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Abstract Hybrid metaheuristics are becoming a widely used alternative to solve
some combinatorial optimization problems such as the Flexible Job-shop Scheduling
Problem (FJSP). The inherent complexity of this type of problem requires methods
that can find near optimal solutions in a reasonable computational time, since exact
methods may be impractical in the real industry because of their exhaustive nature.
Here is where metaheuristics, which have been proved to be very time-efficient
in providing quality solutions, play a key role. Nevertheless, they also present
some shortcomings like premature convergence and local optima stagnation. Hybrid
versions are commonly used to avoid these issues and increase its search capability.
In this paper, we conduct a comparative study of the performance of the Firefly Algo-
rithm and two variants, one improved with an initialization phase and another that
integrates both this initialization andmultiple local search structures, in solving state-
of-the-art FJSP instances. The study demonstrates how local search and initialization
can notably enhance the performance of the algorithm.
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1 Introduction

Combinatorial optimization problems have been the focus ofmany scientific research
because of their complexity and practical importance in a wide variety of fields, and
different algorithms have been developed for their resolution. These algorithms can
be classified as complete and approximate algorithms [1], the former being algorithms
that ensure to find the optimal solutions.

Nevertheless, when the problem is NP-hard [2], complete algorithms require an
impractical amount of time, and thus approximate algorithms (i.e. metaheuristics)
are the alternative commonly used in the real world. Approximate algorithms cannot
guarantee to find the optimal solution but they notably reduce the amount of time
required to provide good solutions [1].

The Job-shop Scheduling Problem (JSP) is “not only NP-hard, but it also has the
well-earned reputation of being one of the most computationally stubborn combi-
natorial problems (…)” [3], and hence it is a problem that elicits interest in areas
like planning and managing of manufacturing processes or operations research. In
the JSP, there is a set of jobs that has to be performed and each job consists in a
set of operations that must be processed in exactly one machine and the operations
are subjected to precedence constraints. The goal of the JSP is to find a sequence
of the operations that optimizes certain criteria, e.g. minimize the completion time,
minimize the total machines’ workload, etc.

The Flexible Job-shop Scheduling Problem (FJSP) is an extension of the JSP
in which, in addition to the sequencing, a further decision level is required, the
assignment: the operations that make up each job can be processed by any machine
from a given set of compatible machines, and thus it is required to assign each
operation to one machine. This fact makes the FJSP even more complex than the
JSP.

Many approaches have been proposed for the resolution of the FJSP, especially
(meta)heuristics algorithms. To name a few within the most relevant ones, Brandi-
marte [4] described a hierarchical approach for the FJSP, solving separately the
sequencing and the assignment problems, both tackled by a tabu search (TS) algo-
rithm. TS was also used by Mastrolilli and Gambardella [5] where, additionally,
two neighborhood functions are introduced. Kacem et al. [6] presented a hybrid
approach combining evolutionary algorithms and fuzzy logic for solving the FJSP
withmultiple objectives. In Pezzella et al. [7], a genetic algorithm (GA)with different
strategies for initializing the population and for the selection and reproduction of the
individuals is presented. Regarding constructive metaheuristics, particle swarm opti-
mization and ant colony optimization has also been applied for this problem (see [8,
9], respectively).

In this paper, we present a comparative study of the performance of different
versions of the firefly algorithm (FA) in optimizing the total completion time
(makespan) in the FJSP. With this purpose, we have developed a standard discrete
version of the FA, another version in which some strategies to generate the initial
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population are used, and one hybrid version in which, together with this initializa-
tion, multiple local search procedures are integrated to increase the performance of
the algorithm. These three versions have been tested with multiple state-of-the-art
FJSP instances, providing a detailed analysis of the results.

The rest of the paper is organized as follows. In Sect. 2, a general description
of the FJSP is provided. In Sect. 3, we describe the discrete version of the FA, the
initialization procedure, and the local search strategies. The computational results
of the tests and the comparative analysis are summarized in Sect. 4. Finally, Sect. 5
closes the paper with the conclusions obtained in the study.

2 Problem Definition

In the FJSP, there are n jobs, consisting each job Ji (1 ≤ i ≤ n) in a sequence of ni
operations and m machines. An operation Oij (i = 1,2, …, n; j = 1,2, …, ni) needs
to be performed on one machine mij from the set of available machines Mij. Each
machine k ∈Mij requires a certain processing time (Pijk) to perform an operationOij.

