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Abstract. Let S be a string built on some alphabet Σ. A multi-cut
rearrangement of S is a string S′ obtained from S by an operation called
k-cut rearrangement, that consists in (1) cutting S at a given number k
of places in S, making S the concatenated string X1 ·X2 ·X3 . . . Xk ·Xk+1,
where X1 and Xk+1 are possibly empty, and (2) rearranging the Xis so
as to obtain S′ = Xπ(1) · Xπ(2) · Xπ(3) . . . Xπ(k+1), π being a permuta-
tion on 1, 2 . . . k + 1 satisfying π(1) = 1 and π(k + 1) = k + 1. Given
two strings S and T built on the same multiset of characters from Σ,
the Sorting by Multi-cut Rearrangements (SMCR) problem asks
whether a given number � of k-cut rearrangements suffices to transform
S into T . The SMCR problem generalizes and thus encompasses several
classical genomic rearrangements problems, such as Sorting by Trans-
positions and Sorting by Block Interchanges. It may also model
chromoanagenesis, a recently discovered phenomenon consisting in mas-
sive simultaneous rearrangements. In this paper, we study the SMCR
problem from an algorithmic complexity viewpoint, and provide, depend-
ing on the respective values of k and �, polynomial-time algorithms as
well as NP-hardness, FPT-algorithms, W[1]-hardness and approximation
results, either in the general case or when S and T are permutations.

1 Introduction

Genome rearrangements refer to large-scale evolutionary events that affect the
genome of a species. They include among others reversals [1], transpositions [2],
and block interchanges [5]; see also [9] for a full description. Compared to small-
scale evolutionary events such as insertion, deletion or substitution of single DNA
nucleotides, they are considered to be rare and, until recently, were assumed to
happen one after the other. In the recent literature, however, a new type of event,
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called chromoanagenesis, has been shown to occur in genomes [12,13]. The term
chromoanagenesis subsumes different types of rearrangements (namely, chro-
mothripsis, chromoanasynthesis and chromoplexy) whose common ground is the
following: in a single event, the genome is cut into many blocks, and then rear-
ranged. As stated by Pellestor and Gatinois [12], these are “massive chromosomal
rearrangements arising during single chaotic cellular events”. Chromoanagenesis,
and notably chromothripsis, is suspected to play a role in cancer and congenital
diseases [13]. In this paper, we introduce a new model for genome rearrangements
that is general enough to encompass most of the previously described genome
rearrangements [9] as well as chromoanagenesis. Our goal here is to study its
properties in terms of computational complexity.

Notation. Given an alphabet Σ, we say that two strings S ∈ Σ∗ and T ∈ Σ∗

are balanced if S and T are built on the same multiset of characters—in other
words, each character in S also appears in T in the same number of occurrences.
We denote by |S| the length of a string S. Unless otherwise stated, we assume
that |S| = |T | = n. We denote by Si, 1 ≤ i ≤ n, the i-th character of S.
Given a string S in Σ∗, we denote by d the maximum number of occurrences
of any character of Σ in S. In the specific case where d = 1 (i.e. when S and
T are permutations), and for any 0 ≤ i ≤ n, we say that there is a breakpoint
at position i in S (or, equivalently, that (Si, Si+1) is a breakpoint) if the two
consecutive characters Si and Si+1 are not consecutive in T . For the specific
cases i = 0 and i = n, we artificially set S0 = T0 = α0 and Sn+1 = Tn+1 = αn+1

where α0 /∈ Σ and αn+1 /∈ Σ. Thus, there is a breakpoint at position 0 (resp.n)
in S whenever S1 �= T1 (Sn �= Tn). We also denote by b(S, T ) the number of
breakpoints in S with respect to T . If (Si, Si+1) is not a breakpoint, we say that
it is an adjacency.

Definition 1. Given a string S ∈ Σ∗ and an integer k, a k-cut rearrangement
of S is an operation consisting in the two following steps: (1) cut S at k locations
(thus S can be written as the concatenation of k + 1 strings, i.e. S = X1 · X2 ·
X3 . . . Xk+1, where each Xi is possibly empty, and where a cut occurs between Xi

and Xi+1, 1 ≤ i ≤ k) and (2) rearrange (i.e., permute) the Xis so as to obtain
S′ = Xπ(1) · Xπ(2) · Xπ(3) . . . Xπ(k+1), π being a permutation on the elements
1, 2 . . . k +1 such that π(1) = 1 and π(k +1) = k +1. Each of the Xis considered
in a given k-cut rearrangement will be called a block.

Note that, although a k-cut rearrangement has been defined as a cut along the
string at k locations, it is always possible, if necessary, to perform only k′ ≤ k cuts
at a given step—thus mimicking a k-cut rearrangement while actually realizing
a k′-cut rearrangement—by cutting several times at the same location. The case
where X1 (resp. Xk+1) is empty corresponds to the case where the leftmost
(resp. rightmost) block of S is moved to obtain S′, otherwise X1 (resp. Xk+1)
remains unmoved in S′. Note that, in this model, each of the blocks Xis can
only be permuted, thus no reversal of an Xi is allowed, and therefore the strings
we consider are always unsigned. In this paper, we study the following problem.
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Sorting by Multi-cut Rearrangements (SMCR)
Instance: Two balanced strings S and T , two integers � and k.
Question: Is there a sequence of at most � many k-cut rearrangements that
transforms S into T?

