
5Mixed Reality Interaction Techniques

Jens Grubert

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Tangible and Surface-Based Interaction . . . . . . . . . . . . . . 110

5.3 Gesture-Based Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Pen-Based Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Gaze-Based Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Haptic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Multimodal Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Multi-Display Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 Interaction Using Keyboard and Mouse . . . . . . . . . . . . . . 117

5.10 Virtual Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Abstract

This chapter gives an overview of the interaction tech-
niques for mixed reality with its variations of augmented
and virtual reality (AR/VR). Various modalities for in-
put and output are discussed. Specifically, techniques
for tangible and surface-based interaction, gesture-based,
pen-based, gaze-based, keyboard and mouse-based, as
well as haptic interaction are discussed. Furthermore,
the combinations of multiple modalities in multisensory
and multimodal interaction as well as interaction using
multiple physical or virtual displays are presented. Finally,
interactions with intelligent virtual agents are considered.

J. Grubert (�)
Coburg University of Applied Sciences, Department of Electrical
Engineering and Computer Science, Coburg, Germany
e-mail: jens.grubert@hs-coburg.de

Keywords

Tangible interaction · Augmented surfaces · Gestures ·
Magic lens · Eye gaze · Pen-based interaction ·
Keyboard and mouse · Haptics · Multimodal ·
Multi-display interaction · Intelligent virtual agents

5.1 Introduction

This chapter gives an overview of interaction techniques
for mixed reality (MR) with its variations of augmented
and virtual reality (AR/VR). Early research in the field of
MR interaction techniques focused on the use of surface-
based, tangible, and gesture-based interaction, which will be
presented at the beginning of this chapter. Further modalities,
such as pen-based, gaze-based, or haptic interaction, have
recently gained attention and are presented next. Further,
with the move toward productivity-oriented use cases, in-
teraction with established input devices such as keyboard
and mouse has gained interest from the research community.
Finally, inspired by the popularity of conversational agents,
interaction with intelligent virtual agents is discussed.

The development of interaction techniques is closely re-
lated to the advancements in input devices. Hence, the reader
is invited to study the according book chapter as well.

While this chapter follows the abovementioned structure,
further possibilities of structure interaction techniques in-
clude organization according to interaction tasks [1] such as
object selection [2–4] and object manipulation [5], naviga-
tion [6], symbolic input [7], or system control [8]. Further,
interaction techniques for specific application domains have
been proposed, such as music [9] games [10] or immersive
analytics [11].

Interested readers are also referred to further surveys and
books in areas such as 3D interaction techniques, [12] or
interaction with smart glasses [13].
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5.2 Tangible and Surface-Based
Interaction

This section presents the concepts of tangible user interfaces
(TUIs) and their applicability in AR. It covers the effects of
output media, spatial registration approaches for TUIs, tan-
gible magic lenses, augmenting large surfaces like walls and
whole rooms, the combination of AR with shape-changing
displays, and the role of TUIs for VR-based interaction.
Figure 5.1 depicts an overview about output and input devices
typically found in TUI-based interaction for MR.

TUIs are concerned with the use of physical objects as
medium for interaction with computers [14] and has gained
substantial interest in human–computer interaction [15].
Early prototypes utilized tabletop setting on which physical
objects were placed to change properties of digital media. For
example, Underkoffler and Ishii introduced a simulation of an
optical workbench using tangible objects on a tabletop [16]
as well as an application for architectural planning [17].

In AR, this concept was introduced by Kato et al. [18]
as tangible augmented reality (TAR). They used a paddle as
prop, equipped with a fiducial, to place furniture inside a
house model. Fjeld et al. [19] introduced further tangibles
such as a booklet and a cube for interaction within an educa-
tional application for chemistry.

TAR AR is used for visualizing digital information on
physical objects while using those physical objects as inter-
action devices. Billinghurst et al. [20] stated that the TAR
characteristics have a spatial registration between virtual and
physical objects and the ability of users to interact with those
virtual objects by manipulating the physical ones. Regen-
brecht et al. [21] utilized a rotary plate to allow multiple co-
located users to manipulate the orientation of a shared virtual
object.

This way, the gap between digital output (e.g., on a flat
screen) and physical input (e.g., using a rotary knob) can be
reduced as the digital information is directly overlaid over the
physical content.

Lee et al. [22] described the common interaction themes
in the TAR application such as static and dynamic mappings
between physical and digital objects. They describe a space-
multiplexed approach, where each physical tool is mapped to
a single virtual tool or function as well as a time-multiplexed
approach in which the physical object is mapped to different
digital tools dependent on the context of use.

However, the effect of this overlay is also dependent
on the output medium used. For example, when using
projection-based systems [23] or video see-through (VST)
head-mounted displays (HMDs) (c.f. chapter 10 in [24]), the
distance between the observer and the physical and virtual
objects is the same. In contrast, when using commodity
optical see-through (OST) HMDs with a fixed focal plane,
there can be an substantial cost of perceiving virtual and

physical objects at the same time. Specifically, Eiberger et al.
[25] demonstrated that when processing visual information
jointly from objects within arms’ reach (in this case, a
handheld display) and information presented on a OSTHMD
at a different distance, the task completion times increases
by approximately 50%, and the error rate increased by
approximately 100% compared with processing this visual
information solely on the OST HMD.