Some assumptions are made: an operation cannot be interrupted (a1); there are
precedence constraints defined for any pair of operations within a job (a2); machines
are independent of each other (a3); there are no precedence relations between jobs
(a4); transport and set-up times are already considered in Pijk (a5); and each machine
can process at most one operation at any time (a6).

The mathematical model could be given as follows:

min f = max
1≤k≤m

(Ck) (1)

subject to

Ci j − Ci( j−1) ≥ Pi jk Xi jk, j = 2, . . . , ni ; ∀i, j (2)

[(Chg − Ci j − Phgk )Xghk Xi jk ≥ 0]V[(Ci j − Chg − Pi jk )Xhgk Xi jk ≥ 0],∀i, j, h, g, k (3)

∑

k∈Mi j

Xi jk = 1,∀i, j (4)

Xi jk ∈ {0, 1},∀i, j, k (5)

Equation (1) ensures the minimization of the objective, the makespan (i.e. the
maximal completion time of all the jobs). Constraint a2 is ensured by Inequality (2)
and constraint a6 by Inequality (3). Equation (4) indicates that, for each operation,
only one machine can be selected. Equation (5) is the binary decision variable (“1”
if operation Oij is assigned to machine k, “0” otherwise).
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3 Firefly Algorithm

The firefly algorithm (FA) is a swarm intelligence algorithm inspired by the social
behavior of the fireflies. The fireflies use their flashing lights to attract others with
predation or mating purposes. It was originally developed for solving continuous
optimization problems by Yang [10].

The main aspect of the FA is the association of the fireflies’ light intensity with
the objective function of the optimization problem. It is assumed that the firefly
brightness (I) determines its attractiveness (β), both being in turn linked with the
encoded objective function [11], the makespan in this study. If the aim is to minimize
an objective, the objective function value of a firefly at a position x can be inversely
associated with its brightness I (x) ∝ 1/ f (x).

Fireflies are initially spread over the search space and each position stands for a
solution to the optimization problem. At each iteration of the algorithm, the fireflies
will move toward the brighter ones (i.e. for minimization problems, solutions with
lower objective function value) within a certain region of the search space, depending
on their distance and visibility. The fireflies’ movement driven by its brightness, plus
a random movement component, allows efficiently exploring the search space. A
more detailed explanation of the original FA can be found in [10, 12].

This section is focused on the discrete version of the FA, which is required for the
FJSP. The main aspects of the FA that need to be adapted are the representation of
the solutions, the calculation of the distance, and how the movement is performed.
The discrete approach presented in this paper is based on [11].

Solution Representation and Decoding. Each solution of the problem is obtained
from two different vectors, one for each FJSP subproblem. The Sequencing Vector
(SV) indicates the sequence of the operations and each job number Ji appears ni
times. The Assignment Vector (AV) denotes the machine assigned to each operation,
an item AV[i] being a machine index. Both vectors have a length equal to the total
number of operations,

∑n
i=1ni . Figure 1 shows the decoding of a solution from its

AV and SV.
First, SV gives the sequence of the operations. The jth operation of Ji (Oij) corre-

sponds to the jth time a job index Ji appears. Then the machines mij assigned for
each operation Oij are obtained from the AV. The combination of these two vectors
provides the final solution of a firefly: {(O11,M1), (O12,M1), (O31,M3), (O21,M1),
(O32,M2), (O33, M3), (O13, M4), (O22,M2), (O23,M3), (O24, M1)}.

Measurement of the Distance Between Two Fireflies. The distance between the
SVs of two fireflies can be carried out as the minimum number of swaps required

AV 1 1 4 1 2 3 1 3 2 3 SV 1 1 3 2 3 3 1 2 2 2
O11 O12 O13 O21 O22 O23 O24 O31 O32 O33 O11 O12 O31 O21 O32 O33 O13 O22 O23 O24

Solution:
(O11,M1) (O12,M1) (O31,M3) (O21,M1) (O32,M2) (O33,M3) (O13,M4) (O22,M2) (O23,M3) (O24,M1)

Fig. 1 Solution representation and decoding



Local Search and Initialization in the Firefly Algorithm … 83

Table 1 Distances and
movement

P AV = [2 4 3 1 3 1 4 4
1 2]

SV = [1 2 2 3 1 2 1 3
3 2]

Pbest AV = [2 1 3 4 1 1 4 4
1 2]