For convenience, we may also refer to the SMCR problem with parameters
k and � as the (k, �)−SMCR problem. Our goal in this paper is to provide
algorithmic results regarding SMCR. The computational complexity of SMCR
highly depends on whether we set bounds on k and �: depending on applica-
tions, they can either be fixed constants (and in that case algorithms running
in e.g. O(nk) are acceptable), parameters (unbounded, but far smaller than n,
then algorithms in f(k) · poly(n)—that is, Fixed-Parameter Tractable (or FPT)
algorithms [7,8] —would be relevant even for fast-growing functions f), or parts
of the input (i.e. unbounded, and in that case only polynomial-time algorithms
on n and k are relevant). Hence, we will consider each of these cases for both �
and k. For this study, we will consider separately the case of strings (i.e., d > 1
both in S and T ) from the case of permutations (i.e., d = 1 both in S and T ),
in Sects. 2 and 3, respectively.

Basic Observations. Both in permutations and strings, the cases k = 1 and
k = 2 are trivial, since they do not allow to move any block, and thus we are in
presence of a Yes-instance iff S = T .

Additionally, the SMCR problem is a natural generalization and extension
of a certain number of problems that have already been defined and studied in
the literature before, as described hereafter.

When k = 3, each k-cut rearrangement is necessarily a transposition of
blocks X2 and X3. Thus SMCR in that case is equivalent to the Sorting by
Transpositions problem [2], for which we know it is NP-hard, even if S and T
are permutations [3].

When k = 4, each k-cut rearrangement allows to move two blocks among
X2, X3 and X4, which exactly corresponds to the Sorting by Block Inter-
change problem. This problem is known to be in P for permutations [5] and
NP-hard for strings (an NP-hardness proof for binary strings is given in [6],
Theorem 5.7.2).

When � = 1, the SMCR problem comes down to deciding whether k cuts
are sufficient to rearrange S into T in one atomic move (i.e., one k-cut rear-
rangement). In permutations, the problem is trivially solved by counting the
number b(S, T ) of breakpoints between S and T , since we have a Yes-instance
iff b(S, T ) ≤ k. In strings, the SMCR problem resembles the Minimum Common
String Partition problem [11], as will be discussed in Theorems 3 and 4.

When � and k are constant, SMCR is trivially polynomial-time solvable, since
a brute-force algorithm, exhaustively testing all possible k-cut rearrangements at
each of the � authorized moves, has a running time of O(nk�+1)—the additional
n factor being needed to verify that the result corresponds to string T .
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It is also natural to wonder whether (k, �)-SMCR and (k�, 1)-SMCR are
equivalent. It can be easily seen that a Yes-instance for (k, �)-SMCR is also a
Yes-instance for (k�, 1)-SMCR: it suffices for this to aggregate all cuts from the
(k, �)-SMCR solution (of which there are at most k�), and rearrange accordingly.
However, the reverse (i.e. from (k�, 1)-SMCR to (k, �)-SMCR) is not always
true. For example, take S = afedcbg, T = abcdefg, k = 3, and � = 2: this is
a Yes-instance for (6, 1)-SMCR, whereas it is a No-instance for (3, 2)-SMCR.
Indeed, in this instance the number b(S, T ) of breakpoints is equal to 6. Thus,
in the former case, the 6 following cuts (symbolized as vertical segments) in
S = a|f|e|d|c|b|g suffice to obtain T after a single 6-cut rearrangement. In the
latter case, every 3-cut rearrangement is a transposition, and in this instance no
transposition can decrease b(S, T ) by 3. Thus at least three 3-cut rearrangements
are necessary to transform S into T .

2 Sorting by Multi-cut Rearrangements in Strings

In this section, we provide algorithmic results concerning the Sorting by
Multi-cut Rearrangements problem, in the general case where S and T
are strings. Our results are summarized in Table 1.

Table 1. Summary of the results for Sorting by Multi-cut Rearrangements in
strings. d is the maximum number of occurrences of a character in the input string S.

�
���
k

O(1) parameter part of the input

1
P

FPT(Thm 4) NP-hard:

O(1) for � = 1 even when d = 2 (Thm 3)

parameter ? for any fixed � ≥ 1 (Thm 2)

part of the input for any k ≥ 5 even in k-ary strings (Thm 1)

for k = 3, 4 even in binary strings [3,6]

As mentioned in the previous section, we know that SMCR is NP-hard in
binary strings for k = 3, 4. In the following theorem, we extend this result to
any value of k, however in larger alphabet strings.

Theorem 1. SMCR is NP-hard for any fixed k ≥ 5, even in k-ary strings.

Proof. We reduce the NP-hard 3-Partition problem in which the input is a
set A of integers and an integer B, and the question is whether A can be parti-
tioned into triples such that the integers of each triple sum up to B. Given an
instance of 3-Partition (A, B) with A = {a1, a2, . . . , a3m} and mB =

∑3m
i=1 ai,

we construct an instance of SMCR for any fixed k ≥ 5 as follows. For ease of
presentation, we assume that each ai is a multiple of 4 m and that B

4 < ai < B
2 ,
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so that we have the following property: If for some subset I of {1, . . . , 3m} and
some δ with 0 ≤ δ ≤ 4 m we have

∑
i∈I ai + δ = B +4, then

∑
i∈I ai = B, δ = 4,

and |I| = 3. We use a size-k alphabet {0, 1, . . . , k−1}, we denote by X the string
k−1·k−2·. . . 3, and by X ′ the reverse of X, i.e. 3·4·. . .·k−1 (note that X and X ′

have length k − 3 ≥ 2). We define S := 10a110a2 . . . 10a3m1(20X0X0X0)m2 and
T := (1X ′)3m1(20B+4)m2, and set � = 3 m. This completes the construction.
Before proving its correctness, we group the adjacencies of the strings S and T
based on whether the adjacencies of the two involved characters are in excess
in S, in T , or equal in both strings.

