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Abstract. Most of recent generative image inpainting methods have
shown promising performance by adopting attention mechanisms to fill
hole regions with known-region features. However, these methods tend to
neglect the impact of reliable hole-region information, which leads to dis-
continuities in structure and texture of final results. Besides, they always
fail to predict plausible contents with realistic details in hole regions due
to the ineffectiveness of vanilla decoder in capturing long-range informa-
tion at each level. To handle these problems, we propose a confidence-
based global attention guided network (CGAG-Net) consisting of coarse
and fine steps, where each step is built upon the encoder-decoder archi-
tecture. CGAG-Net utilizes reliable global information to missing con-
tents through an attention mechanism, and uses attention scores learned
from high-level features to guide the reconstruction of low-level features.
Specifically, we propose a confidence-based global attention layer (CGA)
embedded in the encoder to fill hole regions with reliable global fea-
tures weighted by learned attention scores, where reliability of features is
measured by automatically generated confidence values. Meanwhile, the
attention scores learned by CGA are repeatedly used to guide the feature
prediction at each level of the attention guided decoder (AG Decoder)
we proposed. Thus, AG Decoder can obtain semantically-coherent and
texture-coherent features from global regions to predict missing contents.
Extensive experiments on Paris StreetView and CelebA datasets validate
the superiority of our proposed approach through quantitative and qual-
itative comparisons with existing methods.

Keywords: Image inpainting · Encoder-decoder · Attention
mechanism

1 Introduction

Image inpainting is a task of restoring the missing or damaged parts of images in
computer vision. In practice, many image inpainting approaches have been pro-
posed in wide application ranges, such as photo editing, image-based rendering,
etc. The main challenge of image inpainting is to generate semantically plausible
and visually realistic results for missing regions [27].
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J. Lokoč et al. (Eds.): MMM 2021, LNCS 12572, pp. 200–212, 2021.
https://doi.org/10.1007/978-3-030-67832-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67832-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-67832-6_17


Confidence-Based Global Attention Guided Network for Image Inpainting 201

Fig. 1. Qualitative comparisons of inpainting results by Gated Conv (GC) [28], Coher-
ent Semantic Attention (CSA) [13], Region Normalization (RN) [29], our model and
ground truth (GT). [Best viewed with zoom-in.]

Traditionally, this task is settled with diffusion-based or patch-based
approaches [1,4,17,30]. These methods only work well for stationary textural
regions, and they fail to generate semantic information on non-stationary images.
To make up for it, early learning-based methods [8,18,26] are proposed to formu-
late inpainting as a conditional image generation problem by using convolutional
encoder-decoder network, where the encoder learns a latent feature represen-
tation of the image and the decoder reasons about the missing contents [18].
Unfortunately, these methods often create boundary artifacts and blurry results
inconsistent with known regions. Recently, some approaches [21,27,28] adopt
spatial attention mechanisms in encoder to effectively encode the latent rep-
resentation by fully utilizing long-range contextual information. Firstly, they
extract patches in known regions and hole regions of the high-level feature map,
and then take known-region patches as references to calculate attention scores
with hole-region patches. Finally, they fill the hole regions with known-region
patches weighted by the attention scores.

However, most existing attention-based image inpainting methods [20,21,27]
tend to completely ignore the impact of holes features which may be not well-
inferred, or just model the correlation between adjacent hole-region features in
a certain direction [13], which leads to discontinuous structures and textures in
final results, as shown in the first row of Fig. 1. Moreover, due to limited size of
the vanilla convolutional kernel and receptive field, they cannot effectively utilize
distant information at each level of the vanilla decoder. Thus, they always fail
to reason about realistic details in hole regions, as shown in the second row of
the Fig. 1.

To handle these problems, we propose a confidence-based global attention
guided network (CGAG-Net) which divides the inpainting task into coarse and
fine steps as shown in Fig. 2(a). In the coarse step, a simple dilated convolutional
network [27] generates preliminary results for the next step. And in the fine step,
a confidence-based global attention layer (CGA) we proposed is applied to the
high-level features of the encoder to reconstruct semantic continuous features in
the hole regions by taking feature patches from both holes and known regions
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as references. Considering the fact that indiscriminately model the correlation
within the hole regions to reconstruct missing contents will introduce unreliable
(i.e., poorly-inferred) information and results in blurriness, CGA automatically
generates confidence values to measure the reliability of information for each
channel at each spatial location of reference patches. The confidence values are
able to highlight reliable information and suppress unreliable one.