SV = [1 3 2 2 1 2 1 2
3 3]

dav and dsv {(2,1), (4,4), (5,1)} {(2,4), (8,10)

|dav| and |dsv| 3 2

β(r) 0.53 0.71

rand ∈ [0,1] {0.34, 0.17, 0.76} {0.09, 0.82}

Mov. β-step {(2,1), (4,4)} {(2,4)}

Position after
β-step

2 1 3 4 3 1 4 4 1 2 1 3 2 2 1 2 1 3 3 2

Position after
α-step

2 1 3 4 3 1 4 4 2 1 1 3 2 2 1 1 2 3 3 2

to bring one SV closer to the most attractive one (|dsv|). For AV components, the
distance is the number of non-corresponding items in the sequence, known as the
Hamming distance (|dav|). Table 1 shows how both distances between the AVs and
the SVs of two fireflies (P and Pbest) are calculated.

Fireflies’ Movement. The movement of the original FA is divided into two not
interchangeable steps: First, the β-step and then the α-step. The β-step is an insertion
and pair-wise exchange mechanism used to bring the AV and SV of a firefly closer
to the global best firefly. The β-step consist in the following sub-steps: all necessary
pair-wise exchanges in SV and insertions in AV are found and stored in dsv and dav,
respectively; the distances |dsv| and |dav| are stored in R; the probability β(r) = βo/(1
+ γ r2) is computed; a random number rand ∈ [0,1] is generated for each element of
dav and dsv; and then the corresponding insertion/pair-wise exchange is performed
if Rand ≤ β. The α-step is a swapping mechanism in which two non-equal element
positions are chosen at random and swapped. Table 1 shows how the different steps
of a firefly movement are performed, with βo = 1, γ = 0.1, and α = 1.

3.1 Initialization Module

In order to study how the initial population can impact the performance of the FA,
we have implemented an initialization module. This module aims to initially locate
the fireflies in promising areas of the search space instead of doing it randomly. The
initialization rules explained below are the same used in the GA of Pezzella [8] who,
in turn, follow the approach by location of Kacem et al. [13].

ForAVs, two different rules are used:Ar1 andAr2, both considering the processing
times and the machines’ workload. Ar1 works as follows: the minimum processing
time Pijk is selected, and the machine k is assigned to the operation Oij. Then all the
columns corresponding tomachine k are updatedwithPijk , and the process is repeated
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until all the operations have been assigned to a machine. Ar2 works similarly but,
before starting, all rows (i.e. operations) and columns (i.e. machines) are randomly
shuffled. Then, instead of selecting the minimum of the table, the minimum Pijk

of the new first row is selected, then the minimum of the second row, and so on,
updating the columns as it was explained for Ar1. The advantage of Ar2 is that
different assignments can be obtained in different runs of the algorithm.

For SVs, thewell-known sequencing dispatching rules, theMostWorkRemaining
(MWR), and the Most number of Operations Remaining (MOR) are applied. In
addition, to enhance diversity, some of the initial SVs are randomly generated.

3.2 Local Search Module

To enhance the search performance of the FA and to avoid common problems of the
metaheuristics such as premature convergence or local optima stagnation, we have
introduced several local search procedures into the algorithm.These local search (LS)
strategies are based on the neighborhood structures used in the variable neighborhood
search (VNS) algorithm presented in [14].

LS Strategy 1. Two element positions of the SV are selected at random and swapped,
ensuring that no precedence constraint is violated. This is repeated multiple times
depending on the total time of operations.

LS Strategy 2. A random operation is selected from the AV, and a different machine
of the set of available machines for that operation is assigned, randomly as well. This
step is repeated depending on the total time of operations. It can be noticed that LS
strategies 1 and 2 are very similar to the α-step of the discrete FA.

LS Strategy 3. Two jobs are selected at random, and the positions of all its operations
are swappedmaintaining the precedence relations within each job, while themachine
assignments remain the same.

LS Strategy 4. One operation assigned to the machine with the maximal workload
(e.g. the sum of the processing times of the operations assigned to that machine) is
randomly selected, and then it is assigned to the machine with the least workload, if
possible. If not, it is assigned to any random available machine.

LS Strategy 5. One random operation assigned to the machine spending the
maximum time to complete its assigned operations (equal to makespan) is selected,
and then it is assigned to the machine spending the minimum time, if possible. If
not, it is assigned to any random available machine.