– Group 1 contains the adjacencies (0, 1), (1, 0), (0, k−1), (k−1, k−2), . . . , (4, 3),
and (3, 0) which each occur 3 m times in S and which do not occur in T .

– Group 2 contains the adjacencies (0, 0), which occur Bm−3 m times in S and
Bm+3m times in T , and the adjacencies (1, 3), (3, 4), . . . , (k−2, k−1), (k−, 1)
which do not occur in S, and occur 3 m times each in T .

– Group 3 contains the adjacencies (0, 2) and (2, 0) which each occur m times
in S and in T .

There are no further adjacencies in S or T . To show the correctness of the
reduction we show that (A, B) is a Yes-instance of 3-Partition iff there exists
a sequence of at most � = 3 m many k-cut rearrangements transforming S into T .

(⇒) Pick a solution of 3-Partition. For each triple (ai, aj , ap) of the solu-
tion, choose a unique substring 20X0X0X0 of S and perform the following three
k-cut rearrangements: First, cut S around 0ai and around the first copy of X
in the chosen subsequence, and cut at every position inside X. Observe that the
number of cuts is exactly k. Now reverse X into X ′ and exchange 0ai and X ′.
Perform a similar k-cut rearrangement with aj and the second occurrence of X
and with ap and the third occurrence of X in the selected substring. The selected
substring is transformed into 200ai00aj 00ak0 = 20B+4 and since each string 0ai is
replaced by X ′, the first part of the string is (1X ′)3m. Hence, the string obtained
by the 3 m many k-cut rearrangements described above is T .

(⇐) There are altogether 6 m+(k-2)3 m = 3 km adjacencies in Group 1 which
are in excess in S, and 3 km adjacencies in Group 2 which are in excess in T .
Since � = 3 m, each k-cut rearrangement cuts k adjacencies in Group 1 (and
no adjacency in Group 2 or 3). In particular, no 00 adjacency may be cut in a
feasible solution, so each subsequence 0B+4 in T is obtained by concatenating
a number of strips of the form 0ai as well as some number δ of 0 singletons.
Since S has 4 m of these singleton 0s, we have 0 ≤ δ ≤ 4 m. By the constraint
on the values of ai, each subsequence 0B+4 in T contains four singletons from S
and three substrings 0ai of S whose lengths sum to B. Thus, the m substrings
0B+4 in T correspond to a partition of A into m sets of three integers whose
values sum up to B. �	
Theorem 2. SMCR is NP-hard for any fixed �.

Proof. The reduction being very similar to the one of Theorem 1, we only high-
light the differences to have a fixed � instead of fixed k. First assume that m is a
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multiple of � (add up to � triples of dummy elements otherwise), and let k = 15m
� .

Note that k is a multiple of 5. The reduction is the same as above with a size-5
alphabet. In other words, we have X = 43 and X ′ = 34.

In the forward direction, use the described scenario using 5-cut rearrange-
ments, but combine a series of k/5 such rearrangements into a single k-cut rear-
rangement, as described at the end of Sect. 1. This gives a total of 3m

k/5 = � many
k-cut rearrangements sorting S into T . In the reverse direction, the same break-
point count holds, namely 3 k’m adjacencies need to be broken using � k-cut
rearrangements, with �k = 3 k’m. So again no 00 adjacency may be broken, and
by the same argument, we obtain a valid 3-partition of A. �	

The previous theorem shows NP-hardness of SMCR for any fixed �. However,
a stronger result can be obtained in the specific case � = 1.

Theorem 3. SMCR is NP-hard when � = 1, even when d = 2.

Proof. The proof is obtained by reduction from the Minimum Common String
Partition problem, which has been proved to be NP-hard in strings, even
when d = 2 [11]. Recall that the decision version of MCSP asks, given two
balanced strings S and T , and an integer p, whether S can be written as the
concatenation of p blocks S = X1 · X2 . . . Xp−1 · Xp and T can be written as
T = Xπ(1) · Xπ(2) . . . Xπ(p−1) · Xπ(p), where π is a permutation of 1, 2 . . . p. Note
that here we may have π(1) = 1 and/or π(p) = p.

Given an instance (S, T, p) of MCSP, we build an instance (S′, T ′, k, �) of
SMCRby setting S′ = x · S, T ′ = T · x (with x /∈ Σ), k = p + 2 and � = 1.
Clearly, if (S, T, p) is a Yes-instance for MCSP, then (S′, T ′, p + 2, 1) is a Yes-
instance for SMCR: the MCSP solution uses p − 1 cuts, to which we add one
before x, one after x, and one after Sn for solving SMCR. Conversely, if SMCR
is a Yes-instance for SMCR, and since x occurs only once in S′, then S′

1 = x,
and thus 2 cuts are used to ”isolate” x from S′. Besides, since T ′ ends with x,
there must exist a cut after the last character of S′. Hence, since S′ = x · S, at
most k − 3 = p − 1 cuts are used strictly within S, which in turns means that
S has been decomposed in p blocks, which can be rearranged so as to obtain T
since � = 1. Thus, (S, T, p) is a Yes-instance for MCSP. �	

Note that MCSP has been proved to be in FPT with respect to the size of
the solution [4]. It can be seen that this result can be adapted for the SMCR
problem in the case � = 1.

