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Abstract. We consider the problem of distributing a collection of indi-
visible objects among agents in a manner that satisfies some desirable
notions of fairness and efficiency. We allow agents to “share” goods in
order to achieve efficiency and fairness goals which may be otherwise
impossible to attain. In this context, our goal is to find allocations that
minimize the “amount of sharing”. We follow up on recent work demon-
strating that finding fair allocations with minimum sharing is tractable
when valuations are non-degenerate, a notion which captures scenarios
that are “far from identical”. This result holds for any fixed number of
agents. We show that the usefulness of non-degeneracy does not scale
to the setting of many agents. In particular, we demonstrate that the
problem of finding fractionally Pareto optimal and envy-free allocations
is NP-complete even for instances with constant degeneracy and no shar-
ing. We also demonstrate an alterate approach to enumerating distinct
consumption graphs for allocations with a small number of sharings.
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1 Introduction

The task of fairly distributing indivisible goods among interested agents is chal-
lenging already for the simplest possible scenario: one object valued by two or
more people. We are typically dealing with m objects and n agents. All agents
specify their value for each of the objects, and the utility they derive from a set
of objects is the sum of the values for the individual objects in the collection1.
An allocation of m goods to n agents is a partition of the goods into n bundles.

A natural and well-studied notion of fairness is envy-freeness, which demands
that every agent finds themselves no worse than any other in that they value their
own bundle at least as much as any of the other bundles. Note that by itself, envy-
freeness can be achieved by trivial allocations where all bundles are empty. This
motivates the pursuit of some notion of efficiency—for instance, completeness
1 This is the setting of additive utilities, which will be the focus of our discussion. In

a more general setting agents might have different and unrelated utility associated
with every possible subset of items.
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requires all items to be allocated, and fractionally Pareto Optimal(fPO), where
no agent can be made better off without making another worse off. The opening
example involving one good valued equally by two agents already shows that
there are instances where no allocation is simultaneously complete and envy-
free (EF). This has led to several notions of “workarounds”: approximate envy-
freeness up to one good [2,7], or any good [3], or using hidden goods [6]), subsidy
[1], donating items [4]), and sharing [8,9]).

Our focus is on settings sharing goods appears to be the most reasonable of
all workarounds, and the question of interest is to find allocations that meet our
goals of fairness and efficiency with minimum sharing. In a recent development,
Sandomirskiy and Segal-Halevi [8] propose a notion of degeneracy which captures
the degree of similarity across agent valuations and argue that the intractable
cases are those that have a rather high degree of similarity. In retrospect, one
might argue that similar valuations signal high conflict, and this possibly con-
tributes to making this a hard scenario. We say that a set of goods are valued
similarly by two agents if the ratios of their values for all goods are the same.
The degree of similarity between two agents is one less than the largest number
of goods that are valued similarly by them. The degeneracy of an instance with n
agents is the highest degree of similarity across all pairs of agents. In particular,
the degeneracy of an instance with identical valuations is m − 1 and it can be
as small as zero, when all agents view all goods differently.

Informally speaking, we refer to the setting of low degeneracy, the ones where
agent valuations over goods are generally dissimilar, as a scenario involving ami-
cable agents. Unlike the case of identical valuations, we expect such valuations
to invoke relatively “less conflict”. One of the key results in [8] is that while
finding EF allocations remains hard even with two amicable agents, finding
allocations that are both fPO and EF is tractable for a constant number of
amicable agents. In particular, the time to compute such allocations was shown
to be O(3

n(n−1)
2 dm

n(n−1)
2 +2), where d is the degeneracy of the valuation matrix.

In contrast, it was shown that the problem remains NP-hard for instances that
have high degeneracy.

Our Contributions. The two results above nicely illustrate the influence of degen-
eracy on the complexity of finding fPO and EF allocations. We investigate the
complexity from the perspective of the number of agents. For example, can this
running time be improved to (n + m)O(d), which would increase the realm of
tractability to scenarios with any number of agents and constant degeneracy,
or more ambitiously, O(2O(d) · (m + n)O(1)), which would make the problem
tractable for instances with any number of agents and degeneracy logarithmic
in (n + m)? Our main contribution here is to show that even the former goal is
unlikely to be achievable: when the number of agents is unbounded, the problem
of finding allocations that are fPO and EF remains strongly NP-complete for
instances with degeneracy one, even for the specific question of allocations with
no sharings.

Our result also has consequences for the problem of finding EF allocations.
We recall that the problem of finding EF allocations is weakly NP-complete by
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a reduction from Partition [8]. It turns out that the arguments in the reverse
direction of our reduction do not require the allocation in question to be fPO.
Since the valuation matrix of our reduced instance happens to only have values
that are bounded by a polynomial function of n and m, we obtain a stronger
hardness result for the problem of finding complete EF allocations for instances
with constant degeneracy.