For spatially registering physical and virtual objects, early
works on TAR often relied on fiducial markers, such as that
provided by ARToolKit [26] or ARUCO [27]. While easy
to prototype (i.e., simply, fiducials have to be printed out and
attached to objects), these markers can inhibit interaction due
to their susceptibility to occlusions (typically through hand
and finger interaction). Hence, it is advised to use modern
approaches for hand-based interaction [28,29] with spatially
tracked rigid and non-rigid objects [30–32].

A specific kind of TAR can be seen in tangible
magic lenses, which evolved through a combination from
the magic lens [33] and tangible interaction concepts
[14]. Tangible magic lenses allow for access to and
manipulation of otherwise hidden data in interactive spatial
environments.

Evolving from themagic lens [33] and tangible interaction
concepts [14], tangible magic lenses allow for access to and
manipulation of otherwise hidden data in interactive spatial
environments. A wide variety of interaction concepts for
interactive magic lenses have been proposed within the scope
of information visualization (see surveys [34, 35]).

Within AR, various rigid shapes have been explored.
Examples include rectangular lenses for tabletop interaction
[36] or circular lenses [37]. Flexible shapes (e.g., [38]) have
been utilized as well as multiple sheets of paper [39]. In their
pioneering work, Szalavári and Gervautz [40] introduced the
personal-interaction panel in AR. The two-handed and pen-
operated tablet allowed for the selection and manipulation
of virtual object as well as for system control. Additionally,
transparent props have been explored (e.g., a piece of plex-
iglass) both for tabletop AR [41–43] and VR [44]. Purely
virtual tangible lenses have been proposed as well [45].
Brown et al. [46] introduced a cubic shape which could either
perspectively correct, render, and manipulate 3D objects or
text. This idea was later revisited by Issartel et al. [47] in a
mobile setting.

Often, projection-based AR has been used to realize tan-
gible magic lenses, in which a top-mounted projector illumi-
nates a prop such as a piece of cardboard or other reflective
materials [36, 48] and (typically RGB or depth) cameras
process user input.

Mobile devices such as smartphones and tablets are also
commonly used as a tangible magic lens [49, 50], and can
be used in conjunction with posters [49], books [51], digital
screens [50], or maps [52, 53].
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When using the tangible magic lens metaphor in public
space, one should be aware about the social acceptability,
specifically due to the visibility of spatial gestures and pos-
tures [54, 55]. For example, in a series of studies across
gaming and touristic use cases, Grubert et al. [56, 57] ex-
plored benefits and drawbacks of smartphone-based tangible
lens interfaces in public settings and compared them with
traditional static peephole interaction, commonly used in
mobile map applications. They found that user acceptance
is largely dependent on the social and physical setting. In
a public bus stop in a large open space used at a transit
area in a public transportation stop, participants favored the
magic lens over a static peephole interface despite tracking
errors, fatigue, and potentially conspicuous gestures. Also,
most passersby did not pay attention to the participants and
vice versa. However, when deploying the same experience in
a different public transportation stop with other spatial and
social contexts (waiting area, less space to avoid physical
proximity to others), participants used and preferred the
magic lens interface significantly less compared with a static
peephole interface.

Further, when using smartphones or tablets as magic
lenses, the default user’s view is based on the position
of the physical camera attached to the handheld device.
However, this can potentially negatively affect the user’s
experience [58,59]. Hence, it can be advisable to incorporate
user-perspective rendering to render the scene from the
point of view of the user’s head. In this domain, Hill
et al. [60] introduced user-perspective rendering as virtual
transparency for VST AR. Baričević et al. [61] compared
user- vs. device-perspective rendering in a VR simulation.
Tomioka et al. [62] presented approximated user-perspective
rendering using homographies. Grubert et al. [63] proposed
a framework for enabling user-perspective rendering to
augment public displays. Čopič et al. [58, 59], quantified
the performance differences between device- and user-
perspective rendering in map-related tasks. Mohr et al. [64]
developed techniques for an efficient computation of head-
tracking techniques needed for user-perspective rendering.

Beyond handheld solutions, whole surfaces such as tables,
walls, or body parts can be augmented and interacted with.
Often projector-camera systems are used for processing in-
put and creating output on surfaces. Early works included
augmenting desks using projectors to support office work of
single users [65–67] or in collaborative settings [68]. Later
the Microsoft Kinect and further commodity depth sensors
gave rise to a series of explorations with projector-camera
systems.

For example, Xiao et al. [69] introduced WorldKit to
allow users to sketch and operate user interface elements on
everyday surfaces. Corsten et al. [70] proposed a pipeline
for repurposing everyday objects as input devices. Henderson
and Feiner also proposed the use of passive haptic feedback

from everyday objects to interact with virtual control ele-
ments such as virtual buttons [71].

Mistry and Maes [72] utilized a necklace-mounted
projector-camera system to sense finger interactions and
project content on hands or the environment. Following
suite, Harrison et al. [73] introduced OmniTouch, a wearable
projector-depth-camera system that allowed for project user
interface elements on body parts, such as the hand (e.g., a
virtual dial pad), or for augmenting paper using touch.