Theorem 4. When � = 1, SMCR is FPT with respect to parameter k.

Proof. Assuming S �= T , let A (resp. B) be the length of the longest common
prefix (resp. suffix) of S and T . For 0 ≤ a ≤ A and 0 ≤ b ≤ B, let Sa,b, Ta,b

be the strings obtained from S, T by removing the first a and last b characters.
Then T can be obtained from S by one k-cut rearrangement if and only if, for
some pair (a, b), Sa,b and Ta,b admit a common string partition into k−1 blocks.
Indeed, this is easy to verify by matching the limits of the blocks in MCSP
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(including at the end of the strings) with the cuts of the rearrangement. So
SMCR when � = 1 can be solved using O(n2) calls to MCSP with parameter
k − 1, each with a different pair (a, b), which itself is FPT for k [4]. �	

Note that it is not sufficient to check only with the longest common prefix
and suffix (i.e. SA,B and TA,B), as can be seen in the following example, where
S can be transformed into T via one 3-cut rearrangement, A = B = 2, but
only S1,1 and T1,1 have a common partition into 2 blocks: S = a acb adb b and
T = a adb acb b.

3 Sorting by Multi-cut Rearrangements in Permutations

In this section, we provide algorithmic results concerning the Sorting by
Multi-cut Rearrangements problem, in the specific case where S and T
are permutations. Our results are summarized in Table 2.

Table 2. Summary of the results for Sorting by Multi-cut Rearrangements in
permutations. ∗existence of a 2-approximation algorithm for Opt-SMCR (Theorem 8).

�
���
k

3 4 O(1) parameter part of the input

1
P

O(1) ?

parameter FPT (Thm 5) FPT (Thm 5) W[1]-hard (Thm 6)

part of the input NP-hard [3] NP-hard (Thm 7) ∗

Theorem 5. SMCR in permutations is FPT with respect to parameter � + k.

Proof. We obtain the fixed-parameter tractability result by using the following
reduction rule: If there is a common adjacency (a, b) in S and T , then remove b
from S and T . Before we show the correctness, observe that exhaustive appli-
cation of the rule indeed gives the desired result: Any Yes-instance that is
reduced exhaustively with respect to the above rule has O(k�) letters: We must
cut between every adjacency in S. Overall, we may create at most 2k� cuts
via � many k-cut rearrangements. Hence, if S has more than 2k� adjacencies,
then (S, T ) is a No-instance. Thus, after applying the rule exhaustively, we either
know that the instance is a No-instance or we may solve it in f(k, �) time by
using a brute-force algorithm. Thus it remains to show correctness of the rule.
Consider an instance consisting of the permutations S and T to which the rule
is applied and let S′ and T ′ denote the resulting instance. We show that (S, T )
is a Yes-instance if and only if (S′, T ′) is a Yes-instance.

(⇒) If (S, T ) is a Yes-instance, then there is a sequence of � + 1 permuta-
tions (S = S1, S2, . . . , S�+1 = T ) such that Si+1 can be obtained from Si via one
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k-cut rearrangement. Removing b from Si gives a sequence (S′
1, S

′
2, . . . , S

′
�+1 = T )

such that S′
i+1 can be obtained from S′

i via one k-cut rearrangement.
(⇐) If (S′, T ′) is a Yes-instance, then there is a sequence of � + 1 permu-

tations (S′ = S′
1, S

′
2, . . . , S

′
�+1 = T ′) such that S′

i+1 can be obtained from S′
i

via one k-cut rearrangement. Replacing a by ab in each permutation S′
i gives a

sequence (S = S1, S2, . . . , S�+1 = T ) such that S′
i+1 can be obtained from S′

i via
one k-cut rearrangement. �	
Theorem 6. SMCR in permutations is W[1]-hard parameterized by �.

Proof. The proof is by reduction from Unary Bin Packing, whose instance
is a multiset A = {a1, a2, . . . , an} of integers encoded in unary, and two inte-
gers b and C. The goal is to decide whether one can partition A into b multi-
sets A1, . . . , Ab, such that

∑
aj∈Ai

aj ≤ C, for each 1 ≤ i ≤ b. This problem has
been shown to be W[1]-hard [10] with respect to the number of multisets b, even
when the sum of the elements

∑n
i=1 ai is equal to bC.

Take an instance I of Unary Bin Packing such that
∑n

i=1 ai = bC. From
I, we construct, in polynomial time, the following instance I∗ of SMCR. We
first define S as the following permutation of [bC + 1]:
S := 1X1 (a1 + 1) X2 (a1 + a2 + 1) . . . (

∑n−1
i=1 ai + 1) Xn (

∑n
i=1 ai + 1),

where each Xi is the length-(ai − 1) decreasing sequence over {∑i−1
j=1 aj+2, . . . ,

∑i
j=1 aj}, that is, Xi[k] := (

∑i
j=1 aj) − (k − 1) for 1 ≤ k ≤ ai − 1. We set T to

be the identity over the same alphabet [bC + 1].
An element at position i in S is called an anchor if Si = i (in bold above).

Since we want to transform S into the identity permutation, the anchors cor-
respond to fixed points that are already well located. For any 1 ≤ i ≤ n, the
reversed sequence Xi is delimited by two anchors. We finally set � = b and k = C.
Each Xi has exactly ai breakpoints: two at its extremities with the anchors and
ai − 2 internal ones. Since

∑n
i=1 ai = bC, it can be seen that S contains exactly

�k breakpoints. Since a k-cut rearrangement can remove at most k breakpoints,
then at least � such rearrangements are necessary to sort S. We now show that
I is a Yes-instance for Unary Bin Packing problem iff I∗ is a Yes-instance
for SMCR.

