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Abstract. Attributed Network Embedding (ANE) aims to learn low-
dimensional representation for each node while preserving topological
information and node attributes. ANE has attracted increasing atten-
tion due to its great value in network analysis such as node classifica-
tion, link prediction, and node clustering. However, most existing ANE
methods only focus on preserving attribute information and local struc-
ture, while ignoring the community information. Community informa-
tion reveals an implicit relationship between vertices from a global view,
which can be a supplement to local information and help improve the
quality of embedding. So, those methods just produce sub-optimal results
for failing to preserve community information. To address this issue, we
propose a novel method named DNEC to exploit local structural infor-
mation, node attributes, and community information simultaneously. A
novel deep neural network is designed to preserve both local structure and
node attributes. At the same time, we propose a community random walk
method and incorporate triplet-loss to preserve the community informa-
tion. We conduct extensive experiments on multiple real-world networks.
The experimental results show the effectiveness of our proposed method.

Keywords: Graph structured data · Network embedding · Deep
learning · Node classification

1 Introduction

Networks are important and ubiquitous structures in the real world, includ-
ing social networks, citation networks, and communication networks. Network
Embedding (NE) aims to map vertex into low-dimensional space and is valuable
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for many data-mining applications such as node classification, link prediction [1],
visualization [2], and anomaly detection [3].

Inspired by the success of Word2vec [4], early works based on skip-gram [5]
mainly focus on exploring network structure. Node2Vec [6] explores network
structure by biased random walks. Line [7] designs two loss functions to preserve
network structure. Those methods only concentrate on preserving the local struc-
ture, ignoring community information. CARE [8] adopts a community-aware
random walk to preserve community information. COME [9] designs a novel
community embedding framework. M-NMF [10] designs a loss function based
on modularity to preserve community structure. However, those NE methods
just concentrate on network structure and pay less attention to node attributes,
which play an important role in many applications. So, those NE methods just
consider plain network and are not suitable for attributed networks.

Thus, another line of works is proposed for attributed network embedding,
such as TADW [11] and DANE [12]. TADW incorporates node attributes into
the matrix factorization framework. DANE designs two autoencoders to preserve
node attributes and network structure together. However, those ANE methods
don’t take community information into account. When the network is sparse
and the attribute is noisy, utilizing community structure can greatly improve
the quality of node representations.

In order to obtain node representation of high quality, we try to incorpo-
rate network structure, node attributes, and community structure into the ANE
framework. We propose a novel framework, called DNEC, which preserves com-
munity structure. DNEC employs two embedding layers to compress network
structure and attribute separately and generate structure representation and
attribute representation. Structure representation and attribute representation
are connected as the input of the shared encoder. The shared encoder will com-
press two different representations into the unified representations spaces. Dual
decoder employs two traditional fully connected neural networks to reconstruct
node attributes and structure of the network. To preserve community structure,
we propose a biased random walk to construct community triplets to calculate
triplet-loss. In summary, our main contributions can be summarized as follows:

(1) We design a novel ANE framework, which seamlessly integrates network
structure, node attributes, and community structure into low-dimensional
representation space.

(2) A biased random walk is proposed to construct community triplets and then
calculate community triplet-loss.

(3) We evaluate and validate our method through three tasks: node classifica-
tion, node clustering, and visualization. Experimental result demonstrate
the effectiveness of our method.

2 Related Work

Some earlier works can be traced back to the graph embedding problem, such as
Laplacian Eigenmaps and LPP [13], which utilizes manifold learning to cap-
ture structure proximity. Inspired by word2vec [4], Deepwalk [14] generates
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node sequences by truncating random walks and train skip-gram model to
preserve structural proximity. Node2vec [8] introduces a biased random walk
to explore network structure flexibly. Line [7] proposes an explicit objective
function to preserve first-order proximity and second-order proximity. Deep-
walk [14], Node2vec [6], and Line [7] are all based on shallow neural network
that cannot preserve the non-linear structure of the network. SDNE [15] employs
autoencoder to preserve first-order proximity, second-order proximity, and non-
linear structure of the network simultaneously. DNGR [16] introduces a random-
surfing model and directly construct positive pointwise mutual information
matrix (PPMI) and employs stacked denoising autoencoder to extract feature.
GraRep [17] calculates similarity matrices of the different order, factorize these
matrices to retain representations of the different order. The above-mentioned
works ignore community structure. CARE designs a community-aware random
walk to generate node sequence and feed into skip-gram to preserve the local
structure and community information. The M-NMF [10] adopts modular non-
negative matrix factorization to retain the node’s representation which preserves
both the community structure and node’s local structure simultaneously.