Further, the idea of interacting with augmented surfaces
was later expanded to cover bend surfaces [74], walls [75],
and complete living rooms [76] or even urban facades [77,
78]. For example, in IllumiRoom [75], the area around a tele-
vision was augmented using a projector, after initially scan-
ning it with a depth camera. Possible augmentations included
extending the field of view of on-screen content, selectively
rendering scene elements of a game, or changing the ap-
pearance of the whole environment using non-photorealistic
renderings (e.g., cartoon style or a wobble effect). In RoomA-
live, multiple projector-depth camera systems were used to
create a 3D scan of a living room as well as to spatially
track the user’s movement within that room. Users are able
to interact with digital elements projected in the room using
touch and in-air gestures. Apart from entertainment purposes,
this idea was also investigated in productivity scenarios such
as collaborative content sharing in meetings [79]. Finally, the
augmentation of shape-changing interfaces was also explored
[80–82]. For example, in Sublimate [82] an actuated pin
display was combined with stereoscopic see-through screen
to achieve a close coupling between physical and virtual
object properties, e.g., for height fields or NURBS surface
modeling. InForm [81] expanded this idea to allow both
for user input on its pins (e.g., utilizing them as buttons or
handles) as well as manipulation of external objects (such as
moving a ball across its surface).

In VR, tangible interaction has been explored using var-
ious props. The benefit of using tangibles in VR is that
a single physical object can be used to represent multiple
virtual objects [83], even if they show a certain extend
of discrepancy. Simeone et al. [84] presented a model of
potential substitutions based on physical objects, such as
mugs, bottles, umbrellas, and a torch. Hettiarachchi et al.
[85] transferred this idea to AR. Harley et al. [86] proposed
a system for authoring narrative experiences in VR using
tangible objects.

5.3 Gesture-Based Interaction

Touch and in-air Gestures and postures make up a large
part of interpersonal communication and have also been
explored in depth in mixed reality. A driver for gesture-
based interactionwas the desire for “natural” user interaction,
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i.e., interaction without the need to explicitly handle artificial
control devices but to rely on easy-to-learn interaction with
(to the user) invisible input devices. While many gesture
sets have been explored by researchers or users [87], it
can be debated how “natural” those gesture-based inter-
faces really are [88], e.g., due to the poor affordances of
lectures.

Still, the prevalence of small sensors such as RGB and
depth cameras, inertial measurement units, radars or mag-
netic sensors in mobile devices and AR as well as VRHMDs,
and continuing advances in hand [28, 29], head [89], and
body pose estimation [90–96] gave rise to a wide variety
of gesture-based interaction techniques being explored for
mixed reality.

For mobile devices research began investigating options
for interaction next to [97], above [98,99], behind [100,101],
across [102–105], or around [106,107] the device.

The additional modalities are either substituting or com-
plementing the devices’ capabilities. These approaches typ-
ically relied on modifying existing devices using a variety
of sensing techniques, which can limit their deployment to
mass audiences. Hence, researchers started to investigate
the use of unmodified devices. Nandakumar et al. [108]
proposed the use of the internal microphones of mobiles to
determine the location of finger movements on surfaces but
cannot support mid-air interaction. Song et al. [109] enabled
in-air gestures using the front and back facing cameras of
unmodified mobile devices. With Surround See, Yang et al.
[110] modified the front-facing camera of a mobile phone
with an omnidirectional lens, extending its field of view
to 360◦ horizontally. They showcased different application
areas, including peripheral environment, object, and activity
detection, including hand gestures and pointing, but did not
comment on the recognition accuracy. In GlassHands, it
was demonstrated how the input space around a device can
be extended by using a built-in front-facing camera of an
unmodified handheld device and some reflective glasses, like
sunglasses, ski goggles, or visors [111]. This work was later
extended to work with eye reflections [112,113].

While being explored since the mid-1990s in tabletop-
based AR [114–116], for handheld AR, vision-based finger
and hand tracking became popular since themid-2000s [117–
120]. Yusof et al. [121] provide a survey on the various fla-
vors of gesture-based interaction in handheld AR, including
marker-based and marker-less tracking of fingers or whole
hands.

An early example of in-air interaction using AR HMDs is
presented by Kolsch et al. [122], who demonstrated finger
tracking with a head-mounted camera. Xiao et al. [123]
showed how to incorporate touch gestures on everyday sur-
faces in to the Microsoft HoloLens. Beyond hand and finger
tracking, full-body tracking using head-mounted cameras
was also explored [124]. Also, reconstruction of facial ges-

tures, e.g., for reenactment purposes, when wearing HMDs
has gained increased interest [125–128].

Further solutions for freehand interaction were also pro-
posed, including a wrist-worn gloveless sensor [129], swept
frequency capacitive sensing [130], an optical mouse sensor
attached to a finger [131], or radar-based sensing [132].

Most AR and VR in-air interactions typically aim at
using unsupported hands. Hence, to enable reliable selection,
targets are designed to be sufficiently large and spaced apart
[133]. Also, while the addition of hand tracking to modern
AR and VR HMDs allows for easy access to in-air gestures,
the accuracy of those spatial tracking solutions is still sig-
nificantly lower than dedicated lab-based external tracking
systems [134].

Besides interaction with handheld or head-worn devices,
also whole environments such as rooms can be equipped with
sensors to facilitate gesture-based interaction [135–137].

In VR, off-the-shelf controllers were also appropriated to
reconstruct human poses in real time [138,139].