In addition, we propose an attention guided decoder (AG Decoder) to fill
hole regions from high-level to low-level by repeatedly applying a guided atten-
tion module (GA) we proposed to the decoder. Since the attention scores
learned from high-level features reflect the correlation of spatial location between
semantically-coherent features, they can be taken as the guidance of the attention
mechanism to fill hole regions of low-level features with semantically-coherent
and texture-coherent patches. By using the attention scores learned from high-
level feature map to guide GA at shallow layers of the AG Decoder, our model
can generate both semantically and visually plausible results. Furthermore, we
propose a multi-scale gated block (MSGB) embedded in the encoder to capture
valid information at various scales by adopting multiple gated convolutions [28]
with different kernel sizes and connecting them in a hierarchical style. Extensive
experiments on standard datasets Paris StreetView [3] and CelebA [15] demon-
strate that the proposed approach can generate higher-quality inpainting results
in irregular holes than existing methods.

The main contributions of this paper are summarized as follows:
• We propose a confidence-based global attention layer (CGA) to consider

the impact of reliable global features on the reconstruction of missing contents,
according to the automatically generated confidence values which can highlight
reliable information of features and suppress unreliable one.

• An attention guided decoder (AG Decoder) is proposed to fill hole regions
at each level with semantically-coherent and texture-coherent features under the
guidance of attention scores from CGA.

• MSGB is designed to capture information at various scales by adopting
multiple gated convolutions with different kernel sizes and connecting them in a
hierarchical style.

2 Related Work

2.1 Learning-Based Image Inpainting

Learning-based methods for image inpainting [2,7,11,14,16,22,24] always use
deep learning and adversarial training strategy [6] to predict the missing contents
in hole regions. One of the early learning-based methods, Context Encoder [18]
takes adversarial training into a encoder-decoder architecture to fill the holes in
feature-level. On the basis of Context Encoder, Iizuka et al. [8] propose global
and local discriminators to generate better results with regard to overall consis-
tency as well as more detail. Yang et al. [26] propose a multi-scale neural patch
synthesis approach to generate high-frequency details. Liu et al. [12] propose an
automatic mask generation and update mechanism to focus on valid pixels in
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the feature map for better results. Inspired by [12], Yu et al. [28] propose a gated
convolution and SN-PatchGAN to better deal with irregular masks.

2.2 Attention-Based Image Inpainting

Recently, spatial attention mechanism is introduced in image inpainting task to
model long-range dependencies within features [19,23]. Yan et al. [25] introduce a
shift operation and a guidance loss to restore features in the decoder by utilizing
the information in corresponding encoder layers. Yu et al. [27] propose a novel
contextual attention layer to explicitly utilize the feature in known-regions as
references to make better predictions. Liu et al. [13] propose a coherent seman-
tic attention layer to model the correlation between adjacency features in hole
regions for continuity results.

Fig. 2. The architecture of our proposed confidence-based global attention guided net-
work (CGAG-Net).

3 Approach

3.1 Overview

Our model confidence-based global attention guided network (CGAG-Net)
divides image inpainting task into coarse and fine steps, where each step is built
upon the encoder-decoder architecture, as shown in Fig. 2(a). In the coarse step,
we adopt the same structure of the coarse network in [27]. The coarse network
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takes the concatenation of the masked image Im and the binary mask M as
input to generate the coarse prediction Ic. In the fine step, we take the concate-
nation of Ic and M as input of the fine network to obtain the finer result If . The
fine network consists of two parallel encoders and an attention guided decoder
(AG Decoder). The multi-scale gated block (MSGB) is embedded in each layer
of two encoders to capture the information at different scales. The top encoder
focuses on hallucinating contents with a dilated convolution group (i.e., stacked
dilated convolutions). And the confidence-based global attention layer (CGA) is
embedded in the deepest layer of the bottom encoder, which enables the encoder
to reconstruct the semantically continuous contents with reliable patches from
the global. Then, the output from two encoders are fused together and fed into
the attention guided decoder (AG Decoder). The AG Decoder repeatedly uses
a guided attention module (GA) to reconstruct hole-region features from high-
level to low-level. Meanwhile, the attention scores learned in CGA is up-sampled
to the corresponding resolution to guide the filling process of GA at each level
of the AG Decoder. In addition, skip connections [13] are introduced to concate-
nate features from each layer of the top encoder and corresponding layers of AG
Decoder. Finally, the region ensemble discriminator (RED) proposed in [19] is
introduced to act as global and local discriminator simultaneously.