We also revisit the algorithm for finding fPO+EF allocations from [8]. The
algorithm relies on enumerating certain consumption graphs corresponding to
fPO allocations that fix the sharing structure of a potential solution, after which
the task of determining the exact proportions of sharing while respecting fairness
constraints is outsourced to an ILP formulation. It is shown [8, Lemma 2.5] that
there always exists a fPO allocation with at most (n − 1) sharings. We propose
an alternate method for generating the relevant consumption graphs that takes
advantage of the upper bound on the number of sharings upfront. This leads to
a slightly different bound that leads to a better exponential term at the cost of a
worse polynomial factor. Although the difference in the bound is not significant,
we believe our approach lends additional understanding to the structure of class
of graphs based on fPO allocations. The arguments regarding this are deferred
to the full version of the paper.

2 Preliminaries

We use A = {a1, . . . , an} to denote a set of agents and G = {g1, . . . , gm} to
denote a collection of objects.

Allocations and Sharing. A bundle of objects is a vector b = (bj)j∈[m] ∈ [0, 1]m,
where the component bj represents the portion of gj in the bundle. The total
amount of each object is normalized to one. An allocation z is a collection of
bundles (zi)i∈[n], one for each agent, with the condition that all the objects
are fully allocated. Note that an allocation can be identified with the matrix
z := (zi,j)i∈[n],j∈[m] such that all zi,j ≥ 0 and

∑
i∈[n] zi,j = 1 for each j ∈ [m].

Let j ∈ [m] be arbitrary but fixed. If for some i ∈ [n], zi,j = 1, then the
object gj is not shared—it is fully allocated to agent ai. Else, object gj is shared
between two or more agents.

– The number of shared objects is given by the number of items that are shared:

#s†(z) =
∣
∣ {j ∈ [m] : zi,j ∈ (0, 1) for some i ∈ [n]} ∣

∣.

– The total number of sharings accounts for the number of times that an object
is shared, i.e:

#s�(z) =
∑

j∈[m]

(∣
∣{i ∈ [n] : zi,j > 0}∣

∣ − 1
)
.
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For allocations with no shared objects, both measures are zero, but they can
differ by as much as m(n − 2) in general. Note that the number of sharings
is at least the number of shared objects, since each shared object is shared at
least once by definition. Unless mentioned otherwise, our measure for “extent of
sharing” in the computational questions that we will shortly define will be the
notion of the total number of sharings.

Value and Utility. For every i ∈ [n], j ∈ [m], vi,j denotes agent ai’s value for the
entire object gj . In the setting of additive utilities, the valuations naturally lead
us to a utility function over bundles defined as ui(b) =

∑
j∈[m] vi,j · bj .

The matrix v = (vi,j)i∈[n],j∈[m] is called the valuation matrix ; it encodes
the information about the preferences of agents and is used as the input of
fair division algorithms. We use v� to denote the largest value in a valuation
matrix v. We say that a class of inputs C has bounded valuations if there exists
a polynomial p(n,m) such that v� ≤ p(n,m) for all instances in C.

We recall the notion of degeneracy that was proposed in [8,9]. To this end,
we say that two goods gp, gq are valued similarly by a pair of agents i, j if there
exists a constant r such that vi,p · vj,q = vi,q · vj,p = r.
Any collection of goods valued identically by a pair of agents would be pairwise
similar with respect to the agents in question, but this definition generalizes the
notion of “identical” to, roughly speaking, “identical up to a scaling factor”.
Now, let us define the similarity between a pair of agents i and j as:

sv(i, j) = max
r>0

∣
∣
{
k ∈ [m] : vi,k = r · vj,k

}∣
∣ − 1.

Note that the similarity of a pair of agents captures the notion of the largest
number of goods that the agents value similarly when considered pairwise. This
finally leads us the the notion of degeneracy, which is defined as:

d(v) = max
i,j∈[n],i �=j

sv(i, j).

Valuations for which d(v) = 0 are called non-degenerate. Also, note that if any
two agents have the same valuations for all goods, then d(v) = m − 1.

Fairness and Efficiency. An allocation z = (zi)i∈[n] is called envy-free (EF) if
every agent prefers her bundle to the bundles of others. Formally, for all i, j ∈ [n]:
ui(zi) ≥ ui(zj). An allocation z is proportional (Prop) if each agent prefers her
bundle to the equal division: ∀i ∈ [n] ui(zi) ≥ 1

n

∑
o∈[m] vi,o. An allocation z

is equitable (EQ) if any pair of agents derive equal utility from their respective
bundles. Formally, for all i, j ∈ [n]: ui(zi) = uj(zj).

