
The Balanced Satisfactory Partition
Problem

Ajinkya Gaikwad, Soumen Maity(B), and Shuvam Kant Tripathi

Indian Institute of Science Education and Research, Pune 411008, India
{ajinkya.gaikwad,tripathi.shuvamkant}@students.iiserpune.ac.in,

soumen@iiserpune.ac.in

Abstract. The Satisfactory Partition problem asks whether it is possi-
ble to partition the vertex set of a given undirected graph into two parts
such that each vertex has at least as many neighbours in its own part
as in the other part. The Balanced Satisfactory Partition problem is a
variant of the above problem where the two partite sets are required to
have the same cardinality. Both problems are known to be NP-complete
but its parameterized complexity remains open until now. We enhance
our understanding of the problem from the viewpoint of parameterized
complexity. The two main results of the paper are the following: (1)
The Satisfactory Partition problem and its balanced version are fixed
parameter tractable (FPT) when parametrized by neighbourhood diver-
sity, (2) The Balanced Satisfactory Partition problem is W[1]-hard when
parametrized by treewidth.

Keywords: Parameterized complexity · FPT · W[1]-hard ·
Treewidth · Neighbourhood diversity

1 Introduction

Gerber and Kobler [7] introduced the problem of deciding if a given graph has a
vertex partition into two non-empty parts such that each vertex has at least as
many neighbours in its part as in the other part. A graph satisfying this prop-
erty is called partitionable. For example, complete graphs, star graphs, complete
bipartite graphs with at least one part having odd size are not partitionable,
where as some graphs are easily partitionable: cycles of length at least 4, trees
that are not star graphs [4].

Given a graph G = (V,E) and a subset S ⊆ V (G), we denote by dS(v) the
degree of a vertex v ∈ V in G[S], the subgraph of G induced by S. For S = V , the
subscript is omitted, hence d(v) stands for the degree of v in G. In this paper, we
study the parameterized complexity ofSatisfactoryPartition andBalanced
Satisfactory Partition problems. We define these problems as follows:

S. Maity—The author’s research was supported in part by the Science and Engineering
Research Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2021
T. Bureš et al. (Eds.): SOFSEM 2021, LNCS 12607, pp. 322–336, 2021.
https://doi.org/10.1007/978-3-030-67731-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67731-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-67731-2_23

The Balanced Satisfactory Partition Problem 323

Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every
v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v)?

A variant of this problem where the two parts have equal size is:

Balanced Satisfactory Partition
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2|
and for every v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v)?

Given a partition (V1, V2), we say that a vertex v ∈ Vi is satisfied if
dVi

(v) ≥ dV3−i
(v), or equivalently if dVi

(v) ≥ �d(v)
2 �. A graph admitting a non-

trivial partition where all vertices are satisfied is called satisfactory partitionable,
and such a partition is called satisfactory partition. For the standard concepts
in parameterized complexity, see the recent textbook by Cygan et al. [5]. We
now review the concept of a tree decomposition, introduced by Robertson and
Seymour in [12].

Definition 1. A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T)),
where T is a tree and each node t of the tree T is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions are satisfied:

1. Every vertex of G is in at least one bag.
2. For every edge uv ∈ E(G), there exists a node t ∈ T such that bag Xt contains

both u and v.
3. For every u ∈ V (G), the set {t ∈ V (T) | u ∈ Xt} induces a connected subtree

of T .

It is important to note that a graph may have several different tree decomposition.
Similarly, the same tree decomposition can be valid for several different graphs.
Every graphhas a trivial tree decomposition forwhichT has only one vertex includ-
ing all of V . However, this is not effective for the purpose of solving problems.

Definition 2. The width of a tree decomposition is defined as width(T) =
maxt∈V (T)|Xt|−1 and the treewidth tw(G) of a graph G is the minimum width
among all possible tree decomposition of G.

The reason for subtracting 1 in the above definition for width is so that we can
define forests as having treewidth 1.

Our Results: Our main results are the following:

– The Satisfactory Partition and Balanced Satisfactory Partition
problems are fixed parameter tractable (FPT) when parameterized by neigh-
bourhood diversity.

324 A. Gaikwad et al.

– The Balanced Satisfactory Partition problem is W[1]-hard when
parameterized by treewidth.

Related Work: In the first paper on this topic, Gerber and Kobler [7] consid-
ered a generalized version of this problem by introducing weights for the vertices
and edges and showed that a general version of the problem is strongly NP-
complete. For the unweighted version, they presented some sufficient conditions
for the existence of a solution. This problem was further studied in [1,6,8]. The
Satisfactory Partition problem is NP-complete and this implies that Bal-
anced Satisfactory Partition problem is also NP-complete via a simple
reduction in which we add new dummy vertices and dummy edges to the graph
[2,4]. Both problems are solvable in polynomial time for graphs with maximum
degree at most 4 [4]. They also studied generalizations and variants of this prob-
lem when a partition into k ≥ 3 nonempty parts is required. Bazgan, Tuza, and
Vanderpooten [1,3] studied an “unweighted” generalization of Satisfactory
Partition, where each vertex v is required to have at least s(v) neighbours
in its own part, for a given function s representing the degree of satisfiability.
Obviously, when s = �d

2�, where d is the degree function, we obtain satisfac-
tory partition. They gave a polynomial-time algorithm for graphs of bounded
treewidth which decides if a graph admits a satisfactory partition, and gives such
a partition if it exists.