5.4 Pen-Based Interaction

In-air interactions in AR and VR typically make use of
unsupported hands or controllers designed for gaming. In ad-
dition, pens (often in combination with tablets as supporting
surface) have also been explored as input devices. Szalavári
and Gervautz [40] as well as Billinghurst et al. [140] utilized
pens for input on physical tablets in AR respectively VR.
Watsen et al. [141] used a handheld Personal Digital Assis-
tant (PDA) for operating menus in VR. In the Studierstube
frameworks, pens were used to control 2D user interface
elements on a PDA in AR. Poupyrev et al. [142] used a pen
for notetaking in VR. Gesslein et al. [143] used a pen for
supporting spreadsheet interaction in Mobile VR.

Many researches also investigated the use of pens for
drawing and modeling. Sachs et al. [144] used an early
system of 3D CAD modeling using a pen. Deering [145]
used a pen for in-air sketching in a fishtank VR environment.
Keeve et al. [146] utilized a brush for expressive painting in
a Cave Automatic Virtual Environment (CAVE). Encarnacao
[147] used a pen and pad for sketching in VR on top of an
interactive table. Fiorentino et al. [148] explored the use of
pens in mid-air for CAD applications in VR. Xin et al. [149]
enabled the creation of 3D sketches using the pen and tablet
interaction in handheld AR. Yee et al. [150] used a pen-
line device along a VST HMD for in situ sketching in AR.
Gasquez et al. [151, 152], Arora et al. [153], and Drey et al.
[154] noted the benefits of supporting both free-form in-air
sketching and on a supporting 2D surface in AR and VR.
Suzuki et al. [155] expanded previous sketching applications
for ARwith dynamic and responsive graphics, e.g., to support
physical simulations.
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The performance of pen-based input was also investigated
in VR. Bowman and Wingrave [156] compared pen and
tablet input for menu selection against floating menus and
a pinch-based menu system and found that the pen and tablet
interaction was significantly faster. Teather and Stuerzlinger
[157] compared pen-based input with mouse input for target
selection in a fishtank VR environment and found that 3D
pointing was inferior to 2D pointing when targets where
rendered stereoscopically. Arora et al. [158] compared pen-
based mid-air painting with surface-supported painting and
found supporting evidence that accuracy improved using a
physical drawing surface. Pham et al. [159] indicated that
pens significantly outperform controllers for input in AR
and VR and is comparable to mouse-based input for target
selection. Batmaz et al. explored different pen grip styles for
target selection in VR [160].

5.5 Gaze-Based Interaction

Besides input using touch input gestures or handhold input
devices, gaze has also been explored as input modality in
mixed reality.

Duchowski [161] presents a review of 30 years of gaze-
based interaction, in which gaze-based interaction is cate-
gorized within a taxonomy that splits interaction into four
forms, namely, diagnostic (off-line measurement), active (se-
lection, look to shoot), passive (foveated rendering, a.k.a.
gaze-contingent displays), and expressive (gaze synthesis).

For VR, Mine [162] proposed the use of gaze-directed
steering and look-at menus in 1995. Tanriverdi and Jacob
[163] highlighted that VR can benefit from gaze tracking.
They stated that physical effort can be minimized through
gaze, and user’s natural eye movement can be employed to
perform interactions in VR (e.g., with distant objects). They
also show that a proposed heuristic gaze selection technique
outperforms virtual hand-based interaction in terms of task-
completion time. Cournia et al. [164] found that dwell-
time-based selection was slower than manual ray-pointing.
Duchowski et al. [165] presented software techniques for
binocular eye tracking within VR as well as their application
to aircraft inspection training. Specifically, they presented
means for integrating eye trackers into a VR framework,
novel 3D calibration techniques, and techniques for eye-
movement analysis in 3D space. In 2020, Burova et al.
[166] also utilized eye-gaze analysis in industrial tasks. They
used VR to develop AR solutions for maintenance tasks
and collected gaze data to elicit comments from industry
experts on the usefulness of theAR simulation. Zeleznik et al.
[167] investigated gaze interaction for 3D pointing, move-
ment, menu selection, and navigation (orbiting and flying)
in VR. They introduced “Lazy” interactions that minimize
hand movements, “Helping Hand” techniques in which gaze

augments hand-based techniques, as well as “Hands Down”
techniques in which the hand can operate a separate input
device. Piumsomboon et al. [168] presented three novel eye-
gaze-based interaction techniques for VR: Duo-Reticles, an
eye-gaze selection technique based on eye-gaze and inertial
reticles; Radial Pursuit, a smooth pursuit-based technique
for cluttered object; and Nod and Roll, a head-gesture-based
interaction based on the vestibulo-ocular reflex.

5.6 Haptic Interaction

Auditory and visual channels are widely addressed sensory
channels in AR and VR systems. Still, human experiences
can be enriched greatly through touch and physical mo-
tions. Haptic devices enable the interaction between hu-
mans and computers by rendering mechanical signals to
stimulate human touch and kinesthetic channels. The field
of haptics has a long standing tradition and incorporates
expertise from various fields such as robotics, psychology,
biology, and computer science. They also play a role in
diverse application domains such as gaming [169], indus-
try [170], education [171], and medicine [172–174]. Hap-
tic interactions are based on cutaneous/tactile (i.e., skin-
related) and kinesthetic/proprioceptive (i.e., related to the
body pose) sensations. Various devices have been proposed
for both sensory channels, varying in form factor, weight,
mobility, comfort as well as the fidelity, duration, and in-
tensity of haptic feedback. For recent surveys, we refer
to [175,176].