3.2 Confidence-Based Global Attention Layer

In order to model the correlation between hole-region features and avoid intro-
ducing unreliable information into hole regions, we propose a confidence-based
global attention layer (CGA), as shown in Fig. 2(b).

CGA first takes the feature map F as input of a gated convolution [28] with
an activation function, and then sigmoid function is applied on the output of
the gated convolution to get confidence values in a confidence map C for each
channel at each spatial location of F . The confidence values in C are between
0 and 1 (0 represents completely unreliable, and vice versa). The next, F c is
obtained by computing element-wise multiplication between C and F :

Cx,y = σ(φ(Wc(F ))) (1)

F c
x,y = Cx,y � Fx,y (2)

where Wc denotes the convolutional filters, σ denotes the sigmoid function, �
denotes the element-wise multiplication and φ can be any activation functions.
After extracting patches p and pc from hole regions of F and the global (both
hole regions and known regions) of F c respectively, CGA takes patches pc as
references to calculate the cosine similarity with p:

si,j = <
pi

||pi||2 ,
pcj

||pcj ||2
> (3)
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where pi and pcj are the i-th patch and the j-th patch of p and pc respectively.
Finally, the softmax is applied on the channel of similarities to obtain attention
scores α and then CGA fills hole regions with patches pc weighted by α:

αi,j = softmax(
exp(si,j)

∑N
i=1 exp(si,j)

) (4)

pi =
N∑

i

αi,j · pcj (5)

Compared with existing attention mechanisms for image inpainting [21,25,
27,28], our CGA additionally considers the impact of reliable information in
whole hole regions to generate continuous results. The confidence values gener-
ated by CGA in an adaptive manner are able to highlight the reliable informa-
tion for each channel at each spatial location of the feature map and suppress
unreliable one. It is worth noting that confidence values are only applied on ref-
erence patches. In this way, our CGA can avoid the situation that a hole-region
patch always have a large attention score with itself when CAG additionally
takes hole-region patches as references. And the generalization ability of learned
attention scores is enhanced simultaneously. The contextual attention layer pro-
posed in [27] can be regarded as a special case of our CGA, where confidence
values for each channel of features are 0 in hole regions and 1 in known regions.

3.3 Attention Guided Decoder

In order to generate semantically and texture plausible results, we propose an
attention guided decoder (AG Decoder). Under the guidance of the attention
scores learned from high-level features, a guided attention module (GA) is repeat-
edly applied on features at each level of AG Decoder to reconstruct the missing
contents with semantically-coherent and texture-coherent information. The GA
consists of CGA and a short connection which can ease the flow of information
and stabilize the training process, as shown in Fig. 2(c).

In the l-th layer of AG Decoder, GA first obtains the attention score αl
i,j

between the patch pair, pli and pclj , by taking the same strategy as mentioned in
Sect. 3.2, where pli is the i-th hole-region patch and pclj is the j-th reference patch.
Furthermore, in order to maintain the semantic coherency between generated
textures and surroundings, we use the attention map αH learned from high-
level features by CGA to guide the hole filling process of GA at each level of
the AG Decoder, where αH reflects the correlation of spatial location between
semantically-coherent features. Thus, αH is up-sampled to the corresponding
resolution with scale factor s to obtain the up-sampled attention score map αHs.
After that, softmax is applied on the result of the element-wise multiplication
between αHs and αl to get the guided attention score map αGl. In this way, only
elements with high values in both αHs and αl will have high values in αGl. That
is to say, only if two patches in a patch pair have both high semantic and textural
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coherency, can they obtain a high attention score in αGl. Finally, we reconstruct
hole regions with pcl weighted by αGl. The process can be formulated as follows:

αGl = softmax(αHs � αl) (6)

pli =
N∑

i=1

αGl
i,j · pclj (7)

3.4 Multi-scale Gated Block

Extracting features at different scales is essential for CNN models to capture
important contextual information. Inspired by Res2Net [5] and Gated Conv [28],
we propose multi-scale gated block (MSGB), as shown in Fig. 2(d), to extract
valid features at various scales by adopting multiple gated convolutions with
different kernel sizes and connecting them in a hierarchical style. The gated con-
volution proposed in [28] can distinguish valid pixels/features from invalid ones,
thereby preventing predicted results from being affected by harmful information.