(⇒) Suppose I is a Yes-instance for Unary Bin Packing. Thus there exists
a partition A1 . . . Ab of the multiset A. To sort S, the k-cut rearrangements we
apply consist in reversing the Sis. Note that in order to reverse a complete Si

corresponding to a given ai, 1 ≤ i ≤ n, we need exactly ai cuts, e.g. to transform
σ = . . . p + 1|p + ai|p + ai − 1| . . . |p + 2|p + ai + 1 . . . into ρ = . . . (p + 1)
(p + 2) . . . (p + ai − 1) (p + ai) (p + ai + 1) . . . (where p =

∑i−1
k=1 ak).

For any 1 ≤ i ≤ b, we have
∑

aj∈Ai
aj = C and since C = k, we can

define a k-cut rearrangement that consists in reversing the Xj1 ,Xj2 , . . . , Xjp

corresponding to elements aj1 , aj2 , . . . , ajp
of Ai. Since there are b such multisets

and since b = �, � such k-cut rearrangements are sufficient to sort S.
(⇐) Suppose I∗ is a Yes-instance for SMCR. Since b(S, T ) = �k, using �

k-cut rearrangements to sort π means that each rearrangement removes exactly
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k breakpoints. It is only feasible if each Xi is reversed at once (i.e., during a
single k-cut rearrangement) using exactly ai cuts. Indeed, if we cut at ci < ai

places in Xi, we will be able to fix strictly less than ci breakpoints and so the k-
cut rearrangement in which the ci cuts take place will not remove k breakpoints
as expected. By following the moves during the sorting of S, it suffices to see
which Xis are reversed within the same k-cut rearrangement. In that case, the
sum of the corresponding ais is equal to k = C and, using � = b, such multisets
of ais provide a solution to Unary Bin Packing. �	
Theorem 7. For any k ≥ 5, SMCR in permutations is NP-hard.

This hardness proof is by reduction from Sorting By Transpositions on
3-cyclic permutations [3]. Intuitively, in such permutations, it is straightforward
to identify triples of breakpoints, called 3-cycles, that should be solved together
in a transposition, however the difficulty arises in selecting a correct order in
which those 3-cycles should be solved. Our approach consists in extending these
3-cycles into k-cycles, such that any k-cut rearrangement solving the original
cycle must solve all k breakpoints together, and still performs a simple transpo-
sition on the rest of the sequence (to this end, k−3 dummy elements are created
in order to consume the extra blocks in k-cut rearrangements). We first recall
the necessary definitions and properties for breakpoints and cyclic permutations,
then show how to extend a single cycle by only two or three elements, and finally
successively apply this method to extend all cycles to any size k ≥ 5.

Breakpoints and Cycle Graph. For a permutation S of length n, we assume the
alphabet of S is {1, . . . , n}. We further write S0 = 0 and Sn+1 = n + 1. For
a rearrangement r transforming S into S′, we write r(S) = S′ and r(S, T ) =
(S′, T ). The cycle graph C(S, T ) of strings S and T is the graph over n + 1
vertices {0, . . . n} with arcs Tj → Si if Tj+1 = Si+1. Every vertex has in-degree
and out-degree 1, so the graph is a disjoint union of cycles. Self-loops are called
trivial cycles (when seen as a cycle) or adjacencies (when seen as an arc), other
arcs are breakpoints. An element (or vertex) x is an adjacency (resp. breakpoint)
according to its outgoing arc (we use transparently the bijection between a vertex
and its outgoing arc). A k-cycle is a cycle of length k. The next breakpoint of
breakpoint x → y in C(S, T ) is y (or equivalently, the outgoing arc of y). We
write Cx(S, T ) for the cycle of C(S, T ) containing element x. A cycle graph is
k-cyclic (and, by extension, a pair of sequences generating this cycle graph)
if it contains only adjacencies and k-cycles. A rearrangement r applied to a
permutation S cuts an element x, 0 ≤ x ≤ n, if it cuts between x = Si and
Si+1. Furthermore, it solves breakpoint x if r cuts x and x is an adjacency in
r(S). It solves a cycle if it solves all breakpoints in it. We write db(S, T ) for the
number of breakpoints of C(S, T ). A k-cut rearrangement is efficient if it solves
k breakpoints. A pair (S, T ) is k-efficiently sortable if there exists a sequence of
efficient k-cut rearrangements transforming S into T . The following is a trivial
generalization of a well-known lower bound for the transposition distance.
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Proposition 1. A k-cut rearrangement may not solve more than k breakpoints,
so S needs at least db(S,T )

k k-cut rearrangements to be transformed into T . Fur-
thermore, the bound is reached if and only if (S, T ) is k-efficiently sortable.

Proposition 2. If r solves a breakpoint, it cuts the next breakpoint in the cycle
graph.

Proof. Let x → y be an arc of the cycle graph, and let x′ be the successor of x in
T as well as the successor of y in S. If r solves x, then r joins a block ending in x
with a block starting in x′, so x′ is the first element of some block of r. Thus, y is
the last element of some block of r, and r cuts the breakpoint y in C(S, T ). �	
Proposition 3. If r is efficient, it solves a cycle iff it solves any breakpoint in
it. Furthermore r solves all breakpoints in a union of cycles of total size k.