2 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for the Satisfactory Partition
and Balanced Satisfactory Partition problems parameterized by neigh-
bourhood diversity. We say two vertices u and v in G have the same type if and
only if NG(u)\{v} = NG(v)\{u}. The relation of having the same type is an
equivalence relation. The idea of neighbourhood diversity is based on this type
structure.

Definition 3 [10]. The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer k for which we can partition the set V of vertices
into k classes, such that all vertices in each class have the same type.

If neighbourhood diversity of a graph is bounded by an integer k, then there
exists a partition {C1, C2, . . . , Ck} of V (G) into k type classes. It is known that
such a minimum partition can be found in linear time using fast modular decom-
position algorithms [14]. Notice that each type class could either be a clique or
an independent set by definition. For algorithmic purpose it is often useful to
consider a type graph H of graph G, where each vertex of H is a type class in
G, and two vertices Ci and Cj are adjacent iff there is complete bipartite clique
between these type classes in G. It is not difficult to see that there will be either
a complete bipartite clique or no edges between any two type classes. In this
section, we prove the following theorem:

The Balanced Satisfactory Partition Problem 325

Theorem 1. The Satisfactory Partition problem is fixed-parameter
tractable when parameterized by the neighbourhood diversity.

Let G be a connected graph such that nd(G) = k. Let C1, . . . , Ck be the
partition of V (G) into sets of type classes. We assume k ≥ 2 since otherwise the
problem becomes trivial. We define I1 = {Ci | Ci ⊆ V1}, I2 = {Ci | Ci ⊆ V2} and
I3 = {Ci | Ci ∩V1 �= ∅, Ci ∩V2, �= ∅} where (V1, V2) is a satisfactory partition. We
next guess if Ci belongs to I1, I2, or I3. There are at most 3k possibilities as each
Ci has three options: either in I1, I2, or I3. We reduce the problem of finding
a satisfactory partition to an integer linear programming optimization with k
variables. Since integer linear programming is fixed parameter tractable when
parameterized by the number of variables [11], we conclude that our problem is
FPT when parameterized by the neighbourhood diversity.

ILP Formulation: Given I1, I2 and I3, our goal here is to answer if there exists
a satisfactory partition (V1, V2) of G with all vertices of Ci are in V1 if Ci ∈ I1,
all vertices of Ci are in V2 if Ci ∈ I2, and vertices of Ci are distributed amongst
V1 and V2 if Ci ∈ I3. For each Ci, we associate a variable: xi that indicates
|V1 ∩ Ci| = xi. Because the vertices in Ci have the same neighbourhood, the
variables xi determine (V1, V2) uniquely, up to isomorphism. We now character-
ize a satisfactory partition in terms of xi. Note that xi = ni = |Ci| if Ci ∈ I1;
xi = 0 if Ci ∈ I2.

Lemma 1. Let C be a clique type class. Then C is either in I1 or I2.

Proof. Let C be a clique type class. Let u, v ∈ C. Let us denote N(u) \ {v} =
N(v)\{u} by S and let a = |S ∩ V1| and let b = |S ∩ V2|. The satisfiability of u
implies a ≥ b + 1 and the satisfiablity of v implies b ≥ a + 1. Clearly, u and v
cannot be satisfied simultaneously, as the two inequalities imply a ≥ b+1 ≥ a+2,
a contradiction. This proves the lemma.

Now we consider the following four cases:

Case 1: Suppose v belongs to a clique type class Cj in I1. Then the number of
neighbours of v in V1, that is,

dV1(v) =
∑

i:Ci∈NH [Cj]∩I1

ni +
(∑

i:Ci∈NH [Cj]∩I3

xi

)
− 1.

The number of neighbours of v in V2, that is,

dV2(v) =
∑

i:Ci∈NH(Cj)∩I2

ni +
∑

i:Ci∈NH [Cj]∩I3

(ni − xi).

Therefore, vertex v is satisfied if and only if
∑

i:Ci∈NH [Cj]∩I1

ni +
∑

i:Ci∈NH [Cj]∩I3

2xi ≥ 1 +
∑

i:Ci∈NH(Cj)∩I2

ni +
∑

i:Ci∈NH [Cj]∩I3

ni

(1)

326 A. Gaikwad et al.

Case 2: Suppose v belongs to a clique type class Cj in I2. Then similarly, v is
satisfied if and only if

∑

i:Ci∈NH [Cj]∩I2

ni +
∑

i:Ci∈NH [Cj]∩I3

ni ≥ 1 +
∑

i:Ci∈NH(Cj)∩I1

ni +
∑

i:Ci∈NH [Cj]∩I3

2xi

(2)

Case 3: Suppose v belongs to an independent type class Cj in V1, that is,
Cj ∈ I1 ∪ I3. Then the number of neighbours of v in V1, that is,

dV1(v) =
∑

i:Ci∈NH(Cj)
⋂

I1

ni +
∑

i:Ci∈NH(Cj)
⋂

I3

xi.