The above NE methods just explore the structure of networks. Thus, they
are not suitable for attributed network containing rich semantic information that
should be preserved to improve the quality of representations. State-of-the-art
ANE models considering both node attributes and network structure have a
better performance. TADW proves that deepwalk is equivalent to matrix factor-
ization and incorporates text information into the matrix factorization frame-
work to preserve node attributes. DANE utilizes two autoencoders to extract
node attributes and network structure respectively. Attribute representation and
structure representation are connected as the final representation. Tri-Dnr [18]
incorporates network structure, node content, and node label into a unified
framework to learn the representation of the node.

3 Problem Definition

We consider an attributed information network G = (V,X,A),where V =
{v1, , , vn} , X = {x1, , , xn} and A = {a1, , , an} represent the node set, set of
attribute vectors and set of adjacent vectors respectively. In detail, attribute vec-
tor xi and adjacent vector ai is associated with the node vi. In case of unweighted
networks, if vi is connected to vj , aij = 1, otherwise, aij = 0. In case of weighted
networks, if vi is connected to vj , aij reflects how strongly two individual nodes
are connected to each other, otherwise, aij = 0. xi that holds l different attributes
and each element xij represents whether node vi contains the j-th attribute. We
define a function com(vi). When com(vi) = c, the vertex vi belongs to commu-
nity c. Attributed network consist of network structure and node attributes of
vital significance. The aim of ANE is to learn the low-dimensional representation
of each node, while preserving node attributes and network structure.
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4 The Model

In Sect. 4.1, we firstly perform community detection on the whole graph. After
community detection, each node in network is assigned to corresponding com-
munity. Then, we perform community random walk to construct community
triplets. In Sect. 4.2, Deep Attribute Network Embedding (DNE) framework is
designed to integrate network structure and attributes and map two information
into the unified representations spaces. In Sect. 4.3, we use community triplets
to calculate community triplet-loss and form the final model DNEC.

4.1 Construct Community Triplets

Firstly, we adopts infomap [19] to obtain community information. According
to community information, we perform community random walk on the whole
graph.

Community Detection: Adjacent matric only reflects the local relationship
between nodes. Community structure can reveal the hidden relationship between
nodes. To obtain Community structure, we use Infomap [19] to get every node’s
community. Infomap encodes the shortest vertex sequence based on information
theory, and detects communities through a deterministic greedy search strategy.
In order to obtain the vertex sequence, a random walk strategy is used to collect
high-order information. The greedy search strategy integrates information on
a global view and integrates communities. Because random walk and greedy
search are common strategies for obtaining community information, Infomap is
employed as community detection module.

Fig. 1. Simple network with two communities
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Community Triplets Construction: On the basis of community detection,
we know the community distribution of each node. We perform biased random
walk to construct community triplets. For each node a, which belong to com-
munity com(a), we randomly select node p belonging to the community com(a).
Then, we chose another community which is not equal to the community com(a)
and randomly select a node f from this community. we get triplet < a, p, f >,
where com(a) = com(p) and com(a) �= com(f). Repeat the above process to
construct t triplets for each node in network. For v1 in Fig. 1, we randomly
select a node v3 from the first community and randomly select a node v7 from
the second community. Then, we obtain a community triple < v1, v3, v7 >. Then,
we construct t triplets for v1. We construct community triplets set ComSet for
the whole graph. There are n × t triplets in ComSet.

4.2 Framework of DNE

The framework of DNE is as shown in the Fig. 2. DNE is consist of embedding
layer, shared encoder and dual decoder. Embedding layer is designed to extract
two different representations. Shared encoder is designed to map two represen-
tations into unified representations spaces. Finally, dual decoder is designed to
reconstruct adjacent and node attributes respectively.

Fig. 2. The framework of the deep model of DNE

Embedding Layer: We design two fully connected layers to extract two differ-
ent representations and use weight λ and 1−λ to connect two representations. As
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shown in Fig. 2, Attribute embedding layer and structure embedding layer com-
press structural vector and attribute vector into two representations respectively.
The structure vector of vi is ai and the attribute vector of vi is ai. The weights
of two layer are Wattr and Wstru separately. The final output of embedding layer
of node vi is denoted as follows:

h
(0)
i = [λσ(Wattr · xi), (1 − λ)σ(Wstru · ai)] (1)

where Wattr and Wstruc are the weight parameters to be learned. σ is the acti-
vation function.