Proof. If r is efficient, then it solves all breakpoints that it cuts (since it may not
solve a breakpoint without cutting them, and it solves and cuts k breakpoints).
By Proposition 2, if r solves a breakpoint in a cycle, then it must solve all
subsequent arcs in the same cycle. Hence, r either solves all breakpoints of a
cycle or none at all. The size constraint follows from the fact that all cycles are
disjoint. �	
Cycle C1 is tied to another cycle C2 through the pair of breakpoints (x, y) if x is
in C1, y is in C2, the permutation S has Si = y and Si+1 = x for some i, and T
has Tj = x and Tjj + 1 = y for some y. A breakpoint is without ties if no cycle
is tied to the cycle containing it.

Proposition 4. If C1 is tied to C2, then any efficient rearrangement solving C1

must also solve C2.

Proof. Let r be an efficient rearrangement solving C1 and, in particular, x. Then
r must place y after x in r(S), although y is before x in S, so r must have a cut
somewhere between y and x, i.e. just after y. So r cuts breakpoint y, and solves
cycle C2. �	

One-cycle Extensions. Let (S, T ) be a pair of permutations. Let x be a vertex
of C(S, T ) with the following properties (we say that x is safe): x is either an
adjacency or a breakpoint without ties in a cycle of length kx ≥ 3, and all
2-cycles in C(S, T ) are tied. The p-extension of (S, T ) on x, with p ∈ {2, 3},
denoted φp

x(S, T ) is the pair (S′, T ′) such that:

– For p = 2:
S′ = (S1, . . . , Si = x, n + 2, Si+1, . . . , Sn, n + 1) if x is an adjacency
S′ = (S1, . . . , Sn, n + 1, n + 2) if x is a breakpoint
T ′ = (T1, . . . , Tj = x, n + 2, Tj+1 = Si+1, . . . Tn, n + 1)

– For p = 3:
S′ = (S1, . . . , Si = x, n + 3, n + 2, Si+1, . . . , Sn, n + 1) if x is an adjacency
S′ = (S1, . . . , Sn, n + 1, n + 2, n + 3) if x is a breakpoint
T ′ = (T1, . . . , Tj = x, n + 3, n + 2, Tj+1 = Si+1, . . . Tn, n + 1)
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Lemma 1. A p-extension on x has the following effects on the cycle graph:

– If x is an adjacency, it adds p trivial cycles.
– If x is a breakpoint and p = 2, it adds n+1 and n+2 to the cycle containing x.
– If x is a breakpoint and p = 3, it adds n + 2 to the cycle containing x and a

2-cycle (n + 1, n + 3) tied to the one containing x.

Other arcs and tied cycles are unchanged.

Proof. If x is an adjacency, the p-extension inserts elements n+1 to n+p in both
strings in the same order after x, and they are followed by the same element in
both strings since x is an adjacency, so only trivial cycles are added.

Assume now that x is a breakpoint. Consider first an arc Tj → Si with Tj �= x
in C(S, T ). Since no element is inserted after Tj or Si, Tj → Si also appears in
C(S′, T ′) (the case i = j = n is particular, as n + 1 is explicitly introduced in
both sequences, but it also yields the arc Tj → Sj in C(S′, T ′)). If a cycle is tied
to another one through a pair (x, y) in S and (y, x) in T , these factors cannot
be broken by the p-extension (since x is safe, no cycle can be tied to Cx(S, T )),
so it is still tied after the extension. Similarly, a non-tied cycle cannot become
tied because of the extension.

It remains to describe arcs going out from {x, n + 1, . . . , n + p}. Let y be the
head of the outgoing arc from x.

For j such that T ′
j = x, we have T ′

j+1 = n + p = S′
n+p, so there exists an arc

x → S′
n+p−1 = n + p − 1 in C(S′, T ′) (note in particular that y no longer has its

incoming arc x → y).
For j such that T ′

j = n + 1, we have T ′
j+1 = n + p + 1 = S′

n+p+1, so there
exists an arc n + 1 → S′

n+p = n + p in C(S′, T ′).
For p = 3 and j such that T ′

j = n+3, we have T ′
j+1 = n+2 = S′

n+2, so there
exists an arc n + 3 → S′

n+1 = n + 1 in C(S′, T ′).
At this point, the out-going arcs for all vertices except n + 2 have been

described, as well as in-coming arcs for all vertices except y, so the last remaining
arc is n + 2 → y.

Overall, for p = 2, arc x → y is replaced with the path x → n+1 → n+2 → y.
For p = 3, arc x → y is replaced with x → n+2 → y and a 2-cycle n+1 ↔ n+3
is created. Note that this 2-cycle is tied to Cx(S′, T ′) through (n + 2, n + 3). �	

We now show how efficient rearrangements can be adapted through exten-
sions. Let r be a k-cut rearrangement of (S, T ). We write r′ = ψp

x(r) for the
k′-cut rearrangement of (S′, T ′) = φp

x(S, T ) defined as follows:

– If r does not cut x, then k′ = k, r′ cuts the same elements as r, and rearranges
the blocks in the same order.

– If r cuts x, then k′ = k + p, r′ cuts the same elements as r as well as n + 1,
n + 2 and n + 3 (when p = 3), and rearranges the blocks in the same way as
r, with elements n + 3 (when p = 3) and n + 2 inserted after x.

The following two lemmas show how efficient rearrangements of (S, T ) and those
of φx(S, T ) are related through ψp

x.
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Lemma 2. If r is an efficient k-cut rearrangement of (S, T ), then r′ = ψx(r)
is an efficient k′-rearrangement of (S′, T ′) = φp

x(S, T ). Furthermore r′(S′, T ′) =
φp

x(r(S, T )).

