL−,u− − ARL+,0ARL−,0

ARL+,0 + ARL−,0
, (20)

where ARL+,u+
(resp. ARL−,u−

) is the ARL of the upper (resp. lower) one-sided
CUSUM chart with initial state u+ ∈ T + (resp. u− ∈ T −). When (S+

0 , S−
0 ) =

(u+, u−) = (0, 0), the conditions (16)–(19) can be written as

k+ − k− ≥ max{−h+,−h−, h+ − h−, h− − h+} = |h+ − h−| (21)

and theARLof the two-sidedCUSUMschemewith no head start reads as the familiar
formula

1

ARL
= 1

ARL+ + 1

ARL− , (22)

where ARL ≡ ARL0,0, ARL+ ≡ ARL+,0, and ARL− ≡ ARL−,0.

3 The ARL-Unbiased Two-Sided CUSUM Scheme for i.i.d.
Binomial Output

The ARL-unbiased two-sided CUSUM scheme to monitor i.i.d. binomial counts
triggers a signal at sample t with:

• probability one if S+
t > h+ or S−

t > h−;
• probability γ + (resp. γ −) if S+

t = h+ (resp. S−
t = h−).

Since we are dealing with a discrete control statistic, randomization probabilities
are essential to bring the in-control ARL to a pre-specified in-control ARL value, say
ARL�. They also play a major role in achieving a maximum of the ARL function at
p = p0.
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3.1 The Control Limits and Randomization Probabilities

Randomizing the emission of a signal means considering an altered sub-stochastic
matrix Q ≡ Q(p, γ +, γ −) in (15). As a matter of fact, when there is a transition
from state (i+, i−) ∈ T to state:

• ( j+, h−), for j+ ∈ T +\{h+}, (1 − γ −) × p(i+,i−)( j+,h−) replaces the entry
p(i+,i−)( j+,h−);

• (h+, j−), for j− ∈ T −\{h−}, (1 − γ +) × p(i+,i−)(h+, j−) takes the place of the
entry p(i+,i−)(h+, j−);

• (h+, h−), (1 − γ +) × (1 − γ −) × p(i+,i−)(h+,h−) is a replacement for p(i+,i−)(h+,h−).

The remaining entries of the sub-stochasticmatrixQ(p, γ +, γ −) continue to be equal
to the transition probabilities p(i+,i−)( j+, j−), for (i+, i−), ( j+, j−) ∈ (T +\{h+}) ×
(T −\{h−}).

Expectedly, the ARL function of the ARL-unbiased two-sided CUSUM scheme
for i.i.d. binomial output is obtained by using (15) with this altered sub-stochastic
matrix Q.

The randomization of the emission of a signal when S+
t (resp. S−

t ) is equal to h
+

(resp. h−) decreases the ARL of a two-sided CUSUM scheme with the very same
control limits but no randomization probabilities. Consequently, we want to obtain
an in-control ARL larger than the pre-specified value, so that complementing control
limits with randomization probabilities brings the in-control ARL down to ARL�.

This simple fact has to be taken into account by any search procedure we may
use to obtain the control limits and the associated randomization probabilities of
an ARL-unbiased chart/scheme with dependent control statistics. That is the case
of the search procedure proposed by Paulino et al. (2019), which comprises two
main steps: identifying the grid of control limits; obtaining admissible randomization
probabilities.

Apart from its first step, the search procedure we used to derive the control limits
and randomization probabilities of the ARL-unbiased two-sided CUSUM scheme
does not differ much from the description found in Paulino et al. (2019). The differ-
ences are essentially due to the fact that, unlike Paulino et al. (2019), we are dealing
with a two-sided scheme and a rather time-consuming search procedure.

In order to reduce the search procedure run time, we considered integer ref-
erence values and control limits. However, when it was not possible to derive an
ARL-unbiased two-sided CUSUM scheme with in-control ARL equal to ARL� by
considering integer reference values, they were rounded to one decimal place, in
particular to multiples of 0.5, 0.2, or 0.1. Consequently, the set of possible values
for the control limits is {d × l : d ∈ N} with l either equal to 1, 0.5, 0.2, or 0.1.

Given (22), if we consider initial control limits h+
0 and h−

0 such that

ARL∗(p0) > 2 × ARL�, ∗ = +, −, (23)

we may ensure that
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ARL(p0) > ARL�. (24)

If that is not the case, we have to fix the value of h−
0 and increase h+

0 until (24) is
fulfilled.

Once this condition is satisfied, we have to check whether ARL(p) achieves a
maximum, ARL(p�), at a point p� that lies to the left or to the right of p0. Bearing
in mind that, for a fixed h+, an increase (resp. decrease) of h− forces p� to move left
(resp. right), we have to proceed with the search of the control limits and consider
two separate cases: p� > p0 and p� < p0. The goal in both of them is to obtain, for
a fixed h+, the largest h− such that the maximum point of the ARL function lies to
the right of p0. As a result we must adopt the following procedure, when p� > p0
(resp. p� < p0).

• For h− = h−
0 , h−

0 + l, . . . (resp. h− = h−
0 , h−

0 − l, ...), consider a value of h+ large
enough (h+ ≥ h+

0 ) such that (24) is met and search for the smallest (resp. largest)
h−, say h, so that p� moves to the left (resp. right). Under these circumstances, h
and h − l (resp. h and h + l) define the two candidate values for the h−. Moreover,
for each of these candidates, identify the smallest possible value of h+, say Hh

and Hh−l (resp. Hh and Hh+l), which guarantee that (24) is valid; these are the
candidate values for h+.

Note that the largest of these two candidates to be h+ has to be increased by one unit
to handle some exotic cases.

As for the obtention of the randomization probabilities, the search procedure relies
on the pairs of (h+, h−) previously identified, intervals of admissible randomization
probabilities, approximate values of the derivative of the ARL function at the target
value of the parameter, and on a secant rule to attain a zero derivative, at least
approximately.

3.2 Preliminary Results

Figure 1 allows us to compare the performances of two ARL-unbiased two-sided
CUSUM schemes for binomial i.i.d. counts:

• one considering integer reference values and control limits;
• the other one with rational values for k∗ and h∗, ∗ = +, −.

Their in-control ARL were brought exactly to its desired value ARL� = 370.4.
This figure leads to the conclusion that the scheme with rational reference values

and control limits performs slightly better than the scheme associated with integer
values. This improvement comes with a price: the search procedure run time is
substantially higher.

Figure 2 refers to the comparison of:

• the ARL-unbiased version of the np-chart (Morais 2016), with control limits L
and U and randomization probabilities γL and γU ;
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Fig. 1 ARL-unbiased curves to two-sided CUSUM schemes with integer and ratio-
nal reference values—n = 60, p0 = 0.03, p±

1 = p0 ± 0.01, (k−, k+, h−, h+, γ −, γ +) =
(1, 2, 3, 18, 0.028753, 0.323484) (dashed line), (1.5, 2.1, 10, 12.4, 0.182710, 0.864451) (solid
line)
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Fig. 2 ARL-unbiased curves of a np-chart and a two-sided CUSUM scheme—n =
90, p0 = 0.02, p±

1 = p0 ± 0.01, (L ,U, γL , γU ) = (0, 7, 0.012851, 0.084593) (dashed line),
(k−, k+, h−, h+, γ −, γ +) = (1, 2, 3, 18, 0.020530, 0.204149) (solid line)

• the ARL-unbiased two-sided CUSUM scheme we have just proposed.

It is apparent that the former is considerably outperformed by the latter even for
values of p very close to p0. Thus, replacing an ARL-unbiased np-chart by its two-
sided CUSUM counterpart certainly pays off when we are monitoring the fraction
nonconforming of binomial i.i.d. counts.
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Fig. 3 ARL profiles of a standard two-sided CUSUM scheme and an ARL-
unbiased two-sided CUSUM scheme—n = 200, p0 = 0.04, p±

1 = p0 ± 0.01, ARL� =
322.4388, (k−, k+, h−, h+) = (7, 9, 15, 17) (dashed line), (k−, k+, h−, h+, γ −, γ +) =
(7, 9, 15, 18, 0.165153, 0.647683) (solid line)

In Cruz (2016, pp. 27–33) the reader can find: further examples of the comparisons
described above; ARL estimates obtained via Monte Carlo simulation that virtually
coincide with the values of the ARL function; and a brief study of the impact of
the choice of p+

1 and p−
1 on the ARL performance of the ARL-unbiased two-sided

CUSUM scheme.
As for the bias reduction of the ARL profile of a standard two-sided CUSUM

scheme for i.i.d. binomial output, it is not significant because these schemes tend to
have ARL functions with a maximum very close to the target value p0, as shown by
Fig. 3.

But keep in mind that due to the graininess of the ARL of the CUSUM charts for
discrete output, a phenomenon thoroughly reported by Hawkins and Olwell (1998,
pp. 107–110) achieving a desired in-control ARLmight be difficult without random-
ization even if we consider rational reference values and control limits.

In fact what we did to produce Fig. 3 was to obtain a standard two-sided CUSUM
scheme with its in-control ARL as close as possible to 370.4 (using integer reference
values and control limits); the in-control ARL of the resulting scheme was 322.4388.
Then we set ARL� = 322.4388 and obtained a matched in-control ARL-unbiased
two-sidedCUSUMscheme, tomake a fair comparison between the twoARLprofiles.

Figure 3 leads us to add that the standard two-sided CUSUM scheme tends to be
in average quicker than its ARL-unbiased counterpart when it comes to the detection
of upward shifts in the fraction nonconforming. This comes as no surprise, after all
the derivative of the ARL function of the ARL-biased scheme is negative at p = p0,
whereas the one of the ARL-unbiased scheme is virtually null.
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4 The ARL of Two-Sided CUSUM Schemes for Binomial
AR(1) Counts

First-order integer-valued autoregressive (INAR(1)) processes, introduced by Mc-
Kenzie (1985) and relying on the binomial thinning operator (Steutel and VanHarn
1979), can be used in SPC, as Weiß (2009a, Chap. 20) and (Weiß 2018, Chap. 8)
thoroughly illustrated.

Let us now describe one of those processes and for that purpose consider from
now on:

• n ∈ N, p ∈ (0, 1);
• ρ ∈ [max{−p/(1 − p),−(1 − p)/p}, 1], β = p(1 − ρ), α = β + ρ.

Then the process {Xt : t ∈ N0} defined by the recursion

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), t ∈ N, (25)

is said to be a binomial AR(1) process if:

• X0 ∼ binomial(n, p);
• ◦ represents the binomial thinning operator (recall that α ◦ X | X ∼ binomial

(X, α));
• all thinning operations are performed independently of each other, and the thin-
nings at time t are independent of {. . . , Xt−2, Xt−1}.
Weiß (2009b) not only added that E(Xt ) = np and V (Xt ) = np(1 − p), but

also that a binomial AR(1) process is a stationary Markov chain with state space
{0, 1, ..., n}, binomial(n, p) marginal distribution and transition probabilities pi j =
P(Xt = j | Xt−1 = i) given by

pi j =
min( j,i)∑

m=max(0, j+i−n)

(
i
m

)
αm(1 − α)i−m ×

(
n − i
j − m

)
β j−m (1 − β)n−i+m− j .

(26)
The binomial AR(1) process has been used to describe the number of counts in

random samples of fixed size n, for example, by Weiß (2009b, c) and Rakitzis et al.
(2017).

Throughout this section, we assume that:

• in the absence of assignable causes, p = p0 and ρ = ρ0;
• the purpose of using a control chart/scheme is to monitor shifts from p0 to

p = p0 + δp or from ρ0 to ρ = ρ0 + δρ , where δp ∈ (−p0, 1 − p0) and δρ ∈
(max{−p0/(1 − p0),−(1 − p0)/p0} − ρ0, 1 − ρ0).
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4.1 Overall ARL Functions

The ARL functions of upper one-sided CUSUM charts and two-sided CUSUM
schemes for Poisson INAR(1) counts were derived by Weiß and Testik (2009) and
Yontay et al. (2013), respectively.

By following closely Yontay et al. (2013), we are able to derive the ARL function
of two-sided CUSUM schemes to monitor binomial AR(1) counts.

Firstly, note that {(Xt , S+
t , S−

t ) : t ∈ N0} is a trivariate Markov chain with state
space {0, 1, . . . , n} × S + × S − and transition probabilities

p(b,i+,i−)(a, j+, j−)

= P
(
Xt = a, S+

t = j+, S−
t = j− | Xt−1 = b, S+

t−1 = i+, S−
t−1 = i−

)
,

(27)

with a, b ∈ {0, 1, ..., n}, i+, j+ ∈ S +, and i−, j− ∈ S −. These transition probabil-
ities were derived by Cruz (2016, p. 49) and are written below in terms of indicator
functions:

• For j+ = 0 and j− = 0,

p(b,i+,i−) (a, j+, j−)

= P
(
Xt = a, S+

t = 0, S−
t = 0 | Xt−1 = b, S+

t−1 = i+, S−
t−1 = i−

)

= P
(
Xt = a, i+ + Xt − k+ ≤ 0, i− + k− − Xt ≤ 0 | Xt−1 = b

)

= P
(
Xt = a, Xt ≤ k+ − i+, Xt ≥ i− + k− | Xt−1 = b

)

= P (Xt = a | Xt−1 = b) × 1[i−+k−, k+−i+](a); (28)

• for j+ = 0 and j− ∈ S −\{0},
p(b,i+,i−) (a, j+, j−)

= P
(
Xt = a, S+

t = 0, S−
t = j− | Xt−1 = b, S+

t−1 = i+, S−
t−1 = i−

)

= P
(
Xt = a, i+ + Xt − k+ ≤ 0, i− + k− − Xt = j− | Xt−1 = b

)

= P
(
Xt = a, Xt ≤ k+ − i+, Xt = i− + k− − j− | Xt−1 = b

)

= P (Xt = a | Xt−1 = b) × 1[0, k+−i+]∩{i−+k−− j−}(a); (29)

• for j+ ∈ S +\{0} and j− = 0,

p(b,i+,i−) (a, j+, j−)

= P
(
Xt = a, S+

t = j+, S−
t = 0 | Xt−1 = b, S+

t−1 = i+, S−
t−1 = i−

)

= P
(
Xt = a, i+ + Xt − k+ = j+, i− + k− − Xt ≤ 0 | Xt−1 = b

)

= P
(
Xt = a, Xt = j+ − i+ + k+, Xt ≥ i− + k− | Xt−1 = b

)

= P (Xt = a | Xt−1 = b) × 1[i−+k−, n]∩{ j+−i++k+}(a); (30)

• for j+ ∈ S +\{0} and j− ∈ S −\{0},
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p(b,i+,i−) (a, j+, j−)

= P
(
Xt = a, S+

t = j+, S−
t = j− | Xt−1 = b, S+

t−1 = i+, S−
t−1 = i−

)

= P
(
Xt = a, i+ + Xt − k+ = j+, i− + k− − Xt = j− | Xt−1 = b

)

= P
(
Xt = a, Xt = j+ − i+ + k+, Xt = i− + k− − j− | Xt−1 = b

)

= P (Xt = a | Xt−1 = b) × 1{ j+−i++k+}∩{i−+k−− j−}(a). (31)

Secondly, let us consider once more an absorbing Markov chain, in this case
with set of transient states equal to {0, 1, ..., n} × T + × T − and a single absorbing
state combining all the original states (a, i+, i−), with i+ > h+ or i− > h−.2 If
X0 = x ∈ {0, 1, ..., n}, S+

0 = u+, and S−
0 = u− then the ARL function of the two-

sided CUSUM scheme for binomial AR(1) counts equals

ARLx,u+,u−
(p, ρ) = e�

x,u+,u− × (I − Q)−1 × 1, (32)

where

• e�
x,u+,u− is the (x × (c+ + 1) × (c− + 1) + u+ × (c− + 1) + u− + 1)-th vector of

the orthogonal basis for R(n+1)×(c++1)×(c−+1);
• I represents the identity matrix with rank (n + 1) × (c+ + 1) × (c− + 1);
• Q ≡ Q(p, ρ) = [p(b,i+,i−)(a, j+, j−)](a,i+,i−),(b, j+, j−)∈{0,1,...,n}×T +×T − ;
• 1 is a column-vector with (n + 1) × (c+ + 1) × (c− + 1) ones.

Thirdly, since the value of X0 is usually unknown, it is plausible to rely on X1 ≡
X1(p, ρ) ∼ binomial(n, p) and define the overall ARL (Weiß and Testik 2009) as:

ARL(p, ρ) = 1 +
∑

(x,u+,u−)∈{0,1,...,n}×T +×T −
ARLx,u+,u−

(p, ρ)

×P(X1 = x, S+
1 = u+, S−

1 = u− | S+
0 = 0, S−

0 = 0). (33)

The probabilities P(X1 = x, S+
1 = u+, S−

1 = u− | S+
0 = 0, S−

0 = 0) are denoted
by p(•,0,0) (x,u+,u−) and are taken from Cruz (2016, pp. 50–51):

• for u+ = 0 and u− = 0,

p(•,0,0)(x,u+,u−)

= P
(
X1 = x, S+

1 = 0, S−
1 = 0 | S+

0 = 0, S−
0 = 0

)

= P
(
X1 = x, X1 − k+ ≤ 0, k− − X1 ≤ 0

)

= P
(
X1 = x, X1 ≤ k+, X1 ≥ k−)

= P(X1 = x) × 1[k−, k+](x); (34)

• for u+ = 0 and u− ∈ T −\{0},

2The transient states can be ordered as follows: (0, 0, 0), (0, 0, 1/b−), . . . , (0, 0, c−/b−),

(0, 1, 0), (0, 1, 1/b−), . . . , (0, 1, c−/b−), . . . , (n, c+/b+, 0), (n, c+/b+, 1), . . . , (n, c+/b+, c−/b−).
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p(•,0,0)(x,u+,u−)

= P
(
X1 = x, S+

1 = 0, S−
1 = u− | S+

0 = 0, S−
0 = 0

)

= P
(
X1 = x, X1 − k+ ≤ 0, k− − X1 = u−)

= P
(
X1 = x, X1 ≤ k+, X1 = k− − u−)

= P(X1 = x) × 1[0, k+]∩{k−−u−}(x); (35)

• for u+ ∈ T +\{0} and u− = 0,

p(•,0,0)(x,u+,u−)

= P
(
X1 = x, S+

1 = u+, S−
1 = 0 | S+

0 = 0, S−
0 = 0

)

= P
(
X1 = x, X1 − k+ = u+, k− − X1 ≤ 0

)

= P
(
X1 = x, X1 = u+ + k+, X1 ≥ k−)

= P(X1 = x) × 1[k−, n]∩{u++k+}(x); (36)

• for u+ ∈ T +\{0} and u− inT −\{0},

p(•,0,0)(x,u+,u−)

= P
(
X1 = x, S+

1 = u+, S−
1 = u− | S+

0 = 0, S−
0 = 0

)

= P
(
X1 = x, X1 − k+ = u+, k− − X1 = u−)

= P
(
X1 = x, X1 = u+ + k+, X1 = k− − u−)

= P(X1 = x) × 1{u++k+}∩{k−−u−}(x). (37)

To derive an ARL-unbiased two-sided CUSUM scheme we proceed as in Sect. 3.
We are still dealing with the two discrete control statistics S∗

t , ∗ = +, −, thus
the randomization probabilities play a vital role in achieving an in-control ARL equal
to ARL� and eliminating the bias of the ARL function.

Unsurprisingly, randomizing the emission of a signal means modifying some
entries of the sub-stochastic matrixQ in (32), in particular the entries associated with
states (a, j+, h−), (a, h+, j−), and (a, h+, h−), where a ∈ {0, 1, ..., n}, j+ ∈ T +,
and j− ∈ T −. When there is a transition from state (b, i+, i−) ∈ {0, 1, ..., n} ×
T + × T −, to state:

• (a, j+, h−), for j+ ∈ T \{h+}, (1 − γ −) × p(b,i+,i−)(a, j+,h−) takes the place of
p(b,i+,i−)(a, j+,h−);

• (a, h+, j−), for j− ∈ T \{h−}, (1 − γ +) × p(b,i+,i−)(a,h+, j−) stands in for
p(b,i+,i−)(a,h+, j−);

• (a, h+, h−), (1 − γ +) × (1 − γ −) × p(b,i+,i−)(a,h+,h−) replaces p(b,i+,i−)(a,h+,h−).

The remaining entries of the altered matrix Q ≡ Q(p, ρ, γ +, γ −) are equal to the
transition probabilities p(b,i+,i−)(a, j+, j−), where (a, j+, j−) ∈ {0, 1, ..., n} ×
(T +\{h+}) × (T −\{h−}).
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The overall ARL function of the ARL-unbiased two-sided CUSUM scheme for
the mean of binomial AR(1) counts, ARL(p, ρ, γ −, γ +) is given by

1 +
∑

(x,u+,u−):u+�=h+, u−�=h−
ARLx,u+,u− × p(•,0,0) (x,u+,u−)

+(1 − γ +) ×
∑

(x,h+,u−):u−�=h−
ARLx,h+,u− × p(•,0,0) (x,h+,u−)

+(1 − γ −) ×
∑

(x,u+,h−):u+�=h+
ARLx,u+,h− × p(•,0,0) (x,u+,h−)

+(1 − γ −)(1 − γ +) ×
∑

(x,h+,h−)

ARLx,h+,h− × p(•,0,0) (x,h+,h−), (38)

where (x, u+, u−) ∈ {0, 1, ..., n} × T + × T −, (x, u−) ∈ {0, 1, ..., n} × T −,
(x, u+) ∈ {0, 1, ..., n} × T + in those summations; and ARLx,u+,u− ≡ ARLx,u+,u−

(p, ρ, γh+ , γh−) is obtained from (32) with Q(p, ρ) replaced by Q(p, ρ, γ +, γ −).
The control limits and randomization probabilities of the ARL-unbiased two-

sided CUSUM scheme, for the mean of binomial AR(1) counts, are derived using
the search procedure described in Sect. 3.

4.2 Further Preliminary Results

Since themean of the binomial AR(1) process is equal to np regardless of the value of
the autocorrelation parameter ρ, we could be tempted to resort to an ARL-unbiased
two-sided CUSUM scheme designed for i.i.d. binomial counts to monitor the mean
of such autocorrelated process.

However, the scheme that takes into account the autocorrelation structure of the
counts and the one that ignores it has contrasting performances, as shown by Fig. 4.
The two-sided CUSUM scheme that disregards the autocorrelation structure is ARL-
biased and has in-control ARL smaller than the other two-sided CUSUM scheme.

Figure 5 refers to the comparison of the ARL profiles of:

• the ARL-unbiased modified np-chart (Cruz 2016, pp. 42–48), with control limits
L and U and randomization probabilities γL and γU ;

• the ARL-unbiased two-sided CUSUM scheme for binomial AR(1) counts.

Unsurprisingly, the latter scheme outperforms its Shewhart counterpart.
It is important to note that Monte Carlo simulation was used by Cruz (2016, p. 57)

to provide ARL estimates and verify the results obtained for ARL(p, ρ0, γ
−, γ +).

Another relevant finding, it was not possible to derive a two-sided CUSUM scheme
whose ARL profile achieves amaximum at ρ = ρ0. As amatter of fact these schemes
have a very poor performance when it comes to the detection of shifts in ρ, as
previously reported byWeiß (2009b) while discussing the use of several other charts
to control binomial AR(1) counts.
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Fig. 4 ARL(p, ρ0, γ −, γ +) curve of the ARL-unbiased two-sided CUSUM schemes for
AR(1) and i.i.d. binomial counts in the presence of autocorrelation—n = 30, p0 = 0.03, ρ0 =
0.2, p±

1 = p0 ± 0.01, (k−, k+, h−, h+, γ −, γ +) = (1, 1, 31, 12, 0.406215, 0.079627) (solid line),
(1, 1, 28, 10, 0.493716, 0.540321) (dashed line)
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Fig. 5 ARL profiles of the ARL-unbiased modified np-chart and two-sided CUSUM
scheme (resp. dashed and solid lines)—n = 30, p0 = 0.03, p±

1 = p0 ± 0.01, ρ0 = 0.2,
(L ,U, γL , γU ) = (0, 5, 0.013757, 0.575849) (dashed line), (k−, k+, h−, h+, γ −, γ +) =
(1, 1, 31, 12, 0.406215, 0.079627) (solid line)
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5 Final Thoughts

We have come a long way sinceWalter Shewhart proposed the p-chart, by proposing
an ARL-unbiased two-sided CUSUM scheme for i.i.d. binomial counts.

Since we are dealing with discrete control statistics, randomization probabilities
are essential to bring the in-control ARL down to a pre-specified in-control ARL
and to eliminate the bias of the ARL function. The search procedure, used to obtain
the control limits and randomization probabilities of the two constituent one-sided
CUSUM charts to monitor i.i.d. binomial counts, was inspired by the one proposed
by Paulino et al. (2019).

As for binomial AR(1) counts, we concluded that ignoring the autocorrelation
structure and using two-sided CUSUM schemes for i.i.d. binomial output would lead
to biased ARL profiles. Thus, it is of the utmost importance to derive ARL-unbiased
two-sided CUSUM schemes for autocorrelated binomial counts. Once again this was
done by adapting the search procedure described by Paulino et al. (2019).

We ought to note that ARL-unbiased two-sided CUSUM schemes to monitor
the mean of i.i.d. and INAR(1) Poisson counts have been proposed and thoroughly
discussed by Clara (2016, Chap. 3).

The search procedure used to obtain ARL-unbiased two-sided CUSUM schemes
for binomialAR(1) counts is computationally intensive and rather inefficient, namely,
because we are dealing with sparse sub-stochastic matrices of considerable size.
Moreover, obtaining such schemes was only possible when we considered ARL�

smaller than the values we have taken while monitoring the mean of i.i.d. binomial
counts.

As a consequence, a direction for future work would be improving this search
procedure by taking advantage of the potential of the statistical software R to deal
with sparse arrays.

Another topic certainly worthy of future research is to minimize the number of
states included in theMarkov chain approach along the same lines asWoodall (1984)
and Yontay et al. (2013).
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Statistical Aspects of Target Setting for
Attribute Data Monitoring

Emmanuel Yashchin, Aaron Civil, Jeff Komatsu, and Paul Zulpa

Abstract We consider early warning systems (EWS) for monitoring multi-stage
data, in which downstream variables undergo changes associated with upstream pro-
cess stages. In such applications, the EWSmonitoring arm acts as a search engine that
analyses a number of data streams for each monitored variable, as the problems of
change detection and identification of the change-causing stage are handled jointly.
Given massive amounts of data involved in analysis, it is important to achieve an
acceptable balance between false alarms and sensitivity requirements, by focusing
on changes of practical significance. The role of the target-setting arm of EWS is to
ensure and maintain this balance via suitable selection of control scheme parame-
ters. In this paper, we discuss principles of developing and managing targets, with
examples from a supply chain operation.

Keywords Statistical process control · Robust methods · Trimmed mean · Search
engines · Hypothesis testing · Practical significance

1 Introduction

An early warning system (EWS) can be viewed as a kind of search engine that ana-
lyzes available data on a periodic basis, selects cases meriting engineering attention
and produces supplemental information that is instrumental for problem diagnosis
and alarm prioritization, see Yashchin (2018). The main objective of an EWS is to
make sure that (a) all unfavorable conditions are detected reasonably early and (b) the
rate of false alarms is acceptably low. To achieve this objective, we rely on the basic
knowledge of processes driving the data and operating conditions that are communi-
cated to the EWS: for example, we expect the users to specify, for every monitored
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process, its target, acceptable / unacceptable deviations of the process mean from
the target, acceptable false alarm rate, and so forth. This requires non-trivial effort,
especially in the presence of massive or highly intensive data streams. The target
setting procedures are meant to facilitate this process by helping users in populat-
ing the files governing the monitoring process based on the available data and other
information about the process. In this article, we describe target setting procedures
for the attribute data monitoring arm of an EWS.

We assume that the data monitoring stream consists of pairs (ni , xi ), i = 1, 2, . . .,
where i is the index of a vintage, ni is the number of items (we will call them parts)
tested for it, and xi is the number of items failed. For every vintage, some concomitant
information is also available, but the details are not important for this article. The
EWS monitors the Binomial mean p in some setting, e.g., see Gan (1993), Hawkins
and Olwell (1998), Civil et al. (2013a, b), Kenett and Zacks (2014). We use the three-
zone approach that calls for specifying the acceptable and unacceptable levels p0 and
p1, respectively (p1 > p0), e.g., see Woodall (1986), Yashchin (1985, 2012). Such
a setup has several advantages: of key importance is the fact that it enables one to
focus the search engine on detecting changes of practical (as opposed to statistical)
significance. This property is highly valuable in large-scale monitoring systems, as
it guarantees a-priori that detected unfavorable conditions are of interest to at least
some of the users. Conventional statistical process control (SPC) systems based on
the Western Electric rules or similar anomaly detection systems focus instead on
detecting changes from some target value, and thus they do not scale well, as they
tend to produce too many alarms that are of no practical interest. We refer to the
process of determining (p0, p1) as target-setting.

Once the acceptable/unacceptable values are available, one can convert the infor-
mation in the observed vintages to the corresponding values of the control scheme
Si , i = 1, 2, . . . , for the purpose of monitoring; for example,

S0 = s0 , Si = max[0, γ Si−1 + wi (P̂i − k)] , i = 1, 2, . . . , , (1)

where s0 is the scheme headstart, P̂i is the vintage-based estimate of p, wi is the
corresponding weight, the reference value k is given by the formula

k = p1 − p0
ln p1 − ln p0

≈ (p0 + p1)/2 , (2)

(assuming that thePoisson approximation is adequate) andγ is the evidence-damping
parameter (typically chosen in the range [0.7, 1]). This version ofweightedGeometric
Cusum GC(γ ) can be applied in the conventional setting (when the newly arriving
information affects only the last vintage data) or in the setting involving dynamically
changing observations (DCO, see, Yashchin 2010). In practical applications, one will
typically use (1) in conjunction with supplemental rules depending on the mode of
deployment; these rules are essential for ensuring acceptable operating characteristics
of themonitoring scheme. In the context of this article,wewill focus on the casewhere
P̂i is the sample proportion of failures in the i-th vintage and wi is the corresponding
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sample size, ni . However, the methods described in this paper can be applied in more
general situations, as we will discuss in the last section.

In many situations, the acceptable/unacceptable levels are dictated by business
requirements. In this case, the selection (p0, p1) could be related, for example, to the
practical (and possibly, financial) consequences of the process operating at these fail-
ure rates, and it does not have to reflect the capability of the process to produce parts
having the acceptable failure rate. Disregarding capability, however, could come at
a cost of tolerating constantly underperforming parts that will be prominently fea-
tured in red light on dashboards and displays, making it difficult to track the quality
improvement process. Given that there can be many parts that exhibit such behav-
ior, dashboard management could become exceedingly complicated, as messages
delivered by its red color component become less actionable.

Furthermore, considering part capabilitymight also facilitate detection of unfavor-
able conditions of “drift” type that originate at some point and then get progressively
worse. Therefore, in this paper we emphasize the approach based on estimating the
ability of various processes to operate at the levels compatible with the historical
capability demonstrated by the process itself, its peers and similar processes. Of
course, the proven capability could turn out to be inferior to that dictated by the busi-
ness needs, and an ongoing effort will be required to bring the processes to desired
performance levels—however, dashboards based on process capability (or influenced
by it) could help in guiding actions geared towards process improvement.

In practice, the targets used by the monitoring system are influenced by many
factors, including business—driven necessity (e.g., financial implications of keep-
ing targets at specified levels), continuous improvement objectives (e.g. directives
to reduce failure rate by 10% every year) or contractual obligations (e.g. related
to vendors or customers)—and process capability is only one of them. It is quite
an important component, though—and typically a target-setting system (which in
our context is essentially a capability analysis system) is run in parallel with the
monitoring system and plays a key (advisory, not direct) role in driving the quality
improvement activities.

In the next section, we introduce basic robust estimation procedures for the pro-
portion of defectives, which reflects the process capability. In Section 3 we describe
the target-derivation process. In Section 4 we discuss an example related to imple-
mentation of the target-setting system in the IBM Supply Chain organization. In
Section 5 we discuss broader aspects of the target-setting process.

2 Robust Point Estimation of p

One of the key statistical issues is to evaluate, for every part, the inherent capability
of the part manufacturer. In the problem of monitoring by variables, capability is
often measured in terms of indices such as Cp or Cpk . In the case of the inspection
/ attribute data, we typically do not have rigidly defined specs, so another approach
is needed. For simplicity, we focus on the prevailing situation where the monitored
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proportions are low, so that one can rely on adequacy of the Poisson approximation
to the distribution of the observed counts.

In practice, the pass/fail data is typically contaminated with outliers. It is com-
monly observed that the data for a given part (we refer to it as Part A) comes from
several vintages, and some of them tend to be either unusually good or unusually
bad. It is therefore necessary to neutralize the effect of the outlier vintages. When
the sample sizes {ni } are all the same, we could use the trimmed mean of the sample
proportions, e.g., see Huber and Ronchetti (2009). In the case where the sample sizes
vary, this approach (called weighted trimmed mean, see, NIST Handbook 2019) is
unadvisable, both from the statistical and business perspectives. Leaving aside the
statistical aspects of standard trimming, note that it can introduce issues in relation-
ship with vendors, whose parts are supposed to deliver a certain level of performance.
Suppose, for simplicity, that we apply trimming by removing the two vintages with
largest estimated pi (we call them top vintages) and two vintages with smallest esti-
mated pi (bottom vintages), and then compute a weighted average of the proportions
in the remaining vintages. In cases where the removed bottom vintages have a much
lower overall sample size than the top vintages, a vendor can legitimately protest that
his capability estimate is biased against him since the resulting trimmed weighted
average will contain fewer failures than what he would normally be capable of deliv-
ering. Furthermore, since we have no control of the sample sizes corresponding to the
trimmed observations, it is difficult to control the variance of the resulting estimates.
Instead, we use the procedure which we call weight-trimmed mean introduced in the
next section.

2.1 Weight-Trimmed Estimate for p

In this section, we describe an alternative procedure for obtaining p̂0, the robust
estimate of the underlying proportion of defective parts of type A. Suppose that for
the Part A we have data for N vintages (e.g. corresponding to weeks). Accordingly,
given are

(i) Sequence of sample sizes n1, n2, . . . , nN corresponding to these vintages,
(ii) Corresponding numbers of defective parts, X1, X2, . . . , XN and
(iii) Proportions of defective parts, Pi = Xi/ni , i = 1, 2, . . . , N .

Note that here we use the upper-case notation Xi to emphasize that we treat the
numbers of defective parts as random variables (as usual, the lower-case letters will
refer to realizations of the random variables). A natural way to estimate the overall
proportion of defective parts is to take the weighted average of Pi - we denote this
estimator p̂w:

p̂w =
∑N

i=1 ni Pi
∑N

i=1 ni
=

∑N
i=1 Xi

∑N
i=1 ni

, (3)

To obtain a robust estimate, we apply the following process:
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(a) Arrange the estimates Pi in increasing order. Denote the resulting sequence of
estimates, the corresponding numbers of defective parts and sample sizes by

{P(1), P(2), . . . , P(N )}, {X(1), X(2), . . . , X(N )}, {n(1), n(2), . . . , n(N )} (4)

(b) Set the lower trimming level α1 (for example α1 = 0.1). Discard the proportion
α1 of the total sample size (and related numbers of defective parts) from below.
Typically, this would require discarding few initial data points and a portion
of data for the vintage at a boundary. In this case, the estimated proportion of
defective parts for this boundary vintage remains the same as before, but its
sample size is adjusted downward to satisfy the rate of trimming, α1.

(c) Similarly, set the upper trimming level α2 (for example, α2 = 0.05). Discard the
proportion α2 of the total sample size and related numbers of failed parts from
above. Typically, this would require discarding few points corresponding to very
high fallout rates and a portion of data for the boundary vintage. As before, the
estimated proportion of defective items for this boundary vintage remains the
same as before, but its sample size is adjusted downward to satisfy the upper
rate of trimming α2.

(d) Deliver a robust estimate p̂0 of the proportion of defective parts of type A com-
puted as a weighted average based on the remaining (non-discarded) sample
size.

More details on this process can be found in Civil et al. (2013a, b). In practice, it is
often convenient to use symmetric trimming, i.e., α1 = α2 = α (e.g., one can use α =
0.1, which leads to 10% trimming from each side, i.e., 20% of the overall sample
size is trimmed). Consequently, for the two-sided trimming only values α < 0.5 are
permissible.

Geometric interpretation of the procedure (a)–(d) is shown in Fig. 1. One can see
that both “usual” weighted and “robust weighted” estimates of p can be represented
as slopes on the weighted cumulative sum plot.

2.2 Confidence Bounds for p

Once the weight-trimmed robust point estimate p̂0 is available, we can proceed to
obtain the confidence bounds for the underlying failure rate p. A technique that we
use is somewhat similar to the one used in derivation of the binomial confidence
bounds based on the properties of the Beta distribution, see Johnson et al. (2005)
Two significant differences are that (a) the confidence procedure is based on the
robust estimate p̂0 and not on p̂w, and (b) the Beta-distribution is computed based
on fractional number of defective parts and it uses a special procedure to compute
the effective samples size, as shown below.

The two-sided β * (100%) confidence bounds (L ,U ) for p are computed as
follows:
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Fig. 1 Obtaining the robust (weight-trimmed) estimate p̂0 of the proportion of defective parts

(a) Compute the effective sample size

nef f = (1 − uα)

N∑

i=1

ni , (5)

where α is the trimming fraction and u is an appropriately chosen coefficient.
The value nef f reflects the degree of loss of statistical power that is associated
with the use of robust estimate instead of the more efficient (but non-robust)
weighted estimate, p̂w.

(b) Define the equivalent number of fails by

Xef f = nef f ∗ p̂0 (6)

(note that both nef f and Xef f are, in general, non-integers).
(c) Compute the lower and upper confidence bounds (L ,U ) by solving the equations

(1 − β)/2 = F(x, Xef f , nef f + 1 − Xef f ) , (7a)

1 − (1 − β)/2 = F(x, Xef f + 1, nef f − Xef f ) , (7b)

where F(x, a, b) is the cumulative distribution function (cdf) of the Beta distri-
bution with parameters (a, b). Note that the above formulas are given in terms
of the coverage probabilities as opposed to the more commonly used escape
probabilities. In the case Xef f = 0, the lower limit is set to 0; in this case, U is
set to β * (100%) upper confidence bound computed by solving (7b) with the
LHS = β. Similarly, if Xef f = nef f , the upper limit is set to 1 and L is set to
β * (100% lower confidence bound computed by solving (7a) with the LHS =
(1 − β). Equations (7) correspond to the classical Clopper–Pearson method (see
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Clopper and Pearson 1934; Brown et al. 2001, 2002) with the exception that the
counts are allowed to be non-integer.

Applying a non-zero value of u in (5) enables one to adjust the confidence bounds
to achieve the nominal coverage probability β*(100%) or to regulate the lower and
upper escape rates corresponding to the confidence bounds. For a given data set, a
suitable value of u can be determined by setting p = p̂0 and performing simulation
analysis conditional on {ni }; this value is then applied to adjust the escape proba-
bilities of the bounds (7). Typically, u > 0, since the process of weight-trimming is
associated with some loss of information, as reflected by nef f—however, this is not
universally true, especially for very low p and small sample sizes. Even for the non-
robust unbiased estimate p̂w the coverage probabilities can turn out to be above the
nominal level, calling for u < 0, and this remains the case for the trimmed versions
as well. Note, however, that in cases of this type there will typically be asymmetry
between the left and right escape rates, and onemight prefer maintaining the nominal
escape rate of [(1 − β)/2] *100% only for the upper bound.

2.3 Bias and Robustness Issues

The methods of Sects. 2.1, 2.2 are useful in many practical situations—however, one
needs to be aware of several properties that can complicate the estimation process,
especially in situations involving very low proportions of defectives and presence of
numerous vintages with low sample sizes. Generally, (symmetrically) trimmedmean
procedures estimate the underlying mean of a symmetrically distributed population,
provided that the mean exists. However, when the distribution of the population is
skewed, the trimmed mean (of any kind) is just a measure of its central tendency. In
our case of Binomial population with p estimated exclusively based on the observed
number of trials and failures, the weight-trimmed mean is biased as an estimate
of the mean, p; typically, p is small and one can see that is biased downwards,
due to the positive skewness of the Binomial distribution. Asymptotically, when
N is fixed and

∑N
i=1 ni tends to infinity, p̂0 → p. However, for other regimes of

increasing the total sample size (e.g., when the number of vintages N also increases
rapidly enough), the weight-trimmed mean is not a consistent estimator of p. There
are ways to turn it into a consistent estimator—however, this involves additional
computational effort, and in many practical situations the bias is not sufficiently
large to justify this investment, especially when targets are computed on a massive
scale. As will be shown in Sect. 3, we do not use p̂0 directly to declare it as a measure
of capability. For example, if the history of part A includes N = 10 vintages with
the sample sizes n1 = n2 = . . . = nN = 100, and we observe no failures, we will
not declare p = 0 as the proven part capability. Confidence bounds are a much more
important indicator, and in our experience the confidence bounds, as described in
Sect. 2.2, provide coverage that is reasonably close to the nominal β *(100%) even
when the estimator p̂0 is biased.
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Of special importance is the ability of p̂0 to serve as a useful estimator of p in the
presence of outliers. For example, let us assume that

Probability of defective unit =
{
p , with probability (1 − ε) ,

p + a � p , with probability ε ,
(8)

where a is a relatively large disturbance and ε is some small number. Our objective
is to estimate p, which serves as the basis for declaring the part capability. The
disturbancemodel (8) can emerge in twomajor settings: (a) it can affect the individual
items independently of the vintage to which they belong or (b) it can affect the
whole vintage. Such disturbances are quite common in industrial data, and they can
adversely affect the conventional estimators; however, the proposed robust estimator
p̂0, with all its bias-related issues, tends to provide useful estimates of part capability
under both modes of disturbance. Selection of the trimming proportions determines
the degree of robustness; in our applications, the default values are α1 = α2 = 0.1.

Next,webrieflydiscuss the issueof bias. In somecases, onemaywant to reduce the
bias so as to obtain better Root Mean Square Error (RMSE) properties or to improve
the coverage probability (by focusing, for example, on the escape rate of the lower
confidence bound L). This activity should always be performed by conditioning on
the observed sample sizes, {n1, n2, . . . , nN }, as they form a set of ancillary statistics
in our estimation process. Denote

ψ (p|n1, n2, . . . , nN ) = E
(
p̂0

∣
∣p; n1, n2, . . . , nN

)
, (9)

where the function ψ(p) also implicitly depends on the trimming proportions
(α1, α2). Clearly, our weight-trimmed mean is an unbiased estimator of ψ(p) and
not of p. However, once this function is estimated (for example, for every p we can
do it via simulation analysis, where we explore the averages of p̂0 based on B repli-
cations), we would be able to construct an estimator p̂(1)

0 by solving the equation, in
p:

ψ (p|n1, n2, . . . , nN ) = p̂0 . (10)

This estimator can then be used as a basis for the confidence bounds in lieu of
p̂0, using the methods of Sect. 2.2. We could represent p̂(1)

0 = p̂0 + b(1), where
b(1) is a positive bias-correction term. The above method of bias correction would
lead to consistent estimation under most asymptotic conditions involving growth
of sample sizes and number of vintages involved - however, it is computationally
expensive, as it relies on combination of simulation and root finding, i.e., a stochastic
approximation problem, see Bouleau and Lepingle (1994). Another way of bias
reduction involves manipulating (α1, α2): for example, instead of trimming 10% on
each side, bias reduction can be achieved by trimming 8% from the upper side and
12% from the lower side. Conditional on the sample sizes, one can establish the best
combination of (α1, α2) satisfying the conditions like α1 + α2 = 0.1, α1/α2 < 1.5;
note that we need to keep the trimming proportions balanced, as one of our primary
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goals is to ensure robustness. This method also works well, but requires nontrivial
computational investment, and is difficult to implement on a massive scale. This
type of estimation is most useful in situations where historical part performance
records (involving part A and similar ones) exist, suggesting that a certain a-priori
combination (say, α1 = 0.12, α2 = 0.08) yields more realistic evaluations of proven
capability.

The easiest way to achieve bias correction is via parametric bootstrap which
involves simulating B replications under the assumption p = p̂0 (as usual, condi-
tional on the observed sample sizes), providing an estimate of the negative bias,−b(2),
under these conditions, and then correcting for this bias by setting p̂(2)

0 = p̂0 + b(2).

Note, however, that using this correction can lead to increase in variance of the esti-
mator that is not compensated enough by reduction in bias, and result in the increase
of the overall RMSE—so the usefulness of this correction depends on the configura-
tion of the sample sizes and the relevant values of p. Based on bootstrap replications,
one could decide to apply a more moderate correction term, like 0.5*b(2) to obtain a
better RMSE and/or confidence bound coverage properties.

As an example, consider the case N = 10, with the sample sizes n1 = n2 =
n3 = n4 = 50, n5 = n6 = . . . = n10 = 1000, and let us assume that the observed
counts of defectives were x1 = x2 = x3 = x4 = 0, x5 = 1, x6 = 3, x7 = x8 = x9 =
1, x10 = 0. Based on these data, using theweigh-trimmingwithα1 = α2 = 0.1, yields
p̂0 = 0.0010 with 95% confidence bounds (0.0004, 0.0022). To decide whether bias-
correction or escape rate corrections to the confidence bounds should be applied, let
us set p = p̂0 = 0.0010 and generate 10000 replications conditional on the observed
sample sizes. This experiment yields the bias-correction term b(2) = 0.00008, sug-
gesting p̂(2)

0 = p̂0 + b(2) = 0.0011. With this correction, the RMSE = 0.00042
remains the same, but it is now solely due to variance, not bias - so there appears
to be improvement in this respect. The estimated escape probabilities are 0.0132
(left) and 0.0235 (right), so the confidence interval tends to overcover overall, as the
total estimated escape probability is 0.0367 instead of the nominal 0.05. The aver-
age half-width of the confidence interval is 0.00084. The bias-corrected estimator’s
escape probabilities are more symmetric, 0.0204 (left) and 0.0222 (right), with the
average half-width of the interval 0.00087. Since in our target-setting decisions the
upper confidence bound plays a somewhat more important role, we might want to
emphasize the closer to nominal right-side escape rate of the original estimator; with
this rate, the mean and standard deviation (in parentheses) of the upper bound are
0.0020 (0.00057). For the bias-corrected estimate, these are 0.0021 (0.00058). We
also consider midways of the confidence bounds, as these are used as measures of
proven capability, see Sect. 3: for the original estimator the mean and standard devi-
ation are 0.0012 (0.0004) and for the bias-corrected one 0.0013 (0.0004), i.e., they
are quite close. Therefore, there is no strong benefit of applying the bias correction
in this case.

Computations show that the bias correction term of the approach in (10) is similar
in magnitude: b(1)=0.00009, i.e., p̂(1)

0 = p̂0 + b(1) = 0.0011. In our context, its
properties are similar to those of p̂(2)

0 . Note that both bias-corrected estimates are
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close to = 0.0011. Finally, compare the above results to those of the weight-trimmed
estimator with asymmetric trimming proportions, α1 = 0.12, α2 = 0.08. The point
estimate corresponding to our data is 0.0011 and the estimated bias term is fairly
low, b(3)=0.00003. We could have reduced the bias even more by skewing the trim
proportions further (say, to α1 = 0.13, α2 = 0.07)—however, such shift comes at
the expense of robustness property, and so it is undesirable. A better way to reduce
bias would be to apply other techniques discussed above, on top of the asymmetry in
the trim proportions. One can see, however, that using asymmetric trim proportions
does not markedly improve the properties of the confidence bounds. The escape
probabilities are 0.0169 (left) and 0.0222 (right), with the average half-width of
the CIs 0.00086. The mean and standard deviation of the upper bound are 0.0021
(0.00058), and for the mid-CI values they are 0.0012 (0.0004). In summary, for our
data set this bias-correction method does not appear to be preferable to the ones
discussed earlier.

In a way similar to bias-correction, one can also adjust the confidence bounds
so as to achieve the nominal coverage probability β*(100%) by using a non-zero
value of u in (3), as discussed in Sect. 2.2—this will lead to an increase of the
escape probabilities for both upper and lower confidence bounds. One will probably
not want to apply a large value of u when computing bounds based on p̂0 , as the
upper bound’s escape probability is already close to the preferred 0.025. Since our
confidence bounds are over-covering, let us explore the value u = –0.5. For p̂0, the
escape probabilities increase to 0.0156 (left) and 0.0254 (right), with the average
half-width of the CIs 0.00081. The upper bound and mid-point statistics do not
change much, however: 0.002 (0.00057) and 0.0012 (0.0004). For the bias-corrected
estimator p̂(2)

0 , the bounds become more symmetric and almost achieve the nominal
escape rates: 0.0236 (left) and 0.0232 (right), with the average half-width of the CIs
0.00081. However, the half-width of the interval and the midpoint statistics do not
change much: 0.002 (0.00057) and 0.0013 (0.0004).

In summary, applying bias-correction methods to our data set improves somewhat
the properties of p̂0 as a point estimator—however this does not translate to substan-
tial improvement in the properties of confidence bounds and related quantities that
are of primary importance for our target-setting routine.

3 Target Derivation Process

In this section, we discuss the procedures and statistical considerations employed in
the process of assigning capability-based targets to parts. Of key importance is the
concept of a yardstick (denoted by Y in what follows) which reflects, for any given
part, the performance of its peers, according to the rules described in Sect. 3.1.

The four major steps in the scheme are (a) obtaining a robust estimate of the
underlying failure rate p for the part A based on the data related exclusively to part
A, (b) obtaining the lower and upper β*(100%) confidence bounds (L ,U ) for p
based on p̂0, (c) establishing a yardstick Y based on performance of peers of part A
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Fig. 2 Setting the target p∗ for Part A based on the yardstick Y and confidence bounds (L ,U ) for
p

and (d) delivering the target p∗ as function of Y, L and U . The scheme for deriving
target for a given part A is shown in Fig. 2. Three cases are shown: when Y falls
within the confidence bounds (Case 1), Y < L (Case 2) and Y > U (Case 3).

As illustrated in Fig. 2, the target is selected so that it is always consistent with
the process capability as characterized by the bounds (L ,U ). Our goal here is to
(a) minimize intervention as much as possible (so that parts corresponding to the
same yardstick generally get the same target as long as their performance is, to some
degree, consistent with the yardstick, see Case 1) and (b) encourage positive behavior
of process owners by moving them towards better performance while remaining
consistent with their capability (Case 2) and not “penalizing” them too much for
demonstrating performance that is significantly better than the yardstick (Case 3).
Note that the estimate p̂0 is not playing a direct role in setting p∗.

The process described above generally results in meaningful and manageable
initial set of targets. One appealing property of this process is that it creates nat-
urally groups of parts that share the same target, facilitating the process of target
management and vendor communication.

3.1 The Processing Parameters

There are three major parameters that govern the capability-based target-setting. We
will refer to the target recommended for a given part A as p∗

A or simply p∗ when it
is clear what part is being discussed. The parameters are as follows:

1. Trimming proportion α (typically, α = 0.1; non-symmetric proportions α1, α2

can also be applied). This parameter controls the estimation of the process capa-
bility. For every given part (say, partA) our objective is to establish the failure rate
of the part that the process is capable of delivering. The data for part A consists
of a sequence of failure rates and sample sizes, aggregated by date. We need to
eliminate extreme cases from the data, trimming away vintages (dates) for which
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the failure rates are either extremely good or extremely bad. The remaining data
is then used to deliver the robust estimate p̂0 of the underlying failure rate p for
the part A, as described in Sect. 2.

2. Confidence level β (typically, β = 0.9) of the two-sided confidence bounds for
the underlying failure rate p of the part A. These bounds, denoted (L ,U ), are
based on the estimate p̂0 and they determine the interval of the failure rates
containing values of p that can be considered as being “supported by the data”.
We show in Sect. 4 that they play an important role in establishing p∗, as they
reflect the inherent process capability.

3. Minimal sample size needed to establish a yardstick. We refer to this value as
minyards (typically, minyards = 100). In the process of establishing p∗, we take
into account not only the capability of a given part A, but also the performance
of other parts in the hierarchy. Based on the performance of peers, we establish
a yardstick value Y . Once we have Y , the target p∗ is computed as a function of
Y, L andU , see Fig. 2. However, the yardstick computation requires us to borrow
data from the parts in higher levels of hierarchy if the sample sizes in lower levels
of hierarchy are too small. So, minyards = 100 tells us that we should not use
data from higher levels of hierarchy if we managed to accumulate a sample of
size 100 using lower levels. A more detailed explanation will be provided in
Sect. 3.2.

3.2 The Yardstick

As noted earlier, the part A’s target is based on (a) the confidence bounds (L ,U )
for the failure rate obtained exclusively from the data for the part A, and (b) the
yardstick Y that incorporates information from the part hierarchy. Without loss of
generality, here and in what follows we assume that every part has up to six layers
of hierarchy that determine its “siblings”, “cousins” and more distant “relatives”.
Generally, we compute yardsticks for every layer of hierarchy, and we will refer to
them as {Y1,Y2, . . . ,Y6}. The overall yardstick Y is computed sequentially, based
on these yardsticks:

Step 1. Y = a1Y1
Step 2. Y = a1Y1 + a2Y2
. . .

Step K. Y = a1Y1 + a2Y2 + . . . + aKYK ,

(11)

stopping at some step K corresponding to the overall sample size accumulated in
computing the yardstick. The stopping step K is governed by selection of the param-
eter minyards, see Sect. 3.1. Below is an example of how this computation is per-
formed.
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Suppose that in the input file the first categorization field isGRP_I D, the second
is Subcommodity (like Channel/Optics) and the third is Commodity (like Adapters).
Suppose that the minimal sample size needed to obtain the yardstick is set to min-
yards =100. We compute the robust estimates of failure proportions for every part
in GRP_I D and the corresponding confidence bounds (L ,U ), and then compute
the Y1 as the average of midpoints of confidence bounds (L +U )/2 of these parts.
Next, we check whether the sample size of GRP_I D is 100 or more. If yes, then the
yardstick for the Part A can be established based on GRP_I D (i.e., on Y1) alone -
in this case, the last two fields of the corresponding row of the output file (see Fig. 5)
will be (1 1), indicating that the 1st tier was sufficient to produce a yardstick, and
this tier got 100% of the weight. In other words, we have no need to incorporate the
subcommodity (tier 2) or commodity (tier 3) data to establish targets.

Now consider the case where tier 1 contains too little data for a yardstick; for
example, overall sample size for the tier GRP_I D corresponding to our part A is
only 60, less than the minimum of 100 required. We will still compute the yardstick
Y1 based on GRP_I D - but this yardstick will only carry 60% of the weight in
establishing the overall yardstick for the Part A. We will then need to incorporate
subcommodity data (tier 2) - and if the sample size for the subcommodity is high
enough (greater than 160, indicating 100 “new” members) then the yardstick based
on the subcommodity will receive the remaining 40% of the weight. So, the final
yardstick for the Part A will be based on 60% of the GRP_I D data (as represented
by Y1) and 40% of the subcommodity data (as represented by Y2). The last two fields
of the output file row for the part A (Fig. 5) will then be (2 0.4), indicating that the
2-nd tier was touched, and it got 40% of the weight.

If the subcommodity tier does not have enough sample size (let us say its sample
size is 130, corresponding to just 70 (= 130-60) additional items), then subcommod-
ity will get only 70% of weight (of the 40%), resulting in the overall weight for
subcommodity of 0.4*0.7 = 0.28. So, we are in a situation where GRP_I D gets
60% of weight, subcommodity (represented by its own yardstick Y2) gets 28% of
weight, and we need to incorporate commodity data to get the remaining 100-60-28
= 12% of weight, So, in this case the last two fields of the output line for the part A
will be (3 0.12), indicating that the 3rd tier data (commodity, represented by its own
yardstick Y3) was used and its weight in establishing the yardstick Y is 12%. Note,
however, that if the commodity data is missing, then the subcommodity data will get
the remaining 40% instead of 28%, so that the sum of weights is always 1.

A scheme for constructing a yardstick Y is shown in Fig. 3. In this case, the part
A (a power cable for a type of desktop computer) has an immediate group of peers
represented by several other models of desktop computers (Level 1); it also belongs
to the class “Power Cables” (Level 2) that is nested in the class “Connectors” (Level
3).
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Fig. 3 The scheme of constructing the yardstick Y for the part A based on part hierarchy

3.3 Decisions

Targets delivered as a result of the process described above can be considered for
use in the setup files that drive activities of a monitoring system, such as an EWS.
These targets could either be accepted outright or further modified in accordance
with business needs or quality management policy in place. For example, some qual-
ity improvement programs could mandate a systematic adjustment of the current
targets downward (say, by 10% per year), even if the historic data does not sup-
port such process capability. Another possible policy is to ensure that the targets of
underperforming parts aremoved by someminimum amount towards their respective
yardsticks. For example, suppose that for a given part A, the estimated proportion of
defectives is p̂0, the yardstick is Y < p̂0 and the target delivered by the process is
p∗ > Y . Then one might want to set the final target p∗

f in as follows:

p∗
f in = min [p∗,w p̂0 + (1 − w)Y ] , (12)

where w is some suitable weight, say, 0.8. This policy guarantees that

(p∗
f in − Y )/( p̂0 − Y ) ≤ w . (13)

In whatever way the target is chosen, let us assume that this is the value designated as
“acceptable level”, i.e. if the process operates at this level, the probability of a (false)
alarm should be low. Inwhat follows, wewill use the notation (pacc, punacc) to denote
the acceptable and unacceptable levels based on a wide range of considerations, as
opposed to the earlier notation (p0, p1), since in that notationweweremostly focused
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on the capability-based targets.. For simplicity, let us assume that the acceptable level
pacc = p∗ is delivered as the output of the described process, i.e., it depends mostly
of the proven part capability and peer performance. Next, we need to decide on
the unacceptable level, punacc. Generally, any number above p∗ could serve as the
unacceptable level. However, it is not desirable to set it too close to the acceptable
level. The reason is that in order to resolve between the levels (pacc, punacc) that are
close, we will need the detection thresholds to be quite high. Our ability to detect
punacc will indeed be about the best achievable for the data stream intensity at hand -
however, the detection speedwill still be low in practical terms; on the other hand, the
high detection thresholdwill hamper our ability to detect changes of largermagnitude
quickly enough - so, we will need to rely more on the supplemental rules. The best
policy is to set punacc to the level that it is important to detect quickly. In many
practical situations, the policy

punacc = cu ∗ pacc (14)

where cu is in the interval [1.5, 2.5], is reasonable. For example, cu = 1.75 is often
used for the supply chain data. This choice is partially motivated by the fact that the
factor 1.75 typically reflects a non-trivial change in the monitored defect rate that
engineers are willing to recognize as being of practical importance. Furthermore,
in many cases it also ensures separation by at least one standard deviation of the
acceptable defect rate - and, with the choice of k given by (2), such situations tend to
produce detection schemes that aremore comfortable to workwith - i.e., the resulting
alarm thresholds tend to be neither too high nor too low. For example, suppose that
pacc = 0.01 and the sample size corresponding to the individual point (vintage) is
n = 175. Then the standard deviation of the observed proportion of defectives is
approximately σ = sqrt[(0.01 ∗ 0.99)/175] = 0.0075 - and so, by setting punacc =
1.75 ∗ pacc we are achieving a 1*σ separation between pacc and punacc.

The policy (14) enables one to establish targets on a massive scale without having
to deal with the reality of prevalent vintage sample sizes. Under some conditions,
however, targets that take them into account are more suitable. For example, consider
the case of ultra-low failure rates: pacc = 1e − 6 = 1ppm (part per million), and
assume that the prevalent vintage sample size is n = 10000. In this case, σ ≈ 10ppm,
i.e., the gap of 0.75ppm between the unacceptable and acceptable levels suggested by
(12) is 0.075*σ , leading to the resolvability issue described above. In such situations,
a formula

punacc = pacc + fu ∗
√

pacc ∗ (1 − pacc)

n
(15)

with fu in the interval [0.5, 1] is likely to lead to a monitoring procedure with more
appealing operating characteristics. In the above case, the policy (15) would call for
setting punacc to a value between 6ppm and 11ppm.

The above arguments illustrate a target setting approach for which the starting
point is establishing pacc based on the concept of proven part capability. In some
cases, however, one could choose to start with establishing punacc, and then invert
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the relations (14)–(15) to obtain pacc. This approach could be used when the primary
purpose of the monitoring scheme is to flag parts that directly endanger business
objectives or contractual obligations. For example, an organization could maintain a
list of thresholds for failure rates and focus on flagging parts for which failure rates
exceed these thresholds in some sense. When using this approach, it is important
to understand the meaning of such thresholds, as it can vary from one organization
to another, even within the same company. In some cases, thresholds are meant to
represent the behavior of the process mean, and in this case they can be interpreted as
punacc. In other cases they represent a form of a “spec”, indicating that punacc should
be chosen way below the threshold, using a statistical argument in conjunction with
the threshold definition.

4 Example of Implementation

In this section we describe implementation of a target-setting system in the IBM
Integrated Supply Chain, which monitors quality of parts as they progress from
their manufacturing plants (typically owned by the vendors) through the IBM’s own
manufacturing and assembly plants, and to the field, as part of computer systems.
Parts undergo many tests, typically with the pass/fail outcome. A monitoring system
called Quality Early Warning System (QEWS) is used to analyze performance of
parts in relation to various tests. The key parts of QEWS include the data preparation
module, the search engine, user interface (dashboard) and the target-setting system.
The target-setting involves many factors, as mentioned earlier, and the segment of
the system we focus on is related to the part capability analysis.

Inputs. The basic data file contains the following fields:

1. Analysis ID (e.g., ADP1CHO1PU0001, for an adapter part in a channel-optic
family)

2. Part number (e.g., 0000000E0807)
3. Test identifier (e.g., 000)
4. Date (e.g., date of manufacturing)
5. Number of parts tested
6. Number of parts failed
7. Fields 7–12 give up to 6 layers of hierarchy. The part’s number can be considered

as the 0-th level of hierarchy.

A typical record of the input data file is shown in Fig. 4. One can see that in this case
levels 1, 3 and 4 of the hierarchy are missing (only levels 2, 5 and 6 are there). For
records of this type, we often refer to “Channel/Optics” as the name of subcommodity
and to “Adapters” as commodity. The 2nd level of the hierarchy groups part numbers
by some criterion (in this case, GRP_CHO1 represents a group of “very similar”
parts).

Processing the file using the parameters described in Sect. 3.1, yields the output
file. Its lines contain targets and related information for every part number, see Fig. 5.



Statistical Aspects of Target Setting for Attribute Data Monitoring 115

ADP1CHO1PU0001 0000000E0807 000 2012-12-21 622 2 GRP CHO1 Channel/Optics Adapters

Fig. 4 Typical data record of the target-setting procedure. The trailing six fields (three of them
empty) establish the part hierarchy

Fig. 5 The output file of the target-setting procedure

The fields of the output file are as follows (the letter in parentheses refers to the
spreadsheet field of Fig. 5):

(A) Analysis ID
(B) Part number (PN)
(C) Test identifier
(D) Date of the last data file row for this PN
(E) Estimated proportion of defectives, p̂0
(F) Number of vintages (dates) for which data are available
(G) Total number of tested parts for this PN
(H) Total number of failed parts for this PN
(I) nmin , minimal sample size observed for various dates
(J) n0.25, lower quartile of sample sizes observed for various dates
(K) n0.5, median of sample sizes observed for various dates
(L) n0.75, upper quartile of sample sizes observed for various dates
(M) nmax , maximal sample size observed for various dates
(N) Lower confidence bound L for p based on p̂0 (and the two-sided β *(100%)

confidence interval)
(O) Upper confidence bound U for p based on p̂0
(P) Overall number of tested parts in the process of establishing a yardstick (note

that in Fig. 5, many of these numbers are the same, as the corresponding parts
belong to the same group having a large overall sample size, and so these parts
share a common yardstick)

(Q) Estimated proportion of defectives based on peer performance (i.e., yardstick).
(R) Target proportion p∗ of defectives for this PN (it is based on the part capability

and it can be considered for the role of p0)
(S) Top tier of part hierarchy used in establishing the yardstick
(T) Weight given to the top tier of part hierarchy when establishing the yardstick

For example, consider the leading record of the output file in Fig. 5. It is related to
the performance of PN = E0807 with respect to the test ’000’. The robust estimate
of the failure rate, based on 30 vintages (date rows) in the data file was 0.00177.
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The data file contained information on 9329 parts, of which 20 failed the test ‘000’
(note that the regular estimate of the failure rate is p̂w = 20/9329 = 0.00214, which is
somewhat higher than the robust estimate based on 10% trimming). The sample sizes
corresponding to rows of the data file varied considerably: nmin = 16, n0.25 = 123,
n0.5 = 232, n0.75 = 301.5, nmax = 1528. The 90% confidence bounds for the failure
rate are L = 0.00112,U = 0.00267. The yardstick (reflecting the peer performance)
was 0.007607, which means that the part E0807 tended to perform considerably
better than the yardstick. The yardstick was computed based on 146934 peer parts.
The top tier of the hierarchy used to compute the yardstick was 2. In other words,
parts belonging to the groupGRP_CHO1 provided enough information to compute
the yardstick. Finally, the last element indicates that the information based on the
2nd level of hierarchy (i.e., GRP_CHO1) received the weight 1 (highest possible),
when establishing the yardstick.

In contrast, the part 10N8620 corresponding to row 7 of the output file belongs
to a smaller group of parts and so, the yardstick could not be computed based on
the 2nd level of the hierarchy. Information had to be borrowed from the level 5 of
the hierarchy, i.e., we had to incorporate performance data of all parts for which the
subcommodity is “Channel/Optics”. Furthermore, the information of level 5 played
a dominant part in establishing the yardstick, receiving the weight of 0.96.

5 Discussion

In practical implementations, EWSs typically handle many data streams for which
targets have been assigned by some process based on statistical and business
requirements. The target-setting system handles a much wider set of issues than
just determining the process capability, but the capability-centered target generation
sub-system is running in parallel with the monitoring system, and both often use
shared data sources. If for a given part A the current acceptable level is, say, 0.0001,
i.e., 100 defective parts per million (ppm) and the capability analysis based on the
presented methodology suggests that the vendor is capable of delivering 10 ppm,
this will not typically lead to automatic tightening of requirements for the part man-
ufacturer, as such policy could lead to undesirable consequences involving costs,
behaviors and business relations, and in some cases it would not be in line with con-
tractual obligations. Knowledge of the underlying capability, however, is valuable,
and it can be used in many ways, including product planning, vendor selection and
quality monitoring. Of special importance is the process of assigning targets to new
parts—and this is where capability-based targets can be quite useful. Once the initial
targets are assigned, the target-management system will govern their future devel-
opment, using its own logic and procedures. Below, we discuss several additional
aspects of the capability-based target setting.

1. It is important to select the window of vintages (for every part) that are included
in the target-setting computation. One will often decide that, say, no more than
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32 weeks of the most recent vintages will be included. Such a requirement is
motivated by the desire to maintain the quality level inside the window roughly
constant, so that the estimated capability can be viewed as representative for the
whole window. The robust methods help us to eliminate the effect of outliers - but
they can produce misleading results in the presence of trends and other temporal
effects, and limiting the window size helps to reduce their impact.

2. Of special importance is the definition of vintage. For example, consider the
process in which we focus on the chip failure rate, when the chip is installed into
a printed circuit board and subjected to various tests as part of a sub-system. One
can define the vintage as (a) date (or timestamp) of the chip installation into the
board, (b) date of the initial system test involving the chip as part of the board, (c)
date of the board production (usually available on a board’s barcode), and so forth.
The vintages are selected to represent operations that can have a negative impact
on the chip performance, see Yashchin (2018). The EWS is typically applied to
various types of vintages (in parallel), and so should be the capability-based target
analysis. This can result in different failure rate capability assessments based on
the definition of vintages, which complicates the process of the target assignment
(after all, only one set of targets should be assigned to the chip, independently of
the definition of vintage) - however, it also presents the opportunity of a deeper
study of the underlying chip capability. If the estimated capability-based target
differs strongly for various definitions of vintages, this suggests that the chip’s
failures might be affected by external factors rather than its own inherent flaws.
For example, consider the case where the vintage corresponds to the chip mount-
ing date and we concluded that the chip is capable of 1000 ppm. However, when
the chip failures were organized by the board manufacturer dates, the estimated
target dropped to 100 ppm. A closer examination could reveal that a large frac-
tion of failed chips was mounted on boards of a single vintage, and the impact of
this vintage was automatically reduced through the trimming process, resulting
in delivering 100 ppm as a robust estimate. One can then legitimately suspect that
the cause of the failures might not be related to defects inside the chip, but rather
caused by defective boards. Under such conditions, one might accept 100 ppm
(rather than 1000 ppm) as a more realistic estimate of the inherent chip capability.

3. When numerous vintages with small sample sizes are present, it might be ben-
eficial to aggregate vintages into larger sub-groups, i.e., to use temporal aggre-
gation, e.g., see Zwetsloot and Woodall (2019). This could enhance statistical
performance of the robust techniques discussed in this paper and present a more
realistic picture of the underlying process capability, especially for very low p.

4. In large-scale implementations, it is important to explore the connection between
target-setting and ability of the monitoring system to detect unfavorable condi-
tions early. If the targets are set primarily based on business requirements, it can
happen that they are quite lax relative to the process capability. This can lead
to delayed detection of unfavorable trends: some of them would undoubtedly be
considered as being of no practical importance, at least initially. Back-testing of
targets against the previously known unfavorable conditions can help in making
the case for stricter targets. Furthermore, one can also decide to use two sets
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of targets: one for driving business decisions, and another for early detection of
unfavorable trends. In this way, one can detect, for example, origination of drifts
in the process level way before these drifts reach the magnitude where they turn
into a business issue.

5. Confidence bounds for p play a crucial role in our target-setting scheme; the
Clopper–Pearson procedure (generalized for non-integer values of tested/failed
counts) described in Sect. 2.2 has been used in the IBM Supply Chain quality
management system for several years and it was well-received by the users. Of
course, this procedure is known to be somewhat conservative, e.g., see Brown
et al. (2001, 2002)—however, this did not appear to affect the quality of the
target-setting process: one needs to keep in mind that the confidence bounds are
used primarily as an intermediate tool for establishing proven part capability,
so consistent conservatism in coverage probability can generally be tolerated.
The procedures can be easily adapted to use other methods for confidence bound
derivation, such as the mid-P or Jeffrey’s methods. We do not expect significant
practical consequences from using such intervals, once the default values of β

are adjusted appropriately to match the coverage probabilities of the Clopper -
Pearson procedure.

6. In this article, we focused on the problem of target-setting for p using attribute
data: only the counts of tested and failed items for various vintages played a role in
the robust estimation process. Note, however, that monitoring schemes for p can
also use other types of data, e.g., variables data, see Knoth and Steinmetz (2013).
Specifically, if a failure of an item can be associated with measured values of its
characteristics, then one can typically obtain an estimate P̂i for the i-th vintage
failure rate using a sample of these values; such estimates often have properties
that are superior to those based on the pass/fail data alone. Themonitoring scheme
(1) can be directly applied to variables-based sequence of estimates, with weights
{wi } inversely proportional to the variances of {P̂i }. One would typically need
to take special precautions to ensure low bias of the estimates P̂i and obtain
control schemes with good statistical properties. Other schemes, e.g., based on
the generalized likelihood ratio statistics, can also be used for a similar purpose.

The process of target-setting is crucial for such situations as well, and the procedures
described in this article can be adapted to yield high-quality robust estimates of
p based on a set of vintages. Specifically, the process illustrated in Fig. 1 can be
deployed, with ni = wi , in conjunction with low-bias {P̂i }. As in the present article,
the resulting robust estimates could require separate bias-correction, which can be
done using methods described in Sect. 2.3. The concepts of yardstick and proven
capability are applicable in this general context, and they can be used in a similar
way. One technical issue is obtaining confidence bounds for p based on the robust
estimate, see Fig. 2. Such bounds can be obtained in several standard ways (including
bootstrap and delta-method), depending on the concrete situation and relationship
between p and the basic parameters driving the data.
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MAV Control Charts for Monitoring
Two-State Processes Using Indirectly
Observed Binary Data

Olgierd Hryniewicz, Katarzyna Kaczmarek-Majer, and Karol R. Opara

Abstract Processes described by indirectly observed data naturally arise in appli-
cations, such as telehealth systems. The available data can be used to predict the
characteristics of interest, which form a process to be monitored. Its randomness
is largely related to the classification (diagnosis) errors. To minimize them, one
can use ensembles of predictors or try to benefit from the availability of heteroge-
neous sources of data. However, these techniques require certain modifications to the
control charts, which we discuss in this paper. We consider three methods of classi-
fication: classical—based on the full set of attributes, and two combined—based on
the number of positive evaluations yielded by an ensemble of inter-correlated clas-
sifiers. For monitoring the results of classification, we use a moving average control
chart for serially dependent binary data. The application of the proposed procedure
is illustrated with a real example of the monitoring of patients suffering from bipolar
disorder. This monitoring procedure aims to detect a possible change in a patient’s
state of health.