Shared Encoder: To compress attribute and structure into common represen-
tation space, we then use a fully connected neural network of multiple layers to
map each node into a non-linear latent representation space. The input data of
shared encoder is the output of embedding layer h

(0)
i and the representation of

hidden layers can be denoted as follows:

h
(t)
i = f(W t(h(t−1)

i ) + bt) (2)

where W t is the t−th hidden layer weight matrix, bt is the biases and f(.) is the
activation function. The final representation of node vi is represented as emb(vi).

Dual Decoder: The representations obtained by the shared encoder layer con-
tains both attribute and structure and is the input of dual decoder. Attributed
decoder and structure decoder are designed to reconstruct the node attribute
and structure separately. Attribute decoder consists of multiple layers. The loss
of reconstructing attributes is denoted by the mean square error (MSE) given
by

Lossattr =
1
n

n∑

i=1

(xi − x̂i)2 (3)

where x̂i is the output of attribute decoder. Structure decoder consist of mul-
tiple layers and directly reconstructs structure vector of node vi. The structure
reconstruct loss is as follows:

Lossstru =
1
n

n∑

i=1

(ai − âi)2 (4)

where âi is the output of the structure decoder.

4.3 DNEC

The homogeneity theory indicates that nodes with same community should be
closer to each other in low-dimensional space, while nodes belong to different
communities should stay away from each other in the representation space.
Therefore, we calculate the community triplet-loss on the basis of DNE and form
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Fig. 3. DNEC: The framework of the deep model of DNE with Triplet-loss

the final model DNEC. Overall, we define the following community triplet-loss
function as follows:

Losscom =
∑

<a,p,f>∈ComSet

max(dis(a, p) − dis(a, f) + margin, 0) (5)

where dis(a, p) = (emb(a) − emb(p))2, com(a) = com(p), com(a) �= com(f). In
Fig. 3, all triplets in ComSet are used as training sets to train the model. Given a
triplet < a, p, f >, we get the node’s representation < emb(a), emb(p), emb(f) >
through embedding layer and shared encoder. Then, we calculate the Losscom of
all triplets in ComSet. Minimize Lcom, dis(a, p) becomes smaller and dis(a, f)
becomes bigger. Nodes in the same community will be closer to each other and
nodes in the different communities will be away from each other in the represen-
tation space.

In order to retain node attributes, local structure, and community structure,
we designed the DNEC model. Overall, we minimize the following loss function:

Ltotal = Lossattr + Lossstru + Losscom (6)

5 Experiment

In this part, we conduct experiments on three public datasets such: cora, cite-
seer, and pubmed. We compare our method with the state-of-art methods. The
experimental results prove that our method has significant improvements over
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baselines. Firstly, we introduce the datasets we used in the experiments, and
then simply list the comparison methods, finally, we present the experimental
results and discuss the advantages of our method.

5.1 Experimental Settings

Datasets : An overview of the network datasets we consider in our experiments
is given in Table 1.

Table 1. Statistics of the datasets

Datasets Nodes Edges Features Classes

Cora 2708 5429 1433 7

Citeseer 3327 4732 3707 6

PubMed 19717 44338 500 3

The datasets are paper citation networks. The nodes in Table 1 represent
papers. The edge of each network is the citation relationship between two papers.
The attribute of each node is the bag-of-words representation of the correspond-
ing paper.

Baselines: We use the following five state-of-the-art NE methods as our base-
lines. All baselines are published recently and all have good performance on NE.
The descriptions of the baselines are as follows:

Deepwalk [14]: uses random walk to generate node sequences and feed node
sequences into skip-gram to learn node representation vector of the nodes using
only structure.

Line [7]: exploits the network structure’s first-order proximity and second-
order proximity.

Node2vec [6]: uses two parameters to simulate BFS and DFS search strate-
gies to generate node sequences and then preserve global and local proximity by
a flexible random-walk way.

TADW [11]: incorporates text into Matrix Factorization and preserve node
content and network struct simultaneously.

DANE [12]: adopts two deep neural networks to extract node structure and
node attribute separately and connect two different representations as the final
representation.

Parameter Settings. For a fair comparison, we set the embedding dimension
to 100 for all methods. For Deepwalk and Node2vec, we set the window size t
to 10 and walk length l to 80. For Node2vec, we set the BFS parameter q to
2.0 and DFS to 0.5. For LINE, the starting value of learning rate is 0.025. The
number of negative samples is set as 5 and the number of training samples are
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set as 10,000. For TADW, we set the parameters λ to 0.5. For DANE, we set
the parameters as shown in the paper. For our method, we set λ to 0.5, margin
to 0.5 and t to 5. We summarize the parameter settings of the three datasets in
Table 2. For PubMed, the network structure contains more useful information
than node attribute. So, we set the dimension of Attribute Embedding layer to
200 and set the dimension of Structure Embedding layer to 800.

