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Abstract. Creating high-quality 3D human body models by freehand
sketching is challenging because of the sparsity and ambiguity of hand-
drawn strokes. In this paper, we present a sketch-based modeling system
for human bodies using deep neural networks. Considering the large vari-
ety of human body shapes and poses, we adopt the widely-used paramet-
ric representation, SMPL, to produce high-quality models that are com-
patible with many further applications, such as telepresence, game pro-
duction, and so on. However, precisely mapping hand-drawn sketches to
the SMPL parameters is non-trivial due to the non-linearity and depen-
dency between articulated body parts. In order to solve the huge ambi-
guity in mapping sketches onto the manifold of human bodies, we intro-
duce the skeleton as the intermediate representation. Our skeleton-aware
modeling network first interprets sparse joints from coarse sketches and
then predicts the SMPL parameters based on joint-wise features. This
skeleton-aware intermediate representation effectively reduces the ambi-
guity and complexity between the two high-dimensional spaces. Based on
our light-weight interpretation network, our system supports interactive
creation and editing of 3D human body models by freehand sketching.

Keywords: Freehand sketch · Human body · 3D modeling · Skeleton
joint · SMPL

1 Introduction

The human body is one of the commonest subjects in virtual reality, telepres-
ence, animation production, etc. Many studies have been conducted in order
to produce high-quality meshes for human bodies in recent years. However, 3D
modeling is a tedious job since most interaction systems are based on 2D dis-
plays. Sketching, which is a natural and flexible tool to depict desired shapes,
especially at the early stage of a design process, has been attracting a great deal
of research works for easy 3D modeling [14,21,24]. In this paper, we propose a
powerful sketch-based system for high-quality 3D modeling of human bodies.

Creating high-quality body models is non-trivial because of the non-rigidness
of human bodies and articulation between body parts. A positive thing is that
human bodies have a uniform structure with joint articulations. Many parametric
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Fig. 1. Our sketch-based body modeling system allows common users to create high-
quality 3D body models in diverse shapes and poses easily from hand-drawn sketches.

representations have been proposed to restrict the complicated body models to
a manifold [13,15]. Taking advantage of deep neural networks (DNNs), a large
number of techniques have been developed to reconstruct human bodies from
2D images [10,12,25–28].

However, hand-drawn sketches show different characteristics compared to
natural images. The inevitable distortions in sketch lead to much more ambigu-
ity in the ill-posed problem of 3D interpretation from a single view image. More-
over, hand-drawn sketches are typically sparse and cannot carry as rich texture
information as real images which makes sketch-based modeling become more
challenging. To address the ambiguity in mapping coarse and sparse sketches
to high-quality body meshes, we propose a skeleton-aware interpretation neu-
ral network, taking advantage of both non-parametric skeleton construction and
parametric regression for more natural-looking meshes. In the non-parametric
interpretation stage, we employ a 2D CNN to encode the input sketch into a
high-dimensional vector and then predict the 3D positions of joints on the body
skeleton. In the parametric interpretation stage, we estimate the body shape and
pose parameters from the 2D sketch features and the 3D joints, taking advan-
tage of the SMPL [13] representation in producing high-quality meshes. The
disjunctive network branches for pose and shape respectively along with the
skeleton-first and mesh-second interpretation architecture efficiently facilitate
the quality and accuracy of sketch-based body modeling.

While existing supervised 3D body reconstruction required paired 2D input
and 3D models, we build a large-scale database that contains pairs of synthe-
sized sketches and 3D models. Our proposed method achieves the highest recon-
struction accuracy compared with state-of-the-art image-based reconstruction
approaches. Furthermore, with the proposed light-weight deep neural network,
our sketch-based body modeling system supports interactive creation and editing
of high-quality body models of diverse shapes and poses, as Fig. 1 shows.

2 Related Work

Sketch-Based Content Creation. Sketch-based content creation is an essen-
tial problem in multimedia and human-computer interaction. Traditional meth-
ods make 3D interpretation from line drawings based on reasoning geomet-
ric constraints, such as convexity, parallelism, orthogonality to produce 3D
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Fig. 2. Overview of our approach with the skeleton as an intermediate representa-
tion for model generation. A skeleton-aware representation is introduced before pose
parameters regression.

shapes [16,24]. Recently, deep learning has significantly promoted the perfor-
mance of sketch-based systems, such as sketch-based 3D shape retrieval [20],
image synthesis, and editing [11]. Using a volumetric representation, [8] designs
two networks to respectively predict a start model from the first view sketches
and update the model according to the drawn strokes in other views. [14] pre-
dicts depth and normal maps under multiple views and fuses them to get a 3D
mesh. An unsupervised method is proposed by searching similar 3D models with
the input sketch and integrating them to generate the final shape [21]. Due to
the limited capability of shape representation, the generated shapes by these
approaches are very rough in low resolutions. Moreover, precise control of the
3D shapes with hand-drawn sketches is not supported.