In VR, the use of haptic feedback has a long tradition
[177]. A commonly used active haptic device for stationary
VR environment with a limited movement range of the users’
hands is the PHANToM, which is a grounded system (or
manipulandum) offering a high fidelity but low portability.
Hence, over time substantial research efforts have been made
in creating mobile haptic devices for VR [176].

In AR, the challenge in using haptics is that the display
typically occludes real objects the user might want to interact
with. Also, in OST displays, the haptic device is still visible
behind virtual objects rendered on the display. When using
VST displays, the haptic devicemight be removed by inpaint-
ing [178].

Besides active haptic systems, researchers have also in-
vestigated the use of low-fidelity physical objects to augment
virtual environments in passive haptics. An early example
of this type of haptic feedback is presented by Insko [179],
who showed that passive haptics can improve both sense of
presence and spatial knowledge training transfer in a virtual
environment.

A challenge when using passive haptic feedback, besides
a mismatch in surface fidelity, is that the objects used for
feedback are typically static. To mitigate this problem, two
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strategies can be employed. First, the objects themselves can
be moved during interaction by mounting them on robotic
platforms such as robots [180, 181] or by human operators
[182,183]. Second, themovements of the user themselves can
be redirected to a certain extent by decoupling the physical
motion of a user from the perceived visual motion. This can
be done with individual body parts such as hands [184, 185]
or the whole body using redirected walking techniques [186,
187].

5.7 Multimodal Interaction

While, often, AR and VR systems offer single input channels
along with audio-visual output, rich interaction opportunities
arise when considering the combination of further input and
output modalities. Complementing the strengths of multiple
channels can lead to increased user experiences. While mul-
timodal (or multisensory) output is typically concerned with
increasing the immersion and sense of presence in a scene,
multimodal input typically tries to increase the efficiency
of user interaction with a AR or VR system. For overviews
about multimodal interaction beyond AR and VR, we refer
to [188, 189]. Nizam et al. also provided a recent overview
about multimodal interaction for specifically for AR [190].

The use of multisensory output such as the combination of
audiovisual output with smell and touch has been shown to
increase presence and perceived realism in VR [191, 192]
and has been employed as early as in the 1960s [193].
Gallace et al. discussed both benefits and challenges when
utilizing multiple output modes in VR [194]. Extrasensory
experiences [195, 196] (such as making temperature visible
through infrared cameras) have also been explored [197].

In AR, Narumi et al. [198] showed that increasing the
perceived size of a real cookie using AR also increased the
feeling of satiety. Narumi et al. [199] also created a multisen-
sory eating experience in AR by changing the apparent look
and smell of cookies. Koizumi et al. [200] could modulate
the perceived food texture using a bone-conducting speaker.
Ban et al. [201] showed that it is possible to influence fatigue
while handling physical objects by affecting their perceived
weight by modulating their size in AR.

Regarding multimodal input in VR, the combination of
speech and gestures is a commonly used input combina-
tion. In 1980, Bolt [202] introduced put-that-there. Users
could immerse themselves in aMedia Room to place objects
within that environment through a combination of gestures
and speech. In 1989, Hauptmann [203] showed that users
preferred a combination of speech and gestures for the spatial
manipulation of 3D object. Cohen et al. [204] used a hand-
held computer along with speech and gesture for supporting
map-based tasks on a virtual workbench. LaViola [205]
used hand-based interaction (sensed through a data glove)

along with speech for interior design in VR. Ciger et al.
[206] combined speech with pointing of a magic wand on
an immersive wall to create “magical” experiences. Burdea
et al. [207] presented an early survey on VR input and output
devices as well as an overview about studies that quantify
the potentials of several modalities on simulation realism and
immersion. Prange et al. [208] studied the use of speech and
pen-based interaction in a medical setting.

In AR, Olwal et al. [209] combined speech and gestures
for object selection. Kaiser et al. [210] extended that work
by introducing mutual disambiguation to improve selection
robustness. Similarly, Heidemann et al. [211] presented an
AR system for online acquisition of visual knowledge and re-
trieval of memorized objects using speech and deictic (point-
ing) gestures. Kolsch et al. [122] combined speech input
with gestures in an outdoor AR environment. Piumsomboon
[212] studied the use of gestures and speech vs gestures
only for object manipulation in AR. They found that the
multimodal was not substantially better than gesture-only-
based interaction for most tasks (but object scaling). This
indicates that multimodality per se is not always beneficial
for interaction but needs to be carefully designed to suit the
task at hand. Rosa et al. [213] discussed different notions of
AR and Mixed Reality as well as the role of multimodality.
Wilson et al. [214] used a projector-camera system mounted
on a pan-tilt platform for multimodal interaction in a physical
room using a combination of speech and gestures.

The combination of touch and 3D movements has also
been explored in VR and AR. Tsang et al. [215] introduced
the Boom Chameleon, touch display mounted on a tracked
mechanical boom, and used joint gesture, speech, and view-
point input in a 3D annotation application. Benko et al. [216]
combined on-surface and in-air gestures for content transfer
between a 2D screen and 3D space. Mossel et al. [217]
and Marzo et al. [218] combined touch input and handheld
device movement for 3D object manipulations in mobile AR.
Polvi et al. [219] utilized touch and the pose of a handheld
touchscreen for reminded object positioning in mobile AR.
Grandi et al. [220] studied the use of touch and the orientation
of a smartphone for collaborative object manipulation in
VR. Surale et al. [221] explored the use of touch input on
a spatially tracked tablet for object manipulations in VR.
In VR, Menzner et al. [222] utilized combined in-air and
touch movements on and above smartphones for efficient
navigation of multiscale information spaces. Several authors
combined pen input both in mid-air as well as on touch
surfaces to enhance sketching in VR [154] and AR [151–
153].