Table 2. Parameter settings of the three datasets

Datasets Attr-Emb Stru-Emd Shar-Encoder Attr-Decoder Stru-Decoder

Cora 512 512 1024-512-100 100-512-1433 100-512-2708

Citeseer 512 512 1024-512-100 100-512-3707 100-512-3327

PubMed 200 800 1000-500-100 100-200-500 100-800-19717

5.2 Results and Analysis

Node Classification. We conduct node classification on learned node’s
representation to demonstrate the great performance of on semi-supervised
classification task. We applied the Lib-SVM(SVM) software packages as the
classifier for all baselines. For a comprehensive assessment, we randomly
select{10%, 30%, 50%} nodes from the dataset as the training set, and the
remaining nodes as the testing set. We adopt the method of five-fold cross-
validation to train the SVM classifier with training set and use Micro-F1 (Mi-
F1) and Macro-F1 (Ma-F1) as Metrics on the testing set to measure the classi-
fication result. The average accuracy of node classification of all methods are

Table 3. Average of Micro-F1 and Macro-F1 scores in Cora dataset

Training percent 10% 30% 50%

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Deepwalk 0.7568 0.7498 0.8064 0.7943 0.8287 0.8177

Node2vec 0.7477 0.7256 0.8201 0.8121 0.8235 0.8162

Line 0.7338 0.7191 0.8122 0.8105 0.8353 0.8254

TADW 0.7510 0.7234 0.8006 0.7801 0.8354 0.8187

DANE 0.7867 0.7748 0.8281 0.8127 0.8502 0.8377

DNEC 0.7979 0.7832 0.8384 0.8213 0.8697 0.8456

shown in Tables 3, 4, and 5, where the best results are bold. We find that our
method performs better than baselines. Deepwalk, Node2Vec and Line just con-
sider structure. So, the performance of those methods are worsen than TADW.
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Because TADW considers attributed information on three datasets. DANE per-
form better than TADW. Because DANE employs deep neural network to per-
severe structure information and attributed information. It can be seen from
Tables 3, 4, and 5, our method uses a more reasonable method to map struc-
ture and node attributes into the unified representation spaces. In the network,
nodes with same community tent to have same category. Community triplet-loss
will pull nodes with same category cluster in representation spaces. So, DNEC
performs better than all baselines.

Table 4. Average of Micro-F1 and Macro-F1 scores in Citeseer dataset

Training percent 10% 30% 50%

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Deepwalk 0.5052 0.4645 0.5783 0.5329 0.5900 0.5486

Node2vec 0.5233 0.4832 0.6110 0.5651 0.6335 0.5972

Line 0.5139 0.4726 0.5761 0.5384 0.6075 0.5700

TADW 0.6048 0.5344 0.6481 0.5769 0.6578 0.5897

DANE 0.6444 0.6043 0.7137 0.6718 0.7393 0.6965

DNEC 0.6534 0.6219 0.7248 0.6956 0.7524 0.7126

Table 5. Average of Micro-F1 and Macro-F1 scores in PubMed dataset

Training percent 10% 30% 50%

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Deepwalk 0.8047 0.7873 0.8168 0.8034 0.8176 0.8034

Node2vec 0.8027 0.7849 0.8110 0.7965 0.8103 0.7981

Line 0.8037 0.7892 0.8129 0.8007 0.8110 0.7994

TADW 0.8258 0.8143 0.8286 0.8214 0.8343 0.8294

DANE 0.8298 0.8179 0.8311 0.8205 0.8475 0.8349

DNEC 0.8395 0.8279 0.8473 0.8341 0.8582 0.8421

Node Clustering. To prove the performance of our method on node cluster-
ing task, we apply K-means on cora dataset. We use the label information as
the true community information and use the clustering accuracy to measure the
clustering result. The result is shown in Table 6, the clustering accuracy of our
method is higher than all baselines. The accuracy of DANE is higher than Deep-
walk, Node2vec. Because DANE preserves non-linear structure and attributed
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Table 6. Clustering Accuracy

Method Cora Citeseer Pubmed

Deepwalk 0.6813 0.4145 0.6660

Node2vec 0.6473 0.4504 0.6754

Line 0.4789 0.3913 0.6614

TADW 0.5993 0.6642 0.6257

DANE 0.7027 0.4797 0.6942

DNEC 0.7213 0.6942 0.7181

information. DNEC has the best performance for the reason that DNEC incor-
porates local structure, node attributes and community information. Equipped
with triplet-loss, nodes with same community will cluster in low-dimensional
space.