Proof. If r does not cut x, then k′ = k and r′ solves in (S′, T ′) exactly the same
breakpoints as r, so it is efficient. Furthermore, all elements in r′(S′, T ′) and
φp

x(r(S, T )) are in the same order as in r(S, T ), except for n+1, . . . , n+ p which
are inserted, in both case, at the end of S and in T as in T ′ (since r and r′ do
not edit the second string).

If r cuts x, r′ furthermore solves breakpoints n + 1, . . . , n + p, since it rear-
ranges these elements in the same order as in T ′. So it is an efficient rearrange-
ment as well. Finally, all elements in r′(S′, T ′) and φp

x(r(S, T )) are in the same
order as in r(S, T ), except for n+p, . . . , n+2 (which are inserted after x in both
strings) and n + 1 (which is inserted as a last element). �	
Lemma 3. If r′ is an efficient k′-rearrangement of (S′, T ′) = φp

x(S, T ) with
k′ ∈ {kx, kx + p}, then there exists an efficient k-cut rearrangement r of (S, T )
such that r′ = ψx(r), where k = k′ − p = kx if r′ cuts x and k = k′ otherwise.
Furthermore, r′(S′, T ′) = φp

x(r(S, T )).

Proof. We build r from r′ using the converse operations of Lemma 2: mimicking
the cuts and reordering of r′, but ignoring cuts after n+1, . . . , n+ p if r′ cuts x.
The relation between k and k′ and the efficiency of r follow from the fact that
r′ solves either all of x, n + 1, . . . n + p, or none at all, as proven in the claim
below. The ‘furthermore’ part follows from Lemma 2, applied to r.

Claim. Either r′ solves all breakpoints in {x, n + 1, . . . , n + p}, or none at all.

Proof. For p = 2, this is a direct application of Proposition 3 since elements x,
n + 1 and n + 2 are in the same cycle of C(S′, T ′).

For p = 3, by Lemma 1, Cx = Cx(S′, T ′) is a (kx + 1)-cycle containing x and
n+2, and C(S′, T ′) also contains a cycle denoted Cy with elements n+1 and n+3.
By Proposition 3, r′ solves any element in Cx (resp. Cy) iff it solves all elements in
the same cycle (in particular, k′ ≥ kx +1 if r′ cuts x, so k′ = k+p). Furthermore
Cy is tied to Cx, so if r′ solves Cy it must also solve Cx ( by Proposition 4). It
remains to check the last direction: if r′ solves Cx, then it also solves Cy. Indeed,
Cx is a kx + 1-cycle and r′ solves a total of kx + 3 breakpoints, so it must also
solve some 2-cycle C ′

y. Aiming at a contradiction, assume that C ′
y �= Cy. Then

C ′
y is already a 2-cycle of C(S, T ), and it is tied to some other cycle C ′

x (both
in C(S, T ) and C(S′, T ′)), so r′ also solves C ′

x. Since C ′
x may not be equal to

Cx (x was chosen without ties), r′ solves at least |Cx| + |C ′
y| + |C ′

x| > kx + 3
breakpoints, which yields a contradiction for a kx + 3-rearrangement.

�	

Extending all Cycles. We use the natural order over integers as an arbitrary
total order over the nodes. The representative of a cycle is its minimum node.
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We assume (S, T ) to be k-cyclic for some k. A sample for (S, T ), where (S, T )
is k-cyclic is a list X containing the representative from each k-cycle, and an
arbitrary number of adjacencies. The p-extensions of (S, T ) for sample X =
(x1, . . . , x�) and of a rearrangement r of (S, T ) are, respectively, Φp

X(S, T ) =
φp

x�
(. . . φp

x2
(φp

x1
(S, T )) . . .) and Ψp

X(r) = ψp
x�

(. . . ψp
x2

(ψp
x1

(r)) . . .).
For xi in the sample, we write nxi

= |S|+ p · (i− 1), i.e. nxi
is the size of the

strings on which φp
xi

is applied. Note that the above definition requires each xi

to be safe in φp
xi−1

(. . . φp
x1

(S, T ) . . .). This is indeed the case by Lemma 1: either
p = 2, there are no 2-cycles, and all breakpoints are without ties, or p = 3, all
2-cycles are tied to a single cycle Cxj

(S, T ) with j < i, which are all different
from Cxi

(S, T ) (since X is a sample and contains at most one element per cycle).

Proposition 5. If (S, T ) is k-cyclic, then Φ2
X(S, T ) is (k + 2)-cyclic.

Proof. This follows from Lemma 1, since the 2-extension adds 2 elements to each
k-cycle, so Φ2

X(S, T ) is (k + 2)-cyclic. �	
Lemma 4. If r is an efficient k-cut rearrangement of (S, T ) then r′ = Ψp

X(r) is
an efficient k + p rearrangement of (S′, T ′) = Φp

X(S, T ). Moreover, in this case,
r(S, T ) is k-cyclic with sample X, and Φp

X(r(S, T )) = r′(Φp
X(S, T )).

Conversely, any efficient k + p rearrangement r′ of (S′, T ′) = Φp
X(S, T ) can

be written as r′ = Ψp
X(r) where r is an efficient k-cut rearrangement of (S, T ).