Also, the combination of eye-gaze with other modalities
such as mid-air gestures and head movements has seen recent
interest for interaction in AR and VR. For example, Pfeuffer
et al. [223] investigated the combination of gaze and gestures
in VR. They described Gaze + Pinch, which integrates eye
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gaze to select 3D objects, and indirect freehand gestures
to manipulate those objects. They explored this technique
for object selection, manipulation, scene navigation, menu
interaction, and image zooming. Similarly, Ryu et al. [224]
introduced a combined grasp eye-pointing technique for 3D
object selection. Kyto et al. [225] combined head and eye
gaze for improving target selection in AR. Sidenmark and
Gellersen [226,227] studied different techniques combining
eye and head pointing in VR. Gesslein et al. [143] combined
pen-based input with gaze tracking for efficient interaction
across multiple spreadsheets. Biener et al. [228] utilized
gaze and touch interaction to navigate virtual multi-display
environments.

5.8 Multi-Display Interaction

Traditionally, output of interactive systems is often limited to
a single display, ranging from smartwatches to gigapixel dis-
plays. However, multi-display environments from the desk-
top to gigapixel displays are also increasingly common for
knowledge work and complex tasks such as financial trading
or factory management as well as for social applications such
as second screen TV experiences [229]. Surveys about multi-
display systems and distributed user interfaces have been
presented by Elmqvist [230], Grubert et al. [229, 231, 232],
and Brudy et al. [233].

Augmented reality has the potential to enhance interaction
with both small and large displays by adding an unlimited vir-
tual screen space or other complementing characteristics like
mobility. However, this typically comes at the cost of a lower-
display fidelity compared with a physical panel display (such
as lower resolution, lower contrast, or a smaller physical field
of view in OST HMDs).

In 1991, Feiner et al. [234] proposed a hybrid display
combining a traditional desktop monitor with an OST HMD
and explored a windowmanager application. Butz et al. [235]
combined multiple physical displays ranging from handheld
to wall-sized ones with OST HMDs in a multi-user collab-
orative environment. Baudisch et al. [236] used a lower-
resolution projector to facilitate focus and context interaction
on a desktop computer. MacWilliams et al. [237] proposed
a multi-user game in which players could interact with a
tabletop, laptop, and handheld displays. Serrano et al. [238]
proposed to use an OST HMD to facilitate content transfer
betweenmultiple physical displays on a desktop. Boring et al.
[239] used a smartphone to facilitate content transfer between
multiple stationary displays. They later extended the work
to manipulate screen content on stationary displays [240]
and interactive facades [241] using smartphones. Raedle

et al. [104] supported interaction across multiple mobile
displays through a top-mounted depth camera. Grubert et al.
[105,242] used face tracking to allow user interaction across
multiple mobile devices, which could be dynamically re-
positioned. They also proposed to utilize face tracking [242,
243] to create a cubic VR display with user-perspective
rendering. Butscher et al. [244] explored the combination
of VST HMDs with a tabletop displays for information
visualization. Reipschläger et al. [245,246] combined a high-
resolution horizontal desktop display with an OST HMD
for design activities. Gugenheimer et al. [247] introduced
face touch, which allows interacting with display-fixed user
interfaces (using direct touch) and world-fixed content (using
raycasting). This work was later extended to utilize three
touch displays around the user’s head [248]. Gugenheimer
et al. also introduced ShareVR [249], which enabled multi-
user and multi-display interactions across users inside and
outside of VR.

A number of systems also concentrated on the combina-
tion of HMDs and handheld as well body-worn displays,
such as smartwatches, smartphones, and tablets in mobile
contexts. Here, typically the head-mounted display extends
the field of view of the handheld display to provide a larger
virtual field of view. In MultiFi [250], an OST HMD pro-
vides contextual information for higher-resolution touch-
enabled displays (smartwatch and smartphone). The authors
explored different spatial reference systems such as body-
aligned, device-aligned, and side-by-side modes. Similar ex-
plorations have followed suit using video-see-throughHMDs
[251], an extended set of interaction techniques [252], using
smartwatches [253–255], or with a focus on understand-
ing smartphone-driven window management techniques for
HMDs [256].