Object Reconstruction from Single-View Image. With the advance of
large-scale 3D shape datasets, DNN-based approaches have made great progress
in object reconstruction from single images [1,3,4,6,22,23]. [1] predicts an occu-
pancy grid from images and incrementally fusing the information of multiple
views through a 3D recurrent reconstruction network. In [3], by approximating
the features after image encoder and voxel encoder, a 3D CNN is used to decode
the feature into 3D shapes. Also, many efforts have been devoted to mesh gener-
ation from single-view images [4,22]. Starting from a template mesh, they inter-
pret the vertex positions for the target surface through MLPs or graph-based
networks. A differentiable mesh sampling operator [23] is proposed to sample
point clouds on meshes and predict the vertex offsets for mesh deformation.
In comparison, we combine non-parametric joint regression with a parametric
representation to generate high-quality meshes for human bodies from sketches.

Human Body Reconstruction. Based on the unified structure of human
bodies, parametric representation is usually used in body modeling. Based on
Skinned Multi-Person Linear Model (SMPL) [13], many DNN-based techniques
extract global features from an image and directly regress the model parame-
ters [9,18,26–28]. However, a recent study [10] shows that direct estimation of
vertex positions outperforms parameter regression because of the highly non-
linear correlation between SMPL parameters and body shapes. They employ a
graph-CNN to regress vertex positions and attach a network for SMPL param-
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Fig. 3. A plain network (MLP-Vanilla) to regress SMPL parameters from sketches for
body mesh generation.

eter regression to improve the mesh quality. Except for global features that are
directly extracted from image, semantic part segmentation can also be involved
to help reconstruct the body models [17,19,26,27]. Besides single images, multi-
view images [12,25] or point clouds [7] can be other options to reconstruct body
models. However, different from natural images with rich texture information
or point clouds with accurate 3D information, hand-drawn sketches are much
more sparse and coarse without sufficient details and precision, making the body
modeling task more challenging.

3 Our Method

Hand-drawn sketches are typically coarse and only roughly depict body shapes
and poses, leaving details about fingers or expressions unexpressed. In order to
produce naturally-looking and high-quality meshes, we employ the paramet-
ric body representation, SMPL [13] to supplement shape details. Therefore,
the sketch-based modeling task becomes a regression task of predicting SMPL
parameters. The SMPL parameters consist of shape parameters β ∈ R

10 and
pose parameters θ for the rotations associated with Nj = 24 joints. Similar
to [10], we regress the 3 × 3 matrix representation for each joint rotation, i.e.
θ ∈ R

216, to avoid the challenge of regressing the quaternions in the axis-angle
representation.

When mapping sketches into SMPL parameters, a straightforward method is
to encode the input sketch image into a high-dimensional feature vector and then
regress the SMPL parameters from the encoded sketch feature, as Fig. 3 shows.
A Ks dimensional feature vector fsketch can be extracted from the input sketch
S using a CNN encoder. From the sketch feature fsketch, the shape parameters
β and the pose parameters θ are then separately regressed using MLPs.

However, due to the non-linearity and complicated dependency between the
pose parameters, it is non-trivial to find a direct mapping from the sketch feature
space to the SMPL parameter space. We bring the skeleton as an intermediate
expression, which unentangles the global pose and the significantly nonlinear
articulated rotations. Figure 2 shows the pipeline of our skeleton-aware model
generation from sketches.
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3.1 Intermediate Skeleton Construction

Although the rough sketch could not precisely describe local details of human
bodies, it effectively delivers posture information. A 3D skeleton can efficiently
describe the pose of a human body, while shape details such as fingers, facial
features are not considered in this stage. Based on the underlying common spar-
sity, the mapping from 2D sketches and 3D body skeletons is more effective to
interpret. We use the skeleton structure that is composed of Nj = 24 ordered
joints with fixed connections, as defined in [13]. In order to construct the 3D
body skeleton based on the input sketch, the 3D locations of the Nj joints can
be regressed using multi-layer perceptrons from the extracted sketch feature
fsketch, as shown in Fig. 4. By concatenating the Nj joints’ 3D coordinates, the
pose parameters θ can be regressed from the Nj × 3 vector using MLPs.