Let Fin and Fout be the input and the output feature map of MSGB, GCi×i(·)
be the gated convolution [28] with kernel size i. MSGB first extracts features
with a 3 × 3 gated convolution in the input feature map Fin to get the output
F3×3. Instead of simply fusing features at different scales, MSGB uses element-
wise sum operation between F3×3 and Fin before feeding Fin into a 5 × 5 gated
convolution. After using a 1 × 1 gated convolution to reduce channels of the
concatenation of F3×3 and F5×5, MSGB fuses information at different scales to
obtain the output Fout. The process can be formulated as follows:

F3×3 = φ(GC3×3(Fin)) (8)

F5×5 = φ(GC5×5(F3×3 + Fin)) (9)

Fout = φ(GC1×1(concat([F3×3, F5×5]))) (10)

where φ(·) denotes the activation function. We select LeakyReLU as activation
function in our experiments.

Compared with simply fusing multi-scale information in a parallel style, our
MSGB can obtain larger receptive fields without using extra parameters. Specif-
ically, when we take F3×3 as the input of a 5 × 5 gated convolution, the output
will have a larger receptive field than the output obtained by taking Fin as the
input of the 5 × 5 gated convolution due to the connection explosion effect [5].

3.5 Loss Function

To make constrains that the output of the coarse network and the fine network
should approximate the ground-truth image, following [27], we use L1 distance
as our reconstruction loss Lrec. Besides, We adopt region ensemble discriminator
(RED) [19] as global and local discriminator to calculate the adversarial loss Ladv

in each pixel individually, which drives our model to handle various holes with
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arbitrary shapes and generate visually pleasing results. To address the gradient
vanishing problem in generator, we employ the hinge version of the adversarial
loss [13]. Moreover, we use the perceptual loss [9] Lper to generate plausible
contents by measuring the similarity between high-level structure.

In summary, the overall loss function of the proposed CGAG-Net is as follows:

Ltotal = λrec · Lrec + λadv · Ladv + λper · Lper (11)

where λrec, λadv, λper are hyper-parameters for the reconstruction, adversarial
and perceptual losses.

4 Experiments

4.1 Experiment Settings

We evaluate our model on two datasets: Paris StreetView [3] and CelebA [15]. For
these two datasets, we use the original train, validation and test splits. And we
obtain irregular masks which are classified based on different hole-to-image area
ratios from Partial Conv [12]. The training and testing process are conducted on
masks with 20%–40% hole-to-image area ratio. Besides, we follow [28] to adopt
the same data augmentation such as flipping during training process. Our model
is optimized by Adam algorithm [10] with learning rate of 1×10−4 and β1 = 0.5.
The hyper-parameters are set as λrec = 1.0, λper = 1.0, λadv = 0.01. And we train
on an Nvidia Titan X Pascal GPU with a batch size of 1. All masks and images
for training and testing are with the size of 256× 256.

We compare our method with five methods: Partial Conv (PC) [12], Contex-
tual Attention (CA) [27], Gated Conv (GC) [28], Coherent Semantic Attention
(CSA) [13] and Region Normalization (RN) [29].

4.2 Qualitative Comparisons

Figure 3 present inpainting results of different methods on testing images from
Paris StreetView and CelebA datasets. For all methods, no post-processing step
is performed to ensure fairness. As shown in Fig. 3, PC, CA and RN are effec-
tive in generate semantically plausible results, but the results present distorted
structures and lack realistic details. Compared with previous methods, GC and
CSA can generate richer details, but the results still have discontinuous textures
and boundary artifacts. This is mainly because they neglect the impact of hole-
region features and the ineffectiveness of vanilla decoder in capturing distant
information of low-level features. Compared with these methods, our model is
able to generate semantically and visually plausible results with clear boundaries
and continuous textures in hole regions.
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Fig. 3. Example cases of qualitative comparison on the Paris StreetView and CelebA
datasets. [Best viewed with zoom-in.]