Keywords Moving average control chart · Indirectly observed binary data ·
Correlated classification data · Bipolar disorder disease

1 Introduction

In Statistical Process Control (SPC) a monitored process is assumed to be in two
states: in-control (stable) and out-of-control (non-stable, deteriorated). The in-control
state is defined by the probability distribution of process quality characteristics.When
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the type of this distribution is known (e.g., the normal distribution) the in-control state
is defined by the values of parameters of this distribution. The probability distribution
of quality characteristics in the out-of-control state may not be defined. However,
in practice this distribution is assumed to be the same as in the in-control state, but
with different parameters. For example, having a shifted expected value (in this case
we talk about a shifted process level). When the type of a probability distribution is
not known, one can use non-parametric SPC procedures, but this approach is rather
seldom applied in practice.

Dozens of control charts (the main tool of SPC) have been proposed for dif-
ferent distributions of process quality characteristics, different types of observed
data, and different types of decision rules. For nearly all these charts, it is assumed
that important quality characteristics are directly observable. However, sometimes
measurements of these quality characteristics are either practically impossible (e.g.,
lifetimes of produced electronic elements) or too costly (e.g., in destructive testing).
Furthermore, in many medical contexts, for example, in the mental state monitor-
ing of bipolar disorder patients, measurements of the patient’s psychiatric condition
(the psychiatric assessment) shall not be performed too often due to the patient’s
well-being. In such cases, one has to find observable characteristics that are related
to the quality characteristics of interest, and either monitor the stability of these
characteristics or build a prediction model and monitor predicted values of qual-
ity characteristics of interest. An example of this second approach is described in
Hryniewicz (2015).

In all the cases mentioned above, it is assumed that the probability distributions
that describe states of the monitored process can be, directly or indirectly, identified.
This is the case for all industrial, financial, etc., processes, where results of measure-
ments allow us to identify all these distributions. There exist, however, processes
where the state of a process cannot be objectively determined. A good example of
such a process is human health which varies in time. It is very difficult, or sometimes
even impossible, to define the state of health or the state of illness. A possible “objec-
tive” way to do so is to describe a person by a set of measurable characteristics (e.g.,
temperature, blood pressure, pulse rate, etc.), and define some limits on the values
of these characteristics. A person is considered as “healthy” if all observed values of
these characteristics are inside these limits. The state of “illness” is a complement
of “healthy”. Note, however, that the transition between states defined in such a way
is usually not abrupt, and this creates serious problems when some decision rules
have to be established. Despite these difficulties, the application of classical SPC
procedures for monitoring of such health-related processes is possible, if we define
considered states in term of stability or instability of measured processes. Unfortu-
nately, in some important cases, the state of a process is evaluated to a great extent
subjectively. This is frequently encountered in the case of psychiatric diseases, such
as bipolar disorder, considered an example in this paper. Moreover, for such dis-
eases, objectively measured health-related characteristics may not exist. Therefore,
to evaluate a patient’s state, psychiatrists have to rely on observations of symptoms
(sometimes loosely-related), called context variables.
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In this paper, we consider monitoring a two-state process whose states cannot be
evaluated objectively. We assume that the state of a monitored process can be, in
some way, predicted, but considerable errors are possible. In the case of two-state
processes, the prediction process boils down to the problem of binary classification.
We consider two cases when classifiers used in the monitoring procedure are built
using complete and incomplete data. In the case of complete data, all vectors of
context variables from a training set have their assigned labels. Thus, for building
a classifier we can use the methodology known in machine learning as supervised
learning. In the case of incomplete data, we know all vectors of context variables,
but only for some of them, we know their respective labels. In this case, for building
a classifier we can use the methodology known as semi-supervised learning, where
unknown labels in the training set are estimated using an iterative estimation process.
The results of a classification in the training set can be used for the construction of
a control chart for monitoring of an indirectly observed process.

This paper is an extended version of the paper (Hryniewicz et al. 2019) published
in the proceedings of the international conference ISQC 2019 held in Hong Kong.
In particular, it contains new results to be used when process data in the training
phase are incomplete, and the respective classifiers have to be built using a semi-
supervised learning algorithm. This situation takes place in the case of the real-
life example considered in this paper. The paper is organized as follows. In the
second section, we present methods used for the indirect evaluation of the state of
the monitored process using supervised and semi-supervised learning algorithms for
binary classification. In the third section, we propose a control chart based on the data
obtained using considered classification procedures. The fourth section is dedicated
to the real problem of monitoring patients suffering from bipolar disorder (BD). The
state of a monitored patient is evaluated indirectly by monitoring his/her smartphone
activity. The practical part of the research described in this paper is still in its initial
stage, so in the last section of the paper, we will present problems that require further
investigation.

2 Indirect Evaluation of States Using State-Related
Observational Data

Let’s consider a two-state process whose states are denoted by 0 and 1. By con-
vention, we label the state 0 as “negative”, and the state 1 as “positive”. Note, that
connotations attributed to these labels in certain contexts may be misleading, as,
e.g., the label “negative” may not have the meaning “undesirable”. We assume that
the actual state of the process is not directly observable, and we can know only
its predicted value, described by a binary random variable Y (0 or 1). We estimate
it using a set of observable attributes (predictors) (X1, . . . , Xm), and a function
Ŷ = f (X1, . . . , Xm), called a “classifier”. Now, let us assume that we observe n
sets of predictors (X1, j , . . . , Xm, j ), j = 1, . . . , n together with their known labels
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Table 1 Confusion matrix

Predicted negative Predicted positive

Actual negative True negative (TN) False positive (FP)

Actual positive False negative (FN) True positive (TP)

Y j , j = 1, . . . , n. These data are often called training data set. The information con-
tained in the training data set is now used for building the classifier, i.e., for the
estimation of the unknown function Ŷ = f (X1, . . . , Xn). This estimated function
can be further used for the prediction of labels assigned to observed sets of predic-
tors.

The procedure described in the previous paragraph solves a problem of “classi-
fication”, which is known in different communities under such names, for example,
“discrimination” or “supervised learning”. It is a special case of a more general
problem of “statistical learning”, whose theoretical foundations can be found, e.g.,
in monographs by Duda et al. (2000) and Hastie et al. (2008). In these books, one
can also find the description of many algorithms whose aim is to classify objects
described by sets of observable predictors. A comprehensive view on the application
aspects of such classification algorithms can be found in the book by Witten et al.
(2011).

Many different classifiers have been already proposed in the literature. They differ
in their statistical properties and computational complexity. If we do not consider
such additional information as, for example, costs of misclassification, the whole
information about the quality of classifiers is contained in the so-called confusion
matrix, presented in Table1 (Japkowicz and Shah 2015). The most popular measures
of the quality of classifiers are built using the information contained in this matrix.
The most frequently used quality measure of a classifier is its Accuracy, defined as
= (T N + T P)/(N + P). It estimates the probability of correct classification. How-
ever, in certain circumstances (e.g., when classes are unbalanced) this measure does
not let to discriminate the quality of different classifiers. Other popular and important
measures, such as Precision, defined as = T P/(T P + FP), Sensitivity (Recall),
defined as = T P/(T P + FN ), and Specificity, defined as = T N/(FP + T N ),
describe these features of binary classifiers which are related to classification errors
of different types. For example, high values ofPrecision in statistical terms are equiv-
alent to low values of type I classification error when “Positives” are considered as
the relevant class. Similarly, high values of Sensitivity in statistical terms are equiva-
lent to low values of type II classification error. When the quality of the classification
of “Negatives” is also worthy of consideration, one has to take into account the value
of Specificity. There exist also certain aggregate quality measures of classifiers, For
example, the F1 score (or F1 measure) is defined as the harmonic average of Preci-
sion and Sensitivity. Low values of this measure indicate that a classifier has a large
value of at least one of type I or type II errors.
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Let us consider the problem of the classifier’s quality in the context of process
monitoring. When the monitored process is in the desirable state 0, then we are
interested in a low rate of false alarms, triggeredby the occurrence of “false positives”,
indicating that the actual state of the process is 1. Thus, we are interested in a high
value of Specificity. On the other hand, we are also interested in the generation of
an immediate alarm when the monitored process switches to the undesirable state 1.
This happens when “true positives” occur. Thus, we are interested in a high value of
Sensitivity (Recall).

In classical applications of SPC, it is assumed that after the process deteriora-
tion has been revealed, the process is reverted to its “in-control” state. However, in
practice, this might be not straightforward. To correct a deteriorated process, some
measures are undertaken, and we hope that after a certain time the process will revert
to its “in-control” state. In our context, it means that wewant to avoid a signal of false
improvement, so we need a high value of Sensitivity (Recall). On the other hand, we
expect an immediate signal that the process has reverted to its in-control state, so
our classifier should have a high value of Specificity. So in both considered cases,
high values of Specificity and Sensitivity (Recall) are required for the used classifier.
These two requirements can be summarized by the requirement of the high value of
the aggregate characteristics, called Informedness, defined as Informedness= Speci-
ficity + Sensitivity −1, see Powers (2011). When costs of misclassification can be
considered, one can assign different weights to these two measures of quality. In this
research, however, we do not make such a distinction.

We have already noticed that the quality measures mentioned above have a prob-
abilistic interpretation. The question arises then how to estimate these probabilities.
The best way to do so is to use a separate test set of labeled observations. When the
total number of observations is limited, another approach, named cross-validation,
is advisable. In this approach, the set of all observations is randomly split into two
sets: a training one (for building a classifier) and a test one (for evaluation of the
classifier’s quality). The procedure is repeated several times in such a way that every
observation is included in one of the test sets. The results of the quality evaluation
are averaged. A comprehensive description of evaluation procedures of this type can
be found in the book by Japkowicz and Shah (2015).

The procedure described above is based on the concept of supervised learning,
in which it is assumed that in the training data set all labels attributed to observed
data vectors are exactly known. However, in many practical situations, a process of
assigning labels (labeling) to predictor vectors may be costly, and thus practically
impossible. In such a case, we may have a large number of predictor vectors, but
only a part of them (sometimes even small) has assigned respective labels. A real-life
example of this situation is considered in the fourth section of this paper. To copewith
this problem, one can use a semi-supervised learning approach. There exist many
semi-supervised learning algorithms used for classification purposes. In this paper,
we use a simple approach, described in Witten et al. (2011). This approach is a kind
of the EM (expectation-maximization) procedure. At the first step of this procedure, a
classifier is built using only labeled data vectors. Then, the obtained classifier is used
to assign labels to the remaining unlabeled data vectors. Now, this extended labeled
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data set (with original and estimated labels) is used for the construction of a new
classifier. Then, this new classifier is used for assigning new labels for vectors with
originally unknown labels. The whole procedure is repeated iteratively several times
until convergence. Unfortunately, this procedure does not guarantee the improvement
of the classification accuracy, but in many cases, such improvement can be achieved.
In Sect. 4, we present an example showing some benefits (but also some dangers)
related to the application of a semi-supervised learning methodology.

2.1 Classifiers for Binary Classification—Logistic Regression

Binary classification is historically the oldest problem of machine learning. Since the
works of R. Fisher on discriminant analysis, many different approaches have been
proposed. The most popular groups of binary classification algorithms are decision
trees and regression methods. Both approaches are implemented in machine learning
software packages. In this paper, we use a classifier based on logistic regression,
as it is easier for practical implementation. Moreover, according to Hastie et al.
(2008), it is probably the best regression tool for the analysis of discrete data. In
regression-based classifiers, in order to classify an object into one of two classes, 0 or
1, one has to calculate probabilities P(Y = 1|X1 = x1, . . . , Xm = xm), and P(Y =
0|X1 = x1, . . . , Xm = xm) = 1 − P(Y = 1|X1 = x1, . . . , Xm = xm). A new object
described by a vector (x∗

1 , . . . , x
∗
m) of attributes (predictors) is classified to the class

for which the respective probability is greater. In the linear logistic model, these
probabilities are estimated through applying non-linear transformation to the linear
function g (the so-called link function) of observed data

g(x1, . . . , xm) = β0 + β1x1 + · · · + βmxm . (1)

Thus, it belongs to a class of generalized linear models (GLM). The probability of
class 1 is calculated using the logistic function according to the formula

P(Y = 1|X1 = x1, . . . , Xm = xm) = 1

1 + exp(g(x1, . . . , xm))
. (2)

Parameters (β0, β1, . . . , βm) of this model have to be estimated from the training data
consisting of n observations. This can be done by the maximization, with respect to
β0, β1, . . . , βm , of the log-likelihood function (Witten et al. 2011):

L(β0, β1, . . . , βm) = ∑n
i=1 [(1 − yi ) log(1 − P(Y = 1|x1, . . . , xm))

+yi log(P(Y = 1|x1, . . . , xm))]. (3)

To solve this problem one has either to solve the log-likelihood equations using the
iteratively reweighted least squares method (see Hastie et al. 2008, for details) or to
use anyoptimization tool (such as that available inMSExcel) for the directmaximiza-
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tion of (3). When we use available software packages we have to note that in some of
them in the formula (2) the function g(x1, . . . , xm) is replaced by −g(x1, . . . , xm).
If this takes place, the estimated values of the parameters (β0, β1, . . . , βm) have
opposite signs.

In the considered case of the two-state process, the training set used for building a
classifier must consist of at least one sequence of instances when the process remains
in the state 0, and at least one sequence of instances when the process remains in the
state 1. When the process is in the state 0, we observe the results of classification
equal to 0 with probability p00 equal to the estimated Specificity of the classifier,
and the results of classification equal to 1 with probability p01 = 1 − p00. On the
other hand, when the process is in the state 1, we observe the results of classification
equal to 1 with probability p11 equal to the estimated Sensitivity of the classifier. The
probability of observing 0 in this state of the process is then equal to p10 = 1 − p11.

2.2 Combined Classifiers

One of the most difficult practical problems with classification is missing data. Most
classifiers need a sufficiently large training data set with all values of attributes
known. However, in many practical cases, especially for medical data, it is hardly
attainable. When the number of missing attribute data is small, one can use the so-
called imputation methods to replace missing data with their appropriate predictions.
In some situations, however, this cannot be done. Consider, for example, two subsets
of attributes observed in periods of different lengths. If we want to build a classifier
using the whole set of attributes, we would have to rely only on these time points
when the observations from both subsets are available. In such case, we may lose
valuable information from the time moments when the information from only one
subset of attributes is available.

In this paper, we propose to consider, as an alternative to a usual classifier that
uses all attribute data, a group of classifiers that are built using separate subsets of
attributes. When the results of classification using these classifiers are fully concor-
dant, there is no problem with the determination of the final classification result.
When the accuracies of the classifiers are similar, one can use majority voting (with
a supplementary rule for the case when the number of classifiers is even) for estab-
lishing a designated class. The problem begins when these results are not concordant
and the accuracies of individual classifiers are significantly different. To avoid such
problems, in this paper, we consider only two decision rules: the class is designated
either if decisions of all classifiers are the same (strong confirmation) or if it is not
possible to confirm strongly the alternative (i.e., there is at least one indication of the
considered class). The choice of the applied rule should depend upon the possible
consequences of an undertaken decision.

The calculation of the statistical properties of such combined classifiers is not
straightforward, predictions are typically correlated. In general, the separate classi-
fiers are jointly distributed according to the multivariate Bernoulli distribution (Dai
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et al. 2013). Mathematical representation of this distribution is complicated and
involves many parameters to be estimated (see Teugels 1990). Thus, for a limited
amount of available data general models are difficult for implementation. In this
paper, we propose to use its simplification by assuming that the results of classifica-
tion obtained by different separate classifiers are equicorrelated. By the “equicorre-
lation” we mean that for all pairs of classifiers the correlation coefficient ρ takes the
same value. Thismodel was considered byGupta and Tao (2010) for solvingmultiple
testing problems. Using their model we assume that we have the results of l clas-
sifiers Y 1, . . . ,Y l , and that the probabilities of observing 1 are equal to p1, . . . , pl ,
respectively.

Consider first the simplest case when we combine the results of only two clas-
sifiers. Let Y (2) = Y 1 + Y 2, and p1 = P(Y 1 = 1), p2 = P(Y 2 = 1). Then (Gupta
and Tao 2010):

P(Y (2) = 0) = (1 − p1)(1 − p2) + ρ
√
p1 p2(1 − p1)(1 − p2), (4)

P(Y (2) = 2) = p1 p2 + ρ
√
p1 p2(1 − p1)(1 − p2), (5)

and
P(Y (2) > 0) = 1 − P(Y (2) = 0), (6)

where ρ is the correlation coefficient between random variables Y 1,Y 2.
When the results of l = 3 classifiers are combined, we have Y (3) = Y 1 + Y 2 +

Y 3, and p1 = P(Y 1 = 1), p2 = P(Y 2 = 1), p3 = P(Y 3 = 1). Then (Gupta and Tao
2010)

P(Y (3) = 0) = (1 − p3)P(Y (2) = 0) + ρ[√p1 p3(1 − p1)(1 − p3)(1 − p2)
+√

p2 p3(1 − p2)(1 − p3)(1 − p1)], (7)

P(Y (3) = 3) = p3P(Y (2) = 2) + ρ[√p1 p3(1 − p1)(1 − p3)p2
+√

p2 p3(1 − p2)(1 − p3)p1] , (8)

and
P(Y (3) > 0) = 1 − P(Y (3) = 0), (9)

where in this case ρ is the correlation coefficient between random variables Y (l) and
Y (k) for ∀l �= k. Similar results can be obtained using the recursive formulae given
in Gupta and Tao (2010) if a number of classifiers is greater than 3.

In the case of two classifiers, the estimation of ρ is straightforward. In the case of
three (or more) classifiers, the situation is slightly more complicated. In this case, we
use a basic result of probability, that for random variables X1, . . . , Xl the following
equality holds:
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Var

(
l∑

i=1

Xi

)

=
l∑

i=1

Var(Xi ) +
l∑

i=1

l∑

j �=i

Cov(Xi , X j ) (10)

If our observation are standardized in such a way that Var(Xi ) = 1, i = 1, . . . , l, and
equicorrelated, than we have the following equation:

Var

(
l∑

i=1

Xi

)

= l + l(l − 1)ρ (11)

The estimation of ρ is now the following. First, for each considered classifier we
calculate the standard deviation of the obtained results of classification. Then, we
standardize these results by dividing them by the respective standard deviation, and
for each element of the training set (with all values of attributes available!) we
calculate the sum of these standardized values. Finally, we calculate the variance of
these sums, insert it into (11), and solve this equation with respect to ρ.

In this paper, we consider the combination of two classifiers. The combination of
a greater number of classifiers is, of course, possible, but in such case, the assumption
of equicorrelation often becomes less adequate.

3 Monitoring the State-Related Observational Data

The results of the classification described in the previous section form a series of zero-
one observations with probabilities of observing “ones” depending upon the actual
state of amonitored process. From the perspective of statistical process control (SPC),
we can consider the current state of a process as the in-control state, and the transition
from this state to another one we can consider as the transition to the out-of-control
state. Therefore, we can consider the monitoring of our process as the monitoring of
a process with binary observations Yi , i = 1, 2, . . . , where Yi ∈ 0, 1.

SPC procedures for binary observations, also known as attribute data, are well-
known. Basic procedures are described, e.g., in the book byMontgomery (2011), and
references to other procedures can be found in Woodall (1997). For monitoring indi-
vidual observations, and this is our case, Montgomery (2011) recommends CUSUM
and EWMA control charts. Such control charts for attribute data are well-known,
but they are designed under the assumption of independent (serially non-correlated)
observations. Unfortunately, for processes considered in this paper, this assumption
may not be satisfied. Therefore, we should look for a procedure applicable to serially
dependent data.

In the case of serially dependent real-valued (variables) data, different control
charts have been already proposed. They are based on mathematical models of real-
valued time series, such as, e.g., the Box-Jenkins ARMA models. Unfortunately,
in the case of discrete data, a direct application of this approach is not, as it was
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proved by Steutel and VanHaarn (1979), possible. To cope with this problem, several
approaches have been proposed. They are described, e.g., in an overview paper by
McKenzie (2003).

The most popular approach is based on the concept of “thinning” already intro-
duced by Steutel and Van Haarn (1979). This approach is especially useful when the
discrete time series hasmarginals defined on countable and infinite sets and described
by such distributions like Poisson or geometric. When the marginal distribution is
defined on a finite set, some additional assumptions must be made. For example, in
the case of a binomial marginal distribution, an autoregression-type model was pro-
posed by McKenzie (1985), and further generalized by Weiß (2009a). This model,
which belongs to a more general class of INAR models, in the case of binary data is
very simple.

Let Yt , t = 0, 1, . . . be sequence of binary 0, 1 observations. Then, according to
McKenzie’s INAR(1) binary autoregression model we have

Yt = AtYt−1 + Bt (1 − Yt−1), (12)

where At and Bt are sequences of i.i.d. random variables with P(At = 1) = α and
P(Bt = 1) = β. The INAR(1) model (12) describes a two-state Markov chain with
the autoregressive AR(1) structure. For random variables generated by (12) both
conditional mean and variance are linear functions of Yt−1. Let ρ = Cor(Yt ,Yt−1)

and p = P(Z = 1), where the random variable Z is distributed according to the
Bernoulli distribution with parameter p. If β = p(1 − ρ) and α = β + ρ, then the
marginal distribution of Yt is the same as that of Z . Moreover, the autocorrelation
function is equal to ρX (k) = ρk, k = 0, 1, . . . .

An alternative approach for modeling integer-valued time series, historically an
older one, was proposed in a series of papers written by Jacobs and Lewis. The
models introduced by these authors are referred to as DARMAmodels. In this paper,
we consider the simplest one, known as the DAR(1), proposed in Jacobs and Lewis
(1978). In the DAR(1) model, consecutive observations are generated by the follow-
ing mechanism:

Yt = VtYt−1 + (1 − Vt )Zt , (13)

where Vt are i.i.d. random variables with P(Vt = 1) = ρ, and Zt are i.i.d. random
variables described by a certain (discrete) probability distributionπ . IfY0 is generated
by π , then (13) describes a stationary process whose marginal distribution is π .
Moreover, the expectation of Yt |Yt−1 is a linear function of Yt−1, and the variance of
Yt |Yt−1 is a quadratic function of Yt−1 (McKenzie 2003). In the case considered in
this paper, random variables Zt are distributed according to the Bernoulli distribution
with P(Zt = 1) = p. It was proved that the autocorrelation of Yt defined by (13) is
the same as in the case of the INAR(1) model. Moreover, the process described by
the DAR(1) model is a two-state Markov chain, which is described by the following
transition matrix (Jacobs and Lewis 1978):
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Ti j =
[

ρ + (1 − ρ)(1 − p) (1 − ρ)p
(1 − ρ)(1 − p) ρ + (1 − ρ)p

]

. (14)

The same transitionmatrix describes the INAR(1) process for binary data. Therefore,
although in general discrete processes described by the INAR(1) and the DAR(1)
models have different correlation structures, in the case of binary data these models
have the same properties. Thus, monitoring procedures designed under the assump-
tion of any of these two models should be the same.

Control charts for correlated binary data have been proposed in several papers by
Weiß. For example, he considered in Weiß (2009b) monitoring the INAR process
with binomial marginals using three control schemes: moving average (MAV) chart,
conditional control chart, and a chart based on runs. Some additional monitoring
schemes based on less popular SPC statistics were also proposed in Weiß (2012).
Note, that binary data considered in this paper are a special case of binomial data.
Therefore, one can use the charts proposed in Weiß (2009b) to monitor such kind of
data. Consider, for example, amoving average chart based on a datawindowof length
m. Let p = P(Yt = 1), and ρ be the coefficient of autocorrelation of the monitored
process. On the MAV chart we plot averages Ȳ (m)

t = (Yt−m+1 + · · · + Yt )/m. The
expected value of Ȳt is equal to p, and the variance is given by the following formula
(Weiß 2009b):

Var
(
Ȳ (m)
t

)
= p(1 − p)

m

1 + ρ

1 − ρ

(

1 − 2

m

ρ

1 − ρ2
(1 − ρm)

)

. (15)

A control chart based on k-sigma control limits has the central lineCL = p, and con-

trol limits LCL = max

(

0, p − k
√

Var(Ȳ (m)
t )

)

, LCL = min

(

1, p + k
√

Var(Ȳ (m)
t )

)

.

Note, that for the first m − 1 observations the control limits should be appropriately
recalculated.

Classical Shewhart control charts (with symmetric control limits) for binary data
have poor properties when sample sizes are small. This is caused by the asymmetry
of the probability distribution of the average of binary random variables. Simulation
experiments reveal that this problem also exists in the case of the moving average
chart proposed byWeiß (2009b) when the length of a data window is less than 10. In
certain applications, it is not advisable to use a larger data window, as by increasing
its length we decrease the rate of false alarms, but on the other hand, we increase the
expected time to a real alarm. This happens, e.g., in a real-life problem considered
in the next section of this paper. To avoid problems related to the asymmetry of data
(Weiß 2009c), instead of original observations, considered their “jumps” defined as
Jt = Yt − Yt−1, where Yt is distributed according to the binomial distribution. He
proved that the marginal distribution of Jt has all odd moments, including the mean
and skewness, equal to 0. In the case of Bernoulli data, which is the special case of
the problem considered in Weiß (2009c), the variance of Jt is equal to

VJ = 2p(1 − p)(1 − ρ). (16)
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Moreover, the autocorrelation function for the process Jt equals (Weiß 2009c).

ρJ (k) = −1 − ρ

2
ρk−1, k = 1, 2, . . . . (17)

These properties were used by Weiß (2009c) in his proposal of a Shewhart-type
control chart for dependent binomial data.

When the data are binary, the probability distribution of “jumps” Jt is symmetric,
and the probability distribution of moving averages is also symmetric. Using simple,
but tedious algebra, we have found that the variance of the moving average statistic
based on Jt can be calculated from the following formula:

Var( J̄ (m)
t ) = 2p(1 − p)(1 − ρ)

m2

[

m − (1 − ρ)ρm−1
(

1 − 1

ρ

)−2 (
1

ρ
+

(

(m − 1)
1

ρ
− m

)
1

ρm

)]

.

(18)
Unfortunately, for binary data, the usage of a control chart based on “jumps” is of
very limited value. It is easy to show that in the case of aMAVchart only three distinct
values of the plotted statistic are possible: −1/m, 0, 1/m. So if we set a standard
deviation multiplier to a certain value only one of two solutions is possible: either to
accept all data points or to react to nearly all changes in the results of classification.
In the first case, we are not able to generate alarms, and in the second case, the rate
of false alarms is usually not acceptable. In the case of observed “jumps”, one can
think about a control chart based on a moving variance. This solution might be useful
in practice, but its theoretical justification requires future investigations.

Another control scheme proposed in the literature for binary data is based on the
concept of runs. In processes described by Markov chains of the first order, such as
the INAR(1), the conditional probability distribution of the run length is given by
Weiß (2009b)

r(k) = pk−1
1|1 , k = 1, 2, . . . , (19)

where p1|1 = P(Yt = 1|Yt−1 = 1). Weiß (2009b) proposed a control chart based on
this distribution. In practical applications, however, a simpler procedure is used. An
alarm signal is generated when the maximal observed run exceeds a certain critical
value. The probability of such an alarm can be calculated from (19). Jacobs andLewis
(1978) derived the probability generating function for the random variable T that
describes the lengths of runs. This function may be transformed into the moment
generating function which allows for calculating the moments of runs of a given
order.

4 Application—The Case of Bipolar Disorder

Bipolar disorder (BD) is a mental illness affecting over 2% of the world’s population
(Grande et al. 2016). BD is characterized by episodic fluctuations between mood
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phases ranging fromdepression, throughmixed and euthymic, tomanic episodes. It is
a chronic and recurrent disease having a serious impact on psychosocial functioning,
cognition, and quality of life (Catala-Lopez et al. 2013). Also, the suicide rate of
psychiatric patients suffering from BD is the highest among all mental disorders
(Chen and Dilsaver 1996). Therefore, the detection of early symptoms of illness
episodes, the so-called affective states, is crucial. Also, early treatment significantly
decreases the severity of the symptoms leading to the improvement of the patient’s
well-being and reduction of the treatment costs.

The dynamic growth and spread of smartphone technology allow real-time moni-
toring of a patient in naturalistic settings through self-monitoring, as well as through
the monitoring of automatically collected objective data, such as speech activities
and behavioral activities (Faurholt-Jepsen et al. 2014). Consequently, smartphone
apps enable monitoring of patient’s behavior, social interactions, patient’s voice sig-
nal, movements or changes of localization, and more. Moreover, the objective data
collected via smartphones are correlated with scores on the depression (e.g., HDRS)
and mania (e.g., YMRS) scales (Gruenerbl et al. 2015), and maybe used as a state
marker for monitoring of illness activity in patients with BD. BD patients are gener-
ally open to the use of smartphones and wearables to help them monitor and assess
their mental state (Schwartz et al. 2016). Recent research confirms that smartphones
become an increasingly effective tool for the assessment of BD patients’ affective
state and early detection of a phase change (Faurholt-Jepsen et al. 2014; Gruenerbl
et al. 2015), and changes in patient’s behavioral activities captured with smartphone
usage are regarded as potential sensitive measures of changing course of affective
states (depression, mania, mixed state) in BD. However, the detection of the change
of a patient state is a challenging task because the available data is collected from
the smartphone and hence indirect.

In this paper, we pursue an alternative approach.Wemonitor the two-state process
and try to detect a change of the process (patient’s) state by such a semi-supervised
learning approach (statistical process control). In this spirit, we follow the idea pro-
posed by Kaczmarek-Majer et al. (2018) and by Hryniewicz et al. (2019a) and use
statistical process control as an effective methodology to build patient-dependent
models and generate alarms when the patient’s behavior related to smartphone usage
changes.

From a preliminary analysis of available data, performed using methods of data
mining and the expertise of psychiatrists, we have chosen six predictors of the
patient’s state. Three of them (X1—average daily number of phone calls, X2—
average daily length of phone calls, X3—standard deviation of daily phone calls)
were related to the phone activity of a patient. The remaining three (X4—average
daily number of SMSes, X5—average daily SMS length, X6—standard deviation of
daily SMS length) were related to the patient’s activity in writing SMSes. The choice
of these predictors was further confirmed by preliminary statistical analysis.

At the first stage, we looked for an appropriate classifier. As the training set, we
used observations from a sequence of 28 days when the monitored patient was in
the state of mania (State 1), followed by observations from a sequence of 41 days
when the monitored patient was in the state of euthymia (State 0). For these data, we
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Table 2 Comparison of classifiers—sums of ranks

Classifier 10-fold CV Test set Total

LogReg 26 10 36

RandForest 23 29.5 52.5

RandTree 14 29.5 43.5

OneR 41 15 56

Jrip 30 24 54

AdaBoost 12 40 52

built several classifiers (logistic regression, random tree, random forest, OneR, Jrip,
AdaBoost) using publicly available software WEKA. The quality of these classifiers
was tested on the training set using the stratified ten-fold cross-validation, and on the
test set consisting of data collected from a sequence of 37 days when the monitored
patient was in the state of euthymia (State 0), followed by observations from a
sequence of 12 days when the monitored patient was in the state of mania (State 1).
Both data sets are available on request from the authors. For evaluation purposes, we
used 6 quality measures available inWEKA. For each consideredmeasure we ranked
the evaluated classifiers. The sums of respective ranks are presented in Table2.

The results of evaluation presented in Table2 confirm the opinion of Hastie et al.
(2008) that Logistic Regression is probably the best regression tool for the analysis
of discrete data. Thus, we have chosen this classifier, described in details in Sect. 2.1,
for further analyses.

From the analysis of all data contained in the training test, we have estimated the
following link function:

g f (x1, . . . , x6) = 1.3929 − 0.0088x1 − 0.0161x2 + 0.0063x3 + 0.0043x4 − 0.1049x5
+0.0838x6.

(20)
When we considered separately data related to phone calls and sent SMSes, where
in both cases the number of days with valid data was greater than the number of days
with valid data available for both subsets of attributes (predictors), the respective link
functions are the following:

gc(x1, . . . , x3) = 0.2974 − 0.0036x1 − 0.0185x2 + 0.0078x3 (21)

gs(x4, . . . , x6) = 0.5547 + 0.0027x4 − 0.1114x5 + 0.0903x6 (22)

Then, we have inserted, respectively, (20)–(22) into (2), and obtained formulae
for the calculation of the probability that a patient is in the state of mania. When this
probability is greater or equal 0.5 we classify the patient’s state as manic (State1).
Otherwise, the state is classified as euthymic (State0).



MAV Control Charts for Monitoring Two-State Processes … 135

In the first stage of building a control chart, we consider data collected from a
patient being in the state of euthymia (State 0). By applying the already trained
classifier we obtain a series of binary values. From these data, we calculate the
estimated probability of obtaining the result of classification equal to 1, denoted
by p�, and the estimated coefficient of autocorrelation of the observed results of
classification, denoted by ρ�. These values are now used for the construction of a
moving average chart with the window of length m. The central line of this chart is
equal to p�. The standard deviation needed for the calculation of control limits is
calculated as the square root of the variance calculated according to (15) with p and
ρ replaced by their respective estimated values. Finally, we have to choose the value
of the standard deviation multiplier.

When we considered the results of classification using the classifier based on all
of the attributes, the estimated values of p and ρ were equal to 0.244 and 0.427,
respectively. Then, these values have been used for the calculation of the standard
deviation of themoving average statistic form = 3, which in this case takes the value
of 0.322. When we take a standard deviation multiplier equal to 3, as we usually do
for Shewhart control charts, both control limits are beyond the interval [0, 1], and
such a control chart is useless. Therefore, we have set k = 2, and obtained a valid
upper control limit equal to 0.888. Taking k smaller than the usual value of 3 can
have other justification. In the considered case, the empirical distribution of MAV
statistic is strongly leptokurtic (the excess kurtosis is positive, and equal to 0.46).
Thus, the probability mass of this distribution is more concentrated around the mean
value than in the case of the normal distribution.

When we use the control chart designed this way for the analysis of classification
data for the test period, we arrive at the results presented in Fig. 1. We can see that
when the monitored patient is in the euthymic state (first 37 data points) there is no
alarm. However, when the affective state changed to manic, this change was detected
on the third day (i.e., when all data from days when the patient was in State 1 were
used for the calculation of the MAV statistic). One can also notice the sequence
of small values of the MAV statistic in the final sequence of observations. This is
probably due to the effect of medical treatment, and indicates that the patient has
returned to the stable euthymic state.

When combined classifiers are used for monitoring purposes the procedure is
slightly different. First, the sequences of classification results are calculated on their
respective data sets from the training period. For the classification obtained by the
sub-classifier based on phone call data, the estimated probability of observing posi-
tive results of classification was equal to 0.22. For the classification obtained by the
sub-classifier based on SMSes data, the analogous estimated probability was equal
to 0.17. The correlation between the results of both classifications, estimated using
data obtained at data points when both results of classification were available, was
equal to 0.34. These values have been used for the calculation of positive results of
classifications for two types of combined classifiers. The first combined classifier,
coined as the CB1, yields the positive result of classification when at least one of two
considered sub-classifiers gives a positive result. The second combined classifier,
coined as the CB2, yields the positive result of classification when both considered
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sub-classifiers give a positive result. The probabilities of observing positive results
of classification for the CB1 and CB2 classifiers were equal to 0.34 and 0.05, respec-
tively. The remaining steps leading to the construction of MAV control charts for the
considered combined classifiers are the same as in the case of the classifier based on
all observed attributes.

In the case of the CB1 classifier, the autocorrelation of the results of classification
(on training data)was equal to−0.06, and the standard deviation for theMAVstatistic
(for m = 3) was equal to 0.263. Hence, the upper control limit for the MAV chart,
and k = 2, was equal to 0.858. The results of the application of this chart to the
test classification data obtained using the combined CB1 classifier are presented in
Fig. 2. We can see that the monitored process plotted on the MAV chart is nearly the
same as in the case of the classifier based on all attributes. The only difference is for
one time point where a false alarm in the state of euthymia was observed.

The performance of the MAV chart based on the CB2 classifier is significantly
different. The autocorrelation of the results of classification (on training data) was
equal to −0.05, and the standard deviation for the MAV statistic (for m = 3) was
equal to 0.12. This standard deviation is significantly smaller than in the previous

Fig. 1 MAV-3 control chart—classification using all 6 attributes, two-sigma control limits

Fig. 2 MAV-3 control chart—classification using the CB1 classifier, two-sigma control limits
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Fig. 3 MAV-3 control chart—classification using the CB2 classifier, two-sigma control limits

cases. Therefore, the upper control limit for the MAV chart, for the same value of
m, is significantly smaller than for the previously considered MAV charts. Thus, for
k = 2 one can observe 6 false alarms (in 2 sequences of 3 signals each), and real
alarms starting on the very first day of the change of state. This means that in the case
when false alarms are less costly than the delay in the revealing of the real change
of state this chart outperforms the previous charts. The results of the application of
this chart to the test classification data obtained using the combined CB2 with k = 2
classifier are presented in Fig. 3.We can see that the monitored process plotted on the
MAV chart is nearly the same as in the case of the classifier based on all attributes.
The only difference is for a one time point where a false alarm in the state of euthymia
was observed.

When we set k = 3 the situation is different. We observe no false alarms, but also
few real alarms, as presented in Fig. 4. Control charts with three-sigma control limits
are preferred when costs of false alarms are high, and delay times of true alarms are
not critical. In the problem of monitoring BD patients, considered in this paper, this
is not the case. Therefore, the control chart with two-sigma limits based on the CB2
classifier is a valuable alternative to the control chart based on the classifier that uses
all observed predictors.

The main problem in building classifiers used for the determination of the current
state of BD patients is related to the labeling of data from a training set. Such labels
can be assigned only by psychiatrists. One can assume that the diagnose is with great
probability correct for a few days around the day in which a personal contact between
a patient and a physician took place. For other days the labels that are assigned to
sets of context variables are less probable. Therefore, in a period in which we collect
training data, some labels may be considered as known, but the remaining labels can
be considered as unknown. This is exactly the problem the semi-supervised learning
is dealing with.

In the considered case of a BD patient, some labels assigned by psychiatrists are
less credible. Therefore, in building our classifier, we can consider them as unknown.
In this particular example we have nearly 60% of unknown labels. When we take
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Fig. 4 MAV-3 control chart—classification using the CB2 classifier, three-sigma control limits

into account only the labeled data, the logistic regression model is described by the
following link function:

g f (x1, . . . , x6) = −1.5985 + 0.0060x1 − 0.0135x2 + 0.0031x3 − 0.0090x4 + 0.1274x5
−0.0077x6.

(23)
This model is used as the starting point of the iterative process described in Sect. 2.
After 5 steps the iteration process stabilizes, and the final logistic regression model,
obtained using the semi-supervised learning methodology, is given by the following
link function:

g f (x1, . . . , x6) = 2.3422 − 0.0298x1 − 0.0030x2 − 0.0018x3 + 0.0010x4 − 0.1359x5
+0.1064x6.

(24)
Now, let us compare both classifiers, i.e., one based on a subset of the whole training
set for which we have fully known data (denoted by SL), and the other, with the
partially known data, where unknown labels in the training set are estimated using
the semi-supervised learning approach (denoted by SSL). For the evaluation of the
SSL classifier on the full training set (SSL-F), we assumed that all the labels in this
set are known. For the SL classifier, we consider two cases. In the first case, the
classifier is evaluated on the subset of the training test for which all labels are known
(SL-K), and in the second case, the classifier is evaluated on the full training data
set (SL-F). Then, we evaluated both these classifiers on the test set for which we
assume that all labels are known. The results of the comparison are presented in
Table3. The results of the comparison presented in Table3 show that for the training
set with records labeled by known labels the classifier built on this particular data
(SL-K) has better quality than the classifier built on the extended training data set
with known and unknown labels (SSL-F), applied to the set with known labels. The
quality of classification significantly deteriorates when we apply this classifier to
the full training data set (SL-F). When applied to the test data, the SSL classifier
performs much better. A possible explanation of this is the following: the training
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Table 3 Comparison of SL and SSL classifiers

Training data Test data

SSL-F SL-K SL-F SSL SL

Accuracy 0.6232 0.6333 0.4493 0.7959 0.4286

Precision 0.5714 0.6522 0.4138 0.5625 0.2778

Sensitivity 0.2857 0.8333 0.8571 0.7500 0.8333

Specificity 0.8537 0.3333 0.1707 0.8108 0.2973

F1 0.3810 0.7317 0.5581 0.6429 0.4167

Fig. 5 MAV-3 control chart—classification using the SSL classifier, two-sigma control limits

set with known labels is not very similar neither to the full training set nor to the test
set. However, the extended training set is much more similar to the test set, and thus
the results of classification using the SSL classifier built using all training data are
better.

Good properties of a classifier built on the extended training data set using an
SSL classifier do not mean, unfortunately, that a control chart based on predictions
made by these classifiers performs better than a control chart based on complete
data. In Fig. 5, we can see an excessive rate of false alarms. The alarm signals at the
beginning of the Euthymia (In-control) period can be explained as artifacts of the
previous health state of the patient. The remaining false alarms are due to the low
value of a control limit. This value is low because in the training period the results
of a classification in the state of Euthymia are less correlated than those observed in
the test period. Moreover, the percentage of false alarms is also slightly lower. This
results in the underestimation of the variability of charted data. One can also use these
findings as a kind of warning, that control limits of a chart should be calculated from
a period that is not used for building a classifier. Unfortunately, in the considered
case the amount of available data was too small to follow this recommendation.
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5 Conclusions and Future Research

This is one of the first studies with application of the statistical process control
methodology in the context of supporting the smartphone-based monitoring of bipo-
lar disorder patients and illustrates monitoring of the patient’s (indirect) state using
(directly observed) smartphone-based daily aggregates about calling and texting
(sending SMSes). The proposed approach is illustrated with real-life data captured
from the observational study. The practical motivation of the proposed approach is to
detect the state change of a BD patient based on the newly collected indirect data for
each patient.We have proposed amonitoring procedure which is based on the combi-
nation of different approaches from such areas as data mining and statistical process
control. In particular, the transition from observable data to the predictions of the
interesting, latent characteristics was based on supervised learning (classification) or
semi-supervised learning (classification for which a share of labels are missing). The
proposed procedure appears to be effective in the considered practical case. During
its implementation, several questions have arisen that need future investigations.

The first group of such questions is related to the classification methodology. It
is well-known that some types of classifiers, commonly considered as very good
(such as, e.g., Random Forests), for small training data sets are characterized by
high generalization errors. This phenomenon is also known as “overfitting”, as such
classifiers yield perfect classification of training data, but fail when applied for other
data sets of the same type. The results presented in Table2 clearly describe this
problem. This is exactly the case when we applied such classifiers for the data from
our training data set. For such “perfect” classification, it is not possible to propose
a control chart, as the standard deviation of the results of classification is equal to
zero. As such situations may happen in practice, it is advisable to consider the appli-
cation of more sophisticated classifiers obtained using the method of regularization
(for regression-type classifiers) or tree pruning (for decision-tree classifiers). The
application of such classifiers for small data sets also requires future investigation.
Another problem is related to the time structure of classified data. For the most pop-
ular classifiers, the possible serial correlation of consecutive results of classification
is not taken into account. Considering such possible autocorrelation structure may
lead to better results of classification. One can also think about the application of the
so-called “one-class” learning. These methods are used for the detection of outliers
or other anomalies. Therefore, one can think about their sequential application for
process data. This approach is under investigation in our current works.

The second group of questions is related to problems of monitoring. In this
research, we have used moving average (MAV) charts. The main reason for doing
this is the availability of closed-form formulae that can be used for the design of
charts. However, the application of other charts, like EWMA or CUSUM, should
also be considered in future investigations. One should also consider the application
of charts based on runs, as these charts seem to be very natural for the considered
type of data. Another problem, which cannot be forgotten is related to the size of the
training data. Our predicted charted data are binary. It is a well-known fact, that for
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this type of data the sample used for the design of a control chart cannot be small,
for example, in the real-life example considered in this paper.

In this paper, we have noticed thatMAV control charts based on “jumps’ are rather
not applicable for the monitoring of binary data. However, one can think about a
monitoring procedure based on the moving variance. This approach may be useful
in the case of Bipolar Disorder when we take into consideration the so-called mixed
state of health. In this state, we observe a mix of symptoms of depression and mania.
Preliminary investigations show that this state is difficult for identification when we
use only average values of observed random variables, and the consideration of data
variability may lead to more efficient monitoring.

From a medical point of view, the results presented in this paper may be viewed
upon as “proof of concept”. More generally applicable results may be expected if
we use a more diversified set of observations collected from different patients.
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Monitoring Image Processes: Overview
and Comparison Study

Yarema Okhrin, Wolfgang Schmid, and Ivan Semeniuk

Abstract In this paper, an overview of recent developments on monitoring image
processes is presented.We consider a relatively general model wherein the in-control
state spatially correlated pixels are monitored. The control charts described are based
on non-overlapping regions of interest. This leads to a dimension reduction but, nev-
ertheless, we still face a high-dimensional data set. We consider residual charts and
charts based on the generalized likelihood ratio (GLR) approach. For the calculation
of the control statistic of the latter chart, the inverse of the covariance matrix of the
process must be determined. However, in a high-dimensional setting, this is time
consuming and moreover, the empirical covariance matrix does not behave well in
such a case. This is the reason why two further control charts are considered which
can be regarded as modifications of the GLR statistic.Within an extensive simulation
study, the presented control charts are compared with each other using the median
run length as a performance criterion.

Keywords Statistical process control · Statistical image analysis · Image
monitoring · High-dimensional data

1 Introduction

Image analysis deals with the extraction of meaningful information from images
(mainly, from digital images) by means of digital image processing techniques. The
main aim is the improvement of pictorial information for human interpretation and
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processing of image data for tasks such as storage, transmission, and extraction
of pictorial information (cf. Gonzalez and Woods 2018). Since the resolution of
digital cameras has dramatically increased in recent years and the number of possible
applications is diverse, the analysis of image data has become a popular field of
research.

A digital image consists of a number of pixels, which can be considered as a
realization of a stochastic process. Several statistical approaches have been proposed
to model image processes as, e.g., Kalman filtering, Markov random fields, hidden
Markov processes, and Bayesian approaches. An overview is given in, e.g., Fieguth
(2010). These methods play an important role in feature extraction, image pattern
classification, etc. Since the number of pixels in a digital image is usually huge, we
are faced with a high-dimensional data set.

The objective of this paper is to monitor an image process over time. Such prob-
lems can be found in many fields of application. Within Industry 4.0 completely
new measurement methods have been introduced as, e.g., sensors that regularly take
photos from the production process. This method is frequently applied within a 3D
printing process (cf. Colosimo 2018). A similar problem can be observed within the
printing process of a journal, where the brightness of the cover should be checked
for changes. We can also find many examples in medicine as, e.g., the early detection
of tumors and vascular changes. In all of these applications, the aim is of course to
detect any deviations as soon as possible after their occurrence. Consequently, the
number of possible applications is huge but, surprisingly, there are only a few papers
dealing with image monitoring.

Among the first to apply control charts to image datawereHorst andNegin (1992).
Their purposewas to improve the productivity ofweb process applications. Armingol
et al. (2003) took into account illumination changes through a transformation of the
pixel values of the image. They constructed individual moving-range control charts
for each pixel. A disadvantage of their approach is that the correlation structure
of neighboring pixels is not taken into account. Nembhard et al. (2003) combined
control charts for variable data with the EWMA control chart. Hotelling’s T 2 control
chart was widely applied in image analysis, e.g., by Mason et al. (1997), Tong et al.
(2005), Liu and MacGregor (2006). Lin (2007a, b) combined multivariate control
charts and wavelets to detect defects in electronic components. Lin et al. (2008)
compared a wavelet and Hotelling’s T 2 control chart with a wavelet and a principal
component approach in detecting defects in LED chips. Jiang et al. (2005) used a
spatial exponentially weightedmoving average chart to find defects in LCDmonitors
and Lu and Tsai (2005) used a spatial x̄ chart for the same application.

An overview on control charting with images is given in Megahed et al. (2011).
In Koosha et al. (2017), a nonparametric regression method using wavelet basis
functions is developed to extract features from grayscale image data. The extracted
features are monitored over time to detect out-of-control situations using a gen-
eralized likelihood ratio control chart. Methods of machine learning have been
used to monitor image processes as well. For example, Rafajłowicz and Rafa-
jłowicz (2017) apply the K-medoids clustering algorithm for colored RGB images.
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Otto and Seckmeyer (2019) consider overlapping regions of interest and introduce a
multivariate EWMA chart taking into account correlated pixels.

Recently, Okhrin et al. (2019) derived several new control charts based on the
generalized likelihood ratio approach. In their paper, they take the spatial correlation
of the pixels into account. Their approach uses non-overlapping regions of interest.

The main purpose of the present paper is to give an overview of the topic and to
compare the charts proposed by Okhrin et al. (2019) within an extensive simulation
study.

The paper is structured as follows. In Sect. 2, we give a brief introduction into
image analysis and statistical image analysis. Here the statistical model is explained
which will be used in the rest of the paper. In Sect. 3, we present some control charts,
the residual approach and the charts introduced in Okhrin et al. (2019). In partic-
ular, the high-dimensional setting of the underlying problem is discussed in detail.
Section4 provides a comparison study of the procedures discussed in Sect. 3. Several
out-of-control situations are treated. As a measure of performance, the median run
length is used. It turns out that there is no chart that dominates the others in all of
the considered situations. However, an overall good performance can be observed
for the chart, which is based on the generalized likelihood ratio approach.

2 Image Analysis

In this section we briefly describe some basic concepts of image processing with
a focus on statistical image processing. More details can be found in, e.g., Fieguth
(2010), Gonzalez and Woods (2018), Réfrégier and Goudail (2013), Sonka et al.
(2014).

2.1 Digital Image Fundamentals

From themathematical point of view, an image can be seen as a function f : D → W
with D ⊂ IR2 for a 2-dimensional (2D) image and W ⊂ IRk . Frequently, D is a
rectangle. For a black-white image, W consists only of two values (usually 0 and 1,
0 stands for black color and 1 for white color). For an 8-bit color image, f (x, y) is a
vector of 3 individual components RGB (red, green, blue) with values between 0 and
28 − 1 = 255 for each component (cf. Sonka et al. 2014). If all elements are equal
to zero, we obtain a black image, and if all are equal to 255, the resulting image is
white. Today, it is common to work with 24-bit or 32-bit images, which provide a
much wider variety of colors. To standardize the operations on images, the values
are typically rescaled to [0, 1]. If all components are set equal, which is equivalent to
k = 1, we obtain a grayscale image. In the following, we will exclusively deal with
grayscale images.
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In order to process an image, it must be represented by a discrete data structure.
A digital image can be obtained from an image by sampling and quantization (e.g.,
Sonka et al. 2014; Gonzalez and Woods 2018). It is given by f (iΔx, jΔy) for
i = 1, ..., l, j = 1, ...,m, where Δx and Δy are geometric length and width of the
area of interest. f is called intensity function and the values of f are the intensities
of the corresponding pixels. In the following we will use the shorter notation f (i, j)
instead of f (iΔx, jΔy). We consider a digital image, further briefly image, that has
l rows and m columns of pixels. Thus, the image can be written as an array

⎡
⎢⎢⎢⎣

f (1, 1) . . . f (1,m)

f (2, 1) . . . f (2,m)
...

. . .
...

f (l, 1) . . . f (l,m)

⎤
⎥⎥⎥⎦ .

Nowadays, the resolution of 4K HD television is up to 4096 × 2160 pixels and the
resolution of images taken by high-end smartphones up to 4032 × 3024 pixels.

In order to sharpen and smooth an image, it is usually pre-processed. There are sev-
eral tools available for doing this. Using an intensity transformation, the whole figure
can be transformed as a unity, while spatial filtering makes use of local smoothing.
Many approaches provide a transformation of the image into its frequency domain,
e.g., the Fourier-related transforms, the Walsh–Hadamard transform, wavelet trans-
forms, discrete cosine transform, etc. A detailed overview on various approaches are
given in Gonzalez and Woods (2018), Sonka et al. (2014).

2.2 Statistical Image Analysis

Real images are influenced by random errors. The errors may have different sources
such as technical issues, lighting, particles in the air, instability of the object, etc.
Thus, an image could be treated as a realization of a stochastic process. Several pro-
posals have been made in the literature to model image processes like, e.g., Kalman
filtering, Markov random fields, hidden Markov processes, Bayesian approaches,
etc. An overview can be found in, e.g., Fieguth (2010).

In the following, we want to make use of the linear error model

Ỹ (i, j) = f (i, j) + ε(i, j) , i = 1, ..., l, j = 1, ...,m. (1)

This means that there is only an additive noise influencing the pixel intensities
f (i, j) in the image. We will assume that the intensities { f (i, j)} and the error
variables {ε(i, j)} are orthogonal.

Frequently, the random variables ε(i, j), i = 1, ..., l, j = 1, ...,m are assumed
to be spatially independent and normally distributed with mean 0 and variance σ 2. In
that case, the image has usually been pre-processed and the error quantities explain
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the deviation between the observed pixel intensities and the smoothed values, which
are also described as the nominal image. This is of course a great restriction and it
is not fulfilled in many applications. Gonzalez and Woods (2018) describe several
caseswhere this approach does not work (quantum-limited imaging, such as inX-ray,
nuclear-medicine imaging, etc.).

In this paper, we consider a more general model and we do not make use of
the independence assumption for the noise process, since in our opinion it is too
restrictive. We assume that the error quantities follow a matrix-valued distribution
(Gupta and Nagar 2018). Such an approach was also made in Rafajłowicz (2018).
Here we make use of the matrix-valued normal distribution assuming certain types
of covariance matrices as it is done in spatial statistics (cf. Cressie 1992; Cressie and
Wikle 2015). Consequently, the pixel intensity process is spatially correlated.

3 Monitoring Procedures for the Pixel Process in the Time
Domain

Subject of this paper is tomonitor an image process over time. Such problems arise in
many fields of application. In environmetrics, satellite data provide a good possibility
to monitor a large area with the aim to detect forest fires, changes in glaciers, floods,
etc. Within Industry 4.0, completely new measurement methods have been intro-
duced, e.g., sensors. There are sensors taking photos from the production process
and this method is frequently applied within a 3D printing process (cf. Colosimo
2018). This problem is also related to the printing process of a journal where the
brightness of the cover should be checked for changes. We can find many examples
in medicine, such as the early detection of tumors, vascular changes, etc. Further, a
military unit is interested in detecting foreign aircraft in its own airspace. Thus, the
number of possible applications is very diverse. However, the field is still at an early
stage.

In principle, it is possible to monitor an image in time and in frequency domains.
Here we want to focus on monitoring procedures in the time domain only. For anal-
ysis in the frequency domain, the image would be firstly transformed by a suitable
transformation as, e.g., wavelets, etc. But then the question arises how a change in
the original process will be influenced by the transformation. We will not discuss
this topic here.

The aim of a monitoring procedure is to detect a significant change as soon as
possible after its occurrence. Such problems are subject of statistical process control
(SPC, cf. Montgomery 2009). The most important tools in SPC are control charts.
Control charts have been widely used in engineering. In that context, the process is
mostly assumed to be univariate and independent over time. In the present case, we
have a multivariate process. Control charts for multivariate independent processes
have been studied by various authors. The first control chart for independent and
multivariate normally distributed random vectors was derived by Hotelling (1947).
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It is based on the Mahalanobis distance between the observations and the target
mean vector. Lowry et al. (1992), Sparks (1992) extended the EWMA chart to mul-
tivariate data by using a multivariate EWMA recursion. Further generalizations of
the EWMA chart were given by, e.g., Fassó (1999), Hawkins et al. (2007). There
are several extensions of the univariate CUSUM scheme to the multivariate case.
Because the direct application of the sequential probability ratio test (SPRT) ofWald
to independent multivariate normally distributed variables leads to a control chart
which is not directionally invariant (cf. Healy 1987), i.e., the distribution of its run
length in the out-of-control state depends as well on the direction as on the magni-
tude of the change, several authors proposed control schemes having this desirable
property like, e.g., Crosier (1988), Pignatiello Jr and Runger (1990), Ngai and Zhang
(2001).

Unfortunately, these approaches cannot be directly applied to monitor an image
process since an image is a high-dimensional data set and these methods have been
introduced for small and medium dimensions. Thus, it is necessary either to modify
these approaches or to introduce new ones.

Nowadays, all monitoring procedures of image processes are based on aggregated
characteristics of an image, such as, e.g., entropy, spatial entropy, means, etc. The
reason for considering these characteristics is that a pixel to pixel analysis leads
to dramatic theoretical and computational problems. Particularly, since we assume
correlated pixels within an image, such an analysis can only be successful if the
underlying covariance matrix of the pixels has a specific structure. Else, the number
of parameters with respect to the available number of data is huge and the analysis
suffers from the curse of dimensionality.

In order to simplify the problem, sub-images, the so-called regions of interest
(ROIs), are usually considered (e.g., in Megahed et al. 2012; Koosha et al. 2017).
They are obtained by splitting the whole image into smaller sub-images. The local
characteristics for ROIs are usually defined as local measures of location and local
measures of variation. Our aim is to monitor these local characteristics. The advan-
tage of introducing sub-images is of course that the dimension behind the problem is
reduced. Nevertheless, we are faced with a high-dimensional problem and the classi-
cal control charts formultivariate processes cannot be applied. In order to get efficient
control charts, the methods of multivariate process control have to be combined with
the newest results on high-dimensional data analysis and on spatiotemporal statistics.

Monitoring the ROIs offers two further advantages compared to monitoring clas-
sical scalar or multivariate data. First, if a control chart signals, we can use the infor-
mation for the individual ROIs to identity the approximate location of the change.
Thus, we have not only a hint that a change occurred, but also where exactly it has
happened. This is a crucial information in practice. Second, if we know the position
of the change, we can also determine its magnitude. In the next step, this can be used
to identify the causes of the shift and later to adjust the production line appropriately.
The practitioner gets useful insights into the causes and the extent of the faults.
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3.1 Model

Our aim is to detect whether there has been a change within an image process. Since
the image process may be quite complicated, we focus in this paper on the situation
that the main subject of the image is fixed and not changing over time. For instance,
the image could show the cover of a journal taken by a static camera within the
printing process and our aim is to detect changes in its brightness.

Next, we consider images over time. Let

Ỹt (i, j) = f (i, j) + εt (i, j), i = 1, ..., l, j = 1, ...,m (2)

be the image process at time t ≥ 1, Ỹt (i, j) are the elements of l × m matrix Ỹt .
Since the image is static, it follows that f (i, j) does not change over time and does
not depend on t . The quantity εt (i, j) denotes a noise process, which is assumed
to be independent over time but not over space. Thus, we are working under much
weaker assumptions than it is usually done in literature, where mostly independence
over space is assumed too. Our intention is to derive suitable control procedures for
such a situation. A more general case of a non-static subject will be treated in a
forthcoming paper.

The change point model is defined as

X̃t =
{

Ỹt for t < τ

Ỹt + A for t ≥ τ
(3)

for t ≥ 1 with A �= 0 and τ ∈ IN ∪ {∞}. If τ = ∞ we say that the image process
is in control and no change has happened. If τ < ∞ then the image process is out
of control starting from time point τ . Sometimes {X̃t } is also called the observed
process and {Ỹt } the target process.

In practice, it is usually assumed that a pre-run of the target process is given
which is used to estimate f . We assume that f is known. We will not discuss the
influenceof parameter estimationwithin this paper. Thiswill be done in a forthcoming
contribution.

3.2 Residual Charts

Taking into account all pixels for the analysis is a very challenging task, since a
simple cell phone image nowadays already consists of around 4 million pixels and
thus, we have to monitor a process with 4 million components over time.

In order to reduce the complexity of the problem, the image is partitioned into
sub-images (regions, ROIs) Ii j of size h1 × h2, i = 1, ..., r1, j = 1, ..., r2 assuming
that l = h1r1 andm = h2r2, r1, r2 ∈ IN . Figure1 describes this partitioning schemat-
ically. It is often assumed that h1 = h2. Most of the proposed charts are based on
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Fig. 1 Partitioning of an
image in r1 · r2 regions of
interest (ROI)

local characteristics of Ii j , like the mean, weighted mean, standard deviation, etc.,
of the pixel intensities within a given ROI.

It is important to stress that we consider non-overlapping ROIs. Overlapping
ROIs allow for more flexibility in the dimension reduction, but lead to an extreme
complexity in the dependence structure. For this reason, we consider disjoint ROIs,
although the suggested technique can be directly extended to the overlapping case
as well.

InMegahed et al. (2012), the authors applied a control chart to the residual process.
They assumed overlapping ROIs and considered the residual process ε̂t . Let T̃t,i j be
the mean of ε̂t,vu on Ii j at time point t , i.e., T̃t,i j = 1

|Ii j |
∑

(v,u)∈Ii j ε̂t,vu . Assuming that

{T̃t,i j } are independent over t, i, j , and that T̃t,i j ∼ N (μi j , σ
2
i j ) in the in-control case,

they derived a generalized likelihood ratio chart for a mean shift model as described
in (2). Here the quantities μi j and σ 2

i j are assumed to be known. In practice, they can
be estimated via a pre-run but the influence of parameter estimation on the chart is
usually not addressed.

Moreover, this approach is based on the residual process assuming its indepen-
dence. Note that even in the case of a multiple linear regression the residual process
is not independent. Therefore, this assumption is questionable. Further, a detailed
comparison of residual charts and so-called modified charts are given in Knoth and
Schmid (2004). Recently, it has been shown in Rabyk and Schmid (2016) that mod-
ified charts behave much better than residual charts if the data is highly correlated.

3.3 Control Charts Based on the GLR Approach

Here we briefly want to describe the control charts recently introduced in Okhrin
et al. (2019). The ROIs are built as in the previous subsection, thus, in total there are
r1 · r2 ROIs. We do not consider the residual process but the original process, i.e.,
the images directly. Let T̃t,i j = X̄t,i j = 1

|Ii j |
∑

(v,u)∈Ii j X̃ t,vu . Suppose that in the in-

control stateTt=(T̃t,11, T̃t,21,…, T̃t,r11,…, T̃t,r1r2)
′ ismultivariate normally distributed

with mean μ and covariance matrix G. Note that μ is a r1 · r2-dimensional vector
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and G is a (r1 · r2) × (r1 · r2)-dimensional matrix. If the size of the original image
is 2000 × 2000 pixels, then taking, e.g., h1 = h2 = 100 the size reduces to 400 sub-
images and then, as a result, Tt is a 400-dimensional vector.

Note that in this paper we do not assume that the variables T̃t,i j , i = 1, ..., r1, j =
1, ..., r2 for a fixed time point t are independent as it has been done in the previ-
ously mentioned papers. Our aim is to monitor the mean behavior of a sequence of
independent multivariate normally distributed random vectors. Several methods have
been proposed in the literature to deal with this problem (cf. Sect. 3). These methods
have been studied in the multivariate case assuming small dimensions as, e.g., values
between 2 and 10. Here the dimension is much higher! Moreover, these approaches
depend on a certain design parameter (smoothing matrix, reference matrix) which
has to be chosen earlier and the choice of these quantities is difficult in the high-
dimensional case.

Assuming the change point model (3), we want to derive a generalized likelihood
ratio chart for the model under distributional assumptions above. This chart does
not depend on any additional design parameters. We denote r = r1 · r2 and the mean
values of the regions of interest I11, I21, ..., Ir11, ...Ir1r2 at time point t by Tt,1, ..., Tt,r .
We assume that

Tt ∼
{
Nr (μ,G), t < τ,

Nr (μ + Δ,G), t ≥ τ,
t ≥ 1, (4)

with Δ �= 0 and τ ∈ IN ∪ {∞}. If τ = ∞ we say that the image process is in control
and no change has happened. If τ < ∞ then the image process is out of control
starting from time point τ .

Note that this assumption is not fulfilled if the subject changes or moves over time
since the assumption of identically distributed random vectors is no longer fulfilled.

Of course, Tt can also be considered as a random matrix. If g = ( j − 1)r1 + i ∈
{1, ..., r1r2} with 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, then let T̃t,i j = Tt,g . Denoting T̃t =
(T̃t,i j ) it holds that vec(T̃t ) = Tt .

For that reason, it does not matter whether we consider the mean values of the
regions of interest as a matrix or a vector.

Further, we assume that T1,T2, ... are independent. Applying the generalized
likelihood ratio approach (e.g., Reynolds Jr and Lou 2010; Bodnar and Schmid
2011), Okhrin et al. (2019) derived a control procedure which does not depend on
any reference values or smoothing parameters. The control statistic at time point
n ≥ 1 is given by

Rn = max
1≤η≤n

(n − η + 1)Δ̂
′
η,nG

−1Δ̂η,n

with

Δ̂η,n = 1

n − η + 1

n∑
t=η

Tt − μ.
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A signal is given at time n ≥ 1 if Rn > C with a suitable constant C , which is
called the control limit.

In order to calculate Rn , the following recursive presentation of Δ̂η,n can be used

Δ̂η,n = (1 − 1

n − η + 1
)Δ̂η,n−1 + Tn − μ.

For the determination of Rn , it is necessary to invert the (r1 · r2) × (r1 · r2)matrix
G. It is usually a high-dimensional matrix. In our example with a cell phone image,
it could be a 400 × 400 matrix. Since in practice μ and G are both unknown, they
have to be estimated by a pre-run. Let us assume that a pre-run of the target process
is provided, say y1−p, . . . , y0. Then we can estimate μ = (μ1, . . . , μr1 , . . . , μr )

′ by

μ̂( j−1)r1+i = 1

p

0∑
t=1−p

ȳt,( j−1)r1+i , i = 1, . . . , r1 , j = 1, . . . , r2 ,

ȳt,( j−1)r1+i = 1

|Ii j |
∑

(v,u)∈Ii j
yt,vu , i = 1, . . . , r1 , j = 1, . . . , r2 ,

then
G = (

Cov(Tt,e, Tt,e′)
)
e,e′=1,...,r = (gee′)e,e′=1,...,r ,

and an estimator is given by

ĝee′ = 1

p

0∑
t=1−p

(ȳt,e − μ̂e)(ȳt,e′ − μ̂e′).

However, these estimators will only provide suitable results if p is large compared
to r1r2. In practice, this is usually not the case and the classical sample estimators
fail in a high-dimensional context (e.g., Bai and Saranadasa 1996).

The shrinkage approach (see Ledoit and Wolf 2004) provides another possibility
to estimate the covariance matrix. It is a nonparametric estimator which works well
even in the high-dimensional case. Thus, it can be applied in situations where the
dimension r1r2 is ofmoderate size with respect to p. However, this approachwill also
fail if p is small. Then a parametric or a semiparametric method seems to be more
successful and it is necessary to impose some assumptions on the structure of G. In
practice, it is reasonable to assume that more distant observations exhibit a weaker
correlation than observations lying closer. We might even consider independence
starting from a certain distance. It is also possible to make use of an isotropic covari-
ance matrix with an exponential or a Matern covariance function (Cressie 1992). In
this case, the estimation ofG is much more robust and easier since we estimate only
a few parameters. A further possibility, as it was mentioned already, is to assume a
matrix-variate normal distribution in the form T̃t ∼ Nr1,r2(μ̃,A,B), where μ̃ is the
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matrix of mean values, A is the matrix which describes the covariances between the
rows and B is the matrix that describes the covariances between the columns of T̃t

(Rafajłowicz 2018).
Efficient approximations of the covariance matrices of large data sets have been

discussed by several authors. The following approaches have been recently developed
to tackle the large-matrix-problem by applying a low-rank approximation of the
spatial process (e.g., Cressie and Johannesson 2006; Shi and Cressie 2007; Cressie
and Johannesson 2008, Katzfuss and Cressie 2009), by introducing sparseness to G
(Furrer et al. 2006) and a combination of both approaches (Zhang et al. 2015). A
comparison of these attempts was given in Vetter et al. (2016).

A disadvantage of the control statistic obtained by the GLR approach is that one
needs the inverse of G what may be a computationally demanding task. In fact,
the control statistic Rn consists of a Mahalanobis distance. Bai and Saranadasa
(1996), Chen and Qin (2010) consider a similar problem. Following Bai and
Saranadasa (1996), the quantity (n − η + 1)Δ̂

′
η,nG

−1Δ̂η,n is replaced by the quantity

(n − η + 1)Δ̂
′
η,nΔ̂η,n − tr(G), which has to be normalized suitably. Okhrin et al.

(2019) determined the variance of this quantity. Using this quantity their control
statistic is given by

Mn = max1≤η≤n(n − η + 1)Δ̂
′
η,nΔ̂η,n − tr(G)√

2 tr(G2)
.

Chen and Qin (2010) provided an improvement of the approach of Bai and
Saranadasa (1996). Applying their procedure in the present case, the control statistic
is based on

n∑
t,t ′=η,t �=t ′

(Tt − μ)′(Tt ′ − μ).

Note that for η = n the value of this statistic equals zero.
Okhrin et al. (2019) determined thefirst twomoments of this statistic and following

the attempt of Chen and Qin (2010) they introduce the control statistic

Un = 1√
tr(G2)

max

{
0, max

1≤η≤n−1

∑n
t,t ′=η,t �=t ′(Tt − μ)′(Tt ′ − μ)√

2(n − η + 1)(n − η)

}
.

Note that in Bai and Saranadasa (1996), Chen and Qin (2010) the underlying
statistics do not contain a maximum as in our case. Thus, the results of these authors
cannot be used to characterize the asymptotic distribution of our control statistics.

For calculating the control statistics Mn and Un only O(r21r
2
2 ) operations are

necessary while for the determination of Rn an inverse matrix has to be calculated
which is more time-intensive. The Gauss–Jordan elimination method needs O(r31r

3
2 )

operations. Thus, these quantities can be determined much faster and consequently
they can be applied to smaller ROIs.
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A control chart gives a signal if the corresponding control statistics exceeds a
control limit, for example, Un > CU . The run length of the chart is then defined as

RLU = min{n ∈ IN | Un > CU }.

The control limits are determined such that in the in-control state the expectation
or the median of the run length (ARL and MRL, respectively) attains a prespecified
value ξ . However, the ARL is not a suitable choice if the distribution of the run
length is skewed or heavy-tailed. For this reason, we consider the MRL which is
robust against these artifacts, and the control limit CU solves the equation

Median(RLU ) = ξ.

Similarly, we determine the control limits for the remaining two charts.

4 Comparison Study

In order to compare the introduced charts, we consider as the in-control process
a static image with a chessboard pattern. The in-control images were simulated
as follows. The size of every image is 100 × 100 pixels and it is partitioned into
dark and bright squares of size 20 × 20 pixels ordered as on a chessboard. This
results in 12 bright and 13 dark squares. The intensity Ỹi j , i, j = 1, . . . , 100 of every
pixel is assumed to follow normal distribution with parameters fi j and σ 2

i j . The
mean value fi j , i, j = 1, . . . , 100 of the bright pixel is set equal to 0.8 and of the
dark pixel 0.2. Note, in the RGB coding we would set all three components of the
intensity vector equal to these values. The variance σ 2

i j , i, j = 1, . . . , 100 equals
0.032. We introduce the spatial correlation of the pixel intensities by exploiting the
Euclidean distance between the pixels and the exponential transformation. More

precisely, Corr(Ỹi j , Ỹi ′ j ′) = 0.9
√

(i ′−i)2+( j ′− j)2 for i, j, i ′, j ′ = 1, . . . , 100. Recall
that the intensities must belong to the unit interval. If it is not the case, then we
resample the value until this restriction is fulfilled. This happens rarely since the
standard deviation for every pixel is 0.03.