An allocation z is Pareto-dominated by an allocation y if y gives at least the
same utility to all agents and strictly more to at least one of them. An allocation
z is fractionally Pareto-optimal (fPO) if no feasible y dominates it. If y is such
that yi,o ∈ {0, 1}, then z is called discrete Pareto-Optimal (dPO). The following
lemma provides a complete characterisation of fPO allocations.
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Lemma 1 ([8], Lemma 2.3). An allocation z is fractionally Pareto Optimal
if and only if there exists a vector of weights λ = (λi)i∈[n] with λi > 0, such that
for all agents i ∈ [n] and goods p ∈ [m], if zi,p > 0 then for any agent j ∈ [n],

λi · vi,p ≥ λj · vj,p

Computational Questions. Formally, for a fairness concept α ∈ {EF, EQ, Prop}
and an efficiency concept β ∈ {fPO, dPO}, the (α, β)-Minimal Sharing prob-
lem is the following. Given (A,G,v, t ∈ N) as input, the question is if there exists
an α, β allocation where the total number of sharings is at most t. In this paper,
we focus on {EF, fPO}-minimal sharing problem.

3 Hardness for Instances of Constant Degeneracy

To prove the hardness of the minimal sharing problem, we will show a reduction
from a structured version of Satisfiability problem called Linear Near-
Exact Satisfiability (LNES) which is known to be NP-complete [5]. An
instance of LNES consists of 5p clauses (where p ∈ N) denoted as follows:

C = {U1, V1, U
′
1, V

′
1 , · · · , Up, Vp, U

′
p, V

′
p} ∪ {C1, · · · , Cp}.

We will refer to the first 4p clauses as the core clauses, and the remaining
clauses as the auxiliary clauses. The set of variables consists of p main vari-
ables x1, . . . , xp and 4p shadow variables y1, . . . , y4p. Each core clause consists of
two literals ∀ i ∈ [p], Ui ∩ Vi = {xi} and U ′

i ∩ V ′
i = {x̄i}. Each main variable xi

occurs exactly twice as a positive literal and exactly twice as a negative literal.
The main variables only occur in the core clauses. Each shadow variable makes
two appearances: as a positive literal in an auxiliary clause and as a negative
literal in a core clause. Each auxiliary clause consists of four literals, each cor-
responding to a positive occurrence of a shadow variable. We will use ui, vi, u

′
i,

and v′
i to refer to the shadow variables in the main clauses Ui, Vi, U

′
i , and V ′

i ,
respectively.

The LNES problem asks whether, given a set of clauses with the aforemen-
tioned structure, there exists an assignment τ of truth values to the variables
such that exactly one literal in every core clause and exactly two literals in every
auxiliary clause evaluate to true under τ . The main result of this section is the
following, and is established by a reduction from LNES.

Theorem 1. (EF,fPO)-Minimal Sharing is NP-hard even when restricted to
inputs with bounded valuations, degeneracy one, and no sharing.

Proof. We reduce from LNES. Let C = {U1, V1, U
′
1, V

′
1 , · · · , Up, Vp, U

′
p, V

′
p} ∪

{C1, · · · , Cp} be an instance of LNES as described above.

We begin with a description of the construction of the reduced instance. We
refer the reader to Fig. 1 for a high-level schematic of this construction. For each
main variable xi we introduce three agents: {ai, āi, di}, and the goods {gi, ḡi, hi}.
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We refer to di as the dummy agent associated with xi and ai and āi as the key
agents associated with xi. Also, we refer to hi as the trigger good and gi and
ḡi as consolation goods. For the shadow variables ui, vi, u

′
i, v

′
i, we introduce four

agents: bi, ci, b
′
i, c

′
i which we simply refer to as shadow agents and four goods:

ri, si, r
′
i, s

′
i, which we refer to as the essential goods. Finally, for each auxiliary

clause Cj , we introduce the goods f1
j and f2

j . These goods are called backup
goods.
Note that our instance consists of n = 7p agents and m = 9p goods. Thus the
size of the valuation matrix is N := 63 · p2. We let L = 4000 · p5. We will use A
and G to refer to the set of agents and goods that we have defined here.

Let w = (wi,j)i∈[n],j∈[m] denote the (7p × 9p) matrix whose entries are given
by wi,j = (i − 1) · m + j. Intuitively, we can think of these values as being small
enough to be negligible, and we will obtain our final valuation matrix by starting
from w and “overwriting” some entries to reflect the fact that certain goods are
valued highly by certain agents. This is done to ensure that the final valuation
matrix has low degeneracy. We now describe the specific modifications that we
have to make to w.