Fig. 4. MLP-Joint Network. With skeleton as an intermediate representation, we first
regress the positions of Nj joints on the skeleton with three MLPs and then regress
the SMPL pose parameters with another three MLPs.

3.2 Joint-Wise Pose Regression

Direct regression of the non-linear pose parameters from the joint positions
inevitably abandons information in the original sketch. On the other hand,
naively regression the pose parameters from the globally embedded sketch fea-
ture ignores the local articulation between joints. Since pose parameters repre-
sent the articulated rotation associated with the joints under a unified structure,
we propose an effective joint-wise pose regression strategy to regress the highly
non-linear rotations. First, we replace the global regression of joint positions with
deformation from a template skeleton. Second, we regress the pose parameters
from the embedded joint features rather than the joint positions. Figure 5 shows
the detailed architecture of our pose regression network.
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Fig. 5. Detailed architecture of our joint-wise pose regression in the Deform+JF net-
work. We first regress the local offset of each joint from the template skeleton. The
pose parameters are regressed from the last layer feature for each joint rather than the
deformed joint position using shared MLPs.

Skeleton Deformation. Different from general objects, despite the complex
shapes and high dimensional meshes, the human bodies have a unified structure,
so a template skeleton could efficiently embed the structure and all the pose of
human bodies could be concisely explained as the joints movement in skeleton
instead of the deformation of all the vertices in the mesh. We adopt a two-level
deformation network for skeleton construction. Each joint coordinate (x, y, z)
on the template skeleton is concatenated with the Ks dimensional global sketch
feature fsketch to go through a shared MLP to estimate (d1x, d1y, d1z) for the first
step deformation. Another deformation step is performed in a similar manner to
get joint-wise deformation (d2x, d2y, d2z). Adding the predicted joint offset to the
template skeleton, we get a deformed body skeleton.

Joint-Wise Pose Regression. Benefited from the shared MLP in the skeleton
deformation network, we further present joint-wise pose regression based on the
high-dimensional vector as joint features (the green vector in Fig. 5). In practice,
as all the joints will go through the same MLPs in the deformation stage, this
high dimensional representation contains sufficient information which not only
from spatial location but also from the original sketch. The joint feature is then
fed into another shared MLPs to predict the rotation matrix of each joint.

3.3 Loss

Based on the common pipeline with a skeleton as the intermediary, the above-
mentioned variants of our sketch-based body modeling network can all be trained
end-to-end. The loss function includes a vertex loss, SMPL parameter loss for the
final output, as well as a skeleton loss for the intermediate skeleton construction.

Vertex Loss. To measure the difference between the output body mesh and the
ground truth model, we apply a vertex loss Lvertex on the final output SMPL
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models. The vertex loss is defined as

Lvertex =
1

Nver

Nver∑

i=1

‖v̂i − vi‖1, (1)

where Nver = 6890 for the body meshes in SMPL representation. v̂i and vi

are the 3D coordinates of the i-th vertex in the ground-truth model and the
predicted model respectively.

Skeleton Loss. We use the L2 loss of the Nj ordered joints on the skeleton
to constrain the intermediate skeleton construction with the joint regressor or
skeleton deformation network.

Lskeleton =
1

Nj

Nj∑

i=1

‖p̂i − pi‖2, (2)

where p̂ is the ground truth location of each joint, and pi is the predicted joint
location.

SMPL Regression Loss. For the SMPL regressor, we use the L2 losses on the
SMPL parameters θ and β. The entire network is trained end-to-end with the
three loss items as:

Lmodel = Lvertex + Lskeleton + Lθ + λLβ , (3)

where λ = 0.1 to balance the parameter scales.

4 Experiments and Discussion

Our system is the first one that uses DNNs for sketch-based body modeling.
There is no existing public dataset for training DNNs and make a comprehensive
evaluation. In this section, we first introduce our sketch-model datasets. Then
we explain more implementation details and training settings. We conduct both
quantitative evaluation on multiple variants and qualitative test with freehand
sketching to demonstrate the effectiveness of our method.