Figure2 shows two images simulated under the in-control conditions in a zoom-in
mode. Despite looking identical, a closer look reveals variation in the brightness of
the dark and bright squares due to the noise in the underlying data generating process.
The changes are small enough not to distort the subject of the image. We assume that
it is acceptable for images under the in-control conditions to vary in such a way.

The size of the ROIs is set to 10 × 10 pixels implying a total of 100 non-
overlapping ROIs which cover the whole area of the image. This is schematically
shown in Fig. 3. As mentioned above, it is possible to consider overlapping ROIs of
different sizes. This increases the flexibility of the charts, but makes the implemen-
tation and the theoretical results more demanding.
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Fig. 2 Two zoomed-in images with the chessboard subject (the actual size is 100 × 100 pixels)
simulated under the in-control conditions

Fig. 3 Partitioning of 100 × 100 pixels image in 10 × 10 ROIs

For the fixed ROIs we derive the mean and the covariance matrix relying on
the distributional assumptions of the pixel intensities. Note that the exact distribu-
tion of the control statistics Rn, Mn and Un introduced in the previous chapters is
not a standard distribution. For that reason, the control limits of the control charts
were calculated using simulations. As a calibration criterion, we select the in-control
median run length (MRL) to be equal to ξ = 100. In order to calculate the control
limits, the regula falsi method is applied and in each step the MRL is estimated
using 103 independent repetitions. This leads to CR = 147.6708, CM = 4.0073, and
CU = 3.6169.

To check the ability of the charts to signal in the out-of-control state, we consider
four scenarios for a change in the mean value of the image areas. In each scenario,
we change the intensity of a particular part of the figure. The heterogeneity of forms
and shadings allows us to verify the efficiency of the suggested control schemes for
different types of changes. There must be obviously a link between the size of the
changed area and the size of ROIs. For example, small changes are easier to detect
with small ROIs. Megahed et al. (2012) suggest to use the Dice similarity coefficient
(DSC) to investigate how good the chart estimates the size of the change. Since in
our case the ROIs are of fixed size, we use DSC as an assessment tool to relate ROIs
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and the area of change. Let F denote the area of the change. Then DSC for the i th
ROI is defined as

DSCi = 2|̇F ∩ Ii |
|F | + |Ii | .

In our setting, we look at the maximum of DSCi ’s, i.e., DSCmax = maxi DSCi ,
and thus, the largest fraction of the fault area covered by a single ROI. DSC equal
one implies that the fault area is completely covered by a single ROI. Small values
of ROI indicate that every ROI covers only a small fraction of the faulty area.

Type of changes:

(a) The square of the chessboard in the third row and second column becomes
brighter. All pixels of the bright square of the size 20 × 20 pixels, which is
fully covered by 4 ROIs, change its mean value from 0.8 to 0.8 + δ with δ ∈
{0.005, 0.01, . . . , 0.05}. Figure4 contains the out-of-control images with δ =
0.005, 0.05 and 0.09. By a pure visual inspection, only the shift on the right-
hand side can be identified, but this is hardly possible for smaller shifts.
In Fig. 5, the histogram of the distribution of the out-of-control MRL for the shift
δ = 0.02 is plotted to give the reader a feeling of how long it can take before
the chart detects this change. The histogram shows that one needs less than 35
observations. DSCmax is 0.4 here and indicates that a single ROI covers less
than a half of the shifted area.

(b) The part of the square of the chessboard in the third row and second column
of the size 10 × 10 pixels (the part in the left upper corner) becomes brighter.
The intensity shifts from 0.8 to 0.8 + δ with δ ∈ {0.005, 0.01, . . . , 0.05}. The
shifted area is covered by a single ROI and thus, DSCmax = 1.

(c) The intersection of four squares of size 5 × 5 pixels on the chessboard in the
second row and second column, second row and third column, third row and
second column, third row and third column of the total size 10 × 10 pixels
becomes brighter. The intensity shifts from 0.8 and 0.2 to 0.8 + δ and 0.2 + δ

with δ ∈ {0.005, 0.01, . . . , 0.05}, respectively. This shift represents the changes

Fig. 4 Twozoomed-in images of the chessboard simulated for the out-of-control situation described
in a. The shifts are δ = 0.005, 0.05, and 0.09 (from left to right)
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Fig. 5 Histogram of the out-of-control RL for the Rn chart. Case a, δ = 0.02, 103 repetitions. The
red line indicates the out-of-control MRL

Fig. 6 Twozoomed-in images of the chessboard simulated for the out-of-control situation described
in b. The shifts are δ = 0.005, 0.05, and 0.09 (from left to right)

in 4 neighboring ROIs. 25% of pixels in each of these ROIs change their inten-
sities and DSCmax = 0.25.

(d) The whole image becomes brighter. The values change from 0.8 and 0.2 to
0.8 + δ and 0.2 + δ with δ ∈ {0.005, 0.01, . . . , 0.05}.

Figures6, 7, and 8 explain the changes in scenarios (b)–(d). Figure9 contains the
out-of-control MRLs for the described scenarios (a)–(d). All MRLs start at the target
value of 100 and monotonically decrease to one. The spread of convergence heavily
depends on the scenario of shifts and on the type of the chart. For small shifts, the
charts need more iteration to identify it, whereas large changes (scenarios (a) and
(d)) are detected very quickly. In order to better understand the distribution of the run
lengths, we additionally consider their means and standard deviations in the Table1.
We restrict the discussion to scenario (a) only. The values for other scenarios look
very similar and we drop them for space reasons. We observe that for larger shifts
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Fig. 7 Twozoomed-in images of the chessboard simulated for the out-of-control situation described
in c. The shifts are δ = 0.005, 0.05, and 0.09 (from left to right)

Fig. 8 Two zoomed-in images for the chessboard simulated for the out-of-control situation in d.
The shifts are δ = 0.005, 0.05, and 0.09 (from left to right)

the mean and the median are very close. Only for small changes, the mean becomes
larger indicating that there are some very large run lengths in the sample. The values
of the standard deviation are large for small shifts, but quickly decrease with larger
δ. Also, to estimate the size and the shift in the mean intensities of ROIs, one can
plot a diagram as in Fig. 10. We put the ordered ROIs (from top to bottom, left to
right) using the partitioning in Fig. 3 on the horizontal axis in Fig. 10 whereas the
mean intensities are plotted on the vertical axis. Black circles indicate the in-control
mean intensities; blue circles are estimated mean intensities after the chart signaled.
In scenario (a) the faulty area is completely covered by the ROIs 25, 26, 35, and 36.
This is clearly indicated by the spikes in the average intensities.

For the considered out-of-control scenarios, the chart based on the control statis-
tic Rn shows the best overall performance. This is not surprising since it is obtained
using the GLR approach and the other charts are only approximations to this quan-
tity. The disadvantage of Rn is that in contrary to Mn and Un it depends on the
inverse of the covariance matrix. This quantity is difficult to determine in a high-
dimensional situation. Thus, the main advantages of Mn and Un can be observed in
a high-dimensional situation since these statistics can be easier evaluated than Rn .
Moreover, here we do not discuss the influence of parameter estimation on the charts.
The determination of the inverse is even more complicated taking into account the
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Fig. 9 Out-of-control MRLs of the control charts Rn, Mn, and Un for the scenarios described in
a–d

Table 1 Out-of-control MRLs, means, and standard deviations in scenario (a)

Shift, δ

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Rn

MRL 72 39 20 12 8 6 5 3 3 2

Mean 90.004 41.492 21.042 13.085 8.599 6.128 4.636 3.567 2.808 2.140

Std.Dev. 70.953 23.039 11.077 6.435 3.905 2.749 2.038 1.567 1.201 0.947

Mn

MRL 91 60 39 24 16 12 10 7 6 5

Mean 118.673 70.111 40.456 25.535 16.919 12.495 9.632 7.449 5.910 4.881

Std.Dev. 107.124 47.673 23.533 13.407 8.289 5.550 4.316 3.084 2.572 2.103

Un

MRL 89 54 33 22 14 10 8 6 5 4

Mean 115.175 62.479 36.540 22.537 15.185 10.839 8.158 6.183 4.741 3.715

Std.Dev. 98.064 43.344 21.450 12.102 7.854 5.200 3.826 2.899 2.278 1.771
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Fig. 10 Estimating changing ROIs and its sizes of change in the mean intensities for the Rn chart.
Case a, δ = 0.05

estimation risk. Nevertheless, in the in-control scenario (d), the chart based on Un

signals earlier than the chart based on Rn . Moreover, Un uniformly outperforms the
chart with Mn in all considered cases. Obviously, if smaller parts of the image are
defected, the charts react slower. If the whole image is effected as in (d), the charts
signal faster.

Intuitively, the ability of the charts to signal depends on the choice of the size of
the minimum ROI. As it is analyzed in Megahed et al. (2012) the size of the ROI
should be chosen in relation to the size of the area of the expected defect. If the size
of the ROI is smaller than the expected area of the defect, then the chart is supposed
to signal faster than in the case where the size of the ROI is larger.

5 Conclusions

In this paper, we discuss the problem of monitoring an image process over time. We
give an overview of the existing literature with a focus on the recent approach of
Okhrin et al. (2019). Since the number of pixels is huge, we face a high-dimensional
problem and for that reason methods for high-dimensional data should be used in
this context. While many authors assume an independent residual process, we take
the spatial correlation structure of the pixels into account. In order to reduce the
dimensionality of the data, we build non-overlapping ROIs for every image and use
local statistical characteristics of those ROIs. We consider three possible control
charts and motivate them. In an extensive simulation study, we compare these three
control designs with each other. This is done for various out-of-control situations.
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The chart based on the generalized likelihood ratio approach shows the best overall
performance. Two other considered control charts make use of a simpler control
statistics which are much easier to handle in a high-dimensional setting. However,
they do not seem to have such a good performance as the chart based on the GLR.
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Parallelized Monitoring of Dependent
Spatiotemporal Processes

Philipp Otto

Abstract With the growing availability of high-resolution spatial data, such as high-
definition images, three-dimensional point clouds of light detection and ranging
(LIDAR) scanners, or communication and sensor networks, it might become chal-
lenging to detect changes and simultaneously account for spatial interactions in
a timely manner. To detect local changes in the mean of isotropic spatiotemporal
processes with locally constrained dependence structures, we have proposed a mon-
itoring procedure that can be completely run on parallel processors. This allows for
fast detection of local changes (i.e., in the case that only a few spatial locations
are affected by the change). Due to parallel computation, high-frequency data could
also be monitored. Hence, we additionally focused on the processing time required
to compute the control statistics. Finally, the performance of the charts has been
analyzed using a series of Monte Carlo simulation studies.

Keywords Computational statistics · Covariance tapering · Distributed
computing · Spatiotemporal monitoring

1 Introduction

In the era of big data, the amount of available data that could also be used for process
monitoring is rapidly growing. For instance, the resolution and size of images have
been massively growing over recent years. Although it is debatable whether the
information content is increasing with an increasing size/resolution of the images,
a high amount of data must be handled. Another example can be seen in remotely
sensed data from satellites, such as the concentration of atmospheric pollutants, or
data resulting from three-dimensional (3D) point clouds of light detection and ranging
(LIDAR) scanners. These scanners could measure millions of data points per second.
In particular, for autonomous driving, data from such scanners could be of interest
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and must be processed within very short time frames. All these examples have in
common that they have some natural ordering in space, inducing dependence on the
spatial dimension. As Tobler (1970) stressed, adjacent observations are more related
than observations that are more distant from each other. This paradigm is known as
the first law of geography. It is important to stress at this point that this natural spatial
ordering could also be interpreted as a network structure. Basically, networks could
be considered to have a specific order in a certain, probably non-Euclidean, space.
Thus, data coming from communication or sensor networks are further examples
that are of interest for this paper (for example, see Fu and Jeske 2014; Wilson et al.
2016; Woodall et al. 2017; Jeske et al. 2018 for monitoring procedures of networks).

More precisely, the focus of this paper is on monitoring dependent spatiotemporal
processes with a large number of spatial locations. From a computational point of
view, the proposed monitoring procedure should be fully scalable for growing spatial
dimensions. That is, if the number of spatial locations is growing, it should be feasible
to monitor the process within the same amount of time using more processing units.
Simultaneously, we account for the natural spatial dependence of the process. To
date, monitoring procedures for spatially dependent data or image data are rarely
discussed in the literature. For instance, Jiang et al. (2011) discussed surveillance
methods for data that are correlated in space. Along with modeling approaches,
monitoring procedures for complex spatial data structures have also been discussed
by Colosimo (2018). In contrast, Garthoff and Otto (2017) considered methods of
statistical process control to detect purely spatial changes. Furthermore, Megahed
et al. (2011, 2012) focused on images and proposed to define regions of interest
for which a characteristic quantity based on the sample mean and covariance can be
constructed. Another approach uses a spatial scan statistic for cluster detection to
monitor spatial processes, which was proposed by Sparks and Patrick (2014).

To motivate the procedure and the need for a fully scalable approach, we addi-
tionally introduce an empirical example from the field of meteorology. In Fig. 1, a
rooftop camera located in Hanover is shown, which constantly takes pictures of the
daytime sky, which are the so-called all-sky images (for more details and applica-

Fig. 1 All-sky images. Left: camera on the rooftop making constant all-sky images (© Philipp
Otto); right: one instance of the resulting sequence of images (© Institute for Meteorology and
Climatology, Leibniz Universität Hannover)
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tions, we refer to Crisosto et al. 2018; Hofmann and Seckmeyer 2017; Tohsing et al.
2013). One instance of this sequence of images is shown on the right-hand side.
From a meteorological point of view, clouds building an ergodic system indicate
stable weather conditions. That is, the weather will not change in this case. On the
contrary, if the clouds result from a non-ergodic system, the weather will change.
Thus, clouds, and in particular, all-sky images could be used for weather-change
detection. This is relevant for all energy producers because prices of electricity are
highly volatile and depend to a large extent on the overall energy supply. Further-
more, prices on the electricity market could even be negative (i.e., producers must
pay if they produce electricity). Hence, timely detection of weather changes is of
high interest, especially in times of growing production capacities using renewable
energy resources.

However, monitoring such processes leads to new challenges from a statistical
and computational point of view. More precisely, these images typically have a high
resolution/definition, and they could be taken at a high frequency. As these images
are coming from a natural process, we assume that the process cannot be stopped
(i.e., it is continuously running regardless of whether the control chart signaled a
change or not). Furthermore, the process is spatially dependent due to the natural
spatial ordering of the locations.

The remainder of the paper is structured as follows. In the next section, we dis-
cuss aGaussian spatial dependencemodel and several potential fields of applications.
Further, a monitoring procedure for such processes is introduced, which allows for
full parallelization of the computation of the control statistics. More precisely, an
exponentially weighted moving average (EWMA) chart is considered. In the ensu-
ing section, the results from a Monte Carlo simulation are reported to evaluate the
performance of the chart and to show some limitations of the approach. Eventually,
Sect. 5 concludes the paper.

2 Spatial Dependence Models

Themain objective of the paper is tomonitor spatiotemporal processes lying in amul-
tidimensional space. That is, deviations of the observed process
{Xt (s) : t ∈ Z, s ∈ D} from a so-called target process {Yt (s) : t ∈ Z, s ∈ D} should
be detected as soon as possible. More precisely, the process is observed at several
locations s in a finite q-dimensional space D (i.e., D ⊂ Rq ). For simplicity, we
assume that we observe the process at the same set of locations {s1, . . . , sn} for all
time points t . Furthermore, we assume that the target process could be dependent in
space but is independent over time.

This allows for a wide range of applications in various fields of research. For
instance, if the set of locations {s1, . . . , sn} lies in a two-dimensional (2D) unit grid
Z2, sequences of images could be monitored. In particular, this could be relevant
in production engineering, where the production outcome could be assessed using
images. It is important to note that the monitoring method is also applicable to high-
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resolution images that have been taken at a high frequency (e.g., the all-sky images
discussed in Sect. 1). In such settings, the process is called a spatial lattice process.

Another example can be found in environmetrics, where it could be of interest
to monitor air pollutants in the atmosphere (i.e., D is a 3D continuous space, or at
ground measurement stations, D would be a 2D space in this case). These settings
cover all spatial point processes and marked point processes. For instance, data mea-
sured by LIDAR sensors or satellite remote sensing represent such kind of processes.
Eventually, data could also be observed at irregular polygons, such as municipali-
ties or counties. For instance, certain health indicators or incidence rates could be
monitored for disease surveillance.

The spatial dependence is characterized by

Cov(Yt (si ),Yt (s j )) = C(si − s j ) (1)

for i �= j , where C : R+ → R+ is a function of the difference si − s j . If C is only a
function of the distance ||si − s j ||, the process is called isotropic, but this restriction
is not needed for monitoring. That is, our approach is suitable for both isotropic and
anisotropic processes. Assuming additionally that the expectation is constant over
space and time, that is,

E(Yt (si )) = μ for all i and t, (2)

the process is weakly stationary.
Furthermore, the covariance function C defines a covariance matrix

Σ = (σi j )i, j=1,...,n , where

σi j =
{
C(si − s j ) for i �= j
V ar(Y (si )) for i = j.

(3)

Obviously, this covariance matrix has a dimension n × n, which is usually very large
for empirical applications. For example, high-definition images have a resolution of
1920 × 1080 pixels, which leads to a 2, 073, 600-dimensional covariance matrix,
which might be infeasible to compute.

Subsequently, we assumed that the target process Y t = (Yt (s1), . . . ,Yt (sn))′ is a
multivariate Gaussian process

Y t ∼ Nn(µ,Σ) for all t, (4)

where µ is the constant mean vector. Note that this implies that the process is
independent over time. Moreover, this covers spatial autoregressive models, if
µ = (I − ρW )−1µ∗ and Σ = (I − ρW )−1D∗(I − ρW )−1 with a known weight-
ing matrix W . Thus, these autoregressive models are special cases of the considered
setting with a known function C .
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3 Monitoring Procedure for High-Resolution Images

In the following section, the focus is on the parallel monitoring procedure, which
accounts for the spatial dependence and is simultaneously applicable for large spa-
tial dimensions (i.e., n is large). Thus, we initially define an out-of-control model
for changes in the mean of the process. Then, the idea of parallel monitoring is
described. The proposed procedure can be run fully in parallel without the need to
combine the results of the parallel processes at each time point. From a computa-
tional perspective, the procedure is, therefore, highly scalable. Eventually, a suitable
control characteristic and a multivariate EWMA chart are proposed to monitor such
processes.

3.1 Out-of-Control Model

In this paper, we focuse on mean changes denoted by a ∈ Rn \ {0} only. However,
control procedures for monitoring the covariance or simultaneous procedures for
mean and covariance monitoring could be constructed in an analogous manner. For
changes in the mean, the observed process X t = (Xt (s1), . . . , Xt (sn))′ can be spec-
ified as

X t =
{
Y t for t < τ

a + Y t for t ≥ τ .
(5)

If the change point τ = ∞, the observed process always coincides with the target
process, and it would be called in control. Apparently, both processes would also be
equal if a = 0. It is worth noting that the mean change does not necessarily affect all
locations s1, . . . , sn , but it could also affect only a few locations, meaning at least
one.

For instance, we considered a random field of size 3 × 3 (i.e., n = 9), and a
change in the mean of the first location (i.e., a = (2, 0, 0, 0, 0, 0, 0, 0, 0)′). In Fig. 2,
a simulated random field of this size is depicted as single time series with a plotted as
a solid red line. Note that the time series plots are shown in the correct spatial ordering
(i.e., the distance between each plot corresponds to the true distance of the locations).
To visualize the distance to the first location, where the mean change occurs, the
background of the plots is colored according to the Euclidean distance from s1.
The covariance matrix Σ results from an exponential covariance function shown in
Fig. 3. The respective entries of Σ are highlighted by circles and the background
colors correspond to the colors in Fig. 2.

It is essential to account for spatial dependence whenmonitoring the process. This
is important not only because the mean change could be diminished due to spatial
interactions (especially in the case of spatial autoregressive covariance structures),
but one could also be interested in identifying the origin of the change. In particular,
this is of interest if the mean change does not affect Y t directly but affects another
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Fig. 2 Simulated spatiotemporal process depicted as a single time series where the natural spatial
ordering was kept. The background colors indicate the distance from the first location s1, where a
change in the mean occurs at τ = 100. The vector a is shown as a red line

latent process. In this case, the mean shift in location s1 would have an influence on
all other locations due to the spatial dependence. That is, if we do not account for
spatial interactions, the source cannot be correctly identified.

For monitoring and detecting possible mean changes, we sequentially tested
whether the mean of the observed process coincides with the mean of the target
process at each time point (i.e., whether there is mean change or not). Hence, at time
t , the decision problem is given by

H0,t : E(X t ) = µ versus H1,t : E(X t ) �= µ , (6)

(i.e., under the null hypothesis, the expectation of the observed process equals the
true target mean).
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Fig. 3 Spatial covariance
function for the simulated
random field in Fig. 2
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3.2 Parallel Monitoring

To account for spatial interactions, one could easily construct a characteristic quantity
resulting from a transformation of the current observation with the target mean and
covariance matrix, that is,

T t = Σ−1/2 (X t − µ) . (7)

As the target process is a Gaussian process, the residuals would be normal, and the
derivation of the moments of the characteristics is based on Isserlis’ theorem (see
Brillinger 1981).

However, the computation of the characteristic T t requires the Cholesky decom-
position of the inverse of Σ . Common algorithms have a computational complexity
of O(n3). Although this matrix only has to be computed once, it might not be feasible
if the number of locations is large. Nevertheless, the computation of the characteris-
tic requires the multiplication of a matrix and a column vector at each time point t ,
which has a complexity of O(n2) for the straightforward implementation.

Thus, we propose to split the problem into several chunks, which can be run fully
in parallel processes. More precisely, the set of locations is split into several subsets
of equal size and a characteristic quantity is computed for each subset. For instance,
an image of size 100 × 100 could be split into smaller windows of size 10 × 10 (i.e.,
100 of these windows cover the whole image). For the empirical motivation given in
Sect. 1, we illustrate one possible way of sectioning the image in Fig. 4. If the size
of the subsets is denoted by p, a characteristic quantity of the i th window,

T (p)
t,i = Σ−1/2

p

(
X (p)

t,i − µp

)
, (8)
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Fig. 4 Illustration of thewindow selection for the empirical example. Left: all-sky image (©Philipp
Otto); center: first logarithmic differences between two images; right: estimated spatial variogram

has only a dimension of p instead of n. The p × p-dimensional covariance matrix
Σp can easily be constructed from the covariance function C as in (3). Similarly, it
can be computed for spatial autoregressive models. If the in-control C is unknown,
it could also be estimated in a pre-estimation step, e.g., by variogram estimators (see
Fig. 4 right-hand plot).

In general, T (p)
t is not independent and normally distributed even if the process

is in control because positive entries of the covariance matrix Σ are neglected or, in
other words, are set to zero. However, if these entries that are set to zero are small, the
characteristic is very close to an independent and normally distributed random vector
if the process is in control. In spatial statistics, this approach is commonly known
as covariance tapering. A tapered covariance function Ctap results from multiplying
the underlying covariance function C with a tapering matrix Cθ , which is assumed
to be a valid covariance matrix with zero entries for all distances larger than θ . Note
that the direct product of two positive definite matrices is again positive definite
according to the Schur product theorem; thus, Ctap is a valid covariance function.

On one hand, a small window size reduces the computational complexity in terms
of computation time and required memory, which is needed for each chunk of data
(i.e., for computing the characteristic quantity and control statistics of themultivariate
EWMA chart). In the next section, we explain the suggested control procedure in
more detail. In contrast, a small window size also means that more parallel processes
are needed to cover the entire set of locations. As the costs for hardware are typically
lower than the opportunity costs incurred by longer computation times, this drawback
is not critical. More severe drawbacks must be seen in the lower accuracy if the range
of the spatial dependence exceeds the window size. Alternatively, larger windows
improve the accuracy of the chart while increasing the computational complexity. In
Fig. 5, we illustrate this trade-off for a 2D image and selected window sizes.

Moreover, we implicitly assume that the observations X (p)
t,i are available at all

locations of each of the p windows. However, in spatial settings, where the data are
measured by remote sensing (e.g., Katzfuss and Cressie 2011) or using wearable
sensors (e.g., Baghdadi et al. 2019), we are often faced with incomplete data. First,
missing data could be imputed for each window. This can be done in parallel, but



Parallelized Monitoring of Dependent Spatiotemporal Processes 173

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

Distance

C
ov

ar
ia

nc
e 

Fu
nc

tio
n

10 20 30 40

10
20

30
40

s1

s 2

Fig. 5 Illustration of the trade-off between the accuracy improvements (due to less covariance
tapering) and the window size

the proportion of missing data per window should not be too large. To not induce
the spatial dependence structure of the target process, the covariance function C
should not be used for imputation. Instead, simple kriging techniques can be applied,
like ordinary kriging or inverse-distance kriging. Second, it could be reasonable to
aggregate the data in advance (see, e.g., Zwetsloot and Woodall 2019), such that the
monitoring procedure would be based on sample means of the observation across
several locations or time points.

3.3 Control Characteristic and Multivariate EWMA Chart

In this paper, we consider a multivariate EWMA control chart to illustrate the proce-
dure of parallelized monitoring. The chart is based on the approaches in Śliwa and
Schmid (2005a, b), including a smoothing parameter λ ∈ (0, 1]. More precisely, a
multivariate EWMA recursion is applied to the characteristic quantity T (p)

t,i of each
window, that is

Z(p)
t,i = (1 − λ) Z(p)

t−1,i + λ T (p)
t,i

= (1 − λ)dZ(p)
0 + λ

t−1∑
k=0

(1 − λ)iT (p)
t−k,i , (9)

where the starting value is equal to the target value, i.e., Z(p)
0 = Eτ=∞

(
T (p)

t,i

)
.

For the in-control state, we can derive the moments of Z(p)
t,i . To be precise

Eτ=∞
(
Z(p)
t,i

)
= Eτ=∞

(
T (p)

t,i

)
(10)
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and

Covτ=∞
(
Z(p)
t,i

)
= λ2

t−1∑
k=0

t−1∑
l=0

(1 − λ)k+lΓ (l − k) , (11)

where Γ (i − j) = Covτ=∞ (T (t − i), T (t − j)). For an increasing window size,
the moments converge to the in-control moments of Tt given by (7).

Wecan construct a statistic for eachwindow i as theMahalanobis distancebetween
Z(p)
t,i and its in-control mean, that is

ψt,i =
(
Z(p)
t,i − Eτ=∞

(
Z(p)
t,i

))′

(
Covτ=∞

(
Z(p)
t,i

))−1 (
Z(p)
t,i − Eτ=∞

(
Z(p)
t,i

))
. (12)

Eventually, the control statistic of the multivariate EWMA chart is given by

Tt = max
i=1,...,K

{ψt,i } , (13)

where K is the total number of windows, which results from the overall sample size
and the size of the windows. Similarly, Woodall and Ncube (1985) proposed running
univariate charts in parallel to monitor multivariate processes.

It is worth noting that we assume that the process cannot be stopped after a signal
occurred, like it is the case for the motivating example considered in Sect. 1. Thus,
the control chart can be run completely in parallel without the need to check whether
there was a signal in one of the windows. More precisely, the chart signals if the con-
trol statistic ψt,i exceeds a certain threshold, the upper control limit (UCL), in one
of the windows. However, the control statistics of the remaining windows where the
statistics did not exceed the UCL are not set to zero. This would require an additional
combining step, which is undesirable from a computational point of view. Never-
theless, a combining step could be important in practice. Thus, several adaptations
of the proposed parallelized charts are discussed in the following paragraphs. All of
them reduce the computation efficiency in terms of time and/or memory but can get
important for practical applications.

For instance, the set {ψt,i : i = 1, . . . , K } can be used to gain further insights
on the observed process. With a certain temporal delay, the results from all parallel
processes can be combined, while the charts are continuously running in parallel. In
the easiest case, the control statistics could be combined, only if the chart signaled
at t . In this case, {ψt,i } may provide further information on the detected fault. For
instance, these statistics show which windows are affected by the structural break.
That is, only these windows, for which ψt,i exceeds the upper control limit, must be
inspected to find reasons for the change. This reduces the inspection’s costs.

If one decides for combining ψt,i at all time points t , variable sampling inter-
vals (VSI) could also be implemented instead of fixed sampling intervals (e.g.,
Reynolds JR 1996; Reynolds et al. 1990; Reynolds Jr and Arnold 2001). In the
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Fig. 6 Guide for implementing the parallel monitoring procedure (above: Phase I analysis, below:
Phase II implementation). In case of an FSI chart, all steps colored in blue can be run fully in parallel
without the need for a combining step. For VSI charts, the results from all parallel processes have
to be combined in order to compute the maximum of all statistics ψt,i

case of VSI charts, a second warning limit would be implemented, which is between
zero and the upper control limit. If maxi=1,...,K {ψt,i } exceeds this limit, the process
is sampled more frequently (e.g., at every time point) and otherwise the sampling
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interval can be larger (e.g., only every third time point). The choice of these two
sampling frequencies depends on the specific applications. On the one hand, running
parallel VSI charts requires less computing resources in terms of memory and time.
On the other hand, this does not allow for monitoring spatiotemporal processes with
a higher frequency, since the maximum allowed frequency of the observed process
is determined by the shorter sampling intervals (i.e., if maxi=1,...,K {ψt,i } exceeds the
warning limits). Nevertheless, VSI charts might be beneficial to reduce the costs for
monitoring the process.

Moreover, {ψt,i } could be saved for several temporal lags, i.e., {ψt−l,i : l =
0, . . . , L}. Thereby, the time point, when the actual change happened, could be esti-
mated. The beginning of an increase of ψt,i gives an idea of the true change point.
Since the control statistics are also saved for all windows, the origin of the change
can also be identified in this way.

To summarize this section, a practitioner’s guide for implementing the parallel
charting procedure is shown in Fig. 6. Both the Phase I and Phase II analysis is
depicted in twoflowcharts, where the steps colored in blue can be run fully in parallel,
while white boxes represent steps implemented in classical sequential programs.

4 Monte Carlo Simulation Study

In the following section, we illustrate the performance of the proposed charts and
the computational advantages using a Monte Carlo simulation study. For all simula-
tions, we assume the spatial process lies on a 2D unit grid D = {(s1, s2)′ ∈ Z2 : 1 ≤
s1, s2 ≤ d}. Thus, the number of locations is equal to d2 at each point of time. Further-
more, we consider three different window sizes, namely p = 4, 25, or 100, and three
sizes of the spatial random field n ∈ {400, 2500, 10000} (i.e., d ∈ {20, 50, 100}).
Hence, for the smallest window size p = 4, we have to monitor K = 100, K = 625,
and K = 2500 windows to cover to the whole sample of d = 20, 50, or 100, respec-
tively. In contrast, only K = 4, K = 25, or K = 100 windows are needed if the
windows size is 100.

4.1 Calibration

In Table1, the UCLs are reported for all considered settings. The control limits were
obtained using a simulation study with 10000 replications. The control charts have
been calibrated for an in-control average run length (ARL) of 100 assuming indepen-
dent normally distributed random variables within each window. Not surprisingly,
the UCLs are increasing with the increasing window size p, increasing number of
windows K , and increasing smoothing parameter λ.

It is important to stress that we intentionally calibrated the charts in this way to
illustrate the effect of neglecting important parts of the spatial dependence. That is,
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Table 1 Upper control limits for p ∈ {4, 25, 100} and n ∈ {400, 2500, 10000} observations per
point of time. The smoothing parameter λ ranges from 0.1 to 1.0
λ p = 4 p = 25 p = 100

K = 100 K = 625 K = 2500 K = 16 K = 100 K = 400 K = 4 K = 25 K = 100

0.1 22.5371 26.6747 29.7441 52.5296 59.0027 63.4895 140.832 152.140 159.683

0.2 23.1440 27.2215 30.2197 53.5366 59.7057 64.1167 142.824 153.603 160.805

0.3 23.3506 27.3777 30.3415 53.8971 59.9981 64.3200 143.683 154.052 161.128

0.4 23.4186 27.4287 30.3716 54.0847 60.0456 64.3897 144.041 154.140 161.228

0.5 23.4829 27.4382 30.4025 54.1080 60.0647 64.4045 144.134 154.290 161.294

0.6 23.4933 27.4806 30.4024 54.1650 60.1426 64.4567 144.178 154.296 161.274

0.7 23.5134 27.4443 30.4193 54.1899 60.1342 64.4004 144.223 154.357 161.308

0.8 23.4733 27.4735 30.4298 54.1902 60.1113 64.4300 144.342 154.319 161.324

0.9 23.5055 27.4644 30.4147 54.2088 60.1368 64.4045 144.262 154.293 161.285

1.0 23.4939 27.4524 30.4351 54.1803 60.1480 64.3888 144.275 154.318 161.314

adjacent observations lying in neighboring windows, even though they are close,
are completely ignored for the computation of T (p)

t,i . Thus, it was not adjusted for
an important share of spatial dependence, especially at the edges of the windows.
Of course, this has more influence on the smaller considered windows. Basically,
this is the trade-off to ensure that the monitoring procedure is fully scalable from a
computational perspective and can, therefore, also be applied in the presence of big
data. Because the charts are calibrated for independent normal variables (i.e., the ideal
situation without neglecting important entries of the spatial covariance matrix), we
could illustrate the influence of this effect regarding the in-control and out-of-control
performance in the ensuing Monte Carlo simulation study.

4.2 Performance of the Proposed Parallelized Chart

Initially, we illustrate the proposed parallelized EWMA chart by a simulated random
process with n = 100 × 100 = 10000 spatial locations and T = 200 time points.
The spatial dependence is exponentially decaying. Moreover, the mean changes at a
few locations after t = 100 (see Fig. 7, top row). To be precise, the area of the fault
is 6 × 6 pixels and, thus, lies within several windows, which have been chosen as
5 × 5 windows over full unit grid. That is, all windows are differently affected by the
mean change. One possible way to quantify the affected area per window is the Dice
similarity coefficient (DSC, Sørensen et al. 1948; Dice 1945), which is proportional
to the ratio between the number of locations with amean change and the total number
of locations. To be precise, it is given by

DSC = 2 × number of affected locations

number of affected locations + number of locations per window
.



178 P. Otto

20 40 60 80 100

20
40

60
80

10
0

●

●● ●

20 40 60 80 100

20
40

60
80

10
0

Simulated random field (before the mean change)

●

●● ●

20 40 60 80 100

20
40

60
80

10
0

Simulated random field (after the mean change)

●

●● ●

Fig. 7 Example of a parallelized EWMA chart. Top row: simulated mean change from zero to one
in all gray colored locations, where the squares represent the 5 × 5 windows (left); bottom row:
simulated random fields before and after the mean change

This leads to four different DSC values, which could be attained in this setting. We
exemplarily pick four locations with different DSC values and depict the average
control statistics of 100 replications in Fig. 8. Regarding the first location (colored
in black), there is no change in the mean, but it is located close to the fault, which
spills over to this location. However, we see that ψt,i is almost not influenced, since
the parallelized control charts adjust for these spatial spillover effects. The slight
increase of the control statistic after t = 100 can be explained by the neglected
part of the spatial covariance function. In the spatial representation of the average
control statistics (bottom row of Fig. 8), one can see that the fault’s location is clearly
separated. Thus, ψt,i can be used to find the origin of the mean change.

Below, the focus is on the performance of the parallelized charts. To evaluate
the effect of parallelizing the monitoring procedure, 2D random fields with n =
10000 observations are simulated. The spatial covariance function coincides with
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Fig. 8 Example of a parallelized EWMA chart. Average control statistics of selected locations
(indicated by the dots of corresponding colors in Fig. 7) and their ±(1, 2, 3)-standard deviation
bands (100 replications). The bold horizontal line corresponds to the upper control limit. Bottom
row: Average control statistics in a spatial representation before and after the mean change
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the exponential function shown in Fig. 3. More precisely, the window size has been
chosen as p = 4, 25, or 100 (i.e., the minimal distance from a central location within
each window is smaller than 1, 2, or 10, respectively). For instance, this implies
that all entries of the covariance matrix that are highlighted in blue in Fig. 3 are
neglected for the case of p = 4. Beside, an in-control simulation study, the out-of-
control performance has also been analyzed. In the out-of-control settings, a mean
change occurring immediately at the beginning, τ = 0, at only a few locations was
implemented,more precisely, themean changes from0 to 2 at the first 10 out of 10000
locations. Hence, the area of the fault is small. However, note that the interpretation
of the out-of-control ARLs is limited because the charts were not calibrated using the
underlying covariance function C but using independent normal random variables
to show the impact of the neglected part of the spatial correlation.

In Table2, the results regarding the computational and monitoring performance
are reported. First, we see that the monitoring procedure is fully scalable and can be
run in very short times, which would allowmonitoring the spatiotemporal data of this
size with a frequency of up to 343.29kHz for p = 4. Naturally, the frequency will

Table 2 Results of the Monte Carlo simulation study

Window size

p = 4 p = 25 p = 100

Parameters

λ 0.5 0.5 0.5

n 10000 10000 10000

UCL 30.4025 64.4045 161.294

Computational performance

Number of parallel processes K 2500 400 100

Average computation time (in log seconds,
in-control state)

−12.7463 −9.4351 −9.3803

Average computation time (in log seconds,
out-of-control state)

−12.8921 −10.9163 −9.0527

Highest frequency for monitoring (in kHz,
in-control state)

343.2884 12.5205 11.8521

Monitoring performance (in-control)

Average number of signals per 100 time points 3.3135 1.5385 1.2270

Average run length 31.782 68.329 84.844

Monitoring performance (out-of-control)

Average run length (τ = 0) 2.423 2.810 3.184

Minimum fault size per window (DSC) 0 0 0

Average fault size per window (DSC) 0.0013 0.0017 0.0018

Maximum fault size per window (DSC) 0.667 0.333 0.182

Number (percentage) of windows with
DSC > 0

5 (0.002) 2 (0.005) 1 (0.01)
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Fig. 9 Illustration of framed windows of different size, namely p = 64 (green), p = 100 (red),
and p = 400 (blue)

approach some limit if the window size is increasing. Note that even parallelized VSI
charts cannot increase this maximal frequency as the bottleneck is determined by the
shorter sampling interval. Furthermore, the computation times are similar regardless
of whether the process is in control or not.

Second, the above-mentioned effect can be observed by examining the number of
false signals in the in-control state. Because of the window selection, especially for
small windows of size 4 or 25, too many in-control signals exist, and the in-control
ARL deviates from the target ARL of 100. Certainly, for practical applications, the
chart should be calibrated using the true covariance function C to retain the target
ARL. Because the signal-to-noise ratio is rather large, the change can be rapidly
detected in all cases. For p = 4, there are fivewindows, inwhich two of four locations
are affected by the mean change. This ratio decreases with an increased window size
(i.e., 5 of 25 locations (in two windows) for p = 25 and 10 of 100 locations (in one
window) for p = 100). This leads to a maximum DSC of 2/3 (p = 4), 1/3 (p = 5),
and 2/11 regarding p = 10, while the average DSC is roughly 0.001 in all settings.

To improve the accuracy of the charts while still being fully scalable, we suggest
using overlapping framedwindows instead of the simplewindowapproach illustrated
above. In particular, each window should be framed to a certain extent, as depicted
in Fig. 9 for three example windows of different sizes. When computing the quantity
T (p)

t,i , all observations within the window and its frame should be included. Further,

only the values of T (p)
t,i lying within the window (but not the frame) are used for

monitoring. Although this approach increases the computational complexity, the
above-described edge effects of the windows can be avoided.
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5 Conclusion

In this paper, the application of parallelized multivariate EWMA control charts for
monitoring spatiotemporal processes is discussed. To be precise, a fairly general
spatiotemporal setting is considered, for which the spatial dependence is defined
by a known covariance function C . It is reasonable to assume that the covariance
function is known if the underlying physical process is fully understood. However, if
the spatial dependence structure is unknown, it must be estimated (e.g., by variogram
or semivariogram estimators), which has an effect on the monitoring procedure as
well. Hence, in the future, how the proposed control charting procedure is affected
by the estimation uncertainty of C should be analyzed in more detail.

The motivation to consider parallel multivariate control charts relates to the fact
that spatial dependence decreases with an increasing distance between two locations.
Thus, if the distance between two such locations is large enough, the covariance could
be set to zero. In spatial statistics, this approach is knownas covariance tapering.How-
ever, it still requires processing the full dataset and multiplying a large dimensional,
but sparse matrix and a vector. Thus, the computational complexity increases with
an increasing distance. In contrast, the proposed monitoring procedure is scalable to
any number of spatial locations by an increase in the number of parallel processes.
However, important entries of the covariance matrix could be lost if the windows for
the parallel monitoring are not carefully selected. We illustrated this effect using a
Monte Carlo simulation study. Furthermore, a framed window approach is briefly
discussed. However, this alternative window definition must be analyzed in further
detail in future research.
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Product’s Warranty Claim Monitoring
Under Variable Intensity Rates

Wenpo Huang, Wei Jiang, and Chengyou Shi

Abstract Product manufacturers have paid great attentions to monitoring number
of warranty claims for sold product as high claims trigger improvement opportunities
and/or incur excessive operational costs. Poisson distribution has been widely used
to model the claim number with the pooled Poisson intensity rate being referred
as the nominal failure intensity rate. Since products used by different customers
are heterogeneous, failure intensity rates vary from product to product. The counts
of warranty claims are often skewed and over-dispersed. Negative binomial (NB)
distribution which is the compound of the Poisson-gamma mixture distribution has
been widely used to model the over-dispersed count data. However the use of the
NB distribution may trigger signals more than expected when the intensity rates are
not randomized from time to time. In this paper, the impact of time-varying intensity
rates is investigated. We show that conventional control limits based on the NB
distribution-based Shewhart chart should be lowered to accommodate the reduced
variation of counts when products intensity rates become constant from time to time.

Keywords Warranty counts · Hierarchical model · Over-dispersion · Weighted
log-likelihood

1 Introduction

For long time, most manufacturers provide warranty coverage on sold products as an
obligatory service to consumers and product warranty service becomes prominent
for boosting revenue. Manufacturers collect warranty claims in order to monitor and
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analyze these claims for quality or reliability related problems. Therefore appropriate
modelling of warranty claims is essential to help manufacturers examine production
processes and prepare accurate inventory stockings for upcoming warranty claims.

Poisson distribution is one of the most popular distributions to model various
types of count data including the number of defective items, transportation volumes,
and customer arrivals. From the Poisson limiting theorem, counts generated from a
large number of population which follow the binominal distribution are known to
converge to the Poisson distribution. In literature, warranty claim is often modeled as
the Poisson distribution (Kalbfleisch et al. 1991; Wu and Meeker 2002). Kalbfleisch
et al. (1991) used the Poisson model to analyze automobile warranty data. They
found that the repair counts obtained from a large fleet of cars are expected to be
close to Poisson when the repair rates are small. Wu andMeeker (2002) also claimed
that individual product units generally display heterogeneity in claim rates due to
variations in usage and environment, but total claims across large numbers of units
tend to be well approximated by Poisson distributions.

The homogeneous Poisson process (HPP) can be extended to the nonhomoge-
neous Poisson process (NHPP) when the Poisson intensity (or the rate) is time-
varying. Majeske (2007) proposed an NHPP model with a parametric intensity rate
function to analyze automobile warranty data. Three types of intensity rates,Weibull-
uniform, power law, and linear hazard functions, are considered. Fredette and Law-
less (2007) focused on the prediction of the total number of warranty claims over a
specified time period. The Poisson intensity is given by the product of an unit-wise
factor and a common shape function. Lawless et al. (2012) used the Nelson–Aalen
estimator to estimate the intensity in nonparametric way.

There are two assumptions related to the use of Poisson distribution: equi-
dispersion and independence. The equi-dispersion assumption requires the mean and
variance of count data to be equal, which can often be violated for many real count
processes. Extensions of Poisson distribution provide solutions for these data. Con-
sul and Jain (1973) brought forth a distribution with two parameters that generalizes
the usual Poisson distribution in a flexible way. The negative binomial (NB) distri-
bution is used as an adequate model for over-dispersed data. Sparks et al. (2010)
used the NB distribution to model the over-dispersed daily disease counts with a
non-homogeneous mean. Urbieta et al. (2017) used the NB distribution to model
the daily number of hospitalizations and compared the performance of the EWMA
and CUSUM chart for the NB distribution. The COM-Poisson distribution which
is another two-parameter generalization of Poisson distribution has been used to
model a wide range of over-dispersion and under-dispersion. Sellers et al. (2012)
surveyed different COM-Poisson models and their applications in marketing, trans-
portation and biology. Beside of parametric distributions, Qiu et al. (2019) proposed
a nonparametric method to model multivariate count data.

To account for over-dispersion, Christensen et al. (2003) proposed a hierarchical
model for count datawith over-dispersion and excessive zeros comparedwithPoisson
distribution. They assumed that the Poisson intensity of the population is randomly
distributed other than constant. They further showed that the hierarchical Poisson-
gamma model actually leads to the NB distribution. We can see that all of the above
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approaches model the population count but ignore the individual heterogeneity. As
discussed by Akbarov and Wu (2012), over-dispersion in the warranty claims arises
mainly due to two reasons. Thefirst is the heterogeneity of units, that is the differences
in the intrinsic reliability of individual units. The second is the heterogeneity of users
as products are used in different operating environments and in different usage rates.
It is necessary to extend count models by including unit-specific random effects in
populations with heterogeneous units (Fredette and Lawless 2007).

The remainder of this article is as follows. Section2 reviews existing approaches
of warranty claims modelling and proposes a hierarchical model to take the unit
heterogeneity into consideration. Section3 builds the log-likelihood-based charting
statistic to monitor the warranty counts. The performance of proposed control chart
is evaluated in Sect. 4 and illustrated by a real data example in Sect. 5. Section6
provides concluding remarks.

2 Modelling the Warranty Claims

Let n be the number of units under warranty and Xi,t be the number of warranty
claims between time t − 1 and time t from unit i . We denote Xt = ∑N

i=1 Xi,t as the
total claims from all units. When Xi,t is Poisson distributed with incidence rate or
intensity λ, i.e. Xi,t ∼ Poiss(λ), we have Xt ∼ Poiss(nλ). The sample size n can be
constant or vary with time t . Various control schemes have been proposed to monitor
the change in Poisson intensity λ when the sample size n is time-varying. Readers
may refer to (Jiang et al. 2011; Richards et al. 2015) for detailed discussion. Richards
et al. (2015) referred to this process as nonhomogeneous Poisson process (NHPP),
since the intensity rate ntλ of the total claim Xt is also time-varying. In literature,
the nonhomogeneous Poisson process has been widely used to model the number
of warranty claims. It is assumed that the claims Xt are independent and follow the
Poisson distribution with mean (or the intensity rate) λt . Different types of λt are
discussed in Majeske (2007) when they are widely used to model the number of
automobile warranty claims.

The grouped counts Xt are often shown to be over-dispersed, that is the variance
in the marginal distribution of grouped count exceeds the mean. To tackle the issue
of over-dispersion, Christensen et al. (2003) introduced the random effect into the
Poisson rate model and proposed a hierarchical Poisson-Gamma mixed model to
describe the over-dispersion phenomenon. They assumed that the Poisson intensity
rate λ follows the Gamma distribution with mean μ and variance γμ2, thus the
probability mass function (PMF) of the count Xt is

h(x) =
∫ ∞

0
f (x; nλ)g(λ;μ, γ )dλ
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where f (x; nλ) = (nλ)x

x ! exp(−nλ) is the PMF of the Poisson distribution with mean
nλ and g(λ;μ, γ ) is the probability density function (PDF)of theGammadistribution
with shape parameter 1/γ and scale parameter μγ . It is well known that above
integration reduces to the negative binomial distribution with mean nμ and variance
nμ(1 + nμγ ) which shows the over-dispersion is related to the parameter γ .

It is worth noting that all above approaches assume the warranty claims from units
all follow the Poisson distribution with the same intensity rate λ, thus all units are
homogeneous. Due to the randomness of each unit, it is more reasonable to assume
that the warranty claims of units are heterogeneous distributed, that is the Poisson
intensity rates {λi }ni=1 of all units are different (Akbarov and Wu 2012).

To cope with the heterogeneity among units, we model the mixed nonhomoge-
neous Poisson processes by including unit-specified random effects in the Poisson
process model. The Poisson intensity λi,t of the claim Xi,t , modelled as the multi-
plication of a scaler and a function of time t , has the following parametric form

λi,t = αi h(t) (1)

where h(t) describes the shape of the rate function and αi represents overall random
variable which depends on the usage of each unit and is randomly distributed, see
also in (Fredette and Lawless 2007; Lawless et al. 2009; Lawless and Crowder 2010;
Akbarov and Wu 2012). In the next section, a likelihood ratio based approach is
proposed to monitor the counts generated from model (1).

3 Control Chart for Monitoring Claims with Heterogeneity
Poisson Intensities

Asdiscussed inSect. 2, the scale parametersαi of the claims should be different across
unit due to the heterogeneity in units and users. In literature, it is often assumed that
αi is randomly drawn from a gamma distribution. Simulation suggests predictions
based on such assumption are robust to some types of misspecification (Fredette and
Lawless 2007). The gamma assumption provides adequate predictions of automobile
warranty claims if the αi ’s are not actually random or if they are random but their
actual distribution is not gamma.

For sake of simplicity, we only focus on the case that the shape of the rate function
is constant, i.e. h(t) ≡ h. In such case λi,t becomes αi h which is denoted as λi . We
assume that λi is randomly drawn from the gamma distribution with shape parameter
α and scale parameter Λ/α. Based on Sect. 2, we have the following hierarchical
model:

λi ∼ Gamma(α,Λ/α) (2a)

Xi,t |λi ∼ Poiss(λi ). (2b)
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From Var(λi ) = Λ2/α, it can be observed that the shape parameter α reflects units’
heterogeneity (or aggregation) level. Small/largeα leads to high/low variation among
units.

It is worth noting that although the conditional counts Xi,t |λi when given the
Poisson intensity in Eq. (2) are independent, the marginal counts Xi,t , t = 1, 2, · · ·
are not independent for the randomness of λi . In fact the covariance between Xi,t

and Xi,t−1 can be obtained by

Cov[Xi,t , Xi,t−1] = E[Xi,t Xi,t−1] − E[Xi,t ]E[Xi,t−1]
= Eλi [E[Xi,t Xi,t−1|λi ]] − Λ2

= Eλi [λ2
i ] − Λ2

= Var(λi ) + (Eλi [λi ])2 − Λ2

= Λ2/α.

From the decomposition of variance Var[Xi,t ] = E[Var(Xi,t |λt )] + Var[E(Xi,t |λt )]
= Λ + Λ2/α, we can further get Corr[Xi,t , Xi,t−1] = Λ/(α + Λ). This verifies the
argument that the time series of Xi,t are correlated when the usage rates are hetero-
geneous.

Supposewe are simultaneouslymonitoringn unitswhosewarranty claims are Xi,t .
We aim to detect the possible change in the scale parameter of gamma distribution
which arises from the quality issue in the manufacturing or the environment change
in use. It is equivalent to consider the following hypothesis testing:

H0 : Λ = Λ0 H1 : Λ > Λ0.

By integrating the conditional Poisson distribution and the gamma marginal distri-
bution, we can obtain the log-likelihood of unit i at time t from the negative binomial
distribution. The log-likelihood of the count Xi,t can be written as

�i,t (Λ) = α logα + Xi,t logΛ − (α + Xi,t ) log(α + Λ) +
Xi,t−1∑

z=0

log(α + z).

By summing up of all units, the log-likelihood of all units at time t should be

�t (Λ) = nα logα + Xt logΛ − (nα + Xt ) log(α + Λ) +
n∑

i=1

Xi,t−1∑

z=0

log(α + z).

The maximum likelihood estimator of Λ is Λ̂t = max(Xt/n,Λ0). Based on this, we
can obtain the likelihood ratio-based charting statistic at time t
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Tt = �t (Λ̂t ) − �t (Λ0) = n

(

Λ̂t log
Λ̂t

Λ0
− (α + Λ̂t ) log

α + Λ̂t

α + Λ0

)

. (3)

We refer to this chart as the TLR chart. The log-likelihood ratio in Eq. (3) can then
be used to construct the CUSUM charting statistic. The CUSUM chart and EWMA
chart based on the log-likelihood ratio will be explored in our further work. In this
paper, because we focus on the impact of randomized Poisson intensities on the
chart performance, only the TLR chart is studied. As the hierarchical Poisson-gamma
model actually leads to the negative binomial distribution, various control charts for
the negative binomial distribution have been proposed such as (Radaelli 1994). The
difference is that control charts for the negative binomial distribution assume that all
observations are independent across time while the counts in the hierarchical model
in (2) are time correlated.

The TLR chart signals when the charting statistic Tt first exceeds the control limit
L . The run length is defined by

RL = min{t : Tt > L , t ≥ 1}

where the control limit is selected to provide the pre-specified in-control average run
length (ARL). Discussion of the TLR chart and the simulation procedure are provided
in the next section.

4 Performance Evaluation

Because Xt,i s are marginally negative binomial distributed, a straightforward way
is to use the quantiles of the negative binomial distribution as the control limit. For
example, to obtain an in-control ARL of 100, the control limit can be selected as the
99th percentile. This approach is referred as Approach I. We should be aware that
this approach assumes that the charting statistics are independent across time. That
implies that the Poisson intensities λi are resampled from the gamma distribution
each time.

More reasonable approach is to first generate λi from the gamma distribution and
then keep λi fixed when generating the Poisson counts. This approach is referred as
Approach II. As discussed in Sect. 3, the charting statistics become time-correlated.
The main difference between two approaches lies in the way of generating λi . The
λi s of Approach I are time-varying and independent distributed, thus more volatile
while the λi s of Approach II are constant once they are generated. Therefore the
variance of charting statistics in Approach I is greater than the variance of Approach
II. It can also be explained by the conditional variance identity

Var[Tt ] = E[Var(Tt |λt)] + Var[E(Tt |λt )].
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Table 1 Control limits and ARL values of Approach I when ARL0 = 100, Λ0 = 1.0 and n = 100

Λ α = 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

L =3.31 3.28 3.26 3.27 3.34 3.38 3.33 3.42

1.05 75.76 69.06 65.83 63.41 62.26 61.32 60.49 59.8

1.10 41.47 34.68 31.11 28.97 28.97 27.99 27.12 24.73

1.15 21.88 17.72 15.67 13.97 13.38 12.96 12.33 11.17

1.20 12.57 9.86 8.6 7.62 7.42 7.03 6.49 6.03

1.30 5.26 4.12 3.51 3.17 3.02 2.84 2.69 2.54

1.40 2.86 2.31 2.03 1.84 1.75 1.67 1.58 1.53

1.50 1.89 1.59 1.44 1.33 1.29 1.25 1.21 1.18

Thus the control limit of Approach I should be wider than Approach II. Using the
control limit of Approach I to monitor process of Approach II can be misleading
when monitoring counts from the hierarchical model (2).

Table1 provides the control limits of ARL values of Approach I when n = 100.
The in-control Λ0 is set as 1.0 while the in-control ARL is set as 100. We first use
simulation to find the 99th percentile of the charting statistic, then set it as the control
limit, and finally use this limit to obtain the probability of exceeding the limit and
the out-of-control ARL.

However the ignorance of correlation in warranty claims can lead to unexpected
charting performance when control limits from Approach I are directly applied to
counts from the hierarchical model (2). Due to the correlation between Xi,t and
Xi,t−1 from model (2), control limits should be adjusted. Simulation procedure is
listed below to carry out the approximation of control limits and the evaluation of
the performance of Approach II:

(1) set the number of units n, the shape parameter α and overall intensity rate Λ;
(2) generate λi , i = 1, · · · , n from Gamma(α,Λ/α);
(3) generate Xi,t from Poiss(λi ) and calculate the charting statistic Tt ;
(4) repeat Step (3) until Tt > L , record the run length;
(5) repeat Step (2)–(4) for 10,000 times, then return the ARL value.

Table2 provides the control limits and ARL values of Approach II. The scale
parameter α ranges from 0.6 to 2.0. Both Tables1 and 2 show good detection ability
of process change inΛ. By comparing with Table1, one can also find that the control
limits in Table2 are significantly lowered. It should be noted that smaller out-of-
control ARL values in Table1 do not necessarily mean Approach I outperforms
Approach II since two simulation approaches target on two different data generation
models. It should be noted that the detection of process change can be greatly delayed
if using the control limits from Approach I while observations actually come from
Approach II, especially when units are more heterogeneous.

It is interesting to find that the chart’s performance improves when the shape
parameterα increases (or claims are less heterogeneous). In fact this can be explained
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Table 2 Control limits and ARL values of Approach II when ARL0 = 100,Λ0 = 1.0 and n = 100

Λ α = 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

L =1.64 1.90 2.10 2.28 2.44 2.50 2.55 2.60

1.05 98.88 96.64 94.41 93.3 91.38 88.36 86.8 84.77

1.10 82.2 78.07 73.59 69.76 66.84 63.42 59.89 56.84

1.15 62.93 58.15 53.06 48.69 42.43 39.36 35.49 31.12

1.20 46.76 40.98 34.52 28.86 23.37 20.84 18.14 15.27

1.30 20.57 15.44 11.34 7.62 6.26 5.46 4.33 3.61

1.40 7.93 5.31 3.79 2.54 2.12 1.88 1.75 1.63

1.50 3.88 2.27 1.64 1.43 1.26 1.21 1.18 1.15

Fig. 1 SNR of Tt for α

ranging from 0.6 to 2.0 when
Λ1 = 1.2 and 1.3
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by the signal-to-noise ratio (SNR). For the charting statistic Tt , the SNR is expressed
as

SN R(Tt ) = E[Tt |Λt = Λ1] − E[Tt |Λt = Λ0]
σ(Tt |Λt = Λ0)

. (4)

Figure1 plots the SNRs of Tt when α ranges from 0.6 to 2.0 when Λ1 is 1.2 and 1.3.
It can be observed that the SNR increases with α which explains the proposed TLR
chart has better performance under larger α.

5 A Real Data Example

In this section, we use an real data example to illustrate the use of our proposed
control scheme. The data contains the repair records of 282 lifts installed at an
high speed rail (HSR) station in China. Each record ranging from January, 2013 to
December, 2013 includes the device ID, site ID, repair date, failure cause, failure
part, repair order, etc. In this study we only focus on the number of warranty claims
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Table 3 The monthly repair counts of randomly selected 15 lifts located in an HSR station

ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec λi

FT6-A-
32

1 1 1 0 1 0 2 0 0 1 1 3 0.91

FT5-A-
9

0 0 2 2 5 1 2 3 2 3 1 2 1.82

FT5-A-
8

0 1 1 2 1 1 0 2 3 2 0 2 1.18

FT5-A-
7

0 0 1 2 1 0 2 4 5 3 1 0 1.45

FT5-A-
5

2 2 5 4 2 3 4 0 1 2 1 2 2.36

FT5-A-
2

1 3 0 1 1 0 0 1 0 1 0 2 0.82

FT5-A-
17

0 1 0 0 2 0 0 0 2 3 1 1 0.64

FT5-A-
14

2 0 1 1 1 3 1 2 2 0 0 1 1.27

EV-02 0 1 0 0 1 1 1 2 1 1 1 0 0.73

EV-01 0 1 0 0 0 1 3 3 1 5 0 2 1.00

B1-FT3-
6

4 3 0 1 0 2 1 1 4 2 1 1 1.64

B1-FT2-
5

2 2 0 1 0 1 3 0 0 4 4 6 1.64

B1-FT1-
41

1 0 1 0 0 0 1 1 0 0 1 2 0.64

B1-FT1-
25

0 0 1 0 0 1 2 0 1 1 0 0 0.45

B1-FT1-
08

1 1 1 0 0 4 1 1 0 0 1 0 0.82

Mean 0.93 1.07 0.93 0.93 1.00 1.20 1.53 1.33 1.47 1.87 0.73 1.60

but ignore the claim types. We randomly select 15 lifts as our target and count each
lift’s number of reported claims in each month. The repair counts are summarized
in Table3. We also summarize the monthly repair numbers which are listed in the
last row. It can be found that the average repair number in October is significantly
higher than other months. Thus we remove the records of October when estimating
the in-control parameters.

The claim intensities of all lifts after removing the October counts are listed in the
last column. It can be found that although all lifts are located in the same station, the
intensities can be quite different due to the diversities in location, functions and tar-
geted passengers. These differences lead to the heterogeneities of repair rates. To test
whether λi follows the gamma distribution, we fit them with a gamma distribution
shown in Fig. 2. From the cdf fitting and the QQ plot, we can find that the intensities



194 W. Huang et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Empirical and theoretical CDFs

data

C
D

F

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

Q−Q plot

Theoretical quantiles
Em

pi
ric

al
 q

ua
nt

ile
s

tolpQQnoitcnufnoitubirtsidevitalumuc

Fig. 2 Fitting λi with Gamma distribution

Fig. 3 Monitoring the
reported monthly repair
counts in Table3 when the
in-control ARL is 30
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can be well fitted by the gamma distribution. The parameters of the gamma distri-
bution are further estimated by maximizing the log-likelihood function. We find that
the MLE of α and Λ are 5.2 and 1.16, respectively. In this study, the in-control ARL
is set to 30, that is there is a false alarm every two and a half year. By conducting the
simulation procedure provided in Sect. 4, the control limit is found to be 1.98.We use
this control limit to monitor the lift repair data provided in Table3. Figure3 plots the
charting statistics Tt along with the control limit L = 1.98. It can be found that the
chart signals at the 10th sample which indicates the lifts have higher repair counts
in October. This is mainly due to the extremely high usages of all lifts in the HSR
station during the National Day holiday which is the first seven days of October.
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6 Conclusions

In this study, we first discuss the over-dispersion phenomenon which widely exists
in warranty claim data and then model the over-dispersion by a hierarchical Poisson-
gamma model. Different from the hierarchical model in Christensen et al. (2003)
which assumes that all units have the same Poisson intensities, our proposed model
includes unit-specified Poisson intensities which are randomly drawn from the
gamma distribution to account for the over-dispersion originated from the unit-
specified usage heterogeneity. The control chart based on the log-likelihood is devel-
oped to detect possible change in gamma mean. Because the charting statistics are
time-correlated due to the random effect of Poisson intensities, it is shown that the
control limit should be lowered comparing with the case that the charting statistics
are time-independent. We also find that the chart has better detection ability when
the randomized Poisson intensity has smaller variation. The performance of the pro-
posed method is evaluated via a lift which contains the repair records of 282 lifts
installed at an high speed rail station in China.

In our further studies, we would like to extend this study in several ways. Firstly
the constant failure rate would become time-varying. In literature, the failure rate
is usually be selected as Weibull, power law, or linear hazard function. It could be
challenging when the failure rate becoming time (or age) dependent since units may
have different ages under the same calendar day. Secondly, this study only focuses
on the Shewhart-type control chart. The CUSUM chart and EWMA chart can be
developed based on the log-likelihood ratio.Other approaches including theweighted
log-likelihood ratio proposed by Zhou et al. (2012) can also be considered since
more recent data are usually more important. Finally, because our hierarchical model
assumes that the Poisson intensity rates are random but fixed, another direction in the
further study is to use Bayesian approach to update the estimation of unobservable
unit-specified random intensities when we have more and more warranty claim data.
This shares the similar idea of the self-starting control chart, see also in Shen et al.
(2016).
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A Statistical (Process Monitoring)
Perspective on Human Performance
Modeling in the Age of Cyber-Physical
Systems
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and Manar Mohamed

Abstract With the continued technological advancements in mobile computing,
sensors, and artificial intelligence methodologies, computer acquisition of human
and physical data, often called cyber-physical convergence, is becoming more per-
vasive. Consequently, personal device data can be used as a proxy for human opera-
tors, creating a digital signature of their typical usage. Examples of such data sources
include: wearable sensors, motion capture devices, and sensors embedded in work
stations. Our motivation behind this paper is to encourage the quality community to
investigate relevant research problems that pertain to human operators. To frame our
discussion, we examine three application areas (with distinct data sources and char-
acteristics) for human performance modeling: (a) identification of physical human
fatigue using wearable sensors/accelerometers; (b) capturing changes in a driver’s
safety performance based on fusing on-board sensor data with online API data; and
(c) human authentication for cybersecurity applications. Through three case stud-
ies, we identify opportunities for applying industrial statistics methodologies and
present directions for future work. To encourage future examination by the quality
community, we host our data, Code, and analysis on an online repository.
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1 Introduction

With the ever-decreasing costs of wireless networking and continued advancements
in mobile computing technologies, we now live in a connected world. The num-
ber of internet-connected devices, e.g., sensors, machines/equipment, and medical
devices, continues to exponentially increase. The data, networking, and infrastruc-
ture supporting these devices are commonly referred to as the Internet of Things
(IoT) (Gubbi et al. 2013). The International Data Corporation (IDC 2019) esti-
mates that there will be 41.6 billion connected devices, generating 79.4 zettabytes
(1 Z B � 1 trillion terabytes) of data in 2025.

There are a large number of opportunities to use these data/devices to transform
business operations. It is expected that IoT can lead to new paradigms in:

(a) smart and connected health in health-care operations/management (Leroy et al.
2014; Chen et al. 2018);

(b) Industry 4.0 (Lasi et al. 2014) or the “Industrial Internet of Things” (IIoT)
(Jeschke et al. 2017) in manufacturing and supply chain management appli-
cations;

(c) smart cities or smart grids, where local governments and/or energy companies
use IoT sensors to manage their resources more efficiently;

(d) smart farming, where agricultural decisions are informed by embedded sensors
and/or drones (Wolfert et al. 2017); and

(e) autonomous or connected vehicles, which capitalize on a large number of
internet-connected sensors.

A common theme among these applications is that the use of wireless technology
in these domains is now possible due to the development of engineering systems
that capitalize on the seamless integration of computation and physical components.
For this reason, Helen Gill of the United States’ National Science Foundation (NSF)
coined the term cyber-physical systems (CPS) around 2006 as a catch-all phrase to
capture those technologies (Lee and Seshia 2017). The National Science Foundation
(2019) states that:

CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability
that will expand the horizons of these critical systems. CPS technologies are transforming
the way people interact with engineered systems, just as the Internet has transformed the way
people interact with information ... Moreover, the integration of artificial intelligence with
CPScreates new researchopportunitieswithmajor societal implications ...While tremendous
progress has been made in advancing CPS technologies, the demand for innovation across
application domains is driving the need to accelerate fundamental research to keep pace.

There are two main observations that need to be highlighted based on NSF’s
vision for CPS technologies. First, the expectations regarding the transformational
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potential of CPS technologies are quite high. We agree with the statement that fun-
damental research is needed to help unlock such potential and allow for innovative
applications. Second, it is unfortunate that there is limited discussion of how sta-
tistical methodologies can be capitalized upon to be developed to advance the cur-
rent state of CPS technologies despite the fact that the above synopsis stems from
the joint work of several directorates of NSF as well as the research and develop-
ment (R&D) arms of several U.S. governmental agencies. In our view, the utility
of statistical approaches (outside of regression, which non-statisticians often use for
baseline comparisons in machine learning applications) is not fully understood by
practitioners and researchers engaged with CPS technology. These researchers and
practitioners may have had limited exposure to statistical training which explains
why statistical methodologies have not been fully considered in such applications.

There are three primary objectives behind this book article:

(A) review and categorize the literature within the field of industrial statistics exam-
ining how CPS technologies can be used in modeling human performance;

(B) present an overview of the types of statistical modeling approaches that can be
considered in the context CPS analysis; and

(C) highlight how industrial statistics methodologies can be used/developed to
advance the reviewed literature.

We focus on the general area of human performance modeling since it has been
largely ignored by the industrial statistics community and can be considered as an
important pillar in many application domains (e.g., advanced manufacturing, motor
vehicle safety, and cybersecurity where humans continue to be the most important
and vulnerable link).

The remainder of this book chapter is organized as follows. In Sect. 2, we provide a
data-driven review of industrial statistics (quality control/engineering, reliability, and
experimental design) papers and highlight that our literature has yet to focus on CPS
technology applications. Then, we examine how specific statistical methodologies
can give insights to three CPS applications in Sects. 3–5. Our goals in these sections
are to: (a) summarize main research streams within these applications; (b) provide
an example to explain the data structure in detail; and (c) discuss future opportunities
for statistical methodologies. Finally, we present our concluding remarks in Sect. 6.

2 Background

Prior to examining CPS technologies and models, it is important to understand how
the field of industrial statistics has evolved over the past few years. The goal here
is to determine whether statistical approaches that focus on monitoring, experimen-
tal design, and reliability have been applied to the data structures and application
domains associatedwith CPS. To achieve this goal, we extracted titles, abstracts, cita-
tions, keywords, and author information from all articles published in Technometrics,
Journal of Quality Technology, Quality and Reliability Engineering International,
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and Quality Engineering from January 2014 to August 1, 2019. The time span and
journals were selected to capture the most recent developments in popular journals
associated with the areas of statistical surveillance/monitoring, experimental design,
and reliability. Additionally, we have limited the results to the following document
types: (a) Article, (b) Early Access, or (c) Review since we did not want to include
results from letters to the editor, book reviews, etc. The search was conducted on
August 1, 2019 and resulted in 1576 journal papers. Capitalizing on techniques from
bibliometrics and natural language processing (NLP), we present an overview of
those papers in the paragraphs below.

From a bibliometric standpoint, the process of analyzing a large corpus of papers
typically follows the following sequential steps: (Börner et al. 2003) (1) data extrac-
tion, which we performed using the Web of Science’s portal; (2) definition of unit of
analysis (in our analysis, we focused on the 1576 papers); (3) selection of metrics for
evaluation and computing similarity among units of analysis (we used keywords and
title words to evaluate the subject of the papers, and similarity metrics to evaluate
the relationships among the papers; the reader can refer to our code in the Supple-
mentary Materials section for more details on how we computed similarity); and
(4) data visualization and analytics. Based on this framework, we present our results
for three different metrics in Fig. 1, which was generated using the bibliometrix R
package (Aria and Cuccurullo 2017).

Figure1a depicts the 50 most frequently used keywords among the 1576 papers.
One can easily see that the majority of these keywords correspond to fundamen-
tal concepts/techniques in industrial statistics. Examples include: statistical process
control, estimated parameters, computer experiments, regression, and control charts.
Note that the size of the node corresponds to the frequency by which it is used. Thus,
the terms: model, models, design, performance, and statistical process control are
among the most used to describe or summarize the research papers. These should
not be surprising, given the methodological nature of our journals. It is, however,
surprising to find that there are no application domains in the list of the top 50 key-
words. Although we do see the term construction, this was primarily used to describe
statistical concepts (e.g., construction of control limits) and not the actual field where
buildings are built. Initially, we thought we would find terms such as Industry 4.0,
advanced manufacturing, and/or public health among the top fifty keywords; how-
ever, none of these terms appear among the most used keywords. Another note-
worthy feature is that the co-occurrence of keywords indicates the presence of two
large clusters: (a) top/blue cluster, which captures statistical process control (SPC)
methodologies, and (b) bottom/red cluster, which captures other sub-domains within
industrial statistics (e.g., experimental design, reliability, dimension reduction, and
model selection).

To capture an alternative representation of the major concepts represented in this
corpus of recent papers, we have extracted keywords from the titles of the 1576 arti-
cles. Here, we have utilized Porter’s stemming algorithm (Porter 2006) to combine
keywords/concepts that have a similar root (e.g., measur is used in lieu of measure-
ment and measuring) and k-means clustering to identify how the concepts should be
grouped. Additionally, we have limited our analysis to stemmed terms that appeared
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(a) The co-occurrence of the 50 most frequently used keywords

(b) A concept map of the literature, organizing stemmed title words
into five clusters

(c) Direct citation network of papers with at least 10 citations (among
our 1576 papers)

Fig. 1 Abibliometric analysis of 1576 journal papers, published in four popular industrial statistics
journals between 2014–2019
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at least 20 times such that the graph can be readable. Figure1b shows that there
are five main topics that are commonly being investigated in our literature. When
compared to Fig. 1a, we can see that Fig. 1b presents a more detailed perspective on
the literature. Similar to Fig. 1a, the stemmed words do not directly capture the types
of applications being examined.

We also examined the relationships among the recently published articles. To
facilitate the graphical representation of this analysis, we reduced the number of
papers to only those that were cited at least 10 times (perWeb of Science calculations
onAugust 1, 2019). The results of this analysis is depicted in Fig. 1c. From the figure,
several observations can be made:

(a) As is expected, the introduction of a threshold of citations (>10) provides an
advantage to papers published in the early part of our 5+ year time span. Thus,
we see more papers from 2014–2015 timeframe compared to 2016–2017. No
papers published in 2018 and 2019 were captured in this analysis.