Local Search and Initialization in the Firefly Algorithm … 85

4 Results and Comparative Study

This section describes the computational study conducted to compare howdifferently
the FA performs with the initialization and the local search. We implemented three
different versions of the FA: a standard discrete FA (VS), another version integrated
with the initialization module (VI), and one more version with both the initialization
and local search modules (VLS). The algorithms were implemented in Python 3 and
the tests were run on an Intel Core 7 2.1 GHz PC with 8 GB RAM memory.

Table 2 shows the average results (Cmax-Av.), the best results (Cmax-Best), and
the average and best relative time of 30 runs of the three FA versions (VS, VI, and
VLS) for six different FJSP instances. Nxmxni stands for the number of jobs (n), the
numbers of machines (m), and the total number of operations (ni). Large instances
were selected for the study because it is wheremore differences in the performance of
algorithm’s versions exist. Behnke and Geiger [15] provide a detailed explanation of
the instances, fromwhere we took the best-known results (BKR).Av.Rel andBest.Rel
were calculated as (tVx−tVs)/tVs, tVx being the time spent by version x (x = VI ,
VLS) in reaching the maximal numbers of generations allowed (MaxGen), which is
the termination criteria. The parameters of the FA are number of fireflies nf = 200,

Table 2 Comparative study

Cmax Time

Instance n x m x ni BKR Ver Av Best Av.Rel Best.Rel

Mk1 10 x 6 x 55 40 VS 50.4 48 − −
VI 47.7 46 0.007 0.118

VLS 43 42 −0.008 −0.050

Mk3 15 x 8 x 150 204 VS 246.5 231 – –

VI 243.6 237 −0.127 −0.227

VLS 219.7 204 −0.255 −0.264

MFJS2 5 x 7 x 15 446 VS 474.43 456 – –

VI 460.96 446 −0.002 0.014

VLS 453.33 446 −0.026 −0.017

MFJS3 6 x 7 x 18 466 VS 549.4 507 – –

VI 530.4 497 −0.003 −0.005

VLS 497 466 −0.030 −0.035

Kacem 2 10 x 7 x 29 11 VS 24.9 21 – –

VI 14 13 −0.002 −0.004

VLS 11.96 11 −0.012 −0.008

Kacem 3 10 x 10 x 30 7 VS 20.6 18 – –

VI 8.03 7 −0.006 −0.004

VLS 8 7 −0.009 −0.008
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MaxGen = 50, βo = 1, γ = 0.1, and α = 1. For the initialization module: Ar1 = 20%,
Ar2 = 80%, MWR = 40%, MOR = 40%, and random = 20%.

It can be noticed how VLS notably and consistently outperforms VS and VI (Table
2), both in average and best values, reaching the BKR for almost all the tested
instances. It was expected since VLS is the most complete version, using both the
initialization and local search modules. Nevertheless, what catches our attention is
that the time spent by VLS is almost the same or lower than for VS and VI . As a
preliminary hypothesis, we believe a possible reason is that the more different the
fireflies are, the more computational time for the distance calculation and movement
is required. Hence, when applying local search, many solutions are neighborhood
solutions of others, and the distance between them is very low, requiring less time
to compute it and perform the movement. Another explanation may be how we
apply the local search to the firefly’s population. To each solution from the first
nf /2 set (better fireflies), we randomly apply one of the LS strategies. But, at each
iteration, the second nf /2 (worse fireflies) is renewed with solutions obtained after
applying one of the LS strategies to the best solution obtained so far, and thus half
of the population are neighborhood solutions of the best one (more focused in the
exploitation), while the other half is used for the exploration of promising areas.

5 Conclusions

It is common to look for improvements in the efficiency of metaheuristics algo-
rithms by adding some kind of problem-specific strategies or knowledge. This allows
to better explore the search space obtaining quality solutions to the optimization
problem in a shorter time. In this work, the original Firefly Algorithm was enhanced
with an initialization phase and some different local search procedures for solving
the FJSP, aiming to analyze how these two upgrades affect its performance. With
this purpose, we have explained and implemented three different versions of the
FA—the original discrete version, another version with an initialization phase, and
one more version with both the initialization and the local search modules—and
compared them in the resolution of some middle- and large-sized state-of-the-art
FJSP instances.

Computational results confirmed that the most complete version, the one that
starts the search from solutions obtained from the initialization phase and that uses
the different local search strategies during the search, consistently outperforms the
other two versions, reaching the best known results in most of the tested cases. Future
workwill be focused on expanding this study tomore FJSP instances and on studying
further techniques to speed up the algorithm.
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