4.1 Dataset

To evaluate our network, we build a dataset with paired sketches and 3D models.
The 3D models come from the large-scale dataset AMASS [15] which contains
a huge variety of body shapes and poses with fully rigged meshes. We select 25
subjects from a large subset BMLmovi in AMASS dataset to test our algorithm
for its large diversity of body shapes and poses. For each subject, we pick one
model every 50 frames. In total, we collect 7097 body models with varied shapes
and poses. For each subject, we randomly select 60% for training, 20% for vali-
dation, and 20% for the test. To generated paired sketch and model for training
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and quantitative evaluation, we render sketches for each body model using sug-
gestive contours [2] to imitate hand-drawn sketches. For each model, we render
a sketch-style image from one view. Figure 6 shows two examples of synthesized
sketches from 3D models and hand-drawn sketches by a non-expert user. We can
see that the synthesized sketch images look similar to hand-drawn sketches. By
rendering a large number of synthesized sketches, the cost of collecting sketch
and model pairs is significantly reduced and quantitative evaluation is allowed.
Our experiments demonstrate that freehand sketching is well supported in our
sketch-based body modeling system without performance degradation.

Fig. 6. Two examples of synthesized sketches (middle) from a 3D model (left) and
hand-drawn sketches (right).

4.2 Network Details and Training Settings

We use ResNet-34 [5] as our sketch encoder and set the sketch feature dimension
Ks = 1024 in our method. We introduce three variants of network to map the
sketch feature fsketch ∈ R

1024 into SMPL parameters β ∈ R
10 and θ ∈ R

216. The
first, called MLP-Vanilla, as shown in Fig. 3, consists MLP of (512, 256, 10) for
the shape regressor and (512, 512, 256, 216) for the pose regressor. The second,
call MLP-Joint, employs an MLP of (512, 256, 72) for the joint regressor and an
MLP of (256, 256, 216) for pose regressor as Fig. 4 shows. The third one is our
full model (named Deform+JF) involving skeleton deformation and joint-wise
features for skeleton construction and pose regression, as Fig. 5 shows. In the
skeleton deformation part, the two-level shared-MLP of (512, 256, 3) is used to
map the 3+1024 input to the 3D vertex offset for each joint. For pose regression,
we use the shared-MLP of (128, 64, 9) to regress the 9 elements of a rotation
matrix from the 256-D joint-wise feature for each joint.

The networks are trained end-to-end. Each network was trained for 400
epochs with a batch size of 32. Adam optimizer is used with β1 = 0.9, β2 = 0.999.
The learning rate is set as 3e-4 without learning rate decay.

4.3 Results and Discussion

Comparison with Leading Methods. In order to evaluate the effectiveness
of our method, we compare our method with two state-of-the-art reconstruction
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Table 1. Quantitative evaluation of body reconstruction performance (errors in mm)
on the test set. The number of network parameters and GFLOPs are also reported.

Method RE MPJPE Npara (M) GFLOPS

3DN [23] 119.06 95.19 151.77 190.58

CMR [10] 43.22 37.45 40.58 4.046

MLP-Vanilla 42.49 36.42 23.43 3.594

MLP-Joint 39.75 34.10 23.27 3.594

Deform+JF 38.09 32.38 23.82 3.625

techniques, training by replacing images with synthesized sketches. We select the
convolutional mesh regression (CMR) [10] for single-image human body recon-
struction and the 3DN model [23] which is a general modeling framework based
on mesh deformation. We follow their default training settings except remov-
ing the 2D projected joint loss in CMR since it’s non-trivial to estimate the
perspective projection matrix from hand-drawn sketches.

Two error metrics, the reconstruction error (RE) and the mean per joint
position error (MPJPE), are used to evaluate the performance of sketch-based
modeling. ‘RE’ is the mean Euclidean distance between corresponding vertexes
in the ground truth and predicted models. The ‘MPJPE’ reports the mean per
joint position error after aligning the root joint. Table 1 lists the reconstruction
performance of the three variants of our method and two SOTA methods. The
three variants of our network all outperform existing image-based methods when
trained for sketch-based body modeling. Taking advantage of the intermediate
skeleton representation, our full model effectively extracts features from sketches
and produces precise poses (32.38 mm of MPJPE) and shapes (38.09 mm of RE).
Moreover, three variants of our method only have about 23M parameters (about
half of CMR [10], 0.15 of 3DN [23]) and the least computational complexity.