(b) Ye and Chen (2014) is the most cited paper in our data set, with 140 Web of
Science citations at the time of our analysis. This paper is captured as Ye ZS,
2014 in our visualization (see top left paper). From the figure, one can see that
there are no arrows associated with this paper. We did not expect this result. In
our view, there are two possible explanations for the lack of arrows: (i) most of
its citations are captured in journals that are not included in our analysis and/or
(ii) none of the citing papers within our data set have accumulated 10 Web of
Science citations.

(c) Self-cites dominate the arrows in the visualization (see e.g., the works of Haq,
Chowdhury, andWang). It is important to note that, in the context of this analysis,
this statement is not intended to be a negative comment since papers included
in this list had to be published in one of our four selected journals in/after 2014
and have at least 10 citations. Thus, this merely captures potentially important
work (limited by the pros and cons of using citations as a proxy to a work’s qual-
ity/importance), where the author(s) continued pursuing this research stream.

(d) The majority of papers in the figure were related to statistical process monitor-
ing/control charting methodologies. Examples include: Psarakis et al. (2014);
Haq et al. (2014); Zhang et al. (2014); Woodall and Montgomery (2014); Jones-
Farmer et al. (2014); Haq et al. (2015); Capizzi (2015); Paynabar et al. (2016);
Teoh et al. (2017).

(e) Among these papers, CPS-related contributions were limited to: Colosimo et al.
(2014) and Del Castillo et al. (2015), who investigated how profile surfaces can
be monitored in advanced manufacturing scenarios.

Based on this data-driven analysis of the literature and the importance of CPS tech-
nology to the future of industry and society, we believe that our research community
needs to be more active in developing methodologies for CPS technologies. As a part
of the methodology development, it is important to showcase when our approaches
can be used and their benefits/disadvantages when compared to machine learning
methodologies.
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3 Wearables for Occupational Fatigue Management

Given that manufacturing applications have traditionally been a building block for
theory development and evaluation in industrial statistics and statistical process con-
trol, we start by examining physical fatigue inmanufacturingworkplaces. It is impor-
tant to note that the new paradigm(s) of advanced manufacturing/Industry 4.0 are
conceptually different from the computer-integrated manufacturing (CIM) paradigm
of the 1990s. The goals of Industry 4.0 are tomaximize the impact of a worker’s skills
by integrating him/her as an integral component of the cyber-physical infrastructure;
however, the end goal of CIM was to achieve a worker-less manufacturing environ-
ment (Gorecky et al. 2014). Additionally, recent publications from the ergonomics
and manufacturing systems literature are showing that the transition to advanced
manufacturing is increasing the workload on skilled labor (Brocal and Sebastián
2015; Romero et al. 2016; Ferjani et al. 2017) and consequently, increasing fatigue
levels.

3.1 Importance of the Domain

In a recent survey of the U.S. advanced manufacturing workers, 57.9% of respon-
dents indicated that they were somewhat fatigued during the past work week (Lu
et al. 2017). The high prevalence of occupational fatigue is problematic since fatigue
results in detrimental health outcomes (both short- and long-term), increases work-
errors, and reduces workers’ productivity (see Cavuoto and Megahed 2017; Lu et al.
2017; Maman et al. 2017; Baghdadi et al. 2018; and references within). Moreover,
Ricci et al. (2007) estimated that the annual cost of lost production time due to
occupational fatigue for U.S. workers exceeds $136 billion.

Wearable devices (hereafter wearables) provide the opportunity to “unobtrusively
capture physical exposure information in the workplace, a problem that has chal-
lenged the field for several decades” (Schall Jr et al. 2018, p. 351). More specifically,
information extracted fromwearable devices can be used to: (a)measure body angles;
(b) quantify the intensity of workload/physical activity; and (c) capture a time-series
of heart rate values (Maman et al. 2017; Baghdadi et al. 2018; Schall Jr et al. 2018).
These are important predictors in attempting to quantify physical fatigue (Cavuoto
and Megahed 2017; Maman et al. 2017).

3.2 An Illustrative Example

The example presented in this chapter is part of the broader study published by
Maman et al. (2017) and further reported on in Baghdadi et al. (2018, 2019). In this
example, we utilize the freely available data set Baghdadi et al. (2019), which can
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be accessed at: https://github.com/fmegahed/fatigue-changepoint/tree/master/Data/
Raw/. The data correspond to a 3h manual materials handling (MMH) lab study,
which involved a significant period of continuous walking that would allow for
analysis of changes in gait over the duration of the session. The study was completed
by fifteen subjects, who were instrumented with four small inertial measurement
units (IMU of size 51mm × 34mm × 14mm) located at the ankle, hip, torso, and
wrist and coupled with a heart rate sensor. The IMU is a wearable device that has
three sensors: (a) accelerometer, measuring a body’s specific force, (b) gyroscope to
measure the angular rate, and (c) magnetometer for measuring the magnetic field,
which is useful for determining directions based on a global reference field. The IMU
captured data at 51.2Hz, and the heart rate sensor recorded data 1Hz throughout the
task. Moreover, each of the IMU’s sensors, captured data in the x, y, and z directions
of the Cartesian coordinate system.We refer the reader to https://fmegahed.github.io/
fatigue_case_jqt.html for information pertaining how this data can be preprocessed
to extract features that can be used for fatigue modeling.

3.2.1 On the Role of Experimental Design in Data Collection

In order to understand physical fatigue development, Maman et al. (2017) designed
a cross-sectional lab study using one-factor within subjects design. The one-factor
corresponded to the physical workload of the task, divided into three levels: (a) low,
which involved an assembly task in a standing position at a workstation, (b) medium,
which simulated a supply pickup and delivery task, and (c) high, which simulated
a MMH task where participants picked cartons of varying weights. The tasks were
selected based on the range of tasks reported in the survey of Lu et al. (2017). Each
task level was performed in a separate 3h of continuous work session. Per Sect. 3.2,
we only focus on the MMH task in our discussion.

3.2.2 Data Description

While each of the three IMU sensors can capture data at a high-frequency rate in
the x, y, and z local channels (i.e., relative to body part positioning), the data needs
to be preprocessed prior to use. The goals of preprocessing are to: (a) transform the
data to the global X, Y, and Z frameworks, i.e., to make them independent of body
positioning, (b) overcome the sensor drift problem associated with accelerometer
data, and (c) generate/engineer features that can be used for either monitoring or
prediction. The reader is referred to the thorough discussion of Baghdadi et al. (2019)
for more details on this step.

In general, the prediction/monitoring can be applied to two different aspects of
the data: (a) adjusted and filtered acceleration data or (b) features extracted from
the acceleration data (e.g., statistical summaries of acceleration, jerk, stride length,
stride height, and stride duration). To assist the viewer to visualize the difference
between both “levels” of data analysis, we provide an animated example showing ten

https://github.com/fmegahed/fatigue-changepoint/tree/master/Data/Raw/
https://github.com/fmegahed/fatigue-changepoint/tree/master/Data/Raw/
https://fmegahed.github.io/fatigue_case_jqt.html
https://fmegahed.github.io/fatigue_case_jqt.html
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Fig. 2 Ten consecutive gait cycle segments, which can be viewed through interacting with this
figure in Adobe Acrobat Reader (not through a web browser). The x-axis represents time, and the
y-axis captures the magnitude of acceleration

consecutive strides in Fig. 2. Then, in Fig. 3, we show how three features (cumulative
sum of stride length, height, and duration) vary across participants over the course
of the three-hour experimental session.

3.2.3 Strategies to Analyzing the Data

The scoping/framing of this data set can lead to a number of different data analy-
sis strategies. For example, Maman et al. (2017) performed a preliminary analysis
(using only eight subjects) using penalized linear and logistic regression to deter-
mine whether statistical features extracted from the five sensors’ data (e.g., mean,
standard deviation, max, and min in a non-overlapping 10-minute time window) can
be used to explain the variability in users’ ratings of perceived exertion (RPE). Their
test results showed that the RPE can be predicted with a geometric mean value,√
sensitivity × specificity = 0.88. It is also interesting to note that their selected

features for their model, based on LASSO, included features from all five sensors.
In a follow-up study with a larger sample size, Maman et al. (2019) attempted to

answer two main research questions: (a) whether five sensors are truly needed for
modeling fatigue occurrence, and (b) whether the introduction of kinematic-driven
features (e.g., stride length, height, and duration as well as back angle rotation) can
improve the prediction. The results showed that: (a) with only one IMU, they can
achieve a geometric mean of 0.85 (compared to 0.87 when all sensors were used),
and (b) kinematic features can improve the prediction performance of the model.
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Fig. 3 The CUSUMs of stride length, height, and duration for each participant, which can be
viewed through interacting with this figure in Adobe Acrobat Reader

Deviating from the statistical/machine learning paradigm, Baghdadi et al. (2019)
examined whether the combination of multivariate change-point models and clus-
tering can help in understanding how different subjects fatigue over the course of
the experimental task. In their analysis, they chose to investigate changes in stride
length, height, and duration. Based on their analysis, the multivariate change-point
method revealed systematic changes in walking patterns. From the clustering anal-
ysis, the participants were divided into four groups, which reflected changes in both
the magnitude and pattern of fatigue development. The participants adjusted their
stride to mitigate the effects of fatigue. While maintaining the required pace, some
participants elected to have shortened and faster slides, and others had longer but
slower strides. This observation has not been observed in the ergonomics literature
in the past since: (a) wearables have not been thoroughly examined for modeling
fatigue development, and (b) the limited number of papers that examined the use of
wearables (or vision-based systems) utilized regression or classification approaches,
which would not allow for the obtained insights.



A Statistical (Process Monitoring) Perspective on Human Performance … 207

3.3 Opportunities for Statistical (Process Control) Research

There are many opportunities for methodological research in human performance
monitoring. Much research is currently being conducted on the use of wearable
sensors for human performance monitoring in occupational, athletic, health-related,
and even leisure settings; however, there remains little consensus on how to address
issues of validity and reliability of the data that originate from these sensors. Sen-
sor devices, often with limited computational power and battery life, often lead to
erroneous values and missing data. Industrial statisticians have a long history of con-
ducting a measurement system analysis prior to establishing a monitoring scheme.
Thesemethodologies need to be extended for sensor data, especiallymultiple sensors
that are mobile. For example, the recent work of Tsung et al. (2018) applies transfer
learning methods to the multiple sensor problem in manufacturing, seismic, and rail
transit domains. Modifying these methods for use with mobile sensors could be of
benefit in the event of sensor failures or missing observations. In addition to poor
data reliability, sensor data is generally unusable in raw form and requires substantial
preprocessing in order to be usable.

Once the data from sensors can be considered reliable and valid for measurement,
it is important to establish a baseline sample of typical performance. This seemingly
retrospective analysismay be impossible asmonitoring is required in “real time”, and
the process may change frequently depending on the task that is being conducted.
Thus, it is important to consider adaptive methods that will take into account the
changing nature of the process. For example, one of the ultimate goals when moni-
toring gait is to determine when a worker begins to experience fatigue. An obstacle to
achieving this goal is that different people exhibit fatigue in different ways. Models
would have to be developed that use sensor data to determine whether one among
several profiles is being exhibited. The adaptive monitoring methods should include
consistent methodologies to transform the data into usable forms, to continuously
evaluate the quality and reliability of the sensor data, and evaluate the process for
changes.

4 The Use of On-Board Vehicular Sensors to Capture
Changes in Driver’s Safety Performance

With the emergence of on-board vehicular sensors and technology, an increasing
number of naturalistic driving studies (NDS) have been initialized by research teams
around the world. NDS continuously records details of the driver, the vehicle, and
surrounding environment via unobstructive on-board vehicular sensors and not hav-
ing experimental control (Regan et al. 2012; Eenink et al. 2014). The first large-scale
NDS was the 100-Car NDS, pioneered by the Virginia Tech Transportation Institute
(Dingus et al. 2006). Following this 100-Car study, NDS has also been explored in
other countries, such as the Second Highway Research Program (SHRP 2) in the
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United States and the European Naturalistic Driving Study (UDRIVE), as well as
within specific target populations, such as teenagers, older drivers, and commercial
truck drivers (Guo 2019). The NDS supplies researchers with high-volume, high-
resolution, and high-dimensional driving data, which create opportunities and pose
challenges to data transformation techniques and existing statistical models.

4.1 Importance of the Domain

Traditional truck crash prediction studies heavily rely on retrospective data that ulti-
mately trace back to post-crash police reports, interviews with witnesses and sur-
vivors, and vehicle inspection (Hickman et al. 2018; Stern et al. 2019). Although
these post-crash data can be thorough and detailed, they inherently suffer from sev-
eral limitations.

(a) In real-life data, crashes are extremely rare compared with non-crashes. The
fatality rate of traffic accidents is 1.13 per 100 million miles driven in the United
States, and the property-damage-only crash rate is 313 per 100 million miles
driven (National Highway Traffic Safety Administration 2017). Considering this
rareness nature of crashes, hundreds of years of data are needed to achieve the
sufficient statistical power to conclude on the difference in fatality rates between
autonomous vehicles and human drivers (Kalra and Paddock 2016; Guo 2019).

(b) Post hoc reports, interviews, and inspections are often problematic.Retrospective
data sources collected hours, days, or even weeks after the occurrence of the
crash are subject to recall bias, so the accuracy and validity of these data are
heterogeneous across different sources. In addition, as the data were collected by
police officers, some critical factors in a meaningful time period leading up to
the crash, such as distraction, were not regularly collected or reported due to
various reasons (Dingus et al. 2011); this is called the low-resolution issue.

(c) Crashes are generally under-reported, particularly for minor accidents and those
without injuries. Savolainen et al. (2011) estimated that 25% ofminor-injury and
50% of non-injury crashes were not reported in the data collected after accident,
compared with 100% of fatality-involved crashes were reported. High under-
reporting rates of non- and minor-injury crashes may cause bias to statistical
inference.

In view of these limitations, NDS has been developed by proactively and continu-
ously collecting high-resolution driving data without obtrusive interference. There-
fore, NDS has several strengths compared to traditional retrospective data sources.
First, NDS collects safety critical events (SCE) such as hard braking events, which
have significantly higher incidence rates than crashes. These unsafe incidents have
been suggested to be indicative of near-crashes, collision, and crashes (Dingus et al.
2006; Guo et al. 2010). Second, NDS records high-frequency and detailed traveling
data, including but not limited to speed, GPS, and multidimensional accelerome-
ters. Unsafe incidents are often recorded once a kinematic threshold is triggered.
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Therefore, researchers can accurately trace back to several seconds prior to an inci-
dent and identify risk factors associated with that event. Since all events and data
were collected by automated sensors and devices, recall bias, information bias, and
under-reporting are minimized in NDS.

4.2 An Illustrative Example

Here, we demonstrate an example of transforming and fusing NDS on-board sensor
data with externally obtained weather and road geometry data from online APIs,
and fitting statistical models based on fused data. For the purpose of illustration, we
used a sample of a 10-driver NDS data set collected by a commercial trucking and
transportation company in the United States using on-board vehicular sensors.

4.2.1 Data

The data for this demonstrating example include five sources. Three of them were
collected by the NDS study (real-time ping, SCEs, and driver characteristics), while
two of them were from online API sources (weather and road geometry).

(a) Real-time pings: A small device was installed in each sample truck, and it will
ping irregularly (typically every 1–10min). Each ping will collect real-time data
such as the vehicle number, date and time, latitude, longitude, driver identifica-
tion number (ID), and speed at that time. A sample of the ping data is shown in
Table1.

(b) SCEs: Real-time, time-stamped SCEs and associated GPS locations were col-
lected by the truck company and provided as outcome variables. Specifically,
four types of safety critical events were recorded: (1) hard brake (HB), (2) head-

Table 1 Ping data

Ping_time Speed Latitude Longitude Driver

2015-10-23 08:00:00 0 33.9 −118.1 canj1

2015-10-23 08:08:10 0 33.9 −118.1 canj1

2015-10-23 08:09:26 5 33.9 −118.1 canj1

2015-10-23 08:22:58 4 33.9 −118.1 canj1

2015-10-23 08:23:12 8 33.9 −118.1 canj1

· · · · · · · · · · · · · · ·
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Table 2 Safety critical events

Driver Event_time Event_type

canj1 2015-10-23 14:46:08 HB

canj1 2015-10-26 15:06:03 HB

canj1 2015-10-28 11:58:24 HB

canj1 2015-10-28 17:42:36 HB

canj1 2015-11-02 07:13:56 HB

· · · · · · · · ·

way (HW), (3) collision mitigation (CM), and (4) rolling stability (RS). Once
some kinematic thresholds with regard to the driving behavior were met, the
sensor will be automatically triggered and the information of these SCEs (lati-
tude, longitude, speed, and driver ID) will be recorded. A sample of SCE data
is shown in Table2.

(c) Driver demographics: A table that includes the birth date of each driver was
provided by the commercial truck company, and the age of the driver can be
calculated. The driver’s age table is shown in Table3.

(d) Road geometry data from the OpenStreetMap API: Two road geometry variables
for the sample drivers will be queried from the OpenStreetMap (OSM) project:
speed limits and the number of lanes. TheOSMdata are collaboratively collected
by over two million registered users via manual survey, GPS devices, aerial
photography, and other open-access sources (Wikipedia contributors 2019). The
OpenStreetMap Foundation supports a website to make the data freely available
to the public under the Open Database License, and could be queried using
the osmar package in statistical computing environment R. A sample of road
geometry data retrieved from the OpenStreetMap is demonstrated in Table4.

Table 3 Drivers Driver Age

canj1 46

farj7 54

gres0 55

hunt 48

kell0 51

lewr10 27

rice30 34

smiv 49

sunc 37

woow59 24

· · · · · ·



A Statistical (Process Monitoring) Perspective on Human Performance … 211

Table 4 Road geometry from the OpenStreetMap API

Latitude Longitude Speed_limit Num_lanes

30.3 −89.8 65 2

30.3 −91.7 65 2

30.3 −91.7 60 2

30.3 −91.6 60 2

30.3 −91.6 60 2

· · · · · · · · · · · ·

Table 5 Weather from the DarkSky API
Ping_time Longitude Latitude Precip_intensity Precip_probability Wind_speed Visibility

2015-10-23 08:09:26 −118.1 33.9 0 0 0.21 9.82

2015-10-23 08:22:58 −118.1 33.9 0 0 0.22 9.81

2015-10-23 08:23:12 −118.1 33.9 0 0 0.22 9.81

2015-10-23 08:23:30 −118.1 33.9 0 0 0.22 9.81

2015-10-23 08:38:00 −118.1 34.0 0 0 0.24 9.81

· · · · · · · · · · · · · · · · · · · · ·

(e) Weather data from the Dark Sky API:Wseather variables, including precipitation
intensity, precipitation probability, wind speed, and visibility, were retrieved
from the Dark Sky API. The Dark Sky API allows the users to query historic
minute-by-minute weather data anywhere on the globe (TheDark SkyCompany,
LLC 2019). According to the official document, the Dark Sky API is supported
by awide range ofweather data sources,which are aggregated together to provide
the most precise weather data possible for a given location (The Dark Sky API
2019). Among several different weather data APIs we tested, the Dark Sky API
provides the most accurate and complete weather variables. A sample of the
weather data retrieved from the DarkSky API is shown in Table5.

4.2.2 Data Transformation and Merging

The research question in this example is whether the truck driver’s cumulative driv-
ing time is associated with unsafe driving behaviors. To answer the question, we
transformed the original ping data in the following ways to fit in various statistical
models; the SCEs, age of the drivers, road geometry, and weather were joined back
to the transformed data using different combinations of keys.
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(a) Trips: for each of the truck drivers, if the real-time ping data showed that the
truck was not moving for at least 20min, the ping data will be separated into two
different trips. A trip is continuous driving intervals with a mean length of 1.8h.

(b) Half-hour intervals: since the length of the trips is heterogeneous (it varies from
5min to more than 8h), making it difficult to conduct statistical analysis, we
further divide trips into half-an-hour fixed intervals.

(c) Shifts: the trips will be further divided into different shifts if the driver was not
moving for at least eight hours. A shift is, therefore, a long driving time with
intermittent short rests (20min to 8h) within shifts.

(d) A proxy of driver fatigue: we took the cumulative summation of interval time
within a shift for each driver as the cumulative driving time, and used it as a proxy
of driver fatigue. The rest time between trips was not counted in the cumulative
driving time calculation.

After the transformed data sets were created, different sources of data sets were
merged for statistical analyses. Our statistical analyses were based on the following
two merged data sets: merged half-hour intervals (MHHI) and merged shifts.

• MHHI: SCEs were left joined to half-hour intervals if the two data sets had a
common driver ID and the event time of SCE was between the start and end time
of the half-hour interval. A binary variable of whether SCEs occurred and a count
variable of the number of SCEs in each half-hour interval were created using the
merged SCEs table. Driver’s table was merged to MHHI using a common driver
ID. Road geometry data were merged to the ping data by the latitude and longitude
coordinates, and weather data were merged to the ping data by the latitude and
longitude coordinates, date, and time. The road geometry and weather at ping level
were then aggregated to MHHI by taking the mean of each variable.

• Merged shifts: SCEs, driver’s age, weather, and road geometry were merged to
transformed shifts data in a similar way as described inMHHI. The only difference
is that the four tables were merged to transformed shifts, instead of transformed
half-an-hour intervals.

4.2.3 Statistical Models

Toanswer the question ofwhether the truck driver’s cumulative driving time is associ-
ated with unsafe driving behaviors, we first consider a Bayesian hierarchical logistic
regression, where the response is Yi = 1 if a crash occurred in a given segment/time
period, and Yi = 0 if no crash occurred. Logistic regression is the most popular sta-
tistical model used in traffic safety studies. This hierarchy will be performed based
on the transformed MHHI data. The outcome is:

Yi ∼ Bernoulli(pi )

where the probability pi of the outcome being Yi = 1, that is, a crash occurred, is
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log
pi

1 − pi
= β0,d(i) + β1,d(i) · CTi +

J∑

j=1

xi jη j . (1)

In other words, the log-odds of pi is dependent on the predictors through the model
in (1). We further assume that the intercepts β0,d(i) and the slopes β1,d(i) are random
effects because they vary from driver to driver. They are treated as if they are random
samples from two normal distributions with unknown means and variances; that is,

β0,d ∼ i.i.d. N (μ0, σ
2
0 ), d = 1, 2, · · · , D (2)

and
β1,d ∼ i.i.d. N (μ1, σ

2
1 ), d = 1, 2, · · · , D (3)

Here i is an index of the i th observation and d(i) is the driver’s index of the i th
observation.We assume that each driver has a different baseline probability of having
SCEs, which is the random intercept β0,d .We also assume that the probability change
of SCEs as a consequence of cumulative driving time (CTi ) is different among
drivers, which is the random slope β1,d(i). We assume exchangeable priors for the
random intercepts and slopes, respectively. The parameters μ0, σ0, μ1, and σ1 are
hyper-parameters with priors. Since we usually have little prior knowledge on the
hyper-parameters, we assigned diffuse priors for these hyper-parameters.

Figure4 presents the primary results of the logistic regression for the sample 10
drivers. The x-axis shows the cumulative driving time in hours and y-axis shows the
estimated probability of SCEs. The gray lines indicate the estimated curve for the
sample 10 drivers, while the blue line is the estimated curve for hyper-parameters.
The figure indicates that despite the heterogeneity among the 10 drivers, there was
a common trend of negative association between cumulative driving time and the
probability of SCEs. It is to be noted that this is an illustrating example of 10 drivers
and may not capture the true relationship.

Logistic regression considers the probability of an event during a given interval,
but it ignores the frequency of events. Therefore, we considered a Poisson regression,
another widely used statistical model in traffic safety studies, to account for the
frequency of events. In a Poisson regression, the response is the number of events
Yi in a given time interval Ti . We assume that the number of events has a Poisson
distribution with the mean of λi .

Yi ∼ Poisson(Tiλi ) (4)

where

log λi = β0,d(i) + β1,d(i) · CTi +
J∑

j=1

xi jη j . (5)
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Fig. 4 Cumulative driving time and estimated probability of SCEs from the hierarchical logistic
model. The gray lines are estimated curves for individual drivers and the blue line is the estimated
curve for hyper-parameters

We assume random effects for the intercept and slope for cumulative driving time
similar to the logistic regression.

Figure5 presents the primary results of Poisson regression model for the sample
10 drivers. In contrast to the logistic regression, the y-axis is the rate of SCEs (the
number of SCEs in a certain amount of time). The interpretation is similar to the
logistic regression: despite the heterogeneity among the 10 drivers, there was a neg-
ative association between the rate of SCEs and cumulative driving time. This figure
demonstrates less variability among drivers compared to the logistic regression.

The Poisson regression model assumes that the intensity of events is a constant,
whichmay not be true in real-life transportation practice. Herewe present a reliability
model, a time-truncated non-homogeneous Poisson process (NHPP)with an intensity
function of the form λ(t) = (β/θ)(t/θ)β−1, called the power law process (PLP).
Using the merged shift data set described previously, we aim to determine whether
SCEs occurred more frequently at early stages of shifts, toward the end of shifts, or
neither. Figure6 presents the idea of the NHPP model. The x-axis is the cumulative
driving time in minutes and y-axis is the shift number. Each arrow represents a shift,
while a red cross is a SCE. The figure shows a pattern of more events in the early
stages of shifts, indicating reliability deteriorating.

We can use mathematical notations to formulate this NHPP. Let Td,s,i denote the
time to the dth driver’s sth shift’s i th critical event. The total number critical events
of dth driver’s sth shift is nd,s . The ranges of the indices are:
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Fig. 5 Cumulative driving time and estimated rate of SCEs from the hierarchical Poisson model.
The gray lines are estimated curves for individual drivers and the blue line is the estimated curve
for hyper-parameters

i = 1, 2, . . . , nd,Sd ,
s = 1, 2, . . . , Sd ,
d = 1, 2, . . . , D.

We assume that the times of critical events within the dth driver’s sth shift were
generated from a PLP, with a fixed shape parameter β and varying scale parameters
θd,s across drivers d and shifts s. The model can be described as Eq.6.

Td,s,1, Td,s,2, · · · , Td,s,nd,s ∼ PLP(β, θd,s), s = 1, 2, . . . , Sd; d = 1, 2, . . . , D

log θd,s = γ0d + γ1xd,s,1 + γ2xd,s,2 + · · · + γk xd,s,k

γ01, γ02, · · · , γ0D ∼ i.i.d. N (μ0, σ
2
0 )

(6)
As before, we assume random intercept and slope effects for the scale parameter θ

that vary fromdriver to driver. The shape parameterβ shows the reliability changes of
drivers.Whenβ > 1, the intensity functionλ(t) is increasing, the reliability of drivers
is decreasing, and SCEs are becoming more frequent; when β < 1, the intensity
function λ(t) is decreasing, the reliability of drivers is increasing, and SCEs are
becoming less frequent; when β = 1, the NHPP is simplified as a homogeneous
Poisson process with the intensity of 1/θ . We assume diffuse priors for the fixed
parameters.
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Fig. 6 An arrow plot of time to SCEs and shift length at different shifts

Figure7 presents the primary results of the NHPP model. Each line is a shift
and the colors indicate different drivers. The y-axis is the intensity of the PLP and
x-axis is the cumulative driving time. The figure suggests that the intensity of SCEs
is negatively associated with cumulative driving time.

4.3 Opportunities for Statistical (Process Control) Research

NDS data provide a unique opportunity to understand the risk factors of driving,
but also present challenges in statistical analyses. The challenges are in two aspects:
(1) high-resolution, high-dimension, and sparse data nature push for faster and less
computationally intensive estimation methods; (2) the fact that multiple SCEs can
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Fig. 7 Cumulative driving time and estimated intensity of SCEs from the hierarchical NHPP. Each
line represents a shift and each color represents a driver. In total, there are 196 shifts for the 10
sample drivers

occur in one trip or shift requires more application of recurrent event models or
reliability models.

Although SCEs aremore frequent than crashes, they are still rare events compared
to the totalmiles driven.Bayesian estimation, such as hierarchicalBayes, is especially
useful and powerful in the context of sparse data by placing informative or weakly
informative priors on parameters and hyper-parameters. However, modern Bayesian
estimation is empowered by Markov Chain Monte Carlo (MCMC), which is not
scalable in the context of high-volume and high-dimensional NDS data. There are
interesting and more efficient MCMC estimation strategies for high-volume or high-
dimensional data, such as the Firefly Monte Carlo (Maclaurin and Adams 2015),
Pseudo-Marginal MCMC (Quiroz et al. 2019), and energy conserving subsampling
Hamiltonian Monte Carlo (Dang et al. 2019), but these algorithms requires coding
and hyper-parameter tuning, and are applied among a limited number of statisticians.

Recurrent event models or reliability models fit naturally with the event generat-
ing process of NDS (Guo 2019). With high-resolution NDS data, recurrent event or
reliability models could uncover the patterns of non-homogeneous process, which
are important for improving traffic safety. There are several studies that used recur-
rent event models, such as risk change-point for novice teenage drivers (Li et al.
2017, 2018) and random-effects frailty models (Chen and Guo 2016). We presented
an application of NHPP with PLP among truck drivers in this paper, which could
be further improved by adding one more recovery parameter that accounts for the
reliability recovery at each rest within a shift. The goal of suchmodels is to determine
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when a driver begins to exhibit symptoms that can be a precursor to risky driving
behavior. If such a task can be accomplished, it can be used to help schedule rest
times thereby leading to safer driving conditions. Just as was the case for the wear-
able sensors, we have found that different drivers behave differently with regard to
cumulative driving time and other variables not associated directly with the driver,
such as weather. It may be that a personalized rest strategy would have to be devel-
oped for every driver in order to minimize that driver’s chance of a crash or other
critical event.

In addition to the use of reliability models, there exists several opportunities in the
realm of naturalistic driving performance monitoring (both for commercial driving
and commuters alike). Commonly available data sources include: (a) vehicular speed
and location data from mobile phones (Hosseinioun et al. 2015); (b) mirror check
data from driver assistance systems (Li and Busso 2015); and (c) driver drowsi-
ness detection systems through the use of either on-board cameras or lane departure
warning systems. The key questions in each of these applications are: (1) how to
define/identify “normal” driving behavior and (2) what is an “optimal” approach to
quickly detect changes from this normal baseline. Addressing these questions typi-
cally would entail designing an experiment/simulation to collect some data and pos-
sibly, capitalizing/developing statistical monitoring procedures for addressing both
questions. The challenge here is to develop methodologies that can possibly account
for the inherent high-frequency (i.e., highly autocorrelated data structures), non-
stationary nature of the collected data without loss of important driving-related infor-
mation. Furthermore, the problem is complicated since the performance is affected
by external, often non-observed, conditions that relate to traffic conditions and other
commuters on the road. From a monitoring perspective, these systems should be
considered in the context of processes that exhibit transient shifts or transient degra-
dation state(s) since, in the absence of a crash, breaks at the end of a trip would result
in a recovered and reinvigorated driver.

5 Biometric-Driven Computer Security

5.1 Importance of the Domain

User authentication is a process used to verify that someone seeking access to a
computing device (remote or otherwise) is who they claim to be. The primary goal
of user authentication is to ascertain that only a legitimate user is granted access. The
increasing popularity of personal devices and internet services and the sensitivity of
information they often store (i.e, banking) prompt the need for secure authentication
mechanisms.

Although various user authentication mechanisms are widely deployed by almost
all devices and web-services, finding a secure mechanism remains a challenging
problem. As almost all of the deployed mechanisms suffer fromwell-known security
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issues. For example, passwords which are the most widely deployed authentication
approach nowadays tend to be insecure as the users normally pick weak passwords
(Florencio and Herley 2007), or share their password (Singh et al. 2004). More-
over, traditional biometrics, such as fingerprints, often have high error rates, and
susceptible to impersonation or spoofing attacks.

Behavioral biometrics is the study of using the human unique behavioral patterns
to authenticate a person. For a long time, handwriting and signature have been used as
a mechanism to identify the users. Over the last several decades, several studies have
investigated the use of behavioral biometrics to authenticate the user to web-services
or devices in order to improve the security of the authentication process. Examples
of behavioral biometrics include gait, GUI interaction, key stroke dynamic, mouse
dynamics, and tapping (Yampolskiy and Govindaraju 2008).

With the increase of the data that can be collected from various sensors on mobile
devices, smart-watches or keyboard and mouse on desktops/laptops, a lot of work
has been done on investigating the ability of using these data to identify the unique
behavior of the user and use it to authenticate the user; either as a stand-alone mech-
anism or combined with another mechanism. In contrast with passwords and tradi-
tional biometrics, behavioral biometrics cannot be forgotten, stolen, or shared and
are noninvasive.

5.2 An Illustrative Example

The example in this chapter is part of a study published by Mohamed and Saxena
(2016). Gametrics (Mohamed and Saxena 2016) is a game-based behavioral biomet-
ric system based on simple drag and drop games used to capture the unique user’s
cognitive ability as well as her unique mouse interactions with the game.

5.2.1 Task Design

Gametrics is based on a simple drag and drop game challenge. A sample of the games
used in the Gametrics study is shown in Fig. 8. The game has three target objects
and six moving objects and the user’s task is to drag a subset of the moving objects
(answer objects) to their corresponding target objects. In order to solve the challenge,
the user needs to understand the content of the images, find the semantic relationship
between the answer objects and the target objects, and drag the answer objects to
their corresponding targets to solve the challenge.

The game starts by placing the moving objects in random locations on the image.
Then, each moving object picks a random direction in which it will move. The object
continues moving in its current direction until it collides with another object or
with the challenge border. A collision results in an object moving in a new random
direction. The user needs to press a “Start” button to start the game and drag and drop
all the answer objects to their corresponding target objects in order to complete the
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Fig. 8 Gametrics Challenge Instance. Targets, on the Left, are Static;MovingObjects, on the Right,
are Mobile. The User Task is to Drag–Drop a Subset of the Moving Objects (Answer Objects)
to their Corresponding Targets. Republished with permission of ACM (Association for Computing
Machinery), fromMohamed and Saxena (2016); permission conveyed through Copyright Clearance
Center, Inc.

game. In order to utilize the user’s gameplay as an authentication mechanism, all the
user’s interaction with the game is recorded. Specifically, at each time interval, the
gameplay’s log stores the objects locations, themouse location, and status (up/down).

5.2.2 Data Collection

In order to evaluate the applicability of identifying the user based on the way she
interacts with the game challenges, Mohamed and Saxena (2016) collected data from
human users. They recruited the participants usingAmazonMechanical Turk (AMT)
service. For the purpose of their study, they created three human intelligence tasks
(HITs) distributed over three days. The first HIT was created with 100 assignments
to have 100 unique workers. Ninety eight valid submissions were gathered until the
HIT expired. On the next two days, emails were sent to the participants asking them
to participate in the follow-up study. On the first day, the participates were asked to
solve 60 challenges and on the second and third day, they were asked to solve 36
challenges. Sixty two participants performed the study on the second day and twenty
nine performed the study on the third day. In total, the participants successfully
completed a total of 9,076 challenges. The average time the participants took to
complete a game challenge was around 7.5 s.
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5.2.3 Feature Extraction

From each gameplay log, a total of 64 features were extracted. The features can be
categorized into three categories: (1) features that capture the cognitive characteristics
of individuals, (2) features that capture the mouse interaction characteristics of the
participants, and (3) features that are related to both the cognitive abilities as well
as mouse interaction. The different mechanisms of solving the game challenges are
related to the cognitive characteristics of individuals. These characteristics were
captured based on the following features:

(a) The time between the user pressing the start button and the first mouse event
and the time of the first click/drag. These timing measures capture the time the
participants take to understand the challenge and start solving it.

(b) The average, standard deviation, minimum, and maximum of the times between
each of the drops and the start of the next drag (these capture the time the user
takes to find the next answer object).

(c) The total time taken by the user to complete the challenge.

The mouse movement characteristics of the users were captured through the follow-
ing features:

(a) The average, standard deviation, minimum, and maximum of the speed and
acceleration while the user is searching for an answer object and while the user
is dragging the object.

(b) The average, standard deviation, minimum, and maximum of the duration
between each two consecutively generated timestamps and the “silence” dur-
ing move and during drag.

(c) The average, standard deviation, minimum and maximum of time duration
between reaching an object and clicking on it, and the time duration between
approaching a target object and dropping an answer object on it.

(d) The average, standard deviation, minimum, andmaximum of the angles between
the lines that connect each three consecutive points in the mouse movement
trajectory.

Other mixed features were also extracted that relate to both cognitive and mouse
movement characteristics of the participants such as:

(a) The total distance the mouse moved within a game challenge.
(b) The average, standard deviation, minimum, and maximum of the difference

between the straight line connecting the start and the end of a move or a drag
and the real distance traveled.

(c) The average, standard deviation, minimum, and maximum of the distance
between a click and the object center, and a drop and the target center.
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5.3 Data Analysis

Mohamed and Saxena (2016) utilized the random forest classifier in their analysis as
it is efficient, can estimate the importance of the features, and is robust against noise
(Maxion and Killourhy 2010). A random forest is an ensemble approach based on
the generation of many classification trees, where each tree is constructed using a
separate bootstrap sample of the data. In order to classify a new input, the new input
is run down all the trees and the result is determined based on majority voting.

In the classification task, the positive class corresponds to the legitimate user’s
gameplay and the negative class corresponds to the impersonator (other user/zero-
effort attacker). Therefore, true positive (TP) represents the number of times the
legitimate user is granted access, true negative (TN) represents the number of times
the impersonator is rejected, false positive (FP) represents the number of times the
impersonator is granted access, and false negative (FN) represents the number of
times the correct user is rejected.

As performance measures for the classifier, false positive rate (FPR) and false
negative rate (FNR) were used. The FPR measures the security of the proposed
system, i.e., the accuracy of the system in rejecting impersonators. TheFNRmeasures
the usability of the proposed system as high FNR which means that the system has
a high rejection rate to the legitimate users. To make the system both usable and
secure, ideally, both FPR and FNR need to be as close to 0 as possible.

To improve the accuracy of the classification, they ran a program to find the
subset of features that produces the best classification results, because using many
features can cause over fitting of the classifier and therefore reduce the accuracy
of the future prediction; thus removing some features may improve the accuracy.
Therefore, they report the results obtained from selecting the best subset of features
per user. Moreover, they studied the identification of the user based on a single game
challenge and on combining two challenges.

Inter-session Analysis
As mentioned above, Mohamed and Saxena (2016) collected data from 98 AMT
workers during the first day of our data collection experiment. Each of them com-
pleted 60 challenges. The data was divided into 98 sets based on the users’ identities
(ids). In order to build a classifier to authenticate a user based on her gameplay bio-
metrics, Mohamed and Saxena (2016) defined two classes. The first class contains
the gameplay data from a given user (to be identified), and the other class contains
randomly selected gameplay data from other users. Then, the data was divided into
two sets, one for training and the other for testing. The first 40 gameplay instances of
each participant and 40 gameplay instances of the randomly selected set were used
to train the classifier, while the other 20 are used for testing. The results are shown
in the first row (“Day 1”) of each block in Table6. We see that utilizing two game-
play instances is better than using a single instance. The best results are acquired by
merging two challenge instances in which both the FPR and FNR are 2%.
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Table 6 Study results: performance for the classifier.We show the results of using a single challenge
and merging of two challenges

FPR FNR

Single Day 1 0.06 (0.06) 0.02 (0.04)

Day 2 0.09 (0.09) 0.07 (0.10)

Day 3 0.07 (0.06) 0.07 (0.10)

Merge Day 1 0.02 (0.05) 0.02 (0.05)

Day 2 0.05 (0.09) 0.04 (0.09)

Day 3 0.04 (0.06) 0.03 (0.05)

Intra-session Analysis
The other main goal of the study was to check the accuracy of the classifier over
multiple sessions. As mentioned above, 62 AMT workers participated in the study
on the second day and 36 participated in the study on the third day. For each of
these users, the data of the gameplay of the previous day(s) was used to train the
classifier, and then the classifier was tested with the data collected in the next day(s).
The results are shown in the second and third rows (“Day 2” and “Day 3”) in each
block in Table6. We find that the performance of the classifier degrades slightly
compared to the first day, inter-session analysis. Also, we still found that merging
two instances provides better results than using a single instance. The best results
are again acquired by merging two instances. For the second day, False Positive Rate
= 0.05 and False Negative Rate = 0.04 and for the third day, False Positive Rate =
0.04 and False Negative Rate = 0.03.

Summary of Results
The results obtained from the classification models show that Gametrics is a viable
form of behavioral biometrics. The results show that the classifier can identify the
users and reject a zero-effort attacker with a high overall accuracy, especially when
two game instances are merged together.

5.4 Opportunities for Statistical (Process Control) Research

In this section, we provided an example that was first shown by Mohamed and Sax-
ena (2016) to illustrate how cybersecurity researchers and professionals approach
existing open questions in computer security. The provided example presented a sce-
nario, where one would like to authenticate a single user. Behavioral biometrics can
also be applied to other scenarios. For example, in a consulting project by the first
author, a client who utilizes a User and Entity Behavior Analytics (UEBA) platform
was interested in developing thresholds for detecting compromised insiders whomay
be leaking and/or engaging in unauthorized computer systems based activities. The
problem is complex given that a user’s risk score is generated accounting for: (a) their
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behavior over the past several sessions, which means that users engaging in unau-
thorized behavior can “normalize” their score if not detected quickly; (b) the user’s
computer activity can be affected by cyclical/periodic tasks that are not captured
in their expected score calculation; and (c) both internal (mergers and acquisitions)
and external (changes in regulatory requirements) events by the client company
also influence their observed risk scores. Thus, the risk score should be adjusted
to account for such events, which tend to overlap. From an SPC perspective, this
problem can be framed as a multivariate (ideally self-starting and distribution-free)
control charting problem. The use of SPC should be superior to the classification
approach presented herein since its performance cannot be calibrated using out-of-
control signals. Unlike the approach presented herein, which implicitly assumed that
there are only a few out-of-control behaviors that need to be accounted for, in our
estimation, the success of deploying and standardizing the use of SPC in such sce-
narios would heavily depend on its translation to packages (in multiple programming
languages) that would reduce the statistical burden on practitioners.

6 Concluding Remarks

In this paper, we presented an overview of human performance modeling and dis-
cussed three application domains where our methodologies and research efforts can
result in significant contributions and impact. To encourage the readers to build on
these example applications, we have made the data and code available through links
in the Supplementary Materials section. In our estimation, the future of many “indus-
trial” and “work” systems would depend heavily on how to optimize the synergies
across machines, humans, and computing technologies. This clearly fits within the
traditional driving forces of quality and productivity for statistical quality control
research and practice. The readers should note that our perspectives shared in this
article are also reflected by other research communities, where the role of “humans”
and how to capitalize on their data/performance represent the next research fron-
tier. For example, “human-in-the-loop” models are widely considered to be the next
frontier in artificial intelligence research (Rea 2018; Oneto et al. 2018; Bavaresco
et al. 2019; Zanzotto 2019). Thus, as a community, we need to play a major role on
devising statistical procedures for monitoring and modeling such data.
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Supplementary Materials

To promote futurework in this area, we have created the followingGitHub repository,
https://github.com/caimiao0714/ISQC2019, which hosts the data and/or code that
are associatedwith the three application examples presented in this paper. In addition,
a R Markdown summarizing our analyses and main results is also hosted at: https://
caimiao0714.github.io/ISQC2019/.

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An r-tool for comprehensive science mapping
analysis. Journal of Informetrics, 11(4), 959–975.

Baghdadi, A., Megahed, F. M., Esfahani, E. T., & Cavuoto, L. A. (2018). A machine learn-
ing approach to detect changes in gait parameters following a fatiguing occupational task.
Ergonomics, 61(8), 1116–1129.

Baghdadi, A., Cavuoto, L.A., Jones-Farmer, L.A., Rigdon, S.E., Esfahani, E.T., & Megahed, F.M.
(2019). Monitoring worker fatigue using wearable devices: A case study to detect changes in gait
parameters. Journal of Quality Technology (to appear).

Bavaresco, M.V., D’Oca, S., Ghisi, E., & Lamberts, R. (2019). Technological innovations to assess
and include the human dimension in the building-performance loop: A review. Energy and Build-
ings, 109365.

Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of
Information Science and Technology, 37(1), 179–255.

Brocal, F., & Sebastián, M. A. (2015). Identification and analysis of advanced manufacturing pro-
cesses susceptible of generating new and emerging occupational risks. Procedia Engineering,
132, 887–894.

Capizzi, G. (2015). Recent advances in process monitoring: Nonparametric and variable-selection
methods for phase I and phase II. Quality Engineering, 27(1), 44–67.

Cavuoto, L., & Megahed, F. (2017). Understanding fatigue: Implications for worker safety. Profes-
sional Safety, 62(12), 16–19.

Chen, C., &Guo, F. (2016). Evaluating the influence of crashes on driving risk using recurrent event
models and naturalistic driving study data. Journal of Applied Statistics, 43(12), 2225–2238.

Chen, M., Qu, J., Xu, Y., & Chen, J. (2018). Smart and connected health: What can we learn from
funded projects? Data and Information Management, 2(3), 141–152.

Colosimo, B.M., Cicorella, P., Pacella, M., & Blaco,M. (2014). From profile to surface monitoring:
SPC for cylindrical surfaces via gaussian processes. Journal of Quality Technology, 46(2), 95–
113.

Dang, K. D., Quiroz, M., Kohn, R., Tran, M. N., & Villani, M. (2019). Hamiltonian Monte Carlo
with energy conserving subsampling. Journal of Machine Learning Research, 20(100), 1–31.

Del Castillo, E., Colosimo, B. M., & Tajbakhsh, S. D. (2015). Geodesic gaussian processes for the
parametric reconstruction of a free-form surface. Technometrics, 57(1), 87–99.

Dingus, T.A., Klauer, S.G., Neale, V.L., Petersen, A., Lee, S.E., Sudweeks, J., Perez, M.A., Hankey,
J., Ramsey, D., Gupta, S., et al. (2006). The 100-car naturalistic driving study. Phase 2: Results
of the 100-car field experiment. Technical report, United States, Department of Transportation,
National Highway Traffic Safety.

Dingus, T. A., Hanowski, R. J., &Klauer, S. G. (2011). Estimating crash risk.Ergonomics in Design,
19(4), 8–12.

Eenink, R., Barnard, Y., Baumann, M., Augros, X., & Utesch, F. (2014). Udrive: The European
naturalistic driving study. In Proceedings of Transport Research Arena. IFSTTAR.

https://github.com/caimiao0714/ISQC2019
https://caimiao0714.github.io/ISQC2019/
https://caimiao0714.github.io/ISQC2019/


226 F. M. Megahed et al.

Ferjani, A., Ammar, A., Pierreval, H., & Elkosantini, S. (2017). A simulation-optimization based
heuristic for the online assignment of multi-skilled workers subjected to fatigue in manufacturing
systems. Computers & Industrial Engineering, 112, 663–674.

Florencio, D., & Herley, C. (2007). A large-scale study of web password habits. In Proceedings of
the 16th International Conference on World Wide Web (pp. 657–666). ACM.

Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014). Human-machine-interaction in the
industry 4.0 era. In 2014 12th IEEE International Conference on Industrial Informatics (INDIN)
(pp. 289–294). https://doi.org/10.1109/INDIN.2014.6945523.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–
1660.

Guo, F. (2019). Statistical methods for naturalistic driving studies. Annual Review of Statistics and
Its Application, 6, 309–328.

Guo, F., Klauer, S. G., Hankey, J. M., & Dingus, T. A. (2010). Near crashes as crash surrogate for
naturalistic driving studies. Transportation Research Record, 2147(1), 66–74.

Haq, A., Brown, J., & Moltchanova, E. (2014). Improved fast initial response features for expo-
nentially weighted moving average and cumulative sum control charts. Quality and Reliability
Engineering International, 30(5), 697–710.

Haq, A., Brown, J., Moltchanova, E., & Al-Omari, A. I. (2015). Improved exponentially weighted
moving average control charts for monitoring process mean and dispersion. Quality and Relia-
bility Engineering International, 31(2), 217–237.

Hickman, J. S., Hanowski, R. J., & Bocanegra, J. (2018). A synthetic approach to compare the large
truck crash causation study and naturalistic driving data. Accident Analysis & Prevention, 112,
11–14.

Hosseinioun, S.V., Al-Osman, H., & El Saddik, A. (2015). Employing sensors and services fusion
to detect and assess driving events. In 2015 IEEE International Symposium on Multimedia (ISM)
(pp. 395–398). IEEE.

IDC. (2019). The growth in connected IoT devices is expected to generate 79.4zb of data in 2025,
according to a new IDC forecast. International Data Corporation. https://www.idc.com/getdoc.
jsp?containerId=prUS45213219. Accessed 1 Aug 2019.

Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., & Eschert, T. (2017). Industrial internet of things
and cyber manufacturing systems. In Industrial internet of things (pp. 3–19). Berlin: Springer.

Jones-Farmer, L. A., Woodall, W. H., Steiner, S. H., & Champ, C. W. (2014). An overview of
phase I analysis for process improvement and monitoring. Journal of Quality Technology, 46(3),
265–280.

Kalra, N., & Paddock, S. M. (2016). Driving to safety: How many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and Prac-
tice, 94, 182–193.

Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business &
Information Systems Engineering, 6(4), 239–242.

Lee, E. A., & Seshia, S. A. (2017). Introduction to embedded systems: A cyber-physical systems
approach. Cambridge: MIT Press.

Leroy, G., Chen, H., & Rindflesch, T. C. (2014). Smart and connected health [guest editors’ intro-
duction]. IEEE Intelligent Systems, 29(3), 2–5.

Li, N., & Busso, C. (2015). Detecting drivers’ mirror-checking actions and its application to maneu-
ver and secondary task recognition. IEEE Transactions on Intelligent Transportation Systems,
17(4), 980–992.

Li, Q., Guo, F., Klauer, S. G., & Simons-Morton, B. G. (2017). Evaluation of risk change-point for
novice teenage drivers. Accident Analysis & Prevention, 108, 139–146.

Li, Q., Guo, F., Kim, I., Klauer, S. G., & Simons-Morton, B. G. (2018). A Bayesian finite mixture
change-point model for assessing the risk of novice teenage drivers. Journal of Applied Statistics,
45(4), 604–625.

https://doi.org/10.1109/INDIN.2014.6945523
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219


A Statistical (Process Monitoring) Perspective on Human Performance … 227

Lu, L., Megahed, F. M., Sesek, R. F., & Cavuoto, L. A. (2017). A survey of the prevalence of
fatigue, its precursors and individual coping mechanisms among us manufacturing workers.
Applied Ergonomics, 65, 139–151.

Maclaurin, D., & Adams, R.P. (2015). Firefly Monte Carlo: Exact MCMC with subsets of data. In
24th International Joint Conference on Artificial Intelligence.

Maman, Z. S., Yazdi, M. A. A., Cavuoto, L. A., & Megahed, F. M. (2017). A data-driven approach
to modeling physical fatigue in the workplace using wearable sensors. Applied Ergonomics, 65,
515–529.

Maman, Z.S., Chen, Y.J., Baghdadi, A., Lombardo, S., Cavuoto, L.A., & Megahed, F.M. (2019). A
data analytic framework for physical fatiguemanagement usingwearable sensors.Expert Systems
with Applications (under review).

Maxion, R. A., & Killourhy, K. S. (2010). Keystroke biometrics with number-pad input. In 2010
IEEE/IFIP International Conference on Dependable Systems & Networks (DSN) (pp. 201–210).
IEEE.

Mohamed, M., & Saxena, N. (2016). Gametrics: Towards attack-resilient behavioral authentica-
tion with simple cognitive games. In Proceedings of the 32nd Annual Conference on Computer
Security Applications (pp. 277–288). ACM.

National Highway Traffic Safety Administration. (2017). Traffic safety facts 2015: A compilation
of motor vehicle crash data from the fatality analysis reporting system and the general estimates
system.

National Science Foundation. (2019). Cyber physical systems (CPS) — NSF 19-553. https://www.
nsf.gov/pubs/2019/nsf19553/nsf19553.htm. Accessed 4 Aug 2019.

Oneto, L., Navarin, N., Donini, M., & Anguita, D. (2018). Emerging trends in machine learning:
Beyond conventional methods and data. In ESANN.

Paynabar, K., Zou, C.,&Qiu, P. (2016).A change-point approach for phase-I analysis inmultivariate
profile monitoring and diagnosis. Technometrics, 58(2), 191–204.

Porter, M. F. (2006). An algorithm for suffix stripping. Program, 40.
Psarakis, S., Vyniou, A. K., & Castagliola, P. (2014). Some recent developments on the effects of
parameter estimation on control charts. Quality and Reliability Engineering International, 30(8),
1113–1129.

Quiroz, M., Kohn, R., Villani, M., & Tran, M. N. (2019). Speeding up MCMC by efficient data
subsampling. Journal of the American Statistical Association, 114(526), 831–843.

Rea, B. (2018). Ai, robotics, and automation: Putting humans in the loop. Deloitte. Dbriefs Web-
cast. https://www2.deloitte.com/us/en/pages/dbriefs-webcasts/events/october/2018/dbriefs-ai-
robotics-automation-putting-humans-in-loop.html. Accessed 28 Nov 2019.

Regan, M., Williamson, A., Grzebieta, R., & Tao, L. (2012) Naturalistic driving studies: Literature
review and planning for the australian naturalistic driving study. In Australasian College of Road
Safety Conference (2012), Sydney, New South Wales, Australia.

Ricci, J. A., Chee, E., Lorandeau, A. L., & Berger, J. (2007). Fatigue in the us workforce: prevalence
and implications for lost productive work time. Journal of Occupational and Environmental
Medicine, 49(1), 1–10.

Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016). The operator 4.0: Human
cyber-physical systems & adaptive automation towards human-automation symbiosis work sys-
tems. In APMS (Advances in Production Management Systems).

Savolainen, P. T., Mannering, F. L., Lord, D., & Quddus, M. A. (2011). The statistical analysis
of highway crash-injury severities: A review and assessment of methodological alternatives.
Accident Analysis & Prevention, 43(5), 1666–1676.

Schall, M. C, Jr., Sesek, R. F., & Cavuoto, L. A. (2018). Barriers to the adoption of wearable sensors
in theworkplace:A survey of occupational safety and health professionals.Human Factors, 60(3),
351–362.

Singh, S., Cabraal, A., Demosthenous, C., Astbrink, G., & Furlong, M. (2007). Password shar-
ing: Implications for security design based on social practice. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 895–904). ACM.

https://www.nsf.gov/pubs/2019/nsf19553/nsf19553.htm
https://www.nsf.gov/pubs/2019/nsf19553/nsf19553.htm
https://www2.deloitte.com/us/en/pages/dbriefs-webcasts/events/october/2018/dbriefs-ai-robotics-automation-putting-humans-in-loop.html
https://www2.deloitte.com/us/en/pages/dbriefs-webcasts/events/october/2018/dbriefs-ai-robotics-automation-putting-humans-in-loop.html


228 F. M. Megahed et al.

Stern, H. S., Blower, D., Cohen, M. L., Czeisler, C. A., Dinges, D. F., Greenhouse, J. B., et al.
(2019). Data and methods for studying commercial motor vehicle driver fatigue, highway safety
and long-term driver health. Accident Analysis & Prevention, 126, 37–42.

Teoh, W. L., Chong, J. K., Khoo, M. B., Castagliola, P., & Yeong, W. C. (2017). Optimal designs
of the variable sample size chart based on median run length and expected median run length.
Quality and Reliability Engineering International, 33(1), 121–134.

The Dark Sky API. (2019). Data sources. https://darksky.net/dev/docs/sources. Accessed 20 Jun
2019.

The Dark Sky Company, LLC. (2019). Dark Sky API – Overview. https://darksky.net/dev/docs.
Accessed 20 Feb 2019.

Tsung, F., Zhang, K., Cheng, L., & Song, Z. (2018). Statistical transfer learning: A review and some
extensions to statistical process control. Quality Engineering, 30(1), 115–128.

Wikipedia Contributors. (2019). Openstreetmap — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=OpenStreetMap&oldid=900226891. Accessed 5 Jun 2019.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming-a review.
Agricultural Systems, 153, 69–80.

Woodall,W. H., &Montgomery, D. C. (2014). Some current directions in the theory and application
of statistical process monitoring. Journal of Quality Technology, 46(1), 78–94.

Yampolskiy, R. V., & Govindaraju, V. (2008). Behavioural biometrics: A survey and classification.
International Journal of Biometrics, 1(1), 81–113.

Ye, Z. S., & Chen, N. (2014). The inverse gaussian process as a degradation model. Technometrics,
56(3), 302–311.

Zanzotto, F. M. (2019). Human-in-the-loop artificial intelligence. Journal of Artificial Intelligence
Research, 64, 243–252.

Zhang, M., Megahed, F. M., &Woodall, W. H. (2014). Exponential CUSUM charts with estimated
control limits. Quality and Reliability Engineering International, 30(2), 275–286.

https://darksky.net/dev/docs/sources
https://darksky.net/dev/docs
https://en.wikipedia.org/w/index.php?title=OpenStreetMap&oldid=900226891
https://en.wikipedia.org/w/index.php?title=OpenStreetMap&oldid=900226891


Monitoring Performance of Surgeons
Using a New Risk-Adjusted
Exponentially Weighted Moving Average
Control Chart

Fah F. Gan, Wei L. Koh, and Janice J. Ang

Abstract Risk-adjusted charting procedures have been developed in the literature.
One important class of risk-adjusted procedures is based on the likelihood ratio
statistic obtained by testing the odds ratio of mortality. The likelihood ratio statistic
essentially converts the binary surgical outcomes of death and survival into penalty
and reward scores, respectively, that are dependent on the predicted risk of death of a
patient. For cardiac operations, the risk distribution is highly right skewed resulting
in penalty and reward scores in a narrow range for a majority of the patients. This
means effectively there is little risk adjustment for the majority of the patients. We
propose a risk-adjusted statisticwhich is the ratio of surgical outcome to the estimated
probability of death as themonitoring statistic. Themain characteristic of this statistic
is that the resulting penalty score is substantially higher if a patient with low risk
dies, and the penalty score decreases sharply as the risk increases. We compare our
chart with the original risk-adjusted cumulative sum chart in terms of average run
length. Finally, we will perform a retrospective study using data from two surgeons.

Keywords Cumulative sum chart · Logistic regression model · Odds ratio ·
Parsonnet scores · Standardized mortality ratio · Surgical outcomes

1 Introduction

Risk-adjusted control charting procedures have been developed formonitoring surgi-
cal processes in the health care industry. Monitoring surgical outcomes is important
as early detection of deterioration of a surgeon’s performance could lead to a reduc-
tion in surgical failures. The success of a surgical outcome depends on both the
surgeon and the health condition of a patient. A surgeon who operates on mostly
low-risk patients is more likely to have a greater proportion of successful operations.
It is thus naive to use non risk-adjusted charting procedures that were developed for
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monitoring manufacturing processes to monitor the performance of a surgeon. In
order to monitor the performance of a surgeon effectively, the health conditions of
patients must be taken into consideration.

In order to use a risk-adjusted charting procedure, the probability of death of
a patient from an operation will first have to be estimated. The Parsonnet score
developed by Parsonnet et al. (1989) provides an estimate of the risk of death of
a patient from a cardiac operation. Another one is the EuroScoreII developed by
Nashef et al. (2012). A surgical outcome is usually represented by one if a patient
dies within 30 days of an operation and zero otherwise. The binary surgical outcomes
are non risk-adjusted and any charting procedure based directly on them could lead to
incorrect inferences about the performance of a surgeon. The earliest risk-adjusted
charting procedure developed in the literature is the variable life-adjusted display
(VLAD) developed byLovegrove et al. (1997). It accumulates the difference between
estimated probability of death and surgical outcome of a patient. A plot that shows
a change in slope provides evidence that the performance has changed. Treasure
et al. (2004) provided an example of VLADs of six surgeons. One of them shows
a horizontal plot for approximately the first 200 patients and then followed by a
steady drop for the next 80 patients, resulting from the deaths of many of these 80
patients. The surgeon involved was later found to have a cortical visual handicap.
Early detection of this assignable cause could have saved many lives. In the past, the
VLAD lacked a simple signaling rule but Wittenberg et al. (2018) provided a simple
signaling rule based on the V-mask.

An important class of risk-adjusted charting procedures is based on the likelihood
ratio statistic derived by testing the odds ratio of death of a patient. Risk-adjusted
cumulative sum (RA-CUSUM) chart based on this statistic was developed by Steiner
et al. (2000). The likelihood ratio statistic essentially converts the binary surgical
outcomes into penalty and reward scores that are dependent on the health condition
of a patient. The resulting penalty score is the highest when a patient with zero
Parsonnet score dies from an operation. The penalty score decreases with increasing
Parsonnet score. Similarly, the reward score is the lowest if a patient with zero
Parsonnet score survives an operation. The reward score increases with increasing
Parsonnet score. The penalty-reward score derived from the likelihood ratio approach
is logical. However, for monitoring cardiac operations, the risk distribution is highly
skewed to the right and a hospital data set shows that only about 18% of the patients
are in the very high risk group. This results in penalty scores that are close to the
maximum penalty score and reward scores that are close to the minimum reward
score about 82% of the time. This means effectively there is little risk adjustment
about 82% of the time. Consequently, any risk-adjusted charting procedure based
on the likelihood ratio statistic would be making inferences using a risk-adjusted
statistic that is little risk-adjusted about 82% of the time.

In addition to the RA-CUSUM chart, risk-adjusted exponentially weighted mov-
ing average (RA-EWMA) charts have also been proposed. One such chart is the
RA-EWMA chart developed by Grigg and Spiegelhalter (2007) for the exponential
family data. Another risk-adjusted procedure is an updating RA-EWMA chart devel-
oped by Steiner and Jones (2010). It uses penalty-reward scores that are determined
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by the survival times of patients. It is updated using the latest penalty-reward scores
at regular time intervals or when a death occurs. Therefore, this charting procedure
uses the latest information of all patients continuously. Cook et al. (2011) have also
proposed an RA-EWMA charting scheme that is based on the EWMAs of observed
and predicted values. This scheme displays the EWMA of observed values and the
EWMA of expected values separately. Tang and Gan (2018) have developed a RA-
EWMA charting procedure based on multi-responses. An extensive literature review
of risk-adjustment methods for monitoring surgical outcomes is given in Woodall
et al. (2015). A more recent review is given in Sachlas et al. (2019).

In Sect. 2, we introduce a data set consisting of 6994 cardiac patients that we
will use for analysis. We then review the risk-adjustment mechanism based on the
likelihood ratio statistic. Our main objective is to develop a two-sided RA-EWMA
chart for detecting both deterioration and improvement. We will use the ratio of
surgical outcome to estimated probability of death of a patient as the monitoring
statistic. This risk-adjusted statistic is selected because it gives amuchheavier penalty
when a patient with low risk dies as compared to that based on the likelihood ratio
approach. Our proposedRA-EWMAchart is developed in Sect. 3. TheCUSUMchart
is known to have a certain optimality property (Moustakides 1986). We therefore
compare our chart with the RA-CUSUM chart (Steiner et al. 2000) in terms of
average run length (ARL) in Sect. 4. These two charts are then used to analyze two
surgeons’ data in Sect. 5. Finally, a conclusion is given in the last section.

2 Real Dataset and Review of Risk-Adjustment Mechanism

A surgical outcome depends on two main factors: health condition of a patient and
surgical skills of the surgeon who performs the operation. The health condition of a
patient varies from patient to patient. If a surgeon operates on a higher proportion of
high risk patients, a higher proportion of deaths will likely occur. If the monitoring
statistic is the raw surgical outcome, any charting procedure that uses this statistic
without taking the patient’s health condition into consideration would likely show
a deterioration. But this inference is incorrect. For any charting procedure to infer
correctly the performance of a surgeon, the monitoring statistic must, therefore, take
into account the health condition.

One popular measure of the health condition of a cardiac patient is the Parsonnet
score developed by Parsonnet et al. (1989). It is based on an additive scoring system
in which every risk factor such as gender, age, morbid obesity, hypertension, etc. is
given a risk score. The sum of all these scores is the Parsonnet score. The Parsonnet
score ranges from 0 to 148 but in practice, it rarely exceeds 70 as observed from
our data set of 6994 cardiac patients. The higher the Parsonnet score, the higher
the risk of death. The Parsonnet score is categorized into five groups (Parsonnet
et al. 1989; Keogh and Kinsman 2004). A Parsonnet score of 0–4 means low risk
(1% mortality), a score of 5–9 means elevated risk (5% mortality), a score of 10–14
means significantly elevated risk (9% mortality), a score of 15–19 means high risk
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Fig. 1 Frequency distribution of the Parsonnet scores of 6994 patients who underwent cardiac
surgeries from 1992 to 1998

(17% mortality), and a score that exceeds 19 means very high risk (31% mortality).
Figure1 shows the frequency distribution of 6994 patients who underwent cardiac
surgeries from 1992 to 1998. The data set is highly right skewed with 82% of the
patients in the low to high-risk categories and only 18% in the very high-risk category.

We next review how risk adjustment is done using the likelihood ratio approach.
Let the Parsonnet score be denoted by S and its probability mass function f (s).
The surgical outcome is usually determined after 30 days of an operation and it
can be represented by a discrete random variable Y which takes the value one if
a patient dies within 30 days of the operation and zero otherwise. Conditional on
a patient’s Parsonnet score S = s, the probability of death is denoted as P(Y =
1|S = s) = x(s). The joint probability mass function (pmf) of (S,Y ) is then given as
f (s, y) = x(s)y(1 − x(s))1−y f (s), y = 0, 1.Weconsider testing the null hypothesis
H0 : f (s, y) = f0(s, y) against the alternative hypothesis HA : f (s, y) = f A(s, y)
where x(s) = x0(s) under the null hypothesis, and x(s) = xA(s) under the alternative
hypothesis. The nth log-likelihood ratio statistic is given by

Wn = W (Sn) = log( f A(Sn,Yn)/ f0(Sn,Yn)). (1)

Hence, the statistic Wn is obtained by risk-adjusting the surgical outcome Yn using
the Parsonnet score Sn . The joint pmfs under the null and alternative hypotheses are
given by f0(sn, yn) = x0(sn)yn [1 − x0(sn)]1−yn f (sn) and f A(sn, yn) = xA(sn)yn [1 −
xA(sn)]1−yn f (sn), respectively, thus
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wn = w(sn) = log

([
xA(sn)

x0(sn)

]yn[ [1 − xA(sn)]
[1 − x0(sn)]

]1−yn)
. (2)

The statistic wn does not contain f (sn) because the risk distribution is assumed to
be the same for both hypotheses. This is a special result of that given in Tang et al.
(2015a).

The probability of death x(s) of a patient from an operation can be estimated
using a binary logistic regression model fitted with a historical data set of Parsonnet
scores and surgical outcomes. A model fitted with the data set of 6994 patients who
underwent cardiac operations is given by

log

(
x(s)

1 − x(s)

)
= −3.63321 + 0.7367s. (3)

The probability x(s) is the estimated probability of death of a patient with a Parsonnet
score s from an operation assuming the average performance of surgeons in the data
set. This is referred to as the reference surgeon. A particular surgeon’s performance
can be defined in terms of this average performance using the odds ratio of death Q∗
associated with the surgeon as

x∗(s)
1 − x∗(s)

= Q∗
x(s)

1 − x(s)
. (4)

The quantity x∗(s) is the estimated probability of death of a patient with Parsonnet
score s if the patient were to be operated on by this surgeon. The earlier hypotheses
can also be stated in terms of Q as H0 : Q = Q0 versus HA : Q = QA. The odds
ratio of death associated with a surgeon better than one with Q0 will have Q < Q0.
On the other hand, Q > Q0 for a surgeonworse than onewith Q0. By setting Q0 = 1,
x0(s) will be the estimated probability of death of a patient assuming the average
performance of surgeons in the data set.

Supposewewant to derive the likelihood ratio statistic for detecting a deterioration
in performance, we would test H0 : Q = Q0 versus HA : Q = QA with QA > Q0.
Using Eq. (4), we obtain

x0(sn) = Q0 x(sn)/[1 − x(sn) + Q0 x(sn)], (5)

and
xA(sn) = QA x(sn)/[1 − x(sn) + QA x(sn)]. (6)

Using Eqs. (2), (5) and (6), the statistic wn can be written as

wn = log

(
1 − x(sn) + Q0 x(sn)

1 − x(sn) + QA x(sn)

[
QA

Q0

]yn)
. (7)
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Fig. 2 Plots of
log-likelihood ratio statistic
w against the Parsonnet score
s for surgical outcome
y = 0 (survive), 1 (death)

With the logistic regression model in Eq. (3), the probability of death x(sn) can be
estimated, a plot of w against s for Q0 = 1 and QA = 2 can be constructed and
it is displayed in Fig. 2. The statistic Wn is a risk-adjusted statistic of the surgical
outcome Yn and can be interpreted as the penalty-reward score given to a surgeon
for an operation done. Figure2 shows that a patient with a low Parsonnet score
who died will be given a high penalty score and the penalty score decreases as
the Parsonnet score increases. Similarly, a patient with a low Parsonnet score who
survived an operation will be given a small reward score (near zero) and the reward
score increases (a more negative reward is better) as the Parsonnet score increases.
The risk-adjusted cumulative sum (RA-CUSUM) chart developed by Steiner et al.
(2000) uses this statistic as the monitoring statistic.

The log-likelihood ratio approach is appealing because it converts non risk-
adjusted binary surgical outcomes into penalty-reward scores that are risk-adjusted
by the health conditions of patients. This risk-adjustment mechanism results in little
risk adjustment for most of the patients because the underlying risk distribution is
highly right skewed. The reason becomes clearer when we examine the penalty-
reward score with respect to the distribution of the Parsonnet scores. Figure1 shows
that the distribution of Parsonnet scores is highly right skewed such that only about
18% of the patients are in the very high risk category. This means that for about 82%
of the patients, a patientwhodiedwill only result in a risk-adjusted score in the narrow
range of (0.593, 0.669). For a patient who survived, the range of risk-adjusted score
is (−0.093,−0.024). In other words, after risk-adjustment using the log-likelihood
ratio procedure, about 82% of the surgical outcomes still result in approximately
binary outcomes. Thus, any charting procedure that uses the log-likelihood ratio
statistic as the monitoring statistic will not be able to take full advantage of the risk
adjustment mechanism. We propose a new risk-adjustment mechanism in the next
section, one that would transform binary surgical outcomes into a penalty-reward
scheme that givesmore differentiation even for patientswith low risk.Wewill develop
a RA-EWMA charting procedure based on this new risk-adjusted statistic.
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3 Risk-Adjusted EWMA Chart

The traditional standardized mortality ratio (SMR) is a risk-adjusted statistic that
compares the observed number of deaths in a study population to the expected number
of deaths in the study population assuming the death rate of a reference population.
Tang et al. (2015b) considered a new SMR in which the observed number of deaths
in a sample instead of a population, is compared with the estimated number of deaths
in the sample assuming mortality rates in different subgroups of the sample. For a
surgical process, the new SMR is given as

SMR =
n∑

i=1

Yi/
n∑

i=1

Xi , (8)

where Yi is the surgical outcome and Xi is the estimated probability of death of the
i th patient. More details of this SMR can be found in Tang et al. (2015b).

In this paper, we develop an EWMA chart using the risk-adjusted statistic Y/X
as the monitoring statistic. One attractive feature of an EWMA chart is that the
resulting RA-EWMAwill continuously provide updated estimates of μY /μX where
μY = E(Y ) and μX = E(X), as more and more patients are observed. Just like the
log-likelihood ratio statistic, Y/X can also be viewed as a penalty-reward score.
Let x be estimated using the model in Eq. (3). A plot of Y/X against the Parsonnet
score is shown in Fig. 3. The figure shows that the penalty score for death is severe,
especially when the Parsonnet score is small. The penalty score decreases sharply as
the Parsonnet score increases. Unlike the log-likelihood ratio statistic which makes
little risk adjustment for Parsonnet score less than 20, risk adjustment using the
statistic y/x is much more differentiated across the range [0, 20). For a patient who
survives, a reward score of zero is given.