Proof. Given a k-cut rearrangement r, let

(S0, T 0) = (S, T ) (Sj , T j) = φp
xj

(Sj−1, T j − 1) for all 0 < j ≤ �

r0 = r (rj , rj) = ψp
xj

(rj−1) for all 0 < j ≤ �(Forward direction)

Assuming that r is an efficient k-cut rearrangement of (S, T ), since (S, T ) is
k-cyclic, by Proposition 3 r must solve a single cycle of C(S, T ). Let x be the
representative of this cycle: x is the only breakpoint of X cut by r, and x = xi

for some i. Furthermore, C(r(S, T )) is also k-cyclic with sample X (with one
cycle less than C(S, T )).

By Lemma 2 we have that rj is an efficient kj-cut rearrangement of (Sj , T j)
for each j, where kj = kj−1 if rj−1 does not cut x (i.e. j �= i) and kj = kj−1 + p
otherwise. So overall r′ = r� is a an efficient (k + p)-cut rearrangement
of Φp

X(S, T ). The relationship Φp
X(r(S, T )) = r′(Φp

X(S, T )) also follows from
Lemma 2.

The converse direction is proven similarly using Lemma 3, with a specific
attention given to the size of the rearrangements: starting from r′ (with k + p
cuts), the number of cuts remains constant, except for ψp

xj
where it drops to k

and then remains constant again (so the condition k′ ∈ {k, k + p} in Lemma 3
is indeed satisfied). �	
Lemma 5. If (S, T ) is k-cyclic with sample X, then (S, T ) is k-efficiently
sortable if and only if Φp

X(S, T ) is k-efficiently sortable.
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Proof. This is a direct application of Lemma 4: a sequence of efficient k-cut
rearrangements of (S, T ) translates into a sequence of efficient (k + p)-cut rear-
rangements of ΦX(S, T ) through function ΨX (note that X remains a sample of
(S, T ) throughout the sequence of rearrangements). �	
Lemma 6. For any odd k ≥ 5, deciding whether a k-cyclic pair (S, T ) is
k-efficiently sortable is NP-hard. For any even k ≥ 6, deciding whether a pair
(S, T ) is k-efficiently sortable is NP-hard.

Proof. By induction on k. Deciding if a 3-cyclic pair (S, T ) is efficiently sortable
is NP-hard (cf. [3], where it is shown that deciding if a permutation can be sorted
with db(S,T )

3 transpositions is NP-hard). For any k ≥ 5, take p = 2 if k is odd and
p = 3 otherwise, and consider a (k − p)-cyclic instance (S, T ) and a sample X
for (S, T ) (note that one always exists): (S, T ) is (k − p)-efficiently sortable iff
Φp

X(S, T ) is k-efficiently sortable by Lemma 5, and Φp
X(S, T ) is k-cyclic for p = 2

by Proposition 5. This gives a polynomial reduction proving hardness for k (even
when restricted to k-cyclic permutations when k is odd). �	

Theorem 7 is a corollary of Lemma 6, since a k-cyclic pair (S, T ) is
k-efficiently sortable iff S can be rearranged into T with no more than db(S,T )

k
k-cut rearrangements (Proposition 1).

Let Opt-SMCR be the optimisation version of SMCR, where we look for
the smallest � that is necessary to obtain T from S by k-cut rearrangements.

Theorem 8. Opt-SMCR in permutations is 2-approximable.

Proof. Let I = (S, T, k) be an instance of Opt-SMCR. We first rewrite S and T
into S′ and T ′ in such a way that T ′ = idn. Let k′ = �k

2 . The algorithm
consists in iterating the following three steps, starting from S′: (a) rewrite S′

by contracting adjacencies so as to obtain a permutation without fixed point,
(b) cut around (i.e., right before and right after) the first k′ elements 1, 2, 3 . . . k′

of that permutation, and (c) rearrange it so as to obtain idk′ followed by the
rest of the permutation. Steps (b) and (c) above actually correspond to the case
where k is even. If k is odd, (b) and (c) are slightly modified, since we are left
with an unused cut: (b’) do as (b) and additionally cut to the left of k′ + 1,
(c’) do as (c) but rearrange in such a way that k′ and k′ + 1 are consecutive.

Clearly, the optimal value � for Opt-SMCR satisfies � ≥ b(S,T )
k . Our algo-

rithm removes at least k′ (at least k′ + 1) breakpoints at each iteration when k

is even (when k is odd), and thus requires �′ ≤ b(S,T )
k′ (�′ ≤ b(S,T )

k′+1 ) many k-cut
rearrangements. Altogether we have �′ ≤ �k

k′ if k is even and �′ ≤ �k
k′+1 if k is

odd. Since k′ = �k
2 , we conclude that �′ ≤ 2�. �	

4 Conclusion

We introduced Sorting by Multi-cut Rearrangements, a generalization
of usual genome rearrangement problems that do not incorporate reversals.
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We discussed its classical computational complexity (P vs. NP-hard) and its
membership in FPT with respect to the parameters � and k. For this, we distin-
guished the case where S (and thus T ) is a permutation from the case where it
is a string.

The obvious remaining open problems are the ones indicated with a question
mark in Tables 1 and 2, namely (a) the FPT status of SMCR with respect to
parameter � + k in strings, and (b) the computational complexity for constant �
and k part of the input in permutations. Extensions or variants of SMCR could
also be studied, notably the one allowing reversals (and thus applicable to signed
strings/permutations), or the one where T is the lexicographically ordered string
derived from S. Finally, it would also be interesting to better understand the
comparative roles of � and k in SMCR, for instance by studying the following
question: assuming k is increased by some constant c, what impact does it have
on the optimal distance?
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