To this end, let us define another set of values given by w� = (w�
i,j)i∈[n],j∈[m].

Let π : A → [n] and σ : G → [m] be arbitrary but fixed orderings of the agents
and goods, respectively.

– For i ∈ [p], we have that the dummy agent corresponding to the main variable
xi has a high value for the consolation goods gi and ḡi.

w�
π(di),j

=

{
L if σ−1(j) ∈ {gi, ḡi},

0 otherwise.

– For i ∈ [p], we have that the first key agent corresponding to the main variable
xi has a somewhat high value for the consolation good gi and the essential
goods ri and si, and a high value for the trigger good hi.

w�
π(ai),j

=

⎧
⎪⎨

⎪⎩

L/3 if σ−1(j) ∈ {gi, ri, si},

L if σ−1(j) = hi,

0 otherwise.

– For i ∈ [p], we have that the second key agent corresponding to the main
variable xi has a somewhat high value for the consolation good ḡi and the
essential goods r′

i and s′
i, and also has a high value for the trigger good hi.

w�
π(āi),j

=

⎧
⎪⎨

⎪⎩

L/3 if σ−1(j) ∈ {ḡi, r
′
i, s

′
i},

L if σ−1(j) = hi,

0 otherwise.

– For i ∈ [p] the shadow agents have a high value for their associated essential
goods and the backup good which represents an auxiliary clause that contains
the shadow variable associated with the shadow agent. Formally, we have:
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w�
π(bi),j

=

{
L if σ−1(j) ∈ {ri, f

1
� , f2

� },

0 otherwise.

where � is such that C� is the unique clause that contains the shadow variable
ui. The valuations for wπ(ci),j , wπ(b′

i),j
and wπ(c′

i),j
are analogously defined,

with ri being replaced by si, r′
i, and s′

i, respectively, and � would be such that
C� is the unique clause that contains vi, u′

i, and v′
i, respectively.

The final valuations that we will work with are obtained by taking a point-wise
max of the two valuation matrices defined above with the following exceptions:

– Dummy agents value the four essential goods associated with them at zero.
– The shadow agent bi (respectively, ci) values the consolation good gi and the

essential good si (respectively, ri) at zero.
– The shadow agent b′

i (respectively, c′
i) values the consolation good ḡi and the

essential good s′
i (respectively, r′

i) at zero.

In particular, we propose the final valuation matrix v = (vi,j)i∈[n],j∈[m] as fol-
lows:

vi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(wi,j , w
�
i,j) if π−1(i) = dk and σ−1(j) ∈ {rk, sk, r′

k, s′
k},

or π−1(i) = bk and σ−1(j) ∈ {gk, sk},

or π−1(i) = ck and σ−1(j) ∈ {gk, rk},

or π−1(i) = b′
k and σ−1(j) ∈ {ḡk, s′

k},

or π−1(i) = c′
k and σ−1(j) ∈ {ḡk, r′

k},

for any k ∈ [p]
max(wi,j , w

�
i,j) otherwise.

For convenience, we say an entry of v is large if it is at least L/3 and is small
otherwise. For (i, j) which are such that vi,j is small, we introduce the notation
εi,j to denote vi,j . We ask if this instance admits an allocation with zero sharing.
We now argue the equivalence of the instances.

Forward Direction. Let τ be a boolean assignment for the variables of the LNES
instance that we start with. We now propose an allocation:

– If τ(xi) = 1, then the first key agent ai gets {gi, ri, si}, the second key agent
āi gets the trigger good hi and the dummy agent di gets the consolation good
{ḡi}.

– If τ(xi) = 0, then the first key agent ai gets the trigger good {hi}, the second
key agent āi gets {ḡi, r

′
i, s

′
i} and the dummy agent gets the consolation good

{gi}.
– If τ(xi) = 1, then the shadow agents b′

i and c′
i get the essential goods that

they value highly, i.e, r′
i and s′

i.
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Fig. 1. The overall schematic of the construction in the proof of Theorem 1. The entries
depicted by a � indicate small values

– If τ(xi) = 0, then the shadow agents bi and ci get the essential goods that
they value highly, i.e, ri and si.

Note that there are 2p shadow agents who have not been allocated any goods so
far. It is easy to check that these shadow agents correspond exactly to shadow
variables x for which τ(x) = 1. Since τ is a satisfying assignment for the LNES
instance, we know that each auxiliary clause C� contains exactly two shadow
variables which evaluate to true under τ . Let μ(C�) denote the shadow agents
corresponding to these shadow variables. Then, for each j ∈ [p], the goods f1

j

and f2
j are allocated arbitrarily, one each, to the two shadow agents in μ(Cj).