Fig. 3 Plots of y/x against
the Parsonnet score s for
y = 0 (survive), 1 (death)
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The EWMA chart was first developed by Roberts (1959) for detecting small
process shifts. Our RA-EWMA chart is obtained by plotting

In = (1 − λ)In−1 + λYn/Xn, (9)

against the patient number n where λ is a smoothing constant such that 0 < λ ≤ 1.
The starting value I0 can be set as E(In) when the process is in control, which is 1.
It must be emphasized that “in control” here means the performance of a surgeon
being monitored has a performance that is similar to the average performance of
all the surgeons (“the reference surgeon”) whose data were used to fit the logistic
regression model (3). A signal is issued when In < h for detecting improvement or
In > H for detecting deterioration. Using Taylor’s approximation, we can show that

E(In) = E(Yn/Xn) ≈ μY /μX . (10)

It can also be shown using Taylor’s approximation that

Var(In) = λ

2 − λ
[1 − (1 − λ)2n]Var(Yn/Xn)

≈ λ

2 − λ
[1 − (1 − λ)2n]

(
σ 2
X

μ2
Y

μ4
X

+ σ 2
Y

μ2
X

− 2σY X
μY

μ3
X

)
,

(11)

where σY X = Cov(Xn,Yn). The asymptotic variance of In is given by

lim
n→∞ Var(In) ≈ λ

2 − λ

(
σ 2
X

μ2
Y

μ4
X

+ σ 2
Y

μ2
X

− 2σY X
μY

μ3
X

)
. (12)

4 Comparison of Average Run Lengths

In the context of monitoring surgical outcomes, we let R be the number of patients
operated on until a signal is issued by a chart. Therefore, the ARL is defined as the
average number of patients operated on until a signal is issued. If the performance of a
surgeon being monitored has deteriorated from that of the reference surgeon, a small
ARL is desirable so that we will be alerted as soon as possible. We will resample
from our data set to estimate the ARL and control limits of a control chart. This
approach ensures that any results obtained will be reflective of practical scenarios.

Our data set was introduced in Sect. 2 and it contains 6994 cardiac patients oper-
ated on by seven surgeons. Let P6994 denote the population and assume that P6994
is the true population. In addition, we require a historical data set to estimate the
probabilities of death of cardiac patients. Therefore, we first sampled randomly with
replacement 5000 cardiac patients from P6994. We denote this simulated historical
data set as P5000. A histogram of the Parsonnet scores contained in this data set is
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Fig. 4 Frequency distribution of the Parsonnet scores of 5000 patients, P5000 sampled randomly
with replacement from the real data set P6994

shown in Fig. 4. This figure shows that the distribution of the Parsonnet scores is very
similar to that of P6994 as shown in Fig. 2. The logistic regression model fitted using
the data set P5000 is given as

log
( x1
1 − x1

)
= −3.49650 + 0.6986s. (13)

Figure5 shows the plots of x0 and x1 against s. The figure shows that the x1 provides
reasonably good estimate of x0, especially for Parsonnet score less than 40 which
covers almost the entire Parsonnet score population.

When we use the resampling approach to determine the control limits of a chart,
we are assuming P6994 is the true population. The probability x0 calculated using
the logistic regression model in Eq. (3) is thus the true probability of death of a
patient operated on by a surgeon of average performance as characterized by P6994.
We consider a two-sided RA-EWMA chart with lower control limit h and upper
control limit H . In order to use the resampling approach to estimate the ARL of a
RA-EWMA with parameter λ, and control limits h and H for monitoring a surgeon
with true odds ratio of death Q = Q∗, we use the following procedure:

Procedure A—Resampling procedure to obtain a run length of the RA-EWMA
chart

Step 0. Set λ, Q∗, h, H , I0 = 1 and run length R = 0.
Step 1. Sample randomly a Parsonnet score s with replacement from P6994.
Step 2. Given the s sampled in Step 1, calculate the true probability of death x0

using Eq. (3).
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Fig. 5 Plots of probability of death x against the Parsonnet score s, calculated using the logistic
regression models based on the data sets P6994 and P5000

Step 3. Determine the true probability of death x∗ of the patient using Eq. (4)
assuming the performance of a surgeon with Q = Q∗.

Step 4. Generate a number u from the standard uniform distribution. If u ≤ x∗, set
the surgical outcome y = 1, otherwise set y = 0.

Step 5. Given the s sampled in Step 1, estimate the probability of death x1 using
Eq. (13).

Step 6. With y and x1, determine the RA-EWMA, I using Eq. (9).
Step 7. If h < I < H , add one to the run length R and repeat Steps 1–7.Otherwise,

stop the procedure to obtain a run length.

Procedure A can be repeated M times to obtain M run lengths from which the ARL
and standard error of the ARL can be found. Procedure A was used to simulate the
ARL profiles of RA-EWMA charts with parameters λ = 0.05, 0.10, 0.15 and 0.20
for Q = 1/4, 1/3, 2/5, 1/2, 2/3, 5/6, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, and 4.0. They are
displayed in Table1. The control limits of these charts are chosen such that the charts
have the same in-control ARL of 100 when Q = 1.0. The control limits h and H are
chosen such that both one-sided charts have the same ARL.

We would like to compare the performance our RA-EWMA chart with the RA-
CUSUM chart developed by Steiner et al. (2000) based on Page’s CUSUM chart
(Page 1954). A one-sided RA-CUSUM chart is obtained by plotting

Cn = max(0,Cn−1 + Wn), (14)
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against n where C0 = u, 0 ≤ u < H . A signal is issued when Cn > H . We use the
following procedure to simulate a run length of the RA-CUSUM chart:
Procedure B - Resampling procedure to obtain a run length of the RA-CUSUM chart

Step 0. Set Q0, QA, Q∗, H , C0 = 0 and run length R = 0.
Step 1. Sample randomly a Parsonnet score s with replacement from P6994.
Step 2. Given the s sampled in Step 1, calculate the true probability of death x0

using Eq. (3).

Table 1 ARL profiles of two-sided RA-EWMA and RA-CUSUM charts. The number within a
bracket is the standard error of the ARL

Q RA-EWMA chart RA-CUSUM chart

λ = 0.05 0.10 0.15 0.20 Q0 = 1; QA = 5/6 1/2 1/4

Q0 = 1; QA = 1.2 2.0 4.0

h = 0.144 0.023 0.00318 0.000372 h = 0.526 1.439 2.043

H = 2.515 3.934 5.342 6.844 H = 0.463 1.442 2.337

1/4 54.1 53.0 53.5 53.6 60.8 56.7 54.6

(0.08) (0.09) (0.09) (0.09) (0.06) (0.07) (0.08)

1/3 60.4 59.7 60.4 60.0 67.3 63.2 61.6

(0.10) (0.11) (0.11) (0.11) (0.08) (0.09) (0.10)

2/5 66.0 65.4 65.7 65.4 72.7 68.7 67.3

(0.13) (0.13) (0.13) (0.13) (0.09) (0.11) (0.12)

1/2 74.0 73.8 74.6 73.9 80.6 77.6 76.2

(0.15) (0.16) (0.17) (0.17) (0.12) (0.14) (0.15)

2/3 87.8 87.4 87.4 86.4 93.4 91.4 89.9

(0.21) (0.21) (0.22) (0.21) (0.16) (0.19) (0.20)

5/6 97.5 97.0 97.2 95.7 100.6 100.5 98.8

(0.25) (0.25) (0.26) (0.25) (0.19) (0.22) (0.24)

1.0 100.8 100.9 100.5 100.2 100.4 100.6 100.1

(0.27) (0.28) (0.28) (0.28) (0.20) (0.24) (0.26)

1.2 96.7 97.1 97.8 98.6 92.3 92.7 93.0

(0.27) (0.28) (0.28) (0.28) (0.20) (0.23) (0.25)

1.5 80.5 83.7 86.0 87.9 73.9 74.2 76.5

(0.23) (0.25) (0.25) (0.26) (0.17) (0.19) (0.21)

2.0 56.5 60.0 63.0 66.6 51.0 50.1 52.0

(0.16) (0.18) (0.19) (0.20) (0.11) (0.13) (0.14)

2.5 40.8 44.3 47.1 50.4 37.8 36.4 37.3

(0.12) (0.13) (0.14) (0.15) (0.08) (0.09) (0.10)

3.0 31.5 34.2 36.7 40.0 30.2 28.5 28.8

(0.09) (0.10) (0.11) (0.12) (0.06) (0.07) (0.08)

4.0 21.6 23.2 25.0 27.5 21.9 20.4 20.0

(0.06) (0.07) (0.07) (0.08) (0.04) (0.04) (0.05)
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Step 3. Determine the true probability of death x∗ of the patient using Eq. (4)
assuming the performance of a surgeon with Q = Q∗.

Step 4. Generate a number u from the standard uniform distribution. If u ≤ x∗, set
the surgical outcome y = 1, otherwise set y = 0.

Step 5. Given the s sampled in Step 1, estimate the probability of death x1 using
Eq. (13).

Step 6. With y and x1, determine W using Eq. (7) and RA-CUSUM, C using
Eq. (14).

Step 7. If C < H , add one to the run length R and repeat Steps 1–7. Otherwise,
stop the procedure to obtain a run length.

Procedure B can be repeated M times to obtain M run lengths from which the ARL
and standard error of the ARL can found. A similar procedure was developed for
a two-sided RA-CUSUM scheme with control limit h for detecting improvement
and control limit H for detecting deterioration. The two one-sided charts of the
two-sided scheme are chosen such that they have the same in-control ARL. This
procedure was used to generate the ARL profiles of two-sided RA-CUSUM schemes
with parameters determined by H0 : Q = Q0 = 1 versus H1 : Q = QA = 1/4, 1/2,
for detecting improvement, and H0 : Q = Q0 = 1 versus H1 : Q = QA = 1.2, 2.0,
and 4.0 for detecting deterioration. They are also displayed in Table1. The control
limits of these charts are also chosen such that the in-control ARL of a two-sided
scheme is approximately 100when Q = 1.A total ofM = 100, 000 run lengthswere
simulated for each case to estimate the ARL and standard error. The ARL profiles
of the various RA-CUSUM schemes are also displayed in Table1.

Table1 reveals that the RA-CUSUM scheme is more sensitive than the RA-
EWMA scheme in detecting deterioration. For detecting improvement, the RA-
EWMA scheme seems to be slightly better.

Fig. 6 RA-EWMA control chart of surgeon A’s data
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5 Analyses of Surgeons’ Data

In this section, we analyze the data of two surgeons retrospectively using the RA-
EWMA chart that we have developed. The RA-CUSUM chart developed by Steiner
et al. (2000) is also included for comparison. We use the first two years of data of a
surgeon as the phase I data for estimating the probability of death of a patient given
the Parsonnet score. We analyze the same surgeon’s data from the last five years. The
control charts constructed for surgeon A are displayed in Figs. 6 and 7 and charts
constructed for surgeon B are displayed in Figs. 8 and 9. The RA-EWMA charts are
constructed using λ = 0.05 and Q0 = 1 while the RA-CUSUM charts are based on
Q0 = 1 and QA = 1/2 and 2. The control limits displayed are for two-sided schemes
with an in-control ARL of 100.

Fig. 7 RA-CUSUMcontrol charts of surgeonA’s data. The chart on top is for detecting deterioration
and the chart below is for detecting improvement
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Fig. 8 RA-EWMA control chart of surgeon B’s data

A point plotted on a RA-EWMA chart provides an estimate of the mean ratio of
observed deaths to predicted deaths, and hence the chart provides a simple way of
understanding the performance of a surgeon. In comparison, the points plotted on
a RA-CUSUM are harder to interpret. Figure6 shows that the variance of points is
much greater for patients 1–573 than for patients 574–1227. The average EWMA
for patients 1–573 is about 1.15 and drops to 0.79 for patients 574–1227. All these
provide evidence that surgeon A’s performance is below average for patients 1–
573 but better than average for patients 574–1227. A more detailed study shows
that there are short periods within patients 1–573 when surgeon’s A performance
is above average. Similarly, there is also a short period within patients 574–1227
when surgeon A’s performance is below average. The RA-CUSUM provides similar
inferences about the performance of surgeonA. Themost notable difference between
the two charts is the peak at patient number 529 of the RA-EWMA chart which is
caused by the deaths of a few patients with very low risks. This shows that the
RA-EWMA chart reacts more to the deaths of very low-risk patients.

Figures8 and 9 provide strong evidence that the performance of surgeon B has
deteriorated for the second half of the patients. The average EWMA for patients
1–163 is about 0.83 and increases to 1.87 for patients 164–330. The big increase
from 0.83 to 1.87 provides evidence of a significant deterioration in the performance
of surgeon B.
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Fig. 9 RA-CUSUMcontrol charts of surgeonB’s data. The chart on top is for detecting deterioration
and the chart below is for detecting improvement

6 Conclusions

In order to account for the heterogeneity of patients who undergo cardiac operations,
any effective charting procedure for monitoring the performance of a surgeon must
be based on a risk-adjusted statistic. The RA-CUSUM charting procedure developed
by Steiner et al. (2000) is one such procedure. It is based on the likelihood ratio
statistic obtained by testing the odds ratio of mortality. The likelihood ratio statis-
tic essentially converts the binary surgical outcomes into penalty and reward scores
based on the health condition of a patient. For cardiac operations, the risk distribution
is highly skewed to the right and this results in a penalty score that is close to the
maximum penalty and a reward score that is close to the minimum reward most of
the time. Effectively, there is little risk adjustment done most of the time. In this
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paper, we have developed a RA-EWMA charting procedure based on y/x which is
a risk-adjusted statistic that is much more differentiated across the range of Parson-
net scores. This allows the RA-EWMA chart to react much more strongly when a
patient with a low Parsonnet score dies. A comparison between the RA-CUSUM
and RA-EWMA schemes in terms of ARL shows that in general, the RA-CUSUM
scheme has better performance than the RA-EWMA scheme in detecting deteriora-
tion. For detecting improvement, the RA-EWMA scheme seems to be slightly better.
It seems the statistic y/x has not improved the ability to detect a deterioration in the
performance. However, an analysis of two surgeons reveals an important difference
between the two procedures in their signaling mechanisms. The RA-EWMA chart
reacts muchmore strongly to deaths of very low-risk patients. Such patients are more
likely to provide evidence of a deterioration in performance than patients with high
Parsonnet scoreswho died.One could also use aRA-CUSUMchart based on our risk-
adjusted statistic but we have chosen the RA-EWMA chart because the RA-EWMA
is easier to understand for practitioners and the RA-EWMA provides an estimate of
the current performance of a surgeon. Cook et al. (2011) commented that the evi-
dence accumulated by the RA-CUSUM chart is discarded when the RA-CUSUM
chart resets to zero while the influence of previous observations is gradually reduced
in a RA-EWMA chart. This seems more logical and hence easier to be accepted by
health care practitioners.
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Exploring the Usefulness of Functional
Data Analysis for Health Surveillance

Zezhong Wang and Inez Maria Zwetsloot

Abstract Health surveillance is the process of ongoing systematic collection, anal-
ysis, interpretation, and dissemination of health data for the purpose of preventing
and controlling disease, injury, and other health problems. Health surveillance data
is often recorded continuously over a selected time interval or intermittently at sev-
eral discrete time points. These can often be treated as functional data, and hence
functional data analysis (FDA) can be applied to model and analyze these types of
health data. One objective in health surveillance is early event detection. Statistical
process monitoring tools are often used for online event detecting. In this paper, we
explore the usefulness of FDA for prospective health surveillance and propose two
strategies for monitoring using control charts. We apply these strategies to monthly
ovitrap index data. These vector data are used in Hong Kong as part of its dengue
control plan.

Keywords Health surveillance · Functional Data Analysis (FDA) · Functional
Principal Component Analysis (FPCA) · Statistical Process Monitoring (SPM) ·
Control chart · Dengue surveillance

1 Introduction

Health surveillance is the systematic, ongoing assessment of the health of a commu-
nity, based on the collection, interpretation, and analysis of health data, and provides
information necessary for public health decision-making (Teutsch and Churchill
2000). A public health system can both provide an overall understanding of the cur-
rent condition and serve as an earlywarning system for upcominghealth emergencies.
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The surveillance effort often involves both retrospective and prospective studies. In
the retrospective studies, historical data is analyzed to find any correlations between
environments and diseases and to identify clustering of diseases (Tsui et al. 2008). In
the prospective studies, statistical techniques are used to identify anomalies as they
arise (Unkel et al. 2012). One of these techniques for early event detection is the
control chart. Woodall (2006) discussed the application of control charts in health-
care and public health surveillance. In addition, Sonesson and Bock (2003) and Yuan
et al. (2019) provided excellent reviews of prospective health surveillance.

Shmueli and Burkom (2010) and Sparks (2013) discussed challenges of applying
classical statistical techniques to health surveillance. Three identified challenges
are temporal correlation, seasonal influences, and regional clustering, since health
related data are generally collected in different locations over time. In addition, it
is challenging to model the stable normal state of the variable under surveillance,
an essential first step in any statistical surveillance scheme. Characterizing health
related data using univariate distributions or a more general multivariate version is
often not effective. In this paper, we propose to use functional data analysis (FDA)
to deal with these challenges, as health data can often be represented by a curve (or
profile). Woodall (2006) also recommended the application of profile monitoring in
health surveillance.

Frequently, health related data are collected intermittently at several discrete time
points. Due to the seasonality, a single function cannot fully capture these patterns.
An alternative is to model health data using FDA, which treats each profile as a linear
combination of multiple functions, the set of basis functions (Ramsay et al. 2009).
Figure1 shows two examples of data that can be modeled using FDA techniques. In
Fig. 1a, the total cholesterol level, an important risk factor of stroke, was recorded
seven times for each of 27 stroke patients (Qiu and Xiang 2014). Figure1b shows
the heights of 10 girls measured at a set of 31 unequally spaced ages in the Berkeley
Growth Study (Ramsay et al. 2009). Ullah and Finch (2013) provided a systematic
review of functional data analysis applications. About 40 out of the 84 included arti-
cles are in the health domain. The authors classify the articles by the FDA features as
well as by the objectives of the study. The included papers focus on classification and
forecasting based on historical data, but none considered online prospective moni-
toring. Hence, prospective methods are not as developed as retrospective methods
in FDA applications. Online monitoring is necessary to detect abnormal behavior in
disease data as early as possible so that actions can be taken to reduce the influence
of emergencies. Therefore, in this paper, we propose an online monitoring method
based on FDA, as far as we are aware this is the first work using FDA for prospective
health surveillance.

Statistical process monitoring tools, including the control chart, are useful for
prospective studies. Originally used in industry, these techniques have been applied
in health surveillance as well (Woodall 2006; Qiu and Xiang 2014). An underlying
assumption of control charts is that the process under surveillance is stable except
for when anomalies occur. As illustrated in Fig. 1a, health data are rarely stable. In
this paper, we propose a two-step procedure; first we model the health data using
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(a) Total Cholesterol Level (b) Growth Data

Fig. 1 a Total cholesterol level of 27 stroke patients, reproduced from Qiu and Xiang (2014),
published with permission of © Taylor & Francis Ltd (www.tandfonline.com); bGrowth data of 54
girls, reproduced from Ramsay and Silverman (2005), p2, reprinted by permission of © Springer
Science+Business Media, Inc. 2005

FDA, and next we set up a control chart based on either the functional principal
components or the residuals to detect changes online.

We illustrate our proposed FDA control chart using a case study fromHongKong.
We are interested in prospective surveillance of the monthly ovitrap index (MOI).
This index measures the presence of adult Aedine mosquitoes in Hong Kong. These
mosquitoes transmit dengue. Hence, surveillance of MOI is a part of the Hong Kong
dengue prevention strategy. We are able to detect an increase in MOI in July 2018.
In August 2018, Hong Kong suffered a dengue outbreak.

This paper is organized as follows: In Sect. 2, we introduce FDA. In Sect. 3, we
develop the FDA based monitoring methods. In Sect. 4, we showcase our methods
using the MOI case study. In Sect. 5, we conclude and give some potential future
research directions.

2 Functional Data Analysis

Annual incidence and monthly number of cases are typical health data with seasonal
variation. FDA methods are able to model the trend and periodicity of data using a
set of basis functions. FDA has been widely used in retrospective studies. Erbas et al.
(2007) used FDA and functional principal components analysis (FPCA) to model
the age-specific breast cancer mortality time trends as curves. Based on that, they
estimated the mortality by forecasting the coefficients of the fitted function. In this
section, we provide a brief introduction to FDA and FPCA methods according to
Ramsay et al. (2009), all the computations can be achieved using the package “ f da”
in R.

www.tandfonline.com
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In FDA, the response variable Y can be represented by a set of time depended
functions x(t). For one single curve y, the observation value at time point t j can be
expressed as: y j = x(t j ) + ε j , j = 1, 2, ..., n. Error ε j is assumed to follow a normal
distribution with a mean equal to 0. The function x(t) is the weighted summation of
basis functions φk(t) defined on the time interval from t1 to tn

x(t) =
K∑

k=1

ckφk(t) = c′φ(t) (1)

where K is the number of basis function, c′ is the coefficient vector with K elements,
and φ(t) is the column vector containing K basis functions. Various basis functions
are used in FDA; such as Fourier basis, B-spline, and Wavelets. Fourier basis and
Wavelets are effective to model data containing seasonality. The Fourier basis is a
set of sinusoidal functions and cosine functions,φ1(t) = 1, φ2(t) = sinωt, φ3(t) =
cosωt, φ4(t) = sin 2ωt, φ5(t)= cos 2ωt ..., where ω=2π/n. Ratcliffe et al. (2002)
applied Fourier basis functions to model the periodically stimulated fetal heart rate
data since the data was roughly periodic.

Coefficient vector c′ is estimated by minimizing the sum of square error
∑n

j=1

[y j − x(t j )]2. Butwhen the number of basis functions K is large, overfitting becomes
a risk. To avoid this, Ramsay et al. (2009) recommended adding a roughness penalty
to the least squares criterion

F(c) =
∑

j

[y j − x(t j )]2 + λ

∫
[Lx(t)]2dt (2)

where λ is the smoothing parameter and
∫ [Lx(t)]2dt is the roughness penalty. L

indicates an operator of x(t). One popular roughness penalty is the square of the
second derivative (D2), that is

∫ [Lx(t)]2dt = ∫ [D2x(t)]2dt . For periodic func-
tions expressed by Fourier basis with known ω, harmonic acceleration operator
Lx(t) = ω2Dx(t) + D3x(t) is recommended (Ramsay et al. 2009). The value of
λ is usually selected using generalized cross-validation (GCV), some details are
given in Appendix A. Now, c can be estimated by minimizing Eq. (2) subject to
Eq. (1). This gives us the following fitted function:

x(t) = ĉ′
φ(t) (3)

Generally, multiple curves are observed and modeled as yi j = xi (t j ) + εi j by FDA.
Where i = 1, 2, ..., N , j = 1, 2, ..., n, yi j is the j-th observation on the i-th curve
yi . It can be represented in matrix notation as

Y = ΦC + ε (4)
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where Y is the n × N observation matrix, Φ is the n × K matrix of basis functions,
C is the K × N coefficient matrix, and ε is the error matrix. The mean curve and
variance among N samples can be computed as follows:

x̄(t) = N−1
∑

i

xi (t) and S2x(t) = (N − 1)−1
∑

i

[xi (t) − x̄(t)]2 (5)

And the covariance between two fitted values, xi (s) at time s and xi (t) at time t , is
estimated by

υ(s, t) = (N − 1)−1
∑

i

[xi (s) − x̄(s)][xi (t) − x̄(t)] (6)

Note that N here is the number of curves in the baseline sample, also referred to as
phase I sample. These are used to obtain the model which can be used for prospective
surveillance of those curves index N + 1, N + 2, ...

Functional principal component analysis (FPCA) is a commonly used dimension
reduction technique to capture the primary modes of variation in functional data.
It shares similar functions and calculation steps with principal component analysis
(PCA). But FPCA is different from PCA in some critical aspects. First, FPCA can
deal with high-dimensional data and even with infinite dimension. Second, in FPCA,
a principal component is represented by an eigenfunction instead of an eigenvector.
Third, FPCA is used to deal with time series data, so the order of data is important and
immutable. After applying FPCA, infinite dimensional functional data is transformed
to a finite dimensional vector of random scores (Wang et al. 2015). Leng and Müller
(2005) modeled individual temporal gene expression profile by using FPCA.

After modeling all samples using Eq. (4), FPCA can be applied to explain themost
significant variation among the curves. FPCA is defined as searching for eigenvalues
μp and corresponding eigenfunctions ξp(t), p = 1, 2, 3.... for covariance function
υ(s, t) by calculating ∫

υ(s, t)ξp(t)dt = μpξp(s) (7)

subject to the orthogonality constraints
∫

ξp(t)ξ	(t)dt = 0, where 	 and p are two
unequal positive integers, and size restriction

∫
ξ 2
p(t)dt = 1. The value of μp indi-

cates the importance of corresponding principal component ξp(t).
The principal component score for curve i based on ξp(t) is calculated as

ρi p(xi − x̄) =
∫

ξp(t)[xi (t) − x̄(t)]dt. (8)

We simplify ρi p(xi − x̄) into ρi p in the following chapter.
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3 FDA Based Statistical Process Monitoring

After defining the normal pattern of the baseline data using FDA,we need to construct
an online monitoring system to compare the incoming observations with this normal
behavior. Control charts, one popular technique in prospective studies, have been
widely used to detect abnormalities in health surveillance. Joner et al. (2008) pro-
posed a one-sided MEWMA control chart for spatial surveillance under the assump-
tion of no seasonal effects. Jackson et al. (2007) compared the performances of three
control chart based statistics, two EWMA methods, and a generalized linear model
(GLM) in health surveillance. Their results showed a relatively poor performance of
the control chart methods since it excluded the day-of-week trends. Whenever the
seasonality and trend can be described by FDA, we proposed to use control charts to
detect any deviations within or between the functional data samples. In this section,
we propose two different monitoring strategies, one for a whole curve, another for
the individual observations, to detect both global and local changes.

3.1 Control Chart for a Whole Curve

The first strategy is for monitoring a whole curve. For example, in our case study, we
might wish to know if the MOI levels in a whole year are different than the baseline.
Since the samples are curves, they may vary in amplitude and may have varying
deviations compared to the normal state. By using FPCA, the diversities among
curves are summarized and expressed using eigenfunctions ξp(t) and eigenvalues
μp. From the N baseline curves, we compute the eigenfunctions by Eq. (7). Next for
the prospective monitoring, we use the same basic functions to model new curves
out of the N baselines as xi (t), i ≥ N + 1. And the principal component scores of
each new curve are computed by Eq. (8).

Since the number of principal components for functional data is infinite, after
calculating enough eigenpairs, we recommend sorting the principal components by
their eigenvalues in descending order. Then selecting the first 	 principal components,
that is, the cumulative sum of 	 eigenvalues that account for more than 90% of the
summation of all eigenvalues should be kept. This step is necessary to reduce the
dimension and simplify the sequential analysis.

Now, each profile can be estimated as a linear combination of the first 	 eigen-
functions, where the coefficients are corresponding FPCA scores ρi p, p = 1, 2, ...	:

ŷi(	) = ȳ + ρi1ξ1 + ρi2ξ2 + · · · + ρi pξp + · · · + ρi	ξ	 (9)

where ȳ = ∑N
i=1 yi is the mean curve of N baselines. Colosimo and Pacella (2010)

applied FPCA to monitor roundness profile. They used a T 2 control chart for mon-
itoring the eigenvalues μp and scores ρi p of FPCA. This T 2 chart was originally
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proposed by Jackson (2005), and can detect shifts related to the first 	 principal
components. The charting statistic is equal to

T 2
i = ρ2

i1

μ1
+ ρ2

i2

μ2
+ · · · + ρ2

i p

μp
+ · · · + ρ2

i	

μ	

. (10)

The upper control limit of the T 2 statistic in Eq. (10) can be calculated as

UCL = χ2
α,	 (11)

Once the T 2 chart signals an outbreak, that means the shift occurs in one or more
principal components of the data. Sincewe only keep the first 	 principal components,
the T 2 is not able to detect changes that occur in an orthogonal direction to those
components. In order to handle this issue, a control chart based on the Q statistic
(Squared Prediction Error) is used complementary to the T 2 chart (Jackson 2005).
The Q statistic, can be calculated by summing the squared errors, and is defined as

Qi =
∫

( yi − ŷi(	))
2dt (12)

The sample mean Q̄ and sample variance σ̂ 2
Q of the Q statistics are computed from

the N baseline curves. The upper control limit of the Q chart is

UCL = gχ2
α,h (13)

where g and h are computed as ĝ = σ̂ 2
Q/(2Q̄), ĥ = 2Q̄2/σ̂ 2

Q . For more details, see
Colosimo and Pacella (2010).

3.2 Control Chart for Individual Observations

Two downsides ofmonitoring based on awhole curve, as proposed above, are that (1)
you need to collect the whole curve of data causing potential detection delay, and (2)
when shifts occur locally theymay go undetected as they get “absorbed” in the whole
curve. In these situations, monitoring incoming individual observations can possibly
speed up change detection. We propose a Shewhart control chart for monitoring
observations as they come in. We apply the control chart in three steps. Firstly, we
need to remove the systematic effects from the data by calculating the residuals ri j =
yi j − x̄i (t j ). Next, the standard deviations σ for the residual needs to be estimated,
one can either use the sample standard deviation or a robust estimator. The choice
depends on the application. Finally, a control chart is designed for monitoring the
residuals. The control limits are decided to achieve a specific false alarm rate α,
for more details see Sect. 3.3. Here we assume the residuals follow approximately
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a normal distribution with mean 0. So the control limits are ±Zα/2σ̂ , where Zα/2 is
the 100(1 − α/2) percentile of the standard normal distribution.

3.3 Performance Measurement

In order to set up the chart introduced above, the control limits need to be set. To
decide on the control limits for the surveillance system, Fricker (2013) recommended
a metric called the average time between false signals (ATFS). ATFS is the mean
number of time periods it takes for the early event detection method to resignal
after a signal, given that there are no outbreaks. Which is similar to the average run
length ARL in SPM. The relationship between the ATFS and the false alarm rate α

is AT FS = 1/α. We illustrate the usefulness of this method in our case study.
There are two other metrics for measuring the performance of temporal surveil-

lance system, they are the conditional expected delay (CED) and the probability
of successful detection (PSD). CED represents the mean number of time periods
it takes for the method to first signal, given that an outbreak is occurring and that
the method signals during the outbreak. PSD is the probability the method signals
during an outbreak, where the probability of detection is both a function of the early
event detection method and the type of outbreak. For more discussion about these
two concepts see Fricker (2013).

4 Case Study

In this section, we illustrate the proposedmethods using dengue surveillance in Hong
Kong. Dengue is an arboviral disease, which is transmitted by female mosquitoes.
According to the World Health Organization (2019), the number of dengue cases
reported increased from 2.2 million in 2010 to 3.2 million in 2015, and the number
of the affected countries increased from 9 in 1970 to 100 in 2018. ’There were 2.35
million dengue cases reported in America in 2015. Among them, 10,200 cases were
diagnosed as severe dengue and 1181 of them died. In Hong Kong, the Department
of Health (2019) reports the monthly statistics on dengue fever. In August 2018, they
reported 29 local cases, which is the largest outbreak since the government began
keeping records. There is no effective dengue vaccine, so the real-time surveillance
and reliable prediction of an outbreak becomes crucial.

Current research in dengue surveillance focuses on retrospective studies. Gener-
ally, meteorological data and incidence data are used to analyze influence factors
of dengue and forecast the future outbreaks. Buczak et al. (2012, 2014) used fuzzy
association rules to analyze the relationship between dengue incidences and meteo-
rological data in Philippines and Peru, and to predict outbreaks. Althouse et al. (2011)
used various methods to predict incidence and forecast outbreaks in Singapore and
Bangkok. Ramadona et al. (2016) used dengue cases and climate data in Indonesia to
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project outbreaks by generalized linear regressionmodel. Goto et al. (2013) analyzed
the effects of meteorological factors on dengue incidence in Sri Lanka and showed
that temperatures and rainfalls did not significantly affect dengue incidences. Over-
all conclusions on the relationship between incidence and meteorological data are
inconsistent. Lin (2018) established a dengue surveillance system based on spatio-
temporal scan statistics to track dengue outbreaks in Taiwan with risk factors. Also
in Taiwan, Yuan et al. (2019) developed a Poisson regression model with extreme
weather parameters for the prediction of annual dengue incidence. Chen et al. (2019)
used an EWMA control chart to monitor the dengue incidence in Singapore. In our
case, we use a new type of data, MOI, as an underlying factor of dengue outbreaks
in Hong Kong. We apply the proposed prospective method to detect and signal any
abnormal behaviors.

4.1 Data Description

Since 2000, the Food and Environmental Hygiene Department in Hong Kong (2019)
started using Oviposition Trap (Ovitrap) to detect the presence of adult Aedine
mosquitoes in selected areas. Aedes albopictus is the main vector in the transmission
of dengue virus. These devices can be used to estimate the population of adult Aedes
mosquitoes in the selected areas and act as an early warning signal of impending
dengue outbreaks (Ai-Leen and Song 2000). Area ovitrap index for Aedes albopic-
tus (AOI), which indicates the extensiveness of the distribution of Aedinemosquitoes
in a predefined area, can be calculated as

Ovi trap Index f or Aedes albopictus (AOI ) =
Number of the Aedes − posi tive ovi traps

T otal number of ovi traps retrieved f rom a particular area
× 100%

In this case, we are more interested in the overall situation of Aedes albopictus in
Hong Kong, so we average the AOI across areas and name the new index as monthly
ovitrap index for Aedes albopictus (MOI).

Monthly Ovi trap Index f or Aedes albopictus (MOI ) =
∑

AOI ÷ Number of Areas

The MOI data is available from 2005 to 2018. Figure2a shows the annual curves
of MOI. They show significant seasonality, the MOI maintains a low level in spring
and winter and approach their maximum value in summer. This trend is consistent
with the habits of Aedes albopictus and the Hong Kong climate. The monthly local
cases of dengue are recorded and published by the Department of Health of Hong
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(a) MOI Data (b) Local Dengue Case

Fig. 2 a Monthly Ovitrap Index from 2005 to 2018; b Local dengue cases from 2006 to 2018

Kong. From Fig. 2b, we find that the local dengue cases kept at a low level from 2006
to 2017. But there are 29 local cases in 2018, the largest outbreak in Hong Kong.

4.2 Fitted MOI by Functional Data Analysis

The inherent seasonality in MOI is obvious, so we apply a Fourier basis to the
MOI data. We collect 14 years of MOI data and use the “ f da” package in R to
generate 7 Fourier basis to smooth these data. As for the roughness penalty in Eq. (2),
harmonic acceleration Lx(t) = ω2Dx(t) + D3x(t) recommended in Ramsay and
Silverman (2005) is used for our periodic MOI data. The smoothing parameter is set
at λ = 10−1.4 through minimizing the cross-validation, more details on the selection
of λ can be found in Appendix A. The fitted MOI curves displayed in Fig. 3a are the
monitoring objects.

(a) Fitted MOI per Year (b) Fitted Mean MOI

Fig. 3 a Fitted MOI data in Hong Kong from 2005 to 2018; b Mean Curve of Fitted MOI data in
Hong Kong from 2008 to 2016
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From Figs. 2a and 3a, the peak value of MOI in 2007 obviously exceeds other
years, and the 2006 curve shows a small peak in October. These two abnormal
curves could affect the estimation of normal state of MOI, so we use the mean curve
from 2008 to 2016 to model the normal MOI pattern, the resulting mean curve is
shown in Fig. 3b. We treat it as a baseline in the following monitoring process.

4.3 Implementation of Control Chart

Before constructing control charts for whole curves, we apply variance-covariance
analysis (Eq. (6)), the 12 × 12 variance-covariance matrix is plotted as a surface in
Fig. 4a, and as a contour plot in Fig. 4b. These two figures show that the most signifi-
cant variance-covariance appears in June to September. Other than these months, the
covariance between two neighboringmonths is negligible, whichmeans the temporal
correlation has almost no influence in winter and spring.

Based on the variance-covariancematrix, the eigenfunctions ξp(t) and eigenvalues
μp can be calculated. The first three eigenfunctions and the type of variance they
explain are shown in Fig. 5. These three figures display the mean curve along with
+’s and −’s indicating the consequences of adding and subtracting a small amount
of corresponding principal components. The first principal component shows that
the variance in the second half of the year contributes 77.2% to the overall variance.
The second and third principal component are not as significant as the first one,
but they totally explain about 20% variance. These results are consistent with the
variance-covariance plots in Fig. 4.

These three principal components totally represent 96.5% variance, so we build a
T 2 and Q control chart based on them. We retrospectively monitor the MOI profiles
of 2008–2016 and also include prospectively 2017 and 2018. To set the control limits
we set ATFS at 10 years, as we believe this is a reasonable average time between two

(a) Variance-Covariance Surface (b) Contour Plot

Fig. 4 a Monthly variance-covariance across years; b Contour plot, as a complement of variance-
covariance surface
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(a) PCA 1 (b) PCA2 (c) PCA3

Fig. 5 First three principal components for the MOI data 2008–2016

(a) T Square Chart (b) Q Chart

Fig. 6 Control chart for monitoring the full MOI curve per year

false signals, the false alarm rate, therefore, is set at α = 0.1. The false alarm rate
for each control chart is α = 1 − √

1 − 0.1 ≈ 0.051 (Colosimo and Pacella 2010).
The T 2 control chart with control limit UCL = χ2

0.051,3 = 7.77 is shown in Fig. 6a.
The control limit of the Q chart is UCL = 0.000722 calculated by Eq. (13).

As shown in Fig. 6, neither the T 2 chart nor the Q chart show a signal in 2018.
If we would detect a signal on the T 2 or Q chart, it would indicate a change in
the functions’ shape. The T 2 chart would detect a change associated with the 	 = 3
selected principal components. A signal could indicate an abnormal year or a change
in the underlying structure of the data which means the phase I analysis might need
updating. The Q chart detects an out-of-control signal in 2013, which indicates a
change that can not be explained by the 3 principal components. There were no local
dengue cases reported in that year. We compare the fitted MOI curve in 2013 with
the mean curve, see Appendix B, and find a downward shift from July to October.
That is why the Q chart detects a signal. As we are more interested in an upward shift
in MOI, this signal does not have practical importance. The FPCA based strategy for
a whole curve is ineffective in this case in detecting the 2018 outbreak.

We also apply the Shewhart chart to monitor individual observations. The his-
togram and Q-Q plot for the residuals from 2008 to 2016 are shown in Fig. 7.
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(a) Histogram of Residual (b) Q-Q Plot

Fig. 7 Histogram and Q-Q plot for the residuals from 2008 to 2016

Fig. 8 The Shewhart control chart based on robust standard deviation from 2017–2018

In Fig. 7b, the residuals show heavy tails. So we estimate the standard deviation
by a robust estimator proposed by Tatum (1997). We implement this estimator by
setting the tuning constant at 10, and the normalizing constant at 1.035. The estimated
standard deviation σ̂ is 0.012. In this case, the expected ATFS is set at 120 months
(10 years), so α = 1

120 , and the control limits are ±Zα/2σ̂ = ±0.0321.
The Shewhart control chart in Fig. 8 shows two signals, one in May 2017, another

in July 2018. However, there is only one local dengue case reported in August 2017.
We also check the original AOI data and find that some locations have significantly
higher AOI values than expected. So we can classify the alarm as legitimate, because
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of the higherMOI level. This method is an indirect way tomonitor dengue outbreaks.
As we mentioned before, there were 29 dengue cases in August 2018, and the signal
appears one month earlier than the real outbreak.

5 Conclusions

The purpose of this study is to develop a prospective method for health surveillance
specifically for dengue monitoring.We have developed and described two functional
data analysis-based strategies for temporal health surveillance. Since FDA can treat
missing observations easily, and the balance between smoothness and accuracy can
be controlled manually, it is a powerful method to model unstable health related data.
In this study, we propose two different FDA based monitoring strategies to cope with
continuous data and sparse data separately.

For the sparse data, to avoid the detection delay caused by collecting a whole
curve, we propose a strategy for individual observations. We construct a Shewhart
control chart for residuals, using FDA to estimate the underlying baselinemodel. The
residuals of MOI data have heavy trails, so we use a robust estimator proposed by
Tatum (1997) to estimate the standard deviation of residuals. Our proposed method
can detect a dengue outbreak one month in advance (July 18). The proposed surveil-
lance system for individual observations is effective in detecting a dengue outbreak
one month early.

If the whole curve can be collected within a short time, such as the example in
Colosimo and Pacella (2010), the FPCAbased control charts can be used to detect the
shifts of curves. This surveillance system can both detect the variation explained by
principal components and the changes in its orthogonal directions. In the case study,
there is no signal in both T 2 chart and Q chart indicating this strategy is insensitive
to local shifts in the MOI data.

One drawback of the current study is that the FDA model for MOI has a small
negative value in February (see Fig. 3b). Obviously, negative MOI values are impos-
sible. Themodel could be adjusted to fit only for positive values through, for example,
a logarithm transformation of the data. However, this strategy would influence the
set-up and evaluation of the proposed control charts, because of the corresponding
changes in PCA’s and the MOI model. Therefore, we leave this issue for future
research.

Another issue in this method is that there is not a one-to-one correspondence
between changes in AOI level and dengue outbreaks. Outbreaks can occur with
normal levels of AOI, also high levels of AOI do not mean outbreaks are going to
happen. Nevertheless, vector monitoring can give a strong indication of possible
outbreaks and can give us an earlier warning of possible dengue outbreaks than
monitoring dengue incidence directly. In addition to monitoring the deviations from
the normal AOI pattern, multiple constant thresholds can be used tomonitor different
AOI levels. This implies that in winter months, an increase in AOI level would not
be of interest.
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One benefit of using FDA is that it can treat missing observations easily. For the
follow-up study, we will focus on the usefulness of FPCA based control chart for
sparse health data. And a limitation of this study is that it only considers average
AOI data. Incorporation of spatial data into the FDA model may make the method
more sensitive as well.
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Appendix A: Choosing Smooth Parameters

The generalized cross-validation method, developed by Craven and Wahba (2013),
is used to determine the smoothing parameter in (2). The GCV for one curve is
defined as

GCV (λ) =
( n

n − d f (λ)

)( SSE

n − d f (λ)

)
, (14)

where SSE is the sum of squared error calculated by

SSE(x) =
n∑

j

[y j − x(t j )]2

and where d f (λ) is the degree of freedom of the fit defined by λ and com-
puted as d f (λ) = trace[H(λ)]. Where H(λ) = Φ(ΦTΦ + λR)−1ΦT , and R =∫
Lφ(t)Lφ′(t)dt is the symmetric roughness penalty matrix with order K .
In the case study, we predefined K = 7, and choose λ subject to it minimized

the GCV as given in (14). Figure9 illustrates how to choose smoothing parameter λ

given the GCV values. Based on this, we select λ = 10−1.4 (as log(λ) = −1.4).

Appendix B: Verify the Signal in Q Chart

We plot the mean cure shown in Fig. 3b and the fitted MOI curve of 2013 on Fig. 10.
We can see the significant differences between these two lines showed in July and
August, but reviewing the principal components in Fig. 5, it seems none of three
principal components can capture the shifts in 2013 perfectly.
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Fig. 9 The value of the GCV as a function of λ the smoothing parameter for fitting the MOI curve

Fig. 10 The comparison between mean curve and fitted MOI in 2013
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Abstract In many bio-surveillance and healthcare applications, data sources are
measured from many spatial locations repeatedly over time, say, daily/weekly/
monthly. In these applications, we are typically interested in detecting hot-spots,
which are defined as some structured outliers that are sparse over the spatial domain
but persistent over time. In this paper, we propose a tensor decomposition method
to detect when and where the hot-spots occur. Our proposed methods represent the
observed raw data as a three-dimensional tensor including a circular time dimen-
sion for daily/weekly/monthly patterns, and then decompose the tensor into three
components: smooth global trend, local hot-spots, and residuals. A combination of
LASSO and fused LASSO is used to estimate the model parameters, and a CUSUM
procedure is applied to detect when and where the hot-spots might occur. The use-
fulness of our proposed methodology is validated through numerical simulation and
a real-world dataset in the weekly number of gonorrhea cases from 2006 to 2018 for
50 states in the United States.
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1 Introduction

Inmany bio-surveillance and healthcare applications, data sources aremeasured from
many spatial locations repeatedly over time, say, daily, weekly, or monthly. In these
applications, we are typically interested in detecting hot-spots, which are defined
as some structured outliers that are sparse over the spatial domain but persistent
over time. A concrete real-world motivating application is the weekly number of
gonorrhea cases from 2006 to 2018 for 50 states in the United States, also see the
detailed data description in the next section. From the monitoring viewpoint, there
are two kinds of changes: one is the global-level trend, and the other is the local-level
outliers. Here we are more interested in detecting the so-called hot-spots, which are
local-level outliers with the following two properties: (1) spatial sparsity, i.e., the
local changes are sparse over the spatial domain; and (2) temporal persistence, i.e.,
the local changes last for a reasonably long time period unless one takes some actions.

Generally speaking, the hot-spot detection can be thought as detecting sparse
anomaly in spatio-temporal data, and there are three different categories of method-
ologies and approaches in the literature. The first one is LASSO-based control chart
that integrates LASSO estimators for change point detection and declares non-zero
components of the LASSO estimators as the hot-spot, see Zou and Qiu (2009), Zou
et al. (2012), Saltyte Benth and Saltyte (2011). Unfortunately, the LASSO-based
control chart lacks the ability to separate the local hot-spots from the global trend of
the spatio-temporal data. The second category of methods is the dimension reduction
based control chart where one monitors the features from PCA or other dimension
reduction methods, see De Ketelaere et al. (2015), Louwerse and Smilde (2000),
Hu and Yuan (2009). The drawback of PCA or other dimension reduction meth-
ods is that it fails to detect sparse anomalies and cannot take full advantage of the
spatial location of hot-spot. The third category of anomaly detection methods is the
decomposition-based method that uses the regularized regression methods to sepa-
rate the hot-spots from the background event, see Tran et al. (2012), Yan et al. (2017,
2018). However, these existing approaches investigate structured images or curves
data under the assumption that the hot-spots are independent over the time domain.

In this paper, we propose a decomposition-based anomaly detection method for
spatial-temporal data when the hot-spots are autoregressive, which is typical for time
series data.Ourmain idea is to represent the rawdata as a 3-dimensional tensor: states,
weeks, years. To bemore specific, at each year, we observe a 50 × 52 datamatrix that
corresponds to 50 states and 52 weeks (we ignore the leap years). Next, we propose
to decompose the 3-dimension tensor into three components: Smooth global trend,
Sparse local hot-spot, and Residuals, and term our proposed decomposition model as
SSR-Tensor. When fitting the observed raw data to our proposed SSR-Tensor model,
we develop a penalized likelihood approach by adding two penalty functions: one
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is the LASSO type penalty to guarantee the sparsity of hot-spots, and the other is
the fused-LASSO type penalty for the autoregressive properties of hot-spots or time-
series data. By doing so, we are able to (1) detect when the hot-spots occur (i.e.,
the change point detection problem); and (2) localize where and which type of the
hot-spots occur (i.e., the spatial localization problem).

We would like to acknowledge that much research has been done on modeling
and prediction of the spatio-temporal data. Some popular time series models are
AR, MA, ARMA model, etc., and the parameter can be estimated by Yule–Walker
method (Hannan and Quinn 1979), maximum likelihood estimation or least square
method (Hamilton 1994). In addition, spatial statistics have also been extensively
investigated on its own right, see Reynolds and Madden (1988), Lichstein et al.
(2002), Lan et al. (2014), Elhorst (2014), Call and Voss (2019) for examples. When
one combines time series with spatial statistics, the corresponding spatio-temporal
models generally becomemore complicated, see (Zhu et al. 2005; Lai and Lim 2015;
Diggle 2013) for more discussions.

In principle, it is possible to represent the spatio-temporal process as a sequence of
random vector Yt with weekly observation t , where Yt is p-dimensional vector that
characterize the spatial domain (i.e., spatial dimension p = 50 in our case study).
However, such an approach might not be computationally feasible in the context of
hot-spot detection, in which one needs to specify the covariance structure of Yt , not
only over the spatial domain, but also over the time domain. If we write all data into
a vector, then the dimension of such vector is 50 × 52 × 13 = 33, 800, and thus the
covariance matrix is of dimension 33, 800 × 33, 800, which is not computationally
feasible, see Reinsel (2003), Tsay (2013) for more details. Meanwhile, under our
proposed SSR-Tensor model, we essentially conduct a dimensional reduction by
assuming that such a covariance matrix has a nice sparsity structure, as we reduce
the dimensions 50, 52 and 13 to much smaller numbers, e.g., AR(1) model over the
week or year dimension, and local correlation over the spatial domain.

We acknowledge that here we follow the standard time series literature to conduct
Phase I analysis when the full data set is available to detect the hot-spots.We feel that
our proposed tensor model has a potential to be extended from Phase I to Phase II
analysis by extending our algorithms from off-line to online/recursive forms. How-
ever, such extension is non-trivial, and is beyond the scope of this paper. In addition,
while our paper focuses only on 3-dimensional tensor due to our motivating appli-
cation in gonorrhea, our proposed SSR-Tensor model can easily be extended to any
d-dimensional tensor or data with d ≥ 3, e.g., when we have further information,
such as the unemployment rate, economic performance, and so on. As the dimen-
sion d increases, we can simply add more corresponding bases, as our proposed
model uses basis to describe correlation within each dimension, and utilizes tensor
product for interaction between different dimensions. The capability of extending to
high-dimensional data is one of the main advantages of our proposed SSR-Tensor
model. Furthermore, our proposed SSR-Tensor model essentially involves block-
wise diagonal covariation matrix, which allows ut to develop computationally effi-
cient methodologies by using tensor decomposition algebra, see Sect. 5.2 for more
technical details.
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The remainder of this paper is as follows. Section2 discusses and visualizes the
gonorrhea dataset, which is used as our motivating example and in our case study.
Section3 presents our proposed SSR-Tensor model, and discusses how to estimate
model parameters from observed data. Section4 describes how to use our proposed
SSR-Tensor model to find hot-spots, both for temporal detection and for spatial
localization. Efficient numerical optimization algorithms are discussed in Sect. 5.
Our proposed methods are then validated through extensive simulations in Sect. 6
and a case study in gonorrhea dataset in Sect. 7.

2 Data Description

To protect Americans from serious disease, the National Notifiable Disease Surveil-
lance System (NNDSS) at the Centers for Disease Control and Prevention (CDC)
helps public health monitor, control, and prevent about 120 diseases, see its web-
site https://wwwn.cdc.gov/nndss/infectious-tables.html. One disease that receives
intensive attention in recent years is gonorrhea, due to the possibility of multi-drug
resistances. Historically the instances of antibiotic resistance (in gonorrhea) have
first been in the west and then move across the country. Since 1965, the CDC has
collected the number of cumulative new infected patients every week in a calendar
year. There are several changes on report policies or guidelines, and the latest one is
year 2006. As a result, we focus on the weekly numbers of new gonorrhea patients
during January 1, 2006 and December 31, 2018. The new weekly gonorrhea cases
are computed as the difference of the cumulative cases in two consecutive weeks.
The last week is dropped during this calculation.

Let us first discuss the spatial patterns of the gonorrhea data among 50 states. For
this purpose, we consider the cumulative number of gonorrhea cases from week 1 to
week 52 by sum up all data during years 2006–2018. Figure1 plots some selected
weeks (#1, #11, #21, #31, #41, #51). In Fig. 1, if the state has a deeper and bluer
color, then it experiences a higher number of gonorrhea cases.

One obvious pattern is that, California and Texas have generally higher number
of gonorrhea cases as compared to other states. In addition, the number of gonorrhea
cases in the northern US is smaller than that in the southern US.

Next, we consider the temporal pattern of the gonorrhea data set. Figure2 plots
the annual number of gonorrhea cases over the years 2006–2018 in the US. It can be
seen that there is a decrease during 2007–2009, and then the number of gonorrhea
cases become to increase. The increasing trend from 2010 to 2014 is very gentle,
but the increasing trend after 2015 become severe. One possible explanation for
the different increase speed is the Affordable Care Act, which signed into law by
President Barack Obama on March 23, 2010. This policy may help to stabilize the
increase of gonorrhea disease. As we mentioned before, we are not interested in
detecting this type of global changes, and we focus on the detection of the changes
on the local patterns, which are referred to as hot-spots in our paper.

https://wwwn.cdc.gov/nndss/infectious-tables.html
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week 1 week 11 week 21

week 31 week 41 week 51

Fig. 1 The cumulative number of gonorrhea cases at some selected weeks during years 2006–2018.
The deeper the color, the higher number of gonorrhea cases

Fig. 2 Annual number of
gonorrhea cases (in
thousands) over the years
2006–2018 in the US
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Fig. 3 Histograms of the number of gonorrhea cases of Year 2006, 2010, 2014, 2018. The y-axis
is the number of gonorrhea cases, and the circular x-axis is the 51 weeks. Each bar represents a
given week, and the length represents the number of gonorrhea cases for a given week in US

Moreover, the gonorrhea data consists of weekly data, and thus it is necessary to
address the circular patterns over the direction of “week”. Figure 3 shows the country-
scaled weekly gonorrhea case in the form of “rose” diagram for some selected years.
In this figure, each direction represents a given week, and the length represents the
number of gonorrhea cases for a given week. It reveals differences in the number of
gonorrhea cases across a different week of the year. For instance, in July and August
(in the direction of 8 o’clock on the circle), the number of gonorrhea case tends to
be larger than other weeks.

3 Proposed Model

In this section, we present our proposed SSR-Tensor model, and postpone the discus-
sion of hot-spot detection methodology to the next section. Owing to the fact that the
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gonorrhea data is of three dimensions, namely, {state, week, year}, it will likely have
complex “within-dimension” and “between-dimension” interaction/correlation rela-
tionship. Within-dimension relationship includes within-state correlation, within-
week correlation, and within-year correlation. Between-dimension relationship
includes between-state-and-week interaction, between-state-and-year interaction,
as well as between-week-and-year interaction. In order to handle these complex
“within” and “between” interaction structures, we propose to use the tensor decom-
position method, where bases are used to address “within-dimension” correlation,
and the tensor product is used for “between-dimension” interaction. Here, the basis
is a very important concept where different basis can be chosen for different dimen-
sions. Detailed discussions of the choice of bases are presented in Sect. 6.2.

For the convenience of notation and easy understanding, we first introduce some
basic tensor algebra and notation in Sect. 3.1. Then Sect. 3.2 presents our proposed
model that is able to characterize the complex correlation structures.

3.1 Tensor Algebra and Notation

In this section, we introduce basic notations, definitions, and operators in tensor
(multi-linear) algebra that are useful in this paper. Throughout the paper, scalars are
denoted by lowercase letters (e.g., θ ), vectors are denoted by lowercase boldface
letters (θ), matrices are denoted by uppercase boldface letter (Θ), and tensors by
curlicue letter (ϑ). For example, an order-N tensor is represented by ϑ ∈ RI1×···×IN ,
where In represent the mode-n dimension of ϑ for n = 1, . . . , N .

The mode-n product of a tensor ϑ ∈ RI1×...×IN by a matrix B ∈ RJn×In is a
tensor A ∈ RI1×...In−1×Jn×In+1×...IN , denoted as A = ϑ ×n B, where each entry of
A is defined as the sum of products of corresponding entries in A and B:
Ai1,...,in−1, jn ,in+1,...,iN = ∑

in
ϑi1,...,iNB jn ,in . Here we use the notation B jn ,in to refer the

( jn, in)-th entry in matrix B. The notation ϑi1,...,iN is used to refer to the entry in
tensor ϑ with index (i1, . . . , iN ). The notationAi1,...,in−1, jn ,in+1,...,iN is used to refer the
entry in tensor A with index (i1, . . . , in−1, jn, in+1, . . . , iN ).

Themode-nunfoldof tensorϑ ∈ RI1×...×IN is notedbyϑ(n) ∈ RIn×(I1×...In−1×In+1×IN ),

where the column vector of ϑ(n) are the mode-n vector of ϑ . The mode-n vector of
ϑ are defined as the In dimensional vector obtained from ϑ by varying the index in
while keeping all the other indices fixed. For example, ϑ:,2,3 is a model-1 vector.

A very useful technique in the tensor algebra is the Tucker decomposition, which
decomposes a tensor into a core tensormultiplied bymatrices along eachmode:Y =
ϑ ×1 B(1) ×2 B(2) · · · ×N B(N ), where B(n) is an orthogonal In × In matrix and is a
principal component mode-n for n = 1, . . . , N . Tensor product can be represented
equivalently by a Kronecker product, i.e., vec(Y ) = (B(N ) ⊗ · · · ⊗ B(1))vec(ϑ),
where vec(·) is the vectorized operator. Finally, the definition of Kronecker product is
as follow: Suppose B1 ∈ Rm×n and B2 ∈ Rp×q are matrices, the Kronecker product
of these matrices, denoted by B1 ⊗ B2, is an mq × nq block matrix defined by
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B1 ⊗ B2 =
⎡

⎢
⎣

b11B2 · · · b1nB2
...

. . .
...

bm1B2 · · · bmnB2

⎤

⎥
⎦ .

3.2 Our Proposed SSR-Tensor Model

Our proposed SSR-Tensor model is built on tensors of order three, as it is inspired by
the gonorrhea data, which can be represented as a three-dimension tensor Yn1×n2×T

with n1 = 50 states, n2 = 51weeks, and T = 13 years. Note that the i-th, j-th, and k-
th slice of the 3-D tensor along the dimension of state, week, and year can be achieved
as Yi ::,Y: j :,Y::k correspondingly, where i = 1 · · · n1, j = 1 · · · n2 and k = 1 · · · T .
For simplicity, we denote Yk = Y::k . We further denote yk as the vectorized form of
Yk , and y as the vectorized form of Y .

The key idea of our proposed model is to separate the global trend from the local
pattern by decomposing the tensor y into three parts, namely the smooth global
trend μ, local hot-spot h, and residual e, i.e. y = μ + h + e. For the first two of
the components (e.g. the global trend mean and local hot-spots), we introduce basis
decomposition framework to represent the structure of the within correlation in the
global background and local hot-spot, also see Yan et al. (2018).

To be more concrete, we assume that global trend mean and local hot-spot can be
represented as μ = Bmθm and h = Bhθh , where Bm and Bh are two bases that will
discussed below, and θm and θh are themodel coefficients vector of length n1n2T and
needed to be estimated (see Sect. 5). Here the subscript of m and h are abbreviations
formean and hot-spot. Next, it is useful to discuss how to choose the basesBm andBh,

so as to characterize the complex “within” and “between” correlation or interaction
structures. For the “within" correlation structures, we propose to use pre-specified
bases, Bm,s and Bh,s , for within-state correlation in global trend and hot-spot, where
the subscript of s is an abbreviation for states. Similarly, Bm,w and Bh,w are the pre-
specified bases forwithin-correlation of the sameweek,whereasBm,y andBh,y are the
bases for within-time correlation over time. As for the “between” interaction, we use
tensor product to describe it, i.e,Bm = Bm,s ⊗ Bm,w ⊗ Bm,y andBh = Bh,s ⊗ Bh,w ⊗
Bh,y . ThisKronecker product has been proved to have better computational efficiency
in the tensor response data (Kolda and Bader 2009). Mathematically speaking, all
these bases are matrices, which is pre-assigned in our paper. And the choice of bases
in shown in Sect. 6.2. With the well-structured “within” and “between” interaction,
our proposed model can be written as:

y = (Bm,s ⊗ Bm,w ⊗ Bm,y)θm + (Bh,s ⊗ Bh,w ⊗ Bh,y)θh + e, (1)

where e∼N (0, σ 2I) is the random noise. Mathematically speaking, both Bm,s and
Bh,s are n1 × n1 matrix, Bm,w and Bh,w are n2 × n2 matrix and Bm,y and Bh,y are
T × T matrix, respectively.
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Mathematically, our proposed model in (1) can be rewritten into a tensor format:

Y = ϑm ×3 Bm,y ×2 Bm,w ×1 Bm,s + ϑh ×3 Bh,y ×2 Bh,w ×1 Bh,s + e, (2)

where ϑm and ϑh is the tensor format of θm and θh with dimensional n1 × n2 ×
T . Accordingly, the ((k − 1)n1n2 + (i − 1)n1 + j)-th entry of θh , θm can estimate
the global mean and hot-spot in i-th state and j-th week in k-th year respectively.
The tensor representation in Eq. (2) allows us to develop computationally efficient
methods for estimation and prediction.

3.3 Estimation of Hot-Spots

With the proposed SSR-Tensor model above, we can now discuss the estimation of
hot-spot parameters θ ’s (including θm , θh) in our model in (1) or (2) from the data via
the penalized likelihood function. We propose to add two penalties in our estimation.
First, because hot-spots rarely occur, we assume that θh is sparse and the majority of
entries in the hot-spot coefficient θh are zeros. Thus we propose to add the penalty
R1(θh) = λ‖θh‖1 to encourage the sparsity property of θh . Second, we assume there
is temporal continuity of the hot-spots, as the usual phenomenon of last year is likely
to affect the performance of hot-spot in this year. Thus, we add the second penalty
R2(θh) = λ2‖Dθh‖1 to ensure the yearly continuity of the hot-spot, where D =
Ds ⊗ Dw ⊗ Dy with Ds as identical matrix of dimension n1 × n1, and T × T matrix

Dy =

⎡

⎢
⎢
⎢
⎣

1 −1
. . .

. . .

1 −1
1

⎤

⎥
⎥
⎥
⎦
, n2 × n2 matrix Dw =

⎡

⎢
⎢
⎢
⎣

1 −1
. . .

. . .

1 −1
−1 1

⎤

⎥
⎥
⎥
⎦

. With the

formula of Dy , the hot-spot has the property of yearly continuity. By the formula of
Dw, the hot-spot has a weekly circular pattern.

By combining both penalties, we propose to estimate the parameters via the fol-
lowing optimization problem:

arg min
θm ,θh

‖e‖2 + λ1‖θh‖1 + λ2‖Dθh‖1 (3)

subject to y = (Bm,s ⊗ Bm,w ⊗ Bm,y)θm + (Bh,s ⊗ Bh,w ⊗ Bh,y)θh + e,

where θm = vec(θm,1, . . . , θm,t , . . . , θm,T ) and θh = vec(θh,1, , . . . , θh,t , . . . , θh,T ).
The choice of the turning parameters λ1, λ2 will be discussed in Sect. 4.

Note that there are two penalties in Eq. (3): λ1‖θh‖1 is the LASSO penalty to
control both the sparsity of the hot-spots and λ2‖Dθh‖1 is the fused LASSO penalty
(Tibshirani et al. 2005) to control the temporal consistency of the hot-spots. Tradi-
tional algorithms often involve the storage and computation of the matrix Bm and
Bh , which is of the dimension n1n2n3 × n1n2n3. Thus they might work to solve the
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optimization problem in Eq. (3) when the dimensions are small, but they will be
computationally infeasible as the dimensions grow. To address this computational
challenge, we propose to simplify the computational complexity by modifying the
matrix algebra in traditional algorithm into tensor algebra, and will discuss how to
optimize the problem in Eq. (3) computationally efficiently in Sect. 5.

4 Hot-Spot Detection

This section focuses on the detection of the hot-spot, which includes the detection
and identification of the year (when), the state (where) and the week (which) of
the hot-spots. In our case study, we focus on the upward shift of the number of
gonorrhea cases, since the increasing gonorrhea is generally more harmful to the
societies and communities. Of course, one can also detect the downward shift with
a slight modification of our proposed algorithms by multiplying −1 to the raw data.

For the purpose of easy presentation, we first discuss the detection of the hot-
spot, i.e., detect when hot-spot occurs in Sect. 4.1. Then, in Sect. 4.2, we consider
the localization of the hot-spot, i.e., determine which states and which weeks are
involved for the detected hot-spots.

4.1 Detect When the Hot Spot Occurs

To determine when the hot-spot occurs, we consider the following hypothesis test
and set up the control chart for the hot-spot detection (4).

H0 : r̃t = 0 v.s. H1 : r̃t = δĥt (δ > 0), (4)

where r̃t is the expected residuals after removing the mean. The essence of this test
is that, we want to detect whether r̃t has a mean shift in the direction of ĥt , estimated
in Sect. 5. To test this hypotheses, the likelihood ratio test is applied to the residual rt
at each time t , i.e. rt = yt − μt , where it assumes that the residuals rt is independent
after removing the mean and its distribution before and after the hot-spot remains
the same. Accordingly, the test statistics monitoring upward shift is designed as
P+
t = ĥ′+

t rt/
√
ĥ′+
t ĥ+

t (Hawkins 1993), where ĥ+
t only takes the positive part of ĥt

with other entries as zero. Here we put a superscript “+” to emphasize that it aims
for upward shift.

The choices of the penalty parameters λ1, λ2 are described as follows. In order
to select the one with the most power, we propose to calculate a series of P+

t under
different combination of (λ1, λ2) from the set Γ = {(λ(1)

1 , λ
(1)
2 ) · · · (λ(nλ)

1 , λ
(nλ)
2 )}. For

better illustration, we denote the test statistics under penalty parameter (λ1, λ2) as
P+
t (λ1, λ2). The test statistics (Zou and Qiu 2009) with the most power to detect the
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change, noted as P̃+
t , can be computed by

P̃+
t = max

(λ1,λ2)∈Γ

P+
t (λ1, λ2) − E(P+

t (λ1, λ2))
√
Var(P+

t (λ1, λ2))
, (5)

where E(P+
t (λ1, λ2)), Var(P+

t (λ1, λ2)) respectively are the mean and variance of
Pt (λ1, λ2) under H0 (e.g. for phase-I in-control samples).

Note that the penalty parameter (λ1, λ2) to realize the maximization in Eq. (5) is
generally different under different time t . To emphasize such dependence of time t ,
denote by (λ∗

1,t , λ
∗
2,t ) the parameter pair that attains the maximization in Eq. (5) at

time t , i.e,

(λ∗
1,t , λ

∗
2,t ) = arg max

(λ1,λ2)∈Γ

P+
t (λ1, λ2) − E(P+

t (λ1, λ2))
√
Var(P+

t (λ1, λ2))
. (6)

Thus, the series of the test statistics for the hot-spot at time t is P̃+
t (λ∗

1,t , λ
∗
2,t ) where

t = 1 · · · T .
With the test statistic available, we design a control chart based on the CUSUM

procedure due to the following reasons: (1) we are interested in detecting the change
with the temporal continuity, therefore, aligns with the objective of CUSUM. (2)
In the view of social stability, we want to keep gonorrhea at a target value without
sudden changes, which makes the CUSUM chart is a natural better fit.

To bemore specific, in the CUSUMprocedure, we compute the CUSUM statistics
recursively by

W+
t = max{0,W+

t−1 + P̃+
t (λ∗

1,t , λ
∗
2,t ) − d},

and W+
t=0 = 0, where d is a constant and can be chosen according to the degree of

the shift that we want to detect. Next, we set the control limit L to achieve a desirable
ARL for in-control samples. Finally, whenever W+

t > L at some time t = t∗, we
declare that a hot-spot occurs at time t∗.

4.2 Localize Where and Which the Hot Spot Occur?

After the hot-spot t∗ has been detected by the CUSUM control chart in the previous
section, the next step is to localize where and which week may account for this
hot-spot. To do so, we propose to utilize the vector

ĥλ∗
1,t∗ ,λ∗

2,t∗ = Bh θ̂h,λ∗
1,t∗ ,λ∗

2,t∗

at the declared hot-spot time t∗ and the corresponding parameter λ∗
1,t∗ , λ

∗
2,t∗ in Eq. (6).

For the numerical computation purpose, it is often easier to directly work with the
tensor format of the hot-spot ĥλ∗

1,t∗ ,λ∗
2,t∗ , denoted as Ĥλ∗

1,t∗ ,λ∗
2,t∗ , which is a tenor of
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dimension n1 × n2 × T . If the (i, j, t∗)-th entry in Ĥλ∗
1,t∗ ,λ∗

2,t∗ is non-zero, then we
declare that there is a hot-spot for the j-th week in the i-th state in t∗-th year.

5 Optimization Algorithm

In this section, we will develop an efficient optimization algorithm for solving the
optimization problem inEq. (3). For notion convenience,we adjust the notation above
a little bit. Because θm, θh in Eq. (3) is solved under penalty λ1R1(θh) + λ2R2(θh),
we change θm , θh into θm,λ1,λ2 , θh,λ1,λ2 to emphasize the penalty parameter λ1 and λ2.
Accordingly, θh,0,λ2 refers to the estimator only under the second penalty λ2R2(θh),
i.e,

θh,0,λ2 = arg min
θm ,θh

{‖e‖22 + λR2(θh)}. (7)

The structure of this section is that, we first develop the procedure of our proposed
method in Sect. 5.1 and then give the computational complexity in Sect. 5.2.

5.1 Procedure of Our Algorithm

In the optimization problem shown in Eq. (3), there are two unknown vectors, namely
θm,λ1,λ2 , θh,,λ1,λ2 . To simplify the optimization above, we first figure out the close-
form correlation between θm,λ1,λ2 and θh,λ1,λ2 . Then, we solve the optimization by
modifying thematrix algebra in FISTA (Beck and Teboulle 2009) into tensor algebra.
The key to realize it is the proximal mapping of λ1R1(θh,λ1,λ2) + λ2R2(θh,λ1,λ2).
To address it, we first aim at the proximal mapping of λ2R2(θh,0,λ1), where SFA
via gradient descent (Liu et al. 2010) is used. And then the proximal mapping of
λ1R1(θh,λ1,λ2) + λ2R2(θh,λ1,λ2) can be solved with a close-form correlation between
it and the proximal mapping of λ2R2(θh,0,λ2).

There are three subsections in this section, where each subsection represents one
step in our proposed algorithm.

5.1.1 Estimate the Mean Parameter

To begin with, we first simplify the optimization problem in Eq. (3), i.e., figure out
the close-form correlation between θm,λ1,λ2 and θh,λ1,λ2 .

Although there are two sets of parameters θm,λ1,λ2 and θh,λ1,λ2 in the model,
we note that given θh,λ1,λ2 , the parameter θm,λ1,λ2 is involved in the standard least
squared estimation and thus can be solved in the closed-form solution, see Eq. (8) in
the proposition below.

Proposition 1 Given θh,λ1,λ2 , the closed-form solution of θm,λ1,λ2 is given by:
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θm,λ1,λ2 = (B′
mBm)−1(B′

m y − B′
mBhθh,λ1,λ2). (8)

It remains to investigate how to estimate the parameter θh,λ1,λ2 . After plugging in
(8) into (3), the optimization problem for estimating θh,λ1,λ2 becomes

arg min
θh,λ1 ,λ2

‖y∗ − Xθh,λ1,λ2‖22 + λ1‖θh,λ1,λ2‖1 + λ2‖Dθh,λ1,λ2‖1, (9)

where y∗ = [I − Hm] y,X = [I − Hm]Bh andHm = Bm(B′
mBm)−1B′

m is the projec-
tion matrix.

Due to the high dimension, we need to develop an efficient and precise opti-
mization algorithm to optimize (3). Obviously, (9) is a typical sparse optimization
problem. However, most of the sparse optimization frameworks focus on optimizing:

arg min
θh,0,λ2

‖y∗ − Xθh,λ1,0‖22 + λ1‖θh,λ1,0‖1, (10)

such as Daubechies et al. (2004), Beck and Teboulle (2009), Friedman et al. (2010)
and so on, where iterative updating rule are used base either on the gradient informa-
tion or the proximal mapping. In most cases, the algorithms above works, however,
two challenges occur in our paper:

1. When the dimension of X (of size n1n2T × n1n2T ) become increasingly large,
it is difficult for the computer to store and memorize it.

2. When the penalty term is λ1‖θh,λ1,λ2‖1 + λ2‖Dθh,λ1,λ2‖1, instead of only
λ1‖θh,λ1,λ2‖1, direct application of the proximal mapping of λ1‖θh,λ1,λ2‖1 is
not workable.

Therefore, directly applying these above algorithms (Beck and Teboulle 2009;
Daubechies et al. 2004; Friedman et al. 2010) to our case is not feasible. To extend the
existing research, we proposed an iterative algorithm in Algorithm 1 and we explain
the approach to solve the proximal mapping of λ1‖θh,λ1,λ2‖1 + λ2‖Dθh,λ1,λ2‖1 in
Sect. 5.1.2.