Visualization. To further show the embedding result obtained by our method,
we apply t-sne to visualize the node’s representation in lwo-dimensional space.we
conduct t-sne task on citeseer dataset. The result is shown in Fig. 4. The bound-
ary of TADW is not explicit. Because DANE consider node attribute and network
structure together and uses non-linear neural network, the boundary of different
class is more explicit than TADW. We can see from Fig. 4 that the visualization
of our method have clear boundaries and compact cluster. Because triplet-loss
makes nodes in same community cluster in representation spaces and make nodes
in different communities away from each other.

Fig. 4. t-SNE visualization the dataset Citeseer by using TADW, DANE, and our
proposed method. The left is the visualization using TADW, and the right is the
visualization using the method we proposed, and the median is the visualization using
DANE.

6 Conclusion

In this paper, we propose ANE framework, using a more reasonable way to
preserve both the network topology and the node attribute. We also take com-
munity information into account to improve the quality of representations. The
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experimental results prove that our method has a great performance on node
classification, node clustering, and visualization tasks. Compared to the previ-
ous works, we incorporate community information into ANE and obtain a better
performance. In future, we will consider the scalability of our method in hetero-
geneous networks.

References

1. Dong, Y., Zhang, J., Tang, J., Chawla, N.V., Wang, B.: CoupledLP: link prediction
in coupled networks. In: 21th International Conference on Knowledge Discovery
and Data Mining(SIGKDD 2015), pp. 199–208 (2015)

2. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional
data. In: 25th International Conference on World Wide Web(WWW 2016), pp.
287–297 (2016)

3. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection:
methods, systems and tools. Commun. Surv. Tutorials 2014, 303–336 (2014)

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In:1st International Conference on Learning Represen-
tations (ICLR 2013), pp. 1–12 (2013)

5. Tomas, M., Ilya, S., Kai, C., Greg, S., Je, D.: Distributed representations of words
and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119 (2013)

6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In:22nd
International Conference on Knowledge Discovery and Data Mining (KDD 2016),
pp. 855–864. ACM (2016)

7. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: 24th International Conference on World Wide Web
(WWW 2015), pp. 1067–1077 (2015)

8. Keikha, M.M., Rahgozar, M., Asadpour, M.: Community aware random walk for
network embedding. Knowl. Based Syst. 148, 47–54 (2018)

9. Yang, C., Lu, H., Chen, K.: CONE: Community Oriented Network. http://arxiv.
org/abs/1709.01554

10. Yang, L., Cao, X., Wang, C., Zhang, W.: Modularity based community detection
with deep learning. In: 25th International Joint Conference on Artificial Intelligence
(AAAI 2016), pp. 2252–2258 (2016)

11. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learn-
ing with rich text information. In: 24th International Conference on Artifificial
Intelligence (IJCAI 2015), pp. 2111–2117 (2015)

12. Hongchang, G., Heng, H.: Deep Attributed network embedding. In: 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 3364–3370
(2018)

13. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding
and clustering. In: Advances Neural Information Processing Systems, pp. 585–591
(2001)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representa-
tions. In: 20th International Conference on Knowledge Discovery and Data Mining
(KDD 2014), pp. 701–710. ACM (2014)

15. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: 22nd SIGKDD
International Conference on Knowledge Discovery and Data Mining (SIGKDD
2016), pp. 1225–1234. ACM (2016)

http://arxiv.org/abs/1709.01554
http://arxiv.org/abs/1709.01554


Deep Attributed Network Embedding with Community Information 665

16. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 1145–1152
(2016)

17. Cao S., Lu W., Xu Q.: GraRep: learning graph representations with global struc-
tural. In 24th International Conference on Information and Knowledge Manage-
ment (CIKM 2015), pp. 891–900. ACM (2015)

18. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network represen-
tation. In: 25th International Joint Conference on Artificial Intelligence (IJCAI
2016), pp. 1895–1901 (2016)

19. Rosvall, M., Bergstrom, C.: Maps of random walks on complex networks reveal
community structure. In: Proceedings of the National Academy of Sciences of the
United States of America, vol. 105(4), pp. 1118–1123 (2018)


	Deep Attributed Network Embedding with Community Information
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Model
	4.1 Construct Community Triplets
	4.2 Framework of DNE
	4.3 DNEC

	5 Experiment
	5.1 Experimental Settings
	5.2 Results and Analysis

	6 Conclusion
	References