We claim that this allocation is fPO and EF, and we defer the proofs of these
properties to the full version.

Reverse Direction. For the discussion in the reverse direction, we say that an allo-
cation is valid if it is EF and fPO and involves no sharing. Let z := (zi,j)i∈[n],j∈[m]

be a valid allocation. First, we argue that z must have a certain structure in a
series of claims whose proofs are deferred to the full version.

Claim. In the allocation z, any trigger good hi must be allocated to one of the
corresponding key agents {ai, āi}.

Claim. Every consolation good gi is allocated to either to the key agent ai or
to the dummy agent di. Likewise, the good ḡi is allocated to either to the key
agent āi or to the dummy agent di.

Claim. If the consolation good gi is allocated to a key agent ai, then the shadow
agents bi and ci must be allocated the backup goods.
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Claim. If the consolation good ḡi is allocated to a key agent āi, then the shadow
agents b′

i and c′
i must be allocated the backup goods.

Now observe that the two claims above account for the allocation of 2p backup
goods among 2p distinct shadow agents. Let us call these shadow agents happy
and the remaining shadow agents unhappy. We claim that the bundle of every
unhappy shadow agent must contain an essential good—this is because these are
the only highly valued goods left in the pool and are the only way to eliminate the
envy that the unhappy agents feel for the happy ones. Note that every unhappy
agent values the bundle of exactly two happy shadow agents.
Based on this, we propose the following assignment of truth values:

τ(xi) =

{
1 zπ(ai),σ(gi) = 1,

0 otherwise.

We extend this assignment to shadow variables in the natural way: if τ(xi) = 1,
then τ(ui) = τ(vi) = 1 and τ(u′

i) = τ(v′
i) = 0, while if τ(xi) = 0, then τ(ui) =

τ(vi) = 0 and τ(u′
i) = τ(v′

i) = 1. We now argue that τ is a satisfying assignment
for the original LNES instance.

Suppose gi is allocated to ai. We set τ(xi) = 1. This satisfies all the clauses
containing the literal xi, namely, Ui and Vi. Further, note that these clauses are
satisfied exactly once, since we also set τ(ui) = τ(vi) = 1 (recall that ui and vi

appear in these clauses with negative polarity). The other main clauses U ′
i and

V ′
i are satisfied since we set τ(u′

i) = τ(v′
i) = 0, and these clauses are satisfied

exactly once as well, since xi appears in them with a negative polarity and we
are in the case when τ(xi) = 1. The case when τ(xi) = 0 is analogous, and we
see that all core clauses are satisfied exactly once by τ , as desired.

We now turn to the auxiliary clauses. Observe that τ(xi) = 1 if and only
if zπ(ai),σ(gi) = 1, that is, the key agent ai gets the consolation good gi. This
implies that bi and ci are happy agents. On the other hand, recall that we also
set τ(ui) and τ(vi) to one. Similarly, it can be argued that if τ(xi) = 0, then
b′
i and c′

i are happy agents, and in this case, we had also set τ(u′
i) and τ(v′

i) to
one. So we conclude that all happy agents correspond to variables that evaluate
to one under τ . Along similar lines, it is easy to check that all unhappy agents
who receive essential goods as explained in the last claim correspond to variables
that are set to zero under τ .

Now consider an auxiliary clause C�. Notice that f1
� and f2

� have been allo-
cated to happy agents that value these goods highly, so we know that C� contains
at least two variables that evaluate to true. Now suppose there is some auxiliary
clause that contains more than two variables that evaluate to true. This would
imply the existence of more than 2p happy agents, which is a contradiction. The
argument for the reduced instance having constant degeneracy is deferred to the
full version. 	
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4 Concluding Remarks

We demonstrated the hardness of finding fPO+EF and EF allocations even for
instances with constant degeneracy for instances with an unbounded number of
agents. We note that running times of the form dO(n) · poly(m,n) are “weakly
ruled out” because of the hardness result in [8] which is based on a reduction
from Partition. However, all the hardness results combined so far do not rule
out the possibility of an algorithm with a running time of cO(d+n) ·mO(1), which
would imply strongly polynomial running times for instances where (d + n) is
bounded by O(log m). One framework to rule out such a possibility would be
parameterized complexity, where one might attempt demonstrating W-hardness
in the combined parameter (n, d). On a related note, we show that instances
that have bounded degeneracy and a bounded number of values in the valuation
matrix are essentially bounded—we refer the reader to full version of the paper
for a more detailed discussion.
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