5.1.2 Proximal Mapping

The main tool we use to solve the optimization problem in Eq. (9) is a variation of
proximal mapping. Denote that F(θh,λ1,λ2) = 1

2‖y∗ − Xθh,λ1,λ2‖22. And in the i-th

iteration, the according recursive estimator of θh,λ1,λ2 is noted as θ
(i)
h,λ1,λ2

. Besides,an

auxiliary variable η(i) is introduced to update from θ
(i)
h,λ1,λ2

to θ
(i+1)
h,λ1,λ2

through
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θ
(i+1)
h,λ1,λ2

= argmin
θ

F(η(i)) + ∂

∂θh,λ1,λ2

F(η(i))
(
θ − η(i)

) +

λ1‖θ‖1 + λ2‖Dθ‖1 + L

2
‖θ − η(i)‖22

= argmin
θ

[
1

2

[

θ −
(

η(i) − ∂

L∂θ
F(η(i))

)]2

+ λ1‖θ‖1 + λ2‖Dθ‖1
]

� π
λ1
λ2

(v)

where v = η(i) − ∂
L∂θ

F(η(i)), η(i) = θ
(i)
h,λ1,λ2

+ ti−2−1
ti−1

(θ
(i)
h,λ1,λ2

− θ
(i−1)
h,λ1,λ2

) and t−1 =
t0 = 1, ti+1 = 1+

√
1+4t2i
2 .

Because it is difficult to solve π
λ1
λ2

(v) directly, we aim to solve π0
λ2

(v) first. And
proved by Liu et al. (2010), there is a close-form correlation between π

λ1
λ2

(v) and
π0

λ2
(v), which is shown in Proposition 2.

Proposition 2 The close form relationship between π
λ1
λ2

(v) and π0
λ2

(v) is

π
λ1
λ2

(v) = sign(π0
λ2

(v)) 
 max{|π0
λ2

(v)| − λ1, 0}. (11)

where 
 is an element-wise product operator.



Rapid Detection of Hot-Spot by Tensor Decomposition … 279

With the proximal mapping function in Proposition 2, we can now develop the
algorithm shown in Algorithm 1.

Algorithm 1: Iterative updating based on tensor decomposition
Input: y∗,Bs,Bw,By,Ds,Dw,Dy, K , L , λ1, λ2, L0, M1, M2

Output: θh,λ1,λ2

1 initialization;
2 Θ (1) = Θ (0), t−1 = 1, t0 = 1, L = L0

3 for i = 1 · · · M1 do
4 N (i) = N (i) + ti−2−1

ti−1
(Θ (i) − Θ (i−1))

V = N (i) − 1

L
N (i) ×1 (P′

sPs) ×2 (P′
wPw) ×3 (P′

yPy) −
1

L
Y ∗ ×1 P′

s ×2 P′
w ×3 P′

y

for j = 0 · · · M2 do
5

G (i) = (
Z ( j) ×1 (D′

sDs) ×2 (D′
wDw) ×3 (D′

yDy))
) −

(
V ×1 Ds ×2 Dw ×3 Dy

)

Z ( j+1) = P
(
Z ( j) − G ( j)/L

)

6 π0
λ2

(V ) = V − (Z (M2)) ×1 Ds ×2 Dw ×3 Dy

7 π
λ1
λ2

(V ) = sign(π0
λ2

(V )) 
 max{∣∣π0
λ2

(V )
∣
∣ − λ1, 0}

8 ti+1 = 1+
√

1+4t2i
2

9 Θ̂h,λ1,λ2 = π
λ1
λ2

(V )

10 θ̂h,λ1,λ2 = vector(Θ̂h,λ1,λ2) v = vector(V )

vector(·) is a function that unfolding a order-3 tensor of dimension n1 × n2 × n3 into
a vector n1n2n3.

5.2 Computational Complexity

This section discusses the computational complexity of our proposed algorithm.
Suppose the raw data is structured into a tensor of order three with dimensional
n1 × n2 × n3, then the computation complexity of our propose method is of order
O (n1n2n3 max{n1, n2, n3}) (see Proposition 3).

Proposition 3 The computational complexity of our proposed algorithm (see Algo-
rithm 1) is of order O (n1n2n3 max{n1, n2, n3}).
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Proof The main computational load in Algorithm 1 is on the calculation of v (line
4), g(i)(line 5) and π0

λ2
(v) (line 7). We will take the calculation of v in line 4 in the

algorithm as an example. To begin with, we focus on the computational complexity
of

N (i) ×1 (P′
sPs) ×2 (P′

wPw) ×3 (P′
yPy)). (12)

For better illustration, we denote tensor(η(i)) asN (i) andN (i) ×1 (P′
sPs) as tensor

L1. According to the tensor algebra (Kolda and Bader 2009, Sect. 2.5),

L1 = N (i) ×1 (P′
sPs) ⇐⇒ L1(1) = P′

sPsN
(i)

(1) .

Therefore, the computational complexity of Eq. (12) is the same as two-matrix multi-
plication with order n1 × n1 and n1 × n1n2, which is of order O (n1n2n3(2n1 − 1)).

After the calculation of L1, Eq. (12) is reduced to

L1 ×2 (P′
wPw) ×3 (P′

yPy)). (13)

Similarly, denotes L2 = L1 ×2 (P′
wPw), then

L2 = L1 ×2 (P′
wPw) ⇐⇒ L2(2) = P′

wPwN(2).

Therefore, the computational complexity of Eq. (13) is the same as two-matrix multi-
plication with order n2 × n2 and n2 × n1n3, which is of order O (n1n2n3(2n2 − 1)).

After the calculation of L2, Eq. (13) is reduced to

L2 ×3 (P′
yPy)). (14)

Similarly, denotes L3 = L2 ×2 (P′
yPy), then

L3 = L2 ×3 (P′
yPy) ⇐⇒ L3(3) = P′

wPwN(3).

Therefore, the computational complexity of Eq. (13) is the same as two-matrix multi-
plication with order n3 × n3 and n3 × n1n2, which is of order O (n1n2n3(2n3 − 1)).

By combining all these blocks built above, we conclude that the computational
complexity of Eq. (12) is of order O(n1n2n3 (max{n1, n2, n3})).

In the same way, the computational complexity in line 5 and 7 of Algorithm 1 is
also of order O(n1n2n3 (max{n1, n2, n3})). Thus, the computational complexity of
Algorithm is of order O(n1n2n3 (max{n1, n2, n3})).
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6 Simulation

In this section, we conduct simulation studies to evaluate our proposed methodolo-
gies by comparing with several benchmark methods in the literature. The structure
of this section is as follows. We first present the data generation mechanism for
our simulations in Sect. 6.1, then discuss the performance of hot-spot detection and
localization in Sect. 6.2.

6.1 Generative Model in Simulation

In our simulation, at each time index t (t = 1 · · · T ), we generate a vector yt of length
n1n2 by

yi,t = (Bθ t )i + δ1{t ≥ τ }1i {i ∈ Sh} + wi,t , (15)

where yi,t denotes the i-th entry in vector yt , (Bθ t )i denotes the i-th entry in vector
Bθ t , and δ denotes the change magnitude. Here 1(A) is the indicator function, which
has the value 1 for all elements of A and the value 0 for all elements not in A, andwi,t

is the i-th entry in the white noise vector whose entries are independent and follow
N (0, 0.12) distribution.

Next, after the temporal detection of hot-spots, we need to further localize the
hot-spots in the sense that we need to find out which state and which week may lead
to the occurrence of temporal hot-spot. Because the baseline methods, PCA and T2,
can only realize the detection of temporal changes, we only show the localization
of spatial hot-spot by SSR-Tensor, SSD (Yan et al. 2018), ZQ lasso (Zou and Qiu
2009). For the anomaly setup, 1{t ≥ τ } indicates that the spatial hot-spots only occur
after the temporal hot-spot τ . This ensures that the simulated hot-spot is temporal
consistent. The second indicator function 1i {i ∈ Sh} shows that only those entries
whose location index belongs set Sh are assigned as local hot-spots. This ensures
that the simulated hot-spot is sparse. Here we assume the change happens at τ = 50
among total T = 100 years. And the spatial hot-spots index set is formed by the
combination of states Conn, Ohio, West Va, Tex, Hawaii and week from 1–10 and
41–51.

To match the dimension in the case study, we choose n1 = 50, n2 = 51. As for
the three terms on the right side of Eq. (15), they serve for the global trend mean,
local sparse anomaly and white noise respectively. In our simulation, the matrix B is
Bm,s ⊗ Bm,w ⊗ Bm,y with the same choice as that in Sect. 3.2.

Besides, in eachof these two scenarios,we further consider two sub-cases, depend-
ing on the value of change magnitude δ in Eq. (15): one is δ = 0.1 (small shift) and
the other is δ = 0.5 (large shift).
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6.2 Hot-Spot Detection Performance

In this section, we compare the performance of our proposed method (denoted as
‘SSR-tensor’) for detection of hot-spot with some benchmark methods. Specifi-
cally, we compare our proposed method with Hotelling T 2 control chart (Qiu 2013)
(denoted as ‘T2’), LASSO-based control chart proposed by Zou and Qiu (2009)
(denoted as ‘ZQ LASSO’), PCA-based control chart proposed by De Ketelaere et al.
(2015) (denoted as ‘PCA’) andSSDproposed byYan et al. (2018) (denoted as ‘SSD’).
Note that there are two main differences between our SSR-tensor method and the
SSD method in Yan et al. (2018). First, SSR-Tensor has the autoregressive or fussed
LASSO penalty in Eq. (3) so as to ensure the temporal continuity of the hot-spot.
Second, SSD uses the Shewhart control chart to monitor temporal changes, while
SSR-Tensor utilizes CUSUM instead, which is more sensitive for a small shift.

For the choices of basis matrices in our proposed model and method, we choose
Bm,1 as the Gaussian kernel matrix to describe the spatial structure of the global
trend, i.e., the (i, j) entry is exp{−d2/(2c2)}where d is the distance between the i-th
state and j-th state and c is the bandwidth chosen by cross-validation. In addition,
we choose identical matrices for the yearly basis and weekly basis, since we do not
have any prior information. Moreover, we use the identity matrix for the spatial and
temporal basis of the hot-spots, since the L1-penalty in (3) has already addressed
the temporal continuity properties of our hot-spot estimation. For SSD in Yan et al.
(2018), we will use the same spatial and temporal basis in order to have a fair
comparison.

For evaluation, we will compute the following four criteria: (i) precision, defined
as the proportion of detected anomalies that are true hot-spots; (ii) recall, defined as
the proportion of the anomalies that are correctly identified; (iii) F measure, a single
criterion that combines the precision and recall by calculating their harmonic mean;
and (iv) the corresponding average run length (ARL1), a measure on the average
detection delay in the special scenario when the change occurs at time t = 1. All
simulation results below are based on 1000 Monte Carlo simulation replications.

Table1 shows the merits of our methodology mainly lies on the higher precision
and shorter ARL1. For example, when the shift is very small, i.e., δ = 0.1, the ARL1

of our SSR-Tensor method is only 1.6420 compared with 7.4970 of SSD and 9.5890
of ZQ-LASSO. The reason for SSR-Tensor has shorter ARL1 than that of SSD is
that, SSD uses Shewhart control chart to detect temporal changes, which make it
insensitive for a small shift. While for SSR-Tensor, it applies the CUSUM control
chart, which is capable to detect the shift of small size. The reason for both SSR-
Tensor and SSD have shorter ARL1 than that of ZQ-LASSO, PCA and T2 is that
ZQ-LASSO fails to capture the global trend mean. Yet, the data generated in our
simulation has both decreasing and circular global trend, which makes it hard for
ZQ-LASSO to model well.
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Table 1 Scenario 1 (decreasing global trend): Comparison of hot-spot detection under small shift
and large shift

methods Small shift δ = 0.1 Large shift δ = 0.5

Precision Recall F measure ARL Precision Recall F measure ARL

SSR-
tensor

0.0824 0.9609 0.5217 1.6420 0.0822 0.9633 0.5228 1.0002

(0.0025) (0.0536) (0.0270) (0.7214) (0.0022) (0.0549) (0.0277) (0.0144)

SSD 0.0404 0.9820 0.5112 7.4970 0.0412 1.0000 0.5206 1.0000

(0.0055) (0.1330) (0.0692) (9.4839) (0.0000) (0.0000) (0.0000) (0.0000)

ZQ
LASSO

0.0412 1.000 0.5206 9.5890 0.0412 1.0000 0.5206 8.8562

(0.0000) (0.0000) (0.0000) (7.5414) (0.0000) (0.0000) (0.0000) (7.1169)

PCA – – – 28.7060 – – – 32.0469

– – – (16.9222) – – – (17.4660)

T2 – – – 50.0000 – – – 50.0000

– – – (0.0000) – – – (0.0000)

7 Case Study

In this section, we apply our proposed SSR-tensor model and hot-spot detec-
tion/localization method to the weekly gonorrhea dataset in Sect. 2. For the purpose
of comparison, we also consider other benchmark methods mentioned in Sect. 6, and
consider two performance criteria: one is the temporal detection of hot-spots (i.e.,
which year it occurs) and the other is the localization of the hot-spots (i.e., which
state and which week might involve the alarm).

7.1 When the Temporal Changes Happen?

Here we consider the performance on the temporal detection of hot-spots of our pro-
posed method and other benchmark methods. For our proposed SSR-Tensor method,
we build a CUSUMcontrol chat utilizing the test statistic in Sect. 4.1, which is shown
in Fig. 4. From this plot, we can see that the hot-spots are detected at 10th year, i.e.,
2016.

For the purpose of comparison, we also apply the benchmark methods, SSD (Yan
et al. 2018), ZQ LASSO (Zou and Qiu 2009), PCA (De Ketelaere et al. 2015) and
T2 (Qiu 2013), into the gonorrhea dataset. Unfortunately, all benchmark methods
are unable to raise any alarms, but our proposed SSR-tensor method raises the first
hot-spot alarm in year 2016.
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Fig. 4 CUSUM Control chart of gonorrhea dataset during years 2006–2018

7.2 In Which State and Week Do the Spatial Hot-spots
Occur?

Next, after the temporal detection of hot-spots, we need to further localize the hot-
spots in the sense that we need to find out which state and which weekmay lead to the
occurrence of temporal hot-spot. Because the baseline methods, SSD, ZQ-LASSO,
PCA, and T2, can only realize the detection of temporal changes, we only show the
localization of spatial hot-spot by SSR-Tensor, which is visualized in Fig. 5.

There are some circular patterns in specific areas. For example, CENTRAL(Ark,
La, Okla, Tex) tends to have a circular pattern every 11 weeks, which is shown in
Fig. 5. Besides, there are also some circular pattern for a certain state, for instance,
Kansas has the bi-weekly pattern as shown inFig. 6. To validate the bi-weekly circular
pattern of Kansas, we plot the time series plot of Kansas in 2016 as well as the auto-
correlation function plot in Fig. 5. Besides, the auto-correlation function plot in the
left panel of Fig. 6 serves as a baseline. It can be seen from the middle and right plot
of Fig. 6 that, Kansas has some bi-weekly or tri-weekly circular pattern.

week 8 week 19 week 30 week 42 week 51

Fig. 5 Hot-spot detection result of circular pattern ofW.S. CENTRAL(Arkansas, Louisiana, Okla-
homa, Texas)
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Acknowledgements The authors thank an anomalous reviewer for her or his thoughtful and con-
structive comments that greatly improved the quality and presentation of this article, and appreciate
Professors Sven Knoth, Kwok Tsui, and Bill Woodall for help and encouragements during the pro-
cess. Y. Zhao andY.Mei were supported in part by NSF grant DMS-1830344, H. Yaowas supported
in part by NSF DMS-1830363, and S. E. Holte was supported in part by NSF DMS-1830372 and
NIH #AI027757 (Baeten).

References

Beck, A., & Teboulle,M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

Call, M. A., & Voss, P. R. (2016). Spatio-temporal dimensions of child poverty in America, 1990–
2010. Environment and Planning A, 48(1), 172–191.

Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11), 1413–1457.

De Ketelaere, B., Hubert, M., & Schmitt, E. (2015). Overview of pca-based statistical process-
monitoring methods for time-dependent, high-dimensional data. Journal of Quality Technology,
47(4), 318–335.

Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. New York:
CRC Press.

Elhorst, J. P. (2014). Spatial panel data models. In: Spatial Econometrics, Springer (pp. 37–93)
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1.

Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton University Press.
Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal
of the Royal Statistical Society Series B (Methodological), 41(2), 190–195.

Hawkins, D.M. (1993). Regression adjustment for variables in multivariate quality control. Journal
of Quality Technology, 25(3), 170–182.

Hu, K., & Yuan, J. (2009). Batch process monitoring with tensor factorization. Journal of Process
Control, 19(2), 288–296.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3),
455–500.

Lai, T. L., Lim, J. (2015). Asymptotically efficient parameter estimation in hidden markov spatio-
temporal random fields. Statistica Sinica pp. 403–421

Lan, H., Zhou, C., Wang, L., Zhang, H., & Li, R. (2004). Landslide hazard spatial analysis and
prediction using gis in the xiaojiang watershed, yunnan, china. Engineering Geology, 76(1–2),
109–128.



286 Y. Zhao et al.

Lichstein, J. W., Simons, T. R., Shriner, S. A., & Franzreb, K. E. (2002). Spatial autocorrelation
and autoregressive models in ecology. Ecological Monographs, 72(3), 445–463.

Liu, J., Yuan, L., Ye, J. (2010). An efficient algorithm for a class of fused lasso problems. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM (pp. 323–332).

Louwerse, D., & Smilde, A. (2000). Multivariate statistical process control of batch processes based
on three-way models. Chemical Engineering Science, 55(7), 1225–1235.

Qiu, P. (2013). Introduction to statistical process control. New York: Chapman and Hall/CRC.
Reinsel, G. C. (2003). Elements of multivariate time series analysis. Berlin: Springer Science &
Business Media.

Reynolds, K., & Madden, L. (1988). Analysis of epidemics using spatio-temporal autocorrelation.
Phytopathology, 78(2), 240–246.
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An Approach to Monitoring Time
Between Events When Events Are
Frequent

Ross Sparks, Aditya Joshi, Cecile Paris, and Sarvnaz Karimi

Abstract This paper focuses on monitor plans aimed at the early detection of the
increase in the frequency of events. The literature recommends either monitoring the
Time Between Events (TBE), if events are rare, or counting the number of events per
unit non-overlapping time intervals, if events are not rare. Recent monitoring work
has suggested that monitoring counts in preference to TBE is not recommended
even when counts are low (less than 10). Monitoring TBE is the real-time option
for outbreak detection, because outbreak information is accumulated when an event
occurs. This is preferred to waiting for the end of a period to count events if outbreaks
are large and occur in a short time frame. If the TBE reduces significantly, then the
incidence of these events increases significantly. This paper exploresmonitoringTBE
when the daily counts are quite high. We consider the case when TBEs are Weibull
distributed.

Keywords Statistical process control · False discovery rate · Early outbreak
detection ·Weibull distribution

1 Introduction

Whenmonitoring events over time there are two competing approaches. The first and
more common approach is to monitor counts over a defined period (usually a day).
The second is to monitor the time between events (TBE) over time. Recent papers
by Sparks et al. (2019, 2020) demonstrate that monitoring the time between events
is more efficient for the early detection of very large outbreaks that occur in a very
short space of time. This paper aims to extend these methods to larger counts (e.g.,
up to 100,000 events per day) with particular emphasis on outbreaks occurring in a
very short time period.
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In fact, we aim to show that, in such circumstances, we should almost always
monitor the time between events in preference to monitoring counting processes, if
our aim is early outbreak detection. Real-time decision support for outbreak detec-
tion of events involves a decision whenever an event occurs, and therefore the time
between events is the natural statistic to consider to achieve this aim. The literature
adequately deals with the simple case where the mean time between events is homo-
geneous. For example, Borror et al. (2003) examine the robustness of the Cumulative
Sum (CUSUM) statistic for the TBE. They deal with the situation where the events
are quite rare. They consider the log-normal and Weibull distributions. Sürücü and
Sazak (2009) look at monitoring reliability using a three-parameter Weibull distri-
bution where the failure time is a random variable greater than some positive value.
Shafae et al. (2015) examine the CUSUM statistic for Weibull distributed data. They
compare three CUSUM statistics for detecting decreases in the TBE values and
demonstrate that the in-control behaviour of the exponential CUSUM is not robust.
Aslam (2016) and Aslam et al. (2018) introduce a chart that first applied the Expo-
nentiallyWeightedMoving Average (EWMA) and then the CUSUM forWeibull dis-
tributed data. This seems a sensible robust alternative in cases where the distribution
is highly skewed. Panza and Vargas (2016) monitor the shape parameter of aWeibull
regression model by taking the natural logarithm of the Weibull distributed response
and then using an extreme value linear regression model. Panza and Vargas (2017)
monitor profiles in time to event situations by comparing two CUSUM approaches
to a multivariate EWMA approach. Erto et al. (2018) use a semi-empirical Bayesian
control charts for monitoringWeibull data.Wang et al. (2017) compare two CUSUM
charts to two EWMA charts for Weibull distributed time between events and found
that the performance of these charts depends on the shape parameter. None of these
approaches dominate in the performance assessment. All of these and other papers
deal with the case where the in-control TBE data are homogeneous across time. In
fact, besides Sparks et al. (2019, 2020), we could not find papers on monitoring for
outbreaks when the in-control TBE values are non-homogeneous.

The Average Number of Events (ANE) before an out-of-control false alarm (i.e.,
a flagged outbreak when no outbreak has occurred) is used to control the out-of-
control false discovery rate. This is usually made acceptably large without adversely
influencing the early detection of outbreaks toomuch.When out-of-control, the ANE
is used to assess the performance of the approach, and the approach with the smallest
ANE is the better approach given that all approaches have the same false discovery
rate. Designing plans with very large ANE values can be computationally tedious,
particularly for large in-control ANE values. Therefore, this paper aims to come
up with a computationally feasible approach that is used when the in-control ANE
values are greater than the 2000 derived in Sparks et al. (2020). To this end, we apply
run rules on the number of consecutive signals. This strategy is used to derive plans
for processes with a larger in-control ANE value than 2000 in Sparks et al. (2020),
particularly when the frequency of events is very much higher than 20 per unit time
interval (say daily).

The plans are recommended for both homogeneous and non-homogeneous pro-
cesses. Section 2 deals with homogeneous processes, while Sect. 3 suggests ways this
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can be extended to cover slow changing non-homogeneous processes. Section 4 cov-
ers examples of application. Section 5 looks at diagnosing the nature of the outbreaks
in sickness. Section 6 summarises the results in the paper.

2 Monitoring TBE for Homogeneous Processes

For convenience, throughout this section, we will use days as the measure of the time
period over which the rates of events are measured, but this can be any unit of time.
If we use the results of Sparks et al. (2020) for an out-of-control false discovery rate
of an average of one in 2000 events, then for daily counts averaging 20 per day when
in-control would result in roughly 3 to 4 out-of-control false discoveries in a year
on average. This may be an acceptable false discovery rate in many cases, but if the
in-control average per day is 100 or more, this would result in on average at least
15 to 20 out-of-control false discoveries in a year. This level of false signals may
be too high and build complacency into the decision making process with flagged
outbreaks. Therefore we need a simple process for extending the TBE monitoring
plans to having a more acceptable out-of-control false discovery rate for processes
with larger daily counts than 20.

In this paper, we consider the Weibull distribution with two parameters: scale and
shape. We use the same adaptive EWMA statistic applied in Sparks et al. (2019). We
use theWeibull distribution threshold estimates for an out- of-control false discovery
rate of an average of one in every 2000 events (see Sparks et al. 2020), but now we
plan for an out-of-control false discovery rate for higher counts than 20 per day, by
insisting that there are m consecutive signals in a row before an outbreak is flagged.
We use the threshold estimates derived assuming a Weibull distribution for TBE and
with an out-of-control false discovery rate of an average of every 2000 events. This is
convenient as we want to avoid training the thresholds for each different ANE higher
than 2000, because such training of plans using the approach in Sparks et al. (2020)
takes a considerable amount of time and computational effort. If we have on average
10,000 events per day, then to have an average false alarm every 100 days we need to
have an ANE value of 1,000,000. Training the thresholds for this when the process is
non-homogeneous involves an onerous computational effort, because we need to do
this for a range of acceptable scale and shape parameters of the Weibull distribution.
The higher the daily counts, the higher the value of m that needs to be selected to
deliver an acceptable fixed number of out-of-control false alarms per annum (taken
here as roughly 2 to 4 per annum in Table 1). Table 1 provides plans using 2 to
4 false discoveries per annum for m = 2− 10, 13, 16, 20, 25, 30, 35, 40, 45, 50, 55
and 60, when the daily counts range from 50 to 100,000 per day. The plans in Table 1
leads to roughly one in 100 days or more out-of-control false alarm rate. The way
to interpret the results in Tables 2 and 3 are as follows: if the scale is q then there
are roughly on average 1/q events per day, and the out-of-control false discovery
rate is one in ANE × q days. For example, the out-of-control false discovery rate
for scale = 0.4 and shape = 0.6 for 2 consecutive signals, the false out-of-control
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Table 1 The plans that approximately provide an out-of-control false discovery rate of 1 in 100
(or more)

Scale Shape Average
out-of-control
false discover rate
per day

Plan (consecutive
signals)

Average number
of events per day

0.02000 0.6 1 in 113.9 days 6 33

0.01000 0.6 1 in 108.9 days 10 66

0.00500 0.6 1 in 126.6 days 16 133

0.00200 0.6 1 in 104.2 days 21 333

0.00100 0.6 1 in 106.3 days 28 666

0.00050 0.6 1 in 109.2 days 33 1330

0.00020 0.6 1 in 104.4 days 40 3333

0.00010 0.6 1 in 105.8 days 46 6666

0.00005 0.6 1 in 106.9 days 52 13300

0.00002 0.6 1 in 101.1 days 59 33300

0.00001 0.6 1 in 102.4 days 66 66600

0.02000 1.0 1 in 117.9 days 5 50

0.01000 1.0 1 in 100.8 days 8 100

0.00500 1.0 1 in 99.4 days 13 200

0.00200 1.0 1 in 97.4 days 18 500

0.00100 1.0 1 in 103.9 days 23 1000

0.00050 1.0 1 in 101.7 days 28 2000

0.00020 1.0 1 in 114.8 days 35 5000

0.00010 1.0 1 in 106.3 days 40 10000

0.00005 1.0 1 in 99.8 days 45 20000

0.00002 1.0 1 in 98.6 days 52 50000

0.00001 1.0 1 in 108.8 days 57 100000

0.02000 1.4 1 in 117.9 days 5 55

0.01000 1.4 1 in 96.0 days 7 110

0.00500 1.4 1 in 112.3 days 12 220

0.00200 1.4 1 in 102.5 days 17 550

0.00100 1.4 1 in 108.6 days 22 1100

0.00050 1.4 1 in 98.2 days 26 2200

0.00020 1.4 1 in 108.1 days 33 5500

0.00010 1.4 1 in 101.9 days 37 11000

0.00005 1.4 1 in 104.1 days 42 22000

0.00002 1.4 1 in 102.8 days 48 55000

0.00001 1.4 1 in 127.5 days 55 110000
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Table 2 The average number of events to an out-of-control false discovery. NCS: Number of
Consecutive Signals (m = 2, 3, . . . , 16)
Shape,
scale

NCS(m) 2 3 4 5 6 7 8 9 10 13 16

0.6, 0.4 2707 2879 3877

0.6, 0.1 2702 2955 3014 4721 5631 6588

0.6,
0.05

2768 2940 3261 4851 5636 6699

0.6,
0.02

2808 3095 3196 4605 5696 6891 8162

0.6,
0.01

5797 6635 7899 9714 10865

0.6,
0.005

7977 10299 10963 17514 25331

0.6,
0.002

8120 9913 11522 17141 24106

0.6,
0.001

10979 17376 24906

1.0, 0.4 3219 4426 6657 9014

1.0, 0.1 3364 3632 4537 5831 7097 8696

1.0,
0.05

3401 3608 4590 6167 6895 8441

1.0,
0.02

3241 3591 4676 5894 6997 8503 10003

1.0,
0.01

6744 8387 10078

1.0,
0.005

8594 10380 12569 14492 23896 38045

1.0,
0.002

10175 12117 14304 24497 37881

1.0,
0.001

12366 14241 23885 37292

1.0,
0.0005

12266 14901 24762 38189

1.4, 0.4 3894 4933 8187

1.4, 0.1 3435 3894 5088 6167

1.4,
0.05

3492 3852 4933 6402

1.4,
0.02

3311 3972 4973 6451 7623

1.4,
0.01

5257 6344 7786 9610

1.4,
0.005

7821 9602 11325 14660 17054 28049 45657

1.4,
0.002

7952 9709 11412 13993 16946 28952 45854

1.4,
0.001

9581 11207 14103 17028 28597 46679

1.4,
0.0005

11754 14095 17206 27920 47013
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Table 3 The average number of events to an out-of-control false discovery. NCS: Number of
Consecutive Signals (m = 20, 25, . . . , 65)
Shape,
scale

NCS(m) 20 25 30 35 40 45 50 55 60 65

0.6,
0.005

45069

0.6,
0.002

46967 72111

0.6,
0.001

47542 68726 144039 298011 532268

0.6,
0.0005

67937 151541 294382 498749

0.6,
0.0002

160705 301347 503226 939184

0.6,
0.0001

317317 498749 945749 1696473

0.6,
0.00005

488333 931677 1653067 3129708 5499948

0.6,
0.00002

3470506 5522649

0.6,
0.00001

2938066 5549975 9676299

1.0,
0.002

67179 139842

1.0,
0.001

65902 139842 301347 535388 1018742

1.0,
0.0005

69779 145802 282070 589398 1075667

1.0,
0.0002

293539 574275 1024533

1.0,
0.0001

279529 541849 1062582 1992889

1.0,
0.00005

1354164 2000055 3961106

1.0,
0.00002

4283289 8272879 14706930

1.0,
0.00001

4418121 8192138 15039951

1.4,
0.002

77391 168188

1.4,
0.001

78899 162874 311347 689053 1672705

1.4,
0.0005

81339 160684 360820 695138 1780021

1.4,
0.0002

366243 668311 1743456

1.4,
0.0001

345039 712356 1762528

1.4,
0.00005

1601708 3054244 6023702 13015910

1.4,
0.00002

2942189 5768183 13332261 25956883

1.4,
0.00001

3092074 5620318 12755414 25315429
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Fig. 1 The estimated parameters for the fitted Weibull regression model

discover rate is one in roughly 2707× 0.4 = 1082.8 days. There is the potential to
increase this to an average of larger than 100,000 per day. The results in Tables 2
and 3 report the average number of events to an out-of-control false discovery for
processes with m consecutive signals. For example, for shape and scale parameters
of 0.6 and 0.4, respectively, with m = 2 signals in a row, the monitoring plan has an
average false discovery rate of one in 2707 events. Figure 1 provides the estimated
parameters for the fittedWeibull regression model, thus indicating the daily trends in
these parameters. Note from Fig. 1 that, as the scale decreases, the frequency of rate
of events increases, and therefore more consecutive signals of events are required
to deliver a one in hundred day out-of-control false alarm rate; for example, for
shape = 0.6 and scale = 0.0001, we need 50 consecutive signal of events, but we
have roughly on average 10,000 events per day. This provides us with an approach
of using the threshold results in Sparks et al. (2020) to design the monitoring plan
using the TBE for up to an average of several thousand events daily. This delivers
a plan with 9950 opportunities to flag an outbreak on the first day at the start, and
ten thousand events per day thereafter. The start-up requirement of the needing 50
consecutive events to signal before an outbreak can be flagged is a disadvantage but
not as large a disadvantage as waiting for the end of the day when monitoring daily
counts.
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3 Monitoring Non-homogeneous Processes

As we can see from Table 1, the plan changes very little if the mean rate changes
a small amount. For example, if we were monitoring the warrantee claims for a
product, by looking at its quality from batch to batch, the quality is likely to change
only slightly from one batch to the next. In these cases, little will need to be changed
in the monitoring plan from one batch to the next.With batch processes, we will need
a Phase I approach for each batch to train the monitoring thresholds. This threshold
may be found by using the usual stress testing results for the batch, or early Phase I
data from the batch. However, this Phase I data can be used to derive adjustment to
the monitoring plan relative to the batch before. If the process is continuous and non-
homogeneous, then themodel forecastswill be needed to define the non-homogeneity
of the process during any time with the day and across days. When there are many
events per day, this model should be quite accurate. Then the number of consecutive
events that need to signal before an outbreak is flagged can change depending on the
local expect mean rate of events. A simulation study can be carried out to determine
when the false discovery rate is acceptably low over time. This strategy is appropriate
as long as the mean rate never goes below 20 per day (the situation where we would
flag an outbreak if one event occurred).

For example, if we are dealing with sales of a product, this may vary from one
time slot to the next within the shops open hours. In this case, we can expect the
time between sales to vary across the day based on the purchasing behaviour of the
public and across days of the week. In these cases, the plans can be adjusted for this
behaviour by adjusting the number of consecutive signals needed on any day or time
of the day using simulation techniques. We now carry this out for people expressing
that they or someone else is currently feeling sick, using Twitter data in Queensland,
Australia.

4 Example of Application

We consider Twitter data for Queensland, Australia, for any onementioning that they
are sick with one of the following symptoms: diarrhoea, vomiting, upset stomach,
headache, head cold, cough, fever or generally feeling unwell. The data runs from
early 2015 to early 2018. The TBE values between the times these were first men-
tioned by a person with a personal unwell mention (Joshi et al. 2019) are calculated.
This resulted in roughly an average of 50 events per day, and the Weibull regression
model fitted the data adequately. The fitted Weibull regression model is given in the
Appendix. The model delivered fitted values for the scale parameter of the Weibull
distribution ranged in values:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009078 0.013330 0.016769 0.019356 0.021836 0.075807



An Approach to Monitoring Time … 295

●●●

●

●●

●

●
●●
●

●●●●●●

●

●

●●
●

●

●

●●●
●

●
●

●●●

●●

●

●

●

●

●

●●●
●●
●

●

●
●
●
●
●

●

●●

●

●

●

●●●●●
●

●

●

●

●●

●

●
●

●

●
●
●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●
●●
●

●

●●●
●

●

● ●

●

●

●

●
●
●

●

●●
●
●
●●
●
●
●

●
●

●

●

●

●

●●

●

●

●●●

●

●●
●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●
●
●
●●

●●
●
●●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●●●●

●

●

●
●●

●

●

●●
●●
●
●
●

●

●●
●

●

●
●

●

●

●●●
●●

●

●
●
●●
●

●●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●
●

●
●●

●

●●●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●●●●
●
●

●

●
●●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●●

●●●

●

●

●●●
●

●●

●

●●●
●
●●●

●

●
●●●

●

●
●●

●

●

●

●●
●

●

●

●
●

●
●●

●

●
●
●
●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●
●
●

●

● ●●

●

●●
●
●

●

●

●
●●
●

●

●

●

●

●

●

●●●●

●

●
●
●

●

●
●

●

●●
●
●

●

●

●

●●

●

●

●
●
●

●

●●●●

●

●

●

●
●

●
●

●

●

●●●

●
●●

●
●

●

●
●

●●
●●
●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●
●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●●

●

● ●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●●
●

●

●●●

●

●
●
●●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●●

●
●

●
●

●

●

●
●
●
●
●

●

●
●●
●
●
●

●

●●
●

●

●

●

●
●

●

●●●
●

●

●
●
●
●●
●

●

●

●

●

●
●●
●●

●

●

●

●●●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●
●●
●
●
●●

●

●

●●
●

●

●
●

●

●●

●
●
●
●●
●

●

●

●

●
●
●
●
●●●●

●

●

●

●●
●●●●●
●

●

●●
●●
●

●●●●●

●

●

●

●
●

●●

●●●●
●

●

●●
●
●
●●

●

●

●
●●
●
●
●●

●●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●
●●●
●

●

●

●

●●●

●
●

●●●
●●●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

● ●●●●

●

●
●

●

●

●

●●

●

●
●
●
●
●●●

●

●

●

●●●

●

●

●●

●

●

●

●●●
●

●

●●

●

●

●
●

●
●

●●

●●●●

●
●

●

●

●
●
●

●●

●

●

●

●●

●
●
●
●

●

●
●●●
●●●

●●

●

●

●●●

●●

●

●

●●●

●

●

●

●

●●●

●

●
●

●
●
●

●

●●

●

●

●●
●
●

●

●
●●●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●●

●

●●

●

●

●
●
●●

●

●

●●
●

●●

●

●

●

●

●●●●
●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●
●

●

●●
●
●

●

●●
●●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●●●
●
●
●

●

●
●●
●

●

●●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●●●
●
●●●●

●

●
●

●
●●●

●

●●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●●

●

●
●●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●
●●●

●

●
●
●●
●●

●

●

●●

●

●

●

●

●
●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●●

●

●●

●●

●

●●●
●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●●
●

●

●

●
●●

●●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●
●

●
●
●●●

●

●●

●●
●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●●

●

●●
●

●

●
●●

●

●
●

●

●
●●●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●●●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●●

●

●
●●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●●●

●
●●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●
●●
●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●
●

●

●●
●

●

●
●
●●●●●
●●

●

●
●
●

●
●

●
●

●

●●

●

●●●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●
●

●

●●●●
●
●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●
●
●●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●●

●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●
●●
●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●
●

●

●
●

●

●●●●

●

●

●●

●

●●

●

●●

●

●
●

●●●●

●

●

●

●

●●

●
●●

●

●●●
●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●●
●

●

●

●

●●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●
●●
●
●●

●

●●

●

●●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●
●
●●
●

●●●

●

●
●
●
●

●

●●
●
●

●

●

●●

●

●

●
●●
●●

●

●
●

●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●
●●

●
●

●●●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●
●
●●
●
●

●

●●●●

●
●
●
●

●
●
●●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●●●
●

●
●
●

●

●

●

●

●●

●

●

●
●●
●
●
●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●
●

●●

●

●
●●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●●

●●●
●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●
●●
●●

●

●

●

●

●●

●

●

●

●●
●
●●
●
●●

●

●

●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●
●●

●

●

●
●

●

●

●

●

●●

●

●●
●●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●
●

●
●

●

● ●●

●

●●

●
●●
●
●
●●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●●
●●

●

●

●
●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●●
●●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●●

●
●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●
●

●
●●

●

● ●

●
●
●

●
●
●
●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●●
●

●●

●

●

●●●
●●

●

●●

●

●●●
●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●
●
●
●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●●

●●
●●
●

●

●

●

●

●
●
●●
●

●
●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●●

●
●
●

●

●

●
●
●

●

●

●
●

●●

●
●●●●●

●

●●

●

●

●
●●

●

●

●●
●

●
●●
●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●●

●
●

●●

●

●●

●●

●

●

●

●●

2015−02 2015−08 2016−02 2016−08 2017−02 2017−08 2018−02

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year−Month

TB
E 

in
 d

ay
s

Fig. 2 Monthly boxplots of the time series of time between events

and the fitted shape parameter of the Weibull distribution were

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.7746 0.8675 0.9094 0.8959 0.9305 0.9919

Figure 1 illustrates the trends in the scale and shape parameter estimates within
the time of the day. The daily trends for scale and shape is a trend that cycles round
the same trajectory within a day of people reporting that they are sick. However, the
different magnitude of these trends are basically driven by differences in the days of
the week. This indicates the non-homogeneous nature of the TBE values within and
across days.

The monthly distribution of TBE values are reported in Fig. 2. Note that it is not
easy to identify any outbreaks from this plot, because, generally, the width of the
boxes increases with each increasing month, indicating that there are more events
over time. Monitoring these TBE values is the only way to identify a significant
increase in incidences.

The plans in Table 4 have approximately a one in 100 days out-of-control false
outbreak discovery rate (approximately 3 to 4 outbreak false discoveries per annum)
with the number of consecutive signals as in the Table 4. The in- control ANE is the
average number of events before an outbreak false signal is flagged.

The last plan in Table 4 as applied to the data gives roughly a false discovery rate of
one in 122.6 days. This translates to approximately three false outbreak discoveries
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Table 4 Plans with approximately a one in 100 out-of-control false outbreak discovery rate

Scale closest to 0.073 0.058 0.044 0.04 0.036 0.02 0.01 In-control
ANE

No. consecutive
signals

1 2 3 5 7 9 10 4892.5

No. consecutive
signals

1 2 3 5 8 9 10 5088.7

No. consecutive
signals

1 2 3 5 8 9 11 5120.6

No. consecutive
signals

1 2 3 5 8 10 11 5944.6

per annum. The results of applying this approach to our application is given in Fig. 3.
The blue circles in this figure indicate the flagged outbreaks of people feeling unwell.
Note that year 2015 had six dispersed days flagging unusual outbreaks, year 2016 had
five dispersed days flagging unusual outbreaks. Each of these events flagged several
times on the same day and are likely to be real day outbreak events. However, in

2015 2016 2017 2018
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Fig. 3 Flagging outbreaks of people feeling sick with one of the following symptoms diarrhoea,
vomiting, upset stomach, headache, head cold, cough, fever or generally feeling unwell using run
rules
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2017, there was a sustained outbreak period flagged, and this is likely to correspond
to a very unusual influenza outbreak for that year. In 2017 there were two other
dispersed days flagging unusual outbreaks.

5 Diagnosing the Nature of the Outbreak

In this section, we look at which counts are unusually high for particular days to
diagnose the nature of the flagged outbreaks. We explore the unusual symptoms
across days to decide the nature of the people who said were sick in the twitter
messages on particular days. These are:
Diarrhoea
2015-02-10 2015-10-27 2016-09-07 2016-09-13 2016-09-14 2016-11-10 2016-12-22 2017-01-03 2017-12-20

Vomiting
2015-02-10 2015-02-11 2015-04-10 2015-04-11 2015-04-13 2015-04-23 2015-08-12 2015-08-28 2015-10-04 2016-
04-28 2016-11-10 2017-05-03 2017-10-18 2017-11-17 2018-01-08

Upset stomach
2015-02-10 2015-02-17 2015-03-21 2015-04-13 2015-04-28 2015-05-20 2015-06-07 2015-08-12

Cough
2015-04-27 2015-06-08 2015-08-29 2015-09-09 2015-12-11 2016-06-08 2016-06-21 2016-09-07 2016-09-13 2016-
09-14 2016-09-27 2017-10-31 2017-11-07 2017-12-20 2018-01-02

Headache
2015-04-27 2015-05-20 2015-05-21 2015-09-09 2016-08-14 2016-09-13 2016-09-27 2016-11-10 2017-01-01 2017-
10-29 2017-10-31 2017-12-07 2017-12-19 2017-12-31

Feeling unwell
2015-02-17 2015-02-23 2015-02-24 2015-03-03 2015-03-26 2015-03-27 2015-03-28 2015-03-31 2015-04-11 2015-
04-23 2015-04-28 2015-08-25 2015-10-05 2016-04-26 2016-11-10 2016-12-22

Headcold
2015-06-08 2015-08-25 2016-06-21 2017-01-02 2017-01-05 2017-11-13 2017-11-14 2017-11-17 2017-11-20 2017-
12-07 2017-12-16 2017-12-18 2017-12-20 2017-12-29 2017-12-30 2017-12-31 2018-01-01 2018-01-02 2018-01-03
2018-01-06 2018-01-08 2018-01-09 2018-01-13 2018-01-14 2018-01-15 2018-01-18 2018-01-22

Note the following interpretations:

1. On the 10, 11 and 17 February 2015 there seemed to be a stomach related events
involving diarrhoea, vomiting, upset stomach and feeling unwell. No other symp-
tom was unusual on those days.

2. From 2015-03-26 to 2015-03-31 there is evidence of feeling unwell.
3. From 2015-04-10 to 2015-04-23 there is evidence of a vomiting, upset stomach

event and feeling unwell.
4. From 2015-08-12 to 2015-08-28 there is evidence of a vomiting, upset stomach

event, headcold and feeling unwell.
5. From 2016-09-07 to 2016-09-27 there is a cough and headache outbreak.
6. On 2016-11-10 there are outbreaks of vomiting, headache and feeling unwell.
7. From 2017-01-01 to 2017-01-05 there is Headache, diarrhoea and headcold out-

breaks.
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8. Headcold most occur in the Southern Hemisphere winter or Spring period but
towards the end of 2017 and early 2018 this runs into the summer period because
a large influenza outbreak in 2017. This outbreak period is also intermingled with
periods of cough, headache and vomiting outbreaks.

6 Conclusions

The paper has demonstrated that TBE monitoring plans can be derived for events
ranging from 20 events per day to 100,000 events per day. When outbreaks are
large over a short time period, these plans are likely to flag outbreaks earlier than
monitoring the daily counts of these events, when the plans are trained to have the
same out-of-control false discovery rate. This suggests that we should never monitor
counting processes for detecting outbreaks of events when events are large and occur
in a short time-frame.

7 Appendix A

******************************************************************
Family: c("WEI", "Weibull")

Call: gamlss(formula = TBE ˜ cos(2 * pi * time/365.25) + sin(2 * pi *
time/365.25) + (wd == "Sunday") + (wd == "Saturday") + time +
hr + cos(hr * 2 * pi/24) + sin(hr * 2 * pi/24) + cos(hr *
2 * pi/12) + sin(hr * 2 * pi/12), sigma.formula = ˜cos(2 *
pi * time/365.25) + sin(2 * pi * time/365.25) + (wd == "Sunday") +
time + hr + cos(hr * 2 * pi/24) + sin(hr * 2 * pi/24) + cos(hr *
2 * pi/12) + sin(hr * 2 * pi/12), family = WEI(), data = TBE)

Fitting method: RS()

------------------------------------------------------------------
Mu link function: log
Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.748e+00 3.652e-01 -21.219 <2e-16 ***
cos(2 * pi * time/365.25) 9.761e-03 9.614e-03 1.015 0.3100
sin(2 * pi * time/365.25) 4.030e-03 9.498e-03 0.424 0.6714
wd == "Sunday"TRUE 3.961e-02 1.952e-02 2.029 0.0425 *
wd == "Saturday"TRUE 2.981e-02 1.960e-02 1.521 0.1283
time 2.261e-04 2.149e-05 10.522 <2e-16 ***
hr 2.864e-02 1.941e-03 14.752 <2e-16 ***
cos(hr * 2 * pi/24) -1.586e-01 1.022e-02 -15.518 <2e-16 ***
sin(hr * 2 * pi/24) 1.087e-02 1.689e-02 0.644 0.5198
cos(hr * 2 * pi/12) 2.231e-02 9.523e-03 2.343 0.0191 *
sin(hr * 2 * pi/12) 1.278e-01 1.242e-02 10.294 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

------------------------------------------------------------------

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -1.617e+00 1.037e-01 -15.601 < 2e-16 ***
cos(2 * pi * time/365.25) 1.343e-03 2.721e-03 0.494 0.622
sin(2 * pi * time/365.25) 9.511e-05 2.682e-03 0.035 0.972
wd == "Sunday"TRUE 8.864e-03 5.498e-03 1.612 0.107
time 2.652e-05 6.104e-06 4.344 1.40e-05 ***
hr 1.771e-02 5.210e-04 33.993 < 2e-16 ***
cos(hr * 2 * pi/24) -5.234e-02 2.921e-03 -17.918 < 2e-16 ***
sin(hr * 2 * pi/24) 3.793e-02 4.706e-03 8.060 7.66e-16 ***
cos(hr * 2 * pi/12) -1.425e-02 2.693e-03 -5.291 1.22e-07 ***
sin(hr * 2 * pi/12) 3.701e-02 3.545e-03 10.441 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

------------------------------------------------------------------
No. of observations in the fit: 160035
Degrees of Freedom for the fit: 21

Residual Deg. of Freedom: 160014
at cycle: 5

Global Deviance: -843570.6
AIC: -843528.6
SBC: -843319

******************************************************************
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Abstract Many collaborative studies are run to evaluate precision of measurement
methods. The main focus is on estimating repeatability and reproducibility, which
are the variation within a laboratory and the overall variation of the measurement
method, respectively. ISO 5725 provides how to design and analyze such precision
experiments for quantitative cases where the measurement results follow a continu-
ous distribution, namely a normal distribution. However, there are cases where the
measurement results are qualitative such as binary or categorical. In this paper, the
cases with ordinal categorical variables are considered. Using methods that can be
applied to qualitative data, an analysis of a measurement precision experiment with
measurements involving ordinal categorical variables is investigated. The data anal-
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1 Introduction

Evaluatingperformanceof ameasurementmethod is essential inmetrology.Concepts
of repeatability and reproducibility are introduced in the International Organization
for Standardization (1994) series, including how to run and analyse experiments
(usually collaborative studies) to obtain these precisionmeasures. InternationalOrga-
nization for Standardization (1994) describes precision evaluation in quantitative
measurements but not in qualitative measurements. Some methods such as Wilrich
(2010), de Mast and van Wieringen (2010), and Bashkansky et al. (2012) have been
proposed for qualitative measurement cases. Item response theory (Muraki 1992)
is another methodology that can be used to analyse qualitative data. Using these
methods, an analysis of a measurement precision experiment with measurements
involving ordinal categorical variables is investigated.

The data analysed are from a precision experiment of intratracheal administration
testing (AIST 2018) whose objectives were to study the precision of a standardized
test method for evaluating nanomaterial pulmonary toxicity. In such experiments,
the dose-response relationship must also be considered, making the situation more
complicated. Thus, this paper’s objective is to discuss how these data should be
analysed using actual data.

The remainder of this paper is organized as follows. Section 2 explains the data
used in this paper. Section 3 introduces the methods for analysing qualitative data,
Sect. 4 describes the results of the analyses, and Sect. 5 provides a summary of the
paper.

2 Data

The data used in this paper are from a precision experiment of intratracheal admin-
istration testing (AIST 2018). The main objective of this experiment was to study
the precision of a standardized test method for evaluating nanomaterial pulmonary
toxicity. An overview of the experiment is as follows:

(a) Three nanomaterials were used in the study.
(b) Four dose levels (none, low, middle, and high) were designed for each nanoma-

terial.
(c) The experiment was conducted by five laboratories.
(d) The number of replicates was five.
(e) The replications were conducted using rats.
(f) The same test method was used for all laboratories.
(g) The equipment used in each laboratory may differ.
(h) Each rat went through a pathological examination.
(i) There were 19 characteristics to be examined by experts.
(j) The result of the examination revealed the inflammation grade of the response.
(k) The response was given one of five grades (−, +−, +, ++, +++).
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Therefore, we obtain ordinal categorical data (five categories) of 19 characteristics
for each of five rats, four level of doses, and three nanomaterials in each laboratory.

3 Methods

3.1 ISO 5725

In the ISO 5725 series, accuracy of a measurement result, measurement method, or
measurement system is a general term involving trueness and precision. Trueness is
the closeness in agreement between the average value obtained from a large series of
measurement results and an accepted reference value. Trueness is usually expressed
in terms of bias, which is the difference between the expectation of the measurement
results, and the accepted reference value. Precision is the closeness in agreement
between independent measurements results obtained under stipulated conditions and
is usually expressed in terms of the standard deviations of the measurement results.

Generally, two measures of accuracy, repeatability and reproducibility, are re-
quired. Repeatability is measurement results under repeatability conditions, where
the independentmeasurement results are obtained using the samemethod on the iden-
tical test items in the same laboratory by the same operator using the same equipment
within short intervals of time. Reproducibility is measurement results under repro-
ducibility conditions, where the measurement results are obtained using the same
method on identical test items in different laboratories with different operators using
different equipment..

The basic model to estimate accuracy of measurement method a measurement
result y in the ISO 5725 series is given by

y = m + B + e (1)

wherem is the generalmean (expectation), B is the laboratory component of variation
(under repeatability conditions), and e is random error (under repeatability condi-
tions). The expectation of B is assumed to be 0, and the variance of B, which is the
between-laboratory variance, is denoted by σ 2

L . The expectation of e is also assumed
to be 0, and the variance of e, which is the within-laboratory variance, is assumed
to be equal in all laboratories and is denoted as the repeatability variance σ 2

r . The
reproducibility variance σ 2

R can be expressed as the sum of the between-laboratory
variance and the repeatability variance

σ 2
R = σ 2

L + σ 2
r . (2)
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3.2 Ordinal Analysis of Variance (ORDANOVA)

ORDANOVA (Bashkansky et al. 2012) is a method for investigating measurement
result differences among laboratories when the results consist of ordered categorical
data. The null hypothesis in ORDANOVA is defined as “no measurement result
differences exist among all laboratories” and the alternative hypothesis is defined as
“differences in measurement results exist among some of the laboratories”.

The within-laboratory variation̂h2
m(W ), is given as

̂h2
m(W ) = 1

(K − 1)/4

K−1
∑

k=1

̂Fkm(1 − ̂Fkm), (3)

where ̂Fkm denotes the cumulative frequency of data for laboratory m = 1, 2, . . . , M
and category k = 1, 2, . . . , K . Measure of the between samples variation per kth
category ̂S2

k(B), is given as

̂S2
k(B) = 1

M

M
∑

m=1

(

̂Fkm − ̂Fk·
)2

. (4)

The total variation̂h2
(T ) is given as

̂h2
(T ) = ̂h2

(W ) + ̂S2
(B)

= 1

M

M
∑

m=1

̂h2
m(W ) + 1

(K − 1)/4

K−1
∑

k=1

̂S2
k(B). (5)

Here, ̂h(W ), ̂S(B) and ̂h(T ) are analogous to repeatability variance, reproducibility
variance and total variance. The test statistic can be expressed as

I =
̂S2

(B)/d fB

̂h2
(T )/d fT

(6)

with degrees of freedom d fB = M − 1, d fT = N − 1. The null hypothesis is rejected
when

I > Icr = χ2
1−α

M − 1
, (7)

where Icr is the critical value and α is the significance level.
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3.3 Attribute Agreement Analysis (AAA)

AAA (International Organization for Standardization (ISO) 2010) is a method for
analysing agreement among nominal data. Fleiss’ κ statistic is applied to investigate
the between-laboratory and within-laboratory agreement of measurements, and the
estimate of κ is given by

κ̂ = ̂Po − ̂Pe

1 − ̂Pe
, (8)

where ̂Po is the probability themeasurement results matched and ̂Pe is the probability
that the measurement results match by chance. κ takes the value between −1 and
+1, and indicates greater agreement when κ is nearer to +1.

To obtain within-laboratory agreement, ̂Po and ̂Pe are expressed as

̂Po = 1

Nl(l − 1)

(

N
∑

i=1

K
∑

k=1

x2
ik − Nl

)

,

̂Pe =
K

∑

k=1

p2
k , pk = 1

Nl

N
∑

i=1

xik, (9)

where xik denotes the frequency of item i = 1, 2, . . . , N classified as category k =
1, 2, . . . , K , and l express the number of replications. To obtain between-laboratory
agreement, ̂Po and ̂Pe are expressed as

̂Po = 1

N Ml(Ml − 1)

⎛

⎝

N
∑

i=1

K
∑

k=1

M
∑

j=1

x2
i jk − N Ml

⎞

⎠ ,

̂Pe =
K

∑

k=1

p2
k , pk = 1

N Ml

N
∑

i=1

M
∑

j=1

xi jk, (10)

where xi jk denotes the frequency of item i = 1, 2, . . . , N classified as category k =
1, 2, . . . , K for laboratory j = 1, 2, . . . , M .

3.4 Item Response Theory (IRT)

IRT was developed in the education and psychology fields, and is widely used in
tests and examinations. IRT enables users to estimate both examinee abilities and
question difficulty.

Many models have been developed in IRT to accommodate various situations.
The generalized partial credit model (GPCM) is a model applied to ordinal polyto-
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Fig. 1 Item characteristic curve for item j

mous data, in which a partial point can be possible for each test question. GPCM is
expressed as

Pjh(θ) =
exp

{

a j
∑h

m=0(θ − b jm)
}

∑H
h=0 exp

{

a j
∑h

m=0(θ − b jm)
} , (11)

where Pjh(θ) denotes the probability of an examinee with ability θ obtaining partial
points h for a test question (known as an item in IRT). The plots of the probabilities
regarding ability are known as the item characteristic curve (ICC), and an exam-
ple is shown in Fig. 1. In Fig. 1, b jm represents ability values of the intersections
(thresholds) of adjacent points, and a larger b jm value means that a question is more
difficult. In Fig. 1, a j expresses the slope of the tangents at the intersections, and a
larger a j value means that a question discriminates examinees better.

When IRT is applied to precision experiments, the model can be expressed (de
Mast and van Wieringen 2010) as

q j (h|x) =
exp

{

α j
∑h

m=0(x − δ jm)
}

∑H
h=0 exp

{

α j
∑h

m=0(x − δ jm)
} . (12)

Here, q j (h|x) denotes the probability that laboratory j assigns category h when the
toxicity of the nanomaterial is x . α j represents discrimination parameters and δ jm

represents threshold parameters. For any laboratory j , the relation δ j,h < δ j,h+1 is
assumed for any value of h. In precision experiments, laboratories are regarded as
test questions in IRT, and the toxicity of the nanomaterial in precision experiments
are regarded as examinee ability in IRT.
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Precision measures for within-laboratory variation and between-laboratory varia-
tion can be derived using Eqs. (13) and (14), respectively (deMast and vanWieringen
2010).

πw
j (h) = P

(

Yi j = h | δ j,h < Xi < δ j,h+1
)

(13)

πb
j1, j2 =

H
∑

h=0

P
(

δ j1,h−1 < X < δ j1,h ∧ δ j2,h−1 < X < δ j2,h
)

(14)

Here,πw
j (h) is the probability that a laboratory assigns category h based on its thresh-

old, and can be interpreted as consistency within a laboratory. πb
j1, j2

is the probability
that the measurement results of an identical item by two arbitrary laboratories match,
and can be interpreted as consistency among laboratories.

Repeatability can be calculated using the average of πw
j (h) and reproducibility

can be calculated using the average of πb
j1, j2

.

4 Results and Discussion

4.1 Graphical Presentation

The toxicity experiment had a complicated data structure, thus we started by drawing
bubble charts, which were applied to clarify the dose-response relationship. Figure 2
shows an example of the bubble charts. Bubble size corresponds to frequency, which
is the number of rats. These graphs were drawn for all possible cases, that is, 285 (3
nanomaterials × 19 characteristics × 5 laboratories).

Fig. 2 Bubble chart (Nanomaterial C, characteristic No. 1, lab. No. 1)
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4.2 Estimation of Precision Measures

In this subsection, precision measures are estimated using (1) ISO 5725 method,
(2) ORDANOVA, (3) AAA and (4) IRT. For each of these method, repeatability
and reproducibility measures are estimated. The measures themselves differ among
the methods as in described in Sect. 3, so the estimated values cannot directly be
compared. The comparison is made through focusing on the changes of the estimated
values.

4.2.1 Estimation Using ISO 5725 Method

We calculated repeatability and reproducibility measures for each combination of
nanomaterials, doses, and characteristics using the ISO 5725 method, which applies
one-way ANOVA layout. The value of the category is treated as quantitative values,
so the repeatability variance and the reproducibility variance are directly estimated.
Significance tests were conducted to check for the existence of between-laboratory
variance. The statistics calculated are the F-values that is the mean squares between
laboratories divided by the mean squares within labratories as in one-way ANOVA.
Table 1 shows an example of the summarized results (for nanomaterial A). More
significant results are obtained for higher doses, and if we focus on F-values, they
are larger for characteristics Nos. 8, 9, 11 and 18.

Table 1 Results of ISO 5725 (F-values of between-lab variance testing; Nanomaterial A)

Char None Low Medium High

1 0.0 8.6a 4.1 4.8

2 0.0 3.4 5.7 10.9a

6 0.0 2.4 9.6a 6.0

7 0.0 6.0a 5.7 4.3

8 2.0 5.1 22.0a 17.6a

9 1.0 2.1 19.6a 12.9a

10 4.0 3.4 3.8 4.8

11 0.0 18.6a 5.7 14.7a

16 0.0 1.1 0.0 2.7

18 0.0 1.0 7.5a 23.5a

19 0.0 0.0 2.7 1.0
a: Statistically significant
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Table 2 Results of ORDANOVA (Nanomaterial A)

None Low Medium High

Char. r R r R r R r R

1 0.00 0.00 0.08 0.25 0.08 0.27 0.00 0.40

2 0.00 0.00 0.08 0.25 0.11 0.52 0.00 0.72

6 0.13 0.28 0.06 0.28 0.13 0.29 0.10 0.39

7 0.00 0.00 0.10 0.30 0.22 0.49 0.16 0.51

8 0.05 0.07 0.18 0.32 0.18 0.60 0.18 0.48

9 0.10 0.20 0.08 0.26 0.19 0.42 0.16 0.49

10 0.13 0.36 0.21 0.23 0.26 0.31 0.26 0.36

11 0.05 0.07 0.16 0.21 0.24 0.45 0.26 0.50

16 0.06 0.08 0.06 0.08 0.03 0.04 0.16 0.22

18 0.05 0.11 0.03 0.20 0.08 0.38 0.10 0.48

19 0.00 0.00 0.06 0.08 0.21 0.38 0.19 0.42

r: repeatability, R: reproducibility

4.2.2 Estimation Using ORDANOVA

Repeatability and reproducibility measures are calculated for each combination of
nanomaterials, doses, and characteristics using ORDANOVA. Here, ̂h2

(W ) and ̂S2
(B)

descried in Sect. 3.2 are the measures for repeatability and reproducibility, respec-
tively. Table 2 shows summarized results for nanomaterial A. The repeatability mea-
sures are larger for characteristics Nos. 10 and 11, and the reproducibility measures
are larger with higher doses, especially for characteristic No. 2.

4.2.3 Estimation Using AAA

Repeatability and reproducibility measures are calculated for each combination of
nanomaterials, doses, and characteristics using nominal AAA. The statistics esti-
mated here are Kappa statistics described in Sect. 3.3. The summarized results for
nanomaterial A are shown in Fig. 3, with variation becoming larger (Kappa statistic
being smaller) with higher doses.

4.2.4 Comparison Among ISO 5725, ORDANOVA and AAA

The above results are aggregated in Table 3 and ISO 5725, ORDANOVA, and AAA
results were compared. In Table 3, the estimated measures are (1) repeatability
variance and reproducibility variance for ISO 5725 method, (2) ̂h2

(W ) and ̂S2
(B) for

ORDANOVA, and (3) Kappa statistics for AAA. Table 3 clearly shows that the pre-
cision measure peaks are the same among all methods and variations were smallest
with no dose in all cases.
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(a) Repeatability (b) Reproducibility

Fig. 3 Results of AAA

Table 3 Estimated repeatability and reproducibility measures

Repeatability Reproducibility

5725 ORD. AAA 5725 ORD. AAA

Material
A

None 0.08 0.05 0.67 0.14 0.11 0.27

Low 0.15 0.10 0.58 0.32 0.22 0.26

Medium 0.28 0.16 0.50 0.64 0.38 0.19

High 0.21 0.14 0.55 0.67 0.45 0.16

Material B None 0.09 0.05 0.63 0.08 0.08 0.37

Low 0.33 0.16 0.53 0.62 0.32 0.31

Medium 0.25 0.15 0.53 0.61 0.32 0.35

High 0.30 0.15 0.61 0.73 0.36 0.30

Material C None 0.03 0.02 0.81 0.04 0.05 0.43

Low 0.16 0.10 0.60 0.26 0.18 0.41

Medium 0.27 0.16 0.49 0.69 0.35 0.24

High 0.23 0.15 0.54 0.67 0.34 0.31

4.2.5 Estimation Using IRT

Repeatability and reproducibility measures were calculated for each nanomaterial
using IRT.Also, ICCswere drawn for all laboratories and each nanomaterial. Figure 4
shows the ICC of laboratory No. 1 for nanomaterial A. The vertical axis expresses the
probability of the measurement result being a specific category h, which is denoted
by q j (h|x). The horizontal axis expresses the true toxicity, which is denoted by x .
From Fig. 4, the probability of the measurement result being category 1 is more than
95% when x = 0. Additionally, when x = 2, the probability of being in category 3
is approximately 40%, and the category 4 probability is about 60%.
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Fig. 4 Item category curve for nanomaterial A and laboratory No.1

Table 4 shows the results of estimated parameters for nanomaterial A. An ideal
situation for the discrimination parameters would be if they are equivalent among
all the laboratories and the values are large enough although it need to be judged
subjectively. From Table 4, we can understand this is not the case, and we can
conclude that there exist between-laboratory variation. The order of the estimates of
discrimination parameter α j were laboratories No. 1, No. 2, No. 3, No. 4 and No. 5,
in descending order. This means that appropriate classification was also performed in
this order from better to worse. Laboratory No.1 had the best discrimination ability.

An ideal situation for the thresholds values would be if they are equivalent among
laboratories for each of the categories. The threshold parameter estimates were gen-
erally similar among the laboratories except for laboratory No. 3 which suggests the
existence of some kind of bias. Looking closely, the threshold values for laboratory
No. 3 were larger, which means that laboratory No. 3 tends to give lower category
numbers compared to other laboratories. Finally, repeatability and reproducibility are
calculated using Eqs. (13) and (14) with the threshold parameters shown in Table 4.
Since these values are based on probabilities of results matching, the higher value

Table 4 Parameter estimates of α j (discrimination) and δ jh (threshold)

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

δ j1 0.65 0.74 1.01 0.68 0.75

δ j2 1.18 1.29 1.68 0.86 1.00

δ j3 1.91 1.80 3.04 1.70 1.33

δ j4 3.19 3.24 3.00 3.38 2.19

α j 5.25 4.22 3.10 3.06 1.61



314 T. Suzuki et al.

Table 5 Precisions (Repeatability and Reproducibility) of the IRT approach

Material A Material B Material C

Repeatability πw
j (h) 0.808 0.817 0.829

Reproducibility πb
j1, j2

0.847 0.854 0.777

means higher precision. Table 5 lists the repeatability and reproducibility measures
for all nanomaterials (A, B, and C). Although the difference in these values were
not so large, measuring nanomaterial C had the highest repeatability and measuring
nanomaterial B had the highest reproducibility. Comparing repeatability and repro-
ducibility, reproducibility was larger for measuring nanomaterials A and B, whereas
repeatability was larger for measuring nanomaterial C.

4.3 Estimation of Toxicity

The toxicity of the nanomaterials was estimated using IRT. Figure 5 shows box
and whisker plots of estimated toxicity for material A. From Fig. 5, we can see
the effect of doses. Although the distribution of toxicity among the dosage levels
overlaps considerably, dosage effects are apparent as a whole, that is, the average of
the toxicity increases as the dose become larger.

Fig. 5 Box and whisker plot of estimated toxicity (nanomaterial A)
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5 Conclusions

Precision measures of ordinal categorical data were estimated for actual intratra-
cheal administration testing experiment data, and dose-response relationships were
also investigated. It was not possible to perform an analysis that considers all factors
as there were many factors in the experiment. Therefore, analyses were performed
considering appropriate factors for each analysis. Precisionmeasures for characteris-
tics were well clarified by ISO 5725 and ORDANOVA and characteristics with large
variations were identified. Precision measures for each dose were estimated using
ISO 5725, ORDANOVA, and AAA. It became clear that the variation increases as
the dose becomes larger. The condition that gave the maximum and minimum values
was the same. Precision measures for each nanomaterial were estimated using IRT.
Measuring material B had greater repeatability and measuring material C had greater
reproducibility. The features of each laboratory could be observed using the ICC of
IRT. Dose-response relationships were also examined using estimated toxicity using
IRT. The relationships were then investigated for each characteristic for each nano-
material. Because of the inherent variation in the data, it was not possible to obtain
a precise dose-response relationship. Nevertheless, the existence of a dose-response
relationship could be verified using a rank correlation coefficient.
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Assessing a Binary Measurement System
with Operator and Random Part Effects

Stefan H. Steiner, R. Jock MacKay, and Kevin Fan

Abstract Consider the assessment of a binary measurement system with multiple
operators when a gold standard measurement system is also available (for the assess-
ment study). Data are collected as in a gauge repeatability and reproducibility plan for
a continuous measurement system and each operator in the study measures a num-
ber of parts multiple times. We characterize the performance of the measurement
system by estimating the probabilities of accepting a non-conforming part and of
rejecting a conforming part. To model the data, we assume that some parts are more
difficult to correctly classify than others and so choose to use random part effects.
We consider two cases, modeling the operator effects as fixed or random. For each,
we study a conditional and marginal model and their corresponding estimates of the
parameters of interest. We also provide guidance on the planning of the assessment
study in terms of the number of parts, number of operators and number of repeated
measurements.

Keywords Binary measurement system assessment · Marginal and conditional
models · Planning of assessment studies · Random and fixed effects · Sensitivity
and specificity

1 Introduction

For a continuous measurement system in industry, the standard assessment plan
is a gauge repeatability and reproducibility study (GR&R) in which a number of
operators measures a number of parts repeatedly. See the AIAG Reference Manual
AIAG (2010). The goal of the assessment is to estimate
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• the overall precision of themeasurement system relative to the part to part variation
• the reproducibility (variability among operators) and repeatability (variability
within operators).

The statistical model used in the analysis of the data from a GR&R study treats
the part effects and the repeatability as random. Operator effects are modelled as
fixed or, more typically, random. See Burdick et al. (2005).

Binary measurement systems (BMS) are widely used in industry to check that
parts conform to specification. We study the BMS using the GR&R plan (or a simple
extension, see Steiner et al. 2011), i.e. a number of operators repeatedly classify
a number of parts. We assume that the BMS is non-destructive so that parts can
be re-measured/classified without changing their properties. We also assume the
availability of a gold standard measurement system to determine the true conforming
status of any part used in the assessment study.

We assess the performance of the BMS in terms of the two misclassification
errors. To model the probability of such an error, we suppose that parts in the study
are selected at random from the population of parts and so treat part effects as random.
When only a small number of operators use the BMS, we treat the operator effects
as fixed. In other instances, such as a large inter-laboratory trial, we use random
operator effects.

To introduce some notation, suppose the operator effects are random. Then, for
a randomly selected operator and part, let Y = 1 be the event that the part is passed
by the BMS and Y = 0 the event that the part fails inspection. Also let X = 1 if
the part is conforming and X = 0 otherwise. To quantify the performance of the
measurement system, we estimate the misclassification probabilities

α = P(pass | non-conforming) = P(Y = 1 | X = 0) and

β = P(fail | conforming) = P(Y = 0 | X = 1) .

In medical contexts, 1 − α and 1 − β correspond to the specificity and sensitivity of
the BMS (or vice versa depending on the definition of X ). When operator effects are
fixed, we define and estimate α j and β j for each operator j = 1, . . . , n separately.

In our proposed plan and analysis we assume the availability of two separate
populations, one consisting of conforming parts and another of non-conforming
parts as determined by the gold standard. As a result, we conduct two similar but
separate studies using samples of conforming and non-conforming parts to estimate
the misclassification probabilities. In practice, the two studies are likely combined.
However, from this point forward for simplicity, we consider only the estimation of
α or α j , the probability of passing a part that is non-conforming. We consider the
availability and selection of conforming and non-conforming parts in the Discussion
section.

To mirror a GR&R study, suppose we select m non-conforming parts at random
and n operators from the populations of interest. Each operator measures each part
r times and, for each operator/part combination, we record the number of times
the measurement system classifies the part as conforming. We denote this plan by
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L(m, n, r). For fixed operator effects, n is small, typically 2 or 3. When operator
effects are random, both m and n are large and the L(m, n, r) plan is logistically
cumbersome. Alternately, we consider multiple copies of smaller plans. In terms
of the notation, if we have independent replications of a plan, say 25 independent
copies of L(2, 2, 5), we write L(2, 2, 5)25 or, more generally, L(m, n, r)T to indicate
we have T copies of L(m, n, r). For example, when there are three operators with
fixed effects, we might consider a L(m, 1, r)3 plan where, for logistic reasons, each
operator measures different parts. Steiner et al. (2011) examine similar plans for
the assessment of a continuous measurement system with random part and operator
effects.

The goal of the paper is to look at the plan, the modelling and the estimation of
the misclassification error rate(s) from a L(m, n, r)T plan for both fixed and random
operator effects. This extends the existing literature in a number of important ways as
described in more detail in the literature review to follow. In addition, by considering
the case with both random parts and operators, it provides the natural extension of the
standard gauge R&R analysis for a continuous measurement system.We believe this
natural extension has not been considered previously probably due to the complexity
of fitting the corresponding conditional model (as described in Sect. 3).