Table 1. Quantitative comparison results over Paris StreetView [3] and CelebA [15]
datasets with irregular masks between PC [12], CA [27], GC [28], CSA [13], RN [29]
and Ours. − Lower is better. + Higher is better.

Datasets Paris StreetView CelebA

Methods PC CA GC CSA RN Ours PC CA GC CSA RN Ours

MAE− 3.884 3.386 3.283 3.245 3.491 3.143 3.307 3.144 2.887 3.060 2.849 2.709

SSIM+ 0.879 0.901 0.903 0.904 0.892 0.906 0.909 0.917 0.921 0.925 0.927 0.927

PSNR+ 27.981 28.810 29.082 29.112 28.691 29.309 28.131 28.470 29.057 29.427 29.448 29.603

4.3 Quantitative Comparisons

We use images from the testing set of Paris StreetView and CelebA datasets with
irregular masks to make comparisons. We take MAE, PSNR, SSIM as evalua-
tion metrics to quantify the performance of models. Table 1 lists the comparison
results which present our method outperforms all other methods in these mea-
surements on both Paris StreetView and CelebA datasets.
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Table 2. Quantitative comparisons over Paris StreetView between CA [27] and CGA.
− Lower is better. + Higher is better.

MAE− SSIM+ PSNR+

With CA 3.283 0.903 29.082

With CGA (all 1) 3.345 0.903 29.077

With CGA 3.271 0.904 29.154

4.4 Ablation Study

Effect of CGA. In order to demonstrate the effect of our CGA, we adopt
the architecture of Gated Conv [28] and replace the contextual attention layer
(CA) [27] with CGA to make both qualitative and quantitative comparisons
on the Paris StreetView testing set. Also, to validate the effect of confidence
values, we set all confidence values in CGA as 1 to make a comparison. As
present in Tab 2, by adopting CGA we proposed, the mode can achieve the best
performance in all metrics. As shown in the areas marked with red bounding
boxes in Fig. 4, CA fails to generate continuous structures and textures in hole
regions. And directly modeling the correlation (all confidence values are set to
1) between hole-region features in CGA will cause blurriness. By adopting our
CGA with automatically generated confidence values which can highlight reliable
information of hole-region features and suppress unreliable one, the model is able
to generate continuous structures and textures in hole regions.

Fig. 4. The effect of CGA. [Best viewed with zoom-in.]

Effect of AG Decoder. We make a comparison on the Paris StreetView test-
ing set to demonstrate the effect of our AG Decoder. Figure 5 presents that the
model can generate semantically plausible results but contain blurriness, when
we replace the AG Decoder in our model with vanilla decoder (without using
attention mechanisms). Without the guidance of attention scores learned from
high-level features, AG Decoder fails to generate textures consistent with sur-
roundings. When we adopt AG Decoder under the guidance of attention scores
learned from high-level features, our model can generate semantically and visu-
ally plausible results.
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Fig. 5. The effect of AG Decoder. [Best viewed with zoom-in.]

Effect of MSGB. To verify the effect of MSGB, we replace the gated convolu-
tions in the encoder of GC [28] with two types of MSGB which connects multiple
gated convolutions in different styles (hierarchical and parallel) to make a com-
parison. For fair comparison, we keep the number of model parameters the same.
As shown in Table 3, when adopting MSGB with gated convolutions connected
in a hierarchical style, the model can obtain the best performance in all metrics.

Table 3. Quantitative comparisons between Gated Conv [28] and MSGB on CelebA
dataset. − Lower is better. + Higher is better.

MAE− SSIM+ PSNR+

With Gated Conv 2.887 0.921 29.057

With MSGB (parallel) 2.868 0.924 29.251

With MSGB (hierarchical) 2.858 0.924 29.334

5 Conclusion

In this paper, we propose a confidence-based global attention guided network
(CGAG-Net) with two key components, a confidence-based global attention layer
in the encoder and an attention guided decoder to synthesize missing contents in
masked images. By measuring reliability of global features and predicting miss-
ing contents at each level of the attention guided decoder with semantically-
coherent and texture-coherent features, our CGAG-Net can generate seman-
tically and visually plausible results with continuous structures and textures.
Extensive experiments on different datasets demonstrate that our methods can
significantly outperforms other state-of-the-art approaches in image inpainting.
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