Ablation Study. With regard to the three variants of our method, the MLP-
Vanilla version directly regresses the shape pose parameters from global features
extracted from the input sketch. As the existing image-based method may not
suitable for sparse sketches, we set the vanilla version as our baseline. Table 1
shows that this plain network is effective in mapping sparse sketches on the
parametric body space. It works slightly better than the CMR model. Bringing
our main concept of using the skeleton as the intermediate representation, our
MLP-Joint network reduces the reconstruction error 2.74 mm compared with
MLP-Vanilla. Furthermore, by introducing joint features into the pose regressor,
our Deform+JF network improves the modeling accuracy by 1.66 mm.

Qualitative Comparison. Figure 7 shows a group of 3D body models inter-
preted from synthesized sketches by different methods. As 3DN [23] does not use
any prior body structure, it has difficulty to regress a naturally-looking body
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Fig. 7. 3D Meshes generated from synthesized sketches using different methods. The
vertex errors are color-coded. From left to right: (a) input sketches; (b) ground truth; (c)
results of 3DN [23]; (d) deformation results of CMR [10]; (e) SMPL regression results of
CMR [10]; (f) results of MLP-Vanilla; (g) results of our MLP-Joint network; (h) results
of our Deform+JF network which regresses parameters from joint-wise features.

model in a huge space. As one of the state-of-the-art method of image-based
body reconstruction, CMR’s [10] dense deformation by graph convolutions for
regressing 3D locations of a large number of vertices rely on rich image features,
its performance degrades in sparse and rough sketches. In comparison, as shown
in the last three columns in Fig. 7, our method achieves high-quality body mod-
els from sketches. From Fig. 7 (f) to (h), the generated body models get better
as the reconstruction errors get lower, especially for the head and limbs. And
our Deform+JF network shows the most satisfactory visual results.

Skeleton Interpretation. We also compared the joint errors that are directly
regressed from the sketch features and after SMPL regression in our network.
Table 2 lists the errors of skeleton joints that directly regressed from sketch
features and those calculated from the output SMPL models. We can see that
our Deform+JF with SMPL could achieve the lowest MPJPE with 32.38 mm.
On the other hand, although without strict geometric constraints on joints in the
SMPL model, our MLP-Joint and Deform+JF’s skeleton regressor still get high-
quality skeletons, as shown in Fig. 8. Moreover, by introducing joint features, the
Deform+JF network not only obtains more precise final SMPL models but also
achieves better skeleton estimation accuracy (46.99 mm) than the MLP-Joint
network (62.49 mm), which proves the effectiveness of joint-wise features.
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Fig. 8. Reconstructed body skeletons from sketches using different methods. From left
to right: (a) input sketch; (b) ground truth; (c) regression result from MLP-Joint;
(d) skeleton from the output SMPL model by MLP-Joint; (e) regression result from
Deform+JF; (f) skeleton from the output SMPL model by Deform+JF.

Table 2. Comparison MPJPE (in mm) of skeletons generated by different ways.

Method MLP-Joint Deform+JF

Regressed SMPL Regressed SMPL

MPJPE 62.49 34.10 46.99 32.38

Fig. 9. Interactive editing by sketching. The user modifies some strokes as highlighted
to change body poses.

4.4 Body Modeling by Freehand Sketching

Though training with synthetic sketches, our model is also able to interpret
3D body shapes accurately from freehand sketching. We asked several graduate
students to test our sketch-based body modeling system. Figure 1 and Fig. 9
show a group of results in diverse shapes and poses. Though the sketches drawn
by non-expert users are very coarse with severe distortions, our system is able to
capture the shape and pose features and produce visually pleasing 3D models. As
shown in Fig. 9, based on our lightweight model, users could modify the sketch
in part and get a modified 3D model in real-time rate which allows non-expert
users to easily create high-quality 3D body models with fine-grained control on
desired shapes and poses by freehand sketching and interactive editing.
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5 Conclusions

In this paper, we introduce a sketch-based human body modeling system. In
order to precisely mapping the coarse sketches into the manifold of human bodies,
we propose to involve the body skeleton as an intermediary for regression of shape
and pose parameters in the SMPL representation which allow effective encoding
of the global structure prior of human bodies. Our method outperforms state-of-
the-art techniques in the 3D interpretation of human bodies from hand-drawn
sketches. The underlying sparsity of sketches and shape parameters allows us
to use a lightweight network to achieve accurate modeling in real-time rates.
Using our sketch-based modeling system, common users can easily create visually
pleasing 3D models in a large variety of shapes and poses.
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