If there are no operator effects (e.g., we have a single operator or an automated
BMS), there is substantial literature, referenced below, dealing with a BMS assess-
ment.When there is no gold standard, we can use a latent class model (a mixture over
the unknown distribution of X ) to estimate the parameters of interest. See Akkerhuis
et al. (2017), Erdmann et al. (2016), Danila et al. (2012), Beavers et al. (2011), van
Wieringen and de Mast (2008) for some recent references to this approach in an
industrial context. Akkerhuis et al. (2017), Albert and Dodd (2004, 2008), Severn
et al. (2016) show that the estimates of α and β from latent class models are highly
sensitive to untestable assumptions so that this approach cannot be recommended.
Akkerhuis et al. (2017) suggest alternative parameters to assess the BMS when there
is no gold standard system available.

There are numerous references to estimating the probability of a misclassification
error when a gold standard system is available to verify the status of each part in
the study. See Danila et al. (2013) for a list of recent references for the no operator
case. Alternately, Severn et al. (2016) show that using the gold standard to verify the
true status of a carefully selected small subset of the parts can resolve the lack of
robustness with latent class methods while providing estimates with precision close
to those available from the complete verification plan. See also Albert and Dodd
(2008) for a discussion of partial verification.

Other related work includes the large literature on assessing a diagnostic (binary)
test in a medical context. See, for example, Pepe’s (2003) book for a thorough cov-
erage of estimating sensitivity and specificity in a variety of situations. She also
discusses at length the receiver operating characteristic (ROC) curve where the BMS
passes or fails a part depending whether or not a continuous variate is less than or
greater than a specified constant c. In this context, unlike in our proposed work,
due to ethical and other constraints, subjects (parts) are only measured once by each
operator. In the psychological and educational context there are also many papers
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devoted to Item Response Theory (IRT) that, in its simplest form, connects an under-
lying unobservable continuous trait to the observable response to one or more binary
questions. See for example, de Boeck (2008). Here the focus is not on estimating the
misclassification rates and thus the goals are very different than what we consider.
Finally, in a manufacturing context, the measurement system manual AIAG (2010)
proposes assessing a BMS using a combination of measures of agreement between
operators (see Gwet 2014) and measures of effectiveness based on the proportion
of correct decisions. Here also the focus is not on estimating the misclassification
rates and also the latter method does not recognize the difference between repeated
measurements on the same part and individual measurement on different parts. See
de Mast and Erdmann (2011) for further criticism of the AIAG approach.

We organized the paper in the following manner. Section2 deals with fixed opera-
tor effects.We start with twomodels. The first treats the random part effect as a latent
variable and the second, a moment-based model, captures the dependency among
measurements on the same part. We show that the estimates of the parameters of
interest from the two models are essentially equal so we adopt the simpler moment-
basedmodel for estimation (though retaining the other model for planning). Next, we
look at an example and to end the section, consider the choice of plan. In Sect. 3, we
repeat these sub-sections for the case of random operator effects. We end in Sect. 4
with a summary and a number of discussion points.

2 Fixed Operator Effects

Suppose the BMS has a small number of operators and we use an L(m, n, r) plan to
collect the data. Assuming fixed operator effects, inmost caseswe do not usemultiple
copies of the plan (i.e. we choose T = 1) since it is advantageous for each part to be
measured by every operator, especially if there are strong part effects. We treat the
operator effects as fixed in the following models and analysis. We assume some parts
are more difficult to correctly classify than others. Since parts are sampled from the
population of non-conforming parts, we use random part effects. We describe the
models for n = 2 operators and indicate how they can be extended to larger values
of n.

2.1 Models

When part effects are random and operator effects are fixed, the basic assumption is
that measurements on different parts are independent but measurements on the same
part are not. We build a model for each part separately. So here we temporarily delete
the indices that distinguish among parts.

Suppose each operator measures a part randomly selected from the population
of non-conforming parts. We denote the unobservable random part effect by P and
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assume P ∼ G(0, σP). We model the r measurements assuming conditional inde-
pendence by

Y j1, . . . ,Y jr | (P = p) ∼ B
(
1, g(μ j , p)

)
, j = 1, 2 (operators)

where B indicates a Bernoulli distribution, 0 < g(.) < 1 is a suitable link function
and μ j is the fixed effect for operator j . Equivalently, because of the conditional
independence, we have

Sj = Y j1 + . . . + Y jr | (P = p) ∼ Bin
(
r, g(μ j , p)

)

where Sj is the total number of passes in the r measurements due to operator j
and Bin() denotes a binomial distribution. We can, for example, specify g(.) as a
logistic or normal cumulative distribution function and, for simplicity, suppose that
the effects act additively, i.e. g(μ j , p) = g(μ j + p). The joint probability function
of S1 and S2 is then

P(S1 = s1, S2 = s2) = k
∫

g(μ1 + σpz)
s1
(
1 − g(μ1 + σpz)

)r−s1
. . .

. . . g(μ2 + σpz)
s2
(
1 − g(μ2 + σpz)

)r−s2
φ(z) dz (1)

where 0 ≤ s1, s2 ≤ r , k is the product of the binomial coefficients and φ(z) is the
standard Gaussian density. In (1) the latent random variable Z is used to represent the
random part effect. Note that S1 and S2 are conditionally independent given P = p
but marginally dependent. McCulloch et al. (2008) call this a conditional model.

The connection between the misclassification error probability α j and the model
parameters is

α j = P(Y j = 1) = E
[
g(μ j + σp Z)

]
(2)

We cannot interpret the parameters in the conditional model directly. As an alter-
native, we consider a simpler model partially specified in terms of α1 and α2, the
parameters of interest, and other moments of the marginal distributions. Suppose the
two operators repeatedly measure a randomly selected part. Then given a randomly
selected part α̂ j = Sj/r is an unbiased estimate of α j with variance denoted by λ j .
Since S1 and S2 are dependent, let δ be the covariance of α̂1 and α̂2. Note that

Cov[α̂1, α̂2] = 1

r2
Cov[Y11 + . . . + Y1r ,Y21 + . . . + Y2r ] = Cov[Y11,Y21] = δ

(3)
so δ is also the covariance between singlemeasurements on the same part by different
operators.

This so-called marginal model McCulloch et al. (2008) can stand on its own or
may arise from the integration of a latent conditional model. Note that the conditional
model described here has three parameters whereas the marginal model has five so
the two models are not equivalent.
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2.2 Estimation

Supposewe have data collectedwith a L(m, 2, r) plan.Note that nowwehavem parts
and we add a subscript i to represent the different parts. Using the conditional model,
we canwrite the log-likelihood as l(μ1, μ2, σP) = ∑m

i=1 ln
[
P(Si1 = si1, Si2 = si2)

]

where i = 1, . . . ,m indexes the parts and each term in the sum is given by (1), a one-
dimensional integral. We use the MATLAB (2012) functions integral and fmincon
respectively to calculate the integrals for given parameter values and to maximize
the log-likelihood. We find the maximum likelihood estimates (MLEs) for α1 and α2

by numerically evaluating the expectations (2) after substituting the MLEs μ̂1, μ̂2

and σ̂P .
Alternatively, for the marginal model, we estimate α1 and α2 by the average over

all parts.

α̂1 = 1

m

m∑

i=1

α̂i1 , α̂2 = 1

m

m∑

i=1

α̂i2

The variances of these estimates are

Var [α̂ j ] = λ j/m , j = 1, 2, and Var [α̂1 − α̂2] = λ1 + λ2 − 2δ

m
(4)

We estimate the variances λ1, λ2 and the covariance δ by the sample variances and
covariance of the m pairs (α̂i1, α̂i2).

We found the covariance δ difficult to interpret and so we reparametrized the
marginal model as follows:

δ = P(Y11 = 1,Y21 = 1) − P(Y11 = 1)P(Y21 = 1)

= P(Y11 = 1 | Y21 = 1)P(Y21 = 1) − P(Y11 = 1)P(Y21 = 1)

= α1α2

(
P(Y11 = 1 | Y21 = 1)

P(Y11 = 1)
− 1

)

= α1α2(θ − 1)

Note that if θ = 1 (or correspondingly δ = 0), then Y11 and Y21 are independent. On
the other hand, if θ is large, say θ = 3, then given that Operator 2 misclassifies a
part, Operator 1 is three times as likely (compared to the overall misclassification
rate α1) to also misclassify the part.

Based on earlier work Danila et al. (2013), we suspected that the simple estimates
from the marginal model will be close to the MLEs from the conditional model.
Accordingly we conducted a 34 × 4 factorial experiment with factors defined by the
sampling plan (m = 100, 500, 1000, r = 1, 3, 5) and the underlying model param-
eters (α1, α2 = 0.05, 0.10, 0.15, θ = 1, 2, 3, 4).

To generate the data for each simulation run, we used the conditional model. That
is, given α1, α2 and θ , we found the corresponding values for μ1, μ2 and σP . Then



Assessing a Binary Measurement System with Operator … 323

Fig. 1 Scatterplots for the conditional model MLEs and marginal model estimates for α1 and α2

we generated a single set of data from L(m, 2, r) with these parameter values. Next,
we found the MLEs from the conditional model and the moment estimates from the
marginal model.

We show the results in Fig. 1. There is remarkable agreement, so much so that
we omitted the MLEs in conditional model from further consideration (though we
use the conditional model in the planning). Because the two estimates are almost
equal for every run, so are their standard errors and we lose little in using the simple
moment estimates. Importantly, themoment estimates retain their properties whether
or not the conditional model is appropriate. Note that outside of the design space in
the experiment, we suspect that the agreement may not be so strong, especially if α1

and α2 are much larger. However, in an industrial context this is unlikely. Given the
complexity of the log-likelihood for the conditional model, we are unable to show
that the two estimation procedures are mathematically identical.

2.3 Example

The example is based on a real context; the data are artificial. Credit card blanks
are 100% inspected by an automated BMS for a large number of different flaws and
each card is either rejected or passed. Human inspectors act as the gold standard.
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Table 1 Response Pattern (Number of Misclassifications) for Credit Card Example

s1 (New) s2 (Old)

0 1 2 3

0 222 41 7 3

1 9 10 4 2

2 1 0 1 0

3 0 0 0 0

There have been customer complaints that suggest a proportion of the passed cards
have one or more flaws. In an attempt to improve the inspection system, a new
fixturing procedure was developed. Three hundred flawed cards and 300 good cards
are used in a study to compare the new fixture to the old. Here we report only the
results with the flawed cards. Note that there are no operator effects. Instead, we
want to compare the old and new fixturing with fixed effects (i.e. the fixtures take
the role of operators). Each card is measured three times by each procedure. The
data are summarized in Table1 as a response pattern. For example, 222 cards were
correctly classified (i.e. failed) all three times by each fixturing procedure. Using the
marginal model, we have α̂new = 0.032, α̂old = 0.100 with corresponding standard
errors 0.019 and 0.026 respectively. The estimated covariance is δ̂ = 0.007 and thus
θ̂ = 3.2. To compare the two procedures, we have α̂old − α̂new = 0.068 with standard
error 0.032 by substituting the estimate into (4). As a result, there is evidence that
the new fixturing is better than the old in detecting defective cards. As expected, the
MLEs from the conditional model agree.

2.4 Choice of Plan

Since the goal of the assessment is to look at differences between operators, we
consider the selection of the number of partsm and the number of repeated measure-
ments r so that the estimate α̂1 − α̂2 has pre-specified standard deviation. Since we
expect θ ≥ 1 (or equivalently δ ≥ 0), there is little value in considering L(m, 1, r)2

where operators do not measure the same parts. As with most planning problems,
we need to elicit reasonable parameter values, here α1, α2 and θ (or equivalently δ)
to select the design. We do not attempt to guess at the variances λ1 and λ2.

From (4), we see that Var [α̂1 − α̂2] does not explicitly depend on r . However,
if we revert to the conditional model and calculate λ j = Var [Sj/r ] by conditioning
on the random effect we get

λ j = 1

r2
(
Var [E[Sj | P]] + E[Var [Sj | P]])

Using the assumption that Sj | P ∼ B(r, g(P)) and rearranging terms, we get
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λ j = α j (1 − α j )

r
+ r − 1

r
Var [g(μ j + σp Z)]

We showed earlier (see (3)) that δ does not depend on r and so Var [α̂1 − α̂2], as
given in (4) depends on r only through λ1 and λ2. As r gets large, Var [α̂1 − α̂2] does
not go to zero. In other words, increasing r (the number of repeated measurements)
with m (number of parts) fixed has diminishing returns.

To investigate possible plans, we start with the elicited values for α1 and α2. Given
these values, for any value of σp, we determine the corresponding values for μ1 and
μ2 in the conditional model, now using a logistic link. Then we vary σp until the
conditional model covariance matches the specified δ (θ ). Next, as given in Table2,
we calculate v1 = Var [g(μ1 + σp Z)] and v2 = Var [g(μ2 + σp Z)].

Combining the results we have

Var [α̂1 − α̂2] = [α1(1 − α1) + α2(1 − α2)]/r + (r − 1)[v1 + v2]/r − 2δ

m
(5)

We can investigate choices for m and r using (5) to achieve a desired precision for
α̂1 − α̂2.

For example, suppose we guess parameter values α1 = 0.05, α2 = 0.10 and
θ = 3 (covariance δ = 0.010). We want to distinguish between operators so we
aim for StDev[α̂1 − α̂2] = 0.02 or Var [α̂1 − α̂2] = 0.0004. From Table2, we have
Var [g(μ1 + σp Z)] = 0.0062 and Var [g(μ1 + σp Z)] = 0.0166. Substituting we
have

Table 2 v1 = Var [g(μ1 + σ Z)] and v2 = Var [g(μ2 + σ Z)] as functions of α1, α2, θ

θ α1 α2 = 0.01 α2 = 0.05 α2 = 0.10

1.5 0.01 0.0000, 0.0000 0.0001, 0.0011 0.0001, 0.0043

0.05 0.0011, 0.0001 0.0013, 0.0013 0.0014, 0.0045

0.10 0.0042, 0.0001 0.0045, 0.0014 0.0050, 0.0050

2.0 0.01 0.0000, 0.0000 0.0001, 0.0020 0.0001, 0.0078

0.05 0.0021, 0.0001 0.0025, 0.0025 0.0029, 0.0087

0.10 0.0078, 0.0001 0.0087, 0.0029 0.0100, 0.0100

3.0 0.01 0.0000, 0.0000 0.0003, 0.0041 0.0003, 0.0139

0.05 0.0041, 0.0003 0.0050, 0.0050 0.0062, 0.0166

0.10 0.0139, 0.0003 0.0166, 0.0063 0.0200, 0.0200

4.0 0.01 0.0000, 0.0000 0.0004, 0.0058 0.0006, 0.0194

0.05 0.0058, 0.0004 0.0075, 0.0075 0.0099, 0.0241

0.10 0.0194, 0.0006 0.0241, 0.0099 0.0300, 0.0300
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Var(α̂1 − α̂2) = (0.0475 + 0.0900)/r + (r − 1)(0.0062 + 0.0166)/r − 0.02

m

= 0.1375/r + (r − 1) × 0.0228/r − 0.02

m

For r = 1, we need m = 294 parts to attain the required precision. If we increase r
to 5, then we can reduce the number of parts substantially tom = 64. As r increases,
we can decrease m to 7 but the total number of measurements 2mr increases. There
is considerable value in the repeated measurements, especially if non-conforming
parts are difficult to find. We can investigate the sensitivity of the choices of r and
m for different values for α1, α2 and θ .

Note that for planning, we use both the conditional and marginal models. For the
analysis, we use only the marginal model.

2.5 Three or More Operators

For each additional operator, the number of parameters in the conditional model
increases by one. The evaluation of the likelihood for each part still involves a single
one dimensional integral. The number of parameters in the marginal model increases
rapidly as the number of operators increases. For n = 3 operators, there are nine
parameters in the marginal model (three αs, three λs and three covariances) and
four parameters in the conditional model. There is no equivalence. However, the
marginal model can be easily applied to get estimates of all of the parameters and
corresponding standard errors.

With a larger number of operators, there is no obvious metric to summarize the
operator effect. We suggest comparing the error rates pairwise. For planning a mea-
surement assessment study with three or more operators, we suggest using the above
approach and choosing a plan where all the pairwise comparisons meet the desired
maximum standard error.

3 Random Operator Effects

We now consider a BMS with both part and operator effects random. In this context
the primary parameter of interest is α the misclassification error probability of a
randomly selected part measured by a randomly selected operator.
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3.1 Models

To model the measurement process, we propose similar conditional and marginal
models as in the previous section. Suppose we select a non-conforming part and
an operator at random from the populations of interest and the operator measures
the part r times. Denote the two random effects by p (parts) and o (operators) and
conditionally model the number of passes S by a binomial distribution.

S = Y1 + . . . + Yr | (P = p, O = o) ∼ Bin
(
r, g(o + p)

)

We assume that the random effects are independent Gaussians with mean zero and
standard deviationsσO andσP respectively. Inwhat follows,we also assume a logistic
link function, that is

ln

(
g(.)

1 − g(.)

)
= μ + p + o (6)

The random effects cannot be observed. We derive the marginal probability distribu-
tion of S depending on the three unknown parametersμ, σO and σP by integrating the
binomial probability P(S = s|O = o, P = p) in (4) over the distribution of the two
independent random effects. The observed measurements Y1,Y2, . . . ,Yr for a single
part/operator combination are conditionally independent given (P = p, O = o) but
dependent marginally. The connection between the misclassification error rate α and
the random effects is

α = P(Y = 1) = E[g(μ + O + P)] (7)

By assuming that the random effects are independent Gaussian, we have O + P ∼
G(μ, σt )where the total variation is σt =

√
σ 2
o + σ 2

p , so α depends only onμ and σt .

Alternatively, for a probit model with link 	(.), the standard Gaussian cumulative
distribution function, we have α = E[	(μ + σt Z)], where Z ∼ G(0, 1), with the
well-known closed form α = 	(μ/

√
1 + σ 2

t ) (McCulloch et al. 2008, pp. 237).
With the probit model, if μ is negative (α < 1/2), the misclassification probability
decreases as σt decreases. For a logistic link, there is no simple closed form for α but
we see in Fig. 2 that for α < 1/2, again the misclassification probability decreases
as σt decreases. We conclude that by reducing σt , we reduce the misclassification
probability α and hence improve the performance of the measurement system.

As a simple alternative to the conditionalmodel,weuse amarginalmodel specified
directly by α and other marginal parameters. To define the model, suppose we have
m = 2 parts and n = 2 operators sampled randomly from the populations of interest
and each operator measures each part r times. We arrange the observed number of
passes si j , i = 1, 2, j = 1, 2 or the corresponding proportion of passes α̂i j = si j/r
as in Table3 with rows corresponding to parts and columns to operators. In Table3
and its generalization to L(m, n, r), each entry is an unbiased estimate of α and each
has the same variance denoted by λ. Proportions in the same row are dependent with
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Fig. 2 Contour plot of the misclassification probability, α, from a logistic model as a function of
μ and σt for α < 1/2

Table 3 Sample proportions from L(2, 2, r)

Operator 1 Operator 2

Part 1 α̂11 α̂12

Part 2 α̂21 α̂22

covariance δ because they share the same part effect. Similarly, proportions in the
same column are dependent with covariance γ . We expect δ and γ to be positive.
Entries such as α̂11 and α̂22 in different rows and columns are independent because
they share neither an operator nor a part. If we have a L(m, n, r)T plan with operators
and parts selected at random, then the same four parameters, i.e. α, λ, δ, γ describe
the means, variances and covariances among the table entries. Two proportions that
differ in both row and column within a table are independent as are entries among
the T independent copies of L(m, n, r).

We interpret α as the probability that the measurement of a randomly selected
(nonconforming) part by a randomly selected operator is misclassified.

As in the fixed operator effects case, here the marginal model can stand on its
own or may arise from the integration of a latent conditional model. The conditional
model has three parameters and the marginal model has four so they are not in 1–1
correspondence. If we assume g(.) is a logistic or probit function, then as long as
the misclassification probability is reasonably small, say α < 0.2, given α, δ and γ ,
we can find the corresponding values for μ, σO and σP . Then we can determine the
corresponding λ. Alternately, we can add a part by operator interaction effect (OP)
in the conditional model so that (7) becomes

α = P(Y = 1) = E[g(μ + O + P + OP)] (8)



Assessing a Binary Measurement System with Operator … 329

where OP ∼ G(0, σOP). Now the two models each have four parameters and for
feasible values, it appears from a numerical investigation, that the two sets of param-
eters are in 1-1 correspondence. We make use of this equivalency in the analysis and
planning steps.

3.2 Estimation

Given the results of an assessment study L(m, n, r)T , we can estimate the parameters
of the conditional or marginal models as defined in the Sect. 3.1.

Estimation with the conditional model (7) or its extension to multiple tables is
complicated. Due to the number of realizations of the latent random effects, a single
calculation of the likelihood involves anm + n dimensional integral for each of the T
tables. For example, when m = n = 2 and T = 1, we have the following likelihood
involving a four dimensional integral:

L(μ, λ, ρ, γ ) = E

⎡

⎣
∏

i, j

(
r

si j

)
η
si j
i j

(
1 − ηi j

)1−si j

⎤

⎦

where ηi j = g(μ + oi + p j ) and the expectation is over the joint distribution of the
four random effects P1, P2, O1, O2. To make the evaluation of the log-likelihood
and its derivatives even more difficult, the parameters of interest α, λ, δ and γ are
defined implicitly by μ, σP and σO . The conditional model uses several untestable
assumptions (e.g., additive independent Gaussian effects, choice of link function).
Based on the study of other latent class models Albert and Dodd (2004, 2008),
Akkerhuis et al. (2017), we suspect that the maximum likelihood estimates will not
be robust to deviations from these assumptions.

Since the marginal model specifies only the first two moments, we use moment
estimates. The estimates are simple and robust to the underlying latent structure.
Suppose we have a L(m, n, r)T plan with observed proportions of passes α̂ikt , i =
1, . . . ,m, k = 1, . . . , n, t = 1, . . . , T . We estimate α directly by the overall average

α̂ =
∑

i, j,t α̂i j t

mnT
(9)

For this estimator, we have

Var [α̂] = mnλ + mn(n − 1)δ + nm(m − 1)γ

m2n2 T

= λ + (n − 1)δ + (m − 1)γ

mnT
(10)
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since for a single L(m, n, r), each of the m rows has n(n − 1) correlated ordered
pairs and each of n columns has m(m − 1) such pairs. Entries in different tables are
independent since they arise from different parts and operators.

To find a standard error for α̂, we have

λ = E[α̂2
i j t ] − E

[
α̂i j t

]2 = E[α̂2
i j t ] − α2 ,

δ = E[α̂i j t α̂ikt ] − α2 , γ = E[α̂i j t α̂l j t ] − α2 (11)

and Var [α̂] = E[α̂2] − α2 or equivalently α2 = E[α̂2] − Var [α̂]. Substituting in
(10) and rearranging terms, we have

Var [α̂] = E[α̂2
i j t ]+(n − 1)E[α̂i j t α̂ikt ]+(m − 1)E[α̂i j t α̂lj t ]−(m + n − 1)E[α̂2]

mnT − (m + n − 1)
(12)

We get unbiased estimates of each of the first three expectations in the numerator of
(12) using the corresponding averages over all tables and of the fourth expectation
using the estimate α̂2. Substituting in the right side of (12) gives an unbiased estimate
of Var [α̂] and hence a standard error for α̂ that is close to being unbiased. For large
tables, it is useful to note that the sum of all cross products in a row is the sum of the
row entries squared minus the sum of the squares of the row entries, so we have the
estimate

Ê[α̂i j t α̂ikt ] =
∑

i,t

[(∑
j α̂i j t

)2 − ∑
j α̂

2
i j t

]

mTn(n − 1)

and a similar expression for the estimate Ê[α̂i j t α̂l j t ].
As in the previous section, we carried out a study using simulated data to compare

themaximum likelihood estimate to themoment estimate ofα.Weused theMATLAB
(2012) function fitgmle to maximize the likelihood from the conditional model. In
the simulation, we tried to match as closely as possible the plan and results obtained
from the inter-laboratory assessment example that follows in Sect. 3.3. However,
since it was not straightforward to adapt the Matlab function fitgmle to allow for two
separate tables of results, we restricted attention to the case where T = 1.We assumed
a L(8, 20, 2)1 plan where there are 8 operators and 20 parts. Note that in this case, the
log-likelihood for the conditional model involves 28 integrals and it is challenging
and slow to maximize. We generated data from the conditional model with param-
eter values (μ, σp, σo, σop) = (−4.30, 3.22, 1.97, 0). We selected these particular
parameter values for the simulation since they match the model parameter estimates
obtained from the inter-laboratory example (once we translated the estimates for the
marginal model to the corresponding estimates for the expanded conditional model
(8)—since we were unable to fit the conditional model directly). Figure3 shows the
comparison for the estimates of α derived from both the conditional and marginal
models for 100 simulation runs. We see that for the random operators model, the
correspondence between the marginal and conditional models is fairly strong, but



Assessing a Binary Measurement System with Operator … 331

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Estimate for  from Marginal Model

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Es
tim

at
ef

or
fro

m
C

on
di

tio
na

lM
od

el

Fig. 3 Scatterplots for the conditional model MLEs and marginal model estimates for α assuming
random operators

not nearly as close as with the fixed operator effect model described in the Sect. 2.
Further simulation studies (not shown) suggest that the larger discrepancies between
the conditional and marginal model results arise due to convergence issues with fit-
ting the conditional model. The marginal model provides unbiased estimates of α

and, for the utilized parameter values and assessment plan, is preferred.

3.3 Example

The example is artificial but the context is realistic based onBashkansky et al. (2012).
In an inter-laboratory assessment to estimatemisclassification errorswhenmeasuring
a binary property, 40 samples with the property and 40 without were prepared under
a range of conditions that mirrored actual practice. Each sample was split into 8
subsamples giving a total of 80 × 8 = 640 subsamples. Sixteen laboratories were
selected at random from cooperating units and divided into two groups A and B.
Every lab in group A was sent 20 subsamples of each category and were requested
to measure each subsample twice in random order. The technicians carrying out
the measurements were blind to the true status of each subsample. We consider
subsamples as parts (rows) and labs as operators (columns). In our notation, we have
two L(8, 20, 2)2 plans, one plan for assessing each misclassification probability. We
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Table 4 Number of Misclassification by Sub-sample and Lab from L(20, 8, 2)2

Subsample Group A Subsample Group B

Lab number Lab number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 2 0 0 2 1 2 21 2 0 0 0 0 0 0 1

2 0 0 1 1 0 2 0 2 22 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 1 23 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 2 25 1 0 1 1 2 1 2 2

6 0 0 0 0 0 0 0 1 26 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 27 1 0 0 0 1 0 1 1

8 0 0 1 1 1 2 0 2 28 0 0 0 0 0 0 0 0

9 2 1 2 2 1 2 2 2 29 0 1 0 0 0 0 0 1

10 1 0 0 0 0 0 0 1 30 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 1 31 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 1 32 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 0 0 33 0 0 1 0 0 0 0 1

14 0 0 0 0 0 1 0 2 34 0 0 0 0 0 0 0 0

15 0 0 1 0 0 2 0 2 35 0 0 0 0 0 0 0 1

16 0 0 1 0 0 0 0 2 36 0 0 0 0 1 0 0 0

17 0 0 0 0 0 0 0 1 37 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 1 38 0 0 0 0 0 0 0 1

19 2 2 2 2 2 2 2 2 39 0 0 0 1 0 0 0 0

20 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0

present the data in Table4 only for those subsamples without the property of interest.
Using the results for the marginal model, we have α̂ = 0.152 and by substitution
Ê(α̂2

i j t ) = 0.123, Ê(α̂i j t α̂ikt ) = 0.040, Ê(α̂i j t α̂l j t ) = 0.070, so the standard error of
α̂ is 0.048.

In a GR&R assessment of a continuous measurement system, we may decompose
the estimated variation of themeasurement system into components due to operators,
part by operator interaction and repeatability, the variation in repeated measurements
made by the same operator on the same part. If the variation due to a particular source
is large relative to the overall variation, we use different strategies to improve the
measurement system.

The estimates from the marginal model do not tell us how much improvement is
available by reducing the variation among operators. Here we consider a “what if”
analysis to assess the effect of variation among the operators on the misclassification
probability. We require both the marginal model and conditional model with the
logistic link function. First, we use the marginal model to estimate α̂, λ̂, δ̂ and γ̂ as
above. Next, we find the corresponding estimates μ̂, σ̂p, σ̂o and σ̂op in the expanded
conditionalmodel (8)with an interaction effect. Then to see the effect of the operators
on the misclassification probability, we set σ̂o = 0, σ̂op = 0 and translate back to the
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marginal model. Doing this gives α̂ = 0.121. Here it seemswe canmake only a small
improvement in the system by making the labs (operators) more homogeneous.

3.4 Choice of Plans

We consider L(m, n, r)T plans under a variety of constraints. Recall that the main
goal of the assessment study is to estimate the misclassification probability α. As
such, better plans will result in a smaller standard error for α̂. Looking at Var(α̂)

given by (10), if the total number of distinctive part by operator combinations mnT
is fixed, then L(1, 1, r)T generates the smallest standard deviation but gives no
information about the covariances δ or γ , useful for a “what if” analysis, as we
illustrated for the example. The next best plan that provides estimates of the three
parameters is L(2, 2, r)T/4. Note also that multiple copies of small plans are much
easier to manage than a large plan with T = 1.

From the marginal model and (9), we see that Var [α̂] does not depend explicitly
on r . To study the effect of changing r , we revert to the corresponding conditional
model. Consider making r measurements on a part and operator selected at random.
By conditioning on the random effects and using conditional independence of the
repeated measurements, the variance of the proportion of passes is

λ = E

[
g(1 − g)

r

]
+ Var [g] = α(1 − α)

r
+ r − 1

r
Var [g] (13)

where Var [g] in (13) is calculated over the distribution of the random effects P and
O and depends only on μ and σt . Note that as the number of repeated measurements
(r ) goes to infinity, λ does not approach zero. We can easily show that ρ and γ do
not depend on r so Var [α̂] depends on r only through λ.

To compare plans, we need some idea of the unknown parameters α, λ, δ and γ

or equivalently α, Var [g] and

θO = P(Y11 = 1 | Y12 = 1)

α
= δ + α2

α2
, θP = P(Y11 = 1 | Y21 = 1)

α
= γ + α2

α2

Note that θO quantifies the relative increase of the probability that the first operator
misclassifies a part given that the second operator has done so. The ratio θP can be
similarly interpreted replacing operators with parts. For planning purposes, we can
elicit reasonable guesses for α, θO and θP .

Note from above we have

δ = α2(θO − 1) , γ = α2(θP − 1) (14)

However, there is no direct way to suggest a value for Var(g). Again we resort
to the conditional model. If we assume no interaction effect (i.e. σop = 0), given



334 S. H. Steiner et al.

values for α, θO and θP , we can calculate the corresponding conditional model
parameters μ, σo and σp and hence Var(g). In Table5, we give values of Var(g)
when α = 0.05, 0.10, 0.15 for a range of values of θO and θP .

Suppose the goal of the assessment is to estimate α to a specified precision. We
set the variance of α̂ to a specified value A giving

A = α(1 − α)/r + Var(g)(r − 1)/r + (n − 1)ρ + (m − 1)γ

mnT
(15)

We choose L(m, n, r)T to minimize some objective function subject to the constraint
(15) and any other constraints due to cost or logistics.

As an example of how to investigate possible plans, we consider a situation where
we believe α = 0.10. As well, we choose θO = 2 and θP = 4. Solving, using (14),
we have δ = 0.01, γ = 0.03 and from Table5, Var [g] = 0.056. As well, we set the
desired precision A = (0.02)2. Substituting in (15) we have

0.0004 = 0.09/r + 0.056(r − 1)/r + 0.01(n − 1) + 0.03(m − 1)

nmT

Table 5 Value of Var(g) when α = 0.01, 0.05, 0.10

α = 0.01 θO

θP 1.0 1.5 2.0 3.0

1.5 0.0001 0.0001 0.0002 0.0003

2.0 0.0001 0.0002 0.0003 0.0005

3.0 0.0002 0.0003 0.0004 0.0007

4.0 0.0003 0.0005 0.0006 0.0009

5.0 0.0004 0.0006 0.0008 0.0011

α = 0.05 θO

θP 1.0 1.5 2.0 3.0

1.5 0.0013 0.0029 0.0046 0.0077

2.0 0.0025 0.0046 0.0065 0.0101

3.0 0.0050 0.0077 0.0101 0.0148

4.0 0.0075 0.0107 0.0137 0.0194

5.0 0.0100 0.0138 0.0173 0.0244

α = 0.10 θO

θP 1.0 1.5 2.0 3.0

1.5 0.0050 0.0114 0.0176 0.0298

2.0 0.0100 0.0176 0.0248 0.0395

3.0 0.0200 0.0298 0.0395 0.0627

4.0 0.0300 0.0425 0.0563 0.0907

5.0 0.0400 0.0566 0.0893 0.0920
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We can use the above expression to compare various choices for L(m, n, r)T . Con-
sider the extreme case L(1, 1, r)T where each operator measures a single part r
times. If r = 1, we need T = 225 part/operator pairs to attain the desired precision.
By increasing r , we can reduce T so, for example, with r = 5, we need T = 157.
The limiting minimum value as r increases is T = 140. Note with these plans, we
cannot estimate θo or θp but we minimize the number of part/operator pairs. Alter-
nately, we can consider a series of small sub-plans, say L(2, 2, r)T . With r = 1, we
require T = 81 copies and, increasing r to 5, yields T = 64. If we are constrained
to using a single crossed design with no repeated measurements (i.e. r = 1, T = 1),
then among other choices we have m = 50 parts and n = 150 operators. Increasing
r in this plan has no material effect. We can also consider minimizing functions such
as the total number of measurements rmnT subject to the constraint (15).

These plansmay seem infeasible.However, becausewehave a binary response and
two random effects, we need a large number of operators, parts and measurements to
get the required precision. Plans such as those described above will be complicated
to manage and expensive to execute. Great care should be taken in choosing the
assessment plan.

4 Discussion

Weconsider the assessment of a binarymeasurement systemwith randompart effects.
If the system involves only a few operators, we treat the operator effects as fixed;
otherwise if the assessment study involves a sample of operators, we treat their
effects as random. In either case, we develop simple estimates of themisclassification
probabilities and their standard errors that can be used for inference and for planning
the assessment study.

When operator effects are fixed, increasing the number of repeated measurements
r can dramatically reduce m, the number of parts required to achieve the required
precision. For random operator effects, increasing r was found to have less effect
and we generally require many more parts and operators in the study.

For random operator effects, plans such as L(2, 2, r)T are much easier to manage
than a single replicate plan L(m, n, r)1. If we are using human subjects then it is
likely that there is an upper bound of the number of times a subject can be assessed.
Such constraints make plans such as L(2, 2, r)T attractive since each subject needs
to be assessed by only two operators. However, the L(2, 2, r)T plan requires more
parts and operators than the corresponding plan L(m, n, r)1 with the same precision.

One weakness of the approach is that we require a large population of both con-
forming and non-conforming parts (or samples) as verified by a gold standard. In
the examples of a high volume process such as credit card blanks and in the inter-
laboratory test, it was feasible to find or create such samples. Severn et al. (2016) use
partial verification in the assessment of a BMS with no operator effects to reduce the
burden of using the gold standard on every part while maintaining almost all of the
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precision available from full verification. We plan to pursue this idea further in the
case of a BMS with multiple operators.

We provide plans for assessing α (or α j ), the probability of misclassifying a non-
conforming part. In practice we can simultaneously have the same operators measure
a sample of conforming parts to estimate β (or β j ), the probability of misclassify
a conforming part. Combining the two assessment plans would help to blind the
operators as to the true status of any part.
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Abstract This contribution provides an overview, illustrated with examples, of
applications of statistical methods that support measurement quality and guarantee
the intercomparability of measurements made worldwide, in all fields of commerce,
industry, science, and technology, including medicine. These methods enable a rig-
orous definition of measurement uncertainty, and provide the means to evaluate it
quantitatively, both for qualitative measurands (for example, the sequence of nucle-
obases in a DNA strand) and for quantitative measurands (for example, the mass
fraction of arsenic in rice). Measurement quality is its trustworthiness and com-
prises several attributes: reliable calibration involving standards; traceability to the
international system of units or to other generally recognized standards; measure-
ment uncertainty that realistically captures contributions from all significant sources
of uncertainty; and fitness for purpose of the measurement results, which comprise
measured values and evaluations of associated uncertainties. Statistical methods play
key roles in the quality system that validates the measurement services (reference
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National Institute of Standards and Technology (NIST). And these services in turn
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1 Preamble

This contribution provides an overview of measurement and of measurement uncer-
tainty (Sects. 3 and 4), highlighting how statistical models and methods (Sects. 7, 8,
9) enable measurement and ensure measurement quality. The concepts of calibra-
tion (Sect. 5) and traceability (Sect. 6), which are distinctive traits of measurement,
are examined in detail. In particular, Sect. 6.1 offers new proposals concerning how
traceability should be established for counts and for assignments of value to qualita-
tive properties—the latter fall within the broad understanding of measurement laid
out in Sect. 3.

2 Introduction

Measurement serves to estimate values of properties of natural andman-made entities
and processes, which are used to inform choices and decisions made in all sectors
of the human enterprise. Measurement quality is its trustworthiness: the extent to
which it tracks the true values of those properties sufficiently closely for the intended
purpose, with assuredly high confidence.

Measurement tracks the truth when its results are metrologically traceable to
appropriate, widely recognized standards. It does so sufficiently closely when mea-
surement uncertainty is small enough to warrant effectively regarding the measured
value as a proxy of the corresponding true value in the contextwhere themeasurement
results will be used to make a decision, thus achieving fitness for purpose.

Trustworthiness requires also that there should be a strong, justified belief (that
is, assuredly high confidence) that the true value lies within the reported margin of
uncertainty of the measured value. This belief is strengthened considerably when
multiple, fundamentally different measurement methods produce measured values
that agree with one another to within their respective margins of uncertainty.

• Jean Baptiste Perrin was reassured by “the very remarkable agreement found
between values derived from the consideration of such widely different phenom-
ena” (including viscosity of gases, critical opalescence, black body radiation, and
Brownian motion), as he made measurements of the Avogadro constant and estab-
lished the existence of molecules (Perrin 1916; Hudson 2018);

• The measurements of the speed of light, c, made using widely different measure-
ment methods achieved such mutual agreement toward the middle of the twentieth
century, that a consensus value was deemed to be sufficiently well characterized
to warrant a definitive assignment of value to c in 1983 (Quinn 2012, p. 299)—
MacKay and Oldford (2000) use historical measurement results for the speed of
light as a focus for a discussion of how statistical methods and best statistical
practices contribute to the advancement of science;
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• The marked reduction, over time, of the variability of historical determinations of
the Planck constant, h, made using very different measurement methods—most
recently the Kibble balance and X-ray silicon crystal density (Possolo et al. 2018)
—, enabled a definitive assignment of value to h in 2018 (Mohr et al. 2018).

3 Measurement

We adopt here a broad definition of measurement, to encompass the myriadmeasure-
ment services offered by, and metrological research pursued at national metrology
institutes (NMIs) worldwide, and in particular at NIST, which is the NMI of the
United States of America.

In science, medicine, manufacturing, agriculture, indeed in most fields of human
endeavor, both quantitative and qualitative properties of material or virtual objects
are of interest. The mass of a white powder in a plastic bag that was left on a seat
of a bus is a quantitative property. The chemical nature of this powder (whether it is
soy protein, baking soda, cocaine, etc.) is a qualitative property.

The NISTMeasurement Services Council has recently affirmed the view implicit
in the NIST Quality Manual for Measurement Services (NIST-QM-I, Version 10,
27-Dec-2016, www.nist.gov/qualitysystem/) that the concept of measurement need
not be restricted to the assignment of value to quantitative properties but may also
be used in relation to qualitative properties.

However, this ought not to prevent that other, either more specialized or more
informal terms be employed to describe assignments of value that fall within this
broad concept of measurement. For example, instead of saying that one hasmeasured
the mass of the white powder in the bag aforementioned, or that one has measured
its identity, it may be more natural to say that one has weighed and identified its
contents (Possolo 2018).

The NIST-QM-I definesmeasurement as an “experimental or computational pro-
cess that, by comparison with a standard, produces an estimate of the true value of
a property of a material or virtual object or collection of objects, or of a process,
event, or series of events, together with an evaluation of the uncertainty associated
with that estimate, and intended for use in support of decision-making.”

NIST Technical Note 1900 (NIST Simple Guide) supplements this definition with
the following clarification (Possolo 2015, Note 2.1): “The property intended to be
measured (measurand) may be qualitative (for example, the identity of the nucle-
obase at a particular location of a strand of DNA), or quantitative (for example, the
mass concentration of 25-hydroxyvitamin D3 in NIST SRM 972a, Level 1, whose
certified value is 28.8 ng mL−1). The measurand may also be an ordinal property (for
example, the Rockwell C hardness of a material), or a function whose values may be
quantitative (for example, relating the response of a force transducer to an applied
force) or qualitative (for example, the provenance of a glass fragment determined in
a forensic investigation).”

www.nist.gov/qualitysystem/
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4 Measurement Uncertainty

Ameasurement result comprises an estimate of the true value of the property intended
to be measured (measurand), and an evaluation of the uncertainty associated with
this estimate. For example, the value recommended most recently for the Newtonian
constant of gravitation, by the Task Group on Fundamental Constants of the Com-
mittee on Data for Science and Technology (CODATA), International Council for
Science (CODATA 2019), is

G = 6.67430 × 10−11 m3 kg−1 s−2 ,

with associated standard uncertainty

u(G) = 0.00015 × 10−11m3 kg−1 s−2

Measurement uncertainty is the doubt about the true value of the measurand
that remains after making a measurement. Two aspects of measurement uncertainty
require characterization: the width and depth of the corresponding margin of doubt
Bell (1999). In the example above, u(G) is the width of the margin of doubt, and
its depth (unstated but implied) is the complement of the probability (approximately
1 − 0.68 = 32%) that quantifies the confidence in the true value of G lying within
the interval G ± u(G): the smaller the confidence, the deeper the doubt.

Measurement uncertainty may be described fully and quantitatively by a prob-
ability distribution on the set of values of the measurand. For example, one might
say that the uncertainty concerning the true value of G is described by a Gaussian
probability distribution with mean 6.67430 10−11m3 kg−1 s−2, and with a standard
deviation 0.00015 10−11m3 kg−1 s−2. At a minimum, it may be described summarily
and approximately by a quantitative indication of the dispersion (or scatter) of such
distribution, for example, u(G) as given above (Possolo 2015, Sect. 3).

5 Calibration

When a truck stops at a highway scale to be weighed, it applies a force to one or
several load cells under the scale, which generates a potential difference between the
electrical terminals that the load cells are connected to. Calibration is the procedure
that establishes a relation between values of the force applied to a load cell and
corresponding values of potential difference, thereby making possible to “translate”
indications of voltage into values of force. These values of force, in turn, are translated
into values of mass using the local value of the Earth’s gravity and Newton’s second
law of motion.

Calibration is usually performed by presenting a set of standards representing
different values of the measurand to the measuring instrument to be calibrated, pos-
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Fig. 1 Calibration (φ) and analysis (ψ) functions for a gas chromatography, mass spectrometry
(GC/MS) system, and associated 95% coverage bands, used to measure the mass concentration c of
chloromethane using observed values of the ratio r of areas of peaks corresponding to chloromethane
and to an internal standard, derived from data from Lavagnini and Magno (2007), Table2

sibly multiple times each, in an order determined by the design of the calibration
experiment (Bartel 2005). This data is then reduced to define a function (calibration
function, φ in Fig. 1) that, given a value of the measurand, yields the value of the
corresponding indication expected to be produced by the instrument.

To use the instrument in practice one needs themathematical inverse of the calibra-
tion function, which yields a value of the measurand when it is given an instrumental
indication as input. In applications in analytical chemistry, the inverse of the calibra-
tion function is often called the analysis function, ψ in Fig. 1. In the field of force
measurement, it is sometimes called the measurement function (Bartel et al. 2016).

In general, calibration is a procedure that establishes a relation between values of a
property realized in measurement standards, and indications provided by measuring
devices, or property values of artifacts or material specimens, taking into account
the measurement uncertainties of the participating standards, devices, artifacts, or
specimens (Possolo 2015, Note 3.7).

According to this definition, the entity being calibrated need not be a measuring
device, but can be an artifact. Gauge blocks are an instance of such artifacts: using
a mechanical comparator (Possolo 2015, Exhibit 5 on P. 34), one can calibrate a
gauge block by comparing its dimensions with the dimensions of one or several
master blocks that act as standards. Or the entity being calibrated may be a material
specimen: for example, the Mohs hardness of a synthetic ruby may be calibrated by
determining which minerals in a Mohs reference measurement standard it scratches,
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and which scratch it. AMohs reference standard comprises samples of talc, gypsum,
calcite, fluorite, apatite, orthoclase, quartz, topaz, corundum, and diamond, which
are assigned as Mohs hardness, ordinal values 1, …, 10 (Klein and Dutrow 2007).

6 Traceability

Traceability is the property of ameasurement result that asserts its comparabilitywith
a reference measurement standard hence guarantees that the measurement result also
is comparable with other measurement results that are traceable to the same standard.

Measurement results are comparable when the measured values (and associated
uncertainties) are expressed in the same scale, and differences or ratios between
them are meaningful. Only for comparable measurement results, it is meaningful to
ascertain whether the true difference (or ratio) between the values of their respective
measurands lies within a particular interval with some specified probability, once
allowance will have been made for their associated uncertainties.

For example, when the mass concentration of cholesterol in the blood of a par-
ticular patient is measured at different times by different laboratories and all the
measurement results are traceable to the International System of Units (SI) (BIPM
2019), then the results will be comparable with one another, in particular enabling
an inference about whether said concentration has been increasing over time, or not.

Suppose the volume fraction of aluminate in a Portland cement clinker was deter-
mined via X-ray powder diffraction (Stutzman et al. 2016), and also derived from
the bulk chemical composition via the Bogue calculation (Bogue 1929), and that
both measurements are traceable to the SI. Then it is meaningful to perform a statis-
tical test to decide whether there is a statistically significant difference between the
logit-transformed volume fractions produced by those two methods.

However, a measurement of a quantity of oranges expressed as “a dozen oranges”
is not comparable to 5kg of oranges. Similarly, while one soft gel of Bausch and
Lomb’s PreserVision AREDS 2 Formula + MultiVitamin1 contains 300 IU (Inter-
national Units) of Vitamin D and 200 IU of Vitamin E, its amount of Vitamin D is
not 1.5 times larger than its amount of Vitamin E because IUs are not comparable
to amounts-of-substance (WHO Expert Committee on Biological Standardization
2006).

Metrological traceability is a property of a measurement result whereby the result
can be related to a reference through a documented, unbroken chain of calibrations,
each contributing to the measurement uncertainty. It should be noted that traceability
applies tomeasurement results only, and neither tomeasuring instruments ormethods
nor to institutions involved in measurement. Typically, the reference is specified that
a measurement result is traceable to: for example, that (i) a measurement of mass is
traceable to the SI (international system of units), or that (ii) a measurement of force,

1Any mention of commercial products within this article is for information only; it does not imply
a recommendation or endorsement by NIST.
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or (iii) of themass concentration of cholesterol in human serum, are traceable toNIST,
which is shorthand for “metrologically traceable to NIST’s practical realization of
the definition of a measurement unit.”

In the first case, and considering the definition of the SI unit of mass in effect
since May 20th, 2019 (BIPM 2019), traceability to the SI means that a sequence of
properly documented comparisons, all recognizing measurement uncertainty, have
been made, starting with a mass standard used to calibrate the balance employed to
make the measurement of mass of interest, and ending with a primary realization of
the kilogram in a Kibble balance or in a silicon sphere.

In the second case, and supposing that the force in question was measured using
a load cell, traceability to NIST means that the load cell used to measure the force
was calibrated in a machine that applies forces measured using a force transducer
that, either directly or via a chain of calibrations involving other force transducers
as transfer standards, can be related to the primary force standards maintained by
NIST, which are machines capable of applying forces in discrete steps, generated by
stainless steel dead-weights (Bartel 2005; Jabbour and Yaniv 2001).

In the third case, concerning themeasurement of themass concentration of choles-
terol in a patient’s blood sample by a clinical laboratory, traceability to NIST may
be established by using NIST Standard Reference Material 1951c (Lipids in Frozen
Human Serum) to prepare a series of dilutions that will be used to calibrate the instru-
ment that the clinical laboratory uses to measure the total cholesterol in the patient’s
sample provided that the measurements of volume of solvent used to prepare these
dilutions also are traceable to NIST.

The value of a measurand y is often determined using a measurement model as
described in the Guide to the expression of uncertainty in measurement (GUM)
(JCGM 2008), that is, as a function of values of several input quantities, y =
f (x1, . . . , xn). If the measurement results that include values of the input quantities
are traceable to the SI, say, and the uncertainties associated with these quantities are
suitably propagated to evaluate the uncertainty associated with the output quantity
y, and any uncertainty associated with the computation of values of the function f
also has been quantified and propagated to the uncertainty associated with y, then y
is traceable to the SI.

A particular case of the situation just described occurs when measuring mass
fractions, which take the form of ratios of mass values, or when measuring ratios of
other quantities of the same kind. For example, NIST SRM 158a (Silicon Bronze)
lists the certified mass fraction of zinc in the material as 2.076%, with expanded
uncertainty 0.019% Gonzalez and Choquette (2018).

This means that the material comprises 0.02076kg/kg of zinc, and that the
true mass fraction of zinc in it is believed to lie in the interval 0.02076kg/kg
± 0.00019kg/kg with approximately 95% probability. If both the numerator and
denominator of the original fraction are traceable to the kilogram, and the uncer-
tainties associated with them have been properly propagated to their ratio, and the
uncertainty in the computation of the ratio and in its conversion to a percentage is
negligible, then the mass fraction is traceable to the SI.
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6.1 Traceability for Counts and Qualitative Measurands

Since counting is measuring, the question naturally arises about the meaning of
traceability for counts, for example, when one counts the number of neutrophils
among 100 white blood cells in a patient’s sample. The conventional position has
been to say that counts are traceable to unit 1, which is the neutral element in the
SI. Referring to counts, and somewhat cryptically, the 9th edition of the SI Brochure
states that “formal traceability to the SI can be established through appropriate,
validated measurement procedures” (BIPM 2019, Sect. 2.3.3).

We believe that establishing traceability for counts requires further elaboration,
and that their traceability cannot be to the SI, but will have to be to other references.
Counting involves two kinds of standards: one standard defines the entities that are
being counted (and distinguishes them from those other entities that are not to be
counted); another standard that serves to assign a value to the count.

The first standard plays the role of what, in zoology and botany, is called the holo-
type (of a species): in the present context, it is the paradigmatic or ideal instantiation
of what is being counted—the typical neutrophil, when counting white blood cells,
or the typical horse, when counting horses. The same as with biological species,
some diversity often needs to be accommodated, because neutrophils are not exact
copies of one another, and neither are horses.

In zoology, for example, the diversity corresponding to differences due to gender
may be accommodated by designating allotypes: this makes it possible to recognize
both mallard drakes and hens as members of the same species, Anas platyrhynchos,
even though they look quite different from one another. The diversity of neutrophils
may have to be accommodated by formulating a standard that comprises a suffi-
ciently diverse collection of images of neutrophils supplemented with descriptions
of identifying attributes (for example, presence of intra-cellular granules, or visible
response to specific staining agents).

The second standard needed for counting finitelymany entities is the unique subset
of the consecutive positive integers including 1 and its successors, in the sense of
Peano’s axioms (Mints 2018) that can be put into one-to-one correspondence with
the elements of the set whose elements are being counted. The value of the count is
the largest integer in the standard. If no such subset of the positive integers exists,
then we say that the count is 0.

In the case of a differential white blood cell count that yields 63 neutrophils out of
100 white blood cells, saying that themeasured value 63 is traceable to the unit 1 is as
trivial and as unproductive as saying that 63 × 1 = 63. Themeasurement result needs
to specifywhat is being counted, and in addition ought to include also an evaluation of
measurement uncertainty: using the Poisson model, a clinical laboratory technician
doing the count manually might then report having found 63 neutrophils give or
take 8 neutrophils. This margin of uncertainty accounts for sampling variability, as
different blood smears from the same person typically will not yield exactly the same
differential leukocyte count, and possibly also mere counting error.
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Claiming that counts are traceable to the SI is toomuch of a simplification because
it neglects the fact that counting inextricably involves the definition of what is being
counted, and the standard that underlies this definition is not part of the SI. This
limitation applies also to quantities like chemical amounts: when one says that a
Baby Aspirin contains 0.45mmol of aspirin, one is indeed expressing a count, of
molecules in this case, qualified with a statement of what is being counted, aspirin
molecules, but the definition of aspirin is not within the scope of the SI.

Establishing traceability for an assignment of value to a qualitative property, for
example, that the nucleobase at a particular position of a strand of DNA is adenine,
involves comparison with a standard for adenine relevant to how the nucleobase
is identified: for example, a mass spectrum, as specified in the NIST Chemistry
WebBook (Standard Reference Database 69, https://webbook.nist.gov/chemistry/).

7 Measurement Models

Models play a central role in measurement. Therefore, their adequacy to the mea-
surement data, and their substantive validity, are key components of measurement
quality. Be they mathematical or computational, measurement models describe the
relationship between the value of the measurand (output) and the values of qualita-
tive or quantitative properties (inputs) that either determine or provide information
about its value.

7.1 Measurement Equations

The measurement models considered in the GUM express the measurand, y, as a
deterministic function of several inputs: y = f (x1, . . . , xn). This is often referred
to as a measurement equation: for each set of values of the inputs, it produces a
single, corresponding value of the output. The function f may reflect a physical law,
or merely describe an empirical relationship that is represented either analytically
(that is, by means of a mathematical formula), or only algorithmically (that is, as a
sequence of computational steps).

The Pitot tube affords an instance of a measurement model that reflects a physical
law. A typical Pitot tube used to measure airspeed has an orifice facing directly into
the airflow to measure the total pressure, and at least one orifice whose opening is
parallel to the airflow, to measure static pressure (Fig. 2). Airspeed v is determined
by the difference � between the total and static pressures, and by the mass density ρ

of air, according to the measurement equation v = √
2�/ρ, which is a consequence

of Bernoulli’s equation (Anderson 2017, Sect. 3.4).
The procedure developed by Ciddor (1996), to estimate the refractive index of

air as a function of the vacuum wavelength of the radiation of interest (in the range
300–1700nm), air temperature, atmospheric pressure, air humidity, and amount frac-

https://webbook.nist.gov/chemistry/
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Fig. 2 The steel part
attached to the end of the
horizontal yellow tube, and
visible immediately to the
left of the wheel, is a Pitot
tube mounted on a helicopter
(published with permission
of Zátonyi Sándor, (ifj.),
https://en.wikipedia.org/
wiki/Pitot_tube): it has one
large, forward-facing,
circular orifice to measure
total pressure, and several
small circular orifices behind
a trim ring, to measure static
pressure

tion of carbon dioxide (in the range 0 to 2000 μmol/mol), is an example of an empir-
ical measurement model that effectively is specified as an algorithm involving ten
steps (Ciddor 1996, p. 1572). This procedure is implemented in an online calculator
that is part of the NIST Engineering Metrology Toolbox (Stone and Zimmerman
2004).

7.2 Observation Equations

The curve in Fig. 3 is an example of ameasurement model that describes an empirical
relationship, of the form p = α exp(−β/T ), between temperature T and the vapor
pressure p of gold (Paule andMandel 1970, Table2, Lab 9), which was derived from
data (depicted as circles in Fig. 3) whose scatter around the curve reflects unpre-
dictable contributions from uncontrolled sources of uncertainty.

Referring to exercises such as the derivation of this empirical model from the
data, Bogen and Woodward (1988) state that “an important source of progress in
science is the development of procedures for the systematic handling of observational
and measurement error and procedures for data-analysis and data-reduction which
obviate the need for a theory to account for what is literally seen.”

Given any two data points, (Ti , pi ), and (Tj , p j ), one can solve a system of
two simultaneous equations with α and β as unknowns, to obtain αi j = exp{(Ti Pi −
Tj Pj )/(Ti − Tj )} and βi j = (Pi − Pj )/(1/Tj − 1/Ti ), where Pi = log pi and Pj =
log p j . Doing this for all possible pairs of data points yields 55 × 54/2 = 1485
estimates of α, and the same number of estimates of β.

The problem is that these two sets of estimates span very wide ranges, indicating
that the data, although obviously informative about the relationship between pressure
and temperature, are mutually inconsistent. One could attempt to solve the problem

https://en.wikipedia.org/wiki/Pitot_tube
https://en.wikipedia.org/wiki/Pitot_tube
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Fig. 3 Values of the vapor pressure p of gold measured at several different values of temperature
T (Table2, Lab 9, Paule and Mandel 1970), and an empirical model of the form p = α exp(−β/T )

by taking the medians of the {αi j } and of the {βi j } as estimates of α and β. Perhaps
surprisingly, these would be very good estimates of their corresponding measurands
(Wilcox 2010, Chap.11).

A more disciplined, less ad hoc approach, starts from a statistical model that
defines a probability distribution for the data, where α and β figure as parameters:
for example, log pi = logα − β/Ti + εi for i = 1, . . . , 55, where the {εi } denote
non-observable errors, assumed to be a sample from a Gaussian distribution with
mean 0 and unknown standard deviation σ , and the relative measurement uncertainty
associated with the values of temperature is assumed to be negligible by compar-
ison with its counterpart for the values of pressure. The {εi } may be conceived as
“adjustments” that, once applied to the values of log pi , allow a single value of α

and a single value of β to apply to all the “adjusted” data points.
The maximum likelihood estimates of logα and β are the usual least squares

estimates, whence one obtains α̂ = 240.83 × 106 kPa and ̂β = 42 224K, with asso-
ciated standard uncertainties u(̂α) = 64 × 106 kPa and u(̂β) = 420K. The estimate
of σ is 0.1433.

Incidentally, the Theil-Sen estimates (the medians aforementioned), computed
using R function mblm defined in the package of the same name Komsta (2019),
are α̃ = 273.05 × 106 kPa and ˜β = 42 417K, with associated standard uncertain-
ties u(̃α) = 99 × 106 kPa and u(˜β) = 587K, evaluated using the non-parametric,
statistical bootstrap (Efron and Tibshirani 1993).

The model just described is an observation equation (Possolo and Toman 2007;
Forbes and Sousa 2011), where the measurand, which is the function that takes the
value p = α exp(−β/T ) at T , is determined not by the data directly, but by param-
eters of the probability distribution of the data. In fact, according to the foregoing
statistical model, each log pi is like a realized value of a Gaussian random variable
with mean logα + β/Ti and standard deviation σ .
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In an observation equation (or, statistical model), the measurand is a known func-
tion of the parameters of the probability distribution of the data. For another example,
consider observations of the rupture stress of nominally identical alumina coupons
under flexure (Possolo 2015, Example E14). TheWeibull distribution is a reasonable
model for the sampling variability of these observations. The characteristic strength
of alumina, σC, is the scale parameter of this distribution, and the mean strength is a
known function of σC and of the distribution’s shape parameter, α: σCΓ (1 + 1/α),
where “Γ ” denotes the gamma function (Askey and Roy 2010).

8 Evaluating Measurement Uncertainty

The evaluation of measurement uncertainty is another key step in ensuring mea-
surement quality. It is contingent on a model that describes how the measurand is
determined by values of other properties that will have been measured previously, or
how it relates to observations made in the course of a measurement experiment.

The GUM considers only measurement equations, like y = f (x1, . . . , xn), and
provides one technique to propagate the uncertainties associatedwith the inputs, {x j },
to the output, y. This assumes that the uncertainties associated with the inputs will
have been characterized previously, for which the GUM contemplates the following
two modalities:

• Type A evaluations involve the application of statistical methods to experimental
data, consistently with a measurement model—observation equations typically
underlie this type of evaluations;

• Type B evaluations involve the elicitation of expert knowledge (from a single
expert or from a group of experts, also from authoritative sources including cali-
bration certificates, certified reference materials, and technical publications), and
its expression either as fully specified probability distributions, or as summary
indications of the dispersion of values of such distributions (for example, standard
deviations for scalar measurands).

Evaluations of measurement uncertainty may also be classified according to
whether they are performed in a bottom-up or top-down fashion (Possolo and Iyer
2017):

• Bottom-Up evaluations involve (i) the complete enumeration of all relevant
sources of uncertainty, (ii) a description of how they contribute to the uncertainty
of the measurement result, and (iii) the quantification of the contributions they
make to the uncertainty of the result. These elements are often summarized in an
uncertainty budget, for example in Table1.

• Top-Down evaluations are based on inter-comparisons of measurement results
for the same measurand obtained in independent experiments, typically under-
taken in different laboratories, for example to determine a consensus value for the
Newtonian constant of gravitation, as depicted in Fig. 6.
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Table 1 Uncertainty budget, and probability distributions used in the Monte Carlo evaluation of
the uncertainty associated with a measurement of air speed using a Pitot tube

Input Estimate std. uncertainty Model

� 1.993kPa 0.0125kPa Gaussian

T 292.8K 0.11K Gaussian

p 101.4kPa 1.05kPa Gaussian

8.1 NIST Uncertainty Machine

Since the mass density ρ of air, in the measurement equation for air velocity v =√
2�/ρ, is usually estimated by application of the ideal gas law, the measurement

equation becomes v = √
2�Rs T/p, where p and T denote the air pressure and

temperature, respectively, and Rs = 287.058 J kg−1 K−1 is the specific gas constant
for dry air, whose associated relative uncertainty is negligible by comparison with
the relative uncertainties associated with the other inputs.

Table1 lists the uncertainty budget for the evaluation of the uncertainty, u(v),
associated with the estimate of airspeed. This may be done using the NIST Uncer-
tainty Machine (NUM), available at https://uncertainty.nist.gov (Lafarge and Possolo

Fig. 4 Input Web page for
the NIST Uncertainty
Machine to evaluate the
uncertainty associated with
the value of airspeed
measured using a Pitot tube

https://uncertainty.nist.gov
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Fig. 5 Evaluation of the
uncertainty associated with
the value of airspeed
measured using a Pitot tube,
as produced by the NIST
Uncertainty Machine

===== RESULTS ==============================

Monte Carlo Method

Summary statistics for sample of size 1000000 

ave     = 57.483
sd      = 0.348
median  = 57.481
mad     = 0.35 

Symmetrical coverage intervals

99% ( 56.5826,  58.3826)        k =      2.6 
95% ( 56.8016,  58.1636)        k =        2 
90% ( 56.9106,  58.0546)        k =      1.6 
68% ( 57.1366,  57.8286)        k =     0.99 

ANOVA (% Contributions)

            w/out Residual w/ Residual
Delta                26.89       26.89
T                     0.09        0.09
p                    73.02       73.02
Residual                NA        0.01

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation) 

        y  = 57.48
      u(y) = 0.348 

             SensitivityCoeffs Percent.u2
Delta                   14.000     27.000
T                        0.098      0.096
p                       -0.280     73.000
Rs                       0.100      0.000
Correlations                NA      0.000
============================================

2015), which does it in two different ways: by application of the conventional for-
mula in the GUM (Eq. (10), (JCGM 2008), apparently first used by Gauss (1823),
often referred to as the Delta method (Casella and Berger 2002); or by application
of a Monte Carlo method Morgan and Henrion (1992), Joint Committee for Guides
in Metrology (2008). Figure4 shows a screenshot of the inputs used by the NUM,
and Fig. 5 shows the corresponding outputs.

9 Mutual Consistency and Consensus Building

The trustworthiness of measurement is bolstered considerably by the agreement
between measurement results that essentially different measurement methods may
produce for the same measurand. Such agreement can be gauged by comparing the
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Fig. 6 The red diamonds represent the measured values {G j }. The vertical, thick line segments
represent the associated standard uncertainties (1-sigma intervals), {G j ± u(G j )}. The labels along
the horizontal axis describe the provenance of the measurement results and are the same used in
Table1 of Merkatas et al. (2019). The thin lines that extend the thick lines represent the contribution
from dark uncertainty. The horizontal, dark green line represents the consensus value produced by
the Bayesian procedure implemented in the NICOB, and the thickness of the horizontal, light green
band, represents a corresponding, 95% credible interval for the true value of the measurand, G

variability between measured values produced by different experiments conducted
independently, with the reported uncertainties associatedwith thesemeasured values.

The collection of measurement results for the Newtonian constant of gravitation,
G, that are depicted in Fig. 6 (and are listed in Table1 of Merkatas et al. 2019) are
mutually inconsistent: the standard deviation of the 16measured values of G is about
4 times larger than the median of the reported uncertainties associated with them.
That is, the measured values are much more dispersed than what their associated
uncertainties suggest they should be. Cochran’s Q test is often used for a formal
assessment of homogeneity, even if it suffers from important shortcomings (Hoaglin
2016).

This excess variance is sometimes characterized as an expression of dark uncer-
tainty (Thompson and Ellison 2011), so-called because it becomes apparent only
once independent measurement results are compared. Detecting and quantifying
dark uncertainty is part and parcel of the process improvement that leads to trustwor-
thymeasurement. Recognizing the presence of dark uncertainty is the first, necessary
step toward eventually controlling and abating the corresponding sources.

But even when measurement results for the same measurand are mutually incon-
sistent, it is often useful to combine them into a consensus value, provided that the
uncertainty associated with this value will reflect not only the individual reported
uncertainties but also the dark uncertainty that seems to affect them all.
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The NIST Consensus Builder (NICOB) is a Web-based application, available at
https://consensus.nist.gov/, that can be used to assess the mutual consistency of a
set of independent measurement results, and to compute a consensus value and its
associated uncertainty (Koepke et al. 2017). TheNICOBcan also characterize the dif-
ferences between individual measured values and the consensus value, and between
pairs of individual measured values, all along taking into account not only their
reported uncertainties but also any dark uncertainty that may have been uncovered.

Figure6 depicts the measurement results under consideration, a consensus value
derived from them, and an interval that, with probability 95%, is believed to include
the true value of the measurand, as produced by the Bayesian hierarchical procedure
implemented in the NICOB (Koepke et al. 2017).

The corresponding statistical measurement model is the usual random effects
model (Searle et al. 2006), which expresses eachmeasured value, G j = G + λ j + ε j

for j = 1, . . . , 16, as an additive superposition of the true value of the measurand, G,
of a random effect, λ j , that is specific to each experiment, and of ameasurement error,
ε j . The Bayesian formulation is particularly effective at capturing and expressing
the variance component induced by dark uncertainty, which is τ 2, the variance of
the {λ j }, and also the fact that the estimate of τ is based on a fairly small number of
degrees of freedom (15 in this case, which is one less than there are measurement
results).

10 Summation and Conclusions

Measurement quality is its trustworthiness, which is achieved through reliable cali-
bration involving well-characterized standards, traceability to the international sys-
tem of units or to other generally recognized standards, rigorous evaluation of mea-
surement uncertainty that realistically captures contributions from all significant
sources of uncertainty, and fitness for purpose.

When the same measurand is measured using fundamentally different measure-
ment methods, applied independently by different laboratories, and the measurement
results are mutually consistent, then their agreement offers considerable reassurance
that the measurement results indeed are trustworthy, and that all are targeting the
same measurand.

The NIST Consensus Builder (NICOB) serves to assess whether measurement
results obtained independently are mutually consistent, and will produce a consen-
sus value even when they are not. In this case, the uncertainty associated with the
consensus value includes a component of dark uncertainty that the NICOB also
estimates and propagates.

Statistical models and methods are essential tools to gauge and ascertain the trust-
worthiness of measurements. They figure preeminently in uncertainty evaluation, for
example, in the procedures implemented in the NIST Uncertainty Machine (Delta
method and Monte Carlo method), and they provide the foundation and technical

https://consensus.nist.gov/


Concepts, Methods, and Tools Enabling Measurement Quality 355

machinery for consensus building, and in particular to decide whether measurement
results are mutually consistent.

The reliance on standards agreed upon by the metrological community, and the
confidence derived from themutual agreement ofmeasurementsmade independently
of one another, possibly also employing differentmethods, show thatmeasurement in
fact is a collective enterprise at multiple scales of engagement between individuals
and nations worldwide, hence also is a vehicle for cooperation and an enabler of
commerce and trade.
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Assessing Laboratory Effects in Key
Comparisons with Two Transfer
Standards Measured in Two Petals: A
Bayesian Approach

Olha Bodnar and Clemens Elster

Abstract We propose a new statistical method for analyzing data from a key com-
parison when two transfer standards are measured in two petals. The approach is
based on a generalization of the classical random effects model, a popular procedure
in metrology. Bayesian treatment of the model parameters, as well as of the random
effects is suggested. The latter can be viewed as potential laboratory effects which
are assessed through the proposed analysis. While the prior for the laboratory effects
naturally is assigned as a Gaussian distribution, the Berger and Bernardo reference
prior is taken for the remaining model parameters. The results are presented in terms
of the posterior distributions derived for the laboratory effects. From these distribu-
tions, posterior means and credible intervals are calculated. The proposed method
paves the way for applying the established random effects model also for data arising
from the measurement of several transfer standards in several petals. Finally, the new
approach is illustrated for measurements of two 500 mg transfer standards carried
out in key comparison CCM.M-K7.

Keywords Extended random effects model · Two transfer standards · Reference
analysis · Non-informative prior · Credible interval · CCM.M-K7

1 Introduction

Meta-analysis is an important statistical tool which deals with drawing inferences
from data that are themselves the results of analyses. Applications of meta-analysis
comprise, for example, the combination of results from clinical trials (see, Sutton and
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Higgins 2008; Bodnar et al. 2017), the determination of fundamental constants (see,
Mohr et al. 2012; Bodnar et al. 2016a), or the analysis of interlaboratory comparisons
(see, Toman 2007).

In order to establish the equivalence between national metrology institutes, inter-
laboratory comparison measurements known as key comparisons are carried (cf.,
Bureau International des Poids et Mesures 2003). The statistical analysis of data
from key comparisons has been recently developed in a number of papers (see, e.g.,
Kacker 2004; Chunovkina et al. 2008; Elster and Toman 2010; Bodnar et al. 2013;
Elster and Toman 2013; Chunovkina et al. 2016; Forbes 2016; Shirono et al. 2016;
Koepke et al. 2017) for both the fixed effects model and the random effects model.
Bayesian methods were established for the determination of a reference value on
basis of a random effects model by Bodnar et al. (2016b), and also for the estima-
tion of laboratory effects using a fixed effects model by Elster and Toman (2010).
Recently, the estimation of laboratory effects has been explored when applying a
random effects model in Rukhin and Possolo (2011); Bodnar and Elster (2018);
while this has been done from the viewpoint of conventional statistics in Rukhin and
Possolo (2011), a full Bayesian treatment based on a noninformative prior has been
proposed in Bodnar and Elster (2018). Laboratory effects, i.e. the fixed effects in a
fixed effects model or the random effects in a random effects model, are key results
in such a statistical analysis (cf., Toman and Possolo 2009).

The above mentioned approaches are applicable to measurement results obtained
in a single petal. However, in some key comparisons, several transfer standards
are circulated among participants in separate petals, and only the pilot laboratory
participates in each petal (see, e.g., Abbott et al. 2015; Lee et al. 2017). One such
example is key comparison CCM.M-K7, where measurements of 5kg, 100g, 10g,
5g and 500mg stainless steel mass standards have been carried out. In Fig. 1, the
measurement data for the 500mg stainless steel mass standard are presented which
were obtained in two petals. The first petal consists of measurements provided by
KRISS, NIS, VNIIM, CENAM, NIST, while the second petal shows measurements
of KRISS, PTB,METAS, CEM, INRIM,NIM.A separate transfer standard was used
in each petal, and the pilot laboratory in this key comparison was KRISS. Although
two measurements were done by KRISS in each of the two petals, we used only
the first ones in order to keep the same conditions for all participated laboratories.
The data in Fig. 1 consist of the differences between the measurement result and the
nominal level of the transfer standard, presented together with the corresponding
standard uncertainties provided by the laboratories.