Note that if Cj ∈ I3, then only xj vertices of Cj are in V1 and the the remaining
yj vertices of Cj are in V2. The number of neighbours of v in V2, that is,

dV2(v) =
∑

i: Ci∈NH(Cj)
⋂

I2

ni +
∑

i: Ci∈NH(Cj)
⋂

I3

(ni − xi).

Therefore, v is satisfied if and only if
∑

i:Ci∈NH(Cj)
⋂

I1

ni +
∑

i:Ci∈NH(Cj)
⋂

I3

2xi ≥
∑

i:Ci∈NH(Cj)
⋂

I2

ni +
∑

i:Ci∈NH(Cj)
⋂

I3

ni

(3)

Case 4: Suppose v belongs to an independent type class Cj in V2, that is,
Cj ∈ I2 ∪ I3. Similarly, vertex v is satisfied if and only if

∑

i:Ci∈NH(Cj)
⋂

I2

ni +
∑

i:Ci∈NH(Cj)
⋂

I3

ni ≥
∑

i:Ci∈NH(Cj)
⋂

I1

ni +
∑

i:Ci∈NH(Cj)
⋂

I3

2xi

(4)

We now formulate ILP formulation of satisfactory partition, for given I1, I2
and I3. The question is whether there exist xj under the conditions xj = nj if
Cj ∈ I1, xj = 0 if Cj ∈ I2, xj ∈ {1, 2, . . . , nj − 1} if Cj ∈ I3 and the additional
conditions described below:

– Inequality 1 for all clique type classes Cj ∈ I1
– Inequality 2 for all clique type classes Cj ∈ I2
– Inequality 3 for all independent type classes Cj ∈ I1
– Inequality 4 for all independent type classes Cj ∈ I2
–

∑

Ci∈NH(Cj)
⋂

I2

ni +
∑

Ci∈NH(Cj)
⋂

I3

ni =
∑

Ci∈NH(Cj)
⋂

I1

ni +
∑

Ci∈NH(Cj)
⋂

I3

2xi

for all independent type classes Cj ∈ I3.

The Balanced Satisfactory Partition Problem 327

For Balanced Satisfactory Partition problem, we additionally ask that
∑

i:Ci∈I1

ni +
∑

i:Ci∈I3

xi =
∑

i:Ci∈I3

(ni − xi) +
∑

i:Ci∈I2

ni.

Solving the ILP: Lenstra [11] showed that the feasibility version of p-ILP is
FPT with running time doubly exponential in p, where p is the number of vari-
ables. Later, Kannan [9] designed an algorithm for p-ILP running in time pO(p).

p-Variable Integer Linear Programming Feasibility (p-ILP): Let
matrices A ∈ Zm×p and b ∈ Zp×1 be given. The question is whether there
exists a vector x ∈ Zp×1 satisfying the m inequalities, that is, A ·x ≤ b. We use
the following result:

Lemma 2 [9,11]. p–ILPcan be solved using O(p2.5p+o(p) · L) arithmetic oper-
ations and space polynomial in L. Here L is the number of bits in the input.

In the formulation for Satisfactory Partition problem, we have at most k
variables. The value of any variable in the integer linear programming is bounded
by n, the number of vertices in the input graph. The constraints can be repre-
sented using O(k2 log n) bits. Lemma 2 implies that we can solve the problem
with the given guess I1, I2 and I3 in FPT time. There are at most 3k choices for
(I1, I2, I3), and the ILP formula for a guess can be solved in FPT time. Thus
Theorem 1 holds.

3 Hardness of Balanced Satisfactory Partition
Parameterized by Treewidth

In this section, we prove the following theorem:

Theorem 2. The Balanced Satisfactory Partition problem is W[1]-hard
when parameterized by the treewidth of the graph.

We introduce several variants of Balanced Satisfactory Partition that we
require in our proofs. The problem Balanced Satisfactory PartitionS gen-
eralizes Balanced Satisfactory Partition where some vertices are forced
to be in the second part V2. This variant can be formalized as follows:

Balanced Satisfactory PartitionS

Input: A graph G = (V,E) on an even number of vertices, and a set V� ⊆
V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that
V� ⊆ V2.

Balanced Satisfactory PartitionFS is a further generalization where
some vertices are forced to be in the first part V1 and some other vertices are
forced to be in the second part V2. This variant can be formalized as follows:

328 A. Gaikwad et al.

Balanced Satisfactory PartitionFS

Input: A graph G = (V,E) on an even number of vertices, a set V� ⊆ V (G),
and a set V� ⊆ V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that
(i) V� ⊆ V1 (ii) V� ⊆ V2.

Finally, we introduce the generalization Balanced Satisfactory

PartitionFSC in which we are also given a subset of “complementary pairs”
of vertices and feasible solutions are only those for which neither V1 nor V2

contains a complementary pair.

Balanced Satisfactory PartitionFSC

Input: A graph G = (V,E) on an even number of vertices, a set V� ⊆ V (G),
a set V� ⊆ V (G), and a set C ⊆ V (G) × V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that
(i) V� ⊆ V1 (ii) V� ⊆ V2, and (iii) for all (a, b) ∈ C, V1 contains either a or b
but not both?

Let G = (V,E) be an undirected and edge weighted graph, where V , E,
and w denote the set of nodes, the set of edges and a positive integral weight
function w : E → Z+, respectively. An orientation Λ of G is an assignment
of a direction to each edge {u, v} ∈ E(G), that is, either (u, v) or (v, u) is con-
tained in Λ. The weighted outdegree of u on Λ is wu

out =
∑

(u,v)∈Λ w({u, v}).
We define Minimum Maximum Outdegree problem as follows:

Minimum Maximum Outdegree
Input: A graph G, an edge weighting w of G given in unary, and a positive
integer r.
Question: Is there an orientation Λ of G such that wu

out ≤ r for each u ∈
V (G)?

It is known that Minimum Maximum Outdegree is W[1]-hard when parame-
terized by the treewidth of the input graph [13]. To prove Theorem 2, we give a 4-
step reduction. In the first step of the reduction, we reduce Minimum Maximum

Outdegree to Balanced Satisfactory PartitionFSC. In the second step
of the reduction we reduce the Balanced Satisfactory PartitionFSC to
Balanced Satisfactory PartitionFS. In the third step of the reduction we
reduce the Balanced Satisfactory PartitionFS to Balanced Satisfac-
tory PartitionS. Finally we reduce Balanced Satisfactory PartitionS

to Balanced Satisfactory Partition. To measure the treewidth of a Bal-
anced Satisfactory PartitionFSC instance, we use the following defini-
tion. Let I = (G,V�, V�, C) be a Balanced Satisfactory PartitionFSC

instance. The primal graph G′ of I is defined as follows: V (G′) = V (G) and
E(G′) = E(G) ∪ C.

The Balanced Satisfactory Partition Problem 329

Lemma 3. The Balanced Satisfactory PartitionFSC is W[1]-hard when
parameterized by the treewidth of the primal graph.

Proof. Let G = (V,E,w) and a positive integer r be an instance of Minimum
Maximum Outdegree. We construct an instance of Balanced Satisfactory
PartitionFSC as follows. An example is given in Figure 1. For each vertex
v ∈ V (G), we introduce a set of new vertices Hv = {hv�

1 , . . . , hv�
2r }. For each

edge (u, v) ∈ E(G), we introduce the set of new vertices Vuv = {uv
1, . . . , u

v
w(u,v)},

V ′
uv = {u′v

1 , . . . , u′v
w(u,v)}, Vvu = {vu

1 , . . . , vu
w(u,v)}, V ′

vu = {v′u
1 , . . . , v′u

w(u,v)}, V �
uv =

{uv�
1 , . . . , uv�

w(u,v)}, V ′�
uv = {u′v�

1 , . . . , u′v�
w(u,v)}, V �

vu = {vu�
1 , . . . , vu�

w(u,v)}, V ′�
vu =

{v′u�
1 , . . . , v′u�

w(u,v)}. Let ω =
∑

(u,v)∈E

w(u, v). Finally we add a set V0 of 8ω +

|V |(2r + 1) − 4 isolated vertices. We now define the graph G′ with

V (G′) = V (G)
⋃

v∈V (G)

Hv

⋃

(u,v)∈E(G)

(Vuv ∪ V �
uv ∪ Vvu ∪ V �

vu)

⋃

(u,v)∈E(G)

(V ′
uv ∪ V ′�

uv ∪ V ′
vu ∪ V ′�

vu)
⋃

V0

and

E(G′) =
{
(v, h) | v ∈ V (G), h ∈ Hv

} ⋃ {
(u, x) | (u, v) ∈ E(G), x ∈ Vuv ∪ V �

uv

}

⋃ {
(x, v) | (u, v) ∈ E(G), x ∈ Vvu ∪ V �

vu

}

⋃ {
(uv

i , u
′v
i), (uv�

i , u′v�
i), (vu

i , v′u
i), (vu�

i , v′u�
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}
.

The number of vertices in V (G′) \ V0 is 8ω + |V |(2r + 1). We define the comple-
mentary vertex pairs

C =
{

(u′v
i , v′u

i), (u′v
i+1, v

′u
i), (uv

i , v′u
i), (u′v

i , vu
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}

Complementary vertex pairs are shown in dashed lines in Fig. 1. Finally we
define V� = V (G)

⋃
v∈V (G) Hv and V� =

⋃
(u,v)∈E(G)(V

�
uv ∪ V ′�

uv ∪ V �
vu ∪ V ′�

vu).
We use I to denote (G′, V�, V�, C) which is an instance of Balanced Satis-

factory PartitionFSC.

Clearly, it takes polynomial time to compute I. We now prove that the treewidth
of the primal graph G′ of I is bounded by a function of the treewidth of G. We
do so by modifying an optimal tree decomposition τ of G as follows:

– For every edge (u, v) of G, there is a node in τ whose bag B contains both u
and v; add to this node a chain of nodes 1, 2, . . . , w(u, v) − 1 where the bag
of node i is B ∪ {uv

i , u′v
i , v′u

i , vu
i , uv

i+1, u
′v
i+1, v

′u
i+1, v

u
i+1}.

– For every edge (u, v) of G, there is a node in τ whose bag B contains u;
add to this node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is
B ∪ {uv�

i , u′v�
i }.

330 A. Gaikwad et al.

– For every edge (u, v) of G, there is a node in τ whose bag B contains v and
add to this node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is
B ∪ {vu�

i , v′u�
i }.

– For every vertex v of G, there is a node in τ whose bag B contains v and add
to this node a chain of nodes 1, 2, . . . , 2r where the bag of node i is B∪{hv�

i }.

Clearly, the modified tree decomposition is a valid tree decomposition of the
primal graph of I and its width is at most the treewidth of G plus eight.

a

ha�
1

ha�
2

ha�
3

ha�
4

ad
1

ad�
1

a′d
1

a′d�
1

d′a
1 da1

d′a�
1 da�

1

b

hb�
1

hb�
2

hb�
3

hb�
4

bc1

bc2

bc�
1

bc�
2

b′c
1

b′c
2

b′c�
1

b′c�
2

ba1 ba�
1

b′a
1 b′a�

1

c

hc�
1

hc�
2

hc�
3

hc�
4

cb1

cb2

cb�
1

cb�
2

c′b
1

c′b
2

c′b�
1

c′b�
2

cd1 cd2 cd�
1 cd�

2

c′d
1 c′d

2 c′d�
1 c′d�

2 V0

d

dc1 dc2
dc�
1 dc�

2

d′c
1 d′c

2

d′c�
1 d′c�

2

ab
1 ab�

1

a′b
1 a′b�

1

hd�
1

hd�
2

hd�
3

hd�
4

a d

b c

2

2

1

1

Fig. 1. Result of our reduction on a Minimum Maximum Outdegree instance G with
r = 2. The graph G long with its orientation is shown at the left; and G′ is shown
at the right. Complementary vertex pairs are shown using dashed lines. The vertices
in the first part of satisfactory partition (V1, V2) of G′ are shown in red for the given
orientation of G. Here ω = 6 and V0 contains 64 isolated vertices. The vertices of V0 are
distributed among V1 and V2 so that (V1, V2) becomes balanced satisfactory partition.

Let D be the directed graph obtained by an orientation of the edges of G
such that for each vertex the sum of the weights of outgoing edges is at most r.
Consider the partition of G′ − V0

V1 = V�
⋃

(u,v)∈E(D)

(Vvu ∪ V ′
vu) = V (G)

⋃

v∈V (G)

Hv

⋃

(u,v)∈E(D)

(Vvu ∪ V ′
vu)

The Balanced Satisfactory Partition Problem 331

and
V2 =

⋃

(u,v)∈E(D)

(Vuv ∪ V ′
uv ∪ V �

uv ∪ V ′�
uv)

⋃

(u,v)∈E(D)

(V �
vu ∪ V ′�

vu).

To prove that (V1, V2) is a satisfactory partition, first we prove that dV1(x) ≥
dV2(x) for all x ∈ V1. If x is a vertex in Hv or Vvu∪V ′

vu, then clearly all neighbours
of x are in V1, hence x is satisfied. Suppose x ∈ V (G). Let wx

out and wx
in denote

the sum of the weights of outgoing and incoming edges of vertex x, respectively.
Hence dV1(x) = 2r + wx

in and dV2(x) = 2wx
out + wx

in in G′. This shows that x is
satisfied as wx

out ≤ r. Now we prove that dV2(x) ≥ dV1(x) for all x ∈ V2. If x is a
vertex in Vuv ∪V �

uv ∪V �
vu then x has one neighbour in V1 and one neighbour in V2.

If x ∈ V ′
uv ∪ V ′�

uv ∪ V ′�
vu then x has one neighbour in V2 and no neighbours in V1.

Thus the vertices in V2 are satisfied. The isolated vertices of V0 are distributed
among V1 and V2 so that it becomes balanced satisfactory partition for G′.

Conversely, suppose (V1, V2) is a balanced satisfactory partition of G′. That
is |V1| = |V2| = 8ω + (2r + 1)|V | − 2. Then V ′

1 = V1 \ V0 and V ′
2 = V2 \ V0 form a

satisfactory partition of G′ − V0. For every (u, v) ∈ E(G), either Vuv ∪ V ′
uv ∈ V ′

1

or Vvu ∪ V ′
vu ∈ V ′

1 due to the complementary vertex pairs. We define a directed
graph D by V (D) = V (G) and

E(D) =
{

(u, v) | Vvu ∪ V ′
vu ∈ V ′

1

}⋃ {
(v, u) | Vuv ∪ V ′

uv ∈ V ′
1

}
.

Suppose there is a vertex x in D for which wx
out > r. Clearly x ∈ V ′

1 . We know
dV ′

1
(x) = 2r + wx

in and dV ′
2
(x) = 2wx

out + wx
in. Then dV ′

2
(x) > dV ′

1
(x), as by

assumption wx
out > r, a contradiction to the fact that (V ′

1 , V
′
2) is a satisfactory

partition of G′ − V0. Hence wx
out ≤ r for all x ∈ V (D).

Next we prove the following result which eliminates complementary pairs.

Lemma 4. The Balanced Satisfactory PartitionFS problem, parameter-
ized by the treewidth of the graph, is W[1]-hard.

Proof. Let I = (G,V�, V�, C) be an instance of Balanced Satisfac-

tory PartitionFSC. Consider the primal graph of I, that is the graph
Gp where V (Gp) = V (G) and E(Gp) = E(G) ∪ C. From this we
construct an instance I ′ = (G′, V ′

�, V ′
�) of Balanced Satisfactory

PartitionFS problem. For each (a, b) ∈ C in the primal graph Gp, we
introduce two new vertices
ab and �ab and four new edges in G′. We
now define the G′ with V (G′) = V (G)

⋃
(a,b)∈C{
ab,�ab} and E(G′) =

E(G)
⋃

(a,b)∈C

{
(a,
ab), (a,�ab), (b,
ab), (b,�ab)

}
. Finally, we define the sets

V ′
� = V�

⋃
(a,b)∈C{
ab} and V ′

� = V�
⋃

(a,b)∈C{�ab}. We illustrate our con-
struction in Fig. 2. It is easy to see that we can compute I ′ in polynomial time
and its treewidth is linear in the treewidth of I. The following holds for every
solution (V ′

1 , V
′
2) of I ′: V ′

1 contains
ab for every (a, b) ∈ C, so it must also con-
tain a or b. It cannot contain both a and b for any (a, b) ∈ C, because �ab ∈ V ′

2 .

332 A. Gaikwad et al.

Restricting (V ′
1 , V

′
2) to the original vertices thus is a solution to I. Conversely, for

every solution (V1, V2) of I, the partition (V ′
1 , V

′
2) where V ′

1 = V1

⋃
(a,b)∈C{
ab}

and V ′
2 = V2

⋃
(a,b)∈C{�ab}, is a solution of I ′.

�ab

a b

�ab

Fig. 2. Gadget for a pair of complementary vertices (a, b) in the reduction from Bal-

anced Satisfactory PartitionFSC to Balanced Satisfactory PartitionFS.

Lemma 5. The Balanced Satisfactory PartitionS is W[1]-hard when
parameterized by the treewidth of the graph.

Proof. Let I = (G,V�, V�) be a Balanced Satisfactory PartitionFS

instance; let n denote the number of vertices in G. First, we fix a vertex v ∈ V�.
For every pair (u, v) of vertices where u ∈ V�, we introduce two sets of new
vertices Xuv = {xuv

1 , xuv
2 , . . . , xuv

n } and Y �
uv = {yuv�

1 , yuv�
2 , . . . , yuv�

n }. Next, we
define the Balanced Satisfactory PartitionS instance I ′ = (G′, V ′

�) where
V ′

� = V�
⋃

u∈V�
Y �

uv and G′ is the graph defined by

V (G′) = V (G)
⋃

u∈V�

Xuv

⋃

u∈V�

Y �
uv

and

E(G′) =E(G)
⋃

u∈V�

{
(u, xuv

i), (u, yuv�
i), (xuv

i , v), (yuv�
i , v) | i ≤ i ≤ n

}

⋃

u∈V�

{
(xuv

i , yuv�
i), (xuv

i , yuv�
i+1) | 1 ≤ i ≤ n − 1

}
∪

{
(xuv

n , yuv�
n), (xuv

n , yuv�
1)

}

⋃

u∈V�

{
(xuv

i , xuv
i+1 | 1 ≤ i ≤ n − 1

}
∪

{
(xuv

n , xuv
1)

}

⋃

u∈V�

{
(yuv�

i , yuv�
i+1 | 1 ≤ i ≤ n − 1

}
∪

{
(yuv�

n , yuv�
1)

}

An example is given in Fig. 3. The treewidth of G′ is equal to the treewidth of G
plus 5. We now claim that I is a yes-instance if and only if I ′ is a yes-instance.
Assume first that there exists a balanced satisfactory partition (V1, V2) of I such

The Balanced Satisfactory Partition Problem 333

u

xuv
4
Xuv

xuv
3

xuv
2

xuv
1

v

Y �
uv

yuv�
4

yuv�
3

yuv�
2

yuv�
1

Fig. 3. Let n = 4. Gadget for a pair of vertices (u, v) where u ∈ V� and v is a

fixed vertex in V� in the reduction from Balanced Satisfactory PartitionFS to

Balanced Satisfactory PartitionS.

that V� ∈ V1 and V� ∈ V2. In this case, we will get a balanced satisfactory
partition (V ′

1 , V
′
2) of I ′ as follows:

V ′
1 = V1

⋃

u∈V�

Xuv and V ′
2 = V2

⋃

u∈V�

Y �
uv.

It is easy to see that (V ′
1 , V

′
2) forms a balanced satisfactory partition of G′ as

all the vertices in V1 and V2 will remain satisfied and also the new vertices in
Xuv ∪ Y �

uv for all u ∈ V� are satisfied in their respective part as each vertex has
three neighbours in its own part and three neighbors in the other part. Since we
are adding equal number of vertices in the balanced partition (V1, V2), we again
get a balanced satisfactory partition. This shows that I ′ is a yes-instance.

Conversely, suppose that there exists a balanced satisfactory partition
(V ′

1 , V
′
2) of G′ such that V ′

� ∈ V ′
2 . We first show that all the vertices in V�

must lie in V ′
1 . Let us assume that there exists a vertex u ∈ V� that lies in V ′

2 .
Then each vertex in Xuv has at least 4 neighbors in V ′

2 and at most 2 neigh-
bours in V ′

1 ; therefore all the vertices in Xuv lie in V ′
2 . In this case, we cannot

get a balanced satisfactory partition as already more than half of the vertices
are in V ′

2 . This proves that all the vertices in V� lie in V ′
1 . Next, we show that

as V� ⊆ V ′
1 , the vertices in

⋃
u∈V�

Xuv also lie in V ′
1 . Since u ∈ V ′

1 , it must be

satisfied in V ′
1 . As the vertices in Y �

uv lie in V ′
2 , u has at least n neighbors in

V ′
2 and since u has at most n − 1 neighbors in graph G, it implies that at least

one vertex from Xuv must be in V ′
1 . Without loss of generality, we can assume

that xuv
1 ∈ V ′

1 . Since xuv
1 ∈ V ′

1 , it must be satisfied in V ′
1 and this forces xuv

n , xuv
2

to be in V ′
1 as well. Repetitively applying the above argument we get that all

the vertices in set Xuv lie in V ′
1 . We claim that (V ′

1 ∩ V (G), V ′
2 ∩ V (G)) forms

a balanced satisfactory partition of graph G. As for each vertex in V ′
i ∩ V (G),

i = 1, 2, we are removing equal number of neighbors from both the partitions,
this implies that all the vertices are satisfied and the partition is balanced. This
shows that I is a yes-instance.

334 A. Gaikwad et al.

Lemma 6. The Balanced Satisfactory Partition problem, parameterized
by the treewidth of the graph, is W[1]-hard.

Proof. Let I = (G,V�) be a Balanced Satisfactory PartitionS instance,
where V� = {u1, u2, . . . , un′}. For every vertex ui in the set V�, we introduce
two new sets of vertices Xui = {xui

1 , xui
2 , . . . , xui

4n} and Y ui = {yui
1 , yui

2 , . . . , yui
4n}.

We also introduce a clique of size 2 containing vertices {s, t} and a set C =
{c1, c2, . . . , c8n} of 8n vertices. We add two new vertices {s′, t′} along with two
sets of vertices S′ = {s′

1, s
′
2, . . . , s

′
4n} and T ′ = {t′1, t

′
2, . . . , t

′
4n}. Now, we define

the Balanced Satisfactory Partition instance I ′ = G′ where G′ is the
graph defined by

V (G′) = V (G) ∪
n′⋃

i=1

Xui ∪
n′⋃

i=1

Y ui ∪ {s, t, s′, t′} ∪ S′ ∪ T ′ ∪ C

and

E(G′) = E(G) ∪
n′⋃

i=1

4n⋃

j=1

{
(xui

j , ui), (yui
j , ui), (yui

j , s), (yui
j , t)

}
∪ {

(s, t)
}

8n⋃

j=1

{
(cj , s), (cj , t)

}
∪

4n⋃

j=1

{
(s′, s′

j), (t
′, t′j)

}
∪

{
(s′, s)(s′, t), (t′, s), (t′, t)

}
.

s′
1

. . .

s′
4n

s′

t′1

. . .

t′4n

t′
c1

. . .
c8n

s t

yu1
1

. . . yu1
4n

xu1
1

. . . xu1
4n

u1 . . .

y
un′
1

. . . y
un′
4n

x
un′
1

. . . x
un′
4n

un′

Fig. 4. An illustration of the reduction from Balanced Satisfactory PartitionS

to Balanced Satisfactory Partition.

Now we claim that I is a yes-instance if and only if I ′ is a yes-instance.
Assume first that there exists a balanced satisfactory partition (V1, V2) in the

The Balanced Satisfactory Partition Problem 335

graph G such that V� ⊆ V2. In this case, a balanced satisfactory partition
(V ′

1 , V
′
2) for G′ is defined as follows:

V ′
1 = V1 ∪

n′⋃

i=1

Y ui ∪ {s, t} ∪ C and V ′
2 = V2 ∪

n′⋃

i=1

Xui ∪ {s′, t′} ∪ S′ ∪ T ′.

Clearly, all the vertices are satisfied. Since we are adding equal number of ver-
tices in both the parts, (V ′

1 , V
′
2) is a balanced satisfactory partition of G′. This

proves that if I is a yes-instance then I ′ is a yes-instance.

Conversely, suppose that there exists a balanced satisfactory partition
(V ′

1 , V
′
2) of G′. We first prove that all the vertices of V� are in the same part.

Since NG′ [s] = NG′ [t], both s and t would be in the same part; without loss of
generality suppose they lie in V ′

1 . For 1 ≤ i ≤ n′, each vertex yui
j is adjacent

to 3 vertices {ui, s, t} and since {s, t} belong to V ′
1 , it forces yui

j to be in V ′
1 for

1 ≤ j ≤ 4n. Similarly, as s, t ∈ V ′
1 , each ci would also be in V ′

1 for 1 ≤ i ≤ 4n. For
the sake of contradiction, suppose the vertices of V� are distributed among V ′

1

and V ′
2 , that is, r many vertices of V� are in V ′

1 and remaining n′ − r vertices of
V� are in V ′

2 . This implies that V ′
1 contains at least 4n(n′ +r+2)+r+2 vertices

and V ′
2 contains at most 4n(n′ − r + 2) + 2 + (n − r). It implies that |V ′

1 | > |V ′
2 |,

a contradiction to our assumption that (V ′
1 , V

′
2) is a balanced satisfactory parti-

tion. This shows that all the vertices of V� must go to V ′
2 . Therefore, for every

balanced satisfactory partition of G′, we have

n′⋃

i=1

4n⋃

j=1

{yui
j } ∪ {s, t} ∪ C ⊆ V ′

1 and
n′⋃

i=1

4n⋃

j=1

{xui
j } ∪ {s′, t′} ∪ S′ ∪ T ′ ∪ V� ⊆ V ′

2 .

We now claim that (V ′
1 ∩ V (G), V ′

2 ∩ V (G)) forms a balanced satisfactory parti-
tion of G. From the above observation, we have V� ⊂ V ′

2 ∩V (G). All the vertices
are satisfied in the new partition (V ′

1 ∩ V (G), V ′
2 ∩ V (G)) and it is a balanced

partition because we are removing equal number of vertices from both parts.
This shows that if I ′ is a yes-instance then I is also a yes-instance.

This proves Theorem 2.

4 Conclusion

In this work we proved that the Satisfactory Partition and Balanced
Satisfactory Partition problems are FPT when parameterized by neighbour-
hood diversity; the Balanced Satisfactory Partition problem is W[1]-hard
when parameterized by treewidth. The parameterized complexity of the Satis-
factory Partition problem remains unsettle when parameterized by other
important structural graph parameters like clique-width and modular width.

Acknowledgement. The first author gratefully acknowledges support from the Min-
istry of Human Resource Development, Government of India, under Prime Minister’s
Research Fellowship Scheme (No. MRF-192002-211).

336 A. Gaikwad et al.

References

1. Bazgan, C., Tuza, Z., Vanderpooten, D.: On the existence and determination of
satisfactory partitions in a graph. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC
2003. LNCS, vol. 2906, pp. 444–453. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24587-2 46

2. Bazgan, C., Tuza, Z., Vanderpooten, D.: Complexity and approximation of satis-
factory partition problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 829–838. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719 84

3. Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-Constrained decompositions of
graphs: bounded treewidth and planarity. Theor. Comput. Sci. 355(3), 389–395
(2006)

4. Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Discr.
Appl. Math. 154(8), 1236–1245 (2006)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

6. Gerber, M.U., Kobler, D.: Classes of graphs that can be partitioned to satisfy all
their vertices. Australas. J. Combin. 29, 201–214 (2004)

7. Gerber, M.U., Kobler, D.: Algorithmic approach to the satisfactory graph parti-
tioning problem. Eur. J. Oper. Res. 125(2), 283–291 (2000)

8. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299(1), 719–734 (2003)

9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

10. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012)

11. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

12. N. Robertson and P. Seymour. Graph minors. iii. planar tree-width. J. Combina-
torial Theory, Series B, 36(1), 49–64 (1984)

13. Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR,
abs/1107.1177 (2011)

14. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.1007/978-3-540-24587-2_46
https://doi.org/10.1007/978-3-540-24587-2_46
https://doi.org/10.1007/11533719_84
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

	The Balanced Satisfactory Partition Problem
	1 Introduction
	2 FPT Algorithm Parameterized by Neighbourhood Diversity
	3 Hardness of Balanced Satisfactory Partition Parameterized by Treewidth
	4 Conclusion
	References