Purely virtual multi-display environments have also been
explored in AR and VR. In 1993, Feiner et al. [257] in-
troduced head-surrounding and world reference frames for
positioning 3D windows in VR. In 1998, Billinghurst et al.
[258] introduced the spatial displaymetaphor, in which infor-
mation windows are arranged on a virtual cylinder around the
user. Since then, virtual information displays have been ex-
plored in various reference systems, such as world-, object-,
head-, body-, or device-referenced [259]. Specifically, in-
teracting with windows in body-centered reference systems
[260] has attracted attention, for instance, to allow fast access
to virtual items [261, 262], mobile multi-tasking [263, 264],
and visual analytics [265]. Lee et al. [266] investigated posi-
tioning a window in 3D space using a continuous hand ges-
ture. Petford et al. [267] compared the selection performance
of mouse and raycast pointing in full coverage displays (not
in VR). Jetter et al. [268] proposed to interactively design a
space with various display form factors in VR.
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5.9 Interaction Using Keyboard and
Mouse

Being the de facto standard for human-computer interaction
in personal computing environments for decades, standard
input peripherals such as keyboard and mouse, while initially
used in projection-based CAVE environments, were soon
replaced by special-purpose input devices and associated
interaction techniques for AR and VR (see previous sec-
tions). This was partly due to the constraints of those input
devices, making them challenging to use for spatial input
with six degrees of freedom. Physical keyboards typically
support solely symbolic input. Standard computer mice are
restricted to two-dimensional pointing (along with button
clicks and a scroll-wheel). However, with modern knowledge
workers still relying on the efficiency of those physical input
devices, researchers revisited how to use them within AR
and VR.

With increasing interest in supporting knowledge work
using AR and VR HMDs [269–272], keyboard and mouse
interaction drew the attention of several researchers.

The keyboard was designed for the rapid entrance of sym-
bolic information, and although it may not be the best mecha-
nism developed for the task, its familiarity that enabled good
performance by users without considerable learning efforts
kept it almost unchanged for many years. However, when
interacting with spatial data, they are perceived as falling
short of providing efficient input capabilities [273], even
though they are successfully used in many 3D environments
(such as CAD or gaming [274]), can be modified to allow 3D
interaction [275,276], or can outperform 3D input devices in
specific tasks such as 3D object placement [277, 278]. Also
for 3D object manipulation in AR andVR, they were found to
be not significantly slower than a dedicated 3D input device
[279].

In VR, a number of works investigated the costs of using
physical keyboards for standard text entry tasks. Grubert
et al. [280, 281], Knierim et al. [282], and McGill et al.
[283] found physical keyboards to be mostly usable for text
entry in immersive head-mounted display-based VR but
varied in their observations about the performance loss when
transferring text entry from the physical to the virtual world.
Pham et al. [284] deployed a physical keyboard on a tray to
facilitate mobile text entry. Apart from standard QWERTY
keyboards, a variety of further text entry input devices and
techniques have been proposed for VR; see [7].

Besides using unmodified physical keyboards, there have
been several approaches in extending the basic input capabil-
ities of physical keyboard beyond individual button presses.
Specifically, input on, above, and around the keyboard sur-
face have been proposed using acoustic [285, 286], pressure

[287–289], proximity [290], and capacitive sensors [291–
296], cameras [297–299], body-worn orientation sensors
[300], or even unmodified physical keyboards [301, 302].
Besides sensing, actuation of keys has also been explored
[303]. Embedding capacitive sensing into keyboards has been
studied by various researchers. It lends itself to detect finger
events on and slightly above keys and can be integrated into
mass-manufacturing processes. Rekimoto et al. [294] investi-
gated capacitive sensing on a keypad, but not a full keyboard.
Habib et al. [292] and Tung et al. [293] proposed to use
capacitive sensing embedded into a full physical keyboard
to allow touchpad operation on the keyboard surface. Tung
et al. [293] developed a classifier to automatically distinguish
between text entry and touchpad mode on the keyboard. Shi
et al. developed microgestures on capacitive sensing keys
[295,304]. Similarly, Zheng et al. [305,306] explored various
interaction mappings for finger and hand postures. Sekimoro
et al. focused on exploring gestural interactions on the space
bar [307]. Extending the idea of LCD-programmable key-
boards [308], Block et al. extended the output capabilities of
touch-sensitive, capacitive-sensing keyboard by using a top-
mounted projector [296]. Several commercial products have
also augmented physical keyboards with additional, partly
interactive, displays (e.g., Apple Touch Bar, Logitech G19
[309], Razer DeathStalker Ultimate [310]).

Maiti et al. [311] explored the use of randomized keyboard
layouts on physical keyboards using an OST display. Wang
et al. [312] explored the use of an augmented reality exten-
sion to a desktop-based analytics environment. Specifically,
they added a stereoscopic data view using a HoloLens to a
traditional 2D desktop environment and interacted with key-
board and mouse across both the HoloLens and the desktop.

Schneider et al. [313] explored a rich design space of using
physical keyboards in VR beyond text entry. Specifically,
they proposed three different input mappings: 1 key to 1 ac-
tion (standard mode of interaction using keyboards), multiple
keys to a single action (e.g., mapping a large virtual button to
several physical buttons), as well as mapping a physical key
to a coordinate in a two-dimensional input space. Similarly,
they proposed three different output mappings: augmenting
individual keys (e.g., showing an emoji on a key), augment-
ing on and around the keyboard (e.g., adding user-interface
elements on top of the keyboard such as virtual sliders), as
well as transforming the keyboard geometry itself (e.g., only
displaying single buttons or replacing the keyboard by other
visuals). Those ideas were later also considered in the domain
of immersive analytics [314].

Mouse-based pointing has been studied in depth outside of
AR and VR for pointing on single monitors [315] as well as
multi-display environments [316–318]. However, it has been
found that stand 2Dmouse devices do not adapt well to multi-



118 J. Grubert

display interaction [319], an issue which is also relevant for
AR and VR. Consequently, standard mice have been modi-
fied in various ways to add degrees of freedom. For example,
Villar et al. [320] explored multiple form factors for multi-
touch-enabled mice. Other researchers have added additional
mouse sensors to support yawing [321,322], pressure sensors
for discrete selection [323, 324] to allow for three instead
of two degrees of freedom. Three-dimensional interaction
was enabled using Rockin’Mouse [325] and the VideoMouse
[326]. Both works added a dome below the device to fa-
cilitate 3D interaction. Steed and Slater [327] proposed to
add a dome on top of the mouse rather than below. Further
form factors have also been proposed to facilitate pointing-
based interaction in 3D [328, 329]. Recently, researchers
also worked on unifying efficient input both in 2D and 3D
[276,330].

Standard mice using a scroll wheel can also be efficiently
used for 3D object selection when being combinedwith gaze-
tracking in virtual multi-display environments [228]. For
example, in the Windows Mixed Reality Toolkit [331], the
x and y movements of the mouse can be mapped to the x and
y movements on a proxy shape, such as a cylinder (or any
object on that cylinder, like a window). The scroll wheel is
used for changing the pointer depth (in discrete steps). The x
and ymovements can be limited to the current field of view of
the user to allow for acceptable control to display ratios. The
user gaze can then be used to change the view on different
regions of the proxy shape.

5.10 Virtual Agents

Virtual agents can be considered as “intelligent” software
programs performing tasks on behalf of users based on
questions or commands. While it can be argued what
“intelligent” really means in this context, a widely accepted
characteristic of this “intelligence” is context-aware behavior
[332, 333]. This allows an agent to interact with the
user and environment through sensing and acting in an
independent and dynamic way. The behavior is typically
well defined and allows to trigger actions based on a set of
conditions [334].

The rise of voice assistants (or conversational agents)
[335], which interact with users through natural language,
has broughtmedia attention and a prevalence in various areas,
such as home automation, in-car operation, automation of
call centers, education, and training [336].

In AR and VR, virtual agents often use more than a single
modality for input and output. Complementary to voice in
an output, virtual agents in AR and VR can typically react
to body gestures or postures or even facial expressions of
the users. Due to their graphical representations, those agents
are embodied in the virtual world. The level of embodiment

of a virtual agent has been studied for decades [337, 338].
For example it has been shown that the effect of adding
a face was larger than the effect of visual realism (both
photo-realism and behavioral realism of the avatar). In VR,
the level of visual realism of the virtual agent is typically
matched to the visual realism of the environment. In contrast,
in AR, there is often a noticeable difference between the
agent representation and the physical scene, and those effects
are still underexplored [339]. Hantono et al. reviewed the use
of virtual agents in AR in educational settings. Norouzi et al.
provided review of the convergence between AR and virtual
agents [340].

Specifically for AR, Maes et al. [341] introduced a magic
mirror AR system, in which humans could interact with
a dog through both voice and gestures. Similarly, Cavazza
et al. [342] allowed participants to interact with virtual agents
in an interactive storytelling environment. MacIntyre et al.
[343] used pre-recorded videos of physical actors to let users
interact with them using OST HMDs. Anabuki et al. [344]
highlighted that having virtual agents and users share the
same physical environment is the most distinguishing aspect
of virtual agents in AR. They introducedWelbo, an animated
virtual agent, which is aware of its physical environment and
can avoid standing in the user’s way. Barakony et al. [345]
presented “AR Puppet” as system that explored the context-
aware animated agents within AR in investigated aspects like
visualization, appearance, or behaviors. They investigated
AR-specific aspects such as the ability of the agent to avoid
physical obstacles or its ability to interact with physical
objects. Based on this initial research, the authors explored
various applications [346, 347]. Chekhlov et al. [348] pre-
sented a system based on Simultanteous Localization and
Mapping (SLAM) [349], in which the virtual agent had to
move in a physical environment. Blum et al. [350] introduced
an outdoor AR game which included virtual agents. Kotranza
et al. [351, 352] used a tangible physical representation of
a human that could be touched, along with a virtual visual
representation in a medical education context. They called
this dual representationmixed reality humans and argued that
affording touch between a human and a virtual agent enables
interpersonal scenarios.

5.11 Summary and Outlook

This chapter served as an overview of a wide variety of
interaction techniques MR, covering both device- and prop-
based input such as tangible interaction and pen and keyboard
input as well as utilizing human effector-based input such as
spatial gestures, gaze, or speech.

The historical development of the presented techniques
was closely coupled to the available sensing capabilities.
For example, in order to recognize props such as paddles
[18], they had to be large enough in order to let fiducials
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be recognized by low-resolution cameras. With the advance-
ment of computer vision-based sensing, fiducials could be-
come smaller, change their appearance to natural-looking
images, or be omitted altogether (e.g., for hand and finger
tracking). Further, the combination of more than one modal-
ity became possible by increasing computational capabilities
of MR systems.

In the future, we expect an ongoing trend of both mini-
mizing the size and price of sensors, as well as the ubiquitous
availability of those sensors, in dedicated computing devices,
in everyday objects [353], on [354] or even in the human
body itself [355]. Hence,MR interaction techniques will play
a central role on shaping the future of both pervasive comput-
ing [333] as well as augmenting humans with (potentially)
superhuman capabilities (e.g., motor capabilities [356,357],
cognitive and perceptual capabilities [358]. Besides techno-
logical and interaction challenges along the way, the field of
MR interactionwill greatly benefit from including both social
and ethical implications when designing future interfaces.
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