The difficulty in the analysis of the CCM.M-K7 data in Fig. 1 is to combine the
measurements obtained from the two different petals in ameaningfulway. The results
of key comparisonCCM.M-K7 reported in theBIPMKCDB (see, Lee et al. 2017) are
based on the differences between the values provided by the participating laboratories
and the valuemeasured by the pilot laboratory in the samepetal. However, proceeding
in such a way has several drawbacks: (i) after this transformation, some important
information present in the initial data may be lost; for example, no laboratory effect
is obtained for the pilot laboratory; (ii) when the initial observations measured by
the different laboratories can be assumed to have been obtained independently, this
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Fig. 1 Measurement data from CCM.M-K7 with two 500mg transfer standards measured in two
petals. Error bars indicate standard uncertainties. The dashed line in the figure separates the two
petals. The pilot laboratory, KRISS, participated in both petals

does no longer hold for the transformed data. As a result, uncertainties are enlarged,
correlations are introduced, and a statistical analysis for the transformed data may be
less informative. An additional challenge appears when the measurement data in one
or both petals are inconsistent. For instance, it was pointed out that the measurements
are not consistent in four out of five comparisons considered in key comparison
CCM.M-K7 Lee et al. (2017).

We contribute to the existing literature on the analysis of data from key com-
parisons by suggesting a novel statistical approach for combining results from two
petals. The approach is based on an extension of the random effects model and its
Bayesian treatment. Under this model, the Berger and Bernardo reference prior (see,
Berger and Bernardo 1992; Bodnar and Elster 2014) for the underlying means in the
two petals and the heterogeneity parameter are derived as well as the correspond-
ing posterior for the heterogeneity parameter and the random effects is obtained. In
this way, Bayesian inference procedures are provided for the underlying means, the
additional between-laboratory variability, and the laboratory effects. The theoretical
results are applied to reanalyze part of the key comparison CCM.M-K7 data recently
published in Lee et al. (2017).

The paper is organized as follows. In Sect. 2, a new statistical model is introduced
for key comparison data with two transfer standards and measurements performed
in two petals. The Bayesian inference procedures proposed for the treatment of this
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statistical model are then derived in Sect. 3, while Sect. 4 illustrates their application
to data from key comparison CCM.M-K7. Final remarks are provided in Sect. 5.
Technical derivations are moved to the appendix (Sect. 6).

2 Statistical Model for Measurement Data

In order to model measurement data in the case of two transfer standards measured
in two petals, we introduce a new statistical model in this section that extends the
random effects model which has recently been successfully used in metrology and
medicine (see, e.g., Kacker 2004; Toman and Possolo 2009; Rukhin and Possolo
2011; Turner et al. 2015; Bodnar et al. 2016b, a, 2017; Bodnar and Elster 2018;
Bodnar 2019; Muhmuza and Bodnar 2020). Without such an adjustment application
of the classical random effects model is not possible in the considered case.

Let X = (X1, ..., Xn)
T and Y = (Y1, ...,Ym)T denote the two vectors of measure-

ment results obtained in the two petals. The measurements of the pilot laboratory
in the two petals are, without loss of generality, denoted by X1 and Y1. In contrast
to existing approaches which suggest to link the measurement results from the two
petals by building the differences between the measurements provided by the par-
ticipating laboratories and those of the pilot laboratory, we propose a new statistical
model which allows to combine the measurement data in an appealing way and
avoids the problems discussed in the introduction when differences are calculated.
In particular, our approach arrives at an estimate of the laboratory effect also for the
pilot laboratory.

More precisely, we assume that X andY follow an extended random effectsmodel
expressed as

X = μX1n + λX + εX , (1)

Y = μY1m + λ̃Y + εY , (2)

where 1k denotes the k-dimensional vector of ones. We further assume that the first
random effects in both petals coincide, i.e., the random effects of the pilot laboratory
are the same. This means that any potential laboratory effect of the pilot laboratory
which is not accounted for in his uncertainty budget is assumed to remain constant.

Following the assumptions of the classical random effects model, λX = (λ1,X , ...,

λn,X )T and λY = (λ2,Y , ..., λm,Y )T are assumed to be independently distributed with

λX |σ ∼ Nn(0n, σ 2 In) , (3)

λY |σ ∼ Nm−1(0m−1, σ
2 Im−1) , (4)

where 0k denotes the k-dimensional vector of zeros and I k stands for the k-
dimensional identity matrix. Later on, we also use the notation Ok,p for the k × p
dimensional matrix of zeros. Furthermore, the model residuals are assumed to be
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normally distributed, but not obviously independent, according to

ε =
(

εX

εY

)
∼ Nn+m(0n+m, V ) with V =

(
V 11 V 12

V 21 V 22

)
. (5)

The covariance matrix V is assumed to be positive definite and it is formed from the
uncertainties quoted by the laboratories, together with the assessment made about
their correlation. Subsequently, V is treated as known and the dependence of the
results on it will be suppressed in our notation.

Summarizing (1)–(5), we obtain the following extended random effects model
expressed as

(
X
Y

)
=

(
μX1n
μY1m

)
+ L

(
λX

λY

)
+ ε , (6)

where L : (n + m) × (n + m − 1) matrix which transforms (λT
X ,λT

Y )T into

(λT
X , λ̃

T
Y )T and it is given by

L =
⎛
⎝ In On,m−1

iTn 0Tm−1
Om−1,n Im−1

⎞
⎠ with iTn = (1, 0, ..., 0︸ ︷︷ ︸

n−1

) .

From model (6), we arrive at the marginal model

(
X
Y

)
∼ Nn+m

[(
μX1n
μY1m

)
, V + σ 2LLT

]
. (7)

3 Bayesian Inference Based on the Reference Prior

In this section, we present the Bayesian inference procedures for the parameters
of model (6), namely {μX , μY , σ }, as well as for λ = (λT

X ,λT
Y )T . We will mainly

concentrate on the derivation of the posterior distribution of λ, while considering
{μX , μY , σ } as nuisance parameters. This approach will allow us directly to estimate
laboratory effects, which are important outputs in the analysis of key comparison
data.

In our Bayesian treatment of the random effects model (6), λ = (λT
X ,λT

Y )T are
treated as parameters to be inferred, and formally our treatment is that of a fixed
effects model. The fact that by assumption the random effects are drawn from the
Gaussian distribution (3) and (4) lends itself naturally to taking that distribution as
the prior for λ. The prior distribution for the remaining parameters, σ,μX , μY , is
then determined by the reference prior for the marginal model (7).
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3.1 Reference Prior for the Marginal Model

In the derivation of theBerger andBernardo reference prior (see,Berger andBernardo
1992;Bodnar andElster 2014), theFisher informationmatrix calculated formodel (7)
is utilized. For grouping {{μX , μY }, σ }, it is given by (see Sect. 6.1 in the appendix)

F =
(
K T (V + σ 2LLT )−1K 02

0T2 2σ 2tr
(
(LT (V + σ 2LLT )−1L)2

)
)

(8)

with

K =
(
1n 0n
0m 1m

)
. (9)

In using (8), the reference prior is obtained and it is given as the square root of
the right corner of the Fisher information matrix (see, Corollary to Proposition 5.29
in Bernardo and Smith 2000) expressed as

π(μX , μY , σ ) ∝ σ

√
tr

(
(LT (V + σ 2LLT )−1L)2

)

= σ

√
tr

((
In+m−1 + σ 2LTV−1L

)−1
LTV−1L

)2
. (10)

3.2 Posterior for Laboratory Effects

Because the derived expression of the reference prior (10) depends on σ only, in the
following we write π(σ) instead of π(μX , μY , σ ). Altogether, the prior

π(μX , μY , σ,λX ,λY ) = π(λX ,λY |σ)π(σ ) (11)

is taken, where π(λX ,λY |σ) = π(λX |σ)π(λY |σ) is given by (3) and (4), and π(σ)

by (10).

Let
R = V−1 − V−1K (K TV−1K )−1K TV−1 .

Then, the conditional posterior for λ given σ is expressed as (see, Sect. 6.2 in the
appendix)

λ|σ, X,Y ∼ Nn+m−1
(
μλ|σ , V λ|σ

)
(12)

with

μλ|σ =
(
LT RL + 1

σ 2 In+m−1

)−1
LT R

(
X
Y

)
, Vλ|σ =

(
LT RL + 1

σ 2 In+m−1

)−1
,
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and

π(σ |X,Y) ∝ π(σ)√
det

(
σ 2LT V−1L + In+m−1

)√
det (K T (V + σ 2LLT )−1K )

(13)

× exp

(
−1

2

((
X
Y

)T

R
(
X
Y

)
− μT

λ|σ V
−1
λ|σ μλ|σ

))
.

Finally, using the properties of the multivariate normal distribution, we get the
conditional marginal posteriors for each λi separately as

λi |σ ∼ N
(
eTi μλ|σ , eTi V λ|σ ei

)
,

where ei is the i-th basis vector in IRn+m−1 and the marginal posterior of σ is given
in (13).

In the following theorem, we derive necessary conditions under which the poste-
rior for λ is proper and its first and second moments exist.

Theorem 1 The posterior π(λ, σ |X,Y) obtained from (12) and (13) for the refer-
ence prior from (10) is proper if n + m > 3. For the according marginal posterior
π(λ|X,Y) mean and variance exist if n + m > 5 and n + m > 7, respectively.

Proof The proof of the theorem follows from (10), (12), and (13) by noting that no
singularity in zero is present for (13), while the marginal posterior for σ behaves as
σ−n−m−2 for σ → ∞.

In order to calculate the marginal posterior for the laboratory effects, one can
calculate the posteriorπ(λi |X,Y)by simply calculating the one-dimensional integral

π(λi |X,Y) =
∫

π(σ |X,Y)
1√

2πeTi Vλ|σ ei
exp

(
−1

2
(eTi μλ|σ − λi )

2/eTi Vλ|σ ei
)
dσ (14)

numerically.
Finally, we note that the conditional posterior mean vector μλ|σ possesses an

interesting interpretation. From its structure and using that R is a projection matrix
on the space determined by the matrix K , we conclude that μλ|σ is close to the zero
vector if and only if the measurement results X and Y almost belong to the space
determined by K . The latter statement is equivalent to the casewhen themeasurement
data are similar to each other with respect to their quoted uncertainties in both petals,
i.e., when the data are consistent.
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4 Analysis of CCM.M-K7 Data

In this section, we apply the developed procedure to reanalyze the measurement
results for two 500mg transfer standards obtained in two petals within key com-
parison CCM.M-K7 (Table1). The data are presented in Fig. 1 where two petals are
separated by the dashed line. The pilot laboratory KRISS participated in both petals.
Moreover, it is pointed out by applying aχ2-test on consistency that themeasurement
data from the first petal (lower part in Fig. 1) are not consistent (c.f., Table7 from
Lee et al. 2017). The data together with their standard uncertainties are provided in
Table1. Thematrix V is constructed in the following way: it has the squared standard
uncertainties associated with themeasurement results as its diagonal entries; the only
nonzero non-diagonal elements are the ones which correspond to the measurements
of the pilot laboratory and which are equal to 0.3 multiplied by the product of the
corresponding standard uncertainties (see, Sect. 8.2 in Lee et al. 2017). To this end,
we point out that the value of the correlation coefficient may have a minor impact
on the coverage properties of the credible intervals constructed for laboratory effects
(see, e.g., Sect. 5 in Bodnar and Elster 2018).

Key results of the suggested approach are the joint posterior and the marginal
posteriors of the laboratory effects. The marginal posteriors are presented in Fig. 2.
The obtained marginal posterior distributions are roughly symmetric, indicating that
their approximation by a normal distribution might provide a good fit. Moreover,
the constructed 95% probabilistically symmetric credible intervals always include
zero (cf. also Fig. 3), which is taken as an indication that at the chosen 95% level
of significance, no significant laboratory effect is present. This result is consistent
with the initial analysis as documented in Table10 of Lee et al. (2017). Note that
while none of the laboratory effects differs significantly from zero at the 95% level of

Table 1 Measurement data from CCM.M-K7 with two 500mg transfer standards measured in two
petals. The dashed line in Fig. 1 separates the two petals. The pilot laboratory, KRISS, participated
in both petals with the correlation between its measurements equal to 0.3

Laboratory Measurement in mg Standard uncertainty in mg

KRISS-1 0.0019 0.0003

NIS 0.0024 0.0007

VNIIM 0.0005 0.0008

CENAM 0.0009 0.0007

NIST 0.0006 0.0003

KRISS-2 0.0023 0.0003

PTB 0.0022 0.0002

METAS 0.0027 0.0008

CEM 0.0024 0.0005

INRIM 0.0020 0.0006

NIM 0.0009 0.0008
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Fig. 3 Estimated laboratory effects together with 95% probabilistically symmetric credible inter-
vals for the CCM.M-K7 data from Fig. 1 with two 500mg transfer standards measured in two petals

significance, the marginal posteriors for the laboratory effects indicate that for two
laboratories the probability of having a nonzero laboratory effect is considerable,
i.e., the probability of a negative laboratory effect for NIST equals 93%, and that of
a positive laboratory effect for KRISS 86%.

As a by-product of the performed Bayesian analysis of the considered extended
random effects model, we obtain the posterior distribution for the heterogeneity
parameter σ (see, Fig. 4). A Bayesian estimate of σ is given by its posterior mean
which equals 4.95 × 10−4, together with the 95% probabilistically symmetric credi-
ble interval [1.06 × 10−4, 11.18 × 10−4]. These two values show that a considerable
amount of uncertainty is present in the CCM.M-K7 key comparison data which is
captured by the extended random effects model.
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Fig. 4 Marginal posterior for heterogeneity parameter σ in the case of the CCM.M-K7 data with
two 500mg transfer standards measured in two petals. The red lines show the posterior mean and
the limits of 95% probabilistically symmetric credible interval

5 Conclusions

In many key comparisons, the participating laboratories measure several transfer
standards simultaneously in several petals. Linking together the measurement results
obtained in the different petals is crucial in those situations. Current approaches
address this task by constructing differences from themeasurements of the participat-
ing laboratories and the pilot laboratory in each petal first, followed by a subsequent
analysis of these differences (see, Abbott et al. 2015; Lee et al. 2017).

In this paper, an alternative approach is proposed based on an appropriate exten-
sion of the popular random effects model (see, e.g., Kacker 2004; Toman and Possolo
2009; Rukhin and Possolo 2011; Turner et al. 2015; Bodnar et al. 2016b, 2017) and
its Bayesian inference. The prior distributions for the unknowns in the model were
selected by utilizing the assumed Gaussian distribution of the laboratory effects,
together with the Berger and Bernardo reference prior principle for the parameters
of the marginal model. The Bayesian treatment results in the posterior distribution,
from which the summary statistics such as the posterior means or the posterior cred-
ible intervals can be derived for the laboratory effects.

The main advantage of the novel approach is that it provides estimates for all lab-
oratory effects, including the pilot laboratory. The method does not produce a single
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key comparison reference value but two consensus values. These two consensus
values are estimates of the values of the two employed standards.

The new method is essentially analytical and requires only one-dimensional
numerical integration for the calculation of the posterior distributions of the lab-
oratory effects. Markov chain Monte Carlo methods are not needed for this purpose.
This constitutes a further advantage of the suggested approach. Finally, the new
procedure is well suited for treating inconsistent data.

Application of the approach to data from CCM.M-K7 for two 500mg transfer
standards measured in two petals found no significant laboratory effects, which is in
accordance with the initial analysis of these data (see, Lee et al. 2017).

Acknowledgements The authorwould like to thank the Editors and theReviewer for the thoughtful
and constructive suggestions that led to an improvement of the paper.

6 Appendices

6.1 Derivation of the Fisher Information Matrix

The Fisher information matrix is given by

F = −EμX ,μY ,σ

⎛
⎜⎜⎝

∂2l(X,Y |μX ,μY ,σ )

∂μ2
X

∂2l(X,Y |μX ,μY ,σ )

∂μX ∂μY

∂2l(X,Y |μX ,μY ,σ )

∂μX ∂σ

∂2l(X,Y |μX ,μY ,σ )

∂μX ∂μY

∂2l(X,Y |μX ,μY ,σ )

∂μ2
Y

∂2l(X,Y |μX ,μY ,σ )

∂μY ∂σ

∂2l(X,Y |μX ,μY ,σ )

∂μX ∂σ

∂2l(X,Y |μX ,μY ,σ )

∂μY ∂σ

∂2l(X,Y |μX ,μY ,σ )

∂σ 2

⎞
⎟⎟⎠ ,

where

l(X,Y |μX , μY , σ ) ∝ −1

2
log

(
det

(
V + σ 2LLT

))

− 1

2
tr

((
V + σ 2LLT

)−1
(
X − μX1n
Y − μY 1m

) (
X − μX1n
Y − μY 1m

)T
)

= −1

2
log

(
det

(
V + σ 2LLT

))

− 1

2
tr

((
V + σ 2LLT

)−1
(

(X − μX1n)(X − μX1n)T (X − μX1n)(Y − μY 1m)T

(Y − μY 1m)(X − μX1n)T (Y − μY 1m)(Y − μY 1m)T

))
.

Let

W(σ )−1 = (
V + σ 2LLT

)−1 =
(
W (−)

11 (σ ) W (−)
12 (σ )

W (−)
21 (σ ) W (−)

22 (σ )

)
.

It then holds that
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∂2l(X,Y |μX , μY , σ )

∂μ2
X

= −tr

((
V + σ 2LLT

)−1
(
1n1Tn 0
0 0

))
= −1Tn W

(−)
11 (σ )1n ,

∂2l(X,Y |μX , μY , σ )

∂μX∂μY
= −1

2
tr

((
V + σ 2LLT

)−1
(

0 1n1Tm
1m1Tn 0

))

= −1Tn W
(−)
12 (σ )1m ,

∂2l(X,Y |μX , μY , σ )

∂μ2
Y

= −tr

((
V + σ 2LLT

)−1
(
0 0
0 1m1Tm

))
= −1TmW

(−)
22 (σ )1m

Furthermore, since ∂l(X,Y |μX ,μY ,σ )

∂μX
and ∂l(X,Y |μX ,μY ,σ )

∂μY
are linear functions in

(X − μX1n) and (Y − μY1m), taking the derivative with respect to σ and then the
expectation will lead to zero.

Next, we derive the (3, 3)-th block of F. It holds that

∂2W(σ )

∂σ
= 2σ LLT ,

∂2W(σ )

∂σ 2
= 2LLT .

In using the following formulas (cf., Harville 1997, p. 309)

∂2W(σ )−1

∂σ 2
= −W(σ )−1 ∂2W(σ )

∂σ 2
W(σ )−1

+ 2W(σ )−1 ∂W(σ )

∂σ
W(σ )−1 ∂W(σ )

∂σ
W(σ )−1 ,

∂2 log(det (W(σ )))

∂σ 2
= tr

(
W(σ )−1 ∂2W(σ )

∂σ 2

)

− tr

(
W(σ )−1 ∂W(σ )

∂σ
W(σ )−1 ∂W(σ )

∂σ

)

together with

EμX ,μY ,σ

((
X − μX1n
Y − μY1m

) (
X − μX1n
Y − μY1m

)T
)

= V + σ 2LLT ,

we get

EμX ,μY ,σ

(
∂2l(X,Y |μX , μY , σ )

∂σ 2

)
= −1

2

∂2 log(det (V + σ 2LLT ))

∂σ 2
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− 1

2
tr

(
∂2(V + σ 2LLT )−1

∂σ 2
EμX ,μY ,σ

((
X − μX1n
Y − μY1m

) (
X − μX1n
Y − μY1m

)T
))

= −tr((V + σ 2LLT )−1LLT )

+ 2σ 2tr((V + σ 2LLT )−1LLT (V + σ 2LLT )−1LLT )

+ tr((V + σ 2LLT )−1LLT )

− 4σ 2tr((V + σ 2LLT )−1LLT (V + σ 2LLT )−1LLT )

= −2σ 2tr((V + σ 2LLT )−1LLT (V + σ 2LLT )−1LLT )

= −2σ 2tr
(
(LT (V + σ 2LLT )−1L)2

)
.

Using the notation

K =
(
1n 0n
0m 1m

)
,

we get the expression of the Fisher information matrix as given in (8).

6.2 Derivation of the Posterior

Let

L =
(
L1

L2

)
and λ =

(
λX

λY

)
.

The posterior for {μX , μY ,λX ,λY , σ } is expressed as

π(μX , μY ,λX ,λY , σ |X,Y)

∝ exp

(
−1

2

(
X − L1λ − μX1n
Y − L2λ − μY1m

)T

V−1

(
X − L1λ − μX1n
Y − L2λ − μY1m

))

× exp

(
− 1

2σ 2
λTλ

)
π(σ)

σ n+m−1

= exp

(
−1

2

(
X − L1λ

Y − L2λ

)T

V−1

(
X − L1λ

Y − L2λ

))
exp

(
−1

2
G

)

× exp

(
− 1

2σ 2
λTλ

)
π(σ)

σ n+m−1

with



Assessing Laboratory Effects in Key Comparisons with Two Transfer … 373

G =
(

μX1n
μY1m

)T

V−1

(
μX1n
μY1m

)
− 2

(
X − L1λ

Y − L2λ

)T

V−1

(
μX1n
μY1m

)

=
(

μX

μY

)T

K TV−1K
(

μX

μY

)
− 2

(
X − L1λ

Y − L2λ

)T

V−1K
(

μX

μY

)

=
[(

μX

μY

)
− A−1M(λ)

]T

A
[(

μX

μY

)
− A−1M(λ)

]
− M(λ)T A−1M(λ)

where

A = K TV−1K and M(λ) = K TV−1

(
X − L1λ

Y − L2λ

)
.

Hence,

π(μX , μY ,λX ,λY , σ |X,Y)

∝ exp

(
−1

2

[(
μX

μY

)
− A−1M(λ)

]T

A
[(

μX

μY

)
− A−1M(λ)

])

× exp

(
−1

2

(
X − L1λ

Y − L2λ

)T

V−1

(
X − L1λ

Y − L2λ
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× exp

(
1

2
M(λ)T A−1M(λ)

)
exp

(
− 1

2σ 2
λTλ

)
π(σ)

σ n+m−1
.

Because A does not depend on λ and σ , integrating over μX and μY , we get

π(λX ,λY , σ |X,Y)

∝ exp

(
−1

2

(
X − L1λ

Y − L2λ

)T

R
(
X − L1λ

Y − L2λ

))
exp

(
− 1

2σ 2
λTλ

)
π(σ)

σ n+m−1
,

where

R = V−1 − V−1K (K TV−1K )−1K TV−1 .

We consider

(
X − L1λ

Y − L2λ

)T

R
(
X − L1λ

Y − L2λ

)
+ 1

σ 2
λTλ

=
(
X
Y

)T

R
(
X
Y

)
+ λT LT RLλ − 2

(
X
Y

)T

RLλ + 1

σ 2
λTλ

=
(
X
Y

)T

R
(
X
Y

)
+ λT

(
LT RL + 1

σ 2
In+m−1

)
λ − 2

(
X
Y

)T

RLλ

= (
λ − μλ|σ

)T
V−1

λ|σ
(
λ − μλ|σ

) +
(
X
Y

)T

R
(
X
Y

)
− μT

λ|σV
−1
λ|σμλ|σ ,
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where

μλ|σ =
(
LT RL + 1

σ 2
In+m−1

)−1

LT R
(
X
Y

)

and

V λ|σ =
(
LT RL + 1

σ 2
In+m−1

)−1

.

Rewriting the formula of π(λX ,λY , σ |X,Y), we get

π(λX ,λY , σ |X,Y)

∝ exp

(
−1

2

(
λ − μλ|σ

)T
V−1

λ|σ
(
λ − μλ|σ

))

exp

(
−1

2

((
X
Y

)T

R
(
X
Y

)
− μT

λ|σV
−1
λ|σμλ|σ

))
π(σ)

σ n+m−1
.

Hence
λ|σ ∼ Nn+m−1

(
μλ|σ , V λ|σ

)
(15)

and the marginal posterior for σ is given by

π(σ |X,Y) ∝ det (V λ|σ )1/2
π(σ)

σ n+m−1

× exp

(
−1

2

((
X
Y

)T

R
(
X
Y

)
− μT

λ|σV
−1
λ|σμλ|σ

))
.

Next, we simplify the posterior for σ using the fact that

det (V λ|σ ) = 1/det

(
LT RL + 1

σ 2
In+m−1

)

and

det

(
LT RL + 1

σ 2 In+m−1

)

= det
(
LT V−1L + σ−2 In+m−1 − LT V−1K (K T V−1K )−1K T V−1L

)

= det
(
LT V−1L + σ−2 In+m−1

)

× det
(
I2 − (K T V−1K )−1/2K T V−1L(LT V−1L + σ−2 In+m−1)

−1LT V−1K (K T V−1K )−1/2
)

= det
(
LT V−1L + σ−2 In+m−1

)

× det (K T (V−1 − V−1L(LT V−1L + σ−2 In+m−1)
−1LT V−1)K )

det (K T V−1K )

= σ−2(n+m−1)det
(
σ 2LT V−1L + In+m−1

) det (K T (V + σ 2LLT )−1K )

det (K T V−1K )
,
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where the second equality follows from Sylvester’s determinant theorem and the
fourth one is obtained by applying Woodbury’s matrix identity.

Hence

π(σ |X,Y) ∝ π(σ)√
det

(
σ 2LTV−1L + In+m−1

)√
det (K T (V + σ 2LLT )−1K )

× exp

(
−1

2

((
X
Y

)T

R
(
X
Y

)
− μT

λ|σV
−1
λ|σμλ|σ

))
.
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Quality Control Activities Are a
Challenge for Reducing Variability

Ken Nishina

Abstract It is well known that reducing variability is the basis of quality control
activities. The production process can be regarded roughly as a value chain, which is
composed of customer voice, product planning, product design, and manufacturing
the product. In the outcome of the value chain, three kinds of variability, which are
the variability before shipping to market, the variability after shipping to market, and
the variability of satisfaction of market, can be considered. Quality control activities
can be regarded as thinking about what can be done to reduce the three variabilities
and taking actions, then ensuring quality for customers by implementing them. In the
value chain, many proposals and improvements have been implemented to reduce the
variabilities. In this paper, a structure of the three variabilities above is shown; then
activities to reduce the variabilities are discussed. As a result, the activities can be
classified into four approaches and they can be systematized as the four approaches
to reduce the three kinds of variability.

Keywords Value chain of production process · Three kinds of variability · Four
approaches to reduce the variabilities

1 Introduction

A column which at that time American Sony’s vice-president wrote was placed in a
Japanese newspaper on April 17, 1979. Its contents explained the reasons why the
quality of Japanese products had been better than US products. Figure1 expresses
the reasons plainly. It shows the differences in the distribution of a property (color
density) of comparable color televisions manufactured at a Sony plant in San Diego
and a Sony plant in Japan. According to the article, Fig. 1 shows one of the reasons
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Fig. 1 Distribution of a
color TV property
(difference between San
Diego Sony plant and Japan
Sony plant)

why the quality of Japanese-made products is superior to that of American-made
products.

The period following the publication of this article, the 1980s, may be considered
a period of transfer of Japanese quality control technology to the USA. The trigger
was a television show called “If Japan Can, Why Can’t We?” broadcast by American
network NBC in 1980. In 1987, the Malcolm Baldrige National Quality Award,
which benchmarks Japan’s Deming Prize, was established.

In Japan, operation standards are followed thoroughly and work is done with
the aim of making process values agree as much as possible with target values.
However, variability occurs as a result of many factors that, while their contribution
to the characteristic is small, cannot be controlled. As shown in Fig. 1, in such cases,
the distribution can approach a normal distribution. At the San Diego plant, on the
other hand, work was carried out with the attitude that it was acceptable as long
as it remains within the specification values. As a result, properties have a mixed
distribution consisting of several distributions.

Thedifferences in the twodistributions inFig. 1 canbequantified as the differences
in the size of the variability. Assuming a normal distribution in Japan and a uniform
distribution in San Diego, let us take σ j p and σsan to be the respective standard
deviations of the distributions. With “W” as the allowable tolerance, we get

σ j p = W

6
, σsan = W

2
√
3

(
> σ j p

)

Taguchi (1993). The above demonstrates that the level of quality can be quantified
according to variability and that the smaller the variability, the better the quality.

It is well known that reducing variability is the basis of quality control activities.
Then, how shouldwe understand the variabilities and reduce them in practical quality
control activities of production processes?

The production process can be regarded roughly as a value chain, which is com-
posed of customer voice, product planning, product design, and manufacturing the
product. In the outcome of the value chain, three kinds of variability can be consid-
ered. One is the variability before shipping to market. Another is the variability after
shipping tomarket and the last is the variability of satisfaction ofmarket. Quality con-
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trol activities can be regarded as thinking about what can be done to reduce the three
variabilities and taking actions, then ensuring quality for customers by implementing
them. In the value chain, many proposals and improvements have been implemented
to reduce the variabilities.

In this paper, a structure of the three kinds of variability in the value chain is shown;
then a classification and a systematization of approaches to reduce the variabilities
is discussed.

2 Value Chain in Production Processes

The process of making a product can be roughly divided into the three stages of
planning, design, and manufacturing, which is shown in Fig. 2. It is clear that quality
is not built in the manufacturing stage alone. Quality is built with activities in each
stage.

The input to the product planning stage is the voice of customers. In this stage, the
voice of the customer is transferred to a concept of a product. That is the production
activity answers the questions “What are we going to sell, and to sell to whom?”.
Then, the grade of the product including the cost planning is determined. That is the
production activity answers the question “What grade of product are we going to
sell?”.

The next stage is the product design, where the product planning is transferred to
information for manufacturing the product, that is, design is the production activity
of creating specifications and drawings to produce the quality that is promised to
the customer in the product planning stage. Product design also serves to provide
informationwith consideration of ease ofwork inmanufacturing,which is the process
downstream of the product design stage.

Fig. 2 Value chain of production process
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Manufacturing is the production activity of transforming drawings received from
design into a product. The quality properties, that are the outcome of the production
activities of manufacturing, are measured, and the outcome is evaluated by the vari-
ability from the target. This is the process capability. These stages shown in Fig. 2
can be regarded as a value chain.

As mentioned in Sect. 1, quality can be quantified by variability. In this paper, on
the assumption of the value chain above, three kinds of variability are considered
and we discuss how to reduce the variabilities in each stage of the value chain.

3 Three Kinds of Variability of Outcome in the Value Chain

Figure3 shows the three kinds of variability of outcomes in the value chain, the
variability before shipping to market, the variability after shipping to market, and
the variability of satisfaction in the market. As shown in Fig. 3, the variability before
shipping to market is that of the distribution with which the mean is the target value
provided by the product design. The causes of variation in the manufacturing process
can be summarized with 5M1E (man, machine, method, material, measurement, and
environment). The product manufacturing department has a responsibility to reduce
the variability because most of the causes are internal noises in the 5M1E. But it
should be noted that it is not “all” but “most”. For example, “material” may come
from a supplier. In addition, the product design department also has a responsibility,
because some causes in 5M1E are determined by the product design.

A customer purchases a product from the outcome of the production manufactur-
ing and uses it under various conditions and over a long period, then the function of
the outcome has a variability. This is the variability after shipping to market. There

Fig. 3 Three kinds of variability of outcomes in value chain
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is a responsibility to reduce it in the product design department. Unlike reducing the
variability before shipping to market, in the case of the variability after shipping to
market, the causes of the variability are external noises, for example, outside tem-
perature and atmospheric pressure. Robust design for the external noises is required
to reduce this variability.

The variability of satisfaction of market may be the most difficult problem to take
direct actions against its causes because the causes of the variability are customer
needs. The distribution shape of the satisfaction of market is trapezoidal because the
distribution is composed of a mixture of distributions with different means. Because
there is a divergence of values in the market needs.

From the discussions above, it should be noted that there are two cases. One is
that the causes of variability are internal noises for the manufacturer. The other is that
the causes of variability are external noises for the manufacturer. Roughly speaking,
in the former cases, an action can be taken against the cause; on the other hand, in
the latter cases, an action cannot be taken against the causes.

4 Four Approaches to Reduce the Variability

4.1 Four Approaches in Causal Model

The variability before shipping tomarket, the variability after shipping tomarket, and
the variability of satisfaction of the market are caused by noises in the manufacturing
processes, noises in the usage environment, and the individual feelings of customers,
respectively. There are many possible situations, but their structure can be modeled
as consisting of cause, effect, and a causal relationship between cause and effect.
Figure4 shows a simple causal relationship between cause and effect. The activities
to reduce the variabilities can be classified from the perspective of “what should
we take action against?”. The subjects which we can take action against are three
elements mentioned above, that is, cause, effect, and their causal relationship. The
activities can be classified into four approaches as in Tatebayashi (2004). The four
approaches are shown in Fig. 4. The approaches are as follows:

Approach A: Taking action against effect,
Approach B: Taking action against cause,
Approach C: Observing the situation of causes and taking action against effect
according to the situation,
Approach D: Taking action against causal relationship.

A related study is the excellent book (Steiner and MacKay 2005). They proposed
seven approaches to reducing variability. Our study proceeded independently of the
one by Steiner andMacKay (2005). The four approaches above are very similar to the
seven approaches by Steiner andMacKay (2005), although there are slightly different
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Fig. 4 Four approaches to reduce the variability

BhcaorppA)b(AhcaorppA)a(

DhcaorppA)d(ChcaorppA)c(

Fig. 5 Four approaches by assuming a linear model between cause and effect

explanations. Our study can be characterized by systematization of the measures for
reducing the above three variabilities when looking at the whole production process.

The four approaches can be explained by assuming a simple linear model which
represents the cause, the effects, and their causal relationship. In Fig. 5, the four
approaches are expressed graphically.
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Note that “taking action against effect” means directly or indirectly reducing the
variability of the effect. “Taking action against cause” means reducing the variability
of the cause and stopping the variability from reproducing. “Taking action against
causal relationship” means decreasing the change ratio of the causal relationship.

Next, we will explain the four approaches in detail and include some examples.

4.2 Approach A: Taking Action Against Effect

Approach A can be classified as direct and indirect actions against the effects. The
former is “selection and sorting”. A specific example is 100% inspection. The latter is
“adjustment” after observing the effect. As the adjustment is performed by operating
a control variable, it is an indirect action against the effect. A typical example is
feedback control. In these approaches, an action is implemented after observing the
effect and no actions are taken against its cause as shown in Fig. 5, so the approach
is not a recurrence prevention but a spillage prevention. Note that in Approach A,
there is no need to identify the cause.

In the case of selection and sorting, high precision measurements are needed,
and actions must be standardized. The actions are incorporated in tact time, and
implementation obviously takes man-hours. Therefore, automation, for example,
using image processing is helpful to reduce labor cost. In the case of adjustment,
the actions must be standardized. A precondition is that the relationship between the
control variable and the effect stays constant. If the precondition fails, the action may
introduce larger variability and the production process may be in an out of control
condition. Measuring the output and making adjustment to the process may require
additional cost. Therefore, it is necessary to reduce man-hours for measurement and
adjustment.

4.3 Approach B: Taking Action Against Cause

In Approach B, there are two kinds of actions depending upon when the action
is taken. One is recurrence prevention. That is so-called “kaizen activity”. After a
problem is identified, its root cause is determined and then a corrective action is
taken against the cause as shown in Fig. 6a. It is well known that the QC seven
tools and SQC methods are useful for identifying a problem, searching for the root
cause, and confirming the effect by the action. The process of searching for a root
cause can create improvement. So this approach is fundamental and traditional in
quality control. However, it should be noted that the approach may increase cost.
Considering cost-effectiveness, a different approach may be better.

The other possibility with Approach B is prevention. If the cause is known in
advance, the actions can be taken against the cause as shown in Fig. 6b. A typi-
cal example is the determination of tolerance in the product design stage. A severe
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(a) recurrence prevention (b) prevention

Fig. 6 Two kinds of action depending upon when the action is taken

tolerance may be required. The design of experiments may be useful for the determi-
nation of the tolerance. But in general, this approach is more costly than Approach
D because manufacturing costs increase.

4.4 Approach C: Observing the Situation of Causes and
Taking Action Against Effect According to the Situation

Suppose the cause is known but no action can be taken against it, unlike with
Approach B. For example, the cause is the variability of the material from a supplier,
but no action can be taken against the cause. In such cases, after measuring the value
of the cause, a condition of the production process is adjusted. An example is shown
in Fig. 5c where feedforward control is used. The action is taken after the causes have
already occurred but before the effect occurs as shown in Fig. 7. Therefore, it can be
called “adaptive prevention”.

In Approach C, the real-time observation and the adjustment at high precision are
required. Like with the adjustment in Approach A, the cost of the observation and
the adjustment should be considered. However, with modern IoT technologies, these

Fig. 7 Adaptive prevention
according to the situation of
cause
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conditions are more easily satisfied. As a result, in the future, Approach C will likely
become more useful for reducing variability.

4.5 Approach D: Taking Action Against Causal Relationship

Approach D means using robust design, which is the origin of the Taguchi method.
The variability due to the noise, which a supplier cannot take direct action against,
can be reduced by using Approach D. In Approach D, an action is taken before the
cause occurs; therefore, Approach D is preventive. This approach does not require
us to take action against the cause; therefore, the cost can be reduced (see Taguchi
1993). But in Approach D, it is necessary to adjust the process mean by finding
another factor, which can shift the process mean, so-called adjustment factor.

There are two methods in Approach D. One is an application of the non-linear
relationship. The other is an application of the interaction between a design variable
and a noise factor.

The application of the non-linear relationship is a measure for the noise of inner
factors. Figure8a shows an example of a process design in a semiconductor wafer
manufacturing process. In this case, it is known that the cash register strike film
thickness which is an effect in the just before process is a cause of the variability of
the cash register strike dimensions which is an effect in the just after process. Then
the target value of the cash register strike film thickness is determined as shown in
Fig. 8a in order to reduce the variability of the cash register strike dimensions.

Figure8b shows an example concerning the optimization of plasticity of a candy
by Kackar (1985). In this case, the formulate of the candy is optimized by analyzing
the interaction between the external noise (temperature) and a formulate element of
the candy. As shown in Fig. 8b, the variability of plasticity due to temperature after
improvement is less than before the improvement.

(a): application of non-linear relationship (b) application of interaction (Kackar, 1985)

Fig. 8 Two methods of Approach D
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Approach D is similar to Approach C from the viewpoint of a preventive measure;
however, the point in time to take an action is different. In Approach D, the action
has been determined before the cause occurs. On the other hand, in Approach C, the
action is taken after the cause has occurred, a condition of the production process
is adjusted depending on the situation of the cause. As mentioned earlier, Approach
C will likely become much more useful for reducing the variability under the IoT
condition. Thatmeans the usability ofApproachCwill be enhanced as a supplemental
approach of Approach D.

5 Four Approaches to Reduce the Three Kinds of
Variability Overlooking the Value Chain

In Sects. 2 and 3, we have explained the three kinds of variability in the value chain
and the four approaches to reduce the variabilities. In this section, they are reviewed
from the viewpoint of the value chain.

Table1 shows the utilization of the four approaches to the three kinds of variability.
Double circle (�) and circle (©) mean highly effective and moderately effective
utilization; however, the point in time to take an action is different. In Approach
D, the action has been determined before the cause occurs. On the other hand, in
Approach C, the action is taken after the cause has occurred, a condition of the
production process is adjusted depending on the situation of the cause. As mentioned
earlier, Approach C will have been much more useful for reducing the variability
under the IoT condition. That means the usability of Approach C will be enhanced as
a supplemental approach of Approach D, respectively, while Black circle (•) means
the approach is undesirable.

First, we discuss the reduction of the variability in market satisfaction. The prod-
uct planning department is responsible for reducing this variability. The department,
however, cannot take direct actions to reduce customer variability. Market segmenta-
tion is well known as an effective activity in marketing. Market segmentation means
stratification of the cause. This is an example of Approach C. The most essential

Table 1 Four approaches to reduce three kinds of variability overlooking values

Variability Approach A Approach B Approach C Approach D

Of satisfaction
of market

•Withdrawal
from
the market

© Awareness in
the market

� Market
segmentation

After shipping
to market

• Recall � Tolerance
design

© Adaptive
specification

� Robust design
for product

Before shipping
to market

� Inspection
feedback control

� Corrective
action
for process

� Feedforward
control

� Robust design
for process
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activity of marketing is market research. This is nothing but observing the situation
of the cause because different customer needs lead to the variability of satisfaction
of market.

Approach B is an effective approach in this case, where the target of action is cus-
tomers. Its typical example is the advertisement for a new product, where the action
is directly taken against customer’s consciousness that is a cause of the variability of
satisfaction of market. For example, customer’s awareness of the new product with
some merits can provide the reduction of the variability. However, the effectiveness
of Approach B is typically less than that of Approach C.

Approach A is an undesirable approach in this case because the action is too late
and provides extensive cost. It may be a worst story for the supplier. The ultimate
action is withdrawal from the market.

Second, we discuss the reduction of the variability after shipping to market. A
responsible department for reducing this variability is the product design department.
Like the variability of satisfaction of market, the responsible department cannot take
actions directly against root causes of the variability because the causes are external
noises for the supplier. In this case, Approach D, Taguchi’s robust design, of which
the target of action is the causal relationship, ismost effective to reduce the variability.
As mentioned in Sect. 4.3, this approach is a preventive measure.

The other preventive measure, Approach B, can be useful if the cause is known
in advance. As shown in Fig. 6b, the determination of severe tolerance provides a
reduction in the variability after shipping to market. However, this approach some-
times increases cost (see Taguchi 1993). In the Taguchi method, this approach is
called Tolerance design.

Approach C is an adaptive specification. A typical example is that a specification
is adaptively determined according to themarket. For example, a vehicle has a special
specification for a cold location. In this case, it is essential to know in the early stage
of product design which specification can be useful for the adaptation.

Like the variability in market satisfaction, Approach A is also an undesirable
approach in this case. A typical action is recall. Recalls are usually very expensive.

Lastly, we discuss the variability before shipping to market. The activity which
greatly contributes to reducing this variability is Statistical Process Control (SPC).
The activities lifecycle of SPC are comprised of the following four stages, mass pro-
duction preparation, pilot mass production, early-stage mass production, and routine
mass production. The four approaches must be utilized in the right place at the right
time in these four stages to reduce this variability.

The main mission in the mass production preparation is determining the optimal
conditions of each machine to assure the highest machine performance. In this stage,
Approach D is applied because some noise factors in the stage of mass roduction are
assumed. The engineers hope that this stage of the SPC lifecycle leads to the stage of
routine mass production as soon as possible. In this sense, Approach D is required in
this stage. In the stage of pilot mass production, the production line is formed and the
elements in the production line are standardized. In this stage, the short time process
capability is assured.
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Fig. 9 Relationship among four approaches to reduce variabilities

ApproachB is compulsory in the early-stagemass production because the variabil-
ity is increasing due to many noise factors related to time in this stage, for example,
the variability among the material lots and the deterioration of parts. That is so-called
“kaizen activity”. Action is taken against the root cause and the related standards are
revised. However, there is a case where action cannot be taken against the root cause
even if the cause is clear. In such a case, Approach C is effective in a sense of making
up for Approach B.

Approach A also is included as the standards to reduce the variability. As men-
tioned in Sect. 4.2, in Approach A no action is taken against the cause; therefore,
Approach A is effective as the action of spillage prevention.

From the discussion above, in the case of reduction of the variability before
shipping to market, the relationship among the four approaches is shown in Fig. 9.
Figure9 shows activity steps in the SPC lifecycle for reducing this variability. At
first, a sufficient implementation of Approach D in the stage of mass production
preparation is needed to shift more quickly to the routine mass production stage.
Next, Approach B or Approach C is implemented for process improvement. As a
last resort, Approach A plays a role in spill prevention.

Finally, we suggest not only the product manufacturing department but also the
product design department is responsible for reducing the variability before shipping
to market. The product manufacturing department is a kind of customer for the
product design department. As mentioned in Sect. 2, the design department should
provide informationwith consideration of the ease ofwork inmanufacturing.Without
the collaboration of both departments, the reduction of the variability cannot be
realized.



Quality Control Activities Are a Challenge for Reducing Variability 389

Fig. 10 Advancement of Approach C

6 Further Discussions and Conclusive Remarks

It is well known that production outcome has three values, that is, Quality, Cost, and
Delivery. They are so-called “QCD”. However, Q has a quite different character from
C and D. The values of C and D are decided before shipping to market; on the other
hand, the value of Q is decided after shipping to market. The customers evaluate Q
after their purchase. But this does not mean that the variability before shipping to
market is not very important. Figure3 says that it is necessary to reduce the variability
before shipping to market in order to reduce the variability after shipping to market.

The prevention approach and the recurrence prevention (Approach D and
Approach B) have been conventionally emphasized in Quality Control. Of course,
that should be done from now on, also. In addition to that, the adaptive prevention,
that is, Approach C may be regarded as more important in the IoT era. As mentioned
earlier, the real-time observation of the cause at high precision and the adjustment
with high precision are required so that ApproachC functions effectively.Muchmore
advancement is possible in Approach C. If the real-time observation of the cause and
the adjustment can be more precise using advanced IT technology, the variability
can be drastically reduced. The mechanism of advancement of Approach C is shown
in Fig. 10, which is an extension to a more precise mechanism than the fundamental
one of Approach C shown in Fig. 5.

In this paper, the quality control activities have been discussed as a challenge for
reducing the variability in the value chain. As a result, the scheme, which consists
of the three kinds of variability and the four approaches to reduce them, is only
one viewpoint of the quality control activities; however, the scheme can not only
systematize the quality control activities in the value chain of production but also
can lead to better management of the manufacturing process.

Acknowledgements The author would like to thank Prof. Steiner of the University of Waterloo
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Is the Benford Law Useful for Data
Quality Assessment?

Wolfgang Kössler, Hans-J. Lenz, and Xing D. Wang

Abstract Data quality and data fraud are of increasing concern in the digital world.
Benford’s Law is used worldwide for detecting non-conformance or data fraud of
numerical data. It says that the first non-zero digit D1, of a data item from a universe,
is not uniformly distributed. The shape is roughly logarithmically decaying starting
with P(D1 = 1) ∼= 0.3. It is self-evident that Benford’s Law should not be applied
for detecting manipulated or faked data before having examined the goodness of
fit of the probability model while the business process is free of manipulations, i.e.
‘under control’. In this paper, we are concerned with the goodness-of-fit phase, not
with fraud detection itself. We selected five empirical numerical data sets of various
sample sizes being publicly accessible as a kind of benchmark, and evaluated the
performance of three statistical tests. The tests include the chi-square goodness-of-fit
test, which is used in businesses as a standard test, the Kolmogorov–Smirnov test,
and the MAD test as originated by Nigrini (1992). We are analyzing further whether
the invariance properties of Benford’s Law might improve the tests or not.

Keywords Benford’s Law · Invariance properties · Goodness-of-fit tests · Data
quality · Data fraud · Data manipulation

1 Introduction

Benford’s Law describes an astonishing phenomenon. In many data sets, the first
non-zero digit D1 is not uniformly distributed but obeys a logarithmic law, P(D1 =
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d) = log(1 + 1
d )1 for all d ∈ {1, . . . , 9}, cf. Newcomb (1881), Benford (1938). It is

used worldwide for assessing the data quality or detecting data fraud of business
and economic data. Auditors of big companies use Benford’s Law for detecting data
manipulation mostly by applying the χ2-goodness-of-fit test. No doubt, not every
empirical or artificial data set follows Benford’s Law. The question arises as to which
conditions data sets follow that law, and how this can be tested in practice.

More than 50 years after Newcomb’s detection (Pinkham 1961) proved that scale
invariance leads to Benford’s Law, Nigrini (1992) as well as Berger and Hill (2011)
proved further the base and significand-sum invariance. The latter means that the sum
of all the 1-significands is equal to each sum of the significands of the remaining
digits 2, ..., 9.

In this paper, the authors use five publicly available data sets of various fixed-
sample sizes as a benchmark for testing whether they are Benford distributed or
not. Observational data has the advantage of a given sample size, n, opposite to
experimental data where n is to be planned. The χ2 test is used as a yardstick, the
Kolmogorov–Smirnov test and the MAD test, a test based on the mean absolute
deviation, are further applied. The multiple test problem does not arise in our study,
because the χ2 test and the other two tests used behave in conformance if the critical
values of the KS and MAD tests were revised. While the scale and base invariance
properties don’t contribute too much to improve the test power, there is evidence
that the patterns of the significant-sums can help to reduce the error of applying the
Benford hypothesis in practice when it is false.

2 Mathematical Basics of Benford’s Law

Benford’s Law makes claims about the leading digits of a number regardless of
its scale. Hence, we begin by introducing the formal notation of significands and
significant digits.

Definition 1 (Significant Digits and the significand, Berger and Hill 2015) The first
significant digit D1(x) = d of x ∈ R is given by the unique integer d ∈ {1, 2, . . . , 9}
where 10kd ≤ |x | < 10k(d + 1) with an integer k ∈ R.

The mth significant digit Dm(x) = d with m ≥ 2 can recursively be determined
by

10k
(∑m−1

i=1 Di (x)10m−i + d
)

≤ |x | < 10k
(∑m−1

i=1 Di (x)10m−i + d + 1
)

where d ∈ {0, 1, . . . , 9} and k ∈ Z. The significand S(x) of x ∈ R is defined as
S(x) = t with t ∈ [1, 10) where |x | = 10k t if x �= 0, else S(x) := 0.

Examples are D1(e) = 2, D2(π) = 1, D1(88) = 8, S( 12 ) = 5, S(108) = 1, and
S(67594) = 6, 7594. Next, we can state when the first significant digit and the sig-
nificand of a random variable X are distributed according to Benford’s Law.

1log(x) = log10(x).
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Table 1 Benfords’ Law of the first significant digit D1

d 1 2 3 4 5 6 7 8 9

P(d)% 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

Definition 2 (Benford’s Law) The probability of the first significant digit d ∈
{1, 2, 3...9} is P(D1(X) = d) = log(1 + d−1).

In Table1, we give the distribution of the leading digit D1. The corresponding
statement for significands reads as follows:

P(S(X) ≤ t) = log t for all t ∈ [1, 10). (1)

In the following, we say that a random variable X is Benford iff (1) is satisfied. Such
variables own some interesting properties. We want to give a brief overview here,
and in the upcoming sections we will use them for checking the Benford hypothesis.
For further explanations and proofs, we refer to the literature (Berger and Hill 2011;
Pinkham 1961; Nigrini 1992).

A first characterization of Benford’s Law involves the uniform distribution
between 0 and 1.

Theorem 1 A random variable X is Benford if and only if log |X | mod 1 is uni-
formly distributed between 0 and 1.

Applying this theorem and reminding that a random variable X is uniformly
distributedmod 1 if and only if kX + b is uniformly distributedmod 1 for all integers
k �= 1 and all real numbers b, we can derive that the random variables αY k for a given
Benford random variable Y and for all reals α, integers k and α · k �= 0 are Benford
too. Thismotivates both the scale invariance aswell as the base invariance property of
Benford random variables. The scale invariance implies that multiplying a Benford
random variable with a scalar is still Benford and the base invariance implies that
the Benford property is kept under exponentiation as well.

Theorem 2 (Scale Invariance Pinkham 1961) A random variable X is Benford if
and only if X has scale-invariant significant digits, i.e. for all α > 0, t ∈ [1, 10)

P(S(αX) < t) = P(S(X) < t).

Theorem 3 (Base Invariance Nigrini 1992; Berger and Hill 2011) A random vari-
able X is Benford if and only if X has base-invariant significant digits, i.e. for all
m ∈ N, t ∈ [1, 10)

P(S(Xm) < t) = P(S(X) < t).

Nigrini (1992) and Berger and Hill (2011) showed another property of a Benford
random variable, the sum invariance. Summing all significands with the first digit 1
yields the same sum as summing all significands with the first digit 2, 3, or 4, etc.
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Theorem 4 (Sum Invariance Nigrini 1992; Allart 1997) A random variable X is
Benford if and only if X has sum-invariant significant digits, i.e. the sum of all
significands, Vd = ∑n

j=1,D1=d S(X j ), is the same for all d = 1, . . . , 9.

In Sect. 5, we shall make use of these properties. The scale and base invariance, X
is Benford iff aXb is Benford (a �= 0), b ∈ Z+, and the sum invariance, E0(Vd) =
n/ ln10 =: V0 for all d = 1, . . . , 9, where Vd = ∑n

j=1,D1=d S(X j ), are applied to
detecting deviations between the empirical and Benford distributions.

3 Statistical Goodness-of-Fit Tests

The χ2 test is the most popular goodness-of-fit test and was originated by Pearson
(1900). It is assumed that the sample (x1, x2, . . . , xn) of size n is of the simple random
type, i.e. X1, X2, . . . , Xn are randomvariables. Inmost practical cases in industry and
business, n = ALL is true. This means that no proper random sampling is executed,
and all the data of a given period is captured. However, conceiving annual book-
keeping figures coming from the super-population of all past and present annual data
sets, the necessary independence assumption can be justified. We are testing
H0 : X is Benford against H1 : X is not Benford.
The alternative hypothesis H1 reveals the first weakness of the χ2-goodness-of-fit
test. It is unspecified as it includes all alternative probability distributions different
from Benford’s Law with domain {1, 2, . . . , 9}. The χ2 test statistic measures the
relative distance between the relative frequencies n j/n and the probabilities p j =
P(D1 = d j ) for all j = 1, 2, . . . , 9 under Benford’s Law, and is defined by

χ2 = n
9∑
j=1

(n j/n − p j )
2

p j
=

9∑
j=1

(n j − np j )
2

np j
. (2)

The χ2 test rejects the test hypothesis H0 if χ2 > χ2
1−α,8. The significance level α

is usually set equal to 0.01, 0.05 or 0.1 when no prior knowledge about the util-
ity or probability related to the application area is available. Note that the sam-
ple (x1, x2, . . . , xn) itself does not enter into formula (2), and the nine frequencies
n1, n2, . . . , n9 are used as sufficient statistics instead. In the era of Big Data, the sam-
ple size may become very large, for instance, larger than n ∼= 105. This implies that
the χ2 test rejects the null hypothesis already for very small, perhaps purely random
deviations from the logarithmic law, cf. Definition 1. In the section on performance
analysis of the three tests, we shall find this effect later. Göb (2007) showed that
the power function of the test given α = 0.01 has steep ascents near H0 for a dis-
torted alternative of the Benford distribution, i.e. Pq(D1 = d) =log(qd−5(1 + 1/d)

for d = 1, 2, . . . , 9, and q ∈ [0.98, 1.05]. This implies that the test hypothesis is
almost always rejected for very large sample sizes even if the deviation from H0 ‘is
small’. This effect is called the ‘Excess power problem’, cf. Nigrini (2000). Conse-
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Table 2 Critical values of the χ2 and the KS test

χ2 Kolmogorov–Smirnov

α c1−α,8
Pearson (1900)

d1−α

Miller (1956)
d1−α

Morrow (2014)

0.01 20.09 1.628 1.420

0.05 15.51 1.358 1.148

0.10 13.36 1.224 1.012

quently, he recommends not to use the test if n > 1000, (Nigrini 2012). Furthermore,
the χ2 test is an approximate test, and a necessary condition is that the sample size
is ‘sufficiently large’, i.e. np j > 5 for all j . The critical values c1−α,8 of the χ2 test
are tabulated in the second column of Table 2.

An alternative goodness-of-fit test is the Kolmogorov–Smirnov (KS) test, cf. Kol-
mogorov (1933), Smirnov (1948), and Darling (1957). Its idea is to compare the
empirical distribution Fn(x)with a fully specified theoretical, continuous one, F0(x).
In our case, F0 is the Benford distribution which is, of course, a discrete one. There-
fore the critical region of the test has to be adapted. While the χ2 test statistic is the
sum of all single deviations as a distance between Fn and F0, the KS test uses the
supremum norm

dmax = supx∈R|Fn(x) − F0(x)|. (3)

The critical values of the KS test were completely tabulated by Miller (1956) for
continuous distributions. Morrow (2014) computed appropriate tighter bounds by
MC simulation of the distribution given in Definition 1. The KS test rejects the H0

hypothesis, if
√
n dmax > d1−α for all sample sizes n > 40; see columns at the right

in Table2.
Finally, we include in our test set the MAD test as originated by Nigrini (2012).

It is based on the mean absolute deviation between the relative frequencies and the
Benford probabilities.

MAD =
9∑
j=1

|n j/n − p j |
9

. (4)

Originally, this was not a statistical test in its proper sense with acceptance and
rejection domains. Nigrini (2012) only gave the linguistic terms good, acceptable,
weak acceptable, and no conformance. Therefore we simulated (simulation size N
= 10000) the critical values of the MAD statistic for all five data sets and α ∈
{0.01, 0.05, 0.10}; see Table3.



396 W. Kössler et al.

Table 3 Critical values of the MAD test for sample size n and significance level α

n α = 0.1 α = 0.05 α = 0.01

197 0.0227 0.0248 0.0288

601 0.0132 0.0144 0.0167

1456 0.0084 0.0091 0.0105

3998 0.0051 0.0055 0.0064

7022 0.0038 0.0042 0.0048

4 Our Benchmark Data

In this section, we describe the benchmark data set used for our performance eval-
uation based on the three tests mentioned in Sect. 3. The relative frequencies ni/n
for i = 1, 2 . . . , 9 represent the real data, and the meta data give some background
information about the domain of concern. The values of the first significant digit, D1,
the Benford probabilities, and the relative frequencies of the five data sets together
with their sample size n are displayed in Table4.

Data set #1:News (n = 601)
The collection includes five numeric files from publicly accessible sources. The

data set was extracted from the Internet on Dec 27, 2017, accessing German online
websites like Die Zeit, WirtschaftsWoche, and Sportschau. The relative frequencies
of this data set are displayed in line 3 of Table 4. The numbers represent a mixture
of topics from politics, economics, sport, and content. Berger and Hill (2011) argue
that such mixtures are sufficient for Benford’s Law becoming true. We shall check
this conjecture in the subsequent Sect. 5.

Data set #2: Financial Report of Deutsche Bank (n = 1456)
This medium-sized or even ‘large’ data set in Nigrini’s sense corresponds to the
quarterly financial reports of Deutsche Bank, Germany, and was retrieved from the
German Bundesanzeiger in September 2017.2 The relative frequencies are shown in
line 4 of Table4. The bank is the largest one in Germany, and is internationally active

Table 4 Benford probabilities and frequencies of all five data sets

Data set 1 2 3 4 5 6 7 8 9 n

Benford 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

News 0.261 0.171 0.143 0.113 0.113 0.058 0.050 0.048 0.042 601

Bank 0.273 0.166 0.134 0.129 0.080 0.078 0.041 0.049 0.049 1456

MBB SE 0.305 0.213 0.102 0.076 0.086 0.086 0.046 0.041 0.046 197

Reddit 0.493 0.191 0.109 0.069 0.043 0.029 0.025 0.022 0.019 7022

Population 0.526 0.194 0.088 0.062 0.041 0.034 0.019 0.019 0.017 3998

2http://www.bundesanzeiger.de/ebanzwww/wexsservlet.

http://www.bundesanzeiger.de/ebanzwww/wexsservlet
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in fields like banking and other financial services for private, commercial, corporate
clients, and start-ups. Other fields of business activities are financing, brokerage,
digital banking, and the management of investments, deposits, loans, and mortgages.
The company is a prime standard of Deutsche Börse, Frankfurt.

Data set #3: Financial Report of MBB SE (n = 197)
MBB stands for Messerschmitt-Bölkow-Blohm. The relative frequencies are shown
in line 5 of Table4. The data set is part of the quarterly financial report of MBB
SE Berlin. The firm is a medium-sized family business, and has worldwide known
technological and engineering expertise. Sales in the year 2018 were about 500 Mio
Euro. The data set is very small, and was retrieved online in Sep 2017 from the
Deutsche Bundesanzeiger2.

Data set #4: No. of subscribers of Reddit (n = 7022)
The relative frequencies are displayed in line 6 of Table4. The website Reddit is a
US online platform of news for all topics like sport, politics (world news), science,
movies, and includes, of course, ads. The platform is divided into subreddits devoted
to special topics like sport,movies, etc.AltogetherReddit has about 10.000 subreddits
with each up to 20 Mio users, the data was sampled in Dec 2017,3 and includes
the 7022 most popular subreddits, i.e. the subreddits with the largest amount of
subscribers, ranging 21 million–10,000 at that time. It is the largest data set we
analyzed.

Data set #5: Population in large cities (n = 3998)
The final data set of the benchmark consists of the number of inhabitants in a mixture
of citiesworldwide larger than 100.000 people. The relative frequencies are displayed
in the last line of Table4. The figures correspond to the year 2016. The data set was
downloaded and integrated, accessing the Internet servers UNStat4 and Worldpopu-
lation Report.5 As the data is coming from two sources representing many countries,
one may expect Benford’ Law to hold, according to the conjecture of Berger and
Hill (2015).

5 Performance Analysis

In the following, we apply the three tests of Sect. 3 to the Benchmark data discussed
above. The test significance level is uniformly fixed to α = 0.01. In each study, we
start by displaying the empirical and the Benford distribution, present the results of
the three goodness-of-fit tests,6 and close by applying the three invariance properties.

Let us consider the data set #1: News (n = 601); see Table4. The empirical and
the Bendford distribution suggest a reasonable good fit; see Fig. 1. This evidence is

3http://redditmetrics.com/top.
4https://unstats.un.org/unsd/demographic-social/products/dyb/documents/dyb2016//table08.pdf.
5http://worldpopulationreview.com/countries/china-population/cities/.
6Note that all c1−α of the KS test are chosen according to Morrow (2014).

http://redditmetrics.com/top
https://unstats.un.org/unsd/demographic-social/products/dyb/documents/dyb2016//table08.pdf
http://worldpopulationreview.com/countries/china-population/cities/


398 W. Kössler et al.

Fig. 1 Results of #1:News (n = 601)

confirmed by the χ2, Kolmogorov–Smirnov, and MAD tests tabulated in Table 5.
All the three tests are signaling ‘accept’.

In Sect. 2, three important characteristics of Benford’s Law were presented, i.e.
the scale, base, and the sum invariance. The results of applying them to the News
data are given in Table6.

The frequency distributions of the first digit D1 related to Y = aXb for a, b ∈
{2, 7} deviate from the Benford distribution in a similar way as the frequencies of D1

corresponding to X do. This evidence supports the Benford hypothesis. Furthermore,
the sumsof the significands

∑n
j=1,D1=d S(x j )have an arithmeticmean v̄ = 250which

is similar to the expected value E0(Vd) = V0 = 261.We close by acceptingBenford’s
Law being true for News. This finding is in accordance with the conjecture of Berger
and Hill (2011) that mixed data lead to Benford’s Law.

Table 5 Test results for #1:News, α = 0.01√
ndmax 1.103 < 1.42 Accept

χ2 16.9 < 20.09 Accept

MAD 0.015 < 0.017 Accept
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Table 6 Transformations Y = aXb and invariant sums of data set #1:News

d 1 2 3 4 5 6 7 8 9 Sum

Relative
frequencies

X 0.261 0.171 0.143 0.113 0.113 0.058 0.050 0.048 0.042 1

2X 0.311 0.173 0.088 0.113 0.058 0.103 0.111 0.017 0.025 1

7X 0.263 0.228 0.140 0.088 0.070 0.047 0.113 0.022 0.030 1

X2 0.316 0.195 0.082 0.135 0.043 0.075 0.027 0.038 0.090 1

X7 0.416 0.203 0.058 0.088 0.025 0.075 0.078 0.045 0.012 1

Benford
probability

X 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1

Invariant sums 205 234 280 284 352 217 218 236 232 n/ ln10 ≈
261

Fig. 2 Results of #2:Bank DB (n = 1456)

Next, we turn to the bank data set #2 : Bank (n = 1456), the quarterly financial
report of Deutsche Bank; see Table4. On the first glimpse, the frequencies ni/n and
probabilities pi seem to fit well, especially, because the deviations for d = 1 and
d = 3 are smaller than those of the data set News (Fig. 2).

However, the χ2, KS, and MAD tests lead to a rejection of H0, cf. Table7. Notice
the increased value of the test statistic, χ2 = 31.72, compared with its value of data
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Table 7 Test results for #2:Bank DB, α = 0.01√
ndmax 1.46>1.42 Reject

χ2 31.72>20.09 Reject

MAD 0.013>0.011 Reject

Table 8 Transformations Y = aXb and invariant sums of data set #2:Bank DB

d 1 2 3 4 5 6 7 8 9 Sum

Relative
frequencies

X 0.273 0.166 0.134 0.129 0.080 0.078 0.041 0.049 0.049 1

2X 0.298 0.163 0.109 0.096 0.070 0.071 0.070 0.071 0.051 1

7X 0.271 0.190 0.154 0.103 0.066 0.066 0.064 0.040 0.046 1

X2 0.322 0.166 0.121 0.128 0.045 0.058 0.052 0.052 0.057 1

X7 0.337 0.191 0.096 0.082 0.073 0.084 0.060 0.041 0.036 1

Benford
probability

X 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1

Invariant sums 562 582 676 832 638 736 449 600 681 n/ ln10 ≈
632

set #1:News, and observe sample size n = 1456 > 1000, too. Further information
about theBank data is gained by applying the invariance characteristics, especially by
comparing the significand sums with their expected value. Table8 shows the details.

The relative frequency distributions of X and aXb resemble each other, while the
significand sums have evidently large deviations from the expected value, E0(Vd) =
V0 = 632, and around theirmean, v̄ = 640.Therefore, the sum invariance assumption
seems doubtful, and keeping the test results in mind we classify the data Bank as
‘non-Benford’.

The third data set, #3: Financial report MBB SE, is depicted in Table4. It is a
small data set (n = 197<1000). Comparing the plots of the relative frequencies and
Benford probabilities, our first vote is to accept the Benford hypothesis despite the
frequencies nd/n, d = 2, 3; see Fig. 3.All three tests confirmour intuitive perception,
cf. Table9.

Table10 gives evidence that the original data and the transformed data, especially,
for 2X and X7, conform toBenford’sLaw.Furthermore, the invariant sumshave small
dispersion around the mean v̄ = 86, which is equal to the expected value V0 = 86.
Therefore, we classify data setMBB SE as obeying Benford’s Law.

Data set #4: Reddit is the largest one, n = 7022, and is tabulated in Table4. The
frequencies clearly deviate from the related Benford probabilities; see Fig. 4.

This evidence is supported by the three goodness-of-fit tests in Table11which uni-
formlyflag ‘reject’H0.Observe again the effect of a large sample size on the excessive
value of the χ2 statistic.Moreover, the test statistic of the KS test,

√
ndmax = 17.347,

is influenced, too.
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Fig. 3 Results of #3:MBB, (n = 197)

Table 9 Test results for #3:MBB, α = 0.01√
ndmax 0.575<1.42 Accept

χ2 5.46<20.09 Accept

MAD 0.015<0.029 Accept

Next,we examinewhether or not this data set conforms to the invariance properties
and to the sum invariance characteristic. The results are presented in Table12. We
observe large deviations of the relative frequencies from Benford’s probabilities for
Y = 2X , and of the invariant sums from their expected value, V0 ≈ 3050, and the
mean, v̄ = 2205, too. Especially, the sums of digits, vd , d = 1, 9, are quite far from
their expected value. We conclude that the data set Reddit is not Benford.

Finally, we analyze the data set #5: Population, tabulated in Table4. It consists
of n = 3998 records. As it is a mixed data set, we may assume that the Benford
hypothesis becomes true according to Berger and Hill (2011).

However, the large deviationbetween the relative frequency,n1/n, andprobability,
p1, evident from Fig. 5, causes the first doubt. This is confirmed when applying the
three tests, cf. Table13. They deliver the conforming result ‘reject’. Evidently, the
‘large’ sample size, n = 3998, increases again the values of

√
ndmax and χ2.



402 W. Kössler et al.

Table 10 Transformations Y = aXb and invariant sums of data set #3:MBB SE
d 1 2 3 4 5 6 7 8 9 Sum

Relative
frequencies

X 0.305 0.213 0.102 0.076 0.086 0.086 0.046 0.041 0.046 1

2X 0.305 0.188 0.117 0.112 0.102 0.020 0.081 0.003 0.046 1

7X 0.345 0.132 0.091 0.147 0.066 0.061 0.046 0.061 0.051 1

X2 0.254 0.183 0.147 0.147 0.056 0.076 0.056 0.051 0.030 1

X7 0.325 0.178 0.117 0.051 0.076 0.076 0.076 0.003 0.071 1

Benford
probability

X 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1

Invariant sums 86 101 72 68 97 111 67 68 86 n/ ln10 ≈
86

Fig. 4 Results of #4:Reddit (n = 7022)

Table 11 Test results for #4:Reddit, α = 0.01√
ndmax 17.347>1.42 Reject

χ2 1567.88>20.09 Reject

MAD 0.046>0.0053 Reject
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Table 12 Transformations Y = aXb and invariant sums of data set #4:Reddit
d 1 2 3 4 5 6 7 8 9 Sum

Relative frequen-
cies

X 0.493 0.191 0.109 0.069 0.043 0.029 0.025 0.022 0.019 1

2X 0.138 0.305 0.188 0.114 0.078 0.063 0.047 0.036 0.033 1

7X 0.392 0.152 0.078 0.045 0.036 0.025 0.104 0.094 0.074 1

X2 0.387 0.189 0.127 0.081 0.062 0.050 0.038 0.034 0.032 1

X7 0.321 0.185 0.120 0.093 0.074 0.067 0.056 0.046 0.038 1

Benford
probability

X 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1

Invariant sums 4921 3270 2646 2167 1669 1320 1332 1281 1236 n/ ln10 ≈
3050

Fig. 5 Results of #5:Population (n = 3998)

Table 13 Test results for #5: Population, α = 0.01√
ndmax 15.365>1.42 Reject

χ2 1168.33>20.09 Reject

MAD 0.054>0.0064 Reject
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Table 14 Transformations Y = aXb and invariant sums of data set #5:Population
d 1 2 3 4 5 6 7 8 9 Sum

Relative
frequencies

X 0.526 0.194 0.088 0.062 0.041 0.034 0.019 0.019 0.017 1

2X 0.130 0.352 0.174 0.117 0.077 0.049 0.039 0.034 0.028 1

7X 0.383 0.130 0.073 0.046 0.027 0.026 0.132 0.107 0.076 1

X2 0.412 0.191 0.110 0.085 0.058 0.045 0.040 0.033 0.027 1

X7 0.334 0.183 0.126 0.095 0.074 0.056 0.050 0.039 0.044 1

Benford
probability

X 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1

Invariant sums 2907 1887 1218 1104 901 866 574 654 649 n/ ln10 ≈
1736

In conformance with the statistical goodness-of-fit tests, the transformations
Y = 2X and Y = X2 as well as the sum invariance characteristics support the rejec-
tion of the Benford hypothesis too. Observe that the invariant sums have large devi-
ations around their mean v̄ = 1196. Furthermore, most of the invariant sums and
the arithmetic mean deviate strongly from the expected value E0(Vd) = 1736. We
conclude that the data set Population is not Benford distributed (Table14).

6 Summary

The test results in Sect. 5 suggest that the χ2 test, and, of course, the other two
goodness-of-fit tests should not automatically be applied. We deduce that its depen-
dency upon the sample size n has a very strong impact on the χ2 statistic and leads
to an increased test power for sample size n > 1000 as noted by Nigrini (2012) and
exemplified by Göb (2007).

We advocate for preferring the Kolmogorov–Smirnov test, cf. (3), but using the
tighter critical values as compiled by Morrow (2014); see Table2. The large data
sets, i.e. Bank, Reddit, and Population, give evidence that the KS test is sensitive to
large sample sizes if non-continuous distributions are analyzed.

TheMAD statistic, cf. (4), as proposed byNigrini (2000), should not be used in its
original form. It is not a statistical test in its proper sense. The boundaries correspond
to linguistic terms and cause vagueness of interpretation. If critical values for fixed
α-values are determined by the Monte Carlo simulation as done above, the MAD
test can be conceived as a test competitor.

The scale and base invariance properties gave only weak evidence of accept-
ing or rejecting Benford’s Law. The sum invariance, however, became helpful. It
seems worthwhile considering the invariant sums together with their expected value,
E0(Vd), and the corresponding arithmetic mean, v̄.

There remains one point of interest. The data sets News, Bank, andMBB may be
conceived visually belonging to the same cluster having a ‘small’ distance between
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the frequency and probability distributions of D1. However, Bank data is a kind of
outlier opposite to the other two data sets because our three tests uniformly lead
to a rejection of the Benford Law. This means purity of this cluster of about 66%
only. The remaining data sets, Reddits and Population, form a cluster with identical
(negative) test results and similar visual deviance of frequencies and probabilities.
This implies purity of 100%.

QQ-plots based on F0 and Fn may be an option for further exploratory visualiza-
tion of data assumed to be obeying Benford’